
Effective Testing for
Concurrency Bugs

Thesis for obtaining the title of

Doctor of Engineering Science of the Faculties of Natural
Science and Technology I of Saarland University

From

Pedro José Sousa da Fonseca

Saarbrücken, 13. April 2015

Date of Colloquium: 24/06/2015

Dean of Faculty: Univ.-Prof. Dr. Markus Bläser

Chair of the Committee: Prof. Dr. Andreas Zeller

First Reviewer: Prof. Dr. Rodrigo Rodrigues

Second Reviewer: Prof. Dr. Peter Druschel

Third Reviewer: Prof. Dr. George Candea

Forth Reviewer: Dr. Björn Brandenburg

Academic Assistant: Dr. Przemyslaw Grabowicz

ii

c©2015

Pedro Fonseca

ALL RIGHTS RESERVED

iii

Dedicated to my parents and brother

v

This work was supported by the

Foundation for Science and Technology of Portugal (SFRH/BD/45309/2008)

and the

Max Planck Society

vi

Abstract

In the current multi-core era, concurrency bugs are a serious threat to software reliability.

As hardware becomes more parallel, concurrent programming will become increasingly

pervasive. However, correct concurrent programming is known to be extremely chal-

lenging for developers and can easily lead to the introduction of concurrency bugs. This

dissertation addresses this challenge by proposing novel techniques to help developers

expose and detect concurrency bugs.

We conducted a bug study to better understand the external and internal effects of

real-world concurrency bugs. Our study revealed that a significant fraction of concur-

rency bugs qualify as semantic or latent bugs, which are two particularly challenging

classes of concurrency bugs. Based on the insights from the study, we propose a con-

currency bug detector, PIKE that analyzes the behavior of program executions to infer

whether concurrency bugs have been triggered during a concurrent execution. In addi-

tion, we present the design of a testing tool, SKI, that allows developers to test operating

system kernels for concurrency bugs in a practical manner. SKI bridges the gap between

user-mode testing and kernel-mode testing by enabling the systematic exploration of the

kernel thread interleaving space. Our evaluation shows that both PIKE and SKI are

effective at finding concurrency bugs.

vii

Kurzdarstellung

Im gegenwärtigen Multicore-Zeitalter sind Fehler aufgrund von Nebenläufigkeit eine ern-

sthafte Bedrohung der Zuverlässigkeit von Software. Mit der wachsenden Parallelisierung

von Hardware wird nebenläufiges Programmieren nach und nach allgegenwärtig. Diese

Art von Programmieren ist jedoch als äußerst schwierig bekannt und kann leicht zu

Programmierfehlern führen. Die vorliegende Dissertation nimmt sich dieser Heraus-

forderung an indem sie neuartige Techniken vorschlägt, die Entwicklern beim Aufdecken

von Nebenäufigkeitsfehlern helfen.

Wir führen eine Studie von Fehlern durch, um die externen und internen Effekte von

in der Praxis vorkommenden Nebenläufigkeitsfehlern besser zu verstehen. Diese ergibt,

dass ein bedeutender Anteil von solchen Fehlern als semantisch bzw. latent zu charak-

terisieren ist – zwei besonders herausfordernde Klassen von Nebenläufigkeitsfehlern.

Basierend auf den Erkenntnissen der Studie entwickeln wir einen Detektor (PIKE),

der Programmausführungen daraufhin analysiert, ob Nebenläufigkeitsfehler aufgetreten

sind. Weiterhin präsentieren wir das Design eines Testtools (SKI), das es Entwicklern

ermg̈licht, Betriebssystemkerne praktikabel auf Nebenäufigkeitsfehler zu uberprr̈ufen.

SKI füllt die Lücke zwischen Testen im Benutzermodus und Testen im Kernelmodus,

indem es die systematische Erkundung der Kernel-Thread-Verschachtelungen erlaubt.

Unsere Auswertung zeigt, dass sowohl PIKE als auch SKI effektiv Nebenläufigkeits-

fehler finden.

viii

Acknowledgements

I’m greatly indebted to my advisor, Rodrigo Rodrigues, for his continuous effort over the

years to support and encourage me. His exceptional energy and constructive optimism

were absolutely essential to the success of this work. His altruism made me a better

person.

This thesis would not exist without the contributions of my collaborators: Björn

Brandenburg, Cheng Li and Vishal Singhal. Special thanks to Björn for the feedback

and support provided during the last few years of my work.

I won’t forget that, during my first years at MPI-SWS, I learned a lot with the per-

severance and experience of Atul Singh and Andreas Haeberlen. The energy of Pramod

Bhatotia and Cheng Li was contagious. Thank you all.

My friends and colleagues at MPI-SWS, in particular the SysNets group members, had

a crucial role in producing an inspiring research environment and providing invaluable

feedback that were critical to this research. Living in Saarbrüecken, while working on

my dissertation, was an enjoyable experience, in large part, thanks to my friends.

I am grateful to my parents and my brother for their permanent support throughout

my life.

xi

Contents

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Hardware parallelism: A blessing and a curse 1

1.2 The threat of concurrency bugs . 2

1.3 Problem statement . 3

1.4 Contributions . 5

1.5 Outline . 6

2 Related work 7

2.1 Studies of bugs . 7

2.2 Testing software . 9

2.2.1 Detecting concurrency bugs . 9

2.2.2 Exposing concurrency bugs . 12

2.3 Deterministic replay . 14

2.4 Virtual machine introspection (VMI) . 14

3 Background 17

3.1 Systematic exploration of the interleaving space 17

3.1.1 PCT scheduling algorithm . 18

3.2 Database management systems . 19

3.2.1 MySQL overview . 20

3.2.2 Internal structure . 20

3.2.3 Concurrent programming . 21

3.2.4 Request vs. transaction concurrency 21

3.2.5 Storage engines . 22

3.3 Operating system kernels . 22

3.3.1 Concurrency and synchronization mechanisms 23

xiii

Contents

3.3.2 Thread affinity . 23

4 The effects of concurrency bugs 25

4.1 Overview . 25

4.2 Study methodology . 26

4.2.1 Selection of concurrency bugs . 26

4.2.2 Manual analysis of bug reports . 29

4.3 Results . 29

4.3.1 Evolution of concurrency bugs . 29

4.3.2 External effects . 30

4.3.3 Latent bugs . 32

4.3.4 Characteristics of semantic bugs 33

4.3.5 Internal effects of latent bugs . 34

4.3.6 Recovering from latent errors . 35

4.3.7 Severity and fixing complexity . 36

4.4 Limitations and discussion . 36

4.5 Summary . 38

5 Detecting latent and semantic bugs 41

5.1 Overview . 41

5.2 Semantic and latent concurrency bugs . 42

5.2.1 Linearizability: The spec from within 42

5.2.2 Capturing application state . 43

5.2.3 Maintaining the summary functions 45

5.3 PIKE: A concurrency bug finding tool . 45

5.3.1 Handling false positives . 45

5.3.2 Implementation . 47

5.4 Experience with MySQL . 48

5.4.1 State summary functions . 48

5.4.2 Input generation . 49

5.5 Results . 51

5.5.1 Development effort . 51

5.5.2 Bugs found . 51

5.5.3 False positives . 57

5.6 Limitations and discussion . 59

5.6.1 Reliance on modifications to tested software 59

5.6.2 Extending traditional test suites 60

xiv

Contents

5.7 Summary . 60

6 Exposing concurrency bugs in kernels 61

6.1 Overview . 61

6.2 Kernel API and kernel modifications . 63

6.3 SKI: Exploring kernel interleavings . 64

6.3.1 Overview . 64

6.3.2 Exercising control over threads . 65

6.3.3 Inferring liveness . 65

6.3.4 Scheduling algorithm . 67

6.3.5 Discussion . 69

6.4 Scaling to real-world kernels . 70

6.5 Implementation . 72

6.5.1 Overview . 72

6.5.2 Runnable contexts . 73

6.5.3 Helper testing framework . 73

6.5.4 Optimizations and parallelization 74

6.5.5 Bug detectors . 74

6.5.6 Traces and bug diagnosis . 75

6.6 Results . 75

6.6.1 Configuration . 76

6.6.2 Reproducing concurrency bugs . 76

6.6.3 Exposing unknown concurrency bugs 79

6.7 Limitations and discussion . 83

6.7.1 Reliance on thread pinning . 83

6.7.2 Reliance on VMM . 85

6.8 Summary . 85

7 Testing software in the real-world 87

7.1 Properties of testing tools . 87

7.1.1 Scope . 87

7.1.2 Manual effort . 88

7.1.3 Performance . 90

7.1.4 Computational resources . 90

7.2 Users of testing tools . 91

7.2.1 Developers of new features . 91

7.2.2 Internal dedicated testers . 92

xv

Contents

7.2.3 External dedicated testers . 92

7.2.4 Software end-users . 92

7.2.5 Researchers of testing tools . 93

7.2.6 Discussion . 93

7.3 Experience interacting with potential users 93

7.3.1 Reproducing bugs . 94

7.3.2 Reporting bugs . 95

7.3.3 User feedback . 96

7.4 The scalability of testing concurrent software 97

7.4.1 Prioritizing the testing space exploration 97

7.4.2 Reasoning over multiple executions 98

7.4.3 Discussion . 99

7.5 Towards reliable software . 100

8 Future research directions 103

8.1 Practical extraction of application state using its API 103

8.2 Exposing concurrency bugs due to weak-memory models 104

8.3 Exploring the input space . 105

8.3.1 Profiling-based generation of tests 105

8.3.2 Leveraging bug reports . 106

9 Conclusions 107

Bibliography 109

xvi

List of Figures

4.1 Evolution of bugs (by open date). 30

4.2 Evolution of bugs (by close date). 31

5.1 Checking for linearizability of state and outputs of two concurrent requests. 44

5.2 Overall architecture of PIKE. 46

5.3 Sample semantic bug . 55

5.4 Sample error bug . 56

5.5 Sample latent bug . 57

6.1 Two examples illustrating schedules produced by SKI. 69

6.2 Examples of equivalent and non-equivalent schedules. 71

xvii

List of Tables

4.1 Main finding of the bug study and their implications. 27

4.2 Concurrency-related keywords used for selecting bug reports. 28

4.3 Bug counts for different stages of the analysis. 28

4.4 External effects of concurrency bugs. 32

4.5 Effects of latent concurrency bugs. 34

4.6 Most frequent data structures involved in latent bugs. 35

4.7 Recovery mechanisms for latent concurrency bugs. 36

4.8 Average severity of concurrency bugs according to their immediacy and

category. 37

4.9 Complexity of fixing concurrency bugs according to their immediacy and

category. 37

5.1 Number of inputs found to trigger concurrency bugs according to latency

and external effects. 53

5.2 Properties of the triggered concurrency bugs that PIKE found. 53

5.3 Requests responsible for triggering the sample semantic bug 54

5.4 Requests responsible for triggering the sample error bug 55

5.5 Requests responsible for triggering the sample latent bug 57

6.1 SKI’s throughput running test cases to reproduce known concurrency bugs. 78

6.2 Percentage of schedules that triggered the liveness heuristics. 79

6.3 Average number of times the liveness heuristics were triggered per schedule. 79

6.4 Effectiveness of the communication points optimization. 80

6.5 Bugs discovered by SKI in recent versions of the Linux kernel. 81

6.6 Types of race reports found by SKI. 81

6.7 SKI’s throughput with different bug detectors. 82

6.8 Known bugs reproduced with SKI. 82

7.1 Summary of the properties of testing tools. 88

7.2 Summary of the profiles of different classes of users. 91

xix

1 Introduction

1.1 Hardware parallelism: A blessing and a curse

There is an ongoing and fundamental change in hardware. In the past few

decades, the performance of processors has been consistently increasing at exponential

rates [EBA+13], mostly dominated by substantial increases in the density of transistors

and in the operating frequency of processors [BC11]. However, since the mid-2000s hard-

ware architects have been facing serious challenges that have threatened the processor

performance growth that consumers and system designers have come to expect and rely

upon.

Recently, the high frequency of processors has reached a point that energy consumption

and heat dissipation have become major obstacles hindering frequency scaling [Ant14].

Because of these obstacles, hardware architects have been unable to continue ramping

the frequency of processors like they had been doing for decades. Instead, hardware

architects have now been forced to rely on other strategies to sustain performance growth.

To address these challenges, hardware architects have recently been increasing hard-

ware parallelism by shifting from a frequency scaling strategy to a multicore scaling

strategy. Consequentially, currently most commodity processors already consist of sev-

eral cores and major processor manufacturers have plans to further increase the number

of cores in subsequent generations of processors [ABD+09]. But shifting to multicore

scaling is a significant departure from previous growing strategies because, in contrast

with other design strategies (e.g. frequency scaling), hardware parallelism is not trans-

parent to software.

The lack of transparency of hardware parallelism, as expected, is having a profound

impact on software and on programmers: the multi-core era represents an unprecedented

shift in paradigm with regard to the way software is built, maintained and executed.

To take advantage of parallel hardware, software is expected to become increasingly

parallel itself [HM08]. However, developing parallel software is well known to be a very

challenging task for programmers and prone to concurrency bugs [SBN+97].

1

1 Introduction

1.2 The threat of concurrency bugs

It is challenging to develop parallel software. Developing parallel software requires the

programmer to keep track of all the possible communication patterns due to the, typi-

cally, extremely large number of possible interleavings between different tasks. While it

is possible to create parallel applications using different communication paradigms, in

this work we focus on the multi-threading paradigm, which relies on the use of threads

and on the shared memory model, that has been found to be a practical and popular pro-

gramming model. For multi-threaded applications, the communication between threads

and the large set of possible interleavings significantly increase the level of complexity

of software development. When programmers fail to program correctly a multi-threaded

application, they run the risk of introducing concurrency bugs in software, which are a

particularly challenging class of bugs.

Concurrency bugs constitute an important class of bugs. Concurrency bugs are only

triggered when multi-threaded software simultaneously receives certain inputs and is

executed under certain interleavings of instructions, as chosen by the operating system

scheduler. It is the dependency on the interleaving of instructions that sets apart con-

currency bugs from non-concurrency bugs. This key difference is responsible for the

non-deterministic nature of concurrency bugs, and, it is the reason why concurrency

bugs are also referred to as Heisenbugs [Gra86].

The non-deterministic nature of concurrency bugs makes concurrency bugs hard to

find, hard to reproduce and hard to fix. Because these bugs are non-deterministic it is

hard for developers to come across concurrency bugs using traditional testing methodolo-

gies. Even when developers do witness the application’s misbehavior it is hard for them

to reproduce the bug by re-executing the application given that it requires the operating

system to choose again the same or equivalent thread interleavings, while keeping the

original environment. And when developers are able to find and reproduce concurrency

bugs it is still challenging to apply a fix and, unfortunately, easy to (re)introduce the

same or different concurrency bugs.

In addition to being challenging for developers, concurrency bugs are also known to

cause significant damage to users and are considered to be a serious treat to software

reliability. Prominent examples of serious harm caused by concurrency bugs include

the 2003 large-scale US blackout [GEE], which affected millions of people, and the fatal

Therac-25 incident [LT93], which caused loss of human lives. Given that parallel software

is expected to have an increasingly prominent role in computer systems, it is imperative

2

1.3 Problem statement

to provide programmers with tools and methodologies to help them to better handle

concurrency bugs [ABD+09].

1.3 Problem statement

This dissertation addresses two important problems that arise in the context of testing

large-scale software for concurrency bugs: detecting bugs and exposing bugs.

Detecting bugs consists in distinguishing correct software behavior from incorrect

behavior. Some bugs have obvious manifestations, which simplifies detection during

testing, for instance, bugs that lead to the execution of illegal instructions are trivially

detected. However, because other bugs have subtle effects, such as providing a syntac-

tically correct response but with incorrect content, bug detection can be exceptionally

hard.

Because of the size of current software and its complexity, in general, it is not feasible

to ask developers to manually write the entire specification of the software. Therefore

detecting concurrency bugs using the explicit specification approach, which would be

the most effective solution assuming a correct and complete specification, is in practice

in the case of the most complex software.

An alternative to manually specifying the correct behavior of software is to rely on

manual inspection of their behavior by the programmers themselves. Unfortunately,

some concurrency bugs are not easily detected by the programmers because they lead

to non-obvious failures or because it is hard to witness the failures. For example, the

application might simply return stale results to users, as opposed to returning error or

warning messages. In these difficult cases, without automatic bug detection mechanisms,

the programmer does not easily notice that an instance of incorrect behavior occurred.

Similarly, even the software users may be unable to promptly detect such concurrency

bugs, even when triggered. For this reason, effective bug detection mechanisms are

important to test concurrent software.

In this work we developed a new systematic concurrency bug detection approach that

targets particularly challenging classes of bugs. The basic idea of our approach is to

detect concurrency bugs by executing multi-threaded applications and analyzing their

behavior under different thread interleavings. More specifically, our approach compares a

given execution, when certain requests are executed concurrently, with the corresponding

linearized executions [HW90] of the same requests. To understand the viability of this

approach and to guide the development of our bug detector, we conducted a study of

real-world concurrency bugs.

3

1 Introduction

Our study resulted in the discovery of several cases of concurrency bugs which manifest

themselves in non-obvious ways – i.e., by providing wrong results to the user (semantic

concurrency bugs). This type of misbehavior contrasts with the one of other concurrency

bugs which instead produce immediate effects that are easily detected by the developer

and even the users. A typical example of an easily detectable misbehavior is an ap-

plication crash. In addition, the study also lead to the discovery of several cases of

concurrency bugs that are not immediately exposed to the user when triggered (latent

concurrency bugs). This latter class of concurrency bugs is also hard to detect because

it is difficult to expose the effects of these bugs to developers, since even after being

triggered their effects may not be externally visible.

Because these two classes of concurrency bugs have been found to impair real-world

applications and because there is a lack of effective approaches to detect them, it is im-

portant to develop better detection approaches. This dissertation addresses this problem

by presenting a novel detection technique that targets semantic and latent concurrency

bugs, having the advantage of not requiring the programmer to specify the correct be-

havior of the application. Our approach consists of implicitly extracting a specification

of the application by testing if the application obeys linearizable semantics [HW90]. In-

tuitively, linearizability means that the application, when executing concurrent requests,

behaves as if the requests were executed serially, in some order that is consistent with

the real-time ordering of the invocations and replies to the requests.

By systematically testing if linearizability is upheld, our approach is able to find subtle

violations of the application semantics. Furthermore, by checking if both the output and

the internal state of the application obey the inferred semantics, our approach is capable

of identifying not only the bugs that manifest themselves immediately as a wrong output

(semantic bugs), but also those that silently corrupt internal state (latent bugs).

Apart from the problem of detecting concurrency bugs during an execution, this dis-

sertation addresses a second important problem which is the need to expose concur-

rency bugs, that is, the need to generate executions that cause concurrency bugs to

become visible to bug detectors. To generate such executions, and given the schedule

dependency of concurrency bugs, concurrency testing techniques have to explore the

interleaving space of the application.

In general, exploring the thread interleaving space is challenging because of the vast

size of this space. For complex applications it is not feasible to exhaustively perform

this exploration. Instead of exhaustively exploring the interleaving space, there are

better approaches that perform the interleaving space exploration cleverly, by avoiding

redundancies and prioritizing the most important points in this space.

4

1.4 Contributions

Systematic approaches have been proposed for testing user-mode applications. How-

ever, unfortunately, we are not aware of any previous tool that accomplishes systematic

exploration of the interleaving space for real-world kernels – despite the fact that kernels

are typically highly complex and absolutely critical for the reliability of systems. While

in user-mode there exist tools for the purpose of exploring the thread interleaving space,

it is challenging to directly apply these tools to the kernel because such approach would

require modifications to the kernel. We believe that requiring developers to modify the

kernel would become a major obstacle in the adoption of these testing tools, as it would

require an initial development effort and also a significant maintenance effort, as the ker-

nel evolves. Instead, this dissertation explores a different design by proposing a practical

kernel testing approach that is effective and simultaneously avoids the need for kernel

modifications.

This kernel testing approach controls the interleaving of the kernel threads by relying

on a modified virtual machine monitor. Using standard OS mechanisms to associate

threads to specific virtual processors (i.e., processor affinity), it relies on using a virtual

machine monitor to control the relative speed of different threads, by independently

suspending and resuming the execution of machine instructions for each of the virtual

processors. This is a convenient mechanism to control the progress of threads but it

is not by itself sufficient to implement state-of-the-art thread interleaving exploration

algorithms [BKMN10, MQB+08]. Existing algorithms were not intended to be applied

to kernels and so do not address interrupts which are an important source of concurrency

in kernels. Therefore these algorithms need to be extended to be effective for testing

kernels. Another challenge arises from the fact that existing algorithms, apart from

requiring a method to exercise control over the progress of threads, additionally require

information about the liveness of individual threads. To gather this information our

approach relies on the use of heuristics that analyze the execution of instructions to

infer the state of threads (e.g., whether the CPU is actually making progress or whether

the CPU is waiting on a spin-lock).

1.4 Contributions

This dissertation makes the following main contributions to the state-of-the-art:

• A study on the effects of real-world concurrency bugs. The definition, along with

results that show the existence, of two complex and orthogonal types of concur-

rency bugs: semantic concurrency bugs and latent concurrency bugs.

5

1 Introduction

• A set of guidelines to annotate the state of complex applications that enables state

comparison between different executions of the application.

• A method to infer the specification of complex applications by analyzing the behav-

ior of the application when executed under different thread interleavings. The in-

ferred specification can then be used to detect concurrency bugs during application

executions. In addition, we found concrete evidence that MySQL, an important

and complex application, in the general case is expected to provide linearizability

semantics at the level of user requests.

• A method, based on virtual machines, to systematically explore the interleaving

space of unmodified operating system kernels and a set of techniques to efficiently

achieve fine-control of the thread interleavings.

Furthermore, in the context of the work presented in this dissertation, two systems

were implemented:

• PIKE: A bug detector that detects both semantic concurrency bugs and latent

concurrency bugs.

• SKI: A testing tool that exposes concurrency bugs in operating system kernels

using a virtual machine monitor.

1.5 Outline

The rest of this dissertation1 is structured as follows. Chapter 2 discusses the related

work and Chapter 3 discusses important background. Chapter 4 presents an overview

of the methodology and the results of the study on the effects of real-world concurrency

bugs. Chapter 5 presents our bug detection proposal that targets semantic and latent

concurrency bugs. Chapter 6 presents our approach to systematically explore the inter-

leaving space of kernels. Chapter 7 discusses several important aspects of testing tools,

in general, and describes our experience interacting with developers and applying our

tools to the real-world. Chapter 8 discusses future research directions and finally we

conclude the dissertation with Chapter 9.

1This dissertation incorporates and extends work previously published [FLSR10, FLR11, FRB14].
Namely, this work additionally includes Chapter 7, Chapter 8 and a general consolidation and revision
of the text.

6

2 Related work

This chapter relates the work presented in this dissertation with previous work. First

we discuss existing work on the characteristics of bugs and in the context of detecting

and exposing bugs. We then discuss previous work on deterministic replay and virtual

machine introspection techniques, which is work specifically related to SKI.

2.1 Studies of bugs

Chapter 4 presents a study of real-world concurrency bugs. A series of related studies

have been conducted before and after ours. In particular, there is a large body of

literature about the propagation [VT06, PLM+10a] and even prediction [NZHZ07, NB05,

RKBD14, LLS+13] of bugs in source code. Some of these studies use the revision control

system to understand the behavior of programmers and its effects on software reliability

(e.g., which components or source code files are most prone to errors). This work is

complementary to the study conducted in this dissertation, which is focused on a specific

class of bugs (i.e., concurrency bugs) and on understanding their consequences.

In previous work, researchers analyzed the consequences of bugs for three different

database systems [VBLM07]. However the authors did not distinguish between con-

currency and non-concurrency bugs, and only evaluated whether they caused crash or

Byzantine faults, since that work was focused on presenting a replication architecture,

instead of being focused on studying bugs.

Chandra and Chen [CC00] looked at the bug databases of three open-source applica-

tions (Apache web server, GNOME desktop environment and MySQL database) but the

focus of their work was quite different from ours. They analyzed all bugs (among which

only 12 were concurrency bugs) and focused exclusively on determining whether generic

recovery techniques such as process pairs would be effective in tolerating them. In their

case, concurrency bugs were only one possible type of bug that fell into the category

for which such techniques are effective. In contrast, we focus on a more narrow class of

bugs by limiting ourselves to concurrency bugs, but provide a broader analysis taking

into consideration several characteristics of these bugs.

7

2 Related work

More recently, in a study focused on file systems [LADADL13], researchers analyzed

the development patches, which include but are not limited to bug fixes, of six file

systems to gather information about several broad aspects of their development. Among

these aspects, the authors analyzed the type of patches (e.g., whether they contribute

with documentation, new features or bug fixes). Their analysis on bug fixing patches

included semantic bugs and concurrency bugs, but not concurrency semantic bugs nor

concurrency latent bugs, which is an important aspect analyzed in our study.

The reliability of older database systems was carefully studied by Sullivan and

Chillarege [SC92]. In this study, Sullivan and Chillarege analyzed the DB2 and IMS

database systems, as well as the MVS operating system, by inspecting reports filed by

dedicated field personnel. The focus of this study was not on concurrency, but con-

currency was also analyzed and the authors concluded that the user interface of the

database was a typical source of concurrency bugs.

Farchi et al. analyzed concurrency bugs, but by artificially creating them [FNU03].

The methodology adopted by the study was to ask programmers to write programs con-

taining concurrency bugs, which arguably may not lead to bugs that are representative

of real-world problems. In contrast, we analyze a database of bugs in a widely used,

well-maintained application.

Lu et al. [LPSZ08] studied real concurrency bugs that were found in four open-source

applications. Using the respective bug report databases, the authors analyzed a total

of 105 concurrency bugs. Their study focused on several aspects of the causes of con-

currency bugs, and the study of their effects was limited to determining whether they

caused deadlocks or not. We build on this study, in particular by using a very similar

methodology for deciding which bugs to analyze, but provide a complementary angle by

studying the effects of concurrency bugs (e.g., whether concurrency bugs are latent or

not, or what type of failures they cause).

Sahoo et al. analyzed the reproducibility of bugs [SCA09, SCA10]. While the main

focus of their study was not concurrency bugs, the authors distinguished concurrency

bugs from non-concurrency bugs when trying to characterize their reproducibility. The

study analyzed several server applications focusing on the properties of the inputs that

are required to trigger bugs. Interestingly their study concluded that a large percentage

of bugs, 77%, can be triggered by just providing one input after the client establishing

a session with the server.

Lin et. al [TLL+14] analyzed bugs found in the Linux kernel and in two user-mode ap-

plications (the Mozilla browser and the Apache web server). Their study concluded that

the kernel has a significantly higher fraction of concurrency bugs (13.6%), in comparison

8

2.2 Testing software

with the user mode applications studied (1.2% for Mozilla and 5.2% for Apache), and

suggest that it may be caused by the complexity of the kernel synchronization. Further-

more the authors found that 10.2% of all kernel bugs studied are related to interrupt

handling, such as missing instructions to enable or disable interrupts at the appropriate

locations.

Other researchers have studied bugs in the context of other concurrency paradigms,

namely large-scale data processing frameworks (e.g., MapReduce [LZL+13a] and

SCOPE [KTGN10]). In contrast, the focus of this dissertation is on shared memory

multi-threaded applications.

2.2 Testing software

Testing software is a very difficult task and many different approaches have been pro-

posed in the past to address this challenge. Testing tools can be broadly divided into

static analysis and dynamic analysis tools depending, respectively, on whether they sim-

ply analyze the source code or actually execute the code. Furthermore, a few hybrid

tools attempt to leverage the advantages of both of these approaches by having both a

static and a dynamic analysis component [KZC13, CLL+02, EQT07, SC07].

Static tools such as RacerX [EA03] and others [NAW06, BLR02] have the advantage

of not being limited in their analysis to the execution path determined by the input. In

contrast, dynamic analysis tools, since they actually run the code, have the advantage of

having more information about the context of the execution and therefore can potentially

achieve a higher accuracy (i.e., fewer false positives). SKI and PIKE are examples of

dynamic analysis tools. Other examples include FastTrack [FF09], LiteRace [MMN09]

and Eraser [SBN+97].

Because dynamic testing tools run the tested applications and bugs might only mani-

fest under certain inputs and/or under certain interleavings of threads, dynamic testing

approaches require a method to explore different control and data paths [RW85], and a

method to analyze those executions, to detect bugs in the executions. Section 2.2.1 dis-

cusses in detail several proposed techniques to detect concurrency bugs and Section 2.2.2

discusses previous work in the context of exposing concurrency bugs.

2.2.1 Detecting concurrency bugs

Given the specifics of concurrency bugs, researchers have developed different types of

bug detectors to handle this special class of bugs. In this section, we discuss existing

9

2 Related work

concurrency bug detectors, including data race detectors and linearizability checkers,

which are two important classes of concurrency bug detectors.

Data race detectors

Data races occur when pairs of data memory accesses, in which at least one access is

a write, are not synchronized and can be executed at the same time. Although data

races are not necessarily bugs and not all concurrency bugs are data races, experience

has shown that data races are dangerous and can easily lead to application behavior

that is unintended by the developers, namely concurrency bugs. Thus, many data race

detectors have been proposed with the goal of detecting concurrency bugs [SBN+97,

VCFN11, LTQZ06, FF04, YRC05, BCM10, MMN09, FLR11, LOCb, EMBO10].

Data race detectors can be roughly divided into two types depending on which al-

gorithm they use. The first type of data race detector relies on the lockset algo-

rithm [SBN+97] to infer whether the programmer protected all accesses to a specific

shared variable with a common lock. The second type of data race detector relies on the

happens-before algorithm [FF09, MMN09]. Recently, Erickson et al. have proposed a

different data race detector, DataCollider, that is not based on either of these algorithms,

but is instead based on sampling and the use of breakpoints [EMBO10]. In Section 6.5.5

we explain how SKI combines the approach of DataCollider, to detect kernel data races,

with a novel method to expose kernel concurrency bugs.

Like PIKE, data race detectors are tools that are able to be detect concurrency bugs,

however they have distinct features. First, data race detectors detect data races instead

of directly detecting concurrency bugs. Since programs often contain benign data races,

simply detecting data races easily leads to false positives. Furthermore the absence of

data races is not a guarantee of correct synchronization [AHB03, LTQZ06], and hence

false negatives can result. Another difference is that race detectors typically operate at

the lower-level of individual memory accesses. In contrast, PIKE analyzes the actual

output of the application as well as a high-level digest of the state, potentially uncovering

bugs that are not triggered by low-level data races and also facilitating the process of

inspecting the results.

In order to reduce the number of false positives in data race finding tools and thus

reduce the burden on testers, researchers have developed heuristics. By using heuris-

tics some systems attempt to identify scenarios that frequently lead to false positives.

DataCollider [EMBO10], for example, tries to detect benign data races caused by coun-

ters and accesses to different bits of the same variable. One approach is to use heuristics

that rely on looking at the instructions at or near the problematic accesses or on man-

10

2.2 Testing software

ually white-listing variables. The disadvantage of this approach is that it also increases

the risk of missing erroneous data races. Another interesting approach to distinguish

erroneous data races from benign data races relies on replaying the execution [NWT+07].

It attempts to trigger the opposite outcome of the data race and then comparing the

low-level results obtained with both data race outcomes. This approach, however, still

aims at finding low-level data races. RedFlag [UBH09] is another example of a concur-

rency bug detector for the kernel that combines a block-based atomicity checker [WS06]

with a lockset-based data race detector [SBN+97].

Linearizability checkers

PIKE uses linearizability as a specification and differs from previous propos-

als [BDMT10, XBH05a, VYY09, Vaf10] that use this approach in two ways. First,

previous approaches typically ignore the internal state of the application, which is im-

portant for the detection of latent bugs. Second, previous approaches check for the

atomicity of smaller sections of code such as code blocks or library calls, which poses

fewer challenges than testing the linearizability of large server applications and does not

allow for the detection of some concurrency bugs.

AVIO [LTQZ06] detects atomicity violations at the level of individual memory ac-

cesses. AVIO achieves this by learning from a large set of runs (which are assumed to be

correct) the valid memory access patterns (e.g., when are two consecutive accesses from

a thread allowed to be interleaved by an access from another thread). AVIO shares our

goal of attempting to find concurrency bugs without relying on finding data races, but

in contrast AVIO works at a low-level and relies on training.

Other detectors

Huang et. al proposed a bug detector [HHS13] that identifies pairs of critical sections

that non-deterministically change the contents of shared memory, depending on their

execution order. This analysis, in essence, relies on detecting whether critical sections

are commutative.

CAFA [HYN+14] finds concurrency bugs in the context of event-driven programming

frameworks for mobile devices. CAFA leverages a causality model of the underlying

mobile operating system to find concurrency bugs caused by use-after-free violations.

The causality model enables the tool to understand the dependencies between events

and, therefore, limits the false positives. Other researchers have addressed the problem

11

2 Related work

of detecting concurrency bugs in different types of event-based frameworks [PVSD12,

RVS13].

2.2.2 Exposing concurrency bugs

Dynamic testing requires executing non-concurrent applications with a diverse set of

inputs to ensure high testing coverage and, therefore, increase the chances of exposing

bugs. In addition to testing with a diverse set of inputs, concurrent applications also

need to be tested with a diverse set of thread interleavings given that concurrency bugs

are only exposed under a subset of all possible interleavings. This section describes

the related work in the context of exposing concurrency bugs, with regard to both

interleaving and input space exploration.

Interleaving space exploration

When a multi-threaded application runs natively, the operating system tends to choose

similar thread interleavings for different executions. Because the interleaving diversity is

important to ensure the effectiveness of testing concurrent applications, many approaches

have been proposed to address this problem.

The traditional approach for increasing the diversity of interleavings is to rely on

stress testing – i.e., repeatedly run the tested application several times hoping that

eventually a large and representative set of interleavings is explored. To further increase

the effectiveness of this technique, several methods have been proposed to augment

stress testing with noise generators [BAEFU06b, BAEFU06a, Sto02, PLZ09, EMBO10,

BFM+05, Sen08] that can disturb the scheduling of threads, for example, by introducing

random sleeps, to further increase the coverage of the interleaving space.

The stress testing approach has several advantages, such as typically requiring a simple

setup and having low run-time overheads. However, because these approaches do not

have fine control over the interleavings that are explored, the common limitation to these

approaches is that they do not systematically explore the thread interleaving space

To address this limitation, a different class of tools has been proposed to test for

concurrency bugs [MQB+08, BKMN10, NBMM12a]. This approach relies on taking

full control of the scheduling of threads to avoid redundant interleavings and, therefore,

increases the effectiveness of testing [BKMN10]. A previous attempt [Blu12] to system-

atically test kernel code has focused on small-scale educational kernels and relied on

modifications to the tested kernels. SKI follows the systematic approach, but distin-

12

2.2 Testing software

guishes itself from existing tools by being applicable to kernel code and by being scalable

to real-world kernels.

Because the interleaving space is extremely large, systematic tools take advantage

of different techniques to restrict the interleaving exploration while still ensuring ef-

fectiveness. Examples used in the context of user-mode testing include preemption

bounding [MQB+08], reschedule bounding [BKMN10] and the elimination of redun-

dant interleavings [God97]. Other work has proposed limiting the valid run-time sched-

ules by reducing or eliminating the interleavings non-determinism [WTH+12, YCW+14,

CWTY10, LCB11, DLCO09, CSL+13, CWG+11]. Restricting the interleavings by ap-

plying these techniques could further increase the effectiveness of systematic testing

approaches.

Symbolic execution [Kin76, Cla76, CDE08, CKC11] is an analysis technique that sys-

tematically explores the application execution path space by keeping track, during execu-

tion, of symbolic values instead of concrete values. Symbolic execution has been applied

to multi-threaded applications by implementing a custom user-mode scheduler [KZC12].

More recently, SymDrive [RKS12] has been successful at testing kernel device drivers

using symbolic execution, although it requires modifications to the kernel and does not

target concurrency bugs. Similarly, SWIFT [CRCM12] uses symbolic execution to test

kernel file system checkers but does not target concurrency bugs.

Similarly to shared-memory systems, which are the focus of this dissertation, dis-

tributed systems are also prone to schedule-dependent bugs [Liu07, LZL+13b, RKW+06]

and the complexity of distributed systems also justifies the need for dedicated techniques

to scale to real-world applications. For example, CrystalBall [YKKK09] proposes model

checking live systems and steering their execution away from states that trigger bugs. By

exploring states based on snapshots of live systems, CrystalBall is able to explore states

that are more likely to be relevant to the current execution than conducting the entire

exploration from a single initial state. MoDist [YCW+09] also finds bugs in distributed

systems but does so transparently, without requiring implementations to be written in

special languages. MoDist is able to scale to complex implementations by judiciously

simulating events that typically trigger bugs, such as the reordering of messages and the

expiration of timers.

Input space exploration

Dynamic testing techniques require running the tested software and providing it

with testing input. The traditional approach has relied on manually writing test

cases [GHK+01], but more sophisticated approaches have been proposed to address

13

2 Related work

this challenge. Such approaches include blackbox fuzzers [BM83], semantically-aware

fuzzers [TRI, Ait02] and symbolic execution techniques [GKS05, CDE08, Kin76].

Because file systems have a particularly large input space and are critical compo-

nents in the system, file system testing has been a particularly active area of re-

search [ADADB+06, YSE06, YTEM04, CRCM12, MDADAD13]. Even though the focus

of PIKE and SKI is on the detection of concurrency bugs and on the exploration of

the interleaving space, respectively, to evaluate our testing tools, we explored the input

space using adapted test suites.

2.3 Deterministic replay

Determinism is valuable for diagnosing concurrency bugs [AWHF10, LCB11, BYLN09,

DLCO09, CSL+13, CWG+11, SSV13], but ensuring determinism is orthogonal to the

problems that PIKE and SKI address.

Given the same, fixed testing parameters, SKI, like its user-mode counterparts, can

deterministically re-execute the same schedule, provided the kernel is given identical

input in each run. Currently, SKI does not ensure that the same hardware input is

provided to the kernel (e.g., low-granularity timer values). However such guarantee

could be provided by SKI by augmenting SKI with a deterministic layer, running below

the VMM [LCB11], or by modifying the VMM [DLFC08, XMS+07, SSV13]. In the case

of PIKE determinism could be guaranteed by ensuring that the application receives the

same input from the operating system on every execution [LVN10, SKAZ04].

2.4 Virtual machine introspection (VMI)

Several VMM mechanisms have been proposed to infer high-level information of virtual

machines [CN01]. In many cases the purpose of these mechanisms is to increase perfor-

mance. Examples include improving the host memory usage by inferring which guest

memory is actively being used [CLC13], improving IO performance by anticipating IO

requests [JADAD06] and improving the scalability of virtual machine monitors by in-

ferring whether the virtual machine is executing critical sections [WLC+11, ULSD04].

In addition, VMI techniques have been leveraged to gather information about virtual

machines in security contexts [NBH08].

Using similar introspection techniques, SKI infers the liveness of threads for the pur-

pose of achieving fine-level control over the threads schedules. For example, SKI lever-

ages the observation that the PAUSE instruction is typically associated with spin-locks,

14

2.4 Virtual machine introspection (VMI)

as does the work of Wang et. al [WLC+11] in the context of increasing VMM perfor-

mance.

15

3 Background

This chapter provides background on the approach of systematically exploring the inter-

leaving space of software and, specifically, describes a state-of-the algorithm that follows

this approach for testing user-mode applications – the PCT algorithm [BKMN10] We

leverage PCT, in Chapter 5, to test user-mode applications and we generalize PCT, in

Chapter 6, to test kernels.

In addition, this chapter discusses two important types of software, which are analyzed

and tested in this dissertation, that are typically particularly complex: database manage-

ment systems and operating system kernels. Besides being highly complex, both types

of software have a critical role in our societies. In fact, databases are fundamental to

support the core business functions of many companies and the entire reliability of com-

puter systems typically depends on operating systems. Section 3.2 provides background

on database management systems and Section 3.3 provides background on operating

system kernels.

3.1 Systematic exploration of the interleaving space

The systematic exploration of the interleaving space, in contrast with the stress testing

approach, relies on judiciously controlling the thread schedule for each execution of the

software under test to maximize the coverage of the interleaving space.

To achieve systematic control over interleavings, these approaches rely on a custom

thread scheduler that implements two basic mechanisms:

• Liveness inference. The first mechanism infers thread liveness to understand

which schedules it can choose. Liveness can be inferred by intercepting and under-

standing the semantics of the synchronization functions.

• Schedule enforcement. The second mechanism overrides the regular scheduler

by allowing only a specifically chosen thread to make progress at any point in time.

The schedule can be enforced by creating additional scheduling constraints that

reduce the freedom of the standard scheduler.

17

3 Background

Often, both of these essential mechanisms, are portably implemented through a proxy

layer (e.g., through LD PRELOAD or ptrace) that intercepts all relevant synchronization

primitives to infer and override the liveness state of each thread [MQB+08, BKMN10,

NBMM12a].

In addition to the liveness inference and schedule enforcement, the systematic ap-

proach also requires a scheduling algorithm to select the schedules explored during each

execution. In the following section, we discuss in detail an important algorithm –the

PCT algorithm –which is leveraged in this dissertation.

3.1.1 PCT scheduling algorithm

Both PIKE and SKI rely on the PCT scheduling algorithm. As discussed in Sec-

tion 2.2.2, PCT is part of a class of testing algorithms that systematically explores the

interleaving space of user-mode applications. As opposed to stress testing approaches,

systematic approaches increase the effectiveness of testing by avoiding redundant inter-

leavings and by prioritizing interleavings that are more likely to expose bugs, e.g., those

that differ more from interleavings that have already been explored. PCT has been

shown to be more effective, both analytically and empirically, than traditional ad hoc

approaches [BKMN10].

Algorithm

Conceptually, PCT implements a custom scheduler that executes instructions sequen-

tially one by one; that is, at any point during the execution, only one of the live threads

is allowed to progress, and the eligibility of the thread to execute another instruction

is re-evaluated after each instruction. Through this process, the scheduler is able to

effectively control the chosen interleaving.

To achieve a good diversity of schedules across different runs, the scheduler uses two

strategies. The first strategy is to randomly assign initial priorities to the threads, and

use these priorities instead of a fixed order to determine the thread that should run

at each instant – this is the thread with the highest priority among those that are not

blocked.

The second strategy consists of reducing, at random points during the execution of a

test, the priority of the thread that is scheduled. If the priority decrease is large enough,

this will cause another thread to become the one with the highest priority, and therefore

this other thread will be scheduled to run. By varying both the initial priorities and the

18

3.2 Database management systems

location of such reschedule points in a controlled way, the scheduler is able to control the

range of tested schedules.

The reschedule points are chosen prior to each run by randomly selecting a set of offsets

from the start of the test (in terms of the total number of instructions executed) within

a certain range. Then, during the execution, whenever the total number of instructions

executed reaches one of these offsets, the priority of the currently scheduled thread is

lowered so that it becomes the lowest-priority thread, and thus another runnable thread

is selected for execution in the next step.

The set of reschedule points is determined according to two parameters: the expected

number of execution steps k and the desired number of reschedule points p, with the

simple interpretation that there will be up to p reschedules within the first k instructions

of the execution of the test (and none thereafter, should the test execute for more than

k instructions). That is, for a given k and p, the set of p reschedule points is selected by

choosing uniformly at random p offsets from the range [0, k].

Effectiveness

Burckhardt et al. define the concept of bug depth, in addition to proposing the PCT

algorithm. The authors of PCT define the depth of a bug as “the minimum number of

scheduling constraints that are sufficient to find the bug” and postulate that, in practice,

most concurrency bugs have a small depth [BKMN10]. In fact, the empirical evaluation

that the authors have conducted suggests that often concurrency bugs have depths that

are limited to 1 or 2.

The PCT algorithm has been shown to be empirically effective, in particular more

effective than CHESS [MQB+08], and additionally has the advantage of providing a

probabilistic guarantee – the PCT algorithm guarantees that concurrency bugs of a

given bug depth, p, in the context of single run of a program with n threads and k

instructions, are exposed by the scheduler with a probability of at least 1/nkp−1.

3.2 Database management systems

This dissertation considers MySQL, a widely adopted implementation of a relational

database (RDBMS), for the purpose of analyzing real-world concurrency bugs and for

evaluating PIKE. MySQL supports the SQL interface, a complex interface, specified by

hundreds of pages [SQL], that is the de-facto standard for interacting with RDBMSs.

In addition to implementing support for this complex interface, databases often have

other important constraints, such as the need to provide fast performance and the need

19

3 Background

to satisfy the ACID properties, that further increase the challenge of ensuring a correct

database implementation. The rest of this section provides background information on

MySQL that is relevant for Chapter 4 and Chapter 5.

3.2.1 MySQL overview

MySQL represents an interesting and challenging case study for our work on analyzing

and detecting concurrency bugs for several reasons. First, it is a large, complex codebase,

with about 360, 000 lines of (mostly C and C++) code and rich application semantics.

Second, databases are a critical component of the IT infrastructure of many organizations

and therefore it is important to maintain and improve their robustness. In particular,

MySQL represents a share of 40% of the database market [MYSc], and is by far the most

popular open-source database server. Finally, MySQL is a mature application with a

quality development and maintenance process.

3.2.2 Internal structure

MySQL is a complex code base where the state of the server is spread across multiple

data structures that are stored both in memory and persistently. In this section, we

describe some of the main data structures that will be referred to in later sections.

The query cache structure contains pairs of recent instructions that read the state of

the database (SELECT statements) and their respective results. This structure has been

found by its developers to be critical for servers to achieve good performance in many

common scenarios. The query cache, as one would expect from a cache, should invalidate

the relevant entries when they become obsolete due to subsequent and conflicting writes.

If the invalidation logic in the application is incorrect it is likely that such mistakes will

lead to bugs in which the application returns the wrong results to clients.

The table cache stores a set of descriptors, each of which is an in-memory representa-

tion of a table schema. When a new thread wants to manipulate a table, it first queries

the table cache to get a table instance directly if available. Otherwise, in case of a miss,

the table schema will be loaded from disk and a new entry will be inserted into the table

cache structure.

Another important data structure are the data files. A data file is a critical data struc-

ture that stores the actual records for a particular table and is maintained in persistent

storage.

To quickly perform searches and find the relevant records in a table, avoiding sequen-

tially scanning the whole table, MySQL also maintains for each table an index file which

20

3.2 Database management systems

consists of a set of indices. Each entry in the index file consists of a pair of elements.

The first element is a key (or a group of keys) while the second element is a pointer to

the appropriate record in the data file.

The key cache is a repository for frequently used blocks from the index files of all

tables. The index block will be loaded into the key cache before the first access to a

table. From that moment on all subsequent operations will be performed on key cache

data and will be flushed back to disk at the appropriate time.

Finally, the binary log (binlog) is another important data structure in MySQL. It

stores a sequence of all operations that changed the database state, in their order of

execution. This structure is critical for replication. Replicas keep their state in sync by

shipping the binary log between them and re-executing the requests in the order they

appear. Missing entries, wrong entries or entries in the wrong order will likely cause

replicas to diverge and therefore it can seriously affect the correctness of the service.

Additionally the binary log is important for recovery purposes.

3.2.3 Concurrent programming

The use of concurrency in MySQL is typical of a server application. Clients issue several

requests to the database server, which are grouped into sessions (called connections).

Each connection is handled by a separate thread on the server side, and different threads

contend for access to many shared data structures, such as the ones we mentioned above.

To synchronize access to these structures, threads mostly resort to locks but also use

condition variables.

3.2.4 Request vs. transaction concurrency

To correctly understand the meaning of concurrency bugs the distinction between re-

quest and transaction-level concurrency needs to be clear. In a database system, client

operations are logically grouped into transactions, each of which consists of a sequence

of requests (e.g., requests to begin a transaction, read or write to the database, and

commit or abort the transaction). There is often some confusion between the notion of

concurrent transactions and concurrent requests, and which types of concurrency bugs

are the target.

Both for our concurrency bug study and PIKE we decided to focus on bugs that

are triggered by concurrent individual requests, since these are the ones that reflect the

traditional concurrency problems that arise in parallel programs. Bugs that are triggered

21

3 Background

by concurrent transactions but can be reproduced deterministically by a given sequence

of requests are not considered concurrency bugs.

Thus we define a concurrency bug as one where the application deviates from the

intended behavior, given a certain pattern of inputs, but it must be the case that the

bug is only manifested under specific thread interleavings. This definition is general

enough to include both safety problems (e.g., server crash or issuing wrong replies) and

liveness problems (e.g., deadlocks or even performance bugs).

3.2.5 Storage engines

One of the characteristics of MySQL is that it supports different mechanisms, which

are called storage engines, for internally representing and manipulating the state of the

database. Users can control which storage engine to use dynamically by parameterizing

certain requests during runtime (e.g., Create Table) or specifying configuration options

set by an administrator. Storage engines represent a significant fraction of the source

code of MySQL and implement important parts of the database functionality such as

support for indexes and caches, the granularity of locks, and support for compression,

replication, or encryption.

One of the most important storage engines in MySQL is the MyISAM storage en-

gine. MyISAM [MYI] is considered to be one of the most popular storage engines of

MySQL [STO] and it has also traditionally been the default storage engine [MYI]. In

comparison to other engines, MyISAM is optimized for throughput, and is distinctive

in that it does not provide the ability to group multiple operations into transactions:

instead users have at their disposal explicit locking mechanisms to enforce consistency

among groups of operations.

3.3 Operating system kernels

Many important operating system kernels (e.g., Windows, Linux, FreeBSD and OS X)

are extremely complex, having millions of lines of source code. This complexity is ex-

plained by the large set of functionalities that common-place monolithic kernels are

expected to implement and is responsible for making kernels testing particularly chal-

lenging. In addition, because kernels operate at the lowest level in the software stack, it

is generally harder to instrument the kernel. The rest of this section provides background

on kernels that is relevant for the work on SKI (Chapter 6).

22

3.3 Operating system kernels

3.3.1 Concurrency and synchronization mechanisms

Concurrency arises in the kernel from multiple sources. The first source is the inter-

rupt mechanism. The second source of concurrency arises from in-kernel preemptions,

i.e., when processes are preempted while executing system calls or exception handlers

in kernel mode. In-kernel preemptions are even more significant in fully preemptible

kernels [Lov10] (such as many versions of Linux), where involuntary preemptions may

be enacted by interrupts between any two kernel instructions (unless explicitly disabled

in short critical sections). Finally, the third major source of concurrency stems from the

parallel execution of kernel code on several processors in multiprocessor systems.

To ensure correct semantics, it is possible for kernel developers to restrict all these

forms of concurrency, for example, by using locks. In fact, kernel developers typically

have at their disposal a large range of synchronization solutions (e.g., per-CPU vari-

ables, atomic operations, barriers, spin locks, semaphores, seqlocks, enabling/disabling

interrupts, enabling/disabling softirqs). However, restricting concurrency has a negative

performance impact, in particular on modern multicore platforms. Kernel developers

are thus under significant pressure to increase the supported degree of concurrency, in

an effort to prevent the kernel from becoming a performance bottleneck. For example,

representative efforts in the past have included switching to locks with finer granular-

ity, adopting new synchronization mechanisms (e.g., RCU [MS98]), and rewriting key

internal algorithms of the kernel. Experience shows that such major revamping efforts

of concurrent code are rarely bug-free on the first attempt.

Thus, concurrency bugs in kernels are likely to continue to exist, and represent an

important threat to the stability and correctness of computer systems in general. We

therefore consider it to be important to develop effective tools, such as SKI, that aid

developers in finding kernel concurrency bugs.

3.3.2 Thread affinity

SKI leverages the kernel thread affinity mechanism, provided by most modern operating

systems (e.g. Linux, Windows, MacOS, FreeBSD), to achieve fine-level control of the

interleaving of the tested kernel. The thread affinity allows user mode applications

to impose scheduling constraints and is commonly used in the context of improving

application performance [VZ91]. In our work, SKI leverages thread affinity for testing

purposes by imposing a one-to-one mapping between threads, running inside the virtual

machine, and CPUs.

23

4 The effects of concurrency bugs

4.1 Overview

To improve the methods for addressing concurrency bugs, it is important to have a

thorough understanding of the characteristics of these bugs. While a few studies of

concurrency bugs exist [LPSZ08, FNU03, CC00], they either focus on artificially injected

bugs, or, in the few cases where real applications were studied, they mostly focus on the

causes of these bugs, and limit the study of their effects to whether they cause deadlocks

or not. Such studies are useful for determining what kinds of programming mistakes

are typical of such applications, and can drive the design of program analysis tools for

finding these bugs [PLZ09].

However understanding the effects of concurrency bugs is important for a different

set of reasons than why it is interesting to study their causes. Analyzing the effects

allows us to assess how efficiently existing detection approaches handle these bugs. And,

more importantly, it can serve as a guide for further development not only of tools and

methodologies that detect, but also of tools and methodologies designed to tolerate and

recover from the faults and errors caused by such bugs. To give a simple example, it

is important to understand how often concurrency bugs cause failure modes where the

server returns incorrect replies, as opposed to not providing a reply at all, in order to

gauge the effectiveness of using multi-threaded replicas to ensure fault diversity in a

Byzantine-fault-tolerant replication scheme [CL99].

In this part of the proposal we provide the complementary angle of studying the effects

of concurrency bugs that affect parallel applications. In particular, we exhaustively

study real concurrency bugs that were found in MySQL [MYSa], a mature, widely-used

database server application.

Our study produced several interesting findings. First, we found a non-negligible

number of latent concurrency bugs. Latent concurrency bugs, when triggered, do not

become immediately visible to users. Instead, these concurrency bugs first silently cor-

rupt internal data structures, and only potentially much later cause an application fail-

25

4 The effects of concurrency bugs

ure to become externally visible1. Latent concurrency bugs have been anecdotally re-

ported [EA03], but we are the first to study their extent, and their internal and external

effects in detail.

A second finding is related to bugs that cause the application to fail in ways other

than silently crashing – semantic concurrency bugs. Some of our findings were surprising,

like the fact that these bugs cause subtle changes in the output that would be difficult

to find using existing run-time monitoring tools, or the fact that there exists a strong

correlation between semantic bugs and latent bugs.

Our findings have implications for the design of tools and methodologies that address

concurrency bugs. For the convenience of the reader we present a summary of our main

findings together with their implications in Table 4.1.

The remainder of this Chapter is organized as follows. In Section 4.2 we describe our

methodology. The results of our study are presented in Section 4.3 and in Section 4.4

we discuss their implications. We present a summary of this Chapter in Section 4.5.

4.2 Study methodology

In this section we present the methodology that we adopted to find and analyze concur-

rency bugs – our methodology is similar to one used in previous work [LPSZ08, ZAH11,

JSS+12, NJT13].

We decided to study concurrency bugs in MySQL, because it is a critical component

for the industry and because it is also a mature, open-source and highly concurrent ap-

plication. Focusing on one important application allow us to study the concurrency bugs

within this scope in greater depth, although it also requires greater care in generalizing

the results, as we discuss in Section 4.4.

4.2.1 Selection of concurrency bugs

The MySQL versions that are affected by the bugs that were reported in the bug report

database range from version 3.x to 6.x and the oldest bug reports date back to 2003.

The MySQL bug report database contains a very large number of bugs. Therefore, to

make the task feasible, we automatically filtered bugs that are not likely to be relevant

by performing a search query on the bug report database.

Our search query filtered bugs based on (1) the keywords contained in the bug de-

scription, (2) the status of the bug and (3) the bug category.

1The term latent bug is used in other work [BE04, KWLM09, HP04] with an unrelated meaning – that
of a bug that went undetected by the programmer.

26

4.2 Study methodology

Finding Implication

Evolution of concurrency bugs
According to the opening dates of our sam-
pled bugs, the proportion of fixed bugs that
involved concurrency more than doubled over
the last 6 years.

This suggests an increasing need for new
tools and methodologies to handle concur-
rency bugs.

External effects of concurrency bugs
We found slightly more non-deadlock bugs
(63%) than deadlock bugs (40%).

Having good tools to handle deadlock bugs is
not enough – non-deadlock bugs also need to
handled.

We found a significant fraction of semantic
bugs (15%).

Byzantine-fault-tolerance (BFT) techniques
can potentially handle a considerable fraction
of concurrency bugs.

Immediacy of effects
Latent concurrency bugs were also found in
significant numbers (15%).

Tools and methodologies such as proactive re-
covery can be leveraged to mask errors caused
by a significant numbers of concurrency bugs.

Of the latent concurrency bugs analyzed, 92%
were semantic bugs and conversely 92% of the
semantic bugs were also latent bugs.

Given the high correlation between these
classes of bugs, techniques that handle one
class should also handle the other.

Semantic concurrency bugs
The vast majority of semantic bugs (92%) gen-
erated subtle violations of application seman-
tics.

Run-time monitoring and testing tools will
have to devise complex application-specific
checks to detect the presence of semantic bugs.

Internal data structures
Most of the examined latent bugs (92%) cor-
rupted multiple data structures.

Techniques that detect inconsistencies among
data structures could be used to detect latent
bugs. Analyzing data structures individually
might not suffice.

Severity and fixing complexity of bugs
Latent bugs were found to be slightly more
severe than non-latent bugs.

Latent bugs are an important threat to soft-
ware reliability and, therefore, latent bugs
should also be addressed.

Latent bugs were found to be easier to fix than
non-latent bugs.

Further studies should be performed to ana-
lyze the reasons for this difference.

Table 4.1: Main findings of this study and their implications. The methodology for
collecting the data presented here is described in Section 4.2 and the
results are explained in detail in Section 4.3.

We searched the MySQL bug report database for bug reports with descriptions con-

taining keywords commonly associated with concurrency bugs (Table 4.2). In addition

to searching by keywords, we searched for bugs whose status was closed (i.e., bugs that

are no longer under analysis by the developers/debuggers). It would have been interest-

ing to also consider bugs with other status (such as won’t fix and can’t repeat) but these

27

4 The effects of concurrency bugs

Keywords
atomic
compete
concurrency
deadlock
lock
mutex
race
synchronization

Table 4.2: Concurrency-related keywords used for selecting bug reports.

Phase Number of bugs
Total MySQL server closed bugs 12.5k
Concurrency related keyword matches 583
Sampled bugs 347
Concurrency bugs analyzed 80

Table 4.3: Bug counts for different stages of the analysis.

bug reports are not likely to have detailed discussions and more importantly, in general,

they will not contain patches. Without reasonably complete bug reports it would not

be possible to thoroughly understand the bugs they report.

Next, to exclude bugs from stand-alone utilities that are unrelated to the multi-

threaded server, our search query also limited the search to bugs that were related to

MySQL Server, including those that were within the Storage Engines category [Pac07].

Finally, we randomly sampled a subset of the bugs that matched our search query

and manually analyzed them. The manual inspection revealed that some of the bugs

that matched the search query were not concurrency bugs and so we also excluded

them. In addition, we excluded bug reports that did not contain enough information

to analyze them. After filtering, we obtained a final set with 80 concurrency bugs that

were analyzed – a number that is very close (or even superior) to the number of bugs

analyzed in previous concurrency bug studies [LPSZ08, CC00]. Table 4.3 shows the bug

count across the different stages of the bug selection process.

Note that the selection process used has two main limitations. First, the search query

can miss some actual concurrency bugs. However, a concurrency bug report that does

not contain any of the main keywords associated with concurrency is also more likely to

be incomplete and therefore more difficult to successfully analyze. Second, concurrency

bugs are likely to be underreported, which would explain why out of a total of about

12.5k bugs in the bug database we only found 80 concurrency bugs.

28

4.3 Results

4.2.2 Manual analysis of bug reports

We manually analyzed the bug reports of the sampled list of bugs, focusing on trying to

understand the effects of the bugs. We analyzed the bugs using information contained

in the bug reports (including the patches), as well as the source code of the application.

Bug reports contain several types of information that are useful for filtering out non-

concurrency bugs, and for understanding their characteristics. In particular, bug reports

contain not only the description of the bug, but also discussion among the developers

and users about how to diagnose and solve the problem. The information contained in

these discussions is often important to understand the bugs, in particular to determine

whether they are concurrency bugs, and to understand their effects. Typically the bug

report will also include the patch, and even the method to reproduce the bug; sometimes

more than one patch attempt is made before developers agree on a definitive patch. Bug

reports also include additional fields such as the perceived severity, the status, and the

software version affected.

We used all these types of information contained in bug reports to gain an understand-

ing of how bugs are triggered and their effects2. In addition, some of this information

was also used to estimate the complexity of fixing concurrency bugs and their severity.

4.3 Results

In this section we present the results of our analysis of the 80 concurrency bugs that

we found in the MySQL bug database. A summary of these results and their main

implications are also presented in Table 4.1.

4.3.1 Evolution of concurrency bugs

We investigated the proportion of concurrency bugs present in the bug database and how

this proportion evolves. We were interested in knowing whether concurrency bugs are

becoming more prevalent. To determine this, we identified the opening and closing year

of the concurrency bugs that we analyzed as well as of all closed bugs within the MySQL

server category. To obtain the set containing all bugs we excluded the keyword part of

the search together with the sampling phase explained in Section 4.2. For each year we

counted the number of concurrency bugs and their proportion (compared with generic

bugs). We looked at both the opening date and closing date because programmers

2The raw data gathered from this manual analysis can be found at http://www.mpi-sws.org/

~pfonseca/dsn2010-bug-study.tgz

29

http://www.mpi-sws.org/~pfonseca/dsn2010-bug-study.tgz
http://www.mpi-sws.org/~pfonseca/dsn2010-bug-study.tgz

4 The effects of concurrency bugs

 0

 5

 10

 15

 20

 25

 2003 2004 2005 2006 2007 2008 2009
 0

 5

 10

 15

 20

 25

#
 C

o
n
cu

rr
en

cy
 b

u
g
s

P
ro

p
o
rt

io
n
 (

p
er

 1
0
0
0
)

Time (year)

Concurrency bugs
Proportion

Figure 4.1: Evolution of bugs (by open date).

typically require a significant amount of time (i.e., many months) to solve the bugs

under analysis. The results are presented in Figures 4.1 and 4.2. From these results we

can see that there has been a trend of increasing number and proportion of concurrency

bugs over the years. However, this trend does not seem to be very prominent.

The data that we collected does not allow us to determine the causes underlying this

finding, however we can think of two possible reasons for this slight increase. One possible

explanation is that the advent of multi-core hardware causes users and developers to

stumble upon these bugs more often than they used to in the past. Another explanation

that we cannot rule out is that developers, while trying to further parallelize the code,

actually increase the number of concurrency bugs that they introduce.

Of the concurrency bugs that we sampled, the oldest concurrency bug was opened in

March 2nd, 2003, while the most recent was closed in September 16th, 2009. Therefore,

to make the comparison fair, we excluded the bugs that were outside this range from

the list of generic bugs used to compute the proportions.

To interpret these results it should also be taken into consideration that, as we show

in Section 4.3.7, the time it takes to close a concurrency bug can be quite long (e.g.,

some bugs took more than a year to fix). This explains why the absolute number of

bugs opened in the last year is low: many concurrency bugs potentially discovered in

2009 had not been fixed at the time our analysis took place (early 2010), which means

they were not yet closed and were, therefore, not accounted for in this study.

4.3.2 External effects

We analyzed the concurrency bugs with respect to the external effects that are exposed

to the clients, and divided these effects into six categories. The results are presented in

Table 4.4. Note that the sum of all occurrences is larger than the total number of bugs

because some bugs fit into more than one category.

30

4.3 Results

 0

 5

 10

 15

 20

 25

 2003 2004 2005 2006 2007 2008 2009
 0

 5

 10

 15

 20

 25

#
 C

o
n
cu

rr
en

cy
 b

u
g
s

P
ro

p
o
rt

io
n
 (

p
er

 1
0
0
0
)

Time (year)

Concurrency bugs
Proportion

Figure 4.2: Evolution of bugs (by close date).

We can see that there are slightly more bugs that cause non-deadlock conditions (63%)

than deadlock conditions (40%), and among the non-deadlock bugs the most prevalent

consequences are either causing the server to crash (28%) or providing the wrong results

to the user, which we term semantic bugs (15%).

Semantic bugs cause applications to provide users with results that violate the intended

semantics of the application. This is an interesting class of bugs since masking their ef-

fects requires sophisticated (and possibly expensive) techniques such as Byzantine-fault-

tolerant replication [CL99] or run-time verification of the behavior of the application

against a specification of the system [Sch95]. We discuss these bugs in more detail in

Section 4.3.4.

The high percentage of deadlock bugs that we encountered leads us to believe that,

despite significant research to address deadlock bugs, in practice this class of bugs still

constitutes a significant problem for the robustness of software. The percentage of

deadlock bugs that our study found is in line with results from other studies. For

example, Lu et al. [LPSZ08] found that up to 30% of the concurrency bugs analyzed

were deadlock bugs.

The remaining three classes of external effects were slightly less prevalent. These are

error messages (9%), which we distinguish from the class of semantic bugs, despite the

fact that when error messages are provided to the user an unexpected result is also

returned. We distinguish error bugs from semantic bugs by the fact that an error is

detected by the server and, therefore, is explicitly flagged in the reply to the client

request, and can be handled by the client application appropriately. For instance, in one

bug (bug #42519) when a restore operation is performed concurrently with an insert

operation a generic error message is returned to the user. We also found a number of

bugs (8%) in which client requests hang (the client does not receive a reply), which

differs from a deadlock situation where one thread or a series of threads are waiting in

a circular dependency. Typically, non-deadlock bugs are caused by a thread that fails

31

4 The effects of concurrency bugs

External effect Number of bugs
Crash 22
Deadlock 32
Error 7
Hang 6
Performance 5
Semantic 12

Table 4.4: External effects of concurrency bugs.

to release a certain lock, causing another thread that tries to acquire it to wait forever.

Finally, we found a few (6%) concurrency bugs that caused performance degradation

(e.g., memory leaks that increase the number of page faults the server incurs).

4.3.3 Latent bugs

Next we analyzed whether the bugs caused latent errors or not. We define a latent bug

as one where the (concurrent) requests that cause the erroneous state to occur differ

from the request (or requests) that cause the external effects of the bug to be exposed to

the clients (i.e., the violation to the application’s specification). In other words, latent

bugs cause internal data structures to be silently corrupted (i.e., an error) but do not

immediately cause a wrong output (i.e., a failure). A failure is only triggered by a

subsequent request that may not have to run concurrently with any other requests.

We found that a relevant fraction of concurrency bugs in our study were latent (15%

versus 85% non-latent bugs). This result was somewhat surprising and has an interesting

implication. The fraction is large enough that we believe there is value in developing

tools that try to recover the internal state of the concurrent application. Performing

such a recovery could prevent concurrency bugs from affecting the correct behavior of

the application, even after the concurrent requests that cause the error have already

been executed and the application state is corrupt.

We also analyzed how latent bugs were categorized according to the previous analysis

of their external effects. The results in Table 4.5 show a very high correlation between

latent and semantic bugs: 92% of the latent bugs manifest themselves by returning

wrong results to the client, and conversely also 92% of the semantic bugs are latent.

(The fact that these values are exactly the same is only a consequence of the relatively

small sample size.)

We see two possible consequences of the high correlation between latent and semantic

bugs. On the one hand, methods to address the problems caused by latent bugs will have

32

4.3 Results

to take into account that they manifest themselves through violations of the application

semantics (rather than crashing or halting), which raises the bar for detecting when

a latent error is activated and becomes a failure. On the other hand, this opens an

opportunity for the methods that handle non-crash faults to try to heal the state of

the application in the background instead of masking the effects of these faults in the

foreground. For instance, rather than tolerating semantic errors using Byzantine-fault-

tolerance (BFT) replication, where the output of each request is voted upon, one might

be able to get similar results by having a foreground replica that issues the reply, and a

background replica that checks and recovers the service state.

A concrete example of a latent bug will help the reader understand some of the typical

patterns surrounding bugs that are both latent and semantic. Bug #14262 involved

concurrent requests updating both the contents of the database (e.g., table contents)

and the binlog structure. This bug is caused by the code not enforcing the same order

for concurrent requests that update both the table contents and the binlog. Thus, when

a specific set of statements is sent to the primary replica, the primary replica updates

the table data by executing the statements in one order but, depending on the exact

interleaving of threads, may write those statements to the binlog in the reverse order.

The result of this bug to the client is only visible after a fault of the primary replica

occurs (or when clients otherwise contact the backup replicas). In this case, one of the

backups will take over with a state that diverges from the previously observed state (in

that it reflects a different sequence for transaction execution) and subsequent results will

be incoherent with those that were previously returned.

In the remainder of this section we will analyze semantic and latent bugs in more

detail. The reason for our focus is twofold. First, we found these bugs to have a relevant

(and perhaps unexpected) prevalence. Second, and more importantly, although existing

tools are very effective at handling application crashes (e.g., Rx [QTSZ05]) and deadlocks

(e.g., Dimmunix [JTZC08]), they are not so effective at handling the remaining, more

subtle types of failures. Thus, there is a research opportunity for improving methods

that address this type of concurrency bug.

4.3.4 Characteristics of semantic bugs

We further analyzed the incorrect outputs returned by semantic bugs in order to deter-

mine how difficult it is to detect them, e.g., using a run-time monitoring tool [Sch95],

which would avoid the use of more expensive techniques such as BFT replication [CL99].

Out of all the semantic bugs, we found only one to have a self-inconsistent output,

meaning that the buggy output clearly deviated from the expected reply. In this partic-

33

4 The effects of concurrency bugs

External effect Number of bugs
Crash 1
Deadlock 0
Error 0
Hang 0
Performance 1
Semantic 11

Table 4.5: Effects of latent concurrency bugs.

ular bug, the wrong reply returned to clients contains information about the contents of

a certain table, but at the same time the reply also contains information that indicates

that the table does not exist in the database.

None of the remaining bugs were self-inconsistent, implying that there are limited

benefits from detection techniques that try to validate the correctness of the application

by analyzing the replies.

We further analyzed these results and categorized the output of semantic bugs into

two groups. Some of the bugs did not fit into either of these groups.

The first group, containing 58% of these bugs, corresponds to outputs that reflect an

ordering of previously executed transactions that is inconsistent with the ordering that

was implied in previous replies. The latent bug we described before where binlog entries

were logged in the wrong order is an example of such a bug: after the primary becomes

faulty, the output of the system reflects the order in which transactions were recorded

in the binlog, which differs from the order in which they had been originally executed.

The second group, containing 25% of the bugs, corresponds to violations of transac-

tional semantics, in particular of the isolation property of the transactions. This means

that transaction A could see the intermediate effects of a concurrent transaction B (e.g.,

some of the updates made by transaction B, but not all of them).

Finally, 17% of the semantics bugs did not fall into either of the previous two cate-

gories.

4.3.5 Internal effects of latent bugs

We also analyzed the set of latent bugs in more detail. In our analysis, we paid close

attention to how the internal state was being corrupted, so that we could gain better

understanding of the kinds of techniques that can be useful for detecting the errors before

they are exposed to the user and for recovering the internal state of the application.

34

4.3 Results

Data structure Number of bugs Persistent?
Data file 11 Yes
Index file 9 Yes
Definition file 8 Yes
Query cache 7 No
Key cache 6 No ∗

Binlog 5 Yes

Table 4.6: Most frequent data structures involved in latent bugs. ∗The contents of this
cache can also be written back to disk.

First, we determined whether each bug corrupted a single high-level data structure,

or modified two or more data structures in an inconsistent way (leaving them in an

incorrect state relative to each other). Only 8% of the latent concurrency bugs involve

a single data structure, and the remaining 92% involve inconsistency between separate

structures.

Next we analyzed whether the data structures involved are persistent structures stored

on disk or volatile structures kept in memory. Table 4.6 shows that the three most af-

fected data structures are persistent, namely the files that contain the database contents,

the respective indices, and the aforementioned binlog file. We also found a large number

of bugs involving caches that are only stored in main memory.

Note, however, that these results do not allow us to draw conclusions about the prob-

ability that accesses to these data structures trigger bugs, given that we do not know

how often different structures are accessed (and also we cannot claim that we have a

perfectly representative sample of the existing bugs).

Note that the numbers in Table 4.6 do not add up to the total number of latent bugs

because certain bugs affected more than one data structure, as explained before.

4.3.6 Recovering from latent errors

We looked at the ability of the application to recover from latent bugs after they have

caused an error (i.e., corrupted the internal state). The recovery mechanisms we consider

in this section are relatively simple ones: we identified the latent errors that can be

recovered by a server restart or other simple mechanisms (e.g., reloading indexes) that do

not require writing extensive recovery-specific code. We present the results in Table 4.7.

Note that some bugs allow more than one simple recovery mechanism.

We found that in one third of the cases it is possible to use simple mechanisms to

recover latent errors such that they go completely unnoticed by users. This increases

the chances of adopting proactive recovery techniques.

35

4 The effects of concurrency bugs

Number of bugs
No simple recovery mechanism 8
Allow for simple recovery: 4

Server restart 4
Other mechanisms 3

Table 4.7: Recovery mechanisms for latent concurrency bugs.

4.3.7 Severity and fixing complexity

Finally, we compared concurrency bugs belonging to different categories with respect to

their severity and to the complexity of fixing them, according to the bug report fields

that specify these properties. Additionally, we also compared non-latent bugs against

latent bugs with respect to these two properties.

The average severity of bugs is compared in Table 4.8. The results show that latent

bugs were considered to be slightly more severe on average than non-latent bugs. In

the ranking of severity by external effects, crash bugs were found to be the most severe

while, as expected, performance bugs were found to be the least severe.

For the complexity of fixing concurrency bugs we used four metrics that we extracted

from the bug reports: time to fix the bug, number of patching attempts, number of

files changed in the final patch, and the number of comments exchanged in the bug

reports. Although none of these metrics is perfect, in combination they help us estimate

the complexity of fixing these bugs. We present a comparison of the four complexity

metrics in Table 4.9. Since some of these fields contain significant outliers, in addition

to presenting the average for all four metrics we also present the median.

Our analysis of the fixing complexity revealed a surprising result: non-latent bugs were

found to be more complex to fix than latent bugs in all metrics except for the number

of patches. We currently do not have a clear explanation for this fact.

4.4 Limitations and discussion

One of the results of our study is that the percentage of concurrency bugs present in

the bug database is low. This is not very surprising, since it has long been believed that

concurrency bugs are underrepresented. The fact that concurrency bugs are hard to

observe and reproduce (in fact they are commonly referred to as Heisenbugs [Gra86]) is

likely to contribute to their underrepresentation in bug databases for three main reasons.

First, when users are faced with the bug a single time they may not even be sure that it

is a problem with the software and might not report it at all. Second, even when users

36

4.4 Limitations and discussion

Bug immediacy Severity
Latent 2
Non-latent 2.2

Bug category Severity
Deadlock 2.3
Crash 1.7
Error 2.4
Hang 2
Performance 3
Semantic 2.2

Table 4.8: Average severity of concurrency bugs according to their immediacy and cat-
egory. Maximum severity is rated as 1 (i.e., critical bug) while minimum
severity is rated as 5.

Bug immediacy Time Patches Files Discussion
Latent 114/79 3.8/2 2.3/1 10.4/7.5
Non-latent 137/90 2.7/2 3.9/1 11.6/9

Bug category Time Patches Files Discussion
Deadlock 125/90 1.9/2 1.5/1 9.3/9
Crash 128/83 3.5/2 7.7/3 12.9/11
Error 150/94 3.0/2 4.4/4 17.0/11
Hang 210/116 4.5/2 3.8/2 13.2/11
Performance 125/92 1.4/2.5 1.8/2 8.2/6
Semantic 108/67 3.8/2 2.2/1 10.5/8

Table 4.9: Complexity of fixing concurrency bugs according to their immediacy and
category. For each class of bugs we present the average/median for each
of the four metrics: time in days, number of patches, number of files in
the patches and the number of comments in the discussion.

are able to reproduce bugs on their machines, it might not be possible to reproduce

the bug in the developer’s environment due to small differences in the environments.

Third, even if developers manage to reproduce the bug, they might not be able to

systematically reproduce it using traditional debugging methods, since some debugging

tools and methods might interfere with the reproducibility of the bug.

In this study we focused our attention on concurrency bugs found in the MySQL

application. A previous study compared concurrency and non-concurrency bugs of three

different database systems including MySQL [VBLM07] and it concluded that the three

different database systems exhibited a very similar proportion of crash vs. non-crash

faults (i.e., a bit over half of the bugs led to non-crash faults in each database system).

37

4 The effects of concurrency bugs

While not conclusive, this observation leads us to believe that the bug patterns we found

in MySQL might also apply to other database systems. More analyses are required to

confirm whether this is in fact the case.

On the other hand, it seems less likely that these results can be generalized to arbitrary

multi-threaded applications. Applications can be very different (e.g., some have graphi-

cal user interfaces while others do not, some applications use the client-server model while

others do not). As an example, from the data collected in another study [LPSZ08] that

compared different applications, about half of the deadlocks found in MySQL involved

the synchronization of accesses to only one variable while almost all of the deadlocks

found in Mozilla involved two or more variables. Given the very different characteristics

of applications, we believe that the conclusions that we present here are unlikely to be

generalizable to arbitrary multi-threaded applications.

The number of bugs analyzed in this study is comparable to the number of bugs

analyzed in other related studies – Lu et al. studied 105 concurrency bugs [LPSZ08],

Sahoo et al. studied 30 concurrency bugs [SCA10] and, more recently, Lin et al. studied

90 concurrency bugs [TLL+14]. However, it is worth noting that our results could

potentially suffer from two sources of bias. First, our sample, in absolute terms, is small.

Obviously, this limits the confidence in the results, but at the same time it is a limitation

that is difficult to overcome due to the time required to gather the data and the amount

of data available. (This is a limitation shared by previous studies.) Second, we only

analyzed bugs that were documented and fixed. This means we did not account for

bugs that were not fixed (or even found), nor bugs that were fixed but not documented.

We believe that these biases are very difficult to overcome given the nature of bugs in

general but specifically given the nature of concurrency bugs. Nevertheless, more studies

are desirable to improve our understanding of concurrency bugs.

4.5 Summary

To gain a better understanding of real-world concurrency bugs, this chapter presented a

study of concurrency bugs in MySQL. In contrast to previous studies, our study focused

on the effects of concurrency bugs rather than on their causes, which is an important

aspect for the development of bug detection tools.

Studying how bugs manifest enabled us to reach some important findings, such as the

fact that there exists a high prevalence of latent bugs and there exists a strong corre-

lation between latent bugs and semantic bugs that cause silent failures. These findings

38

4.5 Summary

motivated our work presented in Chapter 5, which aims at detecting automatically either

of these classes of bugs in complex applications.

39

5 Detecting latent and semantic bugs

5.1 Overview

In this part of the work we propose a new technique for detecting latent and/or semantic

concurrency bugs that does not rely on data race detectors or on assertions. Our thesis

is that it is possible to implicitly extract a specification, even for large multi-threaded

server applications, by testing if the application obeys linearizable semantics [HW90].

Intuitively, linearizability means that concurrent requests behave as if they were executed

serially, in some order that is consistent with the real-time ordering of the invocations

and replies to the requests. While similar ideas have been applied to the design of

tools for testing concurrency bugs, they have been limited to testing the atomicity of

small sections of the program or library functions with at most hundreds of lines of

code [BDMT10, XBH05a, Vaf10]. We push this idea to an extreme by postulating that

even a complex multi-threaded server with hundreds of thousands of lines of code can

come close to obeying linearizable semantics.

By systematically testing if linearizability is upheld, we can find subtle violations of

the application semantics without having to write a specification for each concurrent

application. Furthermore, by checking if both the output and the internal state of

the application obey the inferred semantics, we can identify not only the bugs that

manifest themselves immediately as a wrong output, but also those that silently corrupt

internal state. However, achieving a meaningful state comparison requires abstracting

away many of the low-level details of the state representation. We accomplish this by

means of simple annotations that are provided by the tester. This approach also allows

the tester to progressively increase the chances of finding latent concurrency bugs by

incrementally annotating the state.

We implemented PIKE, a testing tool that brings together these principles and state

of the art techniques for the systematic exploration of thread interleavings. We describe

the design and implementation of PIKE, and our experience in applying it to MySQL.

Our experience demonstrates that, despite the size and complexity of MySQL, in

practice the semantics it provides are sufficiently similar to linearizability for our detector

41

5 Detecting latent and semantic bugs

to be effective. Although we used only a simple battery of inputs for testing (based on

the testing inputs that shipped with the application) we were able to find a considerable

number of concurrency bugs in a stable version of the database. Furthermore, the effort

to provide the required annotations was small, and after installing simple filters we also

found the number of false positives to be modest. All of this was achieved without

having to figure out which were the correct outputs (or final states) for any given inputs,

since PIKE automatically extracts a specification by comparing the outputs and states

of different interleavings.

The remainder of this chapter is organized as follows. Section 5.2 presents the problem

and gives an overview of our approach. In Section 5.3 we introduce PIKE, the tool that

we built to find concurrency bugs. Section 5.4 describes our experience applying PIKE

to MySQL. Section 5.5 presents the results that we obtained from our experience and

Section 5.7 provides a summary of this chapter.

5.2 Semantic and latent concurrency bugs

This section gives an overview of our main insight to automatically extract the applica-

tion specification and it explains our approach to analyze the application state.

5.2.1 Linearizability: The spec from within

For testing tools to detect semantic or latent bugs, they need some form of specification

for the expected output and state obtained after running each test, in order to determine

if a given test run uncovered a bug or not. To address the absence of a manually written

specification capturing deviations from the intended application semantics, we propose

extracting such a specification from the behavior of the same application but under

different conditions.

In particular, our hypothesis is that, even in the case of a complex server application

with hundreds of thousands of lines of code, the semantics that are intended by the

programmer are normally close enough to linearizability [HW90] that we can use it as a

good first approximation of a specification.

To formally define linearizability [HW90], we must first define the notion of history,

which is a finite sequence of events that can be either invocation of operations or re-

sponses to operations. A history is classified as sequential if its first event is an invoca-

tion, each invocation is immediately followed by a matching response, and each response

is followed by an invocation. Two histories H and H ′ are defined as equivalent if, for

every process P , the sequence of invocations and responses performed by P is the same,

42

5.2 Semantic and latent concurrency bugs

i.e., H|P = H ′|P . A history H induces an irreflexive partial order <H on operations

such that o0 <H o1 if the response event for o0 precedes the invocation of o1. Given

these definitions, a history of events in a concurrent system H is linearizable if there is

an equivalent sequential history S (called a linearization of H) such that <H⊆<S .

Intuitively, this means that, despite its internal concurrency, the server behaves as if

requests were processed in sequence, and that this processing took place instantaneously

some time between the moment when the client invoked the request and received the

respective reply.

Therefore, assuming the application tries to follow linearizable semantics, a testing

methodology can be devised by comparing each concurrent execution of the application

with all possible linearizations (i.e., all possible sequential executions of the requests)

for the same input. If none of the linearizations matches the behavior of the concurrent

execution, then a concurrency bug is suspected to have been triggered and an error is

flagged.

Testing for linearizability would only require us to inspect the outputs of the con-

current execution against the outputs of the linearizations. This would be sufficient to

capture semantic bugs, but not to capture latent bugs. To handle latent concurrency

bugs, we can resort to the same principle of testing for linearizability but applying it to

the state of the application. This testing methodology is summarized in Figure 5.1. It

shows two concurrent requests, R1 and R2, whose execution overlaps in time (Conc C).

To check if the concurrent execution is linearizable we must compare it to all possible

linearizations, namely R1 followed by R2 (Seq A) and R2 followed by R1 (Seq B). Lin-

earizability is obeyed when both the state and the output of the concurrent execution

match both components in at least one of the two linearizations.

Note that by using linearizability as a specification, we are not necessarily extracting

a correct specification of the system, not only because the programmer might not have

intended the application to obey linearizable semantics, but also because the sequential

execution may be buggy, and consequently the deviation to the expected behavior could

go undetected. The latter issue is not problematic in the case of concurrency bugs,

though, since these arise from the lack of proper synchronization among multiple threads,

which does not arise when executing requests without concurrency.

5.2.2 Capturing application state

As we mentioned, to be able to find latent bugs we need to compare both the output

and the state of different executions of the application.

43

5 Detecting latent and semantic bugs

Output C
State C

Output A
State A

Output B
State B

Conc C Seq A Seq B

OR�
?

R1

R2

R1

R1R2

R2

Figure 5.1: Checking for linearizability of state and outputs of two concurrent requests.

While outputs are fairly straightforward to compare, the same cannot be said about

the state of the application. In particular, the näıve approach of simply comparing

the state of the various executions bit-by-bit is doomed to fail. The reason is that by

changing thread interleavings, the low-level state of the executions will quickly diverge.

For instance, if we consider operations such as dynamic memory allocation, slight changes

in the thread interleaving could easily change the relative order of allocation requests,

and therefore the memory layout of allocated heap space would likely be different as

well.

We address this by asking the tester or the developer of the application to provide a

state summary function which captures an abstract notion of the state in a way that takes

into consideration the semantics of the state and allows for a logical comparison, instead

of a low-level physical comparison. As an example, a data structure that represents a set

of elements should be compared across different executions in such a way that is not only

oblivious to the memory layout, but, given that sets can be stored in data structures

that imply an ordering such as a list, but the order in which the elements of a set are

listed is irrelevant, the state summary function must be oblivious to this order.

While writing this extra code could be a burden for the tester or the developer, we

found that in practice these functions are simple to write, in part, because the internal

interface of the application we analyzed is reasonably well defined. Additionally, we

provide a small library that assists programmers in writing state summary functions

for the most common types of data structures. Finally, we note that in our testing

framework the state summary functions will always be scheduled without preemptions,

44

5.3 PIKE: A concurrency bug finding tool

given our custom scheduler (Section 5.3), and, therefore, do not have to be synchronized

with respect to the existing application code.

5.2.3 Maintaining the summary functions

Annotating the application undoubtedly requires some effort from testers. During the

life-cycle of the application it might not suffice to annotate it once – it might be necessary

for testers to revise the annotations when there are new versions of the application.

Major updates to the application (which typically involve substantial code rewrites) are

likely to require some effort to update the summaries. However, in practice, we expect

that many upgrades to the application will maintain most of the properties of the data

structures as well as the interface that is used to access them. In these cases, no changes

to the annotations would be required.

5.3 PIKE: A concurrency bug finding tool

In this section we describe how we combine our linearization approach, which analyzes

both the output and the state of different interleavings for linearizability violations, with

state of the art testing techniques. The result is a bug finding tool geared towards finding

concurrency bugs that are traditionally hard to detect.

5.3.1 Handling false positives

One of the challenges we expected to face when deploying PIKE is that linearizability

would not necessarily hold for a large, complex application with rich semantics and

hundreds of thousands of lines of code. These cases, if not appropriately dealt with,

could lead to the tool outputting a large number of false positives.

An example of a data structure that we found to sometimes not obey linearizability is

an application-level cache. In particular, this occurred in situations where the application

logic detected that two requests were being handled concurrently and that would cause

a cache entry that one of them would create to be invalidated. In these cases, the

application would conservatively not insert that entry into the cache. This behavior

might have an impact on performance but does not affect correctness, i.e., an application

can always choose not to insert an entry into the cache. However, if the application were

to execute the same requests sequentially, because no possible conflict would exist, the

last request would be inserted into the cache.

45

5 Detecting latent and semantic bugs

PIKE

SCHEDULER

STATE SUMMARY

FUNCTION

OUTPUT AND STATE

COMPARISON

BUG?

APPLICATION

NO

YES

TESTS

INSERT FILTER

INSPECT

RESULTS

PATCH

Figure 5.2: Overall architecture of PIKE. The system receives as inputs a multi-
threaded application and a test suite, and contains a feedback loop that
can be used by testers to insert filters to avoid false positives when the
application deliberately violates linearizability.

To handle these cases, the state summary functions break the state up into separate

components; e.g., an application-level cache would be an individual component. Further-

more, we allow the tester to write a rule that enables the linearizability test to check for

inclusion, instead of equality, among the set of entries in some of the state components.

In the case of the application-level cache, this rule might allow for checking whether the

set of elements in the cache for the concurrent execution are contained in set of elements

in the cache for at least one of the sequential executions. We found this approach to

work well, in practice, in reducing the number of false positives to a reasonable level.

Therefore, our final system design contains a feedback loop where testers can add rules

that describe such exceptions to linearizability, thus avoiding most false positives and

making the problem tractable.

Figure 5.2 illustrates the overall process. Developers provide PIKE with the applica-

tion and the testing inputs. PIKE will then run the application multiple times exploring

different thread interleavings and checking for linearizability of both state and output.

To conclude whether a bug was found, the developer then inspects the results produced

by PIKE which include the output, the state and information about the interleaving of

the various executions. In case the developer finds various cases of similar false positives

he can simply insert a rule to adjust the comparison functions and re-run PIKE.

46

5.3 PIKE: A concurrency bug finding tool

5.3.2 Implementation

As Figure 5.2 also shows, the implementation of PIKE is composed of three components:

the scheduler, the state summary function, and the component to compare the state and

output of the application.

PIKE combines our proposed linearizability detector with a custom scheduler that

implements the PCT algorithm (Section 3.1.1) proposed by Burckhardt et al. [BKMN10].

The scheduler enables PIKE to effectively explore the interleaving space during testing.

We implemented the scheduler in about 3, 000 lines of C code. Our scheduler controls

the thread interleaving by intercepting the library calls of the target application and

forcing a single thread to run at a time which is randomly chosen according to the PCT

algorithm.

Our scheduler takes control over the application using the LD PRELOAD environ-

ment variable and intercepts the pthread library calls made by the application; i.e,

the scheduling granularity is at the level of the pthread library calls. Similar levels of

granularity have previously been found to produce good results at finding concurrency

bugs [MQB+08].

We require application writers to identify the location where the handling code of each

request begins and ends. The scheduler needs to know about these locations to force

sequential interleavings, i.e., interleavings that execute each request without preemptions

from other concurrent requests. This information also helps in debugging the application

when bugs are flagged. Since our scheduler only takes control of the application when it

makes pthread calls, it could happen that the running thread (i.e., the runnable thread

with highest priority) invokes a system call that does not return. In such a situation,

the entire application would block – the highest priority thread would be blocked on a

system call and the other threads would have previously been blocked by the scheduler.

A situation where this would occur is in the location where the main thread of MySQL

spawns new threads to handle new client sessions. To avoid this, we make the scheduler

aware of that particular location in the MySQL code and make the scheduler block

the main thread as soon as it creates all the expected client-session threads (which is

dependent on the input). In comparison with the effort to annotate the application for

the purpose of capturing the application state, the effort required to identify these three

locations was negligible.

The PCT scheduler algorithm requires the definition of variable k and p, as discussed in

Section 3.1.1. In our experiments we used the value 50, 000 for variable k, the maximum

number of execution steps per run (after the database initialization phase), and we used

47

5 Detecting latent and semantic bugs

p = 1, i.e., a single reschedule point. We found empirically that these values produced

good results for the application we studied.

The PCT scheduler algorithm also requires an anti-starvation mechanism. Without

this mechanism if the highest priority thread enters a busy wait cycle it would never

relinquish the processor and would prevent the entire application from progressing. Ex-

amples where such situations could occur are the instances where ad-hoc synchronization

methods are used [XPZ+10]. We implemented the anti-starvation mechanism simply by

reducing the priority of the running thread if it runs uninterrupted for more than a

certain number of execution steps. We found this mechanism to be particularly useful

during initialization periods.

We have built a generic library for assisting in capturing the state of the application,

however the exact code to capture the state is dependent on the application.

5.4 Experience with MySQL

This section reports on the experience of applying PIKE to find concurrency bugs in

MySQL.

5.4.1 State summary functions

As explained in Section 5.2, PIKE checks whether the application exhibits a lineariz-

able behavior by comparing the internal state of different executions of the application.

Achieving this goal, requires producing a high-level representation of the internal state

which is, in practice, achieved by implementing application-specific state summary func-

tions.

To write these summary functions, each of which captures a different part of the

state, we analyzed five important state components of MySQL (described in Section 3.2)

and classified them into two categories according to what type of data structures they

represent.

Most of the analyzed data structures fall into the set category, since they are collections

of elements where their order does not matter. The exception was the binary log structure

which consists of an append-only sequence where the order in which the elements are

added needs to be captured by the summary function.

Starting with the state components that describe sets, their summary function needs

to be invoked in all places in the source code where elements are added, removed or

modified to or from any of these data structures. Despite the complexity of the state,

locating these turned out not to be too complicated since the source code of MySQL

48

5.4 Experience with MySQL

is reasonably well structured and there are functions that encapsulate these operations

which are called from different points in the code.

At each of these points we invoke a generic summary function for sets, which is designed

to provide an efficient update and comparison operation. This function maintains a

cumulative hash value for the set (S) which is initialized to zero at the beginning of

the execution. Then, upon adding or removing an element e, the summary function

captures a hash of the deterministic parts of the element being added or removed (He).

In this step it is important to remove sources of non-determinism like timestamps that

would lead to state divergence. In addition, since some of the data structures annotated

contain elements consisting of pointers, in these cases, instead of hashing the pointers,

we hash the elements they point to.

Then, the value of He is either added or removed to the cumulative set value S. Both

adding and removing is done by XORing the new value with the previous cumulative

value, i.e.:

Snew = Sold ⊕He. (5.1)

This leads to a compact representation of the state of the set that allows for a trivial

comparison operator simply by comparing hashes. In addition, operations that modify

elements are handled by treating them as a sequence of an add and a remove operation.

For the binary log, this representation does not work because it does not capture the

order in which elements were added to the sequence. Therefore, in such cases, because

the structure represents a sequence, we capture the order of the elements by hashing the

concatenation of the previous cumulative value with the new element.

Snew = SHA1(Sold||e). (5.2)

Finally, we also needed to extend this scheme to support containment instead of

equality checks for sets. This can be easily achieved by replacing the cumulative XOR

of the hash values with a counting Bloom filter [BMP+06]. Alternatively, we can just

list all the elements in the set and compare them exhaustively, which is what is done by

our implementation.

5.4.2 Input generation

Like other dynamic bug finding tools, our testing technique requires exploring different

inputs in an attempt to find situations in which the application behaves incorrectly.

Therefore we must find a diverse set of concurrent database operations that stand a

49

5 Detecting latent and semantic bugs

good chance of triggering bugs. Again, the rich semantics and wide interface of MySQL

make it particularly challenging given that we can only practically explore a small subset

of all possible inputs.

We considered different options for generating test inputs. The obvious option is to

generate the inputs manually; however this can be tedious and impractical for applica-

tions like MySQL. Another option is to randomly generate inputs, possibly with the aid

of grammars that steer the input generation into generating inputs that are considered

more useful. This option suffers from the problem that it is not straightforward to in-

strument the grammar in such a way that it creates multiple concurrent requests that

are likely to cause contention for some particular part of the state of the application. A

third option is to use tools that analyze the application, try to understand its behavior,

and then attempt to automatically generate useful inputs [GKS05, CDE08]. However,

while these tools work well for small and medium size applications, it is unclear if they

can currently scale to the size of a codebase like MySQL.

Therefore we pursued a fourth option. MySQL already contains a large test suite,

which has been manually created by the developers and testers of the application. Some

of the tests were added specifically to prevent previous bugs from recurring in subsequent

versions of the application. However, these tests are sequential tests and therefore would

not be useful for finding concurrency bugs. Our solution was to convert these sequential

tests into concurrent tests by breaking up the sequence of requests contained in a test

and executing them concurrently by separate clients.

When deciding how many concurrent clients to use in our tests, we took into account

that studies show that a significant amount of the concurrency bugs found only require a

small number of threads to be triggered (typically two) [LPSZ08]. A separate study also

showed that only a small number of requests is sufficient to expose bugs [SCA09]. Taking

these factors into consideration, and to make the process more efficient, we generated

tests involving two clients and with a limited number of requests per client (typically

less than ten requests and starting from an empty database).

The original complete test suite contained approximately 50, 000 requests, as counted

by the number of semicolons. Using our approach we manually converted around 5% of

those requests into concurrency tests, thus generating 1550 pairs of inputs from concur-

rent threads.

Other approaches could be developed for generating inputs to test concurrent software.

In Chapter 8, we discuss a future research direction to address the input generation

aspect of concurrent testing.

50

5.5 Results

5.5 Results

In this section we present the results of our experience of applying PIKE to MySQL.

5.5.1 Development effort

The first result we report on was the the amount of effort needed to understand the

code of MySQL and develop the state summary functions. The annotations we inserted

added up to 600 lines of code, as counted by the number of semicolons. This represents

less than 0.2% of the number of semicolons in the MySQL source code.

While annotating the source code of MySQL, most of the effort was spent under-

standing the source code. We spent a total of about two man-months in the process of

understanding both the structure and semantics of the application and annotating the

source code.

5.5.2 Bugs found

We ran PIKE on MySQL opportunistically in a shared cluster using multiple machines

(up to 15 machines). Each machine in the cluster had an AMD Opteron 2.6 GHz

processor, 3 GB of RAM and was running a distribution of Linux with kernel version

2.6.32.12.

We tested MySQL by running it on 1550 inputs and for each input we configured

PIKE to explore 400 different interleavings using its scheduler. The experiment lasted

for about one month. Our implementation of PIKE could be optimized to reduce the

computational cost in several ways. In particular, we could avoid going through the ini-

tialization phase of MySQL for each run by taking advantage of snapshotting techniques.

Another way of speeding up testing could be to run PIKE on the target application pre-

viously compiled with optimization flags. The few inputs for which suspicious behavior

is observed could then be re-executed with additional debugging support (on the version

of the target application not optimized and with application-level debugging options

enabled).

During our testing experiments PIKE was able to identify a total of 12 inputs that

triggered concurrency bugs. Table 5.1 presents an overview of the inputs that we found

to trigger incorrect behavior and in the following subsections we present our findings in

more detail for different types of bugs, categorized according to their effects.

In some cases, we had different inputs that triggered bugs that showed similar effects.

Because it was difficult for us to classify whether they correspond to the same bug or

not, we decided to present the results in a more objective way by presenting in detail all

51

5 Detecting latent and semantic bugs

of the inputs and effects of the bugs we found, instead of trying to count the number of

distinct bugs. We then speculate about which of those inputs are likely to be triggering

what could be considered the same bug.

Table 5.2 lists the various inputs that were flagged as positives by PIKE and that we

confirmed to be caused by concurrency bugs. The table presents the requests that were

concurrently executed in the test cases that triggered concurrency bugs together with

the number of distinct thread schedules in which the program exhibited the incorrect

behavior. Additionally, we also present information about the state and the output that

were observed. Specifically, the table indicates whether the output of the concurrent

execution matches the output of the sequential executions (OA and OB) and whether

the state at the end of the concurrent execution matches the state at the end of either

of the sequential executions (SA and SB).

Given the linearization assumption, PIKE flags a concurrent execution as having trig-

gered a concurrency bug if it cannot find a sequential execution (X) that produces both

a matching output and a matching final state (i.e., that has OX=”Yes” and SX=”Yes”).

We can see that all entries in Table 5.2 fail to meet this condition.

In addition to discrepancies in the output or the state of the different interleavings,

we also found some cases where the execution of the application blocked, which might

have been caused by deadlocks, and cases where the application crashed. We have

not analyzed these cases, but they are less interesting from our standpoint since these

potential bugs would also have been found by other tools like CHESS [MQB+08], or

tools that are designed to find deadlock bugs [NPSG09].

In our experiments, we did not come across non-concurrency bugs, and this is not

surprising for two reasons. First, we used inputs that were based on the existing re-

gression tests contained in the MySQL source code, and therefore MySQL should have

been previously tested for these or very similar inputs. Second, a non-concurrency bug,

if triggered would have likely produced the same wrong results in all interleavings, re-

gardless of the interleaving being sequential or not, and therefore our detector would not

have flagged it.

One point we would like to highlight about these results is that we used a testing

suite that has been applied repeatedly, albeit in a way that runs inputs sequentially. We

postulate that it might be possible to be even more effective if we use a different set of

inputs. The downside is that, because we focused on what is not the latest version of

MySQL, we found that some of the bugs have already been fixed, as we will detail next.

Next, we analyze in more detail the results for the two categories of bugs that our

technique is aimed at: violations of the application semantics, and latent bugs. We

52

5.5 Results

External effect Non-latent Latent Total
Error 2 0 2
Semantic 2 8 10

Table 5.1: Number of inputs found to trigger concurrency bugs according to latency
and external effects.

further divide the first category into semantic bugs and error bugs, depending on whether

the violation of the intended semantics corresponds to an incorrect but non-error reply,

or a more explicit error.

Requests #
Output State

OAOB Effect SASB Latent

CREATE TABLE t2 LIKE t1; ‡
9 7 7 Error 7 X Non-latent

INSERT INTO t2 SELECT * FROM t1; ‡

INSERT INTO t3 VALUES (1,’1’),(2,’2’);
1 7 X Semantic 7 7 Latent

SELECT DISTINCT t3.b FROM t3,t2,t1 WHERE t3.a=t1.b; †

CREATE TABLE t2 LIKE t1; ‡
2 7 7 Error 7 X Non-latent

INSERT INTO t2 SELECT * FROM t1; ‡

TRUNCATE TABLE t1;
35 X 7 Semantic 7 7 Latent

SELECT * FROM t2;
INSERT INTO t1 (a) VALUES (10),(11),(12);

2 7 X Semantic 7 7 Latent
SELECT a FROM t1;
INSERT INTO t2 VALUES (2,0);

3 X 7 Semantic 7 7 Latent
SELECT STRAIGHT JOIN* FROM t1, t2 FORCE (PRIMARY); †

DROP TABLE t1;
238 7 7 Semantic X X Non-latent

SHOW TABLE STATUS LIKE ’t1’;

INSERT INTO t1 VALUES (1,1,”00:06:15”); †
1 7 X Semantic 7 7 Latent

SELECT a,SEC TO TIME(SUM(t)) FROM t1 GROUP a,b; †

CREATE TABLE t2 SELECT * FROM t1;
17 7 7 Semantic 7 7 Non-latent

DROP TABLE t2;
INSERT INTO t1 (a) VALUES (REPEAT(’a’, 20));

3 7 X Semantic 7 7 Latent
SELECT LENGTH(a) FROM t1;
INSERT INTO t1 VALUES (80,’pendant’);

2 7 X Semantic 7 7 Latent
SELECT COUNT(*) FROM t1 WHERE LIKE ’%NDAN%’; †

OPTIMIZE TABLE t1;
25 X 7 Semantic 7 X Latent

DROP TABLE t1;

Table 5.2: Properties of the triggered concurrency bugs that PIKE found. The table
presents the number of concurrent executions that were flagged as pos-
itive for each of the inputs (#). Additionally it indicates whether the
output of the concurrent executions matched the output of the sequen-
tial executions (OA and OB) and similarly for the state of the sequential
executions (SA and SB). (Requests marked with † have been simplified
for presentation purposes, the two identical pairs of requests marked with
‡ operate on distinct states)

53

5 Detecting latent and semantic bugs

Request 1 SHOW TABLE STATUS LIKE ’t1’;
Request 2 DROP TABLE t1;

Table 5.3: Requests responsible for triggering the sample semantic bug

Semantic bugs

Figure 5.3 illustrates a representative example of a semantic concurrency bug in MySQL

that was found by our detector. In the figure the arrow indicates the interleaving that

triggers the bug. This bug is triggered when the server receives a specific SHOW TABLE

request and a DROP request concurrently as shown in Table 5.3. Figure 5.3 shows a

simplified snippet of the source code that is involved in this concurrency bug. The first

thread, while executing the SHOW TABLE request obtains a list of names of tables.

According to the semantics of the database this returned list should contain the names

of all the tables in the database whose name contains the string ”t1”. But, if before

the first thread processes the list of tables names the second thread is able to execute

the remove table() function, the open table list becomes obsolete. This in turn means

that when the first thread resumes execution it will try to call the open tables() function

with an argument that contains obsolete data and will not be able to access the table

that was dropped. The result is that the second thread will return to the user a success

message for the DROP request. However, the first thread will return an entry, for the

now non-existent table, indicating that it exists but some of the entries will contain the

value NULL.

We note that this particular instance of a semantic bug was eventually reported in

the MySQL bug report database, and patched in a version that succeeded the one we

tested. However, it is important to note that we did not use that information during

the process of generating inputs.

Other semantic bugs provided wrong results in even more subtle ways. For example,

there were bugs where the application would simply provide wrong results based on stale

data.

Error bugs

A sub-class of the semantic bugs that we found can be labeled as error bugs. We con-

sidered bugs to be error bugs if they manifest themselves by returning to the client an

explicit error message that is not appropriate given the requests that were executed.

During our experiments we found two cases in which error concurrency bugs were trig-

gered.

54

5.5 Results

Thread 1 Thread 2

void show_table_status(thd)

{

...

/*Gets a list of existing tables*/

table_list = get_tables_list(thd);

/*Returns an error for the non-

existing table*/

res = open_tables(table_list);

/*Ignores the previous error*/

get_schema_record(table_list);

...

}

int drop_table(table)

{

...

remove_table(table);

...

}

Figure 5.3: Sample semantic bug

Request 1 CREATE TABLE t2 LIKE t1;
Request 2 INSERT INTO t2 SELECT * FROM t1;

Table 5.4: Requests responsible for triggering the sample error bug

Table 5.4 presents the concurrent requests that were found to be responsible for one

of the error bugs. This bug is triggered when one of the threads attempts to execute

a CREATE LIKE request, which is supposed to create a new and empty table with a

schema that is identical to another existing table, and a specific INSERT request that

copies data from the existing table into the new table. As illustrated in Figure 5.4,

the first thread, while handling the CREATE request, first copies the definition file

containing the schema for the existing table. According to the synchronization logic in

MySQL, the second thread is allowed to execute the INSERT request even before the

first thread creates the index file and data file. Because of this, while executing the

INSERT, the second thread is unable to open the data file and returns an error to the

user stating that the data file does not exist instead of either succeeding (by writing

data) or returning a different error stating that the table does not exist.

This example illustrates an important point – error bugs can also be subtle and difficult

to distinguish from a correct execution, despite the fact that they return an error. One

reason for this is that often an error message is a legitimate outcome of the operation,

but the concurrent execution returns the wrong error message. Therefore, and unlike a

situation where the application crashes or an assertion fails, we must know application-

specific semantics to determine if an error reply is incorrect or not, and PIKE has proven

to be effective in determining this.

55

5 Detecting latent and semantic bugs

Thread 1 Thread 2

int create_table_like(scr,dst)

{

...

/*Copies the definition file */

my_copy(scr,dst,...);

/*Creates the index and

data file*/

create_table(dst_path,...);

...

}

int mysql_insert(data,table)

{

…

/*Successfully opens

definition file*/

open_and_lock_tables(table);

write_to_table(data,table);

...

}

Figure 5.4: Sample error bug

Latent bugs

Surprisingly, PIKE was able to find eight different situations that triggered latent con-

currency bugs. All of the latent bugs we found had the external effect of providing

wrong results in subtle ways and involved the query cache structure. As we will describe

in Section 5.5.3, we also found situations where the binary log appeared to contain an

incorrect state, but we were not confident that these represented bugs (i.e., that the

incorrect state would lead to incorrect behavior visible by users) and so we did not flag

them as such.

As an example, one of the cases where a latent concurrency bug is triggered occurs

when the requests in Table 5.5 are executed concurrently. The simplified source code

relevant to this example is shown in Figure 5.5. While executing the SELECT request,

the first thread opens the table, locks it, and in the process makes a copy for itself

of the state of the table. The logic of the application allows the second thread to then

concurrently insert entries at the logical end of the table. However, when the first thread

resumes execution it will rely on its local (and now stale) copy of the state of that table

to fetch data. In the process, the first thread will skip the newly inserted entry and

provide the old results to the client without immediately violating the semantics of the

application (i.e., the returned value would be consistent with the first thread having

executed before the second thread). In this bug, the actual semantic violation arises

from the fact that the first thread also stores the stale data which the second thread

does not invalidate in the query cache. This means that a third thread could, at a later

point in time, read the stale data from the query cache and expose it to the clients,

violating the expected semantics of the application.

56

5.5 Results

Request 1 SELECT a FROM t1;
Request 2 INSERT INTO t1 (a) VALUES (10), (11), (12);

Table 5.5: Requests responsible for triggering the sample latent bug

Thread 1 Thread 2

int select(sql, table_name)

{

…

/*Gets a local table copy*/

table = open_and_lock_table();

lock = READ;

/*The local file length doesn’t

change*/

result = fetch_data(table,

table->data_file_length);

/*Writes stale data to query

cache*/

query_cache.store(result);

...

}

int mysql_insert(data, table)

{

...

/*Upgrades lock to

concurrent insert*/

write_to_table(data, table);

invalidate_query_cache();

...

}

Figure 5.5: Sample latent bug

We saw the same pattern of latent bugs causing stale entries to be left in the query

cache in other test cases, and we again stress that it is likely that some of the situations

that triggered latent concurrency bugs could be triggering what could be considered the

same bug. However, given the complexity of the application logic to both invalidate the

query cache and to prevent certain specific concurrent requests from inserting simulta-

neously entries into the query cache, it is hard to state whether we are dealing with

the same bugs objectively. Nevertheless it should be noted that the various cases that

triggered latent bugs can be caused by very distinct types of requests, as can be seen in

Table 5.2.

5.5.3 False positives

After the initial tests, approximately one third of the inputs generated potential false

positives. Since this high fraction of false positives would make the analysis of the results

impractical, we had to insert two filters to reduce the number of false positives which

proved to be very effective. These filters allow testers to avoid false positives when the

application deliberately violates linearizability.

57

5 Detecting latent and semantic bugs

The first filter we inserted was related to the table cache. Concurrent requests that try

to open the same table concurrently will create distinct but identical entries in the table

cache, whereas the same requests executing in sequence can reuse each other’s entry.

Therefore, we inserted a filter by checking that the table cache contents of the linearized

execution is contained in the table cache contents of the concurrent execution.

The second filter was related to the query cache, and the fact that MySQL sometimes

conservatively decides not to cache entries in the query cache when two concurrent

requests are executed, one of them is a query, and the other would invalidate the entry

for that query in the query cache. In this case, our filter ensures that a concurrent

execution is flagged as negative (with respect to the query cache) if the query cache

entries in the concurrent execution are contained in the set of entries in the linearization.

Note that these may be considered performance bugs (or, at least, missed opportunities

for a performance optimization), and this shows that PIKE might also be useful for

analyzing and improving performance issues that may affect the application.

After inserting these two filters, the total number of false positives reported was 27.

Of these, 22 are related to unexpected interactions between the framework and the

application. In particular, some requests took a longer amount of time to complete

which, in turn, caused an execution timeout in our framework to expire. In other cases

false positives were caused by non-determinism in the reply that we had not caught (e.g.,

calls to the current time or random number generation). A third type of false positives

was caused by timeouts in the NFS volume in which our results were written, which

affected the output. All of these types of false positives were reasonably easy for us to

diagnose.

The remaining five false positives involved a more careful analysis. These were caused

by binary log entries being reordered (i.e., MySQL would change some internal structures

in one order and the binary log in another order). This turned out to be acceptable under

some circumstances. Typically this happened with pairs of concurrent requests in which

one of the requests executed an optimization or maintenance task (e.g., OPTIMIZE

and FLUSH requests). The fact that these operations affect the performance but not

the results implies that, when the binary log state is required (normally when a replica

recovers from a fault), repeating these entries in the wrong order will not affect the

output of the operations, but only the moment in the sequence of re-execution of these

operations when the performance optimizations are performed.

58

5.6 Limitations and discussion

5.6 Limitations and discussion

This section discusses the consequences of relying on modifications to the tested software

and the potential of PIKE to extend existing test-suites.

5.6.1 Reliance on modifications to tested software

As mentioned in Section 5.2, the current design of PIKE requires changes to the tested

applications, namely to implement the state summary functions. Unfortunately, this

requirement constitutes a disadvantage, for two main reasons, that we discuss next.

First, software modifications require work from developers, leading to an increase in

the adoption cost which, in turn, dissuades the adoption of the testing tool. However, our

experience with PIKE showed that, given the specific changes required by our approach,

the software modifications required to test MySQL involved only a moderate effort (Sec-

tion 5.5.1). In addition to the limited effort, because PIKE allows the modifications to

be performed incrementally on a per-data structure basis, our proposed testing approach

mitigates this problem by allowing developers to control the tradeoff between the scope

of testing (i.e., amount of state analyzed) and effort required for testing.

Second, modifications to the tested software prevent developers from achieving their

real goal, which is to test the original software. In some cases this difference can be

problematic because software modifications can potentially introduce bugs or simply

affect the application behavior in a manner that masks existing bugs. However, in the

case of PIKE, because the major modifications required (the state summary functions)

are expected to run only at the end of the execution1, after the output has been sent to

users, it is unlikely that such changes would negatively affect the observed output; even

though they could still crash the application or produce wrong information about the

state of the tested application.

Despite the limited impact of the specific modifications required by PIKE, our real-

world experience testing software allowed us to better understand the importance of

avoiding this requirement. In this context, Chapter 6 proposes a testing tool, SKI, that

entirely forgoes the requirement to modify the tested software by means of a dedicated

design. Section 7.1.2 takes a step back to discuss the general problem of modifying tested

software in the broader context of software testing. In addition, Section 8.1 discusses a

1The small modifications required by PIKE to identify three location in the source code (Section 5.3.2),
for the purpose of controlling the interleavings, represent negligible modifications given their size and
simplify.

59

5 Detecting latent and semantic bugs

possible research direction to improve the design of PIKE with respect to the need to

modify the application.

5.6.2 Extending traditional test suites

PIKE could be leveraged to extend traditional testing approaches, which generally focus

on non-concurrency bugs. Existing test suites could adopt PIKE to find concurrency

bugs, in addition to non-concurrency bugs, by including both PIKE’s component to

detect the concurrency bugs, as well as a custom scheduler to explore the interleaving

space. Importantly, PIKE would preclude developers from having to specify the correct

output produced by each of the concurrent tests, which is a burdensome, albeit common,

practice in the case of traditional non-concurrent tests. Furthermore, because PIKE

analyzes the application internal state, in addition to the output, it is able to detect

latent concurrency bugs.

5.7 Summary

This chapter presented PIKE, a tool for testing concurrent applications that finds two

particularly challenging types of concurrency bugs: semantic concurrency bugs and la-

tent concurrency bugs. We applied PIKE to a mature version of MySQL and, in the

process, we were able to find several semantic and latent concurrency bugs. In addition,

we found that it was simple to write the necessary annotations to capture an abstract

view of the service state, and that it was easy to make the number of false positives

tractable by writing simple filtering rules for common violations of linearizability at the

level of the application state. This work allowed us to conclude that it is feasible to

extract a specification from a complex applications, such as MySQL, by presuming that,

in the general case, developers intend to provide linearizable semantics.

60

6 Exposing concurrency bugs in kernels

6.1 Overview

In the current multi-core era, kernel developers are under permanent pressure to con-

tinually increase the performance of kernels through concurrency. Examples of such

efforts include reducing the granularity of locking [Rus], rewriting subsystems to use

parallel algorithms [CKZ13a], and using non-traditional and optimistic synchronization

primitives (such as RCU [MS98] and lock-free data structures [Val94]). Unfortunately,

previous experience has shown that all these efforts are error-prone and can easily lead

to kernel concurrency bugs — bugs that are only exposed by a subset of the possible

thread interleavings.

In practice, kernel developers find concurrency bugs mostly through manual code

inspection [WJKT05, Hol14] and stress testing [BAEFU06a, Sto02] (i.e., applying intense

workloads to increase the chances of triggering concurrency bugs). While useful, both

approaches have significant shortcomings: code inspection is labor-intensive and requires

significant skill and experience, and stress testing despite having low overhead and being

amenable to automation, offers no guarantees and can easily fail to uncover difficult to

find concurrency bugs — i.e., edge cases that are only triggered by a tiny subset of the

interleavings. It thus stands to reason that kernel developers could benefit from tools

without these limitations.

To this end, we propose a complementary testing approach for automatically finding

kernel concurrency bugs. Our approach explores the kernel interleaving space in a sys-

tematic way by taking full control over the kernel thread interleavings. This approach

has been explored for user-mode applications, namely by PIKE (Chapter 5), and exist-

ing literature has proven that it can yield good results [MQB+08, BKMN10, NBMM12a].

But, unfortunately, the systematic approach has not yet been applied to commodity ker-

nels because achieving control over the thread interleavings of kernels involves several

challenges. First, to be practical, a concurrency testing tool must be generally applica-

ble, rather than being specific to a particular kernel or kernel version, which precludes

kernel-specific modifications. Second, the kernel is the software layer that implements

61

6 Exposing concurrency bugs in kernels

its own thread scheduler, as well as the thread abstraction itself, making the external

control of thread interleavings non-trivial. Finally, to be effective, such a tool must be

able to control kernel interleavings while introducing a low overhead.

In this chapter, we report on the design and an evaluation of SKI1, the first tool

for the systematic exploration of kernel interleavings to overcome these challenges. To

achieve control over kernel interleavings in a portable way, SKI uses an adapted virtual

machine monitor that (1) determines the status of the various threads of execution, in

terms of being blocked or ready to run, to understand the scheduling restrictions, and

(2) selectively blocks a subset of these threads in order to enforce the desired sched-

ule. Notably, these key tasks are achieved without any modification to the kernel and

without specific knowledge of the semantics of the kernel’s internal synchronization prim-

itives. Furthermore, we propose several optimizations, both at the algorithmic and at

the implementation levels, that we found to be important for scaling SKI to real-world

concurrency bugs.

We evaluated SKI by testing several file systems in recent versions of the Linux kernel

and we found 11 previously unknown concurrency bugs. Of these, several concurrency

bugs can cause serious data loss in important file systems (ext4 and btrfs). We also

show how SKI can be used to reproduce concurrency bugs that have been previously

reported in two different operating systems (Linux and FreeBSD), and compare SKI’s

performance against the traditional stress testing approach.

We believe that SKI is an important step towards increased kernel reliability on mul-

ticore platforms. Nonetheless, there remains significant room for exploiting domain- and

kernel-specific knowledge. For instance, in this dissertation we propose a scheduling al-

gorithm, which generalizes PCT (Section 3.1.1), that is generic in the sense that it makes

no assumptions about the kernel under test. However, based on the SKI infrastructure,

other kernel-specific scheduling algorithms could be implemented, for example, to re-

strict the interleavings explored to those that affect specific kernel instructions, such as

code that was recently modified. Thus, we believe that SKI can provide benefits even

beyond those described in this dissertation, since it can serve as an experimentation

framework for different systematic techniques.

The rest of the chapter is organized as follows. Section 6.2 motivates the need for better

kernel testing tools. Section 6.3 presents the design of SKI. Section 6.4 proposes several

optimizations to make SKI scale to real-world concurrency bugs. Section 6.5 describes

the details of our implementation and Section 6.6 evaluates SKI on commodity kernels.

1Systematic Kernel Interleaving explorer

62

6.2 Kernel API and kernel modifications

Section 6.7 discusses some of its limitations and Section 6.8 presents a summary of the

chapter.

6.2 Kernel API and kernel modifications

Knowing which threads are live and being able to exercise control over the interleav-

ings are two essential mechanisms to systematically explore the interleaving space (Sec-

tion 3.1). In the case of user-mode applications, both of these essential mechanisms can

be easily and portably implemented in a proxy layer (e.g., through LD PRELOAD or

ptrace) by intercepting all relevant synchronization primitives to infer and override the

liveness state of each thread [MQB+08, BKMN10, NBMM12a]. For example, PIKE

uses LD PRELOAD to achieve this level of control over applications and to implement

the PCT scheduling algorithm. Unfortunately, this approach does not work for kernels

because kernels do not have a portable interface to allow such fine-level control over its

threads by a testing application. An alternative would be to include the testing tool

within the tested kernel by modifying the kernel itself, but this approach would suffer

from several disadvantages:

• Lack of portability and API instability. Any dependency on kernel-internal

APIs would a priori limit the portability of the envisioned testing tool, preventing

its seamless application across different kernels and even across different versions

of the same kernel. In contrast to well-documented, standardized user-space inter-

faces (e.g., the pthreads API), the internal API of most kernels is not guaranteed

to be stable, and in fact typically changes from version to version. In particular,

given the current trend towards increased hardware parallelism, kernel synchro-

nization has generally been an active area of development in Linux and other

kernels [MS98, CKZ13a].

• Complexity of the internal interface. An additional problem with the internal

API of the kernel, also noted in previous work [EMBO10], is that the semantics of

in-kernel synchronization operations are particularly complex. Furthermore, the

exact semantics of such operations tend to differ from kernel to kernel. This calls

for solutions that do not require a detailed understanding of these semantics.

• Other forms of concurrency. Interrupts are pervasive and critical to kernel

code. However, exercising fine-level control over their timing from within the

63

6 Exposing concurrency bugs in kernels

kernel itself would be particularly challenging, as interrupts are scheduled by the

hardware.2

• Intrusive testing. Requiring modifications to the tested software goes against

the principles of testing [KL93] — testing modified versions of the software can

potentially introduce or elide bugs.

In the next section we explain how SKI overcomes these challenges while enabling the

systematic exploration of kernel thread interleavings.

6.3 SKI: Exploring kernel interleavings

This section presents the design of SKI. We start by providing an overview of our solution

(Section 6.3.1), and then we describe how SKI exercises control over thread interleavings

(Section 6.3.2) and how it gathers the necessary liveness information (Section 6.3.3). We

conclude this section with a description of the scheduling algorithms employed, i.e., the

interleavings chosen for each run (Section 6.3.4).

6.3.1 Overview

The inputs given to SKI are the initial state of the system under test and the kernel input

that is to be tested concurrently (i.e., two or more concurrent system calls). Given these

inputs, SKI carries out several test runs corresponding to different concurrent executions,

where each test run is fully serialized, i.e., the tool enables only a single thread to execute

at each instant. This enables precise control over which interleavings are executed,

and allows SKI’s scheduler to choose successive runs to improve the interleaving space

coverage. Either during or after each test run, a bug detector is used to determine if the

test has flagged a possible bug. Such bug detectors can perform simple, generic actions

like detecting crashes, or complex, application-specific actions like running a system

integrity check after the test run.

As mentioned in the previous section, for SKI’s scheduler to gain control over the

interleavings executed by the kernel, it must perform two key tasks: inferring thread

liveness and overriding the scheduler. To accomplish both without modifying the OS

kernel under test, we implement the scheduler of SKI at the level of a modified virtual

machine monitor (VMM), taking as input a virtual machine (VM) image that incor-

porates the initial state of the kernel immediately before the system calls are invoked

2While user-mode signals are similar to interrupts, many programs do not use signals and therefore
existing user-mode tools, including PIKE, do not handle them [MQB+08, BKMN10].

64

6.3 SKI: Exploring kernel interleavings

concurrently. Implementing the scheduler at the VMM level enables it to both observe

and control the kernel under test.

This advantage comes, however, at the cost of making it more difficult to implement

the two aforementioned key tasks. This is because, at the VMM level, the hypervisor

observes a stream of machine instructions to be executed, and has direct access only to

the physical resources of the underlying hardware (such as registers or memory contents).

These low-level concepts are distant from the abstractions that are implemented by

the kernel in software, such as threads and their respective contexts. Furthermore, it

would intuitively seem necessary to have access to these abstractions for suspending the

execution of a thread and replacing it with another thread.

6.3.2 Exercising control over threads

To control the progress of threads, SKI relies on the observation that many impor-

tant kernels (e.g., Linux, Windows, MacOS X, FreeBSD) include a mechanism to allow

applications to pin threads to individual CPUs (i.e., to specify the thread affinity),

as described in Section 3.3. This mechanism, provided by kernels to user-mode ap-

plications for performance reasons, can be exploited to create a 1:1 mapping between

threads (a kernel abstraction) and virtual CPUs (an ISA component, controllable by the

VMM). This mapping in turn allows SKI to block and resume a thread execution by

simply suspending and resuming the corresponding virtual CPU’s execution of machine

instructions.

To implement the mapping between threads and CPUs, SKI includes, in addition to

the modified VMM, a user-mode component that runs inside the VM and issues system

calls to pin threads to virtual CPUs (see Section 6.5.3). Note that for scalability reasons,

each test generally involves only few threads, and hence it suffices to configure a small

number of virtual CPUs. Section 6.7.1 discusses the limitations of this mapping approach

regarding a particular category of threads, the kernel threads, and the implications on

testing the scheduler code itself.

6.3.3 Inferring liveness

To explore the interleaving space, SKI requires information about whether threads are

blocked or able to progress, analogously to what is required by the existing user-mode

tools [BKMN10, MQB+08, NBMM12a]. This requires SKI to be able to identify con-

structs such as spin-locks or barriers, where a CPU executes a tight loop, constantly

checking the value of a memory location for changes. SKI would be impractical if it

65

6 Exposing concurrency bugs in kernels

were not able to detect such constructs, for several reasons. First, executions would

take longer because more instructions would be executed (e.g., iterations of a spin loop).

Second, because more instructions would be executed, the space of possible interleavings

would significantly increase, since the number of possible interleavings is exponential in

the length of the test. Third, and most importantly, given the scheduling algorithm that

we describe in Section 6.3.4, two interleavings could be considered different even when

they only differ in the number of iterations executed by the polling loop of a spin lock.

This would be detrimental to the efficiency of SKI, since many of the explored schedules

would be effectively equivalent.

The difficulty in inferring thread liveness is that, from the point of view of the VMM,

CPUs are constantly executing instructions. As such, it is difficult to distinguish the

normal execution of a program from a polling loop.

One possible solution that we considered, but ultimately rejected, relies on annotating

the kernel by specifying the locations within the kernel code where the CPU executes

instructions without making any actual progress, namely situations where the kernel is

waiting for some event external to the CPU (such as an action performed by some other

CPU or a device notification). However, this approach would be laborious, error prone,

and non-portable.

Instead, we found several simple heuristics independent of the kernel code that enable

the VMM to infer whether a CPU is making progress or not.

H1: Halt heuristic. The first heuristic flags the CPU as non-live when it executes

the halt instruction (HLT).3 According to the instruction set specification, HLT marks

the CPU as waiting for interrupts. This instruction is typically used by kernels to

implement, in an energy efficient way, the idle thread when the kernel scheduler has no

other threads to run. When the CPU subsequently receives an interrupt, it is marked

as live again.

H2: Pause heuristic. The second heuristic relies on the observation that kernels

use the pause instruction (PAUSE) to efficiently implement spin-locks. In the x86 ar-

chitecture, the pause instruction has been introduced to avoid wasting bandwidth on

the memory bus when a CPU goes into a tight polling loop, and therefore its execution

is a good indication that the CPU is spinning on a lock. Thus, when our modified

VMM detects the execution of two nearby pause instructions, i.e., within an instruction

window of size h2, it considers the CPU to be non-live and takes note of the memory

read-set associated with the instructions executed between the two pause instructions.

3We focus on the ubiquitous x86 architecture in this dissertation; the presented ideas, however, can be
similarly applied to other architectures.

66

6.3 SKI: Exploring kernel interleavings

Pause instructions in close proximity are detected by the VMM by checking, at every

pause instruction, whether another pause instruction was recently executed. Later on,

when another CPU changes one of the addresses in the read-set, the non-live CPU is

optimistically marked as live again.

H3: Loop heuristic. The third heuristic detects situations where the CPU is wait-

ing for some external event, but that are not caught by the second heuristic. This

could happen if, for example, a spin-lock were implemented without including the pause

instruction. To detect CPUs stuck in a polling loop, our modified VMM maintains a

window, of size h3, of the last few instructions executed by each CPU. If a CPU repeat-

edly executes the same instructions (i.e., if it executes a loop), and if an instruction in

the loop repeatedly reads the same value from the same memory address, the executing

context is flagged as non-live after a certain number of loop iterations. Again, SKI takes

note of the read-set of detected polling loops to later re-enable the CPU.

H4: Starvation heuristic. As a last resort, in case the above heuristics are not

able to detect situations where there is no progress, SKI keeps a count of the number

of instructions executed continuously by the current CPU, and, if it exceeds a threshold

(h4), it conservatively presumes that the CPU is no longer making progress. The CPU

is marked live again after a certain number of instructions have been executed by the

other CPUs. This heuristic ensures the detection, for example, of loops that are missed

by H3 if h3 is set smaller than the loop size.

We determined the values for the thresholds of these heuristics, which remained con-

stant throughout all our tests, through simple experimentation. From our experience,

these mechanisms were sufficient to ensure the effectiveness of SKI for a wide range

of kernel versions, at both reproducing previously known bugs and at finding unknown

bugs.

6.3.4 Scheduling algorithm

SKI executes a VM multiple times under different schedules to ensure interleaving di-

versity across the runs. To select and prioritize the interleavings that are to be explored

SKI needs to implement a scheduling algorithm. To this end, we have generalized the

PCT algorithm (Section 3.1.1) to support testing operating system kernels. SKI gener-

alizes PCT by supporting interrupts (Section 6.3.4), which is a fundamental requirement

for testing kernels.

We consider the proposed algorithm to be just one instance from a range of possible

algorithms (albeit one that in our experience happens to work well), and developers that

make use of the tool might consider adding other, more refined algorithms. For example,

67

6 Exposing concurrency bugs in kernels

it may be possible to develop effective scheduling algorithms that exploit specific char-

acteristics of kernel code. This section presents our generalization of the algorithm, and

assumes that the reader is familiar with the original PCT algorithm, which is described

in detail in Section 3.1.1.

The scheduling algorithm we propose differs from the PCT algorithm in two aspects.

First, given that SKI operates at the level of the virtual machine monitor, our algorithm

does not have access to the thread abstraction. Thus, instead of scheduling threads, our

algorithm schedules CPUs. Second, given the interrupt mechanism within the kernel

context, our scheduler has to decide when to dispatch interrupts.

Interrupts do not appear in the context of user-mode programs, but we need to control

their schedule when testing the kernel for two different reasons. First, concurrency bugs

may depend on the interleaving of interrupts, so our algorithm should be able to explore

this part of the interleaving space. Second, interrupts are in some cases required for

the successful completion of system calls, and therefore interrupts need to be scheduled

to conclude the execution of the tests. For example, some system calls are only able to

finish if, during their execution, other CPUs handle the TLB flush interrupt. Thus, since

the scheduler of SKI must handle both threads and interrupts, we will refer to contexts,

instead of threads, throughout the description of our generalized scheduling algorithm.

As the scheduler needs to consider when interrupts are handled, each CPU is tracked

as being in one of two different contexts: it may either execute in the context of an

interrupt handler (interrupt-context), or it may execute outside of the context of any

interrupt handlers (CPU-context). Each interrupt-context is defined by the CPU on

which it arrived and by the interrupt number that it represents. From the point of view

of the scheduler, interrupt-contexts are created, and therefore become schedulable, when

the corresponding interrupt arrives on its specific CPU. These execution contexts are,

to our scheduler, the equivalent to threads for other systematic exploration algorithms,

and as such they need to be detected by the scheduling logic. SKI infers the context by

tracking the interrupt handler dispatches and the IRET instruction invocations (which

are used to return from interrupt handlers). Figure 6.1 shows examples of schedules

involving two CPU-contexts and one interrupt-context.

To achieve further control over the tests, SKI allows the user to specify a set of execu-

tion contexts that are allowed to run during the test. In particular, placing restrictions

on the set of eligible execution contexts may be useful in specific testing scenarios, to

restrict the scheduling space that is explored.

68

6.3 SKI: Exploring kernel interleavings

Schedule 1 Schedule 2

CPU1 INT1 CPU2 CPU1 INT1 CPU2

INST 1

INST 2

INST 3

INST 4

<end >

INST 1

INST 2

<end >

INST 1

INST 2

INST 3

<end >

INST 1

INST 2

<res >

INST 1

INST 2

<end >

INST 1

INST 2

INST 3

<end >

INST 3

INST 4

<end >

Figure 6.1: Two examples illustrating schedules produced by SKI. Each schedule in-
volves three contexts, two CPU-contexts and one interrupt-context.
Both schedules start with the same initial context priorities. However,
Schedule 2 differs from Schedule 1 because it contains one reschedule
(<res>).

6.3.5 Discussion

The design of SKI ensures correctness, meaning that SKI never causes the kernel to

exhibit a behavior that could not possibly occur during normal executions of the kernel,

because SKI exercises control over the kernel schedule by temporarily suspending the

execution of instructions on chosen CPUs. Correct kernels have to be able to handle

this mechanism because the hardware specification does not provide guarantees about

the speed of the CPUs. Furthermore, modern kernels are expected to work well within

virtual machines, where the apparent speed of CPUs is likely to not be regular simply

because the host system might be under heavy load.

Despite this correctness guarantee, some bug detectors may still produce false positives

(e.g., data race detectors). In such cases, regardless of how the interleaving space is

explored, the obtained results require further analysis specific to the the employed bug

detector.

69

6 Exposing concurrency bugs in kernels

6.4 Scaling to real-world kernels

The total number of possible schedules grows exponentially with the length of the code

under test. For most programs, including the kernel, it is not practical to exhaustively

explore all interleavings, and therefore it is important for concurrency testing tools to

include mechanisms for increased scalability.

The p parameter, used by the scheduling algorithm (Section 6.3.4), constrains the

schedules that may be explored and therefore improves scalability by bounding the

number of possible schedules. This is done without much impact on the effectiveness of

the testing tool, given the observation that, in practice, most bugs can be triggered with

few reschedule points [BKMN10]. Similarly, it has been shown that many concurrency

bugs can be triggered with a small number of threads [LPSZ08] and with a small number

of concurrent requests [SCA09] – which are observations also leveraged by PIKE. Based

on these observations, we configured SKI in our tests to use small values for these three

dimensions (reschedule points, number of CPUs, and number of system calls).

Despite these optimizations, we noticed in our initial tests that SKI’s scalability was

limited by the fact that even a single system call can execute a large number of in-

structions — a single system call typically executes many thousands or even millions of

instructions. This implied that, even if we limited SKI to p = 1, the number of runs

that would be required to explore all schedules would be on the same order of magnitude

as the number of instructions, which is impractically large.

To address this scalability issue, SKI relies on a technique first proposed by Gode-

froid [God97] that exploits the fact that some schedules are equivalent and thus re-

dundant, as illustrated in Figure 6.2. In particular, we rely on the observations that (1)

schedules that do not differ in terms of the relative order of communication points (where

threads see the effects of each other) are observationally equivalent from the standpoint

of the interleaved threads, and that (2) most of the kernel instructions do not constitute

communication points between CPUs. Taken together, these two observations allow

us to significantly improve SKI’s scalability by restricting reschedules to occur only at

communication points.

More precisely, we define a point of communication as an instruction that accesses a

memory location that is also accessed by another CPU during the test, and where at

least one of the accesses is a write. Such concurrent memory accesses can influence the

final outcome of the execution: in the case of two concurrent writes, the last value to be

written prevails, and in the case of a write concurrent with a read, the value read may

or may not reflect the write, depending on the schedule. Other tools have also tried to

70

6.4 Scaling to real-world kernels

Schedule 1 Schedule 2 Schedule 3

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

A=1

<res >

A=0

D=A+1

B=1

C=B+A

PRINT C

A=1

B=1

<res >

A=0

D=A+1

C=B+A

PRINT C

A=1

B=1

C=B+A

<res >

A=0

D=A+1

PRINT C

Figure 6.2: Example showing two equivalent schedules (Schedules 1 and 2) and one
schedule that is not equivalent to either of the others (Schedule 3). In
this example, only variable A is used for communication between CPUs.
Because variable B is accessed by only one CPU, placing the resched-
ule point (<res>) immediately before (Schedule 1) or immediately after
(Schedule 2) the statement B=1 does not change the result of the execu-
tion.

avoid equivalent schedules but by relying instead on identifying and preempting threads

at locations involved in possible data races or at locations invoking synchronization

primitives [MQB+08].

SKI gathers the location of possible communication points by monitoring memory

accesses during the tests. During each run, it tracks the locations of the memory accesses,

the CPU responsible for the accesses, and the types of accesses (read or write). After each

run, SKI generates a set of program addresses that are potential communication points,

and merges this information with an accumulated set of potential communication points

for that specific test case. Note that this process does not rely on sample runs — every

run monitors the memory accesses and, therefore, potentially learns new communication

points. As this accumulated set is constructed, it is used in subsequent runs for the same

test case to decide which schedules are equivalent, thereby limiting the set of instructions

that qualify as reschedule points. During the initial run, because no communication

points are known, SKI learns new communication points for subsequent runs without

executing reschedule points.

In our experiments, we observed that, as expected, both data and synchronization

accesses were identified as communication points. To give some examples, data accesses

occur when both CPUs try to modify the same field in a shared structure (e.g., a file

reference count), and synchronization accesses occur when both CPUs try to acquire

the same lock. An advantage of SKI’s dynamic approach is that whether or not an

71

6 Exposing concurrency bugs in kernels

instruction qualifies as a reschedule point depends on the code that both CPUs actually

execute (e.g., the specific system calls or interrupt handlers that are invoked). As a

result, if two CPUs acquire different locks unrelated to the tested functionality, such

accesses will not be considered communication points (in the context of the current test

case).

In practice, SKI estimates the expected number of instructions, k (recall Section 3.1.1),

based on previous runs. With the communication points optimization, instead of con-

sidering individual instructions when placing reschedule points, we consider only com-

municating instructions, and thus let the algorithm take coarser-grained steps in its

exploration of the interleaving space. That is, by limiting the set of reschedule point

candidates, the magnitude of the parameter k is effectively reduced. During the initial

run, because no communication points are known, the initial value of k is ignored. In

addition to these algorithmic optimizations, SKI includes several optimizations, at the

level of the implementation, to ensure its effectiveness (Section 6.5.4).

6.5 Implementation

We implemented SKI by modifying QEMU, a mature and open-source VMM, and its

JIT compiler. In total, our implementation added 13, 542 lines of source code to QEMU.

We also built a user-mode testing framework consisting of 674 lines of source code to

help users write test cases for SKI (Section 6.5.3). In addition, we implemented various

scripts to set up and automate tests and also to analyze the gathered information.

6.5.1 Overview

SKI provides a helper tool to allow kernel developers to specify the concurrent system

calls, by building a VM containing the corresponding test case (Section 6.5.3). When

executed under SKI, this VM first goes through an initialization phase, performing test-

specific actions to configure the system, and then signals the beginning of the test to

the VMM using hypercalls (i.e., calls between the VM and the VMM). When all virtual

CPUs have received the signal, the SKI scheduler is activated.

SKI’s first action is to take a snapshot of the VM. The VM snapshot includes the

entire machine state (memory state, disk state, CPU state, etc.) and thus allows SKI

to run multiple executions from an identical initial state.

Starting from this VM snapshot, SKI places reschedule points and assigns starting

priorities as described in Sections 6.3.4 and 6.4, and then resumes the execution of the

72

6.5 Implementation

highest-priority context and enforces the chosen schedule, thereby exploring different

schedules on each run.

To mark the end of the test, the user-mode component inside the VM issues a hypercall

to the VMM. Afterwards, the VM is allowed to run normally (i.e., without schedule

restrictions) until the testing application asks to terminate the execution. This last

phase is useful to let the user-mode component execute test-specific diagnostics (such as

a file system check) inside the VM.

6.5.2 Runnable contexts

The scheduler of SKI allows, at any point in time, only the live and active context with

the highest priority to run. The liveness of a context is inferred by the VMM according to

the heuristics explained in Section 6.3.3; the criteria for determining whether a context

is active or not depends on the type of context. A CPU-context is considered active if it

has not reached the end of the test, which is flagged by the user-mode component using a

hypercall, as discussed above, whereas an interrupt-context is considered active only after

it has been triggered by the respective hardware device and before the corresponding

IRET instruction has been executed.

6.5.3 Helper testing framework

We built a user-mode helper framework that allows users to easily build a testing VM

ready to be used by SKI. It includes a user-mode application that runs inside the testing

VM for the purpose of setting up the kernel and for providing the required test input

(e.g., system calls).

The user-mode test framework automatically creates the testing threads/processes,

pins each thread/process to a dedicated virtual CPU, issues the hypercalls to mark the

beginning of the test (right before the test function is called) and the ending of the

test (right after the test function returns), and finally requests the termination of the

VM (when all post-test functions have completed). This framework can be used both

to manually create test cases (Section 6.6.2) or to adapt existing test suites to leverage

SKI for the interleaving exploration (Section 6.6.3).

We first implemented the framework targeting Linux and subsequently ported it to

FreeBSD, and have been using it to conduct tests on both operating systems. The helper

framework itself was easily ported because only few of the system/library calls it relies

are not part of the POSIX standard (namely the calls to pin threads/processes, which

have slightly different interfaces).

73

6 Exposing concurrency bugs in kernels

6.5.4 Optimizations and parallelization

In addition to the algorithmic optimizations described in Section 6.4, we have imple-

mented several other optimizations to improve the performance of SKI. One of our main

optimizations avoids resuming from a snapshot for each tested execution, which takes

a few seconds in the original version of QEMU. Instead we have implemented in SKI

a multi-threaded forking mechanism to take advantage of the copy-on-write semantics

offered by the host OS, amortizing the cost of resuming from a snapshot over multiple

executions. This mechanism has been implemented, without modifying the host kernel,

by issuing a fork system call from a specific VMM thread (which only forks the calling

thread) and subsequently manually spawning the other threads as well as reconstructing

their respective stacks. To ensure that the fork system call is actually efficient, despite

the large address space of SKI, our implementation additionally leverages large memory

pages (2MB in x86-64 systems) at the host level.

The benefit of forking executions is not limited to executions that test the same input

because we allow the testing application to receive, through a hypercall, a parameter

that specifies the testing input. Thus, from a single snapshot, SKI can explore different

inputs and different interleavings, making the overall cost of creating and resuming from

a snapshot negligible.

In addition, given that in our testing scenario after each execution we discard most of

the state of the VM (e.g., VM RAM and disk contents), we optimized SKI by converting

several file system operations, performed by the original QEMU on the host, into memory

operations.

Given that our workload is parallelizable, SKI takes advantage of multicore host

machines by spawning multiple VMs to perform multiple concurrent tests. We have

also implemented a testing infrastructure to distribute the workload across multiple

machines, further increasing the testing throughput.

6.5.5 Bug detectors

Section 6.3 presented the algorithms and mechanisms that SKI employs to explore the

thread interleaving space of the kernel. However, to find concurrency bugs an orthogonal

problem needs to be addressed — it is necessary to identify which of these executions

triggered bugs.

In Section 6.6 we show how SKI can be combined with different types of bug detec-

tors — we evaluate SKI using bug detectors to detect crashes, assertion violations, data

races and file system inconsistencies. Our implementation detects crashes and assertion

74

6.6 Results

violations by monitoring the console output at the VMM level. The detection of data

races is also performed at the VMM level by recording racing memory accesses, simi-

larly to DataCollider [EMBO10]. File system inconsistencies, in contrast, are detected

by running existing file system checkers inside the VM itself after each test.

6.5.6 Traces and bug diagnosis

To enable the implementation of external bug detectors and to allow the diagnosis of

bugs through manual inspection, SKI is able to produce detailed logs of the executions.

These traces contain the exact ordering of instructions and the identity of the context

responsible for the instructions. In addition, SKI can be configured to produce traces

with all the memory accesses and the values of the main CPU registers.

We built some analysis tools that parse these traces to provide useful information.

One of our tools extracts source code information (assuming the kernel is compiled with

debugging symbols) and disassembles the kernel binary to annotate the trace with both

source code and assembly instructions. We also implemented another diagnosis tool that

generates the call graph for each execution. While none of these tools is conceptually

particularly challenging, in our experience, they complement each other well and make

the rich information collected by SKI much more accessible.

Apart from the traces produced by SKI, the bug detectors we built are another im-

portant source of diagnostic information. For example, the data race detector that we

implemented identifies the exact memory address as well as the instruction addresses

involved. As another example, the crash reports produced by the Linux kernel include

a detailed stack trace that is very convenient for developers to diagnose bugs.

6.6 Results

This section evaluates the effectiveness of SKI in exposing real-world kernel concurrency

bugs. After describing the configuration that we employed in our experiments, we report

on our experiments using SKI to reproduce previously known bugs and comparing it

with traditional approaches (Section 6.6.2). We then report our experience in applying

SKI to recent and stable versions of the Linux kernel, which resulted in the discovery of

several previously unknown concurrency bugs (Section 6.6.3).

75

6 Exposing concurrency bugs in kernels

6.6.1 Configuration

We conducted our experiments on host machines with dual Intel Xeon X5650 processors,

each with 12 hardware threads, and 48 GB of RAM running Linux 3.2.48.1 as the host

kernel. To increase the testing throughput, we configured SKI to run 22 testing execu-

tions in parallel on each machine and we ran our experiments on up to 12 machines at

a time.

For each test case reported in this chapter, we configured SKI to use p = 2 and we

explored 200 schedules in the large-scale experiments to find new bugs (Section 6.6.3)

and 50, 000 schedules in the experiments to reproduce known bugs (Section 6.6.2). SKI’s

liveness heuristics used h2 = 30, h3 = 20 and h4 = 500, 000 (Section 6.3.3). We tested

several different versions of Linux, ranging from 2.6.28 to 3.13.5, depending on the exper-

iment, and one of the experiments described tested FreeBSD, version 8.0. Importantly,

the same configuration of SKI was used in all tests: we did not have to modify any

settings to adjust SKI to a particular tested kernel version, and we also did not have to

modify the kernels under test.

6.6.2 Reproducing concurrency bugs

We evaluated the effectiveness of SKI in reproducing previously reported kernel con-

currency bugs. To find typical bug reports, we searched the kernel Bugzilla databases,

the kernel development histories (i.e., the git changelogs), and the mailing list archives.

From these sources, we selected four independently confirmed kernel concurrency bugs.

We opted for a diverse set of bugs that were particularly well documented. Furthermore,

to enable a direct comparison, we considered only bug reports that included instructions

for triggering the reported bugs through stress testing.

As listed in Table 6.8, the selected bugs exhibited different types of failures in various

kernel components. Bug A causes a memory access violation (an “Oops” in Linux

parlance) in the pipe communication mechanism, which can occur during concurrent

open and close calls on anonymous pipes. Bug B also results in a memory access violation

and is triggered on some interleavings when a FAT32-formatted partition is unmounted

concurrently with the removal of an inotify watch4 associated with the same partition.

Bug C does not result in a crash, but rather causes a read system call to return corrupted

values. Finally, bug D affects FreeBSD and is triggered by concurrent calls on sockets

that cause the kernel to incorrectly return error values.

4Linux’s inotify interface allows processes to receive change notifications for file system objects such as
files, directories, or mount points.

76

6.6 Results

Based on these four bug reports, we determined the system calls that would expose

the bugs and produced the corresponding SKI test cases, as described in Section 6.5.3.

For the bugs that had semantic manifestations, i.e., system calls that returned wrong

results, we implemented bug-specific detectors, according to the information provided in

the bug reports.

SKI exposed bugs A and B by triggering the crash after exploring 28 and 53 schedules,

respectively. Bugs C and D were exposed after 51 and 3519 schedules, respectively,

causing wrong results to be returned. Given that SKI requires few executions to trigger

concurrency bugs, with a suitable test suite (e.g. regression test suites [GHK+01]), SKI’s

throughput is sufficient to reproduce on the order of hundreds of such concurrency bugs

per hour (Table 6.1).

These experiments confirm that SKI is effective at reproducing real-world concurrency

bugs. Most importantly, it should be noted that the reproduced bugs stem from two

different OS code bases (FreeBSD and Linux) and from a wide range of Linux kernel

versions spanning several years of intense development. In fact, even if we ignore the

cumulative number of lines changed (i.e., the churn rate) and take into consideration

only the increase in the total number of lines of source code, the Linux kernel grew

by an impressive 60% from version 2.6.28 (10M SLOC) to version 3.6.1 (16M SLOC).

SKI handled the different versions of the Linux kernel and the FreeBSD kernel without

requiring any changes to the VMM itself or its configuration, which provides evidence

for the considerable versatility intrinsic to SKI’s design.

Comparison with stress testing

In the discussions that led to the resolution of these four bugs, the kernel developers

proposed non-systematic methods to reproduce them. In particular, they provided sim-

ple stress tests, which continuously execute the same operations in a tight loop, waiting

until a buggy interleaving occurs. We executed the original stress tests proposed by the

developers to compare SKI to a traditional approach. For this purpose, we ran the stress

tests in an unmodified VMM, i.e., without making use of SKI.

Note that without a deep knowledge of the kernel code, in the general case, it is

hard to generate stress tests for the bugs that SKI discovered in Section 6.6.3. The

reason for this is that it is not straightforward to ensure that, for every one of the

various iterations of the stress test, the state of the kernel is such that it can trigger the

concurrency bugs. (SKI avoids this problem because it automatically restores the initial

state through snapshotting). Thus, to ensure a more objective comparison between the

77

6 Exposing concurrency bugs in kernels

Bug Throughput

A 302.0
B 169.3
C 218.7
D 501.4

Table 6.1: SKI’s throughput for each machine. Throughput is presented in thousand
executions per hour.

two approaches, we chose to use stress tests produced by the kernel developers themselves

since these are the ones offering better effectiveness guarantees.

As expected, and consistent with earlier comparisons of systematic and unsystematic

user-mode concurrency testing approaches [MQB+08, BKMN10], SKI proved to be much

more effective in reproducing concurrency bugs than the non-systematic approaches.

Despite the fact that we gave each stress test up to 24 hours to complete, bug A and

bug D were not triggered at all by their corresponding stress tests. While the stress

tests for bugs B and C did eventually trigger their corresponding bugs, they required

significantly more executions (and time) than SKI: the stress tests required more than

200, 000 iterations (4 hours) to reproduce bug B and more than 800 iterations (1 minute)

to trigger bug C, compared to 53 and 51 iterations (both a few seconds), respectively,

under SKI.

Overall, the relative difficulty of reproducing bugs with simple stress tests is not sur-

prising given prior comparisons of systematic approaches and stress testing in the context

of user-mode applications [BKMN10]. Furthermore, this difficulty was also reported by

the kernel developers themselves. For example, in the case of bug A (which the stress test

failed to reproduce in our experiments) the developer stated that the “failure window is

quite small” [BA2] and recommended introducing a carefully placed sleep statement in

the kernel to trigger the bug.

Liveness heuristics

We instrumented SKI to log the activation of SKI’s heuristics. Using this data we

calculated the percentage of schedules that triggered each of the heuristics (Table 6.2)

and the average number of times each heuristic was triggered per schedule (Table 6.3).

The results show that some of the schedules do not trigger heuristics. This is ex-

pected to happen when SKI chooses schedules in which threads do not experience lock

contention and is more likely to occur in operating systems that are well optimized for

78

6.6 Results

Bug H1 H2 H3 H4 H*

A 1.72% 0.61% 5.71% 0.57% 7.97%
B 88.80% 49.70% 0.05% 13.73% 88.93%
C 1.50% 23.56% 0.00% 0.00% 25.06%
D 0.53% 2.66% 0.00% 0.00% 3.05%

Table 6.2: Percentage of schedules that triggered the liveness heuristics. H* refers to
the percentage of schedules that trigger any heuristic.

Bug H1 H2 H3 H4 H*

A 0.08 0.01 0.06 0.01 0.17
B 14.97 1.59 36.38 0.14 53.08
C 0.01 0.44 0.00 0.00 0.45
D 0.01 0.03 0.00 0.00 0.03

Table 6.3: Average number of times the liveness heuristics were triggered per schedule.
H* refers to the percentage of schedules that trigger any heuristic.

scalability. Even though not all of the tests activate all heuristics, all heuristics were

activated in at least one of the test cases.

In addition, we observed that in these tests the heuristics were triggered at 167 distinct

instruction addresses. The large number of distinct addresses is indicative of the chal-

lenges that would result from manually annotating the kernel to infer thread liveness,

as opposed to relying on the four simple heuristics implemented by SKI.

Effectiveness of communication points

To evaluate the effectiveness of the optimization of keeping track of communication

points and allowing reschedules to occur only at these points (described in Section 6.4),

we calculated for each test case the average number of instructions and the average num-

ber of communication points executed per run. As shown in Table 6.4, this optimization

reduced the number of potential reschedule points by up to an order of magnitude in our

experiments, thereby avoiding the wasteful exploration of redundant, effectively equiva-

lent schedules. These results show the importance of this optimization to the scalability

of SKI.

6.6.3 Exposing unknown concurrency bugs

To demonstrate the effectiveness of SKI in finding real world concurrency bugs, we tested

several file systems from recent versions of the Linux kernel.

79

6 Exposing concurrency bugs in kernels

Bug I CP I/CP

A 87673.5 12511.2 7.00
B 210693.0 23432.8 8.99
C 65126.9 6372.3 10.22
D 22641.3 6503.2 3.48

Table 6.4: Effectiveness of the communication points optimization described in Sec-
tion 6.4. The table shows for each reproduced bug the average number of
instructions executed per run (I) and the average communication points
executed per run (CP). The last column characterizes the optimization’s
effectiveness as the ratio of the two metrics.

To create the inputs that form the various tests, we modified fsstress [Lar02], adding

calls to SKI’s hypercalls to flag the beginning and the end of the tests, and we modi-

fied the test suite to issue concurrent system calls. For convenience we also converted

some of the debugging messages to use SKI’s own debugging hypercalls. Because one

of the file systems (btrfs) supports several operations that were not supported by the

original fsstress, we also added support for twelve of those file system operations (e.g.,

snapshot/sub-volume operations and dynamic addition/removal of devices). In total, we

added or modified 900 lines of code in fsstress, of which 700 lines are related to the btrfs

operations.

Bug detectors

We ran SKI with three bug detectors. The first detector simply monitors the console

output to detect crashes, assertion violations and kernel warning messages. We imple-

mented this bug detector by configuring the kernel to redirect the console output to a

serial device and by storing and analyzing its contents on the host. Despite its simplicity,

in addition to flagging the executions that potentially triggered concurrency bugs, this

bug detector can provide very useful kernel-specific diagnosis information, such as stack

traces, warning messages and error messages.

The second detector uses file system checkers (fsck), which are specific to each file

system and are only supported/mature in the case of some file systems, to detect file

system corruption. This type of bug detector runs inside the VM, in contrast with

the others, which are implemented within the VMM. To limit the performance impact

of running fsck after each execution, we created small file systems (300 MB) and we

mounted the file system in memory using loop + tmpfs (in addition to leveraging the

optimizations described in Section 6.5.4).

80

6.6 Results

Bug Kernel FS Function Detector / Failure E FS Status

1 3.11.1 Btrfs btrfs find all root() Crash: Null-pointer 41 0.030 Fixed
2 3.11.1 Btrfs run clustered refs() Crash: Null-pointer + Warning 26 0.020 Fixed
3 3.11.1 Btrfs record one backref() Warning 74 0.030 Fixed
4 3.11.1 Btrfs NA Fsck: Refs. not found 11 0.200 Rep.
5 3.12.2+p Btrfs btrfs find all root() Crash: Null pointer 61 0.060 Fixed
6 3.12.2 Btrfs inode tree add() Warning 53 0.010 Fixed
7 3.13.5 Logfs indirect write alias() Crash: Null pointer 31 0.065 Rep.
8 3.13.5 Logfs btree write alias() Crash: Invalid paging 142 0.020 Rep.
9 3.13.5 Jfs lbmIODone() Crash: Assertion 74 0.005 Rep.
10 3.13.5 Ext4 ext4 do update inode() Data race 32 0.005 Fixed
11 3.13.5 VFS generic fillattr() Data race 125 0.005 Rep.

Table 6.5: Bugs that have been discovered by SKI in recent versions of the Linux kernel
and that we have reported to developers. For the specific input that
triggered each bug, we show the number of schedules that were required
to expose the bug (E) and the fraction of schedules that triggered the bug
(FS). Eventually we found out that bug #3 had previously been reported.
A patched version of the kernel, expected to solve bug #1, was tested on
request from the developers but SKI revealed that the kernel could still
crash in a different location of the same function (bug #5).

The third bug detector consists of a data race detector that we implemented, which

analyzes all memory accesses, without sampling. Similarly to other data race de-

tectors [EMBO10], our detector finds racing memory accesses without distinguishing

whether those accesses are performed by synchronization functions. The main challenge

in this case is filtering out the false positives [EMBO10, SBN+97, MMN09, YRC05].

False positives can be of two classes: false data races (memory accesses that do not con-

stitute data races) and benign data races (memory accesses that constitute data races

but that are not considered harmful by its developers).

Reports
False data race 76

Data race
Benign 90

Harmful 24

Table 6.6: Types of race reports found during our experiments. The numbers displayed
refer to the number of reports after associating related races. Note that
a single bug may be involved in multiple data races (e.g., if it affects
multiple variables).

81

6 Exposing concurrency bugs in kernels

Btrfs Ext4 Jfs Logfs

SKI 34.7 62.6 61.6 61.2
SKI+ DR 32.1 61.9 59.5 58.8
SKI+ Fsck 6.4 20.8 18.2 N/A
SKI+ Fsck + DR 6.1 20.6 17.9 N/A

Table 6.7: SKI’s throughput (for each machine) with different bug detectors. Through-
put is given in thousands of executions per hour. DR denotes the data
race detector. Fsck tests on logfs are absent due to the lack of compatible
mature checkers.

Bug Kernel OS Component Failure E FS

A [BA] Linux 2.6.28 Anonymous pipes Crash 28 0.00572
B [BB] Linux 3.2 Inotify + FAT32 Crash 53 0.13770
C [BC] Linux 3.6.1 Proc file system + Ext4 Semantic 51 0.01004
D [BD] FreeBSD 8.0 Sockets Semantic 3519 0.00014

Table 6.8: Known bugs reproduced with SKI. The table shows the number of schedules
that were required to expose the bug (E) and the fraction of schedules
that triggered the bug (FS). The table shows the kernel version under
which we reproduced the bug, the OS components involved and the type
of failure that the bug causes.

In order to facilitate the manual process of analyzing the false positives produced by

the data race detector, our tool groups together distinct pairs or racing instructions that

were found to race directly or transitively. Using this method, we were able to group

together 3114 pairs of races into 190 race reports. Filtering out race reports that were not

data races was straightforward – it consisted of ruling out the races that occur within

the synchronization mechanisms, which we accomplished using the kernel debugging

symbols that map instructions to source code locations. In contrast, the difficult part

was separating real data races into benign and harmful ones. In some cases, this process

requires careful analysis of the code and documentation and, ultimately, it may require

asking the developers – who may not even agree among themselves. Heuristics could

have been used to analyze the results, but unfortunately these typically offer limited

help for the more complicated cases. Given this complexity, we gathered some reports

(not included in Table 6.5) that may constitute bugs but are still under analysis, and

for which, in some cases, we are still waiting for feedback from the developers. Table 6.6

shows the number of race reports that we obtained in the file systems tests according to

their type.

82

6.7 Limitations and discussion

Results

The results in Figure 6.5 show that SKI was able to find several unknown concurrency

bugs in mature versions of the Linux kernel. One of the bugs found affects the widely

used ext4 file system and six bugs affect the btrfs file system – which is expected to soon

become the default file system in some distributions [OPE]. We have reported the 11

bugs listed in Table 6.5; of those, 6 have already been fixed.

Furthermore, although FS related system calls tend to be expensive, SKI was able

to achieve a testing throughput that reached 62 thousand executions per hour on each

machine (Table 6.7). Even though the current performance of SKI proved to be effective,

significant performance improvements may still be achievable by using more efficient

virtual machines monitors, possibly using hardware acceleration, or even by building

SKI using binary instrumentation frameworks.

It is worth pointing out that many of the bugs found by SKI are serious – six of the

bugs cause the kernel to crash and most of the bugs found cause persistent data loss.

For example, the ext4 bug, which is due to improper synchronization while updating the

inodes, causes the field i disksize (containing information about the size of the inodes) to

become corrupted. To fix this bug, developers applied patches that involved refactoring

the code and the introduction of additional synchronization.

6.7 Limitations and discussion

6.7.1 Reliance on thread pinning

SKI establishes a one-to-one mapping between threads and virtual CPUs by pinning

threads, however, this technique has two limitations. First, the process of pinning threads

is restricted to certain types of threads. Second, pinning threads imposes restrictions

on the kernel execution paths that can be tested. This section discusses both of these

restrictions and their implications on testing kernels using SKI’s approach.

Applications cause kernel code to be executed by invoking system calls in user-space

or, similarly, by triggering exceptions (e.g., divisions by zero, page faults). Given that

system calls are an important entry point into kernel code and often the mechanism used

to drive the kernel during testing [Lar02], the work presented in the previous sections

focused on demonstrating the effectiveness of SKI when testing kernels through the

invocation of system calls. Nevertheless, not all kernel code is directly executed through

the invocation of system calls by applications.

83

6 Exposing concurrency bugs in kernels

In addition to applications, kernel threads [KER] are also responsible for executing

kernel code. Kernel threads are a thread abstraction, implemented at the kernel level,

that does not have a user-mode component associated5. This mechanism is used by

kernel programmers to asynchronously execute tasks that perform computations on the

internal state of the kernel (without the direct involvement of applications). For example,

in Linux the pdflush kernel thread is responsible for managing the page cache and the

ksoftirqd kernel thread is responsible for part of the interrupt handling under high-load

situations.

Despite not being associated with user-mode processes, kernel threads can still, in

many cases, be pinned to different CPUs. Pinning kernel threads simply requires that

an application, constituting a component of the testing infrastructure that runs within

the virtual machine, invokes the thread affinity system call and identifies the target

kernel thread using its process identifier (PID).

However, there are cases of kernel threads that cannot be pinned to arbitrary CPUs

for OS-specific reasons. For example, in Linux a ksoftirq kernel thread is spawn for each

one of the CPUs and is pinned within the kernel itself to its respective CPU, which

has the advantage, from the kernel programmers point-of-view, that it is possible to rely

exclusively on CPU-local variables to maintain the state of these threads, and, therefore,

the synchronization of the accesses to its state is simpler. For the subset of kernel threads

that cannot be pinned to arbitrary CPUs, SKI is not able to systematically control their

schedule and, therefore, has to leave the schedule control to the native kernel scheduler.

Another consequence of pinning the tested threads to CPUs is that it restricts the

kernel functionalities that can be tested with SKI. As an example, SKIis not able to

test the scheduler code responsible for migrating threads between CPUs because mi-

gration is necessarily prevented when threads are pinned to a single CPU. In essence,

the requirement to pin the tested threads constitutes a limitation on the input space

that can be tested with SKI, namely by preventing tests from considering an arbitrary

affinity set for the tested threads, which consequentially restrict the testable execution

paths. However, we expect this limitation to have a minor impact on the overall appli-

cability of the proposed testing approach, which would mostly affect the scheduler logic,

because the kernel scheduler constitutes a relatively small proportion of the entire kernel

code. Therefore, the proportion of bugs for which this approach is not be applicable is

expected to be similarly small.

5The kernel thread term is used with a different meaning in other work [McC02] to distinguish a thread
abstraction implemented at the user-space level (user thread) from a thread abstraction implemented
at the kernel-space level.

84

6.8 Summary

6.7.2 Reliance on VMM

SKI proposes a VMM-based scheduler. In this section, we discuss some of the implica-

tions of this choice.

A limitation of relying on a VMM is that the kernel running inside a virtual machine

is limited to using the hardware virtualized by the VMM. For a testing tool, it means

that it is not possible to reproduce bugs that require hardware that is not virtualized by

the VMM. In the case of our implementation, this problem is partially mitigated by the

fact that, in comparison with other VMMs, QEMU supports an unusually large number

of devices (over 250). Nonetheless, SKI cannot be used to diagnose concurrency bugs in

drivers for devices not virtualized by QEMU. However, we believe this does not detract

significantly from SKI’s practical value because the size of the device-independent kernel

core is already considerable. Further, it may be possible to overcome the VMM depen-

dency by building an equivalent tool based on kernel binary instrumentation, which is

an active area of research [FBG12].

The choice of a VMM-based approach has another important consequence. Because

the VMM emulates one instruction at a time, and propagates its effects to all other CPUs

immediately afterwards, concurrency bugs that arise from wrongly assuming a strong

memory model are not necessarily exposed. This is because some CPUs offer weaker

memory models, which can have very complex semantics, to the point where official spec-

ifications have been found to not match the observed semantics of hardware [AFI+08].

This is a complex problem — significant effort has been directed at simply studying

the semantics of CPUs with relaxed memory models [SSN+09] — and we believe that

effectively diagnosing this type of concurrency bug will likely require more specialized

tools. Such bugs are currently not the target of SKI.

6.8 Summary

This chapter introduced SKI, the first practical testing tool to systematically explore the

interleaving space of real-world kernel code. SKI does not require any modifications to

tested kernels, nor does it require knowledge of the semantics of any kernel synchroniza-

tion primitives. We detailed key optimizations that make SKI scale to real-world code,

and we have shown that SKI is effective at finding buggy schedules in both FreeBSD and

various versions of the Linux kernel, without changing or annotating the tested kernel.

85

7 Testing software in the real-world

This section takes a step back to analyze several important aspects of testing tools by

taking into consideration our experience designing, developing and evaluating PIKE and

SKI.

Section 7.1 enumerates and discusses the different properties of testing tools and Sec-

tion 7.2 discusses the different classes of potential users of testing tools. Section 7.3

reports our experience interacting with software developers. Section 7.4 analyzes the

problem of scalability in the context of testing concurrency bugs and, finally, Section 7.5

provides a reflection on the limits and future of software testing.

7.1 Properties of testing tools

There are several properties that combined determine the value of testing tools. We

have identified four important classes of properties (Table 7.1) that should be taken

into consideration both by developers, when deciding which tools to adopt, and by

researchers, when designing tools. Unfortunately, since testing tools have many different

dimensions, with regard to their properties, there does not seem to be a single best testing

tool, in fact, developers can (and do) benefit from using simultaneously several testing

tools that complement each other.

7.1.1 Scope

Bugs tested. The scope of bugs that are testable by a given testing tool is a property

generally inherent to its design. The scope of bugs testable refers to several aspects, such

as their external effects (crash, semantic, hang) and their internal effects (latent, non-

latent). In addition, testing tools can have restrictions with regard to the location of the

bugs within the code; for example, certain portions of the kernel scheduler code cannot

be tested with SKI (Section 6.7). Testing tools may additionally have more subtle

restrictions, namely regarding the type of concurrency considered, for instance, SKI

considers instructions to be executed atomically and, therefore, only exposes concurrency

bugs that do not depend on weak memory models (Section 6.7).

87

7 Testing software in the real-world

Properties
1. Scope

Bugs
Software

2. Manual effort
Setup
Analysis

3. Performance
4. Hardware requirements

Table 7.1: Summary of the properties of testing tools.

Software tested. Applicability, in terms of the type of software that can be tested,

is another important aspect of testing tools. For instance, certain testing tools are

geared towards testing kernels (e.g., SKI), others are geared towards testing user-mode

applications, yet others are applicable to both types of software. Testing tools can also

have limitations in terms of the programming languages supported, especially if static

analysis techniques or source-code level instrumentation is leveraged.

7.1.2 Manual effort

Setup. Setup costs can arise from different sources. Certain testing tools, such as

PIKE, require developers to modify or to annotate the tested software. Such require-

ment constitutes a cost per tested software and, potentially, a cost per software update,

to maintain the modifications or annotations. In practice, the cost of modifying the

tested software depends strongly on the required modifications and can be significantly

mitigated by building reusable libraries that reduce the complexity of implementing such

modifications.

Dynamic testing tools, which depend on the execution of the tested software, have

another type of setup cost – test cases need to be provided to steer the execution of

the software during testing. In general, it is considered a good practice to write test

cases [Viz07], regardless of which testing tool is used, so the dependence on test cases

does not necessarily translate into an extra burden for the developers because it may be

possible to simply reuse (or adapt) pre-existing test cases.

While conducting the work presented in this dissertation we had the opportunity

to interact with developers, who stressed the importance of the usability of the tool.

An aspect that developers attributed significant importance was the ease of creation of

test cases and the quality of the documentation. In fact, developers explicitly mentioned

that testing tools should provide template test-cases and a clear methodology to diagnose

88

7.1 Properties of testing tools

problems, in case anomalies occur during testing due to user error (e.g., constructing

incomplete test cases or providing incompatible testing parameters).

Analysis. The quality of the results determines the effort that users have to invest to

extract useful information. Testing tools that provide reports with detailed information

allow developers to easily diagnose the causes of bugs and to implement a fix. For exam-

ple, the test cases that we have built with SKI, in addition to exploring systematically

the interleaving space, have the advantage of reporting exactly which were the system

calls invoked concurrently and their parameters. Furthermore, SKI is able to provide

developers with the exact memory state of the machine before the system calls were

invoked and detailed execution traces. Stress tests on the other hand generally provide

significantly less information – in fact, given the inherent lack of control over the inter-

leavings executed, enabling precise logging can interfere with the interleavings execute

by stress tests and, therefore, potentially reduce their effectiveness.

Another factor that determines the quality of the results produced by testing tools is

the frequency of false positives – certain types of testing tools are prone to producing

spurious bug reports in cases where the software is correct. False positives can become

a serious problem if they overwhelm the user or if they hurt the confidence developers

have on the testing tool. Certain types of tools are likely to produce false positives by

design – data race detectors are one example – but even in these cases, testing tools may

include mechanisms that mitigate the problem by leveraging heuristics to rule out the

cases that are likely to be false positives.

In addition to the amount of information available in the bug reports and its accuracy,

the form of the results is also important, albeit in a more subtle manner – developers

have a preference for reports that use a familiar format. This preference becomes more

relevant in collaborative development environments, in which developers have to interact

with other developers to diagnose problems. In such common environments, having a

familiar report format avoids the need to educate many developers with regard to the

format of the results (which could also require explaining the inner workings of the

testing tool). This fact motivated our decision to implement the crash detector in SKI

by monitoring the console output and by capturing the bug reports produced by the

standard kernel methods (as opposed to detecting the execution of certain instructions

or the occurrence of architecture-level exceptions).

Another important aspect, to ease the process of analysis of results and bug fixing, is

the reproducibility of results. Reproducibility allows developers to run tests repeatedly to

rule out transient external causes (e.g. a faulty machine) and allows different developers

89

7 Testing software in the real-world

to witness the same results (in their own testing environment). But even more useful

is the ability to achieve a certain level of stability of the results, i.e., reproduce tests

even if the software has been (slightly) modified. Tools that have this property allow

developers to modify the tested applications, perhaps in subtle ways, to explore different

hypothesis regarding the cause of the problems under analysis or to acquire additional

debugging information, using instrumentation.

7.1.3 Performance

The time it takes for the test results to be returned is important to developers – faster

tools encourage frequent testing and allow developers to find bugs earlier, which is well

known to reduce the fixing cost [BP88].

The speed of testing is dependent on the testing tool used, as well as on the computa-

tional resources available (e.g., CPU speed and number of cores). However, testing tools

that are parallelizable (such as PIKE and SKI) are more flexible with regard to the

tradeoff between speed and hardware resources available – parallelizable tools are able

to produce results faster if more cores or machines (or faster machines) are provided,

whereas tools that are not parallelizable are bounded by the CPU speed of the machine

used.

7.1.4 Computational resources

The computational resources required by testing tools varies widely. For example, some

static tools require few computational resources and do not need more than a single

machine to produce results within a few seconds. On the other end of the spectrum,

dynamic testing tools generally have higher computational costs and potentially require

large testing infrastructures supported by several testing machines to produce results

within hours or days. Obviously, the availability of computational resource has an impact

on the performance of the testing tools (Section 7.1.3).

Approaches that are on the higher end of the spectrum, in terms of computational

resource requirements, are meant to be used differently than less demanding approaches.

Less demanding approaches can be integrated into the compilation phase, during devel-

opment, being able to test the private working version of the software of each individual

developer. In contrast, more demanding approaches might be too expensive to be used

in this situation and be meant to run tests in the background, by testing a snapshot of

the latest version of the software (within the company) or even the deployed version.

90

7.2 Users of testing tools

User class FS FT EC
Developers of new features High Low High
Internal dedicated testers Medium High Medium
External dedicated testers Low High Low
Software end-users Low Low Low
Researchers Low High Low

Table 7.2: Summary of the profiles of different classes of users. The table presents for
each user class the expected familiarity with the tested software (FS),
familiarity with the testing tool (FT) and ease of communication with
the developers (EC).

In addition to the amount of computational resources required, testing tools may

require dedicated hardware. For example, dynamic tools may require testing machines

with specific CPU features or architectures (e.g., DataCollider leverages hardware watch-

points), while dynamic tools based on virtual machines, like SKI, tend to be more flexible

with regard to the physical CPU. Researchers have also developed tools that leverage

and require, for functional or performance reasons, GPUs [RSSK14, DZW+14] and FG-

PAs [TER].

7.2 Users of testing tools

For presentation purposes, the previous sections refer to the users of testing tools using

the generic term developer. In practice, however, the individuals responsible for devel-

oping software and incorporating new software features are not the only possible users

of testing tools. Table 7.2 provides a summary of the profiles of different user classes

and the rest of this section analyzes the importance of different features for each user

class.

7.2.1 Developers of new features

Software developers responsible for implementing new software features are an obvious

class of users of testing tools. This class of users is part of the development team

and, therefore, has in-depth knowledge of the tested software. For this reason, tasks

that involve modifying the tested software or gathering information about the semantics

of tested software are easier for this class of users than for other classes of users (as

discussed later in this section). As a consequence, this class of users is in a good position

to implement the state abstraction functions that PIKE requires.

91

7 Testing software in the real-world

However, this class of users is not dedicated to testing and often has other pressing

tasks to perform, namely implementing new software features. Therefore, the interface

of the testing tool should be particularly easy to learn and use, as this class of users

cannot easily amortize the learning costs.

7.2.2 Internal dedicated testers

Some software development organizations have teams responsible for testing software

that can leverage different types of testing tools. These teams are not meant to replace

basic testing conducted by software developers, instead they are meant to complement

them. This class of users is different from the developers class because it is less familiar

with the code being tested, in particular, when problems are suspected these users may

need to communicate with the developers to confirm the problems. On the positive side,

this class of users has the advantage that it is dedicated to testing and so can afford to

learn the inner workings of different testing tools and might be able to spend additional

effort fine tuning them to achieve higher effectiveness.

7.2.3 External dedicated testers

Organizations specialized in testing (e.g., Coverity [COV]) that offer their testing ser-

vices to software development organizations are another potential class of users. Like-

wise, testers in the context of crowd-testing (crowd-sourced testing [uTe, LLKB12]) –

essentially, individuals (presumably proficient at testing) with a diversified background

that offer their testing services to other organizations – are also part of this potential

class of users. In practice, in both cases software developers outsource part of their

testing responsibility to external individuals or organizations.

Because this class of users is dedicated to testing, users are expected to be familiar

with different testing methodologies and, similarly to the internal dedicated testers, are

expected to be more willing to dedicate a high amount of effort to adopt novel testing

approaches. However, in contrast with users from the software developing organization,

external testers are expected to have less knowledge about the internals of the tested

software and the communication barrier with the software developers is higher.

7.2.4 Software end-users

Software end-users can also be users of testing tools. This scenario is more likely to occur

in the context of open-source projects (since testing becomes harder without access to

92

7.3 Experience interacting with potential users

source code) and when the end-users are tech-savvy individuals or organizations with

significant interest in the software.

End-users are generally neither proficient at testing nor familiar with the internals of

the software. However, especially in the case of software systems that are popular, end

users can provide important feedback to developers, even if just by performing simple

forms of diagnosis, given the sheer number of individuals and the quantity of information

they can collect.

7.2.5 Researchers of testing tools

The researchers (and developers) of testing tools are also users of testing tools. Usually

their immediate primary motivation for using testing tools is to validate their design

and indirectly, in the long-term, to improve the robustness of software. Given their role,

it is expected that this class of users is familiar with the internals of the testing tools

but less familiar with the software tested. Given their lack of familiarity with the tested

software, this class of users can serve to give an estimate on the upper bound of the

effort required to make application-specific changes for testing purposes, such as those

we performed to MySQL when validating PIKE.

7.2.6 Discussion

The classes of users that we discussed in this section can work collaboratively for the

common goal of testing a given software system. In fact, a compelling usage scenario,

for both PIKE and SKI, is to have a shared testing infrastructure, maintained by a few

dedicated testers (either internal or external), with test cases submitted by all classes

of users. This model permits all classes of users to contribute to test the software and

is a model followed, for instance, by the Linux Test Project [Lar02]. The potential

disadvantages of this model is that it requires a certain coordination effort and, in some

cases, users might not be comfortable sharing test cases, due to internal organizational

policies or business secrecy concerns.

7.3 Experience interacting with potential users

This section reports our experience interacting with potential users in the process of

reproducing known bugs (Section 7.3.1) and reporting bugs found by our testing tools

(Section 7.3.2). In addition, Section 7.3.3 discusses the feedback we got from potential

users regarding the design of SKI. We believe that most of the individuals we interacted

93

7 Testing software in the real-world

with were software developers responsible for building new features into the software

who also had testing responsibilities.

7.3.1 Reproducing bugs

One of the approaches we used to evaluate SKI consisted in reproducing already known

bugs in old versions of the kernels (Section 6.6.2). This requires creating SKI test cases

that provide a particular input to the tested kernel, by invoking certain system calls

with certain parameters, to the tested kernel. However, obtaining all the necessary

information by simply analyzing bug reports, which often do not state the required

input explicitly, proved to be a difficult task. For instance, many crash bug reports

included a stack trace that was sufficient to infer one of the system calls, but did not

specify which are the other system calls that need to be executed concurrently. Likewise,

the exact system call parameters, the initial state of kernel, the kernel version, the

build configuration and the run-time configuration were in many cases not explicitly

stated in the bug reports. In fact, reproducing bugs using information from bug reports,

regardless of being concurrency bugs or not, is a challenging problem (orthogonal to

the problems targeted by our proposed tools), which has received the attention of other

researchers [VFS14, BPSZ10, GZNM11].

Our initial strategy to find the missing information from the bug reports resorted to

asking the developers, involved in the bug diagnosis process, to provide us additional

information. Unfortunately this strategy didn’t work well – we were able to engage in

conversations with the developers but, due to several factors, we were not able to acquire

significant information using this strategy. In several cases the bugs were excessively

old (i.e., months or years) to the point where developers could not easily recollect the

details. We believe that the fact that many of the concurrency bugs were considerably

complex also contributed to this problem, by making it harder for developers to recall

the intricate details involved and also by requiring more time from the (already busy)

developers to reanalyze the bugs. Curiously, in one instance, a developer informed us

that he had a constraint of a different nature – the developer was not allowed to provide

additional information to reproduce a concurrency bug, due to internal organizational

policies, because it was considered a security bug and it could be triggered by any OS

user without special privileges.

Given these challenges, we finally opted for the strategy of limiting our evaluation to

bugs that had very well documented bug reports and that included stress tests. This

strategy proved to be successful – we were able to reproduce several concurrency bugs

with the stress tests and, subsequently, we were able to confirm that SKI is able to

94

7.3 Experience interacting with potential users

effectively reproduced them (Section 6.6.2). Taking into consideration the challenges

involved in analyzing bug reports and the limited value of reproducing already known

(and fixed) bugs, we focused most of the evaluation effort in finding unknown bugs.

7.3.2 Reporting bugs

We reported the concurrency bugs found by SKI to the developers of the Linux kernel.

All bugs found (Table 6.5) were confirmed by the developers to be concurrency bugs and

more than half of these concurrency (6 out of 11 bugs) have since been fixed.

We observed that, in general, the bugs that were fixed pertain to components of the

kernel that are currently under active development and that have active development

teams, such as the BTRFS team. Conversely, bugs that were not fixed, in general,

involved components that recently have seen less active development. Analyzing bug

reports and fixing bugs is understandably a complex task that demands significant effort

and time from developers, for this reason, it can be difficult to gather the attention of

developers and ensure that bug reports receive a positive response that leads to a fix.

Our interaction with the developers is consistent with a correlation between the level

of activity of the development teams affects and how likely it is to get confirmation from

developers and their involvement in producing a patch. However, in this process we

realized that there are other important factors that contribute to affect the chances of

engaging with the developers and getting a positive response from them. These factors

include the form of communication used (e.g., development mailing lists or directly with

individual developers), the exact point of contact (e.g., which developer), the software

version used, the external effects of the bug and the completeness of the bug report.

Throughout our evaluation process, we relied on different forms of communication with

the developers, depending on the circumstances. Development mailing lists were used in

several occasions to report and diagnose the concurrency bugs found and, in the absence

of active mailing lists or in the absence of a response, we also contacted individual

developers directly. When contacting developers directly, we favored developers that

were officially assigned as maintainers of the component affected and the developers

that last modified the kernel source code that was relevant for the respective bug (e.g.,

the crash or data race locations).

We also observed that bug reports pertaining to older versions of the software tend

to receive less attention from the developers and, in such cases, the bug reporters may

be asked to re-run the tests on the most recent versions. A few minor versions behind

the latest released version may be sufficient to cast doubt on the report. For instance,

MySQL reporting guidelines instruct bug reporters to verify that the reported bugs affect

95

7 Testing software in the real-world

a product version that is no ”more than two revisions older than the latest version” [Cor].

This requirement is justified by the fear that such bug reports might have become ob-

solete simply because the affected software functionality might have been modified or

because the bug might have been fixed in the meantime.

Bug reports that have serious effects tend to easily capture the attention of developers.

For example, crashes or situations that lead to data loss are generally more important

to users than performance degradation bugs and, therefore, bug reports describing such

situations are naturally prioritized by software developers. A related aspect that devel-

opers expect in bug reports is clear evidence that the reported situation can cause harm

to users. For concurrency bugs, bug reports involving data races are a typical case that

can raise doubts whether the reported situation actually constitutes a bug that actually

causes harm to users.

Our experience analyzing and discussing situations involving data races with kernel

developers showed that developers expect a clear reason to fix the code in order to avoid

a data race. In fact, developers expect to have a concrete description of the process

by which the suspected kernel bug can cause an application to break. Several reasons

contribute to the conservative approach of developers when deciding whether a bug

should be fixed, including the fact that the potential fixing strategy could increase the

software complexity, slow down the software or potentially create more serious problems

(if the fix is incorrectly implemented). Furthermore, organizational factors may also have

an important role – in a collaborative development environment, such as the one of the

Linux kernel, a developer that proposes a bug fix needs to be sufficiently confident about

its correctness and needs to be able to justify his or her actions to other developers.

7.3.3 User feedback

We explicitly requested feedback from the kernel developers regarding the design of SKI

and the problem of testing kernels for concurrency bugs. The developers we contacted

confirmed that, using their current practices, testing for concurrency bugs is a challenging

task and that stress testing is the best method they rely upon for this purpose. In

addition, they also expressed dissatisfaction with regard to stress testing and explicitly

mentioned that stress tests are not executed often because such tests can ”take a day or

two to run”.

When informed of the development of SKI, the developers strongly expressed enthusi-

asm about it and manifested their desire to use SKI. Regarding the design, the developers

emphasized the importance of the ease of use with respect to setup and execution, as

well as the process of test case construction.

96

7.4 The scalability of testing concurrent software

7.4 The scalability of testing concurrent software

Testing software systems for concurrency bugs, in the simplest case of testing two concur-

rent threads, can be interpreted as exploring a large three-dimensional space. According

to this view, the testing space has two dimensions, which correspond to the input pro-

vided to each of the two tested threads, and a third dimension, which corresponds to the

interleaving of instructions that is executed. As such, testing concurrent software essen-

tially consists in executing the software, under different circumstances that correspond

to different points in the space, and applying bug detectors that analyze each execution,

to uncover potential violations of the intended semantics. Since, under the usage sce-

nario we envision, software is expected to be reasonably well tested, the vast majority

of the points in this three dimensional space is expected to represent executions that

comply with the application specification, therefore, only a tiny fraction of the points in

the testing space is expected to expose concurrency bugs.

In stark contrast, testing for non-concurrency bugs involves a dramatically smaller

space, even though it is still challenging – testing for non-concurrency bugs can be

interpreted as exploring a single dimensioned space that simply corresponds to the input

request provided to the (single) thread being tested. In comparison with non-concurrency

testing, the fact that concurrency bug testing has two extra dimensions, together with

the fact that non-concurrency testing is already a very challenging task, means that the

scalability of testing needs to be carefully addressed to ensure effectiveness.

Apart from improvements to the performance of the testing infrastructure, in this

work we followed two high-level strategies to deal with the scalability concern. The first

strategy consists of prioritizing, or limiting, the points explored by leveraging testing

heuristics (Section 7.4.1), while the second strategy consists in analyzing several points

from the testing space simultaneously (Section 7.4.2).

7.4.1 Prioritizing the testing space exploration

The strategy of giving priority to a subset of the testing space is motivated by the

fact that, in general, for large software systems there is no expectation of exploring

the entire space. Consequentially, it is particularly important to apply effectively the

available testing resources by exploring first the points in the testing space that are more

likely to yield positive results.

The tools that we propose in this dissertation follow this strategy by including several

heuristics. Notably, with regard to the exploration of the interleaving dimension, both

PIKE and SKI bound the number of reschedule points. Furthermore, both tools select

97

7 Testing software in the real-world

the location of the reschedule points and the initial priorities of the execution contexts

using uniformly random approaches. Another example of the implementation of this

strategy arises in the context of the selection of the testing input – our experiments im-

plicitly use heuristics by leveraging existing test suites that we converted into concurrent

test suites. Test suites, such as those leveraged, implicitly encode heuristics by including

tests that were created based on programmer intuition, taking into consideration his

knowledge of the software, or based on previous bug reports, taking into consideration

previous bug patterns.

7.4.2 Reasoning over multiple executions

The second strategy to improve the scalability of testing consists of exploring, or rea-

soning about, several points within the testing space simultaneously. In contrast with

the previously discussed strategy, this strategy has the advantage of providing stronger

guarantees by not ruling out the analysis of certain points of the testing space, but it

can be harder to implement.

Our implementation of SKI analyzes the communication between different CPUs (Sec-

tion 6.4) and, based on this information, SKI is able to conclude that certain classes

of interleavings are equivalent and therefore only one member of each class needs to

be executed. This technique allows SKI to significantly reduce the testing space with

regard to the interleaving dimension (Section 6.6.2).

A prime example of an implementation of this strategy is the general class of symbolic

execution techniques, discussed in more detail in Section 2.2.2. Symbolic execution

techniques allow the testing infrastructure to reason about several concrete executions,

that correspond to the same execution path, in a single symbolic execution. The typical

source of concern regarding this approach is the management of the path explosion

problem, for which several practical methods have been proposed. However, the strategy

of reasoning over multiple executions is broader than symbolic testing, since it is not

limited to the simultaneous execution of points that share the same execution path. In

fact, it is sufficient if the bug detectors are capable of reasoning about several executions

by analyzing a single one.

Although with limited gains, a race detector, such as the one that was leveraged in

Section 6.5.5, serves to illustrate well how a bug detector can reason about multiple

executions from a single execution. After a data race detector detects two racing in-

structions, in principle, it is no longer needed to execute the point in the testing space

that corresponds to the alternative data race outcome to be able to conclude that those

instructions race. Nevertheless, the execution of the alternative data race outcome might

98

7.4 The scalability of testing concurrent software

have an important value for bug diagnosis purposes (i.e., to allow the programmer to

understand both outcomes and more easily conclude whether the effects of the data race

are harmful or not).

7.4.3 Discussion

Despite the scalability benefits of the strategies discussed in the previous sections, test-

ing concurrent applications remains computationally challenging. For example, testing a

file system using the methodology that we describe in Section 6.6.3 can take more than a

day on a testing infrastructure backed by a ten-machine cluster, even with our most op-

timized implementation of SKI. In addition to the computational cost, the development

and configuration of the testing tools themselves also constitute a cost, in terms of de-

veloper time and effort. However, on the positive side, automated testing tools have the

important advantage of freeing developers from doing manual analysis and constitute an

opportunity to find bugs earlier in the development cycle, which can greatly contribute

to the reliability of software. As such, this section discusses the cost-benefit ration of

the automated testing techniques proposed in this dissertation.

In comparison with traditional non-automated testing approaches (e.g., manual analy-

sis of application specific logs or collection of information from bug reports), automated

approaches, like those proposed in this dissertation, enable developers to create test-

ing infrastructures that, once they are setup, require only very limited interaction from

developers.

This difference is important because it converts the labor cost, associated with test-

ing, from a variable cost (manual analysis of each bug report or each tested software

version) into a predominantly fixed cost (development and configuration of the testing

infrastructure). Freeing developers, not only translates into saving an extremely valu-

able resource, but it also has the strategic advantage of encouraging systematic software

testing. In addition, the diagnosis information provided by our tools (e.g., SKI pro-

duces detailed execution traces) is able to further reduce the labor costs with regard to

analyzing and fixing concurrency bugs. It is not unusual for concurrency bugs to take

weeks to diagnose, even after being reported by experienced users, despite the intense

efforts and the competence of the developers that try to fix them [LOCa], so tools that

provide detailed diagnosis information are an important asset to developers. Regarding

the effective computational cost of our tools, it is also worth mentioning that this cost is

lower than it may appear because our tools can run the tests opportunistically by using

resources when they are not being used for other purposes (e.g., a cluster with low load).

99

7 Testing software in the real-world

The testing methodologies that we proposed in this dissertation also have two strategic

advantages that derive from being embarrassingly parallel. First, being embarrassingly

parallel allows tests to run faster in the future, regardless of whether hardware archi-

tects adopt a frequency scaling or a multicore scaling strategy. Second, this property

enables users to run tests (virtually) arbitrarily fast, assuming that enough machines are

available, thus increasing the opportunities to integrate the testing methodology into the

development cycle of programmers (e.g., allowing tests on new functionalities to finish

in time to apply the fixes and before the software is released to clients).

7.5 Towards reliable software

Writing software, by developers using programming languages, is comparable to writing

text, by writers using natural languages1. In both cases, humans have a task that

requires them to encode information, although using different types of languages, and in

both cases the authors want their artifacts to be defect free.

Because both types of tasks are very challenging, several automated approaches have

been developed to aid the authors in both contexts. In the case of text writing, word pro-

cessors often include spelling or grammar checkers and other tools to check the format-

ting of documents (an example of the later are the tools used by conference manuscript

submission websites to check compliance with formatting guidelines). Similarly, many

tools have been developed to help software developers. Examples range from the errors

and warnings produced by compilers to more complex tools, like those proposed in this

dissertation.

The paramount complexity of ensuring the correctness of artifacts becomes clear when

considering the extremely high degree of freedom that authors have and that any pro-

ducible artifact is potentially the one (and only) that the author intended. Consequen-

tially, an ideal testing tool – meaning a tool capable of automatically detecting all bugs

– needs to be able to distinguish any two, even if seemingly valid, implementations and

automatically conclude which one of them is intended by the developer. For example,

in the extreme case, a developer could end up writing an artifact, such a kernel, when

it instead intended to write a completely different artifact, such as a database manager.

In this scenario, an ideal testing tool would have to detect the (gross) mistake of the

developer and, unfortunately, achieving this formidable goal amounts to building a tool

that guesses the developer’s intention to an extent not foreseeable.

1It is even arguable that books and software are equivalent because any software can be encoded in a
book (e.g., by printing its source code [Zim95]) and likewise any book can be encoded in software
(e.g., using e-book readers [Gol08])

100

7.5 Towards reliable software

Verification [Hol97] and program synthesis [MW71] approaches, despite providing

strong guarantees, are also unable to bypass the challenges that the ideal testing tool

would have to overcome. These approaches typically provide guarantees about software

with regard to a specification, but a correct specification still needs to be written by

someone. In essence, even the existing tools that provide the strongest guarantees can

not overcome the fact that whether or not a certain aspect of the software is a bug

ultimately depends on the intentions of the developers.

In practice, existing approaches to improve the reliability of software rely on two

methods to circumvent, with some compromises, this challenge. The first method, which

is used by verification and synthesis tools, consists in explicitly asking developers for

information regarding what constitutes correct behavior. This is achieved by requiring

developers to write software, or part of it, either in a higher-level language (e.g., a

specification) or otherwise in a redundant manner (e.g., n-version programming [AC77]).

The second method, relies on encoding heuristics about the correctness of software

within the tool. This method relies on patterns of correctness that apply to a broad range

of software. A simple example is the heuristic used by crash detectors – it is virtually

universal that programmers do not want their software to crash. PIKE, however, uses

a hybrid approach by combining both methods – PIKE leverages application-specific

information to capture the state, which is achieved through the use of annotations, and

additionally encodes a heuristic that assumes that correct applications generally have

linearizable semantics.

However, even if the ideal testing tool existed, ensuring end-to-end reliability would

still require ensuring the correctness of hardware (both at the design and manufactur-

ing levels). This is an equally challenging problem (if not more) – ensuring hardware

correctness is particularly hard given that modern hardware has become extremely com-

plex and is, in some cases, expected to operate under extreme conditions (e.g., high

frequency, high temperature, low voltage). Hardware design verification techniques have

made important progress, but manufacturing defects can still occur and cause serious

problems [INTa, KK98].

Recognizing the magnitude of the software reliability problem should not discourage

researchers and developers from doing better. We believe there is significant progress

that can be made with regard to testing tools, namely by improving the properties of the

testing tools listed in Section 7.1, and that these improvements will have an important

impact on the reliability of our computer systems. The following chapter discusses in

more detail several research directions that directly follow-up from the work presented

in this dissertation.

101

8 Future research directions

This chapter discusses three main research directions that follow-up from the work pre-

sented in this dissertation.

8.1 Practical extraction of application state using its API

PIKE in its current form requires application-specific annotations to test applications.

This requirement forces developers to dedicate some effort to be able to use the tool,

which is a disadvantage. We believe it may be possible to overcome this limitation by

refining the design of PIKE.

Nevertheless, it is worth noting that the impact of the specific annotations required by

PIKE’s current design is mitigated by several factors.1 First, the modifications required

by PIKE do not need to modify the state of the application and, consequently, anno-

tations incorrectly implemented are unlikely to introduce new bugs in the application.

In fact, this concern could even be entirely avoided by isolating the annotations, for

example, using the ptrace mechanism to gather the state of the tested application. In-

stead, mistakes in the annotations would have an impact limited to the state summaries

produced. Second, the annotations can be implemented selectively and incrementally,

which allows the developer to control the tradeoff between manual effort and testing

scope. Third, our experience showed that the approach taken by PIKE can be effective

despite a limited amount of programmer effort and despite the fact that we considered

a particularly complex type of application (a database manager) that we were not as

familiar with.

Regardless of the mitigating factors of this limitation, an interesting research direction

consists in exploring refined designs of PIKE that forgo the need to provide application-

specific annotations. More specifically, gathering the summary of the state of the ap-

plication may be possible by leveraging, exclusively, the application API. For example,

to test for query cache latent bugs, PIKE could simply invoke at the end of the test

1In the context of the alternative design considered for SKI (Section 6.3.1), because none of these factors
apply, we ultimately rejected the alternative design and, instead, proposed an entirely transparent
design.

103

8 Future research directions

SELECT requests that match the requests that were previously invoked concurrently,

to test whether the cache results are wrong. Another example would be to use ad-

ministrative SQL statements, such as SHOW requests, to expose information about the

application state that is not made externally visible by non-administrative requests.

The external API approach would still require some testing effort, but would have

several important advantages in comparison with using annotations that rely on the

internal interface of the tested application:

• Documentation. External APIs are usually better documented than internal

interfaces. This has two advantages. First, better documentation eases the imple-

mentation of the component that extracts the application state. Second, using a

documented interface simplifies bug reporting and developer interaction because

the state information can be provided in a format that is familiar to the developers.

• Stability. External APIs are significantly more stable than internal interfaces

of the applications because APIs constitute a (long-term) implicit contract with

users, who over time develop dependencies on it. As a consequence, the burden

of updating the state extraction implementation, over the development lifetime of

the application, is reduced.

• Portability. External APIs are frequently shared by different applications. For

example, SQL is a popular interface and is nearly ubiquitously supported by re-

lational database management systems. Relying exclusively on APIs allows the

implementations of the state extraction mechanism to be reused among the vari-

ous applications that support the respective APIs.

8.2 Exposing concurrency bugs due to weak-memory models

Many widely used multiprocessor architectures, such as the x86 architecture, do not

enforce a global order of instructions for performance reasons. Instead, these processors

implement memory models that are weaker than sequential consistency. As a conse-

quence, there is a class of concurrency bugs that arises from these weaker memory

models, which can not be exposed with our implementation of SKI, given that SKI cur-

rently implements a strong memory model. This type of concurrency bugs is particularly

challenging, both for developers and for testing tools, because these bugs depend on the

subtle details of the processor architecture, which are not always well specified and are

often hard to reason about.

104

8.3 Exploring the input space

Concurrency bugs of this type can easily be introduced when shared memory accesses

are not synchronized. Therefore, software that does not comply with the best-practices

of concurrent programming [Adv10], which strongly discourages the deliberate use of

unsynchronized shared memory accesses, is particularly susceptible to this class of con-

currency bugs. In practice, developers avoid synchronization because it incurs in signifi-

cant performance costs and try, instead, to develop alternatives with better performance

that they believe are correct – especially with regard to performance-critical compo-

nents. Researchers have shown that, unfortunately, such ad-hoc solutions are often

incorrect [XPZ+10].

When testing the kernel to evaluate SKI, we noticed that kernel developers rely ex-

tensively on data races, which developers expect to be benign. This observation leads us

to believe that kernels may be significantly vulnerable to this type of concurrency bugs

and that developing effective testing techniques for this class of concurrency bugs would

constitute an important contribution to the robustness of kernels.

8.3 Exploring the input space

In addition to detecting bugs and exploring the interleaving space, dynamic testing also

requires exploring the input space. As discussed in Section 7.4, exploring the input space

is, in general, a hard problem that becomes harder in the context of concurrency bugs,

given that multiple threads are expected to receive input.

In this dissertation, for evaluating our tools, we conducted the exploration of the

input space using naive techniques, which rely on adapting existing test cases. However,

developing effective techniques to explore the input space is an orthogonal problem that

could significantly further increase the effectiveness of testing. In this section we briefly

discuss two approaches to explore the input space with regard to concurrent testing.

8.3.1 Profiling-based generation of tests

An approach that we believe to be promising consists in exploring the possibility of

leveraging systematic tools, like SKI, to also effectively explore the input space of the

tested software. SKI achieves a very high degree of control over the executed tests

and this is an important property that may enable the discovery of clever algorithms

to explore the input space. More specifically, the fact that SKI tests always start from

the exact same initial state, leveraging the snapshot mechanism, combined with the fact

105

8 Future research directions

that SKI tests are nearly deterministic2 could open an opportunity for profiling-based

techniques.

In the context of testing kernels, one possible profiling-based approach consists of

leveraging an existing non-concurrent test suite (composed of an array of tests that issue

system calls by a single thread) and profiling each test when executed by a single CPU

from a certain initial state. This profiling phase would have linear complexity – each

test would be profiled once for a given initial state – and serve to gather information

about the instructions that are executed and the memory that is accessed. Subsequently,

according to suitable algorithms, yet to be developed, pairs of tests would be selected to

execute concurrently under SKI to expose concurrency bugs.

8.3.2 Leveraging bug reports

Bug reports are important for developers to find and diagnose bugs. However, bug

reports are often not complete. For example, our experience reproducing concurrency

bugs revealed that it is typical for concurrency crash bug reports to include information

about the stack trace, which indirectly informs developers about one of the system calls

invoked, but provides little or no information regarding the other concurrent system call.

In the context of diagnosing reported bugs, we envision a testing infrastructure that

automatically leverages the information contained in the bug reports to select tests. For

example, the testing infrastructure could automatically parse bug reports to identify

stack traces and generate test cases that could reproduce the respective bugs. Addition-

ally, it might be possible to automatically leverage other information from bug reports,

either by using natural language processing techniques or by analyzing fields from the

bug report system (e.g., Bugzilla) that may be relevant to reproduce the bug (e.g.,

software version or identification of the component).

2Even though currently SKI does not ensure deterministic hardware input, the analysis of experimental
results showed that, in practice, this aspect of our implementation has limited impact on the execution
of the tests. Furthermore, support for deterministic hardware input can be implemented if deemed
necessary to support additional testing techniques.

106

9 Conclusions

This work improves our understanding of real-world concurrency bugs by presenting a

study on their effects. Our study on concurrency bugs analyzed MySQL, a particularly

complex and critical application, and provided concrete evidence of the existence of two

classes of particularly difficult to detect bugs: semantic concurrency bugs and latent

concurrency bugs. Taking into consideration these findings, this dissertation proposes

a novel approach that detects both of these classes of concurrency bugs. The key idea

behind our approach is to use linearizability as a way to infer the specification of the

application. We show that this approach is applicable to complex applications, namely

MySQL, and we describe effective methods to compare the state of different executions

and to address false positives.

In addition, this dissertation extends to kernel-code the general approach of systematic

testing for concurrency bugs. We propose a virtual machine based systematic approach

that achieves fine-grained control over the kernel thread interleavings and, according

to a generalized scheduling algorithm that we propose, effectively explores the kernel

interleaving space. In addition, we developed several critical optimizations to ensure

efficiency and we validated our approach by reproducing known concurrency bugs and

by finding unknown concurrency bugs in large-scale commodity kernels, namely Linux

and FreeBSD.

Despite the contributions of this dissertation, it is clear that ensuring the reliability of

software, specially with regard to concurrent and complex software, will remain a hard

problem. Therefore, we believe that software developers, and users, will greatly benefit

from additional improvements within this field of research.

107

Bibliography

[ABD+09] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt

Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik

Sen, John Wawrzynek, David Wessel, and Katherine Yelick. A view of the

parallel computing landscape. Commun. ACM, 52(10):56–67, October

2009.

[AC77] A. Avizienis and Liming Che. On the implementation of n-version pro-

gramming for software fault tolerance during execution. In In Proc. of

IEEE COMPSAC77, 1977.

[ADADB+06] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Lakshmi N.

Bairavasundaram, Timothy E. Denehy, Florentina I. Popovici, Vijayan

Prabhakaran, and Muthian Sivathanu. Semantically-smart disk systems:

Past, present, and future. SIGMETRICS Perform. Eval. Rev., 33(4):29–

35, March 2006.

[Adv10] Sarita Adve. Data races are evil with no exceptions: Technical perspec-

tive. Commun. ACM, 53(11):84–84, November 2010.

[AFI+08] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit

Sarkar, Peter Sewell, and Francesco Zappa Nardelli. The semantics of

POWER and ARM multiprocessor machine code. In Proc. of Workshop

on Declarative Aspects of Multicore Programming (DAMP), 2008.

[AH09] John Admanski and Steve Howard. Autotest – Testing the untestable.

In Proc. of Ottawa Linux Symposium (OLS), 2009.

[AHB03] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races.

Software Testing, Verification and Reliability, 13(4):207–227, 2003.

[Ait02] Dave Aitel. The advantages of block-based protocol analysis for security

testing. Technical report, Immunity, Inc., 2002.

109

BIBLIOGRAPHY

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. Dependable and

Secure Computing, IEEE Transactions on, 1(1):11–33, 2004.

[Ant14] Gary Anthes. Researchers simplify parallel programming. Commun.

ACM, 57(11):13–15, October 2014.

[API] MultiProcessor Specification. http://www.intel.com/design/

archives/processors/pro/docs/242016.htm.

[AWHF10] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient

system-enforced deterministic parallelism. In Proc. of Operating System

Design and Implementation (OSDI), 2010.

[BA] Bug 14416 - Null pointer dereference in fs/pipe.c . http://bugzilla.

kernel.org/show_bug.cgi?id=14416.

[BA2] FS: pipe.c null pointer dereference. https://git.kernel.

org/cgit/linux/kernel/git/stable/stable-queue.git/tree/

queue-2.6.31/fs-pipe.c-null-pointer-dereference.patch?id=

36e97dec52821f76536a25b763e320eb 7434c2a5.

[BAAS09] Robert L. Bocchino, Vikram S. Adve, Sarita V. Adve, and Marc Snir.

Parallel programming must be deterministic by default. In Proc. of Work-

shop on Hot Topics in Parallelism (HotPar), 2009.

[BAEFU06a] Yosi Ben-Asher, Yaniv Eytani, Eitan Farchi, and Shmuel Ur. Noise mak-

ers need to know where to be silent – Producing schedules that find bugs.

In Proc. of International Symposium on Leveraging Applications of For-

mal Methods, Verification and Validation (ISoLA), 2006.

[BAEFU06b] Yosi Ben-Asher, Yaniv Eytani, Eitan Farchi, and Shmuel Ur. Producing

scheduling that causes concurrent programs to fail. In Proc. of Parallel

and Distributed Systems: Testing and Debugging (PADTAD), 2006.

[BB] Bug 22602 - Oops while unmounting an USB key with a FAT filesystem.

https://bugzilla.kernel.org/show_bug.cgi?id=22602.

[BBC+06] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Licht-

enberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Ab-

dullah Ustuner. Thorough static analysis of device drivers. In Proc. of

European Conference on Computer Systems (EuroSys), 2006.

110

http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://bugzilla.kernel.org/show_bug.cgi?id=14416
http://bugzilla.kernel.org/show_bug.cgi?id=14416
https://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/tree/queue-2.6.31/fs-pipe.c-null-pointer-dereference.patch?id=36e97dec52821f76536a25b763e320eb
https://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/tree/queue-2.6.31/fs-pipe.c-null-pointer-dereference.patch?id=36e97dec52821f76536a25b763e320eb
https://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/tree/queue-2.6.31/fs-pipe.c-null-pointer-dereference.patch?id=36e97dec52821f76536a25b763e320eb
https://git.kernel.org/cgit/linux/kernel/git/stable/stable-queue.git/tree/queue-2.6.31/fs-pipe.c-null-pointer-dereference.patch?id=36e97dec52821f76536a25b763e320eb
7434c2a5
https://bugzilla.kernel.org/show_bug.cgi?id=22602

BIBLIOGRAPHY

[BC] Patch ”ext4: fix crash when accessing /proc/mounts concurrently” has

been added to the 3.6-stable tree. http://www.mail-archive.com/

stable@vger.kernel.org/msg19380.html.

[BC11] Shekhar Borkar and Andrew A. Chien. The future of microprocessors.

Commun. ACM, 54(5):67–77, May 2011.

[BCM10] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley.

PACER: Proportional detection of data races. In Proc. of Programming

Languages Design and Implementation (PLDI), 2010.

[BD] Bug 144061 - [socket] race on unix socket close. https://bugs.freebsd.

org/bugzilla/show_bug.cgi?id=144061.

[BDMT10] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.

Line-up: A complete and automatic linearizability checker. SIGPLAN

Not., 45(6):330–340, 2010.

[BE04] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine

learning over program executions. In Proc. of International Conference

on Software Engineering (ICSE), 2004.

[Bel05] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proc.

of Annual Technical Conference (ATC), 2005.

[BFM+05] Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, and Shmuel Ur.

Applications of synchronization coverage. In Proc. of Symposium on

Principles and Practice of Parallel Programming (PPoPP), 2005.

[BH07] Luiz André Barroso and Urs Hölzle. The case for energy-proportional

computing. Computer, 40:33–37, December 2007.

[BKMN10] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-

tosh Nagarakatte. A randomized scheduler with probabilistic guarantees

of finding bugs. In Proc. of International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),

2010.

[BLA] GE Energy acknowledges blackout bug. http://www.securityfocus.

com/news/8032.

111

http://www.mail-archive.com/stable@vger.kernel.org/msg19380.html
http://www.mail-archive.com/stable@vger.kernel.org/msg19380.html
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=144061
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=144061
http://www.securityfocus.com/news/8032
http://www.securityfocus.com/news/8032

BIBLIOGRAPHY

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership

types for safe programming: Preventing data races and deadlocks. In

Proc. of Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA), 2002.

[Blu12] Ben Blum. Landslide: Systematic dynamic race detection in kernel

space. MS thesis, School of Computer Science, Carnegie Mellon Uni-

versity, Pittsburgh, May 2012. http://www.pdl.cmu.edu/PDL-FTP/

associated/CMU-CS-12-118.pdf.

[BM83] D. L. Bird and C. U. Munoz. Automatic generation of random self-

checking test cases. IBM Syst. J., 22(3):229–245, September 1983.

[BMP+06] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh,

and George Varghese. An improved construction for counting bloom

filters. Lecture Notes in Computer Science, 4168:684–695, 2006.

[BP88] B. W. Boehm and P. N. Papaccio. Understanding and controlling soft-

ware costs. IEEE Trans. Softw. Eng., 14(10):1462–1477, October 1988.

[BP05] Daniel P. Bovet and Marco Cesati Ph. Understanding the Linux Kernel.

O’Reilly Media, third edition edition, 2005.

[BPSZ10] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann.

Information needs in bug reports: Improving cooperation between devel-

opers and users. In Proceedings of the 2010 ACM Conference on Com-

puter Supported Cooperative Work, CSCW ’10, pages 301–310, New York,

NY, USA, 2010. ACM.

[BS09] Jacob Burnim and Koushik Sen. Asserting and checking determinism

for multithreaded programs. In Proc. of European Software Engineering

Conference and the Symposium on the Foundations of Software Engi-

neering (ESEC/FSE), 2009.

[BSADAD09] Lakshmi N. Bairavasundaram, Swaminathan Sundararaman, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Tolerating file-system

mistakes with EnvyFS. In Proc. of Annual Technical Conference (ATC),

2009.

112

http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-CS-12-118.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-CS-12-118.pdf

BIBLIOGRAPHY

[BYLN09] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace:

Safe multithreaded programming for C/C++. In Proc. of Object-

Oriented Programming, Systems, Languages, and Applications (OOP-

SLA), 2009.

[CBM10] Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi.

Gambit: Effective unit testing for concurrency libraries. In Proc. of Sym-

posium on Principles and Practice of Parallel Programming (PPoPP),

2010.

[CC00] Subhachandra Chandra and Peter M. Chen. Whither generic recovery

from application faults? A fault study using open-source software. In

Proc. of International Conference on Dependable Systems and Networks

(DSN), 2000.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for complex systems pro-

grams. In Proc. of Operating System Design and Implementation (OSDI),

2008.

[CF04] George Candea and Armando Fox. End-user effects of microreboots in

three-tiered internet systems. ArXiv Computer Science e-prints, March

2004.

[CFS] Linux: The Completely Fair Scheduler. http://kerneltrap.org/node/

8059.

[CGP+08] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and

Dawson R. Engler. EXE: Automatically generating inputs of death. ACM

Trans. Inf. Syst. Secur., 12(2):1–38, 2008.

[CHWL09] Chun-Ting Chen, Chun-Chen Hsu, Jan-Jan Wu, and Pangfeng Liu. GFS:

A distributed file system with multi-source data access and replication

for grid computing. In Proc. of International Conference on Advances in

Grid and Pervasive Computing (GPC), 2009.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A

platform for in-vivo multi-path analysis of software systems. In Proc.

of International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2011.

113

http://kerneltrap.org/node/8059
http://kerneltrap.org/node/8059

BIBLIOGRAPHY

[CKF+04] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and

Armando Fox. Microreboot – A technique for cheap recovery. In Proc.

of Operating System Design and Implementation (OSDI), 2004.

[CKZ13a] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich.

RadixVM: Scalable address spaces for multithreaded applications. In

Proc. of European Conference on Computer Systems (EuroSys), 2013.

[CKZ+13b] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T.

Morris, and Eddie Kohler. The scalable commutativity rule: Designing

scalable software for multicore processors. In Proc. of Symposium on

Operating System Principles (SOSP), 2013.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.

In Proc. of Operating System Design and Implementation (OSDI), 1999.

[Cla76] Lori A. Clarke. A program testing system. In Proceedings of the 1976

Annual Conference, ACM ’76, pages 488–491, New York, NY, USA, 1976.

ACM.

[CLC13] Jui-Hao Chiang, Han-Lin Li, and Tzi-cker Chiueh. Introspection-based

memory de-duplication and migration. In Proc. of International Confer-

ence on Virtual Execution Environments (VEE), 2013.

[CLL+02] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,

Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace detec-

tion for multithreaded object-oriented programs. In Proc. of Program-

ming Languages Design and Implementation (PLDI), 2002.

[CN01] Peter M. Chen and Brian D. Noble. When virtual is better than real. In

Proc. of Hot Topics in Operating Systems (HotOS), 2001.

[Cor] Oracle Corporation. MySQL Bugs: How to Report a Bug. https:

//bugs.mysql.com/how-to-report.php.

[COV] Software testing and static analysis tools — coverity. http://www.

coverity.com/.

[CRCM12] João Carreira, Rodrigo Rodrigues, George Candea, and Rupak Majum-

dar. Scalable testing of file system checkers. In Proc. of European Con-

ference on Computer Systems (EuroSys), 2012.

114

https://bugs.mysql.com/how-to-report.php
https://bugs.mysql.com/how-to-report.php
http://www.coverity.com/
http://www.coverity.com/

BIBLIOGRAPHY

[CRL03] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. BASE: Us-

ing abstraction to improve fault tolerance. ACM Trans. Comput. Syst.,

21:236–269, August 2003.

[CSL+13] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu,

Junfeng Yang, Garth A. Gibson, and Randal E. Bryant. Parrot: A

practical runtime for deterministic, stable, and reliable threads. In Proc.

of Symposium on Operating System Principles (SOSP), 2013.

[CWG+11] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng

Yang. Efficient deterministic multithreading through schedule relaxation.

In Proc. of Symposium on Operating System Principles (SOSP), 2011.

[CWTY10] Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. Stable

deterministic multithreading through schedule memoization. In Proc. of

Operating System Design and Implementation (OSDI), 2010.

[CYC+01] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. An empirical study of operating systems errors. In Proc. of

Symposium on Operating System Principles (SOSP), 2001.

[DHH09] Daniel Dawson, Nathan Hawes, and Christian Hoermann. Finding bugs

in open source kernels using Parfait. In Proc. of Kernel Conference Aus-

tralia (KCA), 2009.

[DLCO09] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP:

Deterministic shared memory multiprocessing. In Proc. of International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2009.

[DLFC08] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and

Peter M. Chen. Execution replay of multiprocessor virtual machines.

In Proc. of International Conference on Virtual Execution Environments

(VEE), 2008.

[DZW+14] Zhuofang Dai, Zheng Zhang, Haojun Wang, Yi Li, and Weihua Zhang.

Parallelized race detection based on gpu architecture. In Junjie Wu,

Haibo Chen, and Xingwei Wang, editors, Advanced Computer Archi-

tecture, volume 451 of Communications in Computer and Information

Science, pages 113–127. Springer Berlin Heidelberg, 2014.

115

BIBLIOGRAPHY

[EA03] Dawson Engler and Ken Ashcraft. RacerX: Effective, static detection

of race conditions and deadlocks. SIGOPS Operating Systems Review,

37(5):237–252, 2003.

[EBA+13] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Power challenges may end the multicore era.

Commun. ACM, 56(2):93–102, February 2013.

[EBNS13] Tayfun Elmas, Jacob Burnim, George C. Necula, and Koushik Sen. CON-

CURRIT: A domain specific language for concurrency bugs. In Proc. of

Programming Languages Design and Implementation (PLDI), 2013.

[EFG+03] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby,

and Shmuel Ur. Framework for testing multi-threaded Java programs.

Concurrency - Practice and Experience, 15(3-5):485–499, 2003.

[EMBO10] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk

Olynyk. Effective data-race detection for the kernel. In Proc. of Operating

System Design and Implementation (OSDI), 2010.

[EQT07] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: A race

and transaction-aware java runtime. In Proc. of Programming Languages

Design and Implementation (PLDI), 2007.

[EU04] Yaniv Eytani and Shmuel Ur. Compiling a benchmark of documented

multi-threaded bugs. Proc. of International Parallel and Distributed Pro-

cessing Symposium (IPDPS), 17:266a, 2004.

[FBG12] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Comprehensive

kernel instrumentation via dynamic binary translation. In Proc. of In-

ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), 2012.

[FF04] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic atom-

icity checker for multithreaded programs. In Proc. of Symposium on

Principles of Programming Languages (POPL), 2004.

[FF09] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient and pre-

cise dynamic race detection. SIGPLAN Not., 44(6):121–133, 2009.

116

BIBLIOGRAPHY

[FLR11] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. Finding complex con-

currency bugs in large multi-threaded applications. In Proc. of European

Conference on Computer Systems (EuroSys), 2011.

[FLSR10] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. A

study of the internal and external effects of concurrency bugs. In Proc. of

International Conference on Dependable Systems and Networks (DSN),

2010.

[FNU03] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and

how to test them. In Proc. of International Parallel and Distributed

Processing Symposium (IPDPS), 2003.

[FRB14] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. SKI: Ex-

posing kernel concurrency bugs through systematic schedule exploration.

In Proc. of Operating System Design and Implementation (OSDI), 2014.

[FSS] Fsstress source code. http://cvs.sourceforge.net/viewcvs.py/ltp/

ltp/testcases/kernel/fs/fsstress/.

[FZ10] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit

tests and oracles. In Proc. of International Symposium on Software Test-

ing and Analysis (ISSTA), 2010.

[GEE] GE Energy acknowledges blackout bug. http://www.securityfocus.

com/news/8032.

[GHK+01] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and

Gregg Rothermel. An empirical study of regression test selection tech-

niques. ACM Trans. Softw. Eng. Methodol., 10(2):184–208, April 2001.

[GKRY03] Weining Gu, Zbigniew Kalbarczyk, Iyer K. Ravishankar, and Zhenyu

Yang. Characterization of linux kernel behavior under errors. In Proc. of

International Conference on Dependable Systems and Networks (DSN),

2003.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed

automated random testing. SIGPLAN Not., 40(6):213–223, 2005.

[God97] Patrice Godefroid. Model checking for programming languages using

VeriSoft. In Proc. of Symposium on Principles of Programming Lan-

guages (POPL), 1997.

117

http://cvs.sourceforge.net/viewcvs.py/ltp/ltp/testcases/kernel/fs/fsstress/
http://cvs.sourceforge.net/viewcvs.py/ltp/ltp/testcases/kernel/fs/fsstress/
http://www.securityfocus.com/news/8032
http://www.securityfocus.com/news/8032

BIBLIOGRAPHY

[Gol08] Gene Golovchinsky. Reading in the office. In Proceedings of the 2008

ACM Workshop on Research Advances in Large Digital Book Reposito-

ries, BooksOnline ’08, pages 21–24, New York, NY, USA, 2008. ACM.

[Gra86] Jim Gray. Why do computers stop and what can be done about it?

In Proc. of Reliability in Distributed Software and Database Systems

(SRDS), 1986.

[GZNM11] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Bren-

dan Murphy. ”not my bug!” and other reasons for software bug report

reassignments. In Proceedings of the ACM 2011 Conference on Computer

Supported Cooperative Work, CSCW ’11, pages 395–404, New York, NY,

USA, 2011. ACM.

[GZTQ09] Qi Gao, Wenbin Zhang, Yan Tang, and Feng Qin. First-aid: Surviving

and preventing memory management bugs during production runs. In

Proc. of European Conference on Computer Systems (EuroSys), 2009.

[HC14] Jennia Hizver and Tzi-cker Chiueh. Real-time deep virtual machine in-

trospection and its applications. In Proc. of International Conference on

Virtual Execution Environments (VEE), 2014.

[HHS13] Ruirui Huang, Erik Halberg, and G. Edward Suh. Non-race concurrency

bug detection through order-sensitive critical sections. In Proc. of Inter-

national Symposium on Computer Architecture (ISCA), 2013.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architec-

tural support for lock-free data structures. SIGARCH Computer Archi-

tecture News, 21(2):289–300, 1993.

[HM08] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era.

Computer, 41(7):33–38, July 2008.

[Hol97] Gerard J Holzmann. The model checker spin. IEEE Transactions on

software engineering, 23(5):279–295, 1997.

[Hol14] Gerard J. Holzmann. Mars code. Commun. ACM, 57(2):64–73, 2014.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN

Notices, 39(12):92–106, 2004.

118

BIBLIOGRAPHY

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-

ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, 1990.

[HYN+14] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-

tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. Race

detection for event-driven mobile applications. In Proc. of Programming

Languages Design and Implementation (PLDI), 2014.

[IEE94] IEEE. IEEE Standard for Information Technology - Portable Operating

System Interface (POSIX): System Application Program Interface (API),

Amendment 1: Realtime Extension (C Language), IEEE Std 1003.1b-

1993. IEEE Standards Office, New York, NY, USA, 1994.

[IEE95] IEEE. IEEE Standard for Information Technology - Portable Operating

System Interface (POSIX): System Application Program Interface (API),

Amendment 2: Thread Extensions, IEEE Std 1003.1c-1995. IEEE Stan-

dards Office, New York, NY, USA, 1995.

[IEE08] IEEE. IEEE Standard for Information Technology - Portable Operating

System Interface (POSIX) - Base Specifications, IEEE Std 1003.1-2008.

IEEE Standards Office, New York, NY, USA, 2008.

[INTa] Intel’s billion-dollar mistake: Why chip flaws are so

hard to fix. http://venturebeat.com/2011/01/31/

intels-billion-dollar-mistake-why-chip-flaws-are-so-hard-to-fix/.

[INTb] Intel Previews Intel Xeon ’Nehalem-EX’ Processor. http://www.intel.

com/pressroom/archive/releases/2009/20090526comp.htm.

[JADAD06] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Antfarm: Tracking processes in a virtual machine environment.

In Proc. of Annual Technical Conference (ATC), 2006.

[JSS+12] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.

Understanding and detecting real-world performance bugs. In Proc. of

Programming Languages Design and Implementation (PLDI), 2012.

[JTZC08] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea.

Deadlock immunity: Enabling systems to defend against deadlocks. In

Proc. of Operating System Design and Implementation (OSDI), 2008.

119

http://venturebeat.com/2011/01/31/intels-billion-dollar-mistake-why-chip-flaws-are-so-hard-to-fix/
http://venturebeat.com/2011/01/31/intels-billion-dollar-mistake-why-chip-flaws-are-so-hard-to-fix/
http://www.intel.com/pressroom/archive/releases/2009/20090526comp.htm
http://www.intel.com/pressroom/archive/releases/2009/20090526comp.htm

BIBLIOGRAPHY

[KCC10] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. Test-

ing closed-source binary device drivers with DDT. In Proc. of Annual

Technical Conference (ATC), 2010.

[KER] Kernel threads made easy. http://lwn.net/Articles/65178/.

[Kin76] James C. King. Symbolic execution and program testing. Commun.

ACM, 19(7):385–394, July 1976.

[Kiv07] Avi Kivity. KVM: The Linux virtual machine monitor. In Proc. of Ottawa

Linux Symposium (OLS), 2007.

[KK98] I. Koren and Z. Koren. Defect tolerance in vlsi circuits: techniques and

yield analysis. Proceedings of the IEEE, 86(9):1819–1838, Sep 1998.

[KL93] Harry Koehnemann and Timothy E. Lindquist. Towards target-level

testing and debugging tools for embedded software. In Proc. of TRI-

Ada, 1993.

[KTGN10] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An

analysis of traces from a production MapReduce cluster. In Proc. of

International Conference on Cluster, Cloud and Grid Computing (CC-

GRID), 2010.

[KWLM09] Terence Kelly, Yin Wang, Stephane Lafortune, and Scott Mahlke. Elim-

inating concurrency bugs with control engineering. IEEE Computer,

99(1), 2009.

[KZC12] Baris Kasikci, Cristian Zamfir, and George Candea. Data races vs. data

race bugs: Telling the difference with Portend. In Proc. of International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2012.

[KZC13] Baris Kasikci, Cristian Zamfir, and George Candea. Racemob: Crowd-

sourced data race detection. In Proc. of Symposium on Operating System

Principles (SOSP), 2013.

[LADADL13] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and

Shan Lu. A study of linux file system evolution. In Proc. of Conference

on File and Storage Technologies (FAST), 2013.

120

http://lwn.net/Articles/65178/

BIBLIOGRAPHY

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16:133–169, May 1998.

[Lar02] Paul Larson. Testing linux with linux test project. In Proc. of Ottawa

Linux Symposium (OLS), 2002.

[LCB11] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: Effi-

cient deterministic multithreading. In Proc. of Symposium on Operating

System Principles (SOSP), 2011.

[LCS10] Brandon Lucia, Luis Ceze, and Karin Strauss. Colorsafe: Architectural

support for debugging and dynamically avoiding multi-variable atomicity

violations. In Proc. of International Symposium on Computer Architec-

ture (ISCA), 2010.

[Liu07] Xuezheng Liu. WiDS checker: Combating bugs in distributed systems. In

Proc. of Networked Systems Design and Implementation (NSDI), 2007.

[LLKB12] Di Liu, Matthew Lease, Rebecca Kuipers, and Randolph G. Bias. Crowd-

sourcing for usability testing. CoRR, 2012.

[LLS+13] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou,

and E. James Whitehead Jr. Does bug prediction support human de-

velopers? Findings from a Google case study. In Proc. of International

Conference on Software Engineering (ICSE), 2013.

[LOCa] Nasty Lockup Issue Still Being Investigated For Linux 3.18. http://

www.phoronix.com/scan.php?page=news_item&px=MTg1MDc.

[LOCb] ANNOUNCE: Lock validator. http://lwn.net/Articles/185605/.

[Lov10] Robert Love. Linux Kernel Development. Addison-Wesley Professional,

3rd edition, 2010.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from

mistakes: A comprehensive study on real world concurrency bug charac-

teristics. SIGARCH Computer Architecture News, 36(1):329–339, 2008.

[LT93] Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25

accidents. Computer, 26(7):18–41, July 1993.

121

http://www.phoronix.com/scan.php?page=news_item&px=MTg1MDc
http://www.phoronix.com/scan.php?page=news_item&px=MTg1MDc
http://lwn.net/Articles/185605/

BIBLIOGRAPHY

[LTQZ06] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: De-

tecting atomicity violations via access interleaving invariants. In Proc.

of International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2006.

[LTW+06] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and

Chengxiang Zhai. Have things changed now? An empirical study of bug

characteristics in modern open-source software. In Proc. of Architectural

and System Support for Improving Software Dependability (ASID), 2006.

[LVN10] Oren Laadan, Nicolas Viennot, and Jason Nieh. Transparent, lightweight

application execution replay on commodity multiprocessor operating sys-

tems. In Proc. of International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS), 2010.

[LVT+11] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris Blinn, Junfeng

Yang, and Jason Nieh. Pervasive detection of process races in deployed

systems. In Proc. of Symposium on Operating System Principles (SOSP),

2011.

[LZL+13a] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin,

and Tao Xie. A characteristic study on failures of production distributed

data-parallel programs. In Proc. of International Conference on Software

Engineering (ICSE), 2013.

[LZL+13b] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin,

and Tao Xie. A characteristic study on failures of production distributed

data-parallel programs. In Proc. of International Conference on Software

Engineering (ICSE), 2013.

[LZL+13c] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin,

and Tao Xie. A characteristic study on failures of production distributed

data-parallel programs. In Proc. of International Conference on Software

Engineering (ICSE), 2013.

[McC02] Dave McCracken. POSIX threads and the Linux kernel. In Proc. of

Ottawa Linux Symposium (OLS), 2002.

[MDADAD13] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Ffsck: The fast file system checker. In Proc. of Conference on

File and Storage Technologies (FAST), 2013.

122

BIBLIOGRAPHY

[Mic] Microsoft. Generating test data for databases by using data generators.

http://msdn.microsoft.com/en-us/library/dd193262.aspx.

[MKZ08] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. Generating tar-

geted queries for database testing. In Proc. of International Conference

on Management of Data (SIGMOD), pages 499–510, 2008.

[MMN09] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteR-

ace: Effective sampling for lightweight data-race detection. In Proc. of

Programming Languages Design and Implementation (PLDI), 2009.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagam A. Nainar, and Iulian Neamtiu. Finding and reproducing

heisenbugs in concurrent programs. In Proc. of Operating System Design

and Implementation (OSDI), 2008.

[MS98] Paul E. McKenney and John D. Slingwine. Read-copy update: Using

execution history to solve concurrency problems. In Proc. of Interna-

tional Conference on Parallel and Distributed Computing and Systems

(PDCS), pages 509–518, ”Las Vegas, NV”, October 1998.

[MW71] Zohar Manna and Richard J. Waldinger. Toward automatic program

synthesis. Commun. ACM, 14(3):151–165, March 1971.

[MYI] The MyISAM storage engine. http://dev.mysql.com/doc/refman/5.

0/en/myisam-storage-engine.html.

[MYSa] MySQL :: The world’s most popular open-source database. http://www.

mysql.com.

[MYSb] MySQL Bugs. http://bugs.mysql.com.

[MYSc] MySQL :: Market Share. http://www.mysql.com/why-mysql/

marketshare/.

[NAW06] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detec-

tion for Java. In Proc. of Programming Languages Design and Imple-

mentation (PLDI), 2006.

[NB05] Nachiappan Nagappan and Thomas Ball. Static analysis tools as early

indicators of pre-release defect density. In Proc. of International Confer-

ence on Software Engineering (ICSE), 2005.

123

http://msdn.microsoft.com/en-us/library/dd193262.aspx
http://dev.mysql.com/doc/refman/5.0/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.0/en/myisam-storage-engine.html
http://www.mysql.com
http://www.mysql.com
http://bugs.mysql.com
http://www.mysql.com/why-mysql/marketshare/
http://www.mysql.com/why-mysql/marketshare/

BIBLIOGRAPHY

[NBH08] Kara Nance, Matt Bishop, and Brian Hay. Virtual machine introspection:

Observation or interference? IEEE Security and Privacy, 6(5):32–37,

September 2008.

[NBMM12a] Santosh Nagarakatte, Sebastian Burckhardt, Milo M.K. Martin, and

Madanlal Musuvathi. Multicore acceleration of priority-based schedulers

for concurrency bug detection. In Proc. of Programming Languages De-

sign and Implementation (PLDI), 2012.

[NBMM12b] Santosh Nagarakatte, Sebastian Burckhardt, Milo M.K. Martin, and

Madanlal Musuvathi. Multicore acceleration of priority-based schedulers

for concurrency bug detection. In Proc. of Programming Languages De-

sign and Implementation (PLDI), 2012.

[NJT13] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and

fixing performance bugs. In Proc. of Working Conference on Mining

Software Repositories (MSR), 2013.

[NPCF08] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn.

Parallelizing security checks on commodity hardware. In Proc. of Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2008.

[NPSG09] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective

static deadlock detection. In Proc. of International Conference on Soft-

ware Engineering (ICSE), 2009.

[NVI] GeForce GTX 295. http://www.nvidia.com/object/product_

geforce_gtx_295_us.html.

[NWT+07] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards,

and Brad Calder. Automatically classifying benign and harmful data

races using replay analysis. In Proc. of Programming Languages Design

and Implementation (PLDI), 2007.

[NZHZ07] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas

Zeller. Predicting vulnerable software components. In Proc. of Confer-

ence on Computer and Communications Security (CCS), 2007.

[OPE] OpenSUSE News. https://news.opensuse.org/2014/03/19/

development-for-13-2-kicks-off/.

124

http://www.nvidia.com/object/product_geforce_gtx_295_us.html
http://www.nvidia.com/object/product_geforce_gtx_295_us.html
https://news.opensuse.org/2014/03/19/development-for-13-2-kicks-off/
https://news.opensuse.org/2014/03/19/development-for-13-2-kicks-off/

BIBLIOGRAPHY

[OWB05] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Predict-

ing the location and number of faults in large software systems. IEEE

Transactions on Software Engineering (TSE), 31(4):340–355, April 2005.

[Pac07] Sasha Pachev. Understanding MySQL internals. O’Reilly Media, Inc.,

2007.

[PFMA04] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Ar-

baugh. Copilot - A coprocessor-based kernel runtime integrity monitor.

In Proc. of Conference on USENIX Security Symposium (SSYM), 2004.

[PLM+10a] Wei-Feng Pan, Bing Li, Yu-Tao Ma, Ye-Yi Qin, and Xiao-Yan Zhou.

Measuring structural quality of object-oriented softwares via bug prop-

agation analysis on weighted software networks. Journal of Computer

Science and Technology, 25(6):1202–1213, 2010.

[PLM+10b] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and

Calton Pu. Understanding performance interference of I/O workload in

virtualized cloud environments. In Proc. of International Conference on

Cloud Computing (CLOUD), 2010.

[PLZ09] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: Exposing atom-

icity violation bugs from their hiding places. In Proc. of International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2009.

[PSST08] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and Asser

Tantawi. CPU demand for web serving: Measurement analysis and dy-

namic estimation. Perform. Eval., 65:531–553, June 2008.

[PVSD12] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race

detection for web applications. In Proc. of Programming Languages De-

sign and Implementation (PLDI), 2012.

[PZX+09] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik,

Kyu H. Lee, and Shan Lu. PRES: Probabilistic replay with execution

sketching on multiprocessors. In Proc. of Symposium on Operating Sys-

tem Principles (SOSP), 2009.

125

BIBLIOGRAPHY

[QTSZ05] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.

Rx: Treating bugs as allergies—A safe method to survive software fail-

ures. In Proc. of Symposium on Operating System Principles (SOSP),

2005.

[RCKH09] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo:

Taming device drivers. In Proc. of European Conference on Computer

Systems (EuroSys), 2009.

[RKBD14] Foyzur Rahman, Sameer Khatri, Earl T. Barr, and Premkumar Devanbu.

Comparing static bug finders and statistical prediction. In Proc. of In-

ternational Conference on Software Engineering (ICSE), 2014.

[RKS12] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. SymDrive:

Testing drivers without devices. In Proc. of Operating System Design and

Implementation (OSDI), 2012.

[RKW+06] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul,

Mehul A. Shah, and Amin Vahdat. Pip: Detecting the unexpected in

distributed systems. In Proc. of Networked Systems Design and Imple-

mentation (NSDI), 2006.

[RLT78] Brian Randell, Peter Lee, and Philip C. Treleaven. Reliability issues

in computing system design. ACM Computing Surveys, 10(2):123–165,

1978.

[RSSK14] Ajitha Rajan, Subodh Sharma, Peter Schrammel, and Daniel Kroen-

ing. Accelerated test execution using gpus. In Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineer-

ing, ASE ’14, pages 97–102, New York, NY, USA, 2014. ACM.

[Rus] Paul Rusty Russell. Unreliable Guide To Locking. http://kernelbook.

sourceforge.net/kernel-locking.pdf.

[RVS13] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race

detection for event-driven programs. In Proc. of Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), 2013.

[RW85] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using

data flow information. IEEE Trans. Softw. Eng., 11(4):367–375, April

1985.

126

http://kernelbook.sourceforge.net/kernel-locking.pdf
http://kernelbook.sourceforge.net/kernel-locking.pdf

BIBLIOGRAPHY

[Ryz10] Leonid Ryzhyk. On the Construction of Reliable Device Drivers. PhD

thesis, School of Computer Science and Engineering, University of NSW,

Sydney 2052, Australia, Jan 2010.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. Eraser: A dynamic data race detector for multi-

threaded programs. SIGOPS Oper. Syst. Rev., 31(5):27–37, 1997.

[SC92] Mark Sullivan and Ram Chillarege. A comparison of software defects

in database management systems and operating systems. In Proc. of

International Symposium on Fault-Tolerant Computing (FTCS), 1992.

[SC07] Yannis Smaragdakis and Christoph Csallner. Combining static and dy-

namic reasoning for bug detection. In Tests and Proofs, volume 4454 of

Lecture Notes in Computer Science, pages 1–16. Springer Berlin Heidel-

berg, 2007.

[SCA09] Swarup K Sahoo, John Criswell, and Vikram S. Adve. An empirical study

of reported bugs in server software with implications for automated bug

diagnosis. Tech. Report 2142/13697, University of Illinois, University of

Illinois, 2009.

[SCA10] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical

study of reported bugs in server software with implications for auto-

mated bug diagnosis. In Proc. of International Conference on Software

Engineering (ICSE), 2010.

[Sch95] Beth A. Schroeder. On-line monitoring: A tutorial. IEEE Computer,

28(6):72–78, Jun 1995.

[Sen08] Koushik Sen. Race directed random testing of concurrent programs. In

Proc. of Programming Languages Design and Implementation (PLDI),

2008.

[SKAZ04] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews,

and Yuanyuan Zhou. Flashback: A lightweight extension for rollback

and deterministic replay for software debugging. In Proc. of Annual

Technical Conference (ATC), 2004.

[SQL] SQL Standards. http://www.jcc.com/resources/sql-standards.

127

http://www.jcc.com/resources/sql-standards

BIBLIOGRAPHY

[SSN+09] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens,

Tom Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave.

The semantics of x86-CC multiprocessor machine code. In Proc. of Sym-

posium on Principles of Programming Languages (POPL), 2009.

[SSV13] Jo M. Silva, Jos Simo, and Lus Veiga. Ditto deterministic execution

replayability-as-a-service for java vm on multiprocessors. In David Eyers

and Karsten Schwan, editors, Middleware 2013, volume 8275 of Lecture

Notes in Computer Science, pages 405–424. Springer Berlin Heidelberg,

2013.

[STO] Storage engine poll. http://dev.mysql.com/doc/refman/5.0/en/

storage-engines.html.

[Sto02] Scott D. Stoller. Testing concurrent Java programs using randomized

scheduling. In Proc. of Workshop on Runtime Verification (RV), 2002.

[SWS+09] Martin Süßkraut, Stefan Weigert, Ute Schiffel, Thomas Knauth, Martin

Nowack, Diogo Becker de Brum, and Christof Fetzer. Speculation for

parallelizing runtime checks. In Proc. of International Symposium on

Stabilization, Safety, and Security of Distributed Systems (SSS), 2009.

[TER] Tera-BLAST White Paper - TimeLogic. http://www.timelogic.com/

documents/TimeLogic_Tera-BLAST_whitepaper_v1.0.pdf.

[TLL+14] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and

Chengxiang Zhai. Bug characteristics in open-source software. Empirical

Software Engineering, 19(6):1665–1705, 2014.

[TRI] Trinity: A Linux system call fuzzer. http://codemonkey.org.uk/

projects/trinity/.

[TUYT07] Rachel Tzoref, Shmuel Ur, and Elad Yom-Tov. Instrumenting where it

hurts: An automatic concurrent debugging technique. In Proc. of Inter-

national Symposium on Software Testing and Analysis (ISSTA), 2007.

[UBH09] Iñigo Urteaga, Kevin Barnhart, and Qi Han. REDFLAG: A run-time,

distributed, flexible, lightweight, and generic fault detection service for

data-driven wireless sensor applications. Pervasive Mob. Comput., 5:432–

446, October 2009.

128

http://dev.mysql.com/doc/refman/5.0/en/storage-engines.html
http://dev.mysql.com/doc/refman/5.0/en/storage-engines.html
http://www.timelogic.com/documents/TimeLogic_Tera-BLAST_whitepaper_v1.0.pdf
http://www.timelogic.com/documents/TimeLogic_Tera-BLAST_whitepaper_v1.0.pdf
http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/

BIBLIOGRAPHY

[ULSD04] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski.

Towards scalable multiprocessor virtual machines. In Proc. of Conference

on Virtual Machine Research And Technology Symposium (VM), 2004.

[uTe] uTest. White paper: Crowdsourced usability testing. http:

//alexcrockett.com/wp-content/uploads/downloads/Books/

Crowdsourced_Usability_Testing.pdf.

[Vaf10] Viktor Vafeiadis. Automatically proving linearizability. In Proc. of In-

ternational Conference on Computer Aided Verification (CAV), 2010.

[Val94] John D. Valois. Implementing lock-free queues. In Proc. of International

Conference on Parallel and Distributed Computing and Systems (PDCS),

1994.

[VBLM07] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden.

Tolerating byzantine faults in transaction processing systems using com-

mit barrier scheduling. In Proc. of Symposium on Operating System

Principles (SOSP), 2007.

[VCFN11] Kaushik Veeraraghavan, Peter M. Chen, Jason Flinn, and Satish

Narayanasamy. Detecting and surviving data races using complemen-

tary schedules. In Proc. of Symposium on Operating System Principles

(SOSP), 2011.

[VEG] Azul Systems - Industry’s Leading Azul Compute Appliances. http:

//www.azulsystems.com/products/compute_appliance.htm.

[VFS14] Dhaval Vyas, Thomas Fritz, and David Shepherd. Bug reproduction

: a collaborative practice within software maintenance activities. In

C. Rossitto, Luigina Ciolfi, David Martin, and B. Conein, editors, COOP

2014 - Proceedings of the 11th International Conference on the Design of

Cooperative Systems, IFIP – The International Federation for Informa-

tion Processing. Spriger, Nice, France, May 2014.

[Viz07] Mike Vizard. The yin and yang of software development. Queue, 5(4),

May 2007.

[VJL07] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY: Static race

detection on millions of lines of code. In Proc. of European Software En-

129

http://alexcrockett.com/wp-content/uploads/downloads/Books/Crowdsourced_Usability_Testing.pdf
http://alexcrockett.com/wp-content/uploads/downloads/Books/Crowdsourced_Usability_Testing.pdf
http://alexcrockett.com/wp-content/uploads/downloads/Books/Crowdsourced_Usability_Testing.pdf
http://www.azulsystems.com/products/compute_appliance.htm
http://www.azulsystems.com/products/compute_appliance.htm

BIBLIOGRAPHY

gineering Conference and the Symposium on the Foundations of Software

Engineering (ESEC/FSE), 2007.

[VKM02] Udaykiran Vallamsetty, Krishna Kant, and Prasant Mohapatra. Char-

acterization of e-commerce traffic. In Proc. of Advanced Issues of E-

Commerce and Web-Based Information Systems (WECWIS), 2002.

[VT06] Lucian Voinea and Alexandru Telea. How do changes in buggy Mozilla

files propagate? In Proc. of Symposium on Software Visualization (Soft-

Vis), 2006.

[VYY09] Martin Vechev, Eran Yahav, and Greta Yorsh. Experience with model

checking linearizability. In Proc. of SPIN Workshop on Model Checking

Software (SPIN), 2009.

[VZ91] Raj Vaswani and John Zahorjan. The implications of cache affinity on

processor scheduling for multiprogrammed, shared memory multiproces-

sors. SIGOPS Oper. Syst. Rev., 25(5):26–40, September 1991.

[WJKT05] Stefan Wagner, Jan Jürjens, Claudia Koller, and Peter Trischberger.

Comparing bug finding tools with reviews and tests. In Proc. of Inter-

national Conference on Testing of Communicating Systems (Testcom),

2005.

[WLC+11] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua

Zhang, and Binyu Zang. COREMU: A scalable and portable parallel

full-system emulator. In Proc. of Symposium on Principles and Practice

of Parallel Programming (PPoPP), 2011.

[WS06] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for

multi-threaded programs. IEEE Transactions on Software Engineering,

32(2):93–110, February 2006.

[WTH+12] Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfeng Yang.

Sound and precise analysis of parallel programs through schedule special-

ization. In Proc. of Programming Languages Design and Implementation

(PLDI), 2012.

[XBH05a] Min Xu, Rastislav Bod́ık, and Mark D. Hill. A serializability violation

detector for shared-memory server programs. SIGPLAN Not., 40(6):1–

14, 2005.

130

BIBLIOGRAPHY

[XBH05b] Min Xu, Rastislav Bod́ık, and Mark D. Hill. A serializability violation

detector for shared-memory server programs. In Proc. of Programming

Languages Design and Implementation (PLDI), 2005.

[XMS+07] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam,

and Boris Weissman. Retrace: Collecting execution trace with virtual

machine deterministic replay. In Proc. of Annual Workshop on Modeling,

Benchmarking and Simulation (MoBS), 2007.

[XPZ+10] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang

Ma. Ad hoc synchronization considered harmful. In Proc. of Operating

System Design and Implementation (OSDI), 2010.

[YCW+09] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu,

Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou.

MODIST: Transparent model checking of unmodified distributed sys-

tems. In Proc. of Networked Systems Design and Implementation

(NSDI), 2009.

[YCW+14] Junfeng Yang, Heming Cui, Jingyue Wu, Yang Tang, and Gang Hu. De-

terminism is not enough: Making parallel programs reliable with stable

multithreading. Communications of the ACM, 2014.

[YKKK09] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kun-

cak. CrystalBall: Predicting and preventing inconsistencies in deployed

distributed systems. In Proc. of Networked Systems Design and Imple-

mentation (NSDI), 2009.

[YMZ+11] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.

Bairavasundaram, and Shankar Pasupathy. An empirical study on con-

figuration errors in commercial and open source systems. In Proc. of

Symposium on Operating System Principles (SOSP), 2011.

[YNPP12] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam.

Maple: A coverage-driven testing tool for multithreaded programs. In

Proc. of Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA), 2012.

[YRC05] Yuan Yu, Tom Rodeheffer, and Wei Chen. RaceTrack: Efficient detection

of data race conditions via adaptive tracking. In Proc. of Symposium on

Operating System Principles (SOSP), 2005.

131

BIBLIOGRAPHY

[YSE06] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A lightweight,

general system for finding serious storage system errors. In Proc. of

Operating System Design and Implementation (OSDI), 2006.

[YTEM04] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.

Using model checking to find serious file system errors. In Proc. of Op-

erating System Design and Implementation (OSDI), 2004.

[ZACS11] Cristian Zamfir, Gautam Altekar, George Candea, and Ion Stoica. Debug

determinism: The sweet spot for replay-based debugging. In Proc. of Hot

Topics in Operating Systems (HotOS), 2011.

[ZAH11] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. Security versus

performance bugs: A case study on Firefox. In Proc. of Working Con-

ference on Mining Software Repositories (MSR), 2011.

[Zim95] Philip Zimmermann. PGP Source Code and Internals. MIT Press, Cam-

bridge, MA, USA, 1995.

132

	List of Figures
	List of Tables
	Introduction
	Hardware parallelism: A blessing and a curse
	The threat of concurrency bugs
	Problem statement
	Contributions
	Outline

	Related work
	Studies of bugs
	Testing software
	Detecting concurrency bugs
	Exposing concurrency bugs

	Deterministic replay
	Virtual machine introspection (VMI)

	Background
	Systematic exploration of the interleaving space
	PCT scheduling algorithm

	Database management systems
	MySQL overview
	Internal structure
	Concurrent programming
	Request vs. transaction concurrency
	Storage engines

	Operating system kernels
	Concurrency and synchronization mechanisms
	Thread affinity

	The effects of concurrency bugs
	Overview
	Study methodology
	Selection of concurrency bugs
	Manual analysis of bug reports

	Results
	Evolution of concurrency bugs
	External effects
	Latent bugs
	Characteristics of semantic bugs
	Internal effects of latent bugs
	Recovering from latent errors
	Severity and fixing complexity

	Limitations and discussion
	Summary

	Detecting latent and semantic bugs
	Overview
	Semantic and latent concurrency bugs
	Linearizability: The spec from within
	Capturing application state
	Maintaining the summary functions

	PIKE: A concurrency bug finding tool
	Handling false positives
	Implementation

	Experience with MySQL
	State summary functions
	Input generation

	Results
	Development effort
	Bugs found
	False positives

	Limitations and discussion
	Reliance on modifications to tested software
	Extending traditional test suites

	Summary

	Exposing concurrency bugs in kernels
	Overview
	Kernel API and kernel modifications
	SKI: Exploring kernel interleavings
	Overview
	Exercising control over threads
	Inferring liveness
	Scheduling algorithm
	Discussion

	Scaling to real-world kernels
	Implementation
	Overview
	Runnable contexts
	Helper testing framework
	Optimizations and parallelization
	Bug detectors
	Traces and bug diagnosis

	Results
	Configuration
	Reproducing concurrency bugs
	Exposing unknown concurrency bugs

	Limitations and discussion
	Reliance on thread pinning
	Reliance on VMM

	Summary

	Testing software in the real-world
	Properties of testing tools
	Scope
	Manual effort
	Performance
	Computational resources

	Users of testing tools
	Developers of new features
	Internal dedicated testers
	External dedicated testers
	Software end-users
	Researchers of testing tools
	Discussion

	Experience interacting with potential users
	Reproducing bugs
	Reporting bugs
	User feedback

	The scalability of testing concurrent software
	Prioritizing the testing space exploration
	Reasoning over multiple executions
	Discussion

	Towards reliable software

	Future research directions
	Practical extraction of application state using its API
	Exposing concurrency bugs due to weak-memory models
	Exploring the input space
	Profiling-based generation of tests
	Leveraging bug reports

	Conclusions
	Bibliography

