
cluster abstraction of
graph transformation systems

Dissertation

zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften der

Naturwissenschaftlich-Technischen Fakultäten der
Universität des Saarlandes

von

Peter Backes

Saarbrücken
2015

Tag des Kolloquiums: 13. November 2015

Dekan: Prof. Dr. Markus Bläser

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Bernd Finkbeiner
Universität des Saarlandes, Saarbrücken

Gutachter: Prof. Dr. Dr. h.c. Reinhard Wilhelm
Universität des Saarlandes, Saarbrücken

Prof. Dr. Jan Reineke
Universität des Saarlandes, Saarbrücken

Prof. Dr. Barbara König
Universität Duisburg-Essen

Akademischer Mitarbeiter: Dr. Tobias Mömke

Impressum
Copyright (c) 2010–2015 Peter Backes
With kind permission from Springer Science+Business Media:

• VMCAI 2015, Analysis of Infinite-State Graph Transformation Systems by Cluster
Abstraction, Peter Backes and Jan Reineke, (c) Springer-Verlag Berlin Heidelberg
2015

• SPIN 2015, ASTRA: A Tool for Abstract Interpretation of Graph Transformation
Systems, Peter Backes and Jan Reineke, (c) Springer-Verlag Berlin Heidelberg 2015

Herstellung und Verlag: epubli GmbH, Berlin, www.epubli.de
Printed in Germany
ISBN: 978-3-7375-7665-9

ii

Abstract
This dissertation explores the problem of analyzing the reachable graphs of graph
transformation systems. Such systems rewrite graphs according to subgraph replacement
rules; we allow negative application conditions to be specified in addition. This problem
is hard because the number of reachable graphs is potentially unbounded.

We use abstract interpretation to compute a finite, overapproximated representation
of the reachable graphs. The main idea is the notion of a cluster: We abstract the graph
locally for each of its nodes such that we obtain a bounded cluster with the node and
its immediate neighborhood. Then, we eliminate duplicate clusters such that we obtain
a bounded abstraction for the entire graph. We lift concrete rule application to this
abstraction, eventually obtaining an overapproximation of all reachable graphs.

We present ASTRA, an implementation of cluster abstraction, and the merge protocol
from car platooning, our main test case. This protocol enables autonomous cars to form
and merge platoons consisting of a leader car and several followers, such that the leader
controls speed and lane. The abstraction does well with the merge protocol, and also
manages to analyze several other standard case studies from the literature, as well as
test cases automatically generated from a higher-level formalism.

iii

iv

Zusammenfassung
Diese Dissertation untersucht, wie sich die erreichbaren Graphen eines Graphtransforma-
tionssystems analysieren lassen. Solche Systeme verändern Graphen gemäß Teilgrapherset-
zungsregeln; wir lassen zusätzlich negative Anwendungsbedingungen zu. Dieses Problem
ist schwierig, da die Anzahl der erreichbaren Graphen potentiell unbeschränkt ist.

Wir benutzen abstrakte Interpretation, um eine endliche überapproximierte Darstel-
lung der erreichbaren Graphen zu berechnen. Die Hauptidee ist der Begriff des Clusters:
Wir abstrahieren den Graphen lokal für jeden seiner Knoten und erhalten einen Cluster
beschränkter Größe mit diesem Knoten und seiner direkten Umgebung. Dann eliminieren
wir doppelte Cluster, so dass wir eine Abstraktion beschränkter Größe für den gesamten
Graphen erhalten. Wir führen dann die Regelanwendung auf dieser Abstraktion durch,
wodurch wir letzlich eine Überapproximation aller erreichbaren Graphen erhalten.

Wir betrachten ASTRA, eine Implementierung der Cluster-Abstraktion, und als
Hauptbeispiel das Merge-Protokoll aus dem Bereich automatisierter Kolonnenfahrten.
Bei diesem Protokoll werden Kolonnen durch autonom fahrende Autos gebildet und
verschmolzen, so dass das Führungsfahrzeug Geschwindigkeit und Spur kontrolliert. Die
Abstraktion analysiert das gesamte Merge-Protokoll, mehrere weitere Standardfallbeispiele
aus der Literatur, und auch Fallbeispiele, die aus einem Formalismus höherer Ordnung
automatisch generiert wurden.

v

vi

We have met the enemy and he is us. —Pogo

Looking back on it, I’d lived in an academic
dreamland. —Clifford Stoll, Cuckoo’s egg

The Tao of Programming flows far away and
returns on the wind of morning.

—The Tao of Programming

Acknowledgements
First and foremost, I thank my advisor, Reinhard Wilhelm. I deeply appreciate the
freedom and support he gave me to pursue my research, but also his patience with
me when I was occasionally roaming in distant academic disciplines, trying to catch
extravagant philosophic ideas. It is a fair judgement to say that his chair truly is academic
dreamland. I really wish I had decided earlier to join and could have stayed forever.

Our secretaries Ilina Bach, Rosy Fassbender, Stefanie Haupert-Betz, Sandra Neu-
mann and Carmen Rösch have been a great help to me by taking care of travel arrange-
ments and administrative bureaucracy. I am indebted to Conny Clausen from the Patent
Marketing Agency for managing copyright clearance with Saarland University, allowing
me to release my implementation under a Free Software license.

My closest collaborator and de facto co-advisor has been Jan Reineke. The many
discussions with him were enormously fruitful, productive and enjoyable. My sincerest
thanks, Jan! Dmytro Puzhay assisted with tool implementation work and Jörg Kreiker
(Bauer) provided his test cases.

I very much enjoyed working and sometimes relaxing with my colleagues Mohamed
Abdel Maksoud, Sebastian Altmeyer, Tomasz Dudziak, Nico Fritz, Daniel Grund, Jörg
Herter, Philipp Lucas, Claire Maiza (Burguière), Fritz Müller, Oleg Parshin, Markus
Pister, Alejandro Salinger, Marc Schlickling, Björn Wachter and everyone else I have
forgotten.

I thank the members of my thesis committee not mentioned yet, namely Bernd
Finkbeiner for serving as the chairman, Barbara König for acting as referee of my thesis
and Tobias Mömke for being the scientific assistant.

I am deeply indebted to family and friends for their support. In particular, if it had
not been for Daniela, this thesis would never have been finished.

This work was partially supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/ for more
information.

vii

http://www.avacs.org/

Contents

1 Introduction 1

2 A Graph Transformation Case Study for the Topology Analysis of Dy-
namic Communication Systems 3
2.1 Introduction . 3

2.1.1 Context of the case . 3
2.1.2 Purpose from a larger perspective 4
2.1.3 Challenges that are involved . 5

2.2 The subject to be modeled . 5
2.2.1 Dynamic communication systems 5
2.2.2 The merge protocol . 7

2.3 Implementation remarks . 9
2.4 Example topologies . 11
2.5 Goals . 12

2.5.1 Core characteristics . 12
2.5.2 How the model should be used . 12
2.5.3 Extensions . 13
2.5.4 Evaluation criteria . 13

3 Abstract topology analysis of the join phase of the merge protocol 15
3.1 Introduction . 15
3.2 Star abstraction . 16
3.3 Results . 17
3.4 Property evaluation . 19
3.5 Conclusion . 20

4 Analysis of infinite-state graph transformation systems by cluster ab-
straction 21
4.1 Introduction . 21
4.2 Background . 22

4.2.1 Graph Preliminaries . 22
4.2.2 Graph Transformation Systems 23
4.2.3 The Merge Protocol . 25

4.3 Analysis . 26
4.3.1 Cluster Abstraction . 26
4.3.2 Abstract Transformer . 29

ix

Contents

4.4 Experimental Evaluation . 34
4.4.1 Implementation . 34
4.4.2 Selection of Benchmarks . 34
4.4.3 Analysis Results . 36

4.5 Related Work . 36
4.6 Conclusions and Future Work . 37
4.7 Appendix 1: Notes About Evaluation . 38
4.8 Appendix 2: Proof of Main Theorem . 44
4.9 Appendix 3: Relations . 47

5 ASTRA: A tool for abstract interpretation of graph transformation
systems 49
5.1 Introduction . 49
5.2 Cluster abstraction . 50
5.3 Architecture and Usage . 50

5.3.1 Input file format . 51
5.3.2 Command-line interface . 51
5.3.3 Status report . 52
5.3.4 Output file formats . 52

5.4 Experimental Evaluation . 53
5.5 Conclusions and Future Work . 54

6 Further notes on related work 55
6.1 Graph transformation framework . 55

6.1.1 Relation to the algebraic approach 55
6.1.2 Relation to the algorithmic approach 57

6.2 Related abstractions . 58
6.2.1 Partner abstraction . 58
6.2.2 Neighborhood abstraction and pattern abstraction 59
6.2.3 Petri graph abstraction . 60
6.2.4 Canonical abstraction . 61
6.2.5 Counter and environment abstraction 62
6.2.6 Other related abstractions . 62

7 Conclusions 65
7.1 Summary of contributions . 65
7.2 Future work . 65

7.2.1 Cluster count . 65
7.2.2 Model checking . 66
7.2.3 Closure . 66

Bibliography 67

x

1 Introduction

This thesis presents a method for the analysis of formal description mechanisms that
describe the evolution of, in principle, unbounded, linked or networked structures. This
includes structures inside a computer, like heaps, as well as structures connecting a set of
computers, like communication topologies; all evolution mechanisms that can be modeled
as graph transformation systems are potential targets of the method. We use abstract
interpretation to analyze such graph transformation systems. The method has been
implemented in the ASTRA tool. Special focus is given to the car platooning case study
as a running example.

Graph grammars. Graph grammars are a powerful and general approach with a wide
range of applications that includes compilers, distributed systems, databases, object
oriented development and even computational biology. Graph grammars can be used for
any domain where entities and relationships are created and destroyed according to rules.

Practical use of graph grammars works roughly as follows: The user specifies a
start graph and a set of transformation rules. The start graph describes, using nodes
for the entities under consideration and edges for the relationships among those entities,
an initial state, the initial working graph. The rules then match a subgraph of the
working graph and replace it by a different subgraph, as specified by the left hand side
and the right hand side, respectively, of the rule. This yields a new working graph. If
several matches are equally possible, one is picked by nondeterministic choice. This
happens until no further matches are possible. Thus, graphs are used to model a state
and transformation rules are used to model its evolution over time.

This thesis is concerned with the analysis of graph transformation systems, in
particular with the analysis of the reachable graphs. This is of interest because a system
might exhibit undesired properties in some of the reachable graphs. To find such errors
in the system, it is not possible to explore all reachable graphs, since the system may
have a very large or infinite number of them. To cope with this, we will employ abstract
interpretation techniques; we will lift rule application to an abstraction that captures all
possible concrete behaviors of the system under consideration. The specific abstraction
that we employ is cluster abstraction, based on the idea of decomposing the concrete
graph into overlapping clusters, one for each of its nodes.

Running example: Car platooning. Over the past couple of years, cars have been
shipped with ever increasing capabilities to assist the driver on the highway, from lane
departure warning systems to heading control. We are now on the verge of cars that drive
completely autonomously and it is only a small step towards autonomous car platooning.

1

1 Introduction

This means that autonomously driving cars search their vicinity for each other by wireless
technology. The car in front becomes the leader, the others become its followers,

Car platooning increases fuel efficiency and reduces congestion on highways by
maintaining short constant distances between consecutive cars. To this end, the leader
car sends instructions on changing speed, distance and lane to its followers. Since cars
have different destinations, they may enter and exit the highway at different points and
thus, the set of cars belonging to a platoon is dynamically changing. Hence, protocols
are needed to establish and transform logical communication topologies for the cars to
maintain the physical relationships of a platoon.

One important protocol, which this thesis uses as a running example, is the merge
protocol. This protocol is executed by all cars concurrently. Its purpose is to establish the
leader and follower relationships of the platoon; the leader needs to know its followers and
the followers need to know their leader for the coordination to work properly. Further, the
protocol allows two such platoons to merge into a single one, with one single leader car
that has the other cars as followers. The main result of this thesis is the first analysis of
the merge protocol that does not require it to be fundamentally simplified. In particular,
we want to ensure the absence of inconsistent states of the system topology, like two
followers assuming each other to be the leader.

We model the merge protocol as an infinite-state graph transformation system which
we then analyze using abstract interpretation. We will show that our abstraction method
is not restricted to the merge protocol, but general enough to also cope with several
other standard test cases, like AVL and red-black trees, dining philosophers, firewalls,
resource sharing, singly-linked lists, circular buffers and Euler walks.

Outlook. Chapter 2, originally published as [BR10b], gives a detailed introduction
into the merge protocol problem setting. Chapter 3, originally published as [BR10a],
introduces a rather simple abstraction, star abstraction, and shows that it is strong
enough to analyze a significant part of the protocol, but, as a negative result, not strong
enough to analyze the protocol in its entirety. Chapter 4, originally published as [BR15a]
describes the more precise abstraction method cluster abstraction, which is based on
star abstraction by keeping the size of its abstract domain the same, but making the
domain elements more precise by annotating each “star” with additional constraints,
thus preserving additional information. We use the name cluster for such more precise
stars. The chapter also provides a basic evaluation of the abstraction, done with the tool
implementation ASTRA. Finally, Chapter 5, originally published as [BR15b], describes
use of ASTRA more in detail, and demonstrates the robustness of the approach. The
original specification of the merge protocol was done in the high-level formalism DCS;
we show that not only a manual, but also an automatic translation of several variants of
the merge protocol, from a DCS representation into a graph transformation system, can
be analyzed just fine. Chapter 6 contains an extensive review of related work. Chapter 7
wraps up the thesis with a summary and discussion of future work.

2

2 A Graph Transformation Case Study for
the Topology Analysis of Dynamic
Communication Systems

This chapter was initially published as [BR10b].

Abstract: We propose a case study for the Transformation Tool Contest 2010 that concerns
dynamic communication systems (DCS). DCS are systems of autonomous processes that
interact to achieve their goals. For this purpose, the processes exchange messages with
each other. In contrast to distributed algorithms, the number of processes of the system
is unbounded. The specific dynamic communication systems we want to investigate are
so-called platoons. Platoons are groups of cars that drive on a highway with constant
speed and constant distance to conserve energy. To form such platoons, each car follows
the so-called merge protocol, which guides its local behaviour. We are interested in
properties of the communication topologies that may emerge in this platoon scenario.
Hence, we ask you to analyze a graph transformation system that generates the possible
topologies of the merge protocol. The goal is to do this with as many processes as
possible. The case study aims to improve understanding of how useful existing tools are
for state space exploration and topology analysis.

2.1 Introduction

2.1.1 Context of the case

Dynamic communication systems are systems that have an unbounded and dynamically
changing number of processes. Those processes communicate with each other in order
to establish and transform communication topologies (see [BW07] for a more detailed
description). In this case study, we want you to compute the topologies that may occur
for the merge protocol, a communication protocol which is used in car platooning. Car
platooning [HESV91] concerns cars that drive on a highway with constant speed and
constant distance from each other, to conserve energy.

The cars are equipped with wireless technology that allows them to communicate
via messages. These messages are used to coordinate actions of the platoon, such as
have new cars join the platoon or have the platoon change the lane. For this to work,
one car per platoon acts as a leader of the platoon and the other cars—the followers—
receive command messages from the leader so that the platoon as a whole acts in the
desired manner. Accordingly, the platoon leader has to remember all its followers and

3

2 A Graph Transformation Case Study

platoon

leader car follower cars

communication topology

free agent car

flws

ldr ldr

Figure 2.1: Car platooning

each follower has to remember the leader. We call these relations among the cars the
communication topology of the platoon.

The merge protocol describes how the cars use communication to join existing
platoons and how two platoons manage to merge, so that only one platoon with one
platoon leader is left once the merge has finished.

2.1.2 Purpose from a larger perspective

Our case study is supposed to shed light on how useful existing graph transformation
tools are for network protocol and other concurrent systems analysis. We think that it
has two major benefits:

(a) It shows us how well existing graph transformation can do reachability analysis
of network protocols, and to what number of processes they scale. Reachability
analysis explores the state space of a network protocol and checks each state that
is reachable for undesired properties; or, put differently, it searches for bugs in the
protocol. While more sophisticated tools are available for reachability analysis,
they often require specialist knowledge about the inner workings of the respective
algorithm. Graph transformation, on the other hand, is an intuitive and general
approach that can be understood and used easily.

(b) Reachability analysis of unbounded systems can only be partial, since it computes
only a finite subset of a finite set of states. We still hope that results from such an
analysis provide a good heuristic for the construction and evaluation of abstraction
techniques for network protocol topology analysis like [BRKB07]. Such analyses

4

2.2 The subject to be modeled

serve two purposes: To directly verify safety properties—for example that two
followers never assume each other to be their leader—and to provide invariants of
the protocol that improve precision and efficiency of related analyses like [Tob08].

2.1.3 Challenges that are involved

As the state space of the entire system grows rapidly with the number of processes,
it is your goal to show that your analysis can scale well in that respect. This means
that runtime and memory consumption should be kept as low as possible. How many
processes can your tool handle? We suspect that it is possible only for a small single-digit
number of processes.

The graph transformation system that implements the protocol to be analyzed
uses rules with simple left hand sides (at most three nodes). During the state space
exploration, many similar graphs arise that are matched by the same rules. Can your
tool handle such cases efficiently?

2.2 The subject to be modeled

In this section, we describe the background of dynamic communication systems and the
intuition behind the merge protocol. It is not necessary to understand all the details for
the challenge—we will provide you with a set of graph transformation rules modeling the
merge protocol.

2.2.1 Dynamic communication systems

Dynamic communication systems [BSTW06] consist of a finite but arbitrary number of
processes that are in one of a finite set of states. Each process has a separate FIFO queue
of unbounded length for messages from each of the other processes. Each message can
optionally carry the identity of another process as a parameter, so processes can refer
to other processes in their communication. Further, each process has a special queue
for environment messages. Environment messages may be sent unconditionally by the
environment, that is, they may be added to the queue at any time. They are necessary
because they are the only way for disconnected parts of the system to get known to
each other. In car platooning, for example, a sensor that is built in each of the cars
might notice that another car is in its communication range. As we abstract from the
physical locations of cars, we model such sensors by the nondeterministic environment.
Finally, each process locally maintains a finite set of channels. Each such channel holds
a subset of the process identities of the entire system. Channels are a logical construct,
not a physical one; they are rather like local address tables (if you assume that the cars
use IPv6 to communicate and their identities are IP addresses), not like global wave
frequencies shared by all processes; i.e., Channels : Id → 2Id , not Channels ⊆ 2Id . So
two different processes may store different identities in the channels of the same name
at the same time. A process communicates with other processes by sending a message

5

2 A Graph Transformation Case Study

processstate
environment message

message
message type

message
queue

p q

p

m1 m2

m1

m
2

m
1

m
3

m4

m
5

m
6

message
parameter

env

m
2

c2

c1

channel name
channel connection

c2
c2

Figure 2.2: Concepts of dynamic communication systems

to all processes in one of its channels. From a global view, the channels make up the
communication topology.

A protocol specifies the behavior of a process of a dynamic communication system.
It consists of the states that the processes can be in and of the transitions among these
states. Transitions are annotated with statements:

• ?(m, c, op) and ?(m) are guard statements and cause the respective transition to be
executed only if a message of type m is at the front of one of the queues. For the
first version, the parameter of the message is to be combined with channel c by the
set operation op. In both cases, the message that has been received is consumed
from the respective queue. For example, ?(ca, ldr,=) consumes a ca (“car ahead”)
message from the queue, clears all process identities from its channel ldr (“leader”)
and stores the identity that was attached to the consumed ca message into that
channel.

• c = ∅ is a guard, too, and allows a transition to be taken only if the channel c is
empty.

• !(m, c1, c2) sends a message of type m to all processes on channel c1 and attaches
the identity of one randomly chosen process on c2 as a parameter. In case of c2
being the special channel id (“identity”), the process attaches its own identity. For
example, !(req , ldr , id) sends a req message to the process(es) in channel ldr (the

6

2.2 The subject to be modeled

processes using the merge protocol happen to never store more than one identity in
their ldr channel) and attaches the identity of the sending process itself attached
as a parameter. !(newf , ldr ,flws) picks one of the identities from channel flws
(“followers”), attaches it to a newf (“new follower”) message and sends it to the
process(es) from channel ldr .

• (c1, op, c2) combines c1 and c2 with the set operation op and saves the result in
c1 again. For example, (bldr , \, bldr) removes all identities from the channel bldr
(“back leader”).

A subset of the states, the initial states, specify in which states a new process may
come into existence (initially with empty queues and channels).

2.2.2 The merge protocol

The merge protocol implements three tasks: Building a platoon out of two processes so
that one of them becomes a leader and the other a follower; having a process join an
existing platoon; and merging two platoons into one.

fa

ldb ld ho

hob pass

hodhon flw

ann

?(ca, ldr ,=)
!(req , ldr , id)

?(req , bldr ,=)
!(ack , bldr , id)

?(newf , aux ,=)
!(newl , aux , id)
(aux , \, aux)

?(ack , aux ,=)
!(ack , bldr , aux)
(flws,∪, aux)
(aux , \, aux)

?(
ac

k ,
flws,
∪)

(b
ld

r ,
\, b

ld
r)

?(req , bldr ,=)
!(ack , bldr , id)

?(
ca
, ld

r ,
=
)

!(r
eq
, ld

r ,
id
)

?(ack)

!(newf , ldr ,flws)

?(ack ,flws, \)

!(a
ck
, ld

r ,
id
)

?(
ac

k)

!(a
ck
, ld

r ,
id
)

?(newl , ldr ,=)
!(ack , ldr , id)

flws = ∅

Figure 2.3: Transition system of the merge protocol

The merge protocol specifies that each process starts in the only initial state fa (“free
agent”) (denoted in 2.3 by the triangle). As can be seen in Figure 2.3, from this state, a

7

2 A Graph Transformation Case Study

process may essentially take two different routes: The upper one, to become a leader, or
the lower one, to become a follower. The decision between these two options is made
based on whether the process receives the environment message ca (“car ahead”) with
another process as a parameter, or whether it is the other way around and it is attached
as a parameter to a car ahead message received by a different process. Let us assume
the former happens. That means that it takes the lower route: It stores the attached
process identity in its ldr (“leader”) channel, sends back a req (“request”) message to
that process with its own identity as parameter and changes its state to hon (“hand
over nothing”). The process that receives the request message will then take the upper
route: It will receive the message in state fa and so add the identity of the process that
sent the message, which it knows from the parameter of the req message, to its flws
(“followers”) channel and send back an ack (“acknowledgment”) message with its own
process identity. It then changes to state ldb (“leader”). As soon as the other process,
assuming it is still in state hon, receives the message, it changes to state flw (“follower”)
and returns another acknowledgment, which causes the other process to switch to state
ld (“leader”). Once that has been done, the two cars have formed a platoon: The car
that initially received the car ahead message has become a follower and the car that
was attached as a parameter to that message has become the platoon leader. Here is a
graphical representation of this evolution of the platoon:

fa fa → fa fa

env

ca

→ fa honreq

ldr

→ ldb honack

bldr

ldr

→ ldb flwack

ldr

bldr

→ ld flw

ldr

flws

The second task, having a car join an already existing platoon, is mostly similar to
the first one, except that the process attached to the car ahead message as a parameter
is initially in state ld instead of fa. For merging (the third task), we have both the
recipient of the car ahead message and the parameter process in state ld . Both enter a
transmission loop to hand over the followers from the one leader to the other: The new
platoon leader—the front leader—repeatedly switches between ldb (leader, expecting
follower identities) and ann (waiting for acknowledgment after announcing itself as a new
leader to a follower), the back leader repeatedly switches between hob (during handover,

8

2.3 Implementation remarks

transmitting a follower identity) and pass (waiting for acknowledgment after passing a
follower to the new leader), after having been temporarily in state in state ho (start of
handover). Finally, the back leader goes to hod (“handover done”) before becoming a
follower itself. The auxiliary channel aux allows processes to temporarily store identities
during transitions.

2.3 Implementation remarks
We provide a set of graph transformation rules (single pushout):

fa
u1

x
u2

hon

u1

x
u2ldr

req
free agent requesting to
join a platoon

x
u1

fa
u2

x
u1

ldb

u2

req
bldr

ack

free agent acknowledging
a join request

hon

u1

x
u2

flw
u1

x
u2

ack ack

new follower receiving
acknowledgment to join
the platoon

x
u1

ldb

u2

x
u1

ld

u2

flws

ack

bldr

leader adding new follower
after its acknowledgment

ld

u1

x
u2

ho

u1

x
u2ldr

req
leader requesting merge

x
u1

ld

u2

x
u1

ldb

u2

req
bldr

ack

leader receiving merge or
join request

ho

u1

x
u2

hob

u1

x
u2

ack

back leader entering
transmission loop after
acknowledgment of
requested merge

hob

u1

x
u2

yu3

pass
u1

x
u2

yu3

ldr

flws

ldr

flws
newf

back leader initiating
handover of one of its
followers to the front
leader

ldb

u1

y
u2

ann
u1

y
u2

newf newl

front leader announcing
itself to follower as the
new leader

y
u1

x
u2

flwu3

y
u1

x
u2

flw
u3ldr

newl ack ldr
follower changing leader
and acknowledging

9

2 A Graph Transformation Case Study

x
u1

ann
u2

y
u3

x
u1

ldb

u2

yu3

bldr
ack

bldr

ack
flws

front leader acknowledging
handover of follower

pass
u1

yu3

hob

u1

y
u3

ack

flws

back leader deleting link
to follower just handed
over

hob

u1

no outgoing flws edge

hod

u1

back leader finished
transmission loop

hod

u1

x
u2

flw
u1

x
u2

ldr

ldr

ack

back leader acknowledging
handover as completed
and becoming a follower

These rules model the merge protocol in the following way:

• The configurations of the dynamic communication systems are modeled as graphs
with node and edge labels

– The node labels represent the state of the processes.

– The edge labels represent the channels that make up the communication
topology.

• The state transitions are modeled as graph transformation rules.

• Queues are represented as edges, and message types by edge labels (that are
different from the labels used for the communication topology). Note that this is a
simplification of the original system, as we disregard the order and exact number
of messages in queues.

• x and y are variables. That mean that the corresponding nodes of the rule’s left
hand side should match nodes with arbitrary labels. All left hand side nodes with
such variables in the rules above have corresponding right hand side nodes with
exactly the same variable, which means that the rule application should not change
the label of these nodes.

• The second to last rule, which implements the flws = ∅ transition, uses a negative
application condition. The rule should only be applied to nodes with the label hob
that do not have any outgoing edge with the label flws .

The rules use the following tricks:

10

2.4 Example topologies

• We do not model environment messages. Because they can be sent at any time,
they can also be received at any time.

• We do as many things as possible in one graph transformation rule.

In short, your tool should first read the transformation rules and the start graph. The
start graph should consist of nodes that represent the processes, all in their initial
state, i.e.fa, and with no edges. Then, the tool should compute by fixpoint iteration all
reachable graphs of the graph transformation system. In each iteration, it has to find all
matches of rules to any of the new graphs, apply the corresponding rule and add the
result as a new graph (but only if no isomorphic graph has been computed before).

2.4 Example topologies

Here are some topologies that will emerge from the graph transformation system rules
described above that model the merge protocol (assuming sufficiently many processes):

ld

flw

flw

flw

flws
ld

rfl
w

sld
r

flws
ld

r

ldb

flw

flw

flw

hob

flw

flw

flw
flwsld

r

flws

ldr

flws

ldr flws

ld
r

flws

ldr
flws

ldr

ldr

bldr

11

2 A Graph Transformation Case Study

hon

hon

hon

hon

hon

hon

hon

honreq
ldr

req

ldr

req

ldr

req

ldr

req

ldr

req

ldr

req

ldr

req

ldr

2.5 Goals

2.5.1 Core characteristics

• Output the topologies your tool computed. You may choose the output format
freely.

• Feel free to cut down the problem to a reasonable size and ignore everything that
you consider as an obstacle, even if you only analyze a small part of the protocol.
The description of the DCS protocol in Section 2.2 should help you to adjust the
graph transformation rules to your needs.

2.5.2 How the model should be used

• The graphs from the result are used for evaluating structural predicates on them,
like “is there a node with label a and a node with label b such that an edge with
label c points from the one to the other.” Here is a list of properties that should be
satisfied by the merge protocol:

– No two nodes labeled flw are connected to each other with an edge labeled
ldr .

– A node labeled pass or ld always has at least one node labeled flw connected
via some edge labeled flws .

– If a node labeled flw has outgoing edges labeled ldr and newf , respectively, to
two different nodes, then those two nodes are connected via an edge labeled
bldr .

How easy is it to evaluate such properties in your framework?

12

2.5 Goals

• The result should also be used for graphically displaying and exploring the topology
structure of the platoons admitted by the protocol. Is it easy for the user to filter
the displayed topology to eg. not include edges corresponding to messages?

2.5.3 Extensions

• We are also interested in a transition metagraph that models the evolution of
the graph transformation system. It should have the graphs resulting from the
analysis as nodes. Edges should be labeled with the respective rules that caused
the transformation. This allows the inspection of traces.

• The graph transformation system we provide does not accurately reflect the DCS
protocol with respect to message queues. Are you able to perform a queue anal-
ysis, either as part of the system analysis, or in a separate step, using graph
transformation?

• Can you analyze the protocol in a general way using abstraction techniques such
that the number of processes is not limited?

2.5.4 Evaluation criteria

We propose the following evaluation criteria:

• Completeness of the used transformation system: Less, same, more precise than
reference transformation system? (more is better)

• Completeness of analysis: Systems with how many processes (2 . . .∞) were you
able to analyze? (more is better)

• Performance: What is the memory consumption and runtime of the analysis for
the largest analyzable system? (less is better)

• Flexibility of output: Do you merely allow output of topologies as they are, or do
you allow filtering of edges/nodes according to labels, or even according to more
complex filter specifications? (more is better)

• Flexibility of property evaluation: How powerful is your check for desired properties
of topologies? Merely subgraph matching? More complex expressions over graphs
with node and edge labels? (more is better)

13

3 Abstract topology analysis of the join phase
of the merge protocol

This chapter was initially published as [BR10a].

Abstract: We present a partial solution to the TTC2010 topology analysis case study.
We pick a small part of the merge protocol, namely the part where cars join a leader
to form a platoon. Using abstract interpretation, we compute an approximation of the
arising topologies, without limiting the number of cars.

3.1 Introduction

In our case study, we ask “Can you analyze the protocol in a general way using abstraction
techniques such that the number of processes is not limited?” In this solution to the
case study, we achieve this goal for a part of the protocol. Section 2.2 of the case study
mentions that the protocol implements three tasks. The part that we analyze consists of
the first and the second task: Building a platoon out of two processes so that one of them
becomes a leader and the other a follower, and having a process join an existing platoon.

If we apply the merge protocol graph transformation rules from the case study to a
start graph with finitely many nodes, then they produce a finite set of graphs. This is so
because none of the rules adds new nodes. If, on the other hand, we use an empty start
graph, and add a new rule that merely creates free agent nodes, the result will be an
infinite set of graphs. Accordingly, such a system cannot be analyzed using classic graph
transformation tools.

Abstract interpretation allows us to compute approximations of such systems. The
state of the art technique using this paradigm is partner abstraction [Bau06, BW07],
implemented in the tool hiralysis. However, partner abstraction was designed for
simple topologies only and requires a human expert to supply additional invariants—
partner constraints—to cut off parts of the merge protocol that involve more complicated
topologies. Such more complicated topologies do occur in the merge protocol [Bac08].
Without cutting off these parts, partner abstraction will suffer from state space explosion,
and hiralysis will not terminate.

The more complicated topologies cut off for partner abstraction analysis already
arise for the two mentioned tasks. We aim at an abstraction that does not need manual
intervention to cope with these topologies.

In Section 2, we introduce our abstraction. Section 3 presents which parts of the
protocol we analyze and the abstract result that we get after running astra, our analysis

15

3 Abstract topology analysis of the join phase of the merge protocol

tool. We talk about the evaluation of properties on the abstract result in Section 4.
Section 5 sums up our work and presents future research.

3.2 Star abstraction

ldbflw

flw

flw

flws

flw
s

flw
sldr

ldr

ld
r

hob

flw

flw

bldr

ldr

flws

flws
flws

flws

ldbflw

flw

flw

hob
flws

flw
s

flw
sldr

ldr

ld
r

bldr
ldr ldb hob

flw

flw

bldr
ldr

flws

flws
ldr

ldr

ldb

ldb

ldb

flw

flw

flw

flws

flws

flws

ldr

ldr

ldr

flw

flw

hob

hob

flws

flws

ldr

ldr

ldb hobflw
flws bldr
ldr ldr ldb hob flwbldr flws

ldr ldr
flw

flw

flw

ldb

ldb

ldb

flws

flws

flws

ldr

ldr

ldr

flw

flw

hob

hob

flws

flws

ldr

ldr

ldb hobflw
flws bldr

ldr ldr ldb hob flwbldr flws

ldr ldr
flw ldb

flws

ldr
flwhob

flws

ldr

concrete graph

split into concrete stars

abstract them into
abstract stars

remove duplicates

⇓

⇓

⇓

Figure 3.1: Our abstraction applied step by step to a simple example

Our abstraction is sketched in Figure 3.1. We abstract graphs in three steps: First,
we build the corresponding star for all nodes v of the graph. We obtain the star by
removing all nodes from the graph except for v and its partner nodes, and by removing
all the edges that are not incident to v. We call v the core node (displayed as a square in
Figure 3.1) and the other nodes the outer nodes.

The next step is done for each star separately. We identify sets of outer nodes that
cannot be distinguished from each other with respect to their label and the labels and
directions of the edges incident to them. For each such set that contains two or more
indistinguishable nodes, we merge them all into a summary node. We are then left with
abstract stars. We represent the abstract stars as a tuple (l, E,A, S) with l ∈ N being
the label of the core node, E ⊆ E being the self-loops of the core node, A ⊆ N × 2E × 2E

being the axes and S ⊆ A specifying which of those axes have summary nodes. Each axis
(l, in, out) represents an outer node with label l and the edges incident to it. in contains
those edges that point from the core node to the outer node and out the remaining ones.
By construction, it follows that at least one connection must exist, that is, in ∪ out 6= ∅.

16

3.3 Results

In the final step, we ensure that each abstract star is unique. This is accomplished
by keeping at most one copy from each class of isomorphic abstract stars.

There are |N | · 2|E| · 3|N |·(22·|E|−1) different stars: Each star can have |N | different
node labels for the core node and can have any subset of the |E| edge labels for self-loops.
Between the core node and each outer node, there can be any edge with one of the
|E| edge labels, either pointing from the core node to the outer node, or the other way
around; with the exception that in total, at least one edge must be present. The outer
node of an axis can have any of the |N | node labels, and each axis is either present,
absent or present as a summary axis. We denote the set of all possible stars over a node
label set N and an edge label set E as S(N , E).

We do not yet have a result on the exact size of the star domain itself and merely
know that it is bounded by 2|S(N ,E)|. It is non-trivial, because not every subset of the
stars is a valid abstraction of an actually existing concrete graph. For example, a set
containing only the star

a b
c

is not a abstraction of any graph, since there is no corresponding star with a core node
that has label b.

3.3 Results
Our tool, astra, expects a file in hiralysis format as input. The file contains a set
of graph transformation rules and a start graph. We use the rules from the case study,
except for the ones that deal with platoon merging and follower handover:

fa generate free agents

fa
u1

x
u2

hon

u1

x
u2ldr

req
free agent requesting to
join a platoon

x
u1

fa
u2

x
u1

ldb

u2

req
bldr

ack

free agent acknowledging
a join request

hon

u1

x
u2

flw
u1

x
u2

ack ack

new follower receiving
acknowledgment to join
the platoon

x
u1

ldb

u2

x
u1

ld

u2

flws

ack

bldr

leader adding new
follower after its
acknowledgment

x
u1

ld

u2

x
u1

ldb

u2

req
bldr

ack

leader receiving merge or
join request

17

3 Abstract topology analysis of the join phase of the merge protocol

astra computes an abstraction of all graphs that can be generated by the system,
resulting in the following set of stars:

fa hon fareq
ldr

fa honreq
ldr

fa honreq
ldr

hon fahon req
ldrreq

ldr hon honreq
ldr

hon honhon
req
ldr req

ldr
hon honreq

ldr

req

ldr

ldb honbldr
ack

ldr

hon ldbldr
bldr

ack hon fahon req
ldrreq

ldr hon ldbreq
ldr

ldb honhon bldr
ack req

ldrldr
hon ldbhon req

ldrreq
ldr hon ldbhon req

ldrreq
ldr

hon ldbhon ldr
bldr

ack

req
ldr hon honhon

req
ldr req

ldr
req

ldr
hon honhon

req
ldr req

ldr

hon honhon
req
ldr req

ldr
req

ldr
ldb honhon bldr

ack req
ldrldr

ldb flwbldr
ack

ldr

flw ldback
ldr

bldr ldb flwhon bldr
ack

ldr

req
ldr hon flwreq

ldr

flw ldbhon ack
ldr

bldr

req
ldr hon flwhon req

ldrreq
ldr hon flwhon req

ldrreq
ldr

hon ldbhon ldr
bldr

ack

req
ldr ldb flwhon bldr

ack

ldr

req
ldr ld flwflws

ldr

flw ldldr
flws

hon ldreq
ldr

ld flwhon flws
ldrreq

ldr

hon ldhon req
ldrreq

ldr hon ldhon req
ldrreq

ldr flw ldhon ldr
flwsreq

ldr

flw ldbhon ack
ldr

bldr

req
ldr ld flwhon flws

ldrreq
ldr flw ldhon ldr

flwsreq
ldr

ldb flwhon flwsbldr
ack

ldrldr

ldb flw

hon

hon

flws

bl
d
r

a
ck

ldr

reqld
r

ld
r

ldb flw

hon

hon

flws

bl
d
r

a
ck

ldr

reqld
r

ld
r

flw ldbldr
flws

flw ldbhon ldr
flwsreq

ldr flw ldbhon ldr
flwsreq

ldr

ldb flw

flw

hon

bldr

fl
w

s

ack

ldr

ld
r

re
q

ld
r

ldb flw

flw

hon

bldr

fl
w

s

ack

ldr

ld
r

re
q

ld
r

ldb flwflw bldr
flws ack

ldrldr

18

3.4 Property evaluation

ld flwflws
ldr

ld flwhon flws
ldrreq

ldr ld flwhon flws
ldrreq

ldr

ldb flwhon flwsbldr
ack

ldrldr

ldb flw

hon

hon

flws

bl
d
r

a
ck

ldr

reqld
r

ld
r

ldb flw

hon

hon

flws

bl
d
r

a
ck

ldr

reqld
r

ld
r

ldb flw

flw

hon

bldr

fl
w

s

ack

ldr

ld
r

re
q

ld
r

ldb flw

flw

hon

bldr

fl
w

s

ack

ldr

ld
r

re
q

ld
r

ldb flwflw bldr
flws ack

ldrldr

Our tool outputs the result in graphviz, GDL, XGDL, Tulip and METAPOST format
and such that it can be rendered/displayed with any tool capable of processing these
formats. The graphical representation above is the METAPOST output.

3.4 Property evaluation
Star abstraction easily allows for evaluation of properties involving two nodes and the
connections among them, such as the first and second example given in Section 5.2 of
the case study. This is because the stars contain each adjacent node of each node and
the edges between them. That is the only thing that the first two example properties
talk about. Using the additional rules

flw flw err1
ldr

pass err2

no outgoing flws edge
to a flw node

ld err2

no outgoing flws edge
to a flw node

we mark parts of the graph with error labels where the properties are violated. It is then
easy to scan the result for such labels. We can verify any property that can be expressed
using such rules.

19

3 Abstract topology analysis of the join phase of the merge protocol

Our abstraction overapproximates the set of concrete topologies that might arise.
Thus, if a property of the mentioned kind (one that can be expressed by a transformation
rule adding an error node) is satisfied by all topologies represented by our abstract result,
we know that it is satisfied by all reachable concrete topologies as well. However, if is
not satisfied in the abstract result, it might still be satisfied for the concrete result.

The computing time and memory consumption of our tool is negligible (< 1 MB, <
1 sec) on any reasonably modern machine.

3.5 Conclusion
Our analysis has proven powerful enough to analyze the join phase of the merge protocol
in a general way, without limit to the number of processes. The resulting topologies are
more complex than what can be analyzed with existing approaches, since they are not
limited with respect to path length.

On the other hand, the abstraction we employed is too weak to deal with the
characteristic topology structures occurring during handover. If we try to analyze the full
merge protocol, the abstraction runs into state space explosion. This is caused by the
inability of the abstraction to preserve the fact that the topology has a triangular shape
during handover. Accordingly, the abstraction does not preserve enough information to
verify the third example property from the case study.

Since the results are still promising, we are currently implementing a new tool with
an extended abstraction that is able to cope with topologies involving triangular shapes.

20

4 Analysis of infinite-state graph
transformation systems by cluster
abstraction

This chapter was initially published as [BR15a].

Abstract: Analysis of distributed systems with message passing and dynamic process
creation is challenging because of the unboundedness of the emerging communication
topologies and hence the infinite state space. We model such systems as graph transforma-
tion systems and use abstract interpretation to compute a finite overapproximation of the
set of reachable graphs. To this end, we propose cluster abstraction, which decomposes
graphs into small overlapping clusters of nodes. Using astra, our implementation of
cluster abstraction, we are for the first time able to prove several safety properties of
the merge protocol. The merge protocol is a coordination mechanism for car platooning
where the leader car of one platoon passes its followers to the leader car of another
platoon, eventually forming one single merged platoon.

4.1 Introduction
Distributed message-passing systems such as car platoons and drone swarms consist
of an unbounded and dynamically changing number of agents. These agents act in
a coordinated fashion using wireless ad-hoc networks to achieve common goals. For
this purpose, they assume different roles in a logical communication topology that
is established on top of the physical communication medium. These communication
topologies, which consist of unidirectional channels between pairs of agents, are formed
by distributed protocols that all agents execute concurrently.

The purpose of our analysis is to determine the emerging topologies, which can then
be used to evaluate safety properties, ensuring that the system will never reach a state
with an undesired topology.

We model such systems by graph transformation systems, i.e., graphs modified by
transformation rules. Graph transformation is a lingua franca with a broad range of
applications in systems modeling, all of which become potential use cases for our method.
Many domain-specific models can be translated automatically into graph transformation
systems.

In the graph transformation framework, we represent agents as labeled nodes and
communication channels and message queues as labeled, directed edges of a graph.
We model the dynamics of the system, like agents sending and receiving messages,

21

4 Analysis of infinite-state graph transformation systems by cluster abstraction

detecting each other’s presence and setting up and closing communication channels, as
transformation rules that are applied to the graphs. Those rules match subgraph patterns
in a graph, optionally restricted by application conditions, and replace them by modified
subgraphs.

The main challenges with respect to the analysis of the systems under consideration
are the unboundedness of the graphs, caused by the unboundedness of the number of
agents, and the concurrency of the computations of the participating agents. In particular,
the state space of such systems is infinite, and naive state-space exploration cannot be
used for our purpose. Instead, we use abstract interpretation, overapproximating the
graphs by abstract representations of bounded size.

To compute this overapproximation, we lift rule application to the abstract level,
reducing the infinite concrete state space to a finite abstract one: We match the rules on
the abstract representation, partly undo the abstraction, just enough to apply the rule,
and restore abstraction on the result. By fixed-point iteration, we end up with one final
abstract topology, an overapproximation of all graphs the system may produce.

The crucial idea of our abstraction is to decompose graphs into overlapping, simul-
taneously evolving clusters, one per node of the graph—cluster abstraction. Each cluster
consists of a core node, corresponding to the specific node under consideration, and
peripheral nodes, corresponding to the immediate neighborhood of the core node, i.e., its
adjacent nodes. We keep the edges between peripheral nodes and the core node, as well as
the core node itself, completely concrete. The neighborhood of a node may be unbounded,
e.g., in some protocols a leader may have an unbounded number of followers. To arrive
at a finite abstract domain, we use approximated counting: two or more neighborhood
nodes that are similar become one summary node in the periphery. By a three-valued
abstraction, we preserve information about the neighborhood edges where possible.

We have implemented cluster abstraction in a tool called astra. In addition to
benchmarks from the literature, ranging from red-black trees to firewalls, we successfully
apply astra to the merge protocol. The merge protocol is a coordination mechanism for
car platooning that could not be fully analyzed with previous approaches.

Outline. In Section 2, we describe the graph transformation framework our work
is based upon. Section 3 introduces cluster abstraction and the computation of the
corresponding abstract transformer. In Section 4 we present our tool implementation
astra and experimental results. After discussing related work in Section 5, we conclude
the paper in Section 6.

4.2 Background

4.2.1 Graph Preliminaries

Our framework is based on directed graphs with edge and node labels. We allow several
edges between the same pair of nodes, but only as long as their direction or edge label
differ.

22

4.2 Background

Definition 1 (Graph). Let V be a set of node names, N a set of node labels and
E = {β1, . . . , β|E|} a set of edge labels. A graph G is a tuple (VG, E

β1
G , . . . , E

β|E|
G , `G) where

VG ⊆ V is the set of nodes, `G : VG → N is the node label assignment and Eβ
G ⊆ VG× VG

is the set of edges with label β ∈ E.

For simplicity, we assume a globally unique set V of node names, plus a globally unique
set of node labels N and edge labels E . Note the difference between node names and
node labels: Nodes may share the same node label and nodes from different graphs may
share the same node name, but nodes from the same graph always have different node
names. We use mappings over node names to relate nodes of different graphs. We denote
the set of graphs as G.

Graph morphisms map the nodes of one graph to the nodes of another graph such
that the node labels agree and all edges are preserved. The existence of a graph morphism
means that one graph is a subgraph of another.

Definition 2 (Partial and total graph morphism, subgraph relation). Let G and H
be graphs. An injective partial function h : VG ⇀ VH is a partial graph morphism iff
`G ∩ (def(h)×N) = h ◦ `H and for all β ∈ E, h(Eβ

G) ⊆ Eβ
H . We call h a (total) graph

morphism iff it is a total function, i.e., h : VG → VH . If an injective graph morphism
exists, G is a subgraph of H, denoted by G .h H.

For the purpose of abstraction, we will later need to consider spokes between nodes, not
merely individual edges. Spokes represent the configuration of edges, i.e., direction and
edge label of edges between two given nodes.

Definition 3 (Spoke). Let G be a graph and v, v′ ∈ VG. Then the spoke between v and
v′ in G is the pair SPG(v, v

′) := ({β ∈ E | (v, v′) ∈ Eβ
G}, {β ∈ E | (v′, v) ∈ E

β
G}) We

denote the set of all spokes 2E × 2E by SP. An alternative notation for the empty spoke
(∅, ∅) shall be ∅.

4.2.2 Graph Transformation Systems

Graph transformation systems rewrite graphs according to transformation rules, starting
with some initial graph. Rule application can be restricted via negative application
conditions. In this paper, we consider negative application conditions specified by partner
constraints. A partner constraint prohibits incident edges with a specific direction and
label to an adjacent node with a specific label.

Definition 4 (Partner constraint). A partner constraint is a tuple (d, β, l) ∈ PC =
{in, out} × E ×N where d is a direction, β an edge label and l a node label.

Transformation rules consist of a left hand side graph matched against the host graph,
a right hand side graph by which the left hand side graph is replaced, and a mapping
that describes node correspondence between the left and the right hand side graph.
Additionally, for each left hand side node, an optional set of partner constraints can be
specified.

23

4 Analysis of infinite-state graph transformation systems by cluster abstraction

Definition 5 (Graph transformation rule). A graph transformation rule is a tuple
(L, h, p, R) where L (the left hand side) and R (the right hand side) are graphs, h : VL ⇀
VR is an injective partial mapping from the left to the right hand side and p : VL ⇀ 2PC

specifies the partner constraints.

For simplicity, in the following, we assume one globally unique set of graph transformation
rules R and an initial graph I, which, together with node and edge labels, form the
graph transformation system S := (N , E , I,R). We further assume for simplicity that in
each rule, either all or none of its right hand side nodes are newly created.

For a rule to match, its left hand side must be a subgraph of the host graph and all
negative application conditions need to be satisfied: We check each partner constraint
against the matched node and its neighborhood.

Definition 6 (Match, partner constraint satisfaction). Let r = (L, h, p, R) be a rule, G
a graph and m : VL → VG. Then m is a match from r to G iff L .m G such that the
partner constraints p are satisfied: For each v ∈ def(p) and β ∈ E , we have p(v)∩E = ∅,
where

E = {(out , β, `G(u
′)) | (m(v), u′) ∈ Eβ

G}
∪ {(in, β, `G(u′)) | (u′,m(v)) ∈ Eβ

G})}

Rule application requires that the left hand side matches the host graph. A result graph
is the host graph with labels of matched nodes changed as specified by h, nodes and
edges of the left hand side removed and nodes and edges of the right hand side added
as specified by the rule. Added nodes may be assigned any unused node name, thus
the result is not unique. We obtain a mapping from the unchanged nodes of the host
graph to the result graph as a byproduct. A graph is directly derived from a host graph
according to some rule iff there is any way to apply the rule and obtain this graph as the
result.

Definition 7 (Rule application, direct derivation). Let r = (L, h, p, R) be a rule, G,H
graphs, m : VL → VG an injective graph morphism and D := m(VL \ def(h)) the set
of deleted nodes. Then H is a result of the application of r to G with respect to m,
written Gr,m

 H, iff there is an injective mapping m′ : VR \ h(VL \ def(m))→ VH such that
m = h ◦m′, VH ∩D = ∅ and

`H = (`G \ (D ×N) ∪ (m′−1 ◦ `R)
VH = (VG \D) ∪m′(VR)
Eβ
H = ((Eβ

G \m(Eβ
L)) ∩ (VH × VH)) ∪m′(Eβ

R)

The direct derivation relation r
 is a relation over G × G where G r

 H iff there is a
match m such that G r,m

 H.

In this paper, we are interested in reachability properties, i.e., is a graph with a particular
property reachable or not? Therefore, we define the semantics of the graph transformation
system simply as the set of reachable graphs.

24

4.2 Background

flw

pass ann

ld
r

new
l

flw

pass ann

ack
ldr

flw

pass ann

flw

flw

flw

flw

flw

ld
r

fl
w
s

new
l

flws

ldr

flws

ldr

ldr

bldr ld
rs

fl
w
s

ldrs

flws

ldrs

fl
w
s

flw

pass ann

flw

flw

flw

flw

flw

fl
w
s

ack
ldr

flws

ldr

flws

ldr

ldr

bldr ld
rs

fl
w
s

ldrs

flws

ldrs

fl
w
s

L R

G H

m m′

h

Figure 4.1: An example of rule application: A rule (L, h, ∅, R) transforming graph G into
graph H, as it occurs in the merge protocol [BR10b].

Definition 8 (Graph transformation system semantics). The semantics of a graph
transformation system S is the smallest set such that I ∈ JSK and, if there are graphs
G ∈ JSK and H and a rule r ∈ R such that G r

 H, then H ∈ JSK.

4.2.3 The Merge Protocol

Our main benchmark is a graph transformation system modeling the merge proto-
col [HESV91, BR10b]. This protocol is used in car platooning, where autonomous cars on
highways form platoons driving at constant speed and distance to save fuel. Its purpose
is to allow (1) two cars to form a platoon with the car in front becoming the platoon
leader and the other becoming its follower, (2) a car joining an existing platoon as a new
follower and (3) merging of two platoons, with the leader on the back handing over all
its followers to the leader in front, eventually itself becoming one of the followers.

What makes the merge protocol so difficult to analyze is the vast range of topological
configurations all present and evolving at the same time, caused by the protocol’s
massively distributed nature. For example, a car may receive at any time a request to
form a platoon, at the same time receive a request to merge with another platoon, all
while being in the middle of any intermediate step of a merge operation, or sending
such a request itself—and this happening with an arbitrary number of cars in different
contexts at once. This is different from the typical setting of shape analysis, i.e., the
static analysis of heap-manipulating programs, where data structures typically have a
regular global structure modified only at some select points, those referenced by pointers
from the stack. On the other hand, shape analyses are often employed to prove global
invariants about the heap structure, such as the sortedness of a binary tree, whereas in
the analysis of the merge protocol, our goal is to show that undesired local configurations
never occur.

25

4 Analysis of infinite-state graph transformation systems by cluster abstraction

flw

pass ann

flw

flw

flw

flw

flw

ld
r

fl
w
s

new
l

flws

ldr

flws

ldr

ldr

bldr ld
rs

fl
w
s

ldrs

flws

ldrs

fl
w
s

pass ann

flw
ld

r

fl
w
s

ldr

bldr

new
l

hG,PCluster P

Graph G

focal node

neighborhood

summary node

core node

1
2 -constraint

periphery

Figure 4.2: An example of local abstraction: Graph G with the pass-labeled node as
focal node is abstracted into cluster P . The periphery of P is an abstraction
of the neighborhood of the focal node in G.

4.3 Analysis

4.3.1 Cluster Abstraction

In the graph transformation systems we consider, unbounded numbers of nodes may be
created dynamically. Thus, the state space of such systems is infinite in size, making
exact analysis by concrete state-space exploration impossible. To overcome this challenge,
we employ a bounded abstraction: each concrete graph of arbitrary size is represented by
an abstract graph of bounded size, reducing the infinite state space to a finite one.

We apply local abstraction to each node of a given graph, obtaining a bounded set
of clusters. Local abstraction focusses on one specific node in the graph, henceforth
called the focal node. It abstracts from all nodes in the graph except for the focal node
and its immediate neighborhood, referred to as the periphery in the abstraction. The
neighborhood consists of the incident edges and the adjacent nodes of the focal node. In
addition, neighborhood nodes are merged into summary nodes if they are connected to
the focal node by the same spoke (see Definition 3). Further, edges among neighborhood
nodes are abstracted into three-valued constraints. This yields a cluster, which consists
of the core node and its periphery. The core node shall have the unique name core ∈ V .
Figure 4.2 illustrates local abstraction, which is formally defined later.

Local abstraction asymmetrically preserves information about one specific node and
some information about its neighborhood only, none about the rest of the graph. To
capture the structure of the entire graph, we apply local abstraction to all of its nodes.
As the neighborhoods of nodes are overlapping, this preserves some information about
the global graph structure.

While a concrete graph may contain an arbitrary number of nodes, the set of distinct
clusters is bounded. Thus the abstraction is bounded.

The process described above yields a set of clusters that may contain clusters that
differ only with respect to constraints between peripheral nodes. To reduce analysis
complexity, such clusters are merged by loosening the constraints.

26

4.3 Analysis

Definition 9 (Cluster). A cluster P is a tuple (GP , SP , C
β1
P , . . . , C

β|E|
P) where GP =

(VP , E
β1
P , . . . , E

β|E|
P , `P) is a graph, {core} ⊆ VP ⊆ {core} ∪ SP ×N are the node names,

SP ⊆ DP = VP \ {core} is a set of summary nodes, with DP the set of peripheral nodes,
Cβ
P : ((DP × DP) \ {(v, v) | v ∈ DP \ SP}) → {0, 1, 12} are the peripheral constraints,

Eβ
P ⊆ ({core}× VP)∪ (VP ×{core}) for any β ∈ E and SPP (core, v) 6= ∅ for all v ∈ DP .

We denote the set of all clusters by P.

Given a graph G and one of its nodes v, local abstraction yields a cluster P with a core
node that corresponds to the focal node v. P has one peripheral node per uniquely
connected neighborhood node of v, that is, with a unique configuration of neighborhood
node label plus non-empty spoke.

The edges connecting the neighborhood nodes are abstracted as follows: If, in G,
there are β-labeled edges from all source nodes V1 to all target nodes V2, both sets each
corresponding to a (possibly summary) node in P , then there is a peripheral 1-constraint
in P that involves two nodes corresponding to V1 and V2. If there are some, but not all
such β-labeled edges, we use a 1

2
-constraint instead. And if there are no such β-labeled

edges at all, a 0-constraint. Note that peripheral constraints do not contain information
about self-loops of the corresponding concrete nodes.

The byproduct of local abstraction is a mapping hG,P . It maps nodes of G to
corresponding nodes in P , if any. hG,P is not necessarily injective: If the abstraction
contains a summary node, then all corresponding concrete nodes will be mapped to it.

Definition 10 (Local abstraction, induced mapping). The local abstraction of a graph
G with respect to a focal node v ∈ VG, denoted by α(G, v), is the cluster P that satisfies
the following conditions:

• VP = hG,P (VG)

• Eβ
P = hG,P (E

β
G ∩ (({v} × VG) ∪ (VG × {v})))

• SP = {u ∈ DP | |hG,P−1({u})| ≥ 2}

• Cβ
P (u1, u2) =

0 : ∀v1 6= v2 : (hG,P (v1), hG,P (v2)) = (u1, u2)⇒ (v1, v2) /∈ Eβ

G

1 : ∀v1 6= v2 : (hG,P (v1), hG,P (v2)) = (u1, u2)⇒ (v1, v2) ∈ Eβ
G

1
2

: else

• `P = hG,P
−1 ◦ `G

where hG,P : VG ⇀ VP is the induced mapping of concrete nodes from G to abstract nodes
in P , defined as

hG,P = {(v, core)} ∪ {(u, u′) ∈ (VG \ {v})× (SP ×N) | SPG(v, u) 6= ∅
and u′ = (SPG(v, u), `G(u))},

The information order compares the information content of two peripheral constraints.
It expresses that a 1

2
-constraint is less precise than both a 0 and a 1 constraint.

27

4 Analysis of infinite-state graph transformation systems by cluster abstraction

Definition 11 (Information order). For l1, l2 ∈ {0, 1, 12}, we write l1 v l2 iff l1 = l2 or
l2 =

1
2
.

Using information order, we define a partial order on clusters P and P ′ that considers P
to be less than or equal to P ′ if P and P ′ are equal except for peripheral constraints,
and each constraint of P is less than or equal (with respect to the information order) to
the corresponding constraint of P ′.

Definition 12 (Cluster order). Let P and P ′ be clusters. We write P v P ′ iff GP = GP ′,
SP = SP ′ and Cβ

P (v, v
′) v Cβ

P ′(v, v
′) for any β ∈ E and v, v′ ∈ VP . We say that P ′ is an

upper bound of P .

Note that both information order and cluster order are partial orders, so the notion of
least upper bounds is applicable to them. A least upper bound exists for clusters as long
as they differ in peripheral constraints only. It yields a cluster with peripheral constraints
that are just weak enough to be consistent with both clusters. In effect, a constraint
becomes 1

2
whenever it differs in the two clusters (or is already 1

2
).

Our abstract domain consists of sets of clusters, such that no pair of clusters is
comparable according to the cluster order:

Definition 13 (Abstract topology). An abstract topology is a set S ⊆ P, where for no
pair P1 6= P2 ∈ S there is a mutual upper bound P ′ ∈ P.

To obtain such an abstract topology from the clusters produced by local abstraction, we
impose an order on sets of clusters, with an induced least upper bound. Cluster set S is
less than or equal to cluster set S ′ according to this induced order iff for each cluster P
in S, S ′ contains a cluster P ′, such that P v P ′ according to the cluster order.

Definition 14 (Cluster set order). Let S, S ′ be sets of clusters. We write S v S ′ iff for
each P ∈ S, there is a P ′ ∈ S ′ such that P v P ′.

We split the set of clusters into singleton sets, each containing one of the clusters. Then
we consider the least upper bound over all of those singleton sets. This means joining
any clusters that can be joined and taking the union for those that cannot. At the end,
this yields the abstract topology we were looking for. We call this abstract topology the
topologization of the cluster set under consideration.

Definition 15 (Topologization). The topologization of a set of clusters S ⊆ P is the
abstract topology

⊔
S =

⊔
{{P} | P ∈ S}).

For each equivalence class of clusters from S identical except for peripheral constraints,
topologization yields a single, joined, less precise cluster in the resulting topology. Note
that we overload the

⊔
operator, denoting topologization if applied to a set of clusters,

and denoting the least upper bound on cluster sets if applied to sets of sets of clusters.
Note further that, given S v S ′, we have

⊔
S v

⊔
S ′ and S v

⊔
S ′, but not necessarily⊔

S v S ′.

28

4.3 Analysis

The full abstraction of a graph is the topologization of the set of clusters obtained
by local abstraction of each node of the graph. Each of these nodes corresponds to the
core node of one of the clusters in the resulting abstract topology. Conversely, we define
topology concretization.

Definition 16 (Cluster abstraction and concretization). Let G ⊆ G. Then the cluster
abstraction of G is the abstract topology α(G) =

⊔
{α(G, v) | v ∈ VG ∧ G ∈ G}. An

abstract topology S represents the set of concrete graphs γ(S) = {G ∈ G | α({G}) v S}.

4.3.2 Abstract Transformer

Thus far, we considered how to apply rules on concrete graphs and how to abstract a
graph into an abstract topology. Now, we discuss the application of rules on abstract
topologies instead of concrete graphs. We obtain an abstract topology capturing the
graphs we would obtain in the concrete. We sacrifice some precision in the abstract
transformation to allow for a tractable and efficient implementation.

Rule application to all graphs from the cluster concretization induces an abstract
derivation relation between clusters for a given rule and abstract topology. The relation
holds if the core nodes of source and target cluster relate to corresponding nodes in the
respective host and result graph.

Definition 17 (Induced abstract derivation). The induced abstract derivation is a
relation r,S⇒ ⊆ P × P where P ′r,S⇒Q iff there are graphs G,H, a match m : VL → VG from
r to G and a node v ∈ VG, such that G is in the cluster concretization of S, P v P ′,
G
r,m
 H and α(H, v) = Q, where r = (L, h, p, R), P = α(G, v) with induced mapping

hG,P : VG → VP and m ◦ hG,P 6= ∅.

The induced abstract topology is the topology we obtain if we apply full abstraction to the
initial graph and then iteratively compute abstract topologies until we reach a fixpoint:
We apply any rule in any possible way to any graph from the cluster concretization of
the abstract topology from the previous iteration, add the resulting clusters to those that
already existed, and take the least upper bound on the cluster set thus obtained.

Definition 18 (Induced abstract topology). The induced abstract topology is the set
JSK] = JSK]n where n = min{i ∈ N | JSK]i = JSK]i+1} and JSK]i defined recursively as
follows:

• JSK]0 = α({I})

• JSK]i =
⊔
(JSK]i−1 ∪ {Q ∈ P | ∃P ∈ P , r ∈ R : P

r,JSK]i−1⇒ Q})

Note that the existence of the induced abstract topology follows from the fact that
JSK]i v JSK]i+1 and the finiteness of the domain.

Proposition 1. The induced abstract topology overapproximates the graph transformation
system semantics, i.e., JSK ⊆ γ(JSK]).

29

4 Analysis of infinite-state graph transformation systems by cluster abstraction

Induced abstract derivation, and, consequently, the induced abstract topology
involves rule application to an infinite number of graphs. For an implementation, we
need to reduce this to a finite number. That this is possible follows from the fact that
our domain is finite.

We capture the characteristics of a sufficient, yet finite subset using the notion of
abstract matches. While a concrete match relates a left hand side L of a rule to the
nodes of a host graph G, the abstract match relates it to a cluster P . The core node of P
has a corresponding node in a host graph G. This node has a corresponding focal node
in the result graph H. (Recall that we do not permit node deletion.) Local abstraction
on the result graph will yield the relevant cluster Q. Q primarily depends on P and the
node and edge modifications as stipulated by the rule. Thus, the main components of an
abstract match are P and the relation hL,P between the left hand side and the matched
nodes of P .

However, indirectly, and perhaps contrary to intuition, Q also depends on some
nodes and edges of the host graph G that are neither matched nor determined by P :

• For each match to a summary node, only one concrete instance will be matched.
Thus, Q may depend on the number of additional unmatched instances (captured
by mater in the following definition). We need to distinguish only the cases of zero,
one, and more than one instances, since the latter will always become a summary
node after abstraction.

• A 1
2
-constraint in P may become a 0 and 1 constraint in Q, and sometimes remain

as is: (a) If two matched peripheral nodes have an unmatched 1
2
-constraint in

between, the corresponding concrete edge will be either present or absent in G,
captured by cc. (b) The concrete edge corresponding to a 1

2
-constraint between a

pair of unmatched peripheral nodes will be either present or absent in G. Concrete
edges incident to residual materializations of a summary node v with mater(v) ≥ 1
may be present for all, none or some of the corresponding concrete node pairs.
Both cases are captured by dd . (c) The same possibilities exist for edges between
an unmatched peripheral node and a matched node. The mapping dc specifies
these edges. In this case, the matched node does not even have to be in P , since it
might just be about to become connected to the focal node through application of
the rule.

In addition, the match requires that a closure exists, that is, we have a graph G from
the cluster concretization for which the match holds.

Definition 19 (Abstract match). Let r = (L, h, p, R) be a rule and S be an abstract
topology. An abstract match from r to S is a tuple (P, hL,P ,mater , dc, cd , dd) where

• P ∈ P is the matched cluster,

• hL,P : VL ⇀ VP maps the left hand side to the nodes of P ,

• mater : DP → {0, 1, 2} specifies the residual materialization count of summary
nodes in P ,

30

4.3 Analysis

• dc : (VL×DP ×{−1, 1}× E)→ {0, 1, 12} specifies the materialization of edges from
peripheral to matched nodes and vice versa,

• dd : (DP ×DP × E)→ {0, 1, 12} specifies the peripheral edge materialization

• cc : VL × VL → 2E specifies the materialization of edges among matched nodes

and the following conditions are satisfied:

• P v P ′ for some P ′ ∈ S

• hL,P (VL) 6= ∅

• |hL,P−1(core)| < 2

• the following conditions hold for matched : DP → N, the induced number of matches,
defined as matched(u) := |hL,P−1({u})|:

matched(u) = 0⇒ mater(u) =

{
2 if u ∈ SP
1 otherwise

matched(u) = 1⇒ mater(u) ∈

{
{1, 2} if u ∈ SP
{0} otherwise

matched(u) > 1⇒ u ∈ SPv

• there is a graph G, a match m : VL → VG from r to G and a node v ∈ VG such that
α(G, v) = P with induced mapping hG,P : VG ⇀ VP and

– m ◦ hG,P = hL,P ,

– mater(u) = min{|hG,P−1({u}) \m(VL)|, 2},
– for all u ∈ VL \m−1({v}), u′ ∈ DP , β ∈ E, and d ∈ {−1, 1},

dc(u, u′, d, β) =

0 : ∀v′ /∈ m(VL) : hG,P (v

′) = u′ ⇒ (m(u), v′) ∈ (Eβ
G)

d

1 : ∀v′ /∈ m(VL) : hG,P (v
′) = u′ ⇒ (m(u), v′) /∈ (Eβ

G)
d

1
2

otherwise,

– for all u, u′ ∈ DP , for all β ∈ E,

dd(u, u′, β) =

0 : ∀v1 6= v2 /∈ m(VL) : (hG,P (v1), hG,P (v2)) = (u, u′)

⇒ (v1, v2) ∈ Eβ
G

1 : ∀v1 6= v2 /∈ m(VL) : (hG,P (v1), hG,P (v2)) = (u, u′)

⇒ (v1, v2) /∈ Eβ
G

1
2

otherwise,

31

4 Analysis of infinite-state graph transformation systems by cluster abstraction

pass ann

flw
ld

r

fl
w
s

ldr

bldr

new
l

flw

pass ann

flw

fl
w
s

ldr

bldr

ack
ldr

fl
w

s

ld
r

flw

pass annflw

flw

ld
r

fl
w
s

new
l

flws

ldr

fl
w

s

ld
r

ldr

bldr

flw

pass annflw

flw

fl
w
s

ack
ldrflws

ldr

fl
w

s

ld
r

ldr

bldr

flw

pass ann

ld
r

new
l

flw

pass ann

ack
ldr

L R

h

P ′ = P Q

hG,P

G H

hH,Q

m
m′

−→

Figure 4.3: An example of the abstract transformer.

– for all u, u′ ∈ VL,

(cc(u, u′), cc(u′, u)) = SPG(m(u),m(u′)),

– G ∈ γ(S), and
– the partner constraints p are satisfied.

Since the number of abstract matches is finite, the definition is constructive and a
computation method directly follows from it, except for the non-trivial closure check.
However, the fact that we are looking for an overapproximation allows us to weaken this
check, including the option to ignore it completely. This includes the check that partner
constraints are satisfied. Note that at least the partner constraints for hG,P−1(core) can
be checked without knowledge of the entire graph G.

From the abstract matches, we generate partial concretizations. These are graphs
with focal node and neighborhood, just sufficient to capture all potential changes to the
cluster caused by rule application and local abstraction of the result. We do not need to
consider the full graph, since this is taken care of by symmetry: The additional nodes it
contains will be covered by other abstract matches with those nodes as the core node
of a cluster. Those, in turn, have their own partial concretizations to account for the
impact of the rule application.

Note that edges specified by dd and dc will never be modified by a rule, for that
would require its adjacent nodes both to be matched, which is, by definition, not the
case. The set A, in the following definition, splits the unmatched peripheral nodes into
two subsets such that those in the set will have respective edges for the 1

2
case and the

complementary nodes will not.

32

4.3 Analysis

Definition 20 (Partial concretization). The partial concretization function γ maps
abstract matches (P, hL,P ,mater , dc, dd , cc) to tuples (G,m, hG,P) where G is a graph,
m : VL ⇀ VG is an injective partial graph morphism from the left hand side to this graph
and hG,P : VG ⇀ VP is a mapping to the abstraction P , all defined as follows:

• VG = {core} ∪ (VL \ hL,P−1({core})) ∪ {(u, n) ∈ DP × N | 1 ≤ n ≤ mater(u)}

• hG,P (u) =

core if u = core

v if u = (v, n)

hL,P (u) if u ∈ VL \ hL,P−1({core})

• m = {(hL,P−1(core), core)} ∪ {(u, u) | u ∈ (VL \ hL,P−1({core}))}

• Eβ
G = {(u, u′) ∈ A× A | dd(hG,P (u), hG,P (u

′), β) ≥ 1
2
}

∪ {(u, u′) ∈ VG × VG | dd(hG,P (u), hG,P (u
′), β) = 1}

∪ {(u, u′) ∈ m(VL)×m(VL) | β ∈ cc(m−1(u),m−1(u′))}
∪ {(u, u′) ∈ m(VL)× A | dc(m−1(u), hG,P (u

′), 1, β) = 1
2
}

∪ {(u, u′) ∈ m(VL)× VG | dc(m−1(u), hG,P (u
′), 1, β) = 1}

∪ {(u, u′) ∈ A×m(VL) | dc(m−1(u′), hG,P (u),−1, β) = 1
2
}

∪ {(u, u′) ∈ VG ×m(VL) | dc(m−1(u′), hG,P (u),−1, β) = 1}
∪ hG,P−1(Eβ

P)
where A = (DP × {1}) ∩ VG

• `G = (m−1 ◦ `L) ∪ (hG,P ◦ `P)

The abstract transformer describes how clusters are affected by rule application. It
presupposes the existence of an abstract match, constructs the corresponding partial
concretization, applies the rule, and constructs the modified cluster by local abstraction
of the focal node. See Figure 4.3.2 for an example.

Definition 21 (Abstract transformer). Let r = (L, h, p, R) be a rule and S be an abstract
topology. The abstract transformer (or direct derivation) is a relation r,S→ ⊆ P ×P where
P ′

r,S→Q iff there is a graph H and an abstract match m̂ = (P, hL,P ,mater , dc, dd , cc) from
r to S such that P v P ′, γ(m̂) = (G,m, hG,P), G

r,m
 H and Q = α(H, core)

The graph morphism m may be partial, i.e., some nodes of the left hand side may map
to none of the nodes in G. Not even the focal node needs to be covered. In those cases,
we waive the totality requirement that rule application puts on m, thereby modifying
only those parts of the partial concretization that are matched. We obtain an abstract
topology that overapproximates the system by abstracting the start graph and applying
the abstract transformer in a fixpoint iteration.

Definition 22 (Derived abstract topology). The derived abstract topology is the set
[S]] = [S]]n, where n = min{i ∈ N | [S]]i = [S]]i+1} and [S]]i is defined recursively as
follows:

33

4 Analysis of infinite-state graph transformation systems by cluster abstraction

• [S]]0 = α({I})

• [S]]i =
⊔

([S]]i−1 ∪ {Q ∈ P | ∃P ∈ [S]]i−1, r ∈ R : P
r,[S]]i−1→ Q}

∪ {α({R}) | (∅, ∅, ∅, R) ∈ R})

Note that we assumed the absence of rules with non-empty left hand side that create
new nodes. Because of this, we do not need to take care of new clusters that occur as a
byproduct of the modification of an existing cluster. Instead, for each rule with empty
left hand side, we add the clusters obtained by local abstraction for each right hand side
node. This takes place unconditionally, pointing towards the equivalence of node creation
and initial graphs in our domain.

Theorem 1. The derived abstract topology overapproximates the induced abstract topology,
i.e., JSK] v [S]].

Corollary 1 (Soundness). The derived abstract topology overapproximates the graph
transformation system semantics, i.e., JSK ⊆ γ([S]]).

Proof. This follows immediately from Proposition 1, Theorem 1, and the monotonicity
of cluster concretization.

4.4 Experimental Evaluation

4.4.1 Implementation

We implemented cluster abstraction in our tool astra 2.0. The implementation differs
from theory in minor respects: (a) Partial concretization materializes clusters over the
entire left hand side of a rule at once, exploiting symmetry and allowing us to properly
check all partner constraints. (b) We do a rudimentary check for the existence of a closure,
by checking whether peripheral constraints of unmatched nodes are satisfiable. (c) To
cover cases with unmatched core nodes, for each match, we iterate over all possibilities in
which one additional cluster can be attached in the periphery. (d) After each iteration,
we apply a reduction step, eliminating any cluster whose existence can be ruled out easily,
and concretizing 1

2
-constraints if more precise information is available. (e) In various

places, we use overapproximation ad hoc in order to improve analysis time.

4.4.2 Selection of Benchmarks

With astra 1.0, we already succeeded to analyze a part of the merge protocol [BR10b]
with star abstraction [BR10a], a precursor to the method described in this paper. (In a
nutshell, cluster abstraction with all peripheral constraints being 1

2
.) It was sufficient

to analyze platoon formation and car joining, but not platoon merging, for which
state space explosion occurred: Follower handover requires ternary predicates, while
star abstraction only preserves binary predicates. This causes a cascade of spurious
abstract states, with the analysis eventually spending its time enumerating an intractable

34

4.4 Experimental Evaluation

Table 4.1: Benchmark analysis statistics. cl. = clusters, a.r. = active rules, i.e., applied
at least once, m. = abstract matches, rule app. = rule applications, it. =
iterations, vfy. = safety property verified. *safety property not expressible as
forbidden subgraphs

Benchmark # cl. # a.r. # m. # rule app. # it. time vfy.
Sync. merge 873 34 9674 349774 17 0m 14.057s yes
Async. merge 3069 36 44553 36114603 21 14m 27.977s yes
AVL trees 1876 302 114284 2221151967 38 757m 9.273s yes
Firewall 31 4 139 1371 5 0m 0.012s yes
Firewall 2 96 9 786 45525 7 0m 0.330s no
Pub/priv s. 2 239 26 1633 102250 10 0m 1.030s yes
Dining phil. 41 8 40 179 7 0m 0.006s no*
Resources 32 7 100 207 4 0m 0.007s yes
Mutual ex. 308 9 2419 1237361 17 0m 56.060s yes
Red-black tr. 263 38 8769 24855500 11 10m 3.145s yes
Singly-linked l. 7 2 15 13 3 0m 0.000s yes
Circ. buffers 152 2 798 241234 17 2m 43.441s no*
Euler walks 18 6 47 134 3 0m 0.008s no*

number of combinatorial possibilities. The main goal of astra 2.0 was to analyze the
full protocol. We did this for two versions. In addition, we analyzed the AVL tree
benchmark from [Bac08] and various other benchmarks from the related work: Firewall,
public/private servers, dining philosophers, resources, mutual exclusion, and red-black
trees are benchmarks from the AUGUR package [KK08a]; singly-linked lists, circular
buffers and Euler walks for GROOVE are from [Zam13].

The AUGUR package comes with additional benchmarks that we did not analyze:
connections, leader election protocol and the Needham–Schroeder protocol all make use
of numerical attributes, which are not yet supported by our tool. External-internal
processes is merely a stripped-down version of public and private server 2. Public and
private server contains a subset of the rules from public and private server 2. The same
holds for the finite-state version of dining philosophers versus the infinite-state version,
which we analyze. Red-black trees converted is a tweaked version of red-black trees to
ease analysis with AUGUR.

We could analyze the GROOVE benchmarks without modifications. The AUGUR
benchmarks, on the other hand, had to be translated from the tool’s hyper-edge-based
approach to one based on nodes and edges. In addition, we had to make a structure-
preserving change to the public/private server grammar (replacing a specific edge with
two edges connected by a node) in order to prevent combinatorial explosion that would
otherwise have defied analysis. For red-black and AVL trees, we manually added invariants
about the uniqueness of some labels over the entire graph. These invariants trivially
follow from the respective graph transformation systems and it would in principle be easy

35

4 Analysis of infinite-state graph transformation systems by cluster abstraction

to find them automatically. However, uniqueness is not expressible in our abstraction,
because clusters always represent an arbitrary number of concrete instances.

We checked the safety properties by adding rules specifying respective forbidden
subgraphs, producing a node with an error label if found. This approach could not be
taken for dining philosophers, circular buffers and Euler walks, since the respective safety
properties quantify over an unbounded number of nodes and hence cannot be formulated
as forbidden subgraphs.

4.4.3 Analysis Results

astra was able to analyze all benchmarks. See Table 4.1 for the number of iterations
required for reaching the fixed point, the number of clusters in the final result and the
processor time taken. We ran all analyses on an Intel Core 2 Quad CPU Q9550 (2.83GHz)
with 4 GB of memory under Linux 3.15, though only 9 MB were used at the peak for
the largest benchmark, asynchronous merge. Execution time given is the time in user
mode as reported by time(1).

In all but one of the cases with safety properties expressible as forbidden subgraphs,
verification succeeded. Verification failed for firewall 2 because the abstraction was
unable to distinguish locations in front of and behind the firewall.

4.5 Related Work
Petri graphs are unfoldings of graph transformation systems, abstracted by a cutoff after
a defined depth [BK02]. Reachability can be checked with existing techniques for Petri
nets. As we have seen, we were able to analyze a subset of their benchmarks. Once they
support negative application conditions (which they currently list as future work), it will
be interesting to investigate whether their tool AUGUR [KK08b] can analyze our main
target, the merge protocol.

Bauer et al.’s partner abstraction [BW07] considers connected components instead
of overlapping clusters and folds nodes according to neighborhood node and edge labels.
In practice, it requires the system to obey friendliness properties that hold only for a
simplified merge protocol where processes know each other’s state [Bac08]. Rensink and
Distefano [RD06] consider an abstraction similar in design and limitations. Ideas from
both approaches were combined and extended in neighborhood abstraction [BKK+12].
No friendliness restriction applies, but lacking Bauer’s decomposition into components,
the GROOVE implementation runs out of memory even on Bauer’s simplified merge
protocol [Zam13].

Environment abstraction [CTV06] abstracts a system into one process and its
environment, i.e., the set of states of all the other processes plus relations to them. Cherem
and Rugina [CR07] propose a local abstraction for shape analysis that tracks individual
heap cells and their immediate neighborhood. Bauer et al.’s daisy patterns [BBR09] and
our star abstraction [BR10a] are graph abstractions based on the same idea, the former
abstracting the transformation rules in addition to the graph. All these abstractions
are less precise than cluster abstraction, since none of them tracks peripheral node
relationships.

36

4.6 Conclusions and Future Work

Saksena et al. [SWJ08] verify graph transformation systems by symbolic backward
reachability analysis. Starting with the undesirable configurations, they compute, by
backward rule application in a fixed point iteration, an overapproximation of the set of
reachable predecessor configurations, checking whether an initial configuration is among
them. While not guaranteed to terminate, their method succeeds in proving loop freedom
of an ad hoc routing protocol.

Berdine et al. [BLAM+08] show that shape analysis of concurrent programs via
canonical abstraction [SRW02] leads to state-space explosion even for a toy example.
The complexity of expressing cluster abstraction via canonical abstraction confirms this:
at least, one abstraction predicate would be needed for each spoke, which is exponential
in the number of edge labels. Berdine et al.’s own solution allows efficient analysis of
an unbounded number of threads manipulating an unbounded shared heap. However,
their abstraction is unable to express direct relations between the state of the threads.
Manevich et al. [MLAS+08] decompose the heap into a bounded number of overlapping
components as specified by user-defined location selection predicates. In contrast, our
method decomposes the graph by local abstraction of each of the unbounded number of
nodes.

Zufferey et al. [ZWH12] provide an abstraction for depth-bounded systems (systems
with a bound on the longest acyclic path), an expressive class of well-structured transition
systems. Unfortunately, the merge protocol does not belong to this class unless one uses
a simplified version similar to Bauer’s.

4.6 Conclusions and Future Work

We have seen an abstraction for the analysis of the set of reachable graphs generated by
infinite-state graph transformation systems. Using astra, our implementation of cluster
abstraction, we were for the first time able to analyze the full merge protocol. In addition,
our method has proven robust and precise enough to allow for the analysis of various
benchmarks from the literature.

Future work: (1) We are going to check safety properties that cannot be expressed as
forbidden subgraphs, such as quantification over an unbounded number of nodes. (2) We
shall explore suitable approximations for the closure check, to preserve more of the global
graph structure during rule application. (3) We are going to investigate opportunities to
adjust the precision of our analysis. Especially, structure-preserving changes to the graph
transformation system before the analysis seem to be an interesting way to give direction
to the abstraction. For example, adding edges to the right hand side of rules with a
new label that never occurs on a left hand side can keep nodes in the periphery of some
clusters, thereby increasing precision. (4) If some cluster may occur at most once, we
would like to retain this information. (5) We would like to allow integer values as node
and edge attributes, in addition to regular labels. Lifted to the abstraction, it extends
clusters by overapproximated values for those attributes, based on abstract domains on
integers. (6) Based on a suitable fragment of µ-calculus, we plan to support abstract

37

4 Analysis of infinite-state graph transformation systems by cluster abstraction

model checking on an abstract labeled transition systems of clusters, preserving some
non-trivial relationships for the transitions, such as size invariants on summary nodes.
We plan to extend this to model checking over an abstract labeled transition system,
based on a suitable fragment of µ-calculus.

4.7 Appendix 1: Notes About Evaluation

Various simplified versions of the merge protocol are part of the hiralysis implementa-
tion of partner abstraction. We were able to analyze all of them, but did not list them
because they are essentially subsets of the full merge protocols.

All input files necessary to reproduce the analyses, as well as the ASTRA tool itself,
are available at http://rw4.cs.uni-sb.de/~rtc/astra/. See the script vmcai15.sh
provided with the tool for exactly how we analyze the benchmarks discussed in our paper.

ASTRA already has support for abstract transitions, and it outputs an abstract labeled
transition system (LTS). Where feasible (i.e., the number of clusters is reasonable), we
show this abstract LTS below, layouted with yEd.

Description of benchmarks and the corresponding safety properties:

Synchronous merge. Free agents form platoons of leaders and followers. Two leaders
can merge by first determining a front and a back leader and then having the back
leader hand over its followers to the front leader. The followers are transferred one
by one, with the back leader waiting for acknowledgment after each step. Safety
property: No two followers assume each other to be their leader, and leaders always
have at least one follower. When about to hand over a follower, at least one follower
is actually there.

Asynchronous merge. Like the synchronous version, except that the back leader hands
over all followers in parallel.

AVL trees. We model AVL tree changes as a graph transformation system. Safety
property: Nodes with balance level 0 must have zero or two children. Nodes with
balance level -1 and 1 must have a left, respectively, a right child. If they have only
one child, that child itself must not have any children. Note that these properties
do not fully guarantee balancing.

Firewall. A network of secure and insecure locations, separated by a firewall and each
connected to each other. Secure and insecure packets are exchanged over directed
links and firewalls. Links, locations and packets can be added dynamically. Packets
may cross firewalls only in one direction. Safety property: No insecure packet ever
finds its way behind the firewall.

38

http://rw4.cs.uni-sb.de/~rtc/astra/

4.7 Appendix 1: Notes About Evaluation

start

0(0)

sL
L

26

firewall

conn

1(0)

L

L
sL

P

26

conn

firewall

firewall

edge

2(0)

L

L

sL

P

26

conn

firewall

firew
all

edge

3(0)

P

L

26 812

edge

4(1)

L

L

sL 812

conn

firewall

firewall

5(1)

L

L

sL

P

8

8 12

12

conn

firewall

fir
ew

al
l

edge

6(1)

L

LsL

P

12

8 12

8

co
nn

firew
all

firewall

edge

7(1)

L

L
sL

128

connfirewall

firewall

8(1)

sL L

sL

20

firewall

conn

sconn

9(1)

sL

sL

20 sc
on

n

10(1)

L

L

L

sL

P

21

conn

conn

firew
all

firewall

edge

11(1)

L

L

21

co
nn

12(1)

L

L
sL

P

21

21

conn

fir
ew

al
l

firewall

edge

13(2)

L

L

L

sL

P

21

8
12

812

8
12

co
nn

co
nn

firewall

firew
all

ed
ge

14(2)

L

L

L

sL

21

8
12

8
12conn

co
nn

firewall

fir
ew

all

15(2)

L

L

P

8

12

co
nn

ed
ge

16(2)

L

L

sL

21

8

21

12
conn

fir
ew

al
l

fire
wall

17(2)

LL

sL

P

21

12

8 12 21

8

conn

firew
all

firewall

ed
ge

18(2)

sL

LsL

20

20

firew
all conn

sconn

19(2)

sL

sL

sL

20

sconn

sconn

20(2)

L

L

L

sL

P

21

21

co
nn

conn

firewall

firewall

edge

21(2)

L

L

L

21

co
nn

conn

22(3)

L
L

L
sL

P

21

8
12

81221

8
12

conn

conn

fir
ew

all

fir
ew

al
l

edge

23(3)

L

L

P

8

8 12

12

co
nn

edge

24(3)

L

L

L

P

21

8 12812

conn

conn

ed
ge

25(3)

LL

L

sL

21

8
12

21

8
12

conn

co
nn

fir
ew

al
l

fir
ew

al
l

26(3)

sL

sL

sL

20

20

sc
on

n

sconn

27(3)

L

L
L

21

21

co
nn

conn

28(4)

L

L

L

P

21

8 12

8 12

812

conn

conn

ed
ge

29(4)

L

L

L

P

21

8 12

21

812

conn

conn

edge

30(5)

L L

L P

21

8 12

8 12 21

812

conn

conn ed
ge

Figure 4.4: The abstract LTS for Firewall

Firewall 2. The same as firewall, but secure and insecure locations have the same label.

Public/private servers 2. A dynamically changing network of private and public servers
is connected by directed network links, but never from a public to a private server.
Private servers can create internal processes, external servers can create external
processes. Both can switch to a different server over a network link. Safety property:
A private server never runs an external process.

Dining philosophers. A dynamic infinite-state version of dining philosophers. In ad-
dition to taking forks, philosophers can replicate. Safety property: Absence of a
deadlock state.

39

4 Analysis of infinite-state graph transformation systems by cluster abstraction

start

0(0)

HR

F

F
8

l

r

1(0)

F

HR

HL

8

l

r

2(0)

HL

FF

8

lr

3(0)

F

HR

HL

8

r

l

4(1)

F

HR

WL

0

r

l

5(1)

HR

F FT

0
3

4
5

r l

6(1)

WL

F

FT

0

l

r

hold

7(1)

FT

HR

WL0

l

r

hold

8(1)

F

HL

WR

2

l

r

9(1)

HL

F

FT

6

21 57 4 6

l

r

10(1)

WR
F

FT

2

r

l

hold

11(1)

FT

HL

WR

2

r

l
hold

12(2)

F

WR

WL

2

0

r

l

13(2)

FT

HR

EL

1

4

l

r
hold

14(2)

HR

F

FT

7

12 46 5 7

l

r

15(2)

HR

FT

FT

1
2 0

3

4

4

4

6
5

7

5

5

l

r

16(2)

EL

FT

FT

1

6

4

l

hold

r

hold

17(2)

FT
HR

EL

1

4 6

r

l
ho

ld

18(2)

FT

HL

ER
3

57

r

l

hold

19(2)

HL

F

FT

3 054

r

l

20(2)

HL

FT

FT

3 0

2
1

5

5

5

7

4
6

4

4

l

r

21(2)

ER

FT

FT

3

7

5

l

hold

r

ho
ld

22(2)

FT

HL

ER

3

5

l

r

hold

23(3)

FT

WLER

3

0

5
lr

ho
ld

24(3)

WL

FT

FT

3
0

0

5
4

l

r

hold

25(3)

WRFT

FT

1
2

2

4
6

5
7

l

hold

r

26(3)

FT WR

EL

1

2

4 6

r

l

ho
ld

27(3)

FT

HL

EL

6

r

l

hold

28(3)

FTHR

ER

7
r

l

hold

29(4)

FT

WR

ER

2r

l

hold

30(4)

F

HL

HL

4 6

l

r31(4)

F

HR

HR

5 7

l

r

32(5)

F

HL
WL

0

1
r

l

33(5)

FT

HL

WL

0

l

r

hold

34(5)

F

HR

WR

5 7

2

l

r

35(5)

FT

HR

WR

2

3

r

l

hold

36(6)

FT

WL WL

0

0

l r
hold

37(6)

FT

HL

EL

1

4

l

r

hold

38(6)

FTWR

WR

2

2

3

l

hold

r

39(6)

FT

HR

ER

3

5

l

r

hold

40(7)

FT
WL

EL

1

0

4

l

r
hold

Figure 4.5: The abstract LTS for Dining philosophers

Resources. A system with a dynamically changing number of processes ensuring exclusive
access to two resources by acquiring them in a fixed order. Safety property: The
two resources are never claimed by two different processes.

40

4.7 Appendix 1: Notes About Evaluation

start

0(0)

P1
R1f

R2f

20
4

4

D1

D2

1(0)

R1f

P1

20

D
1

2(0)

R2f

P1

20

D2

3(1)

R2f

P2

0

D2

4(1)

P2

R2f R1

0

D
2

A1

5(1)

R1

P2

0

A
1

6(1)

R1f

P1

4
6

4 6

D
1

7(1)

R2f

P1

4 12

412

D2

8(2)

R2f

P1

P2

0

D2

D2

9(2)

R2f P1

P2

0

4
12

412

D2

D
2

10(2)

P1
R2f

R1

12

0

12

2
D2

D
1

11(2)

R1 P1

P2

0

D1

A
1

12(2)

R1

P1

P2

0

12

14

1214

D1

A1

13(2)

R1

P3

1

2

A
1

14(2)

P3

R1

R2

1

2

A1

A
2

15(2)

R2

P3

1

2

A2

16(3)

R2f

P2

0

D2

17(3)

R2f

P1

P2

0

0

D2

D
2

18(3)

R2f

P1

P2

0

412

0412

0

D2

D2

19(3)

R1

P1

P3

1

2

D1

A1
20(3)

R1

P1

P3

1

12 14

1214

2

D1

A
1

21(3)

P1

R1f

R2

6

1

6

2

D1

D2

22(3)

P1

R1

R2

14

1

0

14

2

2

2

D1

D2

23(3)

R2

P1

P3

1

2

D
2

A2

24(3)

R2

P1

P3

1

6
14

6 14

2

D2

A
2

25(4)

R2P2

P3

1

0 2

D2

A
2

26(4)

R2

P1

P2

P3

1

0

2

D
2

D2

A2

27(4)

R2 P1

P2 P3

1

0

6
14

6 14

2

D2

D
2

A
2

28(4)

P2

R1

R2

1

0

2

A
1

D2

29(4)

R2

P2

P3

1
0

2

D2

A2

30(4)

R2

P1
P2

P3

1

0

0

2

D2

D2

A
2

31(4)

R2

P1

P2

P3

10

6
14

0614

0

2

D
2

D2

A2

Figure 4.6: The abstract LTS for Resources

Mutual exclusion. Exclusive access to a resource in a system with dynamically added
processes is ensured by token passing. Safety property: The resource is never
claimed by two processes at once.

Red-black trees. Any possible red-black-tree is generated and an element is inserted,
then balance is restored. Safety property: We never obtain a tree with two
consecutive red nodes.

Singly-linked lists. Elements are dynamically added to and deleted from a linked list.
Safety property: The head cell has no predecessor, and the cells are not shared.

41

4 Analysis of infinite-state graph transformation systems by cluster abstraction

start

0(0)

L

C

9

th

1(0)

C

L

9

th

2(2)

C

L

C

0

0

h

n

t

3(2)

L

C

C

0

01

1

t

h

n

4(2)

CC

C
1

n

n

5(2)

C

L

C

0

1

0

1

t
h

n

6(3)

C
L

L

end

1

0

t

h

1

Figure 4.7: The abstract LTS for Singly-linked lists

Circular buffers. Elements are dynamically added to and deleted from a circular buffer.
Safety property: Either all cells reachable from the first are unused and the last
cell is the predecessor of the first, or the first cell is in use; if a cell is in use, either
so is the next, or it is the last.

Euler walks. Euler walks are generated over a dynamically discovered map of areas
connected via bridges. Safety property: All walks have either zero or two areas
with an odd number of connecting bridges.

42

4.7 Appendix 1: Notes About Evaluation

start

0(0)

EAe

6

4

h

1(0)

Ae

E

6

h

2(1)

Ao

B

0
2

4

a

3(1)

E

Ao

0 2 3 4

13

13
4

5

h

4(1)

Ao

E
B

0
1

h a

5(1)

B

Ao

0
2

a

6(1)

Ao
E

B

2 3

h

a

7(2)

B

Ae

Ao

13 4

1
3
4 5 34

0
234

a

a

8(2)

B

Ae

Ao

1
3
4
5

34

0
2
3
4

a

a

9(2)

Ae

B

1
3

5

a

10(2)

Ae

E
B

4
5

1 35

h

a

11(2)

Ae

E

B

4 5

1

3
4

5

h

a

12(2)

B

Ae 5

5

134
5

5

0 2

2

2

3
4

a

13(2)

B

Ae

Ao

51
3

4
5

0 2 3 4

34

0

1

2 2
3

3

4

4

5

a

a

14(2)

B

Ae

Ao

5

1345

2

0234

012345

0

1

2

2

3

3

4

4

5

5

a

a

15(3)

Ao

B

024 4 5

a

16(3)

Ao
E

B

23

0
2
4

1
3

4
5

5

h

a

17(3)

Ao E

B
2
3

0234

1

1

3

3 4 5

5

h

a

Figure 4.8: The abstract LTS for Euler walks

Figure 4.9 shows the analysis result for a trimmed merge protocol. The functions of
the protocol can be nicely seen: Each process starts as a free agent, and depending on
whether it sends or receives a join request, it either becomes a follower or a leader of a
platoon with one follower. In the latter case, another free agent may request to join the
platoon, so that, eventually, a platoon with more than one follower is built. At this point,
the abstraction kicks in and further join request lead to the same abstract state. A free
agent may also receive a merge request of an existing platoon, in which case handover of
the back leader’s followers takes place, eventually forming a platoon with one or more
than one follower. Conversely, a platoon leader may send a merge request and hand over
its followers, eventually becoming a follower itself.

43

4 Analysis of infinite-state graph transformation systems by cluster abstraction

start

0(0)

fa

0

1(1)

hon

fa

1

req
ldr

2(1)

fa

hon

1

req

ldr

3(2)

hon
ldb

7

ldrack

bldr

4(2)

ldb

hon

7 ac
k

bl
drldr

5(3)

flw

ldb

18

ld
r

ac
k

bldr

6(3)

ldb

flw

18

bl
dr

ldr

ack

7(4)

flw

ld

25

ldr

flws

8(4)

ld

flw

25

flws

ldr

9(5)

hon

ld

2

39

re
q ld
r

10(5)

ld flw

hon

2

flws

ldr

req

ldr

11(5)

flwho
3334

ldr

flws

12(5)

ho

fa

flw

33

req
ldr

flw
sld

r

13(5)

fa
ho

33

req

ldr

14(5)

ho

ld

flw
34

req

ldr

flws

ldr

15(5)

ld

flw
ho

34

flw
s ldr req

ldr

16(6)

ho

flw

ldb

6

38

flw
sld

r

ldr ack

bldr

17(6)

ldb

ho

6

ackbldr

ldr

18(6)

flw

ldb

38
39

25

ldr

flw
s

19(6)

ldb

flw

ho

38

flw
s ldr

ack

bldr

ldr

20(6)

ldb

flw

hon

39

flw
sld

r

ack
bldr

ldr

21(7)

ldb

flw

flw

18

flw
s ldr

bldr

ldr

ack

22(7)

flw

hob

50
ldr

flw
s

23(7)

hob

flw

ldb

50

flw
sld

r
ldr

bldr

24(7)

ldb

hob

50

bldr

ldr

25(7)

ldb

flw

hob

50

flws

ldr

bldrld
r

26(8)

ld

flw

25

flwsl
dr

27(8)

pass

flw

ldb

107

flw
sld

r

ldr

newf

bldr

28(8)

ldb

flw

pass

10
7

ne
w

f

bldr
ld

r

flw
s

ldr

29(8)

flw ldb

pass
107

newf

ldr

bldr

flw
s ld
r

30(8)

ldb

flw

flw

pass

10
7

flws

ldr

new
f

bldr

ldr

flw
s

ldr

31(9)

ld

flw

hon

2 flw
sldr

req

ldr

32(9)

ho
fa

flw

33

req

ldr

flw
s ldr

33(9)

ld

flw

ho

34

flw
s

ldr

req

ldr

34(9)

hold

flw

34

req

ldr

flw
sld

r

35(9)

pass

flw

ann

157
flw

sld
r

ldr

new
l

bldr

36(9)

ann

flw

pass

15
7

new
l

bldr

ld
r

flw
s

ldr

37(9)

flw

ann

pass 157

new
l

ldr

bldr

flws

ld
r

38(9)

flw

ann

15
7

347

ldr

flws

39(9)

ann flw

flwpass

15
7

flws

ldr

ne
w

l

bld
r

ldr

flws

ldr

40(10)

ho
flw

ldb

6

38

flws

ldr

ldr

ac
k

bl
dr

41(10)

ldb

flw

ho

38

flw
s

ldr

ac
k

bl
dr

ldr

42(10)

ldb

flw

hon

39
flw

s

ldr

ack
bldr

ldr

43(10)

pass

flw

ann

233

flw
s

ldr

ldr
ack

bldr

44(10)

ann

flw

pass

233

ld
r

ac
k

bldr

flw
s

ldr

45(10)

flw

ann

pass

23
3

ld
r

ac
k

bldr

flws

ldr

46(10)

ann

flw

flw

pass

233

flw
s ldr

ldr

ack

bldr flw
sld
r

47(11)

ldb

flw

flw

18

25

flw
s

ldr

bldr

ldr

ack

48(11)

ldb

flw

hob

50

flws

ldr

bldr

ldr

49(11)

hob

flw

ldb

50

flw
sld

r

ldr

bldr

50(11)

pass

flw

ldb

347

flw
s

ack

ldr

ldr

flw
s

bldr

51(11)

ldb flw

pass
347

367
flws

ldr

bl
dr ac

k flw
s

ldr

52(11)

flw

ldbpass

34
7

367ldr

flw
s

ack

bldr

flw
s

ldr

53(11)

ldb
flw

pass

347

367

flws

ldr

bldr

ack

flw
s

ldr

54(12)

ldb

flw

flw

pass

107

flw
s ldr newf

bldr

ldr

flw
s

ldr

55(12)

flw

pass

107

36
7

ldr flws

56(12)

pass

flw

ldb

107

flw
s

ldr

ldr

new
f

bldr

57(12)

hob

ldb

367

ld
r

bldr

58(13)

pass

flw
ann

157

flw
s ldr

ldr

newl

bldr

59(13)

ann

flw
flw

pass

15
7

flw
s ldrne

w
l

bldr

ldrflw
s

ldr

60(13)

ldb

hod

375

381

bldr

ld
r

61(13)

ldb

flw

hod

375

381

flws

ldr

bldrld
r

62(13)

ldb

flw

hod

375

381

flw
s ldr

bldr

ldr

63(13)

hod

ldb

375

381

ld
r

bldr

64(14)

ann

flw

flw

pass

233

347

flw
sld

r

ldr

ack

bldrflw
s

ldr

65(14)

pass

flw

flw

ann

233

flws

ldr

flw
s

ldr

ldr

ack

new
l

bldr

66(14)

pass

flw

flw

ann233

flw
sldr

flw
s

ldr

ldr ac
k

ne
w

l

bldr

67(15)

pass

flw

flw

ldb

347

367

flw
sld

r

flw
s

ack

ldr

ldr

flw
s

bldr

68(15)

pass

flw

flw

ldb

34
7

367

flw
sld

r
flw

s

ack

ldr

ldrflw
s

bldr

Figure 4.9: ASTRA analysis result for the synchronous merge protocol (see Section 2.3).
This is a trimmed-down version showing only the most important behavior
(requests are sent only when they are expected). The full version would look
very chaotic. As can be seen, ASTRA already builds a labeled transition system
of clusters, the theoretical foundation for which is future work. Automatic
organic layout by yEd. An aesthetic appeal cannot be denied ;-)

4.8 Appendix 2: Proof of Main Theorem
Recall our main theorem implying soundness of the analysis:

Theorem 1. The derived abstract topology overapproximates the induced abstract
topology, i.e., JSK] v [S]].

sketch. It is sufficient to show that r,S⇒⊆r,S→. Let P ′ r,S⇒ Q. Then, by Definition 17, there
are

• graphs G,H

44

4.8 Appendix 2: Proof of Main Theorem

• a match m : VL → VG from r to G

• and a node v ∈ VG

such that

• G is in the cluster concretization of S,

• P v P ′,

• G r,m
 H and

• α(H, v) = Q,

where

• r = (L, h, p, R),

• P = α(G, v) with induced mapping hG,P : VG → VP and

• m ◦ hG,P 6= ∅.

We need to show P ′
r,S→ Q, which, by Definition 21, means: There is

• a graph H ′ and

• an abstract match m̂ = (P ∗, hL,P ∗ ,mater , dc, dd , cc) from r to S

such that

• P ∗ v P ′,

• γ(m̂) = (G′,m∗, hG′,P ∗),

• G′ r,m
∗

 H ′ and

• Q = α(H ′, core).

Let hL,P , mater , dc, dd and cc be defined as required in Definition 19; let P ∗ = P ,
hL,P ∗ = hL,P and m̂ = (P ∗, hL,P ∗ ,mater , dc, dd , cc). It is now evident that m̂ is an
abstract match and that P ∗ v P ′.
Let γ(m̂) = (G′,m∗, hG′,P ∗). To complete our proof, we need to show that G′ r,m

∗

 H ′

such that Q = α(H ′, core), i.e., α(H, v) = α(H ′, core). Let Q′ = α(H ′, core) and let
hH,Q and hH′,Q′ be the induced mappings according to Definition 10. By Definition 9, we
need to show:

• GQ = GQ′ , that is, by Definition 1, VQ = VQ′ , Eβ
Q = Eβ

Q′ for all β ∈ E and `Q = `Q′ .

45

4 Analysis of infinite-state graph transformation systems by cluster abstraction

– VQ ⊆ VQ′ : Case core is trivial. Let u′ ∈ DQ. By Definition 10, there is a
u ∈ VH such that hH,Q(u) = u′. By definition of hH,Q,
u′ = (SPH(v, u), `H(u)), where SPH(v, u) 6= ∅. That may be the case only
because of two reasons, if not (1) SPG(v, u) 6= ∅, then (2) the rule must have
added an edge between v and u.

∗ Case (1): Then, by Definition 10, VP must contain the node
hG,P (u) = (SPG(v, u), `G(u)). Let u∗ = hG,P (u).

· Case (1a): There is some uL ∈ VL with u = m(uL), i.e., u is matched
by the left hand side. Then, by Definition 20, uL ∈ VG′ ,
SPG′(core, uL) = SPG(v, u), `G′(uL) = `G(u) and m∗(uL) = uL.
Thus, by Definition 7, SPH′(core, uL) = SPH(v, u) and
`H′(uL) = `H(u). By Definition 10, hence
hH′,Q′(uL) = (SPH(v, u), `H(u)) = u′ and thus, u′ ∈ VQ′ .
· Case (1b): Otherwise, u /∈ m(VL), i.e., u was unmatched. Then, by
Definition 19, mater(u∗) ≥ 1. Hence, by Definition 20, (u∗, 1) ∈ VG′
with SPG′(core, (u∗, 1)) = SPG(v, u), `G′((u∗, 1)) = `G(u) and
(u∗, 1) /∈ m∗(VL). Hence, by Definition 7,
SPH′(core, (u∗, 1)) = SPG′(core, (u∗, 1)) = SPG(v, u) = SPH(v, u)
and `H′((u∗, 1)) = `G′((u

∗, 1)) = `G(u) = `H(u). Hence, by
Definition 10, hH′,Q′((u∗, 1)) = (SPH(v, u), `H(u)) = u′ and thus,
u′ ∈ VQ′ .

∗ Case (2): Then the rule must add such an edge; SPG(v, u) = ∅. By
Definition 10, u /∈ def(hG,P). Hence, by Definition 19, u /∈ def(hL,P). Let
uL = m−1(u). By Definition 20, SPG′(core, uL) = ∅ and m∗(uL) = uL.
Thus, by Definition 7, and analogous case (1a), u′ ∈ VQ′ .

– VQ′ ⊆ VQ: By Definition 10, Definition 20 and Definition 19, it holds that
α(G′, core) = P . Thus, the proof for VQ ⊆ VQ′ can be applied backwards in
an analogous fashion.

– Eβ
Q = Eβ

Q′ and `Q = `Q′ follow from VQ′ = VQ by Definition 10, since
u = (SPQ′(core, u), `Q′(u)) for any u ∈ VQ′ \ VL.

• SQ = SQ′ :

– SQ ⊆ SQ′ : Let u′ ∈ SQ. By Definition 10, there are u 6= w ∈ VH such that
hH,Q({u,w}) = {u′}. We can then argue analogous to VQ ⊆ VQ′ .

– SQ′ ⊆ S ′Q: Analogous to VQ′ ⊆ VQ.

• Cβ
Q = Cβ

Q′ for all β ∈ E : Let β ∈ E , u′, w′ ∈ DQ. Let U = hH,Q
−1({u′}) and

W = hH,Q
−1({w′}). We decompose U and W into disjoint sets U1a ∪ U1b ∪ U2 = U

and W1a ∪W1b ∪W2 = W , each corresponding to the cases in the proof of
VQ ⊆ VQ′ . By analogy, we obtain disjoint sets U ′1a ∪ U ′1b ∪ U ′2 = U ′ and
W ′

1a ∪W ′
1b ∪W ′

2 = W ′ where U ′ = hH′,Q′
−1({u′}) and W ′ = hH′,Q′

−1({w′}). Let

46

4.9 Appendix 3: Relations

Abs(A,B) = 0 if A = ∅, Abs(A,B) = 1 if A ⊇ B and Abs(A,B) = 1
2
otherwise

and let (A,B) ≈ (A′, B′) iff Abs(A,B) = Abs(A′, B′).

– (Eβ
H , U1a ×W1a) ≈ (Eβ

H′ , U
′
1a ×W ′

1a): Because the left hand side is completely
material (cc)

– (Eβ
H , U2 ×W1a) ≈ (Eβ

H′ , U
′
2 ×W ′

1a), (E
β
H , U1a ×W2) ≈ (Eβ

H′ , U
′
1a ×W ′

2),
(Eβ

H , U2 ×W2) ≈ (Eβ
H′ , U

′
2 ×W ′

2): Analogous

– (Eβ
H , U1b ×W1a) ≈ (Eβ

H′ , U
′
1b ×W ′

1a): Because of dc

– (Eβ
H , U1a ×W1b) ≈ (Eβ

H′ , U
′
1a ×W ′

1b), (E
β
H , U2 ×W1b) ≈ (Eβ

H′ , U
′
2 ×W ′

1b),
(Eβ

H , U1b ×W2) ≈ (Eβ
H′ , U

′
1b ×W ′

2): Analogous

– (Eβ
H , U1b ×W1b) ≈ (Eβ

H′ , U
′
1b ×W ′

1b): Because of dd

Therefore, (Eβ
H , U ×W) ≈ (Eβ

H′ , U
′ ×W ′). Hence, by Definition 10, Cβ

Q = Cβ
Q′ .

Therefore, the theorem holds.

4.9 Appendix 3: Relations
We frequently used relations between nodes in our formalization. The most obvious
application were the edges of a graph, but we also used them to relate nodes of different
graphs to each other, such as the left and the right hand side of graph transformation
rules, or the host graph before applying a transformation rule, and the result. Relations
consist of pairs, which are a special case of ordered tuples.

Definition 23 (Tuple). Let a1, a′1 ∈ A1, . . . , an, a′n ∈ An. Then a tuple over A1, . . . , An
is an object (a1, . . . , an) such that (a1, . . . , an) = (a′1, . . . , a

′
n) if and only if a1 = a′1, . . . ,

an = a′n. We write A1 × · · · × An for the set of tuples over A1, . . . , An.

A relation consists of three sets, the domain, the codomain and a set of pairs. Each pair
relates an element of the domain to an element of the codomain. It is admissible that
elements of the domain and the codomain are not related in any way. Those elements
from the domain that are related to some element of the codomain—not all need to
be—form the domain of definition. One of the main uses of relations is to apply them to
some subset of the domain, to get a subset of the codomain that contains any element
that is related in any way to one of the elements of the domain subset.

We generalize this to sets of tuples whose components are elements of the domain,
such that we can apply the relation to such a set, and obtain a set of tuples of the codomain
elements, each tuple component of the result tuples being related to the respective tuple
component of one of the input tuples. The main purpose of this generalization is to map
edges from one graph to another, based on a relation of their nodes.

Definition 24 (Relation, Domain, Codomain, Domain of definition, application, image,
inverse, equivalence class). A relation R over sets A and B is a subset R ⊆ A × B.
We call A the domain of R, denoted by dom(R), B the codomain of R, denoted by

47

4 Analysis of infinite-state graph transformation systems by cluster abstraction

codom(R) and {a ∈ A | (a, b) ∈ R for some b ∈ B} the domain of definition of R,
denoted by def(R). The application of R to M ⊆ An, written as R(M), is the set
{(b1, . . . , bn) ∈ Bn | ∃(a1, . . . , an) ∈ M : ∀1 ≤ i ≤ n : (ai, bi) ∈ R}. We call R(A)
the image of R. We write [a]R for R({a}). The inverse R−1 of a relation is the set
{(b, a) ∈ B × A | (a, b) ∈ R}

A special case of a relation are functions. Functional relations relate (“map”) each of its
domain elements to at most one of its codomain elements. A total function, in addition,
maps each of its domain elements to some codomain element.

Definition 25 (Function, Total function, Partial function). A (partial) function f :
A ⇀ B is a relation over A and B such that there are no (a, b), (a, b′) ∈ f with b 6= b′.
We write f(a) = b for f({a}) = {b} and f(a) = ⊥ for f({a}) = ∅. We call f a total
function, written f : A→ B iff domf = deff .

Two relations can be composed into one. This yields a new relation that contains all
pairs of elements that can be related to each other using the two relations via any third
element. We will use composition to express the steps involved in application of graph
transformation rules.

Definition 26 (Composition). Let R1 ⊆ A× B1 and R2 ⊆ B2 × C be relations. Then
the composition of R1 and R2, written R1 ◦ R2, is the relation {(a, c) ∈ A × C | ∃b ∈
B1 ∩B2 : (a, b) ∈ R1 and (b, c) ∈ R2}.

Partial orders are antisymmetric, transitive, reflexive binary relations and induce upper
bounds. We will use the apparatus of least upper bounds on partially ordered sets for
abstract interpretation.

Definition 27 (Partial order, upper bound, least upper bound). We call a relation v
over A×A a partial order iff {a ∈ A | a v a} ∈ {∅, A}, (v)∩ (v)−1 = {(a, a) ∈ A×A}
and (v) ◦ (v) ⊆ (v). Let v be a partial order over A× A and a1, a2, b ∈ A. Then b is
an upper bound of a1 and a2 iff a1 v b w a2. b is the least upper bound or join of a1 and
a2, written b = a1 t a2, iff b is an upper bound and for every upper bound a ∈ A, b v a.

48

5 ASTRA: A tool for abstract interpretation
of graph transformation systems

This chapter was initially published as [BR15b].

Abstract: We describe ASTRA (see http://rw4.cs.uni-saarland.de/~rtc/astra/), a
tool for the static analysis of infinite-state graph transformation systems. It is based
on abstract interpretation and implements cluster abstraction, i.e., it computes a finite
overapproximation of the set of reachable graphs by decomposing them into small,
overlapping clusters of nodes. While related tools lack support for negative application
conditions, accept only a limited class of graph transformation systems, or suffer from
state-space explosion on models with (even moderate) concurrency, ASTRA can cope
with scenarios that combine these three challenges. Applications include parameterized
verification and shape analysis of heap structures.

5.1 Introduction

Graph transformation is an intuitive formalism: One begins with a start graph and,
by nondeterministic choice, matches and applies transformation rules to it, based on
subgraph replacement. We are mainly interested in analysis of the graphs reachable by
successive application of rules, to verify safety properties, for example.

One of the applications of graph transformation is modeling parameterized concurrent
systems. Reasoning about such systems is hard because the state space is infinite.
Hence, abstraction methods are required. In this paper, we present ASTRA, our tool for
abstraction of graph transformation systems.

A number of tools are available that use abstract interpretation (each based on a
different abstraction) to compute a finite over-approximation of the reachable graphs:
AUGUR [KK08b] uses a Petri net based abstraction and had success with interesting
examples of concurrent systems; it does not, however, support negative application
conditions. hiralysis [Bau06] is based on partner abstraction. It does offer negative
application conditions and can analyze some concurrent systems, but requires input
grammars to satisfy some rather restrictive “friendliness” properties. GROOVE [Zam13] has
an implementation of neighborhood abstraction, which has no such restriction, supports
negative application conditions, but analysis of systems with concurrency leads to state
space explosion.

49

http://rw4.cs.uni-saarland.de/~rtc/astra/

5 ASTRA: A tool for abstract interpretation of graph transformation systems

n

i

n

n

n n

i

n

ne

e
e

e

e

p

p

p

p

e

ee

e

p

p

p

e

Figure 5.1: An example of how a cluster is obtained by abstracting the concrete graph
with respect to one specific node (here, the i-labeled one). The tool lifts the
application of graph transformation rules to this abstraction.

5.2 Cluster abstraction

Our tool, ASTRA, implements cluster abstraction [BR15a]: We consider each node in
the graph (to become the core node of a cluster) plus its respective adjacent nodes (to
become the periphery). We merge two or more adjacent nodes into summary nodes if
both their labels and configuration (spoke) of edges to the core node are equal. If, by this
summarization, two merged nodes disagree on to existence of some edge to a third node,
we replace it by a 1

2
edge. After summarization, we are left with clusters of bounded size,

and we eliminate any duplicate cluster by assuming (as a further overapproximation)
that there can be any number of concrete instances. An example is shown in Figure 5.1.
The initial graph is abstracted in this way, and then rule application is lifted to the
abstraction.

In this paper we describe ASTRA 2.0. An earlier version, ASTRA 1.0 [BR10a],
implemented a less precise precursor to cluster abstraction that assumed all edges in the
periphery to be 1

2
.

5.3 Architecture and Usage

ASTRA is a command-line program that expects a start graph and graph transformation
rules as input and outputs the clusters from the analysis. When running the analysis, it
abstracts the start graph, then enters its main loop. The main loop searches for abstract
matches; each left hand side node of each rule is matched against the core node of any
cluster from the current working set, and the remaining nodes are matched to a subset
of the respective peripheral nodes. In addition, one further cluster with unmatched core
node, but matched peripheral nodes is materialized. Those matches are then combined
into a partial concretization, with several checks done to rule out cases where no full
concretization exists. Not all such cases are detected by the tool; but the result is still a
valid over-approximation.

All clusters produced by rule application are added to a temporary set. After each
iteration, the tool then, optionally, applies a post-pass reduction step to the temporary
set, inspecting it for clusters that can be eliminated or refined. To do this, the tool

50

5.3 Architecture and Usage

searches for all partial materializations bounded to three material nodes: If a cluster
cannot be used in any of them, it is eliminated, and if an edge is always present or always
absent, peripheral 1

2
constraints are refined. Finally, the temporary set is joined with the

working set.
The tool indicates progress as it goes from rule to rule, and from iteration to

iteration. After each iteration, the current working set is dumped to disk, which is useful
for inspecting the current state of the analysis when running the tool on complex cases
that take some time.

The main loop is executed iteratively until the working set remains unchanged, ie.,
a fixpoint has been reached. The tool then dumps the output to disk, prints statistics
and exits.

5.3.1 Input file format

ASTRA uses the same ASCII-based input file format as hiralysis (see [Bau06] Fig. B.1,
p. 160), extended by additional application conditions. For example, the constraint
partner(x1)=neg{(out,p)} restricts rules to apply only if the node matched by x1 has
no outgoing edge with label p.

Consider the following toy case as a running example. The input:

nodelabels n,Error,i; edgelabels e,p;
empty; // start graph
create [{x1:n,x2:n,x3:i},

{(x1,x2):e,(x2,x3):e,(x3,x1):e,(x1,x3):p,(x2,x3):p}];// init
rule [{x1:i,x2:n},{(x1,x2):e}], // insert

[{x1:i,x2:n,x3:n},{(x1,x3):e,(x3,x2):e,(x3,x1):p}];
rule [{x1:n},{},partner(x1)=neg{(out,p)}], [{x1:n,x2:Error},{}];

This example models singly-linked ring buffers into which an unbounded number of nodes
are inserted dynamically. One special node is indicated with the label i. New nodes are
inserted next to it with a back pointer. Here, we want to use astra to verify the safety
property that each node has such a back pointer. We achieve this with the second rule.
It uses a negative application condition to generate an error label if a node lacks the
back pointer.

As can be seen, the input file format is mainly based on graphs, which are sets of
node names, each with a label, and sets of edges (the name being a pair of node names),
each with an edge label. The rules specify the subgraph to be replaced and the subgraph
by which it is replaced. The node names imply a mapping from the left hand side to the
right hand side.

5.3.2 Command-line interface

For our case study, consider the following tool run:

$./astra -Os -Op test023.gts
0 [2/ 2] = 100% [+2, +-2]

51

5 ASTRA: A tool for abstract interpretation of graph transformation systems

1 [2/ 2] = 100% [+1, +-1]
2 [2/ 2] = 100% [+0, +-0]

done.
6 clusters, 5 matches, 1 active rules,
6 rule applications, 2 iterations

The $ indicates the shell prompt; the remaining line is entered by the tool user. In this
case, ASTRA is run on the input file of our running example (test023.gts).

In the example, we specify analysis options -Os and -Op, instructing ASTRA to apply
a simple peripheral constraint satisfiability check and post-pass reduction, respectively.
For our experiments, this proved to be the most practical option set, providing the best
speed/precision trade-off. Removing one of the two options lead to drastic decrease
in precision, while adding any other lead to merely minuscule gains. Only in specific
cases where the analysis would otherwise run into state-space explosion, further analysis
options were useful.

Option -n can be used to specify a cutoff iteration after which to prematurely
terminate the analysis. This is useful to inspect the intermediate result. Run ASTRA
without arguments for further details about the available options.

5.3.3 Status report

For each iteration, while running, the current iteration number, current rule, total number
of rules and progress (current rule divided by total number of rules) is printed. After
finishing the iteration, the number of clusters added and modified (i.e., with peripheral
constraints weakened) is printed. Note that clusters added by the initial graph and by
rules with empty left hand side are only accounted for in the final statistics printed after
the fixpoint has been reached.

5.3.4 Output file formats

ASTRA supports DOT (as used by the graph layout tool Graphviz), GML (as used by
OGDF and the GoVisual Diagram Editor, respectively), GDL (as used by VCG and its
successor aiSee) and GraphML (as used by yEd and yComp, respectively). In addition,
the tool supports its own native output format that is similar to the input format.

The output can be loaded or processed with any tool supporting any of those formats.
The most common use will be a graph layout tool to inspect the output, but it can as
well provide invariants for other analyses, like hiralysis [BSTW06].

For our running example, the tool outputs six clusters, visualized in Figure Figure 5.2.
In addition to the full analysis, we show the intermediate results obtained by using option
-n.

These drawings were done by METAPOST, based on an experimental output module
built into ASTRA that does primitive circular graph drawing. For common use, aiSee and
yEd have proven most useful, especially the organic and hierarchical layout engines.

52

5.4 Experimental Evaluation

-n 0

n n

i

e

p

epe

n n

i

e
p

e

p
e

i n

n

e

e
p

ep

-n 1

n n

i

e

p

epe

n n

i

e
p

e

p
e

i n

n

e

e
p

ep

i n

n

n

e

e
p

e

p

ep

n n

n

i

e

p

e

p

e p

e

-n 2 = full

n n

i

e

p

epe

n n

i

e
p

e

p
e

i n

n

e

e
p

ep

i n

n

n

e

e
p

e

p

ep

n n

n

i

e

p

e

p

e p

e

i n

n

n

e

e
p

e

p

e

e

p

Figure 5.2: Analysis results on running example.

5.4 Experimental Evaluation

We already ran the tool on various test cases from the literature in [BR15a], including
AVL trees, red-black trees, firewalls, public/private servers, dining philosophers, resources,
mutual exclusion, singly-linked lists, circular buffers, Euler walks, and the merge protocol.
The merge protocol, our main example, is a distributed car platooning coordination
protocol that establishes a logical communication hierarchy on top of the physical
communication medium. Analysis of the protocol is hard because of its massively
distributed nature, caused by the vast range of topological configurations that may evolve
concurrently.

However, all inputs from that case study were written by hand. To demonstrate
the robustness of our tool, we apply it to graph transformation systems generated
automatically from higher level models of the merge protocol, specified in the DCS
formalism [Rak06, BTW07]. We used the tool dcs2gts [Bac07] to translate the DCS
models into graph transformation systems suitable for analysis with ASTRA. We include
two new variants, follower-controlled merge.

Synchronous (leader-controlled) merge in our former case study consisted of 402
rules (plus 3 for checking safety properties), the asynchronous version 313 (plus 2). The
large number is caused by the fact that many rules are generated from templates that
iterate over all node labels. The automatically generated versions use 788 and 835
rules, respectively. In contrast, the number of clusters in the analysis result increased
from 873 to 22509 (factor 26) and from 3069 to 142326 (factor 46). This is because the
automatically generated version uses intermediate steps to model topology changes. While
those steps are serialized by special labels, and thus pose no combinatorial challenge, our
analysis shows that the tool does well with all those intermediate configurations absent
in the manually created inputs. See Table 5.1 for the full results.

53

5 ASTRA: A tool for abstract interpretation of graph transformation systems

Table 5.1: Benchmark analysis statistics. cl. = clusters, m. = abstract matches, rule
app. = rule applications, it. = iterations.

Benchmark # cl. # m. # rule app. # it. time
Sync., leader-controlled 22509 75359 36685213 135 9m 34.200s
Sync., follower-controlled 24957 82569 43679468 144 22m 30.200s
Async., leader-controlled 142326 850889 1006759383 202 13136m 1.260s
Async., follower-controlled 58023 296310 83499253 157 3972m 37.560s

5.5 Conclusions and Future Work
We have seen how ASTRA can be used to analyze a simple graph transformation system,
modeling insertion of elements into ring buffers. In contrast to related tools, it is
not restricted to graph transformation systems of a special form, it supports negative
application conditions and it does well when facing models involving concurrency. Our
experimental evaluation showed that it is capable of handling very complex inputs
generated automatically from higher-level specifications.

Future work: Our tool already has experimental support for generating an abstract
labeled transition system of clusters, but the theory for actually using those with a
model checker has still to be worked out. We would also like to provide more powerful
application conditions, in particular non-existence of edges between two specific nodes
and restrictions on the periphery of a node.

A promising way to considerably speed up analysis is parallelization. The structure
of the analysis is very well suited for this and we expect a parallelized version to scale
almost linearly.

54

6 Further notes on related work

6.1 Graph transformation framework

6.1.1 Relation to the algebraic approach

The algebraic approach aims at a graph transformation framework where transformation
rules and application conditions are reducible to constructions based in category theory.
The goal is to obtain simple proofs of rewriting properties, at the cost of weak operational
features.

The two major algebraic frameworks are the single push-out (SPO) and the double
push-out (DPO) approach. In essence, the basic SPO approach models rules without
any application conditions, while DPO uses a second push-out to model a mandatory,
built-in application condition in purely categorial terms. (The dangling condition and
the identification condition: nodes may only be deleted if no incident edges are left;
and nodes and edges may be matched twice only if they are preserved by the rule.)
Restricting matches to be injective can be understood as a further application condition;
the combination with non-injective morphisms connecting the left and the right hand
side to the interface graph in DPO has been extensively studied in [HMP01] (where the
authors make an interesting historical note to the effect that the original DPO paper
required matches to be injective, while most more recent papers considered arbitrary
matches only). For SPO, injectivity restrictions for matches are one of the application
conditions discussed in [HHT96].

[HP02] extends DPO with relabeling. No SPO variant with relabeling exists. Edge
replacement is used instead: If an edge label is to be changed, the edge will be deleted
and a new one with the desired label will be created. Nodes are left unlabeled, and
self-loops carry the desired label, with label changes done as for any other edge (cf.
[EHK+97, Section 5.1fn]).

The theorems that can then be proven using category theory state under which
conditions certain properties hold: Local Church-Rosser and the parallelism theorem are
relevant for the reinterpretation of transition systems that are based on an interleaved
model of parallelism where rules are always applied one after another. Assuming instead
a truly parallel computation semantics, where rules can also be applied in parallel (see
[CMR+96, Section 5.1]), derivations that are shift-equivalent can be reinterpreted as one
single parallel derivation.

Embedding of derivations and derived productions are concerned with a subgraph
that evolves independently from the rest over a sequence of derivation steps. In this case,
assuming a suitable model of computation, the sequence can be be understood as a single

55

6 Further notes on related work

computation step that produces the effect of the sequence atomically.
Amalgamation and distribution apply to overlapping graphs that evolve separately

except for synchronization via a common subgraph. Then the transition system that
describes the global behavior can be split into separate parts that each cover local
behavior only.

Like its ancestor in [Bau06], our graph transformation framework is, “in disguise,” a
subset of the SPO approach with application conditions from [HHT96]. While [Bau06,
Section 2.3] claims a list of differences, all of them turn out to merely curtail that
approach (cf. loc. cit., last two items not discussed here since they do not suggest the
opposite):

(a) In unrestricted SPO, graphs may have multiple edges with the same label between
them, which is not the case in our framework. This restriction can be formulated
in terms of SPO: (1) Disallow such graphs as the start graph as well as as the left
and right hand side of transformation rules. (2) Duplicate each rule that adds an
edge between two existing nodes, one for the case that such an edge (with matching
endpoints and label) does not already exist in the host graph (this can be expressed
with a negative application condition such that the edge is added if it does not
already exists), and one for the case that it already exists (this can be expressed by
adding the edge between those two nodes to the left hand side such that no further
edge is added if one already exists).

(b) While SPO uses a partial morphism for h, our approach merely uses a partial
mapping, suggesting that it extends SPO with relabeling capabilities. However, this
is equivalent to SPO having unlabeled nodes and self-loops carrying the node label
instead, with the start graph and the transformation rules changed accordingly.

(c) While SPO uses categorial constructions, our approach is based on constructive
definitions. However, this is merely for the sake of clarity; it is still equivalent to
the categorial construction, and the respective theorems do apply.

(d) Our framework avoids the identification issue by injective matches. However, this
is merely making an SPO application condition mandatory. Plus, it is not a real
restriction, since non-injective matches can be taken care of by adding rules, one
per possibility to identify sets of nodes on the left hand side. The identification
condition can then be handled directly on the rules, and the rule be changed to
delete nodes that were deleted by at least one of the identified nodes by the original
rule.

In principle, it is possible to handle DPO with our abstraction: Since the identification
condition can be checked directly on the rules, those rules for which it does not hold can
be deleted. Further, checking the dangling condition can be lifted to the abstract, since
each matched core node of a cluster also contains each incident edge.

Further, it seems quite possible to lift the algebraic considerations to the abstract
(the following assumes DPO, but can be adopted for SPO):

56

6.1 Graph transformation framework

(a) Parallelism: Check whether all possible matches of the two rules to a cluster, with
at least one node of the cluster matched by both, overlap for a node deleted by at
least one of those rules. If not so, parallelization is permitted in the abstract, since
it is permitted for each possible concretization.

(b) Embedding: In a straight-forward sense, each cluster is already embedded into
the concrete graph. Thus, a sequence of clusters evolving into each other linearly,
with exactly one transition in between and no additional incoming or outgoing
transitions, can be identified as one single, atomic rule application if no other
transition can be taken in other parts of the graph. This requires checking whether
for each cluster in the sequence, only the transition’s rule matches, in only one way,
each admissible global graph (induced by the set of clusters, and the cluster under
consideration).

(c) Distribution: The three set of rules (two for subsystems and one for the interface)
induce three separate sets of clusters and transitions, and respective morphisms
among them. Using this information, check the distributed gluing condition and
the connection condition in the abstract. If it holds, find one single unified set of
clusters and transitions for the amalgamated rules without analyzing the whole
system. This is done by merging the clusters of the two subsystems with respect to
their spokes, as implied by the morphism from the interface graph. It is practical
to restrict the interface clusters to have cluster count of at most one, for otherwise
merging becomes too complex.

These algebraic considerations are orthogonal to cluster abstraction itself. The most
obvious real value of parallelism and embedding is a more concise representation of the
system evolution. Distribution, in contrast, also provides a basis for the separate design
and analysis of the subsystems of a distributed system. It may, as a side-effect, make the
analysis more precise, since clusters on opposite sides of the interface are kept separate
that would be identified in an analysis of the whole system (cf. the firewall example). On
the other hand, with cluster abstraction, distribution loses a lot of its original motivation,
since a cluster abstraction analysis of the whole system is already a very fine-grained
decomposition of the original system.

6.1.2 Relation to the algorithmic approach

The algorithmic approach tries to make the framework operationally powerful, well-suited
for application, and allowing the specification of embedding relationships, control flow
and priorities for rule application (see [Sch97]).

Rule priorities tell the graph transformation engine which rule to apply if several
of them match the same graph. Cluster abstraction does not preserve the information
necessary for rule priorities. To ensure that a rule with lower priority cannot be applied,
we would have to know that a rule with higher priority can be applied; however, an
abstract match does not guarantee a concrete one. Thus, we would have to consider

57

6 Further notes on related work

all possibilities anyway, except in the most trivial cases (where all matched clusters are
known to materialize in the concrete graph).

Control flow can be done by annotating each cluster with a set of possible control
flow locations, such that the cluster can only be matched if the respective rule is active
at that location. To do control flow with already the existing approach, the start graph
can be amended by a node that is connected to every other node. Then rules can also
have such a node, connected to every other node on the left and right hand side, that is
matched and changed according to the desired control flow. As a beneficial side effect, it
keeps clusters at different control flow locations separate from each other.

The embedding relationship specifies how the unmatched edges between the matched
nodes and their unmatched adjacent nodes (the context) are connected to the nodes of the
right hand side. This can be done easily with cluster abstraction, since the clusters just
happen to contain the information about this context. With respect to the comparison
criteria from [Sch97, table 1], it should be possible to have all crucial features: changing of
label and orientation, context label and edges test, and different treatment of identically
labeled nodes.

6.2 Related abstractions

6.2.1 Partner abstraction

Partner abstraction [Bau06, BW07] abstracts a graph by splitting it into its connected
components, merging—separately for each component—nodes with the same canonical
name into summary nodes, and deleting any isomorphic duplicates among the resulting
abstract components. As the canonical names of a node, it considers its label plus, for
each incident edge, its edge label, direction and label of the corresponding adjacent
neighborhood node. (NB: This is per edge, not per spoke.) For a class of “friendly”
systems, partner abstraction is sound and complete. Hence, there is a guarantee for
each abstract state and abstract transition to exist in the concrete system as well, and
thus, abstract model checking, including liveness, is not an issue. Friendly systems are
those where none of the abstract components contains an edge with a summary node on
both ends. Unfortunately, this class is weak and most systems do not belong to it. In
practice, partner abstraction requires systems to be friendly, since it runs into state-space
explosion otherwise [Bac08]. As the merge protocol is not a friendly system, it cannot be
analyzed with partner abstraction, only a simplified version where processes know each
other’s state.

Bauer presents counting of abstract components as an unimplemented extension and
sketches generalized abstract components where nodes from different components can
be connected by edges [Bau06, Section 4.6]. The counting yields a finite upper bound,
but not information on which components may not occur together with others. However,
the construction could be extended along the same lines as cluster counts for cluster
abstraction (see Section 7.2).

To improve upon partner abstraction and to analyze the uncrippled merge protocol

58

6.2 Related abstractions

was the original motivation for cluster abstraction. This is the reason for why cluster
abstraction uses the same graph model as partner abstraction and the ASTRA implemen-
tation accepts the same input file format as hiralysis, which is the implementation of
partner abstraction. ASTRA does well with all examples shipped with hiralysis, so it can
be seen as the legitimate successor. Note that the term cluster is also used in partner
abstraction, as the name for what we called abstract components above (which would
have been a better fitting term from the outset). Cluster abstraction can be almost fully
understood as a modification of the definition of the cluster notion, bringing it closer to
the intuitive idea that it suggests.

6.2.2 Neighborhood abstraction and pattern abstraction

Distefano and Rensink [RD06] consider an abstraction based on an idea similar to partner
abstraction. Nodes are summarized if the set of labels of the outgoing edges and the
multiplicities (abstracted counts) of the incoming edges agree. Graphs are required to
be deterministic (a node must not have two outgoing edges with the same label), nodes
are unlabeled, and rule application mandates the dangling edge condition. The latter
ensures that only matched nodes can change their canonical name, and no friendliness
restriction (other than those mentioned) is necessary.

Neighborhood abstraction [BBKR08, BKK+12] combines ideas from partner ab-
straction and Distefano and Rensink’s abstraction. Nodes are grouped into hierarchical
equivalence classes: The equivalence class at the lowest level contains nodes with the
same label, on higher levels, additionally, the multiplicities of edge connections to nodes
from the predecessor level equivalence classes are taken into account (this causes node
labels of the neighborhood to be taken into account implicitly). Hence, the equivalence
classes at level i depend on each node’s radius i neighborhood, that is, nodes and edges
reachable via a path of at most i edges. The authors claim to be able to preserve and
reflect properties for a modal logic (op. cit., Section 3.2), but they define reflection such
that it relates one graph and its abstraction instead of the all reachable graphs and the
abstract result of their method. Thus, their reflection properties do not quite come as
much as a surprise as they claim.

The abstraction has been implemented [RZ10, RZ11] as an extension named Shape-
Generator for the tool GROOVE. It comes with a claim to the effect that liveness properties
can be proven (“we can check, for example, that the following properties hold: ... (iii)
rule get is applied infinitely often. ... (iii) is a liveness property. ... Since these properties
hold in the abstract LTS, we can then conclude that they also hold in the infinite
concrete state space.” [RZ10, Section 4] The authors provide no explanation for how this
conclusion could be admissible, given that their abstract labeled transition system is an
over-approximation, which means that the existence of transitions in the abstract does
not guarantee the existence in the concrete. In fact, their liveness property does not hold
in the concrete to begin with, and thus of course not in the abstract: State s3 of Figure
7 contains a self-loop for the transition put, which can be executed infinitely often once
the state has been reached. This sequence even exists in the concrete; the left hand side
of rule put matches its own right hand side as well as the start graph, thus, the rule

59

6 Further notes on related work

can be executed infinitely often.) Experimental evaluation [Zam13, Chapter 7] analyzes
linked lists, a circular buffer, Euler walks and the firewall example and fails at the simpli-
fied merge protocol, the reason for which seems to be the lack of the component-wise
abstraction that partner abstraction has. The author concludes that “the experiments
... can all be still considered toy models; ... performance was unfortunately sub-par
[compared to] AUGUR and hiralysis. ... we believe that some of this inefficiency lies in
the abstraction method itself, in particular ... the ... abstraction relation .. defined over
a radius i ... is too coarse ... Usually, ... we want to look at different radii for different
types of edges. This insight was the motivation behind ... pattern abstraction” (op. cit.,
p. 106). This conclusion is perhaps a tad too negative, given that none of those toy
models was a “friendly” one doable with hiralysis; and in supporting edge multiplicities
and being able to prove the Euler walk property, they are more advanced than ASTRA.

Pattern shape abstraction [RZ12] is based on the concept of pattern graphs, which
expand the concrete graphs into layered, pattern-labeled graphs. Each such pattern
is a subgraph of the concrete graph and in each layer, the number of subgraph edges
increases: On the first layer, each pattern is a single node from the host graph; on the
second layer, a single edge plus its end nodes, and from the third layer, the patterns
are proper supergraphs of the patterns from the lower layer. The patterns of each layer
connect to patterns of the next layer via morphisms. The abstraction works in two steps:
(1) It discards any pattern not admitted by a pattern type graph (which contains a
finite set of patterns that are allowed). This allows fine-tuning the abstraction, which
is its main selling point. (2) It builds equivalence classes of nodes of the pattern graph
and summarizes them using counter abstraction. This yields a bounded abstraction,
pattern shapes. Rule application is then lifted to this abstraction. Since the abstraction
has not been implemented yet, it is unclear how it performs in practice. Pattern shape
abstraction seems to be a generalization of the earlier daisy pattern abstraction [BBR09],
where the core idea happens to be similar to cluster abstraction: Consider each node in
the concrete graph, its neighborhood nodes, and the edges in between, and then further
approximate so as to obtain a finite abstraction.

6.2.3 Petri graph abstraction

The Petri graph [BCK01, BK02, BCK08] method is based on approximations of the
unfolding semantics of hypergraph transformation systems. The unfolding semantics is
a Petri graph, a hybrid between a hypergraph and a Petri net, with nodes and edges
of the former being the places of the latter. It is constructed as follows: Take the start
hypergraph and mark all nodes, yielding a Petri graph. Then, perform the following step
infinitely often: Find all matches into the current Petri graph and add the nodes and
edges to be added by the rule, but keep the nodes and edges to be deleted. Finally, add
a transition to the net that consumes the markings from the deleted nodes and edges,
consumes and produces markings for the kept nodes and edges and produces markings
for the added nodes and edges. The basic idea for obtaining a finite overapproximation,
called k-covering of the unfolding semantics, is to merge occurrences of the left hand
side in the Petri graph that are reachable by a depth of more than k rule applications.

60

6.2 Related abstractions

Conversely, an underapproximation, the k-truncation, can be obtained by truncating
the unfolding process after a depth of k rule applications. The reachable graphs of the
hypergraph transformation system are the reachable markings of the unfolding semantics.
Thus, the k-covering corresponds to a superset and the k-truncation to a subset of
the reachable graphs. There is also support for model checking [BCKL07]: Using the
k-covering, safety properties can be checked, and the k-truncation may be able to check
liveness properties, though no proof of concept seems to exist.

The method has been implemented in the tool AUGUR [KK05, KK08b], with which
the authors were able to analyze a number of examples (see [KK08a, Section 7] for a list).
Where it performs better than ASTRA is the firewall example with locations on both sides
having the same label. A weakness is that AUGUR does not support negative application
conditions, as it would require inhibitor arcs in the Petri graph [KK05, Section 2], which
would make reachability undecidable in general. An interesting extension is their support
for attributed hypergraphs [KK08c]. It should be possible to add this feature to ASTRA
in a similar way.

It is an interesting question whether ideas from the Petri graph approach and cluster
abstraction could be combined. In particular, it may be interesting to investigate whether
cluster Petri graphs could work, where cluster are places.

6.2.4 Canonical abstraction

Canonical abstraction [SRW99, SRW02] was originally proposed as a shape analysis
method for heaps. It is based on logical predicates that express unary properties of and
binary relations among the heap objects, in particular stack references, points-to and
reachability. The properties can be interpreted as node and edge attributes, allowing
the heap to be represented as a graph. The abstraction summarizes objects if they
have the same canonical name (which consists of the values of the finite number of
properties). Binary predicates are then abstracted using three-valued logic (which avoids
the problems that partner abstraction has in non-friendly cases), quite similar to how
cluster abstraction handles the peripheral edges. The abstraction can be parameterized
with user-specified predicates; the analysis then lifts them to the abstract.

Canonical abstraction has been implemented in the tool TVLA [LARSW00]. Ex-
tensions of the tool allow decomposition of the heap into (weakly-)connected compo-
nents [MBC+07], the same idea as used in partner abstraction, or into a finite number of
overlapping components according to location selection predicates [MLAS+08]. TVLA
works well with single-threaded programs, but shape analysis of programs with an un-
bounded number of threads manipulating an unbounded shared heap leads to state-space
explosion even for trivial cases unless TVLA is extended to thread-quantified invari-
ants [BLAM+08]. However, this still requires modeling each direct relationship between
threads (which is our setting) over the shared heap. Implementing cluster abstraction
with basic TVLA seems not to be feasible either, as the number of abstraction predicates
needed would be exponential in the number of edge labels.

With an extension, TVLA outputs a transition system that can be used for analysis
of safety [Yah01, Yah13] and liveness [YRSW03] properties, although the latter has met

61

6 Further notes on related work

some skepticism [Wac05, Section 5.5].
As the shapes of canonical abstraction are graphs, it seems natural to use the tool for

analysis of graph transformation systems. A front-end [SWW10] allows the specification
of graph transformation rules in TVLA instead of actions.

6.2.5 Counter and environment abstraction

Counter abstraction [PXZ02] and environment abstraction [CTV06] are directly motivated
by model checking and capture only a minimum of necessary information about the
system structure. Counter abstraction abstracts the state of the system as a list of
multiplicities that count the number of processes in each of the possible process states.
Environment abstraction supports relations among processes and takes a “Ptolemaic”
view of the system, abstracting it as the state of one specific process and how it relates
to its “environment”, that is, for each of the relations in the system, a list of states of the
other processes to which it holds. The idea is very close to cluster abstraction. One of
its benefits is the ability to treat different relations independently from each other, thus
reducing the state space, while cluster abstraction preserves the exact set of edges among
the core and the periphery (environment abstraction can still do that, if one uses one
relation per set of edges, so it is more powerful). On the other hand, in contrast to cluster
abstraction, environment abstraction preserves no information about the relations among
processes in the environment. The approaches can prove safety and liveness properties of
the Szymanski and Lamport’s Bakery algorithms.

6.2.6 Other related abstractions

Cherem and Rugina [CR07] propose a local abstraction of heaps that tracks for each heap
cell reference counts of that cell, reference counts for the neighbor cells, and the points-to
relations between the cell and its neighbors. They prove invariants of doubly-linked lists.
Again, no relations among neighbors are captured by the abstraction.

Ideal abstraction [WZH10, ZWH12] overapproximates the reachable states of depth-
bounded systems, the class of well-structured transition systems (WSTS) with a bound
on the length of the longest acyclic path. In fact, this class of systems seems to be a
superset of the friendly systems of Bauer, where not only nodes, but entire structures
can be summarized. Based on the same idea, fair termination can be proven [BKWZ13].
Cluster abstraction, in contrast, can analyze systems that do are not depth-bounded,
and the merge protocol is one of them, unless one uses a simplification like the one that
partner abstraction can do. Further, cluster abstraction is well-suited for depth-bounded
systems, since the overlap can preserve the exact paths if they are bounded by a length.
On the other hand, cluster abstraction cannot preserve cycles of length bounded by more
than 3.

Saksena et al. use symbolic backward reachability analysis to check for undesirable
global configurations of the topology. Their method is not guaranteed to terminate, but
capable of proving loop freedom of an ad hoc routing protocol.

62

6.2 Related abstractions

König and Stückrath [KS12] study a subclass of graph transformation systems
with negative application conditions that are well-structured with respect to the minor
ordering. Starting with a bad graph, they check by backwards search whether the start
graph is reachable. The method does not terminate for all types of negative application
conditions.

Rieger and Noll [RN08] analyze heaps by backward hyperedge replacement. They
introduce an upper bound on the size of the heap, beyond which a sink hole represents
an arbitrary subgraph.

Meyer [Mey08] analyzes a class of pi calculus systems by translating them to Petri
nets. The class is characterized by exhibiting only finitely many patterns of connections
at runtime.

Steenken et al. [SWW11] annotate abstract shape graphs with additional shape
constraints to obtain a sound and complete “abstraction”. Their analysis does not
necessarily terminate. It is unclear whether infinite-state graph transformation systems
can be evaluated.

Venet [Ven98] analyzes, by abstract interpretation, unbounded topologies for a class
of friendly pi calculus systems.

Feret [Fer00, Fer05] analyzes, by abstract interpretation, whether private information
on mobile systems in hostile contexts, as specified in pi calculus, can be communicated
only to authorized agents. It is unclear whether the method has been tested in practice.

63

7 Conclusions

7.1 Summary of contributions

This thesis presented the theory of cluster abstraction, as well as ASTRA, its implementa-
tion. Practical evaluation showed that cluster abstraction is precise enough to analyze
several versions of the merge protocol, a protocol with typical features of distributed
message-passing systems that consist of an unbounded number of processes. Various
benchmarks from the literature could be analyzed as well with the method. A less precise
variant of cluster abstraction, star abstraction, could already analyze a significant part of
the merge protocol, though not the entire protocol. The ASTRA implementation is the
first tool for abstract graph transformation that is not subject to friendliness criteria, that
supports negative application conditions and that can cope with unbounded concurrent
processes at the same time.

Cluster abstraction abstracts a graph by considering, for each node, its immediate
neighborhood and relationships among the neighbors. The success of this abstraction
is to be explained by the fact that human designers follow a “Ptolemaic” approach, by
taking the view of the objects under consideration and how they relate to their immediate
neighbors, but not further.

7.2 Future work

7.2.1 Cluster count

It should often be possible to preserve, for each cluster, whether each concrete graph
has at most one node with local abstraction being (or subsumed by) that cluster; i.e.,
whether the cluster is unique. Initially, that property can be obtained for nodes in the
start graph. (Note that, with the naive abstraction, the start graph was treated the same
as the right hand side of a rule with empty left hand side.) Each abstract rule application
has to check for preservation of the property; i.e., if a unique cluster is modified by rule
application, the modified cluster can, under some circumstances, also be assumed unique.
In particular, the abstract transition system must not have incoming edges which are
endpoints of paths from two different source clusters. The hardest part is to figure out
whether a cluster modified in the periphery is unique, but it is possible to take care
about that if the rules ensure that the core label is unique.

65

7 Conclusions

7.2.2 Model checking

The non-existence of a subgraph in all reachable graphs can be checked by adding rules
with the left hand side being the subgraph and the right hand side adding a node with
an error label. Temporal safety can be checked by keeping track of the cluster evolution,
yielding an abstract labeled transition system with clusters as states and rule applications
as transitions. The basic idea for safety is: If a certain state cannot be reached in the
overapproximation, then it cannot be reached in the concrete. Interestingly, a similar
idea allows liveness to be checked: If a certain state is reached in all paths even in the
overapproximation, then it must also be reached in the concrete. For this, we need to
assume compassion and justice properties (see [CTV06] for more details), and ensure
that abstract loops are executed only a bounded number of times. In particular, the
properties ensure that a rule that is always enabled (can always be applied) must be
applied after a finite number of steps. Further, if a rule changes exactly one label in
a loop, then it can be executed only a bounded number of times, since the number of
processes is bounded. Finally, we need to ensure local progress, which can be done by
adding complementary rules doing busy wait. Rules with empty left-hand side guarantee
existence.

7.2.3 Closure

It is an interesting question and important to compute the best abstract transformer
whether, given a set of clusters, a concrete graph exists where local abstraction for some
node yields a certain cluster, that is, whether a “closure” exists for that cluster. Reineke
and Puzhay have found out that this problem is decidable for cluster sets where all
periphery is 1

2
, since it can be reduced to a set of linear Diophantine equations. If the

condition does not hold, the problem seems to be undecidable, since it can be reduced
to Post’s correspondence problem. However, decidability is still given if we take into
account cluster multiplicity, since the number of cases is bounded where clusters have
bounded materialization. Clusters with constraints other than 1

2
can be taken partly into

account, by annotating the spokes with the set of possible connecting clusters, according
to a bounded closure check.

66

Bibliography

[Bac07] Peter Backes. dcs2gts – An interface between XML-coded DCS protocols
and the hiralysis representation of graph transformation grammars. Fopra
report, Saarland University, January 2007. 53

[Bac08] Peter Backes. Topology analysis of dynamic communication systems.
Diploma thesis, Saarland University, March 2008. 15, 35, 36, 58

[Bau06] Jörg Bauer. Analysis of Communication Topologies by Partner Abstraction.
PhD thesis, Saarland University, 2006. 15, 49, 51, 56, 58

[BBKR08] Jörg Bauer, Iovka Boneva, Marcos Kurbán, and Arend Rensink. A Modal-
Logic Based Graph Abstraction. In Hartmut Ehrig, Reiko Heckel, Grzegorz
Rozenberg, and Gabriele Taentzer, editors, ICGT 2008, volume 5214 of
LNCS, pages 321–335. Springer Berlin Heidelberg, 2008. 59

[BBR09] Jörg Bauer, Iovka Boneva, and Arend Rensink. Graph abstraction by daisy
patterns. Privately circulated, May 2009. 36, 60

[BCK01] Paolo Baldan, Andrea Corradini, and Barbara König. A Static Analysis
Technique for Graph Transformation Systems. In Kim G. Larsen and Mogens
Nielsen, editors, CONCUR 2001, volume 2154 of LNCS, pages 381–395.
Springer Berlin Heidelberg, January 2001. 60

[BCK08] Paolo Baldan, Andrea Corradini, and Barbara König. A framework for the
verification of infinite-state graph transformation systems. Information and
Computation, 206(7):869–907, July 2008. 60

[BCKL07] Paolo Baldan, Andrea Corradini, Barbara König, and Alberto Lluch La-
fuente. A Temporal Graph Logic for Verification of Graph Transformation
Systems. In José Luiz Fiadeiro and Pierre-Yves Schobbens, editors, WADT
2006, volume 4409 of LNCS, pages 1–20. Springer Berlin Heidelberg, January
2007. 61

[BK02] Paolo Baldan and Barbara König. Approximating the behaviour of graph
transformation systems. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg
Kreowski, and Grzegorz Rozenberg, editors, ICGT 2002, volume 2505 of
LNCS, pages 14–29, January 2002. 36, 60

67

Bibliography

[BKK+12] Iovka Boneva, Jörg Kreiker, Marcos Kurbán, Arend Rensink, and Eduardo
Zambon. Graph abstraction and abstract graph transformations (amended
version). Technical Report TR-CTIT-12-26, University of Twente, Enschede,
the Netherlands, October 2012. 36, 59

[BKWZ13] Kshitij Bansal, Eric Koskinen, Thomas Wies, and Damien Zufferey. Struc-
tural counter abstraction. In Nir Piterman and Scott A. Smolka, editors,
TACAS 2013, volume 7795 of LNCS, pages 62–77, 2013. 62

[BLAM+08] J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv.
Thread quantification for concurrent shape analysis. In Aarti Gupta and
Sharad Malik, editors, CAV 2008, volume 5123 of LNCS, pages 399–413,
2008. 37, 61

[BR10a] Peter Backes and Jan Reineke. Abstract topology analysis of the join phase
of the merge protocol [using astra]. In TTC 2010, volume WP10-03 of CTIT
Workshop Proceedings, pages 127–133, Enschede, 2010. University of Twente.
2, 15, 34, 36, 50

[BR10b] Peter Backes and Jan Reineke. A graph transformation case study for the
topology analysis of dynamic communication systems. In TTC 2010, volume
WP10-03 of CTIT Workshop Proceedings, pages 107–118, Enschede, 2010.
University of Twente. 2, 3, 25, 34

[BR15a] Peter Backes and Jan Reineke. Analysis of Infinite-State Graph Transfor-
mation Systems by Cluster Abstraction. In Deepak D’Souza, Akash Lal,
and Kim Guldstrand Larsen, editors, VMCAI 2015, volume 8931 of LNCS,
pages 135–152. Springer Berlin Heidelberg, January 2015. 2, 21, 50, 53

[BR15b] Peter Backes and Jan Reineke. ASTRA : A tool for abstract interpretation
of graph transformation systems. In SPIN 2015, volume 9232 of LNCS,
2015. 2, 49

[BRKB07] I. B Boneva, A. Rensink, M. E Kurban, and J. Bauer. Graph Abstraction
and Abstract Graph Transformation. Internal report, University of Twente,
2007. 4

[BSTW06] Jörg Bauer, Ina Schaefer, Tobe Toben, and Bernd Westphal. Specification
and Verification of Dynamic Communication Systems. In ACSD 2006, pages
189–200, Los Alamitos, CA, USA, 2006. IEEE Computer Society. 5, 52

[BTW07] Jörg Bauer, Tobe Toben, and Bernd Westphal. Mind the Shapes: Abstrac-
tion Refinement via Topology Invariants. Reports of SFB/TR 14 AVACS 22,
SFB/TR 14 AVACS, June 2007. 53

[BW07] Jörg Bauer and Reinhard Wilhelm. Static analysis of dynamic communica-
tion systems by partner abstraction. In Hanne Riis Nielson and Gilberto

68

Bibliography

Filé, editors, SAS 2007, volume 4634 of LNCS, pages 249–264, 2007. 3, 15,
36, 58

[CMR+96] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko
Heckel, and Michael Löwe. Algebraic Approaches to Graph Transforma-
tion, Part I: Basic Concepts and Double Pushout Approach. In Grzegorz
Rozenberg, editor, Handbook of graph grammars and computing by graph
transformation, volume 1, pages 163–246. World Scientific, 1996. 55

[CR07] Sigmund Cherem and Radu Rugina. Maintaining doubly-linked list invari-
ants in shape analysis with local reasoning. In Byron Cook and Andreas
Podelski, editors, VMCAI 2007, volume 4349 of LNCS, pages 234–250, 2007.
36, 62

[CTV06] Edmund Clarke, Muralidhar Talupur, and Helmut Veith. Environment
abstraction for parameterized verification. In E. Allen Emerson and Kedar S.
Namjoshi, editors, VMCAI 2006, volume 3855 of LNCS, pages 126–141,
2006. 36, 62, 66

[EHK+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro,
Annika Wagner, and Andrea Corradini. Algebraic Approaches to Graph
Transformation - Part II: Single Pushout Approach and Comparison with
Double Pushout Approach. In Grzegorz Rozenberg, editor, Handbook of
graph grammars and computing by graph transformation, volume 1, pages
247–312. World Scientific, 1997. 55

[Fer00] Jérôme Feret. Confidentiality Analysis of Mobile Systems. In Jens Palsberg,
editor, SAS 2000, volume 1824, pages 135–154, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg. 63

[Fer05] Jérôme Feret. Analysis of mobile systems by abstract interpretation. PhD,
École Polytechnique, Paris, February 2005. 63

[HESV91] Ann Hsu, Farokh Eskafi, Sonia Sachs, and Pravin Varaiya. Design of platoon
maneuver protocols for IVHS. Technical report, Institute of Transportation
Studies, UC Berkeley, 1991. 3, 25

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars
with Negative Application Conditions. Fundamenta Informaticae, 26(3):287–
313, January 1996. 55, 56

[HMP01] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph
transformation revisited. Mathematical Structures in Computer Science,
11(05):637–688, October 2001. 55

[HP02] Annegret Habel and Detlef Plump. Relabelling in Graph Transformation.
In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz

69

Bibliography

Rozenberg, editors, Graph Transformation, volume 2505 of LNCS, pages
135–147. Springer Berlin Heidelberg, 2002. 55

[KK05] Barbara König and Vitali Kozioura. Augur—a tool for the analysis of graph
transformation systems. EATCS Bulletin, 87:125–137, 2005. 61

[KK08a] Vitaly Kozyura and Barbara König. Augur 2—A tool for the analysis of
(attributed) graph transformation systems using approximative unfolding
techniques, April 2008. 35, 61

[KK08b] Barbara König and Vitali Kozioura. Augur 2—a new version of a tool for
the analysis of graph transformation systems. In Roberto Bruni and Dániel
Varró, editors, GT-VMT 2006, volume 2011 of ENTCS, pages 201–210,
2008. 36, 49, 61

[KK08c] Barbara König and Vitali Kozioura. Towards the Verification of Attributed
Graph Transformation Systems. In Hartmut Ehrig, Reiko Heckel, Grzegorz
Rozenberg, and Gabriele Taentzer, editors, ICGT 2008, volume 5214 of
LNCS, pages 305–320. Springer Berlin Heidelberg, January 2008. 61

[KS12] Barbara König and Jan Stückrath. Well-Structured Graph Transformation
Systems with Negative Application Conditions. In Hartmut Ehrig, Gregor
Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, ICGT 2012,
volume 7562 of LNCS, pages 81–95. Springer Berlin Heidelberg, January
2012. 63

[LARSW00] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting
static analysis to work for verification: A case study. In Proceedings of
the 2000 ACM SIGSOFT international symposium on Software testing and
analysis, pages 26–38, Portland, Oregon, United States, 2000. ACM. 61

[MBC+07] R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv. Shape
analysis by graph decomposition. In Michael Huth Orna Grumberg, editor,
TACAS 2007, volume 4424 of LNCS, pages 3–18, 2007. 61

[Mey08] Roland Meyer. Structural Stationarity in the π-Calculus. PhD thesis,
University of Oldenburg, 2008. 63

[MLAS+08] Roman Manevich, Tal Lev-Ami, Mooly Sagiv, Ganesan Ramalingam, and
Josh Berdine. Heap decomposition for concurrent shape analysis. In María
Alpuente and Germán Vidal, editors, SAS 2008, volume 5079 of LNCS,
pages 363–377, 2008. 37, 61

[PXZ02] Amir Pnueli, Jessie Xu, and Lenore Zuck. Liveness with (0,1, ∞)-Counter
Abstraction. In Ed Brinksma and Kim Guldstrand Larsen, editors, CAV
2002, volume 2404 of LNCS, pages 107–122. Springer Berlin Heidelberg,
January 2002. 62

70

Bibliography

[Rak06] Jan Rakow. Verification of Dynamic Communication Systems. Master,
Carl-von-Ossietzky Universität Oldenburg, April 2006. 53

[RD06] Arend Rensink and Dino Distefano. Abstract graph transformation. In
SVV 2005, ENTCS, pages 39–59, May 2006. 36, 59

[RN08] Stefan Rieger and Thomas Noll. Abstracting Complex Data Structures
by Hyperedge Replacement. In Hartmut Ehrig, Reiko Heckel, Grzegorz
Rozenberg, and Gabriele Taentzer, editors, ICGT 2008, volume 5214 of
LNCS, pages 69–83, 2008. 63

[RZ10] Arend Rensink and Eduardo Zambon. Neighbourhood Abstraction in
GROOVE - Tool Paper, 2010. 59

[RZ11] A. Rensink and Eduardo Zambon. Neighbourhood Abstraction in GROOVE,
April 2011. 59

[RZ12] Arend Rensink and Eduardo Zambon. Pattern-Based Graph Abstraction. In
Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozen-
berg, editors, ICGT 2012, volume 7562 of LNCS, pages 66–80, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. 60

[Sch97] Andy Schürr. Programmed Graph Replacement Systems. In Grzegorz
Rozenberg, editor, Handbook on Graph Grammars: Foundations, pages
479–546. World Scientific, 1997. 57, 58

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL 1999,
pages 105–118, New York, NY, USA, 1999. ACM. 61

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–
298, May 2002. 37, 61

[SWJ08] Mayank Saksena, Oskar Wibling, and Bengt Jonsson. Graph grammar
modeling and verification of ad hoc routing protocols. In C. R. Ramakrishnan
and Jakob Rehof, editors, TACAS 2008, volume 4963 of LNCS, pages 18–32,
2008. 37

[SWW10] Dominik Steenken, Heike Wehrheim, and Daniel Wonisch. Towards a shape
analysis for graph transformation systems. CoRR abs/1010.4423, arXiv,
2010. 62

[SWW11] Dominik Steenken, Heike Wehrheim, and Daniel Wonisch. Sound and
Complete Abstract Graph Transformation. In Adenilso Simao and Carroll
Morgan, editors, SBMF 2011, volume 7021 of LNCS, pages 92–107, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. 63

71

Bibliography

[Tob08] Tobe Toben. Counterexample Guided Spotlight Abstraction Refinement.
In Kenji Suzuki, Teruo Higashino, Keiichi Yasumoto, and Khaled El-Fakih,
editors, FORTE 2008, volume 5048 of LNCS, pages 21–36. Springer Berlin
Heidelberg, 2008. 5

[Ven98] Arnaud Venet. Automatic Determination of Communication Topologies in
Mobile Systems. In Giorgio Levi, editor, SAS 1998, volume 1503 of LNCS,
pages 152–167. pringer Berlin Heidelberg, 1998. 63

[Wac05] Björn Wachter. Checking universally quantified temporal properties with
three-valued analysis. Diploma, Universität des Saarlandes, 2005. 62

[WZH10] Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward
Analysis of Depth-Bounded Processes. In Luke Ong, editor, FOSSACS
2010, volume 6014, pages 94–108, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. 62

[Yah01] Eran Yahav. Verifying safety properties of concurrent Java programs using
3-valued logic. ACM SIGPLAN Notices, 36:27–40, March 2001. 61

[Yah13] Eran Yahav. Solving The Apprentice Challenge with 3vmc, January 2013.
61

[YRSW03] Eran Yahav, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Verifying
Temporal Heap Properties Specified via Evolution Logic. In Pierpaolo
Degano, editor, ESOP 2003, volume 2618 of LNCS, pages 204–222. Springer
Berlin Heidelberg, January 2003. 61

[Zam13] Eduardo Zambon. Abstract graph transformation : theory and practice. PhD
thesis, University of Twente, 2013. 35, 36, 49, 60

[ZWH12] Damien Zufferey, Thomas Wies, and Thomas A. Henzinger. Ideal abstrac-
tions for well-structured transition systems. In Viktor Kuncak and Andrey
Rybalchenko, editors, VMCAI 2012, volume 7148 of LNCS, pages 445–460,
January 2012. 37, 62

72

	Introduction
	A Graph Transformation Case Study for the Topology Analysis of Dynamic Communication Systems
	Introduction
	Context of the case
	Purpose from a larger perspective
	Challenges that are involved

	The subject to be modeled
	Dynamic communication systems
	The merge protocol

	Implementation remarks
	Example topologies
	Goals
	Core characteristics
	How the model should be used
	Extensions
	Evaluation criteria

	Abstract topology analysis of the join phase of the merge protocol
	Introduction
	Star abstraction
	Results
	Property evaluation
	Conclusion

	Analysis of infinite-state graph transformation systems by cluster abstraction
	Introduction
	Background
	Graph Preliminaries
	Graph Transformation Systems
	The Merge Protocol

	Analysis
	Cluster Abstraction
	Abstract Transformer

	Experimental Evaluation
	Implementation
	Selection of Benchmarks
	Analysis Results

	Related Work
	Conclusions and Future Work
	Appendix 1: Notes About Evaluation
	Appendix 2: Proof of Main Theorem
	Appendix 3: Relations

	ASTRA: A tool for abstract interpretation of graph transformation systems
	Introduction
	Cluster abstraction
	Architecture and Usage
	Input file format
	Command-line interface
	Status report
	Output file formats

	Experimental Evaluation
	Conclusions and Future Work

	Further notes on related work
	Graph transformation framework
	Relation to the algebraic approach
	Relation to the algorithmic approach

	Related abstractions
	Partner abstraction
	Neighborhood abstraction and pattern abstraction
	Petri graph abstraction
	Canonical abstraction
	Counter and environment abstraction
	Other related abstractions

	Conclusions
	Summary of contributions
	Future work
	Cluster count
	Model checking
	Closure

	Bibliography

