Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (688 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (37 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (2 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (77 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (7 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (336 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (16 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (12 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (5 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (39 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (28 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (28 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (11 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (80 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |
Global Index
A
afn1 [lemma, in libs.sltype]afp1 [lemma, in libs.sltype]
af1n [lemma, in libs.sltype]
af1p [lemma, in libs.sltype]
AG [projection, in libs.modular_hilbert]
AG_mor [instance, in libs.modular_hilbert]
allU [lemma, in libs.fset]
all_inP [lemma, in libs.base]
all_subP [lemma, in libs.fset]
all_fset0 [lemma, in libs.fset]
all_fset1 [lemma, in libs.fset]
And [definition, in libs.modular_hilbert]
andAAU [lemma, in libs.modular_hilbert]
andU [lemma, in libs.modular_hilbert]
and_sub [lemma, in libs.modular_hilbert]
And_Eqi_mor [instance, in libs.modular_hilbert]
And_mor [instance, in libs.modular_hilbert]
AR [projection, in libs.modular_hilbert]
AR_mor [instance, in libs.modular_hilbert]
AU [projection, in libs.modular_hilbert]
AutoLemmas [section, in libs.fset]
AutoLemmas.T [variable, in libs.fset]
AutoLemmas.T' [variable, in libs.fset]
AU_mor [instance, in libs.modular_hilbert]
AX [projection, in libs.modular_hilbert]
axAA [lemma, in libs.modular_hilbert]
axABBA [lemma, in libs.modular_hilbert]
axAC [lemma, in libs.modular_hilbert]
axAcase [lemma, in libs.modular_hilbert]
axADr [lemma, in libs.modular_hilbert]
axAEl [lemma, in libs.modular_hilbert]
axAEr [lemma, in libs.modular_hilbert]
axAGE [lemma, in libs.modular_hilbert]
axAGEl [projection, in libs.modular_hilbert]
axAGEn [lemma, in libs.modular_hilbert]
axAGEr [projection, in libs.modular_hilbert]
axAGN [lemma, in libs.modular_hilbert]
axAI [lemma, in libs.modular_hilbert]
axAODr [lemma, in libs.modular_hilbert]
axARE [projection, in libs.modular_hilbert]
axAReq [lemma, in libs.modular_hilbert]
axARu [projection, in libs.modular_hilbert]
axAsT [lemma, in libs.modular_hilbert]
axAUAEr [lemma, in libs.modular_hilbert]
axAUAw [lemma, in libs.modular_hilbert]
axAUEGF [lemma, in libs.modular_hilbert]
axAUeq [lemma, in libs.modular_hilbert]
axAUERF [lemma, in libs.modular_hilbert]
axAUf [projection, in libs.modular_hilbert]
axAUI [projection, in libs.modular_hilbert]
axA2 [lemma, in libs.modular_hilbert]
axB [lemma, in libs.modular_hilbert]
axBE [lemma, in libs.modular_hilbert]
axBT [lemma, in libs.modular_hilbert]
axC [lemma, in libs.modular_hilbert]
axContra [lemma, in libs.modular_hilbert]
axDBD [lemma, in libs.modular_hilbert]
axDF [lemma, in libs.modular_hilbert]
axDN [lemma, in libs.modular_hilbert]
axDNE [lemma, in libs.modular_hilbert]
axDNI [lemma, in libs.modular_hilbert]
axDN' [projection, in libs.modular_hilbert]
axDup [lemma, in libs.modular_hilbert]
axEEl [lemma, in libs.modular_hilbert]
axEEr [lemma, in libs.modular_hilbert]
axEI [lemma, in libs.modular_hilbert]
axERu [lemma, in libs.modular_hilbert]
axEUeq [lemma, in libs.modular_hilbert]
axEUEr [lemma, in libs.modular_hilbert]
axEUI [lemma, in libs.modular_hilbert]
axEUI2 [lemma, in libs.modular_hilbert]
axEUw [lemma, in libs.modular_hilbert]
axI [lemma, in libs.modular_hilbert]
axIO [lemma, in libs.modular_hilbert]
axK [lemma, in libs.modular_hilbert]
axK' [projection, in libs.modular_hilbert]
axN [projection, in libs.modular_hilbert]
axOC [lemma, in libs.modular_hilbert]
axOE [lemma, in libs.modular_hilbert]
axOF [lemma, in libs.modular_hilbert]
axOIl [lemma, in libs.modular_hilbert]
axOIr [lemma, in libs.modular_hilbert]
axRot [lemma, in libs.modular_hilbert]
AXR_ind [lemma, in libs.modular_hilbert]
axS [lemma, in libs.modular_hilbert]
axsT [lemma, in libs.modular_hilbert]
axS' [projection, in libs.modular_hilbert]
axT [lemma, in libs.modular_hilbert]
axW [lemma, in libs.modular_hilbert]
AX_Eqi_mor [instance, in libs.modular_hilbert]
AX_mor [instance, in libs.modular_hilbert]
ax_contraNN [lemma, in libs.modular_hilbert]
ax_contra [lemma, in libs.modular_hilbert]
ax_case [lemma, in libs.modular_hilbert]
ax_eq_refl [lemma, in libs.modular_hilbert]
B
base [definition, in libs.sltype]base [library]
bcase [library]
bigABBA [lemma, in libs.modular_hilbert]
bigAdrop [lemma, in libs.modular_hilbert]
bigAdup [lemma, in libs.modular_hilbert]
bigAE [lemma, in libs.modular_hilbert]
bigAI [lemma, in libs.modular_hilbert]
BigAnd [section, in libs.modular_hilbert]
BigAnd.pS [variable, in libs.modular_hilbert]
bigAUA [lemma, in libs.modular_hilbert]
bigA1 [lemma, in libs.modular_hilbert]
bigA1E [lemma, in libs.modular_hilbert]
bigODr [lemma, in libs.modular_hilbert]
bigOE [lemma, in libs.modular_hilbert]
bigOI [lemma, in libs.modular_hilbert]
bigU1 [lemma, in libs.fset]
big_sep [lemma, in libs.fset]
Bot [definition, in libs.modular_hilbert]
Bot' [projection, in libs.modular_hilbert]
bounded [definition, in libs.fset]
C
cardSmC [lemma, in libs.base]classic_orb [lemma, in libs.base]
clause [abbreviation, in libs.sltype]
clause [abbreviation, in libs.sltype]
connect_inP [lemma, in libs.fset]
connect_in_trans [lemma, in libs.fset]
connect_in1 [lemma, in libs.fset]
connect_in0 [lemma, in libs.fset]
connect_in [definition, in libs.fset]
const [definition, in libs.fset]
contraN [lemma, in libs.base]
contraP [lemma, in libs.base]
ctlSystem [record, in libs.modular_hilbert]
CTLSystem [constructor, in libs.modular_hilbert]
CTLTheory [section, in libs.modular_hilbert]
CTLTheory.cS [variable, in libs.modular_hilbert]
cupP [lemma, in libs.fset]
curry [definition, in libs.base]
curryE [lemma, in libs.base]
D
decomp [inductive, in libs.sltype]decomp_ab [constructor, in libs.sltype]
decomp_lit [constructor, in libs.sltype]
del [definition, in libs.base]
dist [definition, in libs.base]
Dist [section, in libs.base]
distP [lemma, in libs.base]
distS [lemma, in libs.base]
dist_ltn [lemma, in libs.base]
Dist.T [variable, in libs.base]
Dist.Tgt0 [variable, in libs.base]
dist0 [lemma, in libs.base]
dmA [lemma, in libs.modular_hilbert]
dmAR [lemma, in libs.modular_hilbert]
dmAU [lemma, in libs.modular_hilbert]
dmAX [lemma, in libs.modular_hilbert]
dmER [lemma, in libs.modular_hilbert]
dmEU [lemma, in libs.modular_hilbert]
dmI [lemma, in libs.modular_hilbert]
dmO [lemma, in libs.modular_hilbert]
E
edone [library]EF [definition, in libs.modular_hilbert]
elements [projection, in libs.fset]
emptyPn [lemma, in libs.fset]
eqEsub [lemma, in libs.fset]
eqF [lemma, in libs.base]
Eqi [definition, in libs.modular_hilbert]
EqiPrv [definition, in libs.modular_hilbert]
EqiTheoryBase [section, in libs.modular_hilbert]
EqiTheoryBase.pS [variable, in libs.modular_hilbert]
EqiTheoryBase.s [variable, in libs.modular_hilbert]
EqiTheoryBase.t [variable, in libs.modular_hilbert]
Eqi_mor [instance, in libs.modular_hilbert]
eqi_induced_symmety [instance, in libs.modular_hilbert]
ER [definition, in libs.modular_hilbert]
ER_mor [instance, in libs.modular_hilbert]
EU [definition, in libs.modular_hilbert]
EU_ind [lemma, in libs.modular_hilbert]
EU_mor [instance, in libs.modular_hilbert]
EX [definition, in libs.modular_hilbert]
EXR_ind [lemma, in libs.modular_hilbert]
Extensionality [section, in libs.fset]
Extensionality.T [variable, in libs.fset]
ex_dist [lemma, in libs.base]
EX_Eqi_mor [instance, in libs.modular_hilbert]
EX_mor [instance, in libs.modular_hilbert]
ex_max [lemma, in libs.fset]
F
fdisj [definition, in libs.fset]feqEsub [definition, in libs.fset]
filter_subset [lemma, in libs.base]
fimsetP [lemma, in libs.fset]
fimsetS [lemma, in libs.fset]
fimsetU [lemma, in libs.fset]
fimsetU1 [lemma, in libs.fset]
fImset_spec [constructor, in libs.fset]
fimset_def [abbreviation, in libs.fset]
fimset0 [lemma, in libs.fset]
fimset1 [lemma, in libs.fset]
fimset2P [lemma, in libs.fset]
fimset2_spec [inductive, in libs.fset]
fimset2_def [abbreviation, in libs.fset]
Fimset3 [section, in libs.fset]
fimset3 [definition, in libs.fset]
fimset3P [lemma, in libs.fset]
fImset3_spec [constructor, in libs.fset]
fimset3_spec [inductive, in libs.fset]
Fimset3.A [variable, in libs.fset]
Fimset3.aT1 [variable, in libs.fset]
Fimset3.aT2 [variable, in libs.fset]
Fimset3.aT3 [variable, in libs.fset]
Fimset3.B [variable, in libs.fset]
Fimset3.C [variable, in libs.fset]
Fimset3.f [variable, in libs.fset]
Fimset3.rT [variable, in libs.fset]
FinSets [section, in libs.fset]
FinSets.T [variable, in libs.fset]
fin_choices [lemma, in libs.base]
fin_choice [lemma, in libs.base]
fin_choice_aux [lemma, in libs.base]
Fixpoints [section, in libs.fset]
Fixpoints.F [variable, in libs.fset]
Fixpoints.F_bound [variable, in libs.fset]
Fixpoints.F_mono [variable, in libs.fset]
Fixpoints.T [variable, in libs.fset]
Fixpoints.U [variable, in libs.fset]
flattenP [lemma, in libs.base]
fNopick [constructor, in libs.fset]
forall_cons [lemma, in libs.base]
forall_nil [lemma, in libs.base]
forall_inPn [lemma, in libs.base]
fPick [constructor, in libs.fset]
fpick [definition, in libs.fset]
fpickP [lemma, in libs.fset]
fpick_spec [inductive, in libs.fset]
fproperU [lemma, in libs.fset]
fproper1 [lemma, in libs.fset]
fseq [definition, in libs.fset]
fseq_axiom [lemma, in libs.fset]
fseq_uniq [lemma, in libs.fset]
fseq_perm_eq [lemma, in libs.fset]
fset [definition, in libs.fset]
Fset [module, in libs.fset]
Fset [constructor, in libs.fset]
fset [library]
fsetCK [definition, in libs.fset]
FsetConnect [section, in libs.fset]
FsetConnect.e [variable, in libs.fset]
FsetConnect.S [variable, in libs.fset]
FsetConnect.T [variable, in libs.fset]
fsetD [definition, in libs.fset]
fsetDS [lemma, in libs.fset]
fsetDSS [lemma, in libs.fset]
fsetD0 [lemma, in libs.fset]
fsetE [lemma, in libs.fset]
fsetI [definition, in libs.fset]
fsetIA [lemma, in libs.fset]
fsetIC [lemma, in libs.fset]
fsetIUl [lemma, in libs.fset]
fsetIUr [lemma, in libs.fset]
fsetI0 [lemma, in libs.fset]
fsetSU [lemma, in libs.fset]
fsetT [definition, in libs.fset]
FsetType [module, in libs.fset]
FsetType.fimset [axiom, in libs.fset]
FsetType.fimsetE [axiom, in libs.fset]
FsetType.fimset2 [axiom, in libs.fset]
FsetType.fimset2E [axiom, in libs.fset]
FsetType.fsetU [axiom, in libs.fset]
FsetType.fsetUE [axiom, in libs.fset]
FsetType.fset0E [axiom, in libs.fset]
FsetType.fset0_ [axiom, in libs.fset]
FsetType.fset1 [axiom, in libs.fset]
FsetType.fset1E [axiom, in libs.fset]
FsetType.sep [axiom, in libs.fset]
FsetType.sepE [axiom, in libs.fset]
fsetUA [lemma, in libs.fset]
fsetUC [lemma, in libs.fset]
fsetUCA [lemma, in libs.fset]
fsetUD [lemma, in libs.fset]
fsetUD1 [lemma, in libs.fset]
fsetUIl [lemma, in libs.fset]
fsetUIr [lemma, in libs.fset]
fsetUP [lemma, in libs.fset]
fsetUS [lemma, in libs.fset]
fsetUSU [lemma, in libs.fset]
fsetU_auto4 [lemma, in libs.fset]
fsetU_auto3 [lemma, in libs.fset]
fsetU_auto2 [lemma, in libs.fset]
fsetU_auto1 [lemma, in libs.fset]
fsetU_comlaw [definition, in libs.fset]
fsetU_law [definition, in libs.fset]
fsetU_def [abbreviation, in libs.fset]
fsetU0 [lemma, in libs.fset]
fsetU1P [lemma, in libs.fset]
fsetX [definition, in libs.fset]
fsetXP [lemma, in libs.fset]
fset_ext [lemma, in libs.fset]
fset_eq [lemma, in libs.fset]
fset_subCountType [definition, in libs.fset]
fset_countType [definition, in libs.fset]
fset_choiceType [definition, in libs.fset]
fset_predType [definition, in libs.fset]
fset_eqType [definition, in libs.fset]
fset_subType [definition, in libs.fset]
fset_of [definition, in libs.fset]
fset_type [record, in libs.fset]
fset_axiom [definition, in libs.fset]
Fset.fimset [definition, in libs.fset]
Fset.fimsetE [lemma, in libs.fset]
Fset.fimset2 [definition, in libs.fset]
Fset.fimset2E [lemma, in libs.fset]
Fset.fsetU [definition, in libs.fset]
Fset.fsetUE [lemma, in libs.fset]
Fset.fset0E [lemma, in libs.fset]
Fset.fset0_ [definition, in libs.fset]
Fset.fset1 [definition, in libs.fset]
Fset.fset1E [lemma, in libs.fset]
Fset.sep [definition, in libs.fset]
Fset.sepE [lemma, in libs.fset]
fset0 [abbreviation, in libs.fset]
fset0Es [lemma, in libs.fset]
fset0F [lemma, in libs.fset]
fset0I [lemma, in libs.fset]
fset0U [lemma, in libs.fset]
fset0Vmem [lemma, in libs.fset]
fset0_def [abbreviation, in libs.fset]
fset1Es [lemma, in libs.fset]
fset1F [lemma, in libs.fset]
fset1U [lemma, in libs.fset]
fset1U1 [lemma, in libs.fset]
fset1_def [abbreviation, in libs.fset]
fset11 [lemma, in libs.fset]
fsizeU [lemma, in libs.fset]
fsizeU1 [lemma, in libs.fset]
fsubDl [lemma, in libs.fset]
fsubIl [lemma, in libs.fset]
fsubIr [lemma, in libs.fset]
fsubsetU [lemma, in libs.fset]
fsubUl [lemma, in libs.fset]
fsubUr [lemma, in libs.fset]
fsubUset [lemma, in libs.fset]
fsubUsetP [lemma, in libs.fset]
fsubU_auto [lemma, in libs.fset]
fsub1 [lemma, in libs.fset]
fsub1_auto [lemma, in libs.fset]
fsum [definition, in libs.fset]
FSum [section, in libs.fset]
fsumD [lemma, in libs.fset]
fsumDsub [lemma, in libs.fset]
fsumI [lemma, in libs.fset]
fsumID [lemma, in libs.fset]
fsumS [lemma, in libs.fset]
fsumU [lemma, in libs.fset]
fsum_const1 [lemma, in libs.fset]
fsum_replace [lemma, in libs.fset]
fsum_sub [lemma, in libs.fset]
fsum_eq0 [lemma, in libs.fset]
fsum_const [lemma, in libs.fset]
FSum.T [variable, in libs.fset]
FSum.w [variable, in libs.fset]
fsum0 [lemma, in libs.fset]
fsum1 [lemma, in libs.fset]
funiq [lemma, in libs.fset]
f_weight [definition, in libs.sltype]
f_weight' [projection, in libs.sltype]
G
gfp [definition, in libs.base]gfp [definition, in libs.fset]
gfpE [lemma, in libs.base]
gfpE [lemma, in libs.fset]
gfp_ind2 [lemma, in libs.base]
gfp_ind [lemma, in libs.base]
gfp_ind [lemma, in libs.fset]
gfp_ind_aux [lemma, in libs.fset]
GreatestFixPoint [section, in libs.base]
GreatestFixpoint [section, in libs.fset]
GreatestFixpoint.bounded_F' [variable, in libs.fset]
GreatestFixPoint.F [variable, in libs.base]
GreatestFixpoint.F [variable, in libs.fset]
GreatestFixPoint.F_mono [variable, in libs.base]
GreatestFixpoint.F_bound [variable, in libs.fset]
GreatestFixpoint.F_mono [variable, in libs.fset]
GreatestFixPoint.F' [variable, in libs.base]
GreatestFixpoint.F' [variable, in libs.fset]
GreatestFixpoint.mono_F' [variable, in libs.fset]
GreatestFixPoint.T [variable, in libs.base]
GreatestFixpoint.T [variable, in libs.fset]
GreatestFixpoint.U [variable, in libs.fset]
~` _ [notation, in libs.fset]
H
hasS [lemma, in libs.base]has_fset0 [lemma, in libs.fset]
has_fset1 [lemma, in libs.fset]
I
Imp [projection, in libs.modular_hilbert]Imp_mor [instance, in libs.modular_hilbert]
Imp_op [definition, in libs.modular_hilbert]
InducedSym [record, in libs.induced_sym]
InducedSym [inductive, in libs.induced_sym]
induced_eqi [instance, in libs.modular_hilbert]
induced_mor_np [instance, in libs.induced_sym]
induced_mor_pn [instance, in libs.induced_sym]
induced_mor_pp [instance, in libs.induced_sym]
induced_mor_n [instance, in libs.induced_sym]
induced_mor_p [instance, in libs.induced_sym]
induced_mor_iff2 [lemma, in libs.induced_sym]
induced_mor_iff [lemma, in libs.induced_sym]
induced_eqi [lemma, in libs.induced_sym]
induced_sub [instance, in libs.induced_sym]
induced_iff [projection, in libs.induced_sym]
induced_iff [constructor, in libs.induced_sym]
induced_sym [library]
inE [definition, in libs.fset]
injective2 [definition, in libs.fset]
interp [definition, in libs.sltype]
in_sub_all [lemma, in libs.base]
in_sub_has [lemma, in libs.base]
in_fsetT [lemma, in libs.fset]
in_fsetX [lemma, in libs.fset]
in_fimset2F [lemma, in libs.fset]
in_fimset2 [lemma, in libs.fset]
in_fimset [lemma, in libs.fset]
in_fset [definition, in libs.fset]
in_fset1 [lemma, in libs.fset]
in_fset0 [lemma, in libs.fset]
in_fsetI [lemma, in libs.fset]
in_fsetD [lemma, in libs.fset]
in_fsetU [lemma, in libs.fset]
in_sep [lemma, in libs.fset]
iterFbound [lemma, in libs.fset]
iterFsub [lemma, in libs.base]
iterFsub [lemma, in libs.fset]
iterFsubn [lemma, in libs.base]
iterFsub1 [lemma, in libs.fset]
iter_fix [lemma, in libs.base]
iter_fix [lemma, in libs.fset]
K
ksort [projection, in libs.modular_hilbert]ksort' [projection, in libs.modular_hilbert]
ksSystem [record, in libs.modular_hilbert]
KSSystem [constructor, in libs.modular_hilbert]
KStarTheory [section, in libs.modular_hilbert]
KStarTheory.ksS [variable, in libs.modular_hilbert]
kSystem [record, in libs.modular_hilbert]
KSystem [constructor, in libs.modular_hilbert]
KTheory [section, in libs.modular_hilbert]
KTheory.kS [variable, in libs.modular_hilbert]
L
LeastFixPoint [section, in libs.base]LeastFixPoint.F [variable, in libs.base]
LeastFixPoint.monoF [variable, in libs.base]
LeastFixPoint.T [variable, in libs.base]
level_max [lemma, in libs.fset]
level1 [lemma, in libs.fset]
level2 [lemma, in libs.fset]
levl [definition, in libs.fset]
lfp [definition, in libs.base]
lfp [definition, in libs.fset]
lfpE [lemma, in libs.base]
lfpE [lemma, in libs.fset]
lfp_ind [lemma, in libs.base]
lfp_level_aux [lemma, in libs.fset]
lfp_ind [lemma, in libs.fset]
lfp_ind_aux [lemma, in libs.fset]
lit [definition, in libs.sltype]
literalC [definition, in libs.sltype]
lit' [projection, in libs.sltype]
local_formSLType [definition, in libs.sltype]
M
mask_inj [lemma, in libs.base]maximal [definition, in libs.fset]
Maximal [section, in libs.fset]
maximalb [definition, in libs.fset]
maximalP [lemma, in libs.fset]
Maximal.P [variable, in libs.fset]
Maximal.T [variable, in libs.fset]
Maximal.U [variable, in libs.fset]
mem_fimset3 [lemma, in libs.fset]
mem_fimset2 [lemma, in libs.fset]
mImpPrv [definition, in libs.modular_hilbert]
mImpPrv_rel [instance, in libs.modular_hilbert]
mImpPrv_trans [lemma, in libs.modular_hilbert]
mImpPrv_refl [definition, in libs.modular_hilbert]
modular_hilbert [library]
mono [definition, in libs.base]
monotone [definition, in libs.fset]
mono_F' [lemma, in libs.base]
mprv [projection, in libs.modular_hilbert]
mprv_eqi_mor [instance, in libs.modular_hilbert]
mprv_mor [instance, in libs.modular_hilbert]
mp2 [lemma, in libs.modular_hilbert]
msort [projection, in libs.modular_hilbert]
mSystem [record, in libs.modular_hilbert]
MSystem [constructor, in libs.modular_hilbert]
MTheory0 [section, in libs.modular_hilbert]
MTheory0.mS [variable, in libs.modular_hilbert]
N
nat_size_ind [lemma, in libs.fset]Neg [definition, in libs.modular_hilbert]
Neg_Eqi_mor [instance, in libs.modular_hilbert]
Neg_mor [instance, in libs.modular_hilbert]
next [definition, in libs.base]
next_subproof [lemma, in libs.base]
nilp_map [lemma, in libs.base]
O
OperationsTheory [section, in libs.fset]OperationsTheory.A [variable, in libs.fset]
OperationsTheory.aT1 [variable, in libs.fset]
OperationsTheory.aT2 [variable, in libs.fset]
OperationsTheory.aT3 [variable, in libs.fset]
OperationsTheory.B [variable, in libs.fset]
OperationsTheory.C [variable, in libs.fset]
OperationsTheory.Laws [section, in libs.fset]
OperationsTheory.Laws.X [variable, in libs.fset]
OperationsTheory.Laws.Y [variable, in libs.fset]
OperationsTheory.Laws.Z [variable, in libs.fset]
OperationsTheory.T [variable, in libs.fset]
OperationsTheory.T' [variable, in libs.fset]
Or [definition, in libs.modular_hilbert]
orS [lemma, in libs.base]
or_sub [lemma, in libs.modular_hilbert]
Or_Eqi_mor [instance, in libs.modular_hilbert]
Or_mor [instance, in libs.modular_hilbert]
P
Pick [section, in libs.fset]Pick.p [variable, in libs.fset]
Pick.T [variable, in libs.fset]
Pick.X [variable, in libs.fset]
powerset [definition, in libs.fset]
powersetE [lemma, in libs.fset]
powersetP [lemma, in libs.fset]
powersetU [lemma, in libs.fset]
powerset_size [lemma, in libs.fset]
power_mon [lemma, in libs.fset]
power_sub [lemma, in libs.fset]
proper [definition, in libs.fset]
properD1 [lemma, in libs.fset]
properE [lemma, in libs.fset]
properEneq [lemma, in libs.fset]
properW [lemma, in libs.fset]
proper_size [lemma, in libs.fset]
pruneE [lemma, in libs.fset]
prune_sub [lemma, in libs.fset]
prune_ind [lemma, in libs.fset]
Pruning [section, in libs.fset]
Pruning.p [variable, in libs.fset]
Pruning.T [variable, in libs.fset]
psort [projection, in libs.modular_hilbert]
pSystem [record, in libs.modular_hilbert]
PSystem [constructor, in libs.modular_hilbert]
PTheory [section, in libs.modular_hilbert]
PTheoryBase [section, in libs.modular_hilbert]
PTheoryBase.pS [variable, in libs.modular_hilbert]
PTheory.pS [variable, in libs.modular_hilbert]
R
rAGp_ind [lemma, in libs.modular_hilbert]rAG_ind [projection, in libs.modular_hilbert]
rAI [lemma, in libs.modular_hilbert]
rAIL [lemma, in libs.modular_hilbert]
rApply [lemma, in libs.modular_hilbert]
rApply2 [lemma, in libs.modular_hilbert]
rApply3 [lemma, in libs.modular_hilbert]
rAR_ind [projection, in libs.modular_hilbert]
rAU_ind_weak [lemma, in libs.modular_hilbert]
rAU_ind [projection, in libs.modular_hilbert]
rDup [lemma, in libs.modular_hilbert]
rER_ind_weak [lemma, in libs.modular_hilbert]
rER_ind [lemma, in libs.modular_hilbert]
restrict [definition, in libs.fset]
rEXn [lemma, in libs.modular_hilbert]
rHyp [lemma, in libs.modular_hilbert]
rHyp1 [lemma, in libs.modular_hilbert]
rIntro [lemma, in libs.modular_hilbert]
rMP [lemma, in libs.modular_hilbert]
rMP' [projection, in libs.modular_hilbert]
rNec [projection, in libs.modular_hilbert]
rNecS [lemma, in libs.modular_hilbert]
rNorm [lemma, in libs.modular_hilbert]
rNormS [lemma, in libs.modular_hilbert]
rRev [lemma, in libs.modular_hilbert]
rRev1 [lemma, in libs.modular_hilbert]
rRot [lemma, in libs.modular_hilbert]
S
segerberg [lemma, in libs.modular_hilbert]sepP [lemma, in libs.fset]
sepS [lemma, in libs.fset]
sepU [lemma, in libs.fset]
sep_sep [lemma, in libs.fset]
sep_sub [lemma, in libs.fset]
sep_def [abbreviation, in libs.fset]
sep0 [lemma, in libs.fset]
sep1 [lemma, in libs.fset]
SetOfSeq [section, in libs.fset]
SetOfSeq.T [variable, in libs.fset]
set_op [definition, in libs.base]
set_of_nilp [lemma, in libs.fset]
set_of_uniq [lemma, in libs.fset]
set_ofE [lemma, in libs.fset]
set_of [definition, in libs.fset]
sform [abbreviation, in libs.sltype]
Size [section, in libs.fset]
sizes_eq0 [lemma, in libs.fset]
sizes0 [lemma, in libs.fset]
size_del [lemma, in libs.base]
size_of_uniq [lemma, in libs.fset]
size_sep [lemma, in libs.fset]
size_gt0P [lemma, in libs.fset]
Size.T [variable, in libs.fset]
slack_ind [lemma, in libs.fset]
slClass [record, in libs.sltype]
SLClass [constructor, in libs.sltype]
slpTheory [section, in libs.sltype]
slpTheory.decompP [variable, in libs.sltype]
slpTheory.F [variable, in libs.sltype]
slpTheory.form [variable, in libs.sltype]
slpTheory.LF [variable, in libs.sltype]
slpTheory.ssub [variable, in libs.sltype]
slpTheory.ssub_F [variable, in libs.sltype]
_ ^+ [notation, in libs.sltype]
_ ^- [notation, in libs.sltype]
[ af _ ] [notation, in libs.sltype]
slpType [record, in libs.sltype]
SLPType [constructor, in libs.sltype]
slp_class [projection, in libs.sltype]
slp_form [projection, in libs.sltype]
slType [record, in libs.sltype]
SLType [constructor, in libs.sltype]
sltype [library]
slType_of [definition, in libs.sltype]
sl_class [projection, in libs.sltype]
sl_form [projection, in libs.sltype]
subP [lemma, in libs.fset]
subPn [lemma, in libs.fset]
subsep [lemma, in libs.fset]
subset [definition, in libs.fset]
subset_size [lemma, in libs.fset]
subsize_eq [lemma, in libs.fset]
subxx [lemma, in libs.fset]
subx0 [lemma, in libs.fset]
sub_has_dom [lemma, in libs.base]
sub_all_dom [lemma, in libs.base]
sub_behead [lemma, in libs.base]
sub_power [lemma, in libs.fset]
sub_trans [lemma, in libs.fset]
sub0x [lemma, in libs.fset]
sumn_bound [lemma, in libs.base]
supp [definition, in libs.sltype]
suppC [definition, in libs.sltype]
SuppC [section, in libs.sltype]
suppCD [lemma, in libs.sltype]
suppCU [lemma, in libs.sltype]
suppCWL [lemma, in libs.sltype]
suppC_sub [lemma, in libs.sltype]
SuppC.form [variable, in libs.sltype]
suppS [definition, in libs.sltype]
suppxx [lemma, in libs.sltype]
supp_aux [lemma, in libs.sltype]
supp_lit [projection, in libs.sltype]
supp_mon [projection, in libs.sltype]
supp' [projection, in libs.sltype]
sweight_lit [projection, in libs.sltype]
s_weight [definition, in libs.sltype]
T
T [projection, in libs.modular_hilbert]Top [definition, in libs.modular_hilbert]
U
unique_dist [lemma, in libs.base]W
weight [definition, in libs.sltype]weightS [lemma, in libs.sltype]
weight0 [lemma, in libs.sltype]
wf_leq [lemma, in libs.fset]
X
xaf [abbreviation, in libs.sltype]XM [definition, in libs.base]
other
{ fset _ } (type_scope) [notation, in libs.fset]_ <--> _ [notation, in libs.modular_hilbert]
_ :\/: _ [notation, in libs.modular_hilbert]
_ :/\: _ [notation, in libs.modular_hilbert]
_ ---> _ [notation, in libs.modular_hilbert]
_ `x` _ [notation, in libs.fset]
_ |` _ [notation, in libs.fset]
_ `@` _ [notation, in libs.fset]
_ `<` _ [notation, in libs.fset]
_ `<=` _ [notation, in libs.fset]
_ `\` _ [notation, in libs.fset]
_ `&` _ [notation, in libs.fset]
_ `|` _ [notation, in libs.fset]
EG _ [notation, in libs.modular_hilbert]
[ af _ ] [notation, in libs.sltype]
[ fset _ | _ <- _ , _ <- _ , _ <- _ ] [notation, in libs.fset]
[ fset _ | _ <- _ , _ <- _ ] [notation, in libs.fset]
[ fset _ | _ <- _ ] [notation, in libs.fset]
[ some _ in _ , _ ] [notation, in libs.fset]
[ all _ in _ , _ ] [notation, in libs.fset]
[ fset _ , _ , .. , _ & _ ] [notation, in libs.fset]
[ fset _ ; _ ; .. ; _ ] [notation, in libs.fset]
[ fset _ ] [notation, in libs.fset]
[ fset _ in _ | _ ] [notation, in libs.fset]
\and_ ( _ \in _ ) _ [notation, in libs.modular_hilbert]
\and_ ( <- _ ) [notation, in libs.modular_hilbert]
\and_ ( _ <- _ ) _ [notation, in libs.modular_hilbert]
\bigcup_( _ in _ ) _ [notation, in libs.fset]
\bigcup_( _ in _ | _ ) _ [notation, in libs.fset]
\or_ ( _ \in _ ) _ [notation, in libs.modular_hilbert]
\or_ ( <- _ ) [notation, in libs.modular_hilbert]
\or_ ( _ <- _ ) _ [notation, in libs.modular_hilbert]
~~: _ [notation, in libs.modular_hilbert]
Notation Index
G
~` _ [in libs.fset]S
_ ^+ [in libs.sltype]_ ^- [in libs.sltype]
[ af _ ] [in libs.sltype]
other
{ fset _ } (type_scope) [in libs.fset]_ <--> _ [in libs.modular_hilbert]
_ :\/: _ [in libs.modular_hilbert]
_ :/\: _ [in libs.modular_hilbert]
_ ---> _ [in libs.modular_hilbert]
_ `x` _ [in libs.fset]
_ |` _ [in libs.fset]
_ `@` _ [in libs.fset]
_ `<` _ [in libs.fset]
_ `<=` _ [in libs.fset]
_ `\` _ [in libs.fset]
_ `&` _ [in libs.fset]
_ `|` _ [in libs.fset]
EG _ [in libs.modular_hilbert]
[ af _ ] [in libs.sltype]
[ fset _ | _ <- _ , _ <- _ , _ <- _ ] [in libs.fset]
[ fset _ | _ <- _ , _ <- _ ] [in libs.fset]
[ fset _ | _ <- _ ] [in libs.fset]
[ some _ in _ , _ ] [in libs.fset]
[ all _ in _ , _ ] [in libs.fset]
[ fset _ , _ , .. , _ & _ ] [in libs.fset]
[ fset _ ; _ ; .. ; _ ] [in libs.fset]
[ fset _ ] [in libs.fset]
[ fset _ in _ | _ ] [in libs.fset]
\and_ ( _ \in _ ) _ [in libs.modular_hilbert]
\and_ ( <- _ ) [in libs.modular_hilbert]
\and_ ( _ <- _ ) _ [in libs.modular_hilbert]
\bigcup_( _ in _ ) _ [in libs.fset]
\bigcup_( _ in _ | _ ) _ [in libs.fset]
\or_ ( _ \in _ ) _ [in libs.modular_hilbert]
\or_ ( <- _ ) [in libs.modular_hilbert]
\or_ ( _ <- _ ) _ [in libs.modular_hilbert]
~~: _ [in libs.modular_hilbert]
Module Index
F
Fset [in libs.fset]FsetType [in libs.fset]
Variable Index
A
AutoLemmas.T [in libs.fset]AutoLemmas.T' [in libs.fset]
B
BigAnd.pS [in libs.modular_hilbert]C
CTLTheory.cS [in libs.modular_hilbert]D
Dist.T [in libs.base]Dist.Tgt0 [in libs.base]
E
EqiTheoryBase.pS [in libs.modular_hilbert]EqiTheoryBase.s [in libs.modular_hilbert]
EqiTheoryBase.t [in libs.modular_hilbert]
Extensionality.T [in libs.fset]
F
Fimset3.A [in libs.fset]Fimset3.aT1 [in libs.fset]
Fimset3.aT2 [in libs.fset]
Fimset3.aT3 [in libs.fset]
Fimset3.B [in libs.fset]
Fimset3.C [in libs.fset]
Fimset3.f [in libs.fset]
Fimset3.rT [in libs.fset]
FinSets.T [in libs.fset]
Fixpoints.F [in libs.fset]
Fixpoints.F_bound [in libs.fset]
Fixpoints.F_mono [in libs.fset]
Fixpoints.T [in libs.fset]
Fixpoints.U [in libs.fset]
FsetConnect.e [in libs.fset]
FsetConnect.S [in libs.fset]
FsetConnect.T [in libs.fset]
FSum.T [in libs.fset]
FSum.w [in libs.fset]
G
GreatestFixpoint.bounded_F' [in libs.fset]GreatestFixPoint.F [in libs.base]
GreatestFixpoint.F [in libs.fset]
GreatestFixPoint.F_mono [in libs.base]
GreatestFixpoint.F_bound [in libs.fset]
GreatestFixpoint.F_mono [in libs.fset]
GreatestFixPoint.F' [in libs.base]
GreatestFixpoint.F' [in libs.fset]
GreatestFixpoint.mono_F' [in libs.fset]
GreatestFixPoint.T [in libs.base]
GreatestFixpoint.T [in libs.fset]
GreatestFixpoint.U [in libs.fset]
K
KStarTheory.ksS [in libs.modular_hilbert]KTheory.kS [in libs.modular_hilbert]
L
LeastFixPoint.F [in libs.base]LeastFixPoint.monoF [in libs.base]
LeastFixPoint.T [in libs.base]
M
Maximal.P [in libs.fset]Maximal.T [in libs.fset]
Maximal.U [in libs.fset]
MTheory0.mS [in libs.modular_hilbert]
O
OperationsTheory.A [in libs.fset]OperationsTheory.aT1 [in libs.fset]
OperationsTheory.aT2 [in libs.fset]
OperationsTheory.aT3 [in libs.fset]
OperationsTheory.B [in libs.fset]
OperationsTheory.C [in libs.fset]
OperationsTheory.Laws.X [in libs.fset]
OperationsTheory.Laws.Y [in libs.fset]
OperationsTheory.Laws.Z [in libs.fset]
OperationsTheory.T [in libs.fset]
OperationsTheory.T' [in libs.fset]
P
Pick.p [in libs.fset]Pick.T [in libs.fset]
Pick.X [in libs.fset]
Pruning.p [in libs.fset]
Pruning.T [in libs.fset]
PTheoryBase.pS [in libs.modular_hilbert]
PTheory.pS [in libs.modular_hilbert]
S
SetOfSeq.T [in libs.fset]Size.T [in libs.fset]
slpTheory.decompP [in libs.sltype]
slpTheory.F [in libs.sltype]
slpTheory.form [in libs.sltype]
slpTheory.LF [in libs.sltype]
slpTheory.ssub [in libs.sltype]
slpTheory.ssub_F [in libs.sltype]
SuppC.form [in libs.sltype]
Library Index
B
basebcase
E
edoneF
fsetI
induced_symM
modular_hilbertS
sltypeLemma Index
A
afn1 [in libs.sltype]afp1 [in libs.sltype]
af1n [in libs.sltype]
af1p [in libs.sltype]
allU [in libs.fset]
all_inP [in libs.base]
all_subP [in libs.fset]
all_fset0 [in libs.fset]
all_fset1 [in libs.fset]
andAAU [in libs.modular_hilbert]
andU [in libs.modular_hilbert]
and_sub [in libs.modular_hilbert]
axAA [in libs.modular_hilbert]
axABBA [in libs.modular_hilbert]
axAC [in libs.modular_hilbert]
axAcase [in libs.modular_hilbert]
axADr [in libs.modular_hilbert]
axAEl [in libs.modular_hilbert]
axAEr [in libs.modular_hilbert]
axAGE [in libs.modular_hilbert]
axAGEn [in libs.modular_hilbert]
axAGN [in libs.modular_hilbert]
axAI [in libs.modular_hilbert]
axAODr [in libs.modular_hilbert]
axAReq [in libs.modular_hilbert]
axAsT [in libs.modular_hilbert]
axAUAEr [in libs.modular_hilbert]
axAUAw [in libs.modular_hilbert]
axAUEGF [in libs.modular_hilbert]
axAUeq [in libs.modular_hilbert]
axAUERF [in libs.modular_hilbert]
axA2 [in libs.modular_hilbert]
axB [in libs.modular_hilbert]
axBE [in libs.modular_hilbert]
axBT [in libs.modular_hilbert]
axC [in libs.modular_hilbert]
axContra [in libs.modular_hilbert]
axDBD [in libs.modular_hilbert]
axDF [in libs.modular_hilbert]
axDN [in libs.modular_hilbert]
axDNE [in libs.modular_hilbert]
axDNI [in libs.modular_hilbert]
axDup [in libs.modular_hilbert]
axEEl [in libs.modular_hilbert]
axEEr [in libs.modular_hilbert]
axEI [in libs.modular_hilbert]
axERu [in libs.modular_hilbert]
axEUeq [in libs.modular_hilbert]
axEUEr [in libs.modular_hilbert]
axEUI [in libs.modular_hilbert]
axEUI2 [in libs.modular_hilbert]
axEUw [in libs.modular_hilbert]
axI [in libs.modular_hilbert]
axIO [in libs.modular_hilbert]
axK [in libs.modular_hilbert]
axOC [in libs.modular_hilbert]
axOE [in libs.modular_hilbert]
axOF [in libs.modular_hilbert]
axOIl [in libs.modular_hilbert]
axOIr [in libs.modular_hilbert]
axRot [in libs.modular_hilbert]
AXR_ind [in libs.modular_hilbert]
axS [in libs.modular_hilbert]
axsT [in libs.modular_hilbert]
axT [in libs.modular_hilbert]
axW [in libs.modular_hilbert]
ax_contraNN [in libs.modular_hilbert]
ax_contra [in libs.modular_hilbert]
ax_case [in libs.modular_hilbert]
ax_eq_refl [in libs.modular_hilbert]
B
bigABBA [in libs.modular_hilbert]bigAdrop [in libs.modular_hilbert]
bigAdup [in libs.modular_hilbert]
bigAE [in libs.modular_hilbert]
bigAI [in libs.modular_hilbert]
bigAUA [in libs.modular_hilbert]
bigA1 [in libs.modular_hilbert]
bigA1E [in libs.modular_hilbert]
bigODr [in libs.modular_hilbert]
bigOE [in libs.modular_hilbert]
bigOI [in libs.modular_hilbert]
bigU1 [in libs.fset]
big_sep [in libs.fset]
C
cardSmC [in libs.base]classic_orb [in libs.base]
connect_inP [in libs.fset]
connect_in_trans [in libs.fset]
connect_in1 [in libs.fset]
connect_in0 [in libs.fset]
contraN [in libs.base]
contraP [in libs.base]
cupP [in libs.fset]
curryE [in libs.base]
D
distP [in libs.base]distS [in libs.base]
dist_ltn [in libs.base]
dist0 [in libs.base]
dmA [in libs.modular_hilbert]
dmAR [in libs.modular_hilbert]
dmAU [in libs.modular_hilbert]
dmAX [in libs.modular_hilbert]
dmER [in libs.modular_hilbert]
dmEU [in libs.modular_hilbert]
dmI [in libs.modular_hilbert]
dmO [in libs.modular_hilbert]
E
emptyPn [in libs.fset]eqEsub [in libs.fset]
eqF [in libs.base]
EU_ind [in libs.modular_hilbert]
EXR_ind [in libs.modular_hilbert]
ex_dist [in libs.base]
ex_max [in libs.fset]
F
filter_subset [in libs.base]fimsetP [in libs.fset]
fimsetS [in libs.fset]
fimsetU [in libs.fset]
fimsetU1 [in libs.fset]
fimset0 [in libs.fset]
fimset1 [in libs.fset]
fimset2P [in libs.fset]
fimset3P [in libs.fset]
fin_choices [in libs.base]
fin_choice [in libs.base]
fin_choice_aux [in libs.base]
flattenP [in libs.base]
forall_cons [in libs.base]
forall_nil [in libs.base]
forall_inPn [in libs.base]
fpickP [in libs.fset]
fproperU [in libs.fset]
fproper1 [in libs.fset]
fseq_axiom [in libs.fset]
fseq_uniq [in libs.fset]
fseq_perm_eq [in libs.fset]
fsetDS [in libs.fset]
fsetDSS [in libs.fset]
fsetD0 [in libs.fset]
fsetE [in libs.fset]
fsetIA [in libs.fset]
fsetIC [in libs.fset]
fsetIUl [in libs.fset]
fsetIUr [in libs.fset]
fsetI0 [in libs.fset]
fsetSU [in libs.fset]
fsetUA [in libs.fset]
fsetUC [in libs.fset]
fsetUCA [in libs.fset]
fsetUD [in libs.fset]
fsetUD1 [in libs.fset]
fsetUIl [in libs.fset]
fsetUIr [in libs.fset]
fsetUP [in libs.fset]
fsetUS [in libs.fset]
fsetUSU [in libs.fset]
fsetU_auto4 [in libs.fset]
fsetU_auto3 [in libs.fset]
fsetU_auto2 [in libs.fset]
fsetU_auto1 [in libs.fset]
fsetU0 [in libs.fset]
fsetU1P [in libs.fset]
fsetXP [in libs.fset]
fset_ext [in libs.fset]
fset_eq [in libs.fset]
Fset.fimsetE [in libs.fset]
Fset.fimset2E [in libs.fset]
Fset.fsetUE [in libs.fset]
Fset.fset0E [in libs.fset]
Fset.fset1E [in libs.fset]
Fset.sepE [in libs.fset]
fset0Es [in libs.fset]
fset0F [in libs.fset]
fset0I [in libs.fset]
fset0U [in libs.fset]
fset0Vmem [in libs.fset]
fset1Es [in libs.fset]
fset1F [in libs.fset]
fset1U [in libs.fset]
fset1U1 [in libs.fset]
fset11 [in libs.fset]
fsizeU [in libs.fset]
fsizeU1 [in libs.fset]
fsubDl [in libs.fset]
fsubIl [in libs.fset]
fsubIr [in libs.fset]
fsubsetU [in libs.fset]
fsubUl [in libs.fset]
fsubUr [in libs.fset]
fsubUset [in libs.fset]
fsubUsetP [in libs.fset]
fsubU_auto [in libs.fset]
fsub1 [in libs.fset]
fsub1_auto [in libs.fset]
fsumD [in libs.fset]
fsumDsub [in libs.fset]
fsumI [in libs.fset]
fsumID [in libs.fset]
fsumS [in libs.fset]
fsumU [in libs.fset]
fsum_const1 [in libs.fset]
fsum_replace [in libs.fset]
fsum_sub [in libs.fset]
fsum_eq0 [in libs.fset]
fsum_const [in libs.fset]
fsum0 [in libs.fset]
fsum1 [in libs.fset]
funiq [in libs.fset]
G
gfpE [in libs.base]gfpE [in libs.fset]
gfp_ind2 [in libs.base]
gfp_ind [in libs.base]
gfp_ind [in libs.fset]
gfp_ind_aux [in libs.fset]
H
hasS [in libs.base]has_fset0 [in libs.fset]
has_fset1 [in libs.fset]
I
induced_mor_iff2 [in libs.induced_sym]induced_mor_iff [in libs.induced_sym]
induced_eqi [in libs.induced_sym]
in_sub_all [in libs.base]
in_sub_has [in libs.base]
in_fsetT [in libs.fset]
in_fsetX [in libs.fset]
in_fimset2F [in libs.fset]
in_fimset2 [in libs.fset]
in_fimset [in libs.fset]
in_fset1 [in libs.fset]
in_fset0 [in libs.fset]
in_fsetI [in libs.fset]
in_fsetD [in libs.fset]
in_fsetU [in libs.fset]
in_sep [in libs.fset]
iterFbound [in libs.fset]
iterFsub [in libs.base]
iterFsub [in libs.fset]
iterFsubn [in libs.base]
iterFsub1 [in libs.fset]
iter_fix [in libs.base]
iter_fix [in libs.fset]
L
level_max [in libs.fset]level1 [in libs.fset]
level2 [in libs.fset]
lfpE [in libs.base]
lfpE [in libs.fset]
lfp_ind [in libs.base]
lfp_level_aux [in libs.fset]
lfp_ind [in libs.fset]
lfp_ind_aux [in libs.fset]
M
mask_inj [in libs.base]maximalP [in libs.fset]
mem_fimset3 [in libs.fset]
mem_fimset2 [in libs.fset]
mImpPrv_trans [in libs.modular_hilbert]
mono_F' [in libs.base]
mp2 [in libs.modular_hilbert]
N
nat_size_ind [in libs.fset]next_subproof [in libs.base]
nilp_map [in libs.base]
O
orS [in libs.base]or_sub [in libs.modular_hilbert]
P
powersetE [in libs.fset]powersetP [in libs.fset]
powersetU [in libs.fset]
powerset_size [in libs.fset]
power_mon [in libs.fset]
power_sub [in libs.fset]
properD1 [in libs.fset]
properE [in libs.fset]
properEneq [in libs.fset]
properW [in libs.fset]
proper_size [in libs.fset]
pruneE [in libs.fset]
prune_sub [in libs.fset]
prune_ind [in libs.fset]
R
rAGp_ind [in libs.modular_hilbert]rAI [in libs.modular_hilbert]
rAIL [in libs.modular_hilbert]
rApply [in libs.modular_hilbert]
rApply2 [in libs.modular_hilbert]
rApply3 [in libs.modular_hilbert]
rAU_ind_weak [in libs.modular_hilbert]
rDup [in libs.modular_hilbert]
rER_ind_weak [in libs.modular_hilbert]
rER_ind [in libs.modular_hilbert]
rEXn [in libs.modular_hilbert]
rHyp [in libs.modular_hilbert]
rHyp1 [in libs.modular_hilbert]
rIntro [in libs.modular_hilbert]
rMP [in libs.modular_hilbert]
rNecS [in libs.modular_hilbert]
rNorm [in libs.modular_hilbert]
rNormS [in libs.modular_hilbert]
rRev [in libs.modular_hilbert]
rRev1 [in libs.modular_hilbert]
rRot [in libs.modular_hilbert]
S
segerberg [in libs.modular_hilbert]sepP [in libs.fset]
sepS [in libs.fset]
sepU [in libs.fset]
sep_sep [in libs.fset]
sep_sub [in libs.fset]
sep0 [in libs.fset]
sep1 [in libs.fset]
set_of_nilp [in libs.fset]
set_of_uniq [in libs.fset]
set_ofE [in libs.fset]
sizes_eq0 [in libs.fset]
sizes0 [in libs.fset]
size_del [in libs.base]
size_of_uniq [in libs.fset]
size_sep [in libs.fset]
size_gt0P [in libs.fset]
slack_ind [in libs.fset]
subP [in libs.fset]
subPn [in libs.fset]
subsep [in libs.fset]
subset_size [in libs.fset]
subsize_eq [in libs.fset]
subxx [in libs.fset]
subx0 [in libs.fset]
sub_has_dom [in libs.base]
sub_all_dom [in libs.base]
sub_behead [in libs.base]
sub_power [in libs.fset]
sub_trans [in libs.fset]
sub0x [in libs.fset]
sumn_bound [in libs.base]
suppCD [in libs.sltype]
suppCU [in libs.sltype]
suppCWL [in libs.sltype]
suppC_sub [in libs.sltype]
suppxx [in libs.sltype]
supp_aux [in libs.sltype]
U
unique_dist [in libs.base]W
weightS [in libs.sltype]weight0 [in libs.sltype]
wf_leq [in libs.fset]
Constructor Index
C
CTLSystem [in libs.modular_hilbert]D
decomp_ab [in libs.sltype]decomp_lit [in libs.sltype]
F
fImset_spec [in libs.fset]fImset3_spec [in libs.fset]
fNopick [in libs.fset]
fPick [in libs.fset]
Fset [in libs.fset]
I
induced_iff [in libs.induced_sym]K
KSSystem [in libs.modular_hilbert]KSystem [in libs.modular_hilbert]
M
MSystem [in libs.modular_hilbert]P
PSystem [in libs.modular_hilbert]S
SLClass [in libs.sltype]SLPType [in libs.sltype]
SLType [in libs.sltype]
Axiom Index
F
FsetType.fimset [in libs.fset]FsetType.fimsetE [in libs.fset]
FsetType.fimset2 [in libs.fset]
FsetType.fimset2E [in libs.fset]
FsetType.fsetU [in libs.fset]
FsetType.fsetUE [in libs.fset]
FsetType.fset0E [in libs.fset]
FsetType.fset0_ [in libs.fset]
FsetType.fset1 [in libs.fset]
FsetType.fset1E [in libs.fset]
FsetType.sep [in libs.fset]
FsetType.sepE [in libs.fset]
Inductive Index
D
decomp [in libs.sltype]F
fimset2_spec [in libs.fset]fimset3_spec [in libs.fset]
fpick_spec [in libs.fset]
I
InducedSym [in libs.induced_sym]Projection Index
A
AG [in libs.modular_hilbert]AR [in libs.modular_hilbert]
AU [in libs.modular_hilbert]
AX [in libs.modular_hilbert]
axAGEl [in libs.modular_hilbert]
axAGEr [in libs.modular_hilbert]
axARE [in libs.modular_hilbert]
axARu [in libs.modular_hilbert]
axAUf [in libs.modular_hilbert]
axAUI [in libs.modular_hilbert]
axDN' [in libs.modular_hilbert]
axK' [in libs.modular_hilbert]
axN [in libs.modular_hilbert]
axS' [in libs.modular_hilbert]
B
Bot' [in libs.modular_hilbert]E
elements [in libs.fset]F
f_weight' [in libs.sltype]I
Imp [in libs.modular_hilbert]induced_iff [in libs.induced_sym]
K
ksort [in libs.modular_hilbert]ksort' [in libs.modular_hilbert]
L
lit' [in libs.sltype]M
mprv [in libs.modular_hilbert]msort [in libs.modular_hilbert]
P
psort [in libs.modular_hilbert]R
rAG_ind [in libs.modular_hilbert]rAR_ind [in libs.modular_hilbert]
rAU_ind [in libs.modular_hilbert]
rMP' [in libs.modular_hilbert]
rNec [in libs.modular_hilbert]
S
slp_class [in libs.sltype]slp_form [in libs.sltype]
sl_class [in libs.sltype]
sl_form [in libs.sltype]
supp_lit [in libs.sltype]
supp_mon [in libs.sltype]
supp' [in libs.sltype]
sweight_lit [in libs.sltype]
T
T [in libs.modular_hilbert]Section Index
A
AutoLemmas [in libs.fset]B
BigAnd [in libs.modular_hilbert]C
CTLTheory [in libs.modular_hilbert]D
Dist [in libs.base]E
EqiTheoryBase [in libs.modular_hilbert]Extensionality [in libs.fset]
F
Fimset3 [in libs.fset]FinSets [in libs.fset]
Fixpoints [in libs.fset]
FsetConnect [in libs.fset]
FSum [in libs.fset]
G
GreatestFixPoint [in libs.base]GreatestFixpoint [in libs.fset]
K
KStarTheory [in libs.modular_hilbert]KTheory [in libs.modular_hilbert]
L
LeastFixPoint [in libs.base]M
Maximal [in libs.fset]MTheory0 [in libs.modular_hilbert]
O
OperationsTheory [in libs.fset]OperationsTheory.Laws [in libs.fset]
P
Pick [in libs.fset]Pruning [in libs.fset]
PTheory [in libs.modular_hilbert]
PTheoryBase [in libs.modular_hilbert]
S
SetOfSeq [in libs.fset]Size [in libs.fset]
slpTheory [in libs.sltype]
SuppC [in libs.sltype]
Instance Index
A
AG_mor [in libs.modular_hilbert]And_Eqi_mor [in libs.modular_hilbert]
And_mor [in libs.modular_hilbert]
AR_mor [in libs.modular_hilbert]
AU_mor [in libs.modular_hilbert]
AX_Eqi_mor [in libs.modular_hilbert]
AX_mor [in libs.modular_hilbert]
E
Eqi_mor [in libs.modular_hilbert]eqi_induced_symmety [in libs.modular_hilbert]
ER_mor [in libs.modular_hilbert]
EU_mor [in libs.modular_hilbert]
EX_Eqi_mor [in libs.modular_hilbert]
EX_mor [in libs.modular_hilbert]
I
Imp_mor [in libs.modular_hilbert]induced_eqi [in libs.modular_hilbert]
induced_mor_np [in libs.induced_sym]
induced_mor_pn [in libs.induced_sym]
induced_mor_pp [in libs.induced_sym]
induced_mor_n [in libs.induced_sym]
induced_mor_p [in libs.induced_sym]
induced_sub [in libs.induced_sym]
M
mImpPrv_rel [in libs.modular_hilbert]mprv_eqi_mor [in libs.modular_hilbert]
mprv_mor [in libs.modular_hilbert]
N
Neg_Eqi_mor [in libs.modular_hilbert]Neg_mor [in libs.modular_hilbert]
O
Or_Eqi_mor [in libs.modular_hilbert]Or_mor [in libs.modular_hilbert]
Abbreviation Index
C
clause [in libs.sltype]clause [in libs.sltype]
F
fimset_def [in libs.fset]fimset2_def [in libs.fset]
fsetU_def [in libs.fset]
fset0 [in libs.fset]
fset0_def [in libs.fset]
fset1_def [in libs.fset]
S
sep_def [in libs.fset]sform [in libs.sltype]
X
xaf [in libs.sltype]Definition Index
A
And [in libs.modular_hilbert]B
base [in libs.sltype]Bot [in libs.modular_hilbert]
bounded [in libs.fset]
C
connect_in [in libs.fset]const [in libs.fset]
curry [in libs.base]
D
del [in libs.base]dist [in libs.base]
E
EF [in libs.modular_hilbert]Eqi [in libs.modular_hilbert]
EqiPrv [in libs.modular_hilbert]
ER [in libs.modular_hilbert]
EU [in libs.modular_hilbert]
EX [in libs.modular_hilbert]
F
fdisj [in libs.fset]feqEsub [in libs.fset]
fimset3 [in libs.fset]
fpick [in libs.fset]
fseq [in libs.fset]
fset [in libs.fset]
fsetCK [in libs.fset]
fsetD [in libs.fset]
fsetI [in libs.fset]
fsetT [in libs.fset]
fsetU_comlaw [in libs.fset]
fsetU_law [in libs.fset]
fsetX [in libs.fset]
fset_subCountType [in libs.fset]
fset_countType [in libs.fset]
fset_choiceType [in libs.fset]
fset_predType [in libs.fset]
fset_eqType [in libs.fset]
fset_subType [in libs.fset]
fset_of [in libs.fset]
fset_axiom [in libs.fset]
Fset.fimset [in libs.fset]
Fset.fimset2 [in libs.fset]
Fset.fsetU [in libs.fset]
Fset.fset0_ [in libs.fset]
Fset.fset1 [in libs.fset]
Fset.sep [in libs.fset]
fsum [in libs.fset]
f_weight [in libs.sltype]
G
gfp [in libs.base]gfp [in libs.fset]
I
Imp_op [in libs.modular_hilbert]inE [in libs.fset]
injective2 [in libs.fset]
interp [in libs.sltype]
in_fset [in libs.fset]
L
levl [in libs.fset]lfp [in libs.base]
lfp [in libs.fset]
lit [in libs.sltype]
literalC [in libs.sltype]
local_formSLType [in libs.sltype]
M
maximal [in libs.fset]maximalb [in libs.fset]
mImpPrv [in libs.modular_hilbert]
mImpPrv_refl [in libs.modular_hilbert]
mono [in libs.base]
monotone [in libs.fset]
N
Neg [in libs.modular_hilbert]next [in libs.base]
O
Or [in libs.modular_hilbert]P
powerset [in libs.fset]proper [in libs.fset]
R
restrict [in libs.fset]S
set_op [in libs.base]set_of [in libs.fset]
slType_of [in libs.sltype]
subset [in libs.fset]
supp [in libs.sltype]
suppC [in libs.sltype]
suppS [in libs.sltype]
s_weight [in libs.sltype]
T
Top [in libs.modular_hilbert]W
weight [in libs.sltype]X
XM [in libs.base]Record Index
C
ctlSystem [in libs.modular_hilbert]F
fset_type [in libs.fset]I
InducedSym [in libs.induced_sym]K
ksSystem [in libs.modular_hilbert]kSystem [in libs.modular_hilbert]
M
mSystem [in libs.modular_hilbert]P
pSystem [in libs.modular_hilbert]S
slClass [in libs.sltype]slpType [in libs.sltype]
slType [in libs.sltype]
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (688 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (37 entries) |
Module Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (2 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (77 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (7 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (336 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (16 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (12 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (5 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (39 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (28 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (28 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (11 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (80 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |