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Abstract—Application vetting at app stores and mar-
ket places is the first line of defense to protect mobile
end-users from malware, spyware, and immoderately
curious apps. However, the lack of a highly precise yet
large-scaling static analysis has forced market operators
to resort to less reliable and only small-scaling dynamic
or even manual analysis techniques.

In this paper, we present Bati, an analysis frame-
work specifically tailored to perform highly precise
static analysis of Android apps. Building on estab-
lished static analysis frameworks for Java, we solve
two important challenges to reach this goal: First, we
extend this ground work with an Android application
lifecycle model that includes the asynchronous com-
munication of multi-threading. Second, we introduce a
novel value analysis algorithm that builds on control-
flow ordered backwards slicing and techniques from
partial and symbolic evaluation. As a result, Bati is the
first context-, flow-, object-, and path-sensitive analysis
framework for Android apps and improves the status-
quo for static analysis on Android. In particular, we em-
pirically demonstrate the benefits of Bati in dissecting
Android malware by statically detecting behavior that
previously required manual reverse engineering. Notice-
ably, in contrast to the common conjecture about path-
sensitive analyses, our evaluation of 19,700 apps from
Google Play shows that highly precise path-sensitive
value analysis of Android apps is possible in a reason-
able amount of time and is hence amenable for large-
scale vetting processes.

I. Introduction

Modern smartphones are used for a wide range of
functions that store and access highly sensitive personal
data, like online banking or social networking. Together
with the ubiquity of these devices, smartphones have
become an interesting target for malware developers and
overly curious apps. Due to its popularity, the Android
platform is at the heart of this trend [1], [2], [3], [4].

Since a growing number of apps behaves maliciously
or handles private data inappropriately, application vet-
ting has become imperative for market operators. While
Google’s developer policy is explicit about the handling of
sensitive user information, it is hard to verify the intended
security policies in an automated way. This situation is
aggravated by numerous third party (ad) libraries that
immoderately report user information to their networks or
even exhibit malware-like behavior [5].

Due to the rapidly increasing number of published
apps, precise and scalable analysis tools are required for
an automated large-scale application vetting. Approaches
based on static analysis are widely accepted as well-suited
tools for precise, in-depth program analysis. In contrast to
dynamic approaches, static program analysis can guar-
antee properties about any program run, irrespective
of the particular input or the state of the environment
the app executes in. Although static analysis is more
suitable for large-scale analysis in theory, it comes with
certain challenges, which when not considered, impede
its acceptance in practice: First, any non-trivial static
analysis is inherently undecidable [6]. As a remedy, static
analyses resort to over-approximations, which means that
if the analysis cannot guarantee a certain property (like
the absence of malicious behavior) it returns a “do not
know” result. That result signifies that either the property
could be violated or that the analysis is too imprecise to
prove it, which is called a false positive. Second, dynamic
language features like reflection, dynamic code loading, and
Android’s inter-component communication, are notoriously
hard to handle for static approaches as they depend on
runtime values – strings or primitive values – that may not
be available. Moreover, the complex Android application
model complicates matters even more. Approaches that
approximate this model will miss essential parts of the
program (false negatives).

Recent scientific research on Android has thus proposed
numerous techniques to approach these challenges. However,
due to the overall complexity most works only consider
a subset of them [7], [8], [9], [10], [11], which yields
unsound results. Others leverage heuristics that handle
the simplest and most common cases but capitulate to
more involved instances [12], [13], [14]. Even state-of-the-
art static analysis tools on Android, such as FlowDroid [15],
aim at very specific subproblems of app vetting. Their
forward taint-tracking approach is tailored to data leak
detection and inherently lacks the necessary properties to
approach challenges like dynamic language features that
require a precise path-sensitive value analysis.

To cover the previously described challenges, this work
proposes a novel, holistic approach based on path-sensitive
value analysis. Particulary, we introduce Bati, a static
analysis framework for Android applications that is the
first to provide path-sensitive analysis on Android. Bati
builds on top of the established Java analysis frameworks



Wala1/Joana [16], [17]. We integrated Android-specific
adaptions such as multiple program entry points, the
Android application lifecycle, and asynchronously executing
app components to these frameworks. Additionally, we
solved the technically involved challenge of extending these
existing systems with a scalable, path-sensitive program
analysis that reasons accurately about information flow
in general and strings passed as parameters to dynamic
language features. To counter a path explosion during
analysis—a possible implication of path-sensivity—Bati
abtracts from loops by making the number of iterations
explicit. Strings and primitive values are resolved in Bati by
using techniques from partial and symbolic evaluation. Due
to undecidability, but also to support a human analyst, we
leave API calls symbolic in our analysis. Domain knowledge
(cf. Section IV-D) and human intervention in a semi-
automatic vetting process can resolve these symbolic values
further if necessary. As a result, we receive a very precise
information flow analysis that surpasses the state-of-the-art
in Android.

In summary, we make the following contributions:

● We propose the first context-, flow-, object-, and
path-sensitive analysis for Android that models the
complex Android lifecycle correctly, including the
asynchronous communication of multi-threading.

● We propose a novel value analysis to precisely
determine primitive values and string parameters
by leveraging a combination of backward slicing and
techniques from partial and symbolic evaluation.

● We evaluate our analysis using a number of external
and newly created benchmarks. Our evaluation
reveals that none of the previous tools for Android
takes the full intricacies of Android into account and
finds as many illicit information flows as ours. At
the same time our tool displays a very low number
of false positives.

● We perform a set of experiments on 19,700 apps
from Google Play and conduct a comprehensive
study on an Android malware repository (from the
Malware Genome Project [18]) where Bati finds
a number of malicious practices that have only
been described in virus databases after manual
code reviews or not at all. As expected, we reaffirm
well-known illicit behavior that other tools had
determined previously.

Outline: The remainder of this paper is structured
as follows. We start in Section II by motivating our
development of a novel path-sensitive value analysis frame-
work for Android applications. We continue in Section III
with elaborating on how we model the complex Android
application lifecycle and in particular how we advance
and complement the state-of-the-art lifecycle models with
a precise model of threading. Afterwards, we present in
Section IV the Bati architecture and our algorithm for
path-sensitive value analysis. We present the results of our
evaluation of Bati in Section V. In Section VI, we compare

1http://wala.sf.net

1 public class MainActivity extends Activity {
2
3 protected void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 setContentView(R.layout.premium_sms);
6 String frag1 = "10";
7 int frag2 = 66953930;
8 if (Math.random() > 0.5d) {
9 frag1 = "106618";

10 frag2 = getFragment();
11 }
12 SmsManager sm = SmsManager.getDefault();
13 sm.sendTextMessage(frag1 + frag2, null, "95pAHD", null, null);
14 }
15
16 private int getFragment() {
17 return 5829;
18 }
19 }

Listing 1: Premium SMS example

Bati to closest related work in the areas of static and
dynamic analysis and we discuss our solution in Section VII.
We conclude this paper in Section VIII.

II. Motivation
We start by making a case for path-sensitive analysis

using common, yet unsolved, classes of challenges for static
analysis on Android. We illustrate the need for a precise
value analysis and point out why identifying only the
instructions that might be influenced by a source of sensitive
information or that influence outgoing data is insufficient
for reasoning about information flows in programs. Further,
we demonstrate the importance of a precise model for
Android’s lifecycle.

A major challenge for static analysis is that the be-
havior of many static and dynamic language features
strongly depends on their actual input. Often this is a
string value like the class name used for reflection or the
receiver number of an SMS. For instance, in malware
analysis one needs to discriminate premium SMS from
standard SMS to classify app behavior correctly. Existing
approaches frequently fail in this classification for one or
more reasons, even though discriminating these two cases
is only a matter of analyzing the receiver number and
the message body. Listing 1 shows an abstracted premium
SMS example that is common for many Android SMS
malware variants [18]. In line 13, a premium SMS with
activation code 95pAHD is sent (without user interaction)
once the MainActivity is displayed. The receiver is selected
randomly and assembled via string concatenation, a simple
form of obfuscation. Although simple, this technique is
effective against current string analyses that simply search
for string fragments and combine them in arbitrary order
to find meaningful combinations. These approaches will
miss frag2, an integer variable that is implicitly converted
to a string during concatenation (which internally con-
stitutes a StringBuilder.append call). Moreover, intra-
procedural String analyses miss that the number 5829,
which is returned by the method call getFragment, is also
a potential fragment, as it again is implicitly converted
to a string. However, even having identified all fragments
does not suffice to handle this case precisely. The analysis



1 public class DataLeakage extends Activity {
2
3 private String deviceId;
4
5 protected void onCreate(Bundle savedInstanceState) {
6 super.onCreate(savedInstanceState);
7 setContentView(R.layout.data_leakage);
8 new ATask().execute();
9 }

10
11 protected void onPause() {
12 super.onPause();
13 deviceId = "fakeId";
14 }
15
16 // Button.onClick callback handler defined in XML file
17 public void leakDeviceId(View view) throws IOException {
18 File extDir = Environment.getExternalStorageDirectory();
19 FileWriter writer = new FileWriter(extDir);
20 writer.write("Device ID: " + deviceId);
21 writer.close();
22 }
23
24 private class ATask extends AsyncTask<Void,Void,String>{
25 protected String doInBackground(Void... params) {
26 TelephonyManager tm = (TelephonyManager)
27 getSystemService(Context.TELEPHONY_SERVICE);
28 return tm.getDeviceId();
29 }
30
31 protected void onPostExecute(String result) {
32 deviceId = result; }
33 }
34 }

Listing 2: Android lifecycle example

would additionally require the information about which
fragments are possible on which path. Enumerating all
possible combinations results in many false positives. Thus,
path-sensivity is crucial for being able to assemble the
number 1066953930 and the number 1066185829, which
will overwrite the former within the if-statement.

Another, only partially solved, challenge is that static
Android analysis requires a precise execution model that
is tailored to the complex Android environment. Listing 2
shows an abstracted real-world example in which the device
identifier is eventually leaked. If the user clicks on a specific
button, leakDeviceId is executed to write the content
of deviceId to the SD card where it can be read by any
application. An analysis that does not parse the app’s meta-
data will fail in detecting this method as an event listener
that is implicitly called by the framework. Thus, a code
reachability analysis will flag this method as dead code and
the write instruction in line 20 will remain undetected.

Moreover, an accurate model of the Android lifecy-
cle is required to find field updates in the framework
callback method onCreate and the AsyncTask callback
onPostExecute. Algorithms that approximate the Async-
Task lifecycle will not report that the actual device ID
(line 28) is accessed in a dedicated thread and that it is
only leaked if the user clicks the button before the app is
paused (for the first time).

III. Modeling the Android Lifecycle

Android apps adhere to a complex application lifecycle
that challenges static analysis algorithms. Approximations

to this model or even disregarding certain parts like
multi-threading leads to incomplete data models. Code
reachability analysis on these models will then fail to detect
large parts of the application. This implies that sensitive
data leaks or malicious code segments are missed by the
actual analysis. To account for this problem we adopt state-
of-the-art modeling of app components and event listeners.
We add a precise model of threading, which has previously
been disregarded by related work [13], [8], [11], [15], to
receive a comprehensive lifecycle model.

In the following, we will elaborate on the Android
application model, focus on its characteristic features, and
explain how Bati creates a tailored lifecycle model for each
app to be analyzed.

A. Asynchronously executing components

Every Android application consists of several compo-
nents. There are four main component classes: Activities
are single user-interface screens, Services are long running
background tasks that do not interact with the user,
ContentProviders provide a read and write interface to
structured data, and BroadcastReceivers listen for global
events that are broadcast via Intent messages. Every
application declares its components in a manifest file.
Components execute asynchronously and are triggered by
events or launched (and stopped) due to user interaction.
To account for this complex event-driven application model,
Bati allows components to be executed in arbitrary order.

Android apps do not have a single entry point, as,
e.g., regular Java programs do. Instead, each component
defines callback methods, which are implicitly invoked
by the system during the app’s lifecycle. Developers can
override callback methods such as onCreate or onPause
(cf. Listing 2) to initialize data structures, save state before
an app is switched into the background, or closed. Each class
of components has its own lifecycle specifying the potential
order of callbacks. Bati generates a lifecycle method per ap-
plication component that models the framework’s runtime
behavior in accordance with the official specification2.

B. Event Listeners

Interaction of apps with the application framework is, to
a large extent, event-driven. For instance, apps (that hold
the corresponding permission) can register callback objects
as listeners to the location service, which will inform them
whenever the device’s location has changed.

In order to register callback objects, developers have
two options: They can either declare callbacks in XML files
that specify an activity’s layout to render its user interface;
or they can register callbacks programmatically via a well-
defined API, or by overriding callback methods of system
classes.

To detect callback methods (and their enclosing classes)
Bati includes an Android XML file parser that analyzes
layout definitions. As shown in Listing 2 it is common to
register onClick handlers for buttons that way.

2http://developer.android.com/guide/components

http://developer.android.com/guide/components


Identifying programmatically registered callbacks re-
quires iterative code scanning. We first perform a reachabil-
ity analysis starting from the callback methods identified so
far. We then scan each reachable class for overridden system
callbacks and method calls that use system interfaces as
input arguments. We iterate this process until we reach
a fixed point to account for nested methods that register
callbacks. All identified event listeners are incorporated
into the lifecycle method of their enclosing component. As
their execution order cannot be predicted in general, Bati
assumes an arbitrary order.

C. Threading
Android’s application model imposes very strict re-

sponse times onto application components and forces
developers to off-load potentially long-running code into
separate threads. Apart from Java’s default packages
like java.util.concurrent, Android provides a widely
adopted API for AsyncTasks to support the developer in
separating such code into background tasks (e.g., down-
loading a file from the Internet) and feeding results back
to the originating thread (e.g., as a progress monitor).

In contrast to Java’s Thread class that contains a single
thread entry method (run), AsyncTask features a series
of callbacks that are discharged in a specific order once
its execute command is invoked. If a task is triggered,
the onPreExecute method is executed to set the task up.
Subsequently, the doInBackground method is executed in
a background thread to realize the main functionality. This
method takes a varargs argument, (i.e. basically syntactic
sugar for an array). Its return value is passed to the
callback methods onPostExecute or onCancel, depending
on whether or not the task was cancelled. Within the
doInBackground method, the method publishProgress
can be invoked with a varargs argument which in turn
triggers the callback onProgressUpdate with the same
argument. Bati automatically identifies the concrete types
for the generic parameter types like <Void,Void,String>
in Listing 2 and generates a tailored lifecycle method that
reflects this behavior. During analysis, this lifecycle method
is then invoked instead of execute.

The callback array arguments represent another chal-
lenge for static analysis. Section IV-D explains in detail
how Bati resolves them as part of the value analysis. To
the best of our knowledge, we are the first to generate a
comprehensive model of threading in Android, including
the complex AsyncTask lifecycle with precise parameter
passing. As the prevalent design pattern for multi-threading
in Android apps, it is essential for static analysis algorithms
to handle AsyncTasks accurately.

D. Synthetic Main Method
Finally, like previous approaches [15], we generate a

synthetic main method, that constitutes a single, unique
entry point of the application. It models the Android
runtime behavior and forms the basis for Wala/Joana
to create the precise data model Bati builds on. In
this method each component is instantiated by invoking
its constructor, and subsequently its respective lifecycle
method is called.

To account for the asynchronous nature of components
it is important that the control-flow model matches the run-
time behavior. ContentProviders are the first components
created at application launch time.3 Subsequently, custom
application classes follow in the order provided by the class
hierarchy. Finally, Bati assumes that all other components
can execute in arbitrary order including repetition.

IV. Path-sensitive Value Analysis

Bati builds upon the established information flow
control framework Joana [16], [17]. The frontend of Joana
is based on the widespread Java analysis framework Wala
that comes with an intermediate-representation (IR) in
static-single assignment (SSA) form [19], [20], a precise
points-to analysis framework, and various dataflow solvers.

The high-level architecture of Bati is depicted in Fig-
ure 1. It is structured into two main phases, a pre-processing
phase and an analysis phase. In the pre-processing phase
the Android application file is parsed and the application
lifecycle is modelled. The output, a lifecycle-enhanced
bytecode file, is subsequently used during the multi-layered
analysis phase that works in a nutshell as follows: First,
Joana’s SDG (system-dependence graph) builder module
creates a precise data model. This model is then used by
our slicer to analyze framework methods specified as point
of interest (sink). Path-sensivity is added in a follow-up
step by the sink tree builder. Finally, a minimal, expressive
string representation of the result is rendered by our novel
path merging algorithm that adopts techniques from partial
and symbolic evaluation. In the following, we elobarate on
the details of the individual modules.

A. Pre-processing phase

In order to be able to analyze Android applications, the
information included in the application package (apk) needs
to be parsed. Although Joana provides a strong foundation
for static analysis, it is designed with Java programs in
mind. It adopts the Dalvik frontend from the SCanDroid
project [13] to transform Android bytecode directly into
Wala’s IR but it lacks a model of the Android lifecycle.
Thus, we add modules for parsing Android application
manifests and layout files used by Activities. The manifest
file is the starting point for our Android lifecycle analysis as
it contains meta data like the requested permissions or the
components the application is composed of. In combination
with the event listeners declared in layout files this allows
us to initiate the application lifecycle modeling as described
in Section III.

The final model is then passed to our lifecycle generator
that alters the original bytecode such that the subsequent
analysis faithfully takes the Android peculiarities into
account.4 To that end, we implemented a bytecode instru-
mentation framework based on the popular dexlib5 library
that generates bytecode according to the lifecycle model.

3http://developer.android.com/reference/android/content/
ContentProvider.html

4Technical reasons exclude direct altering of Wala’s IR
5https://code.google.com/p/smali/

http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
https://code.google.com/p/smali/
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Figure 1: High-level architecture

The lifecycle-enhanced bytecode is used as input for
Joana’s backend that comprises object-, context-, field-
, and flow-sensitive system dependence graphs for inter-
procedural program analysis. An SDG is a language-
independent representation of dependencies between state-
ments of a program. In the process of generating the SDG,
dynamic method dispatches are resolved and method side-
effects are computed. The SDG includes the lifecycle model
tailored to the analyzed app and forms the basis for our
slicing algorithm which we describe in the following.

B. Path-tracking slicing algorithm

Traditional SDG-based slicing approaches [21] compute
a slice by traversing the underlying data representation
backwards starting at some sink. Data-dependent state-
ments are iteratively added until a fixed point is reached.
The resulting summary slice is an unordered set of state-
ments that influences the sink but does not contain any
path information. As illustrated by Listing 1 such path
information is essential to make a precise value analysis
possible.

However, building a fully path-sensitive slicer, i.e.
considering all possible execution paths, is impossible
in practice as computing loop conditions statically is
undecidable. To account for this problem, we devised a path-
tracking slicing algorithm that works as follows: The slicer
traverses app instructions in the reverse order of runtime
execution (reverse control-flow order) while exploiting data-
dependency information of the SDG to only account for
instructions that influence arguments of the sink. During
branch traversal path information derived from the SDG
and the SSA-based IR is added to the slice that allows
recreating individual paths in a subsequent step.

The following kinds of path information is used by Bati:

● Phi instructions. These functions are an essential
building block for Wala’s SSA-based IR. A program
(Listing 3) transformed into SSA form (Listing 4)
offers flow-sensitivity for local variables because ev-
ery variable is statically only assigned to once. They

1 x ← 23
2 if(c):
3 x ← 42
4 y ← x − 10
5

Listing 3: Non-SSA form

1 x1 ← 23
2 if(c):
3 x2 ← 42
4 x3 ← φ(x1, x2)
5 y ← x3 − 10

Listing 4: SSA form

are located at intra-procedural control-flow merge
points after conditionals and switch statements and
exhibit information on how variables are modified
across paths.

● Entry statements are added to the slice if an
argument depends on a method parameter. Every
caller of this method represents a distinct path.

● Field setter instructions. Static and instance
fields are not tracked by the method-local phi
instructions. If their content is altered in different
paths, multiple values might be possible when the
field is accessed.

Output 1 shows the resulting slice output of the
DataLeakage example in Listing 2 in a backward control-
flow order. Beginning at the write method (line 1), the
slicer iteratively resolved parameters and objects that
influence this call. The string written to the SD card is
assembled via a series of invocations on a StringBuilder
object (lines 5-8). Its value depends on the field deviceId
that can have two values depending on the actual state
of the application. The field is either updated with the
constant string fakeId (line 10) or with the actual device id
that is accessed (line 17) in a new instance of the AsyncTask
class ATask.

Abstracting framework calls: Bati treats Android
framework invocations like android.telephony.
TelephonyManager->getDeviceId() symbolically, i.e.
we include only a String representation of the method
call in the slice. Since framework methods have a well-
defined semantics this usually suffices to understand
the program behavior. This abstraction dramatically
lowers the complexity of the underlying data structures



1 java.io.FileWriter−>write{v6}(v16)
2 java.io.FileWriter−><init>{v6}(v4)
3 v6 = new java.io.FileWriter
4 v4 = android.os.Environment−>getExternalStorageDirectory()
5 v16 = java.lang.StringBuilder−>toString{v13}()
6 v13 = java.lang.StringBuilder−>append{v8}(v11)
7 java.lang.StringBuilder−><init>{v8}("Device ID: ")
8 v8 = new java.lang.StringBuilder
9 v11 = com.example.DataLeakage{this}.deviceId

10 com.example.DataLeakage{this}.deviceId = "fakeId"
11 com.example.DataLeakage{this}.deviceId = p1
12 ENTRY
13 com.example.DataLeakage$ATask.onPostExecute(Ljava/lang/String;)V
14 com.example.DataLeakage$ATask.onPostExecute{this}(v3)
15 v3 = com.example.DataLeakage$ATask.doInBackground{this}()
16 return v12
17 v12 = android.telephony.TelephonyManager−>getDeviceId{v8}()
18 v8 = com.example.DataLeakage−>getSystemService{v2}("phone")
19 v2 = com.example.DataLeakage$ATask{this}.this$0

Output 1: Slice of DataLeakage example

as no framework code has to be considered during SDG
construction and results in a more compact SDG.

C. Recreating paths

In this step, we exploit the path-information included
in the slice to discriminate individual paths reaching a
sink. However, considering all possible execution paths,
is impossible in practice as computing loop conditions
statically is undecidable. To account for this problem,
Bati assumes that loops and recursive methods are either
executed once or not executed at all. While this abstraction
seems to restrict the analysis at first glance, it does not
have a large impact on the precision in practice since
processing the loop/method body once generally suffices
to approximate code behavior.

Bati transforms the slice into a tree representation (sink
tree) using the collected path information. All instructions
within the slice carry supplemental information about the
control-flow-graph of their enclosing method and the basic
block (BB) in which they are located. Tree nodes are
generated for each unique basic block that contains at
least one instruction of the slice. Figure 2 shows the sink
tree generated for Listing 1 with four nodes.

A specific feature of our tree model is that instructions
across nodes are connected rather than nodes themselves. If
consecutive instructions within the slice reside in different
nodes, a special connector is created to connect these in-
structions by means of a directed edge. For phi-instructions
that reside in control-flow merge points, the connector
creates outgoing edges for any successor instruction, e.g.
the connector after the phi frag1 instruction points to the
assignment instructions of fragA and fragB.

This complex model is required since the smallest unit
of resolution is not an instruction but arguments within an
instruction. The receiver number in Listing 1 is assembled
via the string fragments frag1 and frag2. frag1 depends
on assignments that reside in basic block BB0 and BB1 of
method onCreate which yields two paths. frag2 is assigned
in BB0 of onCreate and getFragments, which again yields
two paths. A naïve path extraction would produce all

frag1 + frag2 
phi frag1 = (fragA, fragB)

phi frag2 = (fragC, fragD)
connector

fragA = "10"

fragB = "106618"
fragD = getFragment()

connector

fragC  = 66953930

return "5829"

connector

<onCreate, BB2>

<onCreate, BB0>

<onCreate, BB1>

<getFragment, BB0>

1.

2.

3.

4.

5.

1.

2.

1.

2.

1.

3.

Figure 2: Sink tree for Listing 1

combinations, in this case four distinct paths. To avoid
such over-approximation, the extraction algorithm has to
detect that there are only two distinct paths reaching the
sink. Technically, we solve this problem by enforcing that
the path extraction algorithm traverses the same outgoing
edge on connectors of the same node (either the solid or
dashed arrows in BB2).

Subsequent traversal of the tree yields the individual
paths that reach the sink, which in turn are control-flow
ordered lists of instructions. Outgoing edges of connectors
are traversed before its immediate successor within the
same node (if any). Within a node the algorithm stops if
either the end of the instruction list or an instruction that
is pointed to from a different node is reached. Applying
this algorithm to Listing 1 yields two paths that contain
the instructions to reconstruct the correct receiver numbers
1066953930 and 1066185829.

D. Path merger

In the following, we present a path merging algorithm
that allows precise reasoning about values flowing into a
sink. Having a slice for a single path allows aggressive
optimization by using techniques of partial evaluation
and Android domain knowledge. This allows recreating
method arguments as minimal, expressive, and precise
string representations.

Evaluating unary/binary operations: As a first means of
shrinking the slice we statically evaluate unary and binary
operations. This is a crucial requirement for computing
indices used for array and list accesses/updates. We adopt
partial evaluation techniques from the area of compiler
construction to evaluate such operations if the operand
values are constants or can be merged into a constant of a
primitive type, e.g., an integer addition 17+23 is evaluated
to 40. If there is at least one non-constant operand, for
instance, a symbolic framework call to Math.round() that
returns an integer value, the algorithm outputs a string
representation of this unary/binary operation, e.g., 17 +
Math.round(.7f).

Array access resolution: Precise analysis of array access
is a quite challenging task. Related work based on static
analysis [7], [8], [10], [15] usually overestimates array



modifications, as they do account for array modifications
across paths. Moreover, without a value evaluation positions
within an array cannot be tracked statically. This results
in false positives when sensitive data is written at position
x but later position x’ is accessed.

As one of the prime data structures in programming,
not being able to handle array access in a static way lowers
the precision of the analysis dramatically (see AsyncTask
parameter passing in Section III-C). Having an ordered
set of array updating instructions for a single path allows
an accurate resolution of an array access. Bati statically
reconstructs the content at the time of the access and
uses expression evaluation to compute the access index.
Depending on the way the array has been updated and
accessed along the path, there are essentially three outcomes
possible:

1) Bati can exactly determine the content that
is accessed, iff the access index i is statically
computable and it is possible to unambiguously
determine the data at position i. We then discard
all array instructions and return the reassembled
value at position i.

2) The index is computable but this position can
hold different data at the time of the access. This
may happen if the array is both updated with
statically computable and non-computable indexes.
In this case, the algorithm returns a list of possible
candidates.

3) In the worst case scenario, the index is not
statically computable. The algorithm then returns
a template consisting of how the index is computed
and a string representation of the reconstructed
array. In this case this is notably the best one can
do with static analysis.

Output 2 shows the part of the slice relevant for
resolving the array testcase ArrayAccess2 of the open-
source testsuite DroidBench (see Section V). This testcase
checks whether the analysis overestimates array operations.
An array is filled with both sensitive (device Id, line 3-
4) and non-sensitive data ("no taint", line 2), whereas
the latter one is finally accessed. Algorithms that cannot
distinguish between different positions and that are not able
to statically compute the index from a series of operations
will erroneously report a leak. In contrast, Bati improves
over this by statically resolving the array access. Given
the array register v8 and the instructions that update the
array (line 2-3), the content is statically reconstructed as
follows:

Step Instruction Reconstructed Array
0 ∅ [ ]
1 v8["4"] = "no taint" [x,x,x,x,"no taint"]
2 v8["5"] = v16 [x,x,x,x,"no taint",v16]

The access index v25 is computed by a series of
expressions within the calculateIndex method (line 6-
10). The expression evaluator starts with the return state-
ment and iteratively assembles and solves the expression

1 v27 = v8[v25]
2 v8["4"] = "no taint"
3 v8["5"] = v16
4 v16 = android.telephony.TelephonyManager−>getDeviceId{v11}()
5 v25 = de.ecspride.ArrayAccess2−>calculateIndex{this}()
6 return v10
7 v10 = v8 + "4 l"
8 v8 = v6 % "10 l"
9 v6 = v4 ∗ "5 l"

10 v4 = "1" + "1 l"

Output 2: Partial slice of array testcase ArrayAccess2

(((1+1)∗5)%10)+4 = 4. Finally, the non-sensitive value "no
taint" at position four of the reconstruct array is returned.

Incorporating domain knowledge: Bati abstracts from
framework internals by treating calls to framework methods
symbolically. By using domain knowledge about the
framework API it is possible to reduce the output size of the
slice even further. Especially for strings, which are internally
assembled via a series of StringBuilder/StringBuffer
methods, it is important to return the concrete string
value "Hello World!" rather than the instructions
java.lang.StringBuilder-><init>("Hello") and
java.lang.StringBuilder->append(" World!"). Concrete
string values are not only more precise but they further
allow automatic reasoning about dynamic language
features like reflection or inter-component communication.
We model this domain knowledge by adding semantic
rules that work on a series of method calls on the same
object. In case of the StringBuilder class we add a rule
that concatenates the arguments and outputs the result.

Besides strings there are more classes for which specific
domain knowledge increases the precision of the analysis,
in particular Java collection classes including various kinds
of List, Map, and Set implementations. These methods
internally behave like arrays and provide convenience
functions for the developer. We encode the getter/setter
methods of these classes as domain knowledge to statically
handle them similar to arrays. Output 3 shows part
of a slice that creates a list object, subsequently adds
sensitive and non-sensitive data and finally retrieves the first
element. Without domain knowledge, the slice of Output 3
would be incorrectly flagged as sensitive data leak, as the
algorithm cannot distinguish between different positions
of the LinkedList. By adding semantic rules for the add,
get and init methods, we can reconstruct the list content
and output the string "abc" from the first position. This
dramatically reduces the number of false positives, when
sensitive data is stored in a collection but later on different
data is accessed. In case the resolution fails, e.g. if the
argument of the getter method is not statically computable
or there is no semantic rule for a framework method, we
conservatively return the original slice.

Generating call-chains: In scenarios where the output
is to be reviewed by a human analyst, the slice is rendered
as a series of call-chains. This post-processing technique
improves the readability by generating compact string
representations of a series of method calls on a framework
class object. Instead of printing a list of instructions like in
Output 3 the slice is merged as follows: Starting at the get



1 v34 = java.util.LinkedList−>get{v7}("0")
2 v27 = java.util.LinkedList−>add{v7}("def")
3 v23 = java.util.LinkedList−>add{v7}(v20)
4 v12 = java.util.LinkedList−>add{v7}("abc")
5 java.util.LinkedList−><init>{v7}()
6 v7 = new java.util.LinkedList
7 v20 = android.telephony.TelephonyManager−>getDeviceId{v16}()
8 v16 = MyActivity−>getSystemService{this}("phone")

Output 3: Slice containing list operations

invocation in line 1, the algorithm collects all invocations
on the object v7 (line 1-6), reorders them according to the
runtime execution order and iteratively merges them. In
particular, the class name is omitted as the object class
does not change between two consecutive invocations. This
results in a more compact representation that does not
sacrifice information:
java.util.LinkedList-><init>()->add("abc")

->add($FNC)->add("def")->get("0")

In a subsequent step all non-constant arguments, here
denoted with the placeholder $FNC, are processed the same
way. This yields another call-chain:
MyActivity->getSystemService("phone")

=>android.telephony.TelephonyManager->getDeviceId()

In this case, the object type changes, i.e.
getSystemService returns an Object that is cast
to a TelephonyManager object on which getDeviceId is
called and thus we cannot omit the class name. To prevent
nested call-chains, each individual chain is printed on an
new line and placeholders (like $FNC) are used to connect
these chains.

V. Evaluation

The implementation of Bati comprises approximate 9.7
kLOC. For the evaluation of our approach we configure our
slicer with the comprehensive list of sources and sinks in the
Android API reported by the SuSi project [22]. Data leaks
are automatically reported, if the optimized path slices
contain a privacy sensitive sink from that list. Moreover,
Bati disregards sinks, if the application does not hold the
required permissions (e.g. sinks in library code that probes
for certain permissions of its host app). This information is
derived by the Android API permission map by Porter Felt
et al. [23], the parsed app permissions, and the sharedUserId
information from the manifest that indicates a permission
sharing across apps with the same signature.

To account for both large-scale analysis and specific
analysis of a single app, Bati supports various levels of
verboseness for the analysis result. Appendices A and B
show the Bati output for the examples in Section II. By
default, it prints – for every processed sink – the unique
sources leaked, the number of paths reconstructed from
the slice, and the minimal string representation of data
reaching the sink. Optionally, the instructions per path
and the complete slice including auxiliary information like
the methods and basic blocks can be returned. This may
be required to support reverse engineering of an app by a
human analyst.

In the following, we present the results of several bench-
marks and large-scale application studies to demonstrate
the benefits of our analysis. All experiments are conducted
on a test server with four Intel Xeon CPU E5-4650L @
2.60GHz processors with 8 cores each and Hyperthreading,
768GB RAM, and SSD-based storage. For our large-scale
application studies, we ran 64 parallel, single-threaded
analyses, i.e. at most 64 apps were analyzed in parallel. We
first run Bati on the open-source test suite DroidBench to
test the precision of our approach and to compare it with
state-of-the-art analysis tools. Under the assumption that
the DroidBench test cases are complete and our precision
holds for real-life apps as well, we use Bati to analysis
19,700 apps from the Google Play Store to show that our
approach is indeed practical on large scale. Finally, we
conduct a comprehensive study on an Android malware
repository where Bati finds a number of malicious practices
that have only been described in virus databases after
manual code reviews or not at all.

A. DroidBench Test Suite
DroidBench is an open-source test suite6 containing

Android applications crafted to evaluate the quality of
static and dynamic analysis tools. This set of apps contains
a variety of challenges for analysis tools that have to be
detected and correctly classified either as actual data leaks
or as a false positive. DroidBench v1.0 contains a set of 39
applications. Table 1 shows the results as reported in [15] for
the two commercial analysis tools IBM AppScan Source [24]
and HP Fortify SCA [25] as well as for the state-of-the-
art FlowDroid [15] framework in comparison to Bati’s
results. It lists the results for each testcase and the derived
precision, recall, and F-measure values.

The commercial tools display weaknesses in the Android-
specific test cases that test the Android lifecycle model and
callback methods. Despite showing a reasonable precision,
which is usually required by customers to improve adoption,
they miss almost 50% of all leaks. FlowDroid significantly
improves both precision and recall as a result of their en-
hanced lifecycle model. Even though, their limitations [15]
result in false positives or missed leaks. In contrast, our
value analysis yields a perfect precision and recall, which
illustrates the improvement with respect to the state-of-the-
art tools. Our analysis excels particularly in the category
arrays and lists where traditional tools fail.

Although DroidBench already includes testcases for
many Android and Java-specific design patterns, there are
no testcases to account for Android’s common asynchronous
communication via threads. We therefore added another
five testcases, which we are going to contribute to the test
suite. These test whether the analysis handles Java threads
and Android’s AsyncTask class correctly.

Table 2 shows the results for Bati and FlowDroid
of these test cases. The AsyncTask test cases both test
for correct parameter passing and for correct modeling of
the series of callback methods invoked by the framework
when an AsyncTask is executed. The results show that
FlowDroid does not model the lifecycle of AsyncTasks

6https://github.com/secure-software-engineering/DroidBench



⍟= correct warning, ⋆= false warning, ◯= missed warning
multiple circles in one row: multiple leaks expected
all-empty row: no leaks expected, none reported

App Name AppScan Fortify FlowDroid Bati
Arrays and Lists

ArrayAccess1 ⋆
ArrayAccess2 ⋆ ⋆ ⋆
ListAccess1 ⋆ ⋆ ⋆

Callbacks
AnonymousClass1 ◯ ⍟ ⍟ ⍟
Button1 ◯ ⍟ ⍟ ⍟
Button2 ⍟◯◯ ⍟◯◯ ⍟⍟⍟⋆ ⍟⍟⍟
LocationLeak1 ◯◯ ◯◯ ⍟⍟ ⍟⍟
LocationLeak2 ◯◯ ◯◯ ⍟⍟ ⍟⍟
MethodOverride1 ⍟ ⍟ ⍟ ⍟

Field and Object Sensitivity
FieldSensitivity1
FieldSensitivity2
FieldSensitivity3 ⍟ ⍟ ⍟ ⍟
FieldSensitivity4 ⋆
InheritedObjects1 ⍟ ⍟ ⍟ ⍟
ObjectSensitivity1
ObjectSensitivity2 ⋆

Inter-App Communication
IntentSink1 ⍟ ⍟ ◯ ⍟
IntentSink2 ⍟ ⍟ ⍟ ⍟
ActivityComm1 ⍟ ⍟ ⍟ ⍟

Lifecycle
BroadcastRecvLifecycle1 ⍟ ⍟ ⍟ ⍟
ActivityLifecycle1 ⍟ ⍟ ⍟ ⍟
ActivityLifecycle2 ◯ ⍟ ⍟ ⍟
ActivityLifecycle3 ◯ ◯ ⍟ ⍟
ActivityLifecycle4 ◯ ⍟ ⍟ ⍟
ServiceLifecycle1 ◯ ◯ ⍟ ⍟

General Java
Loop1 ⍟ ◯ ⍟ ⍟
Loop2 ⍟ ◯ ⍟ ⍟
SourceCodeSpecific1 ⍟ ⍟ ⍟ ⍟
StaticInitialization1 ◯ ⍟ ◯ ⍟
UnreachableCode1 ⋆

Miscellaneous Android-Specific
PrivateDataLeak1 ◯ ◯ ⍟ ⍟
PrivateDataLeak2 ⍟ ⍟ ⍟ ⍟
DirectLeak1 ⍟ ⍟ ⍟ ⍟
InactiveActivity ⋆ ⋆
LogNoLeak

Sum, Precision, and Recall
⍟ , higher is better 14 17 26 28⋆ , lower is better 5 4 4 0
◯ , lower is better 14 11 2 0
Precision p = ⍟/(⍟ +⋆) 74% 81% 86% 100%
Recall r = ⍟/(⍟ +◯) 50% 61% 93% 100%
F-measure 2pr / (p + r) 0.60 0.70 0.89 1.00

Table 1: DroidBench test results

(AsyncTask2+3 ) and overestimates the array passed to
the task in AsyncTask1. The thread test cases check
whether an analysis detects data leaks within the run
method of a thread. The thread is either implemented
as anonymous inner class (Thread1 ) or as individual class
(Thread2 ). Although both tools use an approximate thread
execution model, i.e. they assume that threads execute in
arbitrary but sequential order, the results differ strongly.
The testcases revealed strong limitations in FlowDroid’s
thread model whereas Bati passes all test cases due to the
correct AsyncTask model and the ability to resolve array
accesses in a static way.

B. Google Play Store Apps

We conducted a large-scale analysis of 19,700 apps from
the Google Play Store. The analysis results show that
most of the apps—accidentally—leak sensitive data by

App Name FlowDroid Bati
AsyncTasks & Threads

AsyncTask1 ⋆
AsyncTask2 ◯◯ ⍟⍟
AsyncTask3 ◯ ⍟
Threads1 ◯ ⍟
Threads2 ⍟ ⍟

Sum, Precision, and Recall
⍟ , higher is better 1 5⋆ , lower is better 1 0
◯ , lower is better 4 0
Precision p = ⍟ / (⍟ +⋆) 50% 100%
Recall r = ⍟ / (⍟ +◯) 20% 100%
F-measure 2pr / (p + r) 0.29 1.00

Table 2: Additional thread testcases

including third-party libraries for advertising, billing, or
tracking purposes. The advertising libraries strongly differ
in the amount of data they require or silently probe for.
Google’s Mobile Ad library does not require user data in the
default settings, only suggests the addition of location or
gender data to deliver tailored ads. In contrast to this, Bati
found that the Mobclix library accesses and sends, among
others, eight unique location data properties. Together,
these location properties allow the creation of an accurate
movement profile of the user. We also found cases, in which
equally precise location data was accessed but not leaked.
For example, the Evernote and Evernote widget apps
both use location data and the mobile country code to
check whether the user’s current location is in China, but
they do not leak it. The reason is that Evernote runs a
separate service called Yinxiang Biji7 for Chinese users and
thus ensures that the adequate service is selected by the
client app.

Bati found a number of apps with third-party libraries
that optionally send SMS, e.g. Fortumo (In-App Billing) or
Vserv for displaying ads. Our results showed, that none of
the analyzed apps makes use of this optional feature. We
assume that app developers do not want to scare users off
because of the required SEND_SMS permission. In contrast
to Bati, heuristics-based algorithms would very likely flag
this app erroneously as (potentially) malicious.

We also found apps like com.dangnh that contains code
for sending premium SMS when the user clicks on a dialog
button. Bati reported that the receiver number is read
from the asset file config.dat. We manually extracted the
number 0983201432 from this file and could confirm that
this number is registered at the Russian New Telephone
Company. However, using the permission map and manifest
information, Bati indicates that the app neither declares
the required permission nor does it have the shareUserId
flag. Thus, this code is never executed in practice. Besides
detecting illicit behavior, Bati could verify its absence in
the SMS code of com.krospik.speechcloud. It is a simple
speech recognition tool that also allows to send SMS by
means of dictating number and message. Our results showed
that indeed only the unaltered user input flows into the
SMS sink.

7http://blog.evernote.com/blog/2012/05/09/evernote-launches-
separate-chinese-service

http://blog.evernote.com/blog/2012/05/09/evernote-launches-separate-chinese-service
http://blog.evernote.com/blog/2012/05/09/evernote-launches-separate-chinese-service


In contrast to the common conjecture about path-
sensitive analysis, Bati has, despite its precision, a rea-
sonable running time of about 26min on average per app
and a worst case running time of 45min on highly complex
apps like Facebook or WhatsApp.

C. Malware Genome Repository
In order to demonstrate the accuracy and reverse

engineering capabilities of Bati, we analyzed a data set of
known malware from the Malware Genome Project [18]. The
data set includes 1260 malware samples of 50 different mal-
ware families. For this semi-automated analysis we extended
the sink list of the SuSi project with numerous methods
of framework classes to account for reflection and code
execution. Typically, no sensitive data flows into methods
of the classes Runtime, System, and (Dex)ClassLoader.
However, knowing how they are used is paramount to
reverse-engineer malware samples and supports deeper
understanding of the program behavior. Furthermore,
we additionally double-check our findings against public
malware reports of known security and antivirus companies
to confirm that the results of Bati are indeed correct.

Most of the malware from this repository is designed for
surreptitiously stealing money (via premium SMS) and/or
personal information. In the following, we present in detail
the analysis results for a subset of the malware families and
conclude with findings that are valid across most samples.
The selected subset focuses on SMS malware families as
they have not been covered by tools from related work
(which concentrate on privacy leaks) and usually require
manual analysis.

The ADRD malware family leaks unique identifiers like
the device identifier (IMEI) and the subscriber ID (IMSI)
via system log and SMS. At the time of publication most
Android devices ran Android 4.0 or lower. In these versions
the system logs are publicly readable by any app that
declares the READ_LOGS permission. Writing sensitive user
data to logs is therefore considered a severe privacy breach.
The results of Bati confirm another interesting result
from Symantec’s malware report8: The malware issues
crafted requests to Chinese search engines to increase the
pagerank for certain sites. In contrast to the mentioned
search engine baidoo.com we also detected destinations
including google.cn.

Samples of the BaseBridge family try to impose costs
on the user by silently sending premium SMS. The actual
bytecode does not reveal any malicious behavior except
that it loads and executes certain files from the assets. In
particular it tries to root the device with a rage against the
cage exploit. If it succeeds another file called anserverb is
read in as AppSMS.apk and installed via Android’s package
installer to /data/data/xxx.apk. We manually extracted the
supplemental apk file and run our analysis to reveal its
malicious behavior. The malware contacts a C&C server
by sending unique identifier and the phone number. Then,
it starts a background service, in which a ThreadPool is
initialized to periodically send out new premium SMS.

8http://www.symantec.com/security_response/writeup.jsp?
docid=2011-021514-4954-99&tabid=2

The Beanbot family implements a functionality very
similar to the BaseBridge family, however, it does not hide
its SMS sending code in a supplemental apk file. It is also
controlled via a C&C server that initially retrieves the IMEI,
IMSI and phone number. Subsequent control messages are
sent via SMS. Premium SMS are sent back to the number
the initial control SMS is received from.

jSMSHider is an SMS malware that especially targets
Android users with custom ROM. The devices are already
rooted and its supplemental apk, named testnew.apk, can
be installed without the user’s consent. The installation
process is invoked via the console command:
java.lang.Runtime->getRuntime()

->exec("pm install -r " +
new java.io.File-><init>(Activity->getFilesDir(),

"testnew.apk"));

The automatic analysis of the app bytecode already reports
13 unique sources leaked per sample, including IMEI, IMSI
and various location and network information. However,
the analysis of the supplemental apk revealed the truly
malicious behavior, including code to contact a C&C server
and to hide its activity by deleting premium SMS from the
sent directory and command SMS from the inbox directory.

NickyBot and GPSSMSSpy can also be classified as SMS
malware. However, they differ in the fact that they use
SMS messages to track the user. Both malware families
register a location listener to get updates about the user
movement and then periodically report this movement via
SMS messages the malware operator.

Besides that, most malware samples share common
functionality discovered by Bati. Often the WifiManager is
accessed to enable/disable Wi-Fi. The analysis also revealed
that samples frequently access the private ITelephony
class via reflection and call disableDataConnectivity and
enableDataConnectivity to toggle mobile data connec-
tions on/off. Almost every malware sample comes with a
set of either native libraries, supplemental bytecode files, or
a set of binaries that are executed at runtime. The former
two are generally utilized to hide malicious functionality
and to increase the complexity for analysis tools. Shipped
executable binaries found during analysis either contained
root exploits, e.g. to be able to perform any operations on
the file system, shell or super user binaries, or even VPN
binaries to create point-to-point connections to a remote
server.

VI. Related Work
Improving Android’s security has received a lot of atten-

tion by the security community in the recent years. A high
number of works has concentrated on extending Android’s
security architecture—for instance, enforcing developer-
defined policies [26], establishing IPC provenance [27],
inlined reference monitoring [28], [29], [30], securing user
interfaces [31], defending against ad libs [32], [33], or
integrating generic access control frameworks [34], [35],
[36].

In this section, we focus on comparing our analysis
method to closest related work in the areas of dynamic and
static analysis of Android applications.

http://www.symantec.com/security_response/writeup.jsp?docid=2011-021514-4954-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-021514-4954-99&tabid=2


A. Dynamic Analysis
The pioneering TaintDroid [37] architecture leverages

Android’s runtime environment to provide realtime data
flow analysis to detect privacy leaks in applications. Data
originating from privacy-sensitive sources is tainted au-
tomatically by the system and tracked as it propagates
through the program during execution. Each time tainted
data reaches a data sink and leaves the phone, for example
via network sockets or Bluetooth, the user is informed.
Besides the concrete values that are transmitted, Taint-
Droid also logs information about the destination. The
AppFence [38] architecture extends TaintDroid with access
control mechanisms that do not only log information
leakage, but also prevent it.

DroidScope [39] is an analysis platform which, based on
the Android emulator, follows the tradition of virtualization-
based malware analysis. It provides APIs that facilitate
custom analysis at hardware, OS, and application level. It
supports taint analysis to track information leakage through
both Java and native code components of applications.

Both approaches, TaintDroid and DroidScope, have
been successfully applied to monitor and analyze applica-
tions at runtime. However, as dynamic analysis approaches
they require a large set of input values to be comprehensive.
Moreover, they impose a non-negligible performance over-
head. Thus, they are inappropriate for large-scale analysis
of applications, e.g., during app vetting processes.

B. Static Analysis
Static analysis of Android apps has been applied for

different purposes.
Detection of privacy leaks: For iOS, Egele et al. [40]

propose a privacy leak detector called PiOS. Similar to
Bati they apply a backwards slicing algorithm. However,
they base their analysis on simple CFGs and therefore
have to use an additional forward propagation analysis to
verify that sensitive data indeed flows to a sink. Specif-
ically for Android, a number of different static analysis
approaches exist to detect privacy leaks in Android apps.
AndroidLeaks [8] applies a combination of control-flow and
data-flow analysis to verify whether information propagates
from sensitive data sources to sinks that subsequently
send the data off the device. However, their analysis
is neither object- nor field-sensitive and thus it is not
suitable for a precise application vetting. AppIntent [9]
identifies sensitive data leaks and checks whether these
leaks are user-intended. Their approach uses a guided
symbolic execution approach to reduce the search space to
a tractable size. For any user-intended leak they come up
with a sequence of UI events that triggers this functionality.
Chex [11] leverages customized SDGs to detect component
hijacking vulnerabilities in apps via graph reachability
analysis. Their model addresses the interleaved execution
of multiple app fragments, each reachable from a single
entry point of the app. Their application vetting restricts
itself to the detection of connections between externally
accessible interfaces and sensitive sources/sinks. While
their evaluation shows a reasonable false-positive rate for
their targeted use-case, their approach is also inherently

limited, since it is neither path-sensitive nor is it capable
of precisely reasoning about values flowing into sinks.
Providing those features, as in Bati, would benefit their
precision. LeakMiner [10] as well as FlowDroid [15] are
based on the analysis framework Soot and employ a static
taint tracking approach to discover privacy leaks. In terms
of precision FlowDroid comes closest to our approach. They
combine a precise on-demand alias analysis with an accurate
model of the Android lifecycle. In contrast to Bati, their
approach is tailored for detecting privacy leaks. Reverse
engineering application behavior that requires a precise
string analysis is out of their scope.

Malware detection: Static analysis has also been used
successfully for detecting malicious apps. Zhou et al. [41]
detect piggy-backed apps based on the observation that
malicious payload is loosely coupled with the original app
code. The approach separates apps into modules based on
package names and extracts feature fingerprints for each
module. By use of a code similarity measurement apps
that only slightly differ in code can be flagged as malicious.
DroidRanger [42] employs a light-weight, heuristic-based
analysis to detect malicious behavior in apps. Behavioral
footprints like inclusion of supplemental files, suspicious
combinations of permissions, or API usages are extracted
from known malware. The RiskRanker [43] framework uses
several heuristics to detect malicious apps. To provide
more evidence, a backwards slicing approach is used to
check if potentially malicious method calls (like sending
SMS) are rooted at some callback methods that can be
triggered by the user. Yet it remains unclear how they
model the Android lifecycle and which algorithms they
use for generating precise data structures and points-to
analysis.

Reverse engineering: The Static Android Analysis
Framework (SAAF) [7] applies a similar analysis technique
as Bati. They use backward slicing to resolve register values
of predefined sinks. Their approach is also meant for reverse
engineering applications, but several limitations preclude
a precise analysis of real-world apps. For example, SAAF
does not descend into methods found during backtracking
and it remains unclear how the authors model the Android
lifecycle.

Analyzing inter-app communication: SCanDroid [13]
was one of the first static analysis tools for Android. Its
main focus is to check whether inter-component (ICC)
and inter-app (IPC) data flows are consistent according
to a specification, which they extract from the application
manifest file. SCanDroid is based on the established Wala
framework and implements a constraint system to track
values across instructions. To model ICC/IPC it is essential
to have an accurate string analysis to identify receivers.
They approximate the string values by constructing a
subgraph that includes StringBuilder operations and use
Wala’s flow solver algorithms to compute prefixes of those
strings that flow into methods related to ICC/IPC. Another
tool that generates ICC mappings is Epicc [12]. Its authors
employ simple inter-procedural CFG traversal algorithms
to detect hard-coded strings. String assembly that goes
beyond constant assignments as well as handling data URI’s
that are used to address receiving components are out of



scope. In case the algorithm cannot determine the receiver,
it conservatively assumes that it can be any receiver. This
implies a transitive closure when ICC receivers cannot
unambiguously be determined in two or more components.
Its ICC resolution would thus greatly benefit from a precise
string analysis as implemented by Bati.

VII. Discussion
Abstracting from framework internals implies that our

analysis cannot track flows within framework classes. An
example for such a framework class is SharedPreferences,
a general framework for saving and retrieving persistent key-
value pairs or inter-component communication. However,
including the framework code does usually not suffice to
handle these cases as most of them rely on runtime values
like strings. As a remedy, we propose to use domain knowl-
edge (Section IV-D) to add tailored semantic knowledge
about intra-framework flows. In combination with our value
analysis, this enables automatic reasoning in such situations.
For instance for SharedPreferences, Bati can resolve the
key used to store and retrieve a value and hence store and
retrieve operations using the same key can be connected
as source-sink pair.

Bati is particularly built for large-scale application
vetting. Detecting sensitive data leaks and discriminating
premium SMS from normal SMS is fully automated for a
single iteration of the analysis. In scenarios without domain
knowledge to automatically assess the slice, the analysis
requires user interaction. Especially in the complex area
of malware analysis our system provides a semi-automated
analysis. For instance, a human analyst has to manually
invoke the analysis on a supplemental apk, whose location
was revealed in a previous run. In many cases, the vetting
process can be automated further by adding more expert
knowledge.

An inherent limitation of Bati (as well as of related
work based on static analysis) is that flows to and from
native code cannot be tracked. Native code completely
differs from Android bytecode and its analysis requires
dedicated techniques that are beyond the scope of this
work.

VIII. Conclusion
We presented Bati, a vetting framework for Android

applications. It extends the established Java analysis
frameworks Wala/Joana with a comprehensive Android-
specific lifecycle model. By combining program analyses
like path-tracking slicing, partial evaluation, and array
access analysis we receive a novel, precise, path-sensitive
value analysis. Besides automated data leak detection, this
kind of analysis caters to unravel (statically) undecidable
problems (see premium SMS example).

We demonstrated empirically the high precision of Bati
through a community-provided benchmark suite. Moreover,
we showed its practicability based on a large-scale analysis
of 19,700 apps from Google’s Play Store and based on a
malware analysis, where Bati statically detected malicious
behavior that has previously only been described after
manual code reviews, or not at all. In contrast to the

popular conjecture that path-sensitive analysis is generally
impractical, our test results show that Bati is indeed
practicable for large-scale analysis.

As an ongoing task, we are currently implementing
further use-cases that require a precise value analysis as
implemented by Bati, for instance, an automatic analysis
of ICC. As future work, we consider a deeper investigation
on how reflection and dynamic code loading can be handled
automatically with our static value analysis.
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Appendix A
Bati Trace for Premium SMS Example (Listing 1)

1 Path (1/2):
2 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: android.telephony.SmsManager->sendTextMessage{v23}(v34,

"0", "95pAHD", "0", "0")
3 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v23 = android.telephony.SmsManager->getDefault()
4 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v34 = java.lang.StringBuilder->toString{v31}()
5 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v31 = java.lang.StringBuilder->append{v25}(v19)
6 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: java.lang.StringBuilder-><init>{v25}(v27)
7 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v25 = new java.lang.StringBuilder
8 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v27 = java.lang.String->valueOf(v18)
9 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: PHI v18 = "10", "106618"

10 ConstToken: "10"
11 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: PHI v19 = "66953930", v16
12 ConstToken: "66953930"
13 Result:
14 android.telephony.SmsManager->getDefault()->sendTextMessage("1066953930", null, "95pAHD", null, null)
15
16 Path (2/2):
17 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: android.telephony.SmsManager->sendTextMessage{v23}(v34,

"0", "95pAHD", "0", "0")
18 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v23 = android.telephony.SmsManager->getDefault()
19 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v34 = java.lang.StringBuilder->toString{v31}()
20 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v31 = java.lang.StringBuilder->append{v25}(v19)
21 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: java.lang.StringBuilder-><init>{v25}(v27)
22 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v25 = new java.lang.StringBuilder
23 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: v27 = java.lang.String->valueOf(v18)
24 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: PHI v18 = "10", "106618"
25 ConstToken: "106618"
26 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 1> InstrToken: PHI v19 = "66953930", v16
27 <com.example.MainActivity.onCreate(Landroid/os/Bundle;)V, 2> InstrToken(FLAGGED): v16 = com.example.MainActivity->getFragment{this}()
28 <com.example.MainActivity.getFragment()Ljava/lang/String;, 0> InstrToken(FLAGGED): return "5829"
29 Result:
30 android.telephony.SmsManager->getDefault()->sendTextMessage("1066185829", null, "95pAHD", null, null)

Appendix B
Bati Trace for Android Lifecycle Example (Listing 2)

1 INFO AppAnalysis : elapsed time: 424 ms
2 INFO AppHandler : === Source/Sink Manager ===
3 INFO AppHandler : Found 1 sink entry nodes
4 INFO AppHandler : Process sink # 1/1
5 INFO AppHandler : call : java.io.FileWriter->write{v6}(v16)
6 INFO AppHandler : in method: com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V
7 INFO Slicer : # nodes in backwards slice: 13/674
8 DEBUG Slicer : Slice:
9 DEBUG Slicer : java.io.FileWriter->write{v6}(v16)

10 DEBUG Slicer : java.io.FileWriter-><init>{v6}(v4)
11 DEBUG Slicer : v6 = new java.io.FileWriter
12 DEBUG Slicer : v4 = android.os.Environment->getExternalStorageDirectory()
13 DEBUG Slicer : v16 = java.lang.StringBuilder->toString{v13}()
14 DEBUG Slicer : v13 = java.lang.StringBuilder->append{v8}(v11)
15 DEBUG Slicer : java.lang.StringBuilder-><init>{v8}("Device ID: ")
16 DEBUG Slicer : v8 = new java.lang.StringBuilder
17 DEBUG Slicer : v11 = com.example.DataLeakage{this}.deviceId
18 DEBUG Slicer : com.example.DataLeakage{this}.deviceId = v12
19 DEBUG Slicer : v12 = android.telephony.TelephonyManager->getDeviceId{v8}()
20 DEBUG Slicer : v8 = com.example.DataLeakage->getSystemService{this}("phone")
21 DEBUG Slicer : com.example.DataLeakage{this}.deviceId = "abc"
22 DEBUG AppHandler : Recreate paths:
23 DEBUG AppHandler : Path (1/2):
24 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken:

java.io.FileWriter->write{v6}(v16)
25 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken:

java.io.FileWriter-><init>{v6}(v4)
26 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v6 = new java.io.FileWriter
27 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v4 =

android.os.Environment->getExternalStorageDirectory()
28 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v16 =

java.lang.StringBuilder->toString{v13}()
29 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v13 =

java.lang.StringBuilder->append{v8}(v11)
30 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken:

java.lang.StringBuilder-><init>{v8}("Device ID: ")
31 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v8 = new java.lang.StringBuilder
32 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v11 =

com.example.DataLeakage{this}.deviceId
33 INFO PathMerger : <com.example.DataLeakage.onCreate(Landroid/os/Bundle;)V, 0> InstrToken(FLAGGED):

com.example.DataLeakage{this}.deviceId = v12



34 INFO PathMerger : <com.example.DataLeakage.onCreate(Landroid/os/Bundle;)V, 0> InstrToken: v12 =
android.telephony.TelephonyManager->getDeviceId{v8}()

35 INFO PathMerger : <com.example.DataLeakage.onCreate(Landroid/os/Bundle;)V, 0> InstrToken: v8 =
com.example.DataLeakage->getSystemService{this}("phone")

36 DEBUG AppHandler : Result:
37 DEBUG AppHandler : java.io.FileWriter-><init>(android.os.Environment->getExternalStorageDirectory())->write("Device ID:

"com.example.DataLeakage->getSystemService("phone")=>android.telephony.TelephonyManager->getDeviceId())
38 DEBUG AppHandler : Found Sources:
39 DEBUG AppHandler : UNIQUE_IDENTIFIER android.telephony.TelephonyManager.getDeviceId()Ljava/lang/String;
40 DEBUG AppHandler :
41 DEBUG AppHandler : Path (2/2):
42 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken:

java.io.FileWriter->write{v6}(v16)
43 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken:

java.io.FileWriter-><init>{v6}(v4)
44 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v6 = new java.io.FileWriter
45 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v4 =

android.os.Environment->getExternalStorageDirectory()
46 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v16 =

java.lang.StringBuilder->toString{v13}()
47 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v13 =

java.lang.StringBuilder->append{v8}(v11)
48 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken:

java.lang.StringBuilder-><init>{v8}("Device ID: ")
49 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v8 = new java.lang.StringBuilder
50 INFO PathMerger : <com.example.DataLeakage.leakDeviceId(Landroid/view/View;)V, 0> InstrToken: v11 =

com.example.DataLeakage{this}.deviceId
51 INFO PathMerger : <com.example.DataLeakage.onPause()V, 0> InstrToken(FLAGGED): com.example.DataLeakage{this}.deviceId = "abc"
52 DEBUG AppHandler : Result:
53 DEBUG AppHandler : java.io.FileWriter-><init>(android.os.Environment->getExternalStorageDirectory())->write("Device ID: ""abc")
54 DEBUG AppHandler : Found Sources:
55 DEBUG AppHandler : - No source found -
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