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Abstract

In this thesis, we propose efficient and scalable algorithms for shared-memory matrix

factorization and maximum inner product search. Matrix factorization is a popular tool

in the data mining community due to its ability to quantify the interactions between dif-

ferent types of entities. It typically maps the (potentially noisy) original representations

of the entities into a lower dimensional space, where the “true” structure of the dataset is

revealed. Inner products of the new vector representations are then used to measure the

interactions between different entities. The strongest of these interactions are usually

of particular interest in applications and can be retrieved by solving a maximum inner

product search problem.

For large real-life problem instances of matrix factorization and maximum inner product

search, efficient and scalable methods are necessary. We first study large-scale matrix

factorization in a shared-memory setting and we propose a cache-aware, parallel method

that avoids fine-grained synchronization or locking. In more detail, our approach parti-

tions the initial large problem into small, cache-fitting sub-problems that can be solved

independently using stochastic gradient descent. Due to the low cache-miss rate and the

absence of any locking or synchronization, our method achieves superior performance in

terms of speed (up to 60% faster) and scalability than previously proposed techniques.

We then proceed with investigating the problem of maximum inner product search and

design a cache-friendly framework that allows for both exact and approximate search.

Our approach reduces the original maximum inner product search problem into a set

of smaller cosine similarity search problems that can be solved using existing cosine

similarity search techniques or our novel algorithms tailored for use within our framework.

Experimental results show that our approach is multiple orders of magnitude faster than

naive search, consistently faster than alternative methods for exact search, and achieves

better quality-speedup tradeoff (up to 3.9x faster for similar recall levels) than state-of-

the-art approximate techniques.



Kurzfassung

In dieser Arbeit schlagen wir effiziente und skalierbare Algorithmen für Matrixfaktorisie-

rung und für die Suche nach maximalen Skalarprodukten unter einer gemeinsam genutz-

ten Speicherarchitektur vor. Matrixfaktorisierung ist ein beliebtes Werkzeug in der Data-

Mining-Gemeinschaft aufgrund ihrer Fähigkeit, die Interaktionen zwischen verschiedenen

Arten von Objekten zu quantifizieren. Sie bildet typischerweise die (möglicherweise ver-

rauschte) originale Darstellung der Objekte auf einen niederdimensionalen Raum ab, wo

die wahre Struktur der Daten sichtbar wird. Die Skalarprodukte zwischen den neuen

Darstellungen werden dann benutzt, um die Interaktionen zwischen den verschiedenen

Objekten zu messen. Die stärksten dieser Interaktionen sind in Anwendungen oft von

besonderem Interesse und können durch eine Suche nach maximalen Skalarprodukten

abgerufen werden.

Für große, reale Probleme der Matrixfaktorisierung und der Suche nach maximalen Ska-

larprodukten sind effiziente und skalierbare Methoden notwendig. Zunächst betrachten

wir hochskalierbare Matrixfaktorisierung unter einer gemeinsam genutzten Speicherar-

chitektur und schlagen eine cachebewusste, parallele Methode vor, die feingranulare Syn-

chronisation oder Locking vermeidet. Genauer betrachtet teilt unsere Methode das ur-

sprüngliche, große Problem in kleine, cachepassende Probleme, die unabhänging vonein-

ander durch stochastischen Gradientenabstieg gelöst werden können. Aufgrund der nied-

rigen Cache Miss Rate und der Abwesenheit von Locking und Synchronisation, erreicht

unsere Methode eine verbesserte Leistung in Bezug auf Laufzeit (bis zu 60% schneller)

und Skalierbarkeit verglichen mit vorherigen Techniken.

Anschließend erforschen wir das Problem der Suche nach maximalen Skalarprodukten

und entwerfen ein cachefreundliches System, das sowohl genaue als auch approximative

Suche ermöglicht. Unsere Methode reduziert das ursprüngliche Problem auf eine Reihe

von kleineren Problemen der Cosinus-Ähnlichkeitssuche. Diese können durch vorhandene

Techniken für Cosinus-Ähnlichkeitssuche oder neue Algorithmen, die eigens für die Be-

nutzung innerhalb unseres Systems gebaut sind, gelöst werden. Die Versuchsergebnisse

zeigen, dass unsere genauen Methoden um mehrere Größenordnungen schneller als naive

Suche und konstant schneller als alternative Methoden sind, und dass unsere approxi-

mativen Techniken einen besseren Qualität-Laufzeit-Trade-Off (bis zu 3.9-Mal schneller

für ähnliche Recall-Level) als der moderne Stand der Technik für approximative Suche

erreichen.
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Chapter 1

Introduction

Thesis Scope

Matrix factorization methods, such as singular value decomposition (SVD), non-negative

matrix factorization (NMF), or latent-factor models, have recently gained traction in

the data mining community. In particular, they have been successfully applied in the

context of collaborative filtering in recommender systems [Chen et al., 2012, Das et al.,

2010, Hu et al., 2008, Koren et al., 2009, Mackey et al., 2011, Niu et al., 2011, Recht

and Ré, 2013, Yu et al., 2012, Zhou et al., 2008], in link prediction [Menon and Elkan,

2011], in global positioning of sensors [Biswas et al., 2006, Singer, 2008], in remote

sensing [Schmidt, 1986], in the structure-from-motion problem [Chen and Suter, 2005]

in computer vision, and in relation extraction [F. Petroni and Gemulla, 2015, Riedel

et al., 2013]. Matrix factorizations are effective tools for analyzing dyadic data in that

they discover and quantify the interactions between different entities. In this thesis, we

study fast and scalable matrix factorization methods for shared-memory architectures.

In addition, we investigate the problem of efficiently identifying the strongest of the

discovered interactions between the entities involved in the matrix factorization.

We focus on “matrix completion”, a variant of low-rank matrix factorization, in which

the input matrix is only partially observed and the observations are potentially noisy.

Matrix completion techniques have been shown to be one of the best single approaches

used in recommender systems (although in practice ensembles of such methods together

with other models are often used). For this reason, we will use a recommender system

as an example throughout this thesis.

Recommender systems consider as input a set of users and a set of items (movies, prod-

ucts, songs, books, web-pages etc.). The users provide feedback for the items they

1



Chapter 1. Introduction 2

interacted with, e.g., explicit feedback in the form of numerical ratings and time point

of rating or implicit feedback, such as page views. This feedback can be represented in

terms of a sparse matrix, in which rows correspond to users and columns to items, while

the values of the entries are the ratings. A toy example of such a matrix for recommend-

ing movies to users can be seen in Fig. 1.1-(a), where we mark with red question-marks

the unknown ratings. One of the main tasks of a recommender system is to predict the

preferences of each user over items with which she/he did not interact yet, i.e., to predict

the values at the positions of the red question-marks in Fig. 1.1-(a).

Matrix completion is a (popular) way to model the user preferences. The initial ratings

matrix gets approximated by the product of two new matrices: one representing the

users in terms of some latent factors (2 in our example) and one representing the items

in terms of the same latent factors (Fig. 1.1-(b)). Although the factors are latent, in

that they do not have explicit semantic interpretations, the assumption is that they

somehow encode the preferences of the users and the properties of the items. Notice

that in our example the first latent factor roughly corresponds to action movies while

the second one corresponds to romance movies. The underlying assumption behind the

learning process is that users who rate the same items in a similar way should share the

same preferences and that items which are rated in a similar way by a user should have

similar properties. In our example, the movies “Once” and “Amelie” have similar factor

interpretations because the user Debby gave them similar ratings. Similarly, Debby and

Charlie have similar preferences (they like romance movies and dislike action movies),

because they gave “Once” the same rating. In general, during matrix factorization there

is information flow between both entity types (users and movies in our example). We

will refer to the task of learning the factor representations of the entities (users/movies)

from the input data as the “matrix completion task”.

The product of the two factor matrices, created in the matrix completion step, is a

completed, dense version of the initial sparse matrix, i.e., it contains predictions for

all missing entries (Fig. 1.1-(c)). In the basic case, which we focus on in this thesis,

each missing matrix entry is estimated as the inner product of feature vectors for the

corresponding user and item1. Thus a user is predicted to rate an item highly if features

that are important to her/him (i.e., have a large absolute value) match with the features

of the item (large value of equal sign). The larger the predicted value for the missing

entry, the better the recommendation is. In the example of Fig. 1.1, we consider the top-3

movies for each user. In general, such large entries are of particular interest in matrix

factorization applications, because they indicate strong interactions between the entities.

We will refer to the task of identifying the pairs of entities with the strongest interactions
1In general, the estimation formula can be a complex function of the features, as well as of other

data, such as the time stamp of the rating, user bias, implicit feedback, and so on.
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(denoted by large entries in the matrix product) as the “large entry retrieval task”. Since

every entry in the matrix product corresponds to an inner product between the vector

representations of two entities (a users and an item in the recommender systems context),

the large entry retrieval task is practically equivalent to solving a maximum inner product

search (MIPS) problem.

Some applications might involve additional steps after the large entry retrieval step.

Recommender systems, for example, retrieve the best recommendations according to the

predictive model used (the matrix completion model in our case) and choose some of

them to present to their users. The choice depends on application related criteria (e.g.,

availability, diversity, freshness, profit-margin for the company etc). For example, the

recommender system in Fig. 1.1-(d) filters out movies that have already been watched

by the user.

In this thesis, we will focus on the first two tasks, namely, the matrix completion and

large entry retrieval tasks.

Contributions

In this thesis we present novel, efficient and scalable algorithms for both the matrix

completion and the large entry retrieval task.

Real-life applications of matrix factorization may involve matrices with millions of rows

(customers) and columns (items) and billions of entries (observed and predicted rat-

ings). At such massive scales, parallel and efficient algorithms are necessary to achieve

reasonable performance for both the factorization and retrieval task.

We design algorithms tailored for shared-memory architectures. Nowadays high-end

parallel machines routinely ship with multiple terabytes of ram that can fit very large

problem instances of matrix completion. Consider, for example, an extremely large hy-

pothetical problem instance in which the input matrix has 10M rows, 10M columns, and

0.1% of the entries are revealed (for comparison 0.04% of the entries in the Yahoo! Music

dataset in the 2011 KDD-Cup were revealed). Assume that 100 features are used per

row and per column (i.e., a rank-100 factorization). If for each entry of the sparse matrix

(in sparse representation) we need 8 bytes to store the value and another 4+4 bytes to

store the row and column indexes of the entry, then the total data and model size is ap-

proximately 1.5TB, which can easily fit in such high-end parallel machines. Depending

on the application additional compression of the data might be possible. For example,

if the ratings are integers between 1-100 (as in Yahoo! Music) then, 1 byte is enough
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(a) Ratings
Matrix


Die

Har
d

Tak
en

Onc
e
Am

elie
Tita

nic

Anna 5 ? 1 2 ?
Bob 5 4 ? ? 1
Charlie 2 ? 5 ? 4
Debby ? 1 5 5 ?

y
(b) Build

Predictive Model
(Factor Matrices)


Anna 3.2 −0.4
Bob 3.1 −0.2
Charlie 0 1.8
Debby −0.4 1.9

 × ( Die
Har

d
Tak

en
Onc

e
Am

elie
Tita

nic

1.6 1.3 0.7 1 0.4
0.6 0.8 2.7 2.8 2.2

)

y
(c) Retrieve

Recommendations
(Large Entries)


Die

Har
d
Tak

en
Onc

e
Am

elie
Tita

nic

Anna 4.9 3.8 1.2 2.1 0.4
Bob 4.8 3.9 1.6 2.5 0.8
Charlie 1 1.4 4.9 5.0 4.0
Debby 0.5 1 4.9 4.9 4.0


y

(d) Select
Recommendations

(e.g., not
watched)


Die

Har
d
Tak

en
Onc

e
Am

elie
Tita

nic

Anna 0.0 3.8 0.0
Bob 2.5
Charlie 5.0
Debby 4.0


Figure 1.1: Overview of the recommendation process with example

for storing the value of the rating and the overall memory consumption goes down to

0.83TB.

High-end parallel machines usually contain dozens of cores, enough to provide in theory

significant speedup. In practice, however, even for embarrassingly parallel problems,

algorithms tend to under-utilize the capabilities of multicore systems. The performance

of these systems is suffering when: (i) the threads need to communicate (for example

when locking) (ii) the threads intensely compete for resources (cache, system bus access).

In the latter case, the cache-awareness of the algorithm plays an important role: a high

cache-miss rate for a thread means not only more time for this thread to bring data

to the cache, but also possibly the eviction from cache of data the other threads need.

Similarly, higher cache-miss rates for all the threads means also high competition for the

system buses in order to fetch data from main memory.

For these reasons, there is a need for carefully designed, cache-aware algorithms that take
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full advantage of the capabilities of multicore systems. In this thesis, we describe such al-

gorithms for the task of matrix factorization and large entry retrieval. Our contributions

can be summarized as follows:

• we study cache-aware algorithms for parallel matrix completion in shared-memory

architectures

• we propose an efficient, cache-friendly framework for retrieving the large entries in

the resulting matrix product.

Matrix Completion

We study matrix completion with stochastic gradient descent (SGD) in a shared-memory

setting. SGD is an iterative optimization algorithm that has been shown, in a sequential

setting, to be very effective for matrix factorization [Koren et al., 2009]. Unfortunately,

the generic SGD algorithm has two main bottlenecks: (i) it usually follows a random

memory access pattern, leading to an increased number of cache-misses and (ii) it is not

embarrassingly parallel.

While the second point was addressed in many different ways in previously published

related work ([Gemulla et al., 2011c, Niu et al., 2011, Recht and Ré, 2013]), the first point

remained largely ignored. As a result, the suggested parallel methods only scale for a

relatively small number of threads (say up to 8). In Chapter 2, we propose “Cache-aware

SGD” (CSGD), a lock-free and cache-friendly algorithm for shared-memory architectures

which exhibits superior scalability to existing methods for larger numbers of threads (up

to 32 in our experiments). We additionally review existing sequential and shared-memory

approaches based on SGD and on alternating-minimizations, and conduct an extensive

set of experiments comparing CSGD with alternative existing methods on both real and

synthetic datasets.

Large Entry Retrieval (or Maximum Inner Product Search)

Retrieving naively the best recommendations involves first computing the full product

of the two factor matrices and then finding the largest entries in the product matrix.

This naive solution becomes infeasible in practice, for large problem instances. For

example, for our hypothetical problem with the 10M customers and 10M movies, the

naive solution will have to conduct 100 trillion inner product computations. If an inner

product computation takes about 140 ns on average for vectors with 100 factors (as in
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our experimental study), it takes more than 160 days for the naive search to complete

(ignoring any other costs such as I/O costs).

In the past, both exact and approximate algorithms (tree-based [Bachrach et al., 2014,

Curtin and Ram, 2014, Curtin et al., 2013, Ram and Gray, 2012], based on Locality

Sensitive Hashing [Neyshabur and Srebro, 2015, Shrivastava and Li, 2014a,b]) have been

proposed for this problem. However, these methods are still relatively slow and they are

not designed to be cache-aware.

In Chapter 3, we propose the LEMP framework for finding only the “Large Entries in

a Matrix Product”, without computing the full matrix product. As already mentioned,

since every entry corresponds to an inner product between a user- and an item-vector,

LEMP is practically solving a maximum inner product search (MIPS) problem. Our

framework decomposes this large MIPS problem instance into a set of small, cache-

fitting cosine similarity search problems. For each of these smaller problems, an existing

cosine similarity search algorithm can be used, however we additionally propose two

new algorithms, tailored for their use within LEMP. Apart from that, LEMP supports

approximate retrieval by using more aggressive pruning techniques as well as approximate

methods for solving the cosine similarity search problems, such as an adapted version of

Locality Sensitive Hashing (LSH, [Gionis et al., 1999]); our methods can trade-off quality

and performance and provide approximation guarantees. In addition, in Chapter 3, we

compare LEMP with existing methods for exact and approximate MIPS through an

extensive set of experiments on real datasets.

Finally, Chapter 4 summarizes the work presented in this thesis and presents directions

for future work.



Chapter 2

Shared-Memory Matrix Completion

Algorithms

In this chapter1, we discuss low-rank matrix completion techniques, which have recently

received significant attention in the data mining community. At its heart, matrix com-

pletion is a variant of low-rank matrix factorization in which the input matrix is only

partially observed and the observations are potentially noisy.

Large applications can involve matrices with millions of rows, millions of columns, and

billions of entries. For example, Netflix—a company that offers movies for rental and

streaming and employs low-rank matrix completion in their recommendation engine—

gathered more than five billion ratings for more than 80k movies from its more than

20M customers2 [Amatriain and Basilico, 2012, Bennett and Lanning, 2007]. Similarly,

Yahoo Music! collected billions of user ratings for musical pieces [Dror et al., 2012]. At

such massive scales, algorithms for matrix completion must be parallelized to achieve

reasonable performance [Das et al., 2007, 2010, Liu et al., 2010, Mackey et al., 2011, Niu

et al., 2011, Recht and Ré, 2013, Yu et al., 2012, Zhou et al., 2008].

In this chapter, we study parallel algorithms for matrix completion in a shared-memory

environment. Even extremely large matrix completion problem instances can be handled

in such environments (see also the example in Chapter 1). The main bottlenecks for

scalable processing in shared-memory, multicore architectures are: (i) the communication

between the processing units (e.g. when locking is necessary) (ii) the cache-miss rate of

the processing units. Algorithms that require often locking or that follow a random
1The contents of this chapter have been jointly developed with Rainer Gemulla, Faraz Makari, Peter

J. Haas and Yannis Sismanis as in [Gemulla et al., 2011b], [Teflioudi et al., 2012] and [Makari et al.,
2015].

2status in 2012.

7
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memory access pattern (which implies a high cache-miss rate) tend to have inferior

performance, specially when a large number of cores is used.

We propose a cache-aware, lock-free parallel method for matrix completion based on

stochastic gradient descent (SGD). SGD is an iterative optimization algorithm that has

been shown, in a sequential setting, to be very effective for matrix completion [Koren

et al., 2009]. Although many techniques have been developed for parallelizing SGD

([Gemulla et al., 2011c, Niu et al., 2011, Recht and Ré, 2013]), the large majority does

not address SGD’s high cache-miss rate, caused by the fact that it usually follows a

random memory access pattern. The result is that the scalability of these methods

suffers significantly when a large number of cores is used.

This chapter is structured as follows: Section 2.1 defines the problem, introduces the

notation used in this chapter and provides background information for the matrix com-

pletion problem. Section 2.2 discusses gradient descent and stochastic gradient descend

(SGD) in a sequential setting. In Sections 2.3 and 2.4, we present our cache-aware SGD-

based algorithms for matrix completion, termed SGD++ and CSGD. Related work is

discussed in Section 2.5. In Section 2.7, we compare all methods in terms of an extensive

set of experiments and summarize our work in Section 2.8.

2.1 The Matrix Completion Problem

To gain understanding about applications of matrix completion, consider the “Netflix

problem” [Bennett and Lanning, 2007] of recommending movies to customers. Netflix is

a company that offers tens of thousands of movies for rental. The company has more

than 20M customers, each of whom can provide feedback about their personal taste by

rating movies with 1 to 5 stars. The feedback can be represented in a matrix form, for

example


Avatar The Matrix Up

Alice ? 4 2

Bob 3 2 ?

Charlie 5 ? 3

.

Each entry may contain additional data, e.g., the date of rating or other forms of feedback

such as click history. The goal of the completion is to predict missing entries (denoted by

“?”), so that entries with a high predicted rating can then be recommended to users for

viewing. This matrix-completion approach to recommender systems has been successfully
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Symbol Description

V Data matrix
m,n Number of rows & columns of V

Ω Set of revealed entries in V
N Number of revealed entries in V
Ni∗ Number of revealed entries in row i of V
N∗j Number of revealed entries in column j of V
r Rank of the factorization

L,R Factor matrices
E Residual matrix
p Total number of threads
b Number of row/column blocks (CSGD)
T Repetition parameter (CCD++)
s Number of shufflers (Jellyfish)

Table 2.1: Notation

applied in practice; see [Koren et al., 2009] for an excellent discussion of the underlying

intuition.

Before we proceed with the problem definition, let us introduce some notation. For a

summary of the notation used throughout this chapter please refer to Table 2.1. We

denote by the training set Ω = {ω1, . . . , ωN } the set of revealed entries in m× n input

matrix V , where ωk = (ik, jk), k ∈ [1, N ], ik ∈ [1,m], and jk ∈ [1, n]. Let also Ni∗ and

N∗j denote the number of revealed entries in row i and column j, respectively. Finally,

we denote by r � min(m,n) a rank parameter. Our goal is to find an m × r row-

factor matrix L and an r × n column-factor matrix R such that V ≈ LR, i.e., we aim

to approximate V by the low-rank matrix LR. The approximation is governed by an

application-dependent loss function L(L,R) that measures the difference between the

revealed entries in V and the corresponding entries in LR. (We suppress the dependence

on V for brevity.) The matrix completion problem is to find the factor matrices that

give rise to the smallest loss, i.e.,

(L∗,R∗) = argmin
L,R

L(L,R). (2.1)

The matrix L∗R∗ is a “completed version” of V , and each unrevealed entry V ij is

predicted by [L∗R∗]ij .

The loss function L may also incorporate user biases, implicit feedback, temporal effects,

and confidence levels, as well as regularization terms to prevent over-fitting. The most

basic loss is the squared loss:
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Loss Definition (L) Local loss (Lij)

LSl
∑

(i,j)∈Ω(V ij − [LR]ij)
2 (V ij − [LR]ij)

2

LL2 LSl + λ
(∑

ik L
2
ik +

∑
kjR

2
kj

)
(V ij − [LR]ij)

2 + λ
∑

k(N
−1
i∗ L

2
ik +N−1

∗j R
2
kj)

LL2w LSl + λ
(∑

ikNi∗L
2
ik +

∑
kj N∗jR

2
kj

)
(V ij − [LR]ij)

2 + λ
∑

k(L
2
ik +R2

kj)

Table 2.2: Popular loss functions for matrix completion

LSl(L,R) =
∑

(i,j)∈Ω

(V ij − [LR]ij)
2

Table 2.2 summarizes other popular loss functions. LL2 incorporates L2 regularization

and is closely related to the problem of minimizing the nuclear norm of the reconstructed

matrix [Recht and Ré, 2013]. LL2w incorporates weighted L2 regularization [Zhou et al.,

2008], in which the amount of regularization depends on the number of revealed entries.

This particular loss function was a key ingredient in the best performing solutions of

both the Netflix competition and the 2011 KDD-Cup [Chen et al., 2012, Koren et al.,

2009, Zhou et al., 2008].

Our formulation of the matrix completion problem is motivated by its application in

data mining settings, where a fixed set of training data and a loss function are given,

and the goal is to compute loss-minimizing factor matrices as efficiently as possible.

Candes and Recht [2009] discuss the theoretical foundations of the basic minimization

problem. There is also a large body of literature that assumes a “true” underlying V

matrix together with a stochastic process that generates from V the observed training

data. The goal is then to statistically infer the true V matrix from the training data,

where the inference algorithm may exploit knowledge about the stochastic process. In

one such model, the entries to be revealed are selected randomly and uniformly from the

set of all V entries. Many algorithms and supporting theory have been developed for

this specific setting; see, e.g., [Mackey et al., 2011].

In the following, we focus on loss functions that admit a summation form. Following Chu

et al. [2006], a loss function is in summation form if it is written as a sum of local losses

Lij that occur only at the revealed entries of V , i.e.,

L(L,R) =
∑

(i,j)∈Ω

Lij(Li∗,R∗j), (2.2)

where Li∗ andR∗j refer to the i-th row of L and j-th column ofR, respectively. Table 2.2

shows examples of loss functions in summation form together with the corresponding local
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losses. We refer to the gradient of a local loss as a local gradient. By the linearity of the

differentiation operator, the gradient of a loss function having summation form can be

represented as a sum of local gradients:

L′(L,R) =
∑

(i,j)∈Ω

L′ij(Li∗,R∗j).

In the following, we describe popular algorithms based on stochastic gradient descent

(Section 2.2) and alternating projections (Section 2.5.6), which have been shown to be

effective in the collaborative filtering setting ([Gemulla et al., 2011c, Recht and Ré, 2013,

Zhou et al., 2008]).

2.2 Preliminaries

In the following sections, we present sequential and shared-memory algorithms based on

stochastic gradient descent; see Table 2.1 for an overview of our notation.

We first describe the basic SGD algorithm. For brevity, we write L(θ) and L′(θ), where

θ = (L,R), to denote the loss function and its gradient. Denote by∇LL (resp.∇RL) the

m×r (resp. r×n) matrix of the partial derivatives of L w.r.t. to the entries in L (resp. R).

Then L′ = (∇LL,∇RL). For example, [∇LLSl]ik = −2
∑

j:(i,j)∈Ωi∗
Rkj(V ij − [LR]ij),

where Ωi∗ denotes the set of revealed entries in row V i∗.

2.2.1 Gradient Descent

Various gradient-based methods have been explored in the context of matrix completion.

Perhaps the simplest algorithm is gradient descent (GD), which iteratively takes small

steps in the direction of the negative gradient:

θn+1 = θn − εnL′(θ),

where n denotes the step number and { εn } is a sequence of decreasing step sizes. Under

appropriate conditions, GD has a linear rate of convergence; better rates can be obtained

by using a quasi-Newton method, such as L-BFGS-B [Byrd et al., 1995].
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2.2.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is based on GD, but uses a noisy estimate L̂′(θ) of

the gradient L′(θ). SGD starts with some random initial value θ0 and then iterates the

stochastic difference equation

θn+1 = θn − εnL̂′(θ), (2.3)

The gradient estimate is obtained by scaling up just one of the local gradients, i.e.,

L̂′(θ) = NL′ij(θ) for some (i, j) ∈ Ω. The choice of training point (i, j) varies from step

to step according to a training point schedule; see below. Note that the local gradients

at point (i, j) depend only on V ij , Li∗ and R∗j . Therefore, only a single row Li∗ and a

single column R∗j are updated during each SGD step.

For each pass over the training data, SGD performs many “quick-and-dirty” steps whereas

gradient descent (or a quasi-Newton method such as L-BFGS) performs a single careful

step. For large matrices, the increased number of SGD steps leads to much faster conver-

gence in practice [Gemulla et al., 2011c]. Moreover, the noisy estimation of the descent

direction helps keep the algorithm from getting stuck at a local minimum. Batched ver-

sions, in which small batches of local losses are averaged, can also be used, although they

often perform inferior in practice [Byrd et al., 2012].

The performance of SGD is largely affected by the step size selection scheme and the

training point schedule, which we discuss in the following in more detail.

Step size sequence. Step size sequences of the form εn = 1/nα with α ∈ (0.5, 1] are

often used in the literature, since they guarantee asymptotic convergence3 [Kushner and

Yin, 2003]. However, in practice one may want to deviate from the above choice to

achieve faster convergence.

All of our SGD implementations use a simple adaptive method for selecting the step size

that has worked extremely well in our experiments, even though guarantees of asymptotic

convergence have not been formally established.

We refer to one GD step or a sequence of N SGD steps as an epoch; an epoch roughly

corresponds to a single pass over the data. Exploiting the fact that the current loss can

be computed after every epoch, we employ a heuristic called bold driver [Battiti, 1989].

Bold driver starts from an initial step size ε0. After each epoch, the algorithm increases

the step size by a small percentage (5%) if the loss has decreased during the epoch, and

drastically decreases the step size (by 50%) if the loss has increased. Within each epoch,
3“Convergence” refers to running an algorithm until some convergence criterion is met; “asymptotic

convergence” means that the algorithm converges to the true solution as the runtime increases to +∞.
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the step size remains fixed. The initial step size ε0 is obtained by trying different step

sizes on a small sample (say, 0.1%) of Ω and picking the one that works best.

More recent work [Chin et al., 2015] on step size selection suggests to make different

steps for each Li∗ and R∗j (different step sizes for different users or items). In more

detail, for each training point (i, j) processed, the learning rate for Li∗ will be ε0/
√
Gi,

where Gi monotonically increases (for each training point in the ith row) according to

the update rule Gi = Gi +
gT
i gi

r , where by gi we denote the gradient of the local loss

according to Li∗. In other words, the learning rate depends on the squared sum of past

gradient elements. An experimental comparison of the performance of our methods with

the step size sequence of Chin et al. [2015] instead of the bold driver remains for future

work.

Training point schedule. The sequence in which we choose training points to be

processed largely affects the performance of SGD. Intuitively, one desires a sequence

that (1) covers a large part of the training points and (2) is as random as possible.

Common schedules for an SGD epoch are:

• SEQ: process Ω sequentially in some fixed order. This schedule covers all training

points, but it does not involve any randomness.

• WR: sample with replacement from Ω. This schedule creates the most randomness,

but it might not cover all training points.

• WOR: sample without replacement from Ω. Unlike the two extreme schedules SEQ

and WR, WOR is a compromise: it covers all training points and provides sufficient

randomness.

All the above training point selection schedules guarantee convergence, but they converge

within a different number of epochs. In practice, WOR often needs less epochs than

WR; SEQ requires even more epochs than WR and may converge to an inferior solution.

Nevertheless, SEQ epochs are significantly faster than WR or WOR epochs, because

they have better memory locality.

In practice, training point selection schedules with high randomness (WR/WOR) are

preferred (we used WOR throughout our experiments), because they converge in less

epochs (less passes over the data). However, the random memory access patterns of

these schedules increases the cache-miss rate of SGD, which can be a major bottleneck

for multicore systems. In the following, we propose cache-friendly SGD-based algorithms

for parallel matrix completion in shared-memory, multicore systems.
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2.3 SGD++: Sequential SGD with Prefetching

In the following, we will study latency-hiding SGD-based algorithms for matrix com-

pletion. This section presents SGD++, a sequential method with prefetching, whereas

Section 2.4 discusses CSGD, a parallel, cache-aware method.

One way to improve the cache behavior of the WOR schedule is to prefetch the required

data into the CPU cache before it is accessed by the SGD algorithm (e.g., using gcc’s

__builtin_prefetch macro). In the beginning of each epoch, we precompute and store

a permutation Π of { 1, . . . , N } that indicates the order in which training points are to

be processed. In the n-th step, the SGD algorithm accesses the values V iΠn j
Π
n
, LiΠn∗, and

R∗jΠn , whose common index value (iΠn , j
Π
n ) is determined from the Π(n)-th entry of Ω.

We access Π and then prefetch the index value (iΠn , j
Π
n ) during SGD step n− 2 (so that

it is in the CPU cache at step n − 1), and the values V iΠn j
Π
n
, LiΠn∗, and R∗jΠn in SGD

step n− 1 (so that they are in the CPU cache at step n). Note that Π itself is accessed

sequentially so that no explicit prefetching is needed. We refer to SGD with prefetching

as SGD++; see Algorithm 1.

In general, software prefetching is optimal only if prefetch requests are sent early enough

to fully hide memory latency. However, for SGD, this is difficult to be achieved in prac-

tice. The reason is that an iteration of the inner loop of Algorithm 1 is computationally

inexpensive. When there is not enough computation between prefetching instructions

and demand requests, it can be difficult to insert prefetching instructions at the “right

time” to provide timely prefetching requests (see [Lee et al., 2012] for a discussion on

when prefetching performs suboptimal). The result is that SGD++ manages to only

partially overlap computation and data-fetching time. In our experiments, SGD++ was

up to 12% faster than SGD (see Section 2.7.3).

In the next section, we discuss CSGD, a method for cache-aware, parallel SGD. Unlike

SGD++, CSGD does not rely on prefetching instructions to reduce the cache-miss rate.

Instead, it follows a memory access pattern which makes the system’s prefetching more

effective. CSGD reached in our experiments approximately up to 60% speedup over

SGD.

2.4 CSGD: Cache-aware Parallel SGD

In this section, we describe our method for cache-aware parallel SGD (CSGD) for matrix

completion. In the following, we focus on different aspects of the method. We will denote

by p the number of available threads in the machine.
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Algorithm 1 The SGD++ algorithm for matrix completion
Require: Incomplete matrix V , initial values L and R
while not converged do // epoch

Create random permutation Π of { 1, . . . , N } // WOR schedule
for n = 1, 2, . . . , N do // step

Prefetch indexes (iΠn+2, j
Π
n+2) ∈ Ω for next but one step

Prefetch data V iΠn+1j
Π
n+1

, LiΠn+1∗
, R∗jΠn+1

for next step
L′iΠn∗

← LiΠn∗ − εnN∇L
iΠn ∗
LiΠn jΠn (L,R)

R∗jΠn ← R∗jΠn − εnN∇R∗jΠ
n
LiΠn jΠn (L,R)

LiΠn∗ ← L′iΠn∗
end for

end while

2.4.1 Parallel processing

Unfortunately, SGD is not embarassingly parallel. In fact, the SGD updates are depen-

dent on each other. To see this, assume two threads p1 and p2 running SGD on matrix V .

Assume p1 processes entry (i1, j1) and updates factors Li1∗ and R∗j1 , and p2 similarly

processes entry (i2, j2). Whenever i1 = i2 the two threads will try to update the same

row-factor Li1∗ causing a dirty write. Similarly, whenever j1 = j2 the threads will try to

update the same column-factor causing a collision on R∗j1 .

Many different approaches have been proposed to address this issue. In CSGD, we follow

the stratification idea proposed by Gemulla et al. [2011c] (see also Section 2.5.1): we

partition the input matrix V into b × b partitions, also called blocks, where b is chosen

to be greater than or equal to the number of available threads. The factor matrices are

blocked conformingly, i.e., b × 1 for matrix L and 1 × b for matrix R. Each thread, is

assigned b/p partitions of L and the corresponding row-partitions of V . In this way, no

collisions on L are possible.



R1 R2 · · · Rb

L1 V 11 V 12 · · · V 1b

L2 V 21 V 22 · · · V 2b

...
...

...
. . .

...

Lb V b1 V b2 · · · V bb

.

Rows and columns are randomly shuffled prior to blocking, so that each block contains

N/b2 training points in expectation. Now observe that when SGD runs on some block

V ij , it accesses only the matrices Li and Rj . Thus SGD can, for example, be run inde-

pendently and in parallel on each of the blocks on the main diagonal (i.e., V 11, . . . ,V bb);

the SGD instances refer to disjoint parts of the factor matrices and will hence yield the
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V 11V 12V 13V 14

V 21V 22V 23V 24

V 31V 32V 33V 34

V 41V 42V 43V 44

V 11V 12V 13V 14

V 21V 22V 23V 24

V 31V 32V 33V 34

V 41V 42V 43V 44

V 11V 12V 13V 14

V 21V 22V 23V 24

V 31V 32V 33V 34

V 41V 42V 43V 44

V 11V 12V 13V 14

V 21V 22V 23V 24

V 31V 32V 33V 34

V 41V 42V 43V 44

V 11V 12V 13V 14

V 21V 22V 23V 24

V 31V 32V 33V 34

V 41V 42V 43V 44

V 11V 12V 13V 14

V 21V 22V 23V 24

V 31V 32V 33V 34

V 41V 42V 43V 44

SA SB SC SD SE SF

Figure 2.1: Examples of strata for a 4 × 4 blocking of V , when p = 2 threads are
available

same result as processing the main diagonal using sequential SGD. In general, we say

that two different blocks V ij and V i′j′ are interchangeable whenever i 6= i′ and j 6= j′,

i.e., they share neither rows nor columns. We call a set of p pairwise interchangeable

blocks a stratum, the set of all strata is denoted by S. By the arguments above, the

blocks of a stratum can be processed independently and in parallel since they do not

share any common rows or columns.

For illustration purposes, let us consider the case when b = 4 and p = 2. Figure 2.1

shows some of the possible b!( bp)p strata on a b × b blocked matrix. It is convenient to

view a stratum as a map from a thread k to a block index (i, j) = S(k). For example,

SB(1) = (1, 2), SB(2) = (3, 3), in the example of Figure 2.1. Stratum S is processed in

parallel: thread k processes block V S(k). Continuing the example with S = SB, thread 1

processes block V 12 and thread 2 processes block V 33. In what follows, we refer to the

processing of a single stratum as a subepoch and to a sequence of b2/p subepochs as an

epoch. Note that an epoch roughly corresponds to processing N training points: each

block contains N/b2 entries in expectation, we process p blocks per subepoch, and there

are b2/p subepochs per epoch. The CSGD algorithm is described in Algorithm 2: it

selects, in each subepoch, p interchangeable blocks (a stratum), processes each block on

a separate thread using SGD, and proceeds to the next subepoch.

Algorithm 2 The CSGD algorithm for matrix completion
Require: Incomplete matrix V , initial values L and R, blocking parameter b, number
of threads p
Block V / L / R into b× b / b× 1 / 1× b blocks
Co-locate points in the same V block in consecutive memory locations
while not converged do // epoch

Pick step size ε
for s = 1, . . . , b2/p do // subepoch

Pick p blocks {V S(1), . . . ,V S(p)} to form a stratum
for k = 1, . . . , p do // in parallel

Run SGD on the training points in V S(k) with step size ε
end for

end for
end while
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More formally, the algorithm decomposes the initial loss L(θ) into a weighted sum of

stratum losses

L(θ) = w1L1(θ) + w2L2(θ) + . . .+ wqLq(θ), (2.4)

where q = b!( bp)p is the number of possible strata and for the weight ws of each stratum

s, it holds that 0 ≤ ws ≤ 1 and
∑q

s=1ws = 1. The stratum weight ws corresponds to the

long-term fraction of steps run on stratum s. In addition, each stratum loss is associated

with a stratum-specific constant cs:

Ls(θ) = cs
∑

(i,j)∈Ωs

Lij(θ). (2.5)

For Eq. (2.4) and (2.5) to be equivalent to Eq. (2.2) we also require that wscs = 1.

Therefore, if the algorithm spends more time in a specific stratum s (higher ws), the

corresponding stratum loss will be downweighted (lower cs). The gradient estimate for

the stratum loss becomes:

L̂′s(θ) = NscsL
′
ij(θ). (2.6)

Note that, if we set cs = N/Ns in Eq. (2.6), we fall back to the standard SGD gradient

estimate L̂′s(θ) = NL′ij(θ).

Since in each subepoch the algorithm takes a step towards the direction of −L̂′s(θ) and

not the correct −L̂′(θ), it is not obvious if it will converge at all. Gemulla et al. [2011a]

show that such stratified versions of SGD indeed converge under appropriate regularity

conditions on the loss function, the step size sequence and stratum selection sequence

(see [Gemulla et al., 2011a] for more details).

2.4.2 Stratum Schedule

Just as the training point schedule of SGD influences its convergence in practice, the

stratum schedule influences the convergence properties of CSGD. Formally, a stratum

schedule is a (possibly random) sequence S1, S2, . . . of strata from S; We process stratum

Sl in the l-th subepoch. In CSGD, we partition matrix V evenly across the p threads,

such that each row of blocks is assigned to exactly one core (in Figure 2.1 the first two

row-blocks are assigned to thread 1 and the second two to thread 2). The algorithm then

picks a stratum to work on. This can happen sequentially (SEQ), e.g., (SA, SB, SC , · · · ),
randomly with replacement (WR) e.g., (SC , SB, SC , · · · ) or randomly without replace-

ment (WOR) e.g., (SC , SB, SF , · · · ). We found that in practice WOR achieves the best
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results because it randomizes the order of blocks as much as possible while ensuring that

every training point is processed in every epoch.

Gemulla et al. [2011a] showed that stratified SGD asymptotically converges to a station-

ary point of L for similar stratum-selection schedules for the special case, in which b = p.

We will now generalize for the case that b > p. We argue informally, following closely

the line of argumentation of Gemulla et al. [2011a]. Gemulla et al. [2011a] showed that

stratified SGD converges if the values of ws and cs satisfy for each block V ij :

∑
s:S⊇V ij

wscs = 1. (2.7)

We therefore need to show that the SEQ and WR/WOR schedules rely on values of ws
and cs that satisfy Eq. (2.7). Recall that ws can be seen as the long-term fraction of

steps run on stratum Ωs or as the probability to select stratum Ωs and cs is the weight

of the steps that will be taken in stratum Ωs.

For SEQ, we can set ws = Ns/N , for the b2/p strata that (if followed sequentially) jointly

cover all the training points and ws = 0 for the rest. In other words, each of the strata

with non zero weight is chosen equally often with probability proportional to the training

points in the stratum. For WR/WOR, let each block V ij appear in d different strata.

To have equal probability to choose any of the d strata, we need to set ws = Ns/(dN)

and we take Ns steps while processing stratum s. For the above choices of ws, it can be

shown that Eq. (2.7) holds when cs = N/Ns, and CSGD converges.

2.4.3 Cache-awareness

Cache-awareness is achieved in CSGD by choosing the blocking parameter b, such that

each block V ij , as well as the corresponding factor matrices Li and Rj , fit into the cache

(last level) available per core, i.e., we expect that b � p. The training points within a

block are laid out in consecutive memory locations; if a block is processed using SGD, we

expect few cache misses when accessing the data and factor matrices, because of higher

locality.

To showcase this, we make a simplified analysis of the cache-miss rates of SGD and CSGD

with the WOR training point selection schedule on a single core. Assume the worst case

scenario in which a single training point can be stored in one full cache line. Similarly,

assume that we need one full cache line to store a row-factor Li∗ or a column-factor R∗j .

In other words, fetching any of these data into cache implies one cache-miss. Assume

that L, R and V are all much larger than the available cache size and that the cache

is initially empty. SGD will cause one cache miss to bring each one of the N training
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points into cache. Also since L and R are very large in comparison to the cache size,

the probability to find the currently needed factors into cache is very small. Therefore,

we assume it will also cause a cache-miss for each factor. In other words, there will be

three cache misses for each training point, i.e. 3N in total. On the other hand, each

block of CSGD is small enough to fit into cache. This means that we only need to bring

the factors into cache once. For all later accesses they will still be in cache. I.e., for each

block b with Nb training points, CSGD needs to pay Nb +m/b+ n/b cache misses. For

the whole matrix V , it will cause
∑

b(Nb+m/b+n/b) = N +m+n. Hence, the relative

cost for SGD vs. CSGD will be:

Cost(SGD)

Cost(CSGD)
=

3N

N +m+ n
≈ 3.

This means that CSGD will have roughly 3x less cache-misses than SGD. Note that this

is a worst case analysis. In practice, usually a cache line will fit multiple training points,

allowing for prefetching of training points that are highly likely (in the case of CSGD)

to be later used.

2.4.4 Synchronization

In order to ensure that no collisions will take place, the original DSGD algorithm [Gemulla

et al., 2011c] was forcing the threads to synchronize between subepochs. This means that

each subepoch is as slow as the slowest working thread. This is less of a problem when

b = p (as in DSGD) and the number of subepochs is relatively small (b subepochs).

However, for CSGD, the large number of subepochs (b2/p), and hence synchronization

points, severely limit performance in practice. An alternative procedure is to simply

omit synchronization, akin to the PSGD algorithm [Niu et al., 2011] (see Section 2.5.3).

In particular, we partition matrix V evenly across the p threads, such that each row of

blocks is assigned to exactly one core. This ensures that there will be no inconsistent

updates on the row-factor matrix L. Each thread then independently processes its blocks

in WOR order; inconsistent updates on R may occur, but since b� p, we expect this to

happen rarely.

In our experiments (see Section 2.7) CSGD was the most scalable and best-performing

matrix completion algorithm (up to 60% faster than its closest competitor).
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2.5 Related Work

In this section, we review related work on parallel matrix completion. We start with

SGD-based approaches and continue with methods based on alternating minimizations.

Table 2.3 presents an overview of the methods discussed in this section.

2.5.1 Distributed Stratified SGD (DSGD)

As already mentioned in Section 2.4, DSGD was the first method to use stratification

for parallelizing SGD in a matrix factorization setting. Although DSGD was originally

proposed for shared-nothing (“Distributed”) architectures, it is also conceivable for a

shared-memory setting. In DSGD the blocking parameter b is hardware dictated and

is set to the number of available processing units p. This means that in the general

case the blocks are large in comparison to the available cache size and DSGD lacks the

cache-awareness exhibited by CSGD. In addition, DSGD (unlike CSGD) synchronizes

the threads between subepochs. However this is usually not a problem, since for DSGD

(where b = p) the number of subepochs per epoch is relatively small (b).

2.5.2 Jellyfish

An alternative approach to DSGD is the Jellyfish algorithm [Recht and Ré, 2013]. As

with DSGD, Jellyfish uses a p × p blocking of the input matrix. Parallel processing is

achieved in a manner similar to DSGD: the p available threads work on interchangeable

blocks, avoiding fine-grained locking. The main difference to DSGD is that Jellyfish

uses a SEQ stratum and training point selection schedule, so that prefetching is very

effective. For this reason, it can also be categorized as a cache-aware method. Since

sequential stratum and training point selection schedules usually do not lead in fast

convergence (in terms of number epochs required to converge), Jellyfish increases the

randomness of the SGD by reshuffling the entire data set at the start of each epoch. To

speed up data shuffling, Jellyfish maintains s copies of the data, where s ≥ 2 is a small

number. While one copy is being processed, s− 1 parallel shuffle threads reorganize the

data in the remaining s − 1 copies. Jellyfish’s disadvantages are that (1) it is memory

intensive because multiple copies of the input matrix need to be maintained and (2)

parallel shuffling may in practice lead to memory bottlenecks.
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2.5.3 Parallel lock-free SGD (PSGD)

As discussed previously, if two SGD steps process training points that lie in the same

row i (resp., column j), then both of these steps read and update row Li∗ (resp., column

R∗j) of the factor matrix. Perhaps the simplest way to parallelize SGD is to partition

the training point schedule evenly among the p threads, i.e., each thread runs N/p SGD

steps per epoch. To avoid concurrent parameter updates, we lock row i of L and column

j of R before processing training point (i, j). This lock-based approach works well when

the number p of threads is small (say, p ≤ 8), but both locking and random memory

accesses impede scalability to large numbers of threads. Niu et al. [2011] experimented

with a lock-free algorithm, henceforth denoted PSGD, in which no locks are obtained

so that inconsistent updates may occur. Since there are usually significantly more rows

and columns than available threads (i.e., m,n � p), it is unlikely that a given row or

column is processed by multiple threads at the same time; we thus expect few inconsistent

updates. Niu et al. [2011] found virtually no difference between lock-based and lock-free

parallel SGD in terms of running time and quality (for matrix completion problems).

On the whole, our experiments validate these findings, except that we observed a small

performance improvement (of up to 9%) of PSGD over the lock-based approach when

using a large number of threads (p ≥ 16). De Sa, Christopher M and Zhang, Ce and

Olukotun, Kunle and Ré, Christopher and Ré, Christopher [2015] recently proposed a

lock-free parallel SGD method, termed Buckwild!, that uses low precision arithmetic to

achieve lower memory footprint and more effective use of SIMD instructions.

2.5.4 Fast Parallel SGD (FPSGD)

In parallel to CSGD, another stratified method based on DSGD was proposed, termed

FPSGD [Zhuang et al., 2013]. FPSGD identifies and addresses the two main problems

of DSGD in a shared-memory setting: (i) the random memory access pattern (when a

WOR training point schedule is used) (ii) the synchronization between subepochs. The

latter is addressed by partitioning the input matrix in at least (p+ 1)× (p+ 1) blocks.

In this way, whenever a thread is done with processing a block, there is another “free”

block that it can start processing, without causing any collisions. The memory access

pattern problem is addressed by using the SEQ training point selection schedule within

the blocks. FPSGD uses a random schedule for assigning blocks to threads, however,

since within each block it uses the SEQ training point selection schedule, the randomness

is relatively limited. Therefore, it usually partitions the input matrix more fine-grained

than (p + 1) × (p + 1), so that there will be more blocks to choose from and thus, the

randomness of the overall process will increase.
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Overall, FPSGD and CSGD solve the same problems in different ways: (i) CSGD uses

cache-fitting partitions to reduce the cache-misses, while FPSGD uses the SEQ training

point selection schedule. (ii) They both employ a fine-grained partitioning of the input

matrix, however in CSGD the granularity of the partitioning is dictated by the hardware

and the size of the dataset, whereas in FPSGD it has to be tuned, such that the SEQ

training point selection schedule will not impede the convergence. An experimental

comparison of CSGD and FPSGD remains for future work.

2.5.5 Multi-Level Grid File based Matrix Factorization (MLGF-MF)

MLGF-MF [Oh et al., 2015] is a parallel SGD-based matrix factorization technique that

runs on shared-memory and on block-storage devices (like SSD), which makes it appro-

priate for cases, in which the problem instance does not fit into the memory of the given

machine. It uses asynchronous I/O allowing for overlapping of the CPU and I/O pro-

cessing. Similar to CSGD, the input matrix is partitioned and SGD runs in parallel on

interchangeable blocks. However, multi-level grid file (MLGF [Whang et al., 1994]) in-

dexing is used for the partitioning. MLGF partitions each block recursively, if it contains

more training points than a pre-specified capacity. This also makes the whole approach

more robust, since the threads are expected to spend similar time on each block. CSGD

distributes evenly the training points among the blocks by randomly permuting the rows

and columns of the input matrix during preprocessing. However, this can be costly, if the

input matrix does not fit into memory and one needs to fetch the training points from

disk. Therefore, MLGF-MF is a good alternative in this scenario and if only a single

machine is available. If the input matrix can fit into memory, Oh et al. [2015] showed

experimentally that MLGF-MF performs comparably to FPSGD.

2.5.6 Alternating Least Squares (ALS)

ALS alternates between optimizing for L given R, and optimizing for R given L. For

the loss function LSl, this amounts to solving a set of least squares problems, one for

each row of L and one for each column of R:

∀i, V i∗ −Li∗R(n) = 0 (2.8)

∀j, V ∗j −L(n+1)R∗j = 0, (2.9)
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where the unknown variable is underlined and R(n) (L(n+1)) is R (L) during the nth

(n+ 1) iteration. Loss functions LL2 and LL2w can also be handled [Zhou et al., 2008].

During the computation of least squares solutions, matrix V is accessed by row when

updating L (Eq. (2.8)), and by column when updating R (Eq. (2.9)). For this reason,

ALS implementations need to store two (sparse) representations of V in memory: one in

row-major order (denoted V r) and one in column-major order (denoted V c). An ALS

epoch has time complexity O(Nr2 + (m+ n)r3).

Parallel ALS (PALS). A shared-memory parallel algorithm for ALS, denoted PALS,

is based on the observation that the foregoing least-squares problems can be solved

independently [Zhou et al., 2008]. E.g., an update to a row of L does not affect other rows

of L, so that the processing of rows of L can be partitioned evenly among the available

threads. Processing of columns of R can similarly be partitioned among threads. Our

implementation of PALS differs from the algorithm of Zhou et al. [2008] only in that

it uses multiple threads (which share the same memory space and variables) instead

of multiple processes (each with its own address space), which allows PALS to reduce

memory consumption.

2.5.7 Cyclic Coordinate Descent (CCD++)

Cyclic coordinate descent (CCD) can also be seen as an alternating minimization method:

it optimizes a single entry of one of the factor matrices at a time, while keeping all other

entries fixed. This leads to a much simpler minimization problem than that of ALS.

Practical variants of CCD adopt the approach of “hierarchical” ALS [Cichocki and Phan,

2009] in that they do not operate on the original input matrix, but on the residual matrix

E whose entries are V ij − [LR]ij for (i, j) ∈ Ω.

Recently, a version of CCD, termed CCD++, has been proposed for matrix completion

problems [Yu et al., 2012]. Similar to ALS, CCD++ stores two copies of the residual

matrix E: one in row-major order (to update L), denoted Er, and one in column-major

order (to update R), denoted Ec. CCD++ employs a feature-wise sequence of updates,

i.e., each iteration loops over all features f ∈ [1, r]. For each feature f , the algorithm

executes T update operations, where T is an automatically tuned parameter that is

independent of the data size, and each operation updates the fth feature-vector of L

(i.e., L∗f ) and then the fth feature-vector of R (i.e., Rf∗). Finally, both copies of the

residual matrix are updated and the algorithm continues with feature f + 1. For each

feature, the residual matrix is scanned 2T times to update the corresponding feature

vectors of L and R, and twice to update Er and Ec. An iteration, i.e., the processing

of all features, therefore consists of 2r(T + 1) epochs and has overall time complexity
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of O(TNr). Overall, our experiments, as well as results of Yu et al. [2012], indicate

that CCD++ is computationally less expensive than ALS and can handle larger ranks

efficiently.

Parallel CCD++ (PCCD++). Parallel versions of CCD++ [Yu et al., 2012] are

based on ideas similar to those used for parallelizing ALS; in particular, they make use

of a similar partitioning of the factor matrices. We refer to the shared-memory variant

as PCCD++.

2.5.8 Parallel Collective Matrix Factorization (PCMF)

Parallel Collective Matrix Factorization (PCMF) [Rossi and Zhou, 2015] improves over

PCCD++ in a variety of ways. First, it minimizes the time the threads need to wait

for each other (i) by removing the synchronization barriers when switching from updat-

ing L∗f to updating Rf∗ and (ii) by enabling a work-stealing strategy between threads.

Apart from the basic matrix factorization, PCMF can be used for joint (collective) matrix

factorization of the main input matrix together with matrices carrying additional infor-

mation. This is useful, for example in a recommender system scenario, when apart from

the ratings matrix, we have additional information about the users or items in a matrix

form (e.g., user-user friendship matrix or item-item similarity matrix). A comparison of

our work with PCMF remains as a direction for future work.

2.5.9 Algorithms for Distributed Matrix Factorization

This thesis focuses on algorithms for shared-memory architectures. However, when the

problem instance cannot fit into the memory of single machine or if a single machine

does not have enough processing power to provide the necessary speedup, methods for

distributed matrix completion can be used. For completeness reasons, we provide here a

short overview of such algorithms.

As we already mentioned in Section 2.5.1, Gemulla et al. [2011c] were the first to use

stratification for parallel processing in a distributed environment (initially for MapRe-

duce, later also for a small cluster of commodity nodes). Their method, DSGD, stores

a partition of L and a row-partition of V locally in each node, whereas the partitions

of R are subject to communication (under the assumption that R is smaller than L.

Otherwise the roles of R and L are reversed). A basic difference to CSGD is that

the partitioning scheme in DSGD is dictated by the number of the available processing

units. Teflioudi et al. [2012] and Yun et al. [2014] proposed the DSGD++ and NOMAD

algorithms, respectively, which were designed to run in-memory on a small cluster of
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commodity nodes. Both are based on stratification and exploit thread-level parallelism,

asynchronous communication, and overlap communication and computation.

Distributed versions of ALS and CCD++ have also been proposed. The distributed ALS

(DALS) and CCD++ (DCCD++) follow closely the rationale of their shared-memory

versions. In DALS, each machine stores localy L, R and a row-partition of V twice

(once in column-major and once in row-major order). When optimizing L, each node

operates on the part of L that corresponds to the row-partition of V locally stored and,

at the end of the iteration, sends it to the other nodes, so that all nodes will have the

same L locally stored before the iteration for optimizing R begins. The distribution

of CCD++ takes place in a similar way to DALS, with the difference that DCCD++

broadcasts only a single feature-vector instead of the entire factor matrix as in DALS.

However, this communication is performed every time a feature-vector is being updated,

i.e., 2Tr times per iteration.

2.6 Discussion

Table 2.3 summarizes the properties of the parallel methods discussed in this chapter.

Regarding the runtime complexity, ALS is generally much more expensive than SGD,

because it needs to solve a large number of linear least squares problems. This computa-

tional overhead is acceptable, however, when the rank of the factorization is sufficiently

small (say, r ≤ 50). Moreover, both ALS and CCD++ are usually more memory-

intensive than SGD, since they need to store the data matrix twice. An exception of an

SGD-based method that keeps in memory multiple copies of the input data is Jellyfish.

This means that these memory-intensive methods are appropriate for smaller problem

instances than SGD-based methods, when only shared-memory architectures are avail-

able. An advantage of both ALS and CCD++ over SGD is that the former methods

are parameter-free, whereas SGD methods make use of a step size sequence. Our exper-

iments suggest, however, that SGD is the method of choice when the step size sequence

is chosen judiciously, e.g., using the bold driver method of Section 2.2.2. Finally, SGD-

based methods apply to a wide range of loss functions, whereas ALS and CCD++ target

quadratic loss functions. In the next section, we compare these methods in an extensive

experimental study.

2.7 Experimental Study

We conducted an experimental study and compared all algorithms along the following

dimensions: the time per epoch (excluding loss computation), the number of epochs
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m n N Size L λ

Netflix 480k 18k 99M 2.2GB LL2w 0.05
KDD 1M 625k 253M 5.6GB LL2w 1
Syn1B-rect 10M 1M 1B 22.3GB LSl -
Syn1B-sq 3.4M 3M 1B 22.3GB LSl -

Table 2.4: Summary of datasets

required to converge, and the total time to converge (including loss computations). Recall

that an epoch corresponds roughly to a single pass over the input data, so that the number

of epochs reflects the number of data scans. When comparing two algorithms A and B

in an experiment, we say that A is more compute-efficient than B if it needs less time

per epoch, more data-efficient if needs fewer epochs to converge, and faster if it needs

less total time.

2.7.1 Overview of Results

In the sequential setting, CCD++ was the fastest method on the relatively small Netflix

dataset (up to 3.4x faster than CSGD), but its performance dropped significantly when

used on the larger KDD dataset (up to 3.7x slower than CSGD).

In the shared-memory setting, CSGD outperformed all alternative methods on both real

and synthetic datasets: It was up to 15.6x faster than PALS, up to 2.5x faster than

PSGD, and up to 5.7x faster than PCCD++. CSGD also showed better scalability than

PSGD, Jellyfish, and PCCD++ in that we could use more parallel threads before hitting

the memory bandwidth. PALS was the most data-efficient but also the least compute-

efficient method, whereas PCCD++ was least data-efficient but most compute-efficient.

The SGD-based approaches lay in-between.

2.7.2 Experimental Setup

Implementation. We implemented SGD, SGD++, ALS, PSGD, PALS and CSGD in

C++. For CCD++ and PCCD++, we used the C++ implementation provided by Yu

et al. [2012]. For Jellyfish, we used the C++ implementation of Recht and Ré [2013], but

incorporated the bold driver heuristic for step size selection to ensure a fair comparison.

In all our experiments, we used s = 3 threads (we did not see significant differences

for other choices of s). For CSGD, we chose the blocking parameter b such that one

partition of the data and the corresponding factors barely fit into the cache available for

one core. We used the gnu scientific library (gsl) for solving the least-squares problems
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of ALS; in our experiments, gsl was significantly faster than lapack and, in contrast

to lapack, also supports multithreading.

Hardware. We used two different hardware configurations in our experiments: a ma-

chine with 48GB of main memory and an Intel Xeon 2.40GHz processor with 8 cores for

the sequential setting and a powerful high-memory server with 512GB of main memory

and 4 Intel Xeon 2.40GHz processors with 10 cores each (40 in total) for the shared-

memory setting.

Real-world datasets. We used two real-world datasets: Netflix and KDD. The Netflix

dataset, which occupies 2.2GB of main memory, consists of roughly 99M ratings of 480k

Netflix users for 18k movies; rating values range from 1 to 5. The KDD dataset, which

occupies 5.5GB of main memory, corresponds to that of Track 1 of the 2011 KDD-Cup

and consists of approximately 253M ratings of 1M Yahoo! Music users for 625k musical

pieces. Netflix and KDD differ significantly in the value of N̄ (large for Netflix, small for

KDD). Detailed statistics for these datasets, as well as for the synthetic datasets described

below, are summarized in Table 2.4. For both real-world datasets, we used the official

validation sets and focused on LL2w because it performs best in practice [Chen et al.,

2012, Koren et al., 2009, Zhou et al., 2008]. We did not tune the regularization parameter

λ for varying choices of rank r, but used the values given in Table 2.4 throughout.

Synthetic datasets. For our large-scale experiments, we generated two synthetic

datasets that differ in the choice of m and n. We generated each dataset by first creating

two rank-50 matrices L∗m×50 and R∗50×n with entries sampled independently from the

Normal(0, 10) distribution. We then obtained the data matrix by sampling N random

entries from L∗R∗ and adding Normal(0, 1) noise. Note that the resulting datasets are

very structured. We use them here to test the scalability of the various algorithms; the

matrices can potentially be factored much more efficiently by exploiting their structure

directly. We generated two large datasets with 1B revealed entries and identical sparsity:

Syn1B-rect is a tall rectangular matrix, Syn1B-sq is a square matrix. Note that we need

to learn more parameters to complete Syn1B-rect (550M) than to complete Syn1B-sq

(320M).

Methodology. For all datasets, we centered the input matrix around its mean. To

investigate the impact of the factorization rank, we experimented with ranks r = 50

and r = 100; in practice, values of up to r = 1000 can be beneficial [Zhou et al.,

2008]. The starting points L0 and R0 were chosen by taking i.i.d. samples from the

Uniform(−0.5, 0.5) distribution; the same starting point was used for each algorithm to

ensure a fair comparison. Note that, for a given initial point (L0,R0) with R0 6= 0,

CCD++ needs to compute the residual matrix once at the beginning of the algorithm.

In our experiments, the time required for computing the residual matrix was negligible



Chapter 2. Shared-Memory Matrix Completion Algorithms 29

Bold driver Standard(1) Standard(0.6)

Epochs 40 36 42
Loss (x107) 7.936 9.267 8.469

Table 2.5: SGD step size sequence (Netflix, r = 50)

(always less than 0.05% of the total time) and we do not include this overhead in our

experimental results. For all SGD-based algorithms, we selected the initial step size based

on a small sample of the data (1M entries): 0.0125 for Netflix (r = 50), 0.025 for Netflix

(r = 100), 0.00125 for KDD (r = 50, r = 100) and 0.000625 for Syn1B-rect and Syn1B-

sq. Unless otherwise stated, we used the bold driver heuristic for step size selection

with a step-size-increase factor of 5% and a step-size-decrease factor of 50%; step size

selection was thus fully automatic. We used the WOR training point schedule and the

WOR stratum schedule (unless otherwise stated) throughout our experiments and ran a

truncated version of SGD that clipped the entries in the factor matrices to [−100, 100]

after every SGD step. Also, unless stated otherwise, all SGD-based algorithms make

use of prefetching as in the SGD++ algorithm of Section 2.2.2. For each algorithm, we

declared convergence as soon as it reached a point within 2% of the overall best solution.

2.7.3 Sequential Algorithms

We start with a discussion of sequential algorithms, which form a baseline for the parallel

methods. Although Jellyfish and CSGD are originally designed for parallel computation,

we included them in these experiments in order to investigate whether they can provide

significant speed-up over SGD due to their cache-friendliness.

SGD step size sequence. (Table 2.5). In this experiment, we compared the per-

formance of various step size sequences for SGD on the Netflix data for r = 50. In

Table 2.5, Standard(α) refers to a sequence of form ε0/n
α, where n denotes the epoch

and α is a parameter that controls the rate of decay; such sequences are commonly used

in stochastic approximation. For this experiment only, we declared SGD as converged if

its improvement in loss after one epoch falls below 0.1%. For SGD with the bold driver

heuristic, we checked for convergence only in epochs following a drop in step size. We

found that the bold driver heuristic significantly outperformed the standard sequences,

even though it does not guarantee asymptotic convergence. For example, on Netflix, all

step size sequences converged in roughly the same number of epochs, but the bold driver

sequence converged to a significantly better factorization.
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SGD, SGD++, ALS, CCD++, Jellyfish, CSGD. (Figure 2.2). Overall, on the

relatively small Netflix dataset, CCD++ was the best-performing method, but its per-

formance quickly deteriorated for bigger datasets; on KDD, r = 50, it needed 2.73h to

converge, whereas SGD, the next best method, required only 1.22h. On KDD, CSGD

was the fastest method (0.67h and 1.55h for r = 50 and r = 100, respectively) followed

by Jellyfish (0.99h and 1.71h, respectively).

In more detail, in terms of compute-efficiency, we found that SGD++ is up to 12% better

than SGD (7.4 vs. 8.4min for KDD, r = 100) so that prefetching is beneficial. Jellyfish

and CSGD were significantly more compute-efficient than SGD because of their cache-

friendly behavior: Jellyfish was 25% (31%) better than SGD on Netflix (KDD) r = 50 and

CSGD 43% (57%). However, we observed that the stratification used in CSGD decreases

the data-efficiency which in turn negatively affects the total time until convergence. This

effect diminishes, however, when using a more fine-grained stratification. On the coarse-

grained Netflix dataset (r = 100) CSGD needed 28 epochs (vs. 18 for SGD), whereas on

the more fine-grained KDD (r = 100) it needed 16 epochs (vs. 13 for SGD) to converge.

CCD++ was consistently faster than ALS (7x for Netflix and 4.3x for KDD, both r =

100). However, CCD++ was less data-efficient than ALS (3136 vs. 5 epochs for Netflix

and 4856 vs. 8 epochs for KDD, both r = 100). Recall from Section 2.5.7 that CCD++

needs to scan the input matrix 2r(T + 1) times in every iteration, i.e., for one full pass

over the factors. Therefore, CCD++ requires several epochs, however, every epoch is

very inexpensive (each of which takes O(N) time). On the contrary, ALS performs few

expensive epochs, each of which requires O(Nr2 + (m+ n)r3) time. Similarly, SGD++

was less data-efficient than ALS, since it needed up to 4 times more epochs to converge

(e.g., 26 vs. 7 epochs for Netflix, r = 50). However, SGD++ epochs are more compute-

efficient so that SGD++ was faster overall. This effect is strongest when r is high; e.g.,

SGD++ is ≈5.5x faster for Netflix, r = 100 (52.8 vs. 289.8min) but only 2x faster for

r = 50 (38.2 vs. 78.2min).

2.7.4 Shared-Memory Algorithms on Small and Medium Datasets

In this section, we evaluate our shared-memory methods on datasets of small (Netflix)

and medium size (KDD) on our high-memory server. We ran experiments using 8, 16,

and 32 threads and refer to these setups as H8, H16, and H32, respectively. The results

can be seen in Figure 2.3.

We initially experimented with PSGD both with and without locking. We found that

in settings with a large number of threads (H16 and H32), lock-free PSGD was slightly

more compute-efficient than PSGD with locking (e.g., 9% for KDD, r = 100) without
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Figure 2.2: Performance of sequential algorithms

any degradation in the quality of the solution. We presume that this speedup originates

from the reduced synchronization costs of lock-free PSGD, which we used throughout

our experiments.

Figures 2.3b and 2.3d show the time until convergence on Netflix and KDD, r = 100, for

various methods and setups. All approaches led to a similar overall loss (all within 1%

of each other). Figure 2.3a and 2.3c show examples of the progress of the methods over

time. On Netflix, PCCD++ and PALS found a slightly better solution (1% lower loss)

than the SGD-based approaches; on KDD, results were almost identical.

Across all setups and datasets, PALS was the slowest and CSGD the fastest method.

The compute-efficiency of PALS was very low so that its epochs were significantly slower

than that of alternative methods. In particular, on Netflix, PALS performed only 3

epochs within 400s and was not able to reach the vicinity of the points obtained by the

other methods (for this reason, the PALS curve is not visible in Figure 2.3a). PCCD++
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Figure 2.3: Performance of shared-memory algorithms on real datasets, r = 100

performed better than PALS, and it outperformed PSGD on the Netflix dataset (but

not on KDD). Jellyfish was slower than PSGD throughout; potentially because worker

and shuffle threads compete for memory bandwidth and CPU cache. For this reason, we

excluded Jellyfish from our larger-scale experiments. Finally, CSGD was faster than its

closest competitors (PCCD++ on Netflix, PSGD on KDD); its cache-conscious blocking

thus appears to be effective.4

PCCD++ was the least data-efficient, and PALS the most data-efficient method. In

more detail, PCCD++ required over 600 times more epochs than PALS to converge

(e.g., 4856 vs. 8 epochs on KDD). Nevertheless, PCCD++ was consistently faster than

PALS in terms of overall runtime as it is more compute-efficient (see also the complexity

discussion in the previous section). Similarly, PSGD and CSGD needed more epochs
4Note that our results w.r.t. the relative performance of PSGD and PCCD++ differ from the ones

in Yu et al. [2012], presumably due to our use of the bold driver heuristic.
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than PALS but fewer than PCCD++ to converge (e.g., 13 epochs for PSGD on KDD);

the compute-efficiencies of PSGD and CSGD lie between those of PALS and PCCD++.

Overall, we found that CSGD was the best-performing method on both datasets; CSGD

on H16 was faster than any other method on H32. On Netflix, PCCD++ was closest

(and slightly better in terms of quality); on KDD, PSGD was closest.

Scalability. (Figures 2.3d, 2.3b). The overall runtime of all algorithms improved sig-

nificantly as we moved from 8 to 16 threads (1.6x–1.7x speedup on Netflix, 1.5x–1.9x

on KDD). When we increased the number of threads further to t = 32, all methods still

benefited on Netflix, but only PALS and CSGD gave good speedups on KDD (1.6–1.9x,

versus ≤1.3x speedup for other methods). In general, less CPU-intensive methods such

as PCCD++, PSGD and Jellyfish hit the memory bandwidth on KDD. An exception

is CSGD (1.6x speedup from H16 to H32), which avoids the memory bottleneck due

to better cache utilization. Overall, PALS and CSGD scaled best w.r.t. the number of

threads.

Effect of stratification granularity and synchronization on CSGD. (Figure 2.4)

To showcase the effect of the stratification granularity and the synchronization on the per-

formance of CSGD, we ran CSGD with different stratification granularities on the KDD

dataset (r = 100) on a machine with 48GB of main memory and an Intel Xeon 2.40GHz

processor with 8 cores. We experimented with the most coarse-grained partitioning for

the 8 available threads (8x8), the cache-fitting partitioning (625x625) and an even more

fine-grained partitioning (1500x1500). Additionally, we experimented with and without

synchronizing the threads between subepochs. Figure 2.4 shows that for coarse-grained

partitioning, the compute-efficiency of the synchronized and the non-synchronized ver-

sions is similar (63.56s vs. 61.9s per epoch for 8x8), whereas for fine-grained stratification

synchronization becomes a bottleneck: for stratification 1500x1500, the synchronized ver-

sion was 3.7x less compute-efficient than the non-synchronized one (163.18s vs. 43.41s

per epoch for 1500x1500). We also see that CSGD with cache-fitting strata (625x625) is

significantly more compute-efficient than the simple 8x8 stratification (39.1s vs. 61.9s per

epoch on average) and also faster than the 1500x1500 stratification (43.41s). In addition,

both the synchronized and non-synchronized versions tend to converge to a solution of

similar quality, i.e., collisions in the non-synchronized versions rarely occur or they do

not affect the solution in practice.

2.7.5 Shared-Memory Algorithms on Large Datasets

In this section, we evaluate our shared-memory methods on large datasets (Syn1B-sq and

Syn1B-rect) on our high-memory server. We ran experiments using 16 and 32 threads



Chapter 2. Shared-Memory Matrix Completion Algorithms 34

0 500 1000 1500 2000

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Time (s)

L
os

s 
(x

10
11

)

8x8
8x8+synch
625x625
625x625+synch
1500x1500
1500x1500+synch

Figure 2.4: Impact of stratification granularity and synchronization on CSGD with
8 threads, on KDD r = 100

0 1000 2000 3000 4000

0
5

10
15

20

Time (s)

L
os

s 
(x

10
10

)

PALS
PCCD++
PSGD
CSGD

(a) Syn1B-sq on H32

H16 H32

Cores

T
ot

al
 t

im
e 

(h
)

0
2

4
6

8
10

12 PALS
PSGD
CCD++
CSGD

(b) Syn1B-sq

Figure 2.5: Performance of shared-memory algorithms on Syn1B-sq

and refer to these setups as H16 and H32, respectively.

Syn1B-sq (Figure 2.5). On the larger Syn1B-sq dataset, CSGD was again the best-

performing method. Using 16 (resp., 32) threads, it was 1.3x (resp., 2.5x) faster than

PSGD, the second-best-performing method (0.75h vs. 0.95h for H16; 0.41h vs. 1.04h for

H32). As with KDD, PSGD was significantly faster than PCCD++. The scalability

behavior of the various algorithms was also similar to that for KDD: When moving from

16 to 32 threads, PALS and PCCD++ achieved 1.8x and 1.2x speedup, respectively,

PSGD became slower, and CSGD achieved a 1.8x speedup. As before, CSGD with 16

threads was faster than any other method with 32 threads (see Figure 2.5b).

Syn1B-rect (Figure 2.6). On Syn1B-rect, all methods were slower than on Syn1B-sq,

presumably because there are more factors to learn. One striking result is that PALS did

not converge to an acceptable solution, its loss being four orders of magnitude greater

than all other methods. We therefore report the running time of PALS until its loss
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Figure 2.6: Performance of shared-memory algorithms on Syn1B-rect

changed by less then 0.1% in two consecutive epochs. (Such erratic behavior of PALS

was not observed on any other dataset.) As with Netflix, when moving from 16 to

32 threads, only PALS and CSGD yielded good speedups. Specifically, the speedups

for PCCD++ and CSGD were 1.13x and 1.5x, respectively, and PSGD actually slowed

down. Also as with Netflix, PCCD++ was somewhat faster than PSGD. In general,

on Syn1B-rect, PCCD++ behaved better relative to alternative methods than it did on

Syn1B-sq. A potential reason for this behavior is that the SGD-based methods are less

data-efficient on Syn1B-rect. In particular, we observed that the SGD-based methods

required only a small number of epochs to move to the vicinity of the solution, but

converged slowly afterwards. Nevertheless, CSGD was the fastest method. It achieved a

25% (57%) speedup in compute-efficiency over PSGD and ran 16.5% (45%) faster than

PSGD on H16 (H32).

Overall, CSGD was the fastest method both on KDD and our synthetic datasets. PSGD

was the second-fastest method on KDD and Syn1B-sq, while PCCD++ was the second-

fastest method on Syn1B-rect and, on this dataset, was competitive with CSGD. PCCD++

was consistently faster (up to 3.5x) than PALS. On the other hand, being compute-

intensive and slow, PALS was one of the most scalable methods; its performance always

improved by adding more threads.

2.8 Summary

Matrix completion techniques have recently gained attention in the data mining commu-

nity: they have been successfully applied in a variety of tasks, including recommender

systems, open information extraction, latent semantic indexing and link prediction.
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In this chapter, we studied parallel algorithms for large-scale matrix completion with

millions of rows, millions of columns, and billions of revealed entries for shared-memory

architectures. Our method, CSGD, is a stratified version of stochastic gradient descent,

which makes use of a fine-grained partitioning that reduces the cache-miss rate during

processing. In addition, CSGD is a lock-free approach, i.e., there is no communication

imposed between the worker threads. We compared CSGD with a variety of parallel

matrix completion algorithms in an extensive set of experiments on both real-world and

synthetic datasets of varying sizes. On medium and large datasets CSGD consistently

outperforms alternative approaches in terms of speed and scalability and scales better

on a large number of processors.



Chapter 3

Exact and Approximate Maximum

Inner Product Search

In this chapter1, we study exact and approximate methods for maximum inner product

search (MIPS). Given a large database of real-valued probe vectors as well as a query

vector, the MIPS problem is to find all probe vectors that have a large inner product with

the query vector. MIPS is a fundamental problem in a number of data mining and infor-

mation retrieval tasks. Prominent applications include finding good recommendations

in recommender systems [Koenigstein et al., 2012, Koren et al., 2009], reasoning about

extracted facts in open relation extraction [Riedel et al., 2013], multi-class or multi-label

prediction with hundreds of thousands of labels or classes [Dean et al., 2013], and ob-

ject detection with deformable part models [Dean et al., 2013, Felzenszwalb et al., 2010,

Shrivastava and Li, 2014b].

We consider multiple variants of the MIPS problem, which differ in what is considered

a large inner product, whether the search is exact or approximate, and whether we

are provided with one or multiple query vectors. We focus on settings in which the

number of vectors is very large (order of millions) and each vector has comparably low

dimensionality (say, 10–500); this is a common setting in many applications that use

matrix factorization techniques, like those discussed in chapter 2.

A simple way to solve the MIPS problem is to perform naive search: to compute the

inner product between the query vector and all probe vectors. Such an approach is

generally computationally infeasible as argued in Chapter 1. To avoid naive search, a

number of exact [Curtin and Ram, 2014, Curtin et al., 2013, Ram and Gray, 2012] and

approximate [Bachrach et al., 2014, Neyshabur and Srebro, 2015, Shrivastava and Li,
1The contents of this chapter have been jointly developed with Rainer Gemulla and Olga Mykytiuk,

as in [Teflioudi et al., 2015] and [Teflioudi and Gemulla, 2016].

37
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2014a,b] algorithms for MIPS have been proposed in the literature. Generally, exact

methods offer in practice only limited speedup over naive search, whereas approximate

methods trade off result quality to achieve much higher speedups.

In this chapter, we introduce LEMP,2 an efficient algorithm for both exact and approx-

imate MIPS. In contrast to previous methods, which aim to solve the MIPS problem

directly, LEMP makes use of the simple observation that both the length and the direc-

tion (or cosine similarity) of two vectors influence the value of their inner product. LEMP

exploits this observation by grouping the input vectors into buckets of similar lengths

and subsequently solving a smaller cosine similarity search problem for each bucket. In

this way, LEMP (i) exploits vector lengths for early pruning, (ii) is able to choose a

suitable search technique individually for each bucket (and query), and (iii) improves

cache locality by fitting the small problem instances into cache.

To process buckets, LEMP is able to leverage any existing method for cosine similarity

search or MIPS. We consider a number of such methods, including the well-known thresh-

old algorithm (TA, [Fagin et al., 2001]) and techniques for cosine similarity search such

as L2AP [Anastasiu and Karypis, 2014] or cover trees [Curtin et al., 2013]. We propose

two novel methods for cosine similarity search, termed COORD (for coordinate-based

pruning) and ICOORD (for incremental coordinate-based pruning); our new methods are

tailored for their use within the LEMP framework and, according to our experimental

study, are generally more efficient than previous methods. LEMP supports approximate

MIPS by using more aggressive pruning techniques as well as approximate methods for

solving the cosine similarity search problems. We propose two novel methods based

on ICOORD and an adaptive variant of locality-sensitive hashing (LSH, [Gionis et al.,

1999]); our methods can trade-off quality and performance and provide approximation

guarantees.

The remainder of this chapter is structured as follows: Section 3.1 describes applications

of MIPS and defines multiple variants of the MIPS problem. Section 3.2 introduces the

LEMP framework, while Sections 3.3 and 3.4 focus on exact and approximate MIPS

using LEMP. Section 3.5 provides some guidance for efficient implementation of LEMP

and Section 3.6 discusses parallel versions of LEMP. Section 3.7 summarizes related work.

Section 3.8 describes our experimental study and its results and Section 3.9 summarizes

our study.
2The MIPS problem is equivalent to the problem of finding Large Entries in a Matrix Product; see

Section 3.1.
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3.1 Preliminaries and Problem Statement

In this section, we introduce the notation used throughout, describe some key applica-

tions of MIPS, and formally define multiple variants of the MIPS problem.

3.1.1 Notation

Let [n] = { 1, . . . , n }. We denote matrices by bold uppercase letters, vectors by bold

lowercase letters, and scalars by non-bold lowercase letters. In this chapter, we represent

a set of vectors using a matrix in which each column holds one of the vectors. We write

M j for the j-th column of matrix M , and v ∈ M if v is a column of M . We denote

the i-th element of vector v by vi.

Denote by Q and P two sets of r-dimensional vectors with cardinality m and n, respec-

tively. We assume throughout that m and n are very large (order of millions) and r is

comparably small (say, 10–500). We are interested in finding pairs of vectors, one from

Q and one from P , with large inner product or, equivalently, the indexes of the large

entries in the product matrix QTP . We refer to Q as the query matrix and to P as the

probe matrix. Similarly, we refer to vectors q ∈ Q as query vectors (or simply queries)

and to vectors p ∈ P as probe vectors.

3.1.2 Applications of MIPS

The MIPS problem frequently arises in data mining tasks that employ some form of

low-rank matrix factorization. Such low-rank matrix factorization methods—e.g., the

singular value decomposition (SVD), non-negative matrix factorization (NMF), or latent-

factor models—have been successfully applied to a number of prediction tasks (see Skil-

licorn [2007] as well as Chapter 2). In general, the available data is represented as a

matrix in which rows and columns correspond to entities or attributes of interest, and

entries to values. Low-rank matrix factorizations are used for dimensionality reduction

and to reveal hidden structure in the data. Large entries in the obtained low-rank matrix

indicate strong interactions between entities and attributes and are often of particular

interest in applications.

In the context of recommender systems, for example, latent-factor models are a popular

and powerful approach for predicting the preference of users for items from available

feedback; see Koren et al. [2009] for an excellent overview. Figure 3.1a shows a feedback

matrix D, which contains ratings of a set of users for a set of movies they had watched

on a 1–5 star scale. To predict the ratings of the movies users did not yet watch,
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Figure 3.1: Example of a simple matrix factorization model for a recommender system

latent-factor models construct two factor matrices: a user matrix Q and an item matrix

P , in which columns correspond to users and items, respectively, and rows to latent

factors. Figure 3.1b shows an example with r = 2 latent factors, which in this case

roughly correspond to action and romance. The predicted preference of user i for item

j is given by the (i, j) entry of matrix product QTP or, equivalently, the inner product

qTp =
∑r

k=1 qkpk, where q denotes the i-th column of Q and p the j-th column of

P . The goal of a recommender system is to recommend to each user the items with a

high predicted rating (among other criteria); we thus need to determine which entries

are large. In the example of Figure 3.1b, we marked in bold face the top-3 items for

each user.3 In our terminology, user vectors correspond to queries and item vectors to

probe vectors. We are interested in finding for each user the top-k items vectors with

the largest inner products; we refer to this problem as Top-k-MIPS.

Another prominent application of matrix factorization models is in the area of open

information extraction, which extracts and reasons about statements made in natural

language text and other sources. Riedel et al. [2013], for example, construct a fact

matrix, in which columns correspond to verbal phrases or relations (e.g., “was born in”)

and rows to (subject, object)-pairs (e.g., (“Einstein”, “Ulm”)). A nonzero entry indicates

that the corresponding fact (a verbal phrase or relation with its subject and object) was

observed in the available data. Latent factor models are used to predict additional facts,

spot unlikely facts, and reason about verbal phrases [Nickel, 2016]. As in recommender

systems, these methods create factor matrices using a suitable model and subsequently

determine the large entries in their product; here large entries correspond to facts with

a high predicted confidence. We refer to the problem of retrieving all entries above a

specified threshold θ as Above-θ-MIPS.

Note that in the above applications, MIPS is applied to the factor matrices obtained

from some matrix factorization algorithm. As we have already seen in Chapter 2, fast
3In practice, we might ignore movies already watched by the user.
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and scalable matrix factorization algorithms have been extensively studied in the liter-

ature [Makari et al., 2015, Niu et al., 2011, Recht and Ré, 2013, Teflioudi et al., 2012],

so that the factorization itself is usually not a bottleneck (see Section 3.8.1 for some

examples). In addition, some of the applications mentioned in this chapter’s introduc-

tion (e.g., Dean et al. [2013]) do not make use of a prior matrix factorization step. In

this chapter, we focus solely on the MIPS problem and are oblivious to how the input

matrices have been created (see Chapter 2 for more details on matrix factorization).

3.1.3 Problem Statement

Exact MIPS. We study two variants of exact MIPS. The first one searches for each

vector q ∈ Q, the set of k vectors from P with the largest inner product with q. Here

k is an application-defined parameter. As discussed previously, this problem arises in

recommender systems, where we want to retrieve the most relevant items (vectors of P )

for each user (vector of Q).

Definition 3.1 (Top-k-MIPS). Given an integer k > 0, find for every q ∈ Q the set

J ⊆ [n] of the k columns of P that attain the k largest values of qTP . Ties are broken

arbitrarily.

Note that if Q has only one column (contains a single vector only), the Top-k-MIPS

problem is equivalent to top-k scoring with linear scoring function f(p) = qTp [Fagin

et al., 2001]. In the general case, in which Q has multiple columns, Top-k-MIPS is

equivalent to multi-query top-k scoring. Usually, MIPS is defined in the literature for

a single query, i.e., Q = (q). In this work, we focus on the general case in which Q

contains multiple query vectors, i.e., the queries may arrive in batches. Our methods

can also be used in a streaming setting, in which Q contains a single query vector. By

reversing the roles of Q and P , we can also find the top-k queries for each probe vector.

The second problem, termed Above-θ-MIPS, asks to retrieve all pairs of vectors with

inner product above some application-defined threshold θ. This problem is useful, for

example, to determine all high-confidence facts in an open relation extraction scenario.

Definition 3.2 (Above-θ-MIPS). Given a threshold θ > 0, determine the set of large

entries

{ (i, j) ∈ [m]× [n] | [QTP ]ij ≥ θ }.

A simple solution to the above problems is to first compute QTP and then select the

entries above the threshold (for Above-θ-MIPS) or the k largest entries per row (for

Top-k-MIPS). We refer to this approach as Naive; it has time complexity O(mnr) and is
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infeasible for large problem instances. Recently, a number of algorithms for exact MIPS

have been proposed [Curtin and Ram, 2014, Curtin et al., 2013, Ram and Gray, 2012]; all

of these methods are based on suitable tree-based indexes built on P (see Section 3.7).

Approximate MIPS. Exact MIPS methods usually offer only limited speedup com-

pared to naive search. Thus there has been a significant interest in designing methods

for approximate MIPS [Bachrach et al., 2014, Neyshabur and Srebro, 2015, Shrivastava

and Li, 2014a,b]. Such methods trade off the quality of results in exchange for lower

computational costs. In many applications, high-quality approximate results are accept-

able. For example, in recommender systems, finding good recommendations fast may be

preferable to finding the best recommendations slowly.

There are multiple conceivable ways to measure the quality of the results of an approx-

imate MIPS algorithm with respect to a query q. A commonly used metric is recall,

which corresponds to the fraction of true results—the ones that an exact MIPS algo-

rithm would produce—in the result set produced by the approximate algorithm. Note

that for Top-k-MIPS, both approximate and exact methods produce exactly k results,

so that recall (fraction of true results overall) and precision (fraction of true results in

answer) coincide.

For the Top-k-MIPS problem, recall will indicate how many true results exist in the

approximate top-k result for the query. However, the recall value does not give any

indication about the quality of the remaining (“false”) vectors in the approximate top-k

list. To see why this might be of importance, consider again the recommender system

scenario. Generally, we prefer methods that give good false results over methods that

gives bad false results, and recall does not allow to distinguish these two cases. To

formalize this intuition, denote by s1, s2, . . . , sk the values of the inner products in the

exact solution of a Top-k-MIPS problem in decreasing order, and by ŝ1, ŝ2, . . . , ŝk the

corresponding result of an approximate algorithm. A measure that captures the difference

between the result of the exact and the approximate method in absolute terms is the

root mean square error (RMSE, [Bachrach et al., 2014]), defined as:

RMSE =

√√√√1

k

k∑
i=1

(si − ŝi)2. (3.1)

Alternatively, we can quantify the difference relatively using the average relative error

(ARE):

ARE =
1

k

k∑
i=1

∣∣∣∣si − ŝisi

∣∣∣∣ . (3.2)
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We define the recall/RMSE/ARE for a set of queries by taking the average of the recal-

l/RMSE/ARE over all queries.

An approximate MIPS method that provides approximation guarantees takes as input

an error bound on either recall, RMSE, or ARE and produces an approximate result that

satisfies the specified bound (always or, in some cases, with high probability). Unfortu-

nately, many of the existing approximate methods do not provide such guarantees and

proceed in a best-effort manner instead. In Section 3.4, we propose a number of novel

approximate methods that do provide error guarantees.

3.2 The LEMP Framework

In this section, we outline the LEMP algorithm for exact and approximate MIPS. For

presentation purposes, we initially focus on the Above-θ-MIPS problem and turn to the

Top-k-MIPS problem in Section 3.3.5.

3.2.1 Length and Direction

LEMP makes use of the decomposition of an inner product of two vectors q and p into

a length and a direction part. Denote by ‖v‖ =
√∑

f v
2
f the length (Euclidean norm)

of vector v 6= 0, and by v̄ = v/‖v‖ its normalization, i.e., the unit vector pointing in the

direction of v. Then

qTp = ‖q‖ ‖p‖ cos(q,p), (3.3)

where cos(q,p) = q̄T p̄ ∈ [−1, 1] denotes the cosine similarity between q and p. As

mentioned previously, the inner product coincides with the cosine similarity if q and p

have unit length. The problem of cosine similarity search is thus a special case of the

MIPS problem.

By rewriting Eq. (3.3), we obtain

qTp ≥ θ ⇐⇒ cos(q,p) ≥ θ

‖q‖ ‖p‖
. (3.4)

The inner product thus exceeds threshold θ if and only if the cosine similarity exceeds

the modified threshold θ
‖q‖ ‖p‖ , which depends on the lengths of q and p. Our goal is to

find pairs (q,p) ∈ Q× P such that qTp ≥ θ. From Eq. 3.4, we conclude that:

1. If q and p are short in that ‖q‖‖p‖ < θ, we cannot have qTp > θ since cos(q,p) ∈
[−1, 1] and θ/(‖q‖ ‖p‖) > 1. Such pairs do not need to be considered.
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Q

P 1

P 2

P 3

Long vectors
(l1 = 2)

Medium-length
vectors (l2 = 1)

Short vectors
(l3 = 0.5)

q1

q2

q3

‖q1‖ = 5

‖q2‖ = 1

‖q3‖ = 0.1

Query matrix (QT ) Probe matrix (P T )θ = 0.9
θb(q) P 1 P 2 P 3

q1 0.09 0.18 0.36
q2 0.45 0.90 -
q3 - - -

Local thresholds

Figure 3.2: Illustration of LEMP’s bucketization

2. If q and p are of intermediate length in that ‖q‖‖p‖ ≈ θ, then qTp > θ if the cosine

similarity cos(q,p) is large. Such pairs are best found using a cosine similarity

search algorithm.

3. If q and p are long in that ‖q‖‖p‖ � θ, then qTp > θ if their cosine similarity is

not too small. Such pairs are best found using naive search.

This indicates that vectors of different lengths are best treated in different ways. LEMP

exploits this observation as follows. It first groups the vectors of the probe matrix P

into a set of small buckets, each consisting of vectors of roughly similar length, and

then solves a cosine similarity search problem for each bucket. In particular, we ignore

buckets with short vectors, use a suitable cosine similarity search algorithm for buckets

with vectors of intermediate lengths, and use (a variant of) naive retrieval for buckets

with long vectors. This allows us to prune large parts of the search space and handle the

remaining part efficiently.

In more detail, denote by P 1, P 2, . . ., P s a set of s buckets and assume that the vectors

in each bucket have roughly similar (but not necessarily equal) length. For each bucket

P b, 1 ≤ b ≤ s, denote by lb = maxp∈P b
‖p‖ the length of its longest vector. Under our

assumption, lb ≈ ‖p‖ for all p ∈ P b. Figure 3.2 shows an example in which P has been

divided into three buckets: P 1 holds long vectors (approximate and maximum length 2),

P 2 medium-length vectors (1), and P 3 short vectors (0.5).

Fix some bucket P b. From Eq. (3.4), we obtain that a necessary condition for qTp ≥ θ

for p ∈ P b is that

cos(q,p) = q̄T p̄ ≥ θb(q)
def
=

θ

‖q‖ lb
. (3.5)

We refer to θb(q) as the local threshold of query q for bucket P b. Our goal is thus to

find all vectors p ∈ P b with a cosine similarity to q of at least θb(q). The local threshold

allows us to determine how to best process bucket P b, analogous to the discussion above.
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Algorithm 3 LEMP for the exact Above-θ-MIPS problem
Require: Q,P , θ
Ensure: S =

{
(i, j) | [QTP ]ij ≥ θ

}
1: // Preprocessing phase
2: Partition P into buckets P 1, . . . ,P s of similar length
3: for all b ∈ 1, 2, . . . , s do // for each bucket
4: Sort, normalize, and index P b

5: lb ← maxp∈P b
‖p‖

6: end for
7:
8: // Search phase
9: S ← ∅

10: for all b ∈ 1, 2, . . . , s do // for each bucket
11: for all qi ∈ Q do // for each query
12: θb(qi)← θ / (‖qi‖ lb) // local threshold
13: if θb(qi) ≤ 1 then // prune?
14: Pick a suitable retrieval alg. A based on θb(qi)
15: Use A to obtain a set of candidates Cb ⊇

{
pj ∈ P b | q̄Ti p̄j ≥ θb(qi)

}
16: S ← S ∪

{
(i, j) | pj ∈ Cb and qTi pj ≥ θ

}
// Verify candidates

17: end if
18: end for
19: end for

If θb(q) > 1, we can prune the entire bucket since none of its vectors can potentially pass

the threshold. If θb(q) ≈ 1, we use a suitable cosine similarity search algorithm for the

bucket. Finally, if θb � 1, we use naive retrieval.

Consider again the example of Figure 3.2 and assume a global threshold of θ = 0.9. The

figure highlights three query vectors q1, q2, and q3 of decreasing lengths and gives the

values of all local thresholds (or “-” if above 1, also indicated by dashed lines). For q1,

which is very long, all local thresholds are small so that naive retrieval is well suited for

all buckets. For q2, which is shorter, the local threshold is small for bucket P 1 (long

vectors), large for bucket P 2 (medium-length vectors), and above 1 for bucket P 3 (short

vectors). We use naive retrieval for P 1 and a suitable cosine similarity search algorithm

for P 2. Bucket P 3 is pruned. Finally, for q3, which is very short, all local thresholds

exceed 1 so that all buckets are pruned.

3.2.2 Algorithm Description

Algorithm 3 summarizes LEMP for exact Above-θ-MIPS. The algorithm consists of a

preprocessing phase (lines 1–6) and a search phase (lines 8–19).

The preprocessing phase groups the columns of P into buckets of similar length (line

2). There are a number of ways to do this, but we chose a simple greedy strategy in our
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implementation. In particular, we first sort the columns of P by decreasing length,4 scan

the columns in order, and start a new bucket whenever the length of the current column

falls below some threshold (e.g., 90% of lb). We also make sure that buckets are neither

too small nor too large. First, small buckets reduce the efficiency of LEMP due to bucket

processing overheads; we thus ensure that buckets contain at least a certain number of

vectors (30 in our implementation). The bucket processing overhead of large buckets is

negligible. However, when buckets grow larger than the cache size, processing time is

negatively affected. For this reason, we select a maximum bucket size that ensures that

all relevant data structures fit into the processor cache.

After bucket boundaries have been obtained, we represent each vector p by two separate

components: its length ‖p‖ and its direction p̄. We also store the vectors’ column number

in the original matrix (denoted id) and in the bucket (denoted lid for “local id”); see

Figure 3.4a for an example. This layout allows us to access for each p ∈ P b both ‖p‖ and
p̄ without further computation. We then create indexes on the contents of each bucket;

we defer the discussion of indexing to Section 3.3. For our choice of indexes (Section 3.3.2

and 3.3.3), the overall preprocessing time, including index computation, is O(rn log n).

The search phase then iterates over buckets and query vectors. For each query, we

compute the local threshold θb(q) (line 12) and prune buckets based on their length

(line 13). For each remaining bucket P b, we select a suitable retrieval algorithm (exact

or approximate) based on the local threshold (line 14, cf. Section 3.3). The selected

retrieval algorithm computes a set Cb of candidate vectors, potentially making use of the

index data structures created during the preprocessing phase. We require for exact MIPS

that the candidate set contains all vectors in p ∈ P b that pass the threshold (qTp ≥ θ),
but it may additionally contain a set of spurious vectors (q̄T p̄ ≥ θb(q) but qTp < θ). If

LEMP is used for approximate MIPS, we lift this requirement, i.e., the candidate set may

then miss some vectors that pass the threshold. We instead require the candidate set

to contain vectors that allow us to satisfy user-specified bounds on the recall, RMSE or

ARE. In both cases, a verification step (line 16) filters out spurious vectors by computing

the actual values of the inner products qTp for all p ∈ Cb.

The order of the two loops in the search phase of Algorithm 3 is chosen to be cache

friendly. Since we process probe buckets in the outer loop and since probe buckets

are small, their content remains in the cache for the entire inner loop. The inner loop

itself scans query vectors sequentially; these vectors may not fit into the cache, but the

sequential access pattern makes prefetching effective.

The power of LEMP to prune entire buckets in line 12 depends on the length distribution

of the input vectors: generally, the more skewed the length distribution, the more probe
4We also sort and normalize query vectors in a manner similar to the bucketization of P .
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buckets can be pruned. Even if bucket pruning is not particularly effective for a given

problem instance, however, the organization of the probe vectors into buckets is still

beneficial: it allows cosine similarity search algorithms to be applied and is cache-friendly.

3.3 Exact MIPS

In this section, we propose and discuss a number of exact algorithms for the search phase

of LEMP (line 15 of Algorithm 3). Each algorithm takes as input a query vector q ∈ Q
and a bucket P b, and outputs a candidate set Cb ⊆ P b using some pruning strategy. All

algorithms first compute ‖q‖ and q̄; cf. Figure 3.4d.

We discuss two kinds of algorithms: those that make use of only the length information

to prune candidate vectors and those that use the normalized vectors as well. For the first

category, we propose the LENGTH algorithm (Section 3.3.1), which is a simple variant of

the naive algorithm that takes length information into account. Existing cosine similarity

search algorithms (e.g., [Bayardo et al., 2007]) as well as TA fall in the second category.

Here we additionally present two novel methods, which are specially tailored for vectors

of medium dimensionality. The COORD algorithm (Section 3.3.2) applies coordinate-

based pruning strategies. The ICOORD algorithm (Section 3.3.3) is based on COORD

but uses a more effective (but also more expensive) incremental pruning strategy that

also takes length into account.

3.3.1 Length-Based Pruning

Recall that the vectors in bucket P b are sorted by decreasing length during preprocessing

(see also Figure 3.4a). Further, observe from Eq. (3.3) that whenever ‖q‖ ‖p‖ < θ, so is

qTp. Putting both together, LENGTH scans the bucket P b in order. When processing

vector p, we check whether ‖p‖ ≥ θ/‖q‖; we precompute θ/‖q‖ to make this check

efficient. If p qualifies, we add it to the candidate set Cb. Otherwise, we stop processing

bucket P b and immediately output Cb.

Consider for example a bucket P b as shown in Figure 3.4a, query vector q = (1, 1, 1, 1)T ,

and threshold θ = 3.8. We have ‖q‖ = 2 and θ/‖q‖ = 1.9, so that we obtain Cb =

{ 1, 2, 3 }. (Here and in the following, we give Cb in terms of local identifiers (lid) for

improved readability.)

Since LEMP already organizes and prunes buckets by length, we do not expect LENGTH

to be particularly effective. In fact, LENGTH degenerates to the naive algorithm in

all but one bucket (the “last” bucket that has not been pruned). Nevertheless, since
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LENGTH has low overhead and a sequential access pattern, it is an effective method

when buckets are small or the local threshold is low (i.e., when coordinate-based pruning

is not effective).

3.3.2 Coordinate-Based Pruning

We now proceed to pruning strategies based on the direction (but not length) of the

query vector. The key idea is to retain only those vectors from P b in Cb that point in a

similar direction as q. In particular, we aim to find all p ∈ P b with high cosine similarity

to q, i.e.,

q̄T p̄ = cos(q,p) ≥ θb(q). (3.6)

Note the usage of normalized vectors here; length information is not taken into account.

Let q̄ = (q̄1, . . . , q̄r)
T and p̄ = (p̄1, . . . , p̄r)

T . Note that q̄T p̄ achieves its maximum value

for p̄ = q̄ since then q̄T p̄ = q̄T q̄ = ‖q̄‖2 = 1. In other words, q̄T p̄ is maximized when

both vectors agree on all their coordinates. Based on this observation, the key idea

of the COORD algorithm is to prune p̄ if one of its coordinates deviates too far from

the respective coordinate in q̄. In more detail, we obtain for each coordinate f ∈ [r] a

lower bound Lf (q̄) and an upper bound Uf (q̄) on p̄f . If Lf ≤ p̄f ≤ Uf , we say that

p̄f is feasible; otherwise p̄f is infeasible. The bounds are chosen such that whenever a

coordinate f of p is infeasible, then q̄T p̄ < θb(q) so that p can be pruned from the

candidate set. Such pruning is particularly effective when θb(q) is large or when the

query vector is sparse.

In what follows, we provide lower and upper bounds, discuss their effectiveness, and

propose the COORD algorithm that exploits them.

Bounding coordinates. Pick some coordinate f ∈ [r]; we refer to f as a focus

coordinate. Denote by q̄-f = { q̄1, . . . , q̄f−1, q̄f+1, . . . , q̄r } the vector obtained by removing

coordinate f from q̄, similarly p̄-f . Note that q̄-f and p̄-f generally have length less than

1. Now we rewrite Eq. (3.6) as follows

θb(q) ≤ q̄T p̄ =
∑

i q̄ip̄i = q̄f p̄f +
∑

i 6=f p̄iq̄i

= q̄f p̄f + q̄T-f p̄-f

= q̄f p̄f + ‖q̄-f‖ ‖p̄-f‖ cos(p̄-f , q̄-f )

≤ q̄f p̄f + ‖q̄-f‖ ‖p̄-f‖

= q̄f p̄f +
√

1− q̄2
f

√
1− p̄2

f , (3.7)
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where we used Eq. (3.3), the fact that the cosine similarity cannot exceed 1, and the

property ‖q̄‖ = ‖p̄‖ = 1.

We now solve the resulting inequality θb(q) ≤ q̄f p̄f + (1− q̄2
f )1/2(1− p̄2

f )1/2 for p̄f (a full

proof can be found at Appendix A) and obtain solutions

p̄f ∈ [LAf , U
A
f ] =

[θb(q)/q̄f , 1] q̄f > 0

[−1, θb(q)/q̄f ] q̄f < 0
(3.8)

p̄f ∈ (LBf , U
B
f ) =

(
q̄fθb(q)−

√
(1− θb(q)2)(1− q̄2

f ), q̄fθb(q) +
√

(1− θb(q)2)(1− q̄2
f )
)

(3.9)

p̄f ∈ [LCf , U
C
f ] = [−1, 1], if q̄f = 0, θb(q) ≤ 0. (3.10)

Here Eq. (3.8) is only a valid solution to Eq. (3.7) when LAf ≤ UAf , i.e., we ignore it

whenever LAf > UAf . In addition Eq. (3.10) provides no pruning power to our algorithm.

We therefore directly skip query coordinates of zero value whenever θb(q) ≤ 0. The

feasible region is thus given by:

Lf =

min(LAf , L
B
f ) if LAf ≤ UAf

LBf otherwise
(3.11)

Uf =

max(UAf , U
B
f ) if LAf ≤ UAf

UBf otherwise
(3.12)

Note that if the lengths of the vectors within a bucket vary strongly, we are forced to

use a low local threshold θb(q), which in turn results in looser bounds. This undesirable

behavior is avoided by LEMP since it constructs buckets that contain vectors of similar

length. The effectiveness of our bounds—and of using normalization and subsequent

coordinate-based pruning in general—is thus particularly effective in the context of our

LEMP framework.

Effectiveness of bounds. To gain some insight into the effectiveness of our bounds,

we plot the feasible region [Lf , Rf ] for various choices θb(q) in Figure 3.3. The x-axis

corresponds to the value of q̄f , the y-axis to the lower and upper bounds, and the various

oval-shaped gray regions to the feasible regions. Note that −1 ≤ q̄f , p̄f ≤ 1.

The pruning power of our bounds depends on both the value of θb(q) and on the prop-

erties of matrices Q and P . First, the larger the local threshold θb(q), the smaller the

feasible region and the more vectors can be pruned. In fact, for large values of θb(q), the



Chapter 3. Exact and Approximate Maximum Inner Product Search 50

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

qf

[L
f, 

U
f]

θ b
(q)=0.3θ b

(q)=0.8θ b
(q)=0.99

Infeasib
le ra

nge

Figure 3.3: Feasible regions for various values of θb(q)

feasible region is small across the entire value range of q̄f . Second, the size of the feasible

region decreases as the magnitude of q̄f increases. This decrease is more pronounced

when the local threshold is small. Note that a small feasible region may or may not lead

to effective pruning; the value distribution of P b is also important. Nevertheless, the

smaller the feasible region, the more effective the pruning will be.

Based on the observations above, we conclude that our bounds can effectively prune a

vector p̄ with q̄T p̄ < θb(q) when θb(q) is large or when there is some coordinate f for

which only one of q̄f or p̄f takes a large value. Since all vectors are length-normalized,

the latter property holds if q̄ or p̄ is sufficiently sparse or has a skewed value distribution.

If neither holds and θb(q) is small, an algorithm such as LENGTH or ICOORD may be

a more suitable choice.

Exploiting bounds. The COORD algorithm makes use of the feasible region derived in

the previous section to prune unpromising candidates. To do so, LEMP creates indexes

for each probe bucket P b during its preprocessing phase. In the case of COORD, we

create r sorted lists I1, . . . , Ir, one for each coordinate of the vectors in P b. Each entry

in list If is a (lid, p̄f )-pair, where as before lid is a bucket-local identifier for the

corresponding vector p̄. As in Fagin et al.’s threshold algorithm (TA, [Fagin et al., 2001]),

from which our index is inspired, the lists are sorted in decreasing order of p̄f . Figure 3.4c

shows the sorted-list index for the example bucket given in Figure 3.4a. Although index

construction is generally light-weight and fast, LEMP constructs indexes lazily on first

use to further reduce computational cost. Buckets with very short vectors, for example,

will always be pruned and thus do not need to be indexed.

COORD is summarized as Algorithm 4. It takes as input a bucket P b, a query q, the

global and local thresholds (θ, θb(q)), the bucket indexes I1, . . . , Ir, and a set of focus

coordinates F ⊆ [r]. We discuss the algorithm using the example of Figure 3.4 with

θ = 0.9. Consider the query q shown in Figure 3.4d as well as the corresponding inner

products shown in Figure 3.4b. We have θb(q) = 0.9/(0.5 · 2) = 0.9, coincidentally
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lid id ‖p‖ p̄

1 23 2.0 0.58 0.50 0.40 0.50
2 43 1.9 0.98 0 0 0.20
3 12 1.9 0.53 0 0 0.85
4 54 1.8 0.35 0.93 0 0.10
5 18 1.8 0.58 0.50 0.40 0.50
6 20 1.8 0.30 -0.40 0.81 -0.30

(a) Organization of bucket P b

q̄T p̄ qTp

0.97 0.97
0.79 0.75
0.80 0.76
0.56 0.52
0.97 0.87
0.26 0.23

(b) Results for
query q of (D)

I1

lid p̄1

2 0.98
1 0.58
5 0.58
3 0.53
4 0.35
6 0.30

I2

lid p̄2

4 0.93
1 0.50
5 0.50
2 0
3 0
6 -0.40

I3

lid p̄3

6 0.81
1 0.40
5 0.40
2 0
3 0
4 0

I4

lid p̄4

3 0.85
1 0.50
5 0.50
2 0.20
4 0.10
6 -0.30

(c) Sorted-list index (bold rows show scan range for q)

‖q‖ q̄

0.5 0.70 0.3 0.4 0.51

[Lf , Uf ] [0.32, 0.94] - - [0.09, 0.83]

(d) Query q and feasible region for focus coordinates

lid c

1 2
2 1
3 1
4 2
5 2
6 0

Cb = { 1, 4, 5 }
(e) CP array

lid c q̄TF p̄F ‖pF ‖2 u θp(q)

1 2 0.66 0.59 0.32 0.9
2 1 0.10 0.04 0.49 0.95
3 1 0.37 0.28 0.43 0.95
4 2 0.30 0.13 0.47 1
5 2 0.66 0.59 0.32 1
6 0 - - - 1

Cb = { 1 }
(f) Extended CP array

Figure 3.4: Illustration of LEMP as well as the COORD and ICOORD retrieval
algorithms for θ = 0.9 and F = { 1, 4 }

agreeing with the global threshold. Observe that vectors 1 and 5 pass the local threshold

q̄T p̄ ≥ θb(q), but only vector 1 additionally passes the global threshold qTp ≥ θ.

COORD does not compute and enforce the bounds for each coordinate, but uses a

suitable subset F ⊆ [r] of focus coordinates; see below. For each focus coordinate f ∈ F ,
COORD computes the feasible region [Lf , Uf ] (line 3) and determines the start and

end of the corresponding scan range in sorted list If via binary search for Uf and Lf ,

respectively (line 4). Vectors outside the scan range violate the bound on coordinate f .
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Algorithm 4 The COORD algorithm
Require: q,P b, θ, θb(q), F ⊆ [r], I1, . . . , Ir
Ensure: Cb ⊇

{
pj ∈ P b | q̄T p̄j ≥ θb(q)

}
1: c← empty CP array
2: for all f ∈ F do
3: Calculate feasible region [Lf , Uf ]
4: Determine corresponding scan range in sorted list If
5: for all lid in scan range of If do
6: c[lid]← c[lid] + 1 // maintain CP array
7: end for
8: end for
9: Cb = { lid | c[lid] = |F | } // filter

In the example of Figure 3.4, we used F = { 1, 4 }. The bounds are shown in Figure 3.4d

and the corresponding scan ranges in I1 and I4 are shown in bold face in Figure 3.4c.

COORD subsequently scans the scan range of each sorted list If , f ∈ F , in sequence

(line 5) and maintains a candidate-pruning array (CP array, line 6). The CP array

contains for each vector p̄ ∈ P b with local identifier lid a counter c[lid] that indicates

how often the vector has been seen so far. The CP array of our running example is

shown in Figure 3.4e (with an additional lid column for improved readability). After

completing all scans, COORD includes into Cb all those vectors p̄ ∈ P b that qualified on

all focus coordinates, i.e., for which c[lid] = |F | (line 9). In our example, Cb = { 1, 4, 5 }
since only those three vectors occurred in both scan ranges. In particular, vectors 2 and

3 are (correctly) excluded because they appear in only one scan range.

We now turn to the question of how to choose the focus set F . One option is to simply

set F = [r]. However, processing sorted lists can get expensive if F is large or contains

coordinates for which pruning is not effective, i.e., for which a large fraction of the

corresponding sorted lists needs to be scanned. We make use of a focus-set size parameter

φ, typically in the range of 1–5; we discuss the choice of φ in Section 3.3.4. COORD

then uses the φ coordinates of q̄ with largest absolute value as focus coordinates. The

reasoning behind this choice is that large coordinates will lead to the smallest feasible

region (cf. Section 3.3.2); the hope is that they also lead to a small scan ranges and a

small candidate set.

To summarize, COORD builds indexes only if needed and uses only a subset of the entries

in a subset of the sorted-list indexes. The index scan itself is light-weight; it accesses

solely the lid part of the lists and increases the counters of the CP array. Also note that

the bounds we use for determining the scan range of the lists are simple and relatively

cheap to compute. This is important since these bounds need to be computed per query,

per bucket, and per focus coordinate. See Section 3.5 for implementation details.
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3.3.3 Incremental Coordinate-Based Pruning

COORD scans the sorted-list indexes to find the set of vectors that qualify in each

coordinate f ∈ F , i.e., fall in region [Lf , Uf ]. Other than checking feasibility, the actual

values in the scanned lists are ignored. In contrast, the incremental pruning algorithm

ICOORD makes use of the p̄f values as well: It maintains information that allows it to

prune additional vectors. Such an approach is generally more expensive than COORD,

but the increase in pruning power may offset the costs.

When we derived the bounds of a coordinate f of COORD, we assumed that cos(q̄-f , p̄-f ) =

1. This is a worst-case assumption; in general, cos(q̄-f , p̄-f ) will be less (and often much

less) than 1. Intuitively, a vector p̄ that qualifies barely in all coordinates often does

not constitute an actual result. Recall our ongoing example of Figure 3.4. Here vector 4

barely qualifies in both indexes I1 and I4 and is thus included into the candidate set of

COORD. Vector 4 does not pass the local threshold, however, since q̄T p̄4 = 0.56 < 0.9.

COORD is blind to this behavior.

Another potential drawback of COORD is that it does not (and cannot) take into consid-

eration the length distribution of the vectors in each bucket. In the example of Figure 3.4,

normalized vectors 1 and 5 are identical and both pass the local threshold. However,

since vector 1 is slightly longer than vector 5, only vector 1 passes the global threshold

and thus the verification step of LEMP .

Similar to COORD, ICOORD scans the scan ranges of the sorted lists of the focus

coordinates. To address the above issues, however, ICOORD additionally maintains a

partial inner product for each of the vectors that it encounters. Generalizing our previous

notation, denote by q̄F (q̄-F ) the values of the focus coordinates (of all other coordinates)

of the query vector; similarly, p̄F and p̄-F . We obtain

q̄T p̄ = q̄TF p̄F + q̄T-F p̄-F ≤ q̄TF p̄F + ‖q̄-F ‖ ‖p̄-F ‖.

Since vectors are normalized, the right-hand side can be computed from q̄F and p̄F only.

Denote the resulting upper bound on the “unseen” part q̄T-F p̄-F of the inner product q̄T p̄

by

u(q̄F , p̄F ) = ‖q̄-F ‖ ‖p̄-F ‖ =
√

1− ‖q̄F ‖2
√

1− ‖p̄F ‖2.

Then q̄T p̄ ≤ q̄TF p̄F + u(q̄F , p̄F ). In order to compute this bound, ICOORD uses an

extended CP array, which maintains for each probe vector, in addition to the frequency

counters of COORD (line 6 of Algorithm 4), the quantities q̄TF p̄F and ‖p̄F ‖2 =
∑

f∈F p̄
2
f .

After the extended CP array has been computed, ICOORD includes into the candidate
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set only those vectors p̄ that satisfy

q̄TF p̄F + u(‖q̄F ‖, ‖p̄F ‖) ≥ θp(q)
def
=

θ

‖p‖ · ‖q‖
. (3.13)

Here θp(q) is an improved, probe vector-specific local threshold; it holds θp(q) ≥ θb(q).

This improved local threshold cannot be used by the COORD algorithm.

Figure 3.4f shows the extended CP array for our running example (to the left of the

double vertical lines) as well as the quantities involved in the above pruning condition

(to the right; here we write u for u(‖q̄F ‖, ‖p̄F ‖)). For example, for vector 1, q̄TF p̄F =

0.58 · 0.70 + 0.50 · 0.51 = 0.66 and u =
√

1− (0.582 + 0.502) · ‖q̄-F ‖. The quantity ‖q̄-F ‖
(not shown in Figure 3.4f) is independent of the probe vectors and thus only computed

once. In our example, ‖q̄-F ‖ =
√

1− (0.702 + 0.512) = 0.5. As can be seen in the

example, filter condition q̄TF p̄F + u ≥ θp(q) is passed only by vector 1; thus Cb = { 1 }.
Note that the rows of vector 5 and vector 1 agree in the extended CP array; our improved

local threshold (0.9 for vector 1 vs. 1 for vector 5), however, allows us to correctly prune

vector 5, but retain vector 1.

3.3.4 Algorithm Selection

Before processing a bucket P b, LEMP needs to decide which retrieval algorithm to use.

We have already given some guidance for this choice above: Length-based pruning is

suitable for buckets with a skewed length distribution, whereas coordinate-based pruning

is suitable for large local thresholds and/or data with a skewed value distribution. In

general, the choice of a suitable algorithm is data-dependent.

LEMP uses a simple, pragmatic method for algorithm selection: it samples a small set of

query vectors and tests the different methods for each bucket. We observe the wall-clock

times obtained by the various methods and select a threshold tb for each bucket: whenever

θb(q) < tb, LEMP will use LENGTH, otherwise it uses coordinate-based pruning. For

setting tb, we simply pick the value that minimizes the runtime on the sampled query

vectors.

We proceed similarly to select for each bucket b the parameter φb for the number of focus

coordinates in coordinate-based pruning. We generally explore φb values in increasing

order, i.e., starting with 1 and ending with some upper bound (e.g., 10). To speed up

this process, we employ two heuristics. First, we stop exploring larger values for φb if

the performance with the currently tested φ value is more than 10% worse than the best

performance so far. Second, we use the best φ-value of bucket b as a starting point for
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tuning bucket b + 1. We then start exploring the performance for values of φ left and

right to this initial value, using the same stopping criterion as above.

The cost of this sample-based profiling step is negligible since the number of query vectors

is large; the overall running time is dominated by the time required to process Q in its

entirety.

More elaborate approaches for algorithm selection are possible, e.g., some form of rein-

forcement learning. Our experiments suggest, however, that even the simple selection

criterion outlined above gives promising results.

3.3.5 Solving the Top-k-MIPS Problem

Our discussion so far has focused on the Above-θ-MIPS problem; we now proceed to the

discussion of the Top-k-MIPS problem. Recall that given a query vector q, the Top-k-

MIPS problem asks for the vectors p ∈ P that attain the k largest inner products qTp.

Top-k-MIPS is often used in recommender systems for retrieving the best k items for

each user.

The Top-k-MIPS problem is related to the Above-θ-MIPS problem as follows. Fix a

query vector q and denote by θ∗ the k-th largest entry in qTP . Given θ∗, the solution

of the Top-k-MIPS problem coincides with the solution of the Above-θ-MIPS algorithm

with threshold θ∗ (assuming no duplicate entries). We do not know θ∗, however, and

instead make use of a running lower bound θ̂ ≤ θ∗. The value of θ̂ increases as the

algorithm proceeds.

In more detail, we take the k longest vectors of P (all located at the beginning of bucket

P 1) and compute their inner product with q. The smallest so-obtained value is our

initial choice of θ̂. We then run the Above-θ-MIPS algorithm with threshold θ̂ on the

first bucket, determine the top-k answers in the result, and update θ̂ accordingly. In more

detail, we set θ̂ to the value of the k-largest inner product found so far. This process

is iterated over the subsequent buckets until θ̂ becomes so large that LEMP prunes

the next bucket. At this point, we output the current top-k vectors as a result. This

strategy is effective because (1) LEMP organizes buckets by decreasing length so that we

expect the top-k values to appear in the top-most buckets, and (2) bucket sizes are small

(cache-resident) so that the threshold θ̂ is increased frequently. The above algorithm is

guaranteed to produce the correct result because θ̂ ≤ θ∗: If a bucket contains a vector p

with qTp ≥ θ∗, then qTp ≥ θ̂ and we are guaranteed to add p to the candidate set.

Note that the length of q does not affect the result of the Top-k-MIPS problem. We thus

simplify the bounds used by our algorithms by normalizing q upfront.
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3.4 Approximate MIPS

We now turn attention to using LEMP for approximate MIPS, which allows us to realize

further performance gains. We propose three different algorithms. The LEMP-LSHA

algorithm (Section 3.4.2) is based on locality-sensitive hashing and offers a probabilis-

tic guarantee on recall for both Above-θ-MIPS and Top-k-MIPS. The LEMP-ABS and

LEMP-REL algorithms (Section 3.4.3) offer (non-probabilistic) bounds on the RMSE

and ARE, respectively, and can be used with arbitrary exact bucket algorithms.

3.4.1 Locality-Sensitive Hashing for Cosine Similarity Search

We start with a brief, high-level review of locality-sensitive hashing (LSH, [Gionis et al.,

1999]) for approximate cosine similarity search. LSH is a popular and highly efficient

technique for this problem; we are thus interested in adapting it to process each of

LEMP’s buckets (Section 3.2).

The key idea of LSH is to use a random hash function to assign probe vectors to bins.

The hash function is chosen such that vectors with high cosine similarity are more likely

to end up in the same bin than vectors with low cosine similarity. LSH is used as follows:

we first group probe vectors into bins according to their hash values in a preprocessing

phase. For each query vector q, we determine q’s bin using the same hash function, and

consider as candidates each of the probe vectors in the corresponding bin; all other bins

are ignored. Since vectors with high cosine similarity are (more) likely to end up in the

same bin, the so-retrieved candidate set is biased towards vectors that are similar to q.

In more detail, we use hash functions based on random hyperplanes [Charikar, 2002],

which work as follows. We first independently obtain r samples from the standard

Normal distribution to form an r-dimensional vector u. We view u as the normal vector

of a random hyperplane. We then assign each probe vector to a bucket depending on

which “side” of the hyperplane it lies, i.e.,

hu(p) =

1 uTp ≥ 0

0 otherwise.

One can show that for all pairs of vectors x,y ∈ Rr [Charikar, 2002]:

Pru[hu(x) = hu(y)] = 1− arccos(x̄T ȳ)

π
. (3.14)
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Note that the right-hand side s(x,y) = 1 − arccos(x̄T ȳ)/π is not identical to the co-

sine similarity x̄T ȳ. It is, however, a monotonically increasing function of the cosine

similarity, which is sufficient for cosine similarity search.

To make LSH effective, we use l independent hash functions, where l > 0 is a parame-

ter. For each vector p, we concatenate its hash values into an l-bit binary code, called

signature. Each of the 2l potential signatures corresponds to a bin. The parameter l

controls both cost and recall: If l is increased, more hash values need to be computed

(increasing computational cost), fewer vectors are stored in each bin in expectation (re-

ducing computational costs), and finally two similar vectors are less likely to be mapped

to the same bin (reducing recall). To combat the loss in recall, the entire process can

be repeated L times, where L > 0 is another parameter. We then process each query on

each of the L repetitions and union the results. Note that LSH is only effective when the

number of probe vectors is larger than lL (because otherwise we need to compute more

inner products to obtain hash values than naive search needs to obtain the exact result).

The most effective combination of l and L is generally data-dependent. If l is fixed,

however, we can determine a suitable value for L according to the following theorem.

Theorem 3.3. [Satuluri and Parthasarathy, 2012, Xiao et al., 2011] Let l > 0, θ > 0

and 0 < R < 1. Consider an LSH data structure constructed on P using signatures of

length l and

L(θ) =

⌈
log(1−R)

log(1− [1− arccos(θ)/π]l)

⌉
(3.15)

repetitions. For any query q ∈ Rr, LSH outputs each probe vector p ∈ P such that

q̄T p̄ ≥ θ with probability at least R.

The theorem immediately implies an expected recall of at least R.

Note that LSH has recently been applied to solve the MIPS problem directly [Neyshabur

and Srebro, 2015, Shrivastava and Li, 2014a,b]. We discuss these methods in Section 3.7

and study their performance in Section 3.8.

3.4.2 LEMP with Adaptive LSH

In this section, we introduce the LEMP-LSHA algorithm, which makes use of LSH in

each of LEMP’s buckets. We start with the approximate Above-θ-MIPS problem and

then proceed to Top-k-MIPS. In both cases, LEMP-LSHA takes as input a desired recall

parameter R and guarantees to output each true result vector with probability at least R.

The key idea of LEMP-LSHA is to use an adaptive—i.e., query- and bucket-dependent—

number of LSH repetitions to ensure recall R with as low computational cost as possible.
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LEMP-LSHA for Above-θ-MIPS. Assume for now that the length l of the hash code

is fixed. Recall that LEMP solves many small cosine similarity search problems, one for

each of its buckets, and that LEMP uses a query- and bucket-dependent local threshold

θb(q) for cosine similarity search. Since the local threshold θb(q) is not constant, we

cannot simply use Eq. (3.15) to determine the number L of repetitions to use to achieve

recall R. The main problem is thus to obtain a suitable choice of L within the LEMP

framework.

The idea of LEMP-LSHA is as follows. We store with each bucket b a number cb of

LSH repetitions; cb = 0 initially for all buckets. When processing query q on bucket

b, we compute the local threshold θb(q) as before. We then determine the necessary

number L = L(θb(q)) of LSH repetitions needed for this bucket and query according to

Eq. (3.15). If cb < L, we create L − cb additional LSH repetitions by reindexing probe

vectors and subsequently increase cb accordingly. In other words, the construction of

LSH repetitions is done lazily as needed. After this step, it holds cb ≥ L, i.e., we have a

sufficient number of repetitions stored with bucket b. We now pick the first L of these

repetitions to obtain the candidate set using LSH; this step involves computing lL hash

values of the query vector. Note that we may use less than the cb repetitions stored with

bucket b in this step: Since L repetitions are sufficient to achieve the desired recall, using

more than L repetitions would be wasteful. In addition, we use the same hash functions

for all buckets. This allows us to cache and re-use the signatures of the query vector

when processing different buckets.

As with most methods for cosine similarity search, LSH is only effective if θb(q) is large.

Thus we use LSH only when θb(q) is large and L(θb(q)) does not exceed a pre-specified

space budget. Otherwise, we use the exact LENGTH method. To decide whether or not

to use LSH, we use the tuning method described in Section 3.3.4. We subsequently refer

to the adaptive version of LSH in combination with LENGTH as LSHA.

The correctness of LEMP-LSHA follows immediately from its construction. We either

use LENGTH on each bucket (providing exact results) or use a sufficient number of LSH

repetitions (providing recall R).

Theorem 3.4. Consider the approximate Above-θ-MIPS problem and fix a recall thresh-

old R. For each query qi ∈ Q and each probe vector pj ∈ P it holds:

1. If qTi pj ≥ θ, LEMP-LSHA outputs (i, j) with probability at least R.

2. Otherwise, if qTi pj ≤ θ, LEMP-LSHA does not output (i, j).

Proof. Fix (i, j). Let b be the bucket that contains pj . Suppose that qTi pj ≥ θ. If LEMP

uses LENGTH on bucket b, pj is included into the candidate set because LENGTH is an
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exact method. If LEMP uses LSH on bucket b, pj is included with probability at least

R since we use sufficiently many repetitions according to Th. 3.3. This establishes the

first assertion. The second assertion holds because LEMP verifies all candidate vectors,

i.e., it outputs (i, j) only if qTi pj ≥ θ.

It remains to select the length parameter l of the hash code as well as the space budget

for storing repetitions. Parameter l is usually tuned in a dataset-specific way. In our

setting, however, buckets contain few vectors by construction (so that they fit into the

cache). Since computing hash values requires l inner products per LSH repetition, we

cannot afford to use a large value of l; otherwise, LENGTH would be more efficient

than LSH. We thus keep l small. For similar reasons and to keep space consumption

acceptable, we set the per-bucket budget of LSH repetitions to a relatively small value.

In particular, our implementation fixes l = 8 and uses a budget of 200 repetitions; these

choices provided good results across all datasets in our experimental study.

LEMP-LSHA for Top-k-MIPS. Recall from Section 3.3.5 that Top-k-MIPS for a

given query vector q is equivalent to Above-θ∗-MIPS, where θ∗ is the k-th largest value

in qTP (we assume in this section that all values of qTP are distinct). Thus θ∗ depends

on both q and P and may vary wildly across queries. When LSH is used for top-k search,

θ∗ is unknown, which poses severe difficulties. One way to support top-k processing is

to perform a grid search to select suitable values of l and L empirically. Another way

is to use a sequence of LSH structures with decreasing threshold values; the last LSH

structure should use a threshold smaller than the smallest top-k inner product value for

any query.5 The first option does not provide any quality guarantees and is generally

cumbersome and inefficient (esp. when queries have wildly varying values of θ∗). This

problem has also been observed in our experimental study; see Section 3.8. The second

approach is costly because the cost of signature construction is determined by the worst-

case query. There is also an inherent risk of constructing too many (high preprocessing

cost) or too few (lower recall than desired) of these LSH structures.

In the context of LEMP, we can avoid the problem mentioned above and derive an

efficient LSH-based algorithm for Top-k-MIPS. Our algorithm uses the techniques of

Section 3.3.5 on LEMP for Top-k-MIPS, but employs LSHA instead of an exact search

method in each bucket. In more detail, we maintain a top-k list of the probe vectors

with the largest inner products found so far; this top-k list also allows us to obtain a

lower bound θ̂ on θ∗. The top-k list is initialized with the k longest probe vectors (all

at the start of bucket P 1). We then process buckets in order of decreasing length. We

use θ̂ to obtain the local threshold θ̂b(q) for the next bucket b; this local threshold is

then used to obtain the candidate set from bucket b with LSHA. After candidates have
5http://www.mit.edu/~andoni/LSH/manual.pdf

http://www.mit.edu/~andoni/LSH/manual.pdf
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been obtained, we update the top-k list and θ̂ and proceed to the next bucket (now with

the modified value of θ̂). Using this approach, LEMP-LSHA avoids the problems of the

plain LSH methods by frequently estimating and updating the threshold value to use.

Theorem 3.5. Consider the approximate Top-k-MIPS problem and fix a recall threshold

R. For each query qi ∈ Q and each probe vector pj ∈ P such that qTi pj is among the k

largest values in qTi P , LEMP-LSHA outputs (i, j) with probability at least R.

Proof. Fix (i, j) and suppose that qTi pj is among the k largest values in qTi P . We know

that qTi pj ≥ θ∗ by definition of θ∗. Let b be the bucket that contains pj , and let θ̂ be

the (random) threshold value that LEMP-LSHA uses to run LSHA on bucket b. Since θ̂

is based on the (approximate) top-k list found so far, we must have θ̂ ≤ θ∗. By Th. 3.4,

LEMP-LSHA then includes (i, j) into the candidate set with probability at least R. Since

qTi pj is among the k largest values in qTi P , (i, j) will be immediately added to the top-k

list and not be removed later on.

3.4.3 LEMP-ABS and LEMP-REL for Approximate Top-k-MIPS

In this section, we describe the LEMP-ABS and LEMP-REL for Approximate Top-k-

MIPS, which provide RMSE and ARE quality guarantees, respectively. Both LEMP-ABS

and LEMP-REL can be used with any exact bucket algorithm.

To see how we can use LEMP for approximate Top-k-MIPS, recall the recommender

system use case and fix a user (query vector). We are interested in retrieving the top-k

recommended items (probe vectors) for that user. Suppose that the ratings of these

items (inner products) lie on a scale from 1 (bad) to 5 (great). The key idea of our

algorithms is as follows: if the best top-k list of the user contains items with ratings

between, say, 4.9–5, then an approximate top-k list with items rated, say, 4.8–5 is almost

as good. If the approximate list can be retrieved significantly faster, then this small loss

in quality is acceptable: a fast good result may be preferable to a slow perfect result. This

observation is exploited by LEMP-ABS and LEMP-REL: Both algorithms augment the

threshold computation of LEMP so that LEMP retrieves good, but not perfect, results.

In more detail, we use threshold values that are larger than the ones needed for exact

Top-k-MIPS, which in turn leads to faster processing times.

The difference between LEMP-ABS and LEMP-REL lies in how the augmentation of the

threshold is performed. Recall that LEMP maintains a running lower bound θ̂ on the

threshold θ∗ for Top-k-MIPS. Before processing each bucket, we augment θ̂ based on an

error parameter ε ≥ 0:



Chapter 3. Exact and Approximate Maximum Inner Product Search 61

• LEMP-ABS augments θ̂ by an additive error term, i.e., we set

θ̂abs(ε) = θ̂ + ε. (3.16)

• LEMP-REL augments θ̂ by a relative error term, i.e., we set

θ̂rel(ε) =

θ̂/(1− ε) θ̂ ≥ 0

θ̂ θ̂ < 0,
(3.17)

for 0 ≤ ε < 1. Note that we do not augment θ̂ if it is negative (in which case the

ARE may not be a meaningful measure).

We then compute the local thresholds based on θ̂abs(ε) or θ̂rel(ε), respectively, and proceed

as in exact LEMP for Top-k-MIPS. Note that each augmented threshold value is larger

than the non-augmented threshold when ε > 0; both values are equal when ε = 0.

The error parameter directly corresponds to quality guarantees on the obtained result.

The following theorem establishes that for LEMP-ABS, ε is an upper bound on the

RMSE of the approximate result.

Theorem 3.6. For any query q ∈ Q, the RMSE (Eq. (3.1)) of LEMP-ABS for Top-k-

MIPS with error parameter ε ≥ 0 is at most ε.

Proof. Denote as before by s1, s2, . . . , sk the the values of the inner products in the

exact solution of the Top-k-MIPS problem for q in decreasing order, and by ŝ1, ŝ2, . . . , ŝk

the inner products obtained by LEMP-ABS, again in decreasing order. Assume for the

moment that

ŝi + ε ≥ si (3.18)

for 1 ≤ i ≤ k. Then

RMSE =

√√√√1

k

k∑
i=1

(si − ŝi)2 ≤

√√√√1

k

k∑
i=1

((ŝi + ε)− ŝi)2 = ε,

as desired.

It remains to show that (3.18) holds for all i. To see this, observe that for each of its

buckets, LEMP-ABS uses a threshold θ̂ that satisfies θ̂ ≤ ŝk. This is because LEMP-

ABS takes θ̂ to be the lowest inner product value in the current top-k list, which is

upper bounded by its final value ŝk. This implies that θ̂abs(ε) = θ̂ + ε ≤ ŝk + ε for all



Chapter 3. Exact and Approximate Maximum Inner Product Search 62

buckets. Denote by j1, . . . , jk the exact result of Top-k-MIPS; we have si = qTpji . Let

u ≤ k be the largest index such that su > ŝk + ε (if such an index exists). Pick any ji,

1 ≤ i ≤ u, and denote by b the bucket that contains pji . Since θ̂abs(ε) ≤ ŝk + ε for all

buckets, including bucket b, and since qTpij > ŝk + ε, LEMP-ABS will include ji into

its candidate list when processing bucket b. Since qTpji is among the k-th largest inner

product values overall, ji will subsequently be added to the top-k list and not be evicted

later on. Thus all indexes j1, . . . , ju are included in the final top-k list of LEMP-ABS.

For i ≤ u, we thus have si = ŝi so that Eq. (3.18) holds. Now consider any index i > u.

We have si ≤ ŝk + ε by our choice of u. Since ŝk ≤ ŝi, it follows that si ≤ ŝi + ε, i.e.,

Eq. (3.18) holds.

The error bound on the RMSE obtained by LEMP-ABS is absolute, i.e., it does not

depend on the scale of the values in the actual result. In cases where the top-k values

can differ wildly across different queries, it may be more appropriate to use relative error

bounds instead. This means that we require small error for results with small top-k

values, but allow for larger error for results with large top-k values. Such bounds are

achieved by LEMP-REL.

Theorem 3.7. For any query q ∈ Q, the ARE (Eq. (3.2)) of LEMP-REL for Top-k-

MIPS with error parameter 0 ≤ ε < 1 is at most ε.

Proof. Using the notation above, suppose that ŝk < 0 when LEMP-REL terminates.

Then for all buckets, we must have had θ̂ < 0 (since θ̂ ≤ ŝk by definition) and thus

θ̂rel(ε) = θ̂. This implies that whenever ŝk < 0, LEMP-REL did not augment the

threshold and thus produced exact results. The ARE is thus 0 and the assertion holds.

Now suppose that ŝk ≥ 0. Then we can show using arguments as in the proof of Th. 3.6

that

ŝi/(1− ε) ≥ si (3.19)

for 1 ≤ i ≤ k. The ARE satisfies

ARE =
1

k

k∑
i=1

∣∣∣∣si − ŝisi

∣∣∣∣ =
1

k

k∑
i=1

∣∣∣∣1− ŝi
si

∣∣∣∣ ≤ 1

k

k∑
i=1

∣∣∣∣1− ŝi
ŝi/(1− ε))

∣∣∣∣ = ε (3.20)

as asserted.

To further improve the performance of LEMP-ABS and LEMP-REL, we use the aug-

mented thresholds θ̂abs(ε) and θ̂rel(ε) only for candidate generation but not during veri-

fication. That is, we update the top-k list by taking into the consideration all candidate

vectors.
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3.5 Implementation Details

In this section, we give some guidance on how to implement the COORD, ICOORD, and

LSHA algorithms efficiently.

COORD. In our implementation, we store the sorted-list indexes column-wise to reduce

memory bandwidth: the data values are accessed only during binary search to determine

the scan range, and the local identifiers are accessed only during the actual scan phase.

For efficiency reasons, we also avoid clearing the CP array when moving from one query

vector to the next. Instead, we keep the array uninitialized and proceed as follows. When

scanning the first sorted list, we set to 1 instead of incrementing the corresponding entry

of the CP array and increment while scanning the remaining sorted lists. After all lists

have been scanned, we scan the first sorted list again and only consider the corresponding

entries of the CP array for inclusion into the candidate set. Since the first sorted list

is scanned twice (for CP array initialization and filtering), we take the focus coordinate

with the smallest scan range as the first one.

ICOORD. Since ICOORD needs access to both coordinate values and local identifiers

during scanning, we store the sorted lists row-wise. The extended CP array is initialized

and accessed in the same way as the CP array of COORD. In order to reduce memory

bandwidth and avoid excessive checking, we do not keep the counter information of

COORD in the extended CP array: the filtering condition of Eq. (3.13) is usually pruning

vectors more aggressively than the simple check of COORD. Since Eq. (3.13) contains

expensive floating-point operations (such as divisions and square roots), we rewrite the

conditions and accept a vector p̄ if:

q̄TF p̄F ‖p‖ > θ/‖q‖,

for which the right-hand side needs to be computed only once. If this test fails, we accept

p̄ if and only if:

‖p‖2‖q‖2(1− ‖p̄F ‖2)(1− ‖q̄F ‖2) ≥ (θ − q̄TF p̄F ‖p‖‖q‖)2.

ICOORD’s strength lies into accumulating partial inner products from many lists. If we

decide to use φb = 1 for some bucket b, ICOORD and COORD will produce the same

candidate set, but COORD does so faster. We thus use COORD instead of ICOORD

whenever φb = 1.

LSHA. To create the random vectors u from the standard Normal distribution, we

follow the approach of Satuluri and Parthasarathy [2012], which allows for compressed
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storage. In addition, using Eq. (3.15) for each query-bucket pair can be expensive. In our

implementation, we precompute and cache the smallest local threshold that corresponds

to each one the 200 signatures in the budget. During query processing, we perform

binary search on these values to find L for each θb(q).

3.6 Parallelizing LEMP

In this section, we show how to take advantage of multithreading and instruction level

parallelism for MIPS. When multiple queries are considered, the MIPS problem becomes

embarrassingly parallel: queries can be partitioned among threads; each thread can run

its own instance of the problem. All algorithms described in this chapter (LEMP, naive,

cover trees [Curtin et al., 2013], TA [Fagin et al., 2001], simpleLSH [Neyshabur and

Srebro, 2015], PCA-tree [Bachrach et al., 2014], etc.) can be parallelized in this way.

Here we show how to apply such ideas to LEMP in an efficient way that scales to many

processors.

Multithreading. When multithreading is used, it is important for scalability to a large

number of cores to avoid synchronization and cache misses to the extent possible. We

avoid cache misses by enforcing during bucketization the restriction that each bucket

should fit into the available cache per core. Synchronization, on the other hand, can

in general take place in LEMP in three places: (i) when a thread writes its results to

memory, (ii) when a thread needs to obtain the next query to work on, and (iii) when

a thread needs to access an index which is not yet created. To handle (i), we assign to

each thread a separate memory area to write its results. The final result is then given

by the union of these memory areas. To handle (ii), we partition the queries among

the threads during the preprocessing phase. Thus each thread knows upfront which

queries it is responsible for and no further synchronization is needed. To ensure a similar

workload among threads, queries are assigned to partitions randomly. We handle (iii)

as follows. When a thread needs to access an index which is not yet created during

the search phase, it needs to obtain exclusive access to the index in order to build it.

While the index is being built, all other threads that try to read this index need to wait;

we want to minimize such waiting times. For the Above-θ-MIPS problem, in which we

know θ upfront, we compute in advance which buckets can contribute to the result in the

worst case (longest query vector). The indexes of these buckets are created in parallel

during the preprocessing phase. Thus no synchronization is needed during the search

phase. For the Top-k-MIPS, for which the set of required indexes is not known upfront,

synchronization is inevitable. However, we can reduce synchronization overhead during

search phase as follows. Recall that during tuning, we run a sample of queries against
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the probe buckets, so that their performance w.r.t. the LENGTH algorithm and other

direction-based algorithms (for which we need indexes) is assessed. After we assess the

performance of the sample w.r.t. LENGTH, we have a first crude estimate of how many

buckets are contributing to the result. At this point, we pause the tuning phase, build

the estimated number of required indexes for these buckets in parallel and then continue

tuning. In this way, a large part of the required indexes is created before the search

phase starts. If additional indexes are needed during the search phase, we build them on

demand and require synchronization. Our experiments suggest that the combination of

these techniques allows LEMP to scale almost linearly to a large number of processors.

Instruction-level parallelism. LEMP’s performance (as well as the one of some other

methods) can benefit from the use of instruction-level parallelism. As a proof of concept,

we extended LEMP to use SSE instructions to speedup (i) the inner-product calculation

during the verification phase, and (ii) the maintenance of the extended CP array. Recall

that while ICOORD is scanning the sorted lists, it maintains for each encountered probe

vector both a partially seen inner product and an upper bound on the remaining unseen

part. Maintaining these quantities involves two multiplications, which we parallelize

using SIMD instructions.

3.7 Related Work

A number of existing methods for and related to the MIPS problem have been proposed

in the literature. We first review existing algorithms for exact MIPS and subsequently

turn attention to cosine similarity search algorithms. Finally, we review approximate

methods for MIPS. In general, LEMP differs from existing methods in that it separates

the length and direction of the input vectors, prefers inexpensive pruning strategies

over more aggressive, expensive ones, selects suitable search methods dynamically, and

provides approximation guarantees for approximate MIPS.

3.7.1 Exact Methods

Algorithms for MIPS. To the best of our knowledge, Ram and Gray [2012] were

the first to pose and address the problem of Top-k-MIPS. They organize the probe

vectors in a metric tree in which each node is associated with a sphere that covers

the probe vectors below the node. Given a query vector, the spheres are exploited to

avoid processing subtrees that cannot contribute to the result. The metric tree itself is

constructed by repeatedly splitting the set of probe vectors into two partitions (based

on Euclidean distances). In subsequent work [Curtin et al., 2013], the metric tree is
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replaced by a cover tree [Beygelzimer et al., 2006]. Both approaches effectively prune

the search space, but they suffer from high tree-construction costs and from random

memory access patterns during tree traversal. The latter problem was investigated more

closely by Curtin and Ram [2014], who proposed a dual-tree algorithm that additionally

arranges query vectors in a cover tree and processes queries in batches. The dual-tree

methods loosens the bounds for pruning the search space, however, and was found to be

ineffective in practice (confirmed also in our experimental study).

LEMP differs from these tree-based techniques in that it separates length and direction

information, makes use of multiple, light-weight indexing and search methods, and has

more favorable memory access patterns. Note that the single-tree approach can also be

used within the LEMP framework as a bucket algorithm, which directly solves the MIPS

problem. We expect that such a combination will have positive effect w.r.t. indexing

time and cache locality. This was also confirmed in our experimental study.

An alternative approach is taken by Zhang et al. [2014] in the context of recommender

systems: the matrix factorization method used to produce the input matrices is modified,

such that all vectors are (approximately) unit vectors and the inner product of user and

item vectors can be approximated by standard cosine similarity search. However, this

modification may affect the quality of the recommendations and is not suitable for all

applications. In contrast, LEMP makes no assumption on the source or method used to

compute the input matrices.

Threshold algorithm. Some of our indexing techniques are inspired by the popular

threshold algorithm (TA) of Fagin et al. [2001] for top-k query processing for monotonic

functions. TA arranges the values of each coordinate of the probe vectors in a sorted

list, one per coordinate. Given a query, TA repeatedly selects a suitable list (e.g., round

robin or heap-based), retrieves the next vector from the top of the list, and maintains

the set of the top-k results seen so far. While scanning the lists, TA maintains an upper

bound on the score of any unseen item, which is monotonically reduced with each step

the algorithm makes. Whenever this upper bound falls below the threshold θ (or the

score of the kth element in the top-k results), TA can safely terminate. If TA is able to

stop early, it can be very efficient. This early termination depends on the data and the

list selection schedule. Note that TA usually focuses on vectors of low dimensionality

(say up to 10), whereas we focus on vectors of medium sizes (say 10 to 500). TA can

be used for finding vectors with large inner products almost as is; the only difference is

that sorted lists need to be processed bottom-to-top when the respective coordinate of

the query vector is negative.

LEMP improves over TA in multiple ways: First, bucket pruning eliminates early all

short probe vectors, which otherwise TA would have to consider. Second, TA scans



Chapter 3. Exact and Approximate Maximum Inner Product Search 67

lists from top-to-bottom, whereas LEMP considers only the feasible region. Third, TA

immediately computes the inner product of each vector selected from one of the lists

in the index, i.e., candidate verification is triggered by individual coordinates. LEMP

does not immediately calculate an inner product when it encounters a vector: it first

scans multiple lists and prunes the vectors before verification, based on the so-obtained

information. Finally, index scan and verification are interleaved in TA, resulting in a

random memory access pattern and a potentially high cache-miss rate. LEMP ensures

that all bucket-related data (original vectors and indexes) fits into cache, thereby reducing

the cache-miss rate.

In our experimental study we investigated the performance of TA in comparison to

LEMP. We also experimented with TA in combination with LEMP, i.e., we used TA as

a bucket algorithm. This addresses the first and the final point in the discussion above.

Our experimental results indicate that a combination of TA and LEMP can be up to 17x

faster than just using TA. Generally, LEMP can improve TA’s performance for top-k

problems with linear scoring functions (i.e., inner products).

Algorithms for fast cosine similarity search. Exact cosine similarity search algo-

rithms, like all-pairs similarity search (APSS, [Bayardo et al., 2007, Chaudhuri et al.,

2006, Lee et al., 2010, Xiao et al., 2008]), cannot be used directly for the MIPS problem.

However, these methods can be used (with some modifications) as search methods for

LEMP’s buckets.

Typical APSS algorithms and applications involve sparse vectors of high dimensional-

ity (tens or hundreds of thousands of coordinates). In such settings, sparsity must be

retained during indexing to keep the index size manageable. Thus APSS algorithms

generally index only the non-zero values of each coordinate (in contrast to LEMP). In

addition, coordinates are often permuted such that dense coordinates (called prefix) ap-

pear before sparser coordinates (suffix); only the suffix is indexed. The index is used to

obtain candidate vectors, which are further pruned based on properties of prefixes and

suffixes [Anastasiu and Karypis, 2014, Lee et al., 2010, Xiao et al., 2008]. Finally, full

similarity scores are computed for each candidate.

L2AP [Anastasiu and Karypis, 2014] is a state-of-the-art APSS algorithm for exact co-

sine similarity search; it exploits the Euclidean norms of suffixes and prefixes for index

compression and candidate filtering. L2AP can be used as a bucket algorithm for LEMP

after a few modifications. In particular, we create a separate L2AP index for each bucket.

In L2AP, like in most APSS algorithms, a lower bound on the cosine similarity threshold

needs to be fixed a priori. In our setting, we pick the lower bound θb(qmax), where qmax
is the query vector with the largest length.
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L2AP follows a similar pruning technique to ICOORD during candidate generation and

verification: it accumulates q̄TF p̄F and precomputes u(q̄F , p̄F ). ICOORD differs in the

following ways: (i) L2AP scans all indexed lists corresponding to non-zero query coordi-

nates, whereas ICOORD scans only φ of them and only their feasible regions, (ii) L2AP

uses sophisticated filtering conditions both during and after scanning. These filtering

techniques eliminate the majority of the candidates, but are generally expensive. In

contrast, ICOORD filters candidates only once and after index scanning, which is cheap

but may result in a larger number of candidates. See Section 3.8 for an experimental

comparison of the two methods.

3.7.2 Approximate Methods for MIPS

Koenigstein et al. [2012] approached the approximate Top-k-MIPS problem by clustering

the query vectors and solving the Top-k-MIPS problem only for the cluster centroids.

The results for the centroids are taken as approximate results for all the queries in the

respective cluster. The authors derive also relative error bounds (ARE) on the results,

based on the cosine similarity of the query and the centroid. If this bound is larger than

a desired value, the algorithm falls back to exact search for that specific query. Such a

method can be directly applied in combination with LEMP. We do not consider such an

approach here because it was outperformed by PCA-trees in previous studies (see below).

Moreover, the clustering phase may be expensive and the method’s performance heavily

depends on the quality of the clusters (and the number-of-clusters parameter). Finally,

the clustering approach is not suitable for online processing since all queries need to be

known in advance.

Recently, a number of novel methods have been proposed that perform transformations

of the query and/or probe vectors such that MIPS is reduced to nearest neighbor search

(NN) in Euclidean space [Bachrach et al., 2014, Shrivastava and Li, 2014b] or to cosine

similarity search [Neyshabur and Srebro, 2015, Shrivastava and Li, 2014a] on the trans-

formed vectors. The existence of such transformations is promising because they enable

the direct use of existing methods for NN or cosine similarity search. All transformations

slightly increase the dimensionality of the data vectors, either by one [Bachrach et al.,

2014, Neyshabur and Srebro, 2015] or by two [Shrivastava and Li, 2014a,b]. The addi-

tional coordinates generally hold information related to the length of the vector. LEMP

differs from these methods in that it exploits length information directly via bucketi-

zation, rather than indirectly via transformation. This allows LEMP to perform quick

initial length-based pruning for many buckets and to select suitable search algorithms

for the remaining buckets. In the remainder, we discuss the transformation methods in

more detail.
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Bachrach et al. [2014] showed how to reduce the Top-k-MIPS to an equivalent nearest-

neighbor problem in Euclidean space by introducing the following asymmetric transfor-

mations for the query and probe vectors, respectively:

tquery(q) = (0, q),

tprobe(p) = (
√

(max
i
‖pi‖)2 − ‖p‖2,p).

Note that the added coordinate is large (and often dominant) for short probe vectors

and small for long probe vectors. The authors then build a so-called PCA-tree on the

transformed probe vectors. The PCA-tree is a binary tree of depth d � r + 1, which

is formed by splitting probe vectors based on their first d principal components. Probe

vectors are thus partitioned across the leaves of the tree. During query processing, the

tree is traversed to find a set of d leaves (and the corresponding probe vectors) which

best match the transformed query. The input parameter d controls the trade-off between

speedup and quality: The larger d, the fewer total number of candidates, the larger

the speedup, and the lower the quality of the result. The PCA-tree method does not

provide any error bounds, but was empirically shown to outperform the clustering method

of Koenigstein et al. [2012].

It is known that LSH cannot be used to solve MIPS on the original vectors [Neyshabur

and Srebro, 2015, Shrivastava and Li, 2014b]. Shrivastava and Li [2014b] derived a

transformation, which allows the use of LSH methods for Euclidean distances. In their

later work, Shrivastava and Li [2014a] proposed an alternative asymmetric transformation

for LSH for cosine similarity search, which provided better results. Neyshabur and Srebro

[2015] proposed a transformation similar to the one of Bachrach et al. [2014] described

above; they also use this transformation to employ LSH for cosine similarity search. The

resulting simpleLSH scheme outperformed the methods of Shrivastava and Li [2014a,b]

in their experimental study. In Section 3.8, we compare the performance of PCA-tree

and simpleLSH with our methods. More recent work of Ballard et al. [2015], uses

diamond sampling to solve the Row-Top-k problem. Intuitively, with diamond sampling,

probe vectors whose high-valued coordinates coincide with the high-valued coordinates

of the query have higher chances to be sampled (and the more coordinates they agree on

the higher the chances of being sampled). In the end, the probe vectors that are more

frequently sampled are the best candidates for having large inner product to the query.

A comparison of LEMP with diamond sampling remains for future work.
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3.8 Experimental Study

We conducted an extensive experimental study using multiple real-world datasets. The

goals and results of our experimental study are summarized below:

• We investigated the performance of various state-of-the-art methods for exact

MIPS: LEMP, naive search (Naive, Section 3.7), the threshold algorithm (TA), and

the single and dual cover tree approaches (Tree, D-Tree). We found that LEMP

consistently outperformed alternative exact methods and was the best-performing

method overall. In particular, LEMP was up to multiple orders of magnitude faster

than Naive and between 2x and 20x faster than the best-performing alternative

method.

• We studied the relative performance of different bucket methods for exact MIPS,

including COORD, ICOORD, TA, cover trees, and L2AP. We found that a com-

bination of LENGTH and ICOORD was the most efficient bucket-search method

overall.

• We investigated the effect of the dimensionality r of the input vectors on each

algorithm’s performance for exact MIPS. Our results suggest that LEMP maintains

its performance advantage across all dimensionalities we considered.

• For approximate MIPS, we compared LEMP with the state-of-the-art methods

PCA-tree and simpleLSH. We found that LEMP outperformed the alternative

methods and provided a better speed-quality tradeoff. For example, LEMP was

up to 3.9x faster than the best alternative method at similar recall levels.

• Finally, we studied the scalability of our parallel LEMP variant. Our method had

near linear speedups up to 32 processors (the largest number considered in our

experiments) and became up to 23% faster when SIMD instructions were used.

3.8.1 Experimental Setup

All datasets and our source code can be found at http://dws.informatik.uni-mannheim.

de/en/resources/software/lemp.

Hardware. Our experiments were run on a machine with 48 GB RAM and an Intel

Xeon 2.40GHz processor. Unless stated otherwise, our experiments were carried out on

a single thread and no SIMD instructions were used.

http://dws.informatik.uni-mannheim.de/en/resources/software/lemp
http://dws.informatik.uni-mannheim.de/en/resources/software/lemp
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Dataset m n r CoV of lengths % Non- Naive
Q P Zero (min)

IE-NMF 771K 132K 10 2.05 5.49 28.2 27.4
50 1.56 5.53 36.2 112.0
100 1.34 4.45 50.8 280.5

IE-SVD 771K 132K 10 2.04 5.46 100 29.1
50 1.51 4.44 100 113.0
100 1.28 3.64 100 249.5

Netflix 480K 17K 10 0.12 0.16 100 1.5
50 0.16 0.22 100 5.6
100 0.19 0.22 100 17.5

KDD 1000K 624K 51 0.38 0.40 100 838.3

Table 3.1: Overview of datasets

Datasets. We used real-world datasets from collaborative filtering and information

extraction applications (cf. Section 3.1.2). Table 3.1 summarizes our datasets. The table

gives the sizes of the input data and for various choices of rank r, the coefficient of

variation (CoV) of the lengths of the input vectors, the percentage of non-zero entries

and the time required by Naive (see the discussion in Section 3.8.2)

For our experiments with collaborative filtering data, we used factorizations of the pop-

ular Netflix [Bennett and Lanning, 2007] and KDD [Dror et al., 2012] datasets.6 Both

datasets consist of ratings of users for movies (Netflix) or musical pieces (KDD). For Net-

flix, we performed a plain matrix factorization with DSGD++ using L2 regularization

with regularization parameter λ = 50, as in Teflioudi et al. [2012]. For KDD, we used

the factorization of Koenigstein et al. [2011],7 which incorporates the music taxonomy,

temporal effects, as well as user and item biases; this dataset has been used in previous

studies of the Top-k-MIPS problem. Since we were ultimately interested in retrieving the

top-k movies/songs for each user, we used the collaborative filtering datasets to study

the performance of the various methods for the Top-k-MIPS problem.

For the open information extraction scenario, we extracted around 16M subject-pattern-

object triples from the New York Times corpus,8 which contains news articles, using

the methods described in Nakashole et al. [2012]. We removed infrequent arguments

and patterns, and constructed a binary argument-pattern matrix: An entry in the ma-

trix was set to 1 if the corresponding argument (subject-object pair) occurred with the

corresponding pattern; otherwise, the entry was set to 0. We factorized this binary ma-

trix using the singular-value decomposition (SVD) and non-negative matrix factorization

(NMF); we denote the resulting datasets as IE-SVD and IE-NMF, respectively. For SVD,
6The KDD (Yahoo! Music) dataset corresponds to Track 1 of the 2011 KDD-Cup.
7We zeroed out all subnormal numbers.
8http://catalog.ldc.upenn.edu/LDC2008T19

http://catalog.ldc.upenn.edu/LDC2008T19
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which produces factorization UΣV T , we set QT = U
√

Σ and P =
√

ΣV T . For the

IE datasets, we studied Above-θ-MIPS and Top-k-MIPS, which are both relevant in ap-

plications. Above-θ-MIPS aims to find all high-confidence facts, whereas Top-k-MIPS

retrieves the k most probable arguments of a pattern (as in Riedel et al. [2013]). For the

latter problem, we make use of the transposed matrices IE-SVDT and IE-NMFT .

We factorized Netflix, IE-SVD and IE-NMF with ranks 10, 50 and 100. Unless stated

otherwise, we use rank r = 50. We investigate the effect of other choices in Section 3.8.3.

As stated previously, fast and scalable matrix factorization algorithms have been pro-

posed in the literature so that the time for matrix factorization is often not a bottleneck

in applications. For example, we obtained IE-SVD (r = 50) and IE-NMF (r = 50) in less

than four minutes each using Matlab. As another example, in chapter 2 we factorized

the KDD dataset (r = 50) with CSGD in roughly seven minutes. In all three cases, the

factorization time is significantly larger than the time required to perform MIPS using

Naive so that MIPS is the main bottleneck.

Algorithms. We implemented LEMP and TA in C++, and used the C++ code of

Tree and D-Tree provided by the authors of Curtin et al. [2013] and Curtin and Ram

[2014].9 For L2AP, we adjusted the publicly available C code.10 For PCA-trees [Bachrach

et al., 2014] and simpleLSH [Neyshabur and Srebro, 2015], we created our own C++

implementation. SimpleLSH uses the LSH implementation that we use for LEMP-LSHA

with minor modifications.

We ran six “pure” versions of LEMP for exact MIPS, in which only one method was used

within a bucket. We denote these methods as LEMP-X, where X is: L for LENGTH,

C for COORD, I for ICOORD, TA for TA, L2AP for L2AP and Tree for cover tree.

We also ran the two mixed versions LEMP-LC (LENGTH and COORD) and LEMP-LI

(LENGTH and ICOORD), in which the appropriate search method is chosen as described

in Section 3.3.4. Unless stated otherwise, we use LEMP-LI (and denote it LEMP). For

approximate MIPS, we ran LEMP-LSHA, LEMP-REL, and LEMP-ABS.

For TA, we experimented with two different list-selection schedules: a round robin (RR)

on the lists corresponding to non-zero query coordinates and one that selects the sorted

list i that maximized qipi, where pi refers to the next coordinate value in list i. The latter

strategy selects the “most-promising” coordinate; we implemented it efficiently using a

max-heap. We additionally improve the performance of TA by allowing multiple steps

on the same list if all these steps access probe vectors that are already explored. In this

way, we reduce the stopping threshold faster, while incurring almost no overhead (no
9http://mlpack.org/

10 http://glaros.dtc.umn.edu/gkhome/l2ap/overview

http://mlpack.org/
http://glaros.dtc.umn.edu/gkhome/l2ap/overview
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candidate verification takes place, since the probe vectors are already explored). Finally,

we report the best results achieved by TA (RR or heap-based).

Methodology. We compare all algorithms for both the Above-θ-MIPS and the Top-

k-MIPS problems. For Top-k-MIPS, we experimented with k ∈ { 1, 5, 10, 50 }. For the

Above-θ-MIPS problem, we selected θ such that we retrieve the top-103, -104, -105, -106

and -107 entries in the entire product matrixQTP . We subsequently refer to this number

of results as retrieval level.

Unless otherwise stated, we compare all methods in terms of overall wall-clock time,

which includes preprocessing, tuning, and retrieval time. Preprocessing involves the

construction of indexes (cover trees for Tree and D-Tree; sorted lists for LEMP, TA and

L2AP; LSH signatures for LEMP-LSHA and simpleLSH; tree for PCA-tree) and, for

LEMP only, the time required for the normalization, sorting, and bucketization of the

input vectors. Tuning refers to the time required to automatically select suitable values

for the parameters φ and tb of LEMP.

Choice of parameters. LEMP’s parameters (φ and tb) were tuned on a small sample

of the datasets as explained in Section 3.3.4. The base parameter of the cover trees was

set to 1.3 as suggested by Curtin and Ram [2014]. For all LEMP algorithms, we used a

fine-grained bucketization such that all data structures of a bucket fit into the available

processor cache. For LEMP-L2AP, we used the same combination of filters and bounds

that Anastasiu and Karypis [2014] report as most efficient w.r.t. execution time. For

LEMP-LSHA, we set the signature length to 8 bits and maximum number of signatures

to be used to 200.

3.8.2 Exact MIPS

In this section, we compare LEMP with previous methods for exact MIPS. Figures 3.5

and 3.6 show the relative performance of LEMP (using the LI bucket algorithm), TA, Tree

and D-Tree for the Above-θ-MIPS and Top-k-MIPS problems, respectively. The speedup

of LEMP with respect to the best-performing method other than LEMP is marked in

the figures. We use Naive as a baseline; its running time is independent of θ for Above-θ-

MIPS and only slightly affected by k for Top-k-MIPS. To keep our study manageable, we

only ran Naive for the Top-1-MIPS problem; this is a fair comparison because running

times for larger k may be slightly above, but not below the times reported here. The

wall-clock times for this and additional experiments, as well as average candidate set

sizes, can be found in Tables B.1 and B.2 in the appendix.
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Figure 3.5: Total wall-clock times (incl. indexing and tuning) for exact Above-θ-MIPS
@1K and @1M on different datasets
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Figure 3.6: Total wall-clock times (incl. indexing and tuning) for exact Top-1-MIPS
on different datasets

In the following, we discuss the performance of the algorithms in terms of overall running

time, preprocessing time and pruning power.

Overall performance. In general, LEMP was the fastest method, reaching up to

17000x speedup over the Naive baseline and up to 24x speedup over the next best method.

The second fastest method in the majority of cases was Tree, followed by TA and D-

Tree. LEMP, Tree, and TA appear to have best performance on datasets with large

skew in their length distribution, like the IE datasets (high CoV in Table 3.1) and

also on datasets with sparse vectors (IE-NMF). On datasets with little skew in their

length distribution, like Netflix and KDD, all methods had difficulties in providing large

speedups over Naive. However, for KDD, some methods were still able to offer significant

savings in terms of running time: e.g., LEMP took 9.4 hours less time than Naive.

Tables B.1 and B.2 show that the performance of all methods but Naive deteriorates as

the result size or k increases (θ decreases), since the output size increases and pruning

opportunities decrease. Generally, there is a break-even point at which any method will
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Dataset LEMP TA Tree Dual Tree

IE-NMF 0.78 0.46 5.33 38.5
IE-SVD 1.18 0.76 7.1 46.2
IE-NMFT 0.84 2.98 31.84 38.5
IE-SVDT 1.51 4.88 37.5 46.4
Netflix 1.63 0.10 1.10 3510.9
KDD 63.32 4.47 208.7 2880.0

Table 3.2: Maximum preprocessing times (in seconds) including indexing and tuning

be slower than Naive. This is the case, for example, for all methods other than LEMP

on Netflix/KDD for k ≥ 1.

Preprocessing time. Table 3.2 shows the preprocessing time for the different datasets

and methods. For Tree and D-Tree, we give the wall-clock time of producing the cover

tree(s) and for TA the time to create the sorted lists. The preprocessing costs of these

methods are fixed and depend on the size of probe matrix (and additionally of the

query matrix for D-Tree). For LEMP, we report the sum of maximum indexing and the

maximum tuning time (normally the preprocessing times vary from problem to problem

since LEMP constructs indexes lazily). On the one hand, LEMP suffers from tuning

overhead, but on the other hand, it benefits from lazy index construction, especially for

datasets with skewed length distribution. The larger the length skew and the size of the

probe matrix, the larger the preprocessing savings of LEMP over the other methods and

the higher the chances of outweighing the tuning overhead. For example, for IE-NMFT ,

which has n = 771K, LEMP needed 0.84s vs. 2.98s for TA and 31.84s for Tree. The

highest costs appeared for the Tree and D-Tree methods. Preprocessing costs can be

one of the major bottlenecks for these methods. In fact, Tables B.1 and B.2 show that

preprocessing can be a large part of the overall running time, specially for datasets with

large length skew. For example, D-Tree needed more time to create its trees for Netflix

(tree construction was 80% of the overall time) than Naive needed to retrieve the Row-

Top-1 entries. Similarly, for the IE datasets (retrieval level ≤ 106, k ≤ 10), LEMP (and,

in some cases, also TA) terminated before the Tree method finished preprocessing.

Pruning power. Tables B.1 and B.2 show how many candidates remain on average

after pruning for each of the different methods. For the Top-k-MIPS problem, LEMP

had the highest pruning power for the IE datasets and Netflix. Note that LEMP was the

only method outperforming Naive on Netflix. In fact, it is difficult to improve on Naive

on this dataset: Netflix has the smallest length skew, which makes pruning less effective,

and a relatively small probe matrix, which makes Naive perform reasonably well. TA

ranked often third in terms of pruning power. Especially for datasets with low length

skew, TA tended to perform poorly. For example, for Netflix, k = 1, TA had almost

no pruning power (16K candidates per query, out of a total of 17.7K). We also see the
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effect of TA’s random memory access pattern here. Although TA verified almost the

same number of candidates as Naive, it was 5.8x slower (1961.8s vs. 335.8s). Also note

that sparsity affects the behavior of TA: It checked 3.2x less candidates for the sparse

IE-NMFT dataset, k = 1, than for IE-SVDT (1899 vs. 6090 candidates per query). The

main reason for the relatively low pruning power of TA for dense datasets is that it is

length-oblivious, i.e., it checks short probe vectors if they have a single, sufficiently large

coordinate; these vectors are discarded by LEMP. On the other hand, for sparse datasets,

large values for individual coordinates correlate well with the length of the vectors so

that essentially TA explores long vectors first. We expect that a combination of LEMP

and TA can address the problems of length-obliviousness and random memory accesses;

see Section 3.8.5.

For the D-Tree, given a fixed, high θ value (as in the Above-θ-MIPS problem), the

grouping of queries helps to reduce the frequency of visits of the probe-tree nodes (and

thus the candidate checking). D-Tree was actually able to prune more candidates than

all other methods for this problem. For the top-k case, the bounds for a group of queries

depend on the worst running lower bound θ̂ among all queries of the group. Thus, for

the top-k problem, D-Tree had usually looser bounds and, therefore, less pruning power

than Tree.

Cache exploitation. Recall that LEMP does not create buckets that exceed the cache

size. To study the effect of this approach, we experimented with a cache-oblivious version

of LEMP in which bucket sizes were unrestricted. We found that for datasets with large

length skew, runtime differences were marginal: LEMP creates small buckets anyway

when lengths are skewed. For datasets with less length skew, such as KDD, there was

a significant difference in runtime: LEMP created more than 15x more buckets than its

cache-oblivious version (26 vs. 403), and was almost 40% faster (7.9h vs. 4.56h).

3.8.3 Influence of Dimensionality

In our next experiment, we investigated the impact of the dimensionality r of the input

vectors (the rank of the factorization) on the performance of exact MIPS algorithms.11

We experimented with ranks 10, 50 and 100. The properties of the resulting datasets

are summarized in Table 3.1.

Figure 3.7 shows the performance (in log scale) of Tree, D-Tree, TA, LEMP (again, using

LEMP-LI) and Naive for the Top-k-MIPS problem for r ∈ { 10, 50, 100 } and various

values of k. We omit results for each method when it performed worse than Naive. As
11We omit the KDD dataset from this set of experiments because it was only available to us with

r = 51.
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Figure 3.7: Total wall-clock times for different ranks for exact Top-k-MIPS

expected, all methods became slower when the rank was increased. Also note that the

lower the rank the more competitive Naive becomes. This is because lower rank implies

less expensive inner product computations and thus less work for Naive. LEMP was the

best performing method for IE-SVDT and IE-NMFT regardless of the rank. TA behaved

better for low ranks than for larger ranks (recall that TA is designed for vectors of low

dimensionality), especially for sparse datasets (IE-NMFT ). Tree ranked almost always

in between LEMP and TA, whereas D-Tree was the worst performing method.

For Netflix, all methods perform poorly, mainly because the Netflix dataset is relatively

small. However, LEMP was the only method able to offer speedup over Naive.

3.8.4 Approximate MIPS

In this section, we compare various methods for approximate MIPS: PCA-tree, sim-

pleLSH, LEMP-LSHA, LEMP-ABS, and LEMP-REL. The latter two methods use LI
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as their exact bucket algorithm (see Section 3.8.5). Figure 3.8 shows results for KDD

and Netflix for Top-10-MIPS. We present the performance of simpleLSH both without

preprocessing time (simpleLSH) and with preprocessing time (simpleLSH+prep).

Each considered method provides parameters to control the speed-quality tradeoff. Each

data point in Figure 3.8 corresponds to one setting of these parameters and indicates the

resulting speedup over Naive (x-axis) as well as the value of one of our error measures

(y-axis). Note that the values of simpleLSH and simpleLSH+prep are superimposed for

Netflix. For PCA-trees, we varied the depth parameter d in a range from 3–10. For

simpleLSH, we varied the number L of signatures and signature length l. To ensure a

fair comparison, we present the simpleLSH results for the best combination of l and L per

dataset and recall value. To keep our study manageable, we only considered signature

lengths that are multiples of 8 (a byte). For LEMP-LSHA, we varied recall parameter

R in a range from 0.9–0.05 for Netflix and from 0.9–0.1 for KDD. For LEMP-ABS, we

set ε between 0.5–4 for Netflix (rating scale 1–5) and between 10–50 for KDD (rating

scale 1–100). Finally, for LEMP-REL, we varied ε in the range 0.16–0.5 for Netflix and

0.33–0.47 for KDD.

KDD. Figures 3.8a, 3.8c, and 3.8e show the results for KDD using the recall, RMSE

and ARE error measures, respectively. First note that LEMP-LSHA offered the best

performance-quality tradeoff with respect to all error measures. This indicates that

LEMP’s bucketization along with our adaptive variant of LSH is very effective. Also note

that LEMP-LSHA satisfied the recall bound in all cases (the left-most point corresponds

to R = 0.9, the right-most point to R = 0.1). In fact, in many cases, LEMP-LSHA gave

better results than guaranteed by the error bound; e.g., for R = 0.9, we obtained recall

0.96. This is because LEMP-LSHA uses the exact LENGTH methods on buckets where

it considers LSH too expensive. For such buckets, exact results are obtained, which

increases recall. Note that LEMP-LSHA with R = 0.9 and a resulting recall of 0.96 was

4x faster than the best exact method (LEMP-LI, also shown in Figure 3.8a). Finally,

note that LEMP-LSHA also performed well with respect to RMSE and ARE, although

no error guarantees are provided.

LEMP-REL and LEMP-ABS were the next best methods and performed similarly to each

other. For both methods, the obtained RMSE or ARE is much lower than guaranteed

by error parameter ε. For example, we use RMSE bounds ε ∈ [10, 50] for LEMP-ABS,

but obtain RMSE values in (0, 4]. The reason for this behavior is that our error analysis

of LEMP-ABS and LEMP-REL is based on the worst case, which often does not occur

in practice.

PCA-trees offered little speedup for small depths, which correspond to high recall (the

smaller the depth, the more vectors each leaf holds). Since there is no pruning mechanism
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Figure 3.8: Speedup over Naive of approximate Top-10-MIPS on KDD and Netflix.
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within each leaf, the runtime was large. For larger depths (and lower recall), however,

PCA-tree offered significant speedup and reached similar speedups to those of LEMP-

LSHA.

SimpleLSH was the worst performing method: it behaved similarly to PCA-tree for high

recall levels, but was soon outperformed by all other methods, for lower recall levels. Note

that although simpleLSH and LEMP-LSHA are both based on LSH, their performance

differs significantly. One reason is that LEMP-LSHA monitors the change in the scores

of the top-k list when moving from bucket to bucket. This allows LEMP-LSHA to choose

the optimal number L of signatures per query and bucket, whereas simpleLSH uses a

global number of signatures. Moreover, the transformation used by simpleLSH causes

the new “length coordinate” to be significantly larger than the other coordinates for all

short vectors. In such cases, the bin associated with each vector is often determined

by the length coordinate. This implies that shorter probe vectors are clustered in a

couple of bins. If the query falls into one of those bins, many probe vectors need to

be considered, which is expensive. If the query does not fall into such a bin, then few

vectors are considered so that processing is fast but comes with a drop in recall.

Netflix. Figures 3.8b, 3.8d, and 3.8f show our results on Netflix. SimpleLSH was the

least-effective method overall. First, as described before, simpleLSH is negatively affected

by length skew in the probe vectors. Moreover, Netflix is a smaller dataset with much

fewer probe vectors than KDD. Methods that perform expensive per-query operations

(such as computing simpleLSH’s query hashes) are thus not expected to perform well

on Netflix. PCA-tree performs slightly better than simpleLSH in terms of recall and

significantly better in terms of RMSE.

The best performing method in this dataset is LEMP-REL, closely followed by LEMP-

ABS, whereas LEMP-LSHA ranks third. All LEMP methods perform significantly better

than simpleLSH and PCA-tree, e.g., for around 15x speedup over Naive, the recall obtain

by LEMP-REL is close to 70%, whereas PCA-tree achieves around 20% recall. As another

example, LEMP-REL is 3.9x faster than PCA-tree for RMSE values close to 0.35. Note

that all methods achieve smaller RMSE for Netflix than for KDD due to the different

scales of these datasets. As on KDD and for the same reasons, the guaranteed error

bounds on RMSE (and ARE) were much larger than the errors actually obtained by the

algorithms.

Finally, LEMP-REL, as in the KDD dataset, behaved better than LEMP-ABS in terms

of ARE. This is no surprise, since LEMP-ABS is oblivious to the magnitude of the true

top-k values. It, thus, allows larger relative errors for small top-k values than LEMP-REL

does.
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The reason for which the augmented threshold methods performed so well (and better

than LEMP-LSHA) on Netflix is the following: in Netflix all the true results are found in

roughly the first half of the probe set (largest lengths), however by the time LEMP has

retrieved the true results, it has also entered a “plateau” in the length distribution of the

probe set that does not allow it to prune buckets easily. This means that LEMP, although

it has found the results, cannot terminate early. In such a situation, augmenting the local

thresholds will lead to early termination without severe losses in the quality of the results.

LEMP-LSHA, on the other hand, might offer fast within-bucket processing, but it still

has no way to prune these “excessive” buckets. Therefore the relative performance of

the augmented threshold methods and LEMP-LSHA depends on the properties of the

dataset. The above observation also suggests that the performance of LEMP-LSHA can

possibly be improved if combined with threshold augmentation.

Discussion. To summarize, LEMP-LSHA was the best-performing method on KDD,

whereas LEMP-ABS and LEMP-REL were the best-performing methods on Netflix.

This indicates that no single algorithm is best in all settings. One option to decide

which algorithm to use on a given dataset is to perform algorithm selection in the tuning

phase of LEMP (see Section 3.3.4).

3.8.5 Relative Performance of Bucket Algorithms

In the preceding experiments, we used LI as the bucket algorithm for LEMP because it

provided the best overall performance. In this section, we consider and compare various

alternative choices. Our results for exact MIPS are summarized in Figure 3.9. Wall-clock

times for all experiments and average candidate set sizes can be found in Tables B.3, B.4

and B.5 in Appendix B. In the following, we discuss the performance of each algorithm

in turn.

LEMP-L. For the IE datasets, LEMP-L was able to reduce the average candidate set

size around 98% (13211 candidates per query vs. 771611 for Naive, IE-SVDT , k = 50),

whereas for datasets with less length skew the reduction ranged between 40% and 64%

(Netflix) and 14% and 24% (KDD). Overall, LEMP-L was able to provide significant

speedup over Naive: up to 17000x (670x) for IE-SVD and 15900x (440x) for IE-NMF

for Above-θ-MIPS (Top-k-MIPS). In fact, the simple LEMP-L method outperformed all

other methods for the IE datasets and small result sizes. I.e., bucket pruning was very

effective for the datasets with large length skew. This indicates that LEMP’s separate

treatment of short and long vectors is beneficial. The performance of LEMP-L acts

as a baseline for the performance of other bucket algorithms: LEMP-L’s main filtering

mechanism is bucket-level pruning, which is common to all LEMP methods.
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Figure 3.9: Comparison of LEMP bucket-algorithms in terms of total wall-clock times
(incl. indexing and tuning) for exact MIPS
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LEMP-C, LEMP-I. COORD created up to 7x less candidates per query than LEMP-L

(e.g., 271 vs. 1915 for IE-NMFT , k = 1) and its speedup over LEMP-L ranged between

2.7x and 4.7x. ICOORD reduced the candidates even further (34 candidates for IE-

NMFT , k = 1, 46x less than LEMP-L), with up to 7x speedup. The difference in

the pruning power of COORD and ICOORD was more prevalent in the case of the

KDD dataset (145K vs. 377K candidates per query). In the absence of large length

skew or sparsity, ICOORD accumulates as much information as possible for the probe

vectors. COORD, on the other hand, is not able to take full advantage of all the available

information. For this reason, ICOORD was the best performing method (when LEMP

was used together with only 1 bucket-algorithm) in terms of running time for the majority

of datasets and configurations.

LEMP-LI. As discussed above, LEMP-L was the best performing method for datasets

with high length skew on small retrieval levels. On the other hand, LEMP-I showed

superior behavior in all other cases. LEMP-LI, for a small extra tuning cost, combines

the strong points of both methods. In the majority of cases, it was the fastest method

overall. In the remaining cases, the performance of LEMP-LI was similar to that of the

best-performing method.

LEMP-TA. LEMP-TA was also able to offer speedup over LEMP-L for the sparse

datasets: up to 3.5x for the Above-θ-MIPS (@ retrieval level 10M) and up to 6x for Top-

1-MIPS. However, it was usually outperformed by COORD and ICOORD: e.g., LEMP-I

was up to 3x faster. The reason for ICOORD’s superior behavior is that TA is usually

not possible to identify good candidates by observing the value of only one coordinate.

ICOORD avoids this problem by gathering information about the vectors from multiple

coordinates (lists); based on this information, it prunes as many candidates as possible

before actually calculating an inner product. Also note that LEMP-TA was significantly

faster (up to 17x for IE-SVDT , k = 50) than the standard TA algorithm, since the

length-obliviousness and cache-misses problems are addressed by LEMP. This indicates

that a method like LEMP might improve the performance of TA when linear scoring

functions are used.

LEMP-L2AP. LEMP-L2AP was the method with the most aggressive pruning for all

datasets (e.g., only 18 candidates per query for KDD, k = 1). However, this extensive

pruning has a high cost: L2AP scans all the lists in the index that correspond to non-zero

query coordinates and checks the filtering conditions during and after scanning. Also,

the actual threshold used when querying the index can be far away from the lower bound

used during index creation, which affects scanning time. For these reasons, ICOORD

consistently outperformed L2AP (1.3x to 6.2x faster). Actually, L2AP was slower than

Naive for both Netflix and KDD.
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k = 1 k = 5 k = 10 k = 50

No SIMD 273.3 348.8 386.9 474.5
SIMD-verify 239.6 294.5 318.6 383.7
SIMD-verify&scan 230.9 283.5 309.4 364.2

Table 3.3: Performance (in terms of total wall-clock times) of LEMP-LI with and
without using SIMD instructions on the KDD dataset for exact Top-k-MIPS. Time in

minutes.

LEMP-Tree. LEMP-Tree creates one tree per bucket (lazy construction), instead of

one tree for the entire probe dataset. This explains why LEMP-Tree had much better

performance than Tree (up to 10x faster) for the datasets for which preprocessing was

Tree’s bottleneck (see Above-θ-MIPS experiments, small result sizes). In terms of pruning

power, LEMP-Tree did not have a consistent behavior w.r.t. Tree. For datasets with

large length skew (IE-NMFT , IE-SVDT ), LEMP-Tree checked less candidates per query,

whereas for datasets for small skew (e.g., KDD) it checked more. However, even in these

cases, LEMP-Tree was faster than Tree, due to the better cache utilization provided by

the bucketization.

3.8.6 Parallel LEMP

In our final set of experiments, we investigated the performance and scalability of our

parallel versions of LEMP.

Instruction-level parallelism. Table 3.3 shows the performance of LEMP-LI on our

largest dataset (KDD) without SIMD, with SIMD in verification, and with SIMD in

verification and scanning. We observed that for large values of k, for which less oppor-

tunities for pruning exist (low value of θ̂) and more candidates need to be verified, the

speedup due to SIMD in verification reaches 19%. For small values of k, the speedup

is lower (12% for k = 1). Using instruction-level-parallelism for scanning in addition,

further improved the runtime by 6%.

Multi-threading. Figure 3.10 shows the performance of LEMP-LI in terms of wall-

clock time for a number of processors varying between 1 and 32. For each setting, we

also give the speedup compared to sequential processing. The figure shows results for

Top-1-MIPS on the KDD dataset on an Intel(R) Xeon(R) CPU E7-4870 @ 2.40GHz

with 40 cores and 512GB RAM. Note that even for embarrassingly parallel problems

such as multi-query MIPS, linear speedups are rarely achieved when a large number

of processors is used. This is mainly because memory bandwidth and synchronization

quickly become a bottleneck. Figure 3.10 shows that LEMP was able to achieve near

linear speedups even for large numbers of processors. This indicates that LEMP’s careful

cache utilization and avoidance of synchronization is effective.
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Figure 3.10: Scalability of LEMP-LI for KDD, exact Top-1-MIPS

3.9 Summary

The problem of maximum inner product search (MIPS) arises in a number of data mining

and information retrieval tasks, such as finding good recommendations in recommender

systems, reasoning about extracted facts in open relation extraction, multi-class or multi-

label prediction with hundreds of thousands labels or classes, and object detection with

deformable part models. Given its broad applications and the fact that naive search is

infeasible in practice, many approaches have been recently developed both for exact and

approximate MIPS.

In this chapter, we introduced LEMP, a cache-friendly framework for exact and approxi-

mate MIPS. Our approach reduces the original MIPS problem into a set of smaller cosine

similarity search problems that can be solved using existing techniques or our novel CO-

ORD and ICOORD algorithms. We also proposed three methods for approximate MIPS

within the LEMP framework and derived quality guarantees. Finally, we compared our

approach with previously proposed methods in an extensive set of experiments. Our

results showed that LEMP is up to multiple orders of magnitude faster than naive re-

trieval and that, in combination with our ICOORD method, it is consistently faster than

alternative MIPS methods across all our datasets. In addition, our approximate meth-

ods offer better quality-speedup tradeoffs (up to 3.9x faster for similar recall levels) than

state-of-the-art approximate MIPS techniques. In terms of scalability, LEMP was able

to achieve near linear speedups on up to 32 processors.





Chapter 4

Conclusion and Future Work

In this thesis, we presented efficient and scalable algorithms for matrix completion and for

maximum inner product search. We believe that these techniques could be successfully

applied in a variety of real-life data mining tasks and applications. We also hope that

our results will contribute to future research in the fields of scalable matrix completion

and maximum inner product search.

Matrix Completion

We studied the problem of large-scale matrix completion, i.e., given a large input matrix

with millions of rows and columns and only partially observed and potentially noisy

entries to recover the values of the unobserved entries. In the context of recommender

systems, in which matrix completion techniques have been very successful, the rows

(columns) of the matrix correspond to users (items) and the entries to ratings expressing

the user preferences for the items. The goal is to predict the values of the missing entries,

i.e., predict the preferences of users for items they have not seen before. We proposed

CSGD, a shared-memory algorithm, which allows SGD-based matrix completion to scale

on a large number of cores. To achieve that, our method avoids fine-grained locking or

synchronization and follows a low cache-miss rate memory access pattern . Experiments

on medium and large datasets have shown that our approach is up to 60% faster than

state-of-the-art alternative methods.

Shared-memory matrix completion is an exciting topic of research and there exists al-

ready a plethora of promising results on this field. In our opinion, it would be very

interesting to investigate the behavior of existing techniques when combined with each

other, in order to produce hybrid approaches that combine the strong points of many
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methods. For example, it might worth exploring enabling low-precision arithmetic (like in

Buckwild! [De Sa, Christopher M and Zhang, Ce and Olukotun, Kunle and Ré, Christo-

pher and Ré, Christopher, 2015]) to a cache-aware SGD-based method (like CSGD or

FPSGD [Zhuang et al., 2013]). In addition, we have seen in our experiments that there

are cases in which SGD-based methods move very fast towards the vicinity of the so-

lution, but then they converge very slowly. I.e., one could use SGD to move fast close

to the solution and then switch to a different method that can take more precise steps

towards the solution (e.g., L-BFGS or ALS).

We also believe that designing efficient shared-memory matrix completion algorithms can

also improve distributed processing. For example, algorithms, like DSGD++ [Teflioudi

et al., 2012] and NOMAD [Yun et al., 2014] have been shown to be particularly effective

in a distributed setting since they overlap computation and communication between

the different machines. It would be interesting to explore if such algorithms can further

benefit from the cache-local processing of a CSGD-like method when running SGD locally.

Finally, while matrix completion has been found to be successful in analyzing dyadic

data, in many use cases the data are not dyadic. In such cases, more general models, like

tensors [Karatzoglou et al., 2010] or factorization machines [Rendle, 2012] are usually

used. In addition, models that incorporate side information [Natarajan and Dhillon,

2014, Rossi and Zhou, 2015, Xu et al., 2013] or implicit feedback [Koren, 2008] in the

factorization introduce more dependencies between the parameters. The parallelization

of SGD for such models is a challenging direction for future work.

Maximum Inner Product Search

We investigated the problem of Maximum Inner Product Search (MIPS), i.e. the problem

of finding pairs of vectors with large inner product, given two sets of vectors. In the

context of recommender systems, the two sets of vectors correspond to users and items.

Such vector representations can be derived through an earlier matrix factorization step.

MIPS is, then, used to retrieve the best recommendations for each user.

To solve this problem we proposed LEMP, a cache-friendly framework that reduces the

MIPS problem to a set of smaller cosine similarity search problems. To do so, our

method is using the geometrical interpretation of vectors and their decomposition into

length and direction. The main advantage of LEMP is that, since it solves a set of

subproblems (instead of a single large problem), it can use different methods for each of

them. In particular, it is able to choose the most appropriate method depending on the

properties of the subproblem it tries to solve. Approximate search is also possible within



Chapter 4. Conclusion and Future Work 89

the LEMP framework. In this thesis, we proposed three techniques for approximate MIPS

that offer guarantees on the quality of the result. LEMP was found to be consistently

faster than alternative exact MIPS approaches and to offer a better speed-quality tradeoff

than state-of-the-art approximate MIPS methods in an extensive empirical study on real

datasets.

Exact and approximate MIPS is an emerging topic of research that recently received lots

of interest in the scientific community. In our work so far, we incorporated in LEMP

previously proposed approaches for MIPS, like the cover trees method of Curtin et al.

[2013] or TA [Fagin et al., 2001], and observed that the performance of the methods

improved. In general, we would like to see LEMP as an “umbrella” framework, within

which also future methods will be used.

In addition, we would like to explore methods for vectors of very high dimensionality

(so far we focused on methods for medium dimensionality vectors). MIPS can be used,

apart from the matrix factorization scenario, for multi-class or multi-label prediction

with hundreds of thousands of labels or classes [Dean et al., 2013], and object detection

with deformable part models (e.g., Dean et al. [2013], Felzenszwalb et al. [2010]). Such

use cases involve inner products between vectors with thousands of coordinates.

Another possible direction for future work is to explore distributed versions of LEMP.

In our work, we showed how to use LEMP in a multi-threaded environment. However, if

the probe matrix cannot fit into the memory of a single machine, distributed processing

is necessary. Here the interesting case is the Top-k-MIPS problem, in which the nodes

might need to broadcast the top-k lists through the network.

Finally, we need to investigate algorithms for more complex models. So far, we considered

finding strong interactions within a matrix factorization model (e.g., good recommenda-

tions in a recommender system), that captures relationships between dyadic data. More

complicated models, like tensor decomposition methods [Karatzoglou et al., 2010] and

factorization machines [Rendle, 2012] can model interactions between more than two

entities. It would be interesting to investigate if some of the LEMP approaches could be

transferred to identify strong interactions between sets of entities when such models are

used.





Appendix A

Derivation of Feasible Region

Bounds

In this section, we solve Eq. (3.7):

θb(q) ≤ q̄f p̄f +
√

(1− q̄2
f )(1− p̄2

f )

for p̄f and show how we obtained the bounds in Eq. (3.11) and Eq. (3.12).

First, notice that, since p̄f is a normalized coordinate, it is bounded within the [−1, 1]

region, i.e, −1 ≤ p̄f ≤ 1. According to Eq. (3.7), a probe vector p̄ can only qualify if:

θb(q) ≤ q̄f p̄f +
√

(1− q̄2
f )(1− p̄2

f )

θb(q)− q̄f p̄f ≤
√

(1− q̄2
f )(1− p̄2

f ). (A.1)

To solve inequality Eq. (A.1), we will distinguish the following cases:

• A) θb(q)− q̄f p̄f ≤ 0 and q̄f 6= 0. This implies that θb(q) ≤ q̄f p̄f , which also triggers

the following cases:

– A1) if q̄f > 0, then all p̄ with p̄f ≥ θb(q)/q̄f are in the feasible region, i.e.,

[LAf , U
A
f ] = [θb(q)/q̄f , 1].

– A2) if q̄f < 0, then all p̄ with p̄f ≤ θb(q)/q̄f are in the feasible region, i.e.,

[LAf , U
A
f ] = [−1, θb(q)/q̄f ].
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The above analysis can be summarized as:

p̄f ∈ [LAf , U
A
f ] =

[θb(q)/q̄f , 1] q̄f > 0

[−1, θb(q)/q̄f ] q̄f < 0
(A.2)

Here Eq. (A.2) is only a valid solution to Eq. (3.7) when LAf ≤ UAf , i.e., we can

ignore it whenever LAf > UAf .

• B) θb(q) − q̄f p̄f > 0 and q̄f 6= 0. In this case, we square both left and right hand

side of Eq. (A.1). Then,

(θb(q)− q̄f p̄f )2 < (1− q̄2
f )(1− p̄2

f )

p̄2
f − 2θb(q)q̄f p̄f + θb(q)2 + q̄2

f − 1 < 0,

which has roots: p̄f1,2 = q̄f · θb(q) ±
√

(1− q̄2
f )(1− θb(q)2). The bounds in this

case become:

(LBf , U
B
f ) = (q̄f · θb(q)−

√
(1− q̄2

f )(1− θb(q)2), q̄f · θb(q) +
√

(1− q̄2
f )(1− θb(q)2)).

(A.3)

• C) q̄f = 0. In this case, Eq. (A.1) can be rewritten as:

θb(q) ≤
√

(1− p̄2
f ).

Here again we will separate two cases:

– C1) θb(q) > 0. In this case, we have two roots which happen to be the same

as in case B.

– C2) θb(q) ≤ 0. In this case, Eq. (A.1) is satisfied for any value of p̄f , i.e.,

[LCf , U
C
f ] = [−1, 1]. Note that in this case we get no extra pruning information.

Thus, our algorithm will simply skip query coordinates of zero value, whenever

θb(q) ≤ 0.

We now need to combine the regions derived from cases A, B and C. If q̄f = 0, only case C

will give an interval for p̄f . Let us examine the case in which q̄f > 0 (the analysis is similar

also for q̄f < 0). According to case A we have one feasible region [LAf , U
A
f ] = [θb(q)/q̄f , 1].

Obviously, if LAf > UAf this region is empty and we only need to consider the feasible

region according to case B: (LBf , U
B
f ) =

(
q̄f · θb(q)−

√
(1− q̄2

f )(1− θb(q)2), q̄f · θb(q) +
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√
(1− q̄2

f )(1− θb(q)2)
)
. If feasible region A is non-empty, we need to take the union of

both region A and B. We will later show that those two regions can only be overlapping,

i.e., their union is a single interval. In this case, the lower bound will be the lower of

{LAf , LBf } and the upper bound will be the larger of {UAf , UBf }. This brings us to the

formulas of Eq. (3.11) and Eq. (3.12).

Now, we will prove by contradiction that region A and region B cannot be disjoint. Let

us assume that they are disjoint. Then, it holds that:

UBf < LAf

q̄f · θb(q) +
√

(1− q̄2
f )(1− θb(q)2 <

θb(q)

q̄f

0 ≤
√

(1− q̄2
f )(1− θb(q)2) < θb(q)

(1− q̄2
f )

q̄f
. (A.4)

Notice that for the right hand side of Eq. (A.4) to be larger than 0, we require also that:

θb(q) ≥ 0. (A.5)

Since both sides of Eq. (A.4) are positive, we can square them:

0 ≤ (1− q̄2
f )(1− θb(q)2) < θ2

b (q)
(1− q̄2

f )2

q̄2
f

1− θb(q)2

θb(q)2
<

1− q̄2
f

q̄2
f

. (A.6)

Let us now examine if the Eq. (A.6) is possible or not. We will now try to construct the

same inequality starting from the fact that feasible region A is non empty, i.e.,

−1 ≤ θb(q)

q̄f
≤ 1. (A.7)

For the derivation, keep in mind that q̄f > 0 (initial assumption) and that θb(q) ≥ 0

(Eq. (A.5)). Then we can transform Eq. (A.7) into:

θb(q) ≤ q̄f

θ2
b (q) ≤ q̄2

f (A.8)

−θ2
b (q) ≥ −q̄2

f

1− θ2
b (q) ≥ 1− q̄2

f .
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By dividing side by side with Eq. (A.8), we get:

1− θb(q)2

θb(q)2
≥

1− q̄2
f

q̄2
f

,

which means that Eq. (A.6) is not possible (contradiction).



Appendix B

Additional Experimental Results for

MIPS

Tables B.1 - B.5 show running times for exact Above-θ-MIPS and Top-k-MIPS experi-

ments for different retrieval levels and values of k (including those presented in the figures

of Sec. 3.8).
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