
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Establishing Mandatory Access Control
on Android OS

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

von
Sven Bugiel

Saarbrücken,
August 2015

Tag des Kolloquiums: 14. Dezember 2015

Dekan: Prof. Dr. Markus Bläser

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Matteo Maffei
Berichterstattende: Prof. Dr. Michael Backes

Prof. Dr. Patrick Drew McDaniel
Dr. Christian Rossow

Akademischer Mitarbeiter: Dr. Giancarlo Pellegrino

Zusammenfassung

Gemeinsame Charakteristik aller modernen mobilen Betriebssysteme für sog. ”smart
devices” ist eine umfangreiche Diensteschicht, die funktionsreiche Programmierschnitt-
stellen zu der Gerätehardware sowie den Endbenutzerdaten (z.B. Adressbuch) bereitstellt.
Um die Systemintegrität, die Privatsphäre des Endbenutzers, sowie die Abgrenzung
sich gegenseitig nicht vertrauender Apps effektiv zu gewährleisten, ist es unabdingbar,
dass diese Diensteschichten rigide Sicherheitspolitiken umsetzen.

Diese Dissertation präsentiert mehrere Forschungsarbeiten, die “Mandatory Access
Control” (MAC) in die Diensteschicht des weit verbreiteten Android Betriebssystems
integrieren. Die ersten dieser Arbeiten schufen ein grundlegendes Verständnis für die
Integration von Zugriffsmechanismen in das Android Betriebssystem und waren auf sehr
spezielle Anwendungsszenarien ausgerichtet. Neuere Arbeiten haben hingegen wichtige
Erkenntnisse und Designprinzipien etablierter MAC Architekturen auf herkömmlichen
Betriebssystemen für Android adaptiert und mit den speziellen Sicherheitsanforderungen
mobiler Systeme verflochten. Die letzte Arbeit in dieser Reihe hat zudem Androids IPC
Mechanismus untersucht und dahingehend ergänzt, dass er bessere Informationen über
den Ursprung von IPC Nachrichten bereitstellt. Diese Informationen sind fundamental
für jedwede Art von Zugriffskontrolle auf Android. Zuletzt diskutiert diese Dissertation
aktuelle und zukünftige Forschungsthemen für Zugriffskontrollen auf modernen, mobilen
Endgeräten.

iii

Abstract

Common characteristic of all mobile operating systems for smart devices is an
extensive middleware that provides a feature-rich API for the onboard sensors and user’s
data (e.g., contacts). To effectively protect the device’s integrity, the user’s privacy, and
to ensure non-interference between mutually distrusting apps, it is imperative that the
middleware enforces rigid security and privacy policies.

This thesis presents a line of work that integrates mandatory access control (MAC)
mechanisms into the middleware of the popular, open source Android OS. While our
early work established a basic understanding for the integration of enforcement hooks
and targeted very specific use-cases, such as multi-persona phones, our most recent
works adopt important lessons learned and design patterns from established MAC
architectures on commodity systems and intertwine them with the particular security
requirements of mobile OS architectures like Android. Our most recent work also
complemented the Android IPC mechanism with provisioning of better provenance
information on the origins of IPC communication. Such information is a crucial building
block for any access control mechanism on Android. Lastly, this dissertation outlines
further directions of ongoing and future research on access control on modern mobile
operating systems.

v

Background of this Dissertation

This dissertation is based on the papers mentioned in the following. I contributed to all
papers as one of the main authors.

The author had the initial idea and motivation for the TrustDroid [P4] work,
i.e., establishing a lightweight domain isolation on Android based on mandatory access
control, and defined the fundamental requirement that this access control has to be
multi-tiered at the middleware and kernel-level. The author was further responsible
for major parts of the design, the implementation, as well as the security discussion
and evaluation of TrustDroid. Bhargava Shastry contributed to the TrustDroid
work with his port of TOMOYO Linux to Android. Stephan Heuser contributed to this
work with his idea of controlling the Linux netfilter from the middleware. Lucas Davi
contributed with general writing tasks and was involved in research on related work.
Alexandra Dmitrienko was involved in discussions about design decisions. In general all
authors performed reviews of the paper.

The author and Alexandra Dmitrienko are the two main co-authors of the XMan-
Droid [P5, T4] work. Alexandra Dmitrienko contributed (with strong support by
Lucas Davi), as follow-up to her previous work on privilege escalation attacks [30],
the initial idea, attack classification, and conceptual design. She further designed the
extension to the VALID policy language and derived example policies for her attack
classification. The author contributed to this work several design extensions (Intent
tagging, authorization hooks in middleware components, and data filtering by content
provider components) and was mainly responsible for the implementation and evaluation
(together with Thomas Fischer and Bhargava Shastry). Lucas Davi further contributed
a comprehensive study of related work to this work. All authors performed reviews of
the paper.

The FlaskDroid [P3, T3, T2] concept was developed in a joint effort between
the author, Stephan Heuser, and Ahmad-Reza Sadeghi, with initial contributions from
Bhargava Shastry. External input, which influenced the initial idea and consequently also
the design, was derived from discussions with Stephen Smalley on SE Android and with
N. Asokan on context-aware policies. More specifically, the author was responsible for
the requirements analysis and problem description and developing the type enforcement
policy language for the Android middleware. The author was, moreover, responsible for
major parts of the implementation of the enforcement framework, of some use-cases, and
for major parts of the evaluation. Stephan Heuser has several important contributions
to the design and implementation, in particular the context provider interface, the
domain socket interface of the user space security server, and the extensions to the
AIDL compiler. He was further involved in implementing several of the user space
object managers and worked on the stabilization of the implementation for the open
source release. Stephan Heuser further contributed the attack testbed to the evaluation
of FlaskDroid and contributed the implementation of the “Phonebooth mode” and
“Privacy-enhanced media store” user-cases as well as parts of the “Secure Logs” use-case.

The author was solely responsible for the requirements analysis, design, implemen-
tation, and evaluation of the Android Security Framework [P2, T1]. Philipp
von Styp-Rekowsky contributed to this work with his integration of the AppGuard [7]

vii

library for inlined authorization hooks into the FlaskDroid architecture as well as
implementing the AppGuard use-case. All authors performed reviews of the paper.

The author was exclusively responsible for motivation, requirements analysis, design,
implementation, and evaluation of Scippa [P1].

[P1] Backes, M., Bugiel, S., and Gerling, S. Scippa: System-Centric IPC Prove-
nance on Android. In: Proceedings of the 30th Annual Computer Security Appli-
cations Conference (ACSAC 2014). ACM, 2014.

[P2] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. Android
Security Framework: Extensible Multi-Layered Access Control on Android. In:
Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC 2014). ACM, 2014.

[P3] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Flexible and Fine-Grained Manda-
tory Access Control on Android for Diverse Security and Privacy Policies. In:
Proceedings of the 22nd Usenix Security Symposium (SEC 2013). USENIX Asso-
ciation, 2013.

[P4] Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.-R., and Shas-
try, B. Practical and Lightweight Domain Isolation on Android. In: Proceedings
of the 1st ACM CCS Workshop on Security and Privacy in Mobile Devices (SPSM
2011). ACM, 2011.

[P5] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., and
Shastry, B. Towards Taming Privilege-Escalation Attacks on Android. In: Pro-
ceedings of the 19th Annual Network and Distributed System Security Symposium
(NDSS 2012). The Internet Society, 2012.

Further Contributions of the Author

[S1] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and Styp-Rekowsky, P.
von. Boxify: Full-fledged App Sandboxing for Stock Android. In: Proceedings of
the 24th USENIX Security Symposium (SEC 2015). USENIX Association, 2015.

[S2] Bleikertz, S., Bugiel, S., Ideler, H., Nürnberger, S., and Sadeghi, A.-R.
Client-controlled Cryptography-as-a-Service in the Cloud. In: Proceedings of the
11th International Conference on Applied Cryptography and Network Security
(ACNS 2013). Springer-Verlag, 2013.

[S3] Bugiel, S., Davi, L., and Schulz, S. Scalable Trust Establishment with Software
Reputation. In: Proceedings of the 6th Annual Workshop on Scalable Trusted
Computing (STC 2011). ACM, 2011.

[S4] Bugiel, S. and Ekberg, J.-E. Implementing an Application-Specific Credential
Platform Using Late-Launched Mobile Trusted Module. In: Proceedings of the
5th Annual Workshop on Scalable Trusted Computing (STC 2010). ACM, 2010.

[S5] Bugiel, S., Dmitrienko, A., Kostiainen, K., Sadeghi, A.-R., and Winandy,
M. TruWalletM: Secure Web Authentication on Mobile Platforms. In: Proceedings
of the 2nd Conference on Trusted Systems (INTRUST 2010). Springer-Verlag,
2010.

viii

[S6] Bugiel, S., Pöppelmann, T., Nürnberger, S., Sadeghi, A.-R., and Schnei-
der, T. AmazonIA: When Elasticity Snaps Back. In: Proceedings of the 18th
ACM Conference on Computer and Communication Security (CCS 2011). ACM,
2011.

[S7] Bugiel, S., Nürnberger, S., Sadeghi, A.-R., and Schneider, T. Twin Clouds:
Secure Cloud Computing with Low Latency. In: Proceedings of the Communica-
tions and Multimedia Security Conference (CMS 2011). Springer-Verlag, 2011.

[S8] Ekberg, J.-E. and Bugiel, S. Trust in a Small Package: Minimized MRTM
Software Implementation for Mobile Secure Environments. In: Proceedings of the
4th Annual Workshop on Scalable Trusted Computing (STC 2009). ACM, 2009.

Technical Reports of the Author

[T1] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. Android
Security Framework: Enabling Generic and Extensible Access Control on Android.
Tech. rep. A/01/2014. Saarland University, Apr. 2014.

[T2] Bugiel, S., Heuser, S., and Sadeghi, A.-R. myTunes: Semantically Linked
and User-Centric Fine-Grained Privacy Control on Android. Tech. rep. TUD-
CS-2012-0226. Center for Advanced Security Research Darmstadt, Nov. 2012.

[T3] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Towards a Framework for Android
Security Modules: Extending SE Android Type Enforcement to Android Middle-
ware. Tech. rep. TUD-CS-2012-0231. Center for Advanced Security Research
Darmstadt, Dec. 2012.

[T4] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., and Sadeghi, A.-R.
XManDroid: A New Android Evolution to Mitigate Privilege Escalation Attacks.
Tech. rep. TR-2011-04. Technische Universität Darmstadt, 2011.

ix

Acknowledgments

My first thanks go to my current advisor Michael Backes and to my former advisor
Ahmad-Reza Sadeghi. Both taught me important lessons for a career in academia and
profoundly shaped my development as a PhD student. To Ahmad, I am grateful for
offering me my first research position at the System Security Lab at CASED. To Michael,
I am very grateful for providing me with the opportunity to continue my PhD studies
in the Information Security & Cryptography Group/CISPA at Saarland University after
I left CASED. Michael is very passionate about IT security research but also education
and it is a great pleasure to work with him and to learn from him. Particularly, I am
appreciative that he confided in me from the beginning. Altogether, this created an
inspiring and enjoyable work environment, which greatly influenced my decision to stay
in academia—something I could not have imagined not all that long ago.

Naturally, many thanks also go to my closest collaborators and co-authors, without
whom this thesis would not have been possible and with whom I had really great and
fruitful discussions on Android security: Erik Derr, Thomas Fischer, Sebastian Gerling,
Stephan Heuser, Bhargava Shastry, and Philipp von Styp-Rekowsky. They made the
research work for the papers in this thesis fun and I bonded with them beyond our daily
office lives to enjoy together a beer, a round of laser tag, or even playing Mario Kart on
the walls of the neighbor’s building. Similarly, I want to thank the long list of all other
co-authors of my other publications: my very good, long-term friend Sören Bleikertz,
Lucas Davi, Jan-Erik Ekberg, Christian Hammer, Hugo Ideler, Kari Kostiainen, Thomas
Pöppelmann, Steffen Schulz, Thomas Schneider, Oliver Schranz, and Marcel Winandy.
In this sense, I am also thankful to the rest of my (former) colleagues from the System
Security Lab and ISC Group for creating such a nice working environment. In particular,
I want to give special credits to my (former) colleagues Stephan Heuser, Ünal Kocabaş,
Stefan Nürnberger, Oliver Schranz, and Milivoj Simeonovski, with whom I had the
pleasure to share an office and who helped me transforming our office into a Nerf gun
armory and Mate tea pantry or discovering the nightlife of Saarbrücken. Especially
Stefan Nürnberger requires special thanks for taking the step together to leave Darmstadt
and to join Michael’s group at Saarland University. Special thanks go also to our team
assistant Bettina Balthasar, who took so many bureaucratic tasks off my shoulders and
whose cheerful nature and wonderful laugh brightened every office day.

I also would like to acknowledge N. Asokan, who gave me the opportunity to work
as a research intern in the (unfortunately disbanded) Trustworthy Mobile Platforms
group at Nokia Research, and Jan-Erik Ekberg, who instructed me during my internship.
Together, they created a wonderful and highly interesting work environment for me and
greatly influenced my decision to continue a career in research in the first place.

Additionally, I would like to acknowledge N. Asokan, William Enck, and Stephen
Smalley, who reviewed some of the works in this thesis and gave valuable advice and
feedback that improved those works.

Moreover, I like to express my gratitude towards Patrick McDaniel and Christian
Rossow, who agreed to be the referees of this thesis.

Last but not least, I am deeply grateful to my parents for their unconditional love,
their faith in me, and their advice in all situations where I had to leave the ivory tower.

xi

Without them, I would not have been able to go my own way during these last years
and would certainly not stand where I stand today.

xii

Contents

1 Introduction 1

2 Technical Background on Android 7
2.1 Primer on Android . 9

2.1.1 Android Software Stack . 9
2.1.2 Android Applications . 10

2.2 Android’s Security Philosophy . 11

3 TrustDroid 15
3.1 Motivation . 17
3.2 Problem Description . 17
3.3 Contributions . 19
3.4 Technical Problem Description and Model 20

3.4.1 Adversary and Trust Model . 20
3.4.2 Objectives and Requirements . 21
3.4.3 Assumptions . 21

3.5 Design of TrustDroid . 21
3.5.1 Policy Manager . 23
3.5.2 Kernel MAC Manager . 26
3.5.3 Firewall Manager . 27

3.6 Implementation and Evaluation . 28
3.6.1 Implementation . 28
3.6.2 Evaluation . 32

3.7 Discussion . 32
3.7.1 Security Considerations . 32
3.7.2 Trusted Computing . 34

3.8 Related work . 34
3.8.1 Status Quo at Time of Publication 34
3.8.2 Related Work Post-Publication 36

3.9 Conclusion . 38

4 XManDroid 39
4.1 Motivation . 41
4.2 Problem Description . 41
4.3 Our Goal and Contributions . 42
4.4 Requirements Analysis and Assumptions 43

xiii

CONTENTS

4.4.1 Adversary Model . 43
4.4.2 Objectives and Requirements . 43
4.4.3 Assumptions . 44

4.5 Framework Architecture . 44
4.5.1 Overview . 44
4.5.2 Architecture Components . 45

4.6 Evaluation . 49
4.6.1 Test methodology . 50
4.6.2 Study of 3rd Party Application Communication 50
4.6.3 Effectiveness . 51
4.6.4 Performance . 52
4.6.5 Impact on 3rd party applications’ usability 53

4.7 Related Work . 54
4.7.1 Status Quo at Time of Publication 54
4.7.2 Related Work Post-Publication 56

4.8 Conclusion . 58

5 FlaskDroid 59
5.1 Motivation . 61
5.2 Challenges and Our Goal . 62
5.3 Contributions . 62
5.4 Primer on SELinux and SE Android . 63

5.4.1 SELinux . 63
5.4.2 SE Android . 65

5.5 Requirements Analysis for Android Security Architectures 66
5.5.1 Adversary Model . 66
5.5.2 Requirements . 67

5.6 FlaskDroid Architecture . 69
5.6.1 Overview . 69
5.6.2 Architecture Components . 70
5.6.3 Policy . 77

5.7 Use-Cases / Instantiations . 85
5.7.1 Privacy Enhanced System Services and Content Providers 86
5.7.2 Multi-level Security . 86
5.7.3 Secure Logs . 87
5.7.4 Firewall and Anti-Virus Apps . 88
5.7.5 Phone Booth Mode . 88
5.7.6 App Developer Policies (Saint) 90

5.8 Evaluation . 92
5.8.1 Policy . 92
5.8.2 Effectiveness . 95
5.8.3 Performance Overhead . 100

5.9 Related Work . 102
5.9.1 Status Quo at Time of Publication 103
5.9.2 Related Work Post-Publication 106

xiv

CONTENTS

5.10 Conclusion . 108

6 Android Security Framework 109
6.1 Motivation . 111
6.2 Problem Description . 111
6.3 Contributions . 111
6.4 Related Work . 113

6.4.1 Extensible Kernel Access Control 113
6.4.2 Android Security . 113

6.5 Requirements Analysis . 114
6.5.1 Policy as code and not data . 114
6.5.2 Policy-agnostic security infrastructure 115

6.6 ASF Architecture . 116
6.6.1 Framework Overview . 116
6.6.2 Framework Infrastructure . 117
6.6.3 Middleware Framework API . 119
6.6.4 Middleware Security Modules . 122
6.6.5 Stackable and Dynamic Loadable Modules 123

6.7 Example Security Modules . 124
6.7.1 AppOps and IntentFirewall . 124
6.7.2 CRePE . 125
6.7.3 XManDroid . 126
6.7.4 Type Enforcement . 127
6.7.5 Inlined Reference Monitoring . 130
6.7.6 Saint . 131
6.7.7 TrustDroid . 132
6.7.8 Data shadowing . 132
6.7.9 Kirin . 133

6.8 Evaluation . 133
6.8.1 Performance . 133
6.8.2 Current Scope and Future Work 135

6.9 Conclusion . 137

7 Scippa 139
7.1 Motivation . 141
7.2 Problem Description . 141
7.3 Contributions . 141
7.4 Binder-Based Inter-App Communication on Android 142

7.4.1 Binder-based ICC . 143
7.5 Technical Problem Description . 145

7.5.1 Message Dispatching . 145
7.5.2 Indirect Communication . 146
7.5.3 Provenance Information vs. Permissions 146
7.5.4 Broader Context of this Thesis 147

7.6 Requirements Analysis . 148

xv

CONTENTS

7.6.1 Adversary Model . 148
7.6.2 Requirements and Challenges . 148

7.7 System-Centric IPC Call-Chains . 149
7.7.1 Establishing Call-Chains . 150
7.7.2 Intra-App Call-Chain Propagation 152
7.7.3 Asynchronous Call-Chain Propagation 153
7.7.4 Accessing Call-Chains from User Space 153
7.7.5 Returning Call-Chains to Message Senders 153

7.8 Evaluation . 154
7.8.1 Experimental Methodology . 154
7.8.2 Performance Impact . 154
7.8.3 Binder IPC Provenance . 156
7.8.4 Discussion and Limitations . 158

7.9 Related Work . 159
7.10 Conclusion . 161

8 Conclusion 163

xvi

List of Figures

2.1 Background: Android software stack 10
2.2 Background: Android’s default security architecture 12

3.1 TrustDroid: Isolation approaches on Android 22
3.2 TrustDroid: TrustDroid architecture 23
3.3 TrustDroid: Coloring and isolation of data 25
3.4 TrustDroid: Coloring of new applications 29

4.1 XManDroid: Framework architecture 45
4.2 XManDroid: Authorization hooks per system component 46
4.3 XManDroid: Example system graph 49
4.4 XManDroid: Visualization of file system access 51
4.5 XManDroid: Visualization of inter-component communication 52

5.1 FlaskDroid: Design concept . 69
5.2 FlaskDroid: FlaskDroid architecture 70
5.3 FlaskDroid: SE Android as building block 71
5.4 FlaskDroid: Examples for enforcing default security model 71
5.5 FlaskDroid: CFD of performance overhead on Android v4.0.4 102
5.6 FlaskDroid: CFD of performance overhead on Android v5.1.1 103

6.1 ASF: ASF architecture . 116
6.2 ASF: Middleware security module structure 122
6.3 ASF: AppOps and IntentFirewall security module 125
6.4 ASF: CRePE security module . 126
6.5 ASF: XManDroid security module . 127
6.6 ASF: FlaskDroid security module . 128
6.7 ASF: Micro-benchmarks . 134
6.8 ASF: Security module performance overhead 136

7.1 Scippa: Binder-based inter-component communication 143
7.2 Scippa: Binder transaction protocol . 144
7.3 Scippa: Availability of caller UID . 145
7.4 Scippa: Indirection in Intent-based ICC 147
7.5 Scippa: Call-chains during recursive Binder IPC calls 150
7.6 Scippa: Constructing call-chains in recursive transactions 151
7.7 Scippa: Message processing by Handler on Main Thread 152

xvii

LIST OF FIGURES

7.8 Scippa: Performance overhead of Binder transactions 155
7.9 Scippa: CPU cycles overhead for Binder transactions 156
7.10 Scippa: Single Service call roundtrip time vs. payload size 156
7.11 Scippa: Service call roundtrip time vs. call chain length 156
7.12 Scippa: Break down of observed call-chain lengths 157
7.13 Scippa: Call-chain for parallel and ordered broadcasts 159

xviii

List of Tables

4.1 XManDroid: ICC timing results . 53
4.2 XManDroid: Timing results for system components 53

5.1 FlaskDroid: List of User Space Object Managers 73
5.2 FlaskDroid: Overview of policy complexity 94
5.3 FlaskDroid: Attack testbed scenarios 95
5.4 FlaskDroid: Runtime and memory overhead on Android v4.0.4 101
5.5 FlaskDroid: Performance comparison to related work 101
5.6 FlaskDroid: Runtime overhead on Android v5.1.1 102

6.1 ASF: Break down of hooked system apps/services 120
6.2 ASF: Effort of porting different security extensions as module 124
6.3 ASF: Average performance overhead . 133
6.4 ASF: Performance of most frequently invoked hooks 135
6.5 ASF: Security module performance measurements 135

7.1 Scippa: Call-chain statistics . 157

xix

List of Code Listings

5.1 FlaskDroid: Reserved UIDs for Android system components 74
5.2 FlaskDroid: Defining middleware-specific objects 77
5.3 FlaskDroid: Assigning types to applications 79
5.4 FlaskDroid: Assigning types to Intents 80
5.5 FlaskDroid: Declaration of contexts 81
5.6 FlaskDroid: Linking booleans with contexts 81
5.7 FlaskDroid: Definition of policy rules 82
5.8 FlaskDroid: Policy language grammar in extended BNF 84
5.9 FlaskDroid: Example policy for securing log entries 88
5.10 FlaskDroid: Example policy for Saint instantiation 90
5.11 FlaskDroid: Example policy for ContactsProvider 97
5.12 FlaskDroid: Example policy for SensorManager 98
5.13 FlaskDroid: Example policy for restricting root user 98
6.1 ASF: Exemplary enforcement functions 118
6.2 ASF: Generic interface to the Linux Security Modules 120
6.3 ASF: Application of generic Kernel module interface 129
6.4 ASF: Generic SELinux LSM interface implementation 129
6.5 ASF: Original FlaskDroid hook in LocationManagerService 130
6.6 ASF: Re-implementation of the FlaskDroid LMS hook 130

xxi

1
Introduction

1

The advent of feature-rich, easily customizable smart devices together with afford-
able mobile data plans had a profound impact on the ways we produce and consume
information today. With smart devices, such as smartphones and tablets, end-users are
essentially always-on and continuouly share data easily aggregated using an unprece-
dented set of features that is bundled into a handheld form factor device. Those features
include, for instance, an extensive array of onboard sensors (GPS, motion sensing,
camera, etc.), calendar and contacts management, video collections, or various forms of
text messaging services. End-users can even further extend their devices’ functionality
through third party apps that are comfortably retrievable from centralized software
distribution channels (i.e., app stores or markets), which seemingly integrate the process
of finding and installing new functionality onto the end-users’ devices. By today, there is
“an app for (almost) everything”—from mobile banking, gaming, increasing productivity,
to social networking and more. For Google’s Android OS, the by far most widespread
mobile operating system according to contemporary market research, are by now more
than a million third party apps available on Google’s Play app market. The success of
this new app paradigm also incited the deployment of mobile software stacks in other
domains like car systems, smart homes, desktop operating systems, or the Internet of
Things, and is accompanied by the ongoing “appification” of those new domains.

Along with the social impact, smart devices also affected the way how developers
produce software for those devices. Common characteristic of all major smart device
software stacks is that they provide an extensive middleware and application framework
on top of the OS, which abstract from the low-level device hardware/features and offer
to app developers a feature-rich, extensive API in a high-level programming language.
This easily allows app developers to seemingly integrate the device’s features (like
on-board sensors) and pre-installed services and data management (like user address
book or gallery) into their apps.

Smart operating systems have also received very early recognition in the security
and privacy research community: The community hinted at the potential privacy risks
of feature-rich devices that are tightly integrated in our daily lives, that store a plethora
of private information, and that make those information available to a wide spectrum of
untrusted app developers through the application framework’s API. Research has since
dealt with identifying and rectifying privacy and security issues in the smart devices’
ecosystem. Although solutions have been introduced that empower the end-user to
enhance her privacy protection independently from other actors in the ecosystem (i.e.,
the developers, market operators, or OS and platform vendors), consensus today is that
in the long run effective solutions are a collaborative effort between market mechanisms,
such as app vetting, and on-device mechanisms, such as app authentication and access
control. Focus of these recent research efforts is the Android OS, which is, in contrast
to its walled-garden competitors, provided as open-source.

In this dissertation, we present a line of work that adds mandatory access control
to the Android OS and in particular to its extensive middleware layer. Android’s
architecture incorporated right from its first release many established security best
practices and lessons learned. Therefore it offers by design a better protection against
malicious applications when compared to classical desktop and server operating systems.
However, its early design provided at middleware layer only an application authorization

3

CHAPTER 1. INTRODUCTION

mechanism—permission system—that is more akin to a discretionary access control
mechanism and, further, it lacked any kind of mandatory access control (MAC) capabil-
ities. This lack of mandatory access control left room for successful attacks against the
system integrity and also the user’s privacy. Moreover, this lack disqualified Android
for deployment in higher-security contexts, such as the increasingly popular dual-usage
smartphones for enterprise deployment or the emerging market for governmental mobile
devices. Focus of this dissertation was to explore the security design space of historical,
established operating systems (e.g., the development of the Linux Security Moduls) and
transfer this knowledge to the particular design of the Android OS in order to retrofit
Android’s design with mandatory access control for enforcing improved security policies
that protect the system integrity and the user’s private information as well as enable
advanced security models on Android. A particular aspect of this work was to explore
to which extent the strongly high-level API-oriented design of modern, mobile operating
systems provides a better opportunity to more efficiently establish a higher security and
privacy standard than is possible on current commodity PC platforms. A particular
technical challenge of this line of work was to consider and consolidate enforcement
of security policies at both the operating system level (i.e., Linux kernel MAC) and
middleware level (i.e., our security extensions to Android).

Our work on establishing mandatory access control on Android stretches across the
following peer-reviewed publications [P4, P5, P3, P2, P1], which each contributed to
the development of our MAC for Android as presented in this dissertation:

TrustDroid. TrustDroid [P4] is one of the first security extensions to Android that
specifically targeted the multi-personna use-case where devices are used in both private
and business contexts. This scenario constitutes a classical problem of domain isolation
and non-interference between different security domains. However, at the time of this
work no effective solution to this problem on Android existed. Prior approaches were
based on heavy-weight virtualization or microkernels that are not suitable for deployment
on resource-constrained mobile devices. In contrast, TrustDroid introduced a novel
mandatory access control architecture for Android’s software stack that extended core
middleware services and the Linux kernel to enforce static security policies and that
isolates private data and apps from business-related data and apps. Moreover, its design
included building blocks from the area of Trusting Computing, specifically a Mobile
Trusted Module, to enhance the authentication of apps.

XManDroid. XManDroid [P5] is an Android security extension to mitigate the
threat of application-level privilege escalation attacks, i.e., collusion or confused deputy
attacks. Its design extended that of TrustDroid and introduced a permission-based
monitoring system that reflects the observed system state—reduced to the history of
performed permission checks and inter-app communication inferred from this history—in
a graph-based view. Based on the currently inferred system state, XManDroid’s policy
enforcement points prohibit any communication that can potentially form a privilege
escalation attack. Attack states are described in a policy language based on the VALID
policy language for infrastructure cloud environments.

4

FlaskDroid. FlaskDroid [P3] is the first generic security architecture for the An-
droid OS that can serve as a flexible and effective ecosystem to instantiate different
security solutions for the Android software stack. Its design is inspired by the Flask
security architecture, where various Object Managers at middleware and kernel-level
are responsible for assigning security contexts to their objects and enforce access control
on them. A key observation of the FlaskDroid work is, that almost all proposals for
Android security extensions in the existing literature (including our TrustDroid and
XManDroid) constitute mandatory access control mechanisms that are tailored to the
specific semantics of their addressed security problem. By introducing a generic security
architecture on top of SE Android together with an efficient policy language (inspired
by SELinux) that takes the specifics of Android’s middleware semantics into account,
FlaskDroid enables a policy-driven instantiation of existing and new security/privacy
models. We show the flexibility of our architecture by instantiating selected security
models such as existing related work.

Android Security Framework. Although FlaskDroid was the first generic security
architecture for Android and was able to instantiate different security models, its design
still confined policy authors to the semantics of the FlaskDroid policy language. To
remedy this situation, we introduced our Android Security Framework (ASF) [P2],
a generic, extensible security framework for Android that enables the development and
integration of a wide spectrum of security models in form of code-based security modules.
The design of ASF reflects lessons learned from the literature on established security
frameworks on commodity platforms (such as Linux Security Modules or the BSD MAC
Framework) and intertwines them with the particular requirements and challenges from
the design of Android’s software stack to build a policy-agnostic and multi-tiered security
infrastructure. ASF provides a novel security API that supports authors of Android
security extensions in developing their modules and supports implementation of policy
logic that resembles mandatory result automata. This design overcomes the current
unsatisfactory situation to provide security solutions as separate patches to the Android
software stack or to embed them into Android’s mainline codebase. We demonstrated
ASF’s effectiveness and efficiency by modularizing different security models from related
work, such as dynamic permissions, inlined reference monitoring, and type enforcement.

Scippa. Scippa [P1] is an extension to the Android IPC mechanism that establishes
inter-process communication (IPC) call-chains across application processes. Thus,
although Scippa is itself not an access control mechanism, it contributes greatly to the
domain of access control on Android by providing essential information: IPC provenance
information required to effectively prevent recent attacks. Any kind of enforcement
point within the Android middleware relies on such provenance information to identify
the subjects in access control decisions. Android’s IPC mechanism (Binder) provides
provenance information for a one-hop distance. However, it fails in providing sufficient
provenance information for all possible inter-app communication scenarios, which has
led to a number of attacks. Our solution constitutes a system-centric approach that
extends the Binder kernel module and Android’s message handlers to provide the needed
IPC provenance information. Scippa integrates seamlessly into the system architecture.

5

CHAPTER 1. INTRODUCTION

Outline

The remainder of this dissertation is structured as follows. In Chapter 2, we provide
necessary, common technical background information on the Android software stack
and its security architecture. We present TrustDroid in Chapter 3 and XManDroid
in Chapter 4. FlaskDroid is presented in Chapter 5, our Android Security
Framework in Chapter 6, and Scippa in Chapter 7. We conclude this dissertation in
Chapter 8.

6

2
Technical Background on Android

7

2.1. PRIMER ON ANDROID

In this chapter we provide common technical background information on Android that
is required for better understanding of the following Chapters 3 through 7. Background
information that is specific to certain chapters is provided in the respective chapters.

2.1 Primer on Android

Android is an open-source software stack tailored for embedded devices that was released
in 2008 [124] by Google as lead of the Open Handset Alliance. Android is specifically
designed as mobile operating system for touch-enabled devices like smartphones and
tablets. In this still rapidly growing market for smartphones, Android has become the
dominant mobile operating and held in 2015 a worldwide market share of 80.7% [62,
Table 3]. At the time of writing, Android has matured to its version 5.1.1 (code name
Lollipop) with API version 22 [79].

More recently, Google has extended Android’s application domains to new emerging
markets for mobile operating systems, such as televisions [81], cars [78], wearables [82],
and digital cameras [160]. It even is the foundation for Google’s Project Brillo [83] for
the Internet of Things.

2.1.1 Android Software Stack

Android’s software stack [17] builds on top of a (slightly modified) Linux kernel and
includes a middleware framework and an application layer (as depicted in Figure 2.1).
The Linux kernel is responsible for basic operating system services, such as memory
management, device drivers, or inter-process communication (IPC), and has been
modified by Google to be compatible with the scarce resources of mobile devices, e.g.
available power and memory.

On top of the Linux kernel lies the extensive Android middleware. It consists
of native libraries (e.g., SSL, WebKit, sqlite), the Android runtime with the Dalvik
Virtual Machine (DVM), and the application framework. DVM is a register-based
virtual machine that is optimized for resource constrained mobile devices and executes
Dalvik Executable Bytecode (DEX). With Android version 5.0, Google introduced the
Android Runtime (ART) as a replacement for DVM. ART, in contrast to DVM, applies
ahead-of-time compilation to improve the apps’ runtime performance and efficiency at
the cost of slightly increased binary size.

The application framework of the middleware implements the bulk of Android’s
application API and provides app developers with a feature-rich API that exposes
central platform features such as the onboard sensors array, location services, settings,
or GUI management. The application framework is complemented by pre-installed
system apps at the application layer, such as Phone, Browser , or Contacts. The API
can be extended with 3rd party apps on top of the software stack, which are usually
retrieved from centralized software distribution channels such as Google Play or, as
allowed by Android’s open application model, via side-loading (e.g., from SDCard).

9

CHAPTER 2. TECHNICAL BACKGROUND ON ANDROID

Applications

Phone Browser ... 3rd party apps

Application Framework
Location
Manager Settings Activity

Manager ...

(Native) Libraries Runtime

SSL

SQLite

WebKit

...
DVM / ART

Linux Kernel

WiFi Driver Binder IPC Power Mgmt ...

M
iddlew

are

Figure 2.1: Android software stack. (Figure adapted from [17]).

2.1.2 Android Applications

Application layer and application framework apps and services are commonly written
in Java and then compiled to dex bytecode for execution inside the DVM or ART,
respectively. In addition to dex bytecode, apps and services can use (custom) native
code libraries (i.e., C/C++) for low-level interactions with the underlying Linux system.
Native code can be seamlessly integrated into dex bytecode by means of the Java Native
Interface (JNI).

All new app processes are by default forked from a designated process called Zygote.
Zygote is essentially a “warmed up” application runtime that pre-loaded all required
core libraries and is just missing the actual application code. By forking the Zygote
process and loading application code into the newly spawned process, the application
load time during application launch is significantly reduced. As a consequence, every
application is executing in its own process.

Android apps are generally composed of different components. The four basic app
components are:

Activities: A foreground task that implements a user interface with which the user can
interact.

Services: Long-running tasks that usually perform in the background, even when the
application is not in the foreground, and that can provide an IPC interface to
which other processes can bind in order to interact with the Service component.

ContentProviders: Encapsulate structured sets of data and manage access to them (by
other applications) via an SQLite-like interface.

BroadcastReceivers: Implements a mailbox for broadcast Intent messages (see next
paragraph).

10

2.2. ANDROID’S SECURITY PHILOSOPHY

Inter-Component Communication. Apps can communicate with each other on
multiple layers, including standard Linux Inter-Process Communication (IPC) using,
e.g., domain sockets, files, or Internet sockets. However, the primary mechanism on
Android to connect the components of different application processes is an Android-
specific inter-process communication called Binder—a light-weight implementation of
OpenBinder [142, 45]—which has simply been coined as Inter-Component Communica-
tion (ICC) by Enck, Ongtang, and McDaniel [45].

To hide the low-level mechanics of Binder-based ICC from app developers, Android
provide different layers of abstraction. Most prominently, Intent messages provide an
abstract way of performing ICC by describing an operation that should be performed
and letting the system deliver this message to an appropriate receiver component(s).
Alternatively, the app developer can also explicitly state the receiving component of
an Intent message. For instance, launching an Activity component is accomplished by
sending a suitable Intent. Additionally, the Android SDK provides different developer
tools to define and bootstrap custom remotely-callable interfaces, e.g., the Android
Interface Definition Language (AIDL) and AIDL compiler for creating bindable Service
components. More technical details on ICC are provided in Chapter 7.

2.2 Android’s Security Philosophy

Since Android’s introduction, Google has constantly extended and improved Android’s
security features across its different versions [73, 74, 75, 76]. Today, Android’d security
concept includes well-known techniques to mitigate software exploitation (e.g., Address
Space Layout Randomization or fortification of code), applies Linux capabilities to
reduce the attack surfaces of critical system processes, supports certificate pinning for
SSL/TLS connections, or provides various security management aspects such as MDM,
application verification, or multi-user support.

However, the cornerstone of Android’s security architecture right from its first public
release—and also the focus of the line of work presented in this thesis—is application
sandboxing and privilege separation between apps.

Application Sandboxing. Android’s security philosophy dictates that all apps are
sandboxed by executing them in separate processes (by means of forking them from
Zygote) with distinct user IDs (UID). These UIDs are assigned to 3rd party apps during
their installation and are taken from the pool of available Linux UIDs in the system.
Thus, Android essentially applies Linux’ mechanism to separate different human users
(and their processes) from each other to separate different apps (and their processes)
from each other. Along this line, each installed app also owns a private directory on
the file system based on its UID. In addition, Android reserves a number of well-known
UIDs for system services and apps. Moreover, app developers may decide that multiple
of their apps may use the same UID (shared UID) and hence share the same sandbox.
However, this requires that all apps in a shared sandbox come from the same origin,
identified through their developer signature.

11

CHAPTER 2. TECHNICAL BACKGROUND ON ANDROID

App System Service/App
(e.g., TelephonyService)

User-space

Virtual Filesystem
API

Discretionary Access Control

Mandatory Access Control (SELinux)

Private/Public Resource (e.g., SDCard) Privileged Resource (e.g., rild)

API

Permisson check

Privileged Functionality

Kernel space

syscall
syscall

Dex (DVM)

Native Code

Binder IPC

Figure 2.2: Android’s default security architecture.

Privilege Separation. To achieve privilege separation between apps, Android intro-
duces Permissions, i.e., privileges that an app can request and which are granted by
the user at install-time. Currently, the user must grant all requested permissions or
abort installation of the app. All granted permissions are immutably assigned to the
app’s UID.1 For Android API level 21, more than 150 permissions are defined. The
majority of these permissions are simply String labels that are assigned to the app’s
UID and that govern how the app’s processes can interact with other apps’ components
via ICC. However, a small number of permissions are used to restrict access to some
low level resources, such as external storage (e.g. a MicroSD card) or network access.
Those permissions are mapped to Linux group identifiers (GIDs) assigned to an app’s
UID during installation when the respective permission was granted by the user.

In accordance with the least privilege principle, an app without permissions is not
able to access security and privacy sensitive resources. Permissions are enforced at two
different points in the system architecture (cf. Figure 2.2): First, every app sandbox can
directly interact with the kernel through system calls, for instance, to edit files or open a
network socket.2 These resources are either of private nature (i.e., are within the app’s
private directory) or public resources (e.g., SDCard). Access control in the filesystem
ensures that the apps’ processes have the necessary rights (i.e., permissions) to issue
particular syscalls, e.g., opening a file. The filesystem access control consists of the
traditional Linux Discretionary Access Control (DAC), which is complemented (since
Android v4.3) by SELinux based Mandatory Access Control (MAC). More information
on SELinux and its integration into Android’s software stack is provided at the beginning
of Chapter 5.

1With the upcoming Android version M, Google supposedly overhauls the permission framework
and introduces revocable permissions.

2It is noteworthy, that the Dalvik VM is, in contrast to the Java VM, not a security boundary, since
Android explicitly allows applications to include native code that executes outside the DVM.

12

2.2. ANDROID’S SECURITY PHILOSOPHY

Second, apps can interact through the Android API in a strictly controlled manner
with highly privileged resources. To ensure system security and stability, apps are
prohibited to access those resources directly. Instead, those resources are wrapped
(or owned) by system services and apps that implement the Android application API.
For instance, the TelephonyService communicates on behalf of apps with the radio
interface layer daemon (rild) to initiate calls or send text messages. Whether an app is
sufficiently privileged to successfully call the API is determined by a permission check
within the system services/apps. For this check, the Binder IPC mechanism provides to
the callee (system service/app) the UID of the caller (app).

It should be noted that the permission model is not mandatory access control, since
callees must discretely deploy or define the required permission check and, moreover,
permissions can be freely delegated (e.g., URI permissions [77]).

13

3
TrustDroid

Practical and Lightweight Domain Isolation on Android

15

3.1. MOTIVATION

3.1 Motivation

Sophisticated mobile devices, such as smartphones, have become an integral part of
our daily life and form for many consumers the digital communication hub with the
rest of the world. Not surprisingly, their combination of mobility, connectivity, and
versatility has also made them an attractive tool for conducting business transactions:
They provide employees a means to remain always connected to the company’s network,
thereby enabling on the road access to company’s data through a large variety of mobile
office apps. For instance, they allow employees to read and send e-mails, synchronize
calendars, organize meetings, create and edit documents, attend telephone and video
conferences, and much more.

However, corporations have higher security requirements for the protection of their
assets than the average mobile user. Those requirements include, for instance, device
management features and, equally important, strict isolation of corporate assets from
private assets as well as ensuring non-interference between corporate and private pro-
cesses. To effectively and securely enable the desired dual-usage phone for work and
private purposes at the same time, it is imperative that the mobile platform satisfies
the corporate security requirements.

3.2 Problem Description

Google has reacted to the ongoing trend of using (Android-based) mobile devices for
private as well as work purposes by gradually extending Android’s domain isolation
and management features. Already early in Android’s version history it introduced first
simple device management features [69]. However, until very recently the situation for
providing a strong security boundary between corporate and private data on Android
was very bleak. Only with Android version 5.0 Google introduced new business-focused
features [80] that include work-specific profiles tho isolate work data (based on the
integration of Samsung’s Knox technology [116]). At the time of conducting the
work presented in this chapter, however, Android did not fulfill the required security
requirements for deploying corporate assets securely on Android-based mobile end-
devices. Three major problems had to be faced for enhancing Android’s security
framework at that time: preventing malicious apps from stealing data or (easily)
escalating their privileges, establishing domain isolation between different security
domains, and design considerations for the constrained resources of mobile platforms
(i.e., battery lifetime or memory capacity).

Security Deficiencies of Android. The core security mechanisms of Android are ap-
plication sandboxing and a permission framework (cf. Chapter 2.2 on Android’s security
architecture). However, different attacks have demonstrated that Android’s security
architecture is vulnerable to malware. First, it has been shown that malicious apps are
distributed via different channels including the official Android Market (today Play)
and can hence potentially infect end-user devices through sources that are generally
considered more trusted [135, 113, 16]. Contributing factor to this is, that Google
did at the time of writing not perform code inspection or other advanced application

17

CHAPTER 3. TRUSTDROID

vetting techniques, but just rudimentary automated, dynamic analysis based on the
Android emulator (a solution codenamed Bouncer). Further, malicious apps may mount
application-level privilege escalation attacks that allow an adversary to perform unau-
thorized actions. This can be achieved by exploiting a vulnerable deputy application [44,
30, 148], or through malicious colluding applications [161, P5]. In particular, privilege
escalation attacks have been utilized to send unauthorized text messages [30], to trigger
malicious downloads [111, 135], to change the WiFi settings [148], or to perform context-
aware voice recording [161]. Finally, any attack at the kernel-level (e.g., file ystem) will
allow the adversary to circumvent solutions that only consider security enhancements
at the application framework level.

Domain Isolation on Default Android. In the light of recent attacks, the default
Android OS at that time could not meet the security requirements of the business world.
These requirements mainly encompass the protection of corporate data and applications
on the phone along with the security of a heterogeneous company network to which
the employees’ smartphones connect. In particular, Android lacked data isolation: For
instance, standard Android only provides single database instances for SMS , Calendar ,
and Contacts information. Thus, corporate and private data are stored by default in the
same databases and any application with access to the database has immediate access
to corporate and private information. Apart from application sandboxing, Android
provides no means to isolate corporate applications from private user applications in a
system-centric way. Hence, an adversary could get unauthorized access to corporate apps
(and their data) by utilizing privilege escalation attack techniques. Finally, Android
fails to enforce isolation at the network-level, including a lack of context-sensitivity.
For instance, there is no means to deny Internet access for untrusted applications
while the employee is connected to the company’s network, and thus infected employee
smartphones pose an additional risk to the corporate network.

To summarize, default Android has no means to group applications and data into
domains, where in our context a domain compromises a set of applications and data
belonging to one trust level (e.g., private, academic, enterprise, department, institution,
etc.)

Existing Security Extensions to Android. At that time this work was conducted, a
number of security extensions for Android had been proposed, the closest to our work
being [140, 46, 139, 134, T4]. However, as we will elaborate in detail in related work (see
Section 3.8), all of these solutions focus on a specific layer of the Android software stack
(mainly Android’s middleware) and fail if the attack occurs on a different layer, e.g., at
the network layer by mounting a privilege escalation attack over socket connections [30]).
Specifically, they do not address OS-level attacks [136, 111] through which an adversary
can, for instance, gain access to the entire file system. Attacks on the OS-level could
be mitigated by enabling SELinux on Android [166], however, SELinux operates at
the OS-level and lacks the necessary semantics to address attacks at the Android’s
middleware layer.

In particular, we were not aware of any security extension providing efficient and
scalable application and data isolation at different layers of the Android software stack,

18

3.3. CONTRIBUTIONS

which is essential for deploying Android in a business context.
On the other hand, several virtualization-based approaches aim at providing domain

isolation on Android [11, 108, 31, 4] and can be used for separating private and corporate
data/apps on Android. However, contemporary mobile virtualization solutions suffer
from practical deficiencies (as we will discuss in Section 3.8): (1) they do not scale
well on resource-constrained smartphone platforms that allow only a limited number
of virtual machines to be executed simultaneously, in particular in light of the not yet
widespread hardware support for mobile virtualization; (2) more importantly, virtualiza-
tion duplicates the whole Android operating system including security-irrelevant code
and thus negatively affects system performance including the battery life-time. This
raises a severe usability problem.

3.3 Contributions

In this work, we present a novel security architecture, called TrustDroid, that enables
practical and lightweight domain isolation on each layer of the Android software stack.
Specifically, TrustDroid provides application and data isolation by controlling the
main communication channels in Android, namely IPC (Inter-Process Communication),
files, databases, and socket connections. TrustDroid is lightweight in the sense that it
has a low computational overhead and requires no duplication of Android’s middleware
and kernel code, which is typically a must for virtualization-based approaches [11,
108]. As a benefit, TrustDroid offers a good scalability in terms of the number of
parallel existing domains. In particular, TrustDroid exploits coloring of separate
and distinguishable components (this approach has its origins in information-flow
theory [155]). We color applications and user data (stored in shared databases) based on
a (lightweight) certification scheme which can be easily integrated (as we shall show) into
Android. Based on the applications colors, TrustDroid organizes applications along
with their data into logical domains. At runtime, TrustDroid monitors all application
communication, access to common shared databases, as well as file system and network
access, and denies any data exchange or application communication between different
domains. In particular, our framework provides the following features:

Mediating IPC: We extend the Android middleware and the underlying Linux kernel to
deny IPC among applications belonging to different domains. Moreover, TrustDroid
enforces data filtering on default Android databases (e.g., Contacts, SMS , etc.) so that
applications have access only to the data subset of the their respective domains.

Filtering Network Traffic: We modified the standard Android kernel firewall to enable
network filtering and socket control. This allows us to isolate network traffic among
domains and enables the deployment of basic context-based policies for the network
traffic.

File System Control: We extend the current Android Linux kernel with TOMOYO
Linux based mandatory access control and corresponding TOMOYO policies to enforce
domain isolation at the file system level. This allows us to constrain the access to world-

19

CHAPTER 3. TRUSTDROID

wide readable files to one specific domain. To the best of our knowledge, TOMOYO
has never been applied on a real Android device (e.g., Nexus One) before.

Integration in Trusted Infrastructures: Our design includes essential properties and
building blocks for integrating Android-based smartphones into sophisticated trusted
infrastructures, such as Trusted Virtual Domains [38].

We have tested TrustDroid with Android Market applications and show that it
induces only a negligible runtime overhead and minimally impacts the battery life-time.

3.4 Technical Problem Description and Model

We consider a corporate scenario which involves the following parties: (i) an enterprise
(a company), (ii) a device (a smartphone), and (iii) an employee (the smartphone
user). The enterprise issues mobile devices to its employees. The employees use their
device for business related tasks, e.g., accessing the corporate network, loading and
storing confidential documents, or organizing business contacts in an address book. To
perform these tasks, the enterprise either deploys proprietary software on the device,
e.g., a custom VPN client including the necessary authentication credentials, or provides
a company-internal service, e.g., enterprise app market, from which employees can
download and install those apps.

In this scenario, the enterprise is an additional stakeholder on the employees’ devices
and requires the protection of its deployed assets (software and data). Corporate assets
may be compromised, e.g., when the user installs applications from untrusted public
sources. Moreover, the employee accesses the enterprise internal network from his device
and thus malware can potentially spread from the device into the corporate network.

A straightforward solution would be to prohibit any non-corporate app on the device
(as proposed by, e.g., [37]). However, this is counter-intuitive to the idea of a smartphone
and might even tempt employees to circumvent or disable this too restrictive security
policy, e.g., by rooting the device. The default Android security mechanisms and recent
extensions, on the other hand, are insufficient to provide enough isolation of untrusted
applications and thus to protect the enterprise’s assets. Virtualization can provide
stronger isolation between trusted and untrusted domains (also its complexity can
induce new security vulnerabilities [25, 26, 190, 208, 27, 28, 205]), but noticeably use up
the battery life of the device, because major parts of the software stack are duplicated
and executed in parallel in currently available virtualization solutions.

Consequently, an isolation solution is required, which preserves the battery life by
minimizing the computational overhead and still provides isolation of corporate assets
from untrusted applications.

3.4.1 Adversary and Trust Model

We consider software attacks launched by the adversary on the device at different layers
of the Android software stack. The adversary’s goal is to get access to corporate assets,
e.g., to steal confidential data, to compromise corporate applications, or to infiltrate the
corporate network. The adversary can penetrate the system by injecting malware (e.g.,

20

3.5. DESIGN OF TRUSTDROID

by spreading it through the Android Market) or by exploiting vulnerabilities of benign
applications. Malicious applications may either be granted by the user the privileges
to access sensitive resources (see Gemini [113]) or try to extend their privileges by
launching privilege escalation attacks [30, 161, 111, 135, 136, 16].

We assume that the enterprise is trusted and that the employee is not malicious,
i.e., he does not intentionally leak the assets stored on his device. However, he is prone
to security-critical errors, such as installing malware. The device is generally untrusted,
but has a Trusted Computing Base (TCB) that is responsible for security enforcement
on the platform. The TCB is trusted by the enterprise.

3.4.2 Objectives and Requirements

We require the integrity and confidentiality of the corporate assets on the device, while
preserving the usability. Furthermore, we require that the integrity of the corporate
network will be preserved even if malware infiltrated employees’ devices. With respect
to these objectives, we define the following requirements:

Isolation. Corporate assets must be isolated in a separate domain from untrusted data
and software, and any communication between different domains must be prevented. In
particular, the following communication channels must be considered: IPC channels,
the file system and socket connections. In addition, potential malware on the device
must be prevented from accessing the corporate network.

Access control. Access by applications to assets stored on the device must be controlled
by the enterprise through access control rules defined in a security policy, e.g., a new
app can only be installed in the corporate domain if the policy states that it is trusted.

Legacy and Transparency. To preserve the smartphone’s functionality, we require our
solution to be compatible to the default Android OS and to 3rd party applications.
Further, it should be transparent to the employee.

Low overhead. With respect to the constrained resources of smartphones, in particular
the battery-life, our solution has to be lightweight.

3.4.3 Assumptions

We consider the underlying Linux kernel and the Android middleware as Trusted
Computing Base (TCB), and assume that they have not been maliciously designed.
Moreover, we assume the availability of mechanisms on the platform to guarantee
integrity of the TCB (i.e., OS and firmware) on the device. For instance, this can be
achieved with secure boot which is a feature of off-the-shelf hardware (e.g., M-Shield [180]
and ARM TustZone [5]) or software security extensions for embedded devices (e.g., a
Mobile Trusted Module (MTM) [187]).

3.5 Design of TrustDroid

In this section we describe the design and architecture of TrustDroid. The main
idea is to group applications into isolated domains. With isolation we mean that

21

CHAPTER 3. TRUSTDROID

Apps

Hypervisor / VMM

Apps

Middleware

Kernel

Domain A Domain B

(a)

Apps

Middleware

Hypervisor / VMM

Apps

Middleware

Kernel

Domain A Domain B

(b)

Apps

Middleware

Kernel

Hypervisor / VMM

Apps

Middleware

Kernel

Domain A Domain B

(c)

Figure 3.1: Approaches to isolation: (a) TRUSTDROID; (b) OS-level virtualization; (c)
Hypervisor/VMM. Black blocks indicate the Trusted Computing Base of each approach.

applications in different domains are prevented from communicating with each other via
ICC, Linux IPC, the file system, or a local network connection. Figure 3.1 illustrates
different approaches to achieve isolation: (a) the approach taken by TrustDroid, which
extends Android’s middleware and kernel with mandatory access control; (b) OS-level
virtualization, where each domain has its own middleware; (c) isolation enforced via a
hypervisor and virtual machines, where each domain contains the full Android software
stack. Comparing these approaches, TrustDroid has on the one hand the largest
TCB, but on the other hand it is the most lightweight one, since it does not duplicate
the Android software stack, and still provides good isolation, as we will argue in the
remainder of this chapter.

Our extensions to the Android OS are presented in Figure 3.2. The middleware
extensions consist of several components: Policy Manager , Firewall Manager , Kernel
MAC Manager , an additional MAC for Inter Component Communication (ICC), and
finally a modified Package Manager . The Policy Manager is responsible for determining
the color for each installed application, for issuing the corresponding policies to enforce
the isolation between different colors, and to enforce these policies on any kind of ICC.
The Firewall Manager and the Kernel MAC Manager are instructed by the Policy
Manager to apply the corresponding rules to enforce the isolation on the network layer
and the kernel layer, respectively. To enforce the latter, TrustDroid relies on default
features of the Linux kernel, which can also be activated in Android’s Linux kernel:
a firewall (FW) and a Kernel-level MAC mechanism. Since we modified the Android
middleware, a company that wants to make use of TrustDroid has to roll out a
customized version of Android to their employees’ smartphones.

In the subsequent sections, we elaborate in more detail on the components of
TrustDroid that enforce domain isolation.

22

3.5. DESIGN OF TRUSTDROID

Apps

Domain A Domain B

Apps

Policy
Manager

Firewall
Manager

Kernel MAC
Manager

Package
Manager

Application
Layer

Middleware
Layer

Kernel
Layer

MACPermission

MACDAC

ICC

FWDAC
Network sockets

File system /
default Linux IPC

(A)

(B)
(C)

TrustDroid extension Default Android component

Figure 3.2: TRUSTDROID architecture with isolation of different colors (A) in the middle-
ware, (B) at the file system/default Linux IPC level, and (C) at the network level.

3.5.1 Policy Manager

In this section we explain the Policy Manager component of TrustDroid and elaborate
in more detail on how it colors applications and enforces domain isolation in the
middleware.

3.5.1.1 Application Coloring

The fundamental step in our architecture to isolate apps is to assign each app a trust
level, i.e., to color them. In TrustDroid, we assume three trust levels for applications:
(1) pre-installed system apps, which include system ContentProviders and Services;
(2) trusted third party apps provided by the enterprise; (3) untrusted third party apps,
which are retrieved from public sources such as the Android Market. While trusted and
untrusted apps must be isolated from each other, system applications usually have to
be accessible by all installed applications in order to preserve correct functionality of
those applications and sustain both transparency and legacy compliance of our solution
(e.g., Android’s application framework API).

In TrustDroid, system apps (i.e., pre-installed apps) are already colored during
platform setup in accordance with the enterprise’s security policies. Additionally
installed third party apps are colored upon installation, before any code of the app is
executed. In Android, the Package Manager is responsible for the installation of new
applications and in TrustDroid we extended it to interface with the Policy Manager ,

23

CHAPTER 3. TRUSTDROID

such that the Policy Manager can determine the color of the new app, issue the necessary
rules for its isolation in the middleware, and instruct the Firewall Manager and Kernel
MAC Manager to enforce the corresponding policies on the lower levels.

Determining the color of an app can be based on various mechanisms. For instance,
it can be based on a list of application hashes for each color or based on the information
available about the new app, such as developer signature or requested permissions.
For TrustDroid we opted for a certification based approach. The Policy Manager
recognizes a special certificate (issued by the enterprise), which is optionally contained
in the application package of apps. Based on this certificate, TrustDroid’s Policy
Manager verifies the authenticity and integrity of the new app. Moreover, the certificate
may define a platform state, (e.g., the already installed applications), in which the
certificate is valid only. A trusted service on the device is responsible for verifying these
certificates. This service also measures the platform state, provides secure storage for
the certificate verification keys, and maintains the verification key hierarchy such that
only the enterprise can issue valid certificates. We use a Mobile Trusted Module (MTM)
and as certificate format Remote Integrity Metrics (RIM) certificates, both defined by
the Trusted Computing Group (TCG) [187]. We refer to Section 3.6 for more details on
how we use and implement those.

If such a RIM certificate is present, it must be successfully verified to continue the
installation, i.e., the certificate must have been issued by the enterprise, the application
package’s integrity must be verified, and the platform state defined in the certificate must
be fulfilled. Otherwise, the installation is aborted. In case of a successful verification,
the certificate determines the color of the new app. In our corporate scenario with only
two application domains, successfully verified apps are in the trusted corporate domain.
If no certificate is found, the app is by default colored as untrusted. This applies, for
example, to all Android Market apps.

Alternatively, the certificates can already be pre-installed on the phone and the
Policy Manager checks for a pre-installed certificate corresponding to the new app.

Generating the RIM certificates for applications requires a corresponding PKI inside
the company. However, almost all companies today have integrated a PKI into their IT
infrastructure that can easily serve for this purpose. For the initial setup of the mobile
devices the certificates are generated and integrated once for every pre-installed trusted
application. By integrating the deployment of RIM certificates into a mobile device
management solution or a company internal app market the process of app-certification
can be automated for updates or applications installed later.

3.5.1.2 Inter Component Communication

As described in our Background Chapter 2, Android uses Inter Component Commu-
nication as the primary method of communication between apps. Although ICC is
technically based on IPC at the kernel level, it can be seen as a logical connection in the
middleware. Thus, enforcement of isolation in the middleware has to be implemented
based on access control on ICC. In general, one can distinguish different kinds of ICC
that can be used by apps for communication.

24

3.5. DESIGN OF TRUSTDROID

App 1

Domain A

App 2

Domain B

App 3

Value Writer Color

x

y

z

w

A

B

A

A

W
rite

Interface

(1) Update color for value

R
ead Interface

(1) insert / set

(2) query

return { y }

(3) get

return Ø

{

System Service / Content Provider

Policy
Manager

(2) Filter value z
(3) Deny read access

Figure 3.3: Coloring of data (1) and isolation of data from different colors in the (2)
system Content Providers and (3) system Service.

Direct ICC. The most obvious way for apps to communicate via ICC is to establish
direct communication links. For instance, an app could send an Intent to another app,
connect to its Service, or query the ContentProvider of another app. The TrustDroid
MAC on ICC detects this communication and prevents it in case the sender and receiver
app of the ICC have different colors. It thereby acts as an additional MAC besides the
default access control of Android (i.e., permission checks). As mentioned in Section 3.5.1,
system apps form an exception and direct ICC is never prohibited if either sender or
receiver of the ICC is a system app.

If two applications depend on each other, it is the responsibility of the certificate
issuer, i.e, the enterprise in our scenario, to take care that these applications are in the
same domain and to resolve any conflict in case the applications should have different
trust levels according to the issuer’s security policy.

Broadcast Intents. Besides the obvious direct ICC, apps are also able to send broadcast
Intents, which are delivered to all registered Receivers. Similar to the approaches taken
in [140] and [P5], TrustDroid filters out all Receivers of a broadcast that have a
different color than the sender. Again, system apps are an exception and are not filtered
from the Receivers list.

System Content Providers. A mechanism for apps from different domains to communi-
cate indirectly is to share data in system ContentProviders, such as the ContactsProvider
database, the Clipboard, or the Calendar . The ICC call to read data from such a provider
does not give any information on the origin of the data, i.e., who wrote the data to the
provider. We achieve domain isolation for system Providers as depicted in Figure 3.3.
TrustDroid extends the system ContentProviders such that all data is colored with
the color of its originator app (Step (1) in Figure 3.3). Upon read access to a provider,
all data colored differently than the reader app is filtered from the response (Step (2) in
Figure 3.3).

25

CHAPTER 3. TRUSTDROID

System Service Providers. A covert method for apps to communicate are system Servi-
ces, such as the AudioManager [161]. However, in our adversary model (cf. Section 3.4.1),
we assume that corporate apps are trusted and not malicious and thus no sender for such
a covert channel exists in the trusted corporate domain. Nevertheless, data might leak
via system Services from the trusted to the untrusted domain and thus isolation should
be enforced here as well. Thus, as for the system ContentProviders, TrustDroid tags
the read-/writable data values of the system Services with the color of the last app
updating them, e.g., when setting the volume level (Step (1) in Figure 3.3). Read access
to these values is denied in case the colors of the reader and the data differ (Step (3) in
Figure 3.3). Although this approach does not prevent this kind of covert channel per se,
it drastically reduces its bandwidth to 1-bit, because the reader only gains information
if his corresponding writer changed the value or not.

Alternatively, TrustDroid could return a pseudo or null value instead of denying
the read access. However, in contrast to system ContentProviders, on which a read
operation by design might return an empty response, system Services are expected to
return the requested value. Thus, returning a pseudo or null value may crash the calling
app, or even cause more severe harm to the hardware or user, for instance, if the app
reads a very low volume level when instead the real volume level is very high.

3.5.2 Kernel MAC Manager

The Kernel MAC Manager is responsible for communication with and management of
the MAC mechanism provided by the underlying Linux kernel. Such mechanisms, like
SELinux [114] or TOMOYO Linux [87], are already by default features of the Linux
kernel and provide mandatory access control on various aspects of the OS, including
the file system and the Inter-Process Communication. Thus, by employing such a MAC
mechanism, TrustDroid achieves the isolation of domains on file system and IPC
level. More explicitly, we create a MAC domain for each color and each app is added
to the domain of its color upon installation. The Policy Manager instructs the Kernel
MAC Manager to which domain a new application has to be added and the Kernel
MAC Manager translates this instruction into low-level rules, which are inserted into
the MAC mechanism and which define the isolation of domains at file system and IPC
level.

File System. The file system is a further communication channel for applications.
Apps are able to share files system-wide, by writing them to a system-wide readable
location. Thus, a sending application can write such a file and a receiving application
would simply read the same file. The mandatory access control mechanism enforces
isolation on the file system in addition to the discretionary access control applied by
default. TrustDroid applies rules, which enforce that a system-wide readable file can
be only read by a another app of the same color as the writer. Thus, if an app declares
a file system-wide readable, it is shared only within the domain of the writer.

Moreover, mandatory access control can, with corresponding policies, even be used
to constrain the superuser (root) account. Hence, even if a malicious application gains
superuser privileges, it’s file system scope could be limited to it’s domain.

26

3.5. DESIGN OF TRUSTDROID

Inter-Process Communication. To prevent any communication of apps through
default Linux IPC (e.g., pipes, sockets, messages, or shared memory), TrustDroid
leverages the same domains already established for the file system access control. Thus,
apps are not able to establish IPC with differently colored apps. However, system
applications form an exception, since denial of communication to system apps renders
any application dysfunctional.

Potentially, ICC, which is based on Binder IPC, can be essentially addressed with
kernel level MAC. However, in this case the policy enforcement would be limited to direct
ICC between apps and would miss indirect communications, e.g., via ContentProviders
or Broadcast Intents. In this sense, MAC on Binder is supplementary to the ICC MAC,
because it enforces policies even in case (malicious) applications manage to disable the
ICC MAC.

3.5.3 Firewall Manager

A further channel that has to be considered is Internet networking, i.e., network sockets
used for communication via Internet protocols (such as TCP/IP). Based on these sockets
applications are able to communicate with remote hosts, but also with other applications
on the same platform. Thus, isolation with respect to the corporate smartphone scenario
has to take both local and remote communications into consideration. To enforce
isolation, TrustDroid employs a firewall to modify or block Internet socket based
communication. Managing the firewall rules based on the policies from the Policy
Manager is the responsibility of the Firewall Manager component.

Local Isolation. To locally enforce isolation between domains on the platform, Trust-
Droid prohibits any communication from a local network socket of an untrusted
application to another local network socket via the loopback device. Although, on first
glance, this might appear over-restrictive, it is a reasonable enforcement, because appli-
cations residing on the same platform usually employ lightweight ICC to communicate
instead of network channels.

Alternatively, network communication within each domain could be allowed and
only cross-domain traffic be prevented. However, this would require that the Firewall
Manager knows which Internet socket belongs to which application and which address
has been assigned to each socket.

Remote Isolation and Context-Awareness. Enforcing isolation between domains
on the network traffic between the platform and remote hosts, e.g., web-servers, is a
harder problem than local enforcement. All data that leaves the phone is beyond the
policy enforcement capabilities of TrustDroid. For instance, applications in different
domains could exchange data via a remote web-service. Moreover, with respect to the
corporate scenario, one must consider that malware on the phone might spread into the
corporate network once the phone connects to it.

To address the former problem, TrustDroid uses a firewall that is able to tag
(color) the network traffic, e.g., VLAN. If the network infrastructure supports the

27

CHAPTER 3. TRUSTDROID

isolation of traffic, for instance in Trusted Virtual Domains (TVDs) [38], the policy
enforcement is extended beyond the mobile platform.

To address the latter problem, TrustDroid employs context-aware policy enforce-
ment on outgoing traffic. The context can be composed of various factors, for instance,
the absence/presence of a user, the temperature of the device, or the network state. In
TrustDroid, the context means the physical location of the device and the network
the device is connected to. Each context definition is associated with a policy that
defines how to proceed with the network traffic of untrusted applications, e.g., blocking
all traffic or manipulating it in a particular way. Thus, if the platform is physically on
corporate premises or connected to the corporate network, all untrusted, non-corporate
apps could be denied network access or their traffic can be manipulated, for instance,
to reroute it to a security proxy or an isolated guest network.

3.6 Implementation and Evaluation

3.6.1 Implementation

We implemented TrustDroid based on the Android 2.2.1 sources and the Android
Linux kernel version 2.6.32. We extended the default Android ActivityManagerService
with a new component for the TrustDroid Policy Manager and the additional policy
enforcement on ICC. We implemented the Firewall Manager and Kernel MAC Manager
as new packages in the system Services in the middleware.

The Policy Manager contains a minimal native MTM implementation, which is
loaded as a shared library and called via the Java Native Interface (JNI). Alterna-
tively, TrustDroid could use more sophisticated and secure MTM implementations as
proposed in [S8, 203, 213]. The MTM provides the means to verify Remote Integrity
Metrics (RIM) certificates, to measure the software state of the platform, and to securely
maintain monotonic counters.

Figure 3.4 illustrates the control flow for coloring a new application during installation
and mapping the policies from the Policy Manager to the kernel and network level.
Solid lines illustrate the control flow in case the application package contains a RIM
certificate. Dashed lines show the alternate flow in case no RIM certificate is included
in the package.

Application Coloring. To color new apps during installation, we extended the Android
Package Manager to call the TrustDroid Policy Manager during the early installation
procedure (step 1 in Figure 3.4) in order to verify the certificate potentially included in the
application package (denoted APK) and determine the color of the new app. Therefore,
the certificate is first extracted from the APK (steps 2 and 3a) and the resulting APK
is verified with this certificate (steps 4a and 5a). In case the verification fails, the
installation is aborted by throwing a Security Exception back to the Package Manager
(step 6a). In case no RIM certificate is contained in the APK, the installation proceeds
normally (step 3b). If the installation is continued and succeeds (step 7), a second
remote call from the Package Manager informs the Policy Manager about this success
(step 8) and thus triggers the issuing of corresponding policies to isolate the new app

28

3.6. IMPLEMENTATION AND EVALUATION

8. UID of new app

MTMPackageManager Policy Manager
Kernel MAC

Manager FW Manager

1. newAppInstall(APK)

2. extract RIM
 cert from APK

3a. verify(APK, RIMCert)

4a. verify cert
 signature and
 platform state5a. OK / FAIL6a. If OK: continue install

 else: abort install

3b. continue install

7. finish install

9a. add UID to
 trusted domain 10a. add UID to trusted domain

10b. add UID to untrusted domain

11. deny UID the network access to all local addresses

9b. add UID to
 untrusted domain

Figure 3.4: Control flow for the installation of a new application in case the installation
package contains a RIM certificate (solid lines) or no RIM certificate is included in the
package (dashed lines).

from other apps with a different color at ICC level (steps 9a and 9b), at file system and
IPC level (steps 10a and 10b), and the network level (step 11). Only after this final
step and after all policy changes have been issued, the Package Manager allows the new
application to be started, thus preventing a potential race condition between putting
isolating policies into effect and executing untrusted code.

RIM Certificates and Life-Cycle Management. As certificate format, we chose
the RIM certificates as defined in the TCG Mobile Trusted Module (MTM) specifi-
cations [187]. In addition to the authenticity and integrity verification provided by
other certificate standards such as X.509, RIM certificates additionally provide valuable
features for a trusted life-cycle management. RIM certificates define a platform state
in which the certificate is valid. This state is composed of monotonic counter values
of the MTM and the measured software state. If either the counter value or software
state defined in a RIM certificate mismatches the corresponding value of the MTM,
the certificate verification fails. RIM certificates are signed with so-called verification
keys. These verification keys form a key hierarchy, whose root key can be exclusively
controlled by a particular entity, the enterprise in our scenario. Thus, only the enterprise
is able to create valid RIM certificates for its employees’ devices and, thus, only suc-
cessfully certified apps are considered as trusted. Examples for MTM-based enhanced
life-cycle management of apps are the prevention of version rollback attacks based on
monotonic MTM counters, the binding of the installation to a certain platform state, or

29

CHAPTER 3. TRUSTDROID

the trustworthy reporting of the software state, i.e., installed applications. To certify
APKs, we developed a small tool written in Java and that makes use of the jTSS1.

Network, Default IPC, and File System Isolation. To implement isolation at network
level, default Linux IPC, and file system level, our implementation employs netfilter2

that is by default present in the kernel as well TOMOYO Linux3 v1.8 that is available
as a kernel patch. To maintain them from the Firewall Manager and Kernel MAC
Manager , respectively, we cross-compiled and adapted the user-space tools iptables and
ccs-tools. The former is used to administrate netfilter and the latter for TOMOYO
Linux policy management.

In TrustDroid, we created two TOMOYO Linux domains for third party apps,
trusted and untrusted, and policies that isolate these domains on file system and default
Linux IPC level. Upon installation of a new application, the UID of the new application
is inserted into either one of those domains (steps 10a and 10b in Figure 3.4). A third
domain for system apps is accessible by both the trusted and untrusted domains.

By default, TrustDroid denies all untrusted applications network communication
to local addresses on the phone and the Policy Manager instructs the Firewall Manager
to enforce this isolation also for newly installed untrusted applications (step 11 in
Figure 3.4). Thus, any local network communication between trusted apps is isolated
from untrusted apps.

A particular technical challenge was the adaption of the TOMOYO Linux user-space
programs, in order to be able to maintain the TOMOYO Linux policies locally on the
device. Recent documentation for TOMOYO Linux on the Android emulator describes
the policy administration from a remote host instead of locally on the device and thus
required certain adaption for TrustDroid.

Although TOMOYO Linux in version 1.8 provides MAC for Internet sockets as
well, thus the means to exclude applications with fine-grained policies (e.g., UID, port
or IP address) from Internet access, we opted for netfilter for two major reasons:
(1) Unexpectedly denying access to sockets is much more likely to crash affected
applications, in contrast to simply blocking the outgoing traffic and thus faking a
disabled network connection; (2) netfilter provides much more flexibility than simply
access control, e.g., manipulating or tagging network traffic for advanced security
infrastructures such as TVDs or security proxies.

An alternative building block to TOMOYO Linux would be SELinux, which is by
now a default component of the Android codebase since version 4.3. SELinux is based on
extended file attributes and thus provides a more intuitive solution for domain isolation
at the file system level. On the other hand, it is more complex to administer than
TOMOYO Linux and requires modifications to the default Android file system, because
the default file system at the time this work was conducted did not support extended
file attributes. In addition, the SE Android [175] project has since identified further
technical challenges in adapting SELinux for Android.

1http://trustedjava.sourceforge.net/
2http://www.netfilter.org/
3http://tomoyo.sourceforge.jp/

30

http://trustedjava.sourceforge.net/
http://www.netfilter.org/
http://tomoyo.sourceforge.jp/

3.6. IMPLEMENTATION AND EVALUATION

Context-Awareness. A context in our current implementation is simply the definition
of a WiFi state and/or location. For instance, it could be the SSID of the wireless
network, the MAC address of the access point, a certain latitude/longitude range, or
proximity to a certain location.

To implement the context-aware management of the netfilter rules (cf. Section 3.5.3),
the current Firewall Manager uses two state listeners—one for changes of the WiFi state
and one for updates on the location. The former is simply a Receiver for notification
Broadcasts about the changed Wifi state. The latter is an LocationListener thread
registered at the LocationManager . In case one of the two listeners is triggered, the new
state is compared with the installed contexts and the policies of any matched context
are activated. The active policies of contexts that are not fulfilled anymore are revoked.

Middleware Isolation. The implementation of the additional policy enforcement on
ICC is based on the XManDroid framework presented in our technical report [T4],
which provides the necessary hooks in the Android middleware to easily implement policy
enforcement on direct ICC, Broadcast Intents, and channels via system ContentProviders
and Services.

To prevent direct ICC between applications with different colors, we wrapped the
checkPermission function of the ActivityManagerService, which is called every time
a new ICC channel should be established. If the default MAC of Android permits
the new ICC, TrustDroid performs an additional check to compare the colors of
the caller and callee. On mismatch, the previous decision is overruled and the ICC
denied. To prevent data flows between different domains via Broadcast Intents, our
implementation is similar to [140] and implements hooks in the broadcast management
in the ActivityManagerService to filter out all receivers of a Broadcast that do not have
the same color as the sender. As described in Section 3.5.1.2, we extended the interfaces
of system ContentProviders, such as Settings or Contacts, and of the system Services,
such as the AudioManager , to color data upon write access and filter data/deny access
upon read access.

Moreover, the PackageManagerService allows applications to iterate over the in-
formation of installed packages, e.g., to find a specific application that might provide
supplementary services. In TrustDroid we extended this functionality with additional
filters, such that applications can only receive a list of information about applications
of the same color or about system applications.

Prototype Policy. In our prototypical implementation we use a strict domain isolation
of the form

SubjectColor == ObjectColor

meaning that access to an object by a subject is only granted if the subject and object
are in an identical domain. Only exceptions from this rule are the system domain
applications, to which access from other domains must be granted in order to preserve
operability and legacy-compliance of 3rd party apps, although each system application
internally enforces access control on data they manage in order to prevent cross-domain
information flows (see Section 3.5.1.2).

31

CHAPTER 3. TRUSTDROID

Although more advanced and fine-grained policies might be desirable (e.g., allowing
uni-directional information flows from one domain to another) and are also technical
feasible (for instance, by explicitly considering the domain of the subject), this stricter
policy of our prototype forms the foundation on top of which any kind of (advanced)
domain isolation in the TrustDroid scenario can be built through refinement and
defining exceptions. Moreover, this stricter policy is simple enough to avoid the need
for a dedicated policy language at this prototypical state and allowed us to hardcode
the policy into the policy enforcement points in the middleware and in the TOMOYO
Linux policy.

3.6.2 Evaluation

We evaluated the performance overhead and memory footprint of our extensions to
the middleware with 50 apps from the Android Market, categorized in two domains
(plus one domain for system apps). On average our additional policy enforcement
on ICC added 0.170ms to the decision process on whether or not an ICC is allowed
(default Android requires on average 0.184ms). The standard deviation in this case
was 1.910ms, caused by high system-load due to heavy multi-threading during some
measurements. The verification of the RIM certificate during the installation of new
packages required on average 869.750ms with a standard deviation of 645.313ms. The
average memory footprint of our extensions to the Android system server was 348.2 KB
with a standard deviation of 200.8 KB, which is comparatively small to the default
footprint of approximately 2 MB.

In our prototype implementation, the policy file of TOMOYO consumes on average
a little more than 200 KB of memory. The policy file includes access control rules for
file system and standard IPC mechanisms e.g. communication based on Unix domain
sockets.

3.7 Discussion

In this section we discuss the security of TrustDroid and highlight possible extensions.

3.7.1 Security Considerations

The main goal of TrustDroid is to provide an efficient and practical means to enforce
domain isolation on Android. In particular, TrustDroid isolates applications by
their respective trust levels, meaning that applications have no means to communicate
with each other if their trust levels mismatch. Our requirement of access control is
achieved by including certificates into an application package. Further, to control as
many communication channels as possible, TrustDroid targets different layers of
the Android software stack. First, IPC traffic (in the middleware and the kernel) is
completely mediated by TrustDroid and is target to domain policies. Hence, malicious
applications cannot use interfaces of applications belonging to other domains, even if the
interfaces are exposed as public. Thereby TrustDroid prevents privilege escalation
attacks from affecting other domains. Second, TrustDroid prevents unauthorized data
access, by performing fine-grained data filtering on application data and data stored

32

3.7. DISCUSSION

in common databases (SMS , Contacts, etc.). In particular, this prevents malicious
applications from reading data of the corporate domain, as long as the malicious
application has not been issued by the enterprise itself, which is excluded in our
adversary model (cf. Section 3.4.1). Third, TrustDroid successfully mitigates the
impact of root exploits, because our TOMOYO policies overrule the Linux discretionary
access control and prevent an adversary from accessing files of another domain. Finally,
communication over socket connections are constrained to the domain boundary.

Although our approach is lightweight and practical, it does not provide the same
degree of isolation as full-virtualization would do. In particular, TrustDroid only
mitigates kernel-level attacks by restricting access to the file system, but in general, it
cannot prevent an adversary from compromising the Trusted Computing Base (TCB),
which forTrustDroid includes the underlying Linux kernel and the Android middleware
(see Section 3.4.3). In practice, static integrity of the TCB can be ensured by means of
secure boot [212]. However, the TCB is still vulnerable to runtime attacks subsequent
to a secure boot. Solving this problem is orthogonal to the solution presented in this
work and recently different solutions for ensuring kernel integrity on mobile devices have
been brought forward [6, 63].

The primary cause for runtime attacks on Android is the deployment of native
code (shared C/C++ libraries) [136]. Although Android applications are written in
Java, a type-safe language, the application developers may also include (custom) native
libraries via the Java Native Interface (JNI). Moreover, many native system libraries are
mapped by default to the program memory space. A straightforward countermeasure
against native code attacks would be to prohibit the installation of applications that
include native code. However, this is rather restrictive and, similar to prohibiting any
non-corporate app (cf. Section 3.4), contradicts the actual purpose of smartphones or
might even tempt the phone user to break the security mechanisms in place. Another
approach to address native code attacks is Native Client [164], which provides an
isolated sandbox for native code. However, this solution requires the recompilation
of all available applications that contain native code—an infeasible assumption with
respect to legacy compliance given the huge number of apps in the Android Market.

Moreover, as argued and shown in [212], mandatory access control can also be
efficiently deployed on mobile platforms to enforce isolation for the complete Linux
kernel. We consider this as a valuable extension to TrustDroid to mitigate kernel
attacks, which could easily be integrated in TrustDroid, since a kernel-level MAC
mechanism is already a building block of our design (see Section 3.5).

Finally, TrustDroid uses a separate, accessible domain for system applications
and services, which is due to the fact that all applications require these system apps to
work correctly. If an adversary identifies a vulnerability in one of these applications,
he may potentially circumvent domain isolation and access data not belonging to his
domain. However, until today, vulnerabilities of system applications were constrained
to confused deputy attacks and did not allow an adversary to access sensitive data [148].
Protecting system applications and services from being exploited is orthogonal to harden
the kernel, and we aim to consider this in our future work. Alternatively, one could
deploy apps in the trusted domain, which offer the functionality of certain system apps
(e.g., business contacts app or enterprise browser) and isolate the now redundant system

33

CHAPTER 3. TRUSTDROID

apps by classifying them as untrusted. In fact, recent extensions to Android (after this
work was conducted) in context of Google’s Android for Work initiative (or Samsung’s
Knox) followed exactly this design pattern.

3.7.2 Trusted Computing

Our TrustDroid design leans towards possible extensions with Trusted Computing
functionality.

Currently, we leverage a Mobile Trusted Module (MTM) to validate application
installation packages and to determine their color. The features of the employed RIM
certificates in contrast to established certification standards such as X.509 provide the
means for an enhanced life-cycle management based on monotonic counters and the
platform state, e.g., version rollback prevention. The current implementation of our
MTM is simple, but more sophisticated approaches may be integrated into our current
design [S8, 203, 213].

Moreover, our design includes the foundation for the integration of Trusted Com-
puting Group (TCG) mechanisms such as the attestation of the domains [134, 99, 128],
e.g., in the context of Trusted Network Connect [188] or remote data access [157], or
the isolation of network traffic for infrastructures like Trusted Virtual Domains [38].

3.8 Related work

In this section we provide an overview of related work for establishing security domains
and enforcing security policies on Android. We first discuss in Section 3.8.1 the related
work at the time this work was conducted in order to underline the novelty of our results.
We then discuss in Section 3.8.2 further related work that has been published after our
work had been presented.

3.8.1 Status Quo at Time of Publication

3.8.1.1 Virtualization

A “classical” approach from the desktop/server area to establish isolated domains on the
same platform is based on virtualization technologies. This approach has been ported
to the mobile area [11, 165]. Although virtualization provides stronger4 isolation, it
duplicates the entire Android software stack, which renders those approaches quite heavy-
weight in consideration of the scarce battery life and memory capacity of smartphones.
Possible approaches to mitigate this problem could be the automatic hibernation of
VMs currently not displayed to the user, or the design of a just-enough-OS/Middleware
to minimize the resident memory footprint of domains. However, at this time available
mobile virtualization technology did not provide these features. In contrast, our solution
is more lightweight, since the creation of a new domain simply requires the definition of
a new string value (color) and deployment of a new MTM verification key. Moreover,
from our past experience with mobile virtualization technology [31], we conclude that

4Although virtualization has been in the past not without its own security problems [25, 26, 190,
208, 27, 28, 205] due to its large management layer.

34

3.8. RELATED WORK

our solution is more practical in the sense that it is more portable to new hardware,
because we can re-use the provided proprietary hardware drivers, while virtualization
requires new (re-implemented) drivers or an additional driver-domain that multiplexes
the hardware between the VMs (e.g., dom0 in Xen [96]).

3.8.1.2 Kernel-level Mandatory Access Control

Another well established mechanism, that is at this time being ported to the Android
platform, is kernel-level mandatory access control like SELinux or TOMOYO [166, 29].
These mechanisms allow, e.g., policy enforcement on processes, the file system, sockets,
or IPC. In SEIP [212], SELinux was used to establish trusted and untrusted domains
on the Linux Mobile (LiMo) platform in order to protect the platform integrity against
malicious third party software. The work further shows how unique features of mobile
devices can be leveraged to identify the borderline between trusted/untrusted domains
and to simplify the policy specification, while maintaining a high level of platform
integrity. The authors of [152] show how policies in the context of multiple mobile
platform stakeholders can be created dynamically and present a prototype based on
SELinux. Low-level mandatory access control is an essential building block in our
design (see Section 3.5). However, it is insufficient for isolating domains on Android,
because it does not consider the Android middleware system components, such as system
ContentProviders/Services or Broadcast Intents, as communication channels between
domains (see Section 3.4). Without high-level policy enforcement in the middleware,
low-level MAC mechanisms can only grant/deny applications the access to system
ContentProviders and Services as a whole. However, generally denying an app access
to system components most likely crashes this app or at least renders it dysfunctional.
Moreover, although these mechanisms allow to some extend fine-grained access control
policies on the network, they do not support the manipulation of network packets like
netfilter does (cf. Section 3.5.3). Nevertheless, the approach of SEIP [212] could enhance
the integrity protection of our TCB (see Section 3.7).

3.8.1.3 Android Security Extensions

In the last two years, a number of security extensions to the Android security mechanisms
have been introduced [24, 133, 139, 44, 46, P5]. Based on very similar incentives to
TrustDroid, Porscha [139] proposes a DRM mechanism to enforce access control on
specifically tagged data, such as SMS. However, this approach is limited to isolate data
assets, but is not suitable to isolate particular (sets of) apps.

Similarly, the TaintDroid framework [46] tracks the propagation of tainted data
from sensible sources (in program variables, files, and IPC) on the phone and detects
unauthorized leakage of this data. However, it is limited to tracking data flows and
does not consider control flows. Moreover, it does not enforce policies to prevent illegal
data flows, but notifies the user in case an illegal flow was discovered. Nevertheless,
TaintDroid could form a very valuable building block in our TrustDroid design to
isolate data assets, if it would be extended with policy enforcement.

Both APEX [133] and CRePE [24] focus on enabling and disabling functionality
and enforcing runtime constraints. While APEX provides the user with the means

35

CHAPTER 3. TRUSTDROID

to selectively choose the permissions and runtime constraints each application has
(e.g., limited number of text messages per day), CRePE enables the enforcement of
context-related policies of the user or a third party (e.g., disabling bluetooth discovery).
In this sense, both are related to our design goal to isolate untrusted applications
based on the context (cf. Section 3.5.3) or protect data assets in shared resources like
system ContentProviders. However, the enforcement described in APEX [133] and
CRePE [24] is too coarse-grained. For instance, networking would be disabled for all
applications, not just selected ones, or not only the access to certain data but to the
entire ContentProvider would be denied to selected applications.

Saint [140] introduces a fine-grained, context-aware access control model to enable
developers to install policies to protect the interfaces of their apps. Although Saint
could, with a corresponding system centric policy, provide the isolation of apps on direct
and broadcast ICC, it can not prevent indirect communication via system Components
(see Section 3.5.1.2). However, Saint’s design provided valuable input for the placement
of authorization hooks in our TrustDroid design.

Our XManDroid [T4] framework addresses the problem of ICC-based privilege
escalation by colluding apps and is also able to enforce policies on ICC channels via
system components. The XManDroid framework as presented in our technical report [T4]
formed the basis for our TrustDroid implementation, but had to be extended to enable
application coloring and mapping of policies for domain isolation from the middleware
onto the network and kernel level.

In general, none of these extensions provides any policy enforcement on the file
system, IPC, or local Internet socket connections in order to enforce isolation of
domains. However, TaintDroid with its data flow tracking mechanism has the potential
to implement fine-grained policy enforcement.

3.8.2 Related Work Post-Publication

Since we presented our TrustDroid, a number of related work has been brought forward
that follows very similar incentives or that realizes some of the ideas we discussed in
our original related work section.

The increasing popularity of using Android-based smart devices (smartphones and
tablets) in business contexts and the associated demand for better support of bring-
your-own-device (BYOD) deployments, has prompted Google to initiate its Android for
Work [80] program. With Android for Work, the platform support for securely deploying
and managing corporate assets on the end-device has greatly increased. Most notably,
Google incorporated Samsung’s Knox [116] security framework, which was specifically
designed to isolate private from business data/apps. Like TrustDroid, Knox (and
now vanilla Android) build on mandatory access control instead of virtualization to
establish isolation and even apply very similar design patterns to TrustDroid (although
naturally in a more conservative manner).

Simultaneously to TrustDroid, the Cells [4] and L4Android [108] virtualization
solutions have been proposed. Cells implements a lightweight OS-level virtualization
based on Linux containers, which allows multiple virtual smartphones to execute
simultaneously. In this sense, Cells resembles the approach 3.1(b) in Figure 3.1 (on

36

3.8. RELATED WORK

page 22). To address the problem of code and data duplication that motivated our
TrustDroid approach, Cells uses a novel file system layout based on unioning, which
increases the sharing of common read-only code and data between the virtual phones.
L4Android, in contrast, encapsulates the Android OS in a virtual machine that executes
on top of the L4 microkernel and compartmentalizes basic services as native processes of
the microkernel. The authors of L4Android also envision one dedicated VM for private
and corporate purposes each. Thus, L4Android follows in principle the approach 3.1(c)
in Figure 3.1. Although L4Android provides a hardware abstraction layer, it necessitates
that drivers for each individual hardware platform are provided (or re-implemented)
for their microkernel—a notorious problem for microkernel solutions unless they are
supported by hardware vendors.

MOSES [156] also separates private from business data, but builds on top of
the TaintDroid [46] framework pretty much in the spirit we discussed earlier for our
TrustDroid. It defines different security profiles on a single device, which determine
the access rights of applications executing under this profile. In addition to several
authorization hooks in the Android middleware to isolate those security profiles, MOSES
uses TaintDroid to taint data with its originating security profile ID and augments
TaintDroid by enforcing access control policies based on the taints. Moreover, instead
of relying on Kernel MAC like TrustDroid does, MOSES instruments several core
libraries and components (such as the Binder library or Java Socket and OSFileSystem
class) to intercept an app’s interaction with the underlying Linux operating system.

AirBag [207] introduces a lightweight OS-level virtualization that creates an isolated
runtime environment for apps with its own dedicated namespace and virtualized system
resources using, for instance, Linux cgroups. Thus, in the spirit of fault isolation,
malicious operations of isolated apps inflict damage only onto their isolated environment.
Although primarily intended for sandboxing potential malware, AirBag’s technique
could be applied to isolate (untrusted) private apps on a corporate device.

PINPOINT [153] forgoes, in contrast to other solutions [207, 108, 4], a general-
purpose resource isolation and instead introduces namespaces akin to Linux namespaces
into the service management of Android’s application framework to isolate very specific
resources while allowing all other resources to function fully as intended. Thus, every
application receives from the application framework, depending on the security policy,
either a reference to the original service (e.g., location or telephony) or to a virtualized
service, which filters the original data or returns mock data. Using this approach, apps
in TrustDroid could be redirected to private or corporate services depending on the
application color.

AppFork [138], like TrustDroid, extends the Android application framework to
introduce different profiles that are isolated from each other. However, AppFork,
in contrast to TrustDroid, allows the user to switch the profile of apps, while in
TrustDroid each installed app is immutably assigned to one security domain. It uses
different techniques, such as dynamic storage partitioning, to prevent cross-profile leaks
during profile switching. Thus, AppFork comes technically close the Android multi-user
accounts [70], where apps can be executed under different user profiles.

DeepDroid [195] enforces enterprise policies through dynamic memory instrumenta-
tion of critical system processes, such as Zygote or the system server, in the spirit of

37

CHAPTER 3. TRUSTDROID

inlining reference monitors [48]. Thus, it avoids (in contrast to solutions like Trust-
Droid) the need to modify the firmware.

Aquifer [131] is a policy framework and enforcement system to mitigate accidental
information disclosure (e.g., application-specific, user data objects such as officce docu-
ments, voice or written notes, and images). It is based on dynamically constructing the
user interface workflow and enforcing export and app-involvement restrictions based on
the runtime context and the purpose of the app (e.g., data intermediaries for “share
with” functionality). Aquifer is primarily written to enforce restrictions along workflows
and across applications and as such could also ensure that shared data does not cross a
domain boundary. However, it is not designed for a general domain isolation.

As mentioned in our security discussion in Section 3.7.1, different ideas exist to further
protect the Trusted Computing Base of TrustDroid. In recent years, orthogonal related
work has introduced concrete solutions for those ideas. For instance, NativeGuard [181]
forms a solution to decompose Android apps by extracting their native code libraries
into separate service applications and hence confine native code to stricter policies.
Hypervision [6] and Sprobes [63] both introduce novel techniques to protect the Linux
kernel on mobile platforms by leveraging the TrustZone secure execution environment
of modern ARM processors.

3.9 Conclusion

Google’s Android did in its early version provide no data and application isolation
between domains of different trust levels. In particular, there existed no efficient
solution to isolate corporate and private applications and data on Android: the existing
security extensions for Android only focus on one specific layer of the Android software
stack, and hence, do not provide a general and system-wide solution for isolation.

In this work we presented TrustDroid, the first Android security framework that
provided practical and lightweight domain isolation on Android, i.e., it does not affect
the battery life-time significantly, requires no duplication of Android’s software stack,
and supports a large number of domains. In contrast to existing security extensions,
TrustDroid enforces isolation on many abstraction layers: (1) in the middleware and
kernel layer to constrain IPC traffic to a single domain, and to enforce data filtering for
common databases such as Contacts, (2) at the kernel layer by enforcing mandatory
access control on the file system, and (3) at the network layer to regulate network traffic,
e.g., denying Internet access by untrusted applications while the employee is connected
to the corporate network. Our evaluation results demonstrate that our solution adds
a negligible runtime overhead, and in contrast to contemporary virtualization-based
approaches [11, 108], only minimally affects the battery’s life-time.

We also provided a detailed discussion on the design of TrustDroid and argue that
TrustDroid can be used as a foundation for Trusted Computing enhanced concepts
such as Trusted Virtual Domains (TVD), a distributed isolation concept known from
the desktop world. In our future work, we aim to adopt domain isolation on the
underlying Linux kernel so that an adversary can no longer exploit kernel vulnerabilities
to circumvent domain isolation.

38

4
XManDroid

Towards Taming Privilege-Escalation Attacks on Android

39

4.1. MOTIVATION

4.1 Motivation

Android uses a permission-based authorization system to protect the user’s privacy
and the system’s integrity against nosy or malicious apps (see Background Chapter 2).
Before Google introduced app-vetting features into its app market (Google Play) and
introduced an associated app verification service [73], this system relied solely on the
user to consider and approve the permissions each app requests at install time. However,
attacks demonstrated that even a vigilant end-user can be easily the victim of different
forms of application-level privilege escalation attacks [30, 44, 148, 161] that allow a
malicious app to violate the user’s privacy or undermine the system integrity. Being
able to mitigate such application-level privilege escalation attacks requires an Android
security architecture that is able to detect the different forms of attacks and take
appropriate counter-measures. Unfortunately, Android’s original security architecture
lacks the necessary authorization hooks and policy decision logic, and hence does not
fulfill this requirement.

4.2 Problem Description

Confused Deputy and Collusion Attacks. Application-level privilege escalation
attacks as in the context of this work are not based on classical software exploitation
techniques or compromising the integrity of security critical system services. Instead,
they exploit the fact that Android’s security architecture was designed to constrain
single application sandboxes (i.e., a single app or multiple apps with a shared UID),
but is not capable of preventing permissions from being (mis-)used transitively across
distinct apps. Two particular attack techniques, which are the focus of this work, are
confused deputy attacks [30, 44, 148] and collusion attacks [161, 117].

In a confused deputy attack [88], a malicious but unprivileged app tricks a privileged
app into misusing its permissions on behalf of the seemingly innocuous, malicious app.
On Android, this vulnerability is often rooted in unprotected (or insufficiently protected)
public interfaces of privileged apps, which thus turn into exploitable deputies. Confused
deputy vulnerabilities have been shown by prior research to be present in both 3rd party
applications [30, 148] and Android system applications [44, 148]. For instance, on early
versions of Android, an unprivileged app could send a specifically crafted Intent to the
dialer application to trigger an unauthorized phone call [44].

On the other hand, in a collusion attack, the attacker splits the malicious functionality
across two or more apps, each requesting only the permission(s) it requires for its
particular functionality. Thus, each malicious application seems innocuous by itself,
however, together they achieve a permission set that was not approved by the end-user.
Collusion attacks require the malicious applications to communicate with each other.
This communication can be either conducted via overt communication channels [117]
(like ICC, file system, or shared components) or via covert communication channels [161]
(like file locks or system services). Since such channels can be established logically at
the middleware layer (e.g., ICC) or via kernel-managed resources (e.g. files and sockets),
protection mechanisms must be deployed and synchronized at both the middleware and
the kernel layer.

41

CHAPTER 4. XMANDROID

Previous Security Extensions to Android. Prior to this work, different solutions [44,
46, 36, 140, 148] targeted the problem of application-level privilege escalation attacks.
However, none of those solutions considered satisfactorily both confused deputy and
collusion attacks at the same time. The existing approaches require app developer
participation to enforce policies or they enforce only very static policies that are too
coarse-grained to effectively cover the attack vectors considered in this work. An
important insight of our work is, that tackling both attack scenarios requires, in contrast
to prior work, an approach that combines a system-centric solution with a flexible
policy-driven enforcement while preserving system performance and compatibility to
existing applications.

4.3 Our Goal and Contributions

In this work we address the problem of devising and building a security framework
for Android that can mitigate confused deputy and collusion attacks. In contrast
to prior work that aimed only at specific subclasses of those attacks, we aim for a
general framework that allows a policy-driven protection against various variations of
those application-level privilege escalation attacks. To support our design decisions, we
conducted a heuristic analysis of the application communication patterns at runtime,
based on a set of selected popular apps from the app market. Using these analysis
results, attack patterns can be better distinguished from normal app operations.

The concrete contributions of this work are:

XManDroid Security Framework: We present the design and implementation of
a security framework (dubbed XManDroid) to detect and prevent confused deputy
and collusion attacks. To this end, we extend the application framework and kernel of
Android’s software stack: (1) new authorization hooks for runtime monitoring of Inter-
Component Communication (ICC) between applications and of indirect communication
through Android system components, such as system Services and ContentProviders.
Inspired by the approach of QUIRE [36], we establish a semantic link between ICC
calls that are checked at runtime by our authorization hooks in order to identify and
prevent call-chains that form attack states; (2) we adapted TOMOYO Linux [87] as
kernel-level Mandatory Access Control (MAC) to monitor and control the file system
(i.e., files, Unix domain sockets, Internet sockets) access by application processes and
thus supplement our middleware access control; (3) a runtime interaction between our
security extensions to the Android middleware and to the kernel-level MAC. Although
TOMOYO can intercept system calls and enforce MAC at the kernel-level, it lacks
the high-level semantics and contextual information of the application framework to
effectively enforce our security policies (e.g., based on the permissions an applications
holds). To bridge this semantic gap between policy enforcement at the middleware layer
and at kernel-level, we dynamically map the policies of the middleware to TOMOYO’s
policies.

Performance and effectiveness: Our prototypical implementation has a negligible per-
formance overhead that is not noticeable by the user. We evaluated our implementation
on a Nexus One development phone with 50 popular applications from the Android

42

4.4. REQUIREMENTS ANALYSIS AND ASSUMPTIONS

Market and 25 test users (students). We also successfully evaluated our framework
against application-level privilege escalation attacks presented in [44, 30, 148, 161]. In
contrast to existing solutions (at the time of writing), our implementation detects all
of those attacks including the sophisticated Soundcomber trojan [161] and an attack
launched through a loopback device connection [30]. Finally, we discuss and evaluate
possible problems, such as the rate of attack detection and falsely denied inter-app
communication.

4.4 Requirements Analysis and Assumptions

In the following, we define our adversary model, devise our security requirements, and
explain our assumptions.

4.4.1 Adversary Model

The goal of the attacker is violate the end-user’s privacy by stealing user-private
information from the device or to manipulate the system in ways that would require a
higher privilege level than 3rd apps usually have. To this end, the attacker does not aim
at mounting software exploits that compromise other processes or at designing overly
privileged apps that can single-handedly steal all user-private information. Instead the
attacker aims at making his apps as seemingly innocuous as possible as to not trigger a
vigilant user that inspects the apps’ permissions.

We consider an attacker that is able to mount software-based attacks using one or
more attacker apps that are installed on the end-user’s device. Using these apps, the
attacker is able to exploit confused deputies or perform collusion attacks. The attacker
apps can interact with each other and with the system via the default application
framework API (e.g., Intent messages or shared system components like Contacts) and
through the default Linux IPC facilities (e.g., file system access, sockets, etc.). Thus,
the attacker apps can use different communication channels like direct communication
using ICC or sockets, indirect but overt communication via shared system components
or the file system, or covert communication channels through shared system services
or the file system. Moreover, the attacker is in full control of the application code of
his apps and thus interaction with the system and other apps might occur from DEX
bytecode as well as native code within the attacker’s apps’ sandboxes. This differs from
previous work on application-level privilege escalation attacks [140, 36, 148], which
aimed only at mitigating (unknown) confused deputy attacks over ICC, while we work
towards an Android security framework that can address all above mentioned channels.

4.4.2 Objectives and Requirements

Ideally, a security solution to the confused deputy and collusion attack problem should
be able to address all attacks that occur over the above mentioned communication
channels between apps and the system. Thus, hardcoding specific enforcement policies is
not an option. Instead, a more flexible and configurable security framework is required
that supports security policies of different granularities depending on the concrete
security demands at hand and that hence can target all or only a subset of the above

43

CHAPTER 4. XMANDROID

mentioned communication channels. Moreover, a system-centric solution is required
that does not rely on app developer participation in the enforcement and hence excludes
a largely unreliable (or even malicious) actor in the app ecosystem. This requirement
also entails the need for legacy compatibility to existing apps, since recompilation or
reconfiguration of all existing apps is virtually impossible given the enormous number of
apps on the market. Lastly, like any other security solution, in particular in the domain
of resource constrained mobile devices, the security solution should only impose a low
performance overhead.

4.4.3 Assumptions

We assume that the Trusted Computing Base (TCB), consisting of the Android mid-
dleware, application framework, and the underlying Linux kernel, is trusted and not
malicious. However, pre-installed system applications may suffer from confused deputy
vulnerabilities, as shown by different previous research works [44, 36, 148]. Further, we
assume that the application framework and pre-installed applications are not free of
covert channels, i.e., functionality that can be used to establish communication channels,
as shown by previous work [161].

4.5 Framework Architecture

We first describe the basic idea behind the design of our security framework (Section 4.5.1)
and explain then in detail the components of our framework and their interaction
(Section 4.5.2). In this context, we also briefly introduce how our framework makes
access control decisions based on a graph-based system representation and policy
language.

4.5.1 Overview

The basic idea for our security framework is to perform runtime monitoring of the
communication links between applications and to prevent communication links that can
potentially form a collusion or confused deputy attack. Our approach is based on adding
new reference monitors to the various middleware system components and the kernel
that are critical for inter-application communication. These new monitors serve a double
purpose: First, they enforce the security policies that prevent malicious communication
links from being established. Second, they provide feedback to a central system view
component of our framework, which represents the current system-wide inter-application
communication state. This system view is the foundation for our graph-based security
policies, which make use of the history of established (i.e., granted) communication
links to derive whether a new communication link will lead to an attack state and hence
has to be prevented. These policy decisions are made by a central policy decision point.
Thus, our design follows the established design pattern of earlier access control systems,
e.g., Flask [179], which discern policy enforcement logic from policy decision logic.

Our current reference monitors control communication channels that are located at
the middleware (i.e., ICC and shared system components) as well as at the kernel-level
(i.e., file system objects like files and sockets).

44

4.5. FRAMEWORK ARCHITECTURE

User-space

Virtual Filesystem

API

Discretionary Access Control

Mandatory Access Control (TOMOYO)

File System (Files, Sockets, ...)

Kernel space

Policy
Decision Point

System
View

Package
Manager

Extension Default Android component

App A App B

System Services /
ContentProviders

ICC

Syscall SyscallUpdate View

Update View

Policy check

Policy check

Figure 4.1: Framework architecture.

4.5.2 Architecture Components

Our security framework architecture is depicted in Figure 4.1. In the following, we
explain in more technical depth the components that form our security framework and
how they interact with each other. We structure our explanation in accordance with
the Android software stack and first explain our middleware extensions (Section 4.5.2.1)
before then explaining our kernel security extensions (Section 4.5.2.2). Lastly, we briefly
explain our graph-based system view and policies (Section 4.5.2.3).

We implemented our security framework based on the Android v2.2.1 code base.

4.5.2.1 ICC Reference Monitoring

Direct ICC. We extended the Android permission check API of the ActivityMana-
gerService, which controls whether an application is allowed to access the components
of another application or of a system Service/ContentProvider , with an additional
authorization hook for our framework. In case the default Android permission check
would allow the inter-component communication to proceed, our new authorization
hook queries the Policy Decision Point for a policy-based access control decision. This
decision by the Policy Decision Point overrules the default permission check and causes
the authorization hook to deny any policy violating ICC from being established. If the
checked ICC is allowed by the policy, it will proceed, and the Policy Decision Point

45

CHAPTER 4. XMANDROID

A D

B

C

E

F

Application
Framework

(a)

A D

B

C

E

F

Application

Framework

(b)

Figure 4.2: Introducing authorization hooks per system component: (a) Enforcing poli-
cies purely based on UID causes transitive closure between apps through the applica-
tion framework; (b) Enforcing policies specifically for each system ContentProvider/Ser-
vices of application framework avoids transitive closure. Shaded nodes represent
colluding applications.

feeds this decision back to the System View to inform it about a new communication
link in the system-wide view of established inter-application communication channels.
For the policy decision, the authorization hook provides the Policy Decision Point with
the UIDs of the caller and callee application of the to be established ICC; the Policy
Decision Point can retrieve further information about those UIDs (e.g., their permission
sets) from the system’s package management.

In addition to the authorization hook in the permission check, we address direct ICC
via Broadcast Intents by hooking the broadcast subsystem of the ActivityManagerService.
We re-use the approach presented in our TrustDroid work (Section 3.5.1.2 on page 24)
and check each sender-receiver pair. We skip sending the Broadcast Intent to Receivers
that would form a policy violation in case they would receive the Broadcast.

Indirect ICC. A particular problem that had to be solved when monitoring inter-
component communication based only on extending the permission check API are
indirect information flows via the Android system Services and ContentProviders of
the application framework. A majority of those components are executed under shared
UIDs. Thus, using the UID from the permission check for a policy decision does not
allow the Policy Decision Point to distinguish between the different system components.
Moreover, since they implement the application API, they are commonly contacted by
any installed application. As a consequence, when the Policy Decision Point tries to
connect two different interactions of distinct apps with the system components in order
to detect collusion attacks, it easily results in a transitive closure between all installed
apps (see Figure 4.2(a)).

To solve this issue, we extended the calls to the permission check API in those
system components, such that they provide an additional unique identifier to the Policy
Decision Point, which the Policy Decision Point uses to identify the system component
from which a permission check originates. Thus, the Policy Decision Point can now
distinguish through which system component which flows can be connected and hence
avoids the risk of transitive closure among all apps (see Figure 4.2(b)).

46

4.5. FRAMEWORK ARCHITECTURE

Moreover, we followed the approach for fine-grained filtering of data in ContentPro-
viders that we introduced in TrustDroid (see Section 3.5.1.2 on page 24) and enforce
access control on indirect flows via ContentProviders at the granularity of database
entries.

Intent Tagging. An important feature for fine-grained analysis of communication
links that can lead to confused deputy attacks is to establish relations between different
ICC calls and/or Intents. Inspired by the solution of QUIRE [36], our framework
builds a call-chain of the UIDs in related ICCs. In contrast to QUIRE, we opted for a
system-centric call-chain by automatically tagging newly created Intents with the UID
of the sending application. This information is used by the Policy Decision Point to
re-create the path in the graph (which is part of the System View) that lead to the
current ICC. A more fine-grained approach to establish call-chains based on extensions
to the Binder IPC kernel module is presented in our Scippa solution (see Chapter 7).

4.5.2.2 File System Reference Monitoring

To enable mandatory access control at the kernel level, our implementation employs
TOMOYO Linux1 v1.8, a path-based MAC implementation available as a kernel patch.
Whenever an application process creates or accesses a file or socket, TOMOYO intercepts
this operation and checks with its policy whether the operation is permitted. However,
since in our security framework the policy decision is dependent on the access control
decision history of applications and as such is highly dynamic, TOMOYO’s static policies
are inadequate. To enable such highly dynamic policies on TOMOYO, we leverage the
readily available user-space interface of TOMOYO and extend it in order to provide a
feedback channel between the kernel and the Policy Decision Point and System View at
middleware. To enable communication between the two layers, we wrote a native library
with access to TOMOYO’s interfaces and compiled it against the Java Native Interface
(JNI). In order to enable runtime policy updates, we extended an interface of TOMOYO
that allows it to seek a decision from a supervisor (e.g., our Policy Decision Point). To
enable the middleware to make a decision at runtime, TOMOYO passes on the UID of
the process making a system call along with details pertaining to the call itself, e.g.,
path and owner UID of the file to be read. The middleware’s Policy Decision Point
processes the request and conveys its decision to TOMOYO. In case TOMOYO reports
that a file/socket is being created/removed, the System View is updated accordingly.

It is important to note that the TOMOYO kernel boots with a carefully written
security policy catered for Android. This policy file is TOMOYO specific and is loaded
into the kernel memory during device boot. On intercepting a system call post device
boot, TOMOYO inspects its internal policy file to see if there is a policy rule that allows
the system call to proceed normally. If yes, the request is granted without querying
the Policy Decision Point (in the middleware). If no, TOMOYO queries the Policy
Decision Point for a decision on the request made. If the Policy Decision Point deems
it safe to grant the request, it conveys the same to TOMOYO and also updates the
System View with the new communication link. There are two ways in which the Policy

1http://tomoyo.sourceforge.jp/

47

http://tomoyo.sourceforge.jp/

CHAPTER 4. XMANDROID

Decision Point could relay a grant decision: (1) It could simply request TOMOYO to
allow the specific system call to proceed normally, or (2) it could in addition to (1)
request TOMOYO to add the decision to TOMOYO’s policy file. Such a flexibility
allows our framework to reduce the number of context switches between the middleware
and the kernel, which in turn reduces the performance overhead that could stem from
frequent context switches.

An alternative to TOMOYO could be SELinux [114], a type-based MAC implemen-
tation available as a Linux Security Module (LSM). However, SELinux enforces MAC
by means of type enforcement, which typically requires extended file attributes to be
enabled in the filesystem. Since Android v2.2.1’s flash file system (YAFFS2) does not
support extended file attributes by default, using SELinux requires prior file system
modifications. On the other hand, TOMOYO, being a path-based MAC implementation,
does not require any file system modifications prior to usage. Furthermore, SELinux
lacks an interface for efficiently updating the policies, thereby precluding communication
between the kernel and the middleware as we require them in our framework.

4.5.2.3 Graph-Based System View and Policies

The System View component of our framework stores the history of all granted com-
munication channels and thus provides a system-wide view of the communication links
between applications. We opted for storing this history in form of a graph-based
representation, where nodes represent applications in the system and edges represent
the different kinds of monitored communication links (i.e., ICC, file read/write, socket
read/write). Inherently, this representation can only be as accurate as the reference
monitors that provide feedback on the communication channels. For our framework,
this means that the graph-based system view operates at the granularity of UIDs,
meaning at application sandbox level. Thus, apps with shared UID are represented by
the node the system view graph. The exception from this limitation are the system
components, which can be represented at a better granularity per component due to
the unique identifier that permission checks within those system components provide
to the Policy Decision Point and System View. For implementation of our graph, we
chose the JGraphT 2 library in version 0.7.3.

The system view graph is initiated during first boot of the system and nodes for
all existing apps are added to the graph including meta-information such as their
UID, permissions (in case of apps), or path and owner UID (in case of files/sockets).
For shared UIDs, the information of all apps under the shared UID are merged into
their associated node, e.g., the union set of their permissions. To add newly installed
apps to the system graph or remove uninstalled apps from it, we instrumented the
Package Manager to provide feedback about those events to the System View. Nodes
that represent files or sockets are added/removed from the graph when the kernel MAC
(TOMOYO) informs the System View about those operations via the feedback channel
between our middleware extensions and TOMOYO.

Figure 4.3 provides a simple example for our system graph with exemplary communi-
cation links. Besides a number of application sandboxes, it also illustrates distinct files

2http://www.jgrapht.org/

48

http://www.jgrapht.org/

4.6. EVALUATION

S SA

A A F

A

A

I

A

S

A

F

I

System Service/
ContentProvider

Application

File / Unix socket

Internet socket

ICC
Read/Write access to files
or system components

Local network connection

UID: 10023
IP: 127.0.0.1:2342
... UID: 10027

Path: /data/data/...
...

UID: 10021
Package: com.example....
Permissions: Read_Contacts, GPS, ...
...

Figure 4.3: System graph representation with example communication channels.

and sockets as well as single system Service and ContentProvider components. Moreover,
TOMOYO provides exact information on the data flow direction (i.e., read or write)
and hence edges to/from file and Unix socket nodes can be represented unidirectional.
Similarly, the authorization hooks in the system components can clearly distinguish
between read and write operations, thus allowing edges to/from system components
nodes to be represented unidirectional. In contrast, ICC between applications and
to/from Internet sockets require a bidirectional representation for different conceptual
and technical reasons: First, both ICC and Internet connections establish very often
inherently a bidirectional communication flow and an exact differentiation of the current
case is not possible at the level of abstraction at which our framework operates. Second,
in the specific case of ICC, mechanisms, such as Pending Intents obfuscate the exact
data flow, thus, we conservatively assume bidirectional data flows.

Operating with a graph-based representation allows to more efficiently trace (poten-
tial) communication links between applications and, thus, define our security policies
using graph-based policy languages. For our implementation, we adopted the VALID [15]
language for virtualized environments to our Android-specific use-case and extended it
with new statements that allow us to define attack states as paths in the system graph
based on the nodes’ and edges’ properties. For more details on our policy language and
how it is used, we refer to our publication [P5, T4]

4.6 Evaluation

We begin this section with a heuristic study of communication patterns between 3rd
party applications that, in part, motivated our design decisions. Subsequently, we

49

CHAPTER 4. XMANDROID

provide test results on effectiveness and performance of our framework and discuss
challenges and problems therein.

4.6.1 Test methodology

As methodology for our evaluation, we opted for manual testing with a group of 25 test
users, as automated testing of mobile phone applications has been shown to exhibit
a very low execution path coverage (approximately 40% in average and only 1% in
worst case [65]). In light of this limitation, we argue that 50 selected applications from
different market categories (e.g., games or social tools) form a representative testing set.
The test users’ task was to install and thoroughly use the provided apps, to trigger as
much as possible of the apps’ features and with interleaving installation, uninstallation,
and usage.

4.6.2 Study of 3rd Party Application Communication

We performed a heuristic analysis of the communication patterns between third party
applications from the Android Market. In the following, we present our main observations
and thereby motivate our design decisions.

File system and socket based communications. Figure 4.4 depicts the file system
and socket based communication between the test apps. We can observe that the
applications we tested neither share their data with other applications at the file system
level, nor communicate with each other via Unix domain sockets. Consequently, an
attack vector that uses files or Unix sockets as communication medium could be easily
identified, making it easier to prevent such an attack. To effectively prevent this attack
vector, a kernel-level MAC is required, since applications can make use of native code
that circumvents any security mechanisms in Android’s middleware or app runtime.

Moreover, since legitimate applications are far less likely to communicate this way,
the rate of falsely denied communication links is expected to be low. To illustrate this
point, we developed sample apps that use a Unix socket or a file for communication
and this pattern is clearly distinguishable from other applications in Figure 4.4 (bottom
left corner).

ICC based communication. Our observation regarding ICC based communication
shows that applications usually operate autonomously and do not have functional
interdependencies with other applications. Exceptions are custom launcher applications,
which start the Activities of other apps, and apps with a “share with” functionality that
receive data from other apps via Intent for processing (e.g., Facebook, Twitter etc.).
The usual way for apps to share data are (system) ContentProviders.

Our design accurately addresses this communication pattern, since (1) it implements
a very fine-grained policy enforcement in the system components, and (2) direct commu-
nication between apps, which is the main target of generic system policy rules, occurs
seldom and if so, with a very distinct pattern (start Activity or share with).

50

4.6. EVALUATION

Figure 4.4: Visualization of file system and socket access by third party apps. Grey
nodes represent benign applications, red nodes represent colluding applications, black
nodes represent files and blue nodes represent sockets. On the bottom left are two
examples of colluding applications: one pair of apps (WriteSD and ReadSD) colludes
by means of a shared file on the SDcard, while another pair (LocalSocket_Client and
LocalUnixSocket_Server) colludes using a socket in a client-server model.

4.6.3 Effectiveness

We evaluated the effectiveness of our solution based on the detection rate of attacks
specified in an example security policy (i.e., the false negative rate) and the rate of falsely
denied communications between applications (i.e., false positive rate). An ideal solution
would provide both a zero false negative and zero false positive rate. Our current
instantiation applies over-approximation of communication links, except for Intents (cf.
Section 4.5.2.1). This means that it assumes a relation between communication channels
where none might exist, e.g., it has no false negatives but tends to cause false positives.

Attack detection rate. To evaluate the detection rate of privilege escalation attacks,
we developed sample applications that implement the attacks described in [161, 148, 44,
30] and deployed a system policy that contained rules targeting these attacks (we refer
to our paper [P5] for details on the rules). Our framework successfully detected all of the
above mentioned attacks at ICC and file system level, including all the attack scenarios
of Soundcomber [161] launched via covert channels in Android system components and
a file based covert channel. However, it must be noted, that the prevention of illegal
channels depends on the deployed policies and other channels than the ones tested (e.g.,
using file sizes as covert channel), would require definition of corresponding policies.

51

CHAPTER 4. XMANDROID

Figure 4.5: Visualization of the ICC based communication during user tests. Selected
System Services and Content Providers are illustrated as separate nodes.

Falsely denied communication rate. We evaluated with our user test the impact
of our security framework on the usability of third party applications. During this test,
in addition to the policy rules from the attack detection test, we deployed generic rules
to prevent the leakage of sensitive information like the device location, contacts, or
SMS via the Internet. Moreover, we deployed a singular rule that allows applications to
launch other applications with an Intent if and only if the Intent does not contain any
additional data/information.3

To our surprise, the results of our tests showed no false positives. This is on the one
hand counter-intuitive, since our policy rules also included rather generic rules and are
indicative of a higher rate of false positives. On the other hand, this result confirms
our observations and conclusions on the communication patterns between third party
applications on Android.

4.6.4 Performance

Our solution imposes only a negligible runtime overhead, not perceivable by the user.
Tables 4.1 and 4.2 present our benchmark results. In particular, as Table 4.1 shows,

3Note, data-less Intents can be used by the adversaries to establish covert communication. Thus, the
rules should include less generic exceptional rules which, e.g., additionally specify application names.

52

4.6. EVALUATION

Type Calls Average Std. dev.
(ms) (ms)

Original Reference Monitor runtime for ICC
system 11,003 0.184 2.490
Policy Decision Point overhead for ICC
uncached 312 6.182 9.703
cached 10,691 0.367 1.930
Intents 1,821 8.621 29.011
Policy Decision Point overhead for file read
file read 389 3.320 4.088

Table 4.1: ICC timing results.

Type Average Std. dev.
(ms) (ms)

Read access to System Content Providers
total number of accesses: 591
read 10.317 41.224
overhead 4.983 36.441
Read access to System Services
total number of accesses: 87
read 8.578 20.241
overhead 0.307 0.4318

Table 4.2: Timing results for system components.

our framework performs quite steadily in terms of a very low standard deviation; the
runtime system call latency is low considering the ratio of cached to uncached decisions.
Only the overhead on Intent messages cannot be optimized through caching. However,
in follow-up work [P1] we implemented a higher efficient and faster system-centric ICC
call-chaining based on modifications to the Binder mechanism instead of only Intents.

On read access to system ContentProviders (see Table 4.2), the filtering of values
conflicting with the system policy imposes an overhead of approximately 48%. On
read access to system Services, the overhead is merely about 2.4% on average. This
discrepancy stems from the fact, that on read access to ContentProviders usually
multiple reader-writer pairs have to be checked, while access to system Services involves
only one reader-writer pair.

4.6.5 Impact on 3rd party applications’ usability

Although we did not observe any false positives in our tests, any falsely denied commu-
nications must be avoided, because they can have a severe impact on the usability of
the smartphone. Denying applications ICC that was expected to be successful most
likely renders these application dysfunctional. Moreover, application developers do not
anticipate this situation, since installed applications have been granted all the requested
permissions, and thus often omit exception handling code, causing applications to crash
in case their ICC call is denied.

This problem applies to all approaches based on revoking permissions at post-install
time or on denying ICC at runtime, as we will explain in Section 4.7 on related work. It

53

CHAPTER 4. XMANDROID

is particularly hard to solve for situations where one cannot clearly distinguish between
a confused deputy attack and a legitimate user action, e.g., when an app that provides
a “share with” functionality receives an Intent to share data or when the browser app
is called to open a particular URL.

In our solution, we strive for minimizing the number of false positives by (1) de-
composing the rather monolithically structured application framework sandboxes into
distinct Services and ContentProviders nodes in our system graph; and (2) by perform-
ing a heuristic analysis of the communication patterns of applications. The former
one facilitates a more fine-grained policy check on access to data shared via system
components, while the latter is used to refine the policy design.

4.7 Related Work

In this section we provide an overview of closest related work on extending Android’s
security framework. We first discuss in Section 4.7.1 the related work at the time this
work was conducted in order to underline the novelty of our results. We then discuss
in Section 4.7.2 further related work that has been published after our work had been
presented.

4.7.1 Status Quo at Time of Publication

Android Security Extensions. Several security extensions to Android’s security frame-
work have been proposed prior to our work [44, 140, 166, 133, 46, 24, 139, 149]. In the
following paragraphs, we discuss the strengths and shortcomings of security extensions
that are closest to ours.

The goal of Kirin [44], one of the first security extensions for Android, is to mitigate
malware contained within a single application. It extends the Android application
installer to check at install-time if an application requests an undesired combination of
permissions and denies installation if so. Additionally, Kirin is capable of determining
which interfaces of other applications an application can potentially access. However,
due to its static nature, Kirin has to conservatively consider all potential communication
links as possible, in particular all unprotected interfaces must be assumed as being
accessed. This over-approximation will eventually stop any application from being
installed, since applications can potentially establish arbitrary communication links
to other applications. In contrast to Kirin, our framework (1) focuses on runtime
monitoring of actual communication links and establishing connections between them;
and (2) decides in real-time if a new link is allowed to be established or would violate
the security policy.

Saint [140] allows developers to attach policies to their apps that govern how other
apps can interact with their apps. The policies are enforced by different authorization
hooks in crucial system services such as ActivityManagerService. In order to prevent
confused deputy attacks with Saint, app developers have to define appropriate security
policies for each of their app’s interfaces, i.e., they have to specify which permissions/-
configuration/signature a calling app is required to have in order to access an interface.
However, since application developers have to define these policies themselves, they

54

4.7. RELATED WORK

might fail to consider all security threats. Finally, Saint does not address malicious
developers, who will not deploy Saint policies for the obvious reason that they might
want to mount a collusion attack. By contrast, our framework deploys a system-centric
solution which is also applied to malicious colluding applications, and enforces its policies
at the file system and network layer as well.

Quire [36] provides a lightweight provenance system to prevent confused deputy
attacks via Binder IPC. It tracks and records the IPC call chain across multiple and
allows receivers of IPC to inspect the call chain in order to evaluate their trust in the
originator of the IPC call. However, similar to Saint, Quire is application-centric. It
requires applications to explicitly forward the IPC call chain to subsequent apps in the
communication chain. Thus, Quire cannot prevent colluding applications, because they
may drop the IPC call chain and hide their partner app.

IPC Inspection [148], like Quire, also tackles confused deputy attacks. It poly-
instantiates applications and reduces the permission set of an application instance that
receives a message from a less privileged app, so that the receiving instance cannot
be used for escalating the sender’s privileges. This can be considered as a relaxed
instantiation of the Biba [13] and LOMAC [57] integrity models by lowering the integrity
level (i.e., permission set) of the app that receives the message to the integrity level
of the sending app. In contrast to our framework, IPC Inspection does not require a
policy framework, and hence, can prevent unknown attacks without the deployment
of appropriate policies. However, IPC Inspection does not provide a solution against
maliciously colluding applications. Although the receiver instance’s permissions are
reduced to the sender’s permissions, the individual application instances at the receiver’s
side still reside in one sandbox and are not properly isolated from each other. Thus,
a malicious application can simply let their individual instances collaborate within
its sandbox and thus circumvent the permission reduction. An important question
that the authors of IPC inspection left open is how permissions that are controlled
by the underlying Linux kernel (e.g., Internet or bluetooth) are effectively revoked at
runtime. Lastly, reducing the receiver’s permissions to the ones of the sender contradicts
Android’s privilege separation model: on Android, applications should refrain from
asking for too many permissions and instead delegate certain tasks to sufficiently
privileged applications.

TaintDroid [46] and AppFence [93] use dynamic taint tracking of data from security
and privacy sensitive sources to detect [46]/prevent [93] unauthorized leakage of sensitive
data via selected sinks (such as Internet sockets). Both are able to detect data leakage
attacks potentially initiated through a application-level privilege escalation attack.
However, TaintDroid mainly addresses data flows, whereas privilege escalation attacks
also involve control flows. TaintDroid’s authors mention that tracking the control flow
with their system will likely result in much higher performance penalties. AppFence
additionally provides access control to system ContentProviders and Services, where
it introduces data shadowing to tackle the problem of crashing applications when
permissions are dynamically revoked (e.g., by returning fake or blank data). Nevertheless,
like TaintDroid, AppFence provides no means to detect privilege escalation attacks
beyond data leakage attacks.

SELinux on Android [166] presented the first implementation of SELinux on Android

55

CHAPTER 4. XMANDROID

and argues for the benefits SELinux can provide in securing Android-based devices.
Although SELinux later became an integral part of Android’s security architecture,
SELinux is not a suitable solution for our framework. As we argued in Section 4.5,
SELinux lacks a coordination mechanism between the Linux kernel and the Android
middleware. However, such a coordination mechanism is crucial in bridging the semantic
gap between those two layers in order to adequately address collusion and confused
deputy attacks, which leverage communication channels at both middleware and kernel
level. We addressed this challenge with our TOMOYO-based architecture.

Our XManDroid work was preceded by our TrustDroid work [P4] (see previous
Chapter 3). While TrustDroid and XManDroid share a common design pattern (e.g.,
enforcement at both kernel and middleware level), TrustDroid is designed for domain
isolation based on a static (and hardcoded) policy. For XManDroid we required a
more dynamic security enforcement and hence also a more flexible interaction between
kernel and middleware level (see also requirements analysis in Section 4.4 on page 43).
Thus, while TrustDroid formed a foundation of this work, it required far-reaching
extensions.

Non-Android Related Work. The XManDroid framework presented in this work
applies results from former research on operating system security. First, our work
relates to stack inspection (e.g., [191]), a security mechanism that enforces access control
decisions by inspecting the runtime call stack of a request, by building call-chains across
applications (similar to Quire [36], however, in a system-centric approach).

Moreover, our framework is related to the Chinese Wall security model [18], where
the history of granted access control requests of a subject determine the result of all
possible current and future access control decisions for this subject. The overall goal of
this model is to prevent information flow between subjects sharing the same conflict of
interest class. Similarly, our framework makes access control decisions based on which
components or files/socket an application sandbox has accessed in the past.

Furthermore, XManDroid’s filtering of ICC that implements known confused
deputy attacks could also be abstractly considered as a centralized instantiation of the
Clark-Wilson integrity model [22], which requires processes of higher integrity level to
accept input from lower-integrity processes only via filtering interfaces. The integrity
level of an application depends in this case directly on the permission set that application
holds.

4.7.2 Related Work Post-Publication

Since publication of our XManDroid solution, a large body of related work has been
established. In the following, we survey selected closest related work.

Various works have identified new forms of confused deputy attacks [215, 125, 52]:
First, is was discovered, that application developers tend to leave their component
interfaces unprotected, allowing an unprivileged app to connect to those components
and leak their content or pollute their content [215]. For instance, it allowed an attacker
to extract information such as user’s contacts, instant messenger chat logs, or login
credentials. Although XManDroid’s original architecture could not detect such illegal

56

4.7. RELATED WORK

access to unprotected application components,4 our heuristics could be extended to cover
those cases: Accessing a component of another application is a quite distinctive behavior
from the usual inter-application data sharing via Intents (“share with”) and hence might
allow XManDroid to be adapted to this new attack scenario. Second, independent
work [125] discovered that some Android systems that had been customized by vendors,
contained a highly-privileged Service component confused deputy that effectively offered
a root shell to any application (via Intents). Given an appropriate policy, XManDroid
could protect this vulnerable system Service. Lastly, the Android Clipboard service was
found to be exploitable as confused deputy [52]. Since the Clipboard is unprotected,
any application can monitor and retrieve the clipboard content. When the user now
copies sensitive data between apps, e.g., a password from a password manager app to
the browser, an attacker app can retrieve this information as well. The Clipboard service
operates semantically similar to ContentProviders and hence XManDroid’s per-data
enforcement could be easily extended to the Clipboard service.

Very recently, the need for precise inter-application ICC classification for preventing
collusion attacks has been emphasized [43]. The authors of that work have re-evaluated
the policies we used in our work for preventing collusion and confused deputy attacks
(see [P5] for details) and concluded that in today’s Android application model the false
positive rate of our enforcement would in fact be noticeably higher. As an improvement
of our work, the authors propose an approach based on in-depth static flow analysis
(similar to Epicc [137]) to detect cross-app data flows.

Since our framework design extends the default Android permission check API,
any policy denial for ICC will result in a denied permission check (with exception of
our per-data access control in the system Services and ContentProviders). Besides
AppFence, a more recent work [103] has quantified the negative effects such denials have
on 3rd party applications. This motivates the need for a more graceful enforcement of
denied ICC in a future version of our framework.

Further, the attacker model for Android has been updated since this work was
presented. It was discovered that in many cases not the app developer but instead the
provider of external libraries is using dubious privacy practices—foremost providers of
advertisement libraries [47, 84]. However, Android’s security model does not make a
distinction between the external lib as security principal and its host app as security
principal. Thus, our design is currently limited to enforcing policies on the application
sandbox as a whole and not for the security principals that actually form the application
code. Approaches that retrofit Android’s application model accordingly, and which
hence would greatly improve the effectiveness of our XManDroid, are AdSplit [170]
and AdDroid [144]. Another promising approach is Compac [196], which allows the
system to enforce per app-component permissions.

Similarly to TrustDroid, MOSES [156] provides domain isolation between different
domains such as work or private at the different layers of Android’s software stack. In
contrast to TrustDroid, it includes the TaintDroid [46] framework to track information
flows and prevent cross-domain data leakage. However, like TrustDroid, MOSES
lacks the flexibility for policy enforcement that we need in XManDroid.

4Remember, that is was based on extending the permission check API of the application framework
and that unprotected interfaces do not trigger a check.

57

CHAPTER 4. XMANDROID

Aquifer [131] dynamically constructs the user interface workflow and enforces export
restrictions on data (such as office documents, voice or written notes, and images)
that are passed along the workflow across the involved applications in order to prevent
accidental information disclosure. As such, Aquifer could limit the impact of collusion
attacks, when colluding apps are involved in a user interface workflow (e.g., data
intermediaries for “share with” functionality).

Lastly, the XManDroid scenario has been implemented as a security module on
top of our Android Security Framework [P2] (see Chapter 6).

4.8 Conclusion

In this work, we addressed the problem of confused deputy and collusion attacks on
Android. We propose the design and implementation of a practical security framework for
Android that monitors at runtime the application communication channels in Android’s
middleware and in the underlying Linux kernel (namely, IPC, file system, Unix domain
and Internet sockets). Our framework ensures that they comply with a graph-based
security policy that prevents different classes of confused deputy and collusion attacks. To
underline our design decisions, we analyzed typical communication patterns of Android
applications by means of a heuristic study. Our design addresses our observations, as
it implements a fine-grained policy enforcement in the system components, which are
the primary means for applications to share data. Inspired by Quire [36], we integrate
Intent tagging techniques into our system (but in a system-centric way) in order to
increase the precision of our analysis. Moreover, a novelty of our prototype is the
runtime interaction between our security extensions to the Android middleware and
TOMOYO Linux at kernel-level, allowing for dynamic runtime policy mapping from
the semantically rich middleware to the kernel access control. Our evaluation results
show that our framework is efficient and effective. It can prevent recently published
application-level privilege escalation attacks [44, 30, 148, 161], including sophisticated
ones, such as Soundcomber [161], which uses covert channels in the Android system
components.

58

5
FlaskDroid

Flexible and Fine-Grained Mandatory Access Control on

Android for Diverse Security and Privacy Policies

59

5.1. MOTIVATION

5.1 Motivation

Mobile devices such as smartphones and tablets have become very convenient companions
in our daily lives and, not surprisingly, also appealing to be used for working purposes.
On the down side, the increased complexity of these devices as well as the increasing
amount of sensitive information (private or corporate) stored and processed on them,
from user’s location data to credentials for online banking and enterprise VPN, raise many
security and privacy concerns. Today the most popular and widespread smartphone
operating system is Google’s Android.

Android’s vulnerabilities. Android has been shown to be vulnerable to a number of
different attacks such as malicious apps and libraries that misuse their privileges [216,
146, 84] or even utilize root-exploits [217, 146] to extract security and privacy sensitive
information; taking advantage of unprotected interfaces [21, 19, 211, 111] and files [177];
confused deputy attacks [30]; and collusion attacks [161, 117].

Solutions. On the other hand, Android’s open-source nature has made it very appealing
to academic and industrial security research. Various extensions to Android’s access
control framework have been proposed to address particular problem sets such as
protection of the users’ privacy [46, 93, 24, 210, 7, 101]; application centric security such
as Saint enabling developers to protect their application interfaces [140]; establishing
isolated domains (usage of the phone in private and corporate context) [P4]; mitigation
of collusion attacks [P5], and extending Android’s Linux kernel with Mandatory Access
Control [132].

Observations. Analyzing the large body of literature on Android security and privacy
one can make the following observations:

The first observation is that almost all proposals for security extensions to Android
constitute mandatory access control (MAC) mechanisms that are tailored to the specific
semantics of the addressed problem, for instance, establishing a fine-grained access control
to user’s private data or protecting the platform integrity. Moreover, these solutions
fall short with regards to an important aspect, namely, that protection mechanisms
operate only at a specific system abstraction layer, i.e., either at the middleware (and/or
application) layer, or at the kernel-layer. Thus, they omit the peculiarity of the Android
OS design that each of its two software layers (middleware and kernel) is important
within its respective semantics for the desired overall security and privacy. Only few
solutions consider both layers [P5, P4], but they support only a very static policy and
lack the required flexibility to instantiate different security and privacy models.

The second observation concerns the distinguishing characteristic of application
development for mobile platforms such as Android: The underlying operating systems
provide app developers with clearly defined programming interfaces (APIs) to system
resources and functionality—from network access over personal data like SMS/contacts
to the onboard sensors. This clear API-oriented system design and convergence of
functionality into designated service providers [212, 126] is well-suited for realizing a
security architecture that enables fine-grained access control to the resources exposed by

61

CHAPTER 5. FLASKDROID

the API. As such, mobile systems in general and Android in particular provide better
opportunities to more efficiently establish a higher security standard than possible on
current commodity PC platforms [105, 212].

5.2 Challenges and Our Goal

Based on the observations mentioned above, we aim to address the following challenges
in this work: (1) Can we design a generic and practical mandatory access control archi-
tecture for Android-based mobile devices, that operates on both kernel and middleware
layer, and is flexible enough to instantiate various security and privacy protecting models
just by configuring security policies? More concretely, we want to create a generic
security architecture which supports the instantiation of already existing proposals such
as Saint [140] or privacy-enhanced system components [218], or even new use-cases such
as a phone booth (or kiosk) mode. (2) To what extent would the API-oriented design of
Android allow us to minimize the complexity of the desired policy? Note that policy
complexity is an often criticized drawback of generic MAC solutions like SELinux [114]
on desktop systems [212].

5.3 Contributions

In this work, we presented the design and implementation of a security architecture for
the Android OS, called FlaskDroid, that addresses the above mentioned challenges.
Our design is inspired by the concepts of the Flask architecture [179]: a modular design
that decouples policy enforcement from the security policy itself, and thus provides a
generic architecture where multiple and dynamic security policies can be supported by
the system. In particular, our contributions are:

System-wide security framework: We present an Android security framework that
operates on both the middleware and kernel layer. It addresses many problems of
the stock Android permission framework and of related solutions, which target either
the middleware or the kernel level. We base our implementation on SE Android [175,
132], which has already been partially merged into the official Android source-code by
Google [73, 74, 75, 76].

Security policy and type enforcement at middleware layer: We developed and integrated
type enforcement at Android’s middleware layer and its synchronization with the kernel
enforcement at run-time. This is not trivial because the middleware layer has a
completely different semantic than the kernel level. We present our policy language,
which is specifically designed for the rich Android middleware semantics.

Use-cases: We show how our security framework can instantiate selected use-cases.
The first one is an attack-specific related work, the well-known application centric
security solution Saint [140]. The second one is a privacy protecting solution that uses
fine-grained and user-defined access control to personal data. We also mention other
useful security models that can be instantiated with FlaskDroid.

62

5.4. PRIMER ON SELINUX AND SE ANDROID

Efficiency and effectiveness: We successfully evaluate the efficiency end effectiveness
of our solution by testing it against a testbed of known attacks and by deriving a basic
system policy which allows for the instantiation of further use-cases.

5.4 Primer on SELinux and SE Android

5.4.1 SELinux

Security Enhanced Linux (SELinux) [114] is an instantiation of the Flask security
architecture [179] and implements a policy-driven mandatory access control (MAC)
framework for the Linux kernel. In SELinux, policy decision making is decoupled from
the policy enforcement logic. SELinux uses the Linux Security Module (LSM) [206]
architecture, which provides various access control enforcement points for low-level
resources, such as files, IPC, or memory protection. When an LSM hook is triggered
(e.g., a file is opened), the SELinux LSM enforces policy decisions requested from a
security server in the kernel. This security server manages the policy rules and contains
the access decision logic. Depending on the security server’s decision, the SELinux
security module denies or allows the operation to proceed. To maintain the security
server (e.g., update the policy), SELinux provides a number of user space tools.

Access Control Model. SELinux supports different access control models such as
Role-Based Access Control (RBAC) and Multilevel Security (MLS). However, Type
Enforcement (TE) is the primary mechanism: each object (e.g., files, IPC) and subject
(i.e., processes) is labeled with a security context containing a type attribute that
determines the access rights of the object/subject. By default, all access is denied and
must be explicitly granted through policy rules—allow rules in SELinux terminology.
Using the notation introduced in [85], each rule is of the form

allow TSub TObj : CObj OC

where TSub is a set of subject types, TObj is a set of object types, CObj is a set of object
classes, and OC is a set of operations. The object classes determine which kind of
objects this rule relates to and the operations contain specific functions supported by
the object classes. If a subject whose type is in TSub wants to perform an operation that
is in OC on an object whose class is in CObj and whose type is in TObj , this action is
allowed. Otherwise, if no such rule exists, access is denied. For instance, the rule

allow useradd_t passwd_t : file write

defines that a process (subject) with type useradd_t is allowed to write an object with
class file and type passwd_t. This rule is important on multi-user desktop systems,
where the /etc/passwd file contains essential user information and thus should be
protected. The useradd tool adds a new user to the system by adding the new user’s
information to the passwd file and thus requires write access. A typical SELinux policy
on Fedora Linux 17 currently defines more than 600 types, almost 100 classes, and more
than 100,000 allow rules. We evaluate policy complexities of different SELinux versions
and of FlaskDroid in more detail in our Evaluation Section 5.8.1.

63

CHAPTER 5. FLASKDROID

The user and role attributes of the security context form the basis for SELinux
Role-Bases Access Control, which builds upon type enforcement by defining which type
and role combinations are valid for each user in the policy.

Optionally, SELinux supports Multilevel Security, which extends the fundamental
type enforcement. When MLS is enabled, the security context is extended with low
security level and high security level attributes (in the spirit of lattice based access con-
trol [12, 35]), where the low level represents the current security level of a subject/object
and the high level represents the clearance level of the subject/object. Each security level
is described by a sensitivity and a set of categories. Sensitivities are strictly hierarchical
and reflect an ordered data sensitivity model (e.g., TopSecret, Secret, Unclassified) [118].
Categories are unordered and reflect data compartmentalization (e.g., Research, Human
Resources, Contracts). With MLS enabled, access to objects is only allowed of the
subject holds a high enough security clearance (sensitivity) and the correct category for
the object.

Dynamic policies. SELinux supports to some extent dynamic policies based on
boolean flags that affect conditional policy decisions at runtime. These booleans and
conditionals have to be defined prior to policy deployment and new booleans/conditions
can not be added after the policy has been loaded without recompiling and reloading
the entire policy.

The simplest example for such dynamic policies are booleans to switch between
“enforcing mode” (i.e., access denials are enforced) and “permissive mode” (i.e., access
denials are not enforced, but at most logged). Other booleans can, for instance, refine
the coverage of the access control, e.g., by enabling/disabling access control on certain
object classes like files or sockets.

Technically, this mechanism is implemented in the form of if statements for allow
rules in the policy. Thus, only when the if condition evaluates to True, the rules in the
block of the if statement are considered during access control decisions.

User Space Object Managers. A powerful feature of SELinux is that its access con-
trol architecture can be extended to security-relevant user space daemons and services,
which manage data (objects) independently from the kernel [192]. Thus, such daemons
and services are referred to as User Space Object Managers (USOMs). They are respon-
sible for assigning security contexts to the objects they manage, querying the SELinux
security server for access control decisions, and enforcing these decisions. Prominent
examples for such USOMs on Linux systems include the X Window System server [193]
(Linux’ display manager), SE-PostgreSQL [104] (a security-enhanced object-relational
database system), D-BUS (a message bus system for inter-process communication), or
GConf [20] (the GNOME settings manager).

Alternatively to querying the kernel space security server, USOMs could query a
user space security server for access control decisions.1 However, this approach is not
any longer pursuit by the SELinux developers.

1http://oss.tresys.com/projects/policy-server

64

http://oss.tresys.com/projects/policy-server

5.4. PRIMER ON SELINUX AND SE ANDROID

5.4.2 SE Android

The security benefits of integrating SELinux into the Android software stack have been
first described by Shabtai, Fledel, and Elovici [166]. The authors outline how SELinux
can mitigate or limit the effects of privilege escalation attacks against the critical,
highly-privileged system services in the Android user space. Their work also presents
a prototypical integration of SELinux into the Android OS version 1.6 and discussed
many of the integration challenges that have been later tackled by the SE Android
project [175] (e.g., integrating type transition for application processes into Zygote).

SE Android [175, 174] fully prototypes SELinux for Android’s Linux kernel and
demonstrates the value of SELinux in defending against various root exploits and
application vulnerabilities on the Android platform. Specifically, it confines system
Services and apps in different kernel space security domains even isolating apps from
one another by the use of the Multi-Level Security (MLS) feature of SELinux. To
this end, the SE Android developers started writing an Android-specific policy from
scratch. In addition, SE Android provides a few key security extensions tailored for
the Android OS. First, SE Android introduces new hooks for Android’s Binder driver
making the latter a Kernel Space Object Manager. This ensures that all Binder IPC is
subject to SE Android policy enforcement. Second, it labels application processes with
SELinux-specific security contexts that are later used in type enforcement. In contrast
to traditional desktop platforms, where new application processes are spawned when
executing a binary, on Android new app processes are forked from a system process,
denoted Zygote, which is pre-initialized with all important shared libraries and thus
enables fast starts of new app processes. Thus, security labeling had to be integrated
into the Zygote mechanism in order to label the newly created app processes accordingly.
Moreover, the SE Android developers had to start writing an SE Android specific policy
from scratch. This new policy contained at the time this work was conducted more than
200 types, about 80 object classes, and roughly 1,400 allow rules, which is magnitudes
smaller than previous SELinux policies. Thirdly, since (in the majority of cases) it
is a priori unknown during policy writing which apps will be installed on the system
later, SE Android employs a mechanism to derive the security context of applications
at install-time. Based on criteria, such as the permissions the app requests or its
developer signature, apps are assigned a security type. This mapping from application
meta-information to security types is defined in the SE Android policy.

Middleware MAC. While the above listed security mechanisms are directly derived
from SELinux and address the lower level of the Android software stack (e.g., files,
sockets, and IPC), SE Android additionally provides rudimentary support for MAC
policy enforcement at the middleware layer2 (MMAC) inspired by various related
work [172]. In particular, MMAC consists of three distinct mechanisms: (1) Install-
time MAC, which, similar to Kirin [44], performs a policy-driven install-time check
of new applications and denies installation when the application requests a defined
combination of permissions; (2) Permission revocation, which is realized similar to

2See also http://seandroid.bitbucket.org/MiddlewareMAC.html#middleware-mac

65

http://seandroid.bitbucket.org/MiddlewareMAC.html#middleware-mac

CHAPTER 5. FLASKDROID

existing implementations found in custom roms3, commercial products4, or related
work [218, P4, P5]. This mechanism overrules the default Android permission check with
a policy-based decision to allow/deny an application to leverage a granted permission;
(3) Intent MAC, which protects with a white-listing enforcement the delivery of Intents
to Activities, Broadcast Receivers, and Services. Similar mechanisms are employed, for
instance, in [218, P4, P5]. However, in SE Android, the white-listing rules are based on
the security type of the sender and receiver of the Intent message as well as Intent data
such as the Action string.

5.5 Requirements Analysis for Android Security Architectures

5.5.1 Adversary Model

We consider a strong adversary with the goal to get access to sensitive data as well as
to compromise system or third-party apps. Thus, we consider an adversary that is able
to launch software attacks on different layers of the Android software stack.

5.5.1.1 Middleware Layer

Recently, different attacks operating at Android’s middleware layer have been reported:

Overprivileged 3rd party apps and libraries. Apps can threaten the user’s privacy
by adopting questionable privacy practices or even spyware-like behavior. For instance,
popular apps like WhatsApp [202, 201], Path [54], or Facebook [51] have been publicly
debated to overstep the necessary boundaries of their access to user’s private data, e.g.,
by uploading the entire contacts database of the ContactsProvider instead of only the
subset of contacts information required for correct app functionality.

Moreover, advertisement libraries, frequently included in 3rd party apps on Android,
have been shown to exploit the permissions of their host app to collect information
about the user [47, 84], including privacy sensitive data such as contacts or location.

Malicious 3rd party apps. In the recent past the number of mobile malware has
steadily increased [186, 50]. The predominant observed malicious behavior consists
of leveraging dangerous permissions to cause financial harm to the user (e.g., sending
premium SMS) and exfiltrate user-private information [216, 146].

Confused deputies. Confused deputy attacks concern malicious apps, which leverage
unprotected interfaces of benign, privileged system [44, 148] and 3rd party [30, 215]
apps (denoted deputies) to escalate their privileges.

3CyanogenMod (http://www.cyanogenmod.com)
43LM (http://www.3lm.com)

66

http://www.cyanogenmod.com
http://www.3lm.com

5.5. REQUIREMENTS ANALYSIS FOR ANDROID SECURITY ARCHITECTURES

Collusion attacks. Collusion attacks concern malicious applications that collude in
order to merge their permission sets and gain a permission set that has not been
approved by the user. A prominent example for a collusion attack is Soundcomber [161],
where one application has the permission to record audio and monitor the call activity,
while a second one owns the Internet permission. When both applications collude, they
can capture the credit card number (spoken by the user during a call) and leak it to
a remote adversary. Collusion attacks can be further subclassified according to the
channel over which they communicate [P5, 117], e.g., overt channels like sockets versus
covert channel like file locks or volume level.

Sensory malware. Sensory malware leverages the information from onboard sensors
in order to derive user’s privacy sensitive information. For instance, the accelerometer
provides information about the movement of the phone, which can be used to infer the
user input to the virtual keyboard, e.g., passwords [211, 19].

5.5.1.2 Root Exploits

Besides attacks at Android’s middleware layer, various privilege escalation attacks
on lower layers of the Android software stack have been reported [217, 146], which
grant the attacker root (i.e., administrative) privileges and can be used to bypass the
Android permission framework. For instance, he can bypass the ContactsProvider
permission checks by accessing the contacts database file directly. Moreover, processes
on Android executing with root privileges automatically inherit all available permissions
at middleware layer.

It should be noted that attacks targeting vulnerabilities of the Linux kernel are out
of scope of this work, since SE Android is a building block in our architecture (see
Section 5.6) and as part of the kernel it is susceptible to kernel exploits.

5.5.2 Requirements

Based on our adversary model we now derive the necessary requirements for an efficient
and flexible access control architecture for mobile devices. Essentially, these requirements
are valid for various mobile operating systems. In this work we focus on the popular
and open-source Android OS.

Access Control on Multiple Layers. Mandatory access control solutions at kernel
level, such as SE Android [132] or TOMOYO [87], help to defend against or to constrain
privilege escalation attacks on the lower-levels of the OS [175, 174]. However, kernel
level MAC provides insufficient protection against security flaws in the middleware and
application layers, and lacks the necessary high-level semantics to enable a fine-grained
filtering at those layers [175, 172]. Access control solutions at middleware level [93, 24,
140, P4, P5] are able to address these shortcomings of kernel level MAC, but are, on
the other hand, susceptible to low-level privilege attacks.

Thus, a first requirement is to provide simultaneous MAC defenses at the two layers.
Ideally, these two layers can be dynamically synchronized at run-time over mutual
interfaces [P5]. At least, the kernel MAC is able to preserve security invariants, i.e.,

67

CHAPTER 5. FLASKDROID

it enforces that any access to sensitive resources/functionality is always first mediated
by the middleware MAC and no (low-level) privilege escalation attack, such as a root
exploit, bypasses the middleware access control.

Multiple stakeholders policies. Mobile systems involve multiple stakeholders, such
as the end-user, the device manufacturer, app developers, or other 3rd parties (e.g., the
end-user’s employer). These stakeholders also store sensitive data on the device. Related
work, such as Saint [140], TrustDroid [P4], or TISSA [218], has proposed special
purpose solutions to address the security requirements and specific problems of app
developers, 3rd parties (here companies), or the end-user, respectively. Naturally, the
assets of different stakeholders are subject to different security requirements, which are
not always aligned and might conflict. Thus, one objective for a generic MAC framework
that requires handling policies of multiple stakeholders is to support (basic) policy
reconciliation mechanisms [152, 120]. For instance, [152] discusses different strategies
for reconciliation, such as all-allow (i.e., all stakeholder policies must allow access),
any-allow (i.e., only one stakeholder policy must allow access), priority (i.e., higher
ranked stakeholder policies override lower ranked ones), or consensus (i.e., at least one
stakeholder policy allows and none denies or vice versa).

Context-awareness. The security requirements of different stakeholders may depend
on the context the device is currently used in. For instance, the security policy of
an enterprise might dictate that certain assets, such as apps, may only be accessed
during working hours or while the device is located on enterprise premises. Thus, our
architecture shall provide support for context-aware security policies.

Support for different Use-Cases. Our architecture shall serve as a basis for different
security solutions applicable in a variety of use cases. For instance, by modifying the
underlying policy our solution should be able to support different use cases (as shown
in Section 5.7), such as the selective and fine-grained protection of app interfaces [140],
multiple isolated security domains, e.g., dual-persona smartphones that isolate enterprise
and private interests from each other [P4], or privacy-enhanced system Services and
ContentProviders.

Advantage of mobile OSes for policy complexity. At first glance it may seem very
challenging to realize a fine-grained and flexible access control at both the middleware
and kernel-level. In particular, SELinux [114] and similar Mandatory Access Control
solutions on desktop and server systems are notorious for their extremely complex
policies (cf. Section 5.8.1) and a comparable complexity could be expected for our
solution. However, the design of mobile operating system differs in one important point
from the design of traditional platforms: Security and privacy critical functionality
is concentrated in a small number of privileged system components, which expose
these functionality through clearly defined interfaces to applications. This is a distinct
advantage for reducing the policy complexity in FlaskDroid: (1) The privileged system
components form a single point of access to their functionality and instrumenting them
as MAC enforcement point achieves inherently a high degree of coverage; (2) The extent

68

5.6. FLASKDROID ARCHITECTURE

Apps
(Subjects)
App Policies

System Components
(Objects)

User Space
Object Managers

User Space
Security Server

Kernel Resources
(Objects)

Kernel Space
Object Managers

Kernel Space
Security Server

User Policy

3rd Party Policy

Middleware

Kernel

Policy provisioning/sync
AccessControlCheck(Subject, Object, Operation, System State)

Figure 5.1: FLASKDROID concept.

of the policy primitives (e.g., object classes and operations) and rules is significantly
reduced, since only a small number of system components has to be instrumented as
MAC enforcement points.

5.6 FlaskDroid Architecture

In this section, we provide an overview of our FlaskDroid architecture, elaborate in
more detail on particular design decisions, and present the policy language employed
in our system. We implemented a prototype of FlaskDroid based on SE Android in
revision 4.0.4 [132] on a Samsung Galaxy Nexus phone.

5.6.1 Overview

The high-level idea of FlaskDroid is inspired by the Flask security architecture [179],
where various Object Managers at middleware and kernel-level are responsible for
assigning their objects security contexts (see Figure 5.1). Objects can be, for instance,
kernel resources such as Files or IPC and middleware resources such as Service interfaces,
Intents, or ContentProvider data. On access to these objects by subjects (i.e., apps) to
perform a particular operation, the managers enforce an access control decision that they
request from a security server at their respective layer. Thus, our approach implements
a user space security server. Access control in FlaskDroid is implemented, as in
SE Android [175], as type enforcement. However, in contrast to SE Android we extend
our policy language with new features that are tailored to the Android middleware
semantics (more details follow in Section 5.6.3). Moreover, to enable more dynamic
policies, the policy checks in FlaskDroid depend also on the System State, which
determines the actual security context of the objects and subjects at runtime.

69

CHAPTER 5. FLASKDROID

User Policy
App

Context Providers

User Space
Security ServerPackage ManagerApp

Services
(Location, Telephony,...)

H
ook

A
PI

ContentProviders
(Contacts, SMS,...)

H
ook

A
PI

Resource
(Filesystem, ...)

Hook

API

App Policies

Policy Database

App Policies

System Policies

User Policies

SE Android

Geolocation
Network state

...

Rules
update

Syscall API
access

User space

Kernel space

Set active
context Feedback

MAC
queries

U
pdate boolean flags

Low-level MAC queries

FlaskDroid component / extension Standard Android

Figure 5.2: FLASKDROID architecture.

Each security server is also responsible for the policy management for multiple
stakeholders such as app developers, end-user, or 3rd parties. A particular feature is that
the policies on the two layers are synchronized at runtime, e.g., a change in enforcement
in the middleware, must be supported/reflected at kernel-level. Thus, by decoupling the
policy management and decision making from the enforcement points and consolidating
the both layers, the goal of FlaskDroid’s design is to provide fine-grained and highly
flexible access control over operations at both middleware and kernel-level.

5.6.2 Architecture Components

Figure 5.2 provides an overview of our architecture. In the following, we will explain
the individual components that comprise the FlaskDroid architecture.

5.6.2.1 SE Android Module

At the kernel-level, we employ stock SE Android [132] as a building block primarily for
the following purposes: First, it is essential for hardening the Linux kernel [175, 174]
thereby preventing malicious apps from (easily) escalating their privileges by exploiting
vulnerabilities in privileged (system) services. Even when an attack, usually with the
intent of gaining root user privileges, is successful, SE Android can constrain the file
system privileges of the app by restricting the privileges of the root account itself.
Second, it complements the policy enforcement at the middleware level by preventing

70

5.6. FLASKDROID ARCHITECTURE

Application
Layer

Middleware
Layer

Kernel
Layer

App

Middleware
access control

Kernel
resource

Compliant access Non-compliant access Kernel MAC

Figure 5.3: SE Android as building block to
(1) protect high-value low-level resources
and (2) ensure middleware access control
mechanisms cannot be bypassed.

Application
Layer

Middleware
Layer

Kernel
Layer

App

System Phone
App

Radio Interface
Layer Daemon

Compliant access Non-compliant access Kernel MAC

System Contacts
App

Contacts
Database File

Figure 5.4: Concrete examples for enforc-
ing Android’s security model with SE An-
droid.

apps from bypassing the middleware enforcement points (in Flask terminology defined
as User Space Object Managers (USOMs)) and that any privileged operation must go
through the Android software stack in a top-down fashion and hence pass all policy
enforcement points (cf. Figure 5.3).

Figure 5.4 illustrates two examples for enforcing Android’s security model with
SE Android and preventing apps from bypassing middleware enforcement points: direct
access to low-level system resources such as the radio daemon or the contacts database
file can be restricted to be only permissible if coming from the system phone app or
system contacts management app. These apps in turn implement access control at
middleware level on their public interfaces over which they expose radio or contacts
management functionality to other apps.

Dynamic policies. Using the dynamic policy support of SELinux (cf. Section 5.4.1)
it is possible to reconfigure the access control rules at runtime depending on the current
system state. Our User Space Security Server (see following Section 5.6.2.2) is hereby
the trusted user space agent that controls the SELinux dynamic policies and can map
system states and contexts to SELinux boolean variables (cf. Section 5.6.3). To this
end, SE Android provides user space support (in particular android.os.SELinux).

Similarly, the SELinux concept of domain-transitions—whereby the type of a subject
(i.e., process) changes to a new type5—can be leveraged to prevent applications from
performing low-level operations: For example, an SELinux policy could dictate that
the privilege to configure the kernel netfilter at runtime is limited to specific (system)
apps. Using the dynamic policy support of SELinux it is possible to reconfigure these
access control rules at runtime depending on the current system state. For example,
as explained in more detail in Section 5.7.4, a boolean flag could be used to allow 3rd

5It is worth noting that process transition is a capability that a subject needs to have in order to
perform a domain transition. Thus, domain transitions are forbidden unless explicitly allowed by the
security policy.

71

CHAPTER 5. FLASKDROID

party firewall apps to access the kernel netfilter configuration when the device is not
connected to the company network. When connected to the company network, access
to the kernel netfilter configuration is restricted so that sensitive network traffic cannot
be redirected easily.

5.6.2.2 User Space Security Server

In our architecture, the User Space Security Server is the central policy decision point
for all user space access control decisions, while the SE Android kernel space security
server is responsible for all kernel space policy decisions. This approach provides a clear
separation of security issues between the user space and the kernel space components
and avoids overloading the kernel security server with access control rules and types that
only make sense for middleware entities. Furthermore, it enables at middleware level
the use of a more dynamic policy schema (different from the more static SELinux policy
language), which takes advantage of the rich semantics (e.g., contextual information)
at that layer. Access control is implemented as type enforcement based on (1) the
subject type (usually the type associated with the calling app), (2) the object type (e.g.,
contacts_email or the type associated with the callee app UID), (3) the object class
(e.g., contacts_data or Intent), and (4) the operation on the object (e.g. query). Since
the User Space Object Managers (USOMs) may be scattered throughout the middleware-
and application layers, the USSS provides an API for policy checks that is exposed to
applications and other system components through the Context class every application
process on Android uses. However, some middleware USOMs, which account for the bulk
of the policy checks, e.g., the ActivityManagerService and the PackageManagerService,
are executed inside the system server as well, so no ICC is required to query the USSS .
The prototypical implementation of our User Space Security Server comprises 3,741
lines of Java code.

5.6.2.3 User Space Object Managers

In FlaskDroid, middleware services and apps act as User Space Object Managers
(USOMs) for their respective objects. These services and apps can be distinguished into
system components and 3rd party components. The former, i.e., pre-installed services
and apps, inevitably have to be USOMs to achieve the desired system security and
privacy, while the latter can use interfaces provided by the User Space Security Server
to optionally act as User Space Object Managers.

Table 5.1 provides an overview of the system USOMs in FlaskDroid and shows some
typical operations each object manager controls. Currently, the USOMs implemented
in FlaskDroid comprise 136 policy enforcement points.

In the following, we explain how we instrument the system Services and Content-
Providers as User Space Object Managers. In particular, we highlight the roles of the
PackageManagerService and ActivityManagerService in the design of FlaskDroid.

PackageManagerService. The PackageManagerService is responsible for (un-)instal-
lation of application packages. Furthermore, it maintains a global list of all available
Activities, Services, Broadcast Receivers, and ContentProviders contained in the installed

72

5.6. FLASKDROID ARCHITECTURE

USOM Example operation
Service USOMs

PackageManagerService getPackageInfo getPackageUID findPreferredActivity getInstalledAppli-
cations installPackage uninstallPackage

ActivityManagerService startActivity moveTask grantURIPermission sendBroadcast receive-
Broadcast registerBroadcastReceiver

AudioService adjustStreamVolume getSreamVolume setStreamVolume setRingerMode
setVibrateSetting

PowerManagerService acquireWakeLock isScreenOn reboot preventScreenOn
SensorManager getSensorList getDefaultSensor unregisterListener registerListener
LocationManagerService getAllProviders requestLocationUpdates addGpsStatusListener ad-

dProximityAlert getLastKnownLocation
ClipboardService getPrimaryClip setPrimaryClip getPrimaryClipDescription addPrima-

ryClipChangedListener
SMSManager copyMessageToIcc deleteMessageFromIcc disableCellBroadcast send-

TextMessage
TelephonyManager getCellLocation getDeviceId listen getNetworkType getCellLocation

getMsisdn
AccountManagerService getAccounts addAccount clearPassword getPassword grantAppPermis-

sion
ContentProvider USOMs

ContactsProvider2 query insert update delete writeAccess readAccess bulkInsert
MMSSMSProvider query insert update delete
TelephonyProvider query insert update delete
SettingsProvider query insert update delete bulkInsert
CalendarProvider2 query insert delete

Table 5.1: List of system User Space Object Managers in FLASKDROID with example
operations controlled by each manager. Currently, the USOMs implemented in FLASK-
DROID comprise 136 policy enforcement points.

applications in order to find a preferred component for doing a task at runtime. For
instance, if an app sends an Intent to display a PDF, the PackageManagerService looks
for a preferred Activity able to perform the task.

As a User Space Object Manager , we extend the PackageManagerService to assign
consolidated middleware- and kernel-level app types to all apps during installation using
criteria defined in the policy (explained in Section 5.6.3). This is motivated by the fact
that at the time a policy is written, one cannot predict which 3rd party apps will be
installed in the future. Pre-installed apps are labeled during the phone’s boot cycle
based on the same criteria. More explicitly, we assign app types to the (shared) UIDs of
apps, since (shared) UIDs are the smallest identifiable unit for application sandboxes. In
addition, pre-defined UIDs in the system are reserved for particular system components,
for instance daemons. Listing 5.1 shows the pre-defined UIDs on Android 4.0.4 as found
in system/core/include/private/android_filesystem_config.h. With the exception of the
system UID (AID_SYSTEM) and NFC UID (AID_NFC) these UIDs are not assigned
to an application package managed by the PackageManagerService. Thus, in our
implementation we map these UIDs by default to pre-defined types (e.g., aid_root_t
or aid_audio_t) which are hence mandatory types in our system policy.

Furthermore, we extend the logic for finding a preferred component for performing a

73

CHAPTER 5. FLASKDROID

Listing 5.1: Pre-defined, reserved UIDs for Android system components

1 AID_ROOT 0 /* traditional unix root user */
2 AID_SYSTEM 1000 /* system server */
3

4 AID_RADIO 1001 /* telephony subsystem, RIL */
5 AID_BLUETOOTH 1002 /* bluetooth subsystem */
6 AID_GRAPHICS 1003 /* graphics devices */
7 AID_INPUT 1004 /* input devices */
8 AID_AUDIO 1005 /* audio devices */
9 AID_CAMERA 1006 /* camera devices */

10 AID_LOG 1007 /* log devices */
11 AID_COMPASS 1008 /* compass device */
12 AID_MOUNT 1009 /* mountd socket */
13 AID_WIFI 1010 /* wifi subsystem */
14 AID_ADB 1011 /* android debug bridge (adbd) */
15 AID_INSTALL 1012 /* group for installing packages */
16 AID_MEDIA 1013 /* mediaserver process */
17 AID_DHCP 1014 /* dhcp client */
18 AID_SDCARD_RW 1015 /* external storage write access */
19 AID_VPN 1016 /* vpn system */
20 AID_KEYSTORE 1017 /* keystore subsystem */
21 AID_USB 1018 /* USB devices */
22 AID_DRM 1019 /* DRM server */
23 AID_AVAILABLE 1020 /* available for use */
24 AID_GPS 1021 /* GPS daemon */
25 AID_UNUSED1 1022 /* deprecated, DO NOT USE */
26 AID_MEDIA_RW 1023 /* internal media storage write access */
27 AID_MTP 1024 /* MTP USB driver access */
28 AID_UNUSED2 1025 /* deprecated, DO NOT USE */
29 AID_DRMRPC 1026 /* group for drm rpc */
30 AID_NFC 1027 /* nfc subsystem */
31

32 AID_SHELL 2000 /* adb and debug shell user */
33 AID_CACHE 2001 /* cache access */
34 AID_DIAG 2002 /* access to diagnostic resources */

task at runtime. This implicitly affects the interaction between the system and the user.
By default, if several components are suitable to perform a given task (e.g., in the above
example several PDF viewers are installed) but no component is set as preferred, the
user is prompted to choose one of the potential receivers for performing the task. By
filtering this receiver list based on policies, the user-prompt contains only options which
would be allowed by the policy, while impossible choices are omitted. The filtering is
based on the type of the application that triggers the task, the type of the Intent that
describes the task, and the type of the potential receiving apps.

Moreover, PackageManagerService is responsible for discovering developer provided
policies in the application installation packages and forwarding them to the User Space
Security Server . The USSS parses them and considers them during access control
decisions that involve the corresponding application (see Section 5.6.2.2).

74

5.6. FLASKDROID ARCHITECTURE

ActivityManagerService. The ActivityManagerService is responsible for managing
the stack of Activities of different apps, Activity life-cycle management, as well as
providing the Intent broadcast system. As a USOM , the ActivityManagerService is
responsible for labeling Activity and Intent objects and enforcing access control on
them. Activities are labeled according to the apps they belong to, i.e., the UID of
the application process that created the Activity. Subsequently, access control on the
Activity objects is enforced in the ActivityStack subsystem of the ActivityManagerSer-
vice. During operations that manipulate Activities, such as moving Activities to the
foreground/background or destroying them, the ActivityStack queries the USSS in order
to verify that the particular operations are permitted to proceed depending on the
subject type (i.e., the calling app) and object type (i.e., the app owning the Activity
being modified). Listing 5.2 on page 77 presents some examples of these object specific
operations for these object classes.

Similar to apps, Intents are labeled based on available meta-information, such as
the action and category string or the sender app. To apply access control to Broad-
cast Intents, we followed a design pattern as proposed in [140, P4]: We modified the
ActivityManagerService to filter out receivers which are not allowed to receive Intents
of the previously assigned type (e.g., to prevent apps of lower security clearance from
receiving Broadcasts by an app of a higher security clearance). Moreover, the sender of
the Broadcast can assign a custom label to his Intent in order to further classify or also
to declassify this Intent if in accordance with the policies.

Content Providers. ContentProviders are the primary means for apps to share data.
This data can be accessed over a well-defined, SQL-like interface. As User Space Object
Managers, ContentProviders are responsible for assigning labels to the data entries they
manage during insertion/creation of data and for performing access control on update,
query, or deletion of entries. Two approaches for access control are supported: (1) more
generic, but rather coarse-grained, based on the URI that identifies particular data
entries within a ContentProvider or (2) more fine-grained by integrating it into the
storage back-end (e.g., SQLite database) for more fine-grained per-data access control.

For approach (2), we implemented a design pattern for SQLite-based ContentProvi-
ders. Upon insertion or update of entries, we verify that the subject type of the calling
app is permitted to perform this operation on the particular object type. To filter
queries to the database we create one SQL View6 for each subject type and redirect the
query of each calling app to the respective View for its type. Each View implements a
filtering of data based on an access control table managed by the USSS which represents
the access control matrix for subject/object types. This approach is well-suited for any
SQLite-based ContentProvider and scales well to multiple stakeholders by using nested
Views.

Services. A Service is a component of an application that provides a particular
functionality to other (possibly remote) components, which access the Service component
via ICC. To this end, Service interfaces are exposed as Binder IPC objects that are

6A virtual SQL table, which represents a subset of the original table’s content based on an inherent
select statement.

75

CHAPTER 5. FLASKDROID

generated based on an interface specification described in the Android Interface Definition
Language (AIDL).

To instrument a Service as a User Space Object Manager , we add access control checks
when a (remote) component connects to the Service and on each call to Service functions
exposed by the Service API. Since those checks are added to each Service implementation
and not to a central component, we want to automate this instrumentation as far as
possible. We approached this scalability problem by extending the lexer and parser of
Android’s AIDL compiler to recognize (developer-defined) type tags on Service interface
and function declarations. The AIDL code generator was extended to automatically
insert policy checks for these types in the auto-generated Service stub code. Thus, the
scalability problem is reduced to setting the types of the service and of its functions by
adding type-tags to their definitions. Moreover, since both system Services (with very
few exceptions) and 3rd party app Services are defined in AIDL and generated with
the AIDL compiler, our extension instruments both system Services and 3rd party app
Services in the same way.

5.6.2.4 Context Providers

A context is an abstract term that represents the current security requirements of the
device. It can be derived from different criteria, such as physical criteria (e.g., the
location of the device) or the state of apps and the system (e.g., the app being currently
shown on the screen). To allow for flexible control of contexts and their definitions, our
design employs Context Providers. These providers come in form of plugins to our User
Space Security Server (see Figure 5.2) and can be arbitrarily complex (e.g., use machine
learning) and leverage available information such as the network state or geolocation
of the device to determine which contexts apply. Context Providers are notified by
the system about context changes similar to the approach taken in [24]. Each Context
Provider is responsible for a distinct set of contexts, which it (de-)activates in the USSS .
Decoupling the context monitoring and definition from our policy provides that context
definitions do not affect our policy language except for very simple declarations (as we
will show in Section 5.6.3.1).

Moreover, the USSS provides feedback to Context Providers about the performed
access control decisions. This is particularly useful when instantiating security models
like [P5, 24] in which access control decisions depend on the history of decisions. A
good example for the usefulness of such a feedback channel is an architecture like
XManDroid [P5], which aims at mitigating collusion attacks between different apps.
In XManDroid, the set of allowed IPC channels of an app is directly dependent on its
past IPC behavior. This approach can be instantiated with FlaskDroid with a plugin
that models the currently established IPC channels (e.g., as a graph [P5]) based on the
granted access control decision. The plugin internally evaluates this graph and sets the
contexts such that each application’s IPC channels are restrained such that no collusion
attack is feasible.

To support context-aware policies in our FlaskDroid prototype, we implement
different Context Providers, which register Listener threads to be notified about context
changes similar to the approach taken in [24]. In our current implementation, the
context is derived from the location information provided by the GPS sensor, the user

76

5.6. FLASKDROID ARCHITECTURE

presence detected by the ActivityManagerService, the ActivityStack, and a notification
Intent by the telephony app. These information are matched against defined contexts
within the Context Providers.

5.6.3 Policy

In this section we explain the policy language used in FlaskDroid to express the
access control rules.

5.6.3.1 Policy Language and Extensions

We extend SELinux’s policy semantics for type enforcement (cf. Section 5.4) with new
default classes and constructs for expressing policies on both middleware and kernel-level.
A recapitulation of the SELinux policy language is out of scope of this dissertation and
we focus here on our extensions.

New default classes. Objects are distinguished by their class, e.g., file or socket, and
operations the object class supports, e.g., read, write, open. Similar to classes at the
kernel-level, like file or socket, we introduce new default classes and their corresponding
operations to represent common objects at middleware level, such as Activity, Ser-
vice, ContentProvider , Broadcast, and Intent. Operations for these classes are, for
example, startActivity, query a ContentProvider , or receive a Broadcast. Listing 5.2
presents examples for the definition of basic classes, such as activity_c or service_c
and illustrates class inheritance at the example of intentService_c, which inherits from
service_c, as well as several ContentProviders like contactsProvider_c, which inherit
from the contentProvider_c class.

Listing 5.2: Example policy snippet illustrating the definition of middleware-specific
object classes including inheritance between classes.

1

2 class activity_c
3 {
4 start stop grantURIPermission finish moveTask
5 };
6

7 class service_c
8 {
9 start stop bind callFunction find

10 };
11

12 class intentService_c inherits service_c
13 {
14 onHandleIntent
15 };
16

17 class clipBoardService_c
18 {
19 getPrimaryClip
20 };
21

77

CHAPTER 5. FLASKDROID

22 class broadcast_c
23 {
24 send receive sendSticky receiveSticky registerReceiver y

unregisterReceiver
25 };
26

27 class intent_c
28 {
29 send receive
30 };
31

32 class contentProvider_c
33 {
34 query insert update delete readAccess writeAccess
35 };
36

37 class contactsProvider_c inherits contentProvider_c;
38 class calendarProvider_c inherits contentProvider_c;
39 class downloadProvider_c inherits contentProvider_c;
40 class mediaProvider_c inherits contentProvider_c;
41 class mmssmsProvider_c inherits contentProvider_c;
42 class smsProvider_c inherits contentProvider_c;
43 class telephonyProvider_c inherits contentProvider_c;
44 class settingsProvider_c inherits contentProvider_c;
45

46 class app_c
47 {
48 clearAppUserData checkPermission switch
49 };
50

51 class package_c
52 {
53 getPackageInfo getPackageInfoWithUninstalled
54 getPackageUID getPackageGIDs getPackagesForUid
55 getNameForUid getUidForSharedUser
56 findPreferredActivity queryIntentActivities
57 getInstalledApplications
58 getInstalledApplicationsWithUninstalled
59 getInstalledPackages
60 getInstalledPackagesWithUninstalled
61 };
62

63 class locationService_c
64 {
65 getAllProviders getProviders requestLocationUpdates
66 removeUpdates addGpsStatusListener sendExtraCommand
67 addProximityAlert removeProximityAlert getProviderInfo
68 reportLocation isProviderEnabled getLastKnownLocation
69 addTestProvider removeTestProvider
70 setTestProviderLocation clearTestProviderLocation
71 setTestProviderEnabled clearTestProviderEnabled
72 setTestProviderStatus clearTestProviderStatus
73 };
74

75 class sensorService_c
76 {

78

5.6. FLASKDROID ARCHITECTURE

77 getSensorList getDefaultSensor unregisterListener registerListener
78 };

Application Types. A further extension is the possibility to define criteria by which
applications are labeled with a security type. The criteria for apps can be, for instance,
the application package name, the requested permissions or the developer signature.

Listing 5.3 illustrates an example policy snippet defining the criteria for assigning
a type to applications (i.e., labeling apps). The criteria at middleware level can be,
for instance, the application package name, the requested permissions, the developer
signature, or potential, non-standard meta-information such as an external signature
(lines 9–48). To illustrate this more concretely, consider a newly installed application
whose package name equals com.android.apps.tag. According to the lines 29–32 in the
policy in Listing 5.3, this app would be assigned the type app_tag_t, since this the
criteria for type app_tag_t match the new app. If no criteria matched a specific app, a
default type is assigned (line 4). In FlaskDroid, labels are assigned to the sandbox of
applications, i.e., to their UID or in case of shared UIDs to their shared UID. The latter
decision is motivated by the fact that UID is the smallest identifiable unit provided by
Binder to the USOMs.

Listing 5.3: Example policy snippet illustrating the definition of criteria for assigning
types to apps.

1 /*
2 Default type
3 */
4 defaultAppType untrustedApp_t;
5

6 /*
7 Define criteria to assign types to apps
8 */
9 appType app_cased_t

10 {
11 Developer:signature=0xFEF9...;
12 Package:package_name=de.cased.trust.app;
13 ExternalSignature:keyFileLocation=/etc/key.file;
14 ExternalSignature:signatureFileLocation=assets/sig.file;
15 };
16

17 appType android_t
18 {
19 /* All of packages under this UID */
20 Package:package_name=android;
21 Package:package_name=com.android.keychain;
22 Package:package_name=com.android.settings;
23 Package:package_name=com.android.seandroid_manager;
24 Package:package_name=com.android.providers.settings;
25 Package:package_name=com.android.systemui;
26 Package:package_name=com.android.vpndialogs;
27 };
28

29 appType app_tag_t

79

CHAPTER 5. FLASKDROID

30 {
31 Package:package_name=com.android.apps.tag;
32 };
33

34 appType app_backupconfirm_t
35 {
36 Package:package_name=com.android.backupconfirm;
37 };
38

39 appType app_telephony_t
40 {
41 Package:package_name=com.android.phone;
42 Package:package_name=com.android.providers.telephony;
43 };
44

45 appType app_bluetooth_t
46 {
47 Package:package_name=com.android.bluetooth;
48 };
49

50 [...]

Intent types. Similarly to apps, also Intents may be the object of access control
enforcement, e.g., if a particular app is allowed to send or receive an Intent of a
particular type. Thus, also for Intents we require criteria to label Intent objects.
Criteria for assigning a type to Intent objects can be the Intent action string, category
or receiving component. Listing 5.4 illustrates the definition of such criteria for assigning
a type to Intent objects. It leverages the information available about Intents such
as their action string or category, or receiving component (lines 6-11). Again, if no
criteria matched an Intent, a default type is used (line 4). For instance, the example
in Listing 5.4 would assign an Intent with action string android.intent.action.MAIN,
category android.intent.category.HOME, and type app_launcher_t of the receiving
component the type intentLaunchHome_t. In contrast to apps, which are labeled once
during installation, Intents are labeled on-demand at runtime during policy checks that
involve Intent objects and, naturally, the assigned type is bound to the life-time of the
corresponding Intent object.

Listing 5.4: Policy snippet showing definition of criteria for assigning an Intent a
specific type.

1 /*
2 Default type
3 */
4 defaultIntentType untrustedIntent_t;
5

6 intentType intentLaunchHome_t
7 {
8 Action:action_string=android.intent.action.MAIN;
9 Categories:category=android.intent.category.HOME;

10 Components:receiver_type=app_launcher_t;
11 };

80

5.6. FLASKDROID ARCHITECTURE

Context definitions and awareness. We extend the policy language with an option
to declare contexts to enable context-aware policies. Listing 5.5 shows the declaration of
three contexts, work_con, phoneBooth_con, and iptablesExecForbidden_con.
Each declared context can be either actived or deactived by a dedicated Context Provider.

Listing 5.5: Policy snippet showing declaration of contexts.

1 context work_con;
2 context phoneBooth_con;
3 context iptablesExecForbidden_con;
4 [...]

To actually enable context-aware policies, we introduce in our policy language
switchBoolean statements that map contexts to booleans, which in turn provide dynamic
policies. These booleans exist only at the middleware and affect only the policy decision
making in the USSS . To map contexts to the kernel-level, we introduce kbool definitions,
which point to a boolean at kernel level instead of adding a new boolean at middleware.
Changes to such kernel-mapped boolean values by switchBoolean statements trigger a
call to the SELinux kernel module to update the corresponding SELinux boolean. On
a context switch reported by the system, all boolean variables that relate to the new
context are set to their respective values. This enables or disables the policy rules that
depend on those boolean values. When a context is unset, all related booleans can be
optionally auto-reverted to their original value or, alternatively, one can define other
contexts that trigger a change of those booleans.

To enable runtime configuration of the kernel MAC booleans, SE Android provides
user space support (in particular android.os.SELinux) and our middleware extensions
take the role of a trusted user space agent which manages SE Android’s booleans.
Self-contained system and kernel MAC policies ensure that only the system server,
which executes our extensions, is allowed to use this mechanism.

Listing 5.6 presents the definition of a boolean phoneBooth_b at middleware level
(line 4) and references to a boolean allowIPTablesExec_b defined in the underlying
SE Android policy (line 9). Both, contexts (cf. Listing 5.5) and booleans, are used
in switchBoolean statements (lines 15-27), which define which booleans are (un-)set
depending on which context is (in-)active. To illustrate this, consider the switchBoolean
statement in lines 15-20 in Listing 5.6, which defines that as soon as the context
phoneBooth_con is active, the middleware boolean phoneBooth_b has to be set to true.
As soon as the phoneBooth_con context is deactivated, the phoneBooth_b boolean
should be reset to its original value, i.e., False (line 4). The switchBoolean in lines
22-27 works identical, however, for the context iptablesExecForbidden and the boolean
allowIPTablesExec_b, which is an SE Android boolean and hence the change in value is
mapped to the kernel-level.

Listing 5.6: Policy snippet showing how booleans are linked with contexts.

1 /*
2 Middleware boolean definitions
3 */
4 bool phoneBooth_b = false;
5

81

CHAPTER 5. FLASKDROID

6 /*
7 Kernel boolean defintion used for sync with SE Android
8 */
9 kbool allowIPTablesExec_b = true;

10

11 /*
12 Dynamic policies
13 */
14

15 switchBoolean
16 {
17 context_id=phoneBooth_con;
18 auto_reverse=true;
19 phoneBooth_b=true;
20 };
21

22 switchBoolean
23 {
24 context_id=iptablesExecForbidden_con;
25 auto_reverse=true;
26 allowIPTablesExec_b=false;
27 }
28

29 [...]

Policy rules. Listing 5.7 shows the definition of some example access control rules. To
ease writing policies, all parameters can be sets of logically disjunct parameters, i.e., the
parameter matches if any of the set members matches. For instance, the rule in line 5 of
Listing 5.7 has as subject_type parameter the set of types {app_system_t app_contacts_t
app_launcher_t}, as object_type the type allContactsData_t, as object_class parameter
the class contactsProvider_c, and as operation the function query. Optionally, these
rules can also depend on boolean parameters that enable or disable policy rules. This
dependency is noted in form of if statements in the rules. For instance, the two rules in
lines 17 and 18 in Listing 5.7 depend on the boolean phoneBooth_b and are only valid
if phoneBooth_b is True or are invalid if is False, respectively.

To further ease writing access control policies, we adopt SELinux’ self keyword,
meaning that this rule applies always when subject type and object type are identical.
Lines 1-3 of Listing 5.7 show examples of such rules. For instance, the rule in line 3
states, that any app can send and receive broadcasts to and from apps with the identical
type.

Additionally, we add the keyword any, which can be used as a wildcard for the
subject type, object type, object class, and operations and matches any argument.

Listing 5.7: Policy snippet showing definition of access control rules (optionally de-
pending on boolean parameters).

1 self: app_c {checkPermission};
2 self: activity_c {finish moveTask};
3 self: broadcast_c {receive send};
4

82

5.6. FLASKDROID ARCHITECTURE

5 allow {app_system_t app_contacts_t app_launcher_t} allContactsData_t: y
contactsProvider_c {query};

6

7 allow {app_system_t app_telephony_t app_contacts_t app_launcher_t} {y
app_system_t app_telephony_t app_contacts_t app_launcher_t}: y
package_c {getPackageInfo getPackageInfoWithUninstalled y
getPackageUID getPackageGIDs getPackagesForUid getNameForUid y
getUidForSharedUser findPreferredActivity queryIntentActivities y
getInstalledApplications getInstalledApplicationsWithUninstalled y
getInstalledPackages getInstalledPackagesWithUninstalled};

8

9 allow {app_system_t app_telephony_t app_contacts_t app_launcher_t} {y
app_system_t app_telephony_t app_contacts_t app_launcher_t}: app_c y
{checkPermission};

10

11 allow {app_system_t app_telephony_t app_contacts_t app_launcher_t} {y
app_telephony_t app_contacts_t}: activity_c {start};

12

13 allow {app_system_t app_telephony_t app_contacts_t app_launcher_t} {y
app_system_t app_telephony_t app_contacts_t app_launcher_t}: y
activity_c {moveTask finish};

14

15 if(~phoneBooth_b)
16 {
17 allow {app_system_t app_telephony_t app_contacts_t app_launcher_t} {y

app_system_t app_telephony_t app_contacts_t app_launcher_t}: y
activity_c {start moveTask finish};

18 allow app_telephony_t allContactsData_t: contactsProvider_c {query};
19 };
20

21 [...]

5.6.3.2 Support for Multiple Stakeholders

A particular requirement for the design of FlaskDroid is the protection of interests
of different stakeholders. This requires, that policy decisions consider the policies of
all involved stakeholders. These policies can be pre-installed (i.e., system policy or
enterprise policy), delivered with apps (i.e., app developer policies), or configured by the
user (e.g., User Policy App in Figure 5.2). The PackageManagerService is instrumented
such that it extracts policy files included in APKs during app installation and injects
them into the USSS . Thus, in FlaskDroid 3rd party developers have the choice to
deploy custom policies for their applications. Note, that this is completely voluntary on
their part and they may choose to opt in and rely on our security framework to enforce
their policies. In case they opt out from using our framework (or they are unaware of
it), their applications are still subject to the system and user policy enforcement.

Moreover, 3rd party app developers can choose to instrument their app components
as User Space Object Managers for their own data objects. FlaskDroid provides the
necessary interfaces to query the User Space Security Server for policy decisions as
part of the SDK (i.e., Context class mentioned in Section 5.6.2.2). These decisions are
based on the app-specific 3rd party policy, which defines custom appType statements

83

CHAPTER 5. FLASKDROID

to label subjects (e.g., other apps) and declares app-specific object types. To register
app-specific policies, the PackageManagerService is instrumented such that it extracts
policy files during app installation and injects them into the USSS .

To differentiate between the different policies, we leverage namespaces. In each
namespace, security types and objects classes can be defined that are independent of the
other namespaces. Thus, for instance, app developers can define app-specific policies
with custom app and Intent types that are only valid within their own namespace.

A particular challenge when supporting multiple stakeholders is the reconciliation of
the various stakeholders’ policies. Different strategies for reconciliation are possible [152,
120] and generally supported by our architecture, based on namespaces and global/local
type definitions. For instance, as discussed in [152], all-allow (i.e., all stakeholder
policies must allow access), any-allow (i.e., only one stakeholder policy must allow
access), priority (i.e., higher ranked stakeholder policies override lower ranked ones), or
consensus (i.e., at least one stakeholder policy allows and none denies or vice versa).
However, choosing the right strategy strongly depends on the use-case. For example, on
a pure business smartphone without a user-private domain, the system (i.e., company)
policy always has the highest priority, while on a private device a consensus strategy
may be preferable.

In our implementation we opted for a consensus approach, in which the system
policy check is mandatory and must always consent for an operation to succeed.

5.6.3.3 Policy Implementation

Listing 5.8 presents the full grammar of our policy language as implemented and used
throughout the policy listings in this chapter. The grammar is noted in Extended
Backus-Naur Form. We implemented a Python-based compiler for this language, using
the pyparsing and ElementTree libraries, which produces an XML representation of the
policy that is used by our middleware extensions. For sanity checks, the compiler tool
verifies the XML output against an XML Schema of the policy language as supported
by our extensions on the device.

Listing 5.8: Grammar of our policy language in Extended Backus Naur Form.

Policy ::= DefaultDecision, DefaultAppType, DefaultIntentType, y
PolicyElements ;

(* Default definitions *)
DefaultDecision ::= "defaultDecision", DecisionValue ;
DefaultAppType ::= "defaultAppType", Identifier ;
DefaultIntentType ::= "defaultIntentType", Identifier ;

(* Policy construct *)
PolicyElements ::= {Attribute}, {Type}, {Boolean}, {KBoolean}, {Class},y

{Rulestatement}, {Context}, {SwitchBoolean}, {AppType}, {y
IntentType} ;

(* Policy element definitions *)
Attribute ::= "attribute", Identifier, ";" ;
Type ::= "type", #(Identifier), ";" ;
Boolean ::= "boolean", Identifier, "=", BooleanValue, ";" ;

84

5.7. USE-CASES / INSTANTIATIONS

KBoolean ::= "kboolean", Identifier, "=", BooleanValue, ";" ;
Class ::= "class", Identifier, ["inherits", Identifier], [y

BraceIdentifierlist] ";" ;
Rulestatement ::= "if", "(", Identifier, ")", "{", 1*(Rule), "}", ";" |y

1*(Rule) ;
Rule ::= "allow", SubjectType, ObjectType, ":", ObjectClass, Permissiony

";"
| "self", ":", ObjectClass, Permission ";" ;

Context ::= "context", Identifier, ";" ;
SwitchBoolean ::= "switchBoolean", sbBody, ";" ;
sbBody ::= "{", contextAssignment, autoReverse, 1*(BoolAssignment), "}"y

;
contextAssignment ::= "context_id", "=", Identifier, ";" ;
autoReverse ::= "auto_reverse", "=", BooleanValue, ";" ;
AppType ::= "appType", Identifier, DomainAssignmentlist, ";" ;
IntentType ::= "intentType", Identifier, DomainAssignmentlist, ";" ;

(* Basic constructs *)
KVAssignment ::= Identifier, "=", Value, ";" ;
BoolAssignment ::= Identifier, "=", BooleanValue, ";" ;
Assignmentlist ::= "{", 1*(KVAssignment), "}" ;
DomainAssignmentlist ::= "{", 1*(Identifier, ":", KVAssignment), "}" ;
Identifierlist ::= Identifier, *(whitespace, Identifier) ;
BracketIdentifierlist ::= "[", Identifierlist, "]" ;
BraceIdentifierlist ::= "{", Identifierlist, "}" ;
SubjectType ::= (Identifier | BraceIdentifierlist) ;
ObjectType ::= (Identifier | BraceIdentifierlist) ;
ObjectClass ::= (Identifier | BraceIdentifierlist) ;
Permission ::= BraceIdentifierlist ;

(* Basic definitions *)
DecisionValue ::= "deny" | "allow" ;
BooleanValue ::= "true" | "false" ;
Identifier ::= 1*(alphanum | "_") | "*";
Value ::= ["~"], 1*(alphanum | "_" | ":" | "." | "/") ;

(* Basic terminals *)
alphanum ::= { alpha | digit } ;
alpha ::= "A" | ... | "Z" | "a" | ... | "z" ;
digit ::= "0" | ... | "9" ;
whitespace ::= ? white space characters ? ;

5.7 Use-Cases / Instantiations

As mentioned in our threat model (cf. Section 5.5.1), the recent incidents on smartphone
privacy and security breaches have led to a demand for privacy protecting as well as
(enterprise) security solutions in practice. In the following we will introduce some of
them and show how FlaskDroid can instantiate them. Moreover, we will discuss how
FlaskDroid can go beyond these specific solutions, for instance, by securely integrating
virus scanner or firewall management apps into the overall system.

85

CHAPTER 5. FLASKDROID

5.7.1 Privacy Enhanced System Services and Content Providers

System Services and ContentProviders are an integral part of the Android application
framework and implement the API exposed to 3rd party apps through the Android
SDK. Prominent services are, for instance, the LocationManager or the Audio Service
and prominent ContentProviders are the contacts app and SMS/MMS app. By default,
Android enforces permission checks on access to the interfaces of these Services and
ContentProviders.

Problem description: However, it is known that the default permissions are too
coarse-grained and protect only access to the entire Service/Provider but not to specific
functions or data. Moreover, they are static and cannot be selectively revoked (prior
to the upcoming Android M release). Thus, the user cannot control in a fine-grained
fashion, which sensitive data can be accessed how, when and by whom. For instance,
the popular WhatsApp service has in the past been shown to upload user’s contacts
data [202]. Also other apps such as Facebook have access to the entire contacts database
although only a subset of the data (i.e., names and email addresses) is required for
their correct functioning. On the other hand, recent attacks demonstrate how even
presumably privacy-unrelated and thus unprotected data such as the accelerometer
readings can be misused against user’s security and privacy [211, 19].

Solution: We tagged selected query functions of the system AudioService, Loca-
tionManager , and SensorManager with specific security contexts (e.g., object_type
as fineGrainedLocation_t, object_class as locationService_c, and operation as get-
LastKnownLocation) and used our extended AIDL compiler (see Section 5.6.2.3) to
auto-generate fine-grained authorization hooks for those services. This, particularly in
conjunction with support for context-aware enforcement, enables privacy enhancing
policies. For instance, calling functions with Service object types is prohibited while
the phone is in a security sensitive state. Thus, retrieving accelerometer information or
recording audio would not be possible when, e.g., the virtual keyboard/PIN pad is in
the foreground or a phone call is in progress (both definable phone states).

In Section 5.6.2.3 we also explained how ContentProviders (e.g. the ContactsProvi-
der) can be instrumented as User Space Object Managers. With system ContentProvider
USOMs, users can refine the system policy rules for different private data, such as their
contacts data. A user can, for instance, grant a social-networking app read access to
their “friends” and “family” contacts’ email addresses and names, while prohibiting
it from reading their postal addresses and any data of other groups such as “work.”
For technical details on how this is implemented and on the policies, we refer to our
technical report [T2] on privacy enhanced ContentProviders.

5.7.2 Multi-level Security

Smartphones are increasingly applied in scenarios where different security domains
are desired. The most prevalent example today are corporate smartphones which are
simultaneously used for private purposes or vice versa (i.e., based on “Bring your
own device” philosophy). Previous work [P4] has acknowledged this need for domain
isolation on dual used smartphones and our FlaskDroid architecture can efficiently
and effectively instantiate this use-case.

86

5.7. USE-CASES / INSTANTIATIONS

Problem description: Android does not provide support for declaring different
security domains and strongly isolating them from each other. Thus, malicious apps
in or attacks against the private domain on the phone can compromise the corporate
domain.

Solution: Our architecture supports multi-level security (MLS) and thus with
FlaskDroid business applications can be clearly distinguished and labeled with a
corresponding type during installation (cf. Section 5.6). At runtime, the non-business
and business domain are securely isolated from each other at middleware level and kernel
level. For instance, only apps from the business domain are permitted to contact the
Services of another business domain app. Moreover, contacts created for the business
domain (i.e., of group “work”) could only be read and written by application from the
business domain (see also the use-case in Section 5.7.1). Similarly, our consolidated
kernel- and user space policies can ensure that despite DAC, files created by a business
app could only be accessed by other business apps.

5.7.3 Secure Logs

A further use-case of our interest concerns the log facility of Android. Android applica-
tions can write entries to the log facility by either writing directly to the world-writeable
/dev/log/* device files, by using the log and logwrapper tools or the Android Log API.

Problem description: Android apps with an API version smaller than 16 that
hold the READ_LOGS permission effectively become member of the log group that has
read access to the kernel log facilities (/dev/log/* ; enforced by the Linux DAC, similar to
the Internet permission). On devices with API version higher than 16 (introduced with
Android version 4.1), this permission is only available to system apps.7 Applications
with access to the logs use by default the logcat tool available on the phone to read and
parse the entries in the /dev/log/* sysfs files.8 However, the capability to read the logs
has been shown to be a security and privacy threat. For instance, sensitive information
are frequently logged by apps and thus could leak via the log [111, 145].

Solution: We use SELinux to enforce that only the Android logcat tool is allowed
to read from /dev/log/* using a domain transition when logcat is executed. With logcat
now being the only access point to log entries, it can be extended as a User Space
Object Manager : Upon read access, the log facility filters all entries from the result, for
which the reading process type does not have the required security clearance. Policy
queries from the logcat tool to our middleware USSS are performed via a dedicated
socket provided by the USSS . This design strongly resembles the exemplary use-case
for the SELinux access control on the /etc/shadow file on Linux systems. Processes can
only modify this security sensitive file through the passwd program, which is inherently
trusted to enforce that calling processes can only modify entries of their own user.
However, in contrast to this default use-case, our secure logs solution requires the joint
operation of both user space and kernel space, where the log facility of the kernel is
responsible for object labeling (i.e., log entries) and the logcat tool in user space is

7https://code.google.com/p/android/issues/detail?id=34785
8While it is possible to read /dev/log/* directly, in practice, all applications we analyzed use the

logcat tool.

87

https://code.google.com/p/android/issues/detail?id=34785

CHAPTER 5. FLASKDROID

responsible for type enforcement (i.e., on read). Listing 5.9 presents a simple policy for
enforcing access control on log entries. In this case, every application has read access
only to its own logging information in the default log, but no other (line 1). Only apps
from the system application domain are allowed to read log entries from both the default
log (log_c) and the system log (syslog_c) independently of the log entries’ security
type (line 2).

Listing 5.9: Example policy snippet illustrating implementing different security types
on log entries.

1 self: log_c { read };
2 allow systemApp_a any: { log_c syslog_c } { read };

5.7.4 Firewall and Anti-Virus Apps

In default Android, certain permissions like Internet or Bluetooth are mapped to Linux
groups (cf. Background Section 2.2 on Android’s security architecture). Similarly, our
architecture is used to introduce new capabilities, which, in contrast to permissions, can
be revoked at runtime using booleans. As example, we introduced the capabilities that a
3rd party app can act as a manager for the Linux kernel packet filter, i.e., it can execute
the iptables tool with sufficient privileges, and the capability to inspect other apps’
APK packages (both, the public and the private portion, cf. forward locking) in order
to perform anti-virus scans. While this could be achieved by adding new permissions to
the system, using FlaskDroid is much more flexible and allows for efficient upgrades
of the policy as well as more fine-grained access control.

Problem description: Default Android does not support this use-case and requires
the user to root his phone to enable contemporary available firewall and anti-virus apps
with the above described functionality. Naturally, this severely impedes the platform
security and opens the door for other malware that leverages the root privileges.

Solution: We install the iptables binary with setuid bit and user root. Additionally,
we assign this binary an SELinux security label with fwapp as role, so that only apps
that have been assigned this role (or that inherited this role) can execute the binary.
Similarly, we introduce a role avapp which is allowed to inspect the private files of
other apps.9 These SELinux roles are assigned to apps during installation (i.e., to their
UID) and in future work we plan to extend this install process such that apps can
requests roles in their manifest and depending on user consensus or their app type
(cf. Section 5.6.3) the role is granted or denied to the application.

5.7.5 Phone Booth Mode

Users may lend their mobile device to an acquaintance (or even stranger) to make a
phone call. The goal of this use-case is to provide the user with the means to do so

9This includes, that the DAC permissions are relaxed, since the access must be allowed by DAC
and MAC

88

5.7. USE-CASES / INSTANTIATIONS

securely and without the need to worry about his private information stored on his
device. Thus, the privacy objective is to lock down the device in such a way that the
acquaintance can still make a phone call, but has no privileges on the phone beyond
this (e.g., reading call logs or the address book, or even open other apps than the dialer
app).

Problem description: The user loses or gives up physical control over his device.
This can pose a serious threat to the user’s privacy, since the other person could freely
inspect the phone data and apps. For instance, the user’s address book and call history
are immediately visible within the dialer app, and other apps usually do not apply
further authentication mechanisms that would stop someone with physical access from
opening and inspecting them.

Solution: With Android version 4.3, Google introduced the restricted profiles
feature [70] that allows the device owner to define user profiles with configurable access
to installed apps. With Android version 5.0 a dedicated, unprivileged guest mode [76]
was added and, further, the screen pinning [71] that allows pinning a particular app
to the top of the ActivityStack and, hence, preventing the user from (accidentally)
closing it. However, prior to version 4.3 none of these features were available and this
FlaskDroid use-case, which targeted Android version 4.0.4, was thus clearly ahead of
its time. In this use-case, we used FlaskDroid’s fine-grained access control within the
ActivityManagerService and ActivityStack to control if another application can be moved
into or off the foreground on the screen. This resembles the later introduced screen
pinning feature, however, in a FlaskDroid policy-driven way: The user can trigger a
transition into a special phone-context “phone booth mode” by pressing a button, in
which the policy dictates that the dialer app is the only app permitted to be in the
foreground. Simultaneously, the policy defines that all access to the CallLogProvider
and ContactsProvider must be denied, meaning they return empty results to all queries,
thus preventing the phone app from auto-completing entered telephone numbers or from
showing the call log/contacts data. In this mode, the user can safely lend his phone to
another person for the sake of making a phone call.

To exit this mode, the phone app informs the User Space Security Server about the
changed state and thus resets the corresponding boolean values that influence access
to ActivityStack and CallLogProvider/ContactsProvider to their original state. This
context change is triggered using a special combination of the default soft keys that are
part of the trusted UI region (i.e., are not accessible to or exchangeable by 3rd party
apps). To authenticate the context change, different options exist: For instance, the user
is prompted to enter his PIN (as in the Android screen pinning scenario), configured
password, or on more recent hardware using biometrics.

Although this use-case focused on the dialer application, the same technique could
be used to provide a generic “kiosk mode” in the same way the (now) default screen
pinning feature in conjunction with restricted profiles works.

For the example policy that implements this use-case, we refer to our publication [P3]
or technical report [T3].

89

CHAPTER 5. FLASKDROID

5.7.6 App Developer Policies (Saint)

Ongtang et al. present in [140] an access control framework, called Saint, that allows
app developers to ship their apps with policies that regulate access to their app’s
components.

Problem description: The concrete example used to illustrate this mechanism
consists of a shopping app whose developer wants to restrict the interaction with other
3rd party apps to only specific payment, password vault, or service apps. For instance,
the developer specifies that that the password vault app must be at least version 1.2 or
that a personal ledger app must not hold the Internet permission. Saint’s policy uses
the source app plus an optional Intent object, the destination app, some conjunctional
conditions (e.g., permissions or signature key of the destination app), as well as the
system state (e.g., physical location or bluetooth state) as parameters for access control
rules.

Solution: Instantiating Saint’s runtime access control on FlaskDroid is achieved
by mapping Saint’s access control parameters to the ones supported by FlaskDroid:
the source app, the optional Intent object, the destination app, and the conditions can be
combined into security types for the subject (i.e., source app) and object (i.e., destination
app or Intent object). For instance, a specific type is assigned to an application with
a particular signature and permission. If this app is source in the Saint policy, it is
used as subject_type in FlaskDroid policy rules; and if it is used as destination, it
is used as object_type. The object_class and operation are directly derived from the
destination app. The system state can be directly represented by FlaskDroid policy.

Listing 5.10 shows an instantiation of the developer policy in [140] on our architecture.
The depicted policy is deployed by the shopping app and thus self_t refers to the
shopping app. We define types app_trustedPayApp_t, app_trustedPayApp_t,
app_noInternetPerm_t (lines 1-3 and lines 8-22) for the specific apps with which the
shopping app is allowed to interact and describe some of the allowed interactions by means
of Intent types intent_actionPay_t and intent_recordExpense_t (lines 5-6
and lines 24-28). Afterwards, we declare access control rules that reflect the desired policy
described in the example in [140] (lines 36-38). For instance, the rule in line 36 defines
that the shopping app is allowed to send an Intent with action string ACTION_PAY
only to an app with type app_trustedPayApp_t (line 27), which in turn is only
assigned to apps with the developer signature 308201... (line 10). The rule in line
37, on the other hand, defines that the shopping app is allowed to interact in any way
with an app with type app_trustedPWVault, which is only assigned to apps with
package name com.secure.passwordvault and minimum version 1.2 (lines 15-16).
Naturally, the developers of the other apps (e.g., of com.secure.passwordvault
or with signature 308201...) have to ship corresponding policies to concur to this
interactions (e.g., receiving Intent from the shopping app).

Listing 5.10: Policy snippet showing instantiation of Saint [140] example for runtime
policy enforcement. Policy snippet is from the policy deployed by the shoping app.

1 type app_trustedPayApp_t;
2 type app_trustedPWVault_t;
3 type app_noInternetPerm_t;

90

5.7. USE-CASES / INSTANTIATIONS

4

5 type intent_actionPay_t;
6 type intent_recordExpense_t;
7

8 appType app_trustedPayApp_t
9 {

10 Developer:signature=308201...;
11 };
12

13 appType app_trustedPWVault_t
14 {
15 Package:package_name=com.secure.passwordvault;
16 Package:min_version=1.2;
17 };
18

19 appType app_noInternetPerm_t
20 {
21 Package:permission=~android.permission.INTERNET;
22 };
23

24 intentType intent_actionPay_t
25 {
26 Action:action_string=ACTION_PAY;
27 Components:receiver_type=app_trustedPayApp_t;
28 };
29

30 intentType intent_recordExpense_t
31 {
32 Action:action_string=RECORD_EXPENSE;
33 Components:receiver_type=app_noInternetPerm_t;
34 };
35

36 allow self_t intent_actionPay_t: intent_c { send };
37 allow self_t app_trustedPWVault_t: any { any };
38 allow self_t intent_recordExpense_t: intent_c { send };

Although both the original Saint policy and its instantiation on our solution achieve
the same security objectives, the policy languages between the two systems differ. Most
noteworthy is, that in Saint’s policy language the subjects and objects are defined
within the access control rules. Thus, if two rules use identical subjects and objects,
the definition of those is redundantly repeated. Moreover, in Saint it is not possible
to group several distinct subjects or objects into sets and thus ease writing of rules
which differ only in the object class or operation. In FlaskDroid, the policy language
requires the policy author to first clearly define all possible types (for subjects and
objects) as well as object classes and their respective operations. While this might seem
at first glance more tedious, it greatly eases authoring of policy rules afterwards since
one can use these types without redundantly repeating their definition and, moreover,
can group types, classes, or operations into sets and thus achieve more compact and
readable rules.

91

CHAPTER 5. FLASKDROID

5.8 Evaluation

In this section we evaluate and discuss our architecture in terms of policy design,
effectiveness, and performance overhead.

5.8.1 Policy

To evaluate our FlaskDroid architecture, we derived a basic policy that covers the
pre-installed system USOMs that we introduced in Section 5.6.2.3.

5.8.1.1 Policy Assessment.

Security policies, including access control policies, are generally evaluated to be good
based on different properties, such as safety [89], completeness [2, 97], and effectiveness.
The development of a security policy that fulfills these properties is a highly complex
process. For instance, on SELinux enabled systems the policies were incrementally
developed and improved after the SELinux module had been introduced, even inducing
research on verification of these properties [100, 97]. A similar development can be
currently observed for the SE Android policies which are written from scratch [175].
For FlaskDroid we are for now foremost interested in generating a basic policy to
estimate the access control complexity that is inherent to our design, i.e., the number
of new types, classes, and rules required for the system User Space Object Managers,
and hence lay the foundation for the development of a good policy.

5.8.1.2 Policy Generation

Established approaches. Different approaches exist to generate access control poli-
cies. For instance, manual authoring of very special purpose and use-case specific policies
as we have shown in Section 5.7. For more complex policies, (semi-)automatic methods
have been proposed. For example, the polgen tool for SELinux [178] processes the traces
of the dynamic behavior of target process (e.g., information flow patterns) and generates
new types and policy rules. polgen operates human-aided and semi-automated, since a
human has to determine the exact security policies and adjust the generated policies via
wizard-style interface. Similarly, the benefits of using the system call traces for guided
generation of a policy for fine-grained process confinement have been shown [150]. Also
static analysis of target binaries seems a feasible approach to help automating policy
generation and has been already employed to verify the information flow properties of
SELinux policies [167].

Policy generation for our evaluation. To generate our basic policy, we opted for
an approach that follows the concepts of TOMOYO Linux’ learning phase10 and other
semi-automatic methods [150]. The underlying idea is to derive policy rules directly from
observed application behavior. To generate a log of system application behavior, we
leveraged FlaskDroid’s audit mode, where policy checks are logged but not enforced.

10http://tomoyo.sourceforge.jp/2.2/learning.html.en

92

5.8. EVALUATION

Under the assumption, that the system contained in this auditing phase only trusted
apps, this trace can be used to derive policy rules.

To achieve a high coverage of app functionality and thus log all required access rights,
we opted for testing with human user trials for the following reasons: First, automated
testing has been shown to exhibit a potentially very low code coverage [65, 66] and,
second, Android’s extremely event-driven and concurrent execution model complicates
static analysis of the Android system [215, 66].

The users’ task was to thoroughly use the pre-installed system apps by performing
various every-day tasks (e.g., maintaining contacts, writing SMS, browsing the Internet,
or using location-based services). To analyze interaction between apps, a particular
focus of the user tasks was to leverage inter-app functionality like sharing data (e.g.,
copying notes from a website into an SMS). For testing, the users were handed out
Galaxy Nexus devices running FlaskDroid with a No-allow-rule policy. This is a
manually crafted policy containing only the required subject/object types, classes and
operations for the USOMs in our architecture, but no allow rules. The devices were
also pre-configured with test accounts (e.g., EMail) and test data (e.g., fake contacts).

Derived basic policy. Using the logged access control checks from these trials, we
derived 109 access control rules required for the correct operation of the system compo-
nents (as observed during testing). Table 5.2 provides an overview of the basic policy
derived from all user test results and the additionally deployed SE Android policy
(above the double line in the Figure). Our pre-installed middleware policy contained
111 types and 18 classes for a fine-granular access control to the major system Services
and ContentProviders (e.g., ContactsProvider , LocationManager , PackageManager-
Service, or SensorManager). These rules (together with the above stated type and
object definitions) constitute our basic policy. Table 5.2 provides a breakdown of the
policy complexities of SE Android, FlaskDroid’s basic policy, and different desktop
operating systems with SE Linux support by default. Although SELinux policies cannot
be directly compared to our policy, since they target desktop operating systems, the
difference in policy complexity between the different Android-based systems (including
our FlaskDroid) and the desktop operating systems is noticeable. In particular, since
the first evaluation of our FlaskDroid, all professionally maintained policies have
evolved, however, the policies for the desktop operating systems have grown in absolute
numbers one magnitude more than the SE Android (now AOSP) policy, while at the
same time the AOSP policy has reached a very fine-tuned (strict) policy configuration
for the system components [76]. This underlines that the design of mobile operating
systems facilitates a clearer mandatory access control architecture (e.g., separation of
duties). This profits an easier policy design (as supported also by the experiences from
[212, 126, 128]).

Lesson learned. A particular lesson learned from deriving the basic policy in Flask-
Droid is that several permissions operationally depend on each other. For instance,
the permission check for starting an Activity followed almost always a permission check
for queryIntentActivity to resolve the target Activity. Thus, a launcher app which starts
other apps would by default require the permission to perform queryIntentActivity for

93

CHAPTER 5. FLASKDROID

Policy # Types # Attributes # Classes # Permissions # Rules
Android Derivatives

SE Android (Mas-
ter branch, checkout
12/04/2012)

232 19 84 249 1,359

SE Android (v5.1.1_r4,
checkout 07/06/2015)

368 20 87 269 3,923

AOSP (Master branch,
checkout 07/06/2015)

557 23 55 202 5,406

FlaskDroid middle-
ware MAC (basic pol-
icy from 12/04/2012)

111 9 18 63 109

Linux Distributions
SELinux reference pol-
icy (v2.20120725, no
distribution option)

661 132 81 239 278

SELinux Fedora 17
(targeted, policy.27
from 12/04/2012)

3,900 313 83 248 103,235

SELinux Fedora 22
(targeted, policy.29
from 07/06/2015)

4,638 357 83 254 128,273

SELinux CentOS 6.3
(targeted, policy.24
from 12/05/2012)

3,508 277 81 235 275,791

SELinux CentOS 6.6
(targeted, policy.24,
from 07/06/2015)

3,851 291 81 237 610,413

SELinux CentOS 7
(targeted, policy.29
from 07/06/2015)

4,620 357 83 255 127,794

SELinux Debian 6.0.6
(targeted, policy.24
from 12/05/2012)

1,285 190 77 229 49,159

SELinux Debian 7.8
(targeted, policy.26
from 07/06/2015)

1,342 201 83 247 57,580

SELinux Debian Sid
(targeted, policy.29
from 07/06/2015)

3,945 289 83 251 117,426

Table 5.2: Overview of policy complexity: Different SELinux policies on desktop OSes
vs. SELinux-enabled Android derivatives.

any other app in order to function properly. Similarly, the application Context class
inquires information about its corresponding app from the system PackageManagerSer-
vice upon initialization. Thus all 3rd party apps require in general the permission to
perform the getPackageInfo operation. These insights can be used to further optimize the
system policy (e.g., establishing sets of fundamental privileges for different application
categories like Launcher App) and we intent to investigate these relations further in
future work.

5.8.1.3 3rd Party Policies

The derived basic policy can act as the basis on top of which additional user, 3rd party,
and use-case specific policies can be deployed (cf. Section 5.7). In particular, we are
currently working on extending the basic policy with types, classes and allow rules for

94

5.8. EVALUATION

Attack vector Test cases
Root exploit mempodroid Exploit
App executed by root Synthetic Test App
Over-privileged apps and Known malware
Information-stealing trojans Synthetic Test App

WhatsApp v2.8.4313
Facebook v1.9.1

Sensory malware Synthetic Test App
emulating [211, 19, 161]

Confused deputy attack Synthetic Test App
Collusion attack Synthetic Test Apps

emulating [161]

Table 5.3: List of attacks considered in our testbed.

popular apps, such as WhatsApp or Facebook, which we further evaluated w.r.t. user’s
privacy protection (cf. Section 5.8.2). A particular challenge is to derive policies which
on the one hand protect the user’s privacy but on the other hand preserve the intended
functionality of the apps. Since the user privacy protection strongly depends on the
subjective security objectives of the user, this approach requires further investigation
on how the user can be involved in the policy configuration [218].

However, as discussed in Section 5.6.2.2, multiple policies by different stakeholders
with potentially conflicting security objectives require a reconciliation strategy. Devising
a general strategy applicable to all use-cases and satisfying all stakeholders is very
difficult, but use-case specific strategies are feasible [154, 94]. In our implementation, we
opted for a consensus approach, which we successfully applied during implementation of
our use-cases (cf. Section 5.7). We explained further possible strategies in Section 5.6.3.2.
More specifically, we opted for a consensus approach with deny precedence (i.e., the
access is denied if one policy denies it) and a mandatory system policy (cf. Section 5.6.2.2)
to resolve conflicts between 3rd party policies and the system policy. Thus, 3rd party
policies are generally independent of the system policy and they can only refine the
access rights of their host app as granted by the system policy. Resolving conflicts
between two 3rd party policies is out of scope of our conflict resolution, since we cannot
interpret the high-level security objectives that the respective 3rd parties had in mind
when developing their policies. In this case we apply again a consensus strategy, i.e.,
both 3rd party policies must allow an operation, otherwise access is denied.

5.8.2 Effectiveness

We decided to evaluate the effectiveness of FlaskDroid based on empirical testing
using the security models presented in our Use-cases Section 5.7 as well as a testbed
of known malware retrieved from [3, 23] and synthetic attacks (Table 5.3 provides an
overview). Alternative approaches like static analysis [41] would benefit our evaluation
but are out of scope of this work and will be addressed separately in future work.

95

CHAPTER 5. FLASKDROID

5.8.2.1 Evaluation of Kernel Layer Security

SE Android successfully mitigates the effect of the mempodroid root exploit. While the
exploit still succeeds in elevating its process to root privileges, the process remains con-
strained to the limited privileges granted to the root user by the underlying SE Android
policy [175, 174, 173].

5.8.2.2 Evaluation of Middleware Layer Security

Over-privileged and information stealing apps. Android’s permission framework
prior to the upcoming Android version 6 release is too coarse grained and inflexible to
allow end-users to fine-tune the access applications have to their private information. For
example, the READ_CONTACTS permissions grants an app access to the entire contacts
database, and there is no possibility to further restrict access to specific data, such as
names, email addresses or phone numbers.

Examples: Designated information-stealing malware, such as Android.LoozFon [119]
and Android.Enesoluty [182], use the permissions granted to them by the user to
exfiltrate sensitive information (e.g., contacts and device information like phone numbers,
IMEI/IMSI number etc.).

Over-privileged apps, in contrast, are not malicious by design, but request more
permissions than required for their correct functionality [147]. Older versions of the
Facebook app, for example, temporarily requested the READ_SMS permission from the
user without strictly requiring it. Another example is the WhatsApp messenger, although
this is not strictly speaking over-privilege in light of the coarse-grained permission
definitions: WhatsApp (similar apps) request access to the entire contacts database
by asking for the READ_CONTACTS permission, although it only needs access to the
contacts’ phone numbers and names for correct functionality.

Mitigation: We verified the effectiveness of FlaskDroid against over-privileged
apps using (a) a synthetic test app which uses its permissions to access the Contacts-
Provider , the LocationManager and the SensorManager as 3rd party apps would do;
(b) malware such as Android.LoozPhone and Android.Enesoluty which steal user’s private
information; and (c) unmodified apps from Google Play, including social networking
apps like the popular WhatsApp messenger and Facebook apps.

In all cases, a corresponding policy on FlaskDroid successfully and gracefully
prevented the apps and malware from accessing privacy critical information from sources
such as the ContactsProvider or LocationManager .

However, while blocking access to these system services did not cause application
crashes, the applications often exhibited impeded functionality. For instance, prohibiting
that the WhatsApp app can access the ContactsProvider and thus upload our contacts’
phone numbers to its server, resulted in an empty WhatsApp contacts list and thus
prevented us from messaging with our contacts. This effect concurs with the observations
made in [93, 103] and motivates a more fine-grained enforcement within ContentProvi-
ders to allow the user to configure policies to share data (e.g., contacts phone numbers
and names) and simultaneously protect her sensitive data (e.g., all other contacts data
like email addresses). Listing 5.11 presents an example on how such fine-grained access
control in the system ContactsProvider can be implemented in our policy language.

96

5.8. EVALUATION

Listing 5.11: Policy snippet showing access control for the system ContactsProvider .

1 [...]
2

3 attribute allContactsData_t;
4

5 type contacts_email_t, allContactsData_t;
6 type contacts_postal_t, allContactsData_t;
7 type contacts_name_t, allContactsData_t;
8 type contacts_number_t, allContactsData_t;
9

10 allow {app_trusted_t} allContactsData_t: contactsProvider_c {query y
insert delete update};

11 allow {app_whatsapp_t} {contacts_name_t, contacts_number_t}: y
contactsProvider_c {query};

12

13 [...]

Sensory malware. This class of malware uses the device’s current context in combi-
nation with data obtained from onboard sensors, such as the acceleration sensor data,
to derive and exfiltrate privacy-sensitive information.

Examples: The TouchLogger [19] and TapLogger [211] attacks use information
from the acceleration sensor to derive which keys the user has pressed on the on-screen
keyboard. This information can be used to indirectly retrieve passwords the user has
entered using the touchscreen.

Another example is the Soundcomber trojan [161], which extracts credit card infor-
mation from recorded calls. By analyzing the current phone state, SoundComber is
aware of incoming and outgoing calls. It records and analyzes the call and is able to
extract credit card information from calls to telephone banking services.

Mitigation: We emulate the behaviour of such malware using a synthesized test
app. To mitigate the attack, we deployed a context-aware FlaskDroid policy that
causes the SensorManager USOM to filter acceleration sensor information delivered
to registered SensorListeners while the on-screen keyboard is active. Listing 5.12
presents the corresponding policy. The on-screen keyboard state is mapped to a boolean
keyboard_b by a Context Provider dedicated to monitoring which application is
shown in foreground on the screen.11 While keyboard_b is true, access to sensor
data exposed by the SensorManager USOM is denied to all apps. Similarly, a second
policy rule prevents the SoundComber attack by denying any access to the audio record
functionality implemented in the MediaRecorderClient USOM while a call is in progress
The call state is also mapped to a boolean telephony_b that is set by a Context
Provider monitoring the call state in the TelephonyManager Service.

11This required an extension to the ActivityManagerService to provide this information to the Context
Provider, since by default the application framework does not divulge this information.

97

CHAPTER 5. FLASKDROID

Listing 5.12: Policy snippet for context-aware access control on the SensorManager
and MediaRecorder.

1 [...]
2

3 bool keyboard_b = false;
4 bool telephony_b = false;
5

6 if(~keyboard_b)
7 {
8 allow app_allApp_t allSensorData_t: sensorManager_c {update};
9 };

10

11 if(~telephony_b)
12 {
13 allow app_allApp_t audio_t: mediaRecorderClient_c {record};
14 };
15

16 [...]

Confused deputy and collusion attacks. A confused deputy on Android is an app
which holds the necessary permissions to access sensitive data or Services, and that
is vulnerable to being misused for malicious intent by an unprivileged app (e.g., via
an unprotected interface of the deputy app). Collusion attacks are based on two (or
more) inconspicuous apps that for themselves are not security-critical (e.g., limited
set of permissions), but collaborate to implement malicious behavior (e.g., merge their
permission sets).

Examples: Confused deputies have been shown to be a wide-spread problem among
Android apps. For example, the Settings Widget of previous Android versions contained
a confused deputy in a Broadcast Receiver component of the SettingsAppWidgetProvider
class [148]. By sending a Broadcast Intent with a specific action string, a non-privileged
app can enable or disable the GPS receiver and Wifi connections. Further work has
identified more confused deputies on Android [44, 215, 125].

While Collusion attacks are currently mainly an academic topic, Android’s system
design has been shown to be be vulnerable to these attacks [161, 30, 117]. The
previously mentioned SoundComber trojan [161] uses two apps that exchange data over
a covert channel, for instance, the system audio volume settings. The first app has the
READ_PHONE_STATE and RECORD_AUDIO permission. It records and analyzes phone
calls and encodes sensitive information into volume settings. The second app possesses
the INTERNET permission. It monitors volume setting changes, decodes the sensitive
data, and sends it to a remote server.

Mitigation: The previously described confused deputy attack in the Settings-
AppWidgetProvider class is addressed by our fine-grained access control rules on ICC.
Listing 5.13 shows a policy that restricts the app types that may send (Broadcast)
Intents reserved for system apps to the type android_t. By limiting the allowed set of
Broadcast Intent senders and receivers, unprivileged apps are prevented from controlling
the GPS and Wifi state.

98

5.8. EVALUATION

Listing 5.13: Policy snippet for restricting the root user on the middleware layer.

1 [...]
2

3 appType android_t
4 {
5 /* All packages under this UID */
6 Package:package_name=android;
7 Package:package_name=com.android.keychain;
8 Package:package_name=com.android.settings;
9 Package:package_name=com.android.seandroid_manager;

10 Package:package_name=com.android.providers.settings;
11 Package:package_name=com.android.systemui;
12 Package:package_name=com.android.vpndialogs;
13 };
14

15 intentType systemAppWidgetIntent_t
16 {
17 Action:has_action=
18 android.appwidget.action.APPWIDGET_UPDATE |
19 android.appwidget.action.APPWIDGET_DISABLED |
20 android.appwidget.action.APPWIDGET_ENABLED;
21 Categories:has_category=
22 android.intent.category.ALTERNATIVE;
23 };
24

25 allow android_t systemAppWidgetIntent_t: broadcast_c {send sendSticky y
receiveSticky registerReceiver unregisterReceiver};

26

27 [...]

Collusion attacks are in general more challenging to handle, especially when covert
channels are used for communication. Similar to the mitigation of confused deputies,
a FlaskDroid policy was used to prohibit ICC between colluding apps based on
specifically assigned app types. However, to address collusion attacks efficiently, more
flexible policies are required. We already discussed in Section 5.6.2.4 a possible approach
to instantiate the XManDroid security model [P5] based on our Context Providers and
we elaborate in the subsequent Section 5.8.2.3 on particular challenges for improving
the mitigation of collusion attacks.

5.8.2.3 Challenges and Trusted Computing Base

Information flows within apps. Like any other access control system, e.g., SELinux,
exceptions for which enforcement falls short concern attacks which are licit within
the policy rules. Such shortcomings may lead to unwanted information leakage. A
particular challenge for addressing this problem and controlling access and separation
(non-interference [68]) of security relevant information are information flows within
apps. Access control frameworks like FlaskDroid usually operate at the granularity
of application inputs/outputs but do not cover the information flow within apps. For
Android security, this control can be crucial when considering attacks such as collusion
attacks and confused deputy attacks. Specifically for Android, taint tracking based

99

CHAPTER 5. FLASKDROID

approaches [46, 93, 156] and extensions to Android’s IPC mechanism [36] have been
proposed. To which extent these approaches could augment the coverage and hence
effectiveness of FlaskDroid has to be explored in future work. An alternative approach
to taint tracking from the desktop operating system area, called SIESTA [92], that is also
motivated by the inability of OS-based access control to reason about how applications
treat sensitive data, intertwines language-based security with MAC. In SIESTA, SELinux
labels are communicated to application processes on data access and it leverages a
policy-enhanced version of JiF [91] to ensure that labeled data flows within applications
in compliance with the MAC policy. Since Android applications are authored in Java
(with exception of included native code), this approach might be feasible on Android
as well, but requires further investigation on supporting language-based security on
Android.

Trusted Computing Base. Since SE Android executes as part of the kernel, it is
susceptible to kernel-exploits, including rootkits [14, 32], or to physical attacks that
can exchange the deployed system images [197] and hence the trusted computing code
base. While FlaskDroid does not make any attempts beyond access control policies
to protect the kernel integrity, orthogonal work [6, 63] has introduced solutions to
ensure kernel code integrity at runtime. Moreover, our middleware extensions might
be compromised by attacks against the process in which they execute. Currently our
SecurityServer executes within the scope of the rather large Android system server
process. Separating the SecurityServer as a distinct system process with a smaller
attack surface (smaller TCB) can be efficiently accomplished, since there is no strong
functional inter-dependency between the system server and SecurityServer .

5.8.3 Performance Overhead

Middleware layer. We evaluated the performance overhead of our architecture based
on the No-allow-rule policy and the basic policy presented in Section 5.8.1 using a
Samsung Galaxy Nexus device running FlaskDroid. Table 5.4 presents the mean exe-
cution time µ and standard deviation σ for performing a policy check at the middleware
layer in both policy configurations (measured in µs) as well as the average memory
consumption (measured in MB) of the process in which our User Space Security Server
executes (i.e., the system server). Average execution time and standard deviation are
the amortized values for both cached and non-cached policy decisions. The margins of
error for the mean execution times are for the 95% confidence interval.

In comparison to permission checks on a vanilla Android 4.0.4 both the imposed
runtime and memory overhead are acceptable. The high standard deviation is explained
by varying system loads, however, Figure 5.5 presents the cumulative frequency distri-
bution for our policy checks and shows that 99% of the policy checks with our basic
policy are performed in less than 1.5ms.

In comparison to closest related work [P5, P4] (cf. Section 5.9), FlaskDroid
achieves a very similar performance. Table 5.5 provides an overview of the average
performance overhead of the different solutions. TrustDroid [P4] profits from the very
static policies it enforces, while FlaskDroid slightly outperforms XManDroid [P5].

100

5.8. EVALUATION

µ (in µs) σ (in µs) memory
(in MB)

FlaskDroid v4.0.4
No-allow-rule 329.505±33.9 780.563 15.673
Basic policy 452.916±208.58 4,887.24 16.184
Vanilla Android v4.0.4
Permission check 330.800±185.64 8,291.805 15.985

Table 5.4: Runtime and memory overhead on Android v4.0.4 (on Samsung Galaxy
Nexus). Margins of error are for the 95% confidence interval.

µ (in ms) σ (in ms)
FlaskDroid (Basic policy) 0.452 4.887
XManDroid [P5] (Amortized) 0.532 2.150
TrustDroid [P4] 0.170 1.910

Table 5.5: Performance comparison to related works.

However, it is hard to provide a completely fair comparison, since both TrustDroid and
XManDroid are based on Android 2.2 and thus have a different baseline measurement.
Both [P5, P4] report a baseline of approximately 0.18ms for the default permission
check, which differs from the 0.33ms we observed in Android 4.0.4 (cf. Table 5.4).

Re-evaluation of middleware layer. Post-publication we ported FlaskDroid from
Android v4.0.4 to Android v5.1.1 and re-evaluated the middleware performance overhead
on an LGE Nexus 5 device. Table 5.6 presents the new mean execution time µ and
standard deviation σ for performing a policy check at the middleware layer in both
policy configurations. Average execution time and standard deviation are again the
amortized values for both cached and non-cached policy decisions. The margins of error
for the mean execution times are also again for the 95% confidence interval.

Although the porting required the definition of 79 new allow rules, the mean
performance overhead between the two versions stayed almost identical. However, as
Figure 5.6 shows, the cumulative frequency distribution of FlaskDroid’s performance
overhead on Android v5.1.1 has a less favorable shape, in particular the threshold for
the 99th percentile has shifted to 6.3ms. This motivates the need for future performance
oriented engineering of our USSS . Performance has not been a focus of the current
prototypical implementation and hence left room for performance enhancements (for
instance, better performing cache algorithms for an access vector cache).

Moreover, Table 5.6 gives in comparison to Table 5.4 the impression that the
performance of the Android permission check has significantly improved between versions
and test devices. However, in fact the curves for the permission check in Figures 5.5
and 5.6 have nearly identical shapes. The difference in the mean execution time for the
permission check is explained by an extreme performance jitter for the permission check
on Android v4.0.4 (reflected also in the high standard deviation σ in Table 5.4 and the
slower convergence of the corresponding curve in Figure 5.5 to the 100% boundary). In
our re-evaluation, we could re-affirm this jitter on vanilla Android v4.0.4 on a Samsung
Galaxy Nexus test device.

101

CHAPTER 5. FLASKDROID

152690

91

92

93

94

95

96

97

98

99

100

0 5000 10000 15000 20000 25000
Time (µs)

C
um

ul
at

iv
e

%

Android v4.0.4
FlaskDroid (Basic policy)
FlaskDroid (No allow rule)
Vanilla Android Permission Check

Figure 5.5: Relative cumulative frequency distribution of the performance overhead
with a basic policy (solid line) and no allow rules (short-dashed lined) of FLASKDROID on
Android v4.0.4 (Samsung Galaxy Nexus device). Performance overhead of permission
checks on vanilla Android v4.0.4 is provided for comparison (long-dashed line). The
grey shaded area represents the 99th percentile for the basic policy.

µ (in µs) σ (in µs)
FlaskDroid v5.1.1
No-allow-rule 381.58±33.29 2249.74
Basic policy 426.71±54.61 3780.35
Vanilla Android v5.1.1
Permission check 44.95±21.78 861.53

Table 5.6: Runtime overhead on Android v5.1.1 (on LGE Nexus 5). Margins of error are
for the 95% confidence interval.

Kernel layer. The impact of SE Android on Android system performance has been
evaluated previously by its developers [175, 173]. Since we only minimally modify the
default SE Android policy to cater for our use-cases (e.g., new booleans), the negligible
performance overhead reported in [175, 173] still applies to our implementation.

5.9 Related Work

In this section we provide an overview of related work for closes related work on manda-
tory access control and Android security extensions. We first discuss in Section 5.9.1
the related work at the time this work was conducted in order to underline the novelty
of our results. We then discuss in Section 5.9.2 further related work that has been
published after our work had been presented.

102

5.9. RELATED WORK

627790

91

92

93

94

95

96

97

98

99

100

0 5000 10000 15000 20000 25000
Time (µs)

C
um

ul
at

iv
e

%

Android v5.1.1
FlaskDroid (Basic policy)
FlaskDroid (No allow rule)
Vanilla Android Permission Check

Figure 5.6: Relative cumulative frequency distribution of the performance overhead
with a basic policy (solid line) and no allow rules (short-dashed lined) of FLASKDROID on
Android v5.1.1 (LGE Nexus 5 device). Performance overhead of permission checks on
vanilla Android v5.1.1 is provided for comparison (long-dashed line). The grey shaded
area represents the 99th percentile for the basic policy.

5.9.1 Status Quo at Time of Publication

5.9.1.1 Mandatory Access Control

Flux Advanced Security Kernel (Flask) [179] is an architectural framework for Manda-
tory Access Control (MAC). It proposes a security architecture that decouples policy
enforcement from the security policy itself thus providing for a generic architecture
where multiple, dynamic security policies can be supported.

The most prominent MAC solution is SELinux [114] and we elaborated on it in
detail in Section 5.4.1. Specifically for mobile platforms, related work [166, 175, 212,
126, 128] has investigated the placement of SELinux enforcement hooks in the operating
system and user-space services on Android [166, 175] (cf. Section 2.1), OpenMoko [126]
and the LiMo (Linux Mobile) platform [212]. Our approach follows along these ideas
but for the Android middleware.

Also TOMOYO Linux [87], a path-based MAC framework, has been leveraged in
Android security extensions [P5, P4]. Although TOMOYO supports more easily policy
updates at runtime and does not require extended file system attributes, SELinux is
more sophisticated, supports richer policies, and covers more object classes [184].

However, as we state in Section 5.5, low-level MAC alone is insufficient. In this
work we show how to extend the SE Android security architecture into the Android
middleware layer for policy enforcement.

Mandatory Access Control enforcement has also been shown to be beneficial in
measuring and attesting the mobile platform’s integrity state. The PRIMA [99] concept
reduces measuring the platform state from cryptographically hashing the binary code and
libraries to cryptographically measuring the deployed access control policy. An attestor

103

CHAPTER 5. FLASKDROID

can deduce from this policy whether higher-integrity applications can be illegally accessed
by lower-integrity applications. PRIMA has been successfully applied to a Linux-based
mobile platform [128] using SELinux and the Clark-Wilson-lite integrity model [167,
22]. In particularly in the mobile context, integrity attestation is valuable, for instance,
when controlling devices’ remote access to networks or data [157]. Using FlaskDroid,
the PRIMA concept could be applied to attesting possible inter-application data flows
and, thus, allow reasoning about the device state in a fashion similar to [128].

Lastly, recent research [185] has demonstrated the ability of mobile botnets to
degrade the service of cellular network services. This underlines the importance of
mobile end-device security in not only protecting the end-user security but also the
networks the devices are connected to. FlaskDroid provides a suitable foundation in
enforcing corresponding security policies on the end-devices.

5.9.1.2 SE Android MMAC

The SE Android project was recently extended by different mechanisms for mandatory
access control at Android’s middleware layer [172], denoted as MMAC :

Permission revocation. This is a simple mechanism to dynamically revoke permissions
by augmenting the default Android permission check with a policy driven check. When
necessary, this additional check overrules and negates the result of the default check.

However, this permission revocation is in almost all cases unexpected for app
developers, which rely on the fact that if their app has been installed, it has been
granted all requested permissions. Thus, developers very often omit error handling
code for permission denials and hence unexpectedly revoking permissions easily leads to
application crashes.

In FlaskDroid, policy enforcement also effectively revokes permissions. However,
we use USOMs which integrate the policy enforcement into the components which
manage the security and privacy sensitive data. Thus, our USOMs apply enforcement
mechanisms that are graceful, i.e., they do not cause unexpected behavior that can cause
application crashes. Related work (cf. Section 5.9.1.3) introduced some of these graceful
enforcement mechanisms, e.g., filtering table rows and columns from ContentProvider
responses [218, 24, 93, T2, P5, P4].

Intent MAC. Intent MAC protects with a white-listing enforcement the delivery of
Intents to Activities, Broadcast Receivers, and Services. Technically, this approach is
similar to prior work like [218, P5, P4]. The white-listing is based on attributes of the
Intent objects (e.g., the value of the action string) and the security type assigned to the
Intent sender and receiver apps.

In FlaskDroid, we apply a very similar mechanism by assigning Intent objects a
security type, which we use for type enforcement on Intents. While we acknowledge,
that access control on Intents is important for the overall coverage of the access control,
Intent MAC alone is insufficient for policy enforcement on inter-app communications. A
complete system has to consider also other middleware communications channels, such
as Remote Procedure Calls (RPC) to Service components and to ContentProviders.

104

5.9. RELATED WORK

By instrumenting these components as USOMs and by extending the AIDL compiler
(cf. Section 5.6.2) to insert policy enforcement points, we address these channels in
FlaskDroid and provide a non-trivial complementary access control to Intent MAC.

Install-time MAC. Install-time MAC performs, similar to Kirin [44], an install-time
check of new apps and denies installation when an app requests a defined combination
of permissions. The adverse permission combinations are defined in the SE Android
policy.

While FlaskDroid does not provide an install-time MAC, we consider this mecha-
nism orthogonal to the access control that FlaskDroid already provides and further
argue that it could be easily integrated into existing mechanisms of FlaskDroid (e.g.,
by extending the install-time labeling of new apps with a blacklist-based rejection of
prohibited app types).

5.9.1.3 Android Security Extensions

In the recent years, a number of security extensions to Android have been proposed.
Different approaches [139, 133, 24, 140] add mandatory access control mecha-

nisms to Android, tailored for specific problem sets such as providing a DRM mech-
anism (Porscha [139]), providing the user with the means to selectively choose the
permissions and runtime constraints each app has (APEX [133] and CRePE [24]),
or fine-grained, context-aware access control to enable developers to install policies
to protect the interfaces of their apps (Saint [140]). Essentially all these solutions
extend Android with MAC at the middleware layer. The explicit design goal of our
architecture was to provide an ecosystem that is flexible enough to instantiate those
related works based on policies (as demonstrated in Section 5.7 at the example of Saint)
and additionally providing the benefit of a consolidated kernel-level MAC.

The authors of Porscha [139] propose a DRM mechanism to enforce access control
on specifically tagged data, such as SMS or e-mails. However, this approach is limited
to isolate data assets, but is not suitable as a generic access control framework, e.g.,
considering interfaces as objects. By implementing the corresponding USOMs for the
required data providers (e.g. SMS) and services, FlaskDroid allows us to implement
a solution comparable to Porscha based on subject/object types instead of tagged data.

The pioneering framework TaintDroid [46] introduced the tracking of tainted data
from sensible sources on Android and successfully detected unauthorized information
leakage. The subsequent AppFence architecture [93] extended TaintDroid with checks
that not only detect but also prevent such unauthorized leakage. However, both Taint-
Droid and AppFence do not provide a generic access control framework. Nevertheless,
future work could investigate their applicability in our architecture, e.g., propagating
the security context of data objects. The general feasibility of such “context propaga-
tion” has been shown in the MOSES [156] architecture. In MOSES, apps and data
are compartmentalized into different security profiles (e.g., work and private) and
MOSES enforces isolation of these profiles. To this end, it applies labeling of data
objects with their assigned profile and introduced policy enforcement points in Android
middleware services and libraries (e.g., LibBinder, Socket class, or OSFileSystem)

105

CHAPTER 5. FLASKDROID

for fine-grained access control based on the labels. MOSES relies on the TaintDroid
framework to propagate the labels across process boundaries and thus addresses the
problems discussed in Section 5.8.2.3.

To achieve policy enforcement for 3rd party apps without the need to modify the
Android operating system, some recent works leverage so-called Inlined Reference
Monitors (IRM) [210, 7, 101, 33, 34, 195]. IRM places the policy enforcement code
directly in the 3rd party app instead of relying on a system centric solution. An
unsolved problem of inlined monitoring in contrast to a system-centric solution is that
the reference monitor and the potentially malicious code share the same sandbox and
that the monitor is not more privileged than the malicious code[86]. This means that
native code, which is by design supported in Android, can be maliciously used to access
the IRM memory region and disable it at runtime.

The closest related work to FlaskDroid with respect to a two layer access control
are our previous XManDroid [P5] and TrustDroid [P4] architectures. Both leverage
TOMOYO Linux as kernel-level MAC to establish a separate security domain for
business apps [P4], or to mitigate collusion attacks via kernel-level resources [P5].
Although they cover MAC enforcement at both middleware and kernel level, both
systems support only a very static policy tailored to their specific purposes and do
not support the instantiation of different use-cases. In contrast, FlaskDroid can
instantiate the XManDroid and TrustDroid security models by adjusting policies.
For instance, different security types for business and private apps could be assigned at
installation time, and boolean flags can be used to dynamically prevent two apps from
communicating if this would form a collusion attack.

5.9.2 Related Work Post-Publication

Since this work has been published, Google has integrated SELinux support into the
Android code base [72, 73, 74, 75, 76]. Main contributor to this work was the SE Android
project [175, 132], which also formed the foundation for our kernel-level MAC in Flask-
Droid. With Android version 5, the targeted policy for Android has evolved to the
point that all (system) services and daemons are executed in their own security domain
and that the unconfined domain is removed. SELinux has also been used in the past in
commercial products, such as Samsung Knox [159], to isolate different security domains
(e.g., personal and business).

A very recent work, EASEAndroid [194], tackles the problem of (semi-)automatically
analyzing the audit logs of SELinux access control enforcement on real devices at
large-scale and thus helping security analysts in better understanding and refining the
deployed policies. The main challenge was to analyze a huge number of logs that contain
a mixture of benign and malicious behavior and to correctly distinguish those behaviors
and label unknown subjects and behaviors. To this end, the authors devised a tool
based on a semi-supervised classifier and policy refiner that mimics the methodology of
human security analysts.

Like other access control solutions on Android, FlaskDroid’s enforcement can
negatively affect applications through denied inter-component communication. Recent
work [103] has quantified the effects of denying applications access to application

106

5.9. RELATED WORK

framework APIs and as lesson learned from our TrustDroid and XManDroid
frameworks as well as related work [218, 93], the enforcement hooks in FlaskDroid
hardcode logic to make denials more graceful for applications. This prevents apps
from crashing unexpectedly, however, still renders them dysfunctional (e.g., when
mission-critical data is denied).

Other recent work investigated the implications of finer-grained access controls for
app developers and the end-users [59], with focus on the Internet permission. Thus,
this work relates to FlaskDroid’s feature of allowing app developers to opt-in to
FlaskDroid by attaching custom policies to their apps and instrumenting their apps as
USOMs. Through an empirical study of the Internet communication behavior of more
than 1,000 apps using a symbolic executor, the authors come to the conclusion that
fine-access control is feasible and practical, however, it is paramount that both users
and developers are better supported in selecting and defining fine-grained permissions.
A conclusion that is also backed up by previous study results on permission usage in
apps [147].

As for TrustDroid and XManDroid, an inherent limitation of the Android
application model (which FlaskDroid did not aim at changing) is enforcement at the
granularity of application sandboxes (i.e., UIDs). Similarly, new approaches such as per-
component access control in Compac [196] or per-ad-lib access control as in AdSplit [170]
and AdDroid [144] could improve effectiveness of the enforcement of FlaskDroid’s
middleware extensions.

Although FlaskDroid supports context-aware policies, an open challenge is ef-
ficiently defining security- and privacy-relevant contexts, which are very often highly
subjective to the end-user. ConXsense [122] addresses this problem by utilizing machine
learning to automatically classify security- and privacy-relevant contexts based on their
properties. The authors also present the deployment of their context-sensing framework
on top of our FlaskDroid solution in order to implement two use-cases that protect
against sensory malware and against device misuse through context-aware device lock.

FlaskDroid’s design has also been improved by our Android Security Frame-
work [P2] (cf. Chapter 6) and by the independently, concurrently developed Android
Security Modules [90] framework. Both provide a programmable security API to in-
stantiate various security models programmatically and thus avoid limiting the policy
author to one specific policy language as FlaskDroid does. Moreover, in our An-
droid Security Framework (ASF) work, we demonstrate how FlaskDroid can
be effectively instantiated as a use-case on top of ASF.

Furthermore, our recent Boxify [S1] app virtualization framework offer a new de-
ployment opportunity for FlaskDroid. Currently, FlaskDroid is implemented as a
modified Android software stack. However, solutions that are based on modified software
stacks and require a custom ROM to be deployed are notorious for low-acceptance for
real-life deployment due to the high technical expertise such deployment requires. Based
on Boxify, at least FlaskDroid’s middleware extensions could be deployed efficiently
as part of Boxify’s virtualization layer, while FlaskDroid’s kernel-level MAC requires
more extensive extensions to Boxify’s syscall interceptor to virtualize type enforcement.
On the plus side, a Boxify-based implementation of FlaskDroid could also provide
additional benefits, such as a per-component access control as in Compac [196].

107

CHAPTER 5. FLASKDROID

Lastly, new attack vectors against Android’s system integrity have been discovered.
In a Pileup attack [209], an attacker can escalate the privileges of his app during a
system upgrade. The attacker app declares in its application manifest properties (such
as permissions or shared UIDs) that are only valid on a higher version of the Android
OS. When the system is upgraded, errors in the update logic of PackageManagerService
grant those illegally requested properties to the attacker app. While FlaskDroid’s
type assignment to apps is not necessarily affected by the illegal permissions an app
gains through Pileup, the shared UID grabbing and data contamination effects of Pileup
can undermine FlaskDroid’s access control enforcement. Another recently discovered
attack vector are unprotected device driver interfaces induced by vendor customizations
on customized Android ROMs [214]. As in Android and SE Android, a base policy (like
the one we derived for our evaluation) does not cover any customized interfaces and it
is the responsibility of the vendor to adapt the base policy to the customized interfaces.
Failure in adapting the policy leads to gaps in the access control enforcement and, as
shown in this study [214], to potentially severe compromise of the platform integrity or
user’s privacy (e.g., unauthorized access to the device camera or monitoring user input
to the touch screen, which both can lead to follow-up attacks like PlaceRaider [183] or
keylogging [19, 211]).

5.10 Conclusion

In this work, we presented the design and implementation of FlaskDroid, a policy-
driven generic two-layer MAC framework on Android-based platforms. We introduced
our efficient policy language that is tailored for Android’s middleware semantics. We
show the flexibility of our architecture through policy-driven instantiations of selected
security models, including related work and privacy-enhanced system components. We
demonstrated the applicability of our design by prototyping it on Android version
4.0.4. Our evaluation shows that the clear API-oriented design of Android benefits the
effective and efficient implementation of a generic mandatory access control framework
like FlaskDroid.

108

6
Android Security Framework

Extensible Multi-Layered Access Control on Android

109

6.1. MOTIVATION

6.1 Motivation

For several decades now, the need for operating system security mechanisms to provide
strong security and privacy guarantees has been well understood [110, 158, 115, 10]. Yet,
recent classes of attacks against smartphone end-user’s privacy and security [84, 217, 148,
21] have shown that the fairly new smart device operating systems fail to provide these
strong guarantees, for instance, with respect to access control or information flow control.
To remedy this situation, security research has proposed a wide spectrum of security
models and extensions for mobile operating systems, most of them for the popular
open-source Android OS. These extensions include context-related access control [24],
developer-centric security policies [140], and dynamic, fine-grained permissions [218,
101, 7]. They also comprise security models [P4, 156, 175, P3] such as domain isolation
and type enforcement, which are usually at the heart of enterprise and governmental
security solutions.

6.2 Problem Description

However, the lack of a comprehensive security API for the development and modular-
ization of security extensions on Android has created the unsatisfactory situation that
all of these novel and warranted security models are either provided as model-specific
patches to the Android software stack, or they became an integrated component of
the Android OS design [175]. When considering the body of literature on established
security frameworks, such as Linux Security Modules (LSM) [206] or the BSD MAC
Framework [198], their history has taught that the need to patch the OS or the hard-
wiring of a specific security model impairs both the practical and theoretical benefits of
security solutions. First, there is in general no consensus on the “right” security model,
as demonstrated by the broad range of Android security extensions [24, 140, 7, 218,
P4, 175]. Thus, OS security mechanisms should not limit policy authors to one specific
security model by embedding it into the OS design. Second, providing security solutions
as “security-model-specific Android forks” impedes their maintainability across different
OS versions, because every update to the Android software stack has to be re-evaluated
for and applied to each fork separately.

6.3 Contributions

In this work, we proposed the design and implementation of Android Security
Framework (ASF), which allows security experts to develop and deploy their security
models in form of modules as part of Android’s platform security. This provides the
means to easily extend the Android security mechanisms and avoids that security
designers have to choose “the right Android security fork” or that the OS vendor has to
impose a specific security model. In the design of ASF we transfer the lessons learned
and guiding principles from the literature on established OS security infrastructures to
Android and intertwine them with new requirements for efficient security policies for
multi-tiered software stacks of smart devices. In contrast to concurrent, independent
work [90], which introduced extensibility for security apps (i.e., add-ons), our design

111

CHAPTER 6. ANDROID SECURITY FRAMEWORK

establishes a generic and extensible security framework that allows instantiating security
models by design as part of Android’s platform security and enables not only extending
but also replacing Android’s default security mechanisms. This is particularly beneficial
when tailoring Android for higher-security deployments like enterprise phones, where
the default mechanisms are insufficient or even obsolete (e.g., when the IT department
is an additional stakeholder that decides on apps’ privileges and installation). We make
the following contributions:

Policy-agnostic, multi-tiered security infrastructure: The security infrastructure must
avoid committing to one particular security model and enable authors of security exten-
sions to develop as well as deploy their solutions in form of code. This requires special
consideration of Android’s multi-tiered software stack and the dominant programming
languages at each layer. For ASF we solve this by integrating security-model-agnostic
enforcement hooks into the Android kernel, middleware and application layer and
exposing these hooks through a novel security API to module authors.

Enabling mandatory results automata policies: Various Android security solutions
realize mandatory results automata policies that not only truncate but also modify
control flows through manipulation of the return values. In ASF, the application layer
and middleware hooks are specifically designed to allow module authors to leverage
the rich semantics of Android’s application framework and to implement their security
policies as such automata. This required a re-thinking of the “classical” object manager
design from the literature by shifting the mandatory results automata logic from the
infrastructure into the security modules.

Instantiation of existing security models: We demonstrate the efficiency and effective-
ness of our ASF by instantiating different security models from related work on type
enforcement [P3, 175] and inlined access control [7] as well as from Android’s default
security architecture as modules.

Maintenance benefits for security extensions: Our ported security modules show how
ASF simplifies maintainability of security extensions across different OS versions by
shifting the bulk of effort to the security framework maintainer. This is similar to the
maintenance of the application framework for regular apps. Hence, a comparable benefit
to regular apps in adaption and stability across OS versions can be expected of security
modules.

Research and development benefits: We postulate that developing security solutions
against a well documented security API also greatly contributes to a) a better under-
standing and analysis of new security models that form a self-contained unit instead
of being integrated to various components of the Android software stack, b) a better
reproducibility and dissemination of new solutions since modules can be easily shared
and instantiated, and c) a more convient application of security knowledge to the
Android software stack without the requirement to be familiar with the deep technical
internals of Android.

112

6.4. RELATED WORK

6.4 Related Work

We first provide a synopsis of the development of extensible kernel security frameworks
and discuss afterwards the current status of security extensions and frameworks for
Android.

6.4.1 Extensible Kernel Access Control

The importance of the operating system in providing system security has been very well
studied in the last decades [158, 110, 10, 115] and different approaches to extending
operating systems with access control and security policies have been explored. These
include system-call interposition [58, 150], software wrappers [56], and extensible access
control frameworks like DTE [8], GFAC [1], and Flask [179]. To realize these solutions,
DTE has been provided as a patch to the UNIX system [9], while GFAC and Flask have
been implemented as patches to the Linux kernel by the RSBAC [141] and SELinux [114]
projects.

However, this led to an intricate situation: On the one hand, maintaining these
solutions as patches incurred high maintenance costs for adapting the patches to kernel
changes. On the other hand, none of these solutions was included in the vanilla kernel
because this would constrain security policy authors to one specific security model.
This constrain would be unsatisfying since there exists in general no consensus on
the “right” security model. To remedy this situation, extensible security frameworks
have been proposed [206, 198] that allow the extension of the system with trusted
code modules that implement specific security models. Module authors are supported
with an API that exposes kernel abstractions as well as operations and facilitates the
implementation of the desired security architecture and model. The results of this
research have been integrated into the mainline kernels as the Linux Security Modules
framework (LSM) [206] and the BSD MAC Framework [198]. Additionally, different
access control models, such as SELinux type enforcement [176] or TOMOYO path-based
access control [87], have been ported as modules on top of the LSM and the BSD MAC
framework.

6.4.2 Android Security

Closest to our approach is the independently and concurrently developed ASM [90],
which also provides a programmable interface for security extensions. In contrast to
ASF, however, it targets “security apps” added in addition to the default Android
security architecture. As a consequence, ASM has to address the intricate problem of
including untrusted code into highly-privileged context for access control enforcement
and consolidating it with existing policies. It avoids this Gordian knot through a
trade-off between policy expressiveness and sandboxing of security apps. In contrast,
our ASF framework resides beneath the default Android security framework and hence
allows instantiation of security models that complement or even substitute parts of the
default platform security (see Section 6.7). Hence, ASM can even be implemented as
a module in ASF. By definition, we must trust the developer of security solutions for
ASF.

113

CHAPTER 6. ANDROID SECURITY FRAMEWORK

In recent years, Android’s security has been quite scrutinized, and a wide spectrum
of security extensions has been brought forward. To name a few: CRePE [24] provides
a context-related access control, where the context can be, e.g., the device’s location.
Saint [140] enables developer-centric policies that allow app developers to ship their apps
with rules that regulate the app’s interactions with other apps. Different approaches
to more dynamic and fine-grained permissions have been proposed based on system-
centric enforcement (e.g., TISSA [218]) or inlined reference monitors (Dr. Android and
Mr. Hide [101] or AppGuard [7]). XManDroid [P5] enforces Chinese Wall policies to
prevent confused deputy and collusion attacks. TrustDroid [P4] and MOSES [156] isolate
different domains such as “Work” and “Private” from each other. SE Android [175]
and FlaskDroid [P3] bring type enforcement to Android, where SE Android focuses
on the kernel layer and has been partially included into the mainline Android source
code, and FlaskDroid extends type enforcement to Android’s middleware layer on top
of SE Android.

6.5 Requirements Analysis

The current development of Android security extensions has strong parallels to the initial
development of the above mentioned Linux and BSD security extensions, since current
Android security extensions are provided as patches to the software stack or, in the case
of SE Android [175], are embedded into the Android source tree. For the same, above
mentioned reasons as for the early Linux and BSD security extensions, this impedes the
applicability and adaption of Android security extensions and additionally precludes
many of the benefits that a modular composition could offer in terms of maintenance:
Embedding SE Android’s security model into Android’s source tree limits policy authors
to the expressiveness and boundaries of type enforcement, whereas provisioning security
models and architectures as patches to Android’s software stack forces policy authors
to chose a solution-specific Android fork. This requires for every version update to the
Android OS a re-evaluation and port of each separate fork. Moreover, security solutions
cannot be easily compared with each other, because their infrastructures are deeply
embedded into the Android software stack.

In this work, we develop in the spirit of the two de facto most established security
frameworks, Linux Security Modules (LSM) [206] and the BSD MAC Framework [198], a
generic and extensible Android Security Framework that allows the instantiation
and deployment of different security models as modules at Android’s application layer,
middleware, and kernel. The two most important guiding principles from LSM and the
BSD MAC framework that govern the design of our Android Security Framework
are: (1) provisioning of policies as code instead of data; and (2) providing a policy-
agnostic OS security infrastructure. In the remainder of this section, we analyze the
requirements and challenges for their transfer to the Android software stack.

6.5.1 Policy as code and not data

The first guiding principle is that policies should be supported as code instead of data
(such as rules written in one predetermined policy language). Providing an extensible

114

6.5. REQUIREMENTS ANALYSIS

security framework that supports integration of policy logic as code avoids committing
to one particular security model or architecture. For Android, this removes the need
to chose a particular extension-specific Android fork or to be limited to one specific
security model in the mainline Android software stack. Additionally, developing modules
against an OS security API provides the benefits of modularization for developing and
maintaining security extensions. This includes, foremost, a higher functional cohesion
of security modules and lower coupling with the Android software stack and, hence,
can significantly reduce the maintenance overhead of modules, especially in case of
OS changes. Moreover, it allows a better dissemination, comparison, and analysis of
self-contained security modules.

Transferring this principle to an extensible Android security framework poses the
additional requirement to consider the semantics and dominant programming languages
of the different layers of Android’s software stack. LSM and the BSDMAC Framework, as
part of the kernel, support modules written in C and operate on kernel data structures
(e.g., file system inodes). While this also applies to the Android Linux kernel, an
Android security framework should additionally support modules written for Android’s
semantically-rich middleware and application layers. That means modules written in
Java and operating on application framework classes (e.g., Intents or app components).

6.5.2 Policy-agnostic security infrastructure

The second principle is that the security framework and its API should be policy-
agnostic. This means that policy-specific intrusions into the software stack are avoided
and policy-specific data structures and logic are confined to security modules. The
current Android security extensions, however, explicitly insert enforcement hooks and
extensions into Android’s system services/apps that are specific to their policy language.

A particular additional requirement for a security framework on Android are en-
forcement hooks in the middleware and application layer that support mandatory result
automata (MRA)[39] policies, a less powerful version of edit automata [109] policies,
as promoted by different solutions [218, P4, 101, 7]. Mandatory results automata, in
contrast to truncation automata, can not only abort control flows but also divert or
manipulate them through manipulation of return values and, thus, give policy authors
a higher degree of freedom in implementing their enforcement strategies. For instance,
when querying a ContentProvider component, the policy could simply deny access by
throwing a Java Exception (truncation), but also modify the return value to return
filtered, empty, or fake data (MRA). To technically enable security modules to implement
MRA, our design requires a re-thinking of the “classical” object manager vs. policy
server design that is used, e.g., in LSM or our FlaskDroid [P3]. Object managers
(i.e., enforcement points) are responsible for assigning security labels to the objects that
they manage and for both requesting and enforcing access control decisions from the
policy server (i.e., policy decision point). Because this design embeds the enforcement
logic into the system independently from the security model, it is unfit for realizing
mandatory results automata. Thus, our design requires hooks that generically support
different enforcement strategies and shift the enforcement and object labelling logic
from the object managers to the security modules.

115

CHAPTER 6. ANDROID SECURITY FRAMEWORK

App System Service/App

User-space

Virtual Filesystem
Api

Discretionary Access Control

LSM Hook

Private/Public Resource Privileged Resource

API

Permisson check

Privileged Functionality

Kernel space

syscall syscall

Dex (DVM)

Native Code

Binder IPC Middleware Framework

Middleware
API

Middleware
Sub-ModuleMiddleware Hook

checkAccess
Inlined RM

Kernel API
Kernel

Sub-Module
checkAccess

Proprietary self-contained channel
(e.g., sysfs, socket, ...)

LSM Framework

Module Front-end App(s)

callModule(Bundle args)

Security FrameworkReference MonitorStock Android Security Security Module

Figure 6.1: ANDROID SECURITY FRAMEWORK architecture.

6.6 ASF Architecture

In the following we present the ASF architecture.

6.6.1 Framework Overview

The basic idea behind our Android Security Framework is to extend Android
with a new security API that incorporates the design principles explained in Section 6.5.
This API allows to easily author, integrate, and enforce generic security policies. This
idea continues and extends the design of the Linux Security Module framework for the
Linux kernel [206] or the MAC framework of BSD system kernels [198], but additionally
addresses the requirements for the software stacks of smart device operating systems as
discussed earlier (cf. Section 6.5). Figure 6.1 provides an overview of our ASF and we
explain its building blocks in the following.

6.6.1.1 Reference Monitors

In our design we differentiate between policy enforcing and policy decision making code.
For enforcement we use reference monitors [106] at all layers of the Android software
stack, i.e., at the application layer, the middleware layer, and the kernel layer. Each
reference monitor protects one specific privileged resource and is placed such, that
it mediates all access to the resource through the Android API. The benefit of this
multi-tiered enforcement is that each reference monitor can operate with the semantics
of its respective layer.

116

6.6. ASF ARCHITECTURE

6.6.1.2 Security Modules

Security extensions are deployed in the form of code modules and loaded during boot
into the security frameworks at the middleware and kernel level. Modules should be
signed to ensure their integrity and trustworthiness, and the verification key is embedded
in the kernel (or a secure location like a secure execution environment). Each module
implements a policy engine that manages its own security policies and acts as policy
decision making point. Security modules are integrated into the security frameworks
through a security API that exposes objects and operations of the different software
stack layers. As part of this API, each module implements an interface for enforcement
functions (i.e., functions that make a policy decision for a particular reference monitor in
the system), management functions (e.g., module life-cycle events), and other interfaces
that will be explained in Section 6.6.2.

To provide a clear separation between policy decision logic using kernel level semantics
and logic using middleware/application layer semantics, each module consists of two
sub-modules: a Kernel Sub-Module leveraging the already existing Linux Security
Module (LSM) infrastructure of the Linux kernel and a Middleware Sub-Module,
for which we designed and implemented a novel security infrastructure at the application
and middleware layers.

6.6.1.3 Front-end Apps

To enable user configurable policies or graphical event notifications, modules might want
to include user interfaces. To this end, the module developers (or external parties being
aware of the modules) can deploy standard Android apps that act as front-end and that
communicate through the framework API with the module. We enable such proprietary
module interfaces through a Bundle based communication protocol. A Bundle is a
key-value store that supports heterogenous value types (e.g., Integer and String) and
that can be transmitted via Binder IPC between the app process and the module. It is
the responsibility of the module to verify that the caller is sufficiently privileged.

6.6.2 Framework Infrastructure

We present now in a bottom-up approach details about the ASF infrastructure that
has been prototypcially implemented for Android v4.3 and currently comprises 4,606
lines of code.

6.6.2.1 Kernel Space

At kernel level we employ the existing Linux Security Module (LSM) [206] framework of
the Linux kernel. LSM implements an infrastructure for mandatory access control and
provides a number of enforcement hooks within kernel components such as the process
management or the virtual filesystem. The Kernel Sub-Module is implemented as a
standard Linux Security Module that registers through the LSM API for the LSM hooks
in the system and that operates with kernel level semantics. Kernel Sub-Module can
be an existing Linux security module like SELinux [176], TOMOYO [87], or proprietary

117

CHAPTER 6. ANDROID SECURITY FRAMEWORK

Listing 6.1: Exemplary enforcement functions.

1 public boolean d e l i v e r T o R e g i s t e r e d R e c e i v e r (In tent intent , ComponentName y
targetComp , S t r i n g requ i redPermis s ion , int targetUid , int targetPid , y
S t r i n g ca l l e rPackage , A p p l i c a t i o n I n f o cal lerApp , int ca l l i n gUi d , int y
c a l l i n g P i d) ;

2 public Locat ion getLastLocat ion (Locat ion currentLocat ion , LocationRequest y
request , int ca l l i n gUi d , int c a l i n g P i d) ;

ones [131, 90]. Kernel-level policies form truncation automata that terminate illegal
control flows, e.g., on access to files.

Since there might be operational inter-dependencies between the Kernel Sub-
Module and user-space processes like the Middleware Sub-Module (e.g., propaga-
tion of access control decisions), the kernel module can implement proprietary channels
for communication between kernel- and user-space (e.g., sysfs entries).

6.6.2.2 Middleware Layer

At the middleware layer we extended the system services and apps that implement the
Android API with hooks that enforce access control decisions made by the Middleware
Sub-Module. The middleware security framework is executed as a new Android system
service and mediates between our hooks and the Middleware Sub-Module. The
hooks are policy-agnostic and not tailored to one specific security model. Each hook
takes as arguments all relevant, ambient information of the current control flow that led
to the hook’s invocation. For instance, Listing 6.1 presents two exemplary hooks in our
system: one for the Intent broadcasting subsystem of the ActivityManagerService (line 1)
and one for the LocationManager that implements the location API of Android (line 2).
Both provide to the Middleware Sub-Module information about the current caller to
the Android API, i.e., App in Figure 6.1 (parameters callingUid and callingPid).
However, all other parameters are specific to the hooks’ contexts, e.g., the hook in line
1 provides information about the Intent being broadcast and the app component that
should receive this Intent (parameters targetComp through targetPid). Thus, the
hooks support policies that use the rich middleware-specific semantics.

In general, all hooks support truncation automata as policies by either allowing the
module to throw exceptions that terminate the control flow and that are returned to
the caller of the Android API, or by explicitly requiring a boolean return value that
indicates whether the hook truncates the control flow or not (line 1 in Listing 6.1). A
subset of the hooks additionally supports mandatory result automata policies, that
is the module can modify or replace return values of the Android API function or
modify/replace arguments that divert or affect the further control flow after the hook.
For instance, the LocationManager hook in Listing 6.1 (line 2) allows the module to edit
or replace the Location object that is returned to the app that requested the current
device location.

118

6.6. ASF ARCHITECTURE

6.6.2.3 Application Layer

At the application layer, our Android Security Framework provides a mechanism
to inject access control hooks into apps themselves. This access control technique is
based on the concept of inlined reference monitors (IRM) pioneered by Erlingsson and
Schneider [49, 48]. The basic idea is to rewrite an untrusted app such that the reference
monitor is directly embedded into the app itself, yielding a “self-monitoring” app.
Although using IRMs might seem counter-intuitive or redundant in our design, IRMs are
the only way in Android’s current app model to achieve privilege separation between the
components within an app (e.g., ad libs [84]) or to enforce mandatory results automata
policies on file system and network interfaces (e.g., HTTPS-everywhere). The former
are DVM internal operations and the latter do not involve the middleware, but instead
the app processes interact directly with the file system and network API of the kernel,
whose semantics are rather unsuitable for enforcing mandatory results automata policies.
Thus, until this app model has been retrofitted to enable a system-centric solution
for such kind of policies, our design relies on IRM. ASF provides an instrumentation
API that enables security modules to dynamically hook any Java function within an
app’s DVM. Hooked functions divert the control flow of the program to the reference
monitor, which thereby not only gains access to all function arguments but can also
modify or replace the function’s return value. Furthermore, in contrast to the hooks
placed in the Android middleware, application layer hooks are dynamic: Hooks are
injected by directly modifying the target app’s DVM memory when a new app process is
started. This design enables security modules to dynamically create and remove hooks
at runtime as well as to inject app-specific hooks.

6.6.3 Middleware Framework API

We elaborate now in more detail on our framework API and the interaction between
modules and the security infrastructure. Since we use the existing LSM framework as
is, we focus here on our newly introduced middleware security framework and refer to
the kernel documentation [112] for details on the LSM API. The middleware framework
API of our current implementation contains 168 callback functions. This API can be
broken down into the following categories:

Enforcement functions. These functions form the bulk of the API and are called
by the framework whenever the enforcement hooks in system apps and services are
triggered. Table 6.1 provides an overview of the coverage of our current enforcement
hooks. Each hook has a corresponding callback function in the module API, which
has the same method signature as the hook (cf. Listing 6.1) and which implements the
policy decision logic for its hook. Passing arguments by reference or expecting objects
as return values allows these functions to implement mandatory results automata logic.

Kernel Sub-Module Interface. To avoid policy-specific interfaces for the communica-
tion between middleware/application layer apps and the Kernel Sub-Module, we
introduce a generic kernel module API as part of the middleware framework API. It
allows apps and services a controlled access to Linux security modules. Each security

119

CHAPTER 6. ANDROID SECURITY FRAMEWORK

System App/Service # Hooks Example hooks
BroadcastQueue 2 deliverToRegisteredReceiver, processNextBroadcast
ContentProvider 12 insert, update, preQuery, postQuery
ActivityStack 5 startActivity, moveTaskToBack, finishActivity
ActivityManagerService 10 checkComponentPermission, checkUriPermission, check-

GrantUriPermission
PackageManagerService 21 getPackageInfo, findPreferredActivity, queryIntentRe-

ceivers, getServiceInfo, scanPackage, deletePackage
ActiveServices 5 startService, bindService, getServices
LocationManagerService 21 getProviders, requestLocationUpdates, requestGeofence,

reportLocation, setTestProviderLocation
AudioService 5 adjustStreamVolume, setMasterVolume, setRingerMode
TelephonyService 2 call, getNeighboringCells
SMSService 7 getAllMessagesFromIcc, sendData, sendText
WiFiService 23 getScanResults, addOrUpdateNetwork, getConnection-

Info, getWifiServiceManager
ClipboardService 7 getPrimaryClip, setPrimaryClip
PowerManagerService 6 acquireWakeLock, userActivity, reboot
PhoneSubInfo 13 getDeviceId, getIccSerialNumber, getLine1Number,

getIsimImpi
Total: 139

Table 6.1: Break down of hooked system apps and services.

module can implement this interface and internally translate the API calls to calls on
the proprietary channel between the user-space and the Linux security module. Two
particular challenges for establishing this interface were the self-contained security checks
of the kernel module and the requirement that this interface is already available during
system boot. To guarantee security, the kernel module is required to perform policy
checks to verify that a user-space process is sufficiently privileged to issue commands
to it. Additionally, the kernel module is called before the middleware framework can
load any Middleware Sub-Module, e.g., it can be called by Zygote when spawning
new app processes. To solve these challenges, our design avoids an additional layer of
indirection (i.e., IPC) for communication with the kernel module and loads the interface
implementations via the Java reflection API statically into the application framework
when it is bootstrapped. This ensures that the calling processes communicate directly
with the kernel module through our generic API and that the kernel module can be
called independently of middleware services. Listing 6.2 presents the current interface
definition.

Listing 6.2: Interface for Access Control Policy Modules to Linux Security Module.

1 public interface KMAC {
2 public boolean i n i t () ;
3 public boolean i sEnabled () ;
4 public boolean i s E n f o r c i n g () ;
5 public boolean s e t E n f o r c i n g (boolean value) ;
6 public boolean setContext (S t r i n g path , Bundle context) ;
7 public boolean r e s to reContext (Bundle context) ;
8 public Bundle getContext (S t r i n g path) ;
9 public Bundle getPeerContext (F i l e D e s c r i p t o r fd) ; /∗ wrapper around y

getsockopt c a l l to LSM ∗/
10 public Bundle getCurrentContext () ;

120

6.6. ASF ARCHITECTURE

11 public Bundle getProcessContext (int pid) ;
12 public Bundle getConf ig (Bundle args) ; /∗ e . g . , get l i s t of defined y

booleans or one s p e c i f i c boolean value ∗/
13 public boolean s e tCon f i g (Bundle conf) ; /∗ e . g . , set a boolean value ∗/
14 public boolean checkAccess (Bundle args) ; /∗ args can be , e . g . , quadruple y

of subject ctx , object ctx , object class , op ∗/
15
16 /∗ Zygote i s s t a t i c a l l y integrated with the Kernel MAC, thus , each y

KMACAdaptor must implemented these hooks in ZygoteConnection ∗/
17 public boolean secur i ty_zygote_applyUidSecur i tyPo l i cy (C r e d e n t i a l s creds , y

Bundle peerSecur i tyContext) ;
18 public boolean s ecur i ty_zygote_app lyRl imi tSecur i tyPo l i cy (C r e d e n t i a l s y

creds , Bundle peerSecur i tyContext) ;
19 public boolean s e c u r i t y _ z y g o t e _ a p p l y C a p a b i l i t i e s S e c u r i t y P o l i c y (y

C r e d e n t i a l s creds , Bundle peerSecur i tyContext) ;
20 public boolean secur i ty_zygote_applyInvokeWithSecur i tyPol icy (C r e d e n t i a l s y

creds , Bundle peerSecur i tyContext) ;
21 public boolean s ecur i ty_zygote_app lySecur i tyLabe lPo l i cy (C r e d e n t i a l s creds y

, Bundle peerSecur i tyContext) ;
22 }

Life-cycle management. Every module must implement functions for life-cycle
management, such as initialization or shutdown. This enables the framework to inform
the module when the system has reached a state during the boot cycle from which on
the module will be called or when the system shuts down. Modules should use these
functions, e.g., to initiate their policy engines or to save internal states to persistent
storage before the device turns off.

Event notifications. Event notification interfaces are used to propagate important
system events to the module. For instance, modules should be immediately informed
when an app was successfully installed, replaced, or removed. Although this information
is usually propagated via a broadcast Intents, the time gap between package change
and broadcast delivery might cause inconsistencies in module states. Hence these events
must be delivered synchronously.

Framework Callbacks. The framework provides modules a callback interface for
communicating in a more direct manner with system services, such as the PackageMa-
nagerService, and avoids the need to go through the Android API. This is desirable for
policy authors that want to leverage the middleware internal information. Our current
callback interface, for instance, includes functions that allow modules to efficiently
resolve PIDs to application package names.

Proprietary protocols. We introduced in our framework API a callModule() function
that allows modules to implement proprietary communication protocols with other apps
that are aware of this specific module, e.g., the front-end apps (cf. Section 6.6.1). When
using callModule(), these protocols are based on Bundles and enable a protocol similar
to the Parcel-based Binder IPC: apps serialize function arguments to a Bundle and add
an identifier for the proprietary function the module should execute with the deserialized
arguments. It is the task of the module to verify that the sender is sufficiently privileged
to send commands.

121

CHAPTER 6. ANDROID SECURITY FRAMEWORK

Middleware Sub-Module
manifest.xml classes.dex LSM.java / liblsm.so Resources

Figure 6.2: Middleware security module structure.

IRM Instrumentation. The framework provides an instrumentation API that enables
security modules to hook any Java function within selected app processes. To the best of
our knowledge, ASF is the first solution for Android to provide a generic instrumentation
API. Hooks injected via the instrumentation API are local to the app process that the
API is called from. Therefore, all calls to the instrumentation API need to be performed
from within a target app’s process. We solve this by placing an instrumentation hook
in the ActivityManagerService that is triggered when a new app process is about to
be launched. A module that implements this hook has to return a Java class for the
instrumentation logic that will be executed within the app’s process. To ensure that this
code is executed before control flow is passed to the app itself, we modify the arguments
passed to Zygote to start this new app process via a special wrapper class that loads
and executes the instrumentation code first.

6.6.4 Middleware Security Modules

We elaborate in more detail on the structure of security modules. Again, we use Linux
security modules as is [112] and, thus, focus here on the Middleware Sub-Module.
A middleware module is simply a Jar file that is created with an Android SDK that
includes our new security API. It is deployed to a protected location on the file system,
from where it is loaded during boot. This Jar file contains all the module’s code,
resources, and manifest file (cf. Figure 6.2):

Module Manifest. The manifest (formatted in XML) declares properties such as the
module author or code version, and, more importantly, the name of the main Java class
that forms the entry point for the module.

Classes.dex. The classes.dex file contains, as in regular Android apps, the Java
code compiled to Dalvik executable bytecode (DEX). It contains all Java classes that
implement the security module’s logic. During the load process of the Middleware
Sub-Module, the middleware framework uses the Java reflection API to load the
module’s main class (as specified in the manifest) from classes.dex. To ensure that
the reflection works error-free, the main class must implement the API as described
in Section 6.6.3. Since the API defines currently more than a hundred methods, but
a security module very likely requires only a subset of those, our SDK provides an
abstract class that implements the API. That abstract class can be sub-classed by the
module’s main class, which then only needs to override the required functions. The
abstract class returns for each non-overridden enforcement function an allow decision.

LSM interface. The proprietary interface between the user-space processes and the
Linux security module in the kernel is implemented through a native library liblsm.so and

122

6.6. ASF ARCHITECTURE

a corresponding Java class LSM.java, which exposes the native library via the Java Native
Interface. LSM.java has to implement the generic interface for the communication with
the kernel that was explained in the previous section. The generic kernel module interface
of ASF loads LSM.java through the Java reflection API into Android’s application
framework. This allows apps and services to communicate with the kernel module
and avoids a policy-specific interface. We exemplified this mechanism by integrating
SELinux through API into Zygote (cf. Section 6.7.4).

Resources. Each module can ship with proprietary resources, such as initial configu-
ration files or required binaries. During module instantiation, the framework informs
the module about the filesystem location of its Jar file, enabling the module to extract
these resources on-demand from it.

6.6.5 Stackable and Dynamic Loadable Modules

Finally, two desirable properties for implementing an extensible security framework such
as our ASF are dynamically loadable policies and policy composition (i.e., stacking
modules). In the following we explain why we chose, in contrast to closest related
work [90], to permit these features by design, but not consider them a requirement for
our solution.

Dynamically Loadable Modules. Being able to dynamically load and unload mod-
ules is desirable, for instance, to speed up the development and testing cycles of modules
and, in fact, we used this feature during the development of our example use-cases
(see Section 6.7). However, the arguments to support dynamically loadable modules
beyond development (e.g., for security add-ons [90]) are disputed: First, dynamic loading
is not always technically possible. A small set of static policy models, such as type
enforcement [175, P3], require that all subjects and objects are labeled with a secu-
rity context. Supporting such extensive labeling operations at runtime is an intricate
problem. Second, there exist security considerations. The loading and unloading of
modules must be strictly controlled to ensure that only integrity protected, trusted
modules are loaded. Otherwise, given the privileges of modules, this would open the
way to powerful malware modules. In our design we agree with the conclusions of the
various Linux security module authors [40] and consider the drawbacks of dynamically
loadable modules to outweigh their benefits. Therefore, we load the module once during
the system boot and permit users of our framework to additionally activate dynamic
unloading and loading of modules. But we currently do not consider this feature a
requirement for our solution.

Stackable Modules. Composing the overall policy from multiple, simultaneously
loaded and independent policies is a desirable feature, since usually no “one-size-fits-
all” policy exists. Android, for instance, implements currently a quadruple-policy
approach consisting of Permissions, SE Android type enforcement, AppOps, and Linux
capabilities—each being responsible for a different aspect of the overall access control
strategy. Multiple policies will naturally conflict and thus require the security framework

123

CHAPTER 6. ANDROID SECURITY FRAMEWORK

Existing solution LoC of module LoC added/removed/edited (total delta)
AppGuard [7] 5,059 +828/-79/◦ 13 (18.18%)
CRePE [24] 3,682 +915/-48/◦ 45 (27.38%)
XManDroid [P5] 3,244 +153/-14/◦ 28 (6.01%)
AppOps / Intent Firewall 2,290 +627/-106/◦ 39 (33.71%)
FlaskDroid [P3] 4,968 +749/-32/◦ 40 (16.53%)

Table 6.2: Effort of porting different security extensions as module on our ANDROID
SECURITY FRAMEWORK.

to support different policy composition and reconciliation strategies (e.g., consensus
or priority based) [152, 120]. However, supporting fully generic policy composition is
quite a challenge and has been shown to be intractable [67]. Thus, despite its benefits,
we decided in our design to follow the lessons learned by the LSM developers [206]
and to only permit module developers to implement stackable modules, but we do
not provide explicit interfaces for stacked modules in our framework infrastructure. In
module combinations where policy consolidation is known to be feasible, the approach
to stacking modules would be to provide a “composition module” that implements
policy reconciliation and composition logic and which in turn can load other modules
and multiplex API calls between them.

6.7 Example Security Modules

In this section, we demonstrate the efficiency and effectiveness of ourAndroid Security
Framework by instantiating different security models from related work. To illustrate
the versatility of ASF, we chose models from the areas of inlined reference monitoring,
context-based access control, domain isolation, and type enforcement.

6.7.1 AppOps and IntentFirewall

Google introduced (unofficially) with Android v4.3 the AppOps infrastructure for
dynamic, more fine-grained Permissions. It added hooks in different system services and
apps, which query a central AppOpsService whether an application is allowed to perform
an operation (e.g., retrieving the location of the device or querying a ContentProvider).
The AppOps rules define a mapping from UID/package name to allowed operations.
AppOps offers an interface to apps to retrieve the current configuration. Additionally,
Google introduced (again unofficially) an IntentFirewall, which acts as a reference
monitor for certain Intent-based operations like starting an Activity. The IntentFirewall
rules describe which caller is allowed to receive which kind of Intent object, using the
Intent’s attributes such as destination component. The sending or processing of Intents
that violate these rules is aborted.

Implementation as a module We ported AppOps and IntentFirewall (from Android
v4.3) to a security module for Android Security Framework (cf. Figure 6.3)
by moving the AppOpsService and the IntentFirewall classes into a module. Our
module comprises 2,290 lines of code and differs in 33.71% of all LoC from the original

124

6.7. EXAMPLE SECURITY MODULES

Middleware Framework

AppOps Module

AppOpsService

IntentFirewall

Settings App

callModule(Bundle args)

M
id

dl
ew

ar
e

A
PI

Figure 6.3: AppOps and IntentFirewall security module.

implementation. The bulk of the changes (520 LoC), were required to move the hook logic
of both services from the system apps and services of Android into the module by using
our enforcement functions. For the IntentFirewall, this was straightforward and we only
had to substitute a direct callback from IntentFirewall to the ActivityManagerService by
our framework callback mechanism. For the AppOpsService, we had to add a mapping
from caller PID to package name. By default the hooks of AppOps determine the
caller’s package name and pass this information to the AppOpsService for policy check.
Since this is a policy-specific logic of the hooks, our framework hooks do not (by default)
provide the caller’s package name and we re-implemented this logic in our module
by using our callback interface, which allows us to retrieve the package name for app
PIDs. Moreover, we adapted the AppOpsService interface to retrieve/configure the
current policies via a Bundle-based communication. AppOps is, furthermore, partially
integrated into the Settings application to allow users to disable notifications from
selected apps. We replaced this policy-specific channel between Settings and AppOps
also with our policy-agnostic Bundle-based communication. Modules that support this
Settings option, can return a value indicating whether notifications are disabled or
not. If the module does not support this feature, the Settings app by default allows
notifications. However, our AppOps module does currently not support the operation
watching feature, which requires the registration of application callback objects with
the module.

6.7.2 CRePE

CRePE [24] is a security extension to Android v2.3 that enforces fine-grained and
context-related access control policies. The context is based on the geolocation of the
device and, depending on this location, CRePE either allows or denies apps access
to security and privacy sensitive information. The security policies can be deployed
over different channels, e.g., via SMS. To enforce the policies, CRePE hooked all
relevant system services, e.g., to override Android’s default permission check with its
context-related check.

Implementation as a module. We ported CRePE1 as a security module for ASF by
moving its policy engine class CRePEPolicyManagerService and related classes, which

1Source code retrieved from http://sourceforge.net/projects/crepedroid

125

http://sourceforge.net/projects/crepedroid

CHAPTER 6. ANDROID SECURITY FRAMEWORK

Middleware Framework

M
id

dl
ew

ar
e

A
PI CRePE Module

QR Code Policy Receiver

processPolicy

SMS Policy Receiver

processPolicy

CRePEPolicyManagerService

PolicyAuthenticator ContextDetector

AntlrJavaRuntime ...

Figure 6.4: CRePE security module.

were originally running as a separate system service, into a module (cf. Figure 6.4).
On initialization, CRePE’s context detector registers as a listener for location updates
to detect context changes. Additionally, we used the enforcement functions of our
API to re-implement the logic of CRePE’s hooks. Furthermore, CRePE uses front-end
apps to parse and inject policies from different channels. We moved the policy parser
into the module and established a Bundle-based communication protocol between the
front-end apps and the module to forward received policies for processing. We used
the example policies shipped with the CRePE source code to successfully confirm
that the enforcement by our module yields the same results as the original CRePE
implementation.

Our port of CRePE as a security module consists of 3,682 lines of code (cf. Table 6.2),
excluding the unmodified ANTLR runtime (7,526 LoC). Of these 3,682 LoC 27.38%
were changed during the port. The bulk of this difference, 817 LoC, is attributed to
relocating the policy parser. Implementing the Bundle-based communication protocol
added 74 LoC. Only 2 LoC had to be changed to adapt CRePE’s calls to the Android
API from its original Android v2.3 implementation to our Android v4.3 implementation.

6.7.3 XManDroid

XManDroid [P5] (see also Chapter 4) extends the security architecture of Android
v2.2.1 to enforce Chinese Wall policies between apps that might jointly leak privacy
sensitive information. It uses hooks within different system services in the middleware
and TOMOYO Linux at the kernel level to monitor all access control requests, reflect
these interactions between processes/apps in a graph model, and use this model to check
against policies whether an inter-app communication would lead to an attack state. If
so, it denies the new communication. The policy decision logic is implemented as an
extension to the ActivityManagerService.

Implementation as a module. We ported our XManDroid to a module for ASF
(cf. Figure 6.5) by extracting the policy decision logic from the ActivityManagerSer-
vice and moving it into a module. Using the enforcement functions of our API we
moved the XManDroid hook logic to this module as well and, by using a proprietary
channel, we enabled the middleware extension to communicate from the module with
the TOMOYO kernel module. The kernel was specifically compiled and deployed with

126

6.7. EXAMPLE SECURITY MODULES

User-space
Kernel space

Middleware Framework

M
id

dl
ew

ar
e

A
PI

TOMOYO

TOMOYO sysfs

LSM Framework

XManDroid Module

APRM

...

TOMOYO Cmd Service

libccs.so

Ke
rn

el
A

PI

Figure 6.5: XManDroid security module.

a TOMOYO Linux security module. The XManDroid source code comes with an
example configuration for the policy described in [P5] and we used this configuration to
successfully confirm that our module yields the same enforcement results as the original
XManDroid implementation.

Our XManDroid middleware module consists of 3,244 lines of code, excluding
the unchanged JGrapht library (9,256 LoC). Our module differs in only 6.01% (195
LoC) from the original implementation. Of these 195 LoC, 141 are attributed to
additions necessary for porting XManDroid’s filtering logic for broadcasts from the
ActivityManagerService to the module.

6.7.4 Type Enforcement

SE Android [175] brought SELinux type enforcement to the Android kernel and es-
tablished the required user space support, e.g., it extended Zygote to label new app
processes with a security type. Our FlaskDroid [P3] (see also Chapter 5), developed
for Android v4.0.3, extends SE Android’s type enforcement to Android’s middleware.
Building on SEAndroid’s kernel and low-level patches, it adds policy-specific hooks as
policy enforcement points to various system services and apps in Android’s middleware.
The policy decisions at kernel level are made by the SELinux kernel module, while
the decisions at middleware are made centrally in a policy server service. Both policy
decision points decide based on subject type, object type, and object class reported by
the hooks at their respective layer whether control flows should be truncated or not.

Implementation as module. We realized type enforcement with our ASF by porting
FlaskDroid2 as a module (cf. Figure 6.6). At kernel level, we use the SE Android kernel
and provide an SELinux-specific interface implementation for the kernel module, in this
context porting the currently hardcoded SELinux support of Android’s middleware into

2Source code retrieved from http://www.flaskdroid.org/

127

http://www.flaskdroid.org/

CHAPTER 6. ANDROID SECURITY FRAMEWORK

User-space
Kernel space

Middleware Framework

M
id

dl
ew

ar
e

A
PI

SELinux

SELinux sysfs

LSM Framework

FlaskDroid Module

PolicyServer

libselinux

SELinux

...

Ke
rn

el
A

PI
Figure 6.6: FlaskDroid module.

an ASF module. A technical description of this interface implementation is provided in
the following Section 6.7.4.1. Further, we moved the middleware policy server and its
dependencies into the middleware module. Using the enforcement functions of our API,
we moved the policy-specific hook logic of FlaskDroid into the module as well. More
technical details on moving the hook logic are provide in the following Section 6.7.4.2).
Additionally, we used SE Android’s build system to label the file system with security
types.

Our port of FlaskDroid’s middleware component as a security module consists of
4,968 lines of code (cf. Table 6.2) and differs in only 16.53% of all LoC from the original
code. The bulk of these changes (550 LoC) is attributed to additions for implementing
a mapping from the enforcement functions of our framework API to FlaskDroid’s
type checks. To confirm the correct enforcement of policies, we used the policies for
middleware and kernel level that are provided with the FlaskDroid source code.
Additionally, we noticed during our tests that the original implementation contains an
error in assigning middlware security types to processes: It maps process UIDs always
to the security type of the first package in a shared sandbox, although the policy can
define different types for packages that share a UID. Additional changes were necessary
to fix this error in our FlaskDroid module.

6.7.4.1 Policy-agnostic Calls from Zygote to Linux Security Module

We briefly explain at the example of Zygote how the generic interface for calls to the ker-
nel module can be used. As described in our architecture section (Section 6.6), we added a
generic interface implementation, called KMAC.java, to the Android API. KMAC.java
implements the interface described in Listing 6.2 at page 120. KMAC.java in turn
loads via the Java reflection API the LSM.java classes and via JNI the liblsm.so
deployed by modules and uses them to forward calls to the kernel module. LSM.java
must hence also implement the interface in Listing 6.2. LSM.java and liblsm.so are
responsible for translating the function arguments to the kernel module specific protocol.
For instance, consider Listing 6.3 that shows how the KMAC interface is used in Zygote
to verify that the caller is allowed to specify certain parameters like the UID/GID of a

128

6.7. EXAMPLE SECURITY MODULES

new app process. It first uses the getPeerContext function to retrieve the kernel-
level security context of the calling process. This information is stored in a generic
Bundle structure. It afterwards uses this information to request policy decisions from
the Linux security module such as security_zygote_applyUidSecurityPolicy
(a Zygote-specific hook). Listing 6.4 shows how the SE Android module implements
the interface to translate the arguments to SELinux-specific arguments and to call
the SELinux kernel module. Here, SELinux.java takes the role of LSM.java and
SELinux.getPeerContext and SELinux.checkSELinuxAccess are native func-
tions that call via libselinux.so the kernel module. Hence, libselinux.so takes
the role of liblsm.so.

Listing 6.3: Use of generic Kernel module interface in ZygoteConnection.java.

1 private f i n a l Bundle peerSecur i tyContext ;
2 private stat ic f i n a l KMAC mKMAC = new KMAC() ;
3 . . .
4 ZygoteConnection (Loca lSocket socke t) throws IOException {
5 . . .
6 peerSecur i tyContext = mKMAC. getPeerContext (mSocket . g e t F i l e D e s c r i p t o r ()) ;
7 . . .
8 }
9 . . .

10 private stat ic void app lyUidSecur i tyPo l i cy (Arguments args , C r e d e n t i a l s peer y
, Bundle peerSecur i tyContext) {

11 . . .
12 boolean al lowed = mKMAC. secur i ty_zygote_applyUidSecur i tyPo l i cy (peer , y

peerSecur i tyContext) ;
13 . . .
14 }

Listing 6.4: Implementation of the generic LSM interface for SELinux kernel module.

1 package android . os ;
2
3 public class SELinuxAdaptor implements KMACAdaptor {
4 . . .
5 @Override
6 public Bundle getPeerContext (F i l e D e s c r i p t o r fd) {
7 S t r i n g ctx = SELinux . getPeerContext (fd) ;
8 Bundle r e t = new Bundle () ;
9 r e t . putStr ing (" s e l i n u x . context " , ctx) ;

10 return r e t ;
11 }
12
13 @Override
14 public boolean secur i ty_zygote_applyUidSecur i tyPo l i cy (C r e d e n t i a l s creds , y

Bundle peerSecur i tyContext) {
15 S t r i n g peerCtx = peerSecur i tyContext . g e t S t r i n g (" s e l i n u x . context ") ;
16 return SELinux . checkSELinuxAccess (peerCtx , peerCtx , " zygote " , "y

s p e c i f y i d s ") ;
17 }
18 . . .
19 }

129

CHAPTER 6. ANDROID SECURITY FRAMEWORK

6.7.4.2 Details on FlaskDroid Hook Logic

We illustrate at the example of FlaskDroid [P3] how the hook logic of existing
solutions can be moved into a module. Listing 6.5 shows one of the original Flask-
Droid hooks in the getAllProviders function of the Android location service.
The hook calls via the service’s context to FlaskDroid’s policy server where the
access control decision is determined by the checkPolicy function. This function
internally determines the subject’s and object’s security type from their UIDs.3 A
denial of access results always in a security exception that is thrown back to the
caller of the location service API. Listing 6.6 shows the re-implementation of this
logic in a module for our ASF by simply overriding the corresponding enforcement
function for LocationManagerService.getAllProviders and directly calling
the checkPolicy function with all required parameters provided by the hook. It
should be noted that in FlaskDroid the security exception in case of denied access is
hardcoded within the system, while as an implementation as a module the FlaskDroid
module could alternatively change the enforcement to a less interruptive enforcement by
reassigning the providerList parameter to an empty list of Strings, i.e., pretending
to the calling app that there is no location provider present in the system. In fact, as a
module, such a change in strategy can be more easily rolled out than as a hardcoded
implementation within the middleware.

Listing 6.5: Original FLASKDROID hook in com.android.server.LocationManagerService

1 public List <Str ing > g e t A l l P r o v i d e r s () {
2 . . .
3 i f (mContext . checkSecur i tyContext (Binder . ge tCa l l ingUid () , Process . myUid () ,y

" l o c a t i o n S e r v i c e _ c " , " g e t A l l P r o v i d e r s ") != PackageManager .y
PERMISSION_GRANTED) {

4 throw new Secur i tyExcept ion (" Denied by MAC p o l i c y ") ;
5 }
6 . . .

Listing 6.6: Re-implementation of the hook from Listing 6.5 in a security module.

1 @Override
2 public void s e c u r i t y _ l o c a t i o n _ g e t A l l P r o v i d e r s (L i s t <Str ing > p r o v i d e r L i s t , y

int uid , int pid) {
3 i f (checkPol i cy (uid , Binder . ge tCa l l ingUid () , " l o c a t i o n S e r v i c e _ c " , "y

g e t A l l P r o v i d e r s ") == PackageManager .PERMISSION_DENIED) {
4 throw new Secur i tyExcept ion (" Denied by MAC p o l i c y ") ;
5 }
6 }

6.7.5 Inlined Reference Monitoring

We use AppGuard [7] as the use-case to illustrate the applicability of our IRM instru-
mentation API, but similar application rewriting approaches [101] are also feasible.
AppGuard is a privacy app for Android that enables end-users to enforce fine-grained
access control policies on 3rd party apps by restricting their ability to access critical

3This is the original FlaskDroid behavior that is, as mentioned earlier, flawed.

130

6.7. EXAMPLE SECURITY MODULES

system resources. By inlining reference monitors into application code, this approach
supports security policies not easily enforceable by traditional system-centric reference
monitors in the Android middleware or kernel, e.g., to enforce the use of https over http.

Implementation as a module. We ported AppGuard as a module for ASF by
splitting its original app into three components: We adapted the (1) AppGuard reference
monitor with its dynamic hook placement and policy enforcement logic to use our IRM
instrumentation API. The reference monitor is injected into selected app processes via
our framework at app startup. The policy decision logic and persistent storage of policy
settings was moved into (2) a middleware module. The middlware module selects the
apps into which the IRM is injected. It also implements a Bundle-based communication
protocol to exchange policy decisions and security events with the IRM component and
with (3) a front-end app. The front-end app allows the user to adjust policy settings and
to view logs of security-relevant events. We used the policies included in the original
AppGuard implementation to confirm that policy enforcement by our module and by
the original implementation are identical.

Our AppGuard security module consists of 5,059 LoC in total (cf. Table 6.2), with
782 LoC residing in the middleware module and 4,277 LoC in the IRM. Our module
diverts in 18.18% of all LoC from the original code. The majority of the differences, 728
LoC, is attributed to moving the policy decision logic into the middleware module, while
only 46 LoC were required to adapt the inlined reference monitor to use the provided
instrumentation API.

6.7.6 Saint

Saint [140] is an extension for Android OS v1.5 that allows app developers to ship their
apps with policy rules that determine how the app can interact with other apps in the
system. For instance, the rules can declare that only apps with a specific package name,
version, or set of permissions are allowed to call the app or be called by the app. The
rules also support defining Intent attributes as rule criteria. The rules are enforced by
the system through hooks in different system apps and services, such as the ActivityMa-
nagerService, that allow monitoring operations for the different app component types.
Additionally, Saint provides a front-end app (FrameworkPolicyManager), that allows
the user to override developer policies.

Implementation as a module. We re-implemented Saint as a security module by
developing a module (729 LoC) that supports Saint’s policy language as described in
[140]. We use our event functions to extract policy files from newly installed application
packages and insert them into a policy database in our module. We use different
hooks in the ActivityManagerService (e.g., starting an Activity, resolving an Activity,
finding active services), Broadcast subsystem, or ContentProvider class to enforce the
Saint runtime policies. Using the scanPackage hook in the PackageManagerSer-
vice we enforce Saint install-time policies to decided whether a new app is installed.
Communication between the module the front-end app is again implemented based on
Bundles. We successfully verified our Saint module’s effectiveness using the policies for

131

CHAPTER 6. ANDROID SECURITY FRAMEWORK

the running example described by the Saint author’s [140] and a set of test apps that
implement Saint’s example scenario.

6.7.7 TrustDroid

TrustDroid [P4] (see also Chapter 3) extends the Android OS v2.2 architecture
with isolation of different domains such as “work” and “private”. Every application
is classified during installation into one of the available domains. For classification,
TrustDroid uses package-specific attributes such as developer signature, external
signature, or package name. Enforcement hooks at middleware and kernel level prevent
at runtime any communication between different domains. At kernel level, TrustDroid
uses TOMOYO Linux to enforce the policies. Policy rules for newly classified apps are
propagated from the middleware to the kernel.

Implementation as a module To re-implement TrustDroid as a security module
(862 lines of code), we deployed a TOMOYO-enabled Linux kernel on the device
(i.e., our Kernel Sub-Module) and developed a Middleware Sub-Module that
deploys the required LSM.java and libccs.so to communicate with the kernel
module. Additionally, we used our scanPackage hook in the PackageManagerService
to classify newly installed applications and keep a mapping from UID to domain.4
Because TrustDroid’s policy is static and very simple, its architecture does not
distinguish between policy enforcement and policy decision points, but instead every
hook retrieves the domain of the current subject and object and denies access if their
domains differ. We re-implemented this logic using the enforcement functions of our
module, which was a straightforward implementation. For ContentProviders (e.g.,
Contacts) TrustDroid classifies the database entries and returns on access only
the entries that have the same domain as the caller. Since we prohibit by design
such policy-specific intrusions into the default ContentProviders, we use our pre-query
hooks to modify selection arguments to retrieve only contacts that are allowed for the
current caller (e.g., where the contact’s group indicates a private contact). Using two
example applications that are classified differently, we verified the effectiveness of our
TrustDroid module.

6.7.8 Data shadowing

Both AppFence [93] as well as TISSA [218] provide a data shadowing feature. Data
shadowing means, that an application that wants to retrieve sensitive information (e.g.,
contacts information, IMEI number, or location data) only receives empty, fake, or
filtered data.

Implementation as a module. We re-implemented the data shadowing features of
AppFence and TISSA as a module by using our mandatory results automaton hooks
in the ContentProvider.Transport class, the ContactsProvider-specific hooks,
Telephony service and Location service. For ContentProvider and ContactsProvider ,

4TrustDroid does not allow apps in a shared sandbox to be classified differently.

132

6.8. EVALUATION

Frequency Mean (µs)
Stock Android 4.3 7,320 116.182±4.550
ASF v4.3 6,009 129.851±5.681

Table 6.3: Weighted average performance overhead of executing hooked functions in
stock Android and in our ANDROID SECURITY FRAMEWORK. The margin of error is given for
the 95% confidence interval.

in particular our pre-query and post-query hooks allowed us a fine-grained filtering
or replacing (faking) of the returned data as well as returning an empty data set.
However, the current coverage of our enforcement hooks does not include some of the
data shadowing points of AppFence, such as microphone, logs, or camera, and we plan
on adding them in the future.

6.7.9 Kirin

Kirin [44] extends Android’s application installation process with policy-based checks
and denies installation of a new app when it violates the policy. Based on its time
of publication, we presume that it was developed for Android OS v1.5.5 The actual
policy check was performed in a dedicated Android application developed for Kirin,
which interacted with the installation process. These policies are based on the set of
permissions requested by an app and the interfaces (e.g., Broadcast receivers) it wants
to register in the system. The installation of apps that are rejected by the policy is
denied.

Implementation as a module. To re-implement Kirin’s security service as a security
module, we developed a module that supports Kirin’s security language. Using our
scanPackage hook in the PackageManagerService, we check new applications against
the policy and abort their installation in case the policy rejects the application. Our
Kirin module comprises 246 lines of code.

6.8 Evaluation

In this section we evaluate the performance of our Android Security Framework
and discuss its current scope and prospective future work.

6.8.1 Performance

Although the actual performance overhead strongly depends on the overhead imposed
by the loaded module, we wanted to establish a baseline for the impact of our Android
Security Framework on the system performance. The performance of LSM has
been evaluated separately, e.g., for SEAndroid [175], and we are interested here in the
effect of our new middleware security framework on the performance of instrumented
middleware system services and apps.

5http://en.wikipedia.org/wiki/Android_version_history

133

http://en.wikipedia.org/wiki/Android_version_history

CHAPTER 6. ANDROID SECURITY FRAMEWORK

40%

60%

80%

100%

0 200 400 600 800 1000 1200 1400 1600
Time (µs)

R
el

at
iv

e
cu

m
ul

at
iv

e
fre

qu
en

cy

Android Security Framework (no module)
Stock Android 4.3

Figure 6.7: Relative cumulative frequency distribution of micro benchmarks in stock
Android (dashed line) vs. ANDROID SECURITY FRAMEWORK (solid line).

Methodology. We implemented our ASF as a modification to the Android OS code
base in version 4.3_r3.1 (“Jelly Bean”) and used the Android Linux kernel in branch
android-omap-tuna-3.0-jb-mr1.1. We performed micro-benchmarks for all execution
paths on which a hook diverts the control flow to our middleware framework: We first
measured the execution time of each hooked function with no security module loaded
and allowing all access. Afterwards we repeated this test with hooks disabled to measure
the default performance of the same functions and thus operating like a stock Android.
All our micro-benchmarks were performed on a standard Nexus 7 development tablet
(Quad-core 1.51 GHz CPU and 2GB DDR3L RAM), which we booted and then used
according to a testplan for different daily tasks such as browsing the Internet, sending
text messages and e-mails, contacts management, or (un-)installing 3rd party apps.

Micro-benchmark results. Table 6.3 presents the number of measurements for each
test case and their mean values. To eliminate extreme outliers, we excluded in both
measurement series the highest and lowest decile of the measurements. For ASF the
mean is the weighted mean value with consideration of the frequency of each single
hook. Table 6.4 provides a break down of the most frequently called hooked Android
API functions and their mean execution time. In overall, our framework with no loaded
module imposed with 129.851 µs approximately only 11.8% overhead compared to
stock Android. Figure 6.7 presents the relative cumulative frequency distribution of our
measurements series and further illustrates this low performance overhead.

Module Performances. Table 6.5 provides an overview of the performance impact
of selected security models as reported in their respective publications (native) and as
measured for their implementation as ASF module (ASF Module). However, it should

134

6.8. EVALUATION

Android Security Framework Stock Android v4.3
Hooked function Frequency Mean (µs) Frequency Mean (µs)
AMS.checkComponentPermission 1,705 39.413±0.658 2,024 36.518±0.523
BroadcastQueue.broadcastIntent 908 305.274±16.752 1,007 332.328±17.085
SettingsProvider.call 544 67.710±3.004 669 46.574±1.723
PaMS.queryIntentReceivers 438 92.458±3.598 745 84.343±2.296
PaMS.queryIntentActivities 296 192.178±15.458 242 195.211±18.355
PoMS.acquireWakeLock 229 296.246±10.740 255 295.601±11.121
PaMS.getActivityInfo 229 53.039±2.223 203 45.551±2.104
PaMS.getPackageInfo 207 47.324±2.339 307 37.774±1.456
PaMS.queryIntentServices 123 131.744±9.220 134 106.354±6.069
PaMS.getPackageUid 93 35.767±2.353 201 30.005±0.000

AMS: ActivityManagerService ; PaMS: PackageManagerService; PoMS: PowerManagerService

Table 6.4: Ten most frequently invoked hooked functions and their average perfor-
mance overhead on ASF vs. stock Android v4.3. The margins of error are given for the
95% confidence interval.

Use-case Implementation Android Test device Average (µs)

CRePE [24]? Native v2.3 HTC Magic ≈ 100
ASF Module ‡ v4.3 Nexus 7 168.943±5.884

XManDroid [P5] Native � v2.2 Nexus One 532
ASF Module ‡ v4.3 Nexus 7 206.062±5.573

FlaskDroid [P3] (middleware)† Native v4.0.3 Galaxy Nexus 452
ASF Module ‡ v4.3 Nexus 7 359.317±11.015

Table 6.5: Performance measurements of our example modules.
? Two rules loaded. � Weighted average for un-/cached checks. † With basic policy loaded.

‡ Weighted average incl. IPC roundtrip between hook and module.

be noted, that these measurements are not directly comparable, because all security
models have originally been implemented for a different Android OS version and been
tested on a different hardware platform. Figure 6.8 presents the cumulative frequency
distribution for the measured performance overhead of our example modules versus
stock Android v4.3.

6.8.2 Current Scope and Future Work

System setup. Certain security models require a preparatory system setup. For
instance, type enforcement requires a pre-labelling of all subjects and objects. After
the system has been setup, ASF supports modularization of these security models
(cf. Section 6.7.4).

Module Integrity. As part of the kernel, the Kernel Sub-Module has the highest
level of integrity and additional means [6, 63] to protect the kernel integrity could be
deployed. In contrast, the Middleware Sub-Module, as a user space process, can
be circumvented or compromised by attacks against the underlying system (e.g., root
exploits) and thus requires support by the kernel modules to prevent low-level privilege
escalation attacks. Inlined reference monitors are inherently susceptible to attacks by
malicious applications [86], because the reference monitor executes in the same process

135

CHAPTER 6. ANDROID SECURITY FRAMEWORK

25%

50%

75%

100%

0 250 500 750 1000 1250 1500 1750 2000
Time (µs)

R
el

at
iv

e
cu

m
ul

at
iv

e
fr

eq
ue

nc
y

Stock Android v4.3
CRePE Module
FlaskDroid Module
XManDroid Module

Figure 6.8: Relative cumulative frequency distribution of example modules’ perfor-
mance overhead vs. stock Android v4.3.

as the application that it monitors and no strong security boundary exists between
the monitor and the app code. To remedy this situation, we are currently retrofitting
Android’s application model to combine the benefits of inlined and of system-centric
reference monitors. By splitting apps into smaller units of trust (e.g., app components
and ad libs), system-centric reference monitors are able to differentiate distinct trust
levels within apps [151, 196, 170].

Future work will investigate how Android’s application model can be retrofitted to
put our ASF into a sweet spot that combines the benefits of inlined reference monitors
and system-centric reference monitors. By splitting apps into smaller units of trust,
e.g., native code, app components, or external libraries (e.g., [170, 144]), system-centric
reference monitors are able to differentiate distinct trust levels within apps. This enables
a more fine-grained and effective enforcement [151] similar to IRMs but with a higher
level of integrity.

Completeness. It is crucial for the effectiveness of our security framework, that all
access to security and privacy sensitive resources is mediated by the reference monitors.
We consider it out of scope for this thesis to formally verify the completeness of our
prototype framework, but plan to use recent advances in static and dynamic analysis on
Android to verify the placement of our hooks, similarly to how it was done for the LSM
framework [41, 60]. In particular, this requires further investigation of the extent the
API-oriented design and convergence of privileged functionality into designated system
services and apps [212, P3] aids the verification process.

Information flow control. Our framework provides modules with the control over
which subject (e.g., app) has access to which objects (e.g., device location), but it cannot

136

6.9. CONCLUSION

control how privileged subjects distribute this information. Controlling information
flows is an orthogonal problem specifically addressed by different solutions [46, 156].
We plan to integrate such data flow solutions into our framework and to extend our
security API with new generic calls for taint labeling and taint checking.

6.9 Conclusion

In this work we presented the Android Security Framework (ASF), an extensible
and policy-agnostic security infrastructure for Android. ASF allows security experts to
develop Android security extensions against a novel Android security API and to deploy
their solutions in form of modules or “security apps.” Modularizing security extensions
overcomes the current unsatisfactory situation that policy authors are either limited
to one predetermined security model that is embedded in the Android software stack
or that they are forced to confide in a security-model-specific Android fork instead of
the mainline Android code base. Additionally, this modularization provides a number
of benefits such as easier maintenance and direct comparison of security extensions.
We demonstrated the effectiveness and efficiency of ASF by porting different security
models from related work to ASF modules and by establishing a baseline for the impact
of our infrastructure on the system performance.

137

7
Scippa

System-Centric IPC Provenance on Android

139

7.1. MOTIVATION

7.1 Motivation

Smartphone operating systems allow end-user customization of the phone’s functionality
with 3rd party apps. To make this extensibility possible and to simultaneously protect
the end-user’s privacy, current designs of smartphone operating systems exhibit a
complex combination of sandboxing-based privilege-separation and extensive message-
based data-sharing. Android facilitates the integration of remote services and data into
an app using a very lightweight IPC mechanism called Binder, which forms the primary
channel for inter-app communication. To realize privilege-separation between apps,
Android implements app sandboxing by assigning each app a distinct user ID under
which the app’s processes are executed. To implement the least-privilege principle,
Permissions, i.e., privileges, are assigned to UIDs. Android ships with a set of pre-defined
permissions to protect the Android application framework API, for example, reading
the user’s address book or retrieving the device’s geolocation. It further allows app
developers to define custom permissions to protect their apps’ interfaces. Protecting an
app interface with permissions is realized by (1) statically declaring in a manifest file
which permissions are required from a caller to successfully access each app component;
or by (2) performing runtime checks in the app components using IPC provenance
information provided by Binder, i.e., the calling process’ UID.

7.2 Problem Description

However, Android’s current solution to protecting app interfaces is unsatisfactory. Stat-
ically declaring the required (custom) permissions for interacting with app components
reduces the scope of access checks to the permissions each app holds and excludes more
app-specific information such as the developer ID or package name. This solution is not
scalable and makes it virtually impossible to flexibly endorse specific apps for component
access: permissions can be either requested by any app or require apps to be signed
with the same key, which in turn would require a more flexible public key infrastructure
that does not exist. Performing runtime checks to protect app components, on the other
hand, is more flexible and allows more fine-grained access control, but requires that the
IPC mechanism provides message provenance information to app components. Android’s
system model does not fulfill this requirement for sufficient IPC provenance information
for all app component types. While it provides the caller UID to ContentProvider
and Service components, it fails in providing this information to components that are
receivers of Intent messages–the most prominent inter-app communication mechanism.
Prior work [148, 21, 30, 44, 36] has identified different attacks that can occur as a result
of this shortcoming, most prominently confused deputy attacks [88].

7.3 Contributions

In this work, we identified the technical root-cause for this shortcoming in providing IPC
provenance information—a mismatch between Android’s concept for inter-application
communication at its middleware layer and at its kernel layer. In this multi-layered
communication framework, the Binder kernel module is responsible for providing the

141

CHAPTER 7. SCIPPA

sending process’ user ID to the receiving process. However, logical communication occurs
between app components—in the literature commonly referred to as Inter Component
Communication (ICC) [44, 45]—using different abstraction levels of Binder IPC at
Android’s middleware layer. These abstractions introduce indirections and message
dispatching that cause Binder’s IPC provenance information (i.e., the sender UID) to
be lost along the ICC control flow between app components.

We then present Scippa, our extension to Android’s inter-application communication
framework, to remedy this shortcoming of Android’s architecture. Scippa builds
Binder IPC call-chains for ICC control flows and thus provides the required provenance
information to apps. Although Quire [36] first identified the need for provenance
information on Android, Scippa is, to the best of our knowledge, the first approach that
directly addresses the mismatch between the middleware and the kernel-level security
design in Android’s multi-layered inter-application communication framework.

At the core of Scippa is an extension to the Binder kernel module, which constructs
and forwards IPC call-chains across distinct application processes. The kernel module
extension is complemented by extensions to the message handling routines in Android’s
application libraries to propagate call-chains across all components of an app. In contrast
to Quire’s prototypical implementation, which requires app developers to explicitly
pass on call-chain information during ICC, our extensions integrate seamlessly into
the system architecture and call-chains are established transparently to apps and app
developers. Only when developers want to retrieve call-chains, they must be aware of a
new system API.

Scippa enables for the first time determining the ICC caller ID within all types of
Android app components. For instance, apps can now identify the sender of received
broadcast Intents and thus distinguish spurious notifications from benign ones; they can
also detect if a security-sensitive Activity was invoked from a trustworthy caller. This
allows apps in general a more fine-grained, flexible self-governing of their interaction
with other apps and provides the means to effectively mitigate recently reported attacks
such as confused deputy attacks [88, 148, 30]. Additionally, we present and discuss
changes to Android’s app model to enable the return of finalized call-chains to the
sending app. Providing information about how their messages were distributed, both
by the system and other apps, gives senders the means to detect spurious or malignant
distribution of their messages (e.g., message hijacking [21]).

The evaluation of our prototype implementation for Android v4.2.2 shows that the
performance overhead imposed on Binder IPC messages is only 2.23% and thus does
not impede the overall system performance.

7.4 Binder-Based Inter-App Communication on Android

We first provide necessary technical background for Scippa that complements the general
background information on Android that we provided in Chapter 2. We describe in
more technical depth how Android uses Binder-based IPC for different types of inter-app
communication. In particular, we explain how Binder transactions are integrated into
Android’s security design and their relevance for access control architecture such as our
FlaskDroid (see Chapter 5) or Android Security Framework (see Chapter 6).

142

7.4. BINDER-BASED INTER-APP COMMUNICATION ON ANDROID

App	
 A	

Linux	
 Kernel	
 /dev/binder	

System	
 Server	

Package	
 Manager	

Service	

Loca=on	
 Manager	

Service	

Ac=vity	
 Manager	

Service	

Ac=vity	

Manager	

Loca=on	

Manager	
 …

	

App	
 A	

Components	

Android	
 API	

Managers	

App	
 B	
 Proxy	

App	
 B	

App	
 B	
 Stub	

App	
 B	

Components	

libandroid_run=me	

Na=ve	
 code	
 3rd	
 Party	
 Code	

libandroid_run=me	
 libandroid_run=me	

Figure 7.1: Binder-based inter-component communication.

7.4.1 Binder-based ICC

Although Android builds on top of a Linux kernel that provides “classical” channels
such as files or sockets, the primary IPC mechanism on Android is Binder. In the
following we take a top-down approach to ICC in Android. We show how Android uses
ICC and explain afterwards how ICC is implemented as Binder transactions. We refer
to external documentation [162] for more details on Binder.

7.4.1.1 Using Binder-Based ICC on Android

Figure 7.1 provides a high-level overview of standard Binder IPC in Android when used
for connecting components of different apps. Apps can, for instance, either contact system
services such as the LocationManager or communicate directly with each other. All Inter-
Component Communication (ICC) builds on top of Binder IPC. User space processes
can communicate with each other over Binder IPC via the Binder kernel module that is
exposed through the /dev/binder sysfs entry. For inter-component communication,
the libandroid_runtime library, included in all apps, includes an implementation of
the Binder communication protocol. Moreover, since application developers usually do
not want to deal directly with the low-level mechanics of inter-process communication,
Android’s design provides different levels of abstraction for Binder IPC. These allow
developers to easily make use of Binder IPC at the application level to connect different
apps’ components (cf. Figure 7.1 for Stubs, Proxies and Managers).

Stubs and Proxies. The most basic level of abstraction of Binder IPC are Stubs and
Proxies, which implement remote procedure calls (RPC) via Binder IPC. A Proxy at
the caller-side marshals the method parameters into primitive data types and transfers
them via IPC to the recipient, where Stub unmarshals the primitives into the original
parameters and calls the actual method. This concept of thread execution in which the

143

CHAPTER 7. SCIPPA

Binder Kernel Module
App A

(Sender)
App B

(Receiver)

1. trans ={recv, payload}

2. trans = {payload, UID=A}

3. reply = {payload}
4. resp

If two-way transaction

Figure 7.2: Binder transaction protocol.

logical flow of control temporarily “hops” to a thread in another process is also referred
to as “thread migration” [55, 143].

System Services and Managers. Managers are part of the SDK and encapsulate
pre-compiled Proxies for system apps and services like the LocationManager that im-
plement the Android application framework API. This eliminates the need for compiling
Proxies for the default API during app build-time.

Intents. The highest level of abstraction are so-called Intent messages. An Intent is a
data structure used to provide an abstract description of an operation to be performed
by its receiver(s). Common usages of Intents include starting Activity components or
broadcasting notifications to apps. Since the sender of an Intent can both explicitly state
the target component and implicitly define potential receivers through a description of
the intended action, the actual target app(s) must be resolved at runtime. This is the
task of the ActivityManagerService, which relays all Intents.

7.4.1.2 Binder Transactions and Integration Into Android’s Security Design

Before we explain how Binder acts as a building block in Android’s security architecture,
we first explain how Binder conducts transactions between two app processes. Figure 7.2
illustrates abstractly a transaction between App A (sender) and App B (receiver). To
initiate the transaction, A writes its transaction data via /dev/binder to the Binder
kernel module (step 1). The transaction data contains a token (recv) identifying the
communication peer (i.e., B) as well as some payload containing, e.g., the method ID to
be executed by the receiver plus the method arguments (e.g., an Intent object). The
kernel module then resolves the token to identify the recipient of the transaction, i.e., B,
and extends the transaction data with the sender UID, i.e., UID of A. Afterwards, the
module copies the transaction data into the user space of an IPC Thread selected from
the IPC thread pool of B (step 2). If the caller expected a reply (two-way transaction),
the reply is sent back to the caller via the kernel module (steps 3 and 4). A two-way
transaction is implemented as a closed wait, i.e., the sender thread blocks until it receives
a response and the kernel module ensures that this response originates from the receiver
thread. In the case of a one-way transaction, the sender immediately receives a dummy
reply to prevent blocking (not depicted in Figure 7.2).

144

7.5. TECHNICAL PROBLEM DESCRIPTION

Binder Kernel
Module

App B
(IPC Thread)

App B
(Main Thread)

1. {payload, UID=A}

0. TLS.callingUID = B 0. TLS.callingUID = B

2. TLS.callingUID = A

getCallingUid() = A

3D. Dispatch message to
 Handler of Main Thread

4D. Process message on
 MainThread

getCallingUid() = B

3L. Process message locally

4L. TLS.callingUID = B

Figure 7.3: Handling of Binder transactions by the receiver and availability of caller UID.

Providing the sender UID to the receiving component is pivotal for enforcing
permissions in Android’s security design. First, system services and apps, which
implement the application framework API, use this information to perform runtime
checks (i.e., PackageManager.checkPermission(permission, uid)) whether
calling apps hold the required permissions to access their interfaces. Using runtime
checks enables these services to enforce permissions flexible and at the granularity of
interface functions instead of app components. For instance, the LocationManager
requires either the Permission FINE_LOCATION or COARSE_LOCATION depending on
the parameters passed to the API call. Second, system services like the ActivityMana-
gerService mediate between caller and callee applications (e.g., when an app queries a
remote ContentProvider or when delivering an Intent) and these system services use the
caller UID when mediating to check whether the caller is allowed to access the callee.

7.5 Technical Problem Description

As explained in Section 7.4.1.2, Binder provides IPC message recipients with the UID of
their direct caller. However, as also shown in that Section, Android introduced different
abstraction layers for Binder IPC to enable an inter-component communication on
top of the inter-process communication. These abstractions introduce indirections and
message dispatches that cause the caller UID provided by Binder to be lost along ICC
control flows or to be insufficient.

7.5.1 Message Dispatching

To understand how the caller UID provided by Binder can be dropped in ICC, one
first needs to examine how an incoming IPC transaction is handled at the receiver side.
Figure 7.3 extends Figure 7.2 after the receiver (App B) has received the transaction
(Step 2 in Figure 7.2 and Step 1 in Figure 7.3). The IPC thread of App B that is
selected to handle this incoming transaction copies the sender UID of the transaction
(i.e., UID=A) into its thread-local storage (TLS; step 2). Any application code executed
on this thread can query this sender UID through the Binder.getCallingUid

145

CHAPTER 7. SCIPPA

function. However, if the thread is not processing a Binder transaction such that the
TLS gets never updated, this function call defaults to the threads own information (e.g.,
Binder.getCallingUid would return the UID of the thread itself, as set in step 0).

A received transaction can be processed in one of two possible ways and depends
on the targeted component type: First, the message could be handled locally in the
context of the IPC Thread (step 3L), which preserves the IPC provenance information.
A Service or ContentProvider component, for instance, would be executed by default in
this context. As a consequence, these components can call Binder.getCallingUid
at any time and retrieve the process UID that triggered their current execution. As
explained in Section 7.4.1.2, this is pivotal for enforcing the default permissions in
Android’s system services. Once the execution of app code on the IPC thread has
finished, this thread resets its TLS (step 4L).

Alternatively, the IPC Thread can dispatch the processing of a received message to
a worker thread (by default the application’s Main Thread1). The message is dispatched
by means of Android’s Handler mechanism2 (step 3D). For instance, this worker thread
typically performs the handling of received Intents, which includes the processing of
received Broadcast Intents, executing IntentServices, as well as Activity-related Intents
(step 4D). However, the worker thread is executed in a different context and naturally
with a different TLS. Thus, calling Binder.getCallingUid on the worker thread
will always result in the retrieval of the worker thread’s process UID. Dispatching the
message will, therefore, effectively drop IPC provenance information: Components
executed on the application’s worker thread will have no information about which
process has triggered their current execution and, hence, cannot distinguish whether
their execution is legitimate and whether they can trust any received payload.

7.5.2 Indirect Communication

Android’s model for ICC also introduced indirect communication between components,
which renders Binder’s IPC provenance information insufficient, in particular in the
case of Intent-based ICC. As mentioned in Section 7.4.1.1 and illustrated in more detail
in Figure 7.4, the ActivityManagerService is responsible for relaying Intents between
apps. Thus, the actual communication between Intent senders and Intent receivers
consists of two distinct Binder transactions. As a consequence, Binder’s IPC provenance
mechanism will at the receiver’s side always identify the ActivityManagerService as the
IPC caller, instead of the actual origin of the received Intent (i.e., the UID of the Intent
sender). An exception from this shortcoming are Activity-related Intents that require a
return value from the receiver. In that specific case, the Intent receiver can request the
sender ID from the ActivityManagerService.

7.5.3 Provenance Information vs. Permissions

Many attacks [148, 44, 30] that have been reported in the Android security literature
can be effectively mitigated if the callee is provided with comprehensive IPC provenance
information. In rare cases [44], the cause for the discovered vulnerability was simply a

1Also referred to as UI Thread or Activity Thread.
2http://developer.android.com/reference/android/os/Handler.html

146

http://developer.android.com/reference/android/os/Handler.html

7.5. TECHNICAL PROBLEM DESCRIPTION

Intent
Receiver

Send Intent Deliver Intent

Resolve Receiver} }
1st Binder transaction 2nd Binder transaction

Intent
Sender AMS

Figure 7.4: Indirection in Intent-based ICC.

forgotten permission check. In general, however, the situation is more complex. The
confused deputy attacks presented in [148] relied on a privileged BroadcastReceiver that
modified the system state (e.g., Wi-Fi or GPS state) on behalf of any broadcast sender.
The receiver did not check whether the sender was entitled to send this command,
since the current Android design does not provide the technical means that enable
the BroadcastReceiver to retrieve the caller’s UID and to endorse the caller for this
privileged command. As a potential fix, a new permission could be introduced to
protect this receiver from receiving Intents from unprivileged apps. However, this
approach would be very inflexible: it would require a new permission for every distinct
privileged receiver, especially when a receiver holds multiple privileges (e.g., Wi-Fi and
GPS) or the exact privileged operation depends further on message parameters. We
assume these to be the reasons why the vulnerabilities mentioned above are still not
fixed in Android v4.2.2, although they have been known since v2.2 [148]. In contrast,
provisioning comprehensive IPC provenance information as in Scippa provides the
means for a flexible and fine-grained access control to (system) app developers and is,
thus, preferable to effectively prevent attacks, such as confused deputy attacks [148, 30].

7.5.4 Broader Context of this Thesis

In addition to the above mentioned problems for Android’s default security design,
those shortcomings in Android’s IPC provenance provisioning also affect all previously
presented solutions in Chapters 3 through 6 of this thesis. Like the default permission
check, the middleware enforcement points in those solutions ultimately rely on Android’s
Binder IPC to provide the identity of calling, remote applications—i.e., the subject’s
identity—for which they then retrieve the security context (e.g., the app’s domain in
TrustDroid or the subject type in FlaskDroid). The lack of the required provenance
information in the above mentioned scenarios prevents those solutions from being
applicable in those specific scenarios, for instance, enforcement points in Activity or
Broadcast Receiver components are unable to identify the subject and hence unable to
enforce any security policy. Thus, by addressing the shortcomings in Android’s IPC
provenance provisioning, not only the default security architecture is improved but also
a more solid and reliable foundation for security extensions (such as the ones presented
in this thesis) is laid.

147

CHAPTER 7. SCIPPA

7.6 Requirements Analysis

In this section, we define our adversary model, derive requirements and discuss challenges
for a comprehensive Binder IPC call provenance on Android.

7.6.1 Adversary Model

The attacker model for our design of Scippa considers a strong attacker that is able to
mount confused deputy, Intent hijacking and Intent spoofing attacks.

Confused Deputy Attacks. We adopt the confused deputy attacker model [88] that
was adapted to the specific scenario of Android [36, 148]. In this model, a malicious
app with an insufficient set of permissions for its malign purpose tricks a privileged
app into executing its privileges on behalf of the malicious app. For instance, Enck et
al. [44] reported the possibility of sending an Intent to the Phone app in order to start a
phone call without holding the corresponding CALL_PHONE permission. Porter Felt et
al. [148] discovered several BroadcastReceiver components in system services that acted
as confused deputies and allowed any app to change, for example, the Wi-Fi or GPS
status.

Intent Hijacking and Spoofing. In addition to confused deputy attacks, we consider
Intent hijacking and Intent spoofing attacks [21]. To mount an Intent hijacking attack,
the attacker registers an app in the system such that (ordered) broadcast Intents or
certain Activity-related Intents are delivered to this registered app instead of to the
actually intended recipient. Thus, the malicious app is able to receive any information
contained in the Broadcast. Additionally, in the context of Activities, the attacker can
use this technique to mount phishing attacks by spoofing legitimate Intent messages.
Intent spoofing attacks are similar to the confused deputy attacks described above in
which the recipient does not verify the origin of the received Intent and potentially takes
inappropriate actions.

Restrictions. We focus in this work exclusively on Binder IPC and exclude other IPC
channels such as files or sockets. A solution for these alternate channels would require
additional extensions to low-level services such as the filesystem. Moreover, we limit
our solution to direct IPC and do not consider covert channels as leveraged in collusion
attacks [161, 117]. Finally, we do not explicitly consider attacks that compromise the
system integrity such as root exploits or attacks against system components. However,
we consider 3rd party apps to be in full control of their sandbox. Apps can include
native code that is able to rewrite the application code with techniques used, e.g., for
inlining reference monitors [210, 7].

7.6.2 Requirements and Challenges

In this Section we derive the necessary requirements for Scippa and elaborate on
technical and conceptual challenges in context of the Android system model.

148

7.7. SYSTEM-CENTRIC IPC CALL-CHAINS

Availability of Provenance Information. Due to message dispatching, provenance
information is currently only available to app components that are executed in the
context of a receiving IPC thread. Thus, the first requirement for a comprehensive
solution is to extend Android’s app model to propagate IPC provenance information to
all app components. A particular challenge to be addressed in this context is to identify
the correct IPC context of each thread. The Main Thread, for instance, usually handles
workloads dispatched by multiple IPC threads. Hence, its current IPC context depends
on the IPC thread it is currently serving.

Building System-Centric IPC Call-chains. By default, Binder provides apps with
the UID of their direct caller. However, when considering the indirections in Android’s
Intent-based ICC, this information is insufficient for callees to identify the initiator of
incoming requests. This leads to the second requirement: it is necessary to establish
system-centric call-chains for Binder IPC so that we can provide receivers of Binder
transactions with provenance information. This would enable receivers to answer
questions like “Who sent this Intent?”.

Returning Call-Chains to Senders. While Android provides the receiver of a Binder
transaction with limited means to retrieve the sender’s UID, it does not provide any
feedback to the sender on how their message was handled in the system. This missing
feedback makes the senders unaware of, e.g., Intent hijacking and phishing attacks [21].
The third requirement is, therefore, to establish a feedback mechanism for IPC senders
by returning already established, finalized call-chains to them. This enables the senders
to analyze how their message was handled both by the system and other applications
and, thus, to detect potential hijacking and phishing attacks. A technical challenge is to
efficiently address branching of call-chains, which leads to a 1:N communication (e.g.,
when broadcasting an Intent).

Tagging Asynchronous Messages. Although Binder transactions are synchronous,
the protocols and mechanisms Android deploys on top of Binder can be asynchronous.
For instance, sticky Broadcast Intents are kept in the system and are delivered even
to recipients that register after the broadcast was sent. Thus, to effectively fulfill the
first three requirements, this asynchronicity needs to be addressed, e.g., by tainting
asynchronously delivered messages with their associated IPC provenance information.

7.7 System-Centric IPC Call-Chains

In this section, we describe our extensions to Android’s Binder IPC at the kernel and
user space to establish call-chains along direct ICC control flows. Further, we elaborate
on extensions to Android’s message handling mechanism to propagate those call-chains
between the threads of an app.

149

CHAPTER 7. SCIPPA

App A App B App C

trans#1 = {payload, chain=[A]}

trans#2 = {payload, chain=[A,B]}

reply#2 = {payload}

reply#1 = {payload}

*reply#1

One-way pseudo reply Two-way reply

Figure 7.5: Call-chains during recursive Binder IPC calls.

7.7.1 Establishing Call-Chains

At the core of our solution are extensions to the Binder kernel module. In Binder, IPC
messages are passed between processes as Binder transactions. Our extensions construct
call-chains across app processes by linking the transactions along a direct thread of
control for inter-application communication. Figure 7.5 illustrates recursive Binder
transactions between three apps A, B, and C. For instance, App A could be an Intent
sender, App B the ActivityManagerService, and App C the Intent receiver (cf. Figure 7.4).
Moreover, Figure 7.5 shows that we differentiate in our design between two-way and one-
way transactions. In recursive two-way transactions the second transaction trans#2 is
nested in the first transaction trans#1. In contrast, in one-way transactions trans#1
is finished before trans#2 is triggered, as illustrated by the pseudo reply *reply#1.

Binder transactions. The operations performed within the Binder kernel module
in this scenario are depicted in Figure 7.6. In general, for each process that reg-
isters with Binder as a sender/receiver, the kernel module sets up Binder Proc
information associated with the process as a whole and Binder Thread information
associated with a particular thread of the application process (i.e., threads from the
app’s Binder IPC thread pool and the main thread). When App A sends a message to
App B, the Binder kernel module creates new transaction data Transaction#1, where
transaction_data contains the message, from_parent and to_parent point to
parent transactions at the sender’s and receiver’s side in case of recursive transac-
tions, and from_thread and to_thread point to the sender’s and receiver’s involved
Binder Threads. The transaction_stack attribute of Binder Thread points
to the last processed (i.e., last sent or received) transaction of the associated thread.
When an IPC thread of App B is ready to receive this transaction, the message is copied
from the kernel to the thread’s user space. At this point the kernel module provides
the receiver thread with the sender UID (cf. Step 4 in Figure 7.2 on page 144), which
is retrieved from the kernel task information associated with the transaction sender’s
Binder Proc.

Constructing Call-Chains in Two-Way Transactions. As shown in Figure 7.5, App
B issues a recursive call to App C while handling the call from App A. In Figure 7.6 this
is depicted as Transaction#2. The attributes of Transaction#2 are set the same

150

7.7. SYSTEM-CENTRIC IPC CALL-CHAINS

Binder Kernel Module

Transaction #1

Transaction #2

*from_parent
*to_parent
*from_thread
*to_thread

callchain = [A]

*transaction_data

*from_parent
*to_parent
*from_thread
*to_thread

callchain = [A,B]

*transaction_data

App A Binder Data

Binder Thread #A1

*transaction_stack
*proc
last_chain = []

Binder Proc A

*tsk

App B Binder Data

Binder Thread #B1

*transaction_stack
*proc

Binder Proc B

*tsk

*transaction_stack
*proc
last_chain = [A]

App C Binder Data

Binder Thread #C1

*transaction_stack
*proc

Binder Proc C

*tsk

*transaction_stack
*proc
last_chain = [A,B]

Linux Tasks

Task A

Task B

Task C

NULL

NULL

NULL

Figure 7.6: Constructing call-chains in recursive transactions. The dotted line represents
the pointer after Transaction#2.

as those of Transaction#1. However, since Transaction#2 is the most recent
transaction for App B, its transaction_stack pointer is adjusted accordingly. The
dotted line represents the pointer after Transaction#2.

In Scippa, we attach the current state of the call-chain to each transaction data.
To this end, we extended the transaction data structure with new attributes to
hold a call-chain. Every time a recursive call is made, the kernel module copies the
call-chain from the direct predecessor transaction to the new transaction (or starts a
new call-chain if no predecessor exists) and appends the UID of the current sender to the
call-chain. In addition to the UID, we also save the sender’s process and thread ID in
the call-chain and assign every new call-chain a unique ID. This secondary information
serves primarily for the analysis of chains constructed in Scippa.

Constructing Call-Chains in One-Way Transactions. For one-way transactions,
the mechanism depicted in Figure 7.6 is not applicable, since Transaction#1 is
freed before Transaction#2 is allocated. Thus, when continuing the chain, the data
structure for the direct predecessor of Transaction#2 no longer exists. To establish
this missing link between transactions, we save the last received call-chain as part of the

151

CHAPTER 7. SCIPPA

App A
(IPC Thread 2)

App A
(IPC Thread 1)

App A
(Main Thread)

Dispatch message to Handler

Dispatch message
to Handler

Start handling message
from IPC Thread 1

Start handling message
from IPC Thread 2

Execution with call-chain
received from IPC Thread 1

Execution with call-chain
received from IPC Thread 2

Outgoing IPC

Incoming IPC

Figure 7.7: Message processing by Handler on Main Thread.

Binder Thread. When the application code executing on the IPC thread sends the
next transaction (i.e., transaction B-C), the saved call-chain is continued. This solution
is based on the observation that IPC threads are at any given time either executing
app code as direct consequence of the last received IPC call, or, when this execution
has finished, return to a state in which they can receive the next call and hence next
call-chain.

7.7.2 Intra-App Call-Chain Propagation

As explained in Section 7.5, certain types of IPC messages are dispatched by the receiving
IPC thread to the Main Thread (or a dedicated worker thread) by adding it to the
Main Thread’s Handler message queue. The Main Thread handles queued messages
sequentially (cf. Figure 7.7). Thus, the current IPC context of the Main Thread directly
depends on the message currently processed. To propagate the call-chain received by
the IPC thread to the Main Thread, we extended the Message and Looper classes of
Android’s application libraries to attach the received call-chain to new messages for the
Handler. The Main Thread’s Handler class is extended to always update its current
IPC context with the call-chain of the message it processes next. Thus all outgoing IPC
during this processing continue the call-chain correctly.

In Android’s system services and app libraries exist several subclasses of the Handler
class, e.g., a dedicated Handler in the ActivityManagerService or PowerManager. For
our current implementation of Scippa, we focused on the most important handler for
applications, the ActivityThread class, which is responsible for handling ICC actions
such as processing received (broadcast) Intents, Activity life cycle events, or creating
and binding to Service components.

152

7.7. SYSTEM-CENTRIC IPC CALL-CHAINS

7.7.3 Asynchronous Call-Chain Propagation

One particular challenge for establishing call-chains that include broadcast Intents are
sticky broadcasts. As long as the sender app does not cancel the broadcast and does
not get uninstalled, sticky broadcasts are stored by the ActivityManagerService. These
broadcasts are even delivered to relevant Broadcast Receivers that register in the system
after the broadcast Intent has been sent. To address this asynchrony within the control
flow from the Intent sender to the receiver, we modified the ActivityManagerService to
tag stored sticky broadcasts with the call-chain at the time the broadcast Intent was
stored. Additionally, we modified the ActivityManagerService’s logic for delivering sticky
broadcasts to adjust its current IPC context according to the call-chain stored with the
sticky broadcast before sending and to restore its original IPC context afterwards. As a
result, sticky broadcasts continue the call-chain so that its receivers can now identify
the original broadcast sender.

7.7.4 Accessing Call-Chains from User Space

To provide the current call-chain information to the user space, we pass this information
as part of the binder_transaction_data from the kernel to the IPC thread that
receives the transaction. We extended the Android runtime library (cf. Section 7.4.1.1)
to extract the call-chain from the transaction data and to subsequently store it in
the thread local storage (TLS). From there it can be retrieved by any application
code that is executed on the same thread. Similar to the default getCallingUid
function, we introduce a new API function getCallChainUids to retrieve the call-
chain. App developers can then retrieve information about those chained UIDs from the
system—including the UIDs’ package names, developer signatures, or permissions—and
implement a fine-grained access control based on that information.

As explained earlier, some scenarios require that the user space is able to set its
current call-chain. Therefore, we extended the Binder classes with functions to set
the call-chain of the current thread. When a new Binder transaction is triggered, the
set call-chain is passed to the Binder kernel module as part of the send transaction
data. The kernel module uses this information to continue the call-chain unless it
finds a call-chain derived from a direct two-way or one-way transaction, since they are
prioritized over information received from the user space. To prevent the user space
from forging or modifying call-chains, a token-based approach—i.e., user space processes
only hold a read-only reference, bound to their UID, to retrieve the call-chain from the
kernel space—could enable the kernel to verify that call-chains retrieved from user space
were originally created by the kernel and hence to discard illicit chains.

7.7.5 Returning Call-Chains to Message Senders

Our extension to the kernel module propagates finished branches of call-chains back to
the initial sender. We extended the Binder protocol with a new flag BR_CALLCHAIN
to send a finalized branch of a call-chain back to the app that started this chain. To
distinguish branches of different call-chains, the kernel module additionally provides the
call-chain ID to the user space. While this mechanism returns all finalized branches

153

CHAPTER 7. SCIPPA

to the sender, ongoing work extends Android’s application model to efficiently store
and manage this information. We are in the process of implementing a new application
component type dedicated to this task. To transfer the call-chain information from an
IPC thread to this new component, we plan an extension of the message dispatching
mechanism.

7.8 Evaluation

In this section we evaluate and discuss the implementation of Scippa in terms of
effectiveness and performance impact.

7.8.1 Experimental Methodology

All our experiments were performed on a standard Galaxy Nexus development phone.
This platform is equipped with a TI OMAP 4660 chipset with an ARM Dual-core 1.2GHz
Cortex-A9 CPU and 1GB of RAM. We implemented Scippa as a modification to the
Android OS code base of v4.2.2_r1.2b and the Android Linux kernel in branch android-
omap-tuna-3.0-jb-mr1.1 with Binder protocol v7. Since the resolution of the Linux
time facilities were too coarse grained for our microbenchmarks of Binder transactions,
we leveraged the ARM Performance Monitoring Unit to calculate the performance
overhead in CPU cycles. Since the PMU counts cycles per CPU core on our dual-core
platform, we modified the Binder kernel module to acquire a spinlock for the duration
of each measurement, thus eliminating the possibility that the current Binder thread
is re-scheduled on the other CPU core while executing the measured code segment.
Additionally, to be able to estimate the performance overhead in seconds, we adjusted
the CPU frequency governor to always clock the CPUs at the maximum rate of 1.2GHz.
Finally, to reduce the level of white noise in our measurements, we did not run any
other apps except for our benchmark apps. Thus, all measurements approximate the
lower bound for the actual overhead.

7.8.2 Performance Impact

To evaluate the performance impact of Scippa, we performed i) microbenchmarks of
transactions in the Binder kernel module and ii) reimplemented relevant parts of the
user space benchmarks of the closely related work Quire [36].

Transaction microbenchmarks. We performed microbenchmarks within the Binder
kernel module for building and continuing call chains as described in Section 7.7. The
results of our benchmarks are based on the measurements of 52,777 Binder transactions.
Figure 7.8 presents the relative overhead vs. the data payload of the transaction. The
maximum overhead was 2.23% and this overhead decreased with increasing payload size,
where the memory copy operations for the data buffer outweigh the call-chain operations.
However, when taking the frequencies of different payload sizes into consideration, the
weighted average remains at 2.23%.

This small performance overhead is further illustrated in Figure 7.9, which shows
the cumulative frequency distribution of the CPU cycles required for performing Binder

154

7.8. EVALUATION

45560	

0	

1	

10	

100	

1,000	

10,000	

100,000	

0.00%	

0.50%	

1.00%	

1.50%	

2.00%	

2.50%	

0	
 4	
 8	
 12	
 16	
 20	
 24	
 28	
 32	
 36	
 40	

Pa
yl
oa

d	

Fr
eq

ue
nc
y	

	

(5
12

	
 B
	
 B
in
s)
	

Pe
rf
or
m
an

ce
	
 O
ve
rh
ea
d	

Message	
 Payload	
 (KB)	

Frequency	

Overhead	

Figure 7.8: Performance overhead of Binder transactions vs. payload size and frequency
breakdown of payload sizes.

transactions in Scippa and stock Android. On average, transactions on stock Android
required 18,850 cycles and 99% of the measured transactions required less than 115,000
cycles. On Scippa this performance merely decreases to an average of 22,581.15 cycles
per transaction, which translates to 18.82µs in our experimental setup, and 99% of the
transactions required less than 130,000 cycles.

It should be noted that 0.58% of the measurements in our data set were extreme
outliers that were in the range of 3 to 5 magnitudes higher than the rest of the
measurements. These outliers occurred in both stock Android and Scippa benchmarks.
We could trace these outliers back to thread blocking during parsing of the binder
transaction header, i.e., operations independent from our Scippa modifications. However,
since these rare outliers significantly distorted the mean and the margin of error in our
measurements, we excluded them from the results presented here.

User space benchmark. Since applications in Scippa have to retrieve, parse, and
set the received call-chain as part of their Binder IPC thread operations (cf. Section 7.7),
we measured the overhead of Scippa from the application layer perspective. To this end
and to provide a better comparison with existing work, we re-implemented the test cases
presented in the closest related work Quire [36]. In this test, the Service components
of several test apps interact a) to pass a message with variable size payload roundtrip
between two apps and b) to send a message without payload roundtrip between multiple
apps to build call-chains of different lengths.

Figure 7.10 presents the average performance per roundtrip versus the message
payload as computed from 11, 000 measurements per payload size. The payload size
ranges from 0 bytes to 6,336 bytes in 64 bytes increments. In our data set, Scippa
imposed between 3.70–25.33% overhead, which is comparable to Quire’s performance
(21% slowdown). Figure 7.11 shows the average performance per roundtrip vs. the

155

CHAPTER 7. SCIPPA

22,581.15	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0	
 50,000	
 100,000	
 150,000	
 200,000	
 250,000	

Cu
m
ul
a-

ve
	
 %
	

CPU	
 Cycles	

SCIPPA	

Stock	
 Android	

Mean	
 (SCIPPA)	

Figure 7.9: CDF of CPU cycles for Binder transactions on SCIPPA and stock Android.
Vertical dashed line indicates the mean execution time for SCIPPA.

0	

100	

200	

300	

400	

500	

600	

0	
 1024	
 2048	
 3072	
 4096	
 5120	
 6144	

Ti
m
e	

(μ
s)
	

Payload	
 (bytes)	

SCIPPA	

Stock	
 Android	

Figure 7.10: Single Service call roundtrip
time vs. payload size.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

0	
 2	
 4	
 6	
 8	
 10	

Ti
m
e	

(μ
s)
	

Call	
 chain	
 length	

SCIPPA	

Stock	
 Android	

Figure 7.11: Service call roundtrip time
vs. call chain length.

call-chain length with a max length of 9 (i.e., 10 apps involved) and 11,000 measurements
per length. Scippa’s overhead is 12.70–26.73%, which is again comparable to Quire
(20–25% slowdown).

7.8.3 Binder IPC Provenance

In this section, we provide statistics on the call-chains observed in Scippa during our
tests and evaluate how well these call-chains provide the necessary IPC provenance
information to efficiently mitigate the different attacks introduced in our requirements
analysis (cf. Section 7.6).

Call-chain Statistics. Table 7.1 summarizes statistics on call-chains observed during
our testing. All margins of error are for a 95% confidence. We logged in total 54,670
call-chains with an average length of 1.56. All chains had at least two branches with

156

7.8. EVALUATION

General:
#Call-Chains 5,4670
Chain length 1.56 ± 0.01
Max. length 13
Branching:
#Chains with branches 54,760 (100%)
#Branches (total) 141,330
#Branches (per chain) 2.59 ± 0.08
Max. number of branches 1,194
Dispatching:
#Chains with dispatching 3,237 (5.91%)
#Dispatches (total) 24,966
#Dispatches (per chain) 7.71 ± 1.92
Max. number of dispatches 2,784

Table 7.1: Call-chain statistics.

105608	

18876	

5142	

4469	

3873	

1554	

803	

347	

386	

138	

94	

12	

28	

0	
 30,000	
 60,000	
 90,000	
 120,000	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

Frequency	

Le
ng
th
	
 o
f	
 	

br
an

ch
	

Figure 7.12: Break down of observed call-chain lengths.

2.59 being the average number of branches per chain. Figure 7.12 provides a breakdown
of the branch lengths and shows that the maximum observed length is 13 and that
chains with a length of one are most frequent. The max number of branches for one
chain is 1,194. Additionally, 5.91% of all chains contained at least one dispatch between
an IPC thread and the Main Thread. On average, each chain contained 7.71 dispatches
with 2,784 being the highest number of dispatches observed for one chain.

Attack mitigation. To verify that Scippa fulfills the requirements stated in Sec-
tion 7.6.2, we developed a set of interacting test applications, which implement different
combinations of inter-component communication that model the scenarios that have
been reported to be prone to attacks such as confused deputy attacks [148] or Intent
hijacking [21]. This includes common inter-app communications such as starting Ac-
tivities, Broadcast Intents, or binding and calling Services including IntentServices. In
general, all called components were able to retrieve the call-chain of the direct thread of
control that lead to their invocation and thus identify the initiator of the call-chain. Also,
all senders were successfully notified by the kernel module about finalized call-chain

157

CHAPTER 7. SCIPPA

branches. Based on this information, we were able to implement a per-UID access
control that is more fine-grained and flexible than Android’s static Permission system.

Since the most well-known reported confused deputy attacks rely on Broadcast
Receivers [148], we briefly elaborate on call-chains for broadcast receivers in our testbed.
Figure 7.13 shows an established call-chain for a single Broadcast Intent sent by the app
with UID 10043 (lower left corner). The Intent is sent to the ActivityManagerService
as part of the system server with UID 1000, where the task to send this broadcast is
dispatched to a dedicated thread (1000:403:777 → 1000:403:420). This thread delivers
the Broadcast Intent in parallel to all dynamically registered receivers (upper left
rectangle) and in order3 to all receivers registered statically through the applications’
manifests (lower right rectangle). Each app receives the Intent via an IPC thread and
processing of the Intents by the Broadcast Receiver components is dispatched to the
apps’ Main Threads.

As a consequence, each Broadcast Receiver is able to retrieve the branch of the
call-chain that lead to its invocation and, hence, to identify the sender of the broadcast.
For instance, the receiver of UID 10047 retrieves the call-chain 10043 → 1000 and the
receiver of UID 10045 retrieves the chain 10043 → 1000 → 10044 → 1000 that shows all
receivers previous to itself in the ordered delivery. Using this information, Broadcast
Receivers in Scippa can now efficiently evaluate their trust in received messages and
their senders, which allows them to react accordingly by, e.g., refusing to accept spurious
messages. In addition to our test cases, we also verified that the privileged Broadcast
Receiver that was reported as a confused deputy in [148] is now able to identify the
broadcast Intent sender and hence to apply fine-grained access control depending on the
Intent payload (e.g., GPS vs. Wi-Fi control commands). That eliminates the confused
deputy vulnerability without the need to split its component interface or to introduce
new permissions.

Additionally, the sender received from the kernel module four BR_CALLCHAIN
notifications about the call-chain branches that ended with the apps with UIDs 10045
through 10048. Thus, the sender is able to identify the receivers of its broadcast and
to determine if its broadcast was potentially hijacked by an unintended receiver [21].
In case of ordered broadcasts, it can even determine which app was responsible for
cancelling the further delivery of the broadcast.

7.8.4 Discussion and Limitations

The most important limitation for the effectiveness of our approach is that the call-chain
can be lost if communication between threads occurs over channels currently not covered
by Scippa. With message dispatching, Scippa covers one of the major communication
channels between Android application threads, but other channels exist (e.g., notify).
Future work has to address these channels through extensions to the Dalvik VM and
Java language classes in the Android framework. For instance, initial experiments have
shown that it is possible to forward the call-chain to newly spawned threads, e.g., for
IntentService components or AsyncTasks.

3Broadcast receivers registered through the manifest are always served in ordered fashion, but
intermediary receivers only can stop further delivery when the ordered flag is set.

158

7.9. RELATED WORK

10048:1574:1585

1000:403:698

10048:1574:1574

10045:1679:1690

10044:1658:1677

1000:403:777

10044:1658:1658

10046:1419:1430

10045:1679:1679

10047:1520:1531

10047:1520:1520

1000:403:420

10043:1698:1698

10046:1419:1419Parallel Broadcast

Ordered Broadcast

Binder IPC

Message Dispatch

IPC Thread

Main Thread Receiver App

System Server Thread

Main Thread Sender App

UID:PID:TID1000:403:777

Figure 7.13: Call-chain for parallel and ordered broadcasts.

Similarly, Scippa currently only covers direct control flows for ICC. Hence, indirect
control flows are an open problem. Providing an efficient solution to address indirect
control flows is an orthogonal problem and affects other approaches such as dynamic
taint-tracking [46] as well.

Since our solution relies on code within the app sandboxes to forward call-chains
on message dispatching, this code base is prone to attacks by malicious apps. While
forging and modifying call-chains can be prevented with a token-based approach (cf. Sec-
tion 7.7.4), the deliberate dropping of call-chains cannot be prevented. However, because
UIDs are attached by the kernel to the call-chains during the sending of IPC calls, a
malicious app can only hide previous hops in the chain but not itself. Thus, a malicious
app cannot fool a receiver into trusting it by hiding its predecessors in the call-chain [36]
and this is primarily a problem if multiple malicious apps collude [117, 161, P5].

7.9 Related Work

IPC-based domain isolation. Thread-migrating IPC has been used in high-assurance
systems [107, 169, 163, 98] as building block for domain-based isolation by factoring
applications into smaller domains. Domains are usually compartmentalized at process
boundaries and IPC is used to connect them. The security of IPC has been investigated
from different angles, e.g., for synchronous IPC [168] or language-based security [53].
Android borrows ideas from this literature (e.g., UID-based app sandboxes, connected
via thread-migrating IPC). However, in this work we identified and addressed misaligned
security assumptions when Inter-Component Communication is built on top of IPC.

159

CHAPTER 7. SCIPPA

Provenance frameworks. Establishing provenance information has been primarily
investigated for data provenance [171, 121] and in distributed systems [204]. Specific
to smartphones, the SPADE framework [64] has been ported to Android [95]. It uses
the Binder debug interfaces to profile the IPC on Android and generate useful traces
for device auditing. Scippa provides very similar information, however, in contrast to
SPADE on Android, Scippa also provides the links between IPC channels along direct
ICC control flows and thus valuable information for a more detailed auditing.

A recent approach called EPIC [137] uses static analysis to detect all potential
Intent-based communication channels between application components. The information
created by Scippa includes this information as well. However, Scippa only reflects
actual runtime behavior. A combination of these two approaches could lead to a more
comprehensive app testing, in which static analysis shows all potential channels and
Scippa fills the gaps in this analysis (e.g., when a target cannot be resolved statically).

Android security. Research has established a large body of literature on Android
security. With respect to preventing confused deputy attacks, related work [148] has
proposed the poli-instantiation of apps in ICC to reduce the callee’s privileges to the
ones of their caller. XManDroid [P5] monitors all IPC communication and applies
at runtime Chinese Wall security policies to prevent communication that could lead
to a dangerous information flow. While poli-instantiation and XManDroid rely on
strictly restricting privileges or communication channels, Scippa and closely related work
(Quire [36]) rely on provisioning IPC provenance information to callees to enable them
to apply fine-grained access control on their ICC interfaces. This allows them to securely
provide APIs to other apps. In contrast to Scippa, however, Quire’s prototypical
implementation requires developers to explicitly extend all Stub and Proxy interfaces
in order to construct call-chains. Scippa abstains from a developer-centric approach for
establishing IPC provenance information and implements a system-centric solution that
builds call-chains transparently to developers. Moreover, in Quire’s developer-centric
approach, call-chains are created and extended within the app code and, hence, this
approach requires verifiable statements to establish trust in and authenticity of chains.
In Scippa, the kernel creates and extends the call-chains and only when chains are
propagated through the user space back to the kernel, a lightweight cryptographic
mechanism (e.g., tokens) is required to ensure authenticity of chains. Additionally, as a
kernel-based solution, Scippa covers even cases in which apps do not use Stubs, but
instead app code (e.g., native libs) communicates directly with the Binder module.

Besides confused deputy attacks, related work has proposed a solution [102] to
mitigate Intent hijacking by applying heuristics-based access control for Intents to
prevent their unintended delivery. While this is a system-centric, preventive security
extension, Scippa provides a different trade-off. Scippa adds measures that allow an
application to detect (not prevent) such attacks, but in turn provides a higher precision
than heuristics due to its call-chain information.

Information flow control. Concepts from decentralized information flow control [129,
130, 129], e.g., as implemented in the DEFCON [123] and Asbestos [42] operating
systems, have been applied within different solutions on Android. Most prominent

160

7.10. CONCLUSION

solutions based on dynamic taint analysis include TaintDroid [46], AppFence [93], and
Paranoid Android [149]. In contrast, Scippa does not aim at restricting information
flows of sensitive data at information sinks, but instead aims at providing apps with
IPC provenance information that enables them to effectively apply access control for
sensitive data and functionality.

7.10 Conclusion

In this work, we presented Scippa, our architecture for provisioning Binder IPC
provenance information on Android. It allows app components to identify the sending
app of incoming IPC messages despite indirections and message dispatching. Using
this provenance information, apps are now able to effectively apply per-sender access
control to their interfaces. In contrast to related work, Scippa constitutes a system-
centric approach that directly addresses conceptual shortcomings in Android’s multi-
layered inter-application communication. We presented an implementation of Scippa
based for Android v4.2.2 and the evaluation of our prototype showed that Scippa
imposes only minimal overhead when compared to stock Android. In addition, we deem
the lessons learned from Scippa valuable for the design of future multi-layered OS
security architectures that rely on thread-migration and that support liberal inter-app
communication. In addition to its security benefits, Scippa also produces information
that we deem valuable for areas of independent interest such as system analysis or
forensics.

161

8
Conclusion

163

In this dissertation, we presented a line of work that adds mandatory access con-
trol (MAC) to the Android OS and in particular to its extensive middleware layer.
Android’s prior lack of mandatory access control has left room for successful attacks
against the system integrity and also the user’s privacy. Moreover, this lack disqualified
Android for deployment in higher-security contexts, such as the increasingly popular
dual-usage smartphones for enterprise deployment or the emerging market for govern-
mental mobile devices. Focus of this dissertation was to explore the security design space
of historical, established operating systems (e.g., the development of the Linux Security
Modules) and transfer this knowledge to the particular design of the Android OS in
order to retrofit Android’s design with mandatory access control for enforcing improved
security policies that protect the system integrity and the user’s private information as
well as enable advanced security models on Android. Further, a particular aspect of
this work was to explore to which extent the strongly high-level API-oriented design
of modern, mobile operating systems provides a better opportunity to more efficiently
establish a higher security and privacy standard than is possible on current commodity
PC platforms. A particular technical challenge of this line of work was to consider and
consolidate enforcement of security policies at both the operating system level (i.e.,
Linux kernel MAC) and middleware level (i.e., our security extensions to Android).

Our work on establishing mandatory access control on Android stretched across
the multiple peer-reviewed publications [P4, P5, P3, P2, P1], which each contributed
to the development of our MAC for Android as presented in this dissertation: Our
TrustDroid architecture (see Chapter 3 on page 15) is one of the first security
extensions to Android that specifically targeted the multi-personna use-case where
devices are used in both private and business contexts. It introduced a novel mandatory
access control architecture for Android’s software stack that extended core middleware
services and the Linux kernel to enforce static security policies that isolate private
data and apps from business-related data and apps. We extended TrustDroid’s
architecture in our XManDroid work (see Chapter 4 on page 39) to mitigate the threat
of application-level privilege escalation attacks, i.e., collusion or confused deputy attacks,
using a novel policy language based on the VALID policy language for infrastructure
cloud environments. Our FlaskDroid solution (see Chapter 5 on page 59) is the first
generic security architecture for the Android OS that can serve as a flexible and effective
ecosystem to instantiate different security solutions for the Android software stack. Its
design is inspired by the Flask security architecture, where various Object Managers
at middleware and kernel-level are responsible for assigning security contexts to their
objects and enforce access control on them. A key observation of the FlaskDroid work
is, that almost all proposals for Android security extensions in the existing literature
(including our TrustDroid and XManDroid) constitute mandatory access control
mechanisms that are tailored to the specific semantics of their addressed security problem.
By introducing a generic security architecture on top of SE Android together with an
efficient policy language (inspired by SELinux) that takes the specifics of Android’s
middleware semantics into account, FlaskDroid enables a policy-driven instantiation
of existing and new security/privacy models. Although FlaskDroid was the first
generic security architecture for Android and was able to instantiate different security
models, its design still confined policy authors to the semantics of the FlaskDroid

165

CHAPTER 8. CONCLUSION

policy language. To remedy this situation, we introduced our Android Security
Framework (ASF; see Chapter 6 on page 109), a generic, extensible security framework
for Android that enables the development and integration of a wide spectrum of security
models in form of code-based security modules. The design of ASF reflects lessons
learned from the literature on established security frameworks on commodity platforms
(such as Linux Security Modules or the BSD MAC Framework) and intertwines them
with the particular requirements and challenges from the design of Android’s software
stack to build a policy-agnostic and multi-tiered security infrastructure. ASF provides
a novel security API that supports authors of Android security extensions in developing
their modules and supports implementation of policy logic that resembles mandatory
result automata. Lastly, our Scippa extension to the Android IPC mechanism (see
Chapter 7 on page 139) establishes inter-process communication (IPC) call-chains across
application processes. Thus, although Scippa is itself not an access control mechanism,
it contributes greatly to the domain of access control on Android by providing essential
information: IPC provenance information required to effectively prevent recent attacks.
Any kind of enforcement point within the Android middleware relies on such provenance
information to identify the subjects in access control decisions.

Future research directions. The author of this dissertation envisions different future
research directions that continue this line of work. First, all contemporary security
extensions to Android’s middleware, and specifically its application framework, have
been integrated in a best effort approach, but no security guarantees can currently be
given. Recent advances in static analysis of Java code should be applied to analyze
the Android application framework’s security- and privacy-relevant data and control
flows. Eventually, this should allow a security analysis of the Android middleware that
gives security guarantees for existing and future security extensions (e.g., completeness
and correctness of the authorization hook placement or optimization opportunities).
Additionally, through establishing of the static execution context along those flows
(e.g., constraints), this can also lead to valuable information that can guide future
implementations of security extensions and allow by design better security guarantees.
For instance, placement of authorization hooks in the Android middleware should be
automated in the spirit of existing solutions for commodity systems [127, 61, 60].

Another envisioned direction of future research is the combination of our mandatory
access control systems with capability systems in the spirit of, e.g., Capsicum [199]
or Cheri [200]. Whether this approach is feasible (and beneficial) requires evaluation
on how Android’s design leans towards capability-based access control. However, on
first glance the author is confident that Android’s design is in accordance with the
motivation behind (at least) the Capsicum architecture. For instance, Zygote already
forms a process that manages capabilities for its application child processes; although
on Android exists a stronger IPC-based interaction between the app and the system
apps/services than in usual capability models. The current vision for this line of
work foresees retrofitting Android’s code base to work with data object references (or
“capability tokens”). Another promising approach seems the transition from an access
control list based permission system to capability-based permission system, including
technical questions such as how capabilities can be efficiently transferred via Binder.

166

A general challenge for mandatory access control solutions is the generation of
effective and “good” policies. Current approaches, such as EASEAndroid [194], demon-
strated how the default approach to generating policies from audit logs can be improved
and scaled to the demands of real-life deployments. Other solutions infer the required
access control rules from the programmer expectations of code that executes on the
platform [189]. However, the author considers this as an open problem and very valuable
future research direction for improving access control systems such as the ones presented
in this doctoral thesis.

Lastly, new deployment options for security extensions at application layer only
should be explored by building on top of the recently developed app virtualization
solution Boxify [S1]. In particular, the integration of security architectures like ASF or
FlaskDroid into the Boxify virtualization layer (i.e., the virtual application framework
services of Boxify) seems like a canonical solution. First envisioned application domain
of this new approach is considered to be similar to TrustDroid by establishing a
fortified application sandbox for private apps that are installed on a business device.

167

Bibliography

Author’s Papers for this Thesis

[P1] Backes, M., Bugiel, S., and Gerling, S. Scippa: System-Centric IPC Prove-
nance on Android. In: Proceedings of the 30th Annual Computer Security Appli-
cations Conference (ACSAC 2014). ACM, 2014.

[P2] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. Android
Security Framework: Extensible Multi-Layered Access Control on Android. In:
Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC 2014). ACM, 2014.

[P3] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Flexible and Fine-Grained Manda-
tory Access Control on Android for Diverse Security and Privacy Policies. In:
Proceedings of the 22nd Usenix Security Symposium (SEC 2013). USENIX Asso-
ciation, 2013.

[P4] Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.-R., and Shas-
try, B. Practical and Lightweight Domain Isolation on Android. In: Proceedings
of the 1st ACM CCS Workshop on Security and Privacy in Mobile Devices (SPSM
2011). ACM, 2011.

[P5] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., and
Shastry, B. Towards Taming Privilege-Escalation Attacks on Android. In: Pro-
ceedings of the 19th Annual Network and Distributed System Security Symposium
(NDSS 2012). The Internet Society, 2012.

Other Papers of the Author

[S1] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and Styp-Rekowsky, P.
von. Boxify: Full-fledged App Sandboxing for Stock Android. In: Proceedings of
the 24th USENIX Security Symposium (SEC 2015). USENIX Association, 2015.

[S2] Bleikertz, S., Bugiel, S., Ideler, H., Nürnberger, S., and Sadeghi, A.-R.
Client-controlled Cryptography-as-a-Service in the Cloud. In: Proceedings of the
11th International Conference on Applied Cryptography and Network Security
(ACNS 2013). Springer-Verlag, 2013.

[S3] Bugiel, S., Davi, L., and Schulz, S. Scalable Trust Establishment with Software
Reputation. In: Proceedings of the 6th Annual Workshop on Scalable Trusted
Computing (STC 2011). ACM, 2011.

169

BIBLIOGRAPHY

[S4] Bugiel, S. and Ekberg, J.-E. Implementing an Application-Specific Credential
Platform Using Late-Launched Mobile Trusted Module. In: Proceedings of the
5th Annual Workshop on Scalable Trusted Computing (STC 2010). ACM, 2010.

[S5] Bugiel, S., Dmitrienko, A., Kostiainen, K., Sadeghi, A.-R., and Winandy,
M. TruWalletM: Secure Web Authentication on Mobile Platforms. In: Proceedings
of the 2nd Conference on Trusted Systems (INTRUST 2010). Springer-Verlag,
2010.

[S6] Bugiel, S., Pöppelmann, T., Nürnberger, S., Sadeghi, A.-R., and Schnei-
der, T. AmazonIA: When Elasticity Snaps Back. In: Proceedings of the 18th
ACM Conference on Computer and Communication Security (CCS 2011). ACM,
2011.

[S7] Bugiel, S., Nürnberger, S., Sadeghi, A.-R., and Schneider, T. Twin Clouds:
Secure Cloud Computing with Low Latency. In: Proceedings of the Communica-
tions and Multimedia Security Conference (CMS 2011). Springer-Verlag, 2011.

[S8] Ekberg, J.-E. and Bugiel, S. Trust in a Small Package: Minimized MRTM
Software Implementation for Mobile Secure Environments. In: Proceedings of the
4th Annual Workshop on Scalable Trusted Computing (STC 2009). ACM, 2009.

Technical Reports of the Author

[T1] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. Android
Security Framework: Enabling Generic and Extensible Access Control on Android.
Tech. rep. A/01/2014. Saarland University, Apr. 2014.

[T2] Bugiel, S., Heuser, S., and Sadeghi, A.-R. myTunes: Semantically Linked
and User-Centric Fine-Grained Privacy Control on Android. Tech. rep. TUD-
CS-2012-0226. Center for Advanced Security Research Darmstadt, Nov. 2012.

[T3] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Towards a Framework for Android
Security Modules: Extending SE Android Type Enforcement to Android Middle-
ware. Tech. rep. TUD-CS-2012-0231. Center for Advanced Security Research
Darmstadt, Dec. 2012.

[T4] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., and Sadeghi, A.-R.
XManDroid: A New Android Evolution to Mitigate Privilege Escalation Attacks.
Tech. rep. TR-2011-04. Technische Universität Darmstadt, 2011.

Other references

[1] Abrams, M. D., Eggers, K. W., LaPadula, L. J., and Olson, I. M. A
generalized framework for Access Control: An informal description. In: Proceedings
of the 13th NIST-NCSC National Computer Security Conference. NIST, 1990.

[2] Anderson, J. P. Computer Security Technology Planning Study, Volume II.
Tech. rep. ESD-TR-73-51. Deputy for Command and Management Systems, HQ
Electronics Systems Division (AFSC), L. G. Hanscom Field, Oct. 1972.

170

OTHER REFERENCES

[3] Android Malware Genome Project. Online: http://www.malgenomeproject.
org/.

[4] Andrus, J., Dall, C., Hof, A. V., Laadan, O., and Nieh, J. Cells: A Virtual
Mobile Smartphone Architecture. In: Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP 2011). ACM, 2011.

[5] ARM. TrustZone. Online: www.arm.com/trustzone.
[6] Azab, A. M., Ning, P., Shah, J., Chen, Q., Bhutkar, R., Ganesh, G., Ma, J.,

and Shen, W. Hypervision Across Worlds: Real-time Kernel Protection from the
ARM TrustZone Secure World. In: Proceedings of the 21st ACM Conference on
Computer and Communication Security (CCS 2014). ACM, 2014.

[7] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky, P.
von. AppGuard – Enforcing User Requirements on Android Apps. In: Proceedings
of the 19th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’13). Springer-Verlag, 2013.

[8] Badger, L., Sterne, D. F., Sherman, D. L., Walker, K. M., and Haghighat,
S. A. Practical Domain and Type Enforcement for UNIX. In: Proceedings of the
16th IEEE Symposium on Security and Privacy (Oakland 1995). IEEE, 1995.

[9] Badger, L., Sterne, D. F., Sherman, D. L., Walker, K. M., and Haghighat,
S. A. A domain and type enforcement UNIX prototype. In: Proceedings of the
4th Usenix Security Symposium (SEC 1995). USENIX Association, 1995.

[10] Baker, D. B. Fortresses built upon sand. In: Proceedings of the 1996 Workshop
on New Security Paradigms (NPSW 1996). ACM, 1996.

[11] Barr, K., Bungale, P., Deasy, S., Gyuris, V., Hung, P., Newell, C., Tuch,
H., and Zoppis, B. The VMware Mobile Virtualization Platform: Is That a
Hypervisor in Your Pocket? SIGOPS Operating Systems Review 44, 4 (Dec.
2010), 124–135.

[12] Bell, D. E. and Lapadula, L. J. Secure Computer Systems: Mathematical
Foundations. Tech. rep. 2547. MITRE, 1973.

[13] Biba, K. J. Integrity Considerations for Secure Computer Systems. Tech. rep.
ESD-TR-76-372. USAF Electronic Sstems Division, Hanscom Air Force Base,
1977.

[14] Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V., and Iftode, L. Rootk-
its on Smart Phones: Attacks, Implications and Opportunities. In: Proceedings of
the 11th Workshop on Mobile Computing Systems and Applications (HotMobile
2010). ACM, 2010.

[15] Bleikertz, S. and Groß, T. A Virtualization Assurance Language for Isolation
and Deployment. In: Proceedings of the 2011 IEEE International Symposium on
Policies for Distributed Systems and Networks (POLICY 2011). IEEE, 2011.

[16] Bradley, T. DroidDream Becomes Android Market Nightmare. Online: http://
www.pcworld.com/businesscenter/article/221247/droiddream_
becomes_android_market_nightmare.html. 2011.

171

http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
www.arm.com/trustzone
http://www.pcworld.com/businesscenter/article/221247/droiddream_becomes_android_market_nightmare.html
http://www.pcworld.com/businesscenter/article/221247/droiddream_becomes_android_market_nightmare.html
http://www.pcworld.com/businesscenter/article/221247/droiddream_becomes_android_market_nightmare.html

BIBLIOGRAPHY

[17] Brady, P. Anatomy & Physiology of an Android (2008 Google I/O Session Videos
and Slides). Online: https://sites.google.com/site/io/anatomy--
physiology-of-an-android. 2008.

[18] Brewer, D. F. and Nash, M. J. The Chinese Wall Security Policy. In: Pro-
ceedings of the 10th IEEE Symposium on Security and Privacy (Oakland 1989).
IEEE, 1989.

[19] Cai, L. and Chen, H. TouchLogger: inferring keystrokes on touch screen from
smartphone motion. In: Proceedings of the 6th USENIX Workshop on Hot Topics
in Security (HotSec’11). USENIX Association, 2011.

[20] Carter, J. Using GConf as an Example of How to Create an Userspace Object
Manager (SELinux Symposium). 2007.

[21] Chin, E., Porter Felt, A., Greenwood, K., and Wagner, D. Analyzing inter-
application communication in Android. In: Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services (MobiSys 2011). ACM,
2011.

[22] Clark, D. D. and Wilson, D. R. A Comparison of Commercial and Military
Computer Security Policies. In: Proceedings of the 8th IEEE Symposium on
Security and Privacy (Oakland 1987). IEEE, 1987.

[23] Contagio Mobile. Online: http://contagiominidump.blogspot.de/.
[24] Conti, M., Nguyen, V. T. N., and Crispo, B. CRePE: Context-Related

Policy Enforcement for Android. In: Proceedings of the 13th Information Security
Conference (ISC 2010). Springer-Verlag, 2010.

[25] CVE-2007-4993: Xen guest root can escape to Domain 0 through pygrub. Online:
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2007-4993.
2007.

[26] CVE-2008-2100: VMWare buffer overflows in VIX API let local users execute
arbitrary code. Online: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2008-2100. 2008.

[27] CVE-2012-3515: Device emulation in Qemu for Xen 4.0 and 4.1 allows local users
to gain elevated privileges. Online: http://www.cvedetails.com/cve/CVE-
2012-3515/. 2012.

[28] CVE-2014-1666: Insufficient restrictions in physical device operations in multiple
Xen version allow local guests to gain elevated privileges. Online: http://www.
cvedetails.com/cve/CVE-2014-1666/. 2014.

[29] Daisuke, N. and Tona, G. L. Tomoyo-android: TOMOYO Linux on Android.
Online: http://code.google.com/p/tomoyo-android/.

[30] Davi, L., Dmitrienko, A., Sadeghi, A.-R., and Winandy, M. Privilege Es-
calation Attacks on Android. In: Proceedings of the 13th Information Security
Conference (ISC 2010). Springer-Verlag, 2010.

172

https://sites.google.com/site/io/anatomy--physiology-of-an-android
https://sites.google.com/site/io/anatomy--physiology-of-an-android
http://contagiominidump.blogspot.de/
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2007-4993
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2100
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2100
http://www.cvedetails.com/cve/CVE-2012-3515/
http://www.cvedetails.com/cve/CVE-2012-3515/
http://www.cvedetails.com/cve/CVE-2014-1666/
http://www.cvedetails.com/cve/CVE-2014-1666/
http://code.google.com/p/tomoyo-android/

OTHER REFERENCES

[31] Davi, L., Dmitrienko, A., Kowalski, C., and Winandy, M. Trusted Virtual
Domains on OKL4: Secure Information Sharing on Smartphones. In: Proceedings
of the 6th Annual Workshop on Scalable Trusted Computing (STC 2011). ACM,
2011.

[32] David, F., Chan, E., Carlyle, J., and Campbell, R. Cloaker: Hardware
Supported Rootkit Concealment. In: Proceedings of the 29th IEEE Symposium
on Security and Privacy (Oakland 2008). IEEE, 2008.

[33] Davis, B. and Chen, H. RetroSkeleton: Retrofitting Android Apps. In: Proceed-
ings of the 11th International Conference on Mobile Systems, Applications, and
Services (MobiSys 2013). ACM, 2013.

[34] Davis, B., Sanders, B., Khodaverdian, A., and Chen, H. I-ARM-Droid: A
Rewriting Framework for In-App Reference Monitors for Android Applications.
In: Proceedings of the 2012 Mobile Security Technologies Workshop (MoST 2012).
IEEE, 2012.

[35] Denning, D. E. A Lattice Model of Secure Information Flow. Communications
of the ACM 19, 5 (May 1976), 236–243.

[36] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and Wallach, D. S. QUIRE:
Lightweight Provenance for Smart Phone Operating Systems. In: Proceedings of
the 20th Usenix Security Symposium (SEC 2011). USENIX Association, 2011.

[37] Distefano, A., Grillo, A., Lentini, A., and Italiano, G. F. SecureMyDroid:
enforcing security in the mobile devices lifecycle. In: Proceedings of the 6th
ACM Annual Workshop on Cyber Security and Information Intelligence Research
(CSIIRW 2010). ACM, 2010.

[38] Dmitrienko, A., Eriksson, K., Kuhlmann, D., Ramunno, G., Sadeghi,
A.-R., Schulz, S., Schunter, M., Winandy, M., Catuogno, L., and Zhan,
J. Trusted Virtual Domains – Design, Implementation and Lessons Learned.
In: Proceedings of the 1st Conference on Trusted Systems (INTRUST 2009).
Springer-Verlag, 2009.

[39] Dolzhenko, E., Ligatti, J., and Reddy, S. Modeling runtime enforcement
with mandatory results automata. International Journal of Information Security
14, 1 (2015), 47–60.

[40] Edge, J. The return of loadable security modules? Online: http://lwn.net/
Articles/526983/. Nov. 2012.

[41] Edwards, A., Jaeger, T., and Zhang, X. Runtime Verification of Authorization
Hook Placement for the Linux Security Modules Framework. In: Proceedings of
the 9th ACM Conference on Computer and Communication Security (CCS 2002).
ACM, 2002.

[42] Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D.,
Kohler, E., Mazières, D., Kaashoek, F., and Morris, R. Labels and event
processes in the Asbestos operating system. In: Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP 2005). ACM, 2005.

173

http://lwn.net/Articles/526983/
http://lwn.net/Articles/526983/

BIBLIOGRAPHY

[43] Elish, K., Yao, D., and Ryder, B. On the Need of Precise Inter-App ICC
Classification for Detecting Android Malware Collusions. In: Proceedings of the
2015 Mobile Security Technologies Workshop (MoST 2015). IEEE, 2015.

[44] Enck, W., Ongtang, M., and McDaniel, P. On lightweight mobile phone ap-
plication certification. In: Proceedings of the 16th ACM Conference on Computer
and Communication Security (CCS 2009). ACM, 2009.

[45] Enck, W., Ongtang, M., and McDaniel, P. Understanding Android Security.
IEEE Security and Privacy 7, 1 (2009), 50–57.

[46] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel,
P., and Sheth, A. N. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In: Proceedings of the 9th Usenix
Symposium on Operating Systems Design and Implementation (OSDI 2010).
USENIX Association, 2010.

[47] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A Study of Android
Application Security. In: Proceedings of the 20th Usenix Security Symposium
(SEC 2011). USENIX Association, 2011.

[48] Erlingsson, Ú. The Inlined Reference Monitor Approach to Security Policy
Enforcement. PhD thesis. Cornell University, Jan. 2004.

[49] Erlingsson, Ú. and Schneider, F. B. IRM Enforcement of Java Stack In-
spection. In: Proceedings of the 21st IEEE Symposium on Security and Privacy
(Oakland 2000). IEEE, 2000.

[50] F-Secure Labs. Mobile Threat Report: Q3 2012. 2012.
[51] Facebook Caught Reading User SMS Messages? | TalkAndroid.com. http://

www.talkandroid.com/94623-facebook-caught-reading-user-
sms-messages/. 2012.

[52] Fahl, S., Harbach, M., Oltrogge, M., Muders, T., and Smith, M. Hey, You,
Get Off of My Clipboard. In: Proceedings of 2013 Financial Cryptography and
Data Security (FC 2013). Springer-Verlag, 2013.

[53] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus,
J. R., and Levi, S. Language support for fast and reliable message-based com-
munication in Singularity OS. In: Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys 2006). ACM, 2006.

[54] Federal Trade Commission. Path Social Networking App Settles FTC Charges
it Deceived Consumers and Improperly Collected Personal Information from
Users’ Mobile Address Books. http://www.ftc.gov/opa/2013/02/path.
shtm. Jan. 2013.

[55] Ford, B. and Lepreau, J. Evolving Mach 3.0 to a migrating thread model. In:
Proceedings of the USENIX Winter 1994 Technical Conference (WTEC 1994).
USENIX Association, 1994.

[56] Fraser, T., Badger, L., and Feldman, M. Hardening COTS software with
generic software wrappers. In: Proceedings of the 20th IEEE Symposium on
Security and Privacy (Oakland 1999). IEEE, 1999.

174

http://www.talkandroid.com/94623-facebook-caught-reading-user-sms-messages/
http://www.talkandroid.com/94623-facebook-caught-reading-user-sms-messages/
http://www.talkandroid.com/94623-facebook-caught-reading-user-sms-messages/
http://www.ftc.gov/opa/2013/02/path.shtm
http://www.ftc.gov/opa/2013/02/path.shtm

OTHER REFERENCES

[57] Fraser, T. LOMAC: Low Water-Mark Integrity Protection for COTS Environ-
ments. In: Proceedings of the 21st IEEE Symposium on Security and Privacy
(Oakland 2000). IEEE, 2000.

[58] Fraser, T. LOMAC: MAC You Can Live With. In: Proceedings of the 2001
USENIX Annual Technical Conference (ATC 2001). USENIX Association, 2001.

[59] Fratantonio, Y., Bianchi, A., Robertson, W., Egele, M., Kruegel, C.,
Kirda, E., and Vigna, G. On the Security and Engineering Implications of
Finer-Grained Access Controls for Android Developers and Users. In: Proceedings
of the 12th Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2015). Springer-Verlag, 2015.

[60] Ganapathy, V., Jaeger, T., and Jha, S. Automatic Placement of Authorization
Hooks in the Linux Security Modules Framework. In: Proceedings of the 12th
ACM Conference on Computer and Communication Security (CCS 2005). ACM,
2005.

[61] Ganapathy, V., Jaeger, T., and Jha, S. Retrofitting Legacy Code for Autho-
rization Policy Enforcement. In: Proceedings of the 27th IEEE Symposium on
Security and Privacy (Oakland 2006). IEEE, 2006.

[62] Gartner. Gartner Says Smartphone Sales Surpassed One Billion Units in 2014.
Online: http://www.gartner.com/newsroom/id/2996817. Mar. 2015.

[63] Ge, X., Vijayakumar, H., and Jaeger, T. Sprobes: Enforcing Kernel Code
Integrity on the TrustZone Architecture. In: Proceedings of the 2014 Mobile
Security Technologies Workshop (MoST 2014). IEEE, 2014.

[64] Gehani, A. and Tariq, D. SPADE: Support for Provenance Auditing in Dis-
tributed Environments. In: Middleware 2012. Vol. 7662. Lecture Notes in Com-
puter Science. Springer-Verlag, 2012.

[65] Gilbert, P., Chun, B.-G., Cox, L., and Jung, J. Automating Privacy Testing
of Smartphone Applications. Tech. rep. CS-2011-02. Duke University, 2011.

[66] Gilbert, P., Chun, B.-G., Cox, L. P., and Jung, J. Vision: automated security
validation of mobile apps at app markets. In: Proceedings of the 2nd International
Workshop on Mobile Cloud Computing and Services (MCS 2011). ACM, 2011.

[67] Gligor, V., Gavrila, S., and Ferraiolo, D. On the formal definition of
separation-of-duty policies and their composition. In: Proceedings of the 19th
IEEE Symposium on Security and Privacy (Oakland 1998). IEEE, 1998.

[68] Goguen, J. A. and Meseguer, J. Security Policies and Security Models. In:
Proceedings of the 3rd IEEE Symposium on Security and Privacy (Oakland 1982).
IEEE, 1982.

[69] Google. Enhancing Security with Device Management Policies. Online: http:
//developer.android.com/training/enterprise/device-management-
policy.html.

[70] Google. Nexus Help: Restricted profiles. Online: https://support.google.
com/nexus/answer/3175031?hl=en.

175

http://www.gartner.com/newsroom/id/2996817
http://developer.android.com/training/enterprise/device-management-policy.html
http://developer.android.com/training/enterprise/device-management-policy.html
http://developer.android.com/training/enterprise/device-management-policy.html
https://support.google.com/nexus/answer/3175031?hl=en
https://support.google.com/nexus/answer/3175031?hl=en

BIBLIOGRAPHY

[71] Google. Nexus Help: Use screen pinning. Online: https://support.google.
com/nexus/answer/6118421?hl=en.

[72] Google. Security-Enhanced Linux in Android. Online: https://source.
android.com/devices/tech/security/selinux/index.html.

[73] Google. Security Enhancements in Android 4.2. Online: http://source.
android.com/devices/tech/security/enhancements42.html.

[74] Google. Security Enhancements in Android 4.3. Online: http://source.
android.com/devices/tech/security/enhancements43.html.

[75] Google. Security Enhancements in Android 4.4. Online: http://source.
android.com/devices/tech/security/enhancements44.html.

[76] Google. Security Enhancements in Android 5.0. Online: https://source.
android.com/devices/tech/security/enhancements/enhancements50.
html.

[77] Google. System Permissions: URI Permissions. Online: http://developer.
android.com/guide/topics/security/permissions.html#uri.

[78] Google. Android Auto. Online: https://developer.android.com/
auto/index.html. 2015.

[79] Google. Android: Codenames, Tags, and Build Numbers. Online: https://
source.android.com/source/build-numbers.html. 2015.

[80] Google. Android for Work: Security white paper. May 2015.
[81] Google. Android TV. Online: http://www.android.com/tv/. 2015.
[82] Google. Android Wear. Online: https://developer.android.com/

wear/index.html. 2015.
[83] Google. Project Brillo. Online: https://developers.google.com/

brillo/. 2015.
[84] Grace, M., Zhou, W., Jiang, X., and Sadeghi, A.-R. Unsafe exposure analysis

of mobile in-app advertisements. In: Proceedings of the 5th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec 2012). ACM,
2012.

[85] Guttman, J. D., Herzog, A. L., Ramsdell, J. D., and Skorupka, C. W. Ver-
ifying Information Flow Goals in Security-enhanced Linux. Journal of Computer
Security 13, 1 (Jan. 2005), 115–134.

[86] Hao, H., Singh, V., and Du, W. On the Effectiveness of API-level Access
Control Using Bytecode Rewriting in Android. In: Proceedings of the 8th ACM
Symposium on Information, Computer and Communication Security (ASIACCS
2013). ACM, 2013.

[87] Harada, T., Horie, T., and Tanaka, K. Task Oriented Management Obviates
Your Onus on Linux. In: Linux Conference. 2004.

[88] Hardy, N. The Confused Deputy: (or why capabilities might have been invented).
SIGOPS Operating Systems Review 22, 4 (Oct. 1988), 36–38.

176

https://support.google.com/nexus/answer/6118421?hl=en
https://support.google.com/nexus/answer/6118421?hl=en
https://source.android.com/devices/tech/security/selinux/index.html
https://source.android.com/devices/tech/security/selinux/index.html
http://source.android.com/devices/tech/security/enhancements42.html
http://source.android.com/devices/tech/security/enhancements42.html
http://source.android.com/devices/tech/security/enhancements43.html
http://source.android.com/devices/tech/security/enhancements43.html
http://source.android.com/devices/tech/security/enhancements44.html
http://source.android.com/devices/tech/security/enhancements44.html
https://source.android.com/devices/tech/security/enhancements/enhancements50.html
https://source.android.com/devices/tech/security/enhancements/enhancements50.html
https://source.android.com/devices/tech/security/enhancements/enhancements50.html
http://developer.android.com/guide/topics/security/permissions.html#uri
http://developer.android.com/guide/topics/security/permissions.html#uri
https://developer.android.com/auto/index.html
https://developer.android.com/auto/index.html
https://source.android.com/source/build-numbers.html
https://source.android.com/source/build-numbers.html
http://www.android.com/tv/
https://developer.android.com/wear/index.html
https://developer.android.com/wear/index.html
https://developers.google.com/brillo/
https://developers.google.com/brillo/

OTHER REFERENCES

[89] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. Protection in operating
systems. Communications of the ACM 19, 8 (Aug. 1976), 461–471. issn: 0001-
0782.

[90] Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-R. ASM: A Pro-
grammable Interface for Extending Android Security. In: Proceedings of the 23rd
USENIX Security Symposium (SEC 2014). USENIX Association, 2014.

[91] Hicks, B., King, D., McDaniel, P., and Hicks, M. Trusted Declassification::
High-level Policy for a Security-typed Language. In: Proceedings of the 1st ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS 2006). ACM, 2006.

[92] Hicks, B., Rueda, S., Jaeger, T., and McDaniel, P. From Trusted to Secure:
Building and Executing Applications That Enforce System Security. In: Proceed-
ings of the 2007 USENIX Annual Technical Conference (ATC 2007). USENIX
Association, 2007.

[93] Hornyack, P., Han, S., Jung, J., Schechter, S., and Wetherall, D. These
aren’t the droids you’re looking for: retrofitting Android to protect data from
imperious applications. In: Proceedings of the 18th ACM Conference on Computer
and Communication Security (CCS 2011). ACM, 2011.

[94] Hu, H., Ahn, G.-J., and Kulkarni, K. Detecting and Resolving Firewall Policy
Anomalies. IEEE Transactions on Dependable and Secure Computing 9, 3 (May
2012), 318–331.

[95] Husted, N., Qureshi, S., Tariq, D., and Gehani, A. Android provenance:
diagnosing device disorders. In: Proceedings of the 5th USENIX Workshop on the
Theory and Practice of Provenance (TaPP 2015). USENIX Association, 2013.

[96] Hwang, J.-Y., Suh, S.-B., Heo, S.-K., Park, C.-J., Ryu, J.-M., Park, S.-Y.,
and Kim, C.-R. Xen on ARM: System Virtualization Using Xen Hypervisor for
ARM-Based Secure Mobile Phones. In: Proceedings of the 5th IEEE Consumer
Communications and Networking Conference (CCNC 2008). IEEE, 2008.

[97] Jaeger, T. Managing Access Control Complexity Using Metrics. In: Proceed-
ings of the 6th ACM Symposium on Access Control Models and Technologies
(SACMAT 2001). ACM, 2001.

[98] Jaeger, T., Liedtke, J., and Islam, N. Operating System Protection for Fine-
grained Programs. In: Proceedings of the 7th Usenix Security Symposium (SEC
1998). USENIX Association, 1998.

[99] Jaeger, T., Sailer, R., and Shankar, U. PRIMA: Policy-reduced Integrity
Measurement Architecture. In: Proceedings of the 11th ACM Symposium on
Access Control Models and Technologies (SACMAT 2006). ACM, 2006.

[100] Jaeger, T., Sailer, R., and Zhang, X. Analyzing Integrity Protection in the
SELinux Example Policy. In: Proceedings of the 12th Usenix Security Symposium
(SEC 2003). USENIX Association, 2003.

177

BIBLIOGRAPHY

[101] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N., Foster, J.
S., and Millstein, T. Dr. Android and Mr. Hide: Fine-grained security policies
on unmodified Android. In: Proceedings of the 2nd ACM CCS Workshop on
Security and Privacy in Mobile Devices (SPSM 2012). ACM, 2012.

[102] Kantola, D., Chin, E., He, W., and Wagner, D. Reducing attack surfaces for
intra-application communication in Android. In: Proceedings of the 2nd ACM
CCS Workshop on Security and Privacy in Mobile Devices (SPSM 2012). ACM,
2012.

[103] Kennedy, K., Gustafson, E., and Chen, H. Quantifying the Effects of Remov-
ing Permissions from Android Applications. In: Proceedings of the 2013 Mobile
Security Technologies Workshop (MoST 2013). IEEE, 2013.

[104] Kohel, K. Security Enhanced PostgreSQL (SELinux Symposium). 2007.
[105] Kostiainen, K., Reshetova, E., Ekberg, J.-E., and Asokan, N. Old, new,

borrowed, blue – a perspective on the evolution of mobile platform security
architectures. In: Proceedings of the 1st ACM Conference on Data and Application
Security and Privacy (CODASPY 2011). ACM, 2011.

[106] Lampson, B. W. Protection. ACM SIGOPS Operating Systems Review 8, 1 (Jan.
1974), 18–24.

[107] Lampson, B. W. and Sturgis, H. E. Reflections on an operating system design.
Communications of the ACM 19, 5 (May 1976), 251–265.

[108] Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., and Peter, M.
L4Android: A Generic Operating System Framework for Secure Smartphones. In:
Proceedings of the 1st ACM CCS Workshop on Security and Privacy in Mobile
Devices (SPSM 2011). ACM, 2011.

[109] Ligatti, J., Bauer, L., and Walker, D. Edit Automata: Enforcement Mech-
anisms for Run-time Security Policies. International Journal of Information
Security 4, 1–2 (2005), 2–16.

[110] Linden, T. A. Operating System Structures to Support Security and Reliable
Software. ACM Computer Surveys 8, 4 (Dec. 1976), 409–445.

[111] Lineberry, A.,Richardson, D. L., andWyatt, T. These aren’t the permissions
you’re looking for. BlackHat USA 2010. Online: http://dtors.files.
wordpress.com/2010/08/blackhat-2010-slides.pdf. 2010.

[112] Linux Cross Reference. Linux Security Module framework. Online: http:
//lxr.free-electrons.com/source/Documentation/security/
LSM.txt.

[113] Lookout Mobile Security. Security Alert: Geinimi, Sophisticated New An-
droid Trojan Found in Wild. Online: http://blog.mylookout.com/2010/
12/geinimi_trojan/. 2010.

[114] Loscocco, P. and Smalley, S. Integrating Flexible Support for Security Policies
into the Linux Operating System. In: Proceedings of the 2001 USENIX Annual
Technical Conference (ATC 2001). USENIX Association, 2001.

178

http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.pdf
http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.pdf
http://lxr.free-electrons.com/source/Documentation/security/LSM.txt
http://lxr.free-electrons.com/source/Documentation/security/LSM.txt
http://lxr.free-electrons.com/source/Documentation/security/LSM.txt
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://blog.mylookout.com/2010/12/geinimi_trojan/

OTHER REFERENCES

[115] Loscocco, P. A., Smalley, S. D., Muckelbauer, P. A., Taylor, R. C.,
Turner, S. J., and Farrell, J. F. The Inevitability of Failure: The Flawed
Assumption of Security in Modern Computing Environments. In: Proceedings
of the 21st National Information Systems Security Conference (NISSC 1998).
NIST, 1998.

[116] Mallempati, R. Google I/O Recap, Part 1: Google is Serious About Enterprise
Mobility. Online: https://www.mobileiron.com/en/smartwork-blog/
google-io-recap-part-1-google-serious-about-enterprise-
mobility. June 2014.

[117] Marforio, C., Ritzdorf, H., Francillon, A., and Čapkun, S. Analysis
of the communication between colluding applications on modern smartphones.
In: Proceedings of the 28th Annual Computer Security Applications Conference
(ACSAC 2012). ACM, 2012.

[118] Mayer, F., MacMillan, K., and Caplan, D. SELinux by Example: Using Se-
curity Enhanced Linux (Prentice Hall Open Source Software Development Series).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006. isbn: 0131963694.

[119] McAfee. Virus Profile: Android/Loozfon.A. Online: http://home.mcafee.
com/virusinfo/virusprofile.aspx?key=2316508.

[120] McDaniel, P. and Prakash, A. Methods and limitations of security policy
reconciliation. In: Proceedings of the 23rd IEEE Symposium on Security and
Privacy (Oakland 2002). IEEE, 2002.

[121] McDaniel, P., Butler, K., McLaughlin, S., Sion, R., Zadok, E., and
Winslett, M. Towards a secure and efficient system for end-to-end provenance.
In: Proceedings of the 2nd USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2010). USENIX Association, 2010.

[122] Miettinen, M., Heuser, S., Kronz, W., Sadeghi, A.-R., and Asokan, N.
ConXsense: Automated Context Classification for Context-aware Access Control.
In: Proceedings of the 9th ACM Symposium on Information, Computer and
Communication Security (ASIACCS 2014). ACM, 2014.

[123] Migliavacca, M., Papagiannis, I., Eyers, D. M., Shand, B., Bacon, J., and
Pietzuch, P. DEFCON: high-performance event processing with information
security. In: Proceedings of the 2010 USENIX Annual Technical Conference (ATC
2010). USENIX Association, 2010.

[124] Morrill, D. Online: http://android- developers.blogspot.de/
2008/09/announcing-android-10-sdk-release-1.html. Sept. 2008.

[125] Moulu, A. Android OEM’s applications (in)security and backdoors without
permission. Online: http://www.quarkslab.com/dl/Android-OEM-
applications-insecurity-and-backdoors-without-permission.
pdf.

[126] Muthukumaran, D., Schiffman, J., Hassan, M., Sawani, A., Rao, V., and
Jaeger, T. Protecting the Integrity of Trusted Applications in Mobile Phone
Systems. Security and Communication Networks 4, 6 (2011), 633–650.

179

https://www.mobileiron.com/en/smartwork-blog/google-io-recap-part-1-google-serious-about-enterprise-mobility
https://www.mobileiron.com/en/smartwork-blog/google-io-recap-part-1-google-serious-about-enterprise-mobility
https://www.mobileiron.com/en/smartwork-blog/google-io-recap-part-1-google-serious-about-enterprise-mobility
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=2316508
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=2316508
http://android-developers.blogspot.de/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.de/2008/09/announcing-android-10-sdk-release-1.html
http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-without-permission.pdf
http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-without-permission.pdf
http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-without-permission.pdf

BIBLIOGRAPHY

[127] Muthukumaran, D., Jaeger, T., and Ganapathy, V. Leveraging "Choice"
to Automate Authorization Hook Placement. In: Proceedings of the 19th ACM
Conference on Computer and Communication Security (CCS 2012). ACM, 2012.

[128] Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B. M., and Jaeger,
T. Measuring Integrity on Mobile Phone Systems. In: Proceedings of the 13th
ACM Symposium on Access Control Models and Technologies (SACMAT 2008).
ACM, 2008.

[129] Myers, A. C. and Liskov, B. A decentralized model for information flow control.
In: Proceedings of the 16th ACM Symposium on Operating Systems Principles
(SOSP 1997). ACM, 1997.

[130] Myers, A. C. and Liskov, B. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology (TOSEM)
9, 4 (Oct. 2000), 410–442.

[131] Nadkarni, A. and Enck, W. Preventing Accidental Data Disclosure in Modern
Operating Systems. In: Proceedings of the 20th ACM Conference on Computer
and Communication Security (CCS 2013). ACM, 2013.

[132] National Security Agency. Security Enhancements (SE) for Android. Online:
http://seandroid.bitbucket.org.

[133] Nauman, M., Khan, S., and Zhang, X. Apex: Extending Android permission
model and enforcement with user-defined runtime constraints. In: Proceedings
of the 5th ACM Symposium on Information, Computer and Communication
Security (ASIACCS 2010). ACM, 2010.

[134] Nauman, M., Khan, S., Zhang, X., and Seifert, J.-P. Beyond kernel-level
integrity measurement: Enabling remote attestation for the Android platform.
In: Proceedings of the 3rd International Conference on Trust and Trustworthy
Computing (TRUST 2010). Springer-Verlag, 2010.

[135] Nils. Building Android Sandcastles in Android’s Sandbox. (BlackHat Abu Dhabi
2010). Online: https://media.blackhat.com/bh-ad-10/Nils/Black-
Hat-AD-2010-android-sandcastle-wp.pdf. 2010.

[136] Oberheide, J. Android Hax. SummerCon 2010. Online: http://jon.oberheide.
org/files/summercon10-androidhax-jonoberheide.pdf. 2010.

[137] Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., and
Traon, Y. L. Effective Inter-Component Communication Mapping in Android:
An Essential Step Towards Holistic Security Analysis. In: Proceedings of the 22nd
Usenix Security Symposium (SEC 2013). USENIX Association, 2013.

[138] Oluwafemi, T., Fernandes, E., Riva, O., Roesner, F., Nath, S., and Kohno,
T. Per-App Profiles with AppFork: The Security of Two Phones with the Conve-
nience of One. Tech. rep. MSR-TR-2014-153. Dec. 2014.

[139] Ongtang, M., Butler, K., and McDaniel, P. Porscha: Policy Oriented Secure
Content Handling in Android. In: Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC 2010). ACM, 2010.

180

http://seandroid.bitbucket.org
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-wp.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-wp.pdf
http://jon.oberheide.org/files/summercon10-androidhax-jonoberheide.pdf
http://jon.oberheide.org/files/summercon10-androidhax-jonoberheide.pdf

OTHER REFERENCES

[140] Ongtang, M., McLaughlin, S. E., Enck, W., and McDaniel, P. Semantically
Rich Application-Centric Security in Android. In: Proceedings of the 25th Annual
Computer Security Applications Conference (ACSAC 2009). ACM, 2009.

[141] Ott, A. The Rule Set Based Access Control (RSBAC) Linux Kernel Security
Extension. In: 8th International Linux Kongress. 2001.

[142] Palm Source, Inc.Open Binder. Version 1. Online: http://www.angryredplanet.
com/~hackbod/openbinder/docs/html/index.html. 2005.

[143] Palm Source, Inc.Open Binder, Version 1.0. http://www.angryredplanet.
com/~hackbod/openbinder/docs/html/. 2005.

[144] Pearce, P., Porter Felt, A., Nunez, G., and Wagner, D. AdDroid: Privilege
Separation for Applications and Advertisers in Android. In: Proceedings of the
7th ACM Symposium on Information, Computer and Communication Security
(ASIACCS 2012). ACM, 2012.

[145] Perez, S. Security Hole Spotted In Facebook Android SDK, Long Tail Apps
May Still Be Unpatched. Online: http://techcrunch.com/2012/04/10/
security-hole-spotted-in-facebook-android-sdk-long-tail-
apps-may-still-be-unpatched/. Apr. 2012.

[146] Porter Felt, A., Finifter, M., Chin, E., Hanna, S., and Wagner, D. A
survey of mobile malware in the wild. In: Proceedings of the 1st ACM CCS
Workshop on Security and Privacy in Mobile Devices (SPSM 2011). ACM, 2011.

[147] Porter Felt, A., Chin, E., Hanna, S., Song, D., and Wagner, D. An-
droid Permissions Demystified. In: Proceedings of the 18th ACM Conference on
Computer and Communication Security (CCS 2011). ACM, 2011.

[148] Porter Felt, A., Wang, H. J., Hanna, A. M. andSteve, and Chin, E. Per-
mission Re-Delegation: Attacks and Defenses. In: Proceedings of the 20th Usenix
Security Symposium (SEC 2011). USENIX Association, 2011.

[149] Portokalidis, G., Homburg, P., Anagnostakis, K., and Bos, H. Paranoid
Android: Versatile Protection For Smartphones. In: Proceedings of the 26th
Annual Computer Security Applications Conference (ACSAC 2010). ACM, 2010.

[150] Provos, N. Improving host security with system call policies. In: Proceedings of
the 12th Usenix Security Symposium (SEC 2003). USENIX Association, 2003.

[151] Provos, N., Friedl, M., and Honeyman, P. Preventing Privilege Escalation.
In: Proceedings of the 12th Usenix Security Symposium (SEC 2003). USENIX
Association, 2003.

[152] Rao, V. and Jaeger, T. Dynamic mandatory access control for multiple stake-
holders. In: Proceedings of the 14th ACM Symposium on Access Control Models
and Technologies (SACMAT 2009). ACM, 2009.

[153] Ratazzi, P., Bommisetti, A., Ji, N., and Du, W. PINPOINT: Efficient and
Effective Resource Isolation for Mobile Security and Privacy. In: Proceedings of
the 2015 Mobile Security Technologies Workshop (MoST 2015). IEEE, 2015.

181

http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
http://techcrunch.com/2012/04/10/security-hole-spotted-in-facebook-android-sdk-long-tail-apps-may-still-be-unpatched/
http://techcrunch.com/2012/04/10/security-hole-spotted-in-facebook-android-sdk-long-tail-apps-may-still-be-unpatched/
http://techcrunch.com/2012/04/10/security-hole-spotted-in-facebook-android-sdk-long-tail-apps-may-still-be-unpatched/

BIBLIOGRAPHY

[154] Reeder, R. W., Bauer, L., Cranor, L. F., Reiter, M. K., and Vaniea, K.
More than skin deep: measuring effects of the underlying model on access-control
system usability. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI 2011). ACM, 2011.

[155] Rushby, J. M. Design and Verification of Secure Systems. In: Proceedings of
the 8th ACM Symposium on Operating Systems Principles (SOSP 1981). ACM,
1981.

[156] Russello, G., Conti, M., Crispo, B., and Fernandes, E. MOSES: supporting
operation modes on smartphones. In: Proceedings of the 17th ACM Symposium
on Access Control Models and Technologies (SACMAT 2012). ACM, 2012.

[157] Sailer, R., Jaeger, T., Zhang, X., and Doorn, L. van. Attestation-based Pol-
icy Enforcement for Remote Access. In: Proceedings of the 11th ACM Conference
on Computer and Communication Security (CCS 2004). ACM, 2004.

[158] Saltzer, J. and Schroeder, M. The protection of information in computer
systems. Proceedings of the IEEE 63, 9 (1975), 1278–1308.

[159] Samsung. Knox. Online: https://www.samsungknox.com.
[160] Samsung. Galaxy Cameras. Online: http://www.samsung.com/us/

photography/galaxy-camera. 2015.
[161] Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., and Wang,

X. Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones.
In: Proceedings of the 18th Annual Network and Distributed System Security
Symposium (NDSS 2011). The Internet Society, 2011.

[162] Schreiber, T. Android Binder – Android Interprocess Communication. https:
//www.nds.rub.de/media/attachments/files/2011/10/main.pdf.
2011.

[163] Schroeder, M. D., Clark, D. D., and Saltzer, J. H. The Multics kernel
design project. In: Proceedings of the 6th ACM Symposium on Operating Systems
Principles (SOSP 1977). ACM, 1977.

[164] Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf, K.,
Yee, B., and Chen, B. Adapting software fault isolation to contemporary CPU
architectures. In: Proceedings of the 19th Usenix Security Symposium (SEC 2010).
USENIX Association, 2010.

[165] Selhorst, M., Stüble, C., Feldmann, F., and Gnaida, U. Towards a trusted
mobile desktop. In: Proceedings of the 3rd International Conference on Trust
and Trustworthy Computing (TRUST 2010). Springer-Verlag, 2010.

[166] Shabtai, A., Fledel, Y., and Elovici, Y. Securing Android-Powered Mobile
Devices Using SELinux. IEEE Security Privacy 8, 3 (May 2010), 36–44.

[167] Shankar, U., Jaeger, T., and Sailer, R. Toward Automated Information-Flow
Integrity Verification for Security-Critical Applications. In: Proceedings of the
13th Annual Network and Distributed System Security Symposium (NDSS 2006).
The Internet Society, 2006.

182

https://www.samsungknox.com
http://www.samsung.com/us/photography/galaxy-camera
http://www.samsung.com/us/photography/galaxy-camera
https://www.nds.rub.de/media/attachments/files/2011/10/main.pdf
https://www.nds.rub.de/media/attachments/files/2011/10/main.pdf

OTHER REFERENCES

[168] Shapiro, J. S. Vulnerabilities in Synchronous IPC Designs. In: Proceedings of
the 24th IEEE Symposium on Security and Privacy (Oakland 2003). IEEE, 2003.

[169] Shapiro, J. S., Smith, J. M., and Farber, D. J. EROS: a fast capability system.
In: Proceedings of the 17th ACM Symposium on Operating Systems Principles
(SOSP 1999). ACM, 1999.

[170] Shekhar, S., Dietz, M., and Wallach, D. S. AdSplit: Separating Smart-
phone Advertising from Applications. In: Proceedings of the 21st Usenix Security
Symposium (SEC 2012). USENIX Association, 2012.

[171] Simmhan, Y. L., Plale, B., and Gannon, D. A survey of data provenance in
e-science. SIGMOD Record 34, 3 (Sept. 2005), 31–36.

[172] Smalley, S. Middleware MAC for Android (Linux Security Summit 2012).
Online: http://kernsec.org/files/LSS2012-MiddlewareMAC.pdf.
Aug. 2012.

[173] Smalley, S. Security Enhanced (SE) Android (Presentation). Aug. 2012.
[174] Smalley, S. The Case for SE Android (Linux Security Summit 2011). Online:

http://www.selinuxproject.org/~jmorris/lss2011_slides/
caseforseandroid.pdf. 2012.

[175] Smalley, S. and Craig, R. Security Enhanced (SE) Android: Bringing Flexible
MAC to Android. In: Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS 2013). The Internet Society, 2013.

[176] Smalley, S., Vance, C., and Salamon, W. Implementing SELinux as a Linux
Security Module. NAI Labs Report #01-043. Revised May 2002. NAI Labs, Dec.
2001.

[177] Smith, C. Privacy flaw in Skype Android app exposed. Online: http://www.t3.
com/news/privacy-flaw-in-skype-android-app-exposed/. 2011.

[178] Sniffen, B. T., Harris, D. R., and Ramsdell, J. D. Guided Policy Generation
for Application Authors (SELinux Symposium). 2006.

[179] Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D., and
Lepreau, J. The Flask Security Architecture: System Support for Diverse
Security Policies. In: Proceedings of the 8th Usenix Security Symposium (SEC
1999). USENIX Association, 1999.

[180] Srage, J. and Azema, J. M-Shield Mobile Security Technology. TI White paper.
Online: http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.
pdf. 2005.

[181] Sun, M. and Tan, G. NativeGuard: Protecting Android Applications from Third-
party Native Libraries. In: Proceedings of the 7th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec 2014). ACM, 2014.

[182] Symantec. Android.Enesoluty. Online: http : / / www . symantec . com /
security_response/writeup.jsp?docid=2012-090607-0807-99.

183

http://kernsec.org/files/LSS2012-MiddlewareMAC.pdf
http://www.selinuxproject.org/~jmorris/lss2011_slides/caseforseandroid.pdf
http://www.selinuxproject.org/~jmorris/lss2011_slides/caseforseandroid.pdf
http://www.t3.com/news/privacy-flaw-in-skype-android-app-exposed/
http://www.t3.com/news/privacy-flaw-in-skype-android-app-exposed/
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99

BIBLIOGRAPHY

[183] Templeman, R., Rahman, Z., Crandall, D., and Kapadia, A. PlaceRaider:
Virtual Theft in Physical Spaces with Smartphones. In: Proceedings of the 20th
Annual Network and Distributed System Security Symposium (NDSS 2013). The
Internet Society, 2013.

[184] TOMOYO Linux Wiki: How is TOMOYO Linux different from SELinux and Ap-
pArmor? Online: http://tomoyo.sourceforge.jp/wiki-e/?WhatIs#
comparison.

[185] Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., McDaniel, P.,
and La Porta, T. On Cellular Botnets: Measuring the Impact of Malicious
Devices on a Cellular Network Core. In: Proceedings of the 16th ACM Conference
on Computer and Communication Security (CCS 2009). ACM, 2009.

[186] TrendMicro. Android Under Siege: Popularity Comes at a Price. 2012.
[187] Trusted Computing Group (TCG). Mobile Trusted Module (MTM) Specifi-

cation, Version 1.0 Revision 6. 2008.
[188] Trusted Computing Group (TCG). TNC Architecture for Interoperability,

Version 1.4, Revision 4. 2009.
[189] Vijayakumar, H., Ge, X., Payer, M., and Jaeger, T. JIGSAW: Protecting

Resource Access by Inferring Programmer Expectations. In: Proceedings of the
23rd USENIX Security Symposium (SEC 2014). USENIX Association, 2014.

[190] Vulnerability in XenServer could result in privilege escalation and arbitrary code
execution. Online: http://support.citrix.com/article/CTX118766.
2008.

[191] Wallach, D. S. and Felten, E. W. Understanding Java Stack Inspection. In:
Proceedings of the 19th IEEE Symposium on Security and Privacy (Oakland
1998). IEEE, 1998.

[192] Walsh, E. SELinux Support for Userspace Object Managers. 2004.
[193] Walsh, E. Application of the Flask Architecture to the X Window System Server.

2007.
[194] Wang, R., Enck, W., Reeves, D., Zhang, X., Ning, P., Xu, D., Zhou, W., and

Azab, A. EASEAndroid: Automatic Policy Analysis and Refinement for Security
Enhanced Android via Large-Scale Semi-Supervised Learning. In: Proceedings of
the 24th USENIX Security Symposium (SEC 2015). USENIX Association, 2015.

[195] Wang, X., Sun, K., Wang, Y., and Jing, J. DeepDroid: Dynamically Enforcing
Enterprise Policy on Android Devices. In: Proceedings of the 22nd Annual Network
and Distributed System Security Symposium (NDSS 2015). The Internet Society,
2015.

[196] Wang, Y., Hariharan, S., Zhao, C., Liu, J., and Du, W. Compac: Enforce
Component-Level Access Control in Android. In: Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy (CODASPY 2014).
ACM, 2014.

184

http://tomoyo.sourceforge.jp/wiki-e/?WhatIs#comparison
http://tomoyo.sourceforge.jp/wiki-e/?WhatIs#comparison
http://support.citrix.com/article/CTX118766

OTHER REFERENCES

[197] Wang, Z. and Stavrou, A. Exploiting Smart-phone USB Connectivity for Fun
and Profit. In: Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC 2010). ACM, 2010.

[198] Watson, R., Morrison, W., Vance, C., and Feldman, B. The TrustedBSD
MAC Framework: Extensible Kernel Access Control for FreeBSD 5.0. In: Proceed-
ings of the 2003 USENIX Annual Technical Conference (ATC 2003). USENIX
Association, 2003.

[199] Watson, R. N. M., Anderson, J., Laurie, B., and Kennaway, K. Capsicum:
Practical Capabilities for UNIX. In: Proceedings of the 19th Usenix Security
Symposium (SEC 2010). USENIX Association, 2010.

[200] Watson, R. N. M.,Woodruff, J.,Neumann, P. G.,Moore, S. W.,Anderson,
J., Chisnall, D., Dave, N., Davis, B., Gudka, K., Laurie, B., Murdoch,
S. J., Norton, R., Roe, M., Son, S., and Vadera, M. CHERI: A Hybrid
Capability-System Architecture for Scalable Software Compartmentalization. In:
Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland
2015). IEEE, 2015.

[201] WhatsApp storing messages of users up to 30 days | Your Daily Mac. On-
line: http://www.yourdailymac.net/2012/02/whatsapp-storing-
messages-of-users-up-to-30-days/. 2012.

[202] WhatsApp took all my contacts and sent to their servers without asking me - Black-
Berry Forums at CrackBerry.com. Online: http://forums.crackberry.
com/blackberry-apps-f35/whatsapp-took-all-my-contacts-
sent-their-servers-without-asking-me-649363/. 2011.

[203] Winter, J. Trusted computing building blocks for embedded linux-based ARM
trustzone platforms. In: Proceedings of the 3rd Annual Workshop on Scalable
Trusted Computing (STC 2008). ACM, 2008.

[204] Wobber, E., Abadi, M., Burrows, M., and Lampson, B. Authentication in
the Taos Operating System. In: Proceedings of the 14th ACM Symposium on
Operating Systems Principles (SOSP 1993). ACM, 1993.

[205] Wojtczuk, R. and Rutkowska, J. Xen 0wning Trilogy. 2008.
[206] Wright, C., Cowan, C., Smalley, S., Morris, J., and Kroah-Hartman,

G. Linux Security Modules: General Security Support for the Linux Kernel.
In: Proceedings of the 11th Usenix Security Symposium (SEC 2002). USENIX
Association, 2002.

[207] Wu, C., Zhou, Y., Patel, K., Liang, Z., and Jiang, X. AirBag: Boosting
Smartphone Resistance to Malware Infection. In: Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSS 2014). The Internet
Society, 2014.

[208] Xbox 360 Hypervisor Privilege Escalation Vulnerability. Online: http://www.
securityfocus.com/archive/1/461489. 2007.

185

http://www.yourdailymac.net/2012/02/whatsapp-storing-messages-of-users-up-to-30-days/
http://www.yourdailymac.net/2012/02/whatsapp-storing-messages-of-users-up-to-30-days/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://www.securityfocus.com/archive/1/461489
http://www.securityfocus.com/archive/1/461489

BIBLIOGRAPHY

[209] Xing, L., Pan, X.,Wang, R.,Yuan, K., andWang, X. Upgrading Your Android,
Elevating My Malware: Privilege Escalation Through Mobile OS Updating. In:
Proceedings of the 35th IEEE Symposium on Security and Privacy (Oakland
2014). IEEE, 2014.

[210] Xu, R., Saïdi, H., and Anderson, R. Aurasium: Practical Policy Enforcement
for Android Applications. In: Proceedings of the 21st Usenix Security Symposium
(SEC 2012). USENIX Association, 2012.

[211] Xu, Z., Bai, K., and Zhu, S. TapLogger: inferring user inputs on smartphone
touchscreens using on-board motion sensors. In: Proceedings of the 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec
2012). ACM, 2012.

[212] Zhang, X., Seifert, J.-P., and Acıiçmez, O. SEIP: Simple and efficient integrity
protection for open mobile platforms. In: Proceedings of the 12th International
Conference on Information and Communications Security (ICICS 2010). Springer-
Verlag, 2010.

[213] Zhang, X., Acıiçmez, O., and Seifert, J.-P. A trusted mobile phone reference
architecture via secure kernel. In: Proceedings of the 2nd Annual Workshop on
Scalable Trusted Computing (STC 2007). ACM, 2007.

[214] Zhou, X., Lee, Y., Zhang, N., Naveed, M., and Wang, X. The Peril of
Fragmentation: Security Hazards in Android Device Driver Customizations. In:
Proceedings of the 35th IEEE Symposium on Security and Privacy (Oakland
2014). IEEE, 2014.

[215] Zhou, Y. and Jiang, X. Detecting Passive Content Leaks and Pollution in
Android Applications. In: Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS 2013). The Internet Society, 2013.

[216] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android Markets.
In: Proceedings of the 19th Annual Network and Distributed System Security
Symposium (NDSS 2012). The Internet Society, 2012.

[217] Zhou, Y. and Jiang, X. Dissecting Android Malware: Characterization and
Evolution. In: Proceedings of the 33rd IEEE Symposium on Security and Privacy
(Oakland 2012). IEEE, 2012.

[218] Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. Taming Information-Stealing
Smartphone Applications (on Android). In: Proceedings of the 4th International
Conference on Trust and Trustworthy Computing (TRUST 2011). Springer-Verlag,
2011.

186

	Introduction
	Technical Background on Android
	Primer on Android
	Android Software Stack
	Android Applications

	Android's Security Philosophy

	TrustDroid
	Motivation
	Problem Description
	Contributions
	Technical Problem Description and Model
	Adversary and Trust Model
	Objectives and Requirements
	Assumptions

	Design of TrustDroid
	Policy Manager
	Kernel MAC Manager
	Firewall Manager

	Implementation and Evaluation
	Implementation
	Evaluation

	Discussion
	Security Considerations
	Trusted Computing

	Related work
	Status Quo at Time of Publication
	Related Work Post-Publication

	Conclusion

	XManDroid
	Motivation
	Problem Description
	Our Goal and Contributions
	Requirements Analysis and Assumptions
	Adversary Model
	Objectives and Requirements
	Assumptions

	Framework Architecture
	Overview
	Architecture Components

	Evaluation
	Test methodology
	Study of 3rd Party Application Communication
	Effectiveness
	Performance
	Impact on 3rd party applications' usability

	Related Work
	Status Quo at Time of Publication
	Related Work Post-Publication

	Conclusion

	FlaskDroid
	Motivation
	Challenges and Our Goal
	Contributions
	Primer on SELinux and SE Android
	SELinux
	SE Android

	Requirements Analysis for Android Security Architectures
	Adversary Model
	Requirements

	FlaskDroid Architecture
	Overview
	Architecture Components
	Policy

	Use-Cases / Instantiations
	Privacy Enhanced System Services and Content Providers
	Multi-level Security
	Secure Logs
	Firewall and Anti-Virus Apps
	Phone Booth Mode
	App Developer Policies (Saint)

	Evaluation
	Policy
	Effectiveness
	Performance Overhead

	Related Work
	Status Quo at Time of Publication
	Related Work Post-Publication

	Conclusion

	Android Security Framework
	Motivation
	Problem Description
	Contributions
	Related Work
	Extensible Kernel Access Control
	Android Security

	Requirements Analysis
	Policy as code and not data
	Policy-agnostic security infrastructure

	ASF Architecture
	Framework Overview
	Framework Infrastructure
	Middleware Framework API
	Middleware Security Modules
	Stackable and Dynamic Loadable Modules

	Example Security Modules
	AppOps and IntentFirewall
	CRePE
	XManDroid
	Type Enforcement
	Inlined Reference Monitoring
	Saint
	TrustDroid
	Data shadowing
	Kirin

	Evaluation
	Performance
	Current Scope and Future Work

	Conclusion

	Scippa
	Motivation
	Problem Description
	Contributions
	Binder-Based Inter-App Communication on Android
	Binder-based ICC

	Technical Problem Description
	Message Dispatching
	Indirect Communication
	Provenance Information vs. Permissions
	Broader Context of this Thesis

	Requirements Analysis
	Adversary Model
	Requirements and Challenges

	System-Centric IPC Call-Chains
	Establishing Call-Chains
	Intra-App Call-Chain Propagation
	Asynchronous Call-Chain Propagation
	Accessing Call-Chains from User Space
	Returning Call-Chains to Message Senders

	Evaluation
	Experimental Methodology
	Performance Impact
	Binder IPC Provenance
	Discussion and Limitations

	Related Work
	Conclusion

	Conclusion

