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Zusammenfassung

Heutige Mobilgeräte mit Touchscreen haben unsere Kommunikationsgewohnheiten
grundlegend geändert. Ihre intuitive Benutzbarkeit gepaart mit unbegrenztem Inter-
netzugang erlaubt es uns jederzeit und überall zu kommunizieren und führt dazu, dass
immer mehr (vertrauliche) Informationen publiziert werden. Des Weiteren hat der
Erfolg mobiler Geräte zur Einführung neuer Dienste die auf vertraulichen Daten auf-
bauen (z.B. positionsabhängige Dienste) beigetragen. Mit den aktuellen Mobilgeräten
wurde zudem das Internet die wichtigste Informationsquelle (z.B. für Nachrichten) und
die Nutzer müssen sich auf die Korrektheit der von dort bezogenen Daten verlassen.
Allerdings bieten die involvierten Systeme weder robuste Datenschutzgarantien, noch
die Möglichkeit die Korrektheit bezogener Daten zu verifizieren.

Diese Dissertation führt drei neue Mechanismen für das Vertrauen und den Daten-
schutz ein, die die aktuelle Situation in weit verbreiteten Systemen verbessern. WebTrust,
ein robustes Authentizitäts- und Integritätssystem ermöglicht es den Nutzern sowohl
die Korrektheit als auch die Autorenschaft von über HTTP übertragenen Daten zu
verifizieren. X-pire! und X-pire 2.0 bieten ein digitales Ablaufdatum für Bilder in
sozialen Netzwerken um Daten auch nach der Publikation noch vor Zugriff durch
Dritte zu schützen. AppGuard ermöglicht das Durchsetzen von feingranularen Daten-
schutzrichtlinien für Drittanbieteranwendungen in Android um einen angemessen Schutz
der Nutzerdaten zu gewährleisten.
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Abstract

The era of touch-enabled mobile devices has fundamentally changed our communication
habits. Their high usability and unlimited data plans provide the means to communicate
any place, any time and lead people to publish more and more (sensitive) information.
Moreover, the success of mobile devices also led to the introduction of new functionality
that crucially relies on sensitive data (e.g., location-based services). With our today’s
mobile devices, the Internet has become the prime source for information (e.g., news)
and people need to rely on the correctness of information provided on the Internet.
However, most of the involved systems are neither prepared to provide robust privacy
guarantees for the users, nor do they provide users with the means to verify and trust
in delivered content.

This dissertation introduces three novel trust and privacy mechanisms that overcome
the current situation by improving widely used ecosystems. With WebTrust we introduce
a robust authenticity and integrity framework that provides users with the means to
verify both the correctness and authorship of data transmitted via HTTP. X-pire!
and X-pire 2.0 offer a digital expiration date for images in social networks to enforce
post-publication privacy. AppGuard enables the enforcement of fine-grained privacy
policies on third-party applications in Android to protect the users privacy.
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Background of this Dissertation

This dissertation is based on the papers mentioned in the following. The author
contributed to all papers as one of the main authors. The actual implementation of
the first version of X-pire! [P1] was mainly done by Stefan Lorenz and Julian Backes,
whereas the author contributed the majority of the conceptual design of X-pire! [P1].
For X-pire 2.0 [P8], the author contributed the whole system design, major parts of
the implementation as well as the evaluation, while the JPEG embedding (incl. the
implementation) was adapted from X-pire!. A discussion of the central idea behind
X-pire! is provided in [P9]. In WebTrust [P7], the author contributed to major parts
of the overall system design. Moreover, the author was responsible for the client-side
design, the client-side and partially also the server-side implementation (except for the
VDS library) as well as parts of the evaluation. AppGuard [P4, P3, P10, P5, P2, P6]
was developed together with Philipp von Styp-Rekowsky. He designed and implemented
the actual enforcement mechanism based on inline reference monitoring, whereas the
author developed the policy specification language EXSPoX. Furthermore, the author
was responsible for choosing suitable use-cases and for evaluating the chosen use-cases.
This included the specification of the corresponding security and privacy policies. The
author supervised the bachelor thesis by Gregor Geßner [T2] who implemented the
automatic transformation of policies written in the EXSPoX policy language into the
actual JAVA-based policies for AppGuard. In addition, the author supervised the master
thesis of Erik Derr [T1] who developed, based on the author’s idea, a powerful static
analysis framework with a particular focus on outgoing Internet connections called Bati.
The analysis framework provided valuable information regarding the behavior of apps
and builds, thereby, the future basis for actual privacy policies in AppGuard.

Besides the mentioned papers and supervised theses closely related to this disserta-
tion, the author was further involved in the work on the Android Security Framework [S3,
S4] and Scippa [S1]. In addition, the author supervised the master theses of Liviu
Teris [T4] and of Sven Obser [T3]. Liviu Teris designed and implemented, based on the
author’s idea, an interface for secure data containers in Android based on state-of-the
art trusted computing components. Sven Obser designed and implemented, based on
the author’s idea, a firewall mechanism to prevent data leaks detected by the analysis
framework Bati from Erik Derr.
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1
Introduction

Digital communication has fundamentally changed our way of living. Within the last
two decades, online services such as Web sites, e-mail, online social networks, or blogging
services have started to change communication habits of people all over the world, and
this happened for many good reasons: these services provide high usability combined
with much better and faster connections to people, especially if the communication
partners are spread around the globe. But the utility of recent services also goes
far beyond. People started to publish and share lots of personal information on the
Internet such as photos, videos, or comments as well as opinions. The whole social
interaction is enriched with digital media on the Internet. The pervasive spreading
of mobile devices featuring a permanent Internet connection provides the means for
our new communication channels. Mobile online connections lately also reached our
personal infrastructure, such as cars and our homes to provide comfortable remote
control features. We simply start to connect basically everything in our surrounding;
any place, any time.

However, these new technologies have also several downsides: most people com-
municate with each other using plain text messages, which is especially problematic
for confidential data. In addition, the majority verifies communication partners solely
based on pseudonyms or e-mail addresses. But how do they know that they are indeed
communicating with the intended recipient (authenticity)? It is fundamental to all our
communication that we can reliably ensure that we are indeed communicating with the
intended people. In this dissertation, we present WebTrust [P7], the first framework
to reliably prove authorship and integrity of transmitted Web resources. It seamlessly
integrates into the existing infrastructure and can be perfectly intertwined with HTTPS
to additionally provide both authenticated connections to the delivering server and data
confidentiality during transmission.

Whenever we publish sensitive information such as, for example, personal comments,
blog posts, or, potentially unflattering, pictures on the Internet (for example, via social
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networks) we loose full control of our data. Even if we restrict the access to a small
subset of people, how can we ensure that our images are not further copied outside
this group? Current technologies do not provide any useful mechanism to protect our
data once it is published while still allowing to share it. For our personal data it is
essential that we can publish information without loosing control and knowledge about
its spreading. Only if we can enforce our control, we are able to efficiently provide
post-publication privacy.

In this dissertation, we present X-pire! [P1], the first mechanism that provides
a digital expiration date for images in social networks. To achieve this, images are
encrypted and embedded into valid JPEG-images that are later uploaded to social
networks. After the images are published, access to these images is controlled by
controlling access to the decryption key. Once the expiration date is reached, the
decryption key can no longer be accessed. The major challenge of this approach was to
reliably embed encryptions into JPEG-files such that they survive JPEG recompression
in upload routines of social networks. X-pire! constitutes the technical limit that can
be achieved with a pure software-based approach. Its security is based on the major
assumption that users of the system are considered trustworthy. This assumption is
removed in the follow-up version X-pire 2.0 [P8], which is presented thereafter. X-pire
2.0 is the first solution that also solves the data duplication problem: no user, even if
malicious, is able to create copies of keys or decrypted images at any point in time. The
system leverages trusted computing components to ensure full control over digital data
in the post-publication phase.

But our privacy is not only at risk when we explicitly publish our data. Today,
the majority of people accesses online services from mobile devices that consolidate
a huge set of functionality. Typical features include, but are not limited to, normal
communication services (telephone, voice over IP, text messages, e-mail), location-based
services (GPS, navigation, POI search), multimedia (photos, videos, and audio) and
recording (microphone and photo/video camera), as well as office, business and Internet
applications. No other class of devices has ever provided more features in a single device.
The security concepts and solutions in place on mobile devices, however, did not keep
pace with the evolution of mobile devices. Even worse, well known solutions such as
virus scanners or effective firewalls as known from desktop computers did not directly
find the way to mobile devices. Moreover, with the deployment of modern mobile devices
the whole software installation process was subject to a paradigm shift: applications, so
called apps, are installed from a central application store. This led to a high diversity
of apps with highly specialized functionality. Typical developers are no longer big
companies, but commonly unknown developers that are often lacking the expertise
and experience of a professional and secure software development. The installation of
these potentially unprofessionally developed apps together with intentionally malicious
apps can lead to huge privacy and security risks: users of Android, for example, can
either decide to trust an application, or they cannot install it at all. We overcome
this situation for the Android operating system by introducing AppGuard [P6, P5, P2,
P10, P3, P4]. AppGuard provides to possibility to enforce fine-grained security and
privacy policies on untrusted third-party applications. In this dissertation, we present
our new policy specification language EXSPoX, how it can be used to specify policies
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for AppGuard, and how these policies provide great utility in a variety of use-cases.

1.1 Contributions

This dissertation introduces WebTrust, X-pire!/X-pire 2.0, and AppGuard to improve
both trust and privacy in our today’s workflow with modern mobile devices.

1.1.1 WebTrust

WebTrust leverages state-of-the-art cryptographic primitives to provide a comprehensive
authenticity and integrity framework for HTTP-based communication. The system
establishes trust both in the correctness and the authorship of transmitted documents
and forms the basis for our omnipresent usage of Web services as prime source of
information. WebTrust is designed to support mobile devices as they play a central
role in our today’s communication habits and integrates seamlessly into the current
infrastructure.

1.1.2 X-pire! and X-pire 2.0

The X-pire!-tools are first to provide a digital expiration date for images in existing
social networks. Both X-pire! and X-pire 2.0 rely on a novel technique to embed
encrypted data into JPEG-images such that they survive the recompression in upload
routines of social networks. X-pire! provides a solution purely in software and poses
trust assumptions on users and the operating system whereas X-pire 2.0 removes these
assumptions by leveraging state of the art trusted computing components to provide
strong security guarantees.

1.1.3 AppGuard

AppGuard provides a novel approach to inline reference monitoring that overcomes
Android’s deficiencies with its permission system and allows users to enforce fine-
grained security and privacy policies without requiring modifications to the Android
operating system, root privileges, or the like. The system integrates a high-level policy
language and supports the full instrumentation process of applications on standard
Android smartphones and tablet computers. We prove the utility of our approach by
applying AppGuard to several real-world Android third-party applications to protect
the user’s privacy. Additionally, we show how AppGuard can even be used to mitigate
vulnerabilities in third-party applications and the operating system.

1.2 Outline

This dissertation is organized as follows: In Section 2 we introduce our comprehensive
authenticity and integrity framework called WebTrust. Afterwards, we introduce X-pire!
and X-pire 2.0 in Section 3. Finally, Section 4 introduces AppGuard with its policy
language EXSPoX before we conclude this dissertation in Section 5.
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2
WebTrust

Today, the vast majority of our daily communication relies on Internet technologies.
The HTTP-protocol [73] has become the standard for requesting and delivering static,
dynamic, and even real-time streamed Web content from Web servers. But the HTTP
protocol was merely designed for transferring data between a server and a client without
considering the security of this connection. The HTTP protocol does not provide any
state information as it would be required for individual content per user (e.g., after
logging in to an account) and it does not provide any security guarantees: in particular,
it neither provides the integrity or authenticity of documents, nor does it provide data
confidentiality or the like. In this section, we introduce with WebTrust a comprehensive
authenticity and integrity framework that adds the missing authenticity and integrity
features. The section is based on [P7].

2.1 Motivation

The de-facto standard on the Internet for achieving a secured HTTP communication is
provided by the HTTP over TLS protocol, which is commonly referred to as HTTPS [186].
But HTTPS was designed to provide a (mutually) authenticated and secure connection
between a client and a server: both the client and the server identity can be checked
based on their public certificates1 and the transmission of data is encrypted and provides
integrity protection. But if an attacker manages to compromise an account on the Web
server or the Web server itself to manipulate the stored Web resources, no client is able
to detect these manipulations, neither with HTTP nor with HTTPS. Moreover, in many
cases only a provable authorship and end-to-end integrity is required, and not data
confidentiality. When we look at today’s applications on the Internet and consider how

1Ideally, both the client and the server certificates are signed by members of a trusted PKI to
facilitate their verification.
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often people already rely on unprotected information on the Internet, this situation is
completely unsatisfactory. If we consider, for example, a typical Web 2.0 blogging Web
site such as Twitter [227], users want to rely on information that is provided by other
users. And people are used to trust such information without further considerations,
which has already led to severe problems: In 2013, attackers hacked into the Twitter
account of associated press and published the following text [141]:

Breaking: Two Explosions in the White House and Barack Obama is injured

This message destroyed a market value of about 136 billion dollars [141]. And our
current Web standards provide no means to prevent such attacks. Both the HTTP
and the HTTPS protocol were simply not designed to prove to clients the authenticity
of documents with respect to their authors, or to later prove the correctness of such
documents to third parties. HTTP does not provide any integrity guarantees and
HTTPS can only guarantee the correct transmission of documents between clients and
servers. So all existing standards were not designed to provide the desired features.
In addition, all closely related systems that were previously proposed but are not yet
widely used, do either not cover all relevant use-cases, or they do not provide all features
desired for a comprehensive authenticity and integrity framework. We provide a feature
comparison of all closely related approaches as well as in-depth discussions of these
approaches in Section 2.11.

2.2 Problem Description

The intuitive approach to solve the lack of authenticity and integrity of documents for
HTTP would be to sign every single document before the Web server delivers it. But
this would still not provide authenticity and integrity of a document transferred from
its author to a client. It would merely protect the transmission between the Web server
and the client. This could be solved by moving already the signing operation to the
author who signs documents right after their creation. Although this would solve the
challenge of providing integrity and authenticity for static documents, this would leave
the problem unsolved for dynamically created content as well as for real-time streamed
content. The challenge is to achieve authenticity and integrity with respect to the author
of static, dynamic, and real-time streamed content. The challenge is, furthermore, to
enable the proof of authenticity and integrity of documents in front of third parties and
to provide an efficient and scalable system with reasonable performance in comparison
to HTTP2. Another challenge is to integrate a robust document revocation system that
allows clients to check the validity of documents as well as to integrate the support
for Web caches and content distribution networks (CDNs). This would allow us to
fully exploit the advantage in comparison to HTTPS since the transport encryption of
HTTPS prevents the usage of Web caches and CDNs.

2If a system does not aim for confidentiality, transmitted data does not need to be encrypted. So
for many use-cases it would be desirable and expected that a comprehensive authenticity and integrity
outperforms HTTPS since this step can be saved
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2.3 Contribution

We provide with WebTrust a comprehensive authenticity and integrity framework
for HTTP-based communication. WebTrust fills the feature gap between HTTP and
HTTPS and provides, in particular, the following contributions:

• WebTrust leverages state-of-the art cryptographic primitives to allow users the
verification the authorship of documents and to provide an end-to-end integrity
proof between authors and clients. Both features are neither provided by HTTP
nor by HTTPS, but they are essential in today’s communication. The question
whether we trust in content that we receive from the Internet, highly depends on
the authorship as well as on the correctness of the transmission.

• The authorship of documents can even be proven in front of third parties (non-
repudiation). There are many scenarios where such a feature is important: we
could consider information that is provided by the government or a company and
that changes later. Now users want to prove the original content during a trial;
another scenario would be a transcript of records from our online banking account,
e.g., to prove a bank transaction or our account balance to a third party.

• WebTrust integrates the so-called Individual Verifiability, a feature that targets at
the individual verification of posts on blog-like Web sites. This provides stronger
security guarantees for posts than for example the standard password-based
authentication for accounts before we post information.

• Our system includes an efficient mechanism for the active revocation of documents.
Documents change over time and people need to be able to verify whether a
received document is still valid.

• WebTrust enables efficient data updates for already protected data.

• Content can be served very efficiently, since WebTrust supports in contrast to
HTTPS both Web caches and content distribution networks (CDNs).

• WebTrust supports static, dynamic, and live-streamed content.

• Real-time streamed content can be progressively verified, i.e., on-the-fly upon
retrieval. This is crucial to verify, for example, live video streams right when they
are viewed.

• The WebTrust framework integrates seamlessly into the existing infrastructure and
is backwards compatible with existing Web technologies. We provide a prototype
implementation and conduct a performance evaluation of WebTrust to prove the
feasibility of the approach.

2.4 System Overview

In the following section we provide a high-level overview of WebTrust. First, we will
present our security objectives for WebTrust and describe the different settings and
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Figure 2.1: WebTrust: System Overview

content types we aim at, before we subsequently introduce the attacker model as well as
the underlying assumptions of our system. The global setup of WebTrust involves three
parties: a client integrated into a Web browser, a HTTP-based content server (e.g.,
a standard Web server with WebTrust support), and, finally, the WebTrust Content
Generator or author of content (cf. Figure 2.1). The WebTrust Content Generator
creates WebTrust-protected documents and uploads them to the content server. The
WebTrust Client is now able to request protected documents from the Web server and
to progressively verify their integrity and authenticity based on the content generator’s
public key during the arrival. In case the client requests dynamic content from the
content server that is still to be generated by the content generator, this request is
forwarded to the WebTrust Content Generator who generates the requested content on
the fly. Although the content generator and the Web server do not necessarily have to
be different entities, we recommend that both servers are different entities whenever
possible. Having a separate content generation server reduces the risks of key exposure
through content server breaches. This natural concept of splitting the content generation
server from the actual content delivery server implements the well known concept of
least privilege and allows us to assume a fully untrusted content server: even if the
content generator trusted the content server, this still would not imply that clients do
so as well.

2.4.1 Types of Content

To achieve the goal of a comprehensive authenticity and integrity framework for HTTP,
WebTrust needs to support all relevant scenarios and all content types that are commonly
served using the HTTP protocol:

• Static Content: Whenever the HTTP protocol is used to deliver static content
that already exists at the server-side, such as a static HTML-file, a picture, or a
video, the content is merely copied from the Web server to the client computer
upon request. The delivered files are exactly the same for all users and among all
requests.

• Dynamic Content: In contrast to static content, dynamic content is commonly
generated on the fly and we need to differentiate between two different cases: client-
side dynamic content as well as server-side dynamic content. Client-side dynamic
content is generated at the client-side by embedded scripts (e.g., JavaScript) that
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are used to create or fetch content. Server-side dynamic content can be treated
similar as static content. Although server-side dynamic content is also generated
in real-time for each single request, its delivery is just as for the static content. A
typical example for server-side dynamic content is the account balance when a
customer logs in to the account of an online banking Web site. The content of
the same URI/resource is different for every customer as it reflects the individual
account balance based on the authentication.

• Real-time streamed content: Real-time streamed content differs to the
previously described static and dynamic content that way that its end is still
unknown when the content stream is initially requested. Real-time streams are
commonly used for broadcasting audio or video from live events. This scenario
of real-time streamed content should not be confused with streamed content in
general: the specialty is the fact that the stream is in real-time. If it is not in
real-time, streaming can again be treated just like static content.

2.4.2 Security Objectives

In order to provide a comprehensive integrity framework for HTTP, several security
objectives need to be fulfilled. First and foremost, WebTrust needs to provide integrity
of data as well as authenticity of data with respect to the authors. In addition, WebTrust
should guarantee freshness, provide a document revocation mechanism, and support
non-repudiation.

1. Integrity. Current mechanisms used on the Internet merely provide document
integrity in terms of a reliable network connection (for example, through TCP [113]).
But usually when users require integrity, they want to ensure that a document
was delivered without manipulation from the author to the recipient. Recent
approaches have aimed at proving the integrity of documents without relying on
heavyweight mechanisms such as HTTPS; however, they did not focus on the
full transmission channel from authors to clients. Furthermore, they either miss
important features or they do not cover all relevant use-cases (cf. our detailed
discussion of related work in Section 2.11).

2. Authenticity. WebTrust aims at providing a proof of authenticity for Web
resources with respect to their authors. This differs fundamentally from previous
approaches such as HTTPS [186], which aimed at providing authenticity of
connection end-points, i.e., proving the identity of the server and the client. We
claim that in the majority of use-cases, especially if also the integrity of documents
is of interest, users want to ensure that a particular document was delivered as
intended by the author and we want to check that it stems indeed from the alleged
author. In contrast, when using HTTPS-based connections we usually want to
ensure that we are connected to the desired communication partner before we
share sensitive information.

3. Freshness. Since there might be several versions of a document with a crypto-
graphically valid signature, WebTrust requires a mechanism to ensure that users
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always receive the latest document. Freshness guarantees in combination with a
document revocation mechanism that a user always receives the latest version of a
document. A man-in-the-middle should not be able to replace a document during
transmission with an old, outdated, but valid WebTrust protected document.

4. Document revocation. A document revocation mechanism allows authors of
documents to selectively revoke documents, for example when errors where found
or information got deprecated. The mechanism provides users with the means
to verify whether the author of a document has actively revoked the document.
Since we aim with WebTrust for a comprehensive integrity framework, it needs to
provide such a mechanism.

5. Non-repudiation. Non-repudiation allows users to prove the validity of WebTrust-
protected documents to an arbitrary third party. The third party only needs to
trust the provided PKI.

We do not explicitly list confidentiality as design goal of WebTrust, since it contradicts
some other features desired by WebTrust, such as the support for caching. Still it might
be necessary to provide data confidentiality for certain use-cases. For the transmission of
data over the Internet this can easily be achieved by using WebTrust over HTTPS [186].
In case single files should be explicitly encrypted, WebTrust could simply use the
encrypted files as data instead of the unencrypted. For the case of encrypted data we
assume that the scenario offers already support for encrypted data such that WebTrust
is only used in addition to provide, e.g., content authenticity.

2.4.3 Attacker Model

We consider for WebTrust an active adversary that is able to eavesdrop and arbitrarily
modify all network traffic. However, the adversary is only able to decrypt ciphertexts or
to create signatures when either the corresponding keys were created by the adversary,
or when the protocol explicitly provides these keys to the adversary. We do neither
assume that an adversary can efficiently brute-force or guess the decryption keys, nor
that the adversary can break into systems participating in the WebTrust protocol to
steal the keys. The active network adversary can selectively replace server responses
by other responses with valid signatures based on his or her key. Such an adversary
could, for example, be the Internet service provider that is in full control of the network
connection. Furthermore, we assume that our active adversary can fully compromise the
WebTrust Content Servers in our setting3 and our assumption includes potential servers
of a content distribution network (CDN). This assumption for the involved WebTrust
Content Servers provides the adversary with access to all files stored on WebTrust
Content Servers and allows the adversary to manipulate all requests and responses
processed by the WebTrust Content Servers.

3This assumptions only holds true in all cases were we do not assume the Content Server and the
WebTrust Content Generator to be the same entity.
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2.4.4 Assumptions

In order to provide robust security guarantees for WebTrust, it is necessary to ensure
that an attacker cannot gain access to the cryptographic keys used for signing content.
We describe in the following the underlying requirements and assumptions of WebTrust,
which need to be fulfilled to achieve our goal of providing robust security guarantees:

• The WebTrust Content Generator stores the cryptographic keys to sign content.
We assume that the content generator and its underlying system cannot be
compromised by an adversary.

• In case hardware is used to protect the cryptographic keys that are used for signing
content (e.g., smartcards to store keys for the scenario of static content, or in case
a trusted platform module (TPM) is used for dynamic content), these critical
hardware components cannot be accessed or compromised by an attacker.

• In case the WebTrust Content Generator and the Content Server are the same
server (this is not recommended since it implies the local storage of keys), we
additionally assume that an adversary cannot compromise the Content Server. If
the WebTrust Content Generator and the Content Server are not the same server,
we do not state any further assumptions for the Content Server. In particular, we
do not need to trust the Content Server.

• We assume a standard PKI that cannot be compromised by the adversary.

• We assume the existence of collision-resistant hash functions, the existence of
chameleon hash functions, as well as the existence of cryptographic signatures.
Moreover, we assume that an attacker cannot break the cryptographic properties
of these schemes (for details, cf. Section 2.5).

2.5 Cryptographic Background

This section introduces the cryptographic primitives required for WebTrust. The
descriptions and definitions are taken from [P7]. We start with the introduction of Hash
Functions as well as constructions built upon hash functions and continue afterwards with
the concept of Verifiable Data Streaming as presented by Schröder and Schröder [198].
The section closes with the introduction of Digital Signature Schemes.

2.5.1 Hash Functions and Constructions

WebTrust relies on two different signature providers. Both providers require collision-
resistant hash functions and the one relying on the concept of Verifiable Data Streaming
additionally requires a chameleon hash functions. Both types of hash functions including
their most relevant properties as required by WebTrust will be introduced in the
following. After describing collision-resistant and chameleon hash function, we will
introduce Merkle Trees and based on the description of Merkle trees the so-called
Chameleon Authentication Trees, which leads to the introduction of the concept of
Verifiable Data Streaming.
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The key idea behind a compressing hash function h is to generate a short repre-
sentation (commonly referred to as the message digest, often also referred to as the
fingerprint) for a large input value. We refer to the set of possible input messages with
M, to the set of possible message digests with D, and define a keyed hash function (key
k) with h := hk as follows [123]:

m ∈M, d ∈ D : h(m) = d.

An important property of hash functions is their one-wayness (also called pre-image
resistance) [214]: the hash should be easy to compute h(m), but there should be no
efficient way to compute the pre-image of h, i.e. to compute m when given only d and
the description of hash function h.

2.5.1.1 Collision-Resistant Hash Functions

The idea of a collision-resistant hash function hcr is to ensure that for distinct input
messages also the output message digests are different: the probability that an adversary
can efficiently find two messages m and m′ with m 6= m′ that lead to the same message
digest d, i.e., hcr(m) = hcr(m′) = d, should be negligible [214]. WebTrust requires
for its design a collision-resistant hash function, but not a particular one. Any state-
of-the-art collision-resistant hash function will work out. We decided to use in our
implementation for the experimental evaluation for both our signature providers the
SHA-1 hash function [119] and recommend for a production ready implementation to
change the chosen hash function to SHA-3.

2.5.1.2 Chameleon Hash Functions

The notion of chameleon hash functions was first introduced by Krawczyk and Rabin
in a technical report in 1997 [126] and officially published in 2000 [127]. In general,
chameleon hash functions hch are very similar to collision-resistant hash functions based
on number theoretic assumptions. However, they have a major conceptual difference:
they provide a (keyed) trapdoor to efficiently compute collisions [P7]. A chameleon
hash function is typically defined by its key generation algorithm keyGench that is used
to generate the private/public key pair skch, pkch, the actual chameleon hash function
hch(pkch) that is parameterized by a public key pkch generated with keyGench, and the
algorithm col for efficiently computing a collision. So the family of chameleon hash
functions can be defined as the tuple HCH = (keyGench, ch, col) overM and D [127,
P7]. The chameleon hash function hch(pkch) takes as input a message m as well as a
randomness r and outputs the chameleon hash dch. Its collision resistance is defined
similar as for the normal collision-resistant hash function, but with the difference that
the adversary gains knowledge of the public key pkch instead of k. New is the trapdoor
functionality, which allows the owner of skch to efficiently compute a collision. This can
be achieved by an algorithm col that takes as input the secret key skch, a message m
and its corresponding randomness r, and a message m′. The output of the collision
algorithm is then r′ such that hch(pkch)(m, r) = hch(pkch)(m′, r′).

In general, it is possible to construct chameleon hash functions with the described
properties based on a number of different theoretic assumptions [P7]. These include the
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Figure 2.2: Example of a Merkle tree and its extension by one level.

factoring assumption [203], the discrete logarithm assumption [127, 18], as well as the
RSA assumption [18, 105]. For WebTrust, we decided to rely on the chameleon hash
scheme introduced by Ateniese and de Medeiros: its idea is based on a signature scheme
introduced by Nyberg and Rueppel and this chameleon hash scheme is proven secure in
the generic group model [17]. The proof assumes the hardness of a variant of the discrete
logarithm problem in the cyclic group Zp [17, P7]. Instead of relying on the cyclic group
Zp, we decided to use elliptic curves [145] in WebTrust. This provides us with smaller
chameleon hash values, which reduces the overhead that needs to be transmitted for
WebTrust, at the cost of longer computation times on our mobile ARM-based devices4.
For implementation details such as the library or the particular curve used by WebTrust,
please refer to Section 2.7.

2.5.1.3 Merkle Trees

The concept of Merkle Trees [144] is commonly used to verify the correctness and the
membership of single elements in larger data sets. Usually, a Merkle Tree is constructed
as follows: all objects in a dataset that should be verified are hashed and these hashes
constitute the leaves of the Merkle Tree. Starting with the first two hashes, now a binary
tree is constructed by recursive hashes. A tree node always consists of the hash of the
concatenated values of its children (cf. Figure 2.2). The tree is extended level by level
until all desired leaves have been added. The root node of the tree serves now as public
key for the verification of all leaf nodes inside the tree. The described binary structure
of Merkle Trees facilitates an efficient verification since only a logarithmic amount of all
tree nodes is involved for computing the proof. In order to verify a particular leaf node
L against the root, it is now necessary to compute the root node based on L, which
requires all adjacent nodes on the direct path from L up to the root node. Once the root
node is reached, the public key should be the same as the computed value; otherwise
the data object is either corrupted, or does not belong to the dataset. Figure 2.2 shows
how a Merkle Tree is constructed.

4Based on results from our empirical evaluation.
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v0,0

L0

L1

v-1,1

v0,0 ← H(n0,0)
n0,0 ← L0 || v-1,1

v-1,1 ← CH(null, r-1,1)

Collision Resistant Hash

Chameleon Hash

Leaves (actual data)

Figure 2.3: Basic example of a Chameleon Authentication Tree. The tree nodes are
labeled by v and with the first index being the height (vertical position) and the second
being the index (horizontal position): vheight,index.

2.5.1.4 Chameleon Authentication Trees

Chameleon Authentication Trees follow a similar idea as Merkle Trees: they provide a
data structure that facilitates the verification of correctness for any subset of a larger
dataset including a potential ordering of data. It is important to note that proving the
membership of single elements or even larger subsets to the full dataset is easy, however
both Chameleon Authentication Trees and Merkle Trees do not allow to efficiently prove
non-membership.

The major conceptual difference between a Chameleon Authentication Tree (CAT)
and a Merkle Tree is that the CAT allows to insert new leaves without the need to
update the root, i.e., the public key (root node) does not change. Insertions are enabled
by replacing all the hashes performed for the right nodes in a classical binary Merkle
Tree by the previously introduced chameleon hashes (node v−1,1) and by adding so-called
dummy leafs for yet unknown leafs (L1, cf. Figure 2.3). Since we want to later use
the signed root node of the CAT to prove the authenticity and integrity of data stored
in the leaves, we need to ensure that only the owner of the tree is able to change the
CAT (for example, to replace dummy nodes with actual data). The properties of the
chameleon hashes for computing collisions as well as the signed root node provide these
security guarantees. Insertions are only feasible for the owner of the secret key for the
chameleon hash functions and for the owner of the secret key for signing the root node.

A basic Chameleon Authentication Tree is provided in Figure 2.3. It is constructed as
follows: L0 constitutes the first leaf with actual data. The parent node v0,0 is computed
as collision-resistant hash of the two concatenated children L0 and v−1,1, where the right
node v−1,1 is the chameleon hash of L1. If the data of L1 is not yet known (Figure 2.3
shows this case), the chameleon hash is computed based on the dummy (null) leaf and
the randomness r−1,1. Later, when data is then added as L1, a collision is computed
based on the secret key skch, the old null leaf, the old randomness r−1,1, and the new
leaf L1. The output of the collision calculation is the new randomness r′

−1,1 that leads
together with L1 to the same chameleon hash for v−1,1 as the null leaf with r−1,1 did.
This ensures that the root node of the chameleon hash tree is not updated.
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v1,0

v0,0 v0,1

v1,0

L0

L1

L2

L3
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Chameleon Hash

Leaves (actual data)

v1,0 ← H(n1,0)
n1,0 ← v0,0 || v0,1

v0,0 ← H(n0,0)
n0,0 ← L0 || v-1,1

v0,1 ← CH(n0,1, r0,1)
n0,1 ← L2 || v-1,3

Hash

Chunked Website

Figure 2.4: Typical usage of Chameleon Authentication Trees in WebTrust. The example
contains four data leafs (L0, . . . , L3) [P7].

2.5.2 Verifiable Data Streaming

The Verifiable Data Streaming (VDS) protocol is based on the previously introduced
Chameleon Authentication Trees and was introduced by Schröder and Schröder in 2012.
Originally, the verifiable data streaming protocol was designed to stream data from a
computationally weak client to a powerful server. The core idea of WebTrust is not the
outsourcing of computations as for VDS, but we can nicely adapt the VDS protocol for
our setting.

2.5.2.1 Adaptation of VDS for WebTrust

In the WebTrust protocol, the content generator takes the role of the computationally
weak client in the original VDS protocol. The server from the VDS protocol is in our
scenario the untrusted Web server, which serves the data to the public Internet. Clients
can now publicly verify data that they receive from the Web server. Figure 2.4 shows
how the Chameleon Authentication Tree for the VDS protocol is constructed. The file
we want to protect (for example, a Web site) is split up into segments and each segment
constitutes a leaf (L0 to L3 in Figure 2.4). The left leaves are always a hash of the
concatenated children (green, uses a collision-resistant hash function), the right leaves
are the chameleon hash of the concatenated children (blue). Since the CAT is always
extended to the right side, the root node is also computed by a collision-resistant hash
function. It either serves directly as the public key for the verification of the WebTrust
protected file, or it is part of the public key. For our scenario, the root node of a per-file
CAT is the leaf of another CAT whose root node serves as the public key for the full
dataset. In case the full file that should be added to the CAT is not yet known (e.g.,
for a video live stream), a CAT for the expected final file size is created and dummy
leafs are added as placeholders. The dummy leafs consist of chameleon hashes that do
not yet contain real data, but dummy values (cf. Figure 2.5). Once the final data is
known, a collision is computed as previously described and the actual data is added.
Replacing these dummy leafs or adding the data does not involve an update of the root
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v2,0

v1,0 v2,1

L0

L1

L4

v0,1 v1,3

Collision Resistant Hash

Chameleon Hash

Leaves (actual data)
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Figure 2.5: Example for appending new data to existing chameleon hash nodes in a
chameleon authentication tree.

node and, thereby, of the public key. However, if the initial CAT was created to small,
it can be dynamically extended. But this involves an update of the public key since a
full layer is added on top of the root node.

2.5.3 Digital Signature Schemes

Finally, WebTrust requires digital signature schemes. A digital signature scheme allows
to compute a signature sig for a message m based on a secret key sk. Afterwards, every
user with access to the corresponding public key pk is able to verify the correctness
of the signature sig. WebTrust relies on the RSA signature scheme [188], since it
provides a very fast verification routine, which is in particular on resource-constrained
mobile devices a huge advantage. The RSA signature scheme is secure against the
standard notion of existential forgery under chosen message attacks [123, P7]. It uses
as underlying mathematical structure composite order groups [P7] and the security of
the RSA scheme can be proven in the random oracle model [28, P7].

2.6 System Details

In the following section we describe in detail how WebTrust achieves its design goals of
a comprehensive authenticity and integrity framework for HTTP. We discuss in detail
how the system is set up and how the cryptographic primitives introduced in Section 2.5
are used to achieve each of the desired features for WebTrust.
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2.6.1 System Setup

The system setup of WebTrust consists of client-side and server-side components and
involves three different entities: the author of content which we refer to as the Content
Generator, the content server responsible for actually delivering content, and finally the
WebTrust Client who requests and verifies WebTrust protected content. Depending on
the usage scenario, the requirements of the content generator, and the content type that
should be served, WebTrust leverages a different system setup to always achieve the
maximum amount of security possible under the given conditions.

All setup scenarios have in common that data to be served is split into smaller
segments and that WebTrust signatures are sent in an interleaved order with these
segments. We will now first introduce the different setup options of WebTrust before
we discuss our two different signature providers (namely VDSECC and RSA-Chaining,
they are supported by all our setups) and the individual WebTrust features.

2.6.1.1 Static Content

The preferred and most secure setup is the one for static content where the content
generator and the content server are different entities (cf. Figure 2.6). This setup
allows a very effective protection of the keys used by our signature providers, since the
secret key skstatic for signing content is only required when either new documents are
created, or existing documents are modified. Figure 2.6 shows how a file containing a
Web site is split into the segments s1, s2, and s3. Our signature provider (described as
Sign) processes the individual segments and interleaves the WebTrust signatures for
publishing each segment with the corresponding signature subsequently to the content
server. Clients are now able to request documents from the content server and to verify
the incoming segments one by one. Using a secure environment for storing the secret
key skstatic and for signing documents is of course only a recommendation. The decision
to use such an environment will most likely depend on the importance of the content
served. WebTrust would also work if both signing and key storage are done in the
untrusted environment of a normal operating system with the obvious impact on the
security guarantees.

2.6.1.2 Dynamic Content

In contrast to the setup for static content, the setup for dynamic content requires
the signing key to always be present. Dynamic content is usually either generated
individually each time it is requested, or at least individually per user. Therefore,
signatures cannot be precomputed upfront and need to be created right after the content
has been generated and before it is delivered. Achieving a meaningful protection for
the signing key skdynamic is, therefore, a central challenge for serving dynamic content
with WebTrust protection. In general, one could think of two different ways to set up a
WebTrust system that protects dynamic content.

The first possible setup is shown in Figure 2.7. The WebTrust Content Generator
can be considered as a modern database back-end for a Web server, but with the major
difference that the full dynamic site is already created at this back-end (for example, if
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Figure 2.6: WebTrust: System setup for static and streamed content
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Figure 2.7: System setup for dynamic and real-time streamed content in the scenario
where the WebTrust Content Generator 6= Content Server

dynamic content is loaded in an individual iFrame). This way, we can already add the
WebTrust protection at the WebTrust Content Generator. In our example presented in
Figure 2.7, the content generator takes input from the database and creates a Web site,
which is, as previously for static content, split into the segments s1, s2, and s3. They are
processed in a secure environment, such as a hardware security module that also stores
the secret key used for signing content skdynamic, and subsequently delivered with the
individual signatures to the Content Server. Upon arrival, the Content Server forwards
the incoming segments to the client that initially requested the Web site. Static content
loaded by other iFrames would be stored persistently on the content server. Security-wise,
this is the preferred setting since the WebTrust Content Generator and, thereby, also
the secret key for signing content skdynamic, can be protected more efficiently against
adversaries than the content server. However, as shown by Moyer et al. [149], this setup
will also introduce some additional overhead. Nevertheless, this setup is the one used
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Figure 2.8: System setup for dynamic and real-time streamed content in the scenario
where the WebTrust Content Generator = Content Server

by many big Web sites that serve dynamic content and we recommend to further use
for the WebTrust Content Generator trusted hardware to reduce the risks of both a
server breach and the exposure of the signing key. Using this setup allows us also to
refrain from making any particular trust assumptions on the content server.

The second possible setup is shown in Figure 2.8. This time the WebTrust Content
Generator and the content server are considered as the same entity: they are running
on the same server. All resources used (e.g., database entries, the secret key used for
signing content skdynamic, already signed static Websites, etc.) reside on this server.
Moreover, all required processing of content is also done on this server. If this setup
with a single server for both content processing and content delivery is chosen, we
highly recommend the usage of trusted hardware to protect the secret key used for
signing content skdynamic to reduce the impact of a server breach (cf. Section 2.6.4 for
details on hardware security modules). Additionally, the setup has impact on our trust
assumptions. We can no longer consider this server untrusted. We do not recommend
this setup; nevertheless, this is still a popular setup for small Web sites serving dynamic
content. Besides size and costs, another reason for such a setup could be time-critical
applications that serve dynamic content.

The granularity at which dynamic content is signed is similar as for the static
content since it is still further split up into individual segments. However, supporting
dynamic content with WebTrust introduces besides the protection of the secret key for
signing content (skdynamic) another challenge: Our WebTrust signature providers need
to support an on-the-fly signing of individual content without yet knowing the end of a
full file. Ensuring integrity, checks on the order and freshness, and still providing the
possibility of a progressive client-side verification are not features that can be easily
achieved.
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2.6.1.3 Streamed Content

Streamed content is content that is usually consumed immediately upon retrieval. Clients
do not wait until the full file has arrived before the content is rendered. Additionally,
one also does not have to know the beginning of the requested content. One could
simply tune in at an arbitrary position. For WebTrust, streamed content falls into two
categories: First of all, streamed content can be an already existing static file that is
delivered to a client (for example, a large video file). Due to the construction of our
signature providers, which allow the verification of individual segments of a large file
at any time without knowing predecessor or successor segments, we can treat such
streamed static files just like normal static content (cf. Figure 2.6). Second, we consider
streamed content that is provided in real time such as a live video stream from an
important incident. In contrast to the previous form of streamed content, the end of the
file is not known when first segments are already sent to a client. In particular, these
segments should be verified at the client-side before the content generator knows the end
of the file. Again the construction of our signature providers allows us to handle such
content very efficiently. It is treated just like dynamic content. In order to facilitate
the WebTrust usage by authors of dynamic content, we imagine for the future that the
infrastructure for signing content is available to recording devices: WebTrust could,
for example, be integrated into professional cameras as they are used to report from
important incidents. Once the user successfully passed the authentication at such a
camera, real-time streams can be protected directly from where they are generated.

2.6.2 Signature Providers

Our signature providers are central to both the utility and the security guarantees
of WebTrust. Their design allows us to fulfill the requirements of a comprehensive
authenticity and integrity framework for HTTP. Currently, WebTrust supports two
different signature providers, namely VDSECC and RSA-Chaining. However, the system
can be extended by new signature providers as long as our requirements are met and
the defined security goals a reached.

2.6.2.1 VDSECC

VDSECC leverages the concept of Chameleon Authentication Trees as they were intro-
duced in Section 2.5 to achieve our first signature provider. Content (let us assume for
the following an index.html file as example) is first split into segments s1, s2, . . . and
subsequently hashed. Once the segments of the index.html file haven been hashed, they
are added as leafs L1, L2, . . . to the Chameleon Authentication Tree (cf. Figure 2.4).
The L0 leaf contains meta information such as the URI of the index.html file, its creation
date, as well as an expiration date or time to live. The meta information does not
need to include an order of the subsequent segments, since the ordering is implicitly
ensured by the Chameleon Authentication Tree. All inner left nodes of the chameleon
authentication tree are now constructed by using a collision-resistant hash function and
all inner right nodes are computed by using a chameleon hash function (cf. Section 2.5
for the cryptographic background). Finally, either the root node of the Chameleon
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Figure 2.9: WebTrust: Signature Provider RSA-Chaining

Authentication Tree is signed with the author’s secret key, or it is added to the additional
Chameleon Authentication Tree required for content revocation (from now on referred to
as the Authentication CAT, for details cf. Section 2.6.3.3). The client-side verification
of VDSECC is based on the reconstruction of the CAT’s root node as well as on the
verification of the root node’s signature.

2.6.2.2 RSA-Chaining

The second signature provider of WebTrust leverages the RSA signature algorithm [188]
and uses a mixture of a hash chain and the concept of a doubly linked list. We
provide an overview of this RSA-Chaining signature provider in Figure 2.9. In case of
RSA-Chaining, content is again split into single segments s1, s2, . . . and the same meta
information as for the VDSECC signature provider is added to every single segment:
the URI of the resource, the creation date of the resource, as well as an expiration
date or time to live. In addition to this meta information, we add for RSA-Chaining
also the position of the individual segments. Afterwards, we gain mi by hashing each
segment together with its meta information and its position in the chain by a collision-
resistant hash function. These hashed segments are finally used to create the signatures
based on RSA-Chaining by signing always two consecutive segments: Sign(mi,mi + 1).
In order to also support content revocations by RSA-Chaining, we further introduce
special WebTrust content revocation lists, so-called WT-CRLs, to which we add revoked
segments. The client-side verification of signatures generated by this signature provider
is based on the standard signature verification of RSA. Overall, this construction of
RSA-Chaining allows us to support all features required by WebTrust.
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2.6.3 Features

WebTrust was designed to enable (1) the verification of both authorship and integrity
for arbitrary documents sent via HTTP with respect to the authors. It even allows (2)
proving both the authorship and the integrity of documents in front of third parties
(non-repudiation). Clients can (3) perform an on-the-fly verification of incoming packets
(progressive verification), and WebTrust allows content generators to (4) actively revoke
documents as well as to provide freshness information. In order to reduce the load at
the content server and to distribute the network load, WebTrust was further designed to
(5) support Web caches and content distribution networks (CDNs). Finally, WebTrust
provides (6) a mechanism for dynamic content updates and enables (7) the individual
verifiability to provide guarantees for individual posts on blog-like Web sites. In the
following we explain for all features how they are actually achieved.

2.6.3.1 Authorship and Integrity

The WebTrust protection for documents is based on the two WebTrust signature
providers VDSECC and RSA-Chaining. In case of VDSECC, the author (content
generator) signs the root node of the chameleon authentication tree with his secret key.
For RSA-Chaining, the hashes of two consecutive data segments are signed using the
secret key of the author. So to verify the authorship of a document, clients need to be
able to reliably link the public key for verifying the created signatures to the author
identity. The certification authority certifies the identity of the author by checking the
real world identity of the author against the information provided in the certificate of
the author upfront. The author certificate is only signed if the stated information is
correct. Based on the PKI and the signature providers, we can therefore enable the
verification of the authorship. The signature also ensures the integrity of data, since a
manipulation would lead to a failing verification.

2.6.3.2 Non-Repudiation

Using signatures based on keys that are part of a public key infrastructure provides
also an efficient mechanism for achieving non-repudiation. Central to all WebTrust
content protections are the two signature providers VDSECC and RSA-Chaining, which
both allow the verification of authorship and integrity if clients are in possession of
the required public keys. The only additional requirement is that clients have trust
in the linkage between the public key for the verification and the identity stated for
the key. The verification of documents is in general also possible for all third parties:
Every WebTrust protected content block is combined with all the information required
to perform the verification. If a third party receives both content and the corresponding
protection, the third party only needs to trust the PKI that provides a certified key of
the content author to perform a reliable verification of the content.

2.6.3.3 Document Revocation and Freshness

WebTrust relies for the signature creation on two conceptually different signature
providers and both have their individual document revocation mechanisms. Providing
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such a mechanism is also a crucial prerequisite for achieving efficient secure content
updates.

VDSECC uses a second Chameleon Authentication Tree, the Revocation CAT, which
functions as a content revocation tree for all files that are signed by the same secret
key of the same content author. We provide an overview of the construction of this
Revocation CAT ) in Figure 2.10. The root node of each individual file’s CAT is added
as a leaf to this revocation tree. In the example in Figure 2.10, the root node of the
Chameleon Authentication Tree for file one (v′

0,0) is added as leaf L1 to the Revocation
CAT and the root node of the Chameleon Authentication Tree for file two (v′′

0,0) is
added accordingly as L2. If, for example, a segment of file one is now updated, the root
node of the CAT for file one changes as well, and so does the root node of the Revocation
CAT. In both CATs (the CAT for file one and the Revocation CAT), such an update
of a segment leads to updating a logarithmic amount of nodes in both trees [P7]. In
case a file should be intentionally revoked without providing a new file, we can simply
replace the root node of the file to be revoked in the leaf of the Revocation CAT by
a revocation notice, which also ensures a update of the root node of the Revocation
CAT. The updated root node of the Revocation CAT is signed again in both cases. The
big advantage of this particular revocation mechanism is the fact that the revocation
information does not grow linearly with the amount of revoked segments, but stays
constant.

In contrast to VDSECC, RSA-Chaining does not use the Revocation CAT but relies
on special WebTrust content revocation lists (WT-CRLs). Every time a segment is
updated or revoked, the hash of the old or to-be-revoked segment is added to these
WT-CRL. So in contrast to the space efficient VDSECC solution, the WT-CRL grows
linearly with respect to the amount of segments that need to be revoked. Intuitively,
one might consider using RSA-Chaining as signature provider in combination with the
VDSECC revocation mechanism. However, this would result in a very large CAT: It
would be basically a CAT that includes the hash of all segments of all files in one single
CAT, which could already serve as protection for itself. To this end, the intuition of a
hybrid approach does not provide a recommended solution.

Freshness is provided both for the VDSECC signature provider and the RSA-
Chaining signature provider by adding a time to live or an explicit expiration date to
the meta information. In case of VDSECC, this is provided in L0, for RSA-Chaining
this is added to every single segment.

2.6.3.4 Progressive Verification of Content

In order to enable a progressive (on-the-fly) verification of content we need a mechanism
that allows the verification of authorship and integrity for every individual block.
WebTrust achieves this by splitting up content into individual segments and providing
each block with an individual protection: the signatures for individual segments of both
our signature providers (VDSECC and RSA-Chaining) can be checked immediately after
arrival. While for RSA-Chaining this check is a standard RSA signature verification
against the public key of the author, the situation is slightly more complex for VDSECC :
The verification of individual segments requires to reconstruct the root node of the
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Figure 2.10: WebTrust: Revocation Tree for Signature Provider VDSECC

Chameleon Authentication Tree for the file, and potentially also the reconstruction of the
previously mentioned Chameleon Authentication Tree for file protection and revocation.
The reconstruction of these two Chameleon Authentication Trees requires all neighboring
nodes on the path to the respective root nodes to compute the missing hashes. Both
VDSECC and RSA-Chaining allow to sign and send any block i without yet knowing
the subsequent block i+ 1. In general, WebTrust supports the progressive verification of
all content types (static, dynamic, and real-time streamed content) and it even allows to
verify any block i of a file without needing to receive the segments i− 1 or i+ 1 before.

2.6.3.5 Caching and CDN-Support

Central for the support of Web caches or content distribution networks (CDNs) is that
the WebTrust protection of a file is equal for every user and that content is always split
into segments of equal size for every request. This is the same prerequisite as for a local
signature caching at the content generator for dynamically generated content. Since
WebTrust-protected content as well as its signatures are usually transmitted as cleartext
messages, content and signatures are the same for all registered users.
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Figure 2.11: WebTrust Extension for Chrome: Informing the user about the verified
authorship of an embedded tweet four a custom Twitter-like Web site [P7]

2.6.3.6 Content Updates

Both our signature providers allow efficient content updates. As described in Section 2.5,
VDSECC is based on Chameleon Authentication Trees, which allow an efficient update
of data leafs since only a logarithmic amount of the total tree nodes needs to be updated.
The update process of a data leaf involves an update of the root node, which either
requires to update the signature of the root node or to propagate the update through
the previously introduced Revocation CAT. For RSA-Chaining it is possible to replace
single segments in the chain by simply re-computing two signatures: the first signature
that needs to be re-computed signs the hash over the predecessor of the new block and
the new block itself, the second signature that needs to be re-computed is the one for the
hash of the new block and its successor. In both cases it is not necessary to re-compute
the full data structure of the protection, so we do neither have to fully reconstruct the
Chameleon Authentication Tree nor the RSA chain.

2.6.3.7 Individual Verifiability

A central motivation for WebTrust was to provide users with the possibility to verify the
authorship of content. Of course, it should also be possible to combine content of different
authors in one page and to verify each part individually. WebTrust provides such an
individual verifiability: each author’s content needs to be loaded into an individual
IFrame. A Web site, such as a Twitter-like page may contain now several IFrames, each
with content from a different author. Whenever an IFrame is supposed to be loaded,
the browser triggers a separate WebTrust-protected HTTP request. The user is finally
able to receive visual feedback about the verification result of each IFrame by hovering
the corresponding area as shown in Figure 2.11.

2.6.4 Key Security

WebTrust makes use of custom signature providers that allow content generators to
generate WebTrust-protected content. Both our signature providers, VDSECC and
RSA-Chaining, rely on classic signature schemes such as RSA [188]. Besides the security
guarantees provided by the cryptographic properties of these schemes, such signature
schemes also crucially rely on a robust protection of the secret key. If an attacker got
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access to such a key, one could simply create new signatures for modified content. A
very high level of protection for such keys is commonly achieved if these keys are stored
in so-called Hardware Secure Modules (HSMs, cf. Figure 2.8 for our WebTrust setup
serving dynamic content: the overview integrates an HSM), which are inaccessible for
most kinds of attackers. The best protection for our setup can be achieved for static
content, since the key does not have to be always present at the server. We recommend
in this case to store the key in a smartcard and to only plug it in when content should
be signed. The weakest security guarantees for WebTrust can be provided for dynamic
content if the content server and the WebTrust Content Generator are the entities: In
this case the key needs to be stored in the HSM on the delivering content server. A
server breach would now have the impact that an attacker could use the HSM with
the key stored as a signing oracle. However, the attacker could not access or copy the
key directly. This basically achieves the same level of security as on can achieve if the
Web server stores the private server keys for the HTTPS/TLS authentication, which
is common practice on the Internet and without alternative. In order to still protect
the WebTrust Content Generator, one could still follow the approach by Moyer et al.
presented for the Spork system [148, 149] and use runtime attestation to try to detect a
server breach.

2.7 Implementation

In the following, we introduce the implementation of WebTrust at the server-side and
at the client-side. Both the server-side and the client-side implementation are still to be
considered as prototypical implementations that are supposed to provide insights on the
performance of our scheme, but yet are missing some of the functionality. In particular,
our content generator as well as the Web server are implemented as one single machine
and we have not yet implemented the document revocation mechanism as well as the
extended PKI as introduced in Section 2.6.

2.7.1 WebTrust Server

Our server-side implementation of WebTrust consists of a patch to the JAVA-based
Apache Tomcat Web server 7.0.39 [11]. The WebTrust patch to the Tomcat server
extends the existing handling routines for the HTTP 1.1 chunked transfer encoding [73],
which includes the routines responsible for handling incoming requests as well as the
routines for preparing and sending the response message. Most of our modifications target
the chunked output filter (ChunkedOutputFilter.java) of Tomcat where we integrate our
signature creation routines. The actual WebTrust protection is embedded as so-called
chunk extensions, which are defined in RFC 7230 for the HTTP 1.1 chunked mode.
The general structure of chunks looks as follows (the definitions are based on the RFC
7230 [73]):

chunk-size [ chunk-ext ] CRLF
chunk-body
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The chunk starts with the size of the full chunk in hexadecimal form and it is either
followed by chunk extensions of the form ;ext-name=ext-value;ext-name=ext-value;..., or
the line is ended by a carriage return and line feed. The chunk header is then followed
by the actual data in the chunk body. Chunk extensions may omit the ext-value and
their number is not limited. Our chunk extension for WebTrust currently starts with
SIG= and it is followed by our WebTrust signature in Base64 encoding [120]. A typical
example of a chunk header including the WebTrust extension now looks as follows [P7]:

AC9;SIG=8CD3ABU8ULS2KMDN4HW3NK6A5BPP84HB6A7CC

The AC9 value at the beginning is the hexadecimal representation of 2761 bytes and
defines the length of the full chunk. Leveraging the chunked mode of HTTP 1.1 and
embedding all data required for a later verification as standard conform chunk extensions,
provides us with full backwards compatibility and allows for a seamless integration. We
verified that extensions to the HTTP 1.1 chunked mode are in general supported by all
major Web browsers such as Apple Safari, Google Chrome, Microsoft Internet Explorer,
and Mozilla Firefox, as well as by popular tools used for HTTP requests such as cURL,
GNU Wget, or Java [P7]. Clients that do not yet support WebTrust will simply ignore
our chunk extensions and will process and render the HTTP response as usual. In
order to notify clients of the WebTrust protection in a particular HTTP response, we
introduce two additional headers:

Content-Verification-Scheme: 1.0/SHA1-VDSECC
Content-Verification-Key: 61KJHQ1J4NED97NBP2SJ44FP0

The first header informs clients that the incoming response is protected with WebTrust
version 1.0 and based on SHA1-VDSECC, i.e. VDS based on elliptic curves and the hash
function SHA1. The version information is integrated for protocol updates in the future
and does not have any impact at the moment. Besides SHA1-VDSECC, the server of
course could have also used the other signature provider SHA1-RSA. The second header
informs the client about the public key required for the verification.

In order to improve the performance at the server side, our implementation includes
several optimizations. First of all, we introduced a signature cache at the content
generator to prevent expensive re-computations of signatures. For static content, the
signature cache was implemented based on the default servlet of Tomcat, which is
commonly used for directory listings and static HTML-files [11]. Using the default
servlet ensures that every response to the same URI request leads to the same chunks
with equal size, which is the crucial basis to achieve an efficient caching. When looking
at dynamic content, the situation becomes slightly more complex. The involved servlets
decide by themselves when data is actually sent to the network. So whenever these
servlets call for example flush (), data is not sent to the network but to the WebTrust
output filter where data is first accumulated up to a specified size and signed by
our WebTrust signature providers before it is actually sent to the network [P7]. The
accumulation of bytes in this WebTrust output filter enables caching also for dynamic
content: it simply ensures that whenever two separate runs of the same function on the
same input are executed and lead to the same output, this also leads to chunks of the
same content and size. And this fulfills again the requirements for an efficient caching.
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Another performance optimization at the server side ensures that WebTrust is really
only used if the client requested its usage: we only activate the WebTrust routines for
the response message if the client request included the corresponding header for using
WebTrust as follows:

Accept-Content-Verification: SHA1-VDSECC

The currently supported signature providers for WebTrust are SHA1-RSA and SHA1-
VDSECC, so instead of SHA1-VDSECC the client could also request the usage of
SHA1-RSA. In case the Accept-Content-Verification header is set, the server prepares a
response with the according protection and sends it to the client.

In order to implement our signature providers SHA1-VDSECC and SHA1-RSA at the
server-side, we leverage Oracle’s standard Java cryptography providers [163], namely
the Sun and the SunRsaSign cryptography provider, for all non-elliptic curve primitives.
All functionality that involves elliptic curve operations for VDSECC is based on the
Bouncycastle cryptography provider [32] and the implementation for VDSECC is based
on the Java library for chameleon authentication trees as introduced in [P7].

2.7.2 WebTrust Client

The core functionality of our WebTrust client is implemented as a patch for the open-
source variant of the Chromium browser version 29 [217], the open-source project that
also forms the basis for the popular Google Chrome browser. The patch is complemented
by a chromium extension for prototyping the individual verifiability feature of WebTrust.

The patch to Chromium extends the handling routines for the HTTP 1.1 chunked
mode in Chromium for parsing and verifying the WebTrust protection of incoming
packets. Besides, the routines for issuing a HTTP request are modified and allow now
to send a request with our new WebTrust header Accept-Content-Verification including
the preferred protection algorithm. This header informs the Web server of the desired
WebTrust based protection for the corresponding response and initiates, if supported by
the server, the WebTrust routines. Besides the modifications to the processing routines
of Chromium, we additionally modified the UI of the Chromium browser: It includes
now a visual indicator for the user whether the authenticity and integrity verification
of the incoming HTTP response message was successful. Regarding the authenticity,
this visual indicator will also indicate in the future whether the key used for singing the
data is a valid and trusted key in the PKI. Nevertheless, users will still have to check
manually, whether the author listed in the certificate is the expected author.

Our browser extension for WebTrust provides a mockup implementation of the
individual verifiability as discussed in Section 2.6.3.7. The individual verifiability works
on the granularity of individual HTTP requests for IFrames. Figure 2.11 on page 25
shows how the verification results of individual IFrames are presented to the user.

Similar to the server-side implementation, also the WebTrust client makes use of
external libraries for the cryptographic primitives. In particular, WebTrust relies on the
OpenSSL library [162] and uses the C++ library for Chameleon Authentication Trees
as introduced in [P7].
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2.8 Security Evaluation

The goal of WebTrust is to achieve a comprehensive authenticity and integrity framework
for HTTP with robust security guarantees. In the following, we discuss the individ-
ual design goals and supported features of WebTrust with respect to their security
guarantees.

2.8.1 Integrity, Authenticity, and Non-Repudiation

All three properties, the integrity protection of content, the provable authorship of
content, as well as the possibility to proof this correctness and authorship in front of
third-parties, rely for their security guarantees on the cryptographic properties of the
primitives used.

Both our signature providers ensure the integrity of content by hashing individual
segments with a collision-resistant hash function and by including these hashes into
the signatures. The correctness of this integrity protection primarily relies on the
collision resistance property of the hash function used. An attacker should not be able
to efficiently compute a second data segment that results in the hash of the protected
data segment. Otherwise, the attacker could simply replace the data segment by the
computed segment without anyone being able to recognize. Since we assume that the
attacker cannot break the collision resistance property, the only possibility left would
be to replace both the data segment and the hash. WebTrust includes the hashes
of segments into the signatures to ensure that an attacker cannot simply replace the
segment including its hash, so that such a replacement would also require the attacker
to forge the corresponding signature. But the attacker has neither access to the secret
key of the original content author to create such a signature, nor is the attacker able to
break the cryptographic signatures. Therefore, it is impossible to forge a valid signature
for the hash of the data segment to be manipulated, which also renders it impossible to
compromise the correctness of the integrity proof.

The proof of authorship for WebTrust is based on the same signature that is used to
protect the hashes for proving integrity. The signature can be verified against the public
key of the content generator, which is certified by a PKI. Under the assumptions that
the signature algorithm itself cannot be broken, the secret key is inaccessible for the
attacker, and the correctness of the certification by the PKI cannot be compromised,
it is impossible for an active attacker to generate content in the name of the content
generator. Therefore, an attacker is not able to replace WebTrust-protected content with
own, manipulated packets that are validly signed by the content generator. Replacing
content would either lead to a broken signature, or, if both content and signature are
replaced, to a signature that verifies against the public key of the attacker: the only
chance for an attacker to create valid signatures is to use his own key for signing new
or manipulated content. If an attacker tries to replace protected segments by other
segments that are validly signed by the content generator but stem from a different URI,
clients will recognize this content replacement since the URI is part of the protected
meta data. In case different content is served via HTTP based on session information
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from the same URI 5, manipulations can also be recognized: the session information is
part of the HTTP header, which is also protected by WebTrust.

In case an attacker tries to replace protected segments by older versions of the
same segment or document, this can be recognized based on two mechanisms: our
freshness information and the content revocation mechanism allow clients to verify that
a document is still valid. Both our freshness and our revocation mechanism will be
explained in the following section.

Our support of non-repudiation is given by the construction of our signature providers
VDSECC and RSA-Chaining. Their security guarantees are both based on cryptographic
signatures that are verified against the public key of the content generator. Since third
parties are able to verify the certification of the public key required for the signature
verification of WebTrust-protected content, we can easily guarantee the correctness of
WebTrust protected content as well as the authorship of this content to third parties.
The security guarantees of the non-repudiation are based on the correctness of the
integrity proof and the PKI, as well as on the provable authorship based on signatures.

2.8.2 Freshness and Content Revocation

WebTrust incorporates freshness information into its signatures by adding a time-to-
live or an expiration date into the meta information. This prevents an attacker from
replacing content segments in a transmission by an older but correctly signed version of
the segment. For the VDSECC signature provider, the meta data with the freshness
information is provided in the first leaf (L0), whereas for the RSA-Chaining signature
provider the meta information is added to each single segment. Both signature providers
protect the included meta information based on signatures such that an attacker cannot
manipulate or replace this information.

In case a document is supposed to become invalid before the expiration date is
reached or the time-to-live has expired, content generators can use an active content
revocation mechanism to invalidate documents. The VDSECC signature provider
integrates an implicit content revocation mechanism, either based on the individual
CAT of a document, or based on the Revocation CAT. Whenever a single segment
of a file is updated, this update in a leaf propagates through the whole Chameleon
Authentication Tree and leads to an update of the root node, which serves as the public
key for the verification of an individual file. In case the root node is further integrated
into a Revocation CAT, this propagates again through the whole tree and leads to the
noticeable event of an updated public key for all files. Since the protection of the root
node for both the individual CAT and the Revocation CAT is based on a signature,
an attacker cannot manipulate the CATs and thereby the revocation mechanism. In
contrast to the implicit revocation mechanism of VDSECC, RSA-Chaining uses an
explicit revocation mechanism based on the WT-CRLs: every revoked segment is added
to the WT-CRL of the corresponding public key for the verification. If an attacker
wants to manipulate the WT-CRLs that are stored at the PKI, this would require the

5HTTP is a stateless protocol, but many applications required state information, for example, when
users should be able to log in to accounts. Session identifiers that are either incorporated to the URI, or
stored in a so-called session cookie provide the required state information.
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attacker to compromise the PKI, which is impossible according to our assumptions.

2.8.3 Active Attacker against CDNs, Web Caches, or WebTrust Content
Servers

Finally, WebTrust also protects against active attackers that try to compromise the
servers of a content distribution network (CDN), Web Caches, or WebTrust Content
Servers. All these systems have in common that they simply serve already protected
content to clients. So if an attacker manages to exploit a vulnerability in one of these
systems, the only possible attack is to perform a denial of service. Since the attacker is
not able to access the secret key for signing content, it is impossible for the attacker to
replace or manipulate content without breaking the signatures, which would be easy to
detect.

The situation slightly changes if the Content Server and the WebTrust Content
Generator share the same system: if this server is compromised, secret keys still cannot
be accessed by an attacker, but the system can be used as a signing oracle. In this case,
malicious content can be validly signed without any chance for clients to notice during
the verification. Therefore, we do not recommend this setting. However, if this setup
cannot be avoided, one can use runtime attestation mechanisms to improve the chances
of detecting a server breach (cf. Moyer et al. [149]).

2.9 Experimental Evaluation

Key to the success of a comprehensive authenticity and integrity framework for HTTP
is both its performance in real-world scenarios and its ease of use. We conducted a
performance evaluation of our prototypical implementation of WebTrust both at the
client-side and for the WebTrust Content Generator. Additionally, we evaluate the
network overhead introduced by WebTrust and discuss usability aspects of the system.

2.9.1 Performance Evaluation

In the following we provide the detailed results of our performance evaluation of Web-
Trust, both for the client-side implementation and for the WebTrust Content Generator.
We would like to point out that since our prototypical WebTrust implementation does
not yet include any communication with the PKI, the processing of PKI information
is also not yet included. This would of course influence our performance evaluation
and needs to be taken into account for estimating the potential performance of a
production-ready implementation of WebTrust.

Our client-side performance evaluation was conducted on a Dell Optiplex 9010
Workstation equipped with an Intel Core i7 CPU and 16 GB RAM. The server-side
performance evaluation was conducted on a similar Dell Optiplex 9010 Workstation, but
equipped with an Intel Core i7 CPU and 32 GB RAM and running our patched Apache
Tomcat version. Both machines (client and server) were connected with a 1Gbit/s
uplink and packets transmitted between our client and our server had to pass 11 hops
in between. The security parameters for our signature providers were fixed during our
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performance evaluation according to the current NIST recommendations [156]: for our
RSA signatures we use a key size of 2048 bits for both signature providers. In order to
achieve a comparable level of security for both our signature providers VDSECC and
RSA-Chaining, we additionally had to choose a security parameter for the chameleon
hash function that achieves a comparable level of security as the 2048 bits key size.
The chameleon hash functions in the Chameleon Authentication Tree for VDSECC are
based on elliptic curves and we decided to use the elliptic curve P-224. Furthermore,
our prototypical implementation of WebTrust makes use of SHA-1 as collision-resistant
hash function [119]. For a production release we will shift to the winner of the NIST
SHA-3 competition, the KECCAK hash function [157].

The runtime efficiency of WebTrust and its network overhead highly depend on the
chunk size used for transferring data. Each WebTrust protected chunk is send with
its own signature so that larger chunk sizes lead to less signatures and, thereby, to a
better ratio between transmitted bytes for content and signatures. The goal is to find
an optimal trade-off between the verification frequency, which depends on the chunk
size and thereby on the amount of signatures, and the actual performance.

But how is the impact for real world applications and what is a meaningful content
verification frequency? During our performance evaluation, we experimented with chunk
sizes of 8 KiB, 32 KiB, and 128 KiB for the performance of the dynamic signature
creation. 128 KiB chunks lead, for example, to a verification frequency of one second for
video streams with a standard definition quality and 2 Mbit/s data rate. One second
should be a reasonable verification frequency for almost all video-streaming settings. In
addition to these three different chunk sizes, we additionally evaluated the performance
of the server in case the required signature was already available in a server-side cache,
i.e., the server was not required to compute the signature again. Using the different
chunk sizes and the caching option, we performed the actual measurements based on the
Siege benchmark tool [205]: we downloaded a 40 KiB file 10,000 times and simulated
100 concurrent users that tried to access the server. The limit for this performance
measurement in our special setup was solely given by the computational power of the
server.

Our comparison of the maximum number of parallel server transactions possible
with WebTrust, standard HTTP, and HTTPS (cf. Figure 2.12) shows that if a signature
is already available in the cash, WebTrust achieves a comparable performance as HTTP
and outperforms HTTPS. For reasonable chunk sizes of 128 KiB with RSA-Chaining,
WebTrust still outperforms HTTPS by almost 20%. VDSECC is already for a chunk
size of 128 KiB slower than HTTPS, but we are still working on optimizations and hope
to also outperform HTTPS for a 128 KiB chunk size in future.

Besides the scalability of the WebTrust Content Generator, we performed a mi-
crobenchmark for the client-side verification and we evaluated the full round-trip time for
requesting a 40KiB document from the WebTrust Content Generator6. The client-side
verification for a VDSECC signature takes on average 371µs (time for verifying one
CAT node), whereas the verification of one RSA signature requires 121µs. We would

6In this case the Content Server and the WebTrust Content Generator are the same entity: The
signature is created on the server that also finally delivers both content and WebTrust signature to the
client.
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Figure 2.12: Comparison of server transactions per second for VDSECC/RSA-Chaining
using different chunk sizes, HTTP and HTTPS [P7]

like to emphasize at this point that the RSA implementation is a widely used and highly
optimized production implementation, whereas VDSECC was based on our prototype
implementation.

Regarding the round-trip time evaluation for fetching a 40 KiB file from the content
generator, our evaluation provides several interesting insights (cf. Figure 2.13 for an
overview of the round-trip results): In case server-side caching is enabled7, WebTrust
achieves with both signature providers a round-trip performance comparable to HTTP
and faster than HTTPS. Even if we include the client-side verification time, WebTrust is
faster than HTTPS and only slightly slower than HTTP. Without caching, we can clearly
see the impact of the server-side calculations of the signatures. The more signatures
are required, the higher also the round-trip time. Nevertheless, even without caching,
WebTrust with RSA-Chaining and using a key size of 2048 bits is still able to outperform
HTTPS when using Diffie-Hellman key exchange and AES-256-CBC encryption for
a 128 KiB chunk size. We still work on improving the performance especially of the
VDSECC signature provider and aim at achieving also for this signature provider and a
chunk size of 128 KiB a performance comparable or even slightly faster than HTTPS.
But even with these improvements, VDSECC is still the only primitive with constant
size revocation data. For a production implementation with frequent content updates
this is highly desirable (for details on the revocation, cf. Section 2.6.3.3).

Besides the computational overhead, WebTrust also introduces a small network
overhead when the WebTrust signature information is added to the individual segments.
The size of the overhead depends, of course, on the signature provider used and its
individual settings such as the security parameter. For the RSA-Chaining signature
provider we use a key size of 2048 for the RSA signatures, which leads to a signature
size of 344 bytes (transfer encoded based on Base64 [120]). The size of the signature
information for VDSECC is about 167 bytes. Regarding the space overhead for the

7Caching is not possible for all scenarios, e.g., if content changes with every request.

33



CHAPTER 2. WEBTRUST

0

10

20

30

40

50

60

70

80

(8 KiB) (32 KiB) (128 KiB) (Cached) (8 KiB) (32 KiB) (128 KiB) (Cached) HTTPS Plain

25,6

9,4
5,3 3,8

74,1

18,5
9,7

3,7 6,3 3,7

0,61

0,24
0,12 0,12

1,86

0,74

0,37

0,37

Round Trip and Veri�cation Time

Round trip time (ms) Veri�cation time (ms)
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network transmission, we consider our evaluation setting with small chunks of 8 KiB
size as the worst-case setting, which leads to an overhead of 4% for signatures based on
RSA-Chaining, and to an overhead of 2% for VDSECC. For our preferred chunk size of
128 KiB, which is even reasonable for most video streams, the overhead cuts down to
0.3% for RSA-Chaining, and to about 0.1% for VDSECC.

2.9.2 Usability Evaluation

Another central aspect for the acceptance of WebTrust for a comprehensive authenticity
and integrity framework is ease of use. Our prototypical implementation integrates
seamlessly into the chunked transfer encoding of HTTP 1.1, which provides full backwards
compatibility with existing client-side and server-side solutions. We verified that
extensions to the HTTP 1.1 chunked mode are in general supported by all major Web
browsers such as Apple Safari, Google Chrome, Microsoft Internet Explorer, and Mozilla
Firefox, as well as by popular tools used for HTTP requests such as cURL, GNU Wget,
or Java [P7]. So we do not expect any negative side effects with existing software
solutions. The usability of WebTrust itself can be compared to the usability of HTTPS.
WebTrust needs to present positive or negative verification results of content to users in
a understandable manner. As known from HTTPS, there is room for improvement for
laymen users and we see the UI as important aspect of our future work. In addition to
the verification information for full pages, we added an additional information pane for
users to show the results of our individual verifiability, which also follows the existing
approaches for presenting HTTPS authentication information.
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2.10 Discussion and Future Work

We see our WebTrust system as a required and meaningful extension to the existing Web
standards HTTP and HTTPS. WebTrust allows clients to verify the authorship and
integrity of content while still enabling Web caches and content distribution networks.
Especially for pre-signed content, WebTrust allows a large scale virtualization of the
content server in combination with load balancers: the content servers do not have to
store any keys and only need to take care of delivering the content using the extended
chunked mode of HTTP. This is a major improvement in contrast to HTTPS in scenarios
where only integrity is required. It will simply help to reduce the server and network load.
Regarding the verification of content authorship, there is yet no integrative solution for
HTTP at all. One could only use a naïve way of pure signatures that do not consider or
reflect the typical use-cases on the Internet.

In order to achieve a production-ready implementation of our system, there is still
work to be done for our Chromium setting: First of all, we need to implement the full PKI
integration at the client side. Moreover, we want to move our mockup implementation
of the individual verifiability to the browser itself. Although our signature providers
already provide a reasonable performance for most settings on the Internet, we still see
room for major improvements regarding the VDSECC performance, especially since
we have not yet considered any multi-threading for our implementations. This would
be required to support high-definition video and next generation video streams, which
consume a much higher data rate than 2 Mbit/s. Depending on the particular use-case,
one could also consider to pre-calculate keys for reducing the computational load, in
particular at the client side [47, P7]. One could also consider an adaptive solution of
WebTrust that allows to set chunk sizes scenario dependent, which can also lead to
major performance improvements as our evaluation has shown. Finally, we envision also
a direct support of WebTrust in content-capturing devices such as video cameras for
live video streams. This would allow authors after a local authentication to directly
create verifiable content.

2.11 Related Work

The standard protocol on the Internet for delivering Web content is the HTTP proto-
col [73]. But it was not designed to provide any security guarantees for connection. It
neither provides authenticity or integrity, nor confidentiality. It does not even provide
state information, as it is required for a user-individual communication on an account
basis. To achieve a secured HTTP communication, the HTTP over TLS protocol
(HTTPS [186]) is commonly used. But it only provides authenticated connection end-
points and an encrypted channel and does not provide authenticity with respect to the
author or integrity for the document transmission between the author and receiving users.
Depending on the usage scenario, users require different protection mechanisms and
security guarantees and WebTrust aims at a comprehensive authenticity and integrity
framework that coexists with HTTPS. WebTrust aims at allowing both the verification
of authorship and the correct transmission of content from its author to any potential
client. But WebTrust does not only coexist with HTTPS, it uses HTTPS whenever it is
required to also provide confidentiality.
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Table 2.1: Features required by a comprehensive authenticity and integrity framework
for HTTP: a comparison of WebTrust and related approaches

Feature 1 2 3 4 5 6 7 8 9

SHTTP [187] – – – X – – S/D/– – –
HTTPS [186] – – – – – – S/D/L – –
SSL Splitting [128, 129] – – – – – X S/D/L – –
Bayardo and Sorensen [26] X X – X – X S/D/– X –
SINE [79] – – – X – X S/D/– X –
HTTPI [55] – – – – – X S/D/L – –
Spork [148, 149] – – – X – X S/D/– X –
HTTPi [206] – – – X – X S/D/L X –
iHTTP [86] – – – X – X S/–/– X –
WebTrust [P7] X X X X X X S/D/L X X

Legend: 1. Verifiable Authorship 2. Full Integrity 3. Document Revocation
4. Non Repudiation 5. Data Updates 6. Caching/CDN Support
7. Content types (Static, Dynamic, Live Streaming, )
8. Progressive Verification 9. Individual Verifiability
X: yes/full support, – no/no support

In the following we will compare WebTrust to related work and show where existing
systems fail to close the current technology gap next to HTTPS. Before we start with
the actual feature comparison of WebTrust and its closely related approaches, we would
first like to introduce a scheme for signing digital streams by Gennaro and Rohatgi [83]
from 1997. The authors propose to split streams into smaller blocks and most of the
approaches presented in the following follow a similar paradigm. In case a stream is
known in advance, for example a large video file that already exists, the authors split
this file into blocks b1 . . . bn and start to construct the authenticator beginning with
the last block and ending with the first block. The authenticator Ai consists of the
block bi and the hash of the next block H(Ai+1). The first authenticator A0 provides
the security guarantees for all following values since it includes a signature of the hash
of (A1,n). Creating the authenticator this way allows also the progressive verification
of data; however, it does not support real-time streams since the full file needs to be
known in advance. To cope with real-time streams the authors also introduce a scheme
that uses a forward creation of the authenticator. The paper of Gennaro and Rohatgi
does not consider the integration of the signature scheme for streams and the like in the
Web context; this was done by the papers that are presented in the following.

We provide an overview of all features we consider relevant for a comprehensive
authenticity and integrity framework and compare WebTrust with all related approaches
in Table 2.1. As one can already see from the table, none of the related approaches
supports all features as required by a comprehensive solution. During our feature
comparison we considered a system to support a particular feature if it is supported
in one of the introduced settings8. In particular, we consider the following features

8Some approaches introduce two or more different solutions (e.g., [79] or [206]
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as mandatory: First of all, the framework requires (1) the possibility to verify the
authorship of a document and not as for HTTPS the identity of the server that delivers
the document. Next, it should be possible (2) for users to verify that a document
was delivered without any modifications from the alleged author to them. Of similar
importance is a mechanism (3) that allows the authors of documents to revoke them,
for example, once information got invalid or changed, or simply an error was found,
authors can invalidate an signed document such that users receiving the outdated
document can notice. For many use-cases it is also important that users (4) can prove
the correctness and authorship of a document to a third party, this feature called
non-repudiation needs to be supported as well. In addition, authors should be able
(5) to update protected document without the need of signing again the full dataset
and a comprehensive framework should (6) support the caching of content at Web
servers and by content distribution networks without rendering a later verification of
these documents infeasible. Furthermore, it is very important that a comprehensive
solution (7) also supports all relevant content types (i.e., static, dynamic, and real-time
streamed content). It should be possible to (8) verify the correctness of a document
while it is still in transmission. Such a progressive verification should allow clients to
verify every incoming segment, which is crucial for the on-the-fly verification of live-
streamed content. Finally, a comprehensive solution should support the (9) individual
verifiability to provide guarantees for individual posts on blog-like Web sites. We do
not list confidentiality as a desired feature since we consider it an orthogonal goal that
can be accomplished by using WebTrust over HTTPS. Moreover, using an encrypted
channel with individual keys per users, as done by HTTPS, prevents caching.

The first approach related to WebTrust that is listed in Table 2.1 is called SHTTP
and stems from 1999 [187]. SHTTP is defined in RFC 2660 and has similar goals
as HTTPS: It provides data confidentiality as well as an authenticity and integrity
protection for data. But the authenticity and integrity protection is only provided for
the connection between a client and the server, which does not fulfill the requirements
we stated for WebTrust. This way, the approach also cannot support the Individual
Verifiability of content. In contrast to the session-based HTTPS, SHTTP provides a
message-based protection. The guarantees and features provided by SHTTP highly
depend on the mode of operation chosen: it supports different key-exchange mechanisms,
asymmetric and symmetric cryptography depending on the properties that should be
achieved, and it can, but does not have to leverage a public key infrastructure. It may
support non-repudiation depending on the scheme used, however, HTTPS is intended
for protecting a client server connection. HTTPS does not specify a particular document
revocation mechanism, it may only revoke the signing key used, which would invalidate
all documents signed with that key and require all other documents to be signed again.
The alternative would be to sign every file with a distinct key, which would also be very
inefficient. To achieve a practical solution SHTTP would require an efficient revocation
mechanism as used by WebTrust and support for data updates as well as progressive
content verification.

HTTP over TLS, which is commonly referred to as HTTPS is defined in RFC2818 [186].
It follows as session based approach and provides a transport encryption for HTTP to
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achieve data confidentiality for all static, dynamic as well as real-time streamed content9.
It also provides a mutual authentication of communication partners based on certificates
(optional on the client-side, the server-side certificate does not have to be part of a
public key infrastructure.). The approach does neither provide a possibility to verify
the authorship of documents, which also prevents the Individual verifiability, nor does
it allow to guarantee the integrity of documents for the transmission from the content
author to the person wanting to verify the integrity. Since HTTPS is session- and
not message-based, it also does not provide non-repudiation or a document revocation
mechanism. The use of session-individual keys prevents the caching of data and content
distribution networks are not supported. The concept of data updates as introduced
during our requirements analysis also does not really fit to the scenario of HTTPS:
HTTPS uses symmetric encryption with a session key and encrypts everything that
is transmitted in an individual session also with the corresponding session-individual
key.10

SSL splitting [128] is an approach that aims at providing authenticity and integrity
for data provided through Web caches in order to reduce the load/network congestion
on the Internet. As the name already indicates the approach is based on SSL and
the idea presented in the paper is to use a so-called SSL splitting proxy to merge
authentication records from a Web server with data records from a Web cache to achieve
server authenticity at the cost of loosing data confidentiality for the connection. But
confidentiality is also not their goal. The authors make use of an SSL cipher suite that
only provides authentication of the Web server and integrity for the data delivered
via a Web cache: the SSL_RSA_WITH_NULL_SHA cipher suite. The whole approach
is implemented as a patch to the OpenSSL library and their tests indicate that SSL
splitting can reduce the network consumption by 25% to 90%. Their tests also indicate
that for un-cached documents the latency deviates at most 5% from direct connections.
Since the SSL handshake is still required, the computational load at the server is not
reduced in comparison to HTTPS. An open problem is to understandably inform the
user about the fact that a cipher suite not providing data confidentiality is used. Overall,
SSL splitting achieves/misses from our required features the same features as HTTPS,
but adds caching support at the cost of losing confidentiality in general (cf. Table 2.1).

Bayardo and Sorensen [26] propose the usage of Merkle trees [144] to authenticate
Web responses. The tree is constructed as presented in Section 2.5 in Figure 2.2 and
the signed root node is used to authenticate the content. But the root node is only
known when the full content has already been created, so their approach cannot cope
with real-time streaming. An adaption would be to continuously extend the tree when
new data is generated so that packets can be delivered immediately. This would require
to only sign and send the root node at the end when a stream has ended. However,
this mechanism would prevent the progressive verification of content as required for
real-time applications. Updates of single leafs in the tree are not supported and require
the re-creation of the full tree. The system by Bayardo and Sorenson does also not

9The standard includes a so-called null cipher suite as well as weak cipher suites that should no
longer be used.

10Not every data delivered in such connections is confidential, so caching could still make sense. It
also depends on the required guarantees.
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integrate a feature similar to our Individual Verifiability. Interesting is their idea to use
DNS-SEC for delivering the root nodes of the Merkle trees for the later verification.

The SINE family of protocols [79] builds up on [83] and aims, similar to SSL splitting,
at achieving a Web cache-friendly integrity protection for documents on the Internet.
In contrast to SSL splitting, the retrieval of documents does not have to involve both
the Web cache and the Web server. This reduces the load at the Web server since the
remaining TLS handshake with the Web server that is still required by SSL splitting is
no longer necessary.

SINE provides three protocol variants: the basic SINE protocol, the SINEB protocol,
as well as the SINEX protocol. SINE splits documents in blocks and hashes them
recursively from the last segment to the first segment. The final value of the recursive
hashes gets concatenated with the number of segments of the document, a timestamp,
and an expiration date. Subsequently, the concatenated values becomes hashed as well
as signed and the result constitutes the so-called Authentication Tag. Although the
SINE protocol does neither aim at the verification of the authorship of documents, nor
at a proof that a document was correctly transferred from its author to any recipient11,
SINE could still be adapted to achieve this. SINE allows in general for progressive
verification of arriving content, however, the SINE protocol does not support real-time
streamed content. Also, SINE does not integrate the Individual Verifiability. The
security guarantees provided by SINE are based on signing the final value of the
recursive hashes, which supports non-repudiation, but the system does not provide
a particular document revocation mechanism. The protocol itself is very efficient: it
outperforms HTTPS and requires only a hash per segment of a document and one
signature per document.

SINEB differs from the basic SINE protocol that way that the authentication
tag is not signed during the creation. The remaining parts of the authentication tag
creation are kept as well. The idea of SINEB is to reduce the amount of public key
signatures/verifications if multiple pages are fetched from the same Web server during a
single session. The authentication tag is communicated over a protected channel via
HTTPs whereas the actual data is sent via HTTP. In comparison to the basic SINE
protocol the verifiable authorship and the integrity guarantee from the author to any
client is lost. The same holds true for the support of non-repudiation, it is also lost.

The idea of SINEX is to achieve the flexibility of the basic SINE protocol, but
to still achieve a reduction of the signing and verification operations in case multiple
Web sites are requested from the same Web server. Let us assume a client wants to
receive the Web site w and this Web site links further pages l1 . . . ln. The authentication
tags for l1 . . . ln are now created as for SINEB, i.e., the tags are not signed at the
end. The creation of the authentication tag creation for w includes now the unsigned
authentication tags for l1 . . . ln and the tag for w gets signed at the end. Therefore,
the security guarantees can also be provided for all authentication tags for the pages
for l1 . . . ln. The features supported by SINEX are the same as for SINE, a major
difference can only be recognized for the performance: the more linked subpages of w
are requested by a client during the same session, the more public key operations for
signing and verification can be saved.

11We assume that the content author and the Web server are different entities.
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The HTTP with Integrity protocol, short HTTPI [55], aims at providing message
integrity and server authenticity. At the same time it aims at supporting Web caches. So
it basically provides the same functionality as SSL splitting, including the requirement
that Web caches need modifications to support HTTPI. The protocol is session based
and claims to use a TLS-like protocol for establishing a symmetric session key. The key
idea behind the HTTPI protocol is to decouple message headers and message content
to achieve the Web cache support, although following in principle a similar concept as
HTTPS does when using a NULL_CIPHER suite.

Moyer et al. present a system that stands out from the other approaches in our
feature comparison: the Spork system [148]. In contrast to the previously described
approaches, Spork integrates an integrity attestation mechanism for the Web server to
provide guarantees that the server has not been compromised. However, it is in general
very difficult to provide such guarantees: The integrity attestation mechanism leverages
a Trusted Platform Module (TPM) and monitors the healthy state of system binaries,
which does not defend against runtime attacks such as return oriented programming [201,
33, 50]. Another problem with that technique is the performance when dynamic or live-
streamed content should be served with such guarantees. The creation of the attestation
proof (based on the TPM quote operation) consumes run time (900 milliseconds)12 and
the network overhead can be quite huge: the authors’ evaluation of Spork reveals a
overhead of more than 85% for a 10 KB file, and still more than 65% for a 25 KB file.
The implementation at the server side is integrated to the Apache Web server, whereas
the client-side implementation leverages the Mozilla Firefox Web browser.

Spork’s data protection mechanism itself follows the approach proposed by Bayardo
and Sorensen and supports, therefore, both non-repudiation and progressive content
verification; but the authorship as well as the correct transmission of documents from
the author to any client cannot be verified and real-time streamed documents as well as
the Individual Verifiability are also not supported. Spork does not integrate a particular
document revocation mechanism, however, the Spork system is able to achieve freshness
based on a trusted time server.

An extended version of the Spork system [149] adds an additional scenario where a
database back-end provides content to the Web server for the creation of server-side
dynamic Web sites. Similar to the Web server, it also includes a TPM and provides
system integrity attestation. The evaluation of the extended Spork system reveals that
using a dedicated server as database back-end reduces the throughput for dynamically
generated Web sites at the Web server by roughly 20%; this overhead is already present
without yet considering a potential overhead introduced by the additional integrity
proofs. For the straightforward approach of using individual proofs per data object
from the database server, the performance of the extended Spork system decreases
dramatically. However, by using different optimizations and a different granularity for
the proofs (not per data object, but one proof for a whole page, which includes also

12The authors perform optimizations for static pages which achieves a reasonable performance. But
for dynamic pages Spork requires these 900 milliseconds. Depending on the network latency, this delay
can be tolerated for many scenarios since the round trip time starting with the client request until the
requested data is delivered is anyway dominated by the network latency. But if the network latency is
low, people will probably not tolerate such a delay.
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the proof for included objects), the performance is only slightly below the initial Spork
system without a database back-end. Regarding our feature comparison there is no
difference for the supported features between the extended Spork system [149] and the
initial Spork system [148]. This idea of splitting the database server and the Web server
is similar to our considerations of splitting the WebTrust Content Generator and the
content server. However, we focus on authorship, which is especially for static content
different to the model of Spork. In general, one could consider combining the approach
followed by Spork for the integrity attestation with our WebTrust system, especially
in the scenario where the WebTrust Content Generator and the content server are the
same entity.

Another approach presented by Singh et al. is called HTTPi [206]. It aims at
providing end-to-end transmission integrity and authenticity between a server and a
client. However, it neither allows the verification of authorship (also not the Individual
Verifiability), nor the verification of a correct transmission of documents from the
author to any potential user. The approach works at a different level of granularity
than WebTrust: HTTPi splits up chunks (as provided by the HTTP 1.1 chunked
mode) into smaller segments and it still supports Web caches and CDNs without any
further adaptation. We don’t see this requirement for most of today’s connections
in combination with reasonable chunk sizes; however, this could be easily adapted
by WebTrust. HTTPi allows the progressive verification of content, but it does not
provide an option to securely update content. Content updates would either require
a document revocation mechanism or a different noticeable event such as a change of
the public key, since otherwise an attack could always replay an old version of content
with a client being unable to notice. The time stamp included for HTTPi is at the
moment required to be the same for all chunks of one resource to prevent replay attacks.
However, this would require signing all data again if only one packet is changed. HTTPi
was implemented for Microsoft’s IIS 7.0 Web server and at the client-side for Internet
Explorer 8. The performance evaluation was conducted based on a static Web site
with a modified version of the Fiddler Web proxy and the results for HTTPi have been
compared to HTTPS. On the one hand the end-to-end response time of HTTPi (without
caching) is slightly worse than for HTTPS. On the other hand, the tested Web servers
are able to handle almost as many HTTPi responses per second as for HTTP which is
a clear improvement in comparison to HTTPS.

The final system in our feature comparison is iHTTP by Gionta et al. [86]. Their
system aims at providing authenticity and integrity for HTTP response data from a
Web server to clients without introducing a major performance overhead. So iHTTP
has also no focus on the actual authorship of documents and misses the Individual
Verifiability. The creation of their authenticator builds up on the concepts introduced by
HTTPi [206] and SINE [79] and provides non-repudiation as well as progressive content
verification. But similar to HTTPi and SINE, iHTTP does also not integrate a secure
update mechanism as well as an efficient content revocation mechanism. The authors
consider the Web server in the iHTTP setting as a trusted entity and focus on data
that is delivered to clients without changes13. The scheme presented by Gionta et al.

13Gionta et al. refer to this data as “client-static data” in contrast to “client-unique data” that causes
individual responses per client
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does not support real-time streamed data, since the authenticator includes the length
of the full HTTP response, but this can be solved. iHTTP provides freshness based
on the newly introduced sliding window approach and supports Web caches as well
as content distribution networks. The most interesting feature introduced by iHTTP
is the so-called “opportunistic hash verification”, which has the same intention as the
SINEX variant from the SINE family of protocols [79]. The system includes in the
DOM-element of a linked resource also the hash of the authenticator for the linked
resource.

As a summary of the feature comparison between all closely related work and
WebTrust we can conclude that the closest work to WebTrust is HTTPi by Singh et
al [206]. However, their approach focuses on protecting the authenticity between a
client and the Web server, without considering the actual author of content as data
origin. Moreover, it does not include a data update mechanism and a meaningful data
revocation. Two promising features of related systems for a future integration are
the integrity attestation mechanism as presented by the Spork system as well as the
opportunistic hash verification as presented by Gionta et al. [86].

Besides the closely related work discussed so far, there is also some interesting work
with a different focus than WebTrust. The less closely related work either achieves
only a really small subset of the features desired for a comprehensive authenticity and
integrity framework (which these approaches do not aim for) as a byproduct when
achieving their goals, or these systems do not provide any security guarantees for their
protection.

The first less closely related system is HTTPa. HTTPa is defined in RFC 2617 [77]
and describes a client-authentication scheme that can be considered as an improvement
to the basic authentication scheme as defined in HTTP/1.0 [29]. This scheme is not
designed to provide authenticity for delivered content, especially not with respect to the
original author of content. However, we list it in the context of WebTrust since it allows
protecting content sent from the server to the client. To achieve this, the client needs to
request the auth-int mode and, subsequently, the server provides, based on HTTPa, an
integrity protection for the full response. The integrity verification cannot be processed
progressively such that the client-side has to wait until the full response has arrived.
It is important to note that HTTPa does not provide any security guarantees for the
authentication or the integrity itself. In order to achieve such guarantees the protocol
needs to be used, for example, in conjunction with HTTPS.

Reis et al. introduce Web Tripwires to detect manipulations or changes of Web
responses during their transmission over the network or, as they call it: “in-flight
modifications of data” [185]. Web Tripwires consist of small pieces of JavaScript code
that are embedded to Web sites; they can be evaluated once data has arrived at the
client side. Adding only a small piece of JavaScript code at the server side offers, of
course, a good performance, the same holds true for this lightweight kind of integrity
check at the client side. The approach offers no protection against active attackers,
since nobody would recognize when the JavaScript code is either modified or completely
removed. The authors use their approach to evaluate how many Web pages are actually
altered during the transmission from a Web server to a client (under the assumption
that nobody actively manipulated the embedded Web Tripwires). Their findings show
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that more than 1% of all received pages were changed: typical modifications they found
included the injection of advertisements by an Internet Service Provider (ISP), content
compression by ISPs, filters at the client side to remove advertisements or popups, as
well as malware injected by attackers. But their evaluation analyzed such changes only
for user requests on their own page. It would be very interesting to see how this happens
for bigger Web sites that are, for example, commonly requested by mobile devices where
Internet Service Providers (ISP) have a big interest in optimizing the network load.
Especially, since using such a data-type specific compression to reduce the network load
was already recommended by Fox and Brewer in 1996 [75]: they propose, for example,
to reduce the resolution and color depth of images as well as to apply an additional
compression to such images.

Vratonjic et al. analyze the integrity of Web content with a focus on online ad-
vertisements and propose, based on their findings, a new protocol for serving online
advertisements, the Data Integrity in Advertising Services Protocol (DIASP) [230]. Their
analysis shows that attackers perform on the fly replacements of ads with the intent
to gain ad revenue for own ads, or with the intent of an attack. The authors also
include an assessment of the potential economic impact of such attacks. As a typical
scenario for such attacks the authors consider either clients that enter the access point
of attackers or (free) ISPs where ad injection might be part of the business model. Their
solution called DIASP introduces an authenticator based on a hash chain that is signed
by the advertising service. We consider it difficult to integrate a separate authenticity
and integrity mechanism for online ads, especially since this also requires a meaningful
presentation of the result to the users. We would follow in their case an approach related
to our approach for the Individual Verifiability. The main page would include already
the WebTrust protection for the code that requests the advertisements with the correct
identifiers for the revenue. So these identifiers or the advertisement service itself could
no longer be altered. Later, when the advertisements have been requested from the
advertisement server and were already locally rendered, the authenticity information for
a particular advertisement should be displayed as for a blog example with the Individual
Verifiability of the posts.

In contrast to the already presented papers that aimed either at achieving authenticity
and integrity of Web content or at least at detecting when integrity of delivered
documents is harmed, the following papers propose authentication mechanisms for
particular use-cases (for example, special file formats or lossy channels).

Lin and Chang introduced already in 1998 a signature algorithm specifically tailored
to JPEG-images and MPEG-videos [133]. The authors designed the signature procedure
that way that it is able to distinguish content-changing manipulations from content-
preserving manipulations [133], i.e., it should still verify for a compressed or resized
image, but not if somebody removed something from the image. In order to achieve,
for example, a compressed but authentic JPEG-image, the authors exploit the fact
that the compression step relates two JPEG coefficients to each other. This allows
proving within some bounds (compression is lossy), that an image was simply achieved
by compression. To counter imprecision of optimized libraries such as libJPEG, their
approach uses an additional error bound that is tolerated. The authors exploit specifics
of different data formats to predict within some bounds a particular transformation of a
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formerly known authentic image. As long as the transformation is consistently applied,
manipulation could only have been applied in form of the transformation itself.

DOMHASH [137] is defined in RFC 2803 and aims at providing unambiguous hashes
of nodes for XML documents at the level of the Document Object Model (DOM). It
targets at two different usage scenarios: first of all the included hashes can form the basis
for signing the document later on to perform authenticity and integrity checks; second,
it should form the basis for synchronizing two different DOM structures. Working at
the DOM level helps to prevent ambiguities since the same DOM structure can be
stored in different files (for example due to different white spaces, line breaks, character
encodings, etc.). The DOMHASH approach could, for example, be used to implement
our Individual Verifiability at a different level of granularity: at the XML level instead
of at the level of iFrames. DOMHASH could also be integrated into the opportunistic
hash verification as presented by Gionta et al. [86].

Another scheme that aims at authenticating XML documents is presented by Devanbu
et al. [62]. Their focus is on authenticating answers to selective queries over XML
documents while assuming an untrusted Web server. The key idea behind this scenario
is similar to our WebTrust scenario since the author of content is the person who
provides the initial proof of integrity and authorship. In order to verify the answer to a
query, both the Web server for answering the query as well as the author for proving a
proof are involved. Starting with a naïve approach based on the previously introduced
DOMHASH [137], Devanbu et al. introduce a new data structure called xtrie to achieve
a more efficient evaluation. Similar to our intent with WebTrust, Devanbu et al. also
want to prevent that the online Web server has the private key for signing data, since
it would get exposed in case the server gets compromised. In addition, the authors
also want to prevent insider attacks. In comparison to WebTrust the authors focus at
a different level of granularity. They can certify all possible answers to queries that
are valid according to a valid XML document. But the authors do not only aim at
providing integrity and authenticity of an answer to a query, but at completeness.

In 2004, Ray and Kim present a collective signature for the authentication of XML
documents. The authors assume static XML documents and their system is based on
one way accumulators. The major idea of the paper is to provide a primitive that
allows an easy authentication of single XML sub documents. For larger documents, the
approach introduces quite some overhead since every data node in the XML document
is signed upfront. In case of static XML documents there are valid usage scenarios;
however, for dynamic documents, for example, in the Web setting, the overhead is too
much.

Finally, Perrig et al. present two schemes for signing and authenticating multicast
streams over lossy channels [170]. The first scheme is called Timed Efficient Stream
Loss-tolerant Authentication (TESLA) and it is based on a commitment scheme and
message authentication codes. The system is initially bootstrapped by signing the first
packet. The second scheme is called Efficient Multi-chained Stream Signature (EMSS)
and it is based on digital signatures. It provides in contrast to TESLA non-repudiation
of each individual packet and it does not need a strong time synchronization. In the
basic EMSS scheme packets contain hashes for previous and successor packets and they
are frequently interleaved with so-called signature packets for the last few hashes. The
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authors analyze for EMSS different hash concatenation configurations to achieve an
optimal trade-off between the overhead and the actual loss tolerance. In contrast to
WebTrust, EMSS potentially introduces a verification delay for clients (depending on
the frequency of the signature packets), which would hinder a progressive on-the-fly
verification of incoming content. Our CAT-based VDSECC protocol has here clearly
an advantage for the verification, since all required information can be provided to the
clients when needed.
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3
X-pire!

Within the last decade, people got used to publishing various kinds of information
on the Internet and this data commonly also includes highly personal information.
Especially the success of social networks has been a huge catalyst for the amount of
personal information on the Internet. In July 2009, a survey conducted by dimap on
behalf of the German Federal Ministry of Food, Agriculture and Consumer Protection
(BMELV) revealed that already about 30% of the employers use information on the
Internet to evaluate candidates in hiring procedures [39]. Privacy concerns and the
public discussion about personal information in the Internet led politics to publicly
demand for a mechanism that allows to digitally wipe-out previously published data
from the Internet [38]. This chapter presents X-pire! and X-pire 2.0, which are designed
to implement an expiration date for digital data. In the following, we exemplify the
utility of both systems on the use case of images in social networks and introduce the
typical workflow of our protection mechanism. Before we discuss X-pire! and X-pire
2.0 in detail, we motivate both approaches and provide a verbose problem description.
Major parts of the content in this section are taken from the author’s publications [P1]
(for Section 3.3) and [P8] (for Section 3.1, 3.2, 3.4, 3.5).

3.1 Motivation

Today, a huge amount of people around the world at all ages has accepted the social
networks’ free dissemination of personal information, since the pervasive availability of
such published information provides us with great opportunities and utility. No matter
whether we look at business focused social networks or at ones focusing on personal
private networking, these systems allow us to efficiently connect people around the
globe while providing great usability even for laymen users. The connectedness and
liveness of published information lately got further amplified by the huge spreading of
mobile devices, which allow us to communicate and publish information (for example,
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information on social networks) anytime and anyplace.
However, today’s information culture to acquire and instantly publish all kinds of

data also causes severe privacy problems. Most of today’s Internet users, especially
teenagers, publish all kinds of potentially unflattering sensitive information, such as
images, videos, or even text, without recognizing that this might destroy their future
reputation. Especially young people do not recognize that the information they revealed
is preserved and might be detrimental to their future life and career. Besides a better
education that explains our today’s technologies and its individual risks especially to
children and teenagers, we also need to understand the root causes of todays privacy
problems on the Internet and to address these current privacy problems with new privacy
mechanisms. An important step in the right direction regarding the education of young
people is the annually organized Safer Internet Day from the European Insafe network,
which aims with its events and advertisement campaigns at the promotion of a “more
responsible use of online technology and mobile phones, especially amongst children and
young people across the world” [190]. But what is the root cause of the fact that people
publish highly personal information on the Internet without recognizing the potential
future impact of such information?

We think that this lack of recognition is caused by the users’ wrong understanding
of how the Internet functions, which also leads to the users’ wrong expectation of how
long their data is actually stored in the Internet. Their expectations about the lifetime
of data on the Internet simply do not match the actual lifetime of data on the Internet.
For most users, the Internet basically consists of what popular search engines present
in their search results and people usually only look at the first result pages. They are
simply not aware of the fact that caching in search engines or content duplication by
mirrors and data aggregators lead to a virtually infinite memory of the Internet that can
still be accessed. This information is just slightly more difficult to find. And although
this search process is slightly more complex, people need to be aware of the fact that this
process exists and can even be automated. The potential for automation is the major
difference between searching information in digital archives and searching information
in huge traditional paper archives. Providing an efficient search in huge paper archives
is very difficult and expensive and in speed and precision not at all comparable to
search engines on the Internet. Especially a large-scale retrieval of information was for
classical archives close to impossible and this is what people still have in mind. This
observation is also discussed by work of Mayer-Schönberger [142], who compares modern
electronic storage in the age of information technology with the traditional archiving of
paper documents. He concludes that the traditionally limited lifetime of data fuels the
expectations of average users that digital data is subject to a similar expiration process.
In short, people expect that digital data also expires and that they have a technical
means to keep control over their published content.

To meet this expectation, the European Union recently included into their draft for
the new European General Data Protection Regulation an explicit article that mandates
the “right to be forgotten and to erasure” (Article 17 in [69]). In a similar direction
goes a bill of the state of California in the United States that was signed in September
2013 and will become active on January 1st, 2015 [213, 93]. It focuses on protecting the
privacy of minors under the age of 18 by forcing operators of commercial Web services
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to provide information on how to delete postings of minors and also to actively support
and enforce the deletion of postings afterwards [213, 93]. However, in comparison to the
European efforts, this can only be seen as a first step, since it does neither include the
deletion of replicated data nor the deletion of adults’ postings. The most recent advance
in the area of the right to be forgotten is the decision of Google to integrate a general
feature to request the deletion of search results from Google’s index [89] as a result of
a lost trial in front of the Court of Justice of the European Union [112]. According
to Bloomberg Google received already on the first day more than 12.000 requests for
deletion [241].

3.2 Problem Description

So in order to meet the expectations of users, we face the technical challenge to imitate
the traditional expiration of analog data (for example, of information written on paper
such as classical newspapers or magazines): We need to develop a digital expiration date
for digital data that is able to cope with the requirements given by today’s information
culture. On the one hand it needs to provide users with the desired privacy guarantees:
after data has been published, people usually forget it after some time and this should
not strike back. Data should simply vanish after some time automatically according to
an expiration date. One the other hand, a digital expiration date mechanism requires
a seamless integration into common user activities in the Internet, such as publishing
and consuming digital content in online social networks or simply on commodity Web
servers. Otherwise, a wide acceptance by laymen users will be out of reach. There have
already been many attempts to solve this technical challenge [31, 168, 167, 152, 82, 46,
184]. All of these approaches follow a similar technical paradigm when trying to solve
the challenge of meeting the users’ expectations regarding the expiration: data to be
protected is encrypted with a symmetric key and only the encrypted data is published.
Afterwards, access to this published but protected data is controlled by restricting the
access to the symmetric key required for decryption. Especially in cases where the
publication platform is not trusted, this technical paradigm is the only solution possible.

However, the paradigm of encrypting data does not solve the full challenge of
providing a usable digital expiration date. A full-blown solution needs to cope with
publication platforms that do not intend to collaborate with such a solution. Online
social networks such as Facebook or Flickr allow for example to upload images in certain
data formats (for example, as JPEG-files), but they will not support, for example, to
upload an encrypted file as an image. A practical solution needs to consider this as
well. The protection needs to be integrated seamlessly into existing data formats so
that they are still compatible with existing upload routines as provided, for example, by
online social networks. We offer with X-pire! the first solution that provides a seamless
integration for images in social networks while still following the technical paradigm of
encrypting data and restricting the key access.

All mentioned approaches, including X-pire!, assume that legitimate users of the
system follow a benign behavior. This is a common assumption that is used, for
example, in the Controlled Access Protection Profiles by the National Security Agency
of the United States of America following the Common Criteria standards [114]. From
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our point of view, the particular setting of X-pire! poses also the technical limit of
software-based solutions.

However, all mentioned approaches, and to a certain extend also X-pire!, suffer
from one major shortcoming: none of them provides a solution to the so-called data
duplication problem (DDP)1, which means that before the expiration date has been
reached, legitimate users and attackers can easily view, duplicate, and publish protected
content. This, however, removes the expiration date from protected content. While one
might still be willing to trust that images uploaded in social networks and only visible
to selected trustworthy people (for example, friends or family) are not duplicated within
a short time frame (if one additionally trusts the providers of social networks, ignores
caching, etc.), this clearly does not hold true anymore if data becomes publicly available
without any additional access control. Solving the DDP is central for any approach
aiming at a comprehensive expiration date for digital content, since unprotected copies
would break the system. The successor of X-pire!, X-pire 2.0, is the first comprehensive
solution for a digital expiration date: it provides all major features of X-pire! and
solves the DDP, thereby being the first solution that is able to provide strong security
guarantees. In the following, we will first explain X-pire! and introduce afterwards its
successor X-pire 2.0.

3.3 X-pire!

X-pire! constitutes the first solution for a digital expiration date for images that allows
for a seamless integration into social networks such as Facebook [71], wer-kennt-wen [233],
Google+, or Flickr2 [74]. It provides users with a novel and flexible system for publishing
images in social networks with an expiration date that integrates into the common
publication workflow and does not require direct support or active collaboration of
existing social networks. X-pire! follows, similar to related approaches, the paradigm of
encrypting data to be protected and controlling afterwards the access to the required
decryption key. However, it provides additionally a robust JPEG embedding as required
for existing JPEG upload routines of publication platforms3. After images protected
by X-pire! have been published, its owners can modify the expiration dates of images
and even enforce the instantaneous expiration of data. Once the expiration date set by
the user is reached, the published image becomes automatically unavailable. Although
we provide with X-pire! a pure software solution that focuses on the publication of
protected images on the Internet and in particular on social networks, we would like to
emphasize that X-pire! provides a general concept for such a system that is not limited
to a particular data type or application scenario. X-pire! targets two scenarios: 1) the
publisher has control over the publication platform, for example, the own Web server,

1X-pire! provides a mitigation to this problem, but does not fully solve the data duplication problem,
for a discussion of this limitation please refer to Section cf. 3.3.7

2At the time of its development, X-pire! supported Facebook. In the meantime, however, Facebook
changed the JPEG compression method from baseline JPEG to progressive JPEG, which is currently
not implemented by X-pire!. Wer-kennt-wen quit service on June 1st, 2014.

3There is no incentive for publication platforms to change their upload routines for our system,
because our system is against their business model of acquiring data.
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and 2) the publisher has no control over the publication platform, like in modern online
social networks.

3.3.1 Contribution

X-pire! implements a digital expiration date for digital data, especially for images in
social networks. In particular, X-pire! provides the following major contributions:

1. X-pire! allows publishers to control their published data by providing an expiration
date for digital data, including instant expiration and expiration date management.
In order to achieve the digital expiration date, we follow a paradigm that has been
used similarly in previous approaches: digital content is encrypted, and access to
it is controlled via the access to the decryption key. When content should become
unavailable, access to the decryption key gets denied or the key gets deleted.

2. Since we protect content by encrypting it, we face compatibility problems with
the existing infrastructure. Upload routines for JPEG images in social networks,
for example, will only accept valid JPEG files, and even uploaded JPEGs will be
rescaled and re-compressed. Solving these compatibility problems has also not
been considered by previous approaches so far and X-pire! is first to provide a
novel robust JPEG embedding for arbitrary data.

3. We show how our system seamlessly integrates into the existing infrastructure by
illustrating how protected images can be published in social networks (for example,
Google+ and Flickr) and on static Web sites. X-pire! integrates into users typical
workflow when browsing the Web and provides a one-click solution.

3.3.2 System Overview

In the following, we provide a high-level overview of X-pire! and discuss both the
technical challenges we faced as well as the systems’ underlying prerequisites and
assumptions. Moreover, we outline the attacker model for the system.

3.3.2.1 High-level View on the Protocol

The typical usage of X-pire! is split into three different phases: the so-called Publication
Phase, the Viewing Phase, and the Update phase. The Publication Phase involves the
so-called X-pire!-Publisher P , the X-pire!-Keyserver K, and a Content Server C. During
the Viewing Phase, K and C are involved as well, but the X-pire!-Viewer V replaces P.
For the Update Phase only the X-pire!-Publisher P and the X-pire!-Keyserver K are
involved. A high-level overview of the full system is provided in Figure 3.1.

Publication Phase During the Publication Phase, the X-pire!-Publisher P first pro-
tects a previously captured photo/existing image by encrypting it with a key received
from the X-pire!-Keyserver K and assigning an expiration date to it. Afterwards, the
encrypted data is embedded into a container image that is compliant with the desired
Content Server C. Finally, P publishes the container on this desired Content Server C
on the Internet, for example, on a public Web server or in a social network.
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Figure 3.1: X-pire!: A high-level overview

Viewing Phase Once an image is available on a content server C, X-pire!-Viewers
can view protect images during the Viewing Phase. Therefore, a X-pire!-Viewer V can
request the protected image from the content server C and the corresponding key for
decryption from the X-pire!-Keyserver K to decrypt the protected image locally. Now
the original can be viewed by the viewer V.

Update Phase The Update Phase allows the X-pire!-Publisher to modify the expi-
ration dates of already existing protected images by changing these properties for the
decryption keys at the X-pire!-Keyserver K. This includes the shortening and extension
of already existing expiration dates up to an instantaneous expiration of protected
images.

3.3.2.2 Technical Challenges

During the design of X-pire!, we needed to solve several technical challenges to achieve
the goal of a digital expiration date for images with a seamless integration into the
users’ workflow when using social networks.

Achieving a Robust JPEG Embedding First and foremost, we needed to invent a
robust embedding of encrypted data into JPEG images. JPEG is still the most common
image format on the Internet (cf. Figure 3.2) and basically every publication platform
that supports images also supports JPEG. Since we want to publish protected images on
the same platforms we publish unprotected images on (for example, common online social
networks), we have to embed encrypted images into JPEG-files in a way that follows the
JPEG standard to retain compliance with the existing infrastructure. Enabling such an
embedding for social networks, where typically most of the privacy sensitive images are
published, requires X-pire! to cope with the typical re-encoding (including resizing and
compression) of JPEG images as typically applied in post processing routines during
the upload procedures of social networks. Thus, simply uploading the encrypted data
c would not be possible, since c does not retain a valid JPEG as expected by the
upload routine of a social network. But even if one solves this compliance challenge and
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produces a document c that embeds an encrypted image and still retains a valid JPEG
file, this results in the publication of a re-encoded version c′, in which the compression
has potentially destroyed the encryption. Nobody would now be able to decrypt the
image embedded into c′, which is similar to its instantaneous expiration. To solve
this problem, we developed for X-pire! a novel technique for embedding encrypted
information within JPEG files that follow the standard and where the embedded data
survives JPEG compression without requiring any support from existing infrastructure.
Achieving a robust solution to this problem was not only challenging in theory: the
implementations of the JPEG standard used in the Internet are often highly optimized
regarding the performance. In several cases, performance improvements are favored
in contrast of precision, for example, by introducing rounding errors. This inaccuracy
introduced by several implementations needs to be explicitly countered. We need to
recover the encrypted image with 100% accuracy; otherwise we cannot decrypt the
image. Our final solution that also addresses this inaccuracy still does not need any
explicit support from existing Web servers or social networks, and thus allows for a
seamless integration into the existing infrastructure.

Mitigation of the Data Duplication Problem Second, a major problem of all previ-
ously proposed solutions for a digital expiration date is that they do not consider the
data duplication problem: If an attacker takes the role of a legitimate user, both content
and keys can be accessed and copied during the Viewing Phase before the expiration
date has been reached, which removes the X-pire!-based protection and thereby the
expiration date. To the best of our knowledge, we are the first ones to consider this
problem. In order to mitigate the data duplication problem, we decided to build X-pire!
based on a dedicated keyserver. This allows us to introduce security measures at the
server side to restrict the access to keys, which prevents the crawling of keys on a
large scale and in an automated manner. Although the dedicated X-pire!-Keyserver
introduces a potential weakness (the server constitutes a known address where everybody
could request keys for decrypting X-pire!-protected content), the same mechanisms that
mitigate the data duplication problem also mitigate this potential weakness.

Flexible Expiration Dates Third, we wanted to design a system that overcomes the
limitations of related approaches regarding the flexibility of the expiration dates4 and
supports a fully flexible expiration date. Achieving this flexible expiration date was
another reason for our design decision to base X-pire! on a dedicated keyserver. A
dedicated keyserver allows us to fully control the storage environment for keys: It
allows us to set arbitrary expiration dates and even to change the expiration date after
protected images have already been published. X-pire!-Publishers can even go as far
as to deploy their own keyserver to stay in full control over the storage environment
without the need of trusting any infrastructure provider. In case publishers are still in
favor of a distributed setting that leverages existing infrastructure to store keys (for

4Related approaches such as Vanish [82], EphPub [46], or the system presented by Reimann and
Dürmuth [184] cannot directly control the decentralized environment that is used for storing the keys
(DHT-based decentralized network, Web sites, DNS entries). Therefore, the time-frame for expiration is
dictated by the infrastructure: in case of Vanish about 8 hours, or for EphPub at most 7 days.
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example, as for Vanish or EphPub), we would like to mention that X-pire! is in principle
still compatible with these distributed approaches.

Seamless Integration Finally, we wanted to provide a seamless integration of X-pire!
into the typical workflow of users when browsing Web sites on the Internet and, in
particular, when using social networks. Therefore, we needed to design both the X-pire!-
Publisher and the X-pire!-Viewer to meet this requirement: all encryption/decryption
and embedding/extraction routines should be integrate with as few user interaction
as possible. Especially the viewing phase should be fully transparent to the user. As
long as the expiration date of an image has not been reached, the image should be
automatically decrypted and replace the protected version of the image on Web sites.

3.3.2.3 Requirements and Assumptions

In order to achieve the goals of X-pire!, the following requirements and assumptions
need to be met:

• We assume the users of the X-pire!-Viewer to be honest and to neither create
persistent copies of decryption keys nor decrypted content.

• We require a Captcha service to prevent automated crawling attempts.

3.3.2.4 Attacker/Threat Model

• We assume that an attacker can take the role of a viewer, however, we do not
consider collaborating attackers.

• We assume that an attacker cannot compromise the X-pire!-Keyserver. Attackers
can only query the X-pire!-Keyserver according to the X-pire! protocol for the
Publication Phase and the Viewing Phase.

• We assume that an attacker is able to read, intercept, and modify arbitrary packets
on the network. Attackers can only decrypt encrypted content if they legitimately
received the required key according to the protocol.

• The attacker cannot compromise the publisher. However, he can take the role of
a X-pire!-Publisher and protect and publish images.

3.3.3 JPEG Primer

Before we describe in detail how X-pire! is integrated into the JPEG workflow of
compressing and decompressing images, we will first provide the necessary background
information on the JPEG standard itself. The Joint Photographic Experts Group
developed the standard already in 1992 and the JPEG format constitutes up to date the
most common image compression technology on the Internet (cf. Figure 3.2). When we
usually refer to JPEG images or files, we typically refer to a so-called JFIF file [99], the
JPEG container format. The JFIF standard defines the structure of the file in which
the actual JPEG compressed image data and corresponding meta information is stored.
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Figure 3.2: Statistic on common image file formats used on Web sites on the Internet.
Web sites may use several images file formats at the same time. As of October 2013 [232]

Mode Precision Compression Coding order Coding type

Baseline DCT 8-bit DCT Sequential Huffman coding
Extended DCT 8-bit or 12-bit DCT Sequential or Progressive Huffman or Arithmetic coding
Lossless 2 . . . 16-bits Predictive Sequential Huffman or Arithmetic coding
Hierarchical 2 . . . 16-bits Predictive or DCT Sequential or Progressive Huffman or Arithmetic coding

Table 3.1: Comparison of JPEG modes of operation based on [122]

The image data itself can be treated in several ways. The JPEG standard introduces
four different modes of operation: the Baseline mode, the Extended DCT-based mode,
the Lossless mode, and the Hierarchical mode (cf. [122]. An overview of all JPEG modes
is provided in Table 3.1). The two most common modes of operation for JPEG images
on the Internet are the Baseline DCT mode and the progressive version of the Extended
DCT-based mode, which from now on is referred to as the Progressive mode. Both
modes of operation do not differ substantially regarding the different encoding steps,
but merely in the ordering of the values that are input to the encoding routines [122,
166]. The advantage of the progressive mode is that it allows to render the full image
step-wise, i.e., from a high-level representation to the final version with all details (for
example frequency-wise, starting from low frequencies to high frequencies [166]). This
allows, for example, Web browsers to already provide a full preview image while the
image is still being loaded, which then becomes continuously “sharper”. The Baseline
DCT mode is structurally more simple since it does not apply this re-ordering, but
loads images sequentially already with full details. For X-pire!, we focus on the Baseline
DCT (BDCT) mode of operation, since it was used at the beginning of the X-pire!
development (in 2010) used by all major social networks (for example, by Facebook and
Flickr)5. However, our approach is in principle not limited to this mode.

In the following, we will describe the encoding process of JPEG images with the
Baseline DCT mode of operation as shown in Figure 3.12. The corresponding decoding
process consists of the inverse application of the mentioned steps (cf. the decoding

5Since the development of X-pire!, Facebook has moved on to the progressive mode of operation.
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Y = 0.299R+ 0.587G+ 0.114B
Cb = −0.1687R− 0.3313G+ 0.5B + 128
Cr = 0.5R− 0.4187G− 0.0813B + 128

Figure 3.3: JPEG color conversion from RGB color space to YCbCr color space as
defined in [99]

process in Figure 3.12). The JPEG primer is based on the definitions of the JPEG
standard itself [122] and the detailed explanations by Pennebaker and Mitchell [166]; for
more detailed information about the JPEG procedures we also refer to these references.

RGB to YCbCr Conversion At the beginning of the JPEG BDCT encoding, the
image to be encoded is converted from the RGB color space model to the YCbCr
color space model [166]. The starting image in the RGB color space consists of x ∗ y
pixels (x in horizontal direction and y in vertical direction) and stores for every pixel
at position (x, y) in the image a triple (R,G,B) where R is the “red” value, G is the
“green” value, and B is the “blue” value. All values range in the interval from 0 to 255.
The conversion to the YCbCr model follows the formula shown in Figure 3.3 and results
in three different channels, the luminance channel Y providing brightness information
as well as two chrominance channels that provide color information: the chrominance
channel for the blue-difference Cb and the chrominance channel for the red-difference
Cr [182].

After the color space conversion has finished, the color channels may optionally be
subject to subsampling [122, 166, 103], which is usually only applied to the chrominance
channels. The idea behind subsampling the chrominance channels is to exploit limitations
of the human visual system to save space by discarding information that humans cannot
perceive anyways [103]. Subsampling is usually defined for each color channel individually
and both for the x and y directions. Having, for example, a subsampling factor of 2 for
both the x and the y direction leads to a reduction of x/2 and y/2 values in the color
channel, i.e., 1/4 of the original information.

In case no subsampling is applied, or after subsampling has finished, the JPEG
standard requires a level shift by subtracting 128 from all values [122, 166]. The image
values range now from −128 to 127 instead of from 0 to 255. In a next step, all x by y
channels are split into 8 by 8 blocks as shown in Figure 3.4. The blocks are generated
row-wise from top to bottom and in each row from left to right. The 8 by 8 blocks that
have been extracted in this preparatory step constitute now the input for the subsequent
discrete cosine transform (DCT).

Discrete Cosine Transform The discrete cosine transform (DCT) is performed iter-
atively on all previously generated blocks. The 8 by 8 input blocks consist of Integer
values and the DCT produces 8 by 8 output blocks with the so called DCT coefficients.
Inside of each output block, the DCT coefficient at position (0, 0) is referred to as DC
coefficient; all other coefficients are referred to as AC coefficients (cf. [122]).
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Figure 3.5: Discrete cosine transform as defined in Annex A of [122]

Quantization After the discrete cosine transform, the so-called quantization is applied.
This step constitutes the actual compression step of the encoding process, i.e., this step
is usually lossy. The quantization itself is applied by dividing each 8 by 8 block with the
DCT coefficients position-wise by the so-called quantization matrix. A typical example
of such a matrix is provided in Figure 3.66. In case all values of the quantization matrix
are 1, no compression is applied.

Huffman Encoding As a preparatory phase for the Huffman encoding [108], a differ-
ential encoding for the DC coefficients is applied and the 8 by 8 block is transformed
into a one-dimensional sequence [122]. The processing order for the blocks is the same
as for the block creation: it is conducted row-wise and in each row from left to right.
To achieve the differential encoding, the DC value of the first block is kept as is. For all
following DC values, the DC value of the previous block is subtracted from the current
8 by 8 block. This difference is now kept. To achieve the one-dimensional ordering,
the values of the 8 by 8 matrix are added subsequently by choosing them in zigzag
order [122]. The exact ordering is shown in Figure 3.7. The advantage of the zigzag

6At the time X-pire! was designed, Facebook used the quantization table that is shown in Figure 3.6.
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Figure 3.6: Quantization table used by
Facebook in 2010 (luminance channel)

Figure 3.7: Zig-Zag ordering (cf. [122])

ordered creation of the one-dimensional sequence is that the lower frequencies are at
the beginning of the sequence and that the later positions of the sequence are zero with
a higher probability, which enables a space efficient Huffman encoding [166].

After the preparatory steps are finished, the resulting one-dimensional sequence
gets entropy encoded with the Huffman encoder [108]. The goal of this encoding is
to save storage by achieving a more optimal representation of the image. The actual
encoding is based on the so-called Huffman tables: they usually differ for the DC and
AC coefficients as well as for the luminance and chrominance channels, respectively.
The JPEG standard provides sample tables that were derived from a large test set of
images, however, one could also derive more targeted tables depending on the use-case
or a particular type of images (cf. Annex K in [122]). All four Huffman tables used
during the encoding are stored analogous to the quantization table inside the JFIF-file,
since they are required for the decoding as well. We would like to emphasize here
that the described entropy encoding including its preparatory steps is merely a lossless
compression technique, i.e. the Huffman encoding itself is lossless. For details on the
actual algorithm, please refer to [108, 122, 166].

3.3.4 System Details

In the following, we explain in detail how X-pire! works. First, we introduce our
mitigation mechanism for the data duplication problem, before we provide in detail
the communication protocol of X-pire!. Afterwards, we describe in detail our seamless
integration of encrypted data into valid JPEG files.

3.3.4.1 Mitigation of the Data Duplication Problem

Since X-pire! constitutes a pure software solution, we cannot fully solve the risk of
illegal copies without posing unrealistic trust assumptions. But our design goal was to
mitigate this risk by increasing the costs for an attacker to acquire images or keys on a

58



3.3. X-PIRE!

large scale and in an automated manner. We decided to base X-pire! on a dedicated
X-pire!-Keyserver, since it provides us with great flexibility regarding the expiration
dates and allows us to control and protect the access to keys more efficiently. In many
settings, distributed approaches are clearly beneficial in terms of performance and
scalability. Especially for the setting of X-pire!, we have to admit that a distributed
solution would have the advantage that there is not a small number of known keyservers
at known addresses that can be queried for keys. However, for X-pire! we believe that
the advantages of our dedicated X-pire!-Keyserver in combination with our crawling
protection outweigh the ones of decentralized solutions. In the following we do not
distinguish between one or several dedicated keyservers at known addresses and list the
mechanisms we deploy to protect or limit the access to our dedicated X-pire!-Keyserver:

• we request users to provide us with convincing evidence that they have actually
downloaded the resource they want to decrypt in order to increase the costs
of retrieving keys on a large scale. This is achieved by storing the hash of the
encrypted resource per key and requesting, as well as matching it during the key
request process.

• we enforce a rate-limit on key requests both from single IP-addresses and from
IP-address ranges.

• we introduce Captchas to prevent the crawling of keys on a large scale. The term
Captcha is an acronym for Completely Automated Public Turing Test To Tell
Computers and Humans Apart [45, 2] and goes back to Luis von Ahn, Manuel
Blum, Nicholas Hopper and John Langford in 2000 [45]. Captchas have been
formally introduced by von Ahn et al. in 2003 at EUROCRYPT [3]. The idea of
Captchas is to have a test that is easy to pass by humans, but difficult to be solved
automatically by computers. In the last ten years Captchas have basically led to
an arms race between new artificial intelligence techniques and the hardening of
Captcha solutions, since many of them have been broken [51, 244, 243, 215, 42,
130, 154]. Their security is frequently analyzed (for example, [43]) and recently
the question is how we can design Captchas that are still easy to solve by humans,
but at the same time provide robust security guarantees [44].
We can request users to solve Captchas at different frequencies and adjust thereby
the level of protection for the X-pire!-Publisher and the effort viewers have to
invest to actually view images (for example, by requesting one Captcha per image,
one image per photo album, etc.). With our dedicated infrastructure for the
X-pire!-Keyserver we can easily realize this protection by increasing heavily the
costs for an attacker to crawl keys on a large scale.

3.3.4.2 Seamless Integration

The natural choice for the seamless integration of the X-pire!-Viewer and the X-pire!-
Publisher into the users’ typical workflow was to integrate them into the Web browser.
Many modern Web browsers such as Mozilla Firefox or Google Chrome provide APIs to
develop feature-rich browser extensions. In certain cases it is even possible to integrate
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X-pire! - Publisher

Figure 3.8: Detailed Publication Phase of X-pire!

native libraries to implement high performance features that cannot be implemented
directly based on the standard API. Combining a high-level extension with a low-level
native library is also the approach X-pire! follows. The automatic replacement of the
container images by the decrypted versions of the previously embedded images is based
on replacing the link of a resource with a base64-encoded inline version of the decrypted
image. For details of the actual implementation, please refer to the implementation of
the X-pire!-Viewer in Section 3.3.5.3.

3.3.4.3 X-pire!-Protocol

The X-pire!-protocol is split into the already introduced three different usage phases,
i.e., the Publication Phase, the Viewing Phase, and the Update Phase.

Publication Phase The protocol for the publication phase is presented in Figure 3.8.
Starting point for the publication phase is an image img that the publisher wants to
protect for publication (1). In order to protect the image with X-pire!, the X-pire!-
Publisher first needs to request a symmetric key for encrypting the image. In order
to retrieve the key, the publisher establishes a secure connection (for example, via
HTTPs [186]) to the X-pire!-Keyserver and sends a message containing CreateKey and
cred (2). The purpose of the account information cred is to authenticate the publisher
at the keyserver for a specific account, whereas CreateKey triggers the key creation
process itself. After the key k has been created (3), the keyserver sends a response
to the publisher containing the created key k and a session identifier ids (4). The
publisher uses now the key k to encrypt the image img, which yields the ciphertext
cimg (5). Now, the encrypted image is hashed with a collision resistant hash function
(6) and the resulting hash is used to link the key k with the encrypted resource cimg

by sending its hash hash along with the Storehash command, the previously received
session identifier ids, the desired expiration date expdate, and a content description
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7.2. GetCaptcha, pkkeyserver

7.3. captcha_chall

Figure 3.9: Detailed Viewing Phase of X-pire!

back to the X-pire!-Keyserver7. The X-pire!-Keyserver confirms the successful process
with a final reply containing the key identifier idk and the session identifier ids (8). The
key identifier is a crucial requirement later during the Viewing Phase to identify the
required decryption key at the user side.

In order to prepare the ciphertext cimg for publication, it finally needs to be embedded
into a valid JPEG file: the container image cont (9). The embedding includes, besides
the ciphertext cimg, the key identifier idk of the key required for decrypting cimg, a
protocol version ver, as well as the address of the keyserver ks (9). Without embedding
c into the container image, it would not be possible to upload the protected image,
since c is no longer a valid JPEG file and, therefore, not compatible with existing JPEG
upload routines. After the ciphertext cimg, ver, ks, and idk have been embedded into
the container JPEG cont, we refer to this file as emb. emb is now ready to be uploaded
to the content server (10). We would like to emphasize, that the content server C is not
a collaborating party within the the X-pire!-protocol. In could be an arbitrary JPEG
hosting Web server with a JPEG upload routine.

Viewing Phase The Viewing Phase describes the protocol of how a user is able to
view Web sites that embed X-pire!-protected images. So the images have already been
protected during the Publication Phase and the user requests a Website w that includes
emb (1). The X-pire!-Viewer application screens all images embedded to w and checks
whether one of them is protected by X-pire! (3). In case such an image is found, the
image is downloaded (3) and forwarded to the extraction routine to receive the encrypted
image cimg, the version of the X-pire! protocol ver, the address of the keyserver ks,
and, finally, the identifier of the key required for the decryption idk (4).

In order to get the key for decrypting cimg, the viewer establishes a secure connection
to the X-pire!-Keyserver. To receive the required key, the X-pire!-Viewer now first needs

7The content description is a high-level description for a particular image or image set that is provided
by the publisher. On the one hand, the descriptor is used to assist the publisher in remembering what
a particular key was actually used for. On the other hand, the X-pire!-Publisher can use the same
descriptor for several images with the impact that they are also encrypted with the same key.
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to provide a proof that cimg has actually been downloaded. This proof is provided
in form of a hash hash of cimg, which is computed in step (5). The hash together
with the key identifier kid is now send together with the command GetKey to the X-
pire!-Keyserver. Depending on the settings for the key k at the X-pire!-Keyserver, the
keyserver either immediately responds with k, or, if the setting at the keyserver requires
the viewer to solve a Captcha, the X-pire!-Keyserver sends back the CAPTCHA_REQUIRED
(7.1) command. In the latter case, the X-pire!-Viewer sends a Captcha request with the
public key of the X-pire!-Keyserver to the Captcha service (7.2), which in turn sends a
Captcha challenge captchachall (7.3). The viewer solves the challenge and sends it to
the X-pire!-Keyserver (7.4), where it is verified in step (7.5) in conjunction with the
Captcha service8. In case the Captcha is solved successfully, the X-pire!-Keyserver sends
the key k back to the viewer. Otherwise, no key k is sent to the viewer.

Update Phase The Update Phase allows publishers to configure their accounts at the
X-pire!-Keyserver (common account management, for example, to change the password
or to delete the account) and to change the settings of keys that have been created in
previous Publication Phases. For previously created keys one can, for example, change
the expiration date (shorten or prolong the expiration date, enforce an instantaneous
expiration), change whether Captchas are required, or change the description of keys.
The communication between the publisher and the keyserver makes use of a secured
connection and the publisher needs to provide the login information cred to authenticate
for a specific account.

3.3.4.4 Robust JPEG Embedding

In the scenario of X-pire!, where we protect JPEG images on the Internet by adding a
digital expiration date, we are required to be compatible with the existing infrastructure
for handling JPEG images on the Internet. The existing infrastructure for handling
such images mainly consist of static Web site where images are embedded based on
the <img>-tag of HTML, as well as of Web sites that include upload-routines for JPEG
images including post-processing routines as commonly available, for example, in online
social networks. Therefore, we are required to embed our encrypted data including
our meta information (the address of the keyserver, a key identifier to identify the key
required for decryption, the protocol version of X-pire!) for a later key retrieval into a
JPEG file that retains valid according to the JPEG standard. The existing handling
routines both for rendering images at the client side and for post processing in the
upload routines at the server need to keep functioning. To achieve this, we followed two
orthogonal approaches of embedding encrypted data in JPEG files:

• The first idea was to embed encrypted data into the header fields of a JPEG
file. The embedded data would basically be considered as meta information that
does not necessarily affect the processing of the actual image data. This is clearly
the method of choice if the publisher controls the publication platform such that
re-compression or the like does not occur.

8The communication with the Captcha service in step 7.5 is omitted for a better readability of
Figure 3.9
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• Since the publisher usually does not control the publication platform, we developed
the second idea of embedding encrypted data into the actual image data, which
was much more challenging. Since the JPEG standard is commonly used to com-
press images, a potential re-compression of images would most likely destroy our
embedded data at least partially. But this would render a decryption impossible: a
secure encryption scheme will only allow us to decrypt the ciphertext if we are able
to recover 100% of the embedded bits. At the same time, our embedding needs to
be fully compliant with the JPEG standard since the resulting cover image needs
to retain a valid JPEG to keep compatible with the existing infrastructure.

Embedding into Header Information Embedding the encrypted image as well as the
meta information required for a later decryption into the header/meta information of a
JFIF-file is not only the fastest method, but also space-wise the most efficient method.
In order to embed our data into the JFIF-file, we make use of so-called additional APP0
marker segments. They are meant for specifying JFIF extensions, which have been
available since the JFIF standard version 1.02. The maximum size of such an APP0
segment is limited to 65535 bytes and the actual data per APP0 segment is limited
to 65527 bytes: the length field is limited to two bytes and includes in its count all
fixed fields (2 bytes length field, 5 bytes as identifier, 1 byte as extension code) except
for the APP0 marker itself [99]. But the limited size of a single APP0 segment is not
problematic since their number is not limited. So we can add several of these segments in
consecutive order. As long as any processing of these files retains the header information,
the image itself can even be scaled, re-compressed, etc. However, the upload routines
of social networks unfortunately completely strip off existing header information and,
thereby, remove our embedded data, which led us to the development of the actual
image data embedding.

Embedding into Image Data Since the header information of JPEG images gets
stripped off in upload routines of social networks, we now have to embed our encrypted
image and the meta information required for a later decryption into the actual image
data of JPEGs. Although we do not have to take care about how the container image
looks after the embedding itself, this task turned out to be quite challenging. Upload
routines of social networks commonly resize and re-compress images according to their
own needs; usually they aim at an optimal resolution for the usage in Web sites instead
of keeping it at full resolution in order to save storage space.

Countering the resizing of images was actually the straightforward part for achieving
the robust embedding into JPEG images: the social networks did only rescale images, if
the uploaded image exceeded the height or width limits. Therefore, we decided to scale
our container-images upfront to this size9 to prevent a rescaling, which solves the task.

This left us with the challenge of achieving a robust embedding that survives a
potential re-compression during the upload-procedures. The full post-processing of a
typical upload routine is presented in the middle box of Figure 3.10 at the example of

9for popular Web sites such as Facebook, X-pire! ships with a container image that fits exactly the
maximum size
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Figure 3.10: X-pire! workflow: Post-processing with libJPEG

the popular libJPEG10 [121]. In the following we will describe the full development
process of the robust embedding including our initial approach that failed to solve the
problem.

We started with the idea of anticipating all post-processing steps of social networks in
a preparatory step, i.e., to compute a pre-image for the image that is actually published
on the Web site after all post-processing steps. Figure 3.11 illustrates this idea. First,
the encrypted image and all meta information get embedded into a container image
by replacing the actual image data. This process results in embc, the container with
the embedded data. As long as embc is not modified, decryption is possible without
any problems. So embc is the file we would like to access on the Web site of the
social network. To achieve this, we need to compute a pre-image pre-embc of embc

by inverting all steps of the post-processing process. The decoding sub-process of the
post-processing can be ignored, since we can input the pre-image pre-embc without
any compression in place such that the decoding process is lossless. In order to invert
the decoding process, however, we need to invert every single step starting with the
Huffman encoding. However, this turned out to be infeasible since we don’t have the
corresponding Huffman tables. Without these tables, the inverse decoding step could
only be achieved by brute-forcing it.

The next idea was to start one step earlier to prevent the problems with the Huffman-
tables, i.e., to prevent the compression applied during the quantization step of the JPEG
encoding. This can be achieved very elegantly without the need of inverting every single
step of the encoding procedure: First, all required data is embedded into the image data
and the image is encoded without compression to a valid JPEG file. Before this image
is now uploaded to the social network, the existing quantization table A is replaced by
the inverse quantization table of the social network A′, which is computed as follows:

10The JPEG library libJPEG is a popular open source implementation in C of the JPEG standard
with support for various platforms. The library is written and maintained by the Independent JPEG
Group [121]. It constitutes the basis for many image manipulation applications such as GD [80] or
ImageMagic [111] and is widely used on the Internet. In particular, most of the social networks we are
aware of use libJPEG directly, or at least rely on image manipulation applications that were built upon
libJPEG.

RGB to YCbCr
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QuantizationDiscrete
Cosine Transform

Hu�man
Encoding

Figure 3.11: Initial idea for the embedding: Compute a preimage for embc
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A = (au,v) (3.1)

A′ = (a′u,v) =
(

1
au,v

)
for u, v ∈ {0, . . . , 7} (3.2)

Thereby, the initial JPEG decoding of the upload routine applies exactly the inverse
quantization step of the later quantization-based compression step during the new JPEG
encoding. This solves the problem of achieving a robust embedding that survives the re-
compression of upload routines at least for our mathematically correct implementation
according to the JPEG standard. However, when using the popular JPEG library
libJPEG, the situation changes: Our approach breaks down completely. When using
libJPEG our reconstruction rate dropped down to only 10%, which is far too low for
meaningful improvements or corrections based on error-correcting codes. Since libJPEG
is used within the upload-routines of all social networks X-pire! is supposed to support,
this problem rendered also our second approach infeasible. Without reliably achieving a
reconstruction rate of 100%, a later decryption of protected images is impossible.

We analyzed libJPEG to understand why our own JPEG implementation performed
that differently and it turned out that libJPEG is highly optimized for an improved
performance. In several cases, performance improvements are favored in contrast to
precision, for example, by introducing rounding errors. Based on these insights, we
developed our final approach for robustly embedding encrypted data into JPEG images.
The new approach is based on libJPEG and ensures that embedded data can be fully
recovered even after a libJPEG-based re-compression during the upload to a social
network, but its integration into libJPEG was rather challenging. The workflow of
libJPEG does not comply with our requirements for X-pire!. The library is implemented
in C and it is commonly used for reading a source image, decoding the image, and,
subsequently encoding it again with different settings. It does not provide an API
for accessing single steps of the encoding/decoding process (for example, only the
discrete cosine transform or only the quantization, cf. Figure 3.12), since single steps
are highly intertwined to improve the performance of the library. The library combines,
for example, the image scaling procedure with the DCT computation. For X-pire!,
however, we have to closely interact with the original encoding and decoding routines
to integrate our robust embedding and this required an in-depth understanding of the
original libJPEG structure and functions.

In the following, we describe in detail how the final embedding approach of X-pire!
works and how it was integrated to libJPEG. Since the quantization tables used by social
networks are publicly known11 and not subject to frequent changes, the final embedding
focuses on an embedding that survives this particular compression step. To achieve this,
data is already embedded right before the level shift and the implied conversion to a
signed integer representation before the discrete cosine transform (DCT) is applied (cf.
Figure 3.12). The DCT implementation receives as input the 8 by 8 blocks and each
value inside the blocks constitutes an 8-bit unsigned Integer value which is subsequently
converted into signed Integer values12. We embed now before the level shift in each

11They are part of every published JPEG image
12The level shift is also applied inside the DCT routine.
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Figure 3.12: X-pire! integration into the JPEG Encoding and Decoding routines of the
Baseline DCT mode of operation

of the single values of each block our data into the most significant bits (MSBs). By
default, we only embed data into the two most significant bits. The intuition behind this
is that the most significant bits have the highest impact on the actual image and are,
thereby, the last bits affected by a potential compression. The number of bits unaffected
by the later compression based on the quantization step depends on the compression
rate and, thus, on the values in the quantization table. We provide the quantization
table of Facebook at the time of the X-pire! development in Figure 3.6. Depending on
the quantization table it might actually be possible to embed data into more than the
first two bits, but it is also possible that only less data can be embedded. As future
work we consider, therefore, to implement an adaptive approach that – depending on
the actual values inside the quantization table – automatically varies the amount of bits
used for the embedding. Our analysis showed that our results can be further amplified
by setting always the bit next to the bits used for embedding data to one (for example,
bit 5 when using bits 6 and 7 for the embedding.). This prevents the bits used for the
embedding from being affected by rounding errors, since even major deviations in the
lower bits will not reach the upper bits.

Although the described approach of robustly embedding data produces for libJPEG
far better results than our previous designs, some data loss still occurs. However, this
loss can be handled. During our analysis of the new embedding (the analysis included
the upload and download of images from social networks), we never encountered more
than 5% loss. In order to cope with this amount of loss, we decided to introduce a
state-of-the-art error correction mechanism. In principal any recent error correction
mechanism would work and we decided for X-pire! to make use of so-called Reed-
Solomon codes [183] in a configuration (N,K) of (255, 191). This configuration allows
the successful recovery of 191 bytes of actual data in case the loss of data is at most
about 12,5% [P8]. To correct the errors in 191 bytes, 64 bytes of information are
included for the error correction, which sums up to 255 bytes per error correction unit.

Based on the described embedding, the Reed-Solomon codes for error correction, and
our embedding into the two most significant bits, X-pire! can now embed a maximum of
3/16 of the original payload into the luminance channel for the target platforms, i.e., the
mentioned social networks such as Facebook. In principle, we can embed 2 bits per byte,
which provides us with 1/4 of the original payload of the luminance channel and this is
further reduced by 25% for the error correction symbols. The same holds true for the
chrominance channels, but since these channels are frequently subject to sub-sampling,
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they are currently not used by X-pire!. The total amount of data that can be embedded
using the described method is fully sufficient for uploading encrypted images inside of
the container images to social networks, especially since X-pire! re-compresses images
upfront with the settings of the particular social network13. Thus the approach provides
us with the necessary basis to fulfill our goal of implementing the digital expiration date
for social networks.

3.3.5 Implementation

In the following, we describe the implementation of X-pire! as it was carried out by
Stefan Lorenz (client side) and Julian Backes (server side) for the production version of
X-pire! [P1]. The client-side implementation of X-pire! consists of a browser extension
for Mozilla Firefox version 3.5 that interfaces a native library. The native library was
developed for X-pire! and includes all functionality required for the Publication Phase
and the Viewing Phase. It can be interfaced based on the Gecko/XULRunner SDK
1.9.1 for developing so-called XPCOM components, which can provide an interface to
native libraries. At the server-side, X-pire! provides the X-pire!-Keyserver including the
Web interface for key management, which mainly relies on state-of-the-art Web server
technologies.

3.3.5.1 The X-pire!-Library

The Firefox browser extension at the client side contains the X-pire!-Publisher and
the X-pire!-Viewer. The publisher provides all functionality required to protect images
with an expiration date for a later publication, whereas the X-pire!-Viewer provides the
functionality required for decrypting and viewing already published images. Both the
publisher and the viewer share a native library written in C and C++ that provides
the full X-pire! toolchain for the actual image handling. Relying on such a native
library for the image manipulation tasks allows us to easily integrate existing and well-
tested third-party libraries for performance critical tasks: This includes the symmetric
encryption and decryption of images based on the OpenSSL library, hashing based
on the OpenSSL library, our embedding routines in conjunction with libJPEG, as
well as a custom implementation of Reed-Solomon codes for the error correction14. In
particular, X-pire! uses the advanced encryption standard (AES) [155] with cipher block
chaining (CBC) [147] mode and a key size of 256 bits for the symmetric encryption and
SHA256 [119] as hash function for both the Publication and the Viewing Phase. The
embedding as described in Section 3.3.4.4 is integrated into the libJPEG version 8b
by a custom module that is called inside the function for the discrete cosine transform
(for embedding data), or inside the function for the inverse discrete cosine transform
(for the extraction of data), respectively. Both the header-based embedding routine
(cf. Section 3.3.4.4) and the libJPEG-based embedding routine (cf. Section 3.3.4.4)
are finally integrated into a custom C++ library with a well-defined API for using
both approaches. Since the browser extension is required to call functions of our

13It would not make sense to provide images with better quality, than it would be done by the social
network itself

14The library for Reed-Solomon codes was implemented by Stefan Lorenz.
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library directly, it was necessary to implement an XPCOM component and to provide a
wrapper for our library15 for the communication between the high-level extension code
and the native library. The XPCOM framework allows us to call native functions in
the same way as JavaScript or XUL functions are called by the extension. The whole
network communication of the extension is not integrated into the library, but uses
the XMLHTTPRequest function in JavaScript for interfacing the X-pire!-Keyserver via
HTTPS.

Figure 3.13: X-pire!-Publisher:
User-interface (Screenshot by Ju-
lian Backes)

3.3.5.2 The X-pire!-Publisher

The publisher is part of the browser exten-
sion and provides users with the interface
for protecting images with an expiration
date. The menu is shown on the right side
of the browser window (cf. Figure 3.13,
the window can be hidden). Depending
on the chosen target (own Web site or a
social network such as Facebook), either
the header-based embedding method or the
method for embedding data into the ac-
tual image data of the container image is
used. Below the target selection, users are
provided with a file selection pane where
even multiple files can be chosen16. At the
bottom of the publisher menu, users can
configure the desired expiration date. The
advanced pane provides the interface for
configuring the X-pire! account for the X-
pire!-Keyserver.

3.3.5.3 The X-pire!-Viewer

The viewer does not provide a special user
interface the user needs to interact with, it
is either enabled or disabled. The only inter-
face required by users of the X-pire!-Viewer
is the one for configuring a white-list of
Web sites where the X-pire!-Viewer should
be enabled. The extension is automatically
disabled for all other sites to improve the
performance (cf. Section 3.3.6 for details
on the performance impact of the check for
X-pire!-container images)17.

15All Firefox versions supported by X-pire! do not support direct calls without an XPCOM component.
16As described in Section 3.3.4.3, multiple files with the same description may share the same key.
17The current version of X-pire! ships with a white-list for social networks.
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The core functionality of the X-pire!-Viewer is fully transparent to the users. The
handler functions of the extension check in the background whether a <img>-tag of a
white-listed Web site embeds a X-pire!-protected images. If such a container image
is found, the extension immediately extracts the encrypted image including the meta
information. Afterwards it contacts the X-pire!-Keyserver at the address specified
in the meta data and requests the key required for decrypting the embedded image
from this X-pire!-Keyserver. Once the key is received and decryption succeeded, the
extension modifies the document object model (DOM) tree of the Web site with the
embedded X-pire!-image that is currently loaded and replaces the <img>-tag referring to
the X-pire!-container image by a new <img>-tag containing the full, decrypted images
in base64 -encoding. Although RFC 2397 on The “data” URL scheme, which defines
this usage of base64 -encoded inlined data as URL, constitutes only a proposal for a
standard18 [138], it is today widely implemented: all major browsers support it19.

3.3.5.4 The X-pire!-Keyserver

The keyserver is implemented using Scala, a functional and object-oriented programming
language that runs in the Java Virtual Machine and allows a direct interaction with
Java code [218]. In addition, X-pire! leverages for the X-pire!-Keyserver the Lift
framework [131] for developing its Web application including the key management
interface and PostgreSQL [175] as the database back-end for storing the actual keys.
The keyserver integrates the Google reCAPTCHA service20 [88] to prevent large-scale
crawls of keys (cf. Section 3.3.4.3 for the detailed protocol). The requirement to solve
such Captchas is supposed to heavily increase the workload for potential attackers. The
activation of this service can be chosen by the publisher either during the initial key
request or via the key management interface. Moreover, the communication interface of
the X-pire!-Keyserver enforces the usage of HTTPS to ensure data confidentiality, the
same holds true for the whole communication with the reCAPTCHA service.

3.3.6 Evaluation of X-pire!

In the following, we provide the results of our X-pire! evaluation based on [P1].First,
we provide the results of the performance evaluation for both the X-pire!-Viewer and
the X-pire!-Publisher. Additionally, we compare the quality of the original images
in social networks with the quality of our embedded images and explain how much
data can be embedded for which network21. Most important was the evaluation of the
client-side application (the Firefox Browser extension), since its impact on the actual
browsing performance will have a major impact on the users’ acceptance and, thereby,
on the deployability of X-pire!. In addition, we analyzed the server-side implementation
regarding its scalability.

18The Internet Engineering Task Force published the proposal by L. Masinter already in 1998 [138]
19Verified on May 18th, 2014 with Apple Safari 7.0.3, Mozilla Firefox 29.0.1, Google Chrome

34.0.1847.137 m, and Microsoft Internet Explorer 11.0.9600.17107
20According to Google, reCAPTCHA constitutes the “most widely used Captcha provider in the

world” and their Captchas are used to digitize text, annotate images or build machine learning datasets.
21The numbers and quality settings are based on the development state of the online social networks

when we designed X-pire!
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3.3.6.1 Client-side Performance

The evaluation of the client-side performance was conducted on a commodity notebook
with an Intel Core 2 Duo CPU (2.2 GHz, 2cores, 2 threads) and 4GB RAM running
Mac OS X 10.6.4 and our measurements focused on three different aspects of the X-pire!
extension: the performance impact of the browser extension with the X-pire!-Viewer
when visiting Web sites, the performance of the embedding itself, and, finally, the full
viewing process of X-pire! protected images (image extraction, image decryption, and
image rendering).

First of all, we measured the performance overhead introduced by the Firefox
browser extension when browsing normal Web sites. In order to achieve great usability
and a widespread acceptance, it is essential that users do not recognize any negative
performance impact during their day-to-day tasks when using the browser. The impact
on these day-to-day tasks was measured by requesting custom static HTML-pages22

with a different number of embedded images (no X-pire!-protected images) 50 times
per series while the X-pire! extension was activated. The results are compared to the
baseline experiment with the same settings but without having the X-pire! extension
activated. As shown in Figure 3.14, there is no measurable performance impact when
viewing Web sites without X-pire!-protected images.

In our next experiment, we measured the performance of encrypting and embedding
an image into an X-pire! container image, both with the header-based embedding and
the embedding into the image-data. The experiment was executed again in series of
50 runs per number of embedded images. The results are provided in Figure 3.15.
As expected, the header-based embedding clearly outperforms the embedding of the
encrypted image into the image data and both approaches scale linearly. The major
time consumption for the header-based embedding is related to the encryption, which is
similarly present for the image data-based approach. The embedding into the header
does not consume much time since it is roughly the time for writing the encrypted data
to a file. In other words, the difference in time between both approaches is roughly the
time that is required for the embedding into the image data.

Finally, we analyzed the time it takes to process Web sites that may embed X-pire!-
protected images. We measure for both embedding approaches the time it takes to
detect whether an image is an X-pire!-protected image and compare the results to the
full process of extracting and decrypting such a protected image. This measurement
relies as the two previous benchmarks on the setting of 50 runs per series and each
series containing a Web page with a different number of embedded images. The detailed
results are provided in Figure 3.16. The header-based embedding outperforms also for
the extraction and decryption process the image data-based embedding method. In
particular, as shown in Figure 3.16, already the check for a protected image using the
image data-based approach takes as long as the full extraction and decryption process of
the header-based embedding approach. Our experiments further revealed that neither of
the two approaches scales linearly. We expect that this was due to the implementation

22It is difficult to measure the performance overhead while viewing existing Web sites such as social
networks since they embed too many external resources and their linked content (for example, online
advertisements) changes frequently. For many linked resources changes occur even every time a page is
loaded.
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of the JavaScript DOM handlers and events in the Mozilla Firefox browser [P1, 150].

3.3.6.2 Server-side Performance

Besides the X-pire! browser extension at the client side, we also evaluated the perfor-
mance of one central keyserver regarding its scalability. The evaluation was performed
on a commodity desktop computer with an Intel Core i3 540 CPU (3,06 GHz, 2 cores, 4
threads) and 4GB RAM running Ubuntu 10.04 Server Edition. On top of the Linux
operating system we used the Java-based Web server Jetty 6 [116] and assigned 2GB
heap space to it. The benchmarks itself were performed with ApacheBench [1]. Based
on this experimental setup, we were able to create about 820,000 sessions until the 2GB
memory limit for Jetty was reached, which allows already a pretty reasonable amount
of users per server. However, this constitutes only a rough upper bound since Jetty
cannot display the number of active settings [P1]. After the 2GB memory limit was
reached, the garbage collector of the Java virtual machine slowed down the system until
it fully stopped. Besides the analysis of the maximal amount of parallel sessions for
this configuration, we analyzed the scalability of the X-pire!-Keyserver regarding the
maximum CPU load. During our measurements we were able to execute roughly 3000
requests per second within one single session. This amount of requests pushed the CPU
load to the limit on all cores with a CPU usage between 90% and 100% according to
htop [P1, 107].

3.3.6.3 The Embedding

Although most of the upload routines for social networks rely on libJPEG, they apply
different settings for the re-encoding of images, which has influence on the amount
of data X-pire! can embed. Table 3.2 summarizes the amount of data that can be
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Figure 3.16: Performance of the X-pire!-Viewer for both embedding approaches [P1]

embedded to Facebook, Flickr,and wer-kennt-wen, respectively; the max. resolution
provided in Table 3.2 refers to the max. resolution of images that can be uploaded
without getting rescaled23. Overall, the amount of data that can embedded suffices to
store images at a reasonable quality, especially when compared to the image quality
used by online social networks. In order to compare the quality of X-pire!-images with
original images from social networks, we provide in Figure 3.17 a X-pire!-protected
image that was downloaded from Facebook and in Figure 3.18 the same image, but now
downloaded from Facebook without any X-pire! processing.

3.3.6.4 Security Evaluation

In the following, we discuss the security of X-pire!. A core assumption of X-pire! is that
once a particular expiration date has passed by, the X-pire!-Keyserver deletes all keys
required for decrypting files with this particular expiration date. If an attacker was able
to retrieve keys or even decrypted content after the expiration date, this would break
the system for a particular file. Since an attacker is in principle able to take the role of
an average user, the attacker can also retrieve keys and decrypted content as long as
the expiration date has not been reached. So if an attacker knows already before the
expiration date what files to compromise, a targeted attack is possible. However, we
argue that this is not common for our use case. When people publish personal pictures
on social networks: who knows already years upfront, which data is required to be
detrimental for the future lives and career of this people? Since this is unclear, attackers

23The values are based on the social networks’ configurations that were present during the design and
evaluation phase of X-pire! in 2010/2011.
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would have to store keys or decrypted images on a large scale, which is a huge effort.
Due to our Captcha-based crawling protection and the rate limits, only a large fraction
of collaborative attackers investing huge efforts in terms of man power and resources
would be able to remove the X-pire!-based protection on a large scale. We don’t expect
this, however, X-pire! does not protect against this as well. In particular, X-pire! was
not designed to achieve this.

3.3.7 Discussion and Limitations

X-pire! has raised a huge discussion in Germany about whether the Internet should be
capable to forget and about how X-pire! contributes to this potential goal. From our
point of view, the Internet clearly needs better mechanisms to protect the users’ privacy
and, in particular, the privacy of minors – even if they intentionally publish personal
data. It should be possible to remove data that is published by children or teenagers
and potentially detrimental for their future life and careers. Ideally, published data
should completely stay in the controls of minors as well as in their parent’s control. This
is also in line with the draft for the new European General Data Protection Regulation.
The regulation includes an explicit article that mandates the “right to be forgotten and
to erasure” (Article 17 in [69]).

Although X-pire! received an overwhelming attention in the German media – reports
on X-pire! occurred in most of the major printed press, in major TV channels, as well
as in the radio –, X-pire! was also heavily criticized especially in online media for not
providing strong security guarantees. Most of the criticism came up because people had
wrong expectations and knowledge about the functionality of X-pire!. Our system was
designed as a software solution based on the infrastructure that existed in 2010 and our
design is built around the assumption that users of the system are benign. Admittedly,
benign users can copy the content (for example, images) as well as the keys required
for decryption until the expiration date has been reached. But since we assume that
attackers do not know in advance the data they might need after it has expired, it
would require a large collaborative action to break the full system and to remove all
expiration dates. This is not possible according to our assumptions. We are convinced
that X-pire! is the technical limit for a solution purely in software without making
unrealistic trust assumptions on the underlying system. If one considers malicious users
for a software based solution, one could only move the border where it fails by making
trust assumptions, for example, on the operating system. But depending on the user
rights (for example, root), no effective prevention can be assumed for software solutions.
Even if these rights are not granted by default or when we consider systems where
people usually cannot gain root access, system breaks are quite popular (for example,
rooting on Android or Jailbreaks for iOS). In order to prevent wrong expectations, we
list in the following both the functionality X-pire! was designed for and the limitations
of our system. In particular, X-pire! was designed to provide the following functionality:

• The encryption of JPEG images and associating them with an expiration date.

• Uploading these images to social networks such as Facebook or Flickr.
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Social Network max. Resolution Image Bytes Bytes Bytes
incl. ECC w/o ECC

Facebook 720x720px 468000 117000 87750
Flickr 1024x1024px 976896 244224 183168
wer-kennt-wen 620x620px 341000 85250 63937.5

Table 3.2: Amount of bytes that can be embedded into the container image [P1]

• Viewing the images after the upload to a social network with our browser plug-in
in supported browsers.

• Integration of Captchas to heavily increase the costs for an attacker to collect
large amounts of keys or decrypted images.

The design of X-pire! does not provide protection against:

• Users that intentionally copy images after they got decrypted; this is always possi-
ble for solutions purely in software without posing unrealistic trust assumptions.

• Users installing malware to collaboratively collect and store keys on third-party
servers whenever a picture is viewed (a proof of concept tool called Streusand was
presented by Federrath et al. [72]); this is comparable to intentionally copying
images that could also be stored unencrypted on another server.

Another point of criticism was related to the choice of a dedicated keyserver for
X-pire!. As a matter of fact, relying on dedicated keyservers provides attackers with
a clear target. They simply know where the keys required for decryption are stored.
However, a dedicated keyserver infrastructure also provides several advantages: First of
all, it eliminates the limitations on the expiration dates dictated by the infrastructure
that several related systems have to cope with [82, 46, 184]. Second, publishers that
do not want to trust any keyserver infrastructure get to chance to set up their own
infrastructure. Finally, a controlled dedicated keyserver infrastructure allows us to
deploy access control restrictions to prevent large-scale key retrievals. Although we
did not implement other concepts for the keyserver, we would like to emphasize that
the infrastructures of related approaches such as Vanish (DHTs) [82] or EphPub (DNS
caches) [46] could also be used by X-pire!. One could also think of reducing the risks of
a single broken or malicious keyserver by using a k out of n threshold-based encryption
scheme [202] and storing individual key shares on several different dedicated keyservers.

3.4 X-pire 2.0

The motivation for designing X-pire 2.0 was to solve the central problem of X-pire!: the
data duplication problem (DDP). An attacker should never be able to copy content
or the keys required for decryption. X-pire 2.0 was designed as a flexible system for
publishing data with an expiration date that solves the data duplication problem and
provides robust security guarantees. It leverages the robust embedding of encrypted
data into JPEG images of X-pire! and extends it with a robust solution to the data
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Figure 3.17: Image uploaded using X-
pire!; it has the identical image quality
as the Facebook image on the right side

Figure 3.18: Image uploaded using only
Facebook

duplication problem based on secure hardware. Thereby, X-pire 2.0 constitutes the first
system for a digital expiration date for digital data that achieves a robust protection
against the data duplication problem and provides mechanisms for a seamless integration
into the existing infrastructure at the same time.

The workflow of X-pire 2.0 is similar to X-pire!. After the publication of protected
data it is possible to modify the expiration date of published data, or even to enforce
an instantaneous expiration. The latter is achieved by either changing a previously
defined expiration date or by adding an expiration date at all. Once the expiration date
set by the publisher is reached, published data becomes unavailable. Since X-pire 2.0
builds up on the same embedding techniques as X-pire!, it targets the same scenarios:
1) publisher have control over the publication platform, for example, their own Web
server, and 2) publication platforms like modern online social networks. For the latter,
we show for images how our approach allows a lightweight integration into the existing
infrastructure: in particular, X-pire 2.0 can be used to publish protected images via
Google+ and Flickr. The security of the system is based on the fact that after the
publisher protected the data to be published, it will never be transmitted or processed
in cleartext by any untrusted entity. Please note that we do not consider consumers of
protected content as trustworthy entities, as an attacker could easily take the role of
a legitimate user (for a detailed overview of our assumptions, cf. Section 3.4.2.3 and
3.4.2.4).

3.4.1 Contributions

In more detail, X-pire 2.0 offers the following major improvements in contrast to X-pire!:

1. X-pire 2.0 allows publishers to fully stay in control of their published data by
providing robust guarantees against attackers. X-pire 2.0 does no longer assume a
trustworthy and benign user of the system.
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2. X-pire 2.0 provides the first solution to the DDP. This is achieved by basing X-pire
2.0 on ARM’s trusted computing framework TrustZone [4, 13]. This ensures that
neither legitimate users nor attackers can access and copy content before the
expiration date is reached24. (After the content expired, creating such copies is of
course impossible by design.) ARM TrustZone is available for a series of ARM
processors such as the Cortex-A9 [14]. These processors constitute a large share
of ARM’s 90% market share for smartphone processors [221].

3. X-pire 2.0 provides an effective profiling protection against the X-pire 2.0-Keyserver
by leveraging private information retrieval (PIR) techniques based on Oblivious
RAM and secure hardware. This profiling protection counters the potential for
an efficient profiling of key requests by users through the central keyserver. The
central keyserver is required by our solution for the DDP.

The overall system provides a general publication framework for digital content
and could easily be adapted for data types other than images, as well as for other
publication platforms than social networks. Especially in cases where the publisher
maintains the publication platform, our approach is straightforward to adapt. We have
implemented our system for the Google Android platform25 and conducted performance
measurements to demonstrate its efficiency.

3.4.2 System Overview

X-pire 2.0 provides a digital expiration date for digital data and achieves robust security
guarantees. In the following we give a high-level introduction to the X-pire 2.0 protocol
and discuss the technical challenges during the design phase. Moreover, we discuss the
systems’ underlying prerequisites and assumptions, and outline the attacker model for
the system.

3.4.2.1 High-level view on the protocol

The usage of X-pire 2.0 is split similar to X-pire! in three different phases (cf. Figure 3.19),
the Publication Phase, the Viewing Phase, and the Update Phase.

Publication Phase: The publisher P encrypts data with a symmetric key and stores
the key together with an expiration date on a dedicated keyserver K. From then on,
eligible devices can access this key until the corresponding expiration date set by the
publisher is reached (cf. Section 3.4.4.1). After encrypting the data, the publisher P
embeds the encrypted data into a container image that is compliant with the desired
content server C and publishes the container on this content server C, for example, on a
public Web server or a social network.

24Clearly, taking photographs of the monitor with an external camera is always possible.
25The current limitation constitutes a prototype purely in software. Due to the missing availability

of openly programmable and documented TrustZone hardware, the system is currently providing no
security guarantees.
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Figure 3.19: X-pire 2.0: A high-level overview

Viewing Phase: In order to view protected content, the browser forwards it to the
TrustZone to initiate the corresponding key request. After the key is retrieved from the
keyserver, the key is used to decrypt the protected content and to subsequently display
it to the user from inside the TrustZone.

Update Phase: The keyserver supports key management functionality, which can
be used during the Update Phase to modify the settings for already created keys. In
particular, the management functionality allows publishers P to prolong and shorten the
expiration date of keys. The latter can even be used to let data expire instantaneously.
Once the expiration date set by the publisher P for a particular key k is reached,
published data encrypted by k becomes unavailable.

3.4.2.2 Technical challenges

In order to achieve our goal of implementing a comprehensive expiration date for digital
content with robust security guarantees, we needed to solve several technical challenges:

Solving the data duplication problem. First and foremost, we needed to solve
the data duplication problem. Public responses to previous deployment attempts of
a digital expiration data have shown that the DDP constitutes the main reason why
these approaches did not find a widespread deployment and acceptance in practice. In a
nutshell, all existing approaches can only provide robust security guarantees if all users
that can access a person’s data before its expiration are fully benign. Although data is
always stored encrypted, both the key and the content are available in the clear when a
legitimate user reads the protected data before the expiration date is reached. Without
further protection, an attacker could simply store and republish keys or content and,
thereby, fully remove the existing protection. In order to solve the problem, it is of
central importance that an attacker, even if taking the role of a benign user, is neither
able to copy content after decryption, nor able to copy the decryption key at any point
of time. Without imposing unrealistic trust assumptions, the only way to achieve this
is by preventing users from accessing both the keys and the content. And this is exactly
where the difficulty lies: users need to view content without getting digital access to
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the decryption keys or to the content that has been decrypted for viewing. We would
like to stress that already a screenshot is a digital copy that needs to be prevented by
any means. However, even if screenshots can be prevented, how is it possible to prevent
somebody from capturing the video signal to the screen?

X-pire 2.0 assumes that an attacker can both take the role of a legitimate user and
manipulate the off-the-shelf OS of a viewing device. Therefore, we move all processing
of encrypted content out of the normal operating system and use the ARM TrustZone
framework, a trusted computing approach integrated in many embedded devices based
on ARM processors [4, 13], such as today’s smartphones, tablet computers, or modern
flat screen TVs (for details on the TrustZone, cf. Section 3.4.4.2). When a user wants
to view protected content, it is forwarded to a trustworthy environment (the so-called
secure world); it is the counterpart to the normal world with the normal untrusted OS)
that is unreachable for attackers and even honest users or the normal world operating
system (OS). The key request for the decryption key is only executed by the trusted
OS running inside the secure world, which is also the only place, besides the keyserver,
where the decryption key can be stored (at most, until the expiration date). Decrypting
content and subsequently displaying it is also handled inside the trusted environment.
Protected content is only shown on displays embedded in the supported devices and not
on external screens. Furthermore, users are not able to extract content or keys from
the trusted environment. In case keys are transmitted over the Internet, they are only
delivered via secure channels after a mutual authentication. In order to ensure that only
devices incorporating an eligible TrustZone are able to access keys, we decided to make
use of a central keyserver. Based on the PKI used, the keyserver can easily identify
whether a key request was issued by an eligible device before the decryption key is sent
in return. If keys were stored or derived in a distributed way on the Internet, as, for
example, in [82, 184], this server-side authentication enforcement could not be achieved.

Protection against profiling content viewers. In order to achieve our solution for
the DDP, we need to rely on a dedicated centralized keyserver infrastructure for storing
the content decryption keys. Using a centralized approach for the keyserver introduces
the potential for an efficient profiling of users by tracking decryption key requests, as
the keyserver potentially learns the content users have viewed. However, this problem
does not only exist for centralized approaches. In the decentralized setting a similar
profiling could be achieved by colluding attackers. To a certain extent, users (especially
the publisher) have to trust the keyserver anyway since it is central to X-pire 2.0’s
security that keys are not leaked in any way. Nevertheless, many users want to prevent
any possible profiling and do not agree to provide the keyserver with a detailed profile
of requested keys. We counter the risk of users being profiled by using PIR techniques
based on Oblivious RAM and secure hardware [236]. Thereby, the keyserver is unable
to learn details about key requests and resulting responses.

Compliance with the existing infrastructure Since we follow a similar paradigm as
existing approaches and protect content by encrypting it, the resulting files are usually
incompatible with existing infrastructure. But most personal information that strives
for protection (for example, private and potentially unflattering images) is nowadays
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published on existing infrastructure like social networks, where control over supported
file formats is out of reach for publishers. Therefore, it is necessary to embed the
encryption such that the original file format is retained. We leverage the embedding
developed for X-pire! (cf. Section 3.3.4.4) and show for the use-case of JPEG images
how this can be achieved for social networks such as Google+ and Flickr.

Seamless, one-click integration. We have implemented our system for the Google
Android platform26 and conducted performance measurements to demonstrate its
efficiency. The software integrates seamlessly into the user’s workflow when surfing
on the Internet. We implemented the X-pire 2.0-Publisher and the X-pire 2.0-Viewer
as two distinct Android apps. To publish an image, users can either use the X-pire
2.0-Publisher to directly take a photo (using, for example, an Android-based smartphone
or camera), or the publisher can load an existing image into the app. Afterwards, the
desired expiration date is entered and the image gets protected. Subsequently, the
user uploads the protected content to the desired publication platform. The X-pire
2.0-Publisher allows both to take photos and to load images within the app27, before
they get protected right afterwards. In the viewing process, the user surfs the Web using
the X-pire 2.0-Viewer app: in case protected content is detected, X-pire 2.0 processes
the content and displays it.

3.4.2.3 Requirements and Assumptions

In order to fulfill the goals of X-pire 2.0, we rely on trusted hardware to protect cleartext
versions of published content and the corresponding decryption keys. This provides the
technical basis to solve the DDP. Furthermore, we rely on secure hardware to protect
the privacy of users (viewers of content) against the keyserver. In particular, X-pire 2.0
has the following requirements:

• The keyserver needs secure hardware for the implementation of private information
retrieval based on Oblivious RAM in order to prevent a possible profiling of user-
based key requests by the keyserver.

• The device used for viewing protected content needs to be based on an ARM
System-on-a-Chip (SoC) incorporating the TrustZone, an extension for trusted
computing introduced by ARM (cf. Section 3.4.4.2 for particular TrustZone
features required by X-pire 2.0). Typical devices based on ARM SoCs include
smartphones, tablet computers, and recently also TVs. In the future, however,
the concept could also be adapted for other trusted computing platforms, as long
as all required functionality is provided. One could, for example, follow the spirit
of Flicker, a framework providing secure code execution on off-the-shelf platforms
with a minimal trusted computing base [143].

26Since openly programmable TrustZone hardware is not publicly available, our implementation is
purely in software and does not provide the desired security guarantees.

27Most modern smartphones and tablet computers incorporate a camera. Additionally, there are even
normal digital cameras running the Android OS
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• The device integrating the TrustZone needs an embedded display so that the signal
between graphics card and display cannot be easily intercepted and recorded (for
example, smartphones, tablet computers, or smart TVs.).

• We need a secure hardware clock inside TrustZone to correctly handle expiration
dates when keys are cached.

• We need a standard public key infrastructure (cf. Figure 3.21 for the involved
entities).

• The code base running inside TrustZone needs to be error-free and protects both
content and keys (for example, the decryption keys). Keys are never leaked
out of the secure world inside the TrustZone, since the secure world will only
execute trustworthy and endorsed code. An alternative solution would be to
ensure that the trusted code base inside the secure world ensures a sequential and
non-interfering execution of different applications to prevent them from accessing
each other’s sensitive data.

3.4.2.4 Attacker/Threat model

Previous approaches that implement an expiration date for digital content (for exam-
ple, [82, 46]) assumed a benign user and had, if at all, only weak protection against
an attacker that takes the role of a legitimate user. In contrast to these approaches,
we provide a solution to the DDP and assume that the attacker can take the role of a
benign user. In particular, we assume that the attacker is

• capable to take the role of a legitimate user of X-pire 2.0.

• able to manipulate the normal world OS on the devices on which he is executing
the X-pire 2.0-Viewer and X-pire 2.0-Publisher.

• able to intercept, replace, and modify network traffic.

• not capable to conduct a lab attack against the hardware the X-pire 2.0-Viewer
is running on, for example, to extract secrets from the trusted hardware.

• not capable to access the device of another user on which the X-pire 2.0-Publisher
is running and is, therefore, not able to steal keys during the publication phase.

• not capable of compromising the X-pire 2.0-Keyserver and the PKI infrastructure
used.

3.4.3 Background on Trusted Computing

The key idea behind trusted computing is to provide a software and hardware environ-
ment (usually referred to as trusted execution environment) with a solid root of trust
for the execution of further computations. This root of trust is commonly provided by
a third party, which could be everything from a hardware component up to an external
(Web) service: It depends on the requirements and assumption for a particular scenario,
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i.e., what is actually needed, what or whom are we going to trust in a particular scenario,
etc. A common assumption for roots of trust in hardware (for example, a key stored in
a dedicated chip) is, for example, that the hardware component cannot be compromised
or that a key cannot be extracted by so-called lab attacks28.

The usual goal behind trusted computing is either to achieve a trustworthy execution
of a function or service (i.e., to have a trustworthy and correct output), or to execute a
function or service on trustworthy input. Another recent goal of trusted computing is
to achieve a robust protection of secrets by outsourcing the data to, or even directly
generating it by the trusted third party.

All of the mentioned goals behind trusted computing share the major requirement
that the hardware and software environment used needs to be set up trustworthy, which
led to the development of concepts and techniques for a trusted boot process, memory
and storage protection/separation, or the (remote) attestation of a trustworthy system
state at runtime. Trusted Boot (also referred to as Secure Boot) approaches [219, 235,
13] aim at a fully trustworthy boot chain starting from the BIOS, going over the actual
start-up code (including firmware loaders and firmwares as well as operating system
loaders) and leading up to starting the actual operating system kernel or virtual machine
managers (VMMs) [95]. The protection or separation of memory (RAM) and storage
(flash) is usually achieved by enforcing the separation at the hardware level through
dedicated chips or as part of modern System-on-a-Chip designs.

Popular hardware concepts that enable Trusted Computing include Trusted Platform
Modules (TPM) that follow the specification through the Trusted Computing Group
(TCG) [224, 224, 223], Intel’s Trusted Execution Technology [95], and ARM’s TrustZone
technology [13].

3.4.3.1 Trusted Platform Module

The concept of Trusted Platform Modules (TPMs) was developed by the Trusted Com-
puting Group, an industry consortium (members are for example the chip manufacturers
AMD, ARM, Atmel, Infineon, or Intel) that describes its own task as “develop and
support open industry specifications for trusted computing across multiple platform
types” [224]. The TCG was founded in 2003 and coined the term of Trusted Comput-
ing. The standard for TPMs that is currently most used is version 1.2 [222] (version
1.2 became also an international standard ISO/IEC 11889 [225]), but its successor
functionality has already been released in form of a TPM 2.0 library specification [223].

The TPM standard defines a minimum set of functionality that a TPM needs to
fulfill, but it may integrate further functionality. In general, Trusted Platform Modules
constitute dedicated hardware chips that integrate cryptographic algorithms and storage
facilities. According to the TPM specification 1.2 [222], a TPM requires, for example,
the following components: a cryptographic co-processor providing a random number
generator, asymmetric encryption and signatures based on RSA [188], hashing based on
SHA-1 [119], as well as a keyed-hash message authentication code (HMAC) [97], a key

28Lab attacks are advanced hardware attacks. Attackers try, for example, to intercept communication
channels at circuit level on the physical boards, to slice and analyze single chips, or to use side-channels
when hardware is executed outside its specifications (for example, for cold boot attacks when the
temperature of components is lower than specified [98].
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generator, a unit that detects changes in the power states of a system, an execution engine
that executes the TPM commands received via the I/O ports, or platform configuration
registers (PCRs) to store integrity measurements. The provided components allow, for
example, the runtime attestation of systems or the generation and storage of keys for a
disc encryption.

3.4.3.2 Intel Trusted Execution Technology

The Trusted Execution Technology (TXT) was invented by Intel and is supported by
most of Intel’s current CPUs. It provides a so-called Measured-Launch-Environment
(MLE), which allows the comparison of the state of critical components with a known
good state [95]. In particular, Intel TXT provides Verified Launch for booting MLE
into a good state, Launch Control Policy (LCP) to document approved code, Secret
Protection to prevent data leakage whenever MLE is not correctly shut down, and
finally, Attestation to allow local or remote users to verify the good system state at
runtime [95]. In order to function, Intel TXT requires two third-party components: A
Trusted Platform Module 1.2 and an Intel TXT-enabled BIOS [95]. Altogether, these
components set up a trusted execution environment (TEE).

3.4.3.3 ARM TrustZone

ARM provides with the TrustZone a security framework for many of its SoCs designs [4,
13] that provides all capabilities to implement a trusted execution environment as
specified by GlobalPlatform [164]. The major concept behind the TrustZone is the
introduction of a so-called secure world and a normal world mode. TrustZone partitions
all hardware resources to provide each world with its own set of resources. The normal
world can initiate a switch (possibly after authentication) into the secure world and vice
versa. However, system resources such as RAM or persistent storage can be protected
so that, for example, the normal world cannot read confidential data from the secure
world. Inside the processor cores, the separation is achieved in a different manner:
instead of partitioning the processor, processor cores supporting TrustZone can securely
execute normal and secure code on one single physical core in a time-sliced manner [13].
Furthermore, it is also possible to show content from the secure world on the display
without the normal world being able to access it. Implementation-wise, TrustZone
could be used either by implementing a full-fledged secure OS for the secure world, or
by executing only a library inside the secure world [13]. For the latter, it is usually
mandatory to execute calls from the normal world OS, which requires robust integrity
checks upfront.

Although TrustZone provides a powerful security framework for existing ARM-
powered devices such as, for example, smartphones or tablet computer, it is currently
out of reach to implement software relying on it, since there are currently no open and
well documented devices available. Consumer devices have fully locked the TrustZone
functionality for normal application developers. Nevertheless, ARM’s TrustZone concept
has been subject of several research projects. Winter presents a virtualization framework
and discusses its integration with the TrustZone technology and the Linux kernel [237].
Based on this framework, Winter further presents a prototype of a mobile trusted
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platform design. In [238], Winter et al. present a development platform for the
TrustZone that is based on the QEMU emulator [27]. Wan Hussin et al. combine the
Symbian DRM system and the TrustZone to implement an electronic entry pass [109].
Liu et al. leverage the ARM TrustZone for providing trustworthy sensor input to
trusted mobile applications [134]. Recently, Santos et al. showed how to build a trusted
language runtime based on mobile applications [192].

3.4.3.4 Trusted Computing and X-pire 2.0

In the context of X-pire 2.0, trusted computing is required to shift the processing and
storage of protected images and keys to a trusted third party (the TrustZone components
of the device used for viewing images), since the user and the normal world operating
system are not considered trustworthy. By moving this processing into the secure world,
we can prevent a leakage of decrypted data or keys. We would like to emphasize that
we do not in general suspect the average user, however, an attacker can take the role of
a user and interact with X-pire 2.0 with malicious intent. This includes the interaction
with X-pire 2.0 while having root privileges in the normal world OS.

3.4.4 System Details

In this section, we describe the technical details of X-pire 2.0. We start with a detailed
description of our communication protocol, both for the Publication Phase and the
Viewing Phase (cf. Figure 3.20 and 3.22 for a detailed pictorial overview of both
phases), and explain afterwards in detail our solution to the DDP, the integration
of X-pire 2.0 into existing infrastructure, and the profiling protection at the X-pire
2.0-Keyserver to protect the viewer’s privacy. Although X-pire 2.0 resembles a generic
framework for providing a digital expiration date for any data, the integration into
the existing infrastructure with possible post-processing needs to be adapted for the
target publication platform. Therefore, we focus in the following (also for the protocol
description) on the most prominent use-case for such an integration: uploading protected
JPEG images including an enforceable expiration date to social networks such that they
survive the post-processing.

3.4.4.1 X-pire 2.0 protocol

Publication Phase. The publication phase starts with the X-pire 2.0-Publisher creat-
ing an image img for publication (1). Afterwards, the X-pire 2.0-Publisher application
(2) generates an image-specific symmetric encryption key k for the image img. This
key is now used (3) to encrypt the image img gaining the encrypted image cimg. The
encryption is followed by hashing the encrypted image cimg (4) to hash, which later
serves as identifier for the encrypted image. Subsequently, the encrypted image cimg

is embedded together with the X-pire 2.0 version information ver, the address of the
keyserver ks, and the key identifier idk (required to identify the key for the decryption
of cimg) into a standard compliant JPEG container image cont (5). After the ciphertext
cimg, ver, ks, and idk have been embedded into the container JPEG cont, we refer
to this file as embc. The container image with the embedded ciphertext embc is now
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Figure 3.20: X-pire 2.0: technical details of the publication phase

Certi�cation Authority
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Figure 3.21: PKI hierarchy

uploaded to a content server (6) where it is published on the Internet. Once embc

is published, the encryption key k, the key identifier idk, and the hash hash of the
encrypted image cimg are uploaded in a final step to the X-pire 2.0-Keyserver using a
secure HTTPS connection (7). After the publication phase has been finished, the user
can log in to the X-pire 2.0-Keyserver during the Update Phase to manage previously
uploaded keys, for example, to shorten or prolong existing expiration dates of keys, or
to enforce the instantaneous expiration of a key.

Viewing Phase. During the viewing phase, the user opens a Web page w (1) that is
checked for X-pire 2.0-protected images embc (2). In case such an encrypted image embc

is detected (3), the X-pire 2.0-Viewer app for the normal world OS forwards the image
to its counterpart inside the device’s TrustZone (4). The X-pire 2.0-Viewer inside the
TrustZone (X-pire 2.0 TZ Viewer) extracts now from embc the encrypted image cimg,
the key identifier idk of the key required for decryption of cimg, the address of the X-pire
2.0-Keyserver, and the X-pire 2.0 version information (5). After hashing cimg and gaining
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Figure 3.22: X-pire 2.0: technical details of the viewing phase

hash (6), this hash and the key identifier idk are used to request the corresponding
decryption key k from the X-pire 2.0-Keyserver via a mutually authenticated HTTPS
connection to the secure co-processor of the keyserver (7).

Both the X-pire 2.0-Keyserver and the X-pire 2.0 TZ Viewer need to authenticate
themselves based on the existing PKI using their public key certificates (certca(pkk)
and certv(pktz), respectively). This two-way authentication is essential for two reasons:
the X-pire 2.0 TZ Viewer needs to ensure that it is connected to the correct keyserver
in order to prevent man-in-the-middle (MITM) attacks. Additionally, the X-pire 2.0-
Keyserver needs to ensure that it is indeed communicating with an eligible TrustZone,
since otherwise the decryption key k could be requested by an untrusted party to
create digital copies of keys or images (after decrypting them). To achieve the mutual
authentication, the X-pire 2.0-Keyserver stores all public vendor keys pkv (for example,
from Apple or Samsung) that provide X-pire 2.0 TZ Viewers running inside eligible
TrustZones in their devices. For each public key of a vendor v, it exists a certificate
certca(pkv). The vendors use the secret keys skv corresponding to their public key pkv

to sign each device-specific TrustZone key certv(pktz), so that each device has a unique
key, but still can be identified by the X-pire 2.0-Keyserver. We present the signing
hierarchy of our PKI in Figure 3.21 and mark in the overview (Figure 3.22) of the
Viewing Phase the keys and certificates stored by each party involved.

After the X-pire 2.0 TZ Viewer, which is running inside the TrustZone, has received
the decryption key k (8), it decrypts cimg to img (9). Finally, the image is shown on
the screen by the X-pire 2.0 TZ Viewer that is executed inside the TrustZone (10). By
using the capability to directly display content on the device screen via protected access
to the required hardware, it is ensured that the untrusted normal world OS has no
access to the displayed content and, thereby, cannot make any digital copy (even not a
screenshot) of the protected content.

3.4.4.2 ARM TrustZone for solving DDP

In order to solve the DDP, we need a technique that allows us to request the decryption
key, to store the decryption key itself, and finally also to display the decrypted content in
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a trusted environment inaccessible for the normal world OS, benign users, and attackers.
This ensures that benign users, attackers, and even the normal world OS cannot access
any of the involved sensitive information (decrypted data, keys) in a digital form, which
renders also screenshots impossible.

The ARM TrustZone framework provides us with the required technical basis. X-
pire 2.0 uses the TrustZone to protect access to decryption keys retrieved from the
X-pire 2.0-Keyserver and to decrypted content. Additionally, the TrustZone maintains
the secret key sktz that is used for the mutual authentication of the keyserver. All
this sensitive information is only stored within the secure world. After the X-pire
2.0 TZ Viewer retrieves data for decryption, it requests the decryption key over a
secured HTTPS connection from inside the TrustZone, such that we have a secure
communication channel between the TrustZone and the keyserver. Furthermore, X-pire
2.0 executes the decryption process solely inside the secure world. Finally, the TrustZone
framework is also used to directly display the content on the device’s screen by following
the approach described in [13], so that the normal world is not able to access displayed
content.

In order to improve usability in terms of runtime, the X-pire 2.0 TZ Viewer could
cache decryption keys, which prevents repeated key requests for resources that have
been viewed before. This feature requires additionally a tamper-resistant hardware
clock to ensure that keys are not longer cached than the expiration date allows.

3.4.4.3 JPEG Integration

X-pire 2.0 relies on the same JPEG integration mechanism as X-pire!. The mechanism
constitutes an integral part of X-pire 2.0 and was integrated without further modifications.
For details on the robust embedding procedure, please refer to the detailed description
in Section 3.3.4.4.

3.4.4.4 PIR-based Profiling Protection

X-pire 2.0 involves two servers: an external content server and the keyserver. The
content server learns less information than in the setting without X-pire 2.0, since
the server itself cannot decrypt content. The keyserver, however, follows a centralized
approach and introduces, therefore, the possibility of creating detailed viewing profiles
of users. Since we require a central keyserver for our security guarantees, we need
to overcome this drawback. Therefore, we propose the usage of private information
retrieval (PIR) to protect the viewer’s privacy by ensuring that no profiling occurs.
The high-level idea of PIR is that, although all keys are stored in a database on the
X-pire 2.0-Keyserver, the keyserver does not learn viewer requests and resulting key
responses. In 2008, Williams and Sion [236] presented the first approach to PIR that,
in terms of practicability, is computationally fast enough to be deployed in a real-world
system. Their approach relies on an ORAM construction [87] that is based on secure
hardware, such as the 4765 cryptographic co-processor by IBM [110]. The utility of such
an approach has also recently been presented in a slightly modified setting to achieve
privacy preserving online advertisements [20]. The PIR approach presented by Williams
and Sion constitutes a promising approach for a future realization that hides access

86



3.4. X-PIRE 2.0

Figure 3.23: Example for a typical publication device (left, Samsung Galaxy Camera)
and a typical viewing device (right, Google Nexus 7).

to the key database from the keyserver itself. Additionally, it is necessary to establish
a mutually authenticated secure channel between the client-side Trusted Execution
Environment and the secure co-processor to protect against network attackers and to
hide all viewer requests and resulting key responses.

3.4.5 Implementation

We have prototypically implemented the client-side applications of X-pire 2.0 for Android.
The client-side implementation consists of two independent Android apps, the X-pire
2.0-Publisher for the Publication Phase and the X-pire 2.0-Viewer for the Viewing
Phase. The X-pire 2.0-Keyserver is implemented as a Web application with a database
back-end. The prototypical implementation for the TrustZone components is, due to
missing open and well-documented hardware, only available as a Java library that
provides the interface of the TrustZone functionality in software29. However, we argue
that the described functionality can be easily achieved with support of a vendor, because
the ARM TrustZone framework supports all functionality required.

3.4.5.1 JPEG Embedding: The X-pire!-Library

The X-pire 2.0-Publisher and the X-pire 2.0-Viewer share the X-pire! native library
implemented in C and C++, which provides the functionality for creating protected
images and extracting them again. Its functionality includes the symmetric encryption
and decryption of images based on the OpenSSL library, hashing based on the OpenSSL
library, our embedding routines in conjunction with libJPEG, as well as a custom
implementation of Reed-Solomon codes for the error-correction. For details on the
implementation of the X-pire!-Library, please refer to Section 3.3.5.1.

3.4.5.2 The X-pire 2.0-Publisher

The X-pire 2.0-Publisher was implemented by Stephan Lukas as an Android application
for Android 4.1.1. It can be directly used to capture images with the integrated camera30.
After taking images, they are encrypted and embedded to a container image and the

29Obviously, this implementation in software cannot provide the desired security guarantees.
30Besides using Android driven cameras such as the Samsung Galaxy Camera (cf. Figure 3.23), of

course also smartphones and tablet computers with built-in cameras can be used.
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key is uploaded to the X-pire 2.0-Keyserver. Once the account information for the
X-pire 2.0-Keyserver is added, this process is implemented as a one-click solution just
as for normal camera applications. After the captured image has been encrypted and
embedded by X-pire 2.0, it can be uploaded to the Web service desired by the publisher.

3.4.5.3 The X-pire 2.0-Viewer

The X-pire 2.0-Viewer is also implemented as an Android application for Android 4.
It provides a Web browser interface by extending the existing WebView class of the
Android framework31 and uses a Java mockup for the required TrustZone functionality
that interfaces the X-pire! C and C++ native library. The WebView allows to intercept
Web requests by overriding the method shouldInterceptRequest() and, thereby, to replace
the connection handling by a custom implementation that takes care of the detection
of X-pire 2.0 protected images. The X-pire 2.0-Viewer app provides the required
functionality and interfaces, but is currently only executed in the normal world operating
system. For a future implementation running on a tiny OS inside the TrustZone, we
would basically require the C and C++ library for all encryption/decryption and
embedding/extraction tasks as well as network functionality and protected storage to
be moved to the TrustZone.

Furthermore, we need a secure path to the graphics controller and screen to display
content securely. In order to provide the highest convenience for users, we consider the
following three different possibilities to display images on the screen:

Overlay via TrustZone. Whenever the browser inside the normal world loads an
encrypted image, the X-pire 2.0-Viewer forwards the encrypted image to the X-pire 2.0
TZ Viewer inside the secure world, which overlays the decrypted image on the display
signal sent from the normal world. Thereby, the decrypted image visually replaces the
encrypted image inside the browser. However, this approach is currently infeasible, as it
requires either a fast switching between the secure world and the normal world, or the
possibility to execute code from both worlds in parallel.

Browser in TrustZone. An alternative approach would be to run a complete browser
inside the TrustZone that includes all image decryption and processing functionality.
However, this approach has two major drawbacks: The trusted code base running inside
TrustZone would be highly increased, while most of the browser’s features are actually
not required. Additionally, it would need to be ensured that nothing executed inside the
browser (for example, JavaScript), is able to access or even leak sensitive information.

Switch to TrustZone. This solution is a hybrid approach: Whenever encrypted im-
ages are loaded by the Web browser inside the normal world, the X-pire 2.0-Viewer
queues these images and forwards all encrypted images to the X-pire 2.0 TZ Viewer
(the counterpart running inside TrustZone) upon request. The X-pire 2.0 TZ Viewer

31The WebView class of the Android framework is meant for loading and rendering Web content
inside of applications.
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subsequently decrypts all images and displays them in a slide show running inside the
TrustZone. This is the approach we follow in our mockup implementation.

3.4.5.4 The X-pire 2.0-Keyserver

The keyserver is implemented as a Web application with an SQL database back-end.
Publishers can access the Web interface on an account basis and manage their existing
key/expiration date portfolio. X-pire 2.0-Viewers have to use the TrustZone to interface
the secure co-processor inside the X-pire 2.0-Keyserver and the connection is based on
a mutually authenticated HTTPS connection. The Web application allows publishers,
in particular, to:

• create new X-pire 2.0-Publisher accounts,

• add new kidimg
(keys for encrypting data) linked to an existing X-pire 2.0-Publisher

account,

• set and change the expiration date for uploaded keys kidimg
,

• delete keys (instant expiration of data).

X-pire 2.0-Publishers, identified by username and password connect to the keyserver via
HTTPS to prevent man-in-the-middle attacks. To enable the publisher to easily identify
all kidimg

linked to the account, X-pire 2.0 allows to set an individual title for each key.

3.4.6 Evaluation of X-pire 2.0

In order to evaluate the performance of X-pire 2.0, we measure (1) the time it takes
to encrypt and embed images, (2) the time for loading a static Web site with and
without X-pire 2.0 image-checks enabled, and, finally, (3) the time it takes to decrypt
and view protected images. The first and the second measurement do not involve calls
to X-pire 2.0 modules running inside the TrustZone, but the third measurement would
normally be executed inside the TrustZone. Our measurements were mainly performed
on a Google Nexus 7 (1.2 GHz Quad-Core, 1GB RAM, Android 4.2.2.). Since the
X-pire 2.0-Publisher is designed for an image capturing device, we also evaluated the
performance of the encryption and embedding routine on a Samsung Galaxy Camera
(1.4 GHz Quad-Core, 1GB RAM, Android 4.1.1.).

3.4.6.1 The Embedding

In order to evaluate the performance of the encryption and embedding routine, we
measured the time it takes to encrypt and embed a given JPEG image from the storage
and to store the final JPEG image again: on the Nexus 7 the whole process takes about
0.95 seconds, on the Galaxy Camera about 0.7 seconds. These results include the time
for creating and uploading the image decryption key. The full process of taking a picture
with the camera, encrypting and embedding the image, uploading the key, and finally
storing the image takes about 2 seconds on average.
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Number of Images 1 10 20 30

Check deactivated (sec) 0.28 0.31 0.38 0.59
Check activated (sec) 0.32 0.94 1.59 2.05

Table 3.3: Total time for loading Web sites

3.4.6.2 Client-side Performance

Once images have been integrated into Web sites, the X-pire 2.0-Viewer needs to check
viewed Web sites for X-pire 2.0 protected images and to queue them for viewing inside
the TrustZone. Our evaluation compares the time it takes to perform this check for a
different number of images on Web sites with the time it takes to load these Web sites
without the checks being activated (cf. Table 3.3). We would like to stress that this
check does not need to be always active. One could, for example, deploy whitelisting
and explicitly activate the check for Web sites containing X-pire 2.0 protected images
only. Furthermore, we measure the decryption time for queued images, i.e., the time it
takes from requesting the images to be viewed until all decrypted versions are actually
available. This task takes slightly less than 0.5 seconds per image and scales linearly.
The last measurement is slightly artificial, since, as discussed earlier, TrustZone-enabled
and programmable hardware is not openly available. Therefore, our measurements were
performed on the Java implementation only (did not include any TrustZone usage).
However, we argue that this should not introduce a big difference: method calls inside
the TrustZone are executed in a time-sliced fashion on the same physical CPU core as
normal world executions are. Thus, CPU-wise there is no difference. There is some
additional time needed for the context-switch into the TrustZone, but this is countered
by the fact that the code running inside the TrustZone is much more lightweight than
a full OS and could be highly optimized for the target use-cases. Overall, we do not
expect a slowdown for the decryption task inside the TrustZone.

3.4.6.3 Server-side Performance

We did not perform a comprehensive performance evaluation for the X-pire 2.0-Keyserver,
since we did not implement the private information retrieval (PIR) and only proposed
to use it in Section 3.4.2. Without the implementation of PIR based on oblivious RAM,
we refer to the performance measurement of the X-pire!-Keyserver (cf. Section 3.3.6.2),
which can be seen as a realistic benchmark for a market ready implementation.

3.4.6.4 Security Evaluation

In the following, we discuss potential security breaches that would break our system
and argue why they are not possible.

Decryption key becomes available to public: Within X-pire 2.0, the decryption
key is only known to three entities, which are considered trustworthy: the publisher,
the keyserver, and the Trusted Execution Environments in the viewing devices. The
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publisher has no incentive to make the key publicly available since this would break the
protection of her own data. For the keyserver, we assume that nobody compromised the
server, so access could have happened only from the Trusted Execution Environment or
the network communication. The communication channels are mutually authenticated
and protected via HTTPS, so a network attacker cannot retrieve the key. Accordingly,
a key leakage could have only happened at the Trusted Execution Environment, but
keys never leave the Trusted Execution Environment after the retrieval and its code
base is considered secure. Furthermore, according to our assumptions, hardware attacks
are also not possible. Therefore, decryption keys cannot become available to the public.

Protected content becomes available in clear: Only two entities of the system
get access to the cleartext content. The publisher has, just as for the key, no incentive to
leak the data. The Trusted Execution Environment holds the cleartext content only for
displaying it and never reveals it. Therefore, protected digital content cannot become
available in clear.

Keyserver creates detailed viewing profiles: We propose the usage of PIR so that
the keyserver is not able to learn which user actually viewed which content. Therefore,
creating detailed viewing profiles per user is not possible.

3.4.7 Discussion and Limitations

X-pire 2.0 provides a comprehensive concept for a digital expiration date and user-
controlled publications with strong security guarantees. Neither an attacker, nor a
curious user is able to gain any access to keys and decrypted content. The biggest
problem at the moment is the missing availability of openly programmable and well-
documented TrustZone-enabled devices. Even non-consumer devices for developers
are still missing. With the support of device vendors, a system like X-pire 2.0 would
be easy to deploy. Our X-pire! and X-pire 2.0 systems prove that it is possible to
deploy the systems even within the existing infrastructure without requiring an active
collaboration. Still we would like to mention that active measures against X-pire!/X-pire
2.0 can efficiently destroy our current integration techniques for images. So if a provider
of a Web service wants to actively prevent X-pire!/X-pire 2.0 on the Web server, even
after images have been published, this is clearly possible. But it would not destroy the
security of the X-pire!/X-pire 2.0-protection, but merely constitute an instantaneous
expiration of the image data. Regarding the concept of the X-pire!-Keyserver, we
discussed several approaches for storing the keys and decided for a dedicated keyserver
infrastructure, since we believe it provides the best trade-off between functionality,
security, and user privacy. We considered a decentralized keyserver infrastructure as
used by Vanish [82], a dedicated single central keyserver, and finally, dedicated keyservers
with a key-sharing scheme. We prefer the latter two approaches in conjunction with
PIR to provide a maximum flexibility regarding the expiration date, but in general our
embedding techniques would work with all of the mentioned approaches. There is no
“one size fits all solution”, but we think one of the three schemes will provide a valid
solution for most of the requirements by publishers.
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3.5 Related Work

In the following, we discuss related work of X-pire! and X-pire 2.0. The first group of
approaches adds an expiration date to data by following the paradigm of encrypting data
with a symmetric key and restricting access to these keys afterwards. We stress that
none of these approaches has considered the DDP, i.e., the duplication of content and
keys before their expiration. Moreover, none of them targets scenarios where published
data is subsequently manipulated as, for example, done by image upload routines
of social networks. The initial approaches that followed the paradigm of encrypting
content aimed at securely deleting data (including copies) in archives. The systems
focus on corporate use and come with different requirements and design principles
that are incompatible with our setting: all storage servers involved know that they are
actually handling encrypted data, post-processing of data is not supported, an adversary
grabbing all keys while the data is available is not considered, and in some proposals
the keyserver additionally aids with decrypting the data.

The first such system we are aware of is [31], which provided the basic principles.
This system by Boneh and Lipton aims at removing files both from the file system and
from backup tapes. Their motivation was the fact that frequent data backups relying on
tape-based backup systems store the backup data on many different media, which made
a later manual deletion quite tedious. Even with tape-libraries that automate the media
selection and mount procedures of single tapes, the deletion of single files would have
take quite some time. Therefore, they pioneered with the idea of deleting information
without actually touching the involved storage media, but by using cryptography. Their
system encrypts a collection x of files with a specific key and configures an expiration
data for that key as well as the maximum number of keys the system stores for this
particular collection x of files. Whenever a key expires, it is added to the list of revoked
keys and a new key is generated for the next backup of x. Once the list of revoked
keys is full, adding a new one overwrites the oldest keys, which leads to an automatic
expiration of backups that where encrypted with that key.

Another system following a similar concept is the Ephemerizer [169, 167] system
by Perlman. It outsources the key management to a trusted third party called the
Ephemerizer32, which is responsible for creating, certifying, and publishing keys (the
paper refers to them as ephemeral keys). Interesting is the idea behind Perlman’s
time-based scheme: all data for a particular expiration date is encrypted using the
same key. The system supports a time-based scheme, a custom scheme with keys per
file, as well as an on-demand scheme for the deletion of files. All three schemes can
be used in the same file system at the same time. The Ephemerizer system was later
improved by Nair et al. who detected and fixed a flaw in [169]. Nair et al. introduce an
identity based encryption system and enable additionally fine-grained user settings per
file [152]. In 2010 Tang et al. presented the FADE system [216], which transfers the
core ideas of the Ephemerizer to the setting of cloud storage services such as Amazon
S3. It provides the assured deletion of data in the cloud based on fine-grained data
management policies.

32The Ephemerizer could potentially be distributed among several trusted third parties using a secret
sharing scheme.
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Vanish [82] follows similar lines as the previously described systems, but stores shares
of keys in dynamic hash tables (DHTs), a data structure underlying P2P-networks. The
DHT-based P2P network will by design stop replicating the key required for decryption
after a certain time. Since the DHT-based P2P networks are subject to constant change,
the replication stop of data items is hard to predict. Therefore, Vanish relies on a k out
of n secret sharing scheme by Shamir [202], so that key shares required for decryption
can be spread over the P2P network. This ensures on the one hand that an unpredicted
replication stop does not lead to an instantaneous expiration of data and on the other
hand a single node with a single key share that exists longer than it is supposed to does
not destroy the vanishing of data. Although relying on the replication stop resembles a
nice passive expiration mechanism since the key vanishes automatically and, thereby,
renders decryption impossible, this expiration mechanism constitutes also the biggest
limitation. For common implementations such as the presented ones based on Vuze [231]
and OpenDHT [161], replication stops too early to be useful (8 hours for Vuze and up to
one week for OpenDHT). Although the authors suggest a solution for these very short
time-outs, we do not consider an active, per user re-publication service as a solution in
practice. Wolchok et al. [240] presented a so-called Sybil attack against Vanish and the
authors of Vanish discuss defenses against such Sybil attacks in their follow-up work on
Cascade [81].

We would like to stress again that the DDP is considered in none of these systems;
similarly, images, post-processing, or compliance with the existing infrastructure for
custom file formats in general are not considered or supported by these approaches.
Another difference to X-pire! and X-pire 2.0 is that we decided to use a dedicated
keyserver solution to provide flexibility for expiration dates. Moreover, using a dedicated
and controlled keyserver allows us to implement the mitigation mechanisms for the data
duplication problem for X-pire! as well as our solution to the data duplication problem
in X-pire 2.0 (cf. Section 3.4.4.2). We would like to emphasize that our solution to the
JPEG post-processing is applicable to Vanish’s decentralized approach as well.

Two further approaches that share the core idea of Vanish to leverage an existing
time-based vanishing of data in an existing storage infrastructure are EphPub [46]
(formerly EphCom) by Castelluccia et al. and a recent approach by Reimann and
Dürmuth [184]. Instead of using the DHTs of a P2P network, EphPub stores the keys
required for decryption in the caches of DNS servers. EphPub follows also the idea of
splitting keys among several storage locations. The approach by Reimann and Dürmuth
derives key shares from different Web sites and bases the key expiration on the fact
that Web sites change over time. Similar to Vanish, both approaches do not consider a
post-processing of protected data and the threat of copying keys during their validity.
Moreover, both systems have limitations regarding the specification of a particular
expiration date. EphPub, for example, requires finding a large number of domains with
the same time to live (TTL). The study by Castelluccia et al. shows that TTLs of more
than 7 days are rather uncommon.

A real-world deployed system that shares the core motivation of X-pire!/X-pire 2.0
and its related scientific approaches is the instant-messaging app Snapchat [208]. It
allows users to send pictures to friends where they can only be viewed for a few seconds
before they are deleted. However, this system does also not provide any robust security
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guarantees such as a solution to the data duplication problem. Recently, a new Web
mail service called ProtonMail [176] came up in Switzerland. The service is still in the
Beta phase, however, it lists the security feature of Self Destructing Messages with a
reference to Snapchat.

The second group of solutions related to X-pire! and X-pire 2.0 aims at securing
privacy-sensitive content published in social networks. The major difference to X-pire
2.0 is that these approaches rely on external trusted servers to store all the data, which
we believe does not scale reasonably well given the vast amount of images published
every day. One example is FaceCloak [136], which replaces content to be published
in social networks such as Facebook or MySpace by fake data. The original data is
encrypted and stored on a different server and the keys required for decryption are
only provided to friends who are supposed to view the encrypted content. Very similar
to FaceCloak is flyByNight [135]: both approaches aim at protecting the privacy of
information published in social networks, but in contrast to the Firefox extension
FaceCloak, flyByNight is implemented as Facebook application. None Of Your Business
(NYOB) [96] is another Firefox browser extension with similar goals as FaceCloack, but
it aims at encrypting and embedding textual information in an undetectable manner to
Facebook. The system closest to X-pire!/X-pire 2.0 is the P3 system by Ra et al. [178].
P3 aims at a privacy-preserving photo sharing and the authors try, similar to us, to
embed a hidden photo in a JPEG image that is published to an online social network.
The authors recognized the same header stripping during the post processing routines
of the image upload as we did. However, in contrast to us they did not achieve a robust
embedding into image data. They only embed the link to the location of the protected
image, which is currently stored at a cloud storage provider.

Finally, our techniques for robustly embedding data within JPEG files resemble
steganographic techniques [41]. However, existing steganography approaches (for ex-
ample, [226, 177]) do not consider robustness against JPEG re-compression as applied
in upload routines of social networks: their focus is on embedding information in an
undetectable manner, which yields an insufficient data rate for our embedding. In
contrast to steganography, watermarking approaches do consider JPEG re-compression,
but only partially: they only need to recover sufficiently many bits to statistically
identify the document, which neither suffices to fully recover encryptions, nor to embed
large images. Therefore, we had to develop a new JPEG embedding routine that is able
to cope with JPEG re-compression and supports much higher data rates.
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4
AppGuard

Today, touch-enabled smartphones and tablet computers have become our daily com-
panions. They provide comfort and utility both in our private and our business lives as
they combine new feature-rich applications with the information and service that was
provided before by computers, PDAs, feature phones, navigation devices, etc. in one
single and compact device. But as shiny and comfortable the usage of these devices is,
so big are also the security and privacy challenges introduced by these devices. We have
had never before a device that included so much functionality and is at the same time
always in close proximity to us. In this section, we introduce with AppGuard a powerful
tool to enforce security and privacy policies on Android devices. AppGuard allows users
to efficiently protect their privacy according to their needs on standard consumer devices
without requiring modifications to the operating system, root privileges, or the like.
Moreover, AppGuard allows users to mitigate vulnerabilities in third-party applications
and the operating system. This section is based on the following publications: [P6, P5,
P2, P10, P3, P4].

4.1 Motivation

The major breakthrough of touch-enabled devices came with the release of the first
iPhone in 2007 [12], when Apple presented a touch enabled mobile phone with a
highly user-friendly and intuitive user interface. Another major catalyst for the success
of today’s smartphones and tablet computers was in 2008 the introduction of the
Android operation system by the Open Handset Alliance, an industry consortium led by
Google [146, 10]. Key to the success of smartphones and tablet computers (referred to as
mobile devices from now on) is the fact that they provide us with rich functionality and
a highly comfortable usage both in our private and in our business lives. We simply had
never before a device that includes so much functionality in a single device, especially
not at this small size. These mobile devices fit into our pockets just as the feature phones
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before, but the list of functionality they integrate is much richer. A classic feature
phone supported phone calls, text messages, an address book, often a calendar and an
alarm clock, and in the last years before the iPhone was introduced sometimes also
audio players and a camera. Modern smartphones and tablet computers provide a full
mobile office and more: They are always connected to the Internet and include e-mail
support, a Web browser, synchronized address books, calendars and notes, multimedia
players for audio and video, office applications for text documents, spreadsheets, and
presentations, audio, image and video recording, applications enabled by new hardware
sensors (e.g. GPS, accelerometers, etc.) such as navigation applications, fitness and
health tracking applications, and many more. The list can easily be further extended
by installing feature-rich applications from application stores (so-called app stores)
on mobile devices to enable online banking, voice-over-IP communication, real-time
usage of social networks (based on push notifications from these networks), etc. The
list is endless and these devices can basically support everything known from desktop
computers, feature phones, personal digital assistants (PDAs), photo and video cameras,
multimedia players such as the iPod, navigation devices, and so on. With the recent
introduction of health and fitness tracking applications based on special sensors, we can
easily see that the development of new functionality for these devices will not come to
an end soon.

But as shiny and comfortable the usage of these devices is, so big are also the security
and privacy challenges introduced by them. We have had never before a device that
included so much functionality and is at the same time always in close proximity to us.
A classic feature phone has in comparison more or less no features. Laptop computers
might include more features, but we do not always carry them with us. Mobile devices
and, in particular, smartphones, are carried most of the time either in our pocket or our
hands, or they are at least lying right next to us. We carry them with us in meetings, we
have them during breakfast, lunch, and dinner, and during the night they are commonly
lying on the nightstand. New is also the change of the data plans users usually have:
Modern mobile devices are always online and allow their users to transfer more and
more data within the default data plans. Both the proximity in which these devices are
to their customers, and the permanent connection to the Internet make these devices
the prime targets for many kinds of attacks. If an attacker manages to get remote
access to a single device and to achieve extended or even root privileges, this basically
allows the attacker to fully track a victim: the camera allows to transmit videos from
the surrounding, the microphone allows to transmit all spoken words, GPS information
allows to locate the victim, and accelerometers of devices in the pocket allow to infer
current actions such as running or walking up stairs. Once the device is hacked, the
attacker could simply access all data on and available to the mobile device. So the
impact of a potential hack is for mobile devices much higher than for any device before.
Most commonly this sort of high-impact hacks are the result of a targeted attack and
such attacks are rare since they do not scale very well and are quite cost intensive.

However, there are also ways to achieve a similar impact (depending on the type of
operating system vulnerabilities) with a much better scalability: The most common
attacks against today’s smartphones are attacks based on malicious applications. At-
tackers could strive for disguising malware with an innocent looking cover story in order
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to spy out users. Such attacks scale much more efficiently since attackers can simply
submit their malware to the app stores for third party applications and hope to get
around the application vetting processes of the stores, if such processes exist at all. Past
incidents have proven that such applications spread quite fast [189]. In addition to these
attacks with malicious intent, a vast amount of applications for mobile devices is overly
curious and breaches the users privacy: These applications try to access information
that is not essential for their main functionality. The Twitter app, for example, accessed
the users’ contact list on smartphones as part of the “find friends” feature and stored
the contact data on their servers for about 18 months [193]. With a similar intention
also the social network apps Path and Hipster uploaded the user’s address book to find
friends already using the networks more efficiently [239]. Also the popular WhatsApp
sends out all phone numbers from the user’s address book and Android users, in contrast
to iOS users, cannot opt-out [234].

Prime target for attacks on mobile systems is currently the Android operating
system, which is easy to explain with its market share for smartphones and tablet
computers. It achieved, for example, in 2013 a market share in sales of about 78,4% for
smartphones [78]. But Android is also a thankful target for attackers: system updates to
fix vulnerabilities are delivered for almost all phones (except for the Google Nexus series)
at a very low rate, if at all. Moreover, updates are usually only provided for 18 month,
which is problematic if the common contract duration with the mobile service provider is
24 month (e.g., in Germany). In order to prevent targeted attacks on Android (if possible
at all), it clearly requires to harden the operating system and to include a sophisticated
and comprehensive security concept for the system. The Android development started
recently to move in the right direction by integrating security enhancements for Android
based on SE Linux [207, 199] and integrating parts from Samsung Knox [179]. In case of
malicious or overly curious software, the situation is slightly different: Although it is still
challenging to detect malicious software based on static and dynamic analysis, we see a
root cause for the success of such applications on Android in the bad and very inflexible
design of the Android permission system. We introduce AppGuard to overcome these
deficiencies of the Android permission system: AppGuard allows users to mitigate the
impact of malicious1 and overly curious applications on the users’ security and privacy
by protecting access to sensitive information.

4.2 Problem Description

The goal of achieving a powerful security and privacy protection for users against
third-party applications on Android is challenging:

The operating system needs to integrate a mechanism that allows users to configure
the access to sensitive information according to their needs. This is not the case for
Android and a particular problem of the Android permission system, which does not
allow any configuration of the access rights granted to third-party applications at all,
neither at install time nor at runtime. Either users accept the access right (so-called
permissions) requested by a third-party application during the installation process,

1AppGuard cannot prevent zero day exploits and several exploits based on native code.
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or they cannot install the application at all. Integrating a new mechanism to the
operating system implies that users would need to modify the operating system or at
least temporarily gain root privileges, which is out of reach for laymen users. Moreover,
it would most likely cause problems with, or even prevent future operating system
updates. Since Android applications are by default unprivileged2 and communication
between two applications is only possible via Android’s inter-process communication3, it
is also out of reach to install a third-party application that solves the job by controlling
other applications. So it is necessary to develop a new policy enforcement framework
that, one the one hand, overcomes the existing deficiencies of the Android system,
but that one the other hand can also be installed on existing Android devices without
negatively impacting the devices’ functionality and without modifying the operating
system or requiring root privileges. The framework requires a flexible policy specification
mechanism that allows both the extension and the configuration of existing policies at
runtime. Moreover, the policy specification should facilitate the specification of policies
by security experts and enable in future the automatic generation of policies from even
more high-level abstractions by users and from results of static and dynamic application
analysis.

4.3 Contribution

AppGuard overcomes the deficiencies of the Android permission system and provides a
powerful framework for the enforcement of security and privacy policies on unmodified
Android phones. The system is based on inline reference monitoring and includes, in
particular, the following contributions:

• AppGuard provides a flexible runtime enforcement for security and privacy policies
on unmodified stock Android phones based on inline reference monitoring. The
approach includes the full on-the-phone instrumentation of third-party applications
(contribution by Philipp von Styp-Rekowsky, not part of this thesis).

• Security and privacy policies for AppGuard are specified in a high-level policy
language called EXSPoX. The language describes security automata with the
transformation capabilities of edit automata [132].

• AppGuard includes a policy-based approach to separate secrets. EXSPoX allows
tagging data as confidential, which is subsequently enforced through AppGuard
at runtime.

• Our system allows the specification of information flow control policies. In certain
limits, even implicit flows can be prevented [P4].

• We prove the utility of AppGuard by applying our rich set of predefined policies
in real-world use-cases to revoke Android permissions dynamically, to enforce

2Privileges can be extended by permissions, but Android does not include a permission to control
other applications or to gain root privileges.

3Requires mutual cooperation by providing the required APIs.
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user-desired security and privacy settings on third-party applications based on
fine-grained and stateful policies, to enforce corporate policies, to mitigate in-app
vulnerabilities, and finally, to mitigate vulnerabilities in the operating system.

4.4 Android Primer

Before we provide a detailed overview of AppGuard, we will first introduce the necessary
background information on the Android operations system. Android was first released
in September 2008 [146] and had in 2013 already a market share in sales of 78,4%
for smartphones [78]. The system was introduced by the Open Handset Alliance4,
an industry consortium led by Google with the goal to promote Android as an open
source operating system for mobile and embedded devices [10]. The current deployment
version of Android is 4.4 (code name: KitKat) and the system is used in more and more
use-cases. Android version 4.4 targets already at wearable devices, smartphones and
tablet computers, cars, as well as TVs [6]. In order to achieve the quality of service
desired by users for all four mentioned use-cases, Android systems typically integrate
various hardware sensors to acquire precise high-quality input data for applications.
However, this input is user-individual and contains lots of sensitive data (for example,
location data, data from accelerometers, audio and video input, and in future probably
also medical data from wearable devices or telemetric data from cars). So Android also
needs a robust and comprehensive security concept that enables feature-rich applications
on the one hand, and protects user-data on the other hand.

The Android systems itself consists of a multi-layered architecture (cf. Figure 4.1)
that builds up on a standard Linux kernel. The Linux kernel integrates the actual device
drivers, wakelocks, an aggressive memory management, and, finally, Android’s inter-
process communication mechanism: the so-called Binder [9]. On top, Android integrates
several native system libraries (for example, libc , SSL, or OpenGL) as well as the Dalvik
virtual machine with core Android libraries. The Dalvik virtual machine is register-based
and replaces the standard stack-based Java virtual machine to improve performance on
resource-constrained mobile devices at the cost of slightly larger bytecode [204]. The
Android application framework provides developers with the Android API and thereby
with access to a large variety of predefined classes and services (for example, location
manager service or the activity manager service). All applications (both applications by
vendors and third-party applications) run on top of the application framework.

Android applications are programmed in Java against the Android API provided
by the application framework and may integrate native code and libraries via the
so-called Java native interface. The Android API and Android’s support for both Java
and C/C++ code enables developers to implement fast feature-rich applications that
integrate a variety of sensors available in the individual devices. Android applications
themselves are made up of so-called components and the system integrates four different
types: Activities, Content Providers, Broadcast Receivers, and Services [8]. In the
following, we introduce the four different component types in detail:

4Details: http://www.openhandsetalliance.com
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Figure 4.1: The Android Architecture: A High-level Overview (cf. [7])

• Activities5 make up the typical application components for foreground tasks. They
include a single screen for the user interface and Activities are the main parts of
applications users can actually see and interact with.

• Content Providers6 provide developers a generic interface for accessing structured
data. The management of this data is achieved in an SQL-like manner.

• Broadcast Receivers7 receive so-called intents, the message format for inter process
communication in Android. Broadcast Receivers can be seen as typical mailboxes
of applications: they receive broadcast messages from other applications (mostly
status messages from system services) such as “Incoming call” or “Battery low”
and allow applications, thereby, to react on a particular system state.

• Services8 fulfill typical background tasks that do not require any user interaction
(for example, a file download from the Internet in the background).

The security concept of Android is based on application sandboxing and the security
mechanisms of the underlying Linux kernel. Every application is executed in a different
process under a different Linux user ID (UID)9 and, by default, without any further access
rights. Applications can only access their individual data directories and unprotected
system APIs. The access separation between applications is achieved based on the
discretionary access control of the Linux kernel. In order to access protected resources,
access rights of applications can be extended based on Android’s permission system.
When users install third-party applications, they can review the permissions requested
by the developer. Afterwards, they can either accept and grant these permissions

5Details: http://developer.android.com/guide/components/activities.html
6Details: http://developer.android.com/guide/topics/providers/content-providers.html
7Details: http://developer.android.com/reference/android/content/BroadcastReceiver.html
8Details: http://developer.android.com/guide/components/services.html
9Developers can enforce that their different applications run under the same UID.
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by installing the application, or users cannot install the application. Permissions are
either enforced inside of Android services such as the location manager service, which is
underneath reflected by the discretionary access control at the kernel level: access to
devices is granted if a UID is member of the corresponding Linux group that holds the
access, i.e., based on the group ID (GID). Or, permissions are directly enforced at the
kernel level when applications are able to access hardware resources directly as done
for network connections or standard file system access. This is directly based on the
fact whether the calling UID is member of the required group (GID). Communication
between applications is only possible via Binder and also subject to the permission
system. Applications can expose custom APIs protected with custom permissions that
need to be held by calling applications. In order to easily identify authors of third-party
applications, all applications need to be further signed with a developer key, which also
ensures secure application updates.

4.5 System Overview

AppGuard enables the enforcement of fine-grained and stateful security and privacy
policies on unmodified stock Android phones. AppGuard follows the approach of inline
reference monitoring pioneered by Erlingsson and Schneider with the SASI system in
1999 [68]. The concept of inline reference monitoring is central to the enforcement
of policies on unmodified Android phones, since the security monitor needs to be
directly integrated into third-party applications. We provide a high-level overview of
our system in Figure 4.2. Starting point of every inlining process are untrusted third-
party applications as well as a set of pre-defined security and privacy policies and the
corresponding user configurations. The untrusted third-party application and both the
policies and the configuration chosen by the user are input to the rewriting component
of AppGuard. Afterwards, the rewriter inlines the required enforcement points for the
corresponding policies into the untrusted third-party application. Once the security
monitor is inlined and the application re-packaged, it can be installed just like any
other third-party application. Once the secured application is installed, the security
monitor enforces the security and privacy policies at runtime and the application is able
to receive dynamic updates from the management application of AppGuard.

We see AppGuard as the major building block to protect the user’s private data
against overly curious and malicious third-party applications. Figure 4.3 provides the
big picture of how our tools and techniques related to AppGuard can be integrated in
the future to improve both the specification of policies as well as the actual security
and privacy level for users through AppGuard. We aim at achieving an automatic
generation of security and privacy policies based on a comprehensive analysis of third-
party applications through Bati and plan to design a tool for the high-level specification
of policies by users based on recent advances in the area of usable security and privacy.

4.6 System Details

This section presents the details of our AppGuard system. First, we present the details
of the policy specification for AppGuard in our extended version of SPoX policy language
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Figure 4.2: Schematic overview of AppGuard

in Section 4.6.1, before we continue with example policies in Section 4.6.2 and introduce
the actual enforcement mechanism of AppGuard in Section 4.6.3.

4.6.1 Policy Specification

AppGuard leverages a high-level policy language to describe the intended security and
privacy policies that should be enforced. Our policy language is based on the SPoX
policy language as it was introduced by Hamlen et al. in 2008 [100, 101]. In order to
fulfill our design goals, AppGuard requires a policy language with the transformation
capabilities of edit automata as introduced by Ligatti et al. in 2005 [132]. However,
the original SPoX language was designed to follow the concepts of aspect oriented
programming and does not provide the transformation capabilities of edit automata.
SPoX encodes a security automaton where nodes correspond to the current security
state, and edges are labeled with so-called pointcuts, the matching patterns for security
relevant functions in the code. For AppGuard, we also wanted to integrate a policy
language that directly encodes a security automaton, but one with the transformation
of an edit automaton. So, we decided to extend the SPoX language to fulfill these
requirements of AppGuard. In order to achieve the transformation capabilities of an edit
automaton, we added a statement for rewriting existing function calls in the original code
(suppress and replace) to the original SPoX language, which gives us the transformation
capabilities of an edit automaton. Furthermore, we added the possibility to tag return
values of function calls as secret to enable the specification of our secret separation. We
refer to our extended version of SPoX as EXSPoX.

Using EXSPoX, policy authors can now specify all method calls that should be
monitored and define alternate control flows by rewriting methods. All method calls that
are not present in the security automaton are also not subject to constraints enforced
through our security monitor. Using our secrecy tagging, we can also define through
the edit automaton defined by our EXSPoX policy how secret data can be processed
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AppGuard
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Security Experts
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Requirements?

Policy Speci�cation in EXSPoX§ §§ §
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Figure 4.3: Policy Generation for AppGuard [P4] based on Bati [T1] and work by Gregor
Geßner [T2], as well as Future Work (orange arrows)

and how not. The secrecy tagging allows us to reason about the confidentiality of
data on the mobile device, and about data that is received as input, for example, via
the microphone or via network connections. Although AppGuard does not integrate a
dynamic taint tracking approach, our approach still allows us to specify information
flow control policies. As long as we do not permit the usage of equality tests inside
of application code, our system is even able to successfully prevent critical implicit
information flows [P5].

We present the syntax of EXSPoX in Table 4.1 and 4.2, where we also explicitly mark
our extensions. For the syntax of the original SPoX language, we refer the interested
reader to [101]. The major extensions for the EXSPoX language constitute the support
for rewriting function calls as well as the support for tagging return values as secret.

Tagging return values as secret is achieved by adding a few definitions to the policy
syntax of SPoX (cf. Table 4.1). The nodes oid [+,-] -statement in Table 4.1 allows us to
label the return value with the object identifier oid as secret. Alternatively, if oid is
already labeled as secret, the statement allows us to remove such a secrecy label again.
Adding or removing a secrecy label is handled by either adding or removing the oid
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Table 4.1: EXSPoX policy syntax. Additions to SPoX are marked by †.

n ∈ Z integers
c ∈ C class names

sv ∈ SV state variables
† oid ∈ OID, OID ⊆ SV object identifier

x ::= c | oid callee identifier
† cid ∈ CID call identifier

iv ∈ IV iteration vars
en ∈ EN edge names
pn ∈ PCN pointcut names
pol ::= np∗sd∗e∗ policies
np ::= (pointcut name = "pn" pcd) named pointcuts
sd ::= (state name = "sv") state declarations
e ::= edges

(edge name = "en" [after] pcd ep∗) edgesets
| (forall "iv" from a1 to a2 e

∗) iteration
ep ::= edge endpoints
| (nodes "sv" a1, a2) state transitions
| (nodes "sv" a1,#) policy violations

† | (nodes oid [+,-]) setting secrecy-level of object identifiers
a ::= a1 + a2 | a1 − a2 | b arithmethic
b ::= n | iv | b1 ∗ b2 | b1/b2 | (a)

label from the list SI that is responsible for tracking all objects currently labeled as
secret. SI is modeled as a subset of the state variables. Whenever a state variable is
changed, this introduces a new state which is reflected as a unique node in EXSPoX.

In order to add support for rewriting function calls in EXSPoX, we modified and
extended the pointcut syntax of SPoX. The new pointcut syntax of EXSPoX is shown
in Table 4.2, where we marked again the new additions. First of all, we modified the
call -statement to include two new identifiers: an object identifier oid referring to the
returned object of a method call and a call identifier cid for one concrete method call.
Important to mention is that oid is an equivalence class for objects that are returned
by a particular function call. This reflects that usually the return value of a particular
function is treated the same way. If it needs to be treated differently, this is caused
by special circumstances (for example, because the input is confidential) and in this
case, this particular function call can be referenced by cid. Second, we added some
completely new definitions, mainly to allow alternate control flows in case of policy
violations. This includes the graceful reaction in case of policy violations, for example,
to prevent applications from crashing if access to data is denied by returning mock
values. The most important addition to achieve this is the rewrite-statement. The
rewrite-statement specifies a series of function calls that replace an existing function call
in case of a policy violation. Predicates that are specified inside the second argument
of the rewrite-statement, i.e., for the new alternate function calls, are conditions that
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Table 4.2: EXSPoX pointcut syntax. Additions and modifications to SPoX are marked by
† and ‡, respectively.

re ∈ RE regular expressions
md ∈ MD method names
fd ∈ FD field names

pcd ::= pointcuts
‡ | (cid : oid = call mo∗ rt x.md) method calls
‡ | (argval cid n vp) stack args (values)
‡ | (argtyp cid n c) stack args (types)
| (and pcd∗) conjunction
| (or pcd∗) disjunction
| (not pcd) negation

† | (rewrite pcd pcd) rewriting
† | (order cid∗) call order

mo ::= public | private | . . . modifiers
rt ::= c | void | . . . return types
vp ::= (true) value predicates

† | (secret) secrecy predicate
† | (isanonymous) privacy predicate
| (isnull) object predicates
| (inteq n) | ((intne n) integer predicates
| (intle n) | ((intge n)
| (intlt n) | ((intgt n)
| (streq re) string equality

† | (argeq cid n) argument equality

need to be fulfilled by a concrete implementation of the particular policy. In addition
to the introduction of the rewrite-statement, we modified both the argval-pointcut
and the argtype-pointcut to include the call identifier. This is necessary to pose extra
constraints on type and value of arguments for concrete calls inside of rewrite statements.
Furthermore, we introduced the order-pointcut to allow the specification of a particular
execution order of several function calls inside of the rewrite statement. Finally, we added
the secret predicate to test for secrecy, the isanonymous statement to pose particular
constraints on alternative return values (for example, mock values for the address book),
and argeq cid n to test for the equality with argument n of the function call cid.

The intended workflow for the specification of EXSPoX-policies for AppGuard is
shown in Figure 4.3. Central to our workflow is the specification of our high-level policies
in EXSPoX. Developers or security experts can specify the security or privacy policies
directly in EXSPoX. Additionally, we consider it of high importance to develop in the
future a tool chain based on our static analysis framework for Android called Bati [T1],
that allows to automatically generate EXSPoX policies for particular applications based
on the findings during the analysis of applications. Furthermore, we consider it as future
work to design usable interfaces that allow also laymen users to also generate completely
new policies based on abstract descriptions.
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SI={ } SI={id1}

id2= call byte[] encrypt(id1)

id1= call int getCreditCardNum()
setsec(id1)

Figure 4.4: Automaton for a policy that protects the return value of a function that
reads the credit card number.

Once the EXSPoX policies are automatically generated or manually written, they
need to be transformed into the concrete Java implementation. The Java policies are
implemented as standard Java classes and this format is also used during the inlining
process of AppGuard. Similar to EXSPoX, the concrete Java implementations of
policies are based on a direct mapping to security-critical API functions and include
the corresponding decision logic for monitoring method invocations. But the concrete
implementation of a EXSPoX policy in Java may vary, since the high-level policy language
only poses requirements and constraints. A nice example is here the isanonymous
statement for return values: it is up to the concrete Java implementation, whether
the returned value constrained to a required type is completely random, or just not
considered as personal information. If an application wants to access, for example, the
address book and the application expects a value in return to function, most users
would be fine with an empty entry, a random entry, or even an artificial but not fully
random entry. An automatic transformation of EXSPoX-policies into a concrete Java
implementation compatible with AppGuard is presented in the bachelor thesis of Gregor
Geßner [T2].

4.6.2 Policy Examples

In the following we show the utility of EXSPoX on several examples. First, we will
introduce the security automata that describe the policies and afterwards we introduce
the corresponding EXSPoX policies. In case of our policy for rewriting critical HTTP
connections by HTTPS connections we also present a concrete Java implementation of
that particular policy for AppGuard.

EXSPoX allows us to specify policies that protect data against unauthorized access
by labeling data as confidential. Moreover, EXSPoX allows us to specify a subsequent
declassification of data through a particular function call (for example, by hashing or
encrypting data). The declassification has no impact on the confidentiality of the input
arguments of this function: they remain secret. An example of such a declassification is
shown by the security automaton in Figure 4.4. The return value id1 of the function
call is set secret and id1 is added to SI, which introduces a new configuration of the
state variables, which is reflected by a new node.

The corresponding EXSPoX policy for the credit card example (cf. Figure 4.4) is
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(edge name="ReadCreditCardNum"
(and

(cid1:id1=call "int getCreditCardNum()")
(nodes id1 +)

)
)
(edge name="EncryptCreditCardNUm"

(cid2:id2=call "byte [] encrypt(id1)")
)

Figure 4.5: EXSPoX policy to enforce the secrecy of credit card numbers

provided in Figure 4.5. The first edge description sets, as in the automaton, the return
value as secret. The second edge does not introduce a new state variable, since the
return value of the encryption is, just like in the automaton, not tagged as secret. This
can be seen as declassification since the return value is no longer considered as secret.

A similar, but slightly more complex scenario that frequently occurs in third-party
applications for smartphones and tablet computers is the following: Applications such
as WhatsApp or Twitter want to access phone numbers of the user’s address book as
part of their find friends features to automatically find contacts that already use the
messaging or social network app. If users do not have the choice to opt-out and to add
their contacts manually (as in an old version of the Twitter app [193]), its desirable to
prevent this access. Figure 4.6 shows the security automaton that models the access
to the address book and the required secrecy labeling based on the Android content
provider for the address book.

The first function call in the automaton is to CR.query(contacts, phoneNumber)10

and the returned Cursor object to the address book entry is tagged as secret. In the
second step, either the cursor is moved forward, which has no impact on the state
variables, or the phone number at the current position of the cursor is requested. The
returned phone number is again tagged as secret. In the third state, again either the
cursor can be moved forward, the phone number at the current position can be requested,
or one can execute getBytes() on the returned String of the phone number. In the last
state, the returned byte array of the phone number is hashed, which is considered as
declassification since the return value is not tagged as secret. We added in state two
the moveToNext() call as well as in state three both the moveToNext() call and the
getPhoneNumber() call to provide a better overview and to illustrate the equivalence
classes for the object identifiers oid. Since the return value of moveToNext() does not
require any special treatment and the return value of getPhoneNumber() is already
tagged secret, we could also omit these edges as they do not have any new effect on the
policy enforcement.

The corresponding EXSPoX policy for the protected access to phone numbers of the
user’s address book is shown in Figure 4.7. Similar to the security automaton of this
policy (cf. Figure 4.6), the edges MoveToNode, MoveToNode2, and SecretPhoneNumber2
are only added for a better overview and could easily be omitted.

10CR is here the abbreviation for ContentResolver.
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Figure 4.6: Automaton for a policy that describes the declassification of a phone
number by hashing it.

Our last policy example aims at enforcing HTTPS for HTTP connections that are
used to transmit confidential information (for example, session tokens). The security
automaton that enforces the rewriting of such HTTP connections to HTTPS is shown
in Figure 4.8. The rewrite statement says that if Net.Connect() is called with the HTTP
scheme and the data to be transmitted is labeled as secret, this Net.Connect() call is
replaced by the same call but now with the HTTPS scheme. The specification of this
security automaton in EXSPoX is shown in Figure 4.9. The first argument of the rewrite
statement in the EXSPoX policy set constrains the pointcut: We are only interested
in Net.connect() calls with the scheme HTTP and data labeled as secret. In this case,
the call is replaced with a new call according to the second pointcut definition: The
same function call, but now with the HTTPS scheme. The EXSPoX policy needs to be
finally converted into a concrete Java policy implementation. In case of the HTTPS
rewriting, the final Java policy is presented in Figure 4.10.

4.6.3 Policy Enforcement

The actual enforcement mechanism of AppGuard policies is based on a novel approach
to inline reference monitoring, which was designed and implemented by Philipp von
Styp-Rekowsky. In general, AppGuard follows the idea pioneered by Erlingsson and
Schneider to rewrite application binaries to directly inline security monitors and checks
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(edge name="SecretCursor"
(and

(cid1:id1=call "Cursor ContentResolver.query(URI,Content)")
(argval cid1 1 (streq "Contacts"))
(argval cid1 2 (streq "PhoneNumber"))
(nodes id1 +)

)
)
(edge name="MoveToNode"

(cid2:id2=call "boolean id1.moveToNext())
)
(edge name="SecretPhoneNumber"

(and
(cid3:id3=call "String id1.getPhoneNumber()")
(nodes id3 +)

)
)
(edge name="MoveToNode2"

(cid4:id2=call "boolean id1.moveToNext())
)
(edge name="SecretPhoneNumber2"

(cid5:id3=call "String id1.getPhoneNumber()")
)
(edge name="SecretByte"

(and
(cid6:id4=call "byte [] id3.getBytes()")
(nodes id4 +)

)
)
(edge name="Declassification"

(cid7:id5=call "byte [] MessageDigest.digest(id4)")
)

Figure 4.7: EXSPoX policy to enforce the secrecy of contact entries

at security relevant method invocations. Based on security and privacy policies, the
monitor code either allows or disallows such invocations. In case method invocations
are prevented, AppGuard allows the introduction of an alternative control flow, for
example, by returning mock values or executing different functions, in order to prevent
applications from crashing and to retain functionality as far as possible. The novel
approach in AppGuard can be seen as a hybrid approach of caller-side and callee-side
rewriting (cf. Figure 4.11 for a comparison of caller-side rewriting, callee-side rewriting,
and, finally the new call-diversion approach as implemented in AppGuard). In order to
minimize the monitor code that needs to be integrated, it is preferred to inline code
directly to the called function. Besides the benefits regarding the amount of code,
callee-side rewriting has further the advantage that one cannot miss relevant joinpoints,
i.e., it is implied by design that all invocations of a particular function are monitored.
Although callee-side rewriting is the preferred approach, it cannot be applied to Android,
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Figure 4.8: Automata for policy that rewrites HTTP connections to HTTPS connections for
secret data.

(edge name="EnforceHTTPS"
(rewrite

(and
(cid1:id1=call "Net.Connect(Scheme,URL,Data)")
(argval cid1 1 (streq http))
(argval cid2 3 ( secret ))

)
(and

(cid2:id2 = call "Net.Connect(Scheme,URL,Data)")
(argval cid2 1 (streq https))

)
)

)

Figure 4.9: EXSPoX policy to enforce HTTPS connections for data labeled as secret

since all relevant system libraries are sealed. These libraries are part of the Android SDK
and belong to the system itself. They can only be inlined if one modifies the firmware or
roots the devices, which is exactly what AppGuard does not aims at. AppGuard aims at
a solution that can be installed and configured by laymen users on standard consumer
devices. Since callee-side rewriting is not possible, the initial approach of AppGuard
followed the idea of caller-side rewriting where every relevant method invocation is
monitored by wrapping the monitor around the security-relevant function call [P6, P3].

In order to both improve the performance of the inlining process and enable policy
updates at runtime without the requirement of rewriting applications again and again,
the enforcement mechanism of AppGuard was further improved. A new approach
to callee-side rewriting was invented, which mimics the classic behavior of callee-side
rewriting when libraries themselves cannot be rewritten [P10, P5, P4]. The idea is to
change function pointers in the memory of the Dalvik virtual machine and, thereby,
to redirect calls to security relevant functions to monitor functions. The rewriting is
achieved by a custom native library, which is integrated to third-party applications by
AppGuard. Two important features of the call-diversion approach by AppGuard are its
support for monitoring native calls to Java functions as well as its ability to handle Java
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class HttpsRedirectPolicy extends Policy {
@MapSignatures({"Ljava/net/URL;->openConnection()"})
public void checkConnection(URL url) throws Exception {

if (redirectToHttps(url)) {
URL httpsUrl = new URL("https", url.getHost(), url.getFile());
URLConnection returnValue = httpsUrl.openConnection();
throw new MonitorException(returnValue);

}
}

}

Figure 4.10: Java policy for redirecting HTTP-based connections to HTTPS-based con-
nections (cf. [P5]).

a) Caller-side rewriting b) Callee-side rewriting c) AppGuard‘s hybrid call-diversion

Legend:
foo foo

foo

call foo() call foo() call foo()

call foo() call foo() call foo()

Original code

Security monitor

Figure 4.11: Comparison of caller-side and callee-side rewriting with AppGuard’s hybrid
call-diversion approach.

reflection. The inlining process has proven its robustness with a success rate of 100% in
achieving a correct dex-file. Moreover, 99.6% of the applications installed from Google’s
app store Google Play [90] were still running stable. A major share of the unstable
applications after the inlining process had problems with the exception handling [P4].

4.7 Performance Evaluation

In the following we provide insights on AppGuard’s performance. All measurements
were either conducted on a Google Galaxy Nexus smartphone with an Texas Instruments
OMAP 4460 dual-core CPU of 1.2 GHz and 1GB RAM or on a commodity notebook
with an Intel Core i5-2520M dual-core CPU of 2.5 GHz and hyper-threading as well as
8GB RAM. The Galaxy Nexus phone was running its stock Android version 4.1.2.

First, we analyzed the performance of the inlining process (cf. Table 4.3 for an
overview of our results.). We compared the inlining time on the Galaxy Nexus smart-
phone with the inlining time on the commodity notebook and list additionally both
the corresponding size of the application package (APK-file) and the size of the actual
bytecode ( classes .dex). Since our inlining process directly works on Dalvik bytecode,
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Table 4.3: Evaluation of the instrumentation process: Listing sizes of Apk- and Dex-files
and both the inlining time on a commodity desktop and on a smartphone. (cf. [P4])

App (Version) Size [kB] Time [sec]
APK-file DEX-file PC Phone

Angry Birds (2.0.2) 15.018 994 5.8 39.3
APG (1.0.8) 1.064 1718 0.7 10.1
Barcode Scanner (4.0) 508 352 0.1 2.6
Chess Free (1.55) 2.240 517 0.3 4.2
Dropbox (2.1.1) 3.252 869 0.5 10.2
Endomondo (7.0.2) 3.263 1635 0.7 16.6
Facebook (1.8.3) 4.013 2695 1.2 26.4
Instagram (1.0.3) 12.901 3292 3.0 44.3
Post mobil (1.3.1) 858 1015 0.2 5.8
Shazam (3.9.0) 3.904 2642 1.2 26.1
Tiny Flashlight (4.7) 1.287 485 0.1 2.9
Twitter (3.0.1) 2.218 764 0.3 8.9
Wetter.com (1.3.1) 4.296 958 0.4 10.7
WhatsApp (2.7.3581) 5.155 3182 0.8 27.7
Yuilop (1.4.2) 4.879 1615 0.8 19.7

we save time in comparison to other approaches (for example, [22, 181]), which need
to convert the Dalvik bytecode to Java bytecode and vice versa. Since we perform our
novel hybrid inlining approach, AppGuard profits additionally from the fact that we
can save the time both for finding caller-side invocations and for inlining the monitor
code at each position where the security relevant method is called. AppGuard combines
all monitoring logic into a single library that can be integrated as is and the actual
inlining effort is reduced to loading are monitor library at application startup. So
the inlining time itself is minimal. The majority of the overhead introduced by the
inlining process stems from repackaging the original APK-file. Overall, as can be seen in
Table 4.3, the inlining times on the notebook are much faster than on the smartphone;
nevertheless, the inlining times on smartphones are among the fastest of all on-the-phone
inlining approaches we are aware of. Moreover, user feedback indicates that the achieved
overhead is already reasonable for a production ready application: users are willing
to accept such a overhead during the installation process if they can achieve stronger
security and privacy guarantees. Regarding the overhead in size introduced by our
inlining process, AppGuard adds the call-interposition and monitoring library as native
code, which adds in total about 3.7 kB to each application.

Besides the measurements regarding the inlining process itself, we additionally ana-
lyzed the runtime overhead introduced by AppGuard. We performed microbenchmarks
for three different function calls with a different runtime complexity (Socket-><init>(),
ContentResolver->query(), and Camera->open()) to achieve a good overview on App-
Guard’s impact on the runtime performance. We measured the execution time of the
original function call and the guarded call based on System->nanoTime() and invoked
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Table 4.4: Evaluation of the runtime: microbenchmarks for original function calls in
comparison to guarded function calls with policies disabled (cf. [P4]).

Function Call Original Call Guarded Call Overhead

Socket-><init>() 0.0186 ms 0.0212 ms 21.4%
ContentResolver->query() 19.5229 ms 19.4987 ms 0.8%
Camera->open() 74.498 ms 79.476 ms 6.4%

before each measurement cycle a garbage collection to minimize noise in our measure-
ments as well as possible. The original function call was evaluated without any code
being inlined, whereas the guarded call was executed while no policy was enforced.
The latter case means that the monitor code was executed, but the execution of the
respective function was permitted. We decided to measure this configuration of the
guarded call in comparison to our baseline measurement, as it comes closest to the
original execution. If policies are enabled, the execution might actually be faster than
the original call because the policy does might not allow the execution of the measured
function and simply forces it to return. Table 4.4 lists the median execution times for all
functions and measurements. We averaged for each function over ten execution cycles,
where Socket-><init>() was executed 1000 times per cycle, ContentResolver->query() was
executed 500 times per cycle, and, finally, Camera->open() was executed 25 times per
cycle. The overhead, especially for the ContentResolver->query(), is really small and we
faced during our evaluation measurements in which the guarded calls were actually
faster than the original ones. We expect that this was due to noise stemming from
the operating system itself, background applications that could not be stopped for
the evaluation, and the operating system’s task scheduling. In general, we would like
to emphasize that the listed numbers are to be considered as a worst-case scenario.
The overall runtime impact is only that high if all function calls of an application are
guarded. So far we have not recognized any negative impact on the responsiveness of
applications inlined by AppGuard or on the overall system usage at all.

4.8 Case Study on AppGuard Policies

The design goal of AppGuard was to put users back in control of installed third-party
applications. Users should be able to enforce their own security and privacy requirements
on third-party applications, instead of letting the applications dictate which access they
get granted. In this section, we provide an overview of a variety of use-cases where
AppGuard is highly valuable to both improve system security and enhance the user’s
privacy. In all cases, we exemplify the utility of AppGuard on real-world applications11

that where installed from Google Play [90] on smartphones with an unmodified stock
Android version. We would like to emphasize that AppGuard was also only installed as

11As a disclaimer we would like to emphasize that the applications used were merely chosen to
exemplify the utility of AppGuard. They are not considered as malware, nor should our evaluation lead
to the conclusion that using one of the applications is dangerous or not recommended. In case we use
AppGuard to fix a vulnerability, we explicitly state this.
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a stand-alone application. We neither modified the operating system nor provided root
privileges, even not temporarily.

During our evaluation of use-cases, we focus, in particular, on (1) the dynamic
revocation of Android permissions, (2) the enforcement of new, fine-grained permissions
on third-party applications, (3) the enforcement of complex stateful policies, (4) the
enforcement of corporate or company policies as part of mobile device management,
(5) policy-based quick fixes for vulnerabilities in third-party applications, and (6) the
policy-based mitigation of operating system vulnerabilities. In addition, we discuss the
potential of using AppGuard to implement a policy-based parental control system.

4.8.1 Dynamic Permission Revocation

The Android permission system does not provide users with the possibility of revoking
particular permissions for third-party applications, neither at install time, nor at runtime.
Users can either accept the list of permissions requested by a third-party application
during the installation process, or they cannot install the application at all. A common
example for a permission that requires the possibility to revoke it is the Internet
permission android.permission.INTERNET. Many applications request this permission
without having an obvious reason to do so. Although it might exist a valid justification
for requesting it, such as a business model based on in-app advertisements, the decision
whether granting it is OK or not should be up to the user: the Internet permission
allows applications to send and receive arbitrary data to and from the Internet and
there is no way for users to further configure the permission. They even cannot limit
the Internet access to a list of dedicated trustworthy servers. AppGuard overcomes this
unsatisfactory situation by putting users back into control. Our system allows users to
safely revoke permissions at any time. Permissions can be revoked without leading to
application crashes since AppGuard provides suitable dummy return values instead of
just blocking function calls.

Use-case: Twitter (Version 3.0.1)
In February 2012, the Twitter app12 was heavily criticized for silently uploading the user’s
address book (which commonly includes personal information such as phone numbers
and e-mail addresses) to Twitter servers [193]. Although Twitter replied that this is
part of the find friends feature of the Twitter app, which uses the contact information
from the local address book to check whether one of your friends is already on Twitter,
they also acknowledged, according to Los Angeles Times, that this information is kept
at their servers for 18 month [193]. As reaction to the public criticism on this issue,
Twitter updated the app and requests now the explicit consent of the user.

In order to access the address book for the find friends feature, the Twitter app
requests the android.permission.READ_CONTACTS. The AppGuard ContactsPolicy
allows users to revoke this permission by default and to grant access to the address
book dynamically, which enables users to prevent the Twitter app from uploading the
address book. After an application has been installed, users can deny access before the
first application start-up. To prevent the Twitter application from crashing, AppGuard
is able return empty or fake address book entries if access should not be granted. One

12Available at: https://play.google.com/store/apps/details?id=com.twitter.android
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could even think of implementing a solution where only a special group of contacts
can be accessed and processed by an app. The ContactsPolicy of AppGuard monitors
queries to the ContentResolver13 object of Android, which is commonly used to access
so-called content providers14 in Android. Content providers allow to access structured
data via a common API. Typical examples besides the ContactsContract provider for
all contacts are the CalendarContract for all calendars or the MediaStore provider for
accessing audio and video files or images.

Similar to Twitter but a few weeks earlier, also the Path [165] and Hipster app
had already been publicly criticized for transmitting address book entries to their
servers [239]. But in contrast to Twitter, it is unclear whether the data was later kept
at their servers, or whether it was only used for a find friends feature. Nevertheless,
the general access to the address book with the later transmission of entries to servers
could be blocked by AppGuard the same way as for the Twitter app.

Use-case: Tiny Flashlight (Version 4.7)
The dynamic revocation of Android permissions can further be demonstrated at the
example of the Tiny Flashlight app15. Its core functionality is, as the name already
indicates, to provide a flashlight. This is either accomplished by using the flash-
light of the camera, or by turning the whole display white in case no flashlight hard-
ware as part of a camera is available. Since the application requests both the Inter-
net permission android.permission.INTERNET and the permission to use the camera
android.permission.CAMERA, this might rise the user’s suspicion: it is basically ev-
erything required to achieve a perfect bugging device, which would be really difficult
to detect for the average user. Moreover, people will usually not understand at first
glance, why the camera permission android.permission.CAMERA is required at all be-
cause the Tiny Flashlight app also requests the permission to control the flashlight
(android.permission.FLASHLIGHT). The reason for requesting the camera permission
lies in the different possibilities to access the flashlight of a camera. Depending on the
actual hardware, the flashlight can be either accessed directly, or only via the camera
interface. Our analysis of the Tiny Flashlight app regarding the Internet permission
android.permission.INTERNET indicates that this permission is only required to show
in-app advertisements. So, the permission requests of the Tiny Flashlight app seem to
have a valid justification.

Since the average user is usually not aware of these details, AppGuard allows users to
safely revoke the Internet and the camera permission. Revoking the Internet permission
android.permission.INTERNET has basically the effect of an ad blocker. The responsible
InternetPolicy monitors all functions of the Android API that can be used to initiate
network connections, such as, for example, constructor calls of the Socket classes or
the Java.net.url .openConnection() method. Access to the camera is blocked by the
CameraPolicy. It monitors access to the android.hardware.Camera.open() method and
simulates hardware without a back-facing camera (returns null)16, since the back-facing
camera commonly includes the hardware flashlight. In case of the Tiny Flashlight

13Details: http://developer.android.com/reference/android/content/ContentResolver.html
14Details: http://developer.android.com/guide/topics/providers/content-providers.html
15Available at: https://play.google.com/store/apps/details?id=com.devuni.flashlight
16Details: http://developer.android.com/reference/android/hardware/Camera.html
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Figure 4.12: Screenshot of the commercial SRT AppGuard app showing the whitelisting
of network connections.

app, the CameraPolicy can even be enforced without loosing functionality: The app is
implemented to also function on devices without a hardware flashlight. In this case, the
Tiny Flashlight app simply turns the display white.

4.8.2 Fine-grained Permission Enforcement

Besides the dynamic revocation of Android permissions, AppGuard also allows to
define completely new permissions. The new permissions can be both used to restrict
functionality that is not yet handled by the current permission system of Android, and to
restrict functionality in another way – and most likely more fine-grained – than done by
the current Android permissions. A typical example of a more fine-grained enforcement
of permissions are our extensions to the InternetPolicy. The InternetPolicy implements
a classical whitelisting approach (cf. Figure 4.12 for the UI of the whitelist in the
commercial AppGuard implementation by BackesSRT) where users can decide which
server connections they want to explicitly allow. All other connections are subsequently
denied by AppGuard. This is in line with the typical expectations of users that an app
communicates only with a limited set of servers: for example, the Facebook app should
only communicate with Facebook servers.
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Use-case: wetter.com App (Version 1.3.1)
The wetter.com app17 provides users with the latest weather information for user-selected
regions. In order to present the latest weather information to the user, the app connects
to the servers of wetter.com and updates the current weather forecast. There is simply
no reason to connect to other servers for fulfilling the purpose of the app. It only needs
to contact the wetter.com servers.

AppGuard allows to enforce a fine-grained configuration of the Internet access by
implementing a consequent whitelisting within the InternetPolicy. This is achieved by
extending the monitoring of all Android API functions that can be used to initiate
network connections with an explicit whitelist. Thereby, our monitor is able to only
permit connections to destination servers that are on that list. Our implementation
of the InternetPolicy for wetter.com requires that all allowed servers match against the
following regular expression: ^(.+.)?wetter.com$ [P5].

4.8.3 Stateful Policies

Another class of policies requires state information from previous executions. This could
be, for example, a policy that prohibits an app to send data to the Internet, if the app
accessed before sensitive information like contacts or calendar. Another possibility is to
use state information such as a counter to limit the amount of certain actions: Without
further confirmation by the user, an app can be, for example, limited by our CostPolicy
to at most three text messages to premium rate phone numbers.
Use-case: Post mobil (Version 1.3.1) A nice example to demonstrate the effective-
ness of the AppGuard CostPolicy is the Post mobil app18, which is the official app by
the German postal service. The app allows users as one out of several features to buy
stamps online by sending text messages to a premium rate phone number. The stamp
is delivered in turn as a digit code of three rows with 4 digits each. According to this
procedure, the app obviously also requests the corresponding permission to send text
messages (android.permission.SEND_SMS). Since granting the permission to send text
messages to unknown apps is a potential financial risk for the user, our policy allows to
limit the amount of text messages an app is allowed to send. This is achieved by moni-
toring all relevant Android API functions such as the SmsManager.sendTextMessage()
and the SmsManager.sendMultipartTextMessage() of the SmsManager object19.

4.8.4 Corporate and Company Policies

Many companies leverage mobile device management solutions to integrate mobile
devices into their corporate or company networks. However, commonly they can only
configure and enforce what the management API of a particular device supports. On
Android, this API does not include any possibility to enforce particular policies inside of
third party applications. With AppGuard, companies get the chance to enforce corporate
or company policies inside of third party applications such as password complexity
policies or access prevention to certain resources.

17Available at: https://play.google.com/store/apps/details?id=com.wetter.androidclient
18Available at: https://play.google.com/store/apps/details?id=de.deutschepost.postmobil
19http://developer.android.com/reference/android/telephony/SmsManager.html
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Use-case: Enforce Password Policy in APG App (Version 1.0.8)
We exemplify the utility of such policies by instrumenting the APG app20, a popular
implementation of OpenPGP for Android. OpenPGP allows users to encrypt and
decrypt data such as e-mails or files based on public key cryptography. Additionally, the
app allows to sign data and to subsequently verify the signatures. In order to protect
the secret keys used for decryption and signing, the APG app requests users to enter a
password during the creation process of the keys. Although APG does not allow users
to choose an empty password, it does not enforce a particular password complexity
either. Since it is common use in companies to enforce policies about both length
and complexity (character set: small and capital letters, numbers, special characters)
of passwords, it is also necessary to enforce these policies on mobile devices. While
mobile device management solutions are able to use the management API of mobile
devices to enforce, for example, a certain complexity for lock screen passwords, such an
enforcement is impossible inside of third-party applications. AppGuard overcomes this
deficiency and allows administrators to define so-called joinpoints inside of apps that
are also monitored by our system. That way, we monitor the procedures that reads in
the passphrase of the key and allow the app only to proceed if the password entered
during the key creation process matches our policy. In a similar way, AppGuard would
also allow companies to enforce a certain key size for the created keys or a particular
algorithm.

4.8.5 Quick Fixes for Vulnerabilities in Third-Party Apps

Besides the previously introduced use-cases where the enforced policies mostly aimed
at giving users and companies back the control over the privacy and security settings
for third-party applications, we introduce in the following two policies that are of
general interest. In both cases, the enforced policies aim at mitigating vulnerabilities
in applications and the operating system. First of all, we will have a look at how
AppGuard can be used to fix vulnerabilities in third party applications. Over and
over again it happens that applications make use of HTTP connections for privacy
sensitive data. Although most apps use the HTTP over TLS (HTTPS) protocol for login
procedures on Web servers, there are still applications that fall back to HTTP right
after the authentication. The switch back to HTTP leads to the bad situation that the
authentication token required at the server-side to identify users throughout a session21

is also transmitted in the clear. Attackers are now able to piggyback on the cleartext
connection and to steal confidential information such as the authentication token, which
allows the attacker to impersonate the current user [125]. In case the Web server supports
HTTPS throughout the full session, AppGuard can easily solve the problem using our
HTTPSEverywhere policy: our system enforces the usage of HTTPS connections for
all sensitive data, which successfully protects also the authentication data. Depending
on the code executed inside of an app, this can either be achieved by replacing, for

20Available at: https://play.google.com/store/apps/details?id=org.thialfihar.android.apg
21The HTTP protocol itself is by default stateless and requires applications to additionally make use

of authentication tokens to link authenticated users to a session.
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example, the HttpURLConnection22 object by a HttpsURLConnection object23, or by
directly returning the data after establishing the new HTTPS connection. In a similar
way, AppGuard could also be used to fix missing or vulnerable implementations of the
certificate check within SSL connections. Problems with the certificate check can lead
to similar problems as when falling back from HTTPS to HTTP, since one can trick
apps into connecting to a wrong, malicious server. The Fraunhofer Institute for Secure
Information Technology showed in the end of 2013 that problems with the certificate
check still occur. They reported about several popular Android applications with
security issues related to such a certificate check [140]. By using AppGuard, also these
vulnerabilities could have been mitigated until the fixed applications were available.

Use-case: Endomondo Sports Tracker App (Version 7.0.2)
An application that was prone to leaking the authentication token after a successful
login is the Endomondo Sports Tracker24. The application uses by default the HTTPS
protocol for the login procedure. However, after a successful login it falls back to HTTP
and transmits the authentication token for the session in clear such that attackers could
easily piggyback on the connection. In order to fix this issue, we implemented and
tested our HTTPSEverywhere policy that ensures the usage of HTTPS throughout the
full session. As previously described, the policy monitors the corresponding functions
to open HTTP connections (for example, Java.net.url .openConnection()), and either
returns a HTTPS connection when a HTTP connection was requested, or it returns
directly the data from the HTTPS redirection.

4.8.6 Mitigation of OS Vulnerabilities

AppGuard can also be used to mitigate the impact of vulnerabilities in the Android
operating system. Whenever such a vulnerability can be exploited by a third-party
application through Android API calls, AppGuard allows to enforce system policies that
prevent the particular calls necessary to exploit such a vulnerability. Since our system
policies are of course only active in all instrumented applications, the protection can
also only achieve an optimal coverage if all third-party applications are instrumented
by AppGuard. Similarly, AppGuard can be used to introduce new permissions for yet
accidentally unprotected API functions that might harm the user’s security or privacy
needs.

Use-case: Add Missing Permission to Protect the Photo Storage
That a system like Android might indeed be missing some permissions to protect
sensitive APIs was demonstrated by a proof-of-concept exploit named EvilTeaTimer
app25 [91] in 2012. At that point of time, Android was missing a protection for the
central photo storage where, for example, all photos from the default camera app are
stored. Without any protection by a permission that needs to be explicitly requested by
third-party applications, every third-party application installed on the Android device
can access this highly personal information [52]. If a third-party application additionally

22Details: http://developer.android.com/reference/java/net/HttpURLConnection.html
23Details: http://developer.android.com/reference/javax/net/ssl/HttpsURLConnection.html
24Available at: https://play.google.com/store/apps/details?id=com.endomondo.android
25Available at: https://github.com/ralphleon/EvilTeaTimer
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requests the Internet permission, it can simply upload all images from the photo storage
to arbitrary servers on the Internet. AppGuard implements a MediaPolicy that prevents
instrumented applications by default from accessing the photo storage. User’s can
use the policy configuration of AppGuard to subsequently grant this permission to
individual apps. The policy monitors queries to the ContentResolver object that targets
at MediaStore and prohibits access for unauthorized applications. Since AppGuard is
only able to instrument third-party applications26, the AppGuard-based protection
cannot be achieved for applications that were integrated into the operating system by
Google or the device vendors (for example, the Google apps such as Google Maps).
However, when using an Android device from a particular vendor, users need to trust
both Google and the vendor anyway.

Use-case: Prevent Intent-based Cross-site Scripting in Android Browser
Another vulnerability that can easily be defeated by AppGuard is the intent-based cross-
site scripting attack on the Android browser as it was presented by Backes et al. [19] in
2011 for Android version 2.3.4. intents27 are special messages in Android that describe
which action (for example, ACTION_VIEW, ACTION_CALL, or ACTION_EDIT) the
message receiver should perform (for example, the telephony app or the browser app)
based on the data that is included in the message [5]. Applications can register as
message receivers for specific actions (for example, ACTION_VIEW) and data types by
using so-called intent filters28, where the data type29 of an intent filter can be specified
based on the scheme used (for example, HTTP), a host (for example, google.com), a
port (for example, 80), a particular path or a path prefix/pattern, and finally a MIME
type (for example, image/jpeg or text/plain). The system decides based on the list of
registered intent filters to which component an intent is actually delivered. In case
several applications register for the same type, either a default can be set, or the user is
asked to choose the destination app every time an intent with the particular action and
data combination is send.

If a third-party application invokes now an intent with the action ACTION_VIEW
and includes as URI a Web address (for example, https://play.google.com), this intent
will most likely be received by the default Web browser on the system: the Android
browser (for Android version 2.3.4). The Android browser now takes the included
URL from the intent and opens it in a new browser tab. Although we consider this
behavior by itself already as a vulnerability, since also applications not holding the
Internet permission can send out such intents, which fully suffices to upload data to the
Internet, the attack presented by Backes et al. goes even a step further: the third-party
application sends afterwards a second intent with the same action, but now with a
JavaScript scheme. Due to a bug in the Android browser, this JavaScript code is not
executed in a new browser tab, but in context of the previously opened tab which
loaded https://play.google.com. A malicious application could now, for example, use the
combination of these two intents to steal session tokens or cookies in order to impersonate

26Instrumenting system applications would require to modify the OS image or at least root privileges,
which cannot be achieved for laymen users and without voiding the user’s warranty.

27Details: http://developer.android.com/reference/android/content/Intent.html
28Details: http://developer.android.com/guide/topics/manifest/intent-filter-element.html
29Details: http://developer.android.com/guide/topics/manifest/data-element.html
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the user or to upload the session token/cookie to external servers. AppGuard is able to
both prevent the intent-based Internet access for applications not holding the Internet
permission and the cross-site scripting attack based on the combination of these two
particular intents. It simply monitors the functions used for invoking intents and ensures
that particular combinations of sender, receiver, and intent content are prevented.

4.8.7 Parental Control

As a final use-case for enforcing AppGuard policies, we would like to discuss the usage
of AppGuard for parental control. As a straight forward way, one could, for example,
simply enforce a policy that requests from the user for all applications not suitable for
children a special password. Of course, this is only effective if AppGuard instruments
really all applications. Another possibility would be to employ a whitelist for all
suitable/child-friendly Web sites that are enforced on all instrumented applications
by AppGuard. One could even think of time limits for child use such as at most 30
minutes per day. In principle, AppGuard is able to enforce these kinds of policies
and fulfills the needs for parental control. It even allows restricting content within
third-party applications without requiring the developers of such apps to offer direct
support for parental control. Nevertheless, AppGuard has also one downside in this
scenario: Its effectiveness and protection depends on the ability to achieve a 100%
coverage for installed applications; independent of the fact whether an app was installed
by Google or the vendor, or another third-party. For system applications from Google,
or applications from the phone’s/tablet computer’s vendor, the instrumentation by
AppGuard requires, in contrast to the instrumentation of third-party applications, root
privileges. These system applications or the applications from the vendor are the only
reason why AppGuard cannot achieve the desired coverage on Android.

4.9 Related Work

The permission system of the Android operating system has been subject of many
scientific evaluations [21, 172, 84] and many improvements or alternatives have already
been proposed (e.g., [160, 56, P5]). It was heavily criticized in recent years, mostly
because the system is inflexible and does not allow users to configure their needs with
respect to security and privacy, but also because the coverage of single permissions is
not well documented [172, 84] and some API functions are not protected at all [91,
19]. In 2010, Barrera et al. conducted an empirical analysis of the Android permission
system based on 1,100 Android applications and so-called self-organizing maps [21].
Their results show that although Android provided at that point in time about 110
permissions, only a few of them were really frequently used by developers. As expected,
the permission used most is the Internet permission: it is used by more than 60% of
the evaluated applications. Barrera et al. discuss in their results already the trade-off
between getting more fine-grained permissions to achieve the user’s needs and the
problem for developers to understand which permissions are actually needed. They
think that this might lead to a situation where developers for reasons of simplicity
simply request more permissions than actually needed to be on the safe side.
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Porter Felt et al. analyze the effectiveness of application permissions at the example
of Google Chrome and at the example of Android [171]. Both share a similar concept for
permissions as they both request them at install-time without offering users any further
choice than not installing applications with undesired permissions. Their results indicate
that offering application-based permissions is indeed an advantage in comparison to
running all applications with full user rights (as done on classic desktop operating
systems). Most of the time only a small subset of permissions is requested, which
reduces the potential impact of in-app vulnerabilities. But users might get used to
accepting even more dangerous permissions such as the Internet permission in Android,
simply because so many apps need it. This might in the end lead to a less thoughtful
decision in comparison to cases where warnings are really exceptions and raise the user’s
attention.

Both Porter Felt et al. [172] and Gibler et al. [84] provide an in-depth analysis of
the Android source code to figure out which API functions are actually affected by
permissions. Porter Felt et al. create a permission map (which API functions require
which permissions) and introduce with Stowaway a static analysis tool that first identifies
all Android API calls in an application and uses afterwards the permission map to detect
over-privileged applications (i.e., applications requesting more permissions than their
code actually needs) [172]. The permission map of Porter Felt et al. lists 1,259 API calls
that require permissions, which is surprising, since they found only 78 API calls in the
Android documentation that listed the requirement of a permission. Similar to Porter
Felt et al., Gibler et al. create a permission map for Android and show how this can be
used in combination with static analysis to guide developers to prevent over-privileged
applications by proposing the minimal set of required permissions [84]. But Gibler et al.
go even one step beyond: they used their system to analyze apps regarding potential
privacy leaks and found 3,258 of 23,838 applications that potentially leak system or
user-unique data such as the phone identifier, location or wireless network information,
or even recordings from the microphone. Moreover, the authors analyze potential data
leaks in ad libraries. Vidas et al. manually parse the API documentation to create
a permission map that is subsequently used within a plug-in for the Eclipse IDE to
assist developers of apps in fulfilling the principle of least privilege [229]. In their case
study on Building Security into “Off-The-Shelf” Smartphones, Stavrou and colleagues
from NIST speculate about the reasons for developers to request more permissions
than actually required: they name the lack of understanding of the existing permission
system, simply the developers’ convenience, or that developers might expect to add
functionality requiring the additional permission in the future [212]. Stavrou et al. state
to have detected thousands of Android applications that request more permissions than
the app’s functionality actually requires.

The evaluations of the Android permission system have shown that the current
state of this system does not provide users with the flexibility to configure OS-enforced
security and privacy settings of third-party applications according to their needs. Even
worse, missing permissions open attack vectors and put the user’s data at risk. Research
has proposed several systems that address the previously described issues with the
permission system and we will now first discuss the positive and negative aspects of the
systems closely related to AppGuard; i.e., systems based on inline reference monitoring
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Table 4.5: Comparison of Android IRM approaches (cf. [P4])

Feature 1 2 3 4 5 6 7 8 Runtime Overhead

Dr. Android [115] X – E G# G# – – – 10-50%
Aurasium [242] X – I G# G# – – – 14-35%
I-ARM-Droid [60] X – I – G# – – X 16%
URANOS [197] X X I – X – – X Not measured
Barthel et al. [22] X X E – – – – X Not measured
DroidForce [181] X – E – X – X Not measured
AppGuard [P6, P5, P10, P3, P4] X X I G# X X X X 1-21%

Legend: 1. No Firmware Mod. 2. On Phone Instr./Updates 3. Monitor
4. Native Methods 5. Reflection 6. Policy Lang. 7. Data Secrecy
8. Parametric Joinpoints; X: full support, G#: partial support

and systems that rewrite third-party applications and facilitate an external reference
monitor such that they can be deployed to standard consumer devices without requiring
modifications of the firmware, root privileges or the like. Afterwards, we will discuss
further, less-closely related work on security and privacy topics for Android.

4.9.1 Inline Reference Monitoring

Our discussion on approaches to inline reference monitoring is clustered into two areas:
First we will discuss approaches targeting the Android operating system, and afterwards
related inline reference monitoring approaches in general.

4.9.1.1 IRM on Android

A comparison of all IRM approaches for Android is provided in Table 4.5. We compare
the approaches based on the following features: (1) the possibility to deploy the system
without requiring modifications to the firmware of a mobile device, root privileges, or
the like; (2) the support for an on-the-phone instrumentation and updates; (3) the usage
of an (E)xternal or an (I)nternal reference monitor30; (4) the protection against native
methods; (5) the support for handling reflective calls; (6) the integration of a policy
language; (7) the support for data secrecy policies to separate secrets in third party
applications; the flexibility in the selection of joinpoints; and, finally, (9) the introduced
runtime overhead. Although AppGuard is the only approach that supports all of the
desired features, we would like to emphasize that Dr. Android, I-ARM-Droid, and
Aurasium constitute concurrent work of AppGuard, whereas URANOS, DroidForce,
and the paper by Barthel et al. were published later.

Dr. Android and Mr. Hide by Jeon et al. makes use of an external reference monitor
that is installed as stand-alone Android service, the so-called Mr. Hide service [115].

30Although the policy decision logic with the reference monitor might be deployed as an external
application, we still consider these approaches as some sort of inline reference monitoring: The platform
does not support an integration into the operating system so that the actual checks that refer to the
external reference monitor still need to be inlined to the individual third-party applications.
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The core idea of the approach is to remove all permissions requested by a third-party
application in its manifest file (AndroidManifest.xml) and to proxy all the privileged
API calls through the Mr. Hide service. That way, the Mr. Hide service is able to
enforce application and system specific policies when third-party applications attempt
to use such privileged calls. However, this is limited to security critical functions that
are actually proxied through Mr. Hide. The system is not designed to monitor arbitrary
Java functions for policies targeting at application specific code, since these calls would
not go through the Mr. Hide service or at least would require to be individually
integrated. Removing all permissions of third-party applications is clearly beneficial for
the impact of vulnerabilities in monitored third-party applications; however, the Mr.
Hide service requires now all permissions, which makes it a prominent target for attacks.
Since Mr. Hide is not able to drop permissions dynamically31, the service cannot follow
the principle of least privilege. To mitigate this, one could consider implementing
dedicated services for every single application such that the proxies also only hold the
permissions required by its corresponding app. The integration of the system into
third-party applications is achieved by integrating an extra dex-file with the hidelib
into each application. It encapsulates the entire protected API in a new namespace and
handles the inter-process communication with the Dr. Hide service transparently. A nice
fact of the external monitor is that the approach automatically prevents privileged native
calls of the application, even if the low-level system functionality is re-implemented.
The third-party application is simply missing the required permissions. Moreover, the
approach also covers reflective calls to security critical functions, as long as the resolved
function is later monitored by Mr. Hide. A limitation of the approach in comparison
to AppGuard is that it does not support the instrumentation of apps on the phone or
automatic updates; this needs to be done on a desktop computer or potentially via a
Web service that directly provides the instrumented application. Moreover, the overhead
of the system by Jeon et al. is, due to the external service and the required inter-process
communication, quite high: it has the highest overhead of all approaches we compared32.
The Dr. Android and Mr. Hide system might also be prone to timing issues since the
application needs to synchronize with the Dr. Hide service at startup. Without having
this service up, a monitored application might not be able to start. AppGuard has here
clearly an advantage: The inlined monitor makes it much faster and the decision logic
is locally integrated into the applications. Only AppGuard’s policy configuration is
provided from the AppGuard application, but such way that it can always be read from
the file system. Regarding the policies, Dr. Android and Mr. Hide does not integrate a
high-level policy language or support for the code-based separation of secrets. Finally,
Dr. Android and Mr. Hide does not allow the parametric specification of joinpoints.

I-ARM-Droid [60] is a system by Davis et al. that is, similar to AppGuard, based
on inline reference monitoring, i.e., the security monitor is directly embedded into
the third-party applications to be monitored. Similar to our initial instrumentation
approach for AppGuard, I-ARM-Droid follows the idea of caller-site rewriting and
instruments all invocations of security relevant API methods to enforce custom security
policies. The system supports parametric joinpoints and their idea of rewriting security

31This restriction is given by the Android permission system.
32Out of all approaches that actually measured the overhead.

124



4.9. RELATED WORK

relevant API methods is based on redirecting the original API calls to so-called proxy
methods. The proxy method decides based on the original arguments and the active
policy either to permit and execute the original call, or to change the control flow and
perform an alternative action/stop the execution. Using caller-side rewriting has the
disadvantage that each invocation of a function needs to be found and instrumented,
which includes not only the risk to miss one execution (for example, due to reflective
calls), but also introduces quite some overhead for the instrumentation process. But
since Androids system libraries are sealed, classical callee-side instrumentation is not
feasible. With AppGuard we overcome this unsatisfactory situation and perform a
novel rewriting technique at runtime in the memory of the Dalvik virtual machine,
which is kind of a hybrid caller-site/callee-site solution. But this provides us with
all the advantages of a callee-site rewriting. In contrast to AppGuard, I-ARM-Droid
does not support the rewriting of applications on the phone, which requires again
either a desktop computer or an additional Web service. Although I-ARM-Droid is
able to detect reflective and native calls, both are not handled in depth. For native
code no further action is taken and for reflective calls I-ARM-Droid currently simply
prevents their execution without providing special logic to handle them. Regarding
our desired features, I-ARM-Droid also neither includes a high-level policy language
nor does it support the separation of secrets as done by AppGuard. Performance-wise,
I-ARM-Droid produces, as expected, less runtime overhead as Dr. Android and Mr.
Hide. I-ARM-Droid [60] is a system by Davis et al. that is, similar to AppGuard, based
on inline reference monitoring, i.e., the security monitor is directly embedded into the to
be monitored third-party applications. Similar to our initial instrumentation approach
for AppGuard, I-ARM-Droid follows the idea of caller-site rewriting and instruments
all invocations of security relevant API methods to enforce custom security policies.
Their system supports parametric joinpoints and their idea of rewriting security relevant
API methods is based on redirecting the original API calls to so-called proxy methods.
The proxy method decides based on the original arguments and the active policy either
to permit and execute the original call, or to change the control flow and perform an
alternative action/stop the execution. Using caller-side rewriting has the disadvantage
that each invocation of a function needs to be found and instrumented, which includes
not only the risk to miss one execution (for example, due to reflective calls), but
also introduces quite some overhead to the instrumentation process. However, since
Android’s system libraries are sealed, classical callee-side instrumentation is not feasible.
With AppGuard we overcome this unsatisfactory situation and perform a novel rewriting
technique at runtime in the memory of the Dalvik virtual machine, which is kind of a
hybrid caller-site/callee-site solution. But this provides us with all the advantages of
a callee-site rewriting. In contrast to AppGuard, I-ARM-Droid does not support the
rewriting of applications on the phone, which requires again either a desktop computer
or an additional Web service. Although I-ARM-Droid is able to detect reflective and
native calls, both are not handled in depth. For native code no further action is taken
and for reflective calls I-ARM-Droid currently simply prevents their execution without
providing special logic to handle them. Regarding our desired features, I-ARM-Droid
also neither includes a high-level policy language nor does it support the separation of
secrets as done by AppGuard. Performance-wise, I-ARM-Droid produces, as expected,
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less runtime overhead as Dr. Android and Mr. Hide.
Completely different to Dr. Android and Mr. Hide and I-ARM-Droid is Aura-

sium [242], an approach introduced by Xu et al. Instead of intercepting Java function
calls by inlining a reference monitor to the Dalvik or Java byte code, Aurasium directly
intercepts the interaction between third-party applications and the operating system.
In case a third-party application wants to access permission protected system functions
in Android (for example, as part of libc), this is either achieved by directly accessing
the resources (for example, for the Internet connection) or by accessing them via system
services such as the Location Manager Service for GPS access. In both cases, this
leads in the end to system calls; however, only the first case with the direct access
to functions can be efficiently monitored by Aurasium. In the second case, the final
system call is executed by the system service and, thereby, outside of the application
context Aurasium is able to access. In order to also cover this second case where
the access protection is handled inside a system service, Aurasium needs to monitor
the Binder-based inter-process communication of the third-party application with the
system service. But this is quite challenging: Aurasium needs to identify the target
application and needs to re-establish the context of a particular Binder-communication.
This includes both to reconstruct parameters of the inter-process communication and
high-level Java objects by unmarshalling byte-streams in native code [242]. Without this
information, it is impossible for Aurasium to evaluate its security and privacy policies.
Besides the effort required to reconstruct the high-level information, another weak spot
of Aurasium’s reconstruction is the fact, that it might break with every change of the
Android operating system33. Implementation-wise, the system adds a native library for
achieving the call interposition to each application package. The actual call interposition
is achieved by rewriting the function pointers of libc functions. The policy logic of
Aurasium is integrated as Java code, since already the authors themselves claim that
native code “is generally difficult to write and test” [242]. Another weakness of Aurasium
is its limitation to only allow the monitoring of permissions protected API calls that end
up in system calls. Calls to the Android API that do not involve system calls cannot be
monitored. The same holds true for application specific code that does not make use
of the Android API. The high-level Java code can only be treated as a black box by
Aurasium. A typical scenario that cannot be covered by Aurasium is, for example, the
declassification of secret data: if an app accesses the address book to receive a phone
number and hashes this number afterwards, it is no risk to send the hashed phone
number to the Internet (for example, as part of a find friends feature in social network
applications). In this particular scenario, Aurasium is only able to monitor and prevent
the access to both the address book and the Internet, but the system cannot detect
the declassification. Positive is the support of Aurasium for a a centralized security
manager to handle policy decisions centrally. This allows Aurasium to detect collusion
attacks and to enforce device policies based on global state. In contrast to AppGuard,
Aurasium does not allow an instrumentation on the phone. In principle, the approach
can monitor system calls from native code, but only as long as the functionality from
system libraries such as libc is not re-implemented inside of the native code. AppGuard
has here a similar limitation; it can only monitor Java calls from native code. Reflective

33The authors mention one change from Android version 2.2 to 3.x that affected their implementation.
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calls of Aurasium can only be covered as long as the reflective call ends up in a system
call. Although this coverage achieves enough protection for invocations of security
critical functions, Aurasium does not support fine-grained policies that directly target
the reflective calls. In comparison to AppGuard, Aurasium neither provides a high-level
policy language nor does it support the separation of secrets. The overhead of the
approach highly depends on the effort to recover all information required to evaluate
the policies and is stated with 14-35%.

The URANOS system was introduced by Schreckling et al. in 2013 [197] and makes
use of inline reference monitoring. Similar to the previously described approaches, the
URANOS system neither requires to modify the firmware of an Android device, nor
does it require root privileges or the like. In contrast to Dr. Android and Mr. Hide,
I-ARM-Droid, and Aurasium, the URANOS system provides, similar to AppGuard,
the full instrumentation toolchain on the Android device and even supports updates
for instrumented applications. URANOS performs a static analysis on unmodified
consumer devices in order to detect when permissions are actually required. Afterwards,
it allows removing redundant permissions and enables users to apply their desired
permission configurations. The system introduces so-called security wrappers to revoke
classical Android permissions. In case permissions required to call a function are
removed, URANOS provides a mechanism to gracefully handle the revocation of these
permissions based on Java exceptions. The exceptions are used to divert control flow to
alternative handlers if a particular function call is denied, for example, to return mock
values. The authors focus in the paper on the revocation of Android permissions and
on enforcing user-desired permission configurations, but its generic implementation of
inline reference monitoring seems to also support more fine-grained policies. URANOS
monitors reflective calls, however, the paper does not mention how native calls are
handled. In comparison to AppGuard, URANOS neither provides a high-level policy
language nor does it support the separation of secrets. Unfortunately, the authors did
not include microbenchmarks to measure the runtime-overhead of the instrumented
applications. The previously described approaches have shown that this overhead is
commonly not negligible.

Barthel et al. introduce a system based on an external reference monitor [22]. The
system supports the instrumentation of applications on Android devices based on two
different approaches: The first approach is called Soot [209] and entitles itself as a
Java optimization framework. It is used in conjunction with Jimple [118], a typed
intermediate representation. The second approach used is called ASM [16], a Java
bytecode manipulation and analysis framework. Both approaches work on Java bytecode,
which means that the Dalvik bytecode is first transformed to Java bytecode by the
dex2jar tool. This is time consuming and takes already between 10 and 20 seconds for a
250 KiB classes .dex file34. Furthermore, Soot with Jimple is not really designed to be
used on mobile devices, which we can also see in the following approach by Rasthofer et
al. called DroidForce. With such limited resources on mobile devices, the Soot-based
approach results in a quite slow instrumentation procedure. On average, the Soot-based
process needs for the overall instrumentation with all bytecode transformations per
application about 136.1 seconds on the fastest device used, which is a tablet device

34These measurements depend on the devices that were used during the evaluation by Barthel et al.
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running Android 4.0.3 with a single core performance35 of 1.4GHz, 1GB of RAM and a
heap size of 48MiB. In comparison, AppGuard requires for the rewriting of large apps
such as Instagram36 with a classes .dex file of 3292 kB only 44.3 seconds; for smaller
applications like the Tiny Flashlight app37 with a classes .dex file of 485 kB, this drops
to 2.9 seconds and AppGuard’s main time consumption stems from the repackaging of
the application packages (cf. Figure 4.3). In contrast to the Soot-based approach, the
ASM-based version of the system by Barthel et al. compares performance-wise much
closer to AppGuard, but the overall performance is still quite slow: the whole ASM-based
instrumentation approach takes on average 71.4 seconds. A severe limitation of both
instrumentation procedures is that even on the fastest device with the highest memory
during their evaluation, only 14.6% of all application could be successfully instrumented
by the Soot-based procedure, and only 25.3% could successfully be instrumented by
the ASM-based procedure. Root cause of these low numbers seem to be problems
with the transformation tool dx that transforms Java bytecode to Dalvik bytecode.
Similar to URANOS, Barthel et al. do not provide details on the runtime overhead
of their system. In addition, the authors do not discuss native methods or reflection
so that we conclude for our evaluation, that both cases are not covered. Similar to
the previously discussed approaches related to AppGuard, the system by Barthel et al.
neither provides a high-level policy language, nor does it supports the separation of
secrets. But according to the description of Barthel et al., the system at least supports
parametric joinpoints for the instrumentation.

DroidForce[181] is the most recent approach to dynamic runtime enforcement on
Android. It was introduced by Rasthofer et al. in 2014 and is the second solution
that relies on Soot with Jimple. Currently, the system does not support an on-the-
phone instrumentation of third-party applications, which is most likely due to similar
problems as they were faced by Barthel et al. The authors argue that they conduct
the instrumentation off-the-phone due to the static analysis of applications. From their
description it is unclear whether the pure instrumentation would work on a phone
and the previously described result of Barthel et al. [22] indicates that this is not yet
possible with the performance of current mobile devices: Barthel et al. state in their
observation 6 for Soot that “Only the smallest applications (in terms of Dalvik bytecode)
can be converted.” DroidForce facilitates an external monitor that includes the policy
decision logic to enforce system-wide policies, which is also possible for AppGuard
with the difference that the central AppGuard application is only used to maintain
state. The actual decision logic and enforcement mechanism of AppGuard is integrated
into the third-party application within AppGuard’s instrumentation process. Similar
to DroidForce, AppGuard also supports data-centric and dynamic policies. Policy
updates of AppGuard do also not lead to a re-instrumentation of an app. A feature of
DroidForce that is not yet supported by AppGuard, but can be easily implemented, is
the support of time constraints. A similar effect as the dynamic tracking of information
flows as integrated by DroidForce is achieved in AppGuard through our separation of

35The tablet has four cores, but the authors state that they do not make use of the multi-core
architecture.

36Available at: https://play.google.com/store/apps/details?id=com.instagram.android
37Available at: https://play.google.com/store/apps/details?id=com.devuni.flashlight
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secrets to prevent data leaks and our enforcement of information flow control policies.
A static analysis of flows is not part of AppGuard itself, but Bati [T1] was designed
to provide this input and to subsequently prepare for policies specifically targeted at
the individual behavior of third-party applications (cf. Figure 4.3). The authors of
DroidForce mention that their system does not monitor native calls, but they do do
not mention how DroidForce handles reflective calls: therefore, we did not check this
feature in the feature comparison chart. As DroidForce is based on Soot with Jimple,
it should, in principle, allow an easy integration. Rasthofer et al. do not perform a
detailed analysis of the runtime overhead introduced by single applications, they only
state that none of the instrumented applications “exhibited any perceivable slowdown in
the user experience”. If we look at the Dr. Android and Mr. Hide system [115], which
also leverages an external monitor in a dedicated application or service, we can see that
the Binder-based inter process communication with this external service introduces de
facto quite some overhead. Even if this is not directly noticeable by users, the overhead
should clearly introduce a noticeable negative impact on the battery runtime. Similar
to AppGuard, DroidForce ships with a high-level policy specification language and
supports parametric joinpoints.

4.9.1.2 IRM for Non-Android Systems

Erlingsson and Schneider introduced Inlined Reference Monitoring in 1999 through the
development of the Security Automata SFI38 Implementation (SASI) system for Intel
x86 assembly code and for Java bytecode (JVML) [68]. The concepts behind Inlined
Reference Monitoring go back to various approaches that targeted at rewriting binary
code such as the ATOM system for building customized program analysis tools [211]
or the Naccio system by Evans and Twyman [70] for enforcing safety policies. In a
follow-up work Erlingsson and Schneider introduced in 2000 the successor of SASI,
the Policy Enforcement Toolkit (PoET), which leverages its own Policy Specification
Language (PSLang) and focuses now completely on JVML applications [67]. Both the
SASI and PeET/PSLand system are nicely summarized in Erlingsson’s PhD thesis of
2004 [66]. Schneider introduced in his paper on enforceable security policies the Execution
Monitoring (EM) class of policies that can be enforced by monitoring execution steps of
systems [194] as well as corresponding automata to describe these policies. Although the
focus is on terminating target applications if an enforced policy is violated, the paper also
discusses the possibility to respond on violations by substituting the critical execution
step by an uncritical execution step. The class of automata capable of transforming
the execution of a program without forcing it to stop in case of policy violations was
later formally introduced as Edit Automata by Bauer, Ligatti, and Walker [24, 132].
Based on Edit Automata, Bauer et al. introduced in 2005 the Polymer system, which
enables the specification and enforcement of complex runtime security policies for Java
applications [25]. The system is designed to facilitate the composition of policies and
uses its own policy language. Chen and Roşu introduce with Java-MOP a software
development and analysis framework for Java that enables the runtime monitoring
of programs against their formal specification [53]. Aktug and Naliuka introduce in

38Software-fault isolation.
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2007 with ConSpec another language for the specification of policies based on security
automata. In contrast to Polymer, it does not support the transformation capabilities
of Edit Automata, since it reduces expressiveness in favor of a formal semantics. The
already introduced SPoX system aims at the enforcement of aspect-oriented security
policies on Java applications [100]. Dam et al. discuss the issue of multi-threaded
Java-like programs for inline reference monitoring and introduce a class of race-free
policies [57, 58]. Supporting such race-free policies is also of particular interest for future
improvements to AppGuard.

Besides these Java oriented approaches, several systems were also developed for other
platforms. Hamlen et al. introduced in 2006 the Mobile extension for the .NET Common
Intermediate Language. It allows to specify security policies that are subsequently
enforced via inline reference monitoring [102]. Vanoverberghe and Piessens propose
a caller-side rewriting algorithm for the .NET bytecode MSIL [228]. Based on this
algorithm, Vanoverberghe, Piessens, and colleagues have developed the S3MS.NET Run
Time Monitor [61]. The tool supports both single-threaded and multi-threaded .NET
programs and allows the specification of policies in several policy languages; however, its
policies are in contrast to Polymer limited to the expressiveness of truncation automata.
Shridhar and Hamlen propose to use model-checking for certifying the correctness of
instrumented code, i.e., to prove that it fulfills the original policy [210]. Massacci and
Siahaan propose optimizations based on automata modulo theory [139]. Given a security
policy and a contract defining the trust boundary of a system, they refine the security
to an optimized policy that assumes the contract as granted.

4.9.2 Security Extensions for Android

Besides the previously described approaches to inline reference monitoring that target
at the deficiencies of the Android permission system, researchers have proposed several
extensions to the Android operating system itself that also target at the coarse-grained
and inflexible permission system. Kirin was introduced by Enck et al. in 2009 and aims
at detecting and preventing the installation of third-party applications with dangerous
permission combinations based on a pre-defined rule-set [64]. Saint by Ongtang et al.
extends the Android permission system with new enforcement hooks to cover inter-
application communication and to improve the protection of application interfaces [160].
The Apex system by Nauman et al. extends the Android permission system and allows
users to revoke permissions of single applications and supports the specification of user-
defined runtime constraints [153]. Another system called CRePE, which was introduced
by Conti et al. in 2010, extends the Android middleware with new enforcement hooks
to enable the enforcement of context-related policies [56]. An example of the authors
with a typical context related policy is when users want to restrict the Bluetooth
interface to be discovered at home or at work, but nowhere else. The Porscha system
by Ongtang et al. adds content proxies and a corresponding reference monitor to the
Android middleware to enable the enforcement of digital rights management through
the operating system [159]. AppFence by Hornyack et al. was introduced in 2011 and
extends Android with two novel privacy controls [106]: (1) The authors introduce the
possibility to return shadow data instead of the original data in order to keep the
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original data secret. This is an approach that we also follow in AppGuard in order
to retain functionality of applications in cases where applications cannot be executed
without specific data (for example, return a fake address book entry if the content is
not relevant for the functionality itself). (2) The second mechanism taints data on
(user) input and blocks connections when tainted data should be send off the phone. In
2012, Schreckling et al. introduced Constroid, a new policy management framework for
Android that enables the definition of fine-grained data-centric security policies [195].
The Aquifer [151] system as introduced by Nadkarni and Enck in 2013 allows developers
to define fine-grained policies for typical user workflows in order to protect sensitive
data across applications.

Another line of research introduces more generic security frameworks for the An-
droid operating system that aim at improving the access control system or in general
the Android security model to enforce complex and fine-grained security and privacy
policies. As already described in the Android primer (cf. Section 4.4), Android enforces
permissions requested at the middleware layer at the kernel layer based on the standard
discretionary access control of the Linux kernel. Smalley and Craig introduce Security
Enhanced (SE) Android [207] based on SELinux [199] to provide mandatory access
control at the kernel-layer and through middleware extensions also at the middleware
layer. Flaskdroid [34] by Bugiel et al. follows the lines of SE Android and introduces a
generic security architecture to provide mandatory access control for both the kernel and
the middleware layer. Flaskdroid allows to instantiate previous security solutions such as
Saint [160] and bases itself on SE Android [207]. In follow-up work on Flaskdroid, Heuser
et al. developed with ASM [104] a programmable interface for implementing security
extensions in form of security applications. Backes et al. also followed up on Flaskdroid
and developed the Android Security Framework (ASF) [S3, S4], which introduces a
new security API to facilitate the development of novel security extensions that either
complement the existing Android security framework or that even partially replace it.
ASF demonstrates its efficiency by implementing previous work such as Flaskdroid [34],
CRePE [56], XManDroid [36], and even AppGuard [P4] as security modules. Zhou et
al. propose with the TISSA extension a privacy mode for smartphones in which users
can enforce a fine-grained access control for third-party applications accessing personal
information such as contacts or location data [246]. Kynoid was introduced by Schreck-
ling et al. and allows users the real-time enforcement of fine-grained and data-centric
security policies on Android [196]. The system builds up on TaintDroid by Enck et
al. [65]. Fragkaki et al. develop a formal framework (at the granularity of Android
components and content providers) for analyzing Android’s security mechanisms [76].
In addition, they introduce the SORBET system, which is designed to improve on the
current permission system [76]. It integrates a reference monitor on top of the Android
ActivityManager to allow developers the specification of secrecy and integrity policies.
The goal is to mitigate undesired flows and privilege-escalation attacks. AppGuard
aims with its secrecy policies also at the prevention of undesired information flows by
fully blocking access to sensitive data upfront a potential declassification, however, with
the advantage of not requiring changes to the operating system. In 2013, Jia et al.
introduced a new system for the runtime enforcement of information-flow properties on
Android by extending Android’s ActivityManager [117]. The system uses labels stored
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in the applications manifest file to express information-flow policies.
Trustdroid by Bugiel at al. introduces a security framework for Android that enables

domain isolation at the middleware layer, at the kernel layer, and at the network layer of
Android systems [35]. KNOX by Samsung goes in a similar direction and constitutes a
platform security extension for Android [191] that targets at enterprises and integrates a
variety of improvements: it hardens the operating system by implementing Secure Boot,
a TrustZone-based integrity monitoring, and integrating SE Android [207]. Moreover, it
ships with a variety of extensions to facility a secure device management and features
like per-application VPNs, dedicated application containers and the enforcement of data
encryption. Google and Samsung recently teamed up to integrate KNOX partially into
the upcoming Android L release [179].

4.9.3 Application Analysis and Malware Detection

In the following, we will briefly introduce several approaches to application analysis
and malware detection on Android. These approaches can be of great value for systems
like AppGuard, as they establish the knowledge-base for many meaningful security-
and privacy-protecting policies. Avik Chaudhuri introduces a typed language and
operational semantics to describe Android applications and to reason about information
flow properties at the granularity of Android components [48]. This work forms the
basis for ScanDroid [49], which is to the best of our knowledge, the first automated tool
that targets at the analysis of information flows in Android applications. The system is
based on WALA [220] and compares the specifications from the application manifest file
with the actual behavior of the app. Enck et al. subsequently introduced the TaintDroid
system [65]. It utilizes the idea of dynamic taint tracking to track information flows on
Android systems in real-time with the goal to achieve a real-time privacy monitoring.
The Paranoid Android system by Portokalidis et al. records application executions on
Android devices and replays them in a cloud service with much less resource constraints
to perform virus scanning and dynamic taint tracking. Paranoid Android has the
focus on malware detection [174]. Bläsing et al. propose AASandbox [30], an approach
capable of performing static and dynamic analysis of Android applications. Static
analysis is performed on the bytecode of third-party applications, the dynamic analysis
is subsequently performed in an extended Android version running in the standard
Android Emulator from the SDK. The authors see AASandbox as a potential cloud
service to improve the detection rate of Android anti-virus applications [30]. Gilbert
et al. introduce the AppInspector, which aims at an automated security testing of
third-party applications during the vetting process of today’s app markets [85]. The
system facilitates dynamic taint tracking to detect explicit information flows and tracks
control dependencies to detect implicit flows. Batyuk et al. use static analysis techniques
to detect malicious behavior of applications and summarize the findings in a human-
readable report for the user [23]. Afterwards, the system patches potentially malicious
behavior of the application through binary rewriting to achieve a benign application.
A typical example provided by the authors is the replacement of unique identifiers
by a random UUID. The presented system forms the basis for the Androlyzer Web
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service39. Another approach with particular focus on Android malware detection is
Andromaly [200] by Shabtai et al. The framework realizes a malware detection system
that monitors features and events on the mobile device and applies machine learning
anomaly detectors to classify the collected data as benign or malicious. According to
the authors, the framework was only tested with artificial malware since other was not
yet available. Zhou et al. introduced in 2012 the Droidranger system [245]. It includes
two mechanisms to detect malware: the first performs behavioral foot-printing based on
permissions to detect new samples of already known Android malware families. The
second mechanism performs heuristics-based filtering to identify certain typical malware
behaviors. The authors analyzed more than 200.000 applications from five app markets
and found more than 200 malicious applications including 32 in the official Google
market. Crowdroid by Burguera et al. [40] is a client-side application that monitors
system calls to the Linux kernel and sends them to a remote server. The remote server
performs behavior-based malware detection based on clustering traces retrieved from
crowd-sourcing. Bati is a powerful static analysis framework by Erik Derr [T1] to
analyze information flow properties of third-party applications. The system is under
continuous development and its current version is thought of as a tool for providing
the ground truth for application-specific AppGuard policies. In a similar direction goes
the FlowDroid system. It is based on the SUSI tool, a guided machine-learning approach
for detecting sources and sinks of sensitive information directly from the Android source
code [180]. FlowDroid takes the information provided by SUSI and tries to detect,
based on static analysis, information flows from sources to sinks [15]. Another very
interesting approach called CHABADA was introduced in 2014 by Gorla et al. [92]. The
system automatically clusters applications according to the descriptions in the market
and analyzes for each cluster the usage of permission protected Android APIs. Based
on an anomaly classification, the authors detect outliers regarding the API usage, which
are at least applications with unexpected behavior and likely malware candidates.

4.9.4 Securing Inter-app Communication

Applications in Android have by default zero rights. Applications are executed in an
individual sandbox as well as in their own virtual machine and their rights can be
extended at install time by requesting permission. Communication between applications
and application components is only possible via Android’s Binder-based inter-process
communication40. Although applications can protect their own APIs via extra permis-
sions, Android’s permission system does not really cover the inter-app communication,
which causes severe problems such as confused-deputy and collusion attacks. Research
has come up with several attacks and extensions to Android in order to secure the
inter-app communication. Using the insights from this research, AppGuard is able to
mitigate certain attacks until a system or application patch is available.

Davi et al. [59] show how it is possible to mount privilege escalation attacks against
third-party applications on Android. The authors identify the root cause of these
problems in deficiencies of Android’s permission-based security model. The authors

39Available at: https://www.androlyzer.com/
40Except for side-channel communication via sockets, files, etc.
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show that Android’s security model cannot cope with transitive permission usage. Porter
Felt et al. analyzed in 2011 permission re-delegation attacks and defenses [173]. A
re-delegation of permissions occurs according to the authors’ definition if a privileged
application performs an action on behalf of an unprivileged application. The authors
prove the feasibility of such attacks on Android and introduce a system called IPC
Inspection to mitigate such attacks. Quire [63] addresses the problem of confused deputy
attacks by introducing two new security mechanisms. The system tracks call-chains of
inter process communication to provide provenance information to callees. Based on this
information the callee can either drop its privileges to the caller privileges or continue
with full privileges. The second mechanism introduces a lightweight signature scheme
and allows applications to create signed messages that can easily be verified by all other
apps on the smartphone. Grace et al. developed in 2012 a tool called Woodpecker [94],
which facilitates an inter-procedural data flow analysis to detect applications that
leak permissions via unprotected APIs. The authors analyzed the images of eight
popular Android smartphones by HTC, Motorola, Samsung, as well as Google and
found for 13 analyzed permissions eleven permissions that where leaked at least on one
phone. ComDroid by Chin et al. targets at improving the analysis of inter application
communication by analyzing bytecode [54]. The tool aims both at consumers and
developers and should allow them to detect potential communication vulnerabilities
in third-party applications. XManDroid41 by Bugiel et al. [36] introduces a security
framework to protect both against confused-deputy and collusion attacks. Octeau et
al. introduce a novel and sound static analysis technique for the Android platform,
which is called Epicc and targets at inter-component communication [158]. Epicc is
based on Soot and relies, therefore, in contrast to ComDroid [54] on a transformation of
Dalvik bytecode to Java bytecode. Klieber et al. introduce a new static taint analysis
for Android. The authors combine and extend the analysis of FlowDroid [15] and Epicc
to track inter-component and intra-component data flows in a set of applications [124].

41This work is based on the technical report by Bugiel et al., which introduces the name XMan-
Droid [37].
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5
Conclusion

In this dissertation we presented three tools that improve trust and privacy in already
existing ecosystems. In all three scenarios, the tools improve the state-of-the-art trust
and privacy guarantees that can be provided for already deployed systems.

The first tool is WebTrust and it provides users with the means to trust the
progressive verification of the correct transmission and authorship of static, dynamic,
and live-streamed content in HTTP-based communication. The system is fully backwards
compatible and supports both proving the authorship in front of third parties (non-
repudiation) as well as the novel concept of individual verifiability. WebTrust enables
the active revocation of documents and integrates an efficient update mechanism
for protected data. The system allows to efficiently serve content via Web caches
and content distribution networks, which reduces the overall network congestion. We
presented a prototype implementation of WebTrust and conducted a series of performance
measurements to prove the feasibility of the approach.

Second, we presented X-pire! and X-pire 2.0, two implementations of a digital expi-
ration date for images in social networks. Both systems achieve this goal by encrypting
images and using a novel technique to robustly embed the encrypted images into valid
JPEG-files. Background of the embedding is the goal of achieving compatibility with
the existing infrastructure so that the container images with the embedded encryptions
are able to survive the recompression of existing upload routines in social networks.
X-pire! is a solution purely in software and poses trust assumptions on both the systems’
users and the operating system. In particular, X-pire! assumes that legitimate viewers
of protected images do not copy decrypted images or the corresponding keys. X-pire
2.0 overcomes this limitation and poses no assumptions on the trustworthiness of users
by leveraging ARM’s trusted computing framework named TrustZone to provide robust
guarantees. X-pire 2.0 is a general publication framework for digital content and can
easily be adapted for data types other than images, as well as for other publication
platforms than social networks. Especially in cases where the publisher maintains the
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publication platform, our approach is straightforward to adapt. We have implemented
X-pire! as a Firefox browser extension and X-pire 2.0 for the Google Android plat-
form and conducted performance measurements to demonstrate the efficiency of both
approaches.

Finally we presented AppGuard, a powerful framework for the enforcement of
security and privacy policies on unmodified Android devices. The system is based on
inline reference monitoring and overcomes Android’s deficiencies with the permission
system: It enables the dynamic revocation of Android permissions. Furthermore,
AppGuard allows to enforce complex, fine-grained, as well as stateful security and
privacy policies on third-party applications. Another important feature is its capability
to provide a policy-based mitigation of vulnerabilities both in third-party applications
and the operating system. With AppGuard we introduce a novel policy language named
EXSPoX, which constitutes an extended version of the SPoX language as introduced by
Hamlen and Jones in 2008 [100]. EXSPoX describes security automata and provides
the transformation capabilities of edit automata. Using EXSPoX, we can specify
information flow control policies and ensure the confidentiality of data by specifying
our secret separation policies. We have proven the great utility of AppGuard to protect
the user’s privacy by enforcing a set of predefined policies on a variety of real-world
third-party applications for Android.
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