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Abstract

This dissertation takes performance-driven character animation as a representative
application and advances motion capture algorithms and animation methods to
meet its high demands. Existing approaches have either coarse resolution and
restricted capture volume, require expensive and complex multi-camera systems,
or use intrusive suits and controllers.

For motion capture, set-up time is reduced using fewer cameras, accuracy is in-
creased despite occlusions and general environments, initialization is automated,
and free roaming is enabled by egocentric cameras. For animation, increased robust-
ness enables the use of low-cost sensors input, custom control gesture definition is
guided to support novice users, and animation expressiveness is increased. The
important contributions are: 1) an analytic and differentiable visibility model for
pose optimization under strong occlusions, 2) a volumetric contour model for auto-
matic actor initialization in general scenes, 3) a method to annotate and augment
image-pose databases automatically, 4) the utilization of unlabeled examples for
character control, and 5) the generalization and disambiguation of cyclical gestures
for faithful character animation. In summary, the whole process of human motion
capture, processing, and application to animation is advanced. These advances on
the state of the art have the potential to improve many interactive applications,
within and outside virtual reality.
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Kurzzusammenfassung

Diese Arbeit befasst sich mit Performance-driven Character Animation, insbeson-
dere werden Motion Capture-Algorithmen entwickelt um den hohen Anforderun-
gen dieser Beispielanwendung gerecht zu werden. Existierende Methoden haben
entweder eine geringe Genauigkeit und einen eingeschränkten Aufnahmebereich
oder benötigen teure Multi-Kamera-Systeme, oder benutzen störende Controller
und spezielle Anzüge.

Für Motion Capture wird die Setup-Zeit verkürzt, die Genauigkeit für Verdeck-
ungen und generelle Umgebungen erhöht, die Initialisierung automatisiert, und
Bewegungseinschränkung verringert. Für Character Animation wird die Robus-
theit für ungenaue Sensoren erhöht, Hilfe für benutzerdefinierte Gestendefinition
geboten, und die Ausdrucksstärke der Animation verbessert. Die wichtigsten
Beiträge sind: 1) ein analytisches und differenzierbares Sichtbarkeitsmodell für
Rekonstruktionen unter starken Verdeckungen, 2) ein volumetrisches Konturen-
modell für automatische Körpermodellinitialisierung in genereller Umgebung,
3) eine Methode zur automatischen Annotation von Posen und Augmentation
von Bildern in großen Datenbanken, 4) das Nutzen von Beispielbewegungen für
Character Animation, und 5) die Generalisierung und Übertragung von zyklischen
Gesten für genaue Charakteranimation. Es wird der gesamte Prozess erweitert,
von Motion Capture bis hin zu Charakteranimation. Die Verbesserungen sind für
viele interaktive Anwendungen geeignet, innerhalb und außerhalb von virtueller
Realität.
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Summary

Virtual and augmented reality applications call for non-intrusive human-computer
interfaces that are cheap, easy to set up, and of high accuracy. Interfaces that are
driven by human motion are promising; however, existing approaches have either
coarse resolution and restricted capture volume, require expensive and complex
multi-camera systems, or use intrusive suits and controllers. This forces commercial
solutions to resort to physical controllers, such as the HTC Vive gear, that hamper
motion and are limited to track hands instead of full-body motion.

This dissertation takes performance-driven character animation as a representative
application and advances motion capture algorithms and animation methods to
meet its high demands. For motion capture, the required number of (color) cameras
is reduced, otherwise tedious initialization is eased, and free roaming is enabled
by egocentric motion capture from body-worn cameras. For performance-driven
character animation, methods are introduced that are designed to work with today’s
low-cost sensing technology, to broaden usability by guiding novice users during
control definition, and to increase expressiveness of animation.

The most important technical contributions of this dissertation are: 1) an ana-
lytic and differentiable visibility model for local pose optimization under strong
occlusions, 2) a volumetric contour model for automatic actor initialization in
general scenes, 3) a method to annotate and augment image-pose databases auto-
matically, 4) the utilization of unlabeled examples for character chontrol, and 5)
the generalization and disambiguation of cyclical gestures for faithful character
animation.

In summary, the whole process of human motion capture, processing, and ap-
plication to animation is advanced to enable new levels of performance-driven
interaction in virtual worlds. Beyond this specific goal, the attained improvements
have the potential to enhance many interactive applications outside virtual reality.
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Zusammenfassung

Anwendungen in virtueller und erweiterter Realität erfordern kostengünstige, nicht-
intrusive Schnittstellen zwischen Mensch und Computer, welche einfach handhab-
bar sind und eine hohe Genauigkeit haben. Schnittstellen, welche auf der Erfassung
von menschlicher Körperbewegung basieren sind vielversprechend; bestehende An-
sätze haben jedoch entweder eine grobe Auflösung und eingeschränkten Aufnahme-
bereich oder benötigen teure Multi-Kamera-Systeme, oder benutzen störende Con-
troller und spezielle Anzüge. Dies zwingt kommerzielle Head-Mounted-Display-
Systeme dazu physikalische Controller zu nutzen, welche jedoch die Bewegung
behindern und nur die Handposition anstatt Vollkörperbewegung erfassen.

Diese Arbeit befasst sich mit Performance-driven Character Animation, insbeson-
dere werden Motion Capture-Algorithmen entwickelt um den hohen Anforderun-
gen dieser Beispielanwendung gerecht zu werden. Für Motion Capture wird die
erforderliche Anzahl von (Farb-) Kameras reduziert, mühsame Initialisierung vere-
infacht, und uneingeschränkte Bewegung durch tragbare Helmkameras ermöglicht.
Für Performance-driven Charakter Animation werden Verfahren konzipiert, welche
robust sind und mit kostengünstigen Sensoren funktionieren, benutzerdefinierte
Gestendefinition für unerfahrene Nutzer assistieren, und die Ausdrucksstärke der
Animation verbessern.

Die wichtigsten Beiträge dieser Arbeit sind: 1) ein analytisches und differenzier-
bares Sichtbarkeitsmodell für Rekonstruktionen unter starken Verdeckungen, 2) ein
volumetrisches Konturenmodell für automatische Körpermodellinitialisierung in
genereller Umgebung, 3) eine Methode zur automatischen Annotation von Posen
und Augmentation von Bildern in großen Datenbanken, 4) das Nutzen von Beispiel-
bewegungen für Character Control, und 5) die Generalisierung und Übertragung
von zyklischen Gesten für genaue Charakteranimation.

Zusammenfassend wird der gesamte Prozess der menschlichen Bewegungserfas-
sung, Verarbeitung, und Animation verbessert um neue Arten der Interaktion
zwischen Mensch und Computer in virtuellen Welten zu ermöglichen. Jenseits
diesem spezifischen Ziel haben die erzielten Entwicklungen das Potenzial, viele
interaktive Anwendungen außerhalb der virtuellen Realität zu verbessern.
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Introduction 1
Motion is intrinsic to our everyday lives: we move through the world, we shape Digital motion

and interactionthe world by operating tools, and we communicate with gestures, body language,
and facial expressions. However, in the past few decades, technology has radically
changed the way we interact with people and the world. Video calls open instant
communication between people spread across continents, 3D displays and virtual
reality glasses enable the exploration of digital worlds from the living room, and
new forms of interaction and creative entertainment are enabled. For instance,
virtual universes are explored with imaginary avatars, impossible to experience in
classical theater and role-playing.

This digitization process strives for the fusion of real and virtual worlds, e.g, with Current state
augmented reality devices that render virtual content in our living room. While
display technology advances rapidly, only a fraction of human expression that
has evolved over millennia is represented in today’s technology. Video streams
only transmit simplified projections of the real world, hiding information of body
language and subtle facial expressions. Human-computer interaction technologies
are still centered around physical devices such as 2D touch screens, the keyboard,
and the mouse, neglecting the dexterity and information content contained in the
full 3D body motion. Existing virtual worlds reach gigantic extents, and show
realistic appearance but do not reflect human appearance and motion adequately.

A prevailing limitation of existing approaches is the ability to reliably record and Current
limitationsrepresent human users within these digital systems. This requires algorithms and

devices to sense and reconstruct human appearance and motion, to extract and
process the relevant information, and to display the result adequately for the human
visual system—all of this must happen in real time to enable interaction. If we
consider the human representation as an information flow, from capturing a real
performance, through acquisition and processing, to display, then current systems
drop information at each step of this pipeline to meet computational constraints of
today’s hardware as well as financial limits of the average consumer.

This dissertation examines the whole process—from acquisition over reconstruction Goal
and animation to display—and makes advances at each step with new algorithms
and representations. We pick performance-driven character animation as a repre-
sentative application and advance existing acquisition methods and reconstruction
algorithms to best meet its demands. Furthermore, performance-driven character
animation methods are improved in itself, including the handling of remaining
constraints imposed by existing reconstruction methods.
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1. Introduction

In the first part of this dissertation, limitations of exiting performance acquisitionHuman shape and
motion capture and reconstruction approaches are identified and addressed, in particular those

which have their application in virtual world interaction. Existing motion-capture
algorithms can reconstruct skeleton motion from multiple video recordings; how-
ever, these often require manual initialization steps, a fixed camera placement
restricts the capture volume, and most algorithms are limited to professional studio
setups as they commonly require 6–12 calibrated cameras and depend on indoor
studio conditions. To overcome these limitations, we propose new methods, that
reduce the number and complexity of required sensors, and lower setup time and
manual interaction. Furthermore, acquisition methodologies are changed to support
reconstruction in enormously large recoding volumes and cluttered scenes with
occluding objects, and previously required indoor studio conditions are relaxed,
such as requiring controlled background. These advances enable low-cost motion
capture for the average consumer in more general environments without degrading
accuracy, enabling interactions with virtual worlds from within the living room or
office.

To this end, new algorithms and representations for human motion capture areTechnical
contribution I developed. A volumetric body model is introduced that provides analytically dif-

ferentiable energy functions for photo consistency, and improves reconstruction
accuracy for a low number of cameras. The volumetric model is further generalized
to contour-based reconstruction, without requiring background segmentation, and
is used for fully automatic human shape and appearance estimation in general
environments. Moreover, new egocentric camera equipment is developed which,
together with new egocentric motion-capture algorithms, enables motion estima-
tion in cluttered scenes with many occluders and close interaction with objects and
nearby persons, as well as general scenes with virtually infinite capture volume.
This egocentric performance capture perspective enables new user-centric applica-
tions, but requires solutions to challenges that newly open up. Machine learning
algorithms are commonly used for motion capture; however, they are not directly
applicable as they depend on large annotated example databases, which do not
exist for this new domain. We propose a way to create such a database with low
effort through automatic annotation and augmentation of real recordings.

In the second part of this dissertation, the processing of user input from today’sPerformance-driven
character animation available consumer sensors, such as the Microsoft Kinect, for character animation

is analyzed and extended to improve interaction in virtual worlds. Algorithms
are developed to transfer human motion to non-human characters. The advances
enable the embodiment of virtual characters that are neither restricted to human
topology nor any specific shape and motion, such as, a horse, a caterpillar, alien,
or robot. Many open challenges are overcome, especially the handling of topology
differences between human and character and controlling skeleton-free characters.
A major difficulty for such transfer is the causality of live input and output. For
live input the future is unknown, and for interaction the delay must be minimal,
leaving only a small time window for processing. We overcome these challenges
and provide faithful performance-driven non-human character animation.

The transfer of user to character motion is posed as the problem of finding aTechnical
contribution II mathematical function between input and output representations, which are inde-
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1.1. Overview

Figure 1.1: Process of human motion estimation for interactive worlds. a) Sensing of the human performance
with cameras, b) motion and shape reconstruction, c) motion processing, and d) display. This
dissertation focuses on algorithmic advances of steps a), b) and c).

pendent of input device, character type, and animation software. Different mapping
functions known in the domain of machine learning are analyzed for this task, and
a new mapping is designed that lifts the coarse motion input provided by today’s
acquisition methods to detailed and faithful character motion. A new facet is the
utilization of unsupervised training data. The mapping is designed to allow the
user to drive virtual characters with a dictionary of control motions, and to allow
interactive control motion definition by performance, with support for novice users
by automatic guidance towards suitable control gestures. Moreover, dynamics of
the user’s input motion are estimated and translated to character dynamics, which
are specific and natural to the target character, for instance, for a horse speeding
up locomotion should initiate a transition from trot to gallop with its character-
istic motion style and dynamics. Furthermore, care is taken to disambiguate and
separate simultaneously performed control motions.

Together, the contributions of this dissertation enable new levels of intuitive ex- Impact and
perspectiveploration and interaction in virtual worlds, and open the door for new gaming

and entertainment forms. While we focus on the application to virtual reality, the
developed advances have merit in diverse applications fields, such as, motion anal-
ysis of athletes, biomechanics, and robotics. For instance, we showcase a prototype
that allows non-intrusive estimation of the full-body pose of a user wearing a
head-mounted display (HMD) equipped with two tiny color cameras. These body-
worn motion-capture sensing devices provide free roaming, and enable intuitive
interaction in arbitrarily large worlds. Moreover, a prototype is demonstrated that
allows control of a physical robot faithfully by intuitive gestures. It could be used
by a handicapped person to control a service robot or electric wheelchair by simple
hand gestures.

1.1. Overview

This dissertation addresses important open questions in the whole process from Outline
human motion, shape, and appearance acquisition to motion and pose processing.
The individual processing steps are sketched in Figure 1.1. We consider four steps:

a) Sensing
The hardware design to record the human performance, e.g., a color camera.
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1. Introduction

b) Reconstruction
The reconstruction algorithm, e.g., to infer skeleton pose from an image.

c) Processing
Gesture separation, transfer, and animation, e.g., mapping human walk to
horse gallop.

d) Display
Visualization of the outcome, e.g., 3D rendering of the character in an HMD.

The focus of this dissertation is on algorithmic advances of different components
of the reconstruction and processing steps, and on new camera arrangements for
sensing. Their exposition in the dissertation is ordered according to their position
in the processing pipeline. Each component is extensively evaluated, particularly in
the context of virtual worlds and character animation.

1.2. Structure

This dissertation is split into four parts. The main technical contributions are
covered in Part II and Part III. Relations between chapters and related work are
discussed at the beginning of each part.

Part I gives an introduction and motivation for the dissertation topic, outlinesIntroduction
and background the structure of exposition, and highlights the main contributions. Moreover,

fundamental notations and representations that are used throughout the
dissertation are introduced.

Part II presents advances in human shape and motion estimation from as few asMotion and
shape capture two video streams in general scenes. It covers three contributions: a novel

volumetric scene model with differentiable visibility for pose estimation,
automatic model initialization by spatio-temporal shape and pose estimation
from volumetric contour cues, and estimation from an egocentric camera rig.

Part III presents two approaches for real-time performance-driven animation ofProcessing for
character animation non-human characters. The contributions are a frame-by-frame pose-based

approach which introduces a mapping suitable for a large variety of (non-)
human characters, and provides automatic guidance for control definition.
As well as a motion-based approach that captures, disambiguates, transfers,
and generalizes motion dynamics based on time-frequency analysis.

Part IV summarizes the core findings, restates the main results, and gives anConclusions
outlook to future work.

1.3. Contributions

This section summarizes the main contributions of this dissertation to the state of
the art in human motion estimation and character animation.
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1.3. Contributions

The main contributions of Chapter 4 (published as Rhodin et al., 2015a) are: Volumetric model,
smooth visibility

– A 3D scene representation and image formation model that enables an analytic,
continuous, and smooth visibility function that is differentiable everywhere in
the scene.

– Similarity energies with rigorous visibility handling that are differentiable
everywhere in the model parameters and efficient to evaluate.

– A human motion-capture algorithm that shows favorable and more robust
convergence in cases where previous visibility approximations fail, such as
disocclusions or multiple nearby occlusion boundaries.

The main contributions of Chapter 5 (published as Rhodin et al., 2016b) are: Volumetric contours
for initialization

– A volumetric contour representation and 2D contour-based energy that mea-
sures contour alignment with image gradients on the raw RGB images. No
explicit background segmentation is needed.

– A new data-driven body model that represents human surface variation, the
space of skeleton dimensions, and the space of volumetric density distributions
in a low-dimensional parametric space.

– A space-time optimization approach that fully automatically computes the shape
and the 3D skeletal pose of the actor using both contour and ConvNet-based
joint detection cues.

The main contributions of Chapter 6 (published as Rhodin et al., 2016a) are: Egocentric
tracking

– A light-weight low-cost sensor rig of two head-mounted, downward-facing
commodity video cameras with fisheye lenses.

– A new marker-less motion capture algorithm tailored to the strongly distorted
egocentric fisheye views.

– A new semi-automatic approach for creating an extensive training dataset of
real egocentric videos of general body poses for several people in different
clothing. The preformed automation by marker-less performance capture and
augmentation by intrinsic image decomposition generalized beyond egocentric
databases.

The main contributions of Chapter 8 (published as Rhodin et al., 2014) are: Interactive pose
mapping

– A real-time algorithm that can map between characters with different topology
from sparse correspondences.

– A latent volume representation that efficiently exploits unlabeled data to allow
robust performance-driven character animation.

– An automatic keyframe suggestion method to support the user during corre-
spondence selection.

The main contributions of Chapter 9 (published as Rhodin et al., 2015b) are: Wave gesture
motion mapping

– A live animation system, which couples wave gesture to parametric motion
graphs and layers different input modalities.
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1. Introduction

– A technique to robustly and accurately estimate amplitude, frequency, and
phase of simultaneous gestures in real time, generalized from a single user-
defined reference motion.

– An interpolation method for motions with out-of-phase submotions that cannot
be aligned by traditional time warping.

1.4. List of publications

This dissertation encompasses extended revisions of five scientific publications, peer
reviewed and published at top-tier venues in graphics and vision. Two additional
coauthored papers are only briefly discussed.

Three are in the field of human performance capture:

Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Chris-Pose
estimation tian Theobalt. A versatile scene model with differentiable visibility applied to

generative pose estimation. In ICCV, 2015a

Helge Rhodin, Nadia Robertini, Dan Casas, Christian Richardt, Hans-Peter Seidel,Shape
estimation and Christian Theobalt. General Automatic Human Shape and Motion Capture

Using Volumetric Contour Cues. In ECCV, 2016b

Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, MohammadEgocentric
capture Shafiei, Hans-Peter Seidel, Bernt Schiele, and Christian Theobalt. Egocap: Egocentric

marker-less motion capture with two fisheye cameras. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 35(8), 2016a

Furthermore, two papers are in the field of performance-driven character animation:

Helge Rhodin, James Tompkin, Kwang In Kim, Kiran Varanasi, Hans-Peter Seidel,Per-frame
mapping and Christian Theobalt. Interactive motion mapping for real-time character control.

Computer Graphics Forum (Proceedings of Eurographics), 33(2), 2014

Helge Rhodin, James Tompkin, Kwang In Kim, Edilson de Aguiar, HanspeterMotion
mapping Pfister, Hans-Peter Seidel, and Christian Theobalt. Generalizing wave gestures

from sparse examples for real-time character control. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 34(6), 2015b

The two additional papers are in the field of motion and performance capture:

Srinath Sridhar, Helge Rhodin, Hans-Peter Seidel, Antti Oulasvirta, and ChristianAnisotropic
Gaussian

hand model
Theobalt. Real-time hand tracking using a sum of anisotropic Gaussians model. In
3DV, 2014

N. Robertini, D. Casas, H. Rhodin, H.-P. Seidel, and C. Theobalt. Model-basedGeneral surface
refinement outdoor performance capture. In 3DV, 2016
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Technical background 2
Marker-less motion capture and performance-driven character animation are closely Capture and

animationrelated. The output of motion capture—the reconstructed (human) motion—is input
to performance-driven character animation, and its (character) output is also a
motion representation. Because of these connection and similarity, they build on
common concepts, and many representations, data structures, and algorithms are
shared.

In this chapter, we give a basic introductions to the representations commonly used Overview
throughout this dissertation to make the individual contributions of this dissertation
accessible to inexperienced readers and we refer to the relevant literature for in-
depth background information. Related work that is particular to individual parts
of the pipeline is separately discussed within each chapter. The informed reader is
invited to continue directly to Part II.

2.1. Skeleton representations

Following the physical anatomy of humans and vertebrate animals, virtual skele- Anatomical
abstractiontons have been used to visualize and represent characters, see Figure 2.1 left. The

skeleton consists of rigid bones connected by flexible joints, and follows a hierarchi-
cal tree structure. It is represented as a graph, where edges correspond to bones and
nodes to joints. The advantage of skeletons is their sparse representation and high,
physically-motivated, abstraction level. Storing only the skeleton joints and bones
is a much lower-dimensional representation than modelling surface or volumetric
detail. It allows for intuitive editing by artists and reduces the complexity for
reconstruction tasks.

Representing the skeleton by the 3D position of each joint proved to be useful Skeleton
representationsfor efficient reconstruction [Shotton et al., 2011]; However, not constraining bone

lengths and joint-angle limits allows for unrealistic configurations. Bone lengths can
be forced to be constant by parameterizing the root node position, e.g. hip, explicitly
and inferring the remaining joints by forward kinematics on joint angles and
orientations. Rotational joints can be modeled as ball joints, represented by rotation
matrices, unit quaternions [Sudderth et al., 2004], twists and the exponential map
[Bregler and Malik, 1998], and Euler angles [Basu et al., 1996]. Some joints, such as
the human knee, have only a single rotation axis and are well represented with a
single angle that specifies the rotation around a fixed axis [Stoll et al., 2011] This
further reduces the pose parameter space to be more realistic. Translational joints
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2. Technical background

Skeleton representation Surface skinning Character rig

Figure 2.1: Characters are parametrized by lower dimensional representations to aid animation and recon-
struction. Skeleton representations are anatomically motivated (left). Skinning drives surface
deformation by an embedded skeleton (center). Rigs model complex characters with simple con-
trol handles, often using a combination of deformation techniques, such as inverse-kinematics
handles and free-form deformations (right). The rig is created by Hung Vodinh and Joel Anderson.

are used to model the root position and to model flexible bone connections more
accurately, such as the human shoulder.

Characters and body parts which have no physical skeleton counterpart, such asLimited
generalization facial deformations and deforming creatures, have been modeled with skeleton

structures [James and Twigg, 2005]. However, skeleton structures fail in representing
surfaces and volumes accurately.

To constrain the solution space for pose estimation in Chapters 4 to 6, we use a
kinematic skeleton parametrized relatively by axis-angle joints. For performance-
driven animation, we parametrize skeleton motion directly in terms of 3D joint
positions, to attain the largest generality (Chapters 8 and 9).

2.2. Surface representations

Arbitrary surfaces are well approximated by mesh representations, [Botsch et al.,Discrete
approximation 2007]. For instance, parametrized by 3D vertex positions and connecting edges, see

Figure 2.2 left and center. The mesh graph defines faces, e.g. triangles, through sets
of connected vertices, and the union of these flat faces forms a piecewise surface in
3D. Mesh representations are either reconstructed from real objects or manually
shaped. Mesh creation is a tedious process; to model detailed geometry, realistic
mesh characters require thousands of vertices and additional texture maps to define
color appearance. In the following, we discuss lower-dimensional representations
that have been proposed to ease editing and reconstruction.

2.2.1. Skinning

Skinning is a common tool for character animation. It describes the relation betweenSkeleton-driven
a surface mesh that is deformed according to the articulation of an underlying
skeleton, see Figure 2.1 center. Linear blend skinning deforms each vertex of a
reference mesh as a linear function of the skeleton bones. In a pre-process, the
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2.2. Surface representations

2 3 4

Point cloud Triangle mesh Per-face transformation

Figure 2.2: Solid objects can be represented by 3D point clouds (left), surface meshes (center), and local
transformations (right). Point clouds are well suited to represent sparse estimates, such as
skeleton joint positions. Meshes approximate arbitrary surfaces with piecewise flat faces that
connect vertex points. Local transformations yield invariance, e.g., representing each face by a
linear transformation gives translation invariance. Volumetric and continuous representations
are shown in Figure 2.3.

relative position vi,b of vertex vi to bone b is computed for all vertex-bone pairs
i, b in the reference mesh. Moreover, corresponding skinning weights wi,b ∈ [0, 1]
are predefined, the weight defines the influence of bone b on vertex i. Given a
new skeleton deformation with affine bone transformations Ab, for instance, bone
orientation and position as a matrix operating in homogeneous coordinates, each
vertex vi of the reference mesh is deformed by the weighted sum

v̂i = ∑
b

wi,bAbvi,b. (2.1)

Weights are normalized to unity, ∑b wi,b = 1, i.e., the vertex position can be seen as
an interpolation of the relative vertex-bone positions in the reference. This linear
surface definition is highly efficient but suffers from artifacts, e.g. for large rotations,
and many non-linear alternatives have been proposed [e.g. Kavan et al., 2007; Kim
and Han, 2014]. In Chapter 5, we extend linear blend skinning to skinning by
spherical proxy primitives.

2.2.2. Blend shapes and principal component analysis

Blend shapes define a semantic shape representation. The mesh is represented as a Linear shape
representationlinear combination of blend shape vectors uj, which are added on top of a reference

mesh v by
v̂ = v + ∑

j
wjuj, (2.2)

where v and uj are vectors that stack all 3D vertex positions of the mesh, and wj is
the activation weight of vector uj. For instance for facial animation, a blend shape
u1 could correspond to the vertex displacement needed to lift the eyebrow.

While blend shapes are created by artists, relations exist to principal component
analysis (PCA) on meshes. PCA extracts the principal components of a set of
example meshes, these are linearly independent vectors that capture the variance
of the examples. The mean shape over all examples corresponds to the blend shape
reference mesh and the principal components are similar to blend shape vectors
[Alexa and Müller, 2001; Allen et al., 2003]. We use a PCA basis for the volumetric
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2. Technical background

actor model introduced in Chapter 5 and for dimensionality reduction in Chapters 8

and 9.

2.2.3. Local surface representations

Instead of defining the mesh directly through absolute vertex positions, relativeLocal invariant
representations positions can be used to attain beneficial properties. The mesh Laplacian stores the

relative positions of the vertices to their neighbours [Lipman et al., 2004; Sorkine
et al., 2004], which gives invariance to the global translation of the mesh. Rotation
invariance is gained by local representations that are independent of the global
mesh orientation and translation [Lipman et al., 2005]. A very successful technique
is to represent the mesh in terms of the affine transformation of each mesh face,
see Figure 2.2 right. The transformations are called deformation gradients [Barr, 1984;
Sumner, 2005; Lai et al., 2009], and can be seen as the linearization, i.e., Jacobian, of
an arbitrary mesh deformation at each face. Such local representations are beneficial
for surface smoothing and for interpolating or stitching different meshes, since they
encode properties of the local shape. Handle-based deformation can be obtained by
combining local representation and explicit vertex position constraints. It requires
to solve for a consistent mesh that obeys both constraints, local shape and global
handle position. As-rigid-as-possible (ARAP) deformations are constructed by
decomposing the per-face affine transformation into rotation and shear components
and iterative rotation compensation [Sorkine et al., 2004; Sorkine and Alexa, 2007;
de Aguiar et al., 2008].

In the following, we explain two particular representations in more detail, as they
are used as a baseline model for shape reconstruction in Chapter 5 and for character
animation in Chapters 8 and 9.

Deformation gradient mesh representation The deformation gradient of a face f inPer-face
transformations mesh v is defined with respect to a reference mesh vref. It is the affine transformation

A f of face f in v with respect to the same face in the reference mesh vref. We use
a representation that further decomposes deformation gradients A f into rotation
R f and shear S f . We approximate the polar decomposition A f = R f S f iteratively
according to Higham [1986], which is computationally more efficient than using
singular value decomposition. In practice, already three iterations give a reasonable
separation. Rotations are processed in axis-angle form, the symmetric shear matrix
is linearized to a vector of 6 elements. In addition to rotation and shear, we also
store the absolute vertex positions vi for each vertex i. The mesh is represented by
a vector that concatenates the 3F rotation, 6F shear, and 3V point parameters, for a
mesh with F faces and V vertices.

The combined space of vertex and face parametrization is overcomplete and neigh-Overcomplete
constraints boring affine transformations contradict if modified independently, e.g. in an

editing tool, by a learned mapping function (Chapter 8), or after interpolating two
meshes (Chapter 9). To mitigate this, a globally consistent surface is reconstructed
by considering A f and vi as soft constraints with weight h on v. We choose h
by hand such that the contributions of face transformations are approximately
one order of magnitude larger than the vertex position constraints. Thereby, the
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2.2. Surface representations

face transformations control the shape reconstruction, while the vertex positions
determine the global position of connected components.

An efficient solution is possible using the previously introduced Laplacian coordi- Surface
reconstructionnate representation. The differential coordinates δ depend linearly on the absolute

vertex position, e.g.,
δref = Lvref, (2.3)

where the Laplacian L is constructed once from the reference pose vertex positions
vref and the mesh faces, in our case using cotangent weights [Sorkine, 2006].
Given a surface representation yshape = (A, v), where A = (A1, . . . , AF) and v =
(v1, . . . , vV), we optimize for the mesh vertex positions v∗ that simultaneously fit
the reference pose updated by rotations A and goal vertex positions v in the least
squares sense, similar to [Sorkine and Alexa, 2007]:

v∗ = arg min
v̂
‖v− v̂‖2 + h‖A(δref)−A(L)v̂‖2, (2.4)

where A(vref) are the reference differential coordinates updated by per-face trans-
formations A, and A(L) updates the cotangent weights of L given A. Since Equation
2.4 is quadratic in v̂, and L is sparse, v∗ can be computed efficiently by solving a
sparse linear system of equations.

Explicit vertex constraints can be easily imposed by setting selected vi to the goal
location and increasing their weight. In a deformation tool, the goal locations can
be used as control handles. This strategy is used to prevent ground penetration
and foot skating in Chapter 9.

SCAPE model The shape completion and animation of people (SCAPE) model Pose and
shape modelbuilds on the deformation gradient representation and constructs a human body

model with separate shape and pose parameters by per-face transformations
[Anguelov et al., 2005]. In comparison to the previously introduced deforma-
tion gradient representation, the affine matrix A is further decomposed into pose
and shape factors by fitting to a database of laser scans to learn pose and shape
variation and their dependency. The rotation component is used to model rigid
transformations of bones, while additional linear components model shape vari-
ations and pose dependent deformation, such as muscle bulging. The result is a
parametric body model that proved to have outstanding generalization proper-
ties. In Chapter 5 we introduce a linear model which has similar generalization
properties for coarse shapes but improved computational performance.

2.2.4. Implicit surfaces

Surfaces also have been represented through implicit functions, e.g. as the level Smooth
surfacesset of a sum of basis functions [Plankers and Fua, 2003; Ilic and Fua, 2006; Kanai

et al., 2006]. Instead of approximating a surface by piecewise linear faces, it is
approximated through a finite set of basis functions. Using smooth basis functions
leads to a smooth surface approximation. To visualize these implicit representations,
an additional surface extractions step is necessary, e.g. by marching cubes [Lorensen
and Cline, 1987]. We introduce a volumetric density formulation that additionally
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2. Technical background

Implicit surface and its basis functions Volumetric mesh Density representation

Figure 2.3: Implicit surfaces have been used to represent smooth surfaces (left). In this instance, constructed
from a set of basis functions with spherical support [Wang et al., 2016b]. Volumetric meshes are
also possible, they segment the volume into discrete cells and can be used to model volumetric
deformations (center) [Kanai et al., 2006]. Smooth volumetric densities can be represented with
a sum of Gaussians and have been utilized to approximate solid objects (right) [Rhodin et al.,
2015a, Chapter 4].

models occlusions under projection as a smooth phenomenon, in Chapter 4 for
colored surfaces and in Chapter 5 for model contours.

2.3. Volumetric representations

A straightforward generalization of a surface mesh is a volumetric cell representa-Volumetric
discretization tion, see Figure 2.3. For instance, for a tetrahedral mesh representation groups of

four triangles form a tetrahedron, and their concatenation discretizes the volume
into cells. As for surface meshes, per vertex representations and relative repre-
sentations are applicable [e.g. de Aguiar et al., 2008]. These methods model solid
physical objects more accurately and have the advantage that deformation energies
can represent volume preservation and anisotropic deformation behavior explicitly,
to propagate deformations realistically in 3D. The tesselation of the volume is
important. For instance, using Centroidal Voronoi Tesselation leads to a uniform
discretization [Wang et al., 2016b], which yields improved tracking [Allain et al.,
2015].

Smooth volumetric representations have also been utilized, e.g., an in-homogeneousSmooth
volumes density can be approximated by the sum over a set of Gaussian basis functions,

which was used for human motion tracking [Stoll et al., 2011]. We build on these
volumetric models for pose estimation in Chapter 4 and actor model initialization
in Chapter 5.

2.4. Character rig representation

In the animation domain, a rig refers to a low-dimensional character representationRigging and
deformation that allows for easy editing, see Figure 2.1 right. A combination of surface skinning

and free-form deformation is commonly used. Such a rig manipulates near-rigid
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2.4. Character rig representation

character parts with a simple skeleton, and non-rigid deformations are driven by
less constrained and more complex representations. Rigs have also been used for
performance-driven character animation [Seol et al., 2013] and motion capture [e.g.,
Jain et al., 2010]. The advantage is that they are part of the traditional animation
pipeline and are established in various animation tools. However, rig definitions
and free-form deformation types vary between tools, which restricts their generality
and leads to incompatibility. This was the reason for us to chose a more general
mesh representation in Chapters 8 and 9.
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Motion capture has traditionally been heavily used in digital movie production, Traditional
application fieldswith recent big-budget movies heavily drawing on increasingly detailed reconstruc-

tions of actors [Beeler et al., 2010]. Although not as prominent, motion capture for
medical and sports supervision is also a traditional application field. It dates back
to the analysis of human and animal gait by Étienne-Jules Marey using ’chronopho-
tography’, and is gaining attention in modern motion-capture approaches. For
instance, the precision of a golf swing [Urtasun et al., 2005] or the strokes of an
olympic swimmer [Bregler, 2012; Olstad et al., 2012] are analyzed for professional
sports.

In these traditional fields, the most common capture approaches are suit-based. Traditional
motion captureActive point light sources or passively reflecting markers are attached to the

actor, and their 3D motion is reconstructed using a static setup of surrounding
inwards-facing cameras. Marker-less approaches succeed without suits, with recent
methods reaching the accuracy of marker-based approaches. Additionally, they
can reconstruct surface detail; however, existing high-quality solutions require
expensive camera setups, expect controlled background and illumination, and are
usually offline due to their computational complexity. The difficult setup of cameras
and studio conditions, as well as their high cost, is a drawback and precludes their
application in newly arising consumer applications, such as in virtual reality (VR),
which require real-time, low-latency reconstruction.

VR glasses render a realistic virtual world and allow its exploration through Interactive
motion capturenatural (head) motion. The rendering in response to the head position grants

an immersive visual experience; however, new input modalities are needed to
transition from passive exploration to active interaction with the virtual world. The
utilization of user motion as a natural interface for human-computer interaction
is promising; the user could interact with the world naturally and avatars would
directly mirror the users motion, creating an even deeper immersion. For this
purpose, existing commercial solutions provide hand-held devices with maker-
based tracking; however, there is a demand for non-intrusive marker-less motion
capture solutions as hand-held devices have similar drawbacks as suits. Real-time
non-intrusive reconstruction methods exist; however, they are limited to studio
conditions or require tedious set up and calibration.

In this part of the dissertation, we introduce advances to state-of-the-art marker-less Goal of
this parthuman motion capture, which in particular address the requirements for interactive

virtual reality and animation. We advance the first half of the introduced processing
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3. Marker-less motion capture

Figure 3.1: Human motion capture requires sensing hardware and reconstruction algorithms, which form,
respectively, steps a), and b) of the processing pipeline introduced in Figure 1.1.

pipeline, namely the sensing and reconstruction step, see Figure 3.1 and Figure 3.1.

To offer the best possible quality, we follow the top-down philosophy, and designA top-down
concept global models that work without simplifying intermediate steps directly on the

input image observations. To improve run time and robustness, bottom-up ap-
proaches are used for initialization and regularization, and care is taken to integrate
these cues only as weak constraints to minimize bias and loss of information.

We demonstrate applicability to scenes that are less constrained than in previousEvaluation
methods, we test on diverse indoor and outdoor scenes with varying numbers of
cameras. We evaluate the improvement of pose and shape estimation accuracy, setup
complexity, and the automation of initialization. The improvement is quantified
in comparison to ground-truth estimates and in comparison to state-of-the-art
methods.

3.1. Overview

Three new motion-capture algorithms are presented. Each of them addresses
a major shortcoming of existing state-of-the-art methods. Their contribution is
described in three separate chapters.

In Chapter 4, we develop a motion-capture algorithm which reduces the requiredOverview
Chapter 4 number of cameras, while maintaining reconstruction quality. A new analytic

visibility and occlusion model is proposed, which gives rise to a top-down pose
optimization method that includes occlusion and disocclusion effects into the
objective function and optimization, and works directly on RGB input images.

In Chapter 5, we ease otherwise tedious initialization of the actor model by auto-Overview
Chapter 5 matic shape estimation. A continuous volumetric contour model is proposed, that

directly works on image gradients, avoiding the error-prone background segmenta-
tion used in previous bottom-up approaches. Bottom-up pose estimation is only
used for initialization.

In Chapter 6, free roaming and reconstruction in general scenes is enabled with aOverview
Chapter 6 new egocentric motion-capture concept. A new headgear, featuring head-mounted

fisheye cameras, is developed. The user’s pose is estimated from this egocentric
perspective with a combination of the top-down generative model proposed in
Chapters 4 and 5, and a bottom-up discriminative body-part detector. Core to the
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approach is an automatic method for annotating and augmenting a large image
database to train the discriminative body-part detector.

In the remainder of this chapter, we discuss the related work of Chapters 4 to 6.
Chapter 4 introduces a common notation for these chapters.

3.2. Terminology

We consider the problem of marker-less human motion capture, the estimation of 3D Motion capture and
performance capturehuman skeleton pose from video input only, without requiring visual markers or

specific appearance. It is closely connected to human performance capture, where the
complete performances with surface-level detail is reconstructed.

Dependent on the application scenario, we refer to the performing human as the Scene description
actor, subject, or user. The actor forms the foreground of a scene and the rest of
the scene, including static geometry and dynamic (non-tracked) elements, is the
background.

Algorithmically, we distinguish the major classes of top-down and bottom-up strate- Bottom-up and
top-downgies. Bottom-up approaches incrementally process the input observations from

low to high-level complexity abstractions. For instance, for performance capture,
silhouettes of the actor are extracted from each input image, these are combined
to visual hulls for each frame, and surface tracking merges per-frame estimates
to a consistent mesh animation [Starck and Hilton, 2007]. Top-down approaches
start from a high-level model and descend to mid- and low-level representations,
e.g. starting with a 3D human body shape model, its 2D silhouette is formed by
projection and is jointly refined with respect to the body shape and input image
contours [Brox et al., 2005].

In the probabilistic domain, the classification in generative and discriminative models Generative and
discriminativeis common. Generative models learn the joint probability distribution of input and

output variables, and allow their joint sampling. In contrast, discriminative models
learn the conditioned probability of the output given an input, but not their joint
distribution. These terms are also used in non-probabilistic context; methods that
classify or regress the output given an input directly are called discriminative, while
those that generate output-input samples and follow the analysis-by-synthesis
paradigm for output inference are termed generative. In the case of motion capture,
discriminative methods directly regress body pose from the input images, whereas
generative methods utilize an actor model, with the ability to synthesize candi-
date images that are sampled or optimized to match the input. Often, generative
and discriminative models coincide with top-down and bottom-up approaches,
respectively.

We refer to skeleton pose as the skeleton parameters, i.e., joint angles and 3D root Pose and shape
position, and to the position and orientation of the camera as camera pose. If the
context is obvious, pose is used independently.

Parametric models represent a high-dimensional space through a fixed set of (low- Model types
dimensional) parameters. For instance, the high-dimensional space of human shape
can be parametrized through a predefined linear basis. In contrast, non-parametric
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3. Marker-less motion capture

models are adaptive to the model instance and can accommodate for the instance
complexity. For example, a mesh representation can be subsampled to arbitrary
resolution. Note that non-parametric models also have parameters, such as the
vertex positions of a mesh or the values of a distribution histogram.

Marker-less motion capture reconstructs 3D body pose from 2D projections. MostProjection
algorithms simulate the projection from 3D scene to 2D images, which is synony-
mously referred to as rendering or image formation.

We use the term local optimization for gradient-based techniques, such as precondi-Optimization
types tioned gradient descent, as these approaches only consider the local surrounding

around a guess and have local convergence. The term global optimization is used for
methods that have non-local convergence. In general, it requires a search through
the solution space, e.g. sparsely by simulated annealing [Gall et al., 2010].

We follow the sensor arrangement classification of Menache [2010]. Outside-inSensor
arrangement approaches place sensors around the capture volume, for instance cameras, with

their views converging in the volume center. Inside-out approaches use body-worn
sensors that look to the outside, i.e., utilize external references, such as IR markers
or visual scene structure. Inside-in approaches succeed with body-worn sensors
only, e.g. exoskeleton suits, without requiring external references and sensors.

3.3. Related work

This section is based on the work of Rhodin et al. [2015a, 2016a,b].

Human performance capture has been addressed from various angles and forOverview
diverse application fields. In the following, we discuss approaches separately
within the following classes. We start by discussing common camera and sensor
arrangements (Section 3.3.1), optical sensor types (Section 3.3.2), and suit-based
motion capture (Section 3.3.3). The discussion is focused on marker-less motion
capture, which is further classified into bottom-up, top-down, and hybrid algo-
rithms (Section 3.3.4). Further, visibility models (Section 3.3.5) and actor model
creation (Section 3.3.6) are discussed in more detail. For a general review, please
refer to the in-depth surveys of Moeslund et al. [2006, 2011], Theobalt et al. [2010],
and Holte et al. [2012].

3.3.1. Camera placements

Traditional multi-view motion and performance capture uses an outside-in arrange-Outside-in
ment of cameras [Kanade et al., 1995; Gavrila and Davis, 1996], similar to the
arrangement of human spectators around an action. Multiple views allow to explic-
itly reconstruct 3D information, but the performance is restricted to the capture
volume, which is the intersection of the camera field of views. To the extreme, Joo
et al. [2015] use a camera dome with 480 cameras for motion capture of closely
interacting people, but domes do not scale to larger natural scenes. While static
cameras ease reconstruction, movable cameras are possible by jointly optimizing
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for camera and human pose [Elhayek et al., 2014], and by preceding camera pose
estimation by structure-from-motion on the scene background [Hasler et al., 2009].
Movable cameras are naturally supported by methods that use a single stereo
camera [Wu et al., 2013], or a monocular camera to reconstruct the human pose
relative to the camera.

In the past, egocentric camera placements were used for tracking or model learning Inside-in
of certain parts of the body, for example for faces with a helmet-mounted camera or
rig [Jones et al., 2011; Wang et al., 2016a], for fingers from a wrist-worn camera [Kim
et al., 2012], or for eyes and eye gaze from cameras in a head-mounted rig [Sugano
and Bulling, 2015]. Rogez et al. [2014] and Sridhar et al. [2015] track articulated
hand motion from body- or chest-worn RGB-D cameras. Using a body-worn depth
camera, Yonemoto et al. [2015] extrapolate arm and torso poses from arm-only
RGB-D footage. These existing optical inside-in approaches succeed without external
sensors or references, but do not capture full-body motion as our new formulation
in Chapter 6 does.

Turning the standard outside-in capturing approach on its head, Shiratori et al. Inside-out
[2011] attach 16 cameras to body segments in an inside-out configuration, and
estimate skeletal motion from the position and orientation of each camera as
computed with structure-from-motion. Jiang and Grauman [2016] attempted full-
body pose estimation from a chest-worn camera view by analyzing the scene,
without observing the user directly and at very restricted accuracy.

Body-worn cameras have the advantage of a dynamic capture volume that moves Free roaming
with the user, but articulated full-body motion capture with a lightweight body-
mounted setup was not yet attempted. In Chapter 6, we propose a lightweight
headgear with two fisheye cameras facing down on the user and demonstrate. For
the first time full-body capture from this egocentric inside-in camera perspective.

3.3.2. Optical motion-capture sensors

Recently, reconstruction from low-cost active depth cameras, which in addition Restricted depth
informationto per-pixel color information provide an estimate of the object-camera distance,

gained attention. 3D pose estimation is highly accurate and reliable when using
multiple RGB-D cameras [Zhang et al., 2014], and even feasible from a single
RGB-D camera in real time [e.g. Shotton et al., 2011; Baak et al., 2011; Wei et al.,
2012], and also offline with surface detail [Helten et al., 2013; Cui et al., 2012; Bogo
et al., 2015]. However, existing consumer devices have only a restricted capture
volume, which severely restricts performances to on-spot motion and prohibits
roaming. Moreover, their energy consumption is high, especially outdoors, due to
the active sensing modality, which makes them unsuitable for mobile applications.

Following traditional marker-less motion capture, the work described in this dis-
sertation uses passive color cameras, as they are generally applicable, are widely
available, and have low energy consumption. Alternative non-optical sensor types
are discussed in the following section.
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3.3.3. Suit-based motion capture

Marker-based optical systems use a suit with passive retro-reflective spheres (e.g. Vi-Optical
outside-in con) or active LEDs (e.g. PhaseSpace) and outside-in camera arrangement. Skeleton

motion is reconstructed from observed marker positions in multiple cameras (usu-
ally ten or more) in an outside-in arrangement, producing highly accurate sparse
motion data, even of soft tissue [Park and Hodgins, 2008; Loper et al., 2014], but
the external cameras severely restrict the recording volume, in additional to the
high cost of such systems. For character animation purposes, where motions are
restricted, the use of motion sub-spaces can reduce requirements to six markers
and two cameras [Chai and Hodgins, 2005], or a single foot pressure-sensor pad
[Yin and Pai, 2003], which greatly improves usability. For hand tracking, a color
glove and one camera is practical [Wang and Popović, 2009].

Inertial measurement units (IMUs) fitted to a suit (e.g. Xsens MVN) allow for inside-Inside-in
in pose estimation [Tautges et al., 2011]. Combinations with ultrasonic distance
sensors [Vlasic et al., 2007], video input [Pons-Moll et al., 2010, 2011], and pressure
plates [Ha et al., 2011], suppress the drift inherent to IMU measurements and reduce
the number of required IMUs. Besides drift, the instrumentation with IMU sensors
is the largest drawback, as it causes long set-up times and intrusion. Nevertheless,
free roaming and high reliability in cluttered scenes have proven their merit in
diverse applications. Exoskeleton suits (e.g. METAmotion Gypsy) provide inside-in
estimation and avoid drift, but require even more cumbersome instrumentation.

The inside-out approach of Shiratori et al. [2011] requires full instrumentation of theOptical
inside-out human body as well as static backgrounds for structure-from-motion, but allows

free roaming, i.e., it overcomes the strong capture volume limitation of systems
using external cameras, which has been inspirational for our egocentric approach
in Chapter 6.

3.3.4. Marker-less motion and performance capture

Bottom-up and top-down motion and performance capture approaches lead toTop-down or
bottom-up fundamentally different characteristics. We start to discuss the features of each

approach separately, using representative algorithms which predominantly follow
one of the strategies. Afterwards, hybrid approaches are discussed, which try to
balance the advantages and disadvantages by combining multiple strategies.

Bottom-up approaches

Bottom-up motion and performance capture approaches incrementally extractIncreasing level
of complexity representations from the input images with increasing levels of complexity. For

multi-view studio setups, a common approach is to first segment foreground and
background by color keying, e.g. by using green screen, or background subtraction.
The actor silhouettes from multiple input views are then fused to carve out the
actor’s visual hull, formed by the intersection of all silhouettes back-projected
into the scene [Laurentini, 1994; Matusik et al., 2000; Starck and Hilton, 2007].
An alternative bottom-up strategy is to extract stereo reconstructions for pairs of
views, which are subsequently fused into a complete and consistent mesh [Bradley
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et al., 2008]. Both of these mid-level representations are independently estimated
per video frame, and an additional step is needed to obtain a consistent 3D mesh
sequence with vertex correspondence [Budd et al., 2013; Cagniart et al., 2010]. The
actor’s skeleton can also be reconstructed by fitting to the inside of the per-frame
mesh reconstructions, e.g. by medial axis extraction [Ménier et al., 2006].

Another bottom-up strategy is the extraction of 2D correspondences over time by Sparse
featurestracking prominent local image features, such as with SIFT [Lowe, 2004], and dense

optical flow. It is a core ingredient in the non-rigid structure-from-motion (SfM)
domain [Bregler et al., 2000] and was also used to aid human performance capture
[Tung et al., 2009].

Incremental processing simplifies algorithms and allows efficient non-parametric Manual feature
designreconstruction. However, hand-crafted features drop information in the abstraction

process and errors occurring in early stages propagate to later stages.

Instead of designing individual steps by hand, discriminative machine learning Machine
learningtechniques can be applied to learn intermediate representations and their extrac-

tion process automatically from a large corpus of annotated training examples.
Convolutional neural networks (ConvNets) brought a major leap in performance,
allowing for very accurate 2D pose prediction in images [Jain et al., 2014, 2015,
2014; Toshev and Szegedy, 2014]. Pure bottom-up prediction of 2D body pose
is possible with deep networks that capture the complete pose context and have
large receptive fields [Pishchulin et al., 2016]. While the manual design by layering
multiple ConvNets allows for increased network depth [Pfister et al., 2015; Wei
et al., 2016], the recent success of residual networks [Hernández-Vela et al., 2016;
Newell et al., 2016] allows accurate pose prediction from a single deep network
[Insafutdinov et al., 2016].

Deep ConvNets also enabled 3D pose estimation in bottom-up fashion. Different 3D prediction
input image representations have been proposed, 3D HOG features in motion-
compensated videos [Tekin et al., 2016b], giving 2D pose estimates as additional
input [Park et al., 2016], and by using hand-crafted features [Ionescu et al., 2014].
For the output, relative joint positions [Li and Chan, 2014], auto encoders [Tekin
et al., 2016a], and the integration of kinematic constraints into the neural network
[Zhou et al., 2016] have been proposed. Besides neural networks, regression forests
have also been used to derive mid-level posebit descriptors, answering questions
such as "is the left leg in-front of the right leg", to query a 3D pose database with
corresponding annotation [Pons-Moll et al., 2014]. Related is also the regression
from 2D to 3D pose by Yasin et al. [2016].

Existing discriminative body-part detection techniques use simplified body models Database
limitationswith few body parts to reduce the enormous cost of creating sufficiently large,

annotated training datasets. Because existing pose databases have no motion in-
formation or limited motion variation, temporal information is often neglected
and results exhibit jitter over time. Moreover, current databases are limited in
pose, viewpoint, and appearance variation, such that the trained networks have
limited generalization to new viewpoints, illumination conditions, and extreme
poses. Some progress has been made by stitching multiple real images to increase
variety [Rogez and Schmid, 2016] and by synthesizing and rendering characters
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with varying textures and pose [Chen et al., 2016]. To overcome some of these
limitations, we propose in Chapter 6 an automated way to annotate real training
images and to increase appearance variety by augmentation.

Top-down approaches

Top-down motion-capture approaches use an actor and scene model that is matchedA global
model against the image observation. Generative formulations commonly use analysis by

synthesis; the relation between model parameters and observation is established
with an image formation model, and the model parameters are optimized to
minimize the difference between model and observation. The optimization can
be performed locally, e.g. by gradient descent [Loper et al., 2014], in a larger
neighbourhood, e.g. by particle filtering [Sidenbladh et al., 2000], or globally, e.g. by
simulated annealing [Gall et al., 2010]. Local optimization is particularly suitable
for tracking frameworks, where the previous frame initializes the optimization of
the current frame.

Loper et al. [2014] proposed OpenDR, an open-source renderer that models illu-Differentiable
rendering mination and appearance of arbitrary mesh objects, and computes numerically

approximated derivatives with respect to the model parameters for perspective
projection. It can be used for inverse rendering, as the derivatives allow general
gradient-based optimization of the model parameters. Finite differences are used
for the spatial derivatives of pixel colors, as proposed for faces by Jones and Poggio
[1996]. To attain smooth visibility at single occlusion boundaries, spatial smoothing
by convolution of the model projection with a smooth kernel [Jones and Poggio,
1996; Yezzi and Soatto, 2003], and coarse-to-fine pyramid representations [Jones and
Poggio, 1996; Blanz and Vetter, 1999; Loper et al., 2014] have been used. Some global
dependencies in pose energy between distant scene elements are also handled by
coarse-to-fine approaches.

Using simple primitives, like spheres [Ma and Wu, 2014] and (super-)quadricsPrimitive-based
models [Krivic and Solina, 2003], reduces computational complexity. Instead of using a

full-fledged render, simple primitives can be projected in closed form. Bregler and
Malik [1998] model the actor shape with ellipsoid primitives and skeleton joints by
twists, and this top-down model is then tracked with an optical flow formulation.

Gaussian functions have also been used for pose estimation [Wren et al., 1997; StollSmooth models
et al., 2011]. Stoll et al. use a collection of volumetric 3D Gaussians to represent the
human body, as well as 2D Gaussians to model input images. The overlap between
projected model and image Gaussians is maximized, using a coarse occlusion
heuristic. This design allows for long-range effects between model and observation,
and avoids expensive occlusion tests, but the occlusion heuristic leads to a problem
formulation that is merely piecewise differentiable.

The handling of occlusions is an open challenge of existing top-down approachesSmooth visibility
in general. Occlusion models are discussed in detail in Section 3.3.5. In Chapter 4,
a method is proposed that provides differentiable visibility based on ray tracing of
non-homogeneous translucent volumes.
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Hybrid approaches

Augmenting top-down pose estimation with bottom-up approaches led to increased Silhouette
and meshtracking robustness and enabled reconstructions with a lower number of cameras.

For multi-view input in controlled environments, actor silhouettes are the most
common features. They have been used to guide top-down surface models [Starck
and Hilton, 2007] and rigged template meshes [Vlasic et al., 2008; Wu et al., 2013].
A coupling and alternating of top-down and bottom-up silhouette extraction is
particularly robust [Bray et al., 2006; Hasler et al., 2009; Wu et al., 2013], allowing for
less controlled scenes. Tracked SIFT features can give additional sparse constraints
[de Aguiar et al., 2008; Gall et al., 2009].

Bottom up learning-based methods are robust, but accuracy and temporal stability Generative and
discriminativeis increase in hybrid approaches; local image evidence is extracted discriminatively

in a bottom-up fashion, and coherent body pose is inferred top-down by generative
human body models. Different skeleton models have been utilized: graphical
models provide weak prior information and allow for exact inference of 2D pose
from monocular images [Sigal et al., 2004; Lee and Nevatia, 2006; Felzenszwalb and
Huttenlocher, 2005; Andriluka et al., 2009; Yang and Ramanan, 2013; Johnson and
Everingham, 2011]. Moreover, 3D graphical models have been proposed for pose
estimation from multi-view footage [Sigal et al., 2012; Amin et al., 2013; Burenius
et al., 2013; Belagiannis et al., 2014]. Articulated skeleton models provide stronger
kinematic constraints, but only local inference is feasiable [Elhayek et al., 2015].
To further constrain and regularize the solution space, skeleton models have been
augmented with learned pose priors [Chai and Hodgins, 2005; Brox et al., 2006]
and temporal priors [Sidenbladh et al., 2000; Urtasun et al., 2005, 2006b].

While the previously discussed hybrid models require multi-view input, monocular Monocular
3D pose3D pose prediction is also possible [Sminchisescu et al., 2006]. Kostrikov and Gall

[2014] propose to regress from monocular images to a volumetric occupancy grid
with regression forests and use a graphical top-down body model. Bogo et al.
[2016] attain 3D pose estimation from monocular images by lifting ConvNet 2D
pose predictions to 3D using a strong skeleton pose prior. Additionally, coarse
shape estimates are predicted using a body shape prior. A similar combination
of discriminative and generative pose estimation is used in Chapter 6 for pose
estimation and in Chapter 5 for fully automatic pose and shape estimation.

3.3.5. Visibility and occlusion handling

Independent of the model representation, the image formation model needs to Discrete visibility
consider surface visibility, and needs to be differentiated for gradient-based opti-
mization. The problem is that the (discrete) visibility function of a surface point
is generally non-differentiable at occlusion boundaries of solid objects, and often
hard to express in analytic form. Some approaches avoid explicit construction of
the visibility function by heuristically fixing occlusion relations at the beginning of
iterative numerical optimization, which can easily lead to convergence to erroneous
local optima, or by re-computation of visibility before each iteration, which can
become computationally prohibitive. Commonly the object’s silhouette boundaries
are handled as special cases, different from the shape interior [Matusik et al., 2000;
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Starck and Hilton, 2007; Tung et al., 2009; Wu et al., 2013]. These approaches op-
timize the model configuration (e.g. pose and/or shape) such that the projected
model boundaries align with multi-view input silhouette boundaries and possi-
ble additional features away from the silhouette [e.g. Deutscher and Reid, 2005;
Rosenhahn et al., 2005; Urtasun et al., 2006a; Sigal et al., 2010; Ballan et al., 2012].

The integration of binary visibility into the objective function is more complex.Optimizing
visibility Analytic visibility gradients can be obtained for implicit shapes [Gargallo et al.,

2007] and mesh surfaces [Delaunoy and Prados, 2011], by resorting to distribu-
tional derivatives [Yezzi and Soatto, 2003; Gargallo et al., 2007; Delaunoy and
Prados, 2011], and by geometric considerations on the replacement of a surface
to another with respect to motions of the occlusion boundary [Jalobeanu et al.,
2004; de La Gorce et al., 2008; Loper et al., 2014]. For multi-view reconstruction
of convex objects, visibility can be inferred efficiently from surface orientation
[Lempitsky et al., 2006]. While these approaches yield similarity functions that are
mathematically differentiable almost everywhere, non-differentiability is resolved
only locally, which still leads to abrupt changes of object visibility, as illustrated
in Figure 4.1. Efficient gradient-based numerical optimization of the similarity
does not fare well under such abrupt and localized changes, leading to frequent
convergence to erroneous local optima. In Chapter 4, we introduce a scene and
visibility model that handles the important case of double occlusion boundaries
well, which occur at the point of complete occlusion of an object, see Figure 4.1.

The visibility approach that we introduce in Chapter 4 is inspired by the methodGaussian visibility
of Stoll et al. [2011], which models the actor and image with a set of Gaussians.
Stoll et al.’s method computes the model-to-image similarity analytically through
the integral of pairs of Gaussians. However, there is no differentiable occlusion
handling. For object tracking, Milan et al. [2011] use a similar Gaussian overlap
model and add a continuous depth ordering heuristic through a sigmoid function
on the depth difference of Gaussians. It was later generalized to per-ray depth
ordering by approximations with sigmoid functions [Chandraker and Dhiman,
2016].

Most similar to our visibility model is the method of Hansard [2015], which reasonsStochastic visibility
about visibility in the domain of point cloud reconstruction with a statistical
interpretation. Nevertheless, the same reasoning on the attenuation in an absorbing
medium is followed and the same simplification based on Gaussian basis functions
is used. Both methods were developed independently and reviewed concurrently.

3.3.6. Actor model initialization

Many multi-view marker-less motion-capture approaches consider model initializa-Manual
initialization tion and tracking as separate problems [Holte et al., 2012]. Even in recent methods

working outdoors, shape and skeleton dimensions of the tracked model are either
initialized manually prior to tracking [Elhayek et al., 2015], or estimated from
manually segmented initialization poses [Stoll et al., 2011; Ahmed et al., 2005]. In
controlled studios, static shape [Hilton et al., 1999; Bălan and Black, 2008] or dimen-
sions and pose of simple parametric human models can be optimized by matching
against chroma-keyed multi-view image silhouettes [Kakadiaris and Metaxas, 1998],
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and stereo cues [Plänkers and Fua, 2001]. Many multi-view performance capture
methods [Theobalt et al., 2010] deform a static full-body shape template obtained
with a full-body scanner [de Aguiar et al., 2008; Gall et al., 2009; Wu et al., 2013,
2012], or through fitting against the visual hull [Vlasic et al., 2008; Starck and Hilton,
2003; Ballan and Cortelazzo, 2008; Allain et al., 2015] to match scene motion. Again,
all these require controlled in-studio footage, an offline scan, or both.

Shape estimation of persons in skintight clothing in single images is feasible Semi-automatic
initializationusing shading and edge cues and a parametric body model [Guan et al., 2009],

or monocular pose and shape estimation from video [Sminchisescu and Telea,
2002; Sminchisescu and Triggs, 2003; Guo et al., 2012; Jain et al., 2010], but require
substantial manual intervention (joint labeling, feature/pose correction, background
subtraction etc.). For multi-view in-studio setups with three to four views, where
background subtraction works, Bălan et al. [2007] estimate shape and pose of
the SCAPE parametric body model. Optimization is independent for each frame
and requires initialization by a coarse cylindrical shape model. Implicit surface
representations yield beneficial properties for pose and body dimension estimation
[Plänkers and Fua, 2001; Plankers and Fua, 2003] and surface reconstruction [Ilic
and Fua, 2006], but do not avoid the dependency on explicit silhouette or stereo
input. Bogo et al. [2016] show fully automatic pose estimation from a single image
and rough shape estimates by correlating 2D body-part locations to actor shape,
but could not demonstrate reconstruction of extreme body shapes. In contrast to all
previously mentioned methods, the approach we introduce in Chapter 5 requires
no manual interaction, succeeds even with only two camera views, works for slim
and well-build actors, and on scenes recorded outdoors without any background
segmentation.

In outdoor settings with moving backgrounds and uncontrolled illumination, Outdoor
segmentationforeground-background segmentation is hard, but progress has been made by multi-

view segmentation [Campbell et al., 2007; Wang et al., 2014; Djelouah et al., 2015],
joint segmentation and reconstruction [Szeliski and Golland, 1998; Guillemaut and
Hilton, 2011; Bray et al., 2006; Mustafa et al., 2015], and also aided by propagation
of a manual initialization [Brox et al., 2005; Rosenhahn et al., 2006; Hasler et al.,
2009; Wu et al., 2013]. However, the obtained segmentations are still noisy, enabling
only rather coarse 3D reconstructions [Mustafa et al., 2015]. Many methods do not
work with only two cameras, and require manual initialization.

Edge cues have been widely used in human shape and motion estimation [Moes- Edge cues
lund et al., 2006; Holte et al., 2012; Deutscher et al., 2000; Sidenbladh and Black,
2003; Sigal et al., 2012; Kehl et al., 2005]. In Chapter 5, we provide a new formulation
for their use and make edges in general scenes the primary cue. In contrast, existing
shape estimation techniques use edges as supplemental information, for example to
find self-occluding edges in silhouette-based methods or to correct rough silhouette
borders [Guan et al., 2009]. Our formulation in Chapter 5 is inspired by the work
of Nagel et al., where model contours are directly matched to image edges for
rigid object pose [Kollnig and Nagel, 1995] and human pose tracking [Wachter and
Nagel, 1997]. Contour edges on tracked meshes are found by a visibility test, and
are convolved with a Gaussian kernel. This approach forms piecewise-smooth and
differentiable model contours which are optimized to maximize overlap with image
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3. Marker-less motion capture

gradients. We advance this idea in several ways: our model is volumetric, analytic
visibility is incorporated in the model and optimization, and occlusion changes
are differentiable. Furthermore, the human is represented as a deformable object,
allowing for shape estimation. Most importantly, contour direction is handled
separately from contour magnitude, to compensate unknown contrast variations in
the input image.

Our work has links to non-rigid structure-from-motion that finds sparse 3D pointNRSfM
trajectories (e.g. on the body) from single-view images of a non-rigidly moving
scene [Park et al., 2015]. Articulation constraints [Fayad et al., 2011] can help to find
the sparse scene structure, but the goal is different from our automatic estimation
of a fully dense, rigged 3D character and stable skeleton motion.

Actor model initialization methods build on the success of parametric body modelsParametric
body models for surface representation, [e.g., Anguelov et al., 2005; Jain et al., 2010; Loper et al.,

2014, 2015; Pishchulin et al., 2015]. Most common are linear subspaces of vertex
positions by PCA [Allen et al., 2003], which are simple and efficient. Improved
generalization to strong deformations and shape variations are obtained by per-
triangle rotation and shear representations, such as SCAPE [Anguelov et al., 2005],
at the cost of increased complexity. The method described in Chapter 5 extends
linear parametric surface models to represent the space of volumetric shape models,
along with a rigged surface and skeleton.
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A versatile scene model

with differentiable

visibility

4
This chapter is based on Rhodin et al. [2015a].

Vision algorithms that employ a top-down generative approach estimate the con- Generative
pose estimationfiguration p of a 3D shape by optimizing a function measuring the similarity of

the projected 3D model with one or more input camera views of a scene. In rigid
object tracking, for example, p models the global pose and orientation of an object,
whereas in generative marker-less human motion capture, p instead models the
skeleton pose, in addition to the rigid pose, and optionally surface geometry and
appearance.

The ideal objective function for optimizing similarity has several desirable proper- Ideal objective
functionties that are often difficult to satisfy: it should have analytic form, analytic derivative,

exhibit few local minima, be efficient to evaluate, and numerically well-behaved,
i.e., smooth. Many approaches already fail to satisfy the first condition and use
similarity functions that cannot be expressed or differentiated analytically. This
necessitates the use of methods that do not require explicit gradients, such as
expensive particle-based optimization, or numerical gradient approximations that
may cause instability and inaccuracy.

A major difficulty in achieving the above properties is the handling of occlusions Visibility and
occlusionwhen projecting from 3D to 2D. Only those parts of a 3D model visible from a

camera view should contribute to the similarity. In general, this can be handled by
using a visibility function V(p) in the similarity measure that describes the visibility
of a surface point in pose p when viewed from a certain direction. For many shape
representations, this function is unfortunately not only hard to formulate explicitly,
but it is also binary for solid objects, and hence non-differentiable at points along
occlusion boundaries. This renders the similarity function non-differentiable.

In this chapter, we introduce a 3D scene representation and image formation model Smooth and
differentiable
visibility

that holistically addresses visibility within a generative similarity energy. It is the
first model that satisfies all of the following properties:

1. It enables an analytic, continuous and smooth visibility function that is
differentiable everywhere in the scene.

2. It enables similarity energies with rigorous visibility handling that are differ-
entiable everywhere in the model and camera parameters.
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Figure 4.1: Visibility comparison on a vertically moving sphere. Top to bottom: solid scene with binary
visibility, spatial image smoothing, and our visibility model for positions p∈{0.2,0.4,0.6,0.8,1}.
Bottom: plot of the red sphere’s visibility at the central pixel (marked by the gray cross in the
first image) versus sphere position p for the different visibilities. Only our method is smooth at
the double occlusion boundaries at p = 0.4 and p = 0.8.

3. It enables similarity energies that can be optimized efficiently with gradient-
based techniques, and which exhibit favorable and more robust convergence
in cases where previous visibility approximations fail, such as disocclusions
or multiple nearby occlusion boundaries.

Our method approximates opaque objects by a translucent medium with a smooth
density distribution defined via a collection of Gaussian functions. This turns
occlusion and visibility into smooth phenomena, a property which has not been
attained by existing models, see Figure 4.1. Based on this representation, we derive
a new rigorous image formation model that is inspired by the principles of light
transport in translucent media common in volumetric rendering [Cerezo et al.,
2005], and which ensures the advantageous properties above.
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4.1. Notation and overview

Although visibility of solid objects is non-differentiable by nature, we demonstrate Evaluated for pose
and shape estimationexperimentally in Section 4.5 that introducing approximations on the scene level is

advantageous compared to state-of-the-art methods that employ binary visibility
and use spatial image smoothing. We demonstrate the advantages of our approach
in several scenarios. For marker-less human motion capture with a low number
of cameras, we show improvements on state-of-the-art methods that lack rigorous
visibility modeling [Stoll et al., 2011; Elhayek et al., 2015], For multi-object pose
optimization, we demonstrate increased robustness compared to methods using
local visibility approximations [Loper et al., 2014]. For body shape and appearance
estimation, we show automatic fitting to silhouettes.

4.1. Notation and overview

Input to our algorithm are RGB image sequences Ic,t, recorded with calibrated Input and output
cameras c = 1, . . . , C across frames t = 1, . . . , T. The output of our approach is
a per-frame pose vector pt, for human motion capture it is a vector of 3D root
position and skeleton joint angles. Furthermore, a volumetric scene model γ(pt) is
used, which needs to be created manually or automatically (see Section 4.3). For
motion capture, the scene model is an actor model that defines appearance, shape,
and skeleton structure, and it’s articulation is parametrized by joint angles pt (see
Section 4.5.3). Pose optimization is initialized in a tracking framework with the
estimate from the previous frame, the frame index t is dropped in the notation
where the context admits.

We propose a scene model that approximates solid objects by a smooth density Volumetri
scene modelrepresentation, resulting in a visibility function that is well-behaved and differ-

entiable everywhere. We start with a general introduction of the scene model in
Section 4.2.1, a physically-based intuition of the resulting visibility function in
terms of a translucent medium is given in Section 4.2.2, the corresponding image
formation model is presented in Section 4.2.3, and the optimization is explained
in Section 4.4. Results of our scene model applied to rigid pose tracking, shape
estimation, and marker-less motion capture from sparse cameras are shown in
Section 4.5.

4.2. Volumetric body model

4.2.1. Smooth scene approximation

Hard object boundaries cause discontinuities of visibility at occlusion boundaries. Smoothnes
by diffusionTo obtain a smooth visibility function, we propose a smooth scene representation.

We diffuse objects to a smooth translucent medium – with high density at the inside
of the original object and a smooth falloff to the outside. In our model, the density
defines the extinction coefficient which models how opaque a point in space is, and
thus how much it occludes [Cerezo et al., 2005]. To obtain an analytic form and for
performance reasons, we use a parametric representation for the density D(x) at

45



4. A versatile scene model with differentiable visibility

Figure 4.2: From left to right: A solid sphere actor model, our representation by a translucent medium with
Gaussian density visualized on a checkerboard background for increasing smoothness levels
(m={0.0001, 0.01, 0.5}). Note the proper occlusion, e.g. of the left arm and the torso.

position x as the sum of scaled isotropic Gaussians G={Gq}q, defined as

D(x) = ∑
Gq∈G

Gq(x), where each Gaussian

Gq(x) = cq · exp

(
−
∥∥x− µq

∥∥2

2σ2
q

)
(4.1)

has a magnitude cq, center µq, and standard deviation σq. Appearance is modeled
by annotating each Gaussian with an albedo attribute aq. Figure 4.2 shows an
example of the colored density representation for a human actor, consisting of
Gaussians of varying size and albedo.

Our model leads to a low-dimensional scene representation parametrized byGaussian
parametrization γ(p)={cq, µq(p), σq, aq}q. For readability, we use Gq(x) for Gaussians and omit the

dependence on γ and p.

The degree of opaqueness and smoothness is adjustable by tuning the magnitudes cqAdaptive
smoothness and standard deviations σq of the Gaussians. We discuss the conversion of a general

scene to our Gaussian density representation in Section 4.3. While other smooth
basis functions are conceivable, Gaussians lead to simple analytic expressions
for the visibility that work well in practice. While our Gaussian representation is
similar to the method of Stoll et al. [2011], its semantics of a translucent medium is
fundamentally different and our image formation model with rigorous visibility is
phrased in entirely new ways, as explained in the following sections.

4.2.2. Light transport and visibility

Our computation of the visibility V of a 3D point from a given camera position isPhysical light
transport inspired by the physical laws of light transport in translucent media, and based

on simulation techniques from computer graphics [Cerezo et al., 2005]. As the
translucent medium is only used as a tool to model continuous visibility, we assume
a medium with uniform absorption of all colors without scattering. According to
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Figure 4.3: Top: Raytracing of a Gaussian density. Bottom: Light transport along the ray. The density along
a ray is a sum of 1D Gaussians (green), and transmittance (gray) falls off from one for increasing
optical depth. The radiance is the fraction of reflected light that reaches the camera (red and
blue areas). We use it to compute the visibility of a particular Gaussian.

the Beer-Lambert law of light attenuation, the transmittance (the percentage of light
transmitted between two points in space) decays exponentially with the optical
thickness of a medium, i.e., the accumulated density, as visualized in Figure 4.3.
Specifically, the transmittance T of a 3D point at distance s along a ray from a
camera position o in direction n is

T(o, n, s, γ) = exp
(
−
∫ s

0
D(o + tn)dt

)
. (4.2)

Note that for a specific camera, n(u, v) is uniquely defined for each pixel location 1D ray Gaussian
(u, v); from now on, we use the short notation n that is implicitly dependent on
the pixel position. With our Gaussian density representation, the density at any
point on a line through a sum of 3D Gaussians is in turn the sum of 1D Gaussians.
Specifically, inserting the line equation x = o+sn into the 3D Gaussian Gq (4.1)
results in a scaled 1D Gaussian, Ḡq of form

Ḡq = c̄ exp
(
− (x− µ̄)2

2σ̄2

)
(4.3)

with 1D Gaussian parameters

µ̄ = (µ− o)>n, σ̄ = σ, and c̄ = c · exp
(
− (µ− o)>(µ− o)− µ̄2

2σ̄2

)
. (4.4)

Using the Gaussian form of the density, we can rewrite the transmittance function Transmittance
(4.2) in analytic form in terms of the error function, erf(s) = 2√

π

∫ s
0 exp(−t2) dt, as

T(o, n, s, γ) = exp

(
−
∫ s

0
∑

q
Gq(o + tn)dt

)
(4.5)

= exp

∑
q

σ̄q c̄q√
2
π

(
erf

(
−µ̄q√

2σ̄q

)
−erf

(
s−µ̄q√

2σ̄q

)) . (4.6)
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Similar formulations are used for cloud rendering [Zhou et al., 2007; Jakob et al.,
2011]. The transmittance of a medium is symmetric, it also measures the fractionalFractional

visibility visibility of a point x = o+sn from position o, which we denote by V(x, γ) :=
T(o, n, s, γ).

4.2.3. Image formation and Gaussian visibility

For image formation, we assume that all scene elements emit an equal amount ofImage
formation light Le. To produce a discrete image from the proposed Gaussian density model,

we shoot a ray through each pixel of a virtual pinhole camera. The pixel color
is the fraction of source radiance that is emitted along the ray and reaches the
camera (color and radiance are related by the camera transfer function; we assume
a linear camera response and use pixel color and radiance interchangeably). For
the defined medium with pure absorption, the received radiance is the product of
transmittance T, density D, albedo a and ambient radiance Le, integrated along the
ray x = o + sn,

L(o, n) =
∫ ∞

0
T(o, n, s, γ)D(x(s))a(x(s))Le ds. (4.7)

This is a special form of the integrated radiative transfer equation [Cerezo et al., 2005;Ambient
illumination Chandrasekhar, 1960], and it models the fact that each point in space emits light

proportional to its density D(x) and illumination Le. For our Gaussian density with
parameters γ and fixed Le=1, we obtain

L(o, n, γ) =
∫ ∞

0
T(o, n, s, γ)∑

q
Gq(o + sn)aq ds. (4.8)

To obtain an analytic form, we approximate the infinite integral by sampling a
compact interval Sq ={µ̄q+kλq | k∈K⊂Z} around the mean of each Gq:

L̂(o, n, γ) = ∑
q

aq ∑
s∈Sq

λqT(o, n, s, γ)Gq(o + sn), (4.9)

where λq∼ σ̄q is the sampling step length, which is adaptive to the Gaussian’s size.

Gaussians have infinite support (Gq(x) > 0 everywhere), but each Gaussian’sIntegration
by sampling contribution vanishes exponentially with the distance from its mean, so local

sampling is a good approximation. In practice, we found that five samples with
K={−4,−3, . . . , 0} and λ = σ̄ suffice. Importance sampling could further enhance
accuracy.

A final insight is that the inner sum in the radiance equation (4.9), the sum of theGaussian visibility
product of source radiance and transmission, measures the contribution of each
Gaussian to the pixel color, and therefore computes the Gaussian visibility

Vq(o, n, γ) := ∑
s∈Sq

λqT(o, n, s, γ)Gq(o + sn), (4.10)

of Gq from camera o in direction n. The Gaussian visibility from pixel (u, v),
Vq((u, v), γ), is equivalent to Vq(o, n(u, v), γ). The radiance L̂ and Gaussian visibil-
ity Vq depend on the set of all Gaussians in the scene. However, our model enables
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4.3. Model creation

us to represent most scenes with a moderate number of Gaussians (see Section 4.3),
such that the analytic forms of L̂ and Vq can be evaluated efficiently. For increased
performance, we also exclude Gaussians with magnitude c̄q <10−5 for the given
ray direction, which does not impair tracking quality (see Section 4.5.3).

4.3. Model creation

In principle, arbitrary shapes can be approximated using a sufficiently large number Sphere
packingof small, localized Gaussians. We convert an existing mesh model to our represen-

tation by first filling the object’s volume with spheres. In our experiments, like the
actor in Figure 4.2, we place spheres manually, but automatic sphere packing could
be used instead [Wang et al., 2006].

We then replace the spheres by Gaussians of ‘equal perceived extent’. A translucent Smoothness
levelobject forms its boundary at the point of strongest transmittance change. To find

suitable parameters cq and σq that approximate a sphere of radius r, we place a
Gaussian Gq at its center and analyze the visibility Vq(o, n, {cq, σq}) viewed from an
orthographic camera (i.e., n is fixed in view direction and o is the pixel location). We
solve for magnitude cq and standard deviation σq such that the transparency at the
Gaussian’s center, 1−Vq, is equal to a constant m, and the inflection point of Vq lies
at distance r from the center. Here, m is a free parameter determining the level of
smoothness and translucency, see Figure 4.2. This is a useful tool to tune robustness
versus specificity, as we demonstrate in Section 4.5.3. This procedure aligns the
perceived Gaussian size with the reference sphere outline while maintaining a
consistent opacity across Gaussians of different size. An example is Figure 4.1,
where the inflection point is aligned with the binary occlusion boundary. The
optimization is necessary, as the inflection point of visibility deviates from the
density’s inflection point, and parameters cq and σq jointly influence its location.

For generative tracking, the configuration of the tracked model p needs to be Rigid and
articulated
motion

mapped to our scene representation using a function γ(p). In rigid object tracking,
γ(p) is a single rigid transform that determines the position µq of all Gaussians
Gq; the sizes σq and densities cq are then fixed. For skeletal motion capture, each
Gaussian is rigidly attached to a bone in the skeleton, and p represents global pose
and joint angles. Details on skeleton representations are explained in Section 2.1.
Other mappings for non-rigidly deforming shapes can also be used.

4.4. Pose optimization

Reconstruction methods based on our representation will compute p from a set Objective
functionof image observations {Ic}c captured from different cameras c, by minimizing an

objective function of the general form

F(p, {Ic}c) = ∑
c

D(γ(p), Ic) + P(p), (4.11)

where D(γ, I) is a data term, e.g. photo-consistency, and P(p) is a prior on con-
figurations, e.g. a general regularization terms. With our image formation model
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(Section 4.2.3), we can formulate a photo-consistency-based model-to-image overlap
in a fully visibility-aware, yet analytic and analytically differentiable way as:

Dpc(γ, I) := ∑
(u,v)∈I

∥∥L̂(o, n(u, v), γ)− I(u, v)
∥∥2

2 , (4.12)

where I(u, v) is the image color at pixel (u, v). In Section 4.5.1, we use the photo-
consistency energy Fpc(p, {Ic}c) = ∑c Dpc(γ(p), Ic) without prior for rigid object
tracking and body shape and appearance estimation.

We also demonstrate our approach for marker-less human motion capture. TheMotion capture
generative method by Stoll et al. [2011] use a Gaussian representation for the
skeletal body model, and transforms the input image into a collection of Gaussians
using color clustering. Their data term sums the color-weighted overlap of all image
and projected model Gaussians using a scaled orthographic projection and without
rigorous visibility handling, see their paper for details.

For visibility-aware motion capture, we define a new pose energy Fmc with aMotion capture
objective function perspective camera model and a new visibility-aware data term that accumulates

the color dissimilarity d(I(u, v), aq) over all pixels (u, v) in image I and Gaussians
Gq, weighted by the Gaussian visibility Vq:

Dmc(γ, I)= ∑
(u,v)

∑
q

d(I(u, v), aq)Vq(o, n(u, v), γ). (4.13)

To analyze the influence of our new visibility function in isolation, we adopt the
remaining model components from the baseline method of Elhayek et al. [2014].
To compensate for illumination changes, colors are represented in HSV space and
the value channel is scaled by 0.2. To ensure temporal smoothness and anatomical
joint limits, accelerations and joint limit violations are quadratically penalized in
the prior term P(p). Motion capture with the new visibility-aware energy leads to
significantly improved results, as we demonstrate in Section 4.5.3.

For all our experiments on rigid and articulated tracking, we utilize a conditionedGradient
descent conjugate gradient descent solver to minimize the objective function. The analytic

derivatives of the objective functions Fpc and Fmc with respect to all parameters are
listed in the supplemental document published alongside Rhodin et al. [2015a].

4.5. Results

We first validate the advantageous properties of our model in general (Section 4.5.1),Overview
and then show how our scene representation and image formation model lead to
improvements over the state of the art in rigid object tracking (Section 4.5.2), shape
estimation, and marker-less human motion capture (Section 4.5.3).

4.5.1. General validation

We validate the smoothness and global support of our visibility handling using aSynthetic
example scene with simple occlusions: a red sphere, initially hidden by an occluder, moves

up vertically and becomes visible (Figure 4.1). In our model, the visibility V of the
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4.5. Results

Target Initial Ours OpenDR
pose density mesh pyramid per pixel

Figure 4.4: 3D reconstruction of a red sphere (position) and blue cube (position and orientation) using
photo-consistency energy Fpc from one image for three different initializations. Top to bottom:
initialization with overlap to final pose, distant initialization, occluded initialization (the oc-
cluded cube is shown in yellow). OpenDR does not find the right solution for initializations
without overlap or when far from the solution, and fails under full occlusions. Our method
finds the correct pose in all three cases.

red sphere (a single Gaussian) is smooth, and hence differentiable with respect to
position γ (blue line). This is in contrast to surface representations which are only
piecewise differentiable: binary visibility functions have discontinuities (red line),
and visibility with partial pixel coverage is continuous but non-differentiable at
occlusion boundaries (dashed red line). Methods that smooth pixel intensities spa-
tially as a post-process obtain smoothness at single occlusion boundaries. However,
when an object occludes or disoccludes behind another occlusion boundary, like
the red sphere becoming visible behind the black sphere, and thus two or more
occlusion boundaries are in spatial vicinity, visibility is non-differentiable and local-
ized (green line). Improper handling of this case is a major limitation in practical
applications, for instance, in motion capture where an arm may disocclude from
behind the body. Our approach handles these cases by considering near-visible
objects, it ‘peeks’ behind occlusion boundaries.

4.5.2. Object tracking

We show the advantages of our representation for gradient-based multi-object pose Comparison to
binary visibilityoptimization from a single view under photo-consistency and compare against

OpenDR [Loper et al., 2014]. The nine parameters in p for the synthetic test scene
are the 3D position of a red sphere, and position and orientation of the blue cube.
Both objects shall reach the pose shown in the Target image of Figure 4.4. We
compare the optimization of Fpc with m = 0.1 using our model, OpenDR with
per-pixel photo-consistency, and OpenDR with a Gaussian pyramid of 6 levels.
The optimizer is initialized with 100 random and three manual cases (rows in
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Table 4.1: A table describing each scene and the relevant parameters, such as number, type and resolution
of cameras, pose parameter, run time per gradient iteration, and reconstruction error (average
Euclidean 3D distance over all joints and frames to the ground truth).

Sequence Soccer (two actors) Soccer (one actor) Marker Walker Shape estimate Rigid objects

Published by Elhayek et al. [2015] Stoll et al. [2011] Our
Number of cameras 3 2 4 11 1

Number of frames 300 500 522 1

Frame rate 23.8 25 25 n/a
Camera type mobile phone (HTC One X) PhaseSpace Vision Camera simulated
Raw image resolution 1280×720 1296×972 256×256

Environment outdoor, uncontrolled background and lighting studio, uncontrolled background synthetic
Tracked subjects 2 1 1 2

Number of joints 118 59 61 66 0

Number of parameters 84 42 44 43 800 9

Number of Gaussians 182 72 72 77 200 28

Input image resolution 320×180 640×360 320×360 640×360 324×243 128×128

Input pixels per frame ≈12,000 ≈202,000 ≈7,000 ≈122,000 ≈10,000 ≈25,000 ≈80,000 ≈16,000

Ground truth Manual annotation, 3D triangulation Marker 12 cam n/a constructed
Average error [cm] 4.81 4.69 5.88 4.70 3.79 2.55 n/a
Timing [iterations/s] 3.33 0.23 10.0 0.86 8.1 5.01 0.68 2.14

Figure 4.4). Without smoothing, OpenDR fails in all cases as object and observation
boundary do not overlap sufficiently (last column). With smoothing, OpenDR
captures 70% of all random initializations, when one object is fully occluded it
fails (fifth column, last row). Our solution captures the correct pose in 88% of all
random initializations, even under full occlusion if the occluded object is in the
vicinity of the occlusion boundary (forth column, last row). Only in few cases an
erroneous local minimum is reached. Averaged over all successful optimizations,
the 3D Euclidean positional error of the sphere is 7× 10−3 times its diameter (ours)
vs. 4× 10−5 (OpenDR) and for the cube 1.7× 10−2 (ours) vs. 1.3× 10−2 (OpenDR).
In essence, the density approximation (one Gaussian for the sphere, 27 Gaussians
for the cube) increases robustness and is essential for certain scene configurations.
The inaccuracy due to the approximation of sharp edges is of small scale, ≈ 10−2

compared to OpenDR, model and observation align very well when visualized as
meshes (fourth column).

4.5.3. Marker-less human motion capture

We now show the benefits of our approach for marker-less human motion captureThree sequences,
vs. two approaches on three multi-view video sequences with single and multiple actors. Table 4.1

describes each scene and the relevant parameters, such as number, type and resolu-
tion of cameras, how many actors, pose parameters, and run time. Our approach
optimizes Fmc in the skeletal joint parameters (see Section 4.4). We compare against
the purely generative approach by Stoll et al. [2011], and the recent combination of
their generative method with a ConvNet-based joint detection [Elhayek et al., 2015],
which was previously the only approach capable of marker-less skeletal motion
capture in outdoor scenes with only 2–3 cameras.

Tracking accuracy

We first quantitatively compare against both methods using the average EuclideanIndoor
reconstruction error against ground-truth 3D joint positions (from a concurrently
run marker-based system) using two cameras of the indoor sequence Marker
[Elhayek et al., 2015], see Figure 4.5. All three algorithms use the same skeleton with
44 pose parameters, 72 Gaussians and data terms using HSV color space [Elhayek
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Figure 4.5: Reconstruction accuracy against marker-based ground truth. Stoll et al. loses track of the arms
after frame 150, and Elhayek et al. lacks accuracy during the first half of the sequence. Our
method has a 7.4 cm average joint position error – 45% better than Stoll et al. with 14 cm and
best overall (dashed lines).

Stoll et al. [2011] ours (m=0.1) ours (m=0.1)Elhayek et al. [2015]

Figure 4.6: Pose estimates for the Marker sequence, using two views for reconstruction. Our method
properly handles occlusion of the legs in frame 38 (left), and has much higher accuracy for
frame 131 (right), here viewed from a third camera not used for tracking.

et al., 2015] to be comparable. The implicit model needed for our approach is created
as described in Section 4.3. Our method improves over the baseline [Stoll et al.,
2011] by a 45% lower average error (7.4 cm versus 14 cm), as the baseline cannot
track large parts of the sequence at all from only two views. 1 Compared to Elhayek
et al., who use a discriminative component together with generative tracking, our
method with visibility-aware, purely generative tracking is more precise for the first
250 frames and comparable for the last frames, where all three methods show errors
due to ambiguities with the black background. We thus achieve similarly robust
marker-less captured with only two cameras as their more complex method. These
quantitative improvements also manifest as clear qualitative pose improvements, as
shown in Figure 4.6. The proper visibility handling overcomes failures of previous
techniques when arms and legs occlude.

1 The reported numbers of all listed approaches are corrected by a factor of two compared to
the respective original publications, correcting a mistake in the camera calibration of the test
sequence introduced in [Elhayek et al., 2015].
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4. A versatile scene model with differentiable visibility

Table 4.2: Reconstruction accuracy for the Soccer sequence against manually annotated ground truth and
comparison to Stoll et al. [2011] and Elhayek et al. [2015]. Our approach and the combined
generative-discriminative approach from Elhayek et al. [2015] keep good average tracking with
low 3D reprojection error for all joint positions.

Avg. error [cm]
ours Stoll et al. [2011] Elhayek et al. [2015]

all joints 7.18 10.72 4.53

limbs 4.81 9.39 4.80

Ground truth ours (m=0.1) Stoll et al. [2011] Elhayek et al. [2015]

Figure 4.7: Visual comparison for the Soccer sequence against manually annotated ground truth, Stoll et al.
[2011] and Elhayek et al. [2015]. The selected frame illustrates a case of ambiguity across two
views, where the generative approach [Stoll et al., 2011] loses track of the person’s arm and the
combined generative-discriminative approach confuses the right foot.

We repeat the same comparison on the outdoor sequence Soccer with two actors,Outdoor
strong occlusions and fast actions, from only three views, see Figure 4.8. Again, we
obtain significantly better accuracy than Stoll et al. in terms of 3D joint position, in
particular for the limb joints (see Table 4.2), as their results quickly show severe
failures with so few cameras (see Figure 4.7). To analyze the impact of occlusions,
we run our method once for a single actor, and in a second run we jointly track
both actors (in total 84 parameters and 182 Gaussians). Simultaneous optimization
not only handles self-occlusions but also the mutual occlusion of both actors. This
improves by 10.6% and demonstrates the strength of precise and differentiable
occlusion handling (see also Figure 4.8).
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ours (2 actors) ours (1 actor)

Figure 4.8: Reconstruction for the Soccer sequence with comparison to tracking and modeling all versus a
single actor. As shown in the figure, tracking of both subjects at the same time is advantageous
as occluding regions are effectively handled by our approach.

Figure 4.9: Evaluation of our method on the Walker sequence [Stoll et al., 2011]. With only four cameras,
our method (blue) is able to accurately track the whole sequence containing walking (left)
and jogging (right) motions. Here compared to 12 camera tracking with the method of Stoll et
al. (red).

Tracking quality

We further evaluate the proposed visibility model on Stoll et al.’s Walker sequence Qualitative
comparison[Stoll et al., 2011], for which no ground truth is available. Instead, a reimplemen-

tation of the method of Stoll et al. using 12 cameras is used as reference. The
same skeleton with 77 pose parameters and 43 Gaussians and image resolution
324×243 is used for both methods. The approach of Stoll et al. applied on the full
available camera acquisition setup, consisting of 12 cameras, produces qualitatively
comparable results to our approach applied on 4 cameras only, see Figure 4.9. The
average Euclidean 3D joint position distance between both results is only 2.55 cm.
At the point of very fast arm-jogging motions with strong occlusions, small errors
are visible, however, our method recovers quickly.
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Figure 4.10: A 1D slice through the energy landscape (for the shoulder joint angle) for different smoothness
values m. Higher values lead to a smoother energy with fewer local minima, and larger peaks
further from the occlusion boundary (at α=−75). The global minimum of all configurations
aligns well with the Euclidean distance to the ground truth (at α=−58). Right: Convergences
from 100 initializations within the shown interval.

Radius of convergence

Our improved scene model with rigorous visibility handling leads to more well-Smoothness
analysis behaved similarity energies with a large radius of convergence, i.e., they converge for

points further away from the global minimum, and a smooth energy landscape with
few local minima (already observed in OpenDR comparison). We now validate
these properties for the motion capture energy Fmc, see Figure 4.10 left. For frame
83 of the Marker sequence, we initialized the shoulder joint with α∈ [−127◦, 43◦]
and analyzed different choices of m. As expected, the energy Fmc is smoother and
contains fewer local minima for smaller values of m. We measure the convergence
radius by optimizing from 100 initializations with α equally spaced over the shown
interval and count successful convergences. While all configurations succeed for
initializations α ∈ [−100◦,−20◦] close to the minimum α =−58◦, only smoother
versions (m≥0.1) converge for distant initializations, see Figure 4.10 right. The case
m=0.0001 models very sharp object boundaries, and hence gives results similar to
methods with binary visibility.

Visibility gradient and smoothness level

In our final experiment, we show that our new differentiable and well-behavedFixed
visibility visibility function is essential for the success of our approach in marker-less human

motion capture with very few cameras. For the Marker sequence, we fix the visibility
for each Gaussian and each camera prior to each iteration of the gradient-based
optimizer, i.e., changes in occlusion are ignored during optimization. This setup
quickly loses track of the limbs and fails completely after 110 frames, see Fig-
ure 4.11. Moreover, to analyze the behavior of our method for different degrees of
smoothness in our scene model, we compare multiple fixed smoothness levels. The
best trade-off between smoothness and specificity is attained for m = 0.1. Which
we use for all our experiments, unless otherwise specified.
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Figure 4.11: Reconstruction accuracy of joints for different smoothness levels m, and for pre-computed
fixed visibility per Gaussian.
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Figure 4.12: Comparison of Fmc and F′mc, based on the Euclidean 3D joint position error of all limb joints
with respect to marker-based ground truth. The impact of using a hierarchical representation
is much smaller than the improvement on Stoll et al.

Input image resolution and thresholding

The method of Stoll et al. operates on a hierarchical image representation, that Image
discretizationclusters regions of similar color in a quad-tree, whereas our method operates on

pixels. To verify that the gained improvements are primarily due to our introduced
visibility model, and not due to different image resolutions, we run our algorithm
on the studio sequence with the same quad-tree representation that models squared
areas of similar color by a single pixel of corresponding size. To make our energy
model applicable to representations with varying pixel size, we construct the energy
F′mc, which is equivalent to Fmc, but weights each pixel by its area. The influence of
the hierarchical representation on the reconstruction quality is much smaller than
the improvement on Stoll et al., as shown in Figure 4.12.

Moreover, we validate that the error due to excluding model blobs with negligible Approximation
errorcontribution (see Section 4.2.3) is vanishingly small; the average error across the

first 100 frames of the Marker sequence is increased by only 0.0076 cm (0.1% of the
total error).
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4. A versatile scene model with differentiable visibility

Figure 4.13: Shape and appearance estimation using the photo-consistency Fpc. Top: Input RGB images
and extracted silhouettes. Bottom: reconstruction process from an unused camera view. From
left to right: initialization, after 100, 300, 10000 iterations, and color back-projection. Each
Gaussian is represented by a sphere of radius equal to its standard deviation.

4.5.4. Computational complexity and efficiency

Our implementation of functions Fmc and Fpc and their gradients has complexityQuadratic
complexity O(NI N2

q NK+NpNq) for NI input pixels (summed over all views), and a scene of Nq
Gaussians, NK radiance samples and Np parameters. The quadratic complexity in
terms of the number of Gaussians originates from the handling of multiple occlusion
boundaries (occlusion test for each pair of Gaussians). Our energy can nevertheless
be efficiently evaluated, as the Gaussian density allows us to model even complex
objects, such as a human, by few primitives. For higher accuracy, coarse-to-fine
approaches could be applied. For the Marker sequence the performance is 8.1
gradient iterations per second for Fmc, 10K input pixels (pixels far from the model
do not contribute and are excluded), 72 Gaussians, and 44 pose parameters. The
experiments are executed for 200 iterations on a quad-core CPU with 3.6 GHz. As
the visibility evaluation of each pixel is independent, further speedups could be
obtained by stochastic optimization and parallel execution on GPUs.

4.5.5. Shape optimization

The goal of this experiment is to evaluate the applicability of our image formationShape from
silhouette model to geometry and appearance estimation from multiple RGB images. Input

to the method are 11 RGB images from calibrated cameras and corresponding
silhouettes obtained by background subtraction (see Figure 4.13). We initialize the
model with 200 small white Gaussians positioned randomly around the center of
the capture volume. Subsequently, the position µq and size σq of each Gaussian
Gq is optimized for photo-consistency Fpc between silhouette images and model
density.
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Figure 4.13 shows the reconstructed shape after 100, 300 and 10000 gradient Optimization
stabilityiterations from a 12th camera which is not used for optimization. This verifies

that the geometry of an object can accurately be estimated in the same manner as
the object pose. Note that a few Gaussians are pushed outside of the silhouette
(presumably due to too large gradient steps) and vanish in size. These could be
removed in a post-process.

The color of each Gaussian Gq is inferred by the weighted average over the pixel Color projection
colors of all pixels (u, v) in all RGB input images, weighted by the corresponding
Gaussian visibility Vq((u, v), γ). This shape estimation of a human actor is an
extension of the actor model creation step proposed by Stoll et al. [2011], who
optimize a parametric actor model that consists of Gaussians constrained to move
with a skeleton. We show that our method is versatile enough to approximate the
actor’s shape without positional constraints between blobs.

4.6. Discussion and limitations

A prevailing limitation is the increasing number of isotropic Gaussians needed to Scalability to
thin shapesrepresent fine geometric detail. Spherical shapes are well approximated, but for

thin and elongated structures the Gaussian size must be small and many isotropic
Gaussians are required to fill the volume. For instance, to model a thin plate the
Gaussian size is limited to the plate’s vertical thickness and many Gaussians are re-
quired to fill the horizontal dimensions. For hand and object tracking, we developed
an anisotropic Gaussian representation, showing increased reconstruction accuracy
using fewer Gaussians [Sridhar et al., 2014]. It appears promising to extend this
formulation to the algorithms developed in this chapter. Anisotropic Gaussians
would introduce additional model parameters and complicate equations, but could
pay off for applications requiring fine detail.

OpenDR and other surface models may more accurately represent shape and Smoothness
advantagestexture, and also integrate light sources into the scene model. This allows for

higher alignment precision for some shapes, but it comes at the cost of a smaller
convergence radius, failure under full occlusion, and lower computational efficiency
than with our model.

4.7. Summary

The introduced scene model and corresponding image formation model approxi- Smooth scene
approximationmates a scene by a translucent medium defined by Gaussian basis functions. This

intentionally smoothes out 3D shape and appearance. While this may introduce
some uncertainty of shape models, it enables a visibility function and an image for-
mation model that are differentiable everywhere, and efficient to evaluate. Analytic
pose optimization energies were already used for motion capture [Stoll et al., 2011;
Elhayek et al., 2015], but visibility was only approximated.

Our new approach advances the state of the art by enabling analytic, smooth, and Effect of 3D
model smoothingdifferentiable pose energies with analytic and differentiable visibility. It also leads

to larger convergence radii of these similarity energies. Previous surface-based
approaches used smoothing in the 2D image domain to improve convergence
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4. A versatile scene model with differentiable visibility

[Loper et al., 2014]. We demonstrated that the proposed 3D scene smoothing has
the effect of smoothing the entire high-dimensional pose parameter space and
improves pose estimation accuracy. This not only enables us to perform purely
generative motion capture at the same accuracy but with far fewer cameras than
Stoll et al. [2011], but also to achieve comparable accuracy with only 2–3 cameras
as the more complex method by Elhayek et al. [2015], which combines generative
and discriminative approaches.

A prevailing limitation of the presented approach and most existing generativeSemi-automatic
initialization motion-capture approaches is the dependence on an actor model, which is either

created manually or needs correction in semi-automatic methods [Stoll et al., 2011].
The actor model accuracy is crucial for tracking accuracy, but manual correction
precludes applications with non-technical users. This limitation is addressed in
the succeeding chapter with a method for fully-automatic actor model and pose
estimation.
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General automatic

human shape and motion

capture using

volumetric contour cues

5
This chapter is based on Rhodin et al. [2016b].

Marker-less full-body motion capture techniques promise to be an important Model initialization
enabling technique in computer animation and visual effects production, in sports
and biomechanics research, and the growing fields of virtual and augmented reality.
Recent methods, such as the one proposed in the previous chapter, succeed in
general outdoor scenes with as few as two cameras [Holte et al., 2012; Elhayek
et al., 2015; Rhodin et al., 2015a, Chapter 4]. However, before motion capture
commences, the 3D body model for tracking needs to be personalized to the
captured human. This includes personalization of the bone lengths, but often
also of biomechanical shape and surface, including appearance. This essential
initialization is, unfortunately, neglected by many methods and solved with an
entirely different approach, or with specific and complex manual or semi-automatic
initialization steps. For instance, some methods for motion capture in studios
with controlled backgrounds rely on static full-body scans [de Aguiar et al., 2008;
Gall et al., 2009; Zollhöfer et al., 2014], or personalization on manually segmented
initialization poses [Stoll et al., 2011]. Recent outdoor motion-capture methods
use entirely manual model initialization [Elhayek et al., 2015]. When using depth
cameras, automatic model initialization was shown [Shotton et al., 2013; Bogo et al.,
2015; Tong et al., 2012; Helten et al., 2013; Newcombe et al., 2015], but RGB-D
cameras are less accessible and not usable outdoors. Simultaneous pose and shape
estimation from in-studio multi-view footage with background subtraction was
also shown [Kakadiaris and Metaxas, 1998; Ahmed et al., 2005; Bălan et al., 2007],
but not on footage of less constrained setups such as outdoor scenes filmed with
very few cameras.

We therefore propose a fully-automatic space-time approach for simultaneous Full automation
model initialization and motion capture. Our approach is specifically designed
to solve this problem automatically for multi-view video footage recorded in
general environments (moving background, no background subtraction) and filmed
with as few as two cameras. Motions can be arbitrary and unchoreographed. It
takes a further step towards making marker-less motion capture practical in the
aforementioned application areas, and enables motion capture from third-party
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Figure 5.1: Method overview. Pose is estimated from detections in Stage I, actor shape and pose is refined
through contour alignment in Stage II by space-time optimization. Outputs are the actor skeleton,
attached density, mesh and motion.

video footage, where dedicated initialization pose images or the shape model
altogether are unavailable. Our approach builds on the following contributions.

First, we extend the volumetric scene model presented in Chapter 4, that representsVolumetric
contours the volumetric body shape by Gaussian density functions attached to a kinematic

skeleton. We define a novel 2D contour-based energy that measures contour align-
ment with image gradients on the raw RGB images using a new volume raycasting
image formation model. We define contour direction and magnitude for each
image position, which form a ridge at the model outline, see Figure 5.1. No ex-
plicit background segmentation is needed for this top-down approach. Importantly,
our energy features analytic derivatives, including fully-differentiable visibility
everywhere.

The second contribution is a new data-driven body model that represents humanVolumetric
parametric
body model

surface variation, the space of skeleton dimensions, and the space of volumetric den-
sity distributions optimally for reconstruction using a low-dimensional parameter
space.

Finally, we propose a space-time optimization approach that fully automaticallySpace-time
optimization computes both the shape and the 3D skeletal pose of the actor using both contour

and bottom-up ConvNet-based joint detection cues. The final outputs are 1) a rigged
character, as commonly used in animation, comprising a personalized skeleton
and attached surface, along with the (optionally colored) volumetric human shape
representation, and 2) the joint angles for each video frame. We tested our method
on eleven sequences, indoors and outdoors, showing reconstructions with fewer
cameras and less manual effort compared to the state of the art.

5.1. Notation and overview

As in the previous chapter, input to our algorithm are RGB image sequences Ic,t,Input and
output recorded with calibrated cameras c=1, . . . , C and synchronized to within a frame.

In contrast to the previous approach, the actor model needs no manual initialization.
The output is the complete configuration of a virtual actor model K(pt, b, γ) for
each frame t=1, . . . , T, comprising the per-frame joint angles pt, the personalized
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5.2. Volumetric statistical body shape model

bone lengths b, as well as the personalized volumetric Gaussian representation γ,
including color, of the actor.

In the following, we first explain the basis of our new image formation model, Two stages
the Gaussian density scene representation, and our new parametric human shape
model building on it (Section 5.2). Subsequently, we detail our space-time optimiza-
tion approach (Section 5.3) in two stages: (I) using ConvNet-based joint detection
constraints (Section 5.3.1); and (II) using a new ray-casting-based volumetric im-
age formation model and a new contour-based alignment energy (Section 5.3.2).
The approach is evaluated in detail in terms of pose and shape estimation accu-
racy in Section 5.4, showing fully automatic shape estimation in less constrained
environments while maintaining the accuracy of existing methods.

5.2. Volumetric statistical body shape model

To model the human in 3D for reconstruction, we build on the volumetric model Volumetric
densityintroduced in the previous chapter and model the volumetric extent of the actor

using a set of 91 isotropic Gaussian density functions distributed in 3D space.
As before, each Gaussian Gq is parametrized by its standard deviation σq, mean
location µq in 3D, and density cq, which define the Gaussian shape parameters
γ= {µq, σq, cq}q. The combined density field of the Gaussians, ∑q cqGq, smoothly
describes the volumetric occupancy of the human in 3D space, see Figure 5.1. Each
Gaussian is rigidly attached to one of the bones of an articulated skeleton with bone
lengths b and 16 joints, whose pose is parameterized with 43 twist pose parameters,
i.e., the Gaussian position µq is relative to the attached bone. This representation
allows us to formulate a new alignment energy tailored to pose fitting in general
scenes, featuring analytic derivatives and fully-differentiable visibility (Section 5.3).

In the previous chapter the 3D density models was created by a semi-automatic Goal
placement of Gaussians in 3D. Since the shape of humans varies drastically, a
different distribution of Gaussians and skeleton dimensions is needed for each
individual to ensure optimal tracking. In this chapter, we propose a method to
automatically find such a skeleton and optimal attached Gaussian distribution,
along with a good body surface. Rather than optimizing in the combined high-
dimensional space of skeleton dimensions, the number of Gaussians and all their
parameters, we build a new specialized, low-dimensional parametric body model.

Traditional statistical human body models represent variations in body surface only Linear model
across individuals, as well as pose-dependent surface deformations using linear
[Allen et al., 2003; Loper et al., 2015] or non-linear [Anguelov et al., 2005; Hasler
et al., 2010] subspaces of the mesh vertex positions. For our task, we build an
enriched statistical body model that parameterizes, in addition to the body surface,
the optimal volumetric Gaussian density distribution γ for tracking, and the space
of skeleton dimensions b, through linear functions γ(s), b(s) of a low-dimensional
shape vector s. To build our model, we use an existing database of 228 registered
scanned meshes of human bodies in neutral pose [Hasler and Stoll, 2009]. We take
one of the scans as reference mesh, and place the articulated skeleton inside. The 91

Gaussians are attached to bones. Following the strategy proposed in Section 4.3,
their position is set to uniformly fill the mesh volume, and their standard deviation
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Mesh+skeleton Placed Gaussians Skinning weights Transfered weights Registered Gaussians

Figure 5.2: Registration process of the body shape model. Skeleton and Gaussians are once manually placed
into the reference mesh, vertex correspondence transfers Gaussian- and joint-neighborhood
weights (green and red respectively), to register reference bones and Gaussians to all instance
meshes.

and density is set such that a density gradient forms at the mesh surface, see
Figure 5.2 (left). This manual step has to be done only once to obtain Gaussian
parameters γref for the database reference, and can also be automated by silhouette
alignment [Rhodin et al., 2015a, Chapter 4].

The best positions {µq}q and scales {σq}q of Gaussians γi for each remainingInverse
skinning database instance mesh i are automatically derived by weighted Procrustes align-

ment. Each Gaussian Gq in the reference has a set of neighboring surface mesh
vertices. The set is inferred by weighting vertices proportional to the density of Gq
at their position in the reference mesh, see Figure 5.2 (right). For each Gaussian Gq,
vertices are optimally translated, rotated and scaled to align to the corresponding
instance mesh vertices. These similarity transforms are applied on γref to obtain γi,
where scaling multiplies σq and translation shifts µq.

To infer the adapted skeleton dimensions bi for each instance mesh, we follow aBone size
similar strategy: we place Gaussians of standard deviation 10 cm at each joint in the
reference mesh, which are then scaled and repositioned to fit the target mesh using
the same Procrustes strategy as before. This yields properly scaled bone lengths for
each target mesh.

Having estimates of volume γi and bone lengths bi for each database entry i,PCA model
we now learn a joint body model. We build a PCA model on the data matrix
[(γ1; b1), (γ2; b2), . . .], where each column vector (γi; bi) is the stack of estimates
for entry i. The mean is the average human shape (γ̄; b̄), and the PCA basis vectors
span the principal shape variations of the database. The PCA coefficients are the
elements of our shape model s, and hence define the volume γ(s) and bone lengths
b(s). Due to the joined model, bone length and Gaussian parameters are correlated,
and optimizing s for bone length during pose estimation (stage I) thus moves and
scales the attached Gaussians accordingly. To reduce dimensionality, we use only
the first 50 coefficients in our experiments.

To infer the actor body surface, we introduce a volumetric skinning approach. The
reference surface mesh is deformed in a free-form manner along with the Gaussian
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set under new pose and shape parameters. Similar to linear blend skinning [Lewis
et al., 2000], each surface vertex is deformed with the set of 3D transforms of
nearby Gaussians, weighted by the density weights used earlier for Procrustes
alignment. This coupling of body surfaces to volumetric model is as computa-
tionally efficient as using a linear PCA space on mesh vertices [Pishchulin et al.,
2015], while yielding comparable shape generalization and extrapolation qualities
to methods using more expensive non-linear reconstruction [Anguelov et al., 2005],
see Section 5.4.5. Isosurface reconstruction using Marching Cubes would also be
more costly [Plankers and Fua, 2003].

5.3. Pose and shape estimation

We formulate the estimation of the time-independent 50 shape parameters s and the Space-time
objectivetime-dependent 43T pose parameters P={p1, . . . , pT} as a combined space-time

optimization problem over all frames Ic,t and camera viewpoints c of the input
sequence of length T:

E(P, s) = Eshape(s) + ∑
t

(
Esmooth(P, s, t) + Epose(pt) + ∑

c
Edata(c, pt, s)

)
. (5.1)

Our energy uses quadratic prior terms to regularize the solution: Eshape penalizes
shape parameters that have larger absolute value than any of the database instances,
Esmooth penalizes joint-angle accelerations to favor smooth motions, and Epose
penalizes violation of manually specified anatomical joint-angle limits. The data
term Edata measures the alignment of the projected model to all video frames. To
make the optimization of Equation 5.1 succeed in general scenes with few cameras,
we solve in two subsequent stages. In Stage I (Section 5.3.1), we optimize for a
coarse skeleton estimate and pose set without the volumetric distribution, but
using 2D joint detections as primary constraints. In Stage II (Section 5.3.2), we
refine this initial estimate and optimize for all shape and pose parameters using
our new contour-based alignment energy. Consequently, the data terms used in the
respective stages differ:

Edata(c, pt, s) =

{
Edetection(c, pt, s) for Stage I (Section 5.3.1)
Econtour(c, pt, s) for Stage II (Section 5.3.2).

(5.2)

The analytic form of all terms as well as the smoothness in all model parameters Gradient
descentenables efficient optimization by gradient descent. In our experiments we apply

the conditioned gradient descent method of Stoll et al. [2011].

5.3.1. Stage I – Initial estimation

Stage I roughly estimates the 3D skeleton dimensions and pose, it is not the main Buttom-up
contribution of our work, and well-founded solutions already exist [Sigal et al.,
2012; Amin et al., 2013; Belagiannis et al., 2014]. We employ the discriminative
ConvNet-based body-part detector by Tompson et al. [2014] to estimate the ap-
proximate 2D skeletal joint positions, which are subsequently lifted to a consistent
3D skeleton. The detector is independently applied to each input frame Ic,t, and
outputs heat maps of joint location probability Dc,t,j for each joint j in frame t
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5. General automatic human shape and motion capture using volumetric contour cues

seen from camera c. The heat map Dc,t,j classifies for each pixel whether joint j
is apparent, the classification score can be interpreted as a per-pixel likelihood.
Importantly, the detector discriminates the joints on the left and right side of the
body (see Figure 5.1).

There is no direct, one-to-one correspondence between detection and skeleton joint,Top-down
as heat maps localize joint positions only roughly and are in general multi-modal
due to detection ambiguities and the presence of multiple people. To nevertheless
infer the poses P and an initial guess for the body shape of the subject, we optimize
Equation 5.1 with data term Edetection, which measures the overlap of the heat maps
D with the projected skeleton joints in terms of Gaussian overlap; Each joint in
the model skeleton has an attached colored 3D joint-Gaussian Gj. The detection
heat maps and joint-Gaussians (colored blobs) are both shown in the overview
Figure 5.1. Each Gaussian is projected into each camera view using the projection
model of the previous chapter and Rhodin et al. [2015a]. It defines the visibility
Vj(u, v) of Gaussian Gj as seen from pixel (u, v) in the heat map. The energy term
Edetection thus measures the overlap of each Gaussian with the corresponding heat
map as

Edetection(c, t, pt, s) = − ∑
(u,v)

∑
j
Vj(u, v, pt, s) · Dc,t,j. (5.3)

Because Edetection is non-convex, we employ a hierarchical optimization approach.Hierarchical
optimization The optimization is initialized with the average human shape (γ̄, b̄) in T-pose, at

the center of the capture volume. We assume a single person in the capture volume;
people in the background are implicitly ignored, as they are typically not visible
from all cameras and are dominated by the foreground actor. In level I, the coarse
skeleton position and orientation is determined. For this, we set joint-Gaussians
to have large support (standard deviation of σ=1 m), and only optimize the rigid
skeleton pose based on the torso joints for the first frame of the sequence. Level II
refines the global pose across the whole sequence (in our experiments around 100

frames) with medium-sized Gaussians (σ=0.4 m). Level III adjusts bone length by
optimizing the shape s. Level IV adds elbow and knee joints with σ=0.1 m. Level V
adds the remaining wrist and ankle joints. We observed that enabling self-occlusion
for leg-Gaussians and ignoring occlusion for torso and arm joints gives best results
overall.

Please note that bone lengths b(s) and volume γ(s) are determined through s,Shape
initialization hence, Stage I yields a rough estimate of γ. In Stage II, we use more informative

image constraints than pure joint locations to better estimate volumetric extent.

5.3.2. Stage II – Contour-based refinement

The pose P and shape s found in the previous stage are now refined by using aNo silhouettes
new density-based contour model in the alignment energy. This model explains the
spatial image gradients formed at the edge of the projected model, between actor
and background, and thus bypasses the need for silhouette extraction, which is
difficult for general scenes. To this end, we extend the ray-casting image formation
model of Chapter 4, as summarized in the following paragraph, and subsequently
explain how to use it in the contour data term Econtour.
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Figure 5.3: Contour refinement to image gradients through per-pixel similarity. Contour color indicates
direction, green and red energy indicate agreement and disagreement between model and
image gradients, respectively. Close-ups highlight the shape optimization: left arm and right leg
pose are corrected in Stage II.

Ray-casting image formation model

Each image pixel spawns a ray that starts at the camera center o and points in Model
visibilitydirection n. In the previous chapter, the visibility of a particular model Gaussian

Gq along the ray (o, n) was defined as

Vq(o, n) =
∫ ∞

0
exp

(
−
∫ s

0
∑

i
Gi(o + tn)dt

)
Gq(o + sn)ds. (5.4)

This equation models light transport in a heterogeneous translucent medium
[Cerezo et al., 2005], i.e., Vq is the fraction of light along the ray that is absorbed by
Gaussian Gq. Chapter 4 and Rhodin et al. [2015a] describe an analytic approximation
to Equation 5.4 by sampling the outer integral.

Different to their work, we apply this ray casting model to infer the visibility of the Background
visibilitybackground, B(o, n)=1−∑q Vq(o, n). Assuming that the background is infinitely

distant, B is the fraction of light not absorbed by the Gaussian model:

B(o, n) = exp

(
−
∫ ∞

0
∑

q
Gq(o + tn)dt

)
= exp

(
−
√

2π ∑
q

σ̄q c̄q

)
. (5.5)

This analytic form is obtained without sampling, but rather it stems from the
Gaussian parametrization: the density along ray (o, n) though 3D Gaussian Gq is a
1D Gaussian, with standard deviation σ̄q =σq and density maximum

c̄q = cq · exp

(
−0.5

(µq− o)>(µq− o)− ((µq− o)>n)2

2σ2
q

)
, (5.6)

and the integral over the Gaussian density evaluates to a constant (when the
negligible density behind the camera is ignored). A model visibility example is
shown in Figure 5.3 left.
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5. General automatic human shape and motion capture using volumetric contour cues

To extract the contour of our model, we compute the gradient of the backgroundContour
gradients visibility ∇B=( ∂B

∂u , ∂B
∂v )
> with respect to pixel location (u, v):

∇B = B
√

2π ∑
q

c̄q

σ̄q
(µq− o)>n(µq− o)>∇n. (5.7)

∇B forms a 2D vector field, where the gradient direction points outwards from
the model, and the magnitude forms a ridge at the model contour, see Figure 5.3
center. In (calibrated pinhole) camera coordinates, the ray direction thus depends
on the 2D pixel location (u, v) by n=(u, v, 1)>/‖(u, v, 1)‖2 and ∇n=( ∂n

∂u , ∂n
∂v )
>.

In contrast to the visibility model presented in Chapter 4, our model is specific toEfficiency
background visibility, but more accurate and efficient to evaluate. It does not require
sampling along the ray to obtain a smooth analytic form, has linear complexity in
the number of model Gaussians instead of their quadratic complexity, and improves
execution time by an order of magnitude.

Contour energy

To refine the initial pose and shape estimates from Stage I (Section 5.3.1), we
optimize Equation 5.1 with a new contour data term Econtour, to estimate the
per-pixel similarity of model and image gradients:

Contour
objective

Econtour(c, pt, s) = ∑
(u,v)

Esim(c, pt, s, u, v) + Eflat(c, pt, s, u, v). (5.8)

In the following, we omit the arguments (c, pt, s, u, v) for better readability. EsimSeparation of
contour magnitude

and orientation
measures the similarity between the gradient magnitude ‖∇I‖2 in the input im-
age and the contour magnitude ‖∇B‖2 of our model, and penalizes orientation
misalignment (contours can be in opposite directions in model and image):

Esim = −‖∇B‖2 ‖∇I‖2 cos
(
2∠(∇B,∇I)

)
. (5.9)

The term Eflat models contours forming in flat regions with gradient magnitude
smaller than δlow=0.1:

Eflat = ‖∇B‖2 max(0, δlow − ‖∇I‖2). (5.10)

We compute spatial image gradients ∇I = ( ∂I
∂u , ∂I

∂v )
> using the Sobel operator

[Szeliski, 2010], smoothed with a Gaussian (σ = 1.1 px), summed over the RGB
channels and clamped to a maximum of δhigh = 0.2.

Appearance estimation

Our method is versatile: given the shape and pose estimates from Stage II, we canColor
projection also estimate a color for each Gaussian. This is needed by earlier tracking methods

that use similar volume models, but color appearance-based alignment energies
[Stoll et al., 2011; Rhodin et al., 2015a, Chapter 4] – we compare against them in
our experiments. Direct back-projection of the image color onto the model suffers
from occasional reconstruction errors in Stages I and II. Instead, we compute the
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Input views Colored density Actor skeleton and mesh

Figure 5.4: Reconstruction of challenging outdoor sequences with complex motions from only 3–4 views,
showing accurate shape and pose reconstruction.

Real Volume Skeleton Mesh Real Volume Skeleton Mesh

Figure 5.5: In-studio reconstruction of several subjects. Our estimates are accurate across diverse body
shapes and robust to highly articulated poses.

weighted mean color āq,c over all pixels separately for each Gaussian Gq and view
c, where the contribution of each pixel is weighted by the Gaussian’s visibility
Vq (Equation 5.4). Colors āq,c are taken as candidates from which outliers areOutlier

rejection removed by iteratively computing the mean color and removing the largest outlier
(in Euclidean distance). In our experiments, removing 50% of the candidates leads
to consistently clean color estimates, as shown in Figures 5.4 and 5.5.

5.4. Evaluation

We evaluate our method on 11 sequences of publicly available datasets with 11 sequences
indoor and outdoorlarge variety, both indoors and outdoors, and show comparisons to state-of-the-art

methods, details on the dataset are summarized in Table 5.1. The quality of pose and
shape reconstruction is best assessed in the supplemental video published alongside
[Rhodin et al., 2016b], where we also apply and compare our reconstructions to
tracking with the volumetric Gaussian representations of Chapter 4 [Rhodin et al.,
2015a] and Stoll et al. [2011].

5.4.1. Robustness in general scenes

We validate the robustness of our method on three outdoor sequences. On the Walk Outdoor
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5. General automatic human shape and motion capture using volumetric contour cues

Table 5.1: List of sequences used in this chapter and their characteristics. ‘Input resolution’ refers to the
resolution used by our algorithm, not the original video resolution. Runtime is measured in
minutes.

Sequence Source #
Cameras

#
Frames Motion Environment Ground truth Input

resolution
Stage I

runtime
Stage II
runtime

Walk Elhayek et al. [2015] 6 100 walking
outdoor,

moving background,
ambiguous color

— 320×180 123 24

Cathedral Kim and Hilton [2014] 4 20

runing,
falling

outdoor — 240×140 32 5

Subject3 Our 3 100 volleyball
outdoor,

cluttered background
shape laser scan 180×90 65 15

Subject2 Our 6 100 gymnastics
studio,

few colors
shape laser scan 200×160 62 15

Subject1 Our 6 100 gymnastics
studio,

few colors
shape laser scan 200×160 68 18

HumanEva-Walk Sigal et al. [2010] 3 586 walking
studio,

low-quality image
markers,

manual silhouettes
160×120 176 42

HumanEva-Box Sigal et al. [2010] 3 382 boxing
studio,

low-quality image
markers,

manual silhouettes
160×120 113 65

Marker Elhayek et al. [2015] 2 100 walking studio
markers,

joint positions
128×128 22 8

Skirt Gall et al. [2009] 6 100 dancing
studio,

green screen
— 128×128 97 28

Monocular Guan et al. [2009] 1 3×1 posing
studio,

segmented
multi-view

reconstruction
125×125 — 0.3

Studio Stoll et al. [2011] 10

4 (300

tracking)
gymnastics,

walking
studio — 162×121 14 1.5

c0t0 c0t10 c0t20 c0t30 c0t40 c0t50 c1t0 c1t10 c1t20 c1t30 c1t40 c1t50

Figure 5.6: We obtained accurate results even using only two views on the Marker sequence.

dataset [Elhayek et al., 2015], people move in the background, and background and
foreground color are very similar. Our method is nevertheless able to accurately
estimate shape and pose across 100 frames from 6 views, see Figure 5.1. We also
qualitatively compare against the recent model-free method of Mustafa et al. [2015].
On the Cathedral sequence of Kim and Hilton [2014], they achieve rough surface
reconstruction using 8 cameras without the explicit need for silhouettes; in contrast,
4 views and 20 frames are sufficient for us to reconstruct shape and pose of a quick
outdoor run, see Figure 5.4 (top). Furthermore, we demonstrate reconstruction of
complex motions on Subject3 during a two-person volleyball play from only 3

views and 100 frames, see Figure 5.4 (bottom). The second player was segmented
out during Stage I, but Stage II was executed automatically. Fully-automatic model
and pose estimation are even possible from only two views as we demonstrate on
the Marker sequence [Elhayek et al., 2015], see Figure 5.6.

5.4.2. Shape estimation accuracy

To assess the accuracy of the estimated actor models, we tested our method onShape accuracy
metrics a variety of subjects performing general motions such as walking, kicking and

gymnastics. Evaluation of estimated shape is performed in two ways: 1) the esti-
mated body shape is compared against ground-truth measurements, and 2) the
3D mesh derived from Stage II is projected from the captured camera viewpoints
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(a) Subject1 (b) Subject2 (c) Subject3

Figure 5.7: Visual comparison of estimated body shapes at the different stages. In each subfigure (from left
to right): mean PCA (γ̄, b̄), Stage I, Stage II and ground-truth shape, respectively.

to compute the overlap with a manually segmented foreground. We introduce
two datasets Subject1 and Subject2, in addition to Subject3, with pronounced
body proportions and ground-truth laser scans for quantitative evaluation. Please
note that shape estimates are constant across the sequence and can be evaluated
at sparse frames, while pose varies and is separately evaluated in the following
section.

The shape accuracy is evaluated by measurements of chest, waist and hip circum- Body
measuresference. Subject1 and Subject2 are captured indoor and are processed using

6 cameras and 40 frames uniformly sampled over 200 frames. Subject3 is an
outdoor sequence and only 3 camera views are used, see Figure 5.4. All subjects are
reconstructed with high quality in shape, skeleton dimensions, and color, despite
inaccurately estimated poses in Stage I for some frames. We only observed little
variation dependent on the performed motions, i.e., a simple walking motion is suf-
ficient, but bone length estimation degrades if joints are not sufficiently articulated
during performance. All estimates are presented quantitatively in Table 5.2 and
qualitatively in Figure 5.7. In addition, we compare against Guan et al. [2009] on
their single-camera and single-frame datasets Pose1, Pose2 and Pose3. Stage I re-
quires multi-view input and was not used; instead, we manually initialized the pose
roughly, as shown in Figure 5.8, and body height is normalized to 185 cm [Guan
et al., 2009]. Our reconstructions are within the same error range, demonstrating
that Stage II is well suited even for monocular shape and pose refinement. Our
reconstruction is accurate overall, with a mean error of only 2.3± 1.9 cm, measured
across all sequences with known ground truth.

On top of these sparse measurements (chest, waist, and hips), we also evaluate Silhouette
overlapsilhouette overlap for sequences Walk and Box of subject 1 of the publicly available

HumanEva-I dataset [Sigal et al., 2010], using only 3 cameras. We compute how

Table 5.2: Quantitative evaluation of estimated shapes in different stages and comparison to Guan et al.
[2009]. We use three body measures (chest, waist, and hips, as shown on the right) to evaluate
predicted body shapes against the ground truth (GT) captured using a laser scan.

Chest size [cm] Waist size [cm] Hip size [cm] Height [cm]
Guan
et al.
[2009]

Stage I Stage II GT Guan
et al.
[2009]

Stage I Stage II GT Guan
et al.
[2009]

Stage I Stage II GT Guan
et al.
[2009]

Stage I Stage II GT

Pose1 92.7 – 92.8 92.6 79.6 – 82.5 80.2 – – 98.0 – – – 183.2 185.0
Pose2 87.4 – 91.3 91.6 78.5 – 82.1 79.4 – – 98.9 – – – 181.9 185.0
Pose3 91.9 – 93.5 91.4 76.9 – 83.2 80.3 – – 101.3 – – – 182.9 185.0

Subject1 – 92.7 132.6 131.3 – 76.7 127.1 132.7 – 108.2 135.4 136.1 – 187.5 194.2 195.0
Subject2 – 92.3 99.3 100.1 – 77.3 90.6 96.5 – 92.5 102.3 99.7 – 168.5 162.5 162.0
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Input images [Guan et al., 2009]

Pose1 Pose2 Pose3

Initialization poses

Pose1 Pose2 Pose3

Our reconstruction

Pose1 Pose2 Pose3

Figure 5.8: Monocular reconstruction experiment. Our reconstruction (right) shows high-quality contour
alignment, and improved pose and shape estimates.

Input Stage I Stage II Input Stage I Stage II

Figure 5.9: Overlap of the estimated shape in Stages I and II for an input frame of Box (left) and Walk (right)
sequences [Sigal et al., 2010]. Note how the white area (correct estimated shape) significantly
increases between Stage I and II, while blue (overestimation) and red (underestimation) areas
decrease.

much the predicted body shape overlaps the actual foreground (precision) and how
much of the foreground is overlapped by the model (recall). Despite the low number
of cameras, low-quality images, and without requiring background subtraction,
our reconstructions are accurate with 95% precision and 85% recall, and improve
slightly on the results of Bălan et al. [2007]. Results are presented in Figure 5.9 and
Table 5.3. Note that Stage II significantly improves shape estimation.

5.4.3. Pose estimation accuracy

Pose estimation accuracy is quantitatively evaluated on the public HumanEva-IPose accuracy
dataset, where ground-truth data is available, see Table 5.4. We tested the method
on the designated validation sequences Walk and Box of subject S1. Reconstruction
quality is measured as the average Euclidean distance of estimated and ground-
truth joint locations, frames with ground-truth inaccuracies are excluded by the
provided scripts.

Table 5.3: Quantitative evaluation of Figure 5.9. See Section 5.4 for definitions of Precision and Recall.

Precision Recall

Walk Stage I 87.43% 87.25%

Walk Stage II 95.18% 86.89%

Box Stage I 93.26% 81.11%

Box Stage II 95.42% 85.28%
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Table 5.4: Pose estimation accuracy measured in mm on the HumanEva-I dataset. The standard deviation
is reported in parentheses.

Seq. Trained on Our Amin et al. [2013] Sigal et al. [2012] Belagiannis et al. [2014] Elhayek et al. [2015]
S1,
Walk

general 74.9 (21.9) — 66 68.3 66.5
HumanEva 54.6 (24.2) 54.5 — — —

S2,
Box

general 59.7 (15.0) — — 62.7 60.0
HumanEva 35.1 (19.0) 47.7 — — —

Our pose estimation results are on par with state-of-the-art methods with 6–7 cm On par with
manual
initialization

average accuracy [Sigal et al., 2012; Amin et al., 2013; Belagiannis et al., 2014;
Elhayek et al., 2015]. In particular, we obtain comparable results to Elhayek et al.
[2015], which however requires a separately initialized actor model. Please note
that Amin et al. [2013] specifically trained their model on manually annotated
sequences of the same subject in the same room. For best tracking performance, the
ideal joint placement and bone lengths of the virtual skeleton may deviate from the
real human anatomy, and may generally vary for different tracking approaches. To
compensate differences in the skeleton structure, we also report results where the
offset between ground truth and estimated joint locations is estimated in the first
frame and compensated in the remaining frames, reducing the reconstruction error
to 3–5 cm. Datasets without ground-truth data cannot be quantitatively evaluated;
however, our shape overlap evaluation results suggest that pose estimation is
generally accurate. In summary, pose estimation is reliable, with only occasional
failures in Stage I, although the main focus of our work is on the combination with
shape estimation.

5.4.4. Automatic vs. manual actor model

Our reconstructed actor model provides the Gaussian parameters and underlying Automatic
vs. manual
model dimensions

skeleton dimensions. We tested our model’s applicability to the volumetric Gaus-
sian representations proposed by Stoll et al. [2011] and Rhodin et al. [2015a] from
Chapter 4 on the Marker and Walking sequences, with 3 and 10 cameras, respec-
tively. We found that our automatically generated model matches their manually
initialized and hand-crafted body dimensions, see Figure 5.10.

We additionally tested the model quality by tracking the same sequence once Suitable for
trackingwith the automatically estimated body model and once with the original, manually

created models. The overall tracking performance of our actor model was equivalent
to method in Chapter 4, and improved on Stoll et al.’s model.

5.4.5. Body shape space generalization

We qualitatively assess the generalization capability of our body shape model by Alternative
shape modelscomparing against representing meshes directly as a vector of vertex positions

[Allen et al., 2003], and using per-triangle rotation and shear with respect to a rest
shape, similar to SCAPE [Anguelov et al., 2005]. For each database mesh instance,
we build a combined feature vector by stacking (γi, bi), vertex positions vi, and per-
triangle shear ai into a single vector, as explained in Section 2.2.3. We perform PCA
on the combined features, which generates principal vectors that jointly express the
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Volumetric Mesh Skeleton SpheresReal actor Stoll et al. [2011]

Elhayek et al. [2015]

Figure 5.10: Comparison of the estimated actor models for the Walk sequence (top) and Marker sequence
(bottom) to the manually created skeletons of Stoll et al. [2011] and Elhayek et al. [2015]. For
comparison between methods, we represent Gaussians as spheres with radius equal to one
standard deviation.

Vertex positions SCAPE-like Our volumetric skinning Vertex positions SCAPE-like Our volumetric skinning

Figure 5.11: Comparison of PCA body shape spaces: vertex positions, SCAPE-like per-triangle transforma-
tions, and our volumetric skinning. Our volumetric skinning is computationally as efficient as
vertex encodings, and yields comparable shape generalization to the SCAPE-like method.

variation in all three representations. To test generalization capability, we explore
different PCA coefficients and analyze the mesh predicted by each representation.

Our volumetric skinning is computationally more efficient than per-triangle encod-Efficient and
robust ings, like the SCAPE model [Anguelov et al., 2005], while still yielding comparable

shape generalization, see Figure 5.11. Per-triangle deformations only encode the
mesh vertex positions implicitly and surface mesh reconstruction requires solving
a linear system. Direct encoding in terms of vertex positions is as efficient as our
volumetric skinning—in both cases, vertex positions depend linearly on the PCA
coefficients. However, it exhibits stronger artefacts, see Figure 5.11. We believe this
is due to the coupling of each vertex to neighbouring Gaussians in our model,
which introduces an implicit spatial smoothing regularization. Each vertex is in-
fluenced by multiple Gaussians, and each Gaussian was registered based on all
neighbouring vertices, which compensates for inaccuracies in the mesh registration.
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Figure 5.12: Model component influence evaluation. All model components are important: stage II con-
sistently improves on stage I; smoothness term Esmooth removes temporal jitter; and without
contour direction in Econtour the reconstruction error doubled.

5.4.6. Model components

We quantitatively assess the contribution of each of our model components by com- Importance
of termsparing estimated poses to the marker-based ground truth of the Marker sequence

of Elhayek et al. [2015].2 We execute all algorithm variants on 3 camera views
and 100 frames, the mean Euclidean joint error is plotted in Figure 5.12. Stage II
consistently improves the initial estimates of Stage I. Without the smoothness
term Esmooth, temporal jitter emerged. Disregarding contour direction and image
gradient direction in Econtour results in doubling the reconstruction error, which
indicates that the integration of contour direction is crucial for the success of the
proposed algorithm. In our experiments Esmooth is weighted by 0.01 and Eflat by
0.05.

The influence of using only two or three cameras is analyzed on the same sequence, 2 vs. 3
camerassee Figure 5.13. Automatic reconstruction with three cameras is as accurate as

tracking with the handcrafted model and method presented in Chapter 4 [Rhodin
et al., 2015a]. Pose reconstruction from only two cameras is still accurate for large
parts of the sequence, and sometimes more accurate than tracking with two cameras
and a manual actor model. Dramatic errors occur only occasionally in the second
half of the sequence. Shape estimation nevertheless succeeds due to the robustness
provided by the underlaying parametric model. Please note that our skeleton model
has a slightly different structure than the ground-truth skeleton. To compensate,
we computed joint position offsets in the first frames and propagates these across
the whole sequence. However, some differences remain, which likely explains some
of the error.

5.4.7. Runtime

In our experiments, runtime scaled linearly with the number of cameras and frames. Efficient
space-time
optimization

Contour-based shape optimization is efficient: it only takes 3 seconds per view,

2 The reported numbers of all listed approaches are corrected by a factor of two compared to
the respective original publications, correcting a mistake in the camera calibration of the test
sequence introduced in [Elhayek et al., 2015].
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Figure 5.13: Influence of the number of camera views. Using three cameras, our reconstruction is as
accurate as tracking with the manual model. It is still accurate for two cameras for large parts
of the sequence.

totaling 15 minutes for 50 frames and 6 views on a standard desktop machine.
Skeleton pose estimation is not the main focus of this work and the code is not
optimized; it takes 10 seconds per frame and view, totaling 50 minutes.

5.5. Discussion and limitations

Even though the body model was learned from tight clothing scans, our approachClothing
handles general apparel well, correctly reconstructing the overall shape and body
dimensions. We demonstrate that even if not all assumptions are fulfilled, our
method produces acceptable results, such as for the dance performance Skirt
of Gall et al. [2009] in Figure 5.5 (top left) that features a skirt. However, our
method was not designed to accurately reconstruct fine wrinkles, facial details,
hand articulation, or highly non-rigid clothing.

Methods for high-detail surface refinement exist for controlled environments, butSurface
refinement challenges remain in general scenes. We developed surface refinement in outdoor

scenes with uncontrolled background [Robertini et al., 2016]. It works without
background subtraction, but requires a textured actor template for initialization.
The template could be provided by the method proposed in this chapter, only
automatic and detailed texturing of the model remains open.

We demonstrate fully automatic reconstructions from as few as two cameras andMonocular?
semi-automatic shape estimation using a single image. Fully automatic pose and
shape estimates from a single image remains difficult, but becomes conceivable
with the recent advance of 3D pose estimation from monocular images [Tekin et al.,
2016b] and coarse shape regression [Bogo et al., 2016] which could be used to
improve our stage I and to initialize stage II.

5.6. Summary

We proposed a fully automatic approach for estimating the shape and pose of aAutomatic
shape through

a volumetric
contour model

rigged actor model from general multi-view video input with just a few cameras.
The method is robust to moving background, general motions can be reconstructed,
and succeeds with uncontrolled illumination. It is the first approach that reasons
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about contours within sum-of-Gaussians representations and which transfers their
beneficial properties, such as analytic form and smoothness, and differentiable
visibility, to the domain of edge- and silhouette-based shape estimation. This
results in an analytic volumetric contour alignment energy that efficiently and
fully automatically optimizes the pose and shape parameters. Based on a new
statistical body model, our approach reconstructs a personalized kinematic skeleton,
a volumetric Gaussian density representation with appearance modeling, a surface
mesh, and the time-varying poses of an actor.

We demonstrated shape estimation and motion capture results on challenging Indoor and
outdoordatasets, indoors and outdoors, captured with very few cameras. This is an impor-

tant step towards making motion capture more practical.

A remaining limitation of multi-view pose and shape estimation methods is the Calibration
is requiredburden of installing and calibrating cameras before recording and offline recon-

struction. Moreover fixed camera placements do not scale to recordings in vast
scenes, it would require hundreds of cameras for sufficient coverage. To overcome
these limitations, the next chapter proposes an egocentric pre-calibrated camera rig
and a dedicated algorithm that enables full-body motion capture in vast as well as
very confined recording volumes. Using the automatic actor model initialization of
this chapter, it offers motion-capture technology for consumers—easy to use hard-
and software that operates in general casual environments.
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This chapter is based on Rhodin et al. [2016a].

Traditional optical skeletal motion-capture methods – both marker-based and Outside-in
marker-less – use several cameras typically placed around a scene in an outside-
in arrangement, with camera views approximately converging in the center of a
confined recording volume. This greatly constrains the spatial extent of motions that
can be recorded; simply enlarging the recording volume by using more cameras,
for instance to capture an athlete, is not scalable. Outside-in arrangements also
constrain the type of scene that can be recorded, even if it fits into a confined space.
If a recording location is too small, cameras can often not be placed sufficiently far
away. In other cases, a scene may be cluttered with objects or furniture, or other
dynamic scene elements, such as people in close interaction, may obstruct a motion-
captured person in the scene or create unwanted dynamics in the background. In
such cases, even state-of-the-art outside-in marker-less optical methods that succeed
with just a few cameras and are designed for less controlled and outdoor scenes,
such as the ones introduced in the preceding chapters, quickly fail. Scenes with
dense social interaction were previously captured with outside-in camera arrays of
a few hundred sensors [Joo et al., 2015], a very complex and hardly scalable setup.

These strong constraints on recording volume and scene density prevent the use of Inside-in
suitsoptical motion capture in the majority of real-world scenes. This problem can partly

be bypassed with motion-capture methods that use body-worn sensors, such as the
Xsens MVN inertial measurement unit suit. However, the special suit and cabling
are obstructive and require tedious calibration. Shiratori et al. [2011] propose to Inside-out
wear 16 cameras placed on body parts facing inside-out, and capture the skeletal
motion through structure-from-motion relative to the environment. This clever
solution requires instrumentation, calibration, and a static background, but enables
free roaming. This design was inspirational for our egocentric approach.

We propose egocentric motion capture (EgoCap), an approach that estimates full- EgoCap:
optical
inside-in

body pose from a pair of optical cameras carried by lightweight headgear (see
Figure 6.1). The body-worn cameras are rigidly attached to the user and simulta-
neously record the user’s motion, thus forming an inside-in camera arrangement,
which overcomes many limitations of previous methods. It reduces the setup
effort, enables free roaming, and minimizes body instrumentation. EgoCap decou-
ples the estimation of local body pose with respect to the headgear cameras and
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Prototypes of EgoCap
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1.  Attached to bike helmet
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Figure 6.1: We propose a marker-less optical motion-capture approach that only uses two head-mounted
fisheye cameras (see rigs on the left). Our approach enables three new application scenarios:
1) capturing human motions in outdoor environments of virtually unlimited size, 2) capturing
motions in space-constrained environments, e.g. during social interactions, and 3) rendering
the reconstruction of one’s real body in virtual reality for embodied immersion.

global headgear position, which we infer by structure-from-motion on the scene
background.

Our first contribution is a new egocentric inside-in sensor rig with only two head-Fisheye gear
mounted, downward-facing commodity video cameras with fisheye lenses (see
Figure 6.1). The rig can be attached to a helmet or a head-mounted VR display,
and, hence, requires less instrumentation and calibration than other body-worn
systems. The stereo fisheye optics keep the whole body in view in all poses, despite
the cameras’ proximity to the body. We prefer conventional video cameras over IR-
based RGB-D cameras, which were for example used for egocentric hand tracking
[Sridhar et al., 2015], since the latter fail outdoors. Video cameras work indoors
and outdoors, also have lower energy consumption, and are easily fitted with the
required fisheye optics.

Our second contribution is a new marker-less motion-capture algorithm tailoredGenerative
and

discriminative
to the strongly distorted egocentric fisheye views. It combines a generative model-
based skeletal pose estimation approach (Chapter 4 and Section 6.2) with evidence
from a trained ConvNet-based body-part detector (Section 6.2.2). The approach
features an analytically differentiable objective energy that can be minimized
efficiently, is designed to work with unsegmented frames and general backgrounds,
succeeds even on poses exhibiting notable self-occlusions (e.g. when walking), as
the part detector predicts occluded parts, and enables recovery from tracking errors
after severe occlusions.

Our third contribution is a new approach for automatically creating body-partAutomatic
database
creation

detection training datasets. We record test subjects in front of green screen with an
existing outside-in marker-less motion-capture system to get ground-truth skeletal
poses, which are reprojected into the simultaneously recorded head-mounted
fisheye views to get 2D body-part annotations. We augment the training images
by replacing the green screen with random background images, and vary the
appearance in terms of color and shading by intrinsic recoloring [Meka et al., 2016].
With this technique, we annotate a total of 100,000 egocentric images of eight people
in different clothing (Section 6.2.2), with 75,000 images from six people used for
training. We publish the dataset for research purposes [EgoCap, 2016].
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6.1. Egocentric camera design

We designed and extensively tested two system prototypes featuring (1) cameras Prototypes for
crowded and
large-scale scenes

fitted to a bike helmet, and (2) small cameras attached to an Oculus Rift headset.
We show reliable egocentric motion capture, both offline and in real time. The
egocentric tracking meets the accuracy of outside-in approaches using 2–3 cameras;
additional advances are necessary to match the accuracy of many-camera systems.
Nevertheless, we succeed in scenes that are challenging for outside-in approaches,
such as close interaction with many people, as well outdoor and indoor scenes in
cluttered environments with frequent occlusions, for example when working in
a kitchen or at a desk. We also show successful capturing in large volumes, for
example of the skeletal motion of a cyclist. The lightweight Oculus Rift gear is
designed for egocentric motion capture for virtual reality, where the user can move
in the real world to roam and interact in a virtual environment seen through a head-
mounted display, while perceiving increased immersion thanks to the rendering
of the motion-captured body, which is not obtained with current HMD head pose
tracking.

The proposed full-body tracking could also be used as an intermediate representa- Application to
first-person visiontion for recognition in the field of first-person vision, where body worn cameras are

used for activity recognition [e.g. Fathi et al., 2011; Kitani et al., 2011; Ohnishi et al.,
2016; Ma et al., 2016], for learning engagement and saliency patterns of users when
interacting with the real world [e.g. Park et al., 2012; Su and Grauman, 2016], and
for understanding the utility of surrounding objects [Rhinehart and Kitani, 2016].

6.1. Egocentric camera design

We designed a mobile egocentric camera setup to enable human motion capture Lightweight
pre-calibrated rigwithin a virtually unlimited recording volume. We attach two fisheye cameras

rigidly to a helmet or VR headset, such that their field of view captures the user’s
full body, see Figure 6.2. The wide field of view allows us to observe interactions in
front and beside the user, irrespective of their global motion and head orientation,
and without requiring additional sensors or suits. The stereo setup ensures that
most actions are observed by at least one camera, despite substantial self-occlusions
of arms, torso and legs in such an egocentric setup. A baseline of 30–40 cm proved
to be best in our experiments. The impact of the headgear on the user’s motion is
limited as it is lightweight: our prototype camera rig for VR headsets (see Figure 6.1,
bottom left) only adds about 65 grams of weight.

6.2. Egocentric inside-in motion capture

Our egocentric setup separates human motion capture into two subproblems: Local and
global pose1) local skeleton pose estimation with respect to the camera rig, and 2) global

rig pose estimation relative to the environment. Global pose is estimated with
existing structure-from-motion techniques, see Section 6.4.3. We formulate skeletal
pose estimation as an analysis-by-synthesis-style optimization problem in the pose
parameters pt, that maximizes the alignment of a projected 3D human body model
with the human in the left It

left and the right It
right stereo fisheye views, at each

video time step t. We use a hybrid alignment energy combining evidence from
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6. Egocentric marker-less motion capture with two fisheye cameras

a generative image-formation model, as well as from a discriminative detection
approach.

For the generative component we adapt the volumetric ray-tracing model intro-Top-down and
bottom-up duced in Chapters 4 and 5. The existing model facilitates generative pose esti-

mation with only two cameras, and we adapt it in Section 6.2.1 to the strongly
distorted fisheye views. Our energy also employs constraints from one-shot joint-
location predictions in the form of Edetection. These predictions are found with a
new ConvNet-based 2D joint detector for head-mounted fisheye views, which is
learned from a large corpus of annotated training data, and which generalizes to
different users and cluttered scenes (Section 6.2.2). The combined energy that we
optimize takes the following form:

E(pt)=Ecolor(pt)+Edetection(pt)+Epose(pt)+Esmooth(pt). (6.1)

Here, Epose(pt) is a regularizer that penalizes violations of anatomical joint-angle
limits as well as poses deviating strongly from the rest pose (p=0):

Epose(pt) = λlimit·
(

max(0, pt − lupper)
2 + max(0, llower − pt)2

)
+ λpose · huber(pt), (6.2)

where llower and lupper are lower and upper joint-angle limits, and huber(x) =√
1+x2−1 is the Pseudo-Huber loss function. Esmooth(pt) is a temporal smoothness

term:

Esmooth(pt) = λsmooth · huber(pt−1+ζ(pt−1−pt−2)−pt), (6.3)

where ζ=0.25 is a damping factor. The total energy in Equation 6.1 is optimized
for every frame, as described in Section 6.2.3. In the following, we describe the
generative and discriminative terms in more detail, while omitting the temporal
dependency t in the notation for better readability. We use weights λpose = 10−4,
λlimit=0.1 and λsmooth=0.1.

6.2.1. Egocentric ray-casting model

We adapt the volumetric ray-tracing model introduced in Chapters 4 and 5, becauseTop-down
it has several key advantages over previous generative models for image-based
pose estimation. It enables analytic derivatives of the pose energy, including a
smooth analytically differentiable visibility model everywhere in pose space. This
makes it perform well with only a few camera views. Furthermore, it handles
non-stationary backgrounds and occlusions well, a requirement for the egocentric
tracking setting. However, it applies only to static cameras, does not support the
distortion of fisheye lenses, and it does not run in real time.

In our egocentric camera rig, the cameras move rigidly with the user’s head. InRoot at head
contrast to commonly used skeleton configurations, where the hip is taken as the
root joint, our skeleton hierarchy is rooted at the head. Like a puppet, the lower
body parts are then relative to the head motion, see Figure 6.2. This formulation
factors out the user’s global motion, which can be estimated independently, see
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6.2. Egocentric inside-in motion capture

EgoCap camera schematic Volumetric model + kinematic skeleton

frontal view (perspective) egocentric view (�sheye)

Figure 6.2: Schematic of EgoCap, our egocentric motion-capture rig (left), visualization of the corresponding
volumetric body model and kinematic skeleton (center), and the egocentric view of both in our
head-mounted fisheye cameras (right).

Section 6.4.3, and reduces the dimensionality of the pose estimation by 6 degrees
of freedom. By attaching the cameras to the skeleton root, the movable cameras are
reduced to a static camera formulation, as assumed in the previous chapters.

Simply undistorting the fisheye images before optimization is impractical as reso- Fisheye camera
modellution at the image center reduces and pinhole cameras cannot capture fields of

view approaching 180 degrees – their image planes would need to be infinitely
large. To apply the ray-casting formulation described in Chapter 4 to our egocentric
motion-capture rig, with its 180° field of view, we replace the original pinhole
camera model with the omnidirectional camera model of Scaramuzza et al. [2006].
The ray direction n(u, v) of a pixel (u, v) is then given by n(u, v) = [u, v, f (ρ)]>,
where f is a polynomial of the distance ρ of (u, v) to the estimated image center.
We apply the energy term Dmc defined in Equation 4.13 (Chapter 4, Section 4.4) to
both cameras of our egocentric camera rig using

Ecolor(p) = Dmc(p, Ileft) + Dmc(p, Iright). (6.4)

These extensions also generalize the contour model of Rhodin et al. [2016b] and
Chapter 5 to enable egocentric body model initialization.

Color dissimilarity For measuring the dissimilarity d(m, i) of model color m and Color similarity
metricimage pixel color i in Equation 4.13, we use the HSV color space (with all dimen-

sions normalized to unit range) and combine three dissimilarity components:

1. For saturated colors, the color dissimilarity ds is computed using the squared
(minimum angular) hue distance. Using the hue channel alone is less sensitive
to illumination changes.

2. For dark colors, the color dissimilarity dd is computed as twice the squared
value difference, i.e., dd(m, i)=2(mv−iv)2. Hue and saturation are ignored as
they are unreliable for dark colors.

3. For gray colors, the distance dg is computed as the sum of absolute value and
saturation difference, i.e., dg(m, i)= |mv−iv|+|ms−is|. Hue is unreliable and
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6. Egocentric marker-less motion capture with two fisheye cameras

thus ignored.

We weight these three dissimilarity components by ws =
√

ms/Z, wd =max(0, 0.5−
mv)/Z and wg =max(0, 0.5−ms)/Z respectively, where Z normalizes the sum of
these weights to unity. The total dissimilarity is computed by d(m, i) = φ(wsds+
wddd+wgwg) where φ(x)=1−(1−x)4(8x+2) is a smooth step function. We employ
a two-sided energy, i.e., Ecolor can be negative: For dissimilar colors, d ≈ 1 and
approaches −1 for similar colors.

6.2.2. Egocentric body-part detection

We combine the generative model-based alignment from the previous section withBottom-up
detections evidence from the discriminative joint-location detector of Insafutdinov et al. [2016],

trained on annotated egocentric fisheye images. The discriminative component
dramatically improves the quality and stability of reconstructed poses, provides
efficient recovery from tracking failures, and enables plausible tracking even under
notable self-occlusions. To apply Insafutdinov et al.’s body-part detector, which
has shown state-of-the-art results on human pose estimation from outside-in RGB
images, to the top-down perspective and fisheye distortion of our novel egocentric
camera setup, the largest burden is to gather and annotate a training dataset that is
sufficiently large and varied, containing tens of thousands of images. As our camera
rig is novel, there are no existing public datasets, and we therefore designed a
method to automatically annotate real fisheye images by outside-in motion capture
and to augment appearance with the help of intrinsic image decomposition.

Dataset creation

We propose a novel approach for semi-automatically creating large, realistic trainingAnnotation by
motion capture datasets for body-part detection that comprise tens of thousands of camera images

annotated with the joint locations of a kinematic skeleton and other body parts
such as the hands and feet. To avoid the tedious and error-prone manual annotation
of locations in thousands of images, as in previous work, we use a state-of-the-art
marker-less motion-capture system (Captury Studio [Captury]) to estimate the
skeleton motion in 3D from eight stationary cameras placed around the scene. We
then project the skeleton joints into the fisheye images of our head-mounted camera
rig. The projection requires tracking the rigid motion of our head-mounted camera
rig relative to the stationary cameras of the motion-capture system, for which we
use a large checkerboard rigidly attached to our camera rig (Figure 6.3). We detect
the checkerboard in all stationary cameras in which it is visible, and triangulate the
3D positions of its corners to estimate the pose and orientation of the camera rig.
Using Scaramuzza et al.’s camera distortion model, we then project the 3D joint
locations into the fisheye images recorded by our camera rig.

Dataset augmentation We record video sequences of eight subjects performingAugmentation by
intrinsic image
decomposition

various motions in a green-screen studio. For the training set, we replace the
background of each video frame, using chroma keying, with a random, floor-
related image from Flickr, as our fisheye cameras mostly see the ground below
the tracked subject. Please note that training with real backgrounds could give the
CNN additional context, but is prone to overfitting to a (necessarily) small set of
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6.2. Egocentric inside-in motion capture

View of left camera
(with joint locations)

Multi-view motion-capture system EgoCap camera rig + chessboard

global
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�sheye
camera

skeleton

camera

Figure 6.3: For database annotation, the skeleton estimated from the multi-view motion-capture system
(left), is converted from global coordinates (center) into each fisheye camera’s coordinate system
(right) via the checkerboard.

Input video frame Augmentation of consecutive video frames

Figure 6.4: Illustration of our dataset augmentation using randomized backgrounds, intrinsic recoloring
and gamma jittering. Note the varied shirt colors as well as brightness of the trousers and skin,
which help prevent overtraining of the ConvNet-based joint detector.

recorded real backgrounds. In addition, we augment the appearance of subjects
by varying the colors of clothing, while preserving shading effects, using intrinsic
recoloring [Meka et al., 2016]. This is, to our knowledge, the first application of
intrinsic recoloring for augmenting datasets. We also apply a random gamma curve
(γ∈ [0.5, 2]) to simulate changing lighting conditions. We furthermore exploit the
shared plane of symmetry of our camera rig and the human body to train a single
detector on a dataset twice the size by mirroring the images and joint-location
annotations of the right-hand camera to match those of the left-hand camera during
training, and vice versa during motion capture. Thanks to the augmentation, both
background and clothing colors are different for every frame (see Figure 6.4),
which prevents overfitting to the limited variety of the captured appearances. This
results in a training set of six subjects and ~75,000 annotated fisheye images. Two
additional subjects are captured and prepared for validation purposes.

Detector learning

Our starting point for learning an egocentric body-part detector for fisheye images is ConvNet training
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External view Detection heat map Detection maxima

Figure 6.5: Color-coded joint-location detections on the Crowded sequence. For crowded scenes (left),
detections can be multi-modal (center). However, the maximum (right) lies on the user. We
exclude knee, hand, and ankle locations for clearer visualization.

the 101-layer residual network [Hernández-Vela et al., 2016] trained by Insafutdinov
et al. [2016] on the MPII Human Pose dataset [Andriluka et al., 2014], which
contains ~19,000 internet images that were manually annotated in a crowd-sourced
effort, and the Leeds Sports Extended dataset [Johnson and Everingham, 2011] of
10,000 images. We remove the original prediction layers and replace them with
ones that output 18 body-part heat maps3. The input video frames are scaled to a
resolution of 640×512 pixels, the predicted heat maps are of 8× coarser resolution.
We then fine-tune the ConvNet on our fisheye dataset for 220,000 iterations with
a learning rate of 0.002, and drop it to 0.0002 for 20,000 additional iterations. The
number of training iterations is chosen based on performance on the validation set.
We randomly scale images during training by up to ±15% to be more robust to
variations in user size. Figure 6.5 (center) visualizes the computed heat maps for
selected body parts. We demonstrate generalization capability to a large variety of
backgrounds, changing illumination, and clothing colors in Section 6.3.3.

Body-part detection energy

Inspired by Elhayek et al. [2015], who exploit detections in outside-in motionBottom-up
to top-down capture, we integrate the learned detections, in the form of heat maps as shown in

Figure 6.5, into the objective energy (Equation 6.1) as a soft constraint. For each
detection label, the location with maximum confidence, (û, v̂), is selected and an
associated 3D Gaussian is attached to the corresponding skeleton body part. This
association can be thought of as giving a distinct color to each body-part label. The
Gaussian is used to compute the spatial agreement of the detection and body-part
location in the same way as in the color similarity Ecolor, only the color distance
d(·, ·) in Equation 4.13 is replaced with the predicted detection confidence at (û, v̂).
For instance, a light green Gaussian is placed at the right knee and is associated
with the light green knee detection heat map at (û, v̂), then their agreement is

3 We jointly learn heat maps for the head and neck, plus the left and right shoulders, elbows,
wrists, hands, hips, knees, ankles and feet.
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maximal when the Gaussian’s center projects on (û, v̂). By this definition, Edetection
forms the sum over the detection agreements of all body parts and in both cameras,
it behaves similar to the detection similarity measure introduced in Section 5.3.1.
We weight its influence by λdetection=1/3.

6.2.3. Real-time optimization

The volumetric ray-casting method presented in Chapter 4 models occlusion as a Quadratic
complexitysmooth phenomenon by integrating the visibility computations within the objective

function instead of applying a depth test once before optimization. While this is
beneficial for optimizing disocclusions, it introduces dense pairwise dependencies
between all Gaussians: the visibility Vq (Equation 4.10) of a single Gaussian can be
evaluated in linear time in terms of the number of Gaussians, Nq, but Ecolor—and
its gradient with respect to all Gaussians—has quadratic complexity in Nq, see
Section 4.5.4.

To nevertheless reach real-time performance, we introduce a new parallel stochastic Parallel
implementationoptimization approach. The ray-casting formulation enables a natural paralleliza-

tion of Edetection and Ecolor terms and their gradient computation across pixels
(u, v) and Gaussians Gq. We also introduce a traversal step, which determines the
Gaussians that are close to each ray, and excludes distant Gaussians with negli-
gible contribution to the energy. These optimizations lead to significant run-time
improvements, particularly when executed on a GPU, but only enable interactive
frame rates.

We achieve further reductions in run times by introducing a statistical optimization Stochastic
optimizationapproach that is tailored to the ray-casting framework. The input image pixels are

statistically sampled for each gradient iteration step, as proposed by Blanz and
Vetter [1999]. In addition, we sample the volumetric body model by excluding
Gaussians from the gradient computation at random, individually for each pixel,
which improves the optimization time to 10 fps and more.

6.3. Evaluation

6.3.1. Hardware prototypes

We show the two EgoCap prototypes used in this work in Figure 6.1 (left). EgoRig1 Prototype
detailsconsists of two fisheye cameras attached to a standard bike helmet. It is robust

and well-suited for capturing outdoor activities and sports. EgoRig2 builds on a
lightweight wooden rig that holds two consumer cameras and is glued to an Oculus
VR headset. It weighs only 65 grams and adds minimal discomfort on the user.
Both prototypes are equipped with 180° fisheye lenses and record with a resolution
of 1280×1024 pixels at 30 Hz. Note that the checkerboard attached to EgoRig1 in
several images is not used for tracking (only used in training and validation dataset
recordings).

Body-Part visibility For egocentric tracking of unconstrained motions, the full 180° Fisheye FOV
field of view is essential for egocentric tracking. We evaluate the visibility of selected
body parts from our egocentric rig with different (virtual) field-of-view angles in
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Figure 6.6: Visibility of selected body parts for different camera angles of view, for the left-hand camera
in our rig over a 5-minute recording. Seeing the right wrist 95 percent of the time requires an
angle of view in excess of 160°, which is only practical with fisheye lenses.

Figure 6.6. Only at 180 degrees are almost all body parts captured, otherwise even
small motions of the head can cause the hand to leave the recording volume. The
limited field of view of existing active depth sensors of 60–80 degrees restricts
their applicability to egocentric motion capture in addition to their higher energy
consumption and interference with other light sources.

6.3.2. Runtime

For most tracking results, we use a resolution of 128×128 pixels and 200 gradient-Resolution
vs. runtime descent iterations. Our CPU implementation runs at ten seconds per frame on

a Xeon E5-1620 3.6 GHz, which is similar to run times reported in Chapter 4.
Straightforward parallelization on the GPU reduces run times to two seconds per
frame. The body-part detector runs on a separate machine, and processes 6 images
per second on an Nvidia Titan GPU and a Xeon E5-2643 3.30 GHz.

For some experiments (see Section 6.4.3), we use a resolution of 120×100 pixelsReal-time
and enable stochastic optimization. Then, purely color-based optimization reaches
10 to 15 fps for 50 gradient iterations (2–3 ms per iteration), i.e., close to real-
time performance. Our body-part detector is not optimized for speed and cannot
yet run at this frame rate, but its implementation could be optimized for real-
time processing, so a real-time end-to-end approach would be feasible without
algorithmic changes.

6.3.3. Body-part detections

We first evaluate the learned body-part detectors, irrespective of generative compo-2D validation
set nents, using the percentage of correct keypoints (PCK) metric [Sapp and Taskar,

2013; Jain et al., 2014]. We evaluate on a validation set, Validation2D, of 1000 im-
ages from a 30,000-frame sequence of two subjects that are not part of the training
set and wear dissimilar clothing. Validation2D is augmented with random back-
grounds using the same procedure as for the training set, such that the difficulty
of the detection task matches the real-world sequences. We further validated that
overfitting to augmentation is minimal, by testing on green-screen background,
with equivalent results.
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Table 6.1: Part detection accuracy in terms of the percentage of correct keypoints (PCK) on the validation
dataset Validation2D of 1000 images, evaluated at 20 pixel threshold for three ConvNets
trained with different data augmentation strategies (Section 6.2.2). AUC is area under curve
evaluated for all thresholds up to 20 pixels.

Training dataset setting Head Sho. Elb. Wri. Hip Knee Ank. PCK AUC

green-screen background 75.5 46.8 18.8 13.6 17.4 7.2 4.5 22.4 10.0
+ background augmentation 84.7 87.5 90.9 89.1 97.7 94.2 86.4 89.5 56.9

+ intrinsic recoloring 86.2 96.1 93.6 90.1 99.1 95.8 90.9 92.5 59.4
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Figure 6.7: Pose estimation results in terms of percentage of correct keypoints (PCK) for different distance
thresholds on Validation2D.

Dataset augmentations Table 6.1 presents the evaluation of proposed data aug- Augmentation
improves accuracymentation strategies. Background augmentation during training brings a clear

improvement. It provides a variety of challenging negative samples for the training
of the detector, which is of high importance. Secondly, the performance is further
boosted by employing intrinsic video for cloth recoloring, which additionally in-
creases the diversity of training samples. The improvement of about two percent is
consistent across all body parts.

Detection accuracy Figure 6.7 contains the plots of PCK at different distance High 2D
accuracythresholds for arms and legs evaluated on sequence Validation2D. We achieve

high accuracy, with slightly lower detection reliability of terminal limbs (wrists,
feet). This can either be due to more articulation or, in case of the feet, due to higher
occlusion by knees and their small appearance due to the strong fisheye distortion.

The 2D detection accuracy of feet and wrists is comparable, even though feet
are further away, and similar pixel error hence translates to larger 3D errors, as
evaluated in the next section.

We additionally evaluated the training set size. We found that subject variation Dense sampling
helpsis important: using only three out of six subjects, the PCK performance dropped

by 2.5 percent points. Moreover, using a random subset of 10% of the original
database size reduces the PCK by 2 points, i.e., using more than three frames per
second is beneficial. Using a 50% subset did not degrade performance, showing that
consecutive frames are not crucial for our per-frame model, but could be beneficial
for future research, such as for temporal models.
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Figure 6.8: EgoCap enables outdoor motion capture with virtually unconstrained extent. Full-body pose is
accurately estimated for fast Biking (left and center) and for unconstrained Walk (right). The
model is tailored to handle the present occlusions and strong image distortion.

6.3.4. 3D body pose accuracy

Our main objective is to infer 3D human pose from the egocentric views, despite3D accuracy
occlusions and strong fisheye image distortions. We quantitatively evaluate the
3D body pose accuracy of our approach on two sequences, ValidationWalk and
ValidationGest. Ground-truth data is obtained with the Captury Studio, a state-
of-the-art marker-less commercial multi-view solution with eight video cameras
and 1–2 cm accuracy. The two systems are used simultaneously and their relative
transformation is estimated with a reference checkerboard, see Figure 6.3. We
experimented with raw green-screen and with randomly replaced background.
Error values are estimated as the average Euclidean 3D distance over 17 joints,
including all joints with detection labels, except the head. Reconstructions on
green and replaced backgrounds are both 7±1 cm for a challenging 250-frame
walking sequence with occlusions, and 7±1 cm on a long sequence of 750 frames
of gesturing and interaction.

During gesturing, where arms are close to the camera, upper body (shoulder, elbow,Lower vs.
upper body wrist, finger) joint accuracy is higher than for the lower body (hip, knee, ankle, and

toe) with 6 cm and 8 cm average error, respectively. During walking, upper and
lower body error is similar with 7 cm. Please note that slight differences in skeleton
topology between ground truth and EgoCap exist, which might bias the errors.

Despite the difficult viewing angle and image distortion of our egocentric setup, theComparable to
3 cam outside-in overall 3D reconstruction error is comparable to state-of-the-art results of outside-in

approaches [Elhayek et al., 2015; Amin et al., 2013; Sigal et al., 2010; Belagiannis
et al., 2014; Rhodin et al., 2015a, Chapter 4], which reach 5–7 cm accuracy from two
or more cameras, but only in small and open recording volumes, and for static
cameras. In contrast, our algorithm scales to very narrow and cluttered scenes
(see Figure 6.9) as well as to wide unconstrained performances (see Figure 6.8).
No existing algorithm is directly applicable to these conditions and the strong
distortions of the fisheye cameras, precluding a direct comparison. Closest to our
approach is the fundamentally offline inside-out method of Shiratori et al. [2011],
who use 16 body-worn cameras facing outwards, reporting a mean joint position
error of 2 cm on a slowly performed indoor walking sequence. Visually, their
outdoor results show similar quality to our reconstructions, although we require
fewer cameras, and can handle crowded scenes. It depends on the application
whether head gear or body-worn cameras less impair the user’s performance.
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Left input view Reconstructed skeletonExternal viewpoint (not used) Left input view Reconstructed skeletonExternal viewpoint (not used)

Figure 6.9: Capturing social interaction in crowded scenes is of importance, but occlusions pose difficulties
for existing outside-in approaches (left). The egocentric view enables 3D pose estimation, as
demonstrated on the Crowded sequence. The visible checkerboard is not used.

6.3.5. Model components

Our objective energy consists of detection, color, smoothness, and pose prior terms. Importance of
energy termsDisabling the smoothness term increases the reconstruction error on the validation

sequences by 3 cm. Without the color term, accuracy is reduced by 0.5 cm. We
demonstrated in the supplemental video of [Rhodin et al., 2016a] that the influence
of the color term is more significant in the outdoor sequences for motions that are
very dissimilar to the training set. Disabling the detection term removes the ability
to recover from tracking failures, which are usually unavoidable for fully automatic
motion capture of long sequences with challenging motions. High-frequency noise
is filtered with a Gaussian low-pass filter of window size 5.

6.4. Applications

We further evaluate our approach in three application scenarios with seven se- Extensive
evaluationquences of lengths of up to 1500 frames using EgoRig1, in addition to the three

quantitative evaluation sequences. The captured users wear clothes not present in
the training set. The qualitative results are best observed in the supplemental video
of Rhodin et al. [2016a].

6.4.1. Unconstrained and large-scale motion capture

We captured a Basketball sequence outdoors, which shows quick motions, large Vast outdoor
spacesteps on a steep staircase, and close interaction of arms, legs and the basketball.

We also recorded an outdoor Walk sequence with frequent arm-leg self-occlusions
(Figure 6.8, right). With EgoCap, a user can even motion capture themselves while
riding a bike in a larger volume of space (Bike sequence, Figure 6.8, left and
center). The pedaling motion of the legs is nicely captured, despite frequent self-
occlusions; the steering motion of the arms and the torso is also reconstructed.
Even for very fast absolute motions, like this one on a bike, our egocentric rig with
cameras attached to the body leads to little motion blur, which challenges outside-in
optical systems. All this would have been difficult with alternative motion-capture
approaches.

Note that our outdoor sequences also show the resilience of our method to different Generalization
appearance and lighting conditions, as well as the generalization of our detector to
a large range of scenes.
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Figure 6.10: Reconstruction results on the Juggler sequence, showing one input view and the estimated
skeleton. Despite frequent self-occlusions, our approach robustly recovers the skeleton motion.

6.4.2. Constrained and crowded spaces

We also tested EgoCap with EgoRig1 for motion capture on the Crowded sequence,Crowd
occlusions where many spectators are interacting and occluding the tracked user from the

outside (Figure 6.9). In such a setting, as well as in settings with many obstacles
and narrow sections, outside-in motion capture, even with a dense camera system,
would be difficult. In contrast, EgoCap captures the skeletal motion of the user in
the center with only two head-mounted cameras.

The egocentric camera placement is also well-suited for capturing human-objectObject
interaction interactions, such as the juggling performance Juggler (Figure 6.10). Fast throwing

motions as well as occlusions are handled well. The central camera placement
ensures that objects that are manipulated by the user are always in view.

6.4.3. Tracking for immersive VR

We also performed an experiment to show how EgoCap could be used in immersiveReal-time
demo virtual reality (VR) applications. To this end, we use EgoRig2 attached to an Oculus

VR headset and track the motion of a user wearing it. We build a real-time demo
application running at up to 15 fps, showing that real-time performance is feasible
with additional improvements on currently unoptimized code. In this Live test, we
only use color-based tracking of the upper body, without detections, as the detector
code is not yet optimized for speed. The Live sequence shows that body motions
are tracked well, and that with such an even more lightweight capture rig, geared
for HMD-based VR, egocentric motion capture is feasible. Current HMD-based
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Figure 6.11: Complete motion-capture example VR, in which our egocentric pose tracking is combined
with global pose tracking using structure-from-motion, shown as a motion sequence in a 3D
reconstruction of the scene. In a VR scenario, this would allow free roaming and interaction
with virtual objects.

systems only track the pose of the display; our approach adds motion capture of
the wearer’s full body, which enables a much higher level of immersion.

Global pose estimation For free roaming, the global rig pose can be tracked inde- Complete
motion capturependently of external devices using structure-from-motion in the fisheye views.

We demonstrate combined local and global pose estimation on the Biking, Walk,
and VR sequence, using the structure-from-motion implementation of Moulon et al.
[2013] provided in the OpenMVG library, see Figure 6.11 and the accompanying
video. Such complete motion capture paves the way for immersive roaming in a
fully virtual 3D environment.

6.5. Discussion and limitations

We developed the first stereo egocentric motion-capture approach for indoor and Full-body
optical
inside-in

outdoor scenes, that also works well for very crowded scenes. The combination
of generative and detection-based pose estimation make it fare well even under
poses with notable self-occlusions. Similar to other outside-in optical methods,
tracking under occlusions by objects in the environment, e.g a table, may lead to
tracking failures. However, the detections enable our tracker to quickly recover from
such occlusion failures. Interestingly, the egocentric fisheye camera setup provides
stronger perspective cues for motion towards and away from the camera than with
normal optics. The perspective effect of the same motion increases with proximity
to the camera. For instance, bending an arm is a subtle motion when observed from
an external camera, but when observed in proximity, the same absolute motion
causes large relative motion, manifesting in large displacements and scaling of the
object in motion.

The algorithm in this chapter focuses on an entirely new way of capturing the full Rig construction
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egocentric skeletal body pose, that is decoupled from global pose and rotation
relative to the environment. Global pose can be inferred separately by structure-
from-motion from the fisheye cameras or is provided by HMD tracking in VR
applications. Fisheye cameras keep the whole body in view, but cause distortions
reducing the image resolution of distant body parts such as the legs. Therefore,
tracking accuracy of the upper body is slightly higher than that of the lower body.
While overall tracking accuracy of our research prototype is still lower than with
commercial outside-in methods, it shows a new path towards less constrained
capture in the future. Currently, we have no real-time end-to-end prototype. We
are confident that this would be feasible without algorithm redesign, yet felt that
real-time performance is not essential to demonstrate the algorithm and its general
feasibility. Our current prototype systems may still be a bit bulky, but much stronger
miniaturization becomes feasible in mass production; the design of EgoRig2 shows
this possibility. Some camera extension is required for lower-body tracking and
might pose a problem with respect to social acceptance for some applications;
However, we did not encounter practical issues during our recordings and VR tests,
as users naturally keep the area in front of their head clear to not impair their
vision.

Moreover, handling changing illumination is still an open problem for motionRemaining
limitations capture in general and is not the focus of our work. For dynamic illumination, the

color model would need to be extended. However, the CNN performs one-shot
estimation and does not suffer from illumination changes. The training data also
contains shadowing from the studio illumination, although extreme directional
light might still cause inaccuracies. Additionally, loose clothing, such as a skirt, is
not part of the training dataset and hence likely to reduce pose accuracy.

6.6. Summary

We presented EgoCap, the first approach for marker-less egocentric full-bodyEgoCap
motion capture with a head-mounted fisheye stereo rig. It is based on a pose
optimization approach that jointly employs two components. The first is a new
generative pose estimation approach based on a ray-casting image formation model
enabling an analytically differentiable alignment energy and visibility model. The
second component is a new ConvNet-based body-part detector for fisheye cameras
that was trained on the first automatically annotated real-image training dataset of
egocentric fisheye body poses. EgoCap’s lightweight on-body capture strategy bears
many advantages over other motion-capture methods. It enables motion capture
of dense and crowded scenes, and reconstruction of large-scale activities that
would not fit into the constrained recording volumes of outside-in motion-capture
methods. It requires far less instrumentation than suit-based or exoskeleton-based
approaches. EgoCap is particularly suited for HMD-based VR applications; two
cameras attached to an HMD enable full-body pose reconstruction of your own
virtual body to pave the way for immersive VR experiences and interactions.

Direct retargetting of tracked performance to a virtual avatar allows the user toImmersive
interaction explore virtual worlds from first person perspective. Such direct retargetting is

particularly interesting for virtual reality applications, where typical interfaces
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may be impractical due to impaired real-world vision and hamper roaming, as
mouse, keyboard, or gamepad physically bound the user to the desk. Moreover, if
the avatar mimics the user motion an additional immersive sensation is created,
because the VR display, such as VR glasses, can provide the user with ’overlay’ of
the virtual body on the position of the real body, which leads to a stronger feeling
of being in the virtual world. Similar immersion can be obtained in augmented
reality applications where the transition of virtual and real world is seamless.

The next part of this dissertation takes motion capture as input and addresses open Use for performance-
driven animationchallenges for performance-driven character animation, especially for mappings

that go beyond human avatars. It demonstrates how the methods developed in this
part open the door for VR interaction, new computer game applications, and for
intuitive content creation by performance-driven animation.
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New interactions are enabled by recent advances in consumer level motion-capture Current state of
interactionsensors, such as the Microsoft Kinect, and algorithmic advances on marker-less

motion capture from RGB video, as presented in the previous part of this disserta-
tion. However, this new technology has more potential than existing applications
show. Recent 3D movies can take us on a journey into fantasies of our mind, to
science fiction scenes, to historic places, and to alternative worlds, but such large
and complex virtual worlds are exclusively created by professional teams relying
on many artists and expensive motion capture equipment. Furthermore, existing
worlds are mostly static, movies are passively consumed, and most games still
offer only basic control interfaces. It lacks intuitive interfaces that enable non-
professionals to interact and animate complex virtual worlds. Intriguing is the use
of performance-driven interfaces. However, existing solutions struggle to utilize
today’s low-cost commodity sensing and reconstruction technology, because it only
provides medium accuracy and detail.

This part of the dissertation addresses the second half of the introduced processing Goal of this part
pipeline, namely performance-driven character animation, see Figure 7.1. Taking
the captured user performance as input, the goal is to enable intuitive and precise
gestural interaction for virtual worlds. We solve existing limitations to go beyond
classical mouse-keyboard and predefined gesture input.

We develop algorithms and representations that allow the user to not only retarget Focus on non-
human characterstheir motion in real time onto human avatars, but to go one step further and enable

embodiment of arbitrary virtual creatures, for instance, a horse, dog, caterpillar, and
humanoid aliens, and even to control real physical robots. While retargetting onto
humanoid characters has been extensively investigated, the faithful and real-time
transfer of user performance onto arbitrary characters remains an open challenge,
in terms of reliability, character shape variety, and motion diversity.

The methods are evaluated in diverse experiments, covering hand, full-body and Evaluation
facial input motions that are mapped to humanoids, quadrupeds, and non-skeletal
creatures. The advance on existing approaches is substantiated with quantitative
experiments and an extensive user-study.

7.1. Overview

We overcome four major challenges which remain unsolved in existing state-of-the-
art methods. Their description is split in the following two chapters.
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7. Performance-driven character animation

Figure 7.1: Performance-driven character animation provides a tool for interactive animation by transferring
human motion to character motion. It involves step c) of the processing pipeline introduced in
Figure 1.1.

First, mappings to non-human characters exist; however, they are either limited toOverview
Chapter 8 skeletal representations, not suitable to characters like a caterpillar which does not

have a skeleton naturally, or are specific to a particular animation system. In Chap-
ter 8, we develop a general mesh-based representation and mathematical mapping
that overcomes these limitations by exploiting unlabeled example animations.

Second, existing systems allow the definition of control motions, a particular gesture
which should drive a corresponding character motion, but require explicit manual
correspondence definition between character and user limbs, which is tedious
and difficult for novice users [Seol et al., 2013]. We propose an approach that only
requires a single performance of the user gesture and generalizes from this example,
and which guides the user in the control motion selection. The algorithms to attain
these two advances are explained in Chapter 8.

Third, existing methods do not generalize well to different motion styles. In Chap-Overview
Chapter 9 ter 9, we focus on estimating and transferring dynamic motion properties which

are crucial for faithful character control, such as steering the transition from trot to
gallop of a horse character by speeding up the control motion. This approach of
abstracting motion properties further allows the mapping between different motion
styles and forms, such as mapping a stilted finger walk to a complex horse gait and
at the same time to smoothly transition from a slow trot to a fast gallop. Fourth,
existing sensors exhibit recording noise and provide a limited capture volume,
and the user’s ability to exactly reproduce control motions is limited, leading to
inaccurate and stilted input motions. We develop a filtering technique which pre-
serves important motion properties and reduces the influence of noise and control
inaccuracy, in particular for periodic motions and for simultaneously performed
motions. These aspects of dynamic motion control are covered in Chapter 9.

The remainder of this chapter introduces terminology and related work, which is
necessary to explain the contributions of Chapter 8 and Chapter 9.

7.2. Terminology

We consider the problem of performance-driven character animation, the process ofMathematical map-
ping description transferring a source motion—the user’s input sensed with the input device—to a

target motion of the target character. We focus on real-time methods, and refer to
them as real-time character control methods. We call the transfer process from source
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to target a mapping and treat the mapping as a mathematical function with source
domain equal to the user motion representation, e.g. a sequence of skeleton poses,
and target domain equal to the character representation, e.g. a mesh animation.
We further separate between reference (source/target) motions and control (source)
motions. Reference motions are used as examples during training, to construct
the source to target mapping, whereas control motions drive the target character
animation by live application of the constructed mapping. For the target character
terms motion and animation are used interchangeable.

When discriminating different character shapes we reason about different body pro- Character classes
portions, such as, different limb lengths or volume. Structurally different characters
are referred to have different topology, that means having a different number of
limbs for multi-legged creatures and completely different structure such as a worm
and a biped.

We distinguish topology-preserving mappings, which map between source and target Mapping classes
character of the same topology, and topology-independent mappings that can cope
with topology and shape differences. Furthermore, we separate instantaneous pose
mappings, which operate frame by frame, and motion mappings, which map dynamic
motion properties that are estimated over a time window.

The processing time of approaches is classified as offline when in the order of Interaction type
minutes, as interactive when in the order of seconds, and real-time when results
approach 30 Hz and more. We develop real-time approaches.

7.3. Related work

This section is based on the work of Rhodin et al. [2014, 2015b].

We introduce and discuss performance-driven character animation approaches. Overview
We start to discuss topology preserving mappings in Section 7.3.1. Most of these
approaches map human input to humanoid characters, and we cover offline, in-
teractive and real-time solutions. The strengths of existing topology-independent
mappings for controlling non-human characters and their remaining limitations
are discussed in Section 7.3.2. We consider pose as well as motion mappings. To
compare to the state of the art, the major features of the most closely related work
are summarized and compared to the methods of Chapter 8 and Chapter 9 in
Table 7.1.

Many of the discussed methods require some form of character animation as input. The cost
of animationCreating and animating virtual characters is a time consuming task and requires

artistic and technical skill. Also recording and reconstructing real performances is
expensive, as professional equipment is required for high quality. Animation by
simulation is discussed in Section 7.3.3; these techniques can automate animations
and are an alternative to performance-driven character animation.

Finally, Section 7.3.4 covers underlying methods and representations, which form Background
the basis of the algorithms presented in this part of the dissertation.
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Easy to use amplitude, frequency and phase #  # # # #  
Control of motion dynamics #  # #  #  
Extensible motion graph / intentions # H# # H#  #  
Control of fast and slow motions   # #    
Superposition control  #      
Direct control of skeleton DOF  # #    #

Interactive user-defined control motions # #   # #  
No body part or DOF assignment required H# #  # H# #  
Independent of rig #   # # #  
Non-biped topology # H#   #   
Robust to user size and shape   H# #    
No database or predefined controller required  # # # #  #

Diverse and multiple tracker capable # #  H# #   
Robust to low quality input device #    # #  
High-dimensional tracking input  #    #  
Real time        
Low control delay  #  H#   H#

Non-bipedal complex motion transitions # # # # #   
Foot-sliding prevention (biped & quadruped) H# H# # # H# #  
Physical realism #  # #  # #

Live animation (game, performance) #     #  
Prototyping / blocking animation   H# H# H#   
Professional ‘final’ animation  # # # H#  #

Table 7.1:  /H# /# : full / partial / no support; Feature table comparison of state-of-the-art real-time character
control methods to Rhodin et al. [2014], and Rhodin et al. [2015b], which are explained in
Chapter 8 and Chapter 9, respectively. For our task of versatile character control with application
to games, the proposed methods are often a better fit than existing methods, though the system
does require a pre-existing animation database.
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7.3.1. Topology-preserving mappings

Gleicher [1998] showed that user motion can be retargeted onto new bipedal Human motion
retargettingcharacters with different body shape and proportions, but the same (bipedal)

topology, through a set of position objectives and motion frequency constraints.
The goal of topology preserving mappings is to obtain a target character motion
which is as similar in position and dynamics as the original input motion, but
adheres to the target dimension, i.e., supports shorter legs leading to reduced step-
length when walking. Monzani et al. [2000] introduced an intermediate skeleton to
handle different skeleton structures with the same topology. Shin et al. [2001] added
importance sampling through the proximity of end effectors to the environment,
to balance between conflicting motion and positional constraints. Reusing motion
behavior across characters is not straightforward, as motion retargetting produces
awkward artifacts even when the characters are similar in geometry.

Ishigaki et al. [2009] applied retargetting to real-time games: user motion is blended Real-time
retargettingin real time with example animations, depending on user intention, and environ-

mental and physical constraints. This approach addresses the problem that input
motions are often stilted, because the admissible user motion is limited by the
motion-capture volume and is bound to the position of the display. For instance,
an on-spot swimming motion is transferred to proper virtual character swimming,
including global translation. This and the previously mentioned methods rely on
expensive optical motion capture, only available in professional motion-capture
studios.

For low-cost systems, Chai and Hodgins [2005] tracked sparse 2D marker positions Real-time
consumer levelin stereo video, and achieved 3D pose reconstruction by constraining motion to

a local linear model. Lee et al. [2002] transition a motion graph by performance
according to silhouette features from video. Barnes et al. [2008] track hand-drawn
paper cut-out characters in video input and transfer their rigid motion to 2D charac-
ters. Microsoft Kinect brought real-time control of virtual characters to casual users
by variants of classical retargetting: The KinÊtre algorithm of Chen et al. [2012] and
its extension by Jiang and Zhang [2015] map joint positions captured with Kinect
onto a target character by means of a mesh deformation framework. Vögele et al.
[2012] map the skeleton motions of two humans, captured by Kinect, in real time to
a quadripedal target skeleton, for instance by mapping one skeleton to the front half
of a horse, and one to the back. Both of these approaches provide intuitive character
control for casual users, however, their mapping is limited to target characters with
parts or sub-skeletons resembling a human skeleton, i.e., it is topology preserving;
further, the motion mapping is an exact mapping between sources and target. Weise
et al. [2011] extract facial expressions from the depth map provided by Kinect and
transfer these to virtual faces by corresponding blend-shape face representations.
Input and output are represented by the same set of face blendshape expression
components (see Section 2.2). Held et al. [2012] transfer object motion into virtual
worlds, but their approach is limited to rigid motions without articulation and
deformation. While these approaches have many applications requiring intuitive
interaction with characters, they do not allow to target characters with arbitrary
shape, do not support transfer between fundamentally different motion forms, and

103



7. Performance-driven character animation

control of dynamic motion properties is limited.

7.3.2. Topology-independent mappings

Topology-independent mappings are the focus of this chapter and are covered in
more depth. We discuss virtual puppetry, generalized retargetting, data-driven
pose mappings, and data-driven motion mappings.

Virtual puppetry The transfer of user performance onto virtual characters viaClassical pup-
petry principles motion tracking control has been used successfully in animation for many years.

Sturman [1998] reviews early work in performance-driven character animation,
describing pedals, gloves, joysticks, and body suits to empower multiple users to
orchestrate control of an animated character, similar to classical puppetry [Oore
et al., 2002]. Layering time-sequential performances allows for rich animations
[Dontcheva et al., 2003; Shiratori et al., 2013; Tyler and Neff, 2012], even from
mouse and keyboard input [Neff et al., 2007]. Acting out animations proves useful
for animation timing [Terra and Metoyer, 2004], but control becomes difficult for
complex characters and motions. Fender et al. [2015] create an interactive VR-
integrated animation system for layering multiple cyclic motions, where individual
cycles are manipulated through tracked glove motion. Particularly intuitive are
tangible and modular input devices, such as the one proposed by Jacobson et al.
[2014] and Glauser et al. [2016], that can be modified to match the character
topology and provide tangible feedback.

Generalized retargetting Hecker et al. [2008] showed that some generalization toRetargetting to
non-humans characters of different topology and shape is possible by duplicating and mirroring.

New control rigs and control parameters are estimated by a particle-based inverse
kinematics solver which makes the character move appropriately. Poirier and
Paquette [2009] adapt an existing reference skeleton to a new character mesh by
topology graph matching. Bharaj et al. [2011] automatically estimate a skeleton
for multi-component characters, and describe a way of mapping source motion
to the inferred target rig which succeeds as long as each target subchain can be
assigned to an equivalent subchain in the source rig. Jin et al. [2015] integrate
retargetting and shape editing into a single system that supports interleaved
animation and editing and is easily accessible to novice users. However, these
generalized retargetting approaches still rely on skeletons, are hard to map to soft-
bodied creatures, and do not apply to characters with entirely different topology
and motion style. Feng et al. [2008] extract a set of control points from a single mesh
animation and use kernel canonical correlation analysis between control points
and mesh to reproduce fine-scale surface details from the articulated movements
of an underlying skeleton. While these approaches generalize to characters on
non-human form, the underlying skeleton representations limit their generalization
to arbitrary shapes, for instance, the deforming body of a caterpillar is unsuitable
for a skeleton rig.

Data-driven pose mappings The similarity requirement between user and characterData-driven
can be relaxed by constructing indirect mappings. The mapping from user motion
to character motion can automatically be inferred in a training step by learning
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their dependency from examples. Training input motions are usually performed by
the user. Training character animations are pre-authored by artists.

Most common are pose mappings, which map the tracked user pose, frame-by-frame, Frame to frame
to a corresponding character pose. Pose mappings have been constructed through
linear transfer of interpolations weights [Bregler et al., 2002], non-linear interpola-
tion through a hierarchical mesh shape space [Baran et al., 2009], Gaussian process
latent variable model (GPLVM) [Lawrence, 2004; Yamane et al., 2010], and linear
maps to rigged characters [Dontcheva et al., 2003]. Real-time control has been
attained through linear mappings to rigged [Seol et al., 2013] and mesh charac-
ters [Celikcan et al., 2014]. Dontcheva et al. [2003] obviate the common manual
selection of corresponding degrees of freedom by CCA on a dense temporally
aligned training sequence. Baran et al. [2009] rely on a set of example temporal
correspondences that encode the semantics of the mapping. It nicely drives one
mesh animation by another, but is not applicable to the output of today’s real-time
motion estimation algorithms as it does not support point based and skeleton input.
Zhou et al. [2010] extend the framework of Baran et al. to multi-component objects.
One key difference of our approaches is that we utilize unlabeled samples in the
training motion examples, not just for user defined correspondences.

The approach of Yamane et al. [2010] is offline, it maps the exact motions of a Yamane et al.
(offline)human to a target character, e.g. a hopping motion to make a Luxo lamp hop,

or a toddle to control the walk of a penguin. With 30-50 correspondences hand-
distributed at important poses, they build a mapping between source and target in
a shared latent space obtained by GPLVM. As this mapping is noisy, they regularize
with a post-process inverse kinematics solver, as well as a further post-process to
ensure foot planting.

To improve real-time control of arbitrary characters, Seol et al. [2013] classify user Seol et al.
(real time)input poses in two: simple motions, where character features map to human features

directly and a linear map is applied, and complex motions, where features do not
correspond (e.g. many pairs of legs) and so a nearest-neighbor lookup (NN) finds
the closest animation frame from a pre-defined coupling. Both outputs are then
blended. This setup generalizes via the linear map from the authored character
animations as new live motions are performed. In Chapter 9 we overcome the
following remaining limitations. The NN map does not generalize, which leads to
stilted animation when given new live motion variations, with no extrapolation to
provide control over motion style variations. Moreover, detailed manual selection
of features and a character rig are required.

As demonstrated in Chapter 8, pose mapping techniques allow real-time control of Current limitations
non-human characters, as example-driven mappings decouple input and output
shape and motion style. However, the output animation quality and detail is limited
by the ambiguity of pose mappings. The goal of Chapter 9 is to overcome these
ambiguities by generalizing properties of motions from sparse examples.

Data-driven motion mappings To overcome pose ambiguities, the temporal evolu- Motion style
and dynamicstion of an animation can be utilized. Motion contains information on the performed

action, the mood of the character, and its intentions, information which is hidden
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7. Performance-driven character animation

in instantaneous shots, i.e., a single pose. For instance, slow waving usually resem-
bles a farewell gesture, while hectic waving is used to catch attention. The same
motion performed at different speed can encode different intentions. Extracting
and mapping such motion content is difficult and was only partially addressed in
related work.

Action control methods trigger (non-human) character actions by detecting userAction control
intention. Seol et al. [2013] classify user input by accumulating per-frame classifi-
cations. More advanced are classification methods using dynamic time warping
[Raptis et al., 2011] and dynamical movement primitives [Ijspeert et al., 2013]. Such
high-level action control enables sympathetic interfaces, e.g. animation through a
sensor equipped plush doll [Johnson et al., 1999], and automatic maintenance of
the emotional character state to stay in character [Tomlinson et al., 2002]. Please
note that these approaches only classify in broad categories, it is not possible to
map continuous properties of motion, which would provide a much finer level of
control.

An inspiring step in this direction is the method of Shiratori and Hodgins [2008],Shiratori et al.
(real time) where amplitude, phase, and frequency of low-dimensional accelerometer sensors

are mapped to a physically-simulated character. The input motion is classified
into a set of discrete states and each input state maps to a predefined character
state. For instance, acceleration frequency is classified into slow and fast states
and is respectively mapped to a slow or fast character walk, utilizing that a slow
and a fast walk input creates low and high frequency accelerations, respectively.
The simulation takes care of transitions and directional changes. The method
of Lockwood and Singh [2012] applies a similar principle and classifies finger
walking motions from touchpad input by contact features, e.g. frequency, into gross
motion classes. We generalize these ideas in Chapter 9, to handle high-dimensional
input motions, continuous output (e.g. speed regression vs. classification into
slow or fast), user-defined control motions with arbitrary periodic trajectories, and
simultaneously-performed motions.

7.3.3. Character control by simulation

Direct manipulation of selected degrees of freedom (DOF) of characters is tediousAnimation by
simulation for the artist and can be eased by adding physical simulation. In contrast to the

previously introduced performance mapping approaches, control by simulation
creates physically-motivated animations from scratch. Only the start and boundary
constraints for simulation systems need to be set. The difficulty lies in finding
the right balance between user specifications and automatic simulation. Coros
et al. [2012] build controllers for purposeful motion of soft deformable characters
via elastic simulation. They couple mouse input via rest state adaptation in an
elastic physical simulation, and Laszlo et al. [2000] couple mouse and keyboard
input with physical simulation of bipedal motion through proportional derivative
controllers. The precise control of complex simulated characters is difficult, as the
outcome of the simulation from user input is hard to imagine by the user. To ease
simulation control Laszlo et al. [2005] proposed to provide guidance by simulating
and displaying the outcome of possible future user inputs interactively, giving
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the user immediate feedback on the temporal influence of his input. Celikcan
et al. [2014] combine data-driven pose mappings with physical constraints by
solving a spatio-temporal system of equations, leading to physically plausible
performance-driven animation.

7.3.4. Character and motion representations

As important as how to map between human input and character output motion
is to decide on their representation. The representations most related to the ones
chosen in this dissertation are introduced in the following.

Dimensionality reduction Data-driven animation schemes parameterize a charac- Animation
representationter motion space by example motions. Animation researchers have experimented

with dimensionality reduction techniques for data reduction and for designing
new motion controllers that are intuitive to use [Alexa and Müller, 2001; Kry et al.,
2009], and both linear mappings and non-linear approaches have been investigated
[Shin and Lee, 2006]. In linear frameworks, the movement space can be considered
to be spanned by a set of basis shapes [Torresani et al., 2001], or by a set of basis
trajectories for each point [Akhter et al., 2010]. In this new basis space, the character
can be controlled by modifying the influence of basis shapes or trajectories. Akhter
et al. [2012] propose a bilinear spatio-temporal basis that describes oscillations
around a set of example shapes. Some animation types cannot be well represented
in a linear framework, and so these techniques might lead to a small latent con-
trol space with few meaningful dimensions. Non-linear dimensionality reduction
techniques, such as Gaussian process latent variable models (GPLVM), kernel
methods, or multi-dimensional scaling (MDS), have also been applied to animation
parametrization [Levine et al., 2012]. For example, Cashman and Hormann [2012]
project arbitrary motions onto a 2D control plane, obtained through MDS, to create
new animations as paths within that latent space. In contrast to these approaches,
where each dimension in the latent space affects the surface deformation globally,
direct local parameterizations in the source space are also feasible. James and Twigg
[2005] represent general mesh deformations with a set of proxy bones and skinning
weights. Kavan et al. [2010] and Jacobson et al. [2012] extend this framework for
fast and automatic computation.

Dynamics can be integrated into the model by considering previous frames of Motion
parametrizationmotion. de Aguiar et al. [2009] use projection into a linear latent space in combina-

tion with a second-order linear dynamic system to simulate cloth motion, whereas
Wang et al. [2008] use a non-linear system built through Gaussian process dynamic
models.

Motion graphs Realistic character motion is heavily constrained. Transitions be- Transition
graphstween two motions can only happen at limited time frames and not between all

motion classes. For instance, it is impossible to walk while lying on the ground, the
character has to stand up first. And transitions from run to walk are only possible
during ground contact, not in mid air. Such constraints are modelled in motion
graphs of animation databases: Nodes in the graph represent decision points, and
edges represent feasible transitions between motions. Rose et al. [1998] and Heck
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7. Performance-driven character animation

Emotion 

Frequency 

Happy 

Neutral 

Sad 

Stand Walk Run 

Figure 7.2: Database character animations are structured into parameterized motion classes, such as this
locomotion class for a dog. In Figure 9.3, the phase-frequency slice through the parametrized
motion class is visualized, here we give the speed-emotion dimension.

and Gleicher [2007] extend this structure where a node represents a motion class
(e.g. walking) which is parametrized by motion properties such as speed or style.

In Chapter 9, we use a simple motion graph of a dog character with shake, sit down,
and move classes. Figure 7.2 shows an emotion-frequency slice of the parametrized
move class.

Such parametrized spaces are traditionally created by manual positioning of ex-
amples [Igarashi et al., 2005], which may require artistic skill or knowledge of
the animation pipeline to produce good results. Automatic extensions include
parametrized transitions [Shin and Oh, 2006], dense graphs where possible transi-
tions are stored for each database frame [Lee et al., 2010], statistical motion models
[Min and Chai, 2012], and interpolation and transition for mesh characters [Casas
et al., 2012]. Graph construction has also been automated [Kovar et al., 2002; Heck
and Gleicher, 2007]. The interpolation quality and realism can be improved by
using pre-recorded motions as transitions [Tanco and Hilton, 2000; Arikan and
Forsyth, 2002]. Animations are commonly synthesized according to high-level task
constraints such as motion goals, and foot-plant and end-effector positions [Wiley
and Hahn, 1997; Lee et al., 2010; Levine et al., 2012; Lockwood and Singh, 2012],
though this part of the dissertation focuses on real-time gestural motion control.

Fourier representations While motions can be represented as a time series of poses,Space-time
representations they do not capture important properties, such as periodicity, and are not well

suited for motion analysis. Fourier representations separate motion properties in
frequency bands and have been widely used in character animation. Frequency
band decompositions have been used to create animation variations by multi-level
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sampling [Pullen and Bregler, 2000], to blend animations, and to alter motion style
[Unuma et al., 1995]. The bilinear spatio-temporal basis of Akhter et al. [2012] also
expresses frequency bands. In Chapter 9, we use a particular form of Fourier decom-
position of high-dimensional live input motions to transfer amplitude, frequency
and phase properties from input motion to target character.
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Interactive pose mapping

for real-time character

control
8

This chapter is based on Rhodin et al. [2014].

The motion-capture algorithms explained in the first half of this dissertation provide Tasks and
open challengesgreat opportunities as input for interactive animation. With traditional skeleton-

based animation pipelines, human joint data can be mapped to a virtual character
so long as it has a similar skeleton to a human, thus providing character control.
However, often structurally different non-humanoid characters need to be con-
trolled. For instance, deformable characters like caterpillars are poorly represented
by skeleton rigging. Spiders can be parameterized by skeletons with different
numbers of limbs, but even if a skeletal mapping can be defined, direct human
skeletal control would be difficult due to the entirely different character motion
style. In these cases, mapping and retargetting of human motions would require
tim- consuming manual work by animators. In general, retargetting has practical
limitations, and the question of how to map arbitrary motions remains.

Existing character control algorithms cannot map arbitrary source and target Existing
approachesmotions, and new approaches need to fundamentally generalize. One approach is

to deform meshes by using joints as deformation constraints, e.g. to embody and
move a chair [Chen et al., 2012]. Another approach controls a quadrupedal target
skeleton by mapping the motion to two humans, similar to a pantomime horse
[Vögele et al., 2012]. However, these approaches do not scale to target character
shape and motions that are very different from human.

Solutions to the generalized motion retargetting problem need to map a source Need
input space to the target output space of a virtual character, even if that character is
structurally dissimilar to a human and even if its motion is not well represented by
a skeleton. It should be possible to map an undulating arm motion to a crawling
caterpillar motion, or to map a jockey saddle bounce motion to a horse gallop
motion, all without explicitly specifying spatial correspondences.

We move towards this goal with a solution for interactive mapping and real- Our approach
time character control. Our approach is general and abstracts from the classical
skeleton-rig-based motion parameterization which is not suitable for mapping
structurally different motion spaces. We take as input a reference source sequence
of sparse 3D points or meshes, such as full-body, hand, or face motion from any
motion-capture system. This approach bypasses time consuming and potentially
error prone skeleton reconstruction, see Figure 8.1. We also take as input a target
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Figure 8.1: Different motions are easily mapped between very different morphologies for fast and versatile
real-time character control. We require only 4-8 interactively defined correspondences and
support 3D point sequences and meshes as input.

character as a sequence of meshes, and no additional control rig is required. Thus,
any animation type can be puppeted by our system, be it keyframe animation,
physics-based simulation, or rig-based animation.

To achieve this, we represent both motions in dedicated feature spaces and learn aLatent volume
and mapping mapping between these intermediate representations, with bounds stemming from

a latent volume which constrains the predicted poses. Latent volumes are bound
from training motions which reduce the risk of causing artifacts if new live source
motions for puppetry are unlike the reference source motions, and so they remove
the need for the puppeteer to restrict their poses only to those correspondences de-
fined. Furthermore, this makes our approach robust, and mappings learned for one
source can be successfully applied to other sources, such as in training/repetition
scenarios or across actors. The learned mapping is pose-based, a motion-based
approach is described in Chapter 9.

Our approach is fast, flexible, and user-friendly as our algorithm only requires theInteractive definition
and real-time control specification of 4-8 temporal correspondences between source and target sequences.

We neither require spatial correspondences, e.g. limb mapping, nor correspondences
to every pose in the target character motion. This enables an efficient animate-
correspond-synthesize workflow: The user interactively corresponds their body poses
to the target character, the mapping is learned in a few seconds, and then new
animation is synthesized in real-time. As this cycle is very fast, users can iterate
to find which source mappings are most intuitive and make on-the-fly control
adjustments. This naturally leads to applications in simple motion and party games;
however, our approach also gives new tools to animation artists. In conversations
with animators, they found our system useful to ‘give life’ to existing animations
through creative puppetry, for example, to produce variation when animating
crowds or when adding timing nuances to a walk cycle through finger tracking.
In our experiments, we show the performance and reliability of our method with
a variety of real-time control examples with different source and target motions,
such as mapping full-body motion of a human to a caterpillar and mapping face
motions onto a sheep.
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Figure 8.2: Learning a motion mapping: 1) Offline, an artist creates an unlabeled target motion. We learn
latent volume Y′ and the dependency Φtrans between changes in pose and global translation G.
2) Sparse key pose correspondences are automatically suggested and then interactively refined.
3) The map Φpose between source space X and target space Y is learned.

We summarize our contributions: Contribution
and impact

– A real-time algorithm that can map between characters with different topology
from sparse correspondences.

– A latent volume representation that efficiently exploits unlabeled data to allow
robust character control.

– An automatic keyframe suggestion method to support the user during corre-
spondence selection.

These create a robust and easy to set up system for interactive motion mapping of
characters with arbitrarily different shapes and motions, which opens the door for
more creative and intuitive real-time character animation.

8.1. Overview and notation

We wish to control a target character by performance. First, we learn a high- Structure
dimensional oriented bounding box, or latent volume, which represents the space of
controllable target poses (Figure 8.2, left, and Section 8.2.1). This offline training
computation takes about a minute. We wish to puppet the target motions using
arbitrary source motions, and so the next step is for the user to interactively define
a small number of pose correspondences (4 to 8) between example or reference
source motions and the desired target motions (Figure 8.2, middle, and Section 8.3).
The reference source motions need only be performed once, and help is provided
with automatic suggestions of appropriate poses. From these correspondences, we
learn a mapping between reference source and target motions (Figure 8.2, right,
and Section 8.4), and this takes less than one second. This completes the learning
stage.

In the synthesis phase, live user control motions are inputted to the learned motion Control
capabilitiestransfer mapping to synthesize new motion sequences of the target character in

real time (Figure 8.6, and Section 8.5). Control motions are similar repetitions
of the reference source motions used to define correspondence, and can vary in
intensity, e.g., faster or slower, or arms raised less high, and can be performed
simultaneously to cause motion combination or superposition effects. In most cases,
the input reference and live source motions will both come from a tracking system
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Figure 8.3: Global translation xtrans
t and rotation xrot

t of a general pose (right) extracted in relation to the
rest pose (left).

such as Kinect, LeapMotion, or a face tracker, which creates a system for interactive
motion mapping and real-time character control.

In the diagrams of this chapter, the input reference source motion used in trainingInput and
output notation and the live control motion used in synthesis are shown in red, the input target

motion is in green, and the output synthesized motion is in blue. Our source
motion [x1, . . . , xM] is a 3D point sequence with M frames. Target character motions
[y1, . . . , yN ] are mesh sequences. Our representation must separate global motion
from character pose, such as, to isolate a walk cycle from world movement, so that
we can independently map these to different controls. We parametrize a motion into
character pose feature vectors [xpose

1 , . . . , xpose
M ], global translations [xtrans

1 , . . . , xtrans
M ],

and global rotations [xrot
1 , . . . , xrot

M ].

8.1.1. Global motion

For each frame in the source xt (or target yt), we estimate the global position andGlobal pose
orientation of the character on the ground plane as an offset to x1 by the least
squares fit of xt to x1 using orthogonal Procrustes analysis [Sorkine, 2009], see
Figure 8.3. Global motion is represented by 3 degrees of freedom: a translation
vector xtrans

t ∈ R2 and a yaw rotation angle xrot
t ∈ R.

8.1.2. Source point-based representation

We represent character pose as the concatenated feature vector of 3D point positionsTemporal
information and their velocities after compensating for global motion and mean centering. The

velocities help disambiguate similar poses in simple source motions (e.g. raising
vs. lowering limbs). For a pose xt at time t, velocity vector ẋt = (xt − xt−1)/∆t,
where ∆t is the time between two frames. The source pose vector is xpose

t =
[x>t , wẋt

>]>, which is 6V in length for a character of V vertices. Factor w balances
the contribution of static and dynamic information in the regression and is set to
0.1. For noisy vertex position input, we apply a small one-sided Gaussian filter to
smooth temporally, with a 3-frame standard deviation (≈ 0.1 sec.).

114



8.2. Learning a motion mapping

2 

b) Target mesh-based motions 

a) Source point-based motions 

Face transf. & vertices PCA space 

 
 
⋮
 
 

 

Feature vector Vertices,edges 

 
 
⋮
 
 

 

Vertices Feature vector Vertices & vertex velocities 

Figure 8.4: a) Source point-based characters are represented as vertex positions and velocities. b) Target
mesh characters are decomposed into vertex positions and face transformations to model
rotations explicitly, and are projected into low-dimensional PCA space to reduce complexity.

8.1.3. Target mesh representation

The simple point-based representation leads to strong distortions if used for target Per-face
representationmesh characters. We remove distortions by exploiting information contained in the

connectivity of the mesh. We extend the deformation gradient representation, which
models surface deformation by combining per face transformations [Sumner and
Popović, 2004], with explicit vertex features (Figure 8.4). We discuss the strength of
this representation against alternatives in Section 8.6.1.

For each mesh face f we extract the affine transformation A f in relation to the rest Rotation and
shear encodingpose and decompose it into rotation and shear by polar decomposition. Rotations

are compactly stored in axis-angle form and the six degrees of freedom of the
symmetric shear matrix are linearized to a vector. To model the absolute position
of potentially disconnected mesh components, which is not included in the original
deformation gradient representation, we additionally store all vertex positions vi.
Therefore, each pose vector ypose

t is a concatenation of 3F rotation, 6F shear, and
3V point parameters for a character with F faces and V vertices. Details of this
representation are given in Section 2.2.3.

8.2. Learning a motion mapping

We aim to learn a motion transfer function Φ : X→ Y between the space of source Mapping domains
poses X and the space of target poses Y based on a sparse set of labeled pose
correspondences L ⊂ X×Y and additional unlabeled character example motions
Uy ⊂ Y.

This is an instance of the regression problem. In this context, previous works Semi-supervised
regressionhave successfully applied combinations of non-linear feature extraction (or data

representation, e.g. GPLVM) and regression (e.g. kernel-based Gaussian process
regression (GPR)) to offline character animation [Yamane et al., 2010; Vögele et al.,
2012; Levine et al., 2012]. However, our application poses new challenges that
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8. Interactive pose mapping for real-time character control

are not well addressed in existing systems: 1) only a limited number of labeled
correspondences are given, and 2) character animation synthesis should be real-
time. Fortunately, unlike typical regression, we have the set of unlabeled examples
Uy ⊂ Y which is larger than the labeled training set of correspondences. We exploit
this additional information on the potential variations to assist the regression
process and estimate a latent volume Y′ that effectively encodes and limits the
predicted pose.

As such, our goals are three-fold (Figure 8.2): First, to learn a mapping ΦtransMapping type
between pose and global translation for the target sequence [y1, . . . , yN ], and to
learn the range of admissible target motion as a latent volume Y′ (Section 8.2.1);
Second, to generate pose correspondences L between reference source motions
and target motions, in which we adopt Bayesian regression to suggest appropriate
candidates (Section 8.3); and, third, to learn a motion transfer function Φpose

between source and target poses from these correspondences (Section 8.4).

8.2.1. Offline target learning

The offline learning includes two steps (Figure 8.2, left): learning a mapping ΦtransLocal and
global motion which links pose to global translation, and the computation of the latent volume

Y′.

Dimensionality reduction We reduce the dimensionality of mesh representationsSimplification
by PCA to D = 50 by principal component analysis (PCA) on Uy. D was chosen experi-

mentally such that the dimensionality is drastically reduced while still preserving
more than 99% of the original variance, and this improves the memory footprint
and performance of the mapping for our real-time scenario. Henceforth, we refer
to the resulting feature vector as ypose

t ∈ RD. The reconstruction from this low-
dimensional feature vector is explained when we come to synthesize a new motion
in Section 8.5.

Learning a latent volume We represent pose as a vector ypose
t , an element of RD.Admissible

poses However, characters are physical objects whose pose variations are constrained by
their bodies, and the plausible range of variation in ypose

t is significantly smaller
than RD. For instance, human pose is limited by joints, while caterpillar and crab
poses are constrained by their skins and carapaces.

Traditionally, these constraints have been explicitly constructed through virtualLatent volume
skeletons with fine-tuned degrees of freedom and joint limits. In our case, we
expect arbitrary source and target animations and, accordingly, we have no a priori
knowledge about the admissible range of motions. Our approach is to exploit
the unlabeled data Uy for inferring implicitly the admissible variations through
a high-dimensional oriented bounding box, or latent volume. By assuming that
the distribution of poses is approximated by a Gaussian distribution, we find the
principal axes of variation by decorrelating Uy with PCA and estimating the range
of motion to be the minimum interval Ic encompassing all data points in Uy across
PCA components c. The effectiveness of this operation is empirically demonstrated
in Section 8.6.
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Global translation map Global character motion (ytrans
t , yrot

t ) often depends on On-spot input
to global motionthe change of pose ẏpose

t , e.g., a pose in a run motion should cause more global
translation than a pose in a walk motion. We learn a relationship between pose and
translation with a linear map Φtrans from the target pose velocities, which uses the
heuristic that a quicker pose change leads to quicker locomotion:

Φtrans = arg min
W

∑
=1,...,N

‖W |ẏpose
t | − ẏtrans

t ‖2 + ‖σtransW‖2, (8.1)

where velocities are estimated by finite differencing, |y| is the coefficient-wise
absolute value of vector y, and σtrans is the regularization parameter (= 0.001). We
learn Φtrans from Uy and apply it during synthesis to recover global translation,
and separately apply rotations from the live control motion (Section 8.5).

8.3. Guided interactive control definition

Given the latent volume of the target sequence, our next goal along the way to Semantic
alignmentdefining the pose motion transfer function Φpose is to label corresponding pose

frame pairs L =
[
(xpose

l1
, ypose

l1
), . . . , (xpose

ln
, ypose

ln
)
]

between the reference source and
target sequences, where each label element [l1, . . . , ln] contains indices for xpose and
ypose in their respective frame ranges [1, M] and [1, N]. From existing work, we
might think that time-warping is a suitable method to align reference source and
target character sequences by synchronising spatial correspondences; however, this
assumes a priori temporal or spatial correlations. For instance, Vögele et al. [2012]
use time-warping to align the legs of two humans to the front and rear limbs of a
horse, but this ‘limbed creature’ spatial correlation assumption fails for arbitrary
motions and characters.

In arbitrary cases, selecting good correspondences between reference source mo- Dissimilarity
measuretions and target motions requires some skill as it is not always intuitive which

source motions will lead to good control. To ease this process, we exploit a Bayesian
regression model (detailed in Section 8.4) to provide assistance in two different
use cases. As correspondences are defined and as L increases in size, this model
provides us with the most probable corresponding pose ypose

∗ for the current source
pose xpose, where the probability density P(ypose|xpose) is inferred from the present
set of correspondences L and where the variance corresponds to the uncertainty of
the prediction. Therefore, we choose the predicted variance as a metric q(xpose) to
suggest correspondences which will make mappings with good control.

Performance-based Often it is natural to perform the desired reference source Interactive
control definitionmotions, and so in this mode the user defines correspondences to target poses by

performing the reference source motions and timing button presses. For instance,
when capturing reference source motions with Kinect, our system uses a hand-held
remote-controlled trigger which the user activates when their poses align to the
desired target poses. To help the user, q is shown as a bar which increases in size
and changes color from red to green when the performed pose is underrepresented
by the present correspondence selection, i.e., when the performed pose explains
much of the remaining variance (Figure 8.5, bottom).
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Figure 8.5: Top: Automatic correspondence suggestion for mapping source face tracking data to a sheep char-
acter. The confidence plot score allows users to fine-tune the suggestions. Bottom: Performance-
based correspondence definition, where the confidence of the current pose being a good
controller is visualized to the user as a colored bar.

Automatic correspondence suggestion In other cases, the reference source motionRefinement
is captured offline, or the user may wish to refine performance-based correspon-
dences. For each target correspondence ypose

l , we suggest the 5 largest local maxima
of q

(
[xpose

1 , . . . , xpose
M ]

)
from the reference source as candidates. Users can accept

one of the suggestions, or are able to make adjustment with a pose time slider.
After acceptance, the pose correspondence is added to L, metric q is instantly
recomputed for the updated L, and new suggestions are proposed for the next
correspondence (Figure 8.5, top).

8.4. Learning a user-to-character pose mapping

Given our correspondences, the next step is to learn Φpose, the pose transferLinear Bayesian
regression function. We construct a linear map Φpose(xpose) = M xpose that fits to a given
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set of labeled correspondences L. Matrix M is of size D× input pose dimension.
Adopting the standard Bayesian linear regression framework, we apply an identical
isotropic Gaussian prior to each row of M; row(M) ∼ N (0, I) withN (m, C) being a
Gaussian distribution with mean vector m and covariance matrix C, and a Gaussian
noise model:

ypose = f (xpose) + εI, (8.2)

where f is to be estimated and ε ∼ N (0, σ2). We set the noise value σ2 to 0.05 for
all our results; manual tuning may further improve results. We concatenate xpose

with 1 to model a constant offset between source and target.

Marginalizing the prior of M and the likelihood (8.2) over M, we obtain the Posterior
distributionpredictive Gaussian distribution on the output target pose ypose given test input

xpose
∗ [Rasmussen and Williams, 2006]:

p(ypose|xpose
∗ ,L) = N(σ−2YX>A−>xpose

∗ , xpose
∗

>
A−1xpose

∗ I), (8.3)

where A = σ−2XX> + I and matrices X = [xpose
l1

, . . . , xpose
ln

], Y = [ypose
l1

, . . . , ypose
ln

] are
formed from L. The map Φpose is then defined as the mode ypose

∗ = σ−2YX>A−>xpose
∗

of the predictive distribution for test input xpose
∗ . Computing Φpose is equivalent

to ridge regression. The Bayesian framework provides the variance xpose
∗

>
A−1xpose

∗
of the predictive distribution which corresponds to the uncertainty on the made
prediction. This information is exploited as metric q(xpose

∗ ) for suggesting label
candidates as shown in Section 8.3. We apply Φpose to live control motions in the
next section.

8.5. Live character animation

With pose mapping Φpose, we can now sequentially map endless live control mo- Pose mapping
tions [. . . , χt−1, χt, . . .] to create new target motions [. . . , γt−1, γt, . . .]. Input χ and
output γ are novel, and are not contained in the training data [x1, . . . , xM], [y1, . . . , yN ].
As summarized in Figure 8.6, synthesizing each output frame γt is performed in
two steps: 1) Inferring the pose γ

pose
t by Φpose on χ

pose
t , constrained by the latent

volume; and 2) Applying the global translation map and rotation map Φtrans, Φrot

on the newly synthesized pose γ
pose
t to obtain global motion velocities γ̇trans

t , γ̇rot
t .

Finally, these are integrated to yield γtrans
t , γrot

t .

The latent volume constrains a new pose estimate γ
pose
t by projecting onto the Bounded result

PCA space and clipping each PCA component c to the respective interval Ic. The
effect is that of a high-dimensional bounding box in RD whose sides are aligned
with the principal axes of pose variation. This ensures that the outputs are strictly
contained in the volume spanned by Uy, and unwanted deformations of the target
character are prevented (see Section 8.6.1). Except for the latent volume bounding,
all operations are linear and only depend on the most recent frames. This allows
real-time control.

In principle, a rotation map Φrot could be learned in a similar way to Φtrans; however, Orientation
controlin practice this requires target sequences to contain sufficient examples of character

rotation, and this is often not the case. Instead, the target rotation is controlled
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Figure 8.6: Synthesis: 1) Given a new input pose, the distribution of most likely target poses is inferred
through Φpose (Section 8.4) and constrained by the latent volume to obtain the final target char-
acter pose. 2) The global translation is inferred through Φtrans from pose velocities (Section 8.2.1)
and source rotation is mapped to output rotation by Φrot (Section 8.5).

directly from source rotation χrot
t through Φrot : χrot → rχrot, with r manually

adjusted to the agility of the character. Practically, this leads to intuitive control
where rotating the body in front of Kinect also rotates the character.

8.5.1. Mesh reconstruction

While the motion mapping is simple, we still need to return from our dedicatedMesh
reconstruction feature space. This is more complicated for mesh sequences as we decompose

them into vertex positions vi and per-face rotations and shears A f , and project
these into PCA space (Section 8.2.1). Thus, given a new pose γ

pose
t in feature space,

first, the PCA coefficients are back-projected to obtain face transformations A f and
positional features vi. After the mapping procedure, the transformations of A f and
vi might be inconsistent and might yield a disconnected surface. We reconstruct a
coherent surface by solving a Poisson system similar to the approach of [Sumner
and Popović, 2004], Section 2.2.3 gives a more detailed explanation.

8.6. Evaluation

Our dataset consists of 8 different motions. The CMUHuman mocap data is from theSequence details
CMU Motion of Body Database. The KinectHuman sequences are captured with a
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Figure 8.7: KinectHuman-Handwave arm motions (left) and KinectHuman-Jockey (right) knee bend motions
synthesize Horse gallops.

Kinect sensor Shotton et al. [2011]. The LeapMotion sequence from the Leap motion
controller [LeapMotion]. These three sequences are all 3D point-based, representing
the 3D joint positions of the full body and hand. Face contains 66 2D feature
points tracked automatically from a video sequence. Elephant, Horse, Caterpillar,
and Sheep are mesh sequences created by artists containing different motions. The
data acquisition processes for KinectHuman and LeapMotion are real-time. Table 8.1
details these sequences and the number of correspondences between them.

The (hyper-)parameters of our algorithm are: temporal motion derivative weight Hyper
parametersw = 0.1 (Section 8.1.2), latent volume dimensionality D = 50 (Section 8.2.1),

pose and translation regression regularization parameters σ = 0.05, σtrans = 0.001
(Section 8.4), and per-character rotation angle r (Section 8.5). Except for r, which is a
data-dependent fixed ratio, these parameters were tuned once and fixed throughout
the entire set of experiments. Experiments were performed at 30-40fps on an Xeon
3.6Ghz Quad-Core for meshes of 3-16k triangles.

Figure 8.7 (left) shows how KinectHuman-Handwave is transfered to Horse. Although Full-body motion
examplesour algorithm was not explicitly directed to focus on the right hand in synthesizing

the target, it successfully inferred the desired effect from only 4 correspondences.
The hand waving speed controls the target motion speed. Any combination of
source and target is possible—we replace KinectHuman-Handwave with KinectHuman-
Jockey in Figure 8.7 (right), and now knee bounces control the target.

Figure 8.8 (left) shows an example where a CMUHuman walk is transferred to a Motion capture
inputCaterpillar that has different topology in static shape and demonstrates completely

distinct dynamics in motion. With only 4 labels, our algorithm successfully re-
covered the underlying correspondence in class. Furthermore, this mapping can
be directly applied to other source motions, and we puppet the caterpillar with
stylized slow, medium, and fast walks.

Figure 8.8 (right) shows a more challenging scenario with walking, leaning, raising Controlling multiple
motion classesof the thorax, and jumping. This wider range of motions was covered by 8 inter-

actively defined example correspondences. In Figure 8.11 and, we show that the
linearity of our mapping allows for realistic superposition of motions such as turn
and crawl, and head-lift while bending.

In Figure 8.9, we show the transfer of facial motion between a human (Face) and 2D input
a sheep (Sheep-Face) using only 6 example correspondences, which were defined
using the automatic correspondence suggestion.

Figure 8.10 shows the last example in which a KinectHuman controls a Sheep. Local Animation
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8. Interactive pose mapping for real-time character control

Figure 8.8: Examples of motion transfer to a caterpillar. Left: Mapping learned from CMU Human-Walk
style C and applied on different styles A,B,C varying in speed and step size, which displays the
capability of style transfer. Right: KinectHuman-Various and the synthesized Caterpillar.

Figure 8.9: Examples of facial motion transfer learned from 6 correspondences. The first and second
columns: Face and the second and fourth columns: the synthesized Sheep.

arm and global body motions of the source sequence are assigned to walking and
jumping of the sheep based on 6 correspondences. Our algorithm generalizes these
different classes of motions well. In practical applications, a fine-detailed geometry
(such as fleece) can be added to generate a visually pleasing character.

8.6.1. Comparison to alternative approaches

The advantage of the combined shape space is shown in Figure 8.13 with a mapRepresentation
comparison from an Elephant to Horse. Raw point features lead to distortions when synthesizing

rotational motions and the deformation gradient representation is agnostic to
vertical translation. The latent volume and use of unlabeled data is compared to
pure PCA in Figure 8.12. The gain from the remaining method components, such
as the velocity features and regularization, are especially noticeable in motion; the
supplemental video published alongside [Rhodin et al., 2014] shows these gains
with a comparison of our model to weighted nearest neighbor lookup and to the
method of Yamane et al. [2010]. The quantitative improvement of different model
components are analyzed in the following section.

8.6.2. Quantitative analysis

We wish to compare our animation results quantitatively, e.g. as the mean EuclideanGround truth
definition distance to a ground-truth animation. Since there is no obvious ground truth in

motion mapping, we employ the different strategy of dividing user-provided
correspondences into a learning set and a disjoint validation set as ground truth.
For quantitative evaluation, we measured the errors of the outputs of our algorithm
for the KinectHuman-Horse sequence (Figure 8.12).
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Table 8.1: Target character frame length, walk cycles frame length, and the number of source-target pose
correspondences for each sequence. † denotes Kinect and Elephant.

Source char. Kinect † Kinect CMU Leap,Face Mocap
Target char. Caterp. Horse Sheep Caterp. Sheep Lamp

Target frames 700 12 57 100 100 35

Target walk cycle length 20 12 18 150 n/a n/a
# correspondences 8 4 6 4 6 8

Figure 8.10: With appropriate rendering, our system can create expressive characters. We integrate our
motion transfer method into a professional animation-rendering pipeline to show transfer from
sparse input to fine geometry.

For a given set of output meshes of our algorithm Z = [Z1, . . . , ZT′ ] and the SNR metric
corresponding ground truths G = [G1, . . . , GT′ ], the results are summarized based
on the signal-to-noise ratio (SNR):

SNR(Z|G) = 10 log10
V
E

, (8.4)

where the error E is defined as

E =
1
T′

1
Nv

T′

∑
i=1

Nv

∑
j=1
‖Zj

i − Gj
i‖

2 (8.5)

with Nv being the number of vertices in each mesh. The variance V is calculated in
the same way as E except that each ground truth is replaced by the mean mesh of
G. Figures 8.14 and 8.15 show the results. For comparison, we also show the results
of variations of our algorithm constructed by replacing each system component
with an alternative, to show the importance of each step. In Figure 8.15, ‘latent
volume’ denotes our original algorithm while ‘PCA only’ implies removing the
projection onto the estimated support in PCA space (i.e., only axis rotation plus
reduction of dimensionality to 50).

The results were generated based on 50 correspondences from which a varying Cross
validationnumber T′ of examples (correspondences) were used for training (x-axis in the

figure) while the remaining 50− T′ examples were used for evaluation. For each
T′, we generated 10 different combinations of training and evaluation sets and
the mean SNRs were calculated. The results show steady increase of SNR as T′
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Superposition Reduced 

intensity 

1 2 3-6 7 8 

Figure 8.11: Top: Correspondences labeled between joint positions and caterpillar mesh to control bending
(1-2), crawl (3-6), head lift (7) and jump (8). Bottom: New pose synthesis of the caterpillar
character showing intermediate and newly inferred superposition of, e.g., bend and crawl.

increases as expected. The use of latent volumes (specifically, the use of unlabeled
priors) is justified by the improvement in performance over regular PCA.

Interestingly, the PCA dimensionality reduction degrades the performance whenApproximation
impact the resulting dimensionality is low (20 and below). In our preliminary experiments,

we observed that the performance improves as the dimensionality increases, and
eventually, it approaches to the level of not using dimensionality reduction at all.
This suggests that the feasible set of motions does not lie on a low-dimensional
linear sub-space of the data space. While, in theory, this problem could be addressed
by adopting non-linear representations, the high computational complexity of
existing algorithms is unsuitable for real-time systems.

As demonstrated in results, our latent volume can be regarded as a practical trade-Latent volume
impact off between complexity and flexibility. Figure 8.14 shows the results of additional

variations of our algorithm with different choices of regression functions: here,
‘Latent volume’ (without velocities) denotes the setup where the first-order motion
information is removed from the input features while ‘Polynomial’ denotes a non-
linear regression implemented by performing linear regression with monomial
features [x1/2, x, x2] for each feature x. For these variations, the regularization
parameters were manually tuned in favour of SNR. The superior performance of
our algorithm ‘with velocities’ indicates the advantage of exploiting the temporal
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a) b) c) d)

Figure 8.12: Comparison of our method to related mapping techniques. The horse pose is synthesized
from Kinect input through a) a linear map without unlabeled examples, b) in a PCA latent
space of dimension 10, c) by our method, and d) our method without unlabeled examples.
Artifacts are marked in red, successfully regularization in green.

2 

a) Input b) Point features c) Hybrid (our) d) Def. gradient 

Figure 8.13: Result of deformation transfer using a) point features that lead to shrinkage artifacts, b) our
artifact free representation, and c) the deformation gradient representation which does not
capture vertical translations.

data for motion synthesis. Polynomial regression overfits to the data even with
regularization, that can be attributed to the lack of labeled correspondences. We
expect that, in general, when the number of examples is very large, a non-linear
regressor (e.g. the polynomial regressor) should perform better than a linear
regressor.

8.7. Discussion

Our final algorithm is a design that reflects the requirements imposed by the Interactive
and real-timeapplication scenario: interactive correspondence declaration, real-time mapping,

and versatility to very different source and target sequences. Here, we briefly
discuss how these choices were made.

Linear regression The choice of a linear regressor over non-linear algorithms is Speed vs.
complexitynot driven by the complexity but by the wish to succeed with sparse labels. With

only 4-8 examples, the training and learning time of Gaussian process regression is
comparable to linear regression but requires careful tuning of additional parameters.
However, in our setting, the quality of outputs obtained from the linear regression
was approximately equivalent to the output from non-linear ones.
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Figure 8.14: Motion transfer performance as a function of the number of training examples (key frames)
with different choices of feature and regression function combinations, quantified as the SNR.
Our full model (Latent volume with velocity features) consistently outperforms the baseline.

Even for the linear regressor (with limited complexity), the problem is severely ill-Ill-posed
problem posed as the number of correspondences is much smaller than the dimensionality

of input and output data points. Exploiting a priori knowledge is essential for
regularizing the regression process. Fortunately, unlike typical regression, we
exploit unlabeled examples Uy ⊂ Y to estimate a latent volume Y′ that effectively
encodes and limits the plausible motion range.

Latent volume One of our main contributions is that we demonstrate that a simple
orthogonal transform followed by independent bounding of variables is effective
for regularizing the regression process (see Section 8.2.1). Recently, automatic
approaches have been proposed for implicitly inferring the constraints from the
data using principal component analysis (PCA) or GPLVM.

In preliminary experiments, classical use of PCA for estimating constraints—PCAAlternative
latent spaces followed by significant dimensionality reduction—was insufficient for our purpose.

Furthermore, flexible GPLVMs or sophisticated non-linear density estimators are
too inefficient for interactive applications due to their high computational com-
plexity in learning and prediction. Learning can take several hours even for low
dimensional skeleton characters [Levine et al., 2012], and prediction has yet to be
achieved in real time [Yamane et al., 2010].

Our latent volume representation is the result of the trade-off between performanceSpeed vs.
complexity and quality. In general, when properly regularized, sophisticated non-linear algo-

rithms should lead to as good or better representations of plausible motion spaces;
unfortunately, these algorithms cannot be used in real-time applications. Direct
bounding by the sparse correspondences without considering the unlabeled data
for decorrelation and support estimation is insufficient as it improperly restricts
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Figure 8.15: The effect of latent volume representation for different numbers of training examples (key
frames), quantified as the SNR. The proposed latent volume is more effective than simple
dimensionality reduction.

the admissible range and thereby leads to jerky animations.

From a probabilistic point of view, deriving the latent volume from the available Latent volume,
a priorunlabeled data corresponds to finding the support of probability distribution Pypose

which is applied as a prior to infer the admissible variations. In general, finding the
support of a probability distribution is a non-trivial problem. However, by assuming
that Pypose is approximated by a Gaussian distribution, we find an efficient estimate
of its support by first decorrelating the data and then finding the support of the
resulting empirical distribution within each data dimension. That is, the latent
volume defines the support of Pypose and is specified as the minimum interval Ic
encompassing all decorrelated data points for each dimension c. In the context of
the regression problem, the latent volume may be interpreted as an approximate
prior distribution Pypose on the target character pose.

8.7.1. Pose mapping limitations

During synthesis, we do not address collision detection, interaction of multiple Collisions and
scene interactioncomponents, or interaction with the environment. To achieve this, a post-processing

similar to Yamane et al. [2010] would have to be extended to work in real time on
mesh characters.

Our algorithm is only applied to single source/target sequences. For complex Scalability
puppetry applications, it might be helpful to allow multiple humans to control
(different parts of) the same target. Conversely, a single human could control the
movement of a swarm of small characters as a whole.

Currently, our method yields too coarse a control to steer characters with broader Expressiveness
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8. Interactive pose mapping for real-time character control

dynamics. For example, only the basic facial expressions are transferred to the
sheep in Figure 8.9. The utilized linear regression and latent volume representation
needs to be extended to more flexible non-linear alternatives while retaining the
computational efficiency for real-time applications.

8.8. Summary

We have presented a data driven method for real-time performance-driven characterInteractive definition
real-time control animation that offers fast and flexible interactive motion mapping. Our contribution

is a mapping from source to target characters that ensures robustness by limiting the
range of admissible poses through the use of a dedicated latent volume. Unlike other
approaches, we interactively define only 4-8 correspondences between sequences,
and so we must robustly learn this mapping by using unlabeled frames. This
allows puppetry with many different motion sources such as body-, face-, and
hand-tracking systems. Combined with the automatic correspondence suggestion,
this leads to an animation system for quickly defining mappings between very
different shapes and motions, and then intuitively controlling characters in real
time.

In the next chapter, we build on this work, improving on limitations causedFrom pose
to motion by the chosen instantaneous pose mapping. We look for alternative character

representations which encode not only the feasible character poses (latent volume),
but entire motion sequences with varying and plausible dynamics, while preserving
the general representation of arbitrary character shapes in mesh form. Furthermore,
we seek a mapping which is able to transfer dynamics of the input onto non-human
characters, such as control speed and intensity, as well as additional high-level
attributes such as the users facial expressions, e.g. happy or sad face. This is
in particular challenging for our setting of low-cost input sensors with limited
accuracy and real-time application, and is of high importance for performance-
driven VR applications, where typical interfaces may be impractical due to impaired
real-world vision.
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Generalizing wave

gestures from sparse

examples for real-time

character control

9
This chapter is based on Rhodin et al. [2015b]

Gestural and motion-driven character animation has been approached from two Retargetting and
gesture recognitionprimary directions: Retargeting motion controllers [Gleicher, 1998] map human

and character bodies ‘one-to-one’ at the bone level. While expressive, character
motion is consequently restricted to the sensing volume and to the ability of the
user to perform complex motions, with mappings hard to generalize to non-human
characters. At the other end of the spectrum, gestural control-action pairs [Johnson
et al., 1999; Raptis et al., 2011] trigger character motions from a database, but there
is no control of motion style variation through extrapolation.

The techniques introduced in Chapter 8 [Rhodin et al., 2014] and by Seol et al. [2013] Current
limitationslie in-between, by mapping poses to character animations. This forfeits retargetting,

but expands control flexibility and expressivity over gesture-action pairs, and is a
good fit for games. However, there are problems: pure pose mappings are under-
constrained for complex character motion, and so velocity and acceleration features
add constraints. These are sensitive to noise, and may result in jerky or stilted
animations. Furthermore, a user moving his legs faster will induce a faster playing
walk animation, when the desire is for a progression of dynamism from walking
to running. While in principle this could be accomplished with multiple maps, in
practice this is difficult and better extrapolation of control tempo is needed.

Inspired by Fourier domain representations [Unuma et al., 1995; Shiratori and Our Fourier
domain approachHodgins, 2008], we robustly estimate instantaneous wave properties—amplitude,

frequency, and phase (AFP)—of high-dimensional user pose motions. Our versatile
method allows interactive part- or full-body control motion definition via diverse
capture sensors. Key to our approach is the separation of simultaneously-performed
control motions into independent low-dimensional waves. We learn this mapping
interactively from a single example per control motion, such that wave properties
can be estimated by windowed Fourier analysis and extrapolated to control motion
variations. With a mapping learned, instantaneous real-time estimates are still
challenging as future user input is unknown. We overcome this by exploiting the
temporal dependence of phase and frequency.

Cyclic animations are common, and our wave gestures are often well suited to Cyclic motions
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9. Generalizing wave gestures from sparse examples for real-time character control

Figure 9.1: Top: Skeletal, facial, and hand motions are tracked by off-the-shelf sensors. From sparse user-
defined examples, our method reliably separates and extrapolates simultaneously-performed
gestures to control characters in games or VR. Bottom left: Dog happy walk, neutral run, shaking,
and sitting. Bottom right: Caterpillar crawl variations, controlled by varying amplitude, phase,
and frequency of input gestures.

cyclic control tasks, e.g. for walking locomotion, frequency maps to number of
steps per second, amplitude to step size, and phase to walk progression. This
allows control over variations in style which would be complex for existing pose
mapping approaches, such as a slow wide steps or fast narrow steps. Non-cyclic
linear motions are also needed, e.g., sitting down or raising an arm. Seol et al.
[2013] classify input motions and blend different pose mappings to improve cyclic
motion control. We extend this idea by allowing superpositions of both linear pose
mappings and cyclic motion mappings, all within a motion graph. Furthermore,
our approach extends to additional input modes with shared parameter spaces, for
instance, a face tracker measuring users mood to control character emotion.

We generate new animations by interpolating wave properties within parametricQuadruped space-
time interpolation animation database spaces. Our general interpolation scheme operates on meshes.

It is based on the representation introduced in Section 8.1.3 and is independent
of a character rig or skeleton, supports arbitrary character shapes and topologies,
and enables foot sliding prevention. For locomotion, often quadrupeds switch the
phase of individual limbs between walks to runs. We propose to reduce classical
artifacts by aligning limbs individually by time warping, and interpolating limb
timing differences separately from limb positions. This minimizes the size of the
character animation database needed for smooth dynamic state changes.

We show that wave gestures are more robust to noise and operate over a largerOur improvements
temporal domain than commonly-used velocity and acceleration features [Seol
et al., 2013; Rhodin et al., 2014, Chapter 8], and that they successfully decorrelate
ambiguous control motions, which is not possible with existing approaches [Shi-
ratori and Hodgins, 2008]. Furthermore, with ten participants in three game-like
quantitative tasks and in qualitative questionnaires, we discover that our wave
gesture control is more intuitive and more accurate for animation tempo control
than a gamepad, but is more physically demanding. For applications, we inter-
viewed three animation professionals, who found potential as a ‘blocking’ tool for
early-stage content creation, for live performance, and for games.

At a system level, we provide key features when compared to existing methodsContributions
(Table 7.1). Our contributions to the literature are:

– A technique to robustly and accurately estimate amplitude, frequency, and
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Figure 9.2: Pipeline: 1) An animation database is created by an artist. 2) Control definition: the user
interactively performs one reference motion for each parametric motion class. 3) Live character
control: the virtual character is controlled by estimateing AFP parameters from independent
intermediate representations, with animations synthesized by a new time-shift interpolation.

phase of simultaneous gestures in real time, generalized from a single user-
defined reference motion.

– An interpolation method for motions with out-of-phase sub-motions that cannot
be aligned by traditional time-warping.

– A live animation system, which couples wave gesture to parametric motion
graphs and layers different input modalities.

9.1. Notation and overview

Our goal is to generalize wave properties of motions from sparse examples for Three stages
real-time character control. Three steps are required: authoring, control definition,
and live control (Figure 9.2).

First, in the authoring step (Section 9.2), example character animations are arranged Overview
to form parametric motion classes as nodes in a motion graph, as would be typical
for a game. Second, in a control definition step (Section 9.3), a reference control
motion is specified for each motion class, from which we learn a mapping per node
(Section 9.4). These motions would typically be predefined by a game designer, but
as this is computationally fast it also allows for interactive end-user definition. Third,
the user performs live control motions for real-time character control (Section 9.5).
Simultaneously-performed motions are separated, and variations in motion AFP
(amplitude, frequency, and phase) are extrapolated to generate new motion style
variations. Animations are synthesized by database interpolation; for quadrupeds,
we introduce a separate time and pose interpolation of individual limbs which
improves animation quality and reduces foot-skating artifacts (Section 9.5.2).
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Figure 9.3: Parametrized motion graph for the dog character. Each node represents a parametrized motion
class that synthesizes character animation from gesture AFP parameters. Edges mark transitions
which are initiated by gesture activation. We also support superposition of secondary actions
such as head motion which are additive.

9.2. Parametrized character representation

To create a semantic connection between user control motion variation and characterParametrized
motion graph animation, we arrange example animations into a vector space of parameters

[Rose et al., 1998; Heck and Gleicher, 2007]. We use AFP parameters to generate
live animations by interpolating the estimated and annotated AFP parameters.
For instance, the user varying their leg height in a mimicking walk could be
transferred to a dog character’s stride length by annotating the database animations
of standing and walking with amplitude 0 and 1, respectively. In a different
application, amplitude could map to step height, for instance, for a horse dressage
game character. The frequency parameter could trigger a transition from walk to
run by the user speeding up the control motion, or could parametrize a shaking
animation with varying centrifugal force. Depending on the tracker, these user
motions can range from single finger movements, to facial expressions, up to full
body motions. Additional annotation dimensions such as emotion (e.g., happy, sad)
and heading rate (e.g., left, right) are also possible depending on the tracker.

Formally, an animation Y of frame length T is a sequence of individual meshes yt,Input and
output notation so Y = [y1, . . . , yT]. Each yt is a list of mesh vertex positions, i.e., no rig is required

and any animation creation system can be used. T is an animation-specific variable,
as different Y have different lengths. To build a vector space, each Y in a database
Y is assigned parameters θY = (a, f ) to represent variations in frequency f (e.g.,
fast, slow) and amplitude a (e.g., large, small). As we focus on cyclic animations,
the time index that specifies the current frame t of the example animation is
parametrized in the cyclical domain [0, 2π), invariant to the animation length T,
by phase ϕ := 2πt/T. Y then exists in a two-dimensional vector space, with one
dimension per parameter. These annotated database animations form parametric
motion classes, which we combine into a motion graph (Figure 9.3).
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9.3. Reference control motion definition

9.3. Reference control motion definition

Each parametric motion class requires one reference control motion X as a sequence Control definition
X = [x1, . . . , xT] of poses as point positions. This could come from any tracking
system. Each motion is defined by performance at an arbitrary steady speed for one
period at maximum amplitude, which provides a kind of ‘physical normalization’
of amplitude to [0, 1]. For instance, one cycle of a mimicking walk, where the legs
are raised as high as possible. Practically, the start frame x1 is marked by pressing
a remote control. The end frame is automatically detected for cyclic motions by
finding the pose most similar to the start pose which is at least 2/3 periods away
from the start. For non-cyclic motion classes, i.e., a dog sitting down, we require
rest and extreme poses to be marked with a remote press, for instance, lowering
the arm from horizontal to vertical position.

Although we require only a single reference motion example, we are able to Generalization
generalize or extrapolate to variations in the live animation step by analyzing
the live control motion for differences in AFP. Furthermore, no manual mapping
(e.g., Shiratori and Hodgins [2008]) or degree-of-freedom tagging (e.g., [Seol et al.,
2013, Section 4.1]) is needed as it is automatically inferred by the regression method
below, which makes it possible to define reference control motions in seconds.

Furthermore, the automatic guidance method introduced in the previous chapter in User guidance
Section 8.3 could be applied to support novice users in the control motion selection.
As before, the suitability of the current input pose can be rated by the similarity to
each frame of the already defined control motions.

9.4. Learning a user-to-character motion mapping

The goal of the live step is to map the stream V of control user poses xt to the Live control
parametrized character representation according to the defined set of reference
control motions X . The live step accomplishes two tasks: separation (disambigua-
tion) of simultaneously performed control motions for each reference motion X
(Section 9.4.1), and estimation of AFP motion parameters θX for character animation
(Section 9.4.2).

9.4.1. Separation of simultaneous gestures

Simultaneous input motions primarily occur in two situations: 1) For superposition Simultaneous
controleffects, e.g. dog shaking while walking, with two or more simultaneous control

motions; 2) At transitions between graph nodes like walking and jumping, future
control motions may be started while current motions are gradually stopped,
which we refer to as intersecting motions. Direct estimation of input AFP leads to
interference between motions (Figure 9.15).

Instead, we separate high-dimensional input V into independent intermediate Intermediate
representationrepresentations ZX = [z1, . . . , zT] for each reference control motion X by linear

pose mappings ΦX : x→ z. Inspired by previous work in low dimensional circular

133



9. Generalizing wave gestures from sparse examples for real-time character control

t

[z]
1

[z]
2

0 50 100

0

1

-1

Frequency

Phase

1

0

0.5

10 0.5

Im
ag

in
ar

y 
co

m
po

ne
nt

Real component

tz

Figure 9.4: Left: Our intermediate representation as time-varying signal. Right: A polar plot with the
intermediate representation as phase and amplitude. The frequency of sequence Z, and the
current instantaneous sample zt, are represented by the dotted line.

embeddings [Lee and Elgammal, 2004] and frequency band decompositions [Akhter
et al., 2010], we design ZX as a complex sine wave (Figure 9.4):

zt = at

(
cos(ϕt)
sin(ϕt)

)
. (9.1)

ZX forms a curve in polar coordinates which evolves counter-clockwise as t in-
creases. It is a low-dimensional abstraction of input pose xt which encodes phase as
angle ϕt, amplitude as pointer magnitude at, and frequency ft as change of phase
over time.

Mappings ΦX are learned by pairing X to one period of the complex sine waveCorrespondence
ZX = [z1, . . . , zT], with ϕt = ϕt−1 + 2π/T, where T is set by x1 and xT. This matches
the performance of one period of motion at maximum amplitude during control
definition, at = 1, which sets the range of available amplitudes in the live motion
control to [0, 1]. The initial phase ϕ1 is set to the frame that is farthest from the
mean. This mapping approach is similar to the one introduced in Chapter 8. The
mapping is pose based, but instead of directly mapping to the target character pose
(Section 8.4) the abstract intermediate representation is the target, which is further
analyzed for motion properties.

To separate simultaneous control motions, we enforce zero output for the remainingDecorrelation
control motions by using them as negative examples and setting zt = 0. This forces
ΦX to depend on properties of the input that are unique to the reference. For
instance, the two motions of bending a single finger and of bending all fingers at
once can be distinguished and mapped to different motion classes without any
labeling of body parts (Figure 9.15).

Each map ΦX is inferred by linear Gaussian process regression [Rasmussen andRidge
regression Williams, 2006], as described in Section 8.4. Each ΦX is parametrized by a matrix

M that is given as the mode of the posterior distribution:

p(M|X, ZX) ∝ exp
(
−||MX− ZX||2F − σn||M||2F

)
, (9.2)

where ||.||F is the Frobenius norm and σn is a regularization parameter. The linearity
of ΦX offers good extrapolation from the training sequence in that an amplified
input motion leads to a proportionally larger amplitude of ZX, and an increase in
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9.4. Learning a user-to-character motion mapping

motion speed leads to an increase of the frequency. This makes these parameters
intuitively controllable. While, in general, more flexible non-linear maps can be
adopted if necessary, the linear map proved to be sufficient in our experiments
and was preferred over non-linear alternatives, as it is fast and it does not require
tuning of additional hyperparameters.

Non-cyclic linear motions

These have no notion of frequency, amplitude, and phase. Instead, we form a 1D linear
motionseparate one-dimensional space z that represents the progression by ϕ = 2πz, z ∈

[0, 1]. During learning, the reference intermediate representation is defined as
zt = t/T to map progression in the control motion linearly to ϕ.

9.4.2. Live estimate of motion properties

For notation ease, we explain how AFP motion properties are estimated for a Time-frequency
analysissingle reference motion, and so we drop subscript X. We apply Gabor filtering, a

variant of windowed Fourier analysis which has optimal time-frequency resolution
[Feichtinger and Strohmer, 1998]. Gabor functions are sinusoids modulated by
Gaussians N(x; µ, σ), where x is time, and µ and σ are the Gaussian center and
standard deviation, respectively:

g(x; µ, f ) =
(

cos(2π f x)
sin(2π f x)

)
N(x; µ, λ/ f ). (9.3)

We find the Gabor function that best fits (maximum response), and we adopt its
phase, amplitude, and frequency as the instantaneous estimates ât, f̂t, and ϕ̂t. The
Gabor response is the complex inner product

r f = 〈[g(t− τ; µ, f ), . . . , g(t; µ, f )], [zt−τ, . . . , zt]〉. (9.4)

We filter a history of τ = 150 frames (5 seconds) of Z with a series of 50 Gabor
functions with wavelengths 1/ f ∈ [5, 150] and mean µ fixed to the most recent
frame t.

Cross-correlation is one natural alternative (e.g. Shiratori and Hodgins [2008]); how- Alternative
correlation
estimation

ever, we chose Gabor filtering as phase has an analytic form ϕ̂t = atan2([r f ]2, [r f ]1)
which led to higher accuracy in our experiments (Figure 9.5; Section 9.6) vs. the
required discrete phase sampling for cross-correlation.

Previous methods smooth the input signal temporally to overcome tracking noise Adaptive delay
and errors from user imprecision, which is essential for estimating velocity and
acceleration. However, deciding smoothing window width is difficult: a large
window strongly damps estimates, but small windows preserve high frequency
noise. In our case, the Gabor window size adapts to the input motion speed: For
slow motions, the window is large and high frequency noise is effectively ignored;
for fast motions, a small window preserves rapid changes. The robustness-response
trade-off is exposed by λ. We choose λ = 2/3, which smooths the response over
most of one period (Figure 9.5, c & d). This is not a hard delay: response is
immediate but small, increasing in magnitude over time.
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Figure 9.5: AFP parameter estimation on a synthetic sequence with ground truth: a) User input motion,
displayed as trajectories over time, b) mapped onto the intermediate wave representation,
c–e) Resulting amplitude, frequency, and phase estimates. Shiratori and Hodgins [2008] use
cross-correlation (gray) for phase, which is generally noisier, and auto-correlation (orange) for
frequency, which has delay of one period. Also direct estimates (green) of amplitude by ‖z‖ and
phase by atan2([z]2, [z]1) are erroneous. f) Our phase fusion compensates phase discontinuities
(first 15 frames) and preserves the signal otherwise (frames > 60).
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9.4. Learning a user-to-character motion mapping

Noise detection

In preliminary experiments, the estimated amplitude was undesirably high for Noise level
low signal-to-noise ratios, leading to unintended character actions. To reduce the
amplitude in these cases, we exploit that noise corrupts the sinusoidal form of Z.
Intuitively, given the best fit Gabor function, if Z is still not close to this perfect
sinusoid shape, then the input is likely to be dominated by noise.

A good measure for how close Z is to a perfect sinusoid is the quotient of maximum
Gabor response, r f , and the total energy, n f , apparent over the corresponding
Gaussian window, with energy

n f = 〈[N(t− τ; µ, λ/ f ), . . . , N(t; µ, λ/ f )], [|zt−τ|, . . . , |zt|]〉. (9.5)

If Z is not sinusoidal, i.e., r f /n f < 5/6, then the estimated amplitude, â, is linearly
damped to a = â2(s−1/3). We show in our experiments that this scaling effectively
reduces the amplitude if the signal cannot be uniquely assigned to the control
motion.

Discontinuity compensation

As future input is unknown in our live setting, the Gabor function (and its Gaussian Frequency domain
smoothingwindow) is one-sided: it is not smooth as it has a sharp edge. Hence, strong noise

from partial tracking failure is possible, as are multiple local maxima within the
filter response due to fast input motion frequency switches. These can lead to strong
discontinuities in the estimated phase and frequency. To compensate for drastic
changes, discovered frequency f̂t and amplitude ât parameters are smoothed over
time to ft and at by a small Gaussian of σ = 200ms, respectively. This is different
from smoothing the input poses as high frequencies are preserved, and is closer in
spirit to ease-in and ease-out effects.

To stabilize phase, we exploit the temporal dependency of frequency and phase. Phase
smoothingThe instantaneous phase estimate ϕ̂t is fused with its previous estimate ϕt−1 and

phase speed 2π ft:

ϕt =
ϕ̂t + γ(2π ft + ϕt−1)

1 + γ
, (9.6)

where γ = 10 was empirically set to balance integrated and estimated phase, and
computation is in the circular domain ϕt mod 2π. One could integrate ϕt directly
from ft and ϕt−1 (i.e., γ = ∞), but this decouples the phase of the user control
motion from the character animation, and so leads to less control. The fusion effect
is visualized in Figure 9.5 e–f.

Under-constrained input

For very simple input motions which show variation in a single dimension, such Ill-posed cases
as raising and lowering an arm periodically, the mapping to the two-dimensional
intermediate representation is under-constrained. We adopt a heuristic on the
uncertainty of the prediction: The predictive variance ϑt corresponding to the
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9. Generalizing wave gestures from sparse examples for real-time character control

input xt is estimated as the average pair-wise distance of the n = 10 reference
intermediate representation frames that were assigned to the n nearest neighbors
of xt in the control definition step. This is a good estimator when the given input xt
is close to the training data [Kwon et al., 2015], as in our reference/live setup.

The estimated variance reduces the influence of the potential unreliable component:1D cyclical
motion we average variances over the Gabor filter window and weight the influence of the

real and imaginary component of Z by their reciprocal, respectively. For complex
motions both dimensions have full weight, as their variances are similarly low,
which increases robustness to noise.

Emotion and direction

We estimate user emotion with a face tracker, which is an additional parameterAdditional
dimensions dimension e for character control. Furthermore, the body orientation of the user

with respect to the input device is transferred to control the character rate of turn
β. This second additional parameter dimension improves the quality of animations
such as bending the long body of a caterpillar turning.

9.5. Live character animation

Given a user control motion stream [. . . , χt−1, χt] observed until t, parametersGesture
activation θX :=(a, f , ϕ) are estimated for all control motions X ∈ X as described in Section

9.4.2. Here, we explain how θX is used to initiate transitions in the motion graph
(Section 9.5.1) and to synthesize the actual animation of the character (Section 9.5.2).

9.5.1. Motion graph and motion transitions

Virtual characters often have their motion defined by an animation database, asMotion graph
is typical in video games. We organize an animation database into a parametrized
motion graph. Multiple parametrized classes are connected into a motion graph,
with edges marking possible transitions between classes.

By graph construction, nodes with an edge distance greater than two are indepen-Motion
separation dent, which increases gesture scalability. We trigger transitions along an edge by

varying the activation of simultaneously-performed control motions, similar to the
method of Ishigaki et al. [2009], which supports sequential but not simultaneous
distinction. As simultaneous gestures are made independent by mapping to sepa-
rate intermediate representations, we simply use the estimated amplitude a of θX
to activate gesture X.

Transitions are initiated by increasing the amplitude α of the target node beyondTransition
activation 0.2 (maximum is 1). A transition is successful if the amplitude of the source

node control motion is reduced to below 0.2. We abort the transition if the target
activation sinks below 0.1. During the transition, we blend linearly over a fixed time
window of half a second between the source and target. For non-cyclical motions,
the progression parameter ϕ of θX is used instead of a as it measures the distance
to the rest state. If desired, unrealistic transitions such as stopping during a jump
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9.5. Live character animation

could be prevented by restricting transitions to specific points [Kovar et al., 2002]
or windows [Heck and Gleicher, 2007].

Secondary animation

Secondary control motions are superimposed onto the primary character animation Superposition
via mesh deformations. The deformation is computed as the difference between
the mesh animation controlled by the secondary control motion and the character
rest pose. One example of this is lifting the torso of the dinosaur by raising the
user’s head, superimposed onto a simultaneously-controlled walk, or bending of the
caterpillar body during turns caused by the user physically turning. Superimposing
AFP mappings is also possible, for instance, shaking the dog’s torso while walking.

9.5.2. Time-shift animation interpolation

Transitions and superpositions of multiple motion classes are synthesized by motion NN-interpolation
blending. To synthesize animations within a single motion class X with parameters
equal to the most recent estimates θX, we build upon the radial basis function
method of [Rose et al., 1998] and interpolate the nearest database animations with
interpolation weights wY for each animation sequence Y set inversely proportional
to the parameter distance ‖θX − θY‖W , where W normalizes each dimension to
[0, 1]. The timing of the animation, i.e., the time index into Y = [y1, . . . , yT], is given
by the inferred phase ϕ of θX.

We use linear derivative time warping [Keogh and Pazzani, 2001] to temporally Motion
alignmentalign database animations during authoring. Even after temporal alignment, the

naive interpolation of different quadruped locomotion states can cause strong
artifacts, such as a leg stuck half-way during a transition between walks and runs.
This is because the leg actually switches phase: it moves in the opposite direction
in the run than in the walk (Figure 9.6). This cannot be solved by improving
global alignment methods, nor by using different character representation such
as skeletons, because the problem is inherent to the motion. While rarer, this
issue is still possible in bipeds if arms and legs move synchronously and then
asynchronously across motions.

This problem is related to the timing and interpolation of upper and lower body Separation
motions [Ashraf and Wong, 2000; Ha and Han, 2008], and to asynchronous time
warping for horse gait transitions, where legs are blended separately and timing
differences are compensated gradually [Huang et al., 2013; Sung, 2013]. However,
these methods only work for transitions between two motions of boned characters,
and not our more general mesh character case where transition length is unknown,
and where we may interpolate between more than two animations (our most so-
phisticated example blends seven animations in a 4D space). We also experimented
with dynamic time-warping of segments instead of linear time-warping. However,
this led to unrealistic changes in the dynamics of the motion.

We solve the problem with separate timelines for individual limbs that can shift for Time and space
alignment, and by separating time and shape (mesh) interpolation.
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9. Generalizing wave gestures from sparse examples for real-time character control

Figure 9.6: The quadruped leg interpolation problem. Interpolating between walk and run animations is
difficult for many quadrupeds. Left: While the back legs align well spatially between the walk
and run frames, the front legs switch phase. Right: Global linear time-warping cannot fix this
temporal alignment problem as the order of foot placements switches (here, on the left-hand
side).

Time interpolation

During database construction, the character mesh is segmented into torso andSegmentation
limb segments. The longest animation sequence is selected as reference and all
other sequences are aligned by linear time warping, individually for each limb
segment. This provides a phase offset ∇ϕY,i for each motion Y and limb index i.
During runtime, the time offsets (phase offsets) are interpolated separately for each
i according to weights wY in the circular domain:

ϕi = ϕ + ∑
Y∈Y

wY∇ϕY,i. (9.7)

As each example motion Y has the same weight wY across all segments, the
temporal dependencies between limbs are maintained implicitly if possible and are
interpolated if they contradict (e.g. the order of foot plants).

The timeline in Figure 9.7 exemplifies this temporal interpolation with threeExample
quadruped gaits of different foot placement beats. Feet which are temporally
aligned are unchanged; only those feet that have different beat patterns are treated.
This time interpolation prevents strong artifacts in the subsequent mesh interpola-
tion, such as foot sliding and hanging limbs (Figure 9.8).

Quick changes in weights (i.e., in user control) can cause very abrupt changes inTime travel
phase, even going back in time, e.g., when switching from a positive to a negative
phase offset. To prevent this, we bound the phase change of individual segments to

140



9.5. Live character animation

Figure 9.7: Timeline example of the interpolation of three quadruped gaits with different beats. Footplant
timing differences of the four limbs (red, blue, green, violet) are shown as shifts along the
timeline. Temporal interpolation is executed on the time offsets ϕi to the reference gait with
interpolation weights ωY for gait Y.

the global animation speed by enforcing (1− 0.05)(ϕt − ϕt−1) < (ϕi,t − ϕi,t−1) <
(1 + 0.05)(ϕt − ϕt−1), where subscript t denotes time and i is the segment index.
This effectively prevents negative phase changes and bounds the abruptness of
changes to the current motion speed, i.e., during slow motions only slow changes
in relative time differences are permitted, while quick motions allow for quick
adaption.

Only after this temporal interpolation is the mesh interpolation performed at
phases ϕi, with a differential coordinate reconstruction method which prevents
seams between segments and includes global motion.

Mesh pose interpolation

In this section, we provide details of the mesh interpolation given the previously- Mesh
representationdetermined time offsets and interpolation weights wY. The interpolation of meshes

is performed in a deformation space of per-triangle shear and rotation, with respect
to a rest pose reference frame. A mesh segment A with FA faces is represented by
the set of shear matrices {SA,i ∈ R3×3}i∈FA and rotation vectors {RA,i ∈ R}i∈FA in
axis-angle form, please consider Section 2.2.3 for details.

Assume that two mesh segments A, B are interpolated based on weights wA, wB. Mesh
reconstructionThe triangle transformations are linearly interpolated by SC,i = wASA,i +wBSB,i and

RC,i = wA, RA,i + wBRB,i. From SC,i and RC,i, a connected mesh is reconstructed
from the differential coordinates of all segments by solving a Poisson system
[Sumner and Popović, 2004], as explained in Section 2.2.3. This established approach
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9. Generalizing wave gestures from sparse examples for real-time character control

Figure 9.8: Mesh interpolation with and without time interpolation of limb segments. Left: Without time
interpolation, the front left leg shows sliding and hanging limb artifacts, as mesh interpolation
requires roughly-aligned poses. This is violated by the front leg moving forwards in one animation
to interpolate and backwards in the other in the global time-warp-aligned database animations.
Right: The proposed separate alignment and time interpolation overcomes this limitation.

is a non-linear interpolation in vertex coordinates space, which runs in real-time
for meshes of 10k triangles on a standard PC.

The individual mesh segments are masked by painting on the character’s meshManual
segmentation (Figure 9.10). We use masks with smooth boundaries and blend neighboring

segments gradually to prevent seam artifacts. The interpolation in per-triangle
rotation and shear space requires that rotations do not exceed ±180◦. In our
experiments this was only violated at sparse points on the shoulder of the dog
character, and originates from flipped triangles in the artist created database
animation. For all other characters the example animations are without flipped
triangles and their interpolation shows no seam artifacts.

Global translation interpolation

Consistency between the global motion of the animated character and the groundWorld motion
plane is important for realistic animation. To enable this, we annotate each anima-
tion in the database that contains global motion with the character velocity in the
ground plane [u0, . . . , uT]. We separate the character animation frames [y0, . . . , yT]
from their global velocities [u0, . . . , uT] automatically by orthogonal Procrustes
analysis [Sorkine, 2009], which registers all frames against each other. During
animation synthesis, we interpolate the velocities uY,ϕ of all animation examples
Y by the weights wY as before. The global position of the character is integrated
from the interpolated velocities: it is the sum of all previous velocities multiplied
by the respective changes in phase ϕ so as to accommodate for the current control
frequency.

Foot-sliding cleanup

The perceived realism of the synthesized animation also depends strongly onSliding
character feet not skating or sliding along the ground unexpectedly. To prevent this,
we label database animation frames that show ground contact. During synthesis,
we use the approach of Lee et al. [2010] and perform a weighted vote (contact=1, no
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9.5. Live character animation

Figure 9.9: Overlay of three frames, spaced 10 frames apart, of the dinosaur’s paw during a live-controlled
walk. Left: The application of the foot-plant constraint effectively prevents foot-sliding. Right: In
the unconstrained case, the foot slides back and forth.

contact=0) between all database motions with weights wY and per foot time indices
from the time-shift interpolation (Section 9.5.2). The activation threshold is set to
0.9 in our experiments. During reconstruction, the constrained feet are pinned to
the ground by additional vertex position constraints in our differential coordinate
solver. This procedure is simple compared to more complex methods like MeshIK
[Sumner, 2005], and effectively prevents sliding (Figure 9.9). Importantly, the foot
constraint interpolation benefits significantly from our time shift solution to the
quadruped leg interpolation problem.

To determine areas of the character that should be on the ground during the Contact
annotationlocomotion cycles (i.e., vertices at the bottom of each foot), these regions are

manually marked in the character mesh. By painting in 3D, this takes about 1

minute per character. Furthermore, a small area on the torso around the spine of
the character location is marked, see Figure 9.10. This acts as an opposite constraint
to maintain the character shape during mesh pose interpolation. Once completed,
the interface propagates these vertices throughout each database sequence such
that the ground contact can be annotated subsequently. This process additionally
takes around one minute. For animations where the feet perfectly touch the ground
during stance, the manual segmentation and annotation can be automated; however,
this is usually not the case and the user must choose the desired planting behaviour
when the feet are half-way down.

In the live phase, mesh interpolation is performed in two passes: In the first pass, Contact
activationthe character mesh is reconstructed from the interpolated differential coordinates,

without any additional constraints. Then, the second pass adds target locations for
the vertices which are marked in the preprocessing. The activation of the contact
constraints is determined for each foot by the discussed voting scheme. In addition,
we activate the foot constraints if the foot is close to the floor and has low velocity.
This proximity heuristic triggers only in very few cases and is not reliable enough
to replace the voting scheme entirely.
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Figure 9.10: From left to right; marked footplant constraint areas, torso spine region, and segmented limbs
for the dog character.

All constraint vertices are positioned as follows. If the vertex constraint was ac-Contact
constraints tivated at the previous frame, the vertex target is set to the previous location to

pin the foot. If the constraint is newly activated at the current frame, the vertex
target is set to the previous position with the vertical position set to the ground
height to establish contact. The vertices of the feet which are in flight phase, i.e.,
are unconstrained, are set to their respective position from the first pass, unless
they exhibit a large velocity due to a constraint in the previous frames. We clamp
the velocity v of each vertex to 0.5vfirst < v < 1.5vfirst, where vfirst is the velocity
of the respective vertex in the unconstrained animation from the first pass. This
bounds the velocity to be similar to the unconstrained animation and effectively
prevents temporal jitter of the legs in situations where the constrained foot strongly
deviates from the unconstrained animation, for instance, due to rotation when
running along an arc. To reduce the influence of the foot plant enforcement on the
body pose, the spine segment is constrained to the first pass reconstruction at all
times.

Each target position (for constrained vertices) is regarded as a hard constraint. InContact
enforcement our implementation, we included this as soft-constraint into the Poisson solver, but

with 10, 000 times higher weight than other constraints, which effectively renders it
as a hard constraint.

9.6. Evaluation

We test our method on 5 characters (Table 9.1): dog, caterpillar, horse, human, and5 characters
real-time the dinosaur of Seol et al. [2013]. The experiments were performed on a Xeon CPU

E5-1620 3.6 GHz at 30 FPS for models of 10k faces. Our results are best observed in
the supplemental videos published alongside Rhodin et al. [2015b].

9.6.1. System setup

Our system is simple to setup as it requires only cheap low-quality motion-captureSimple hardware
sensors and is assembled within 5 minutes. In our experiments, full-body motion
is captured as 3D joint locations by the Microsoft Kinect sensor [Shotton et al.,
2011]. Hand articulation is captured as finger tip position by the Leap Motion
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Table 9.1: Evaluation character databases, numerating the motion classes with characteristics and number
of example animations.

Character Dog Caterpillar

Features Transition, superposition, complex motion Transition
Params. Emotions, amplitude, frequency Amplitude
Motion classes Walk, sit, shake, look, wave, scratch, jaw Walk, crawl, look, jump
# Animations 7 + 1 + 2 + 1 + 1 + 1 + 1 4 + 1 + 1 + 1

# DB frames 130 626

Character Horse Humanoid Dinosaur

Features Rich class control Smooth locomotion Transition, superposition
Params. Emotions, frequency Amplitude, frequency Amplitude
Motion classes Walk Walk Walk, jump, bend, stretch
# Animations 7 6 4

# DB frames 160 165 91

Figure 9.11: Camera Setup: Facial expressions are recorded by a conventional webcam (1), full body
motion by the Microsoft Kinect (2), hand motion by the Leap Motion sensor (4). The live
animation is displayed on a LCD screen in front of the user (3,5).

sensor [LeapMotion]. Facial motion is captured as 2D landmarks by a conventional
webcam with the Intraface software (Figure 9.11). To control a new character the
following steps are necessary:

Character animation. The controllable character motions are artist created and Artist-created
need to be acquired (we used 4-14 animations per character). Several commercial
services offer game characters with basic motion cycles for free or low prices. As
our system works on mesh representations any character that can be exported to a
sequence of meshes can be used.

Database construction (takes 30-60 min). Animations must be assigned to motion Game designer
graph nodes, transition edges must be defined, and additive nodes must be marked
(3 min). Each animation needs to be annotated by semantic amplitude and frequency
parameters (5 min, including refinement for novice users) and by foot-plant timings
(1-3 min). The foot-ground contact regions must be marked (2 min, once per
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character) and quadrupeds need to be segmented into torso and limb segments by
painting (5 min, once per character).

Control definition (takes 1-15 min). Only a single reference control motion perUser-defined
motion graph node needs to be performed and recorded with the motion-capture
sensor. The recording of all control motions takes about one minute. Typically, the
set of control motions is slightly refined to establish natural control for a specific
character and to avoid ambiguous motions (15 min). In a game scenario the user
could also select existing control motions out of a dictionary of predefined control
motions (1 min).

9.6.2. Character animation quality

Versatile input devices. Characters are animated with different user body, hand, and
face control motions, captured by non-intrusive sensors that are suitable for VR
applications (Figure 9.1). The body is tracked as 20 3D joint positions by Microsoft’s
Kinect and the hand as 9 3D fingertip and palm positions by Leap Motion. We
regress facial expressions based on Intraface [Xiong and De la Torre, 2013] as a
continuous value e between sad −1, neutral 0, and happy +1.

Intuitive control. Our mapping is able to generalize and distinguish between various
user-defined control motions. Our users preferred human mimicking motions
(swinging arms synchronously and asynchronously for walking and jumping,
Figure 9.14) and abstract mimicking of character style (arm undulation for crawling,
Figure 9.14).

Generalizing control. Figure 9.12 shows control of the dog locomotion class (Fig-
ure 9.3). From a single user-defined reference control motion of an on-the-spot run,
and from three character animations, we can generalize to variations in frequency
and amplitude affecting character stride length and step speed, and dynamics
style changes from stand, to walk, and to run. Details such as eye blinks and
speed-dependent ear wiggles are preserved from the artist animation. The parallel
coordinates graph in Figure 9.13 also shows that our mapping is able to reach the
majority of a four-dimensional parameter space, including character emotion.

Robust instantaneous estimates. The quality of estimates is compared to ground
truth on a synthetic arm waving input motion with additive white Gaussian
noise (SNR = 93.8). Our method quickly estimates changes in control speed and
amplitude, gracefully smooths over discontinuities, and is more accurate compared
to baseline methods (Figure 9.5).

One key advantage of our method is that it is reliable for a very large range ofFrequency
invariance input motion speeds. We tested this with the human character, which has database

animations of slow, medium and fast walks, as well as medium and fast runs. Our
method smoothly cycles through slow walks of one quarter steps per second, up to
a fast run of two steps per second.

Parametrized time-shift interpolation. With our time-shift approach, the artifacts
with interpolating out-of-phase limb motions are significantly reduced, allowing
effective foot-sliding prevention for bipeds and quadrupeds when varying between
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Stand Walk Run

Close-up
views:

Figure 9.12: Frames from a dog animation generated by mimicking a walk. The close-up views highlight
that temporally and spatially localized details and dynamics of the original animation are
preserved by our system, such as an eye blink and flapping of the ear.

motion styles such as walk and run and different step sizes (Figure 9.9). This is
visible in all our quadruped locomotion examples. In contrast, the pose mappings
introduced Chapter 8 suffer from foot-sliding, as they do not provide the foot-
placement annotations required for sliding prevention.

Motion graph and control superposition. Interpolating within a parametric motion
class (stand to walk to run, Figure 9.1) is caused by changing motion speed and
amplitude. Transitions across classes (crawl to jump, Figure 9.14) are caused by
change of control motion. Secondary actions such as head motion and body bending
are superimposed. The final dog example in the video published alongside [Rhodin
et al., 2015b] combines everything: hand and face trackers for both cyclic and
non-cyclic motions with wave-based and linear control. We extrapolate control
within a shared locomotion and emotion space, plus linear control over head
rotation, pawing at the dirt, shaking, mouth motion, begging, and sitting. This
control example shows many of our advantages, most notably the independence of
control motions, for instance, bending of the first finger is used in three separate
control motions without interference from combinations with other fingers.

9.6.3. Comparison to related work

Table 7.1 compares the most related character control methods according to different
criteria; the proposed approach is in favor for most categories.

AFP estimation [Shiratori and Hodgins, 2008]. A natural baseline for AFP estimation
is auto- and cross-correlation as proposed by Shiratori and Hodgins [2008]. In our
experiments, normalized cross-correlation between the reference control motion
and input motion performs similarly in terms of delay and estimated values
to Gabor filtering on our intermediate representation for either an independent
control motion or for simultaneously-performed control motions which are spatially
separated (e.g., left and right arm motion, Figure 9.5c–e). However, frequency and
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9. Generalizing wave gestures from sparse examples for real-time character control

Figure 9.13: Parallel coordinate plot of the parameter space covered during the horse animation, where
each line from left to right corresponds to one parameter configuration. Amplitude ranges
from 0 almost to 1; frequency shows clusters around walk (0.025) and gallop (0.04) with
transitions; emotion covers the full range from -1 (sad) to +1 (happy). Phase cycles between
−π and π. This demonstrates that our control scheme reaches wide parameter spaces.

Figure 9.14: Animation of the caterpillar character, controlled by the user (black skeleton): Column 1: Crawl
by swinging the arms asynchronously. Column 2: Bending by turning user body. Column 3-5:
Separate walk styles with large style variations by waving the left arm at different amplitudes.
Column 6-7: Jump by swinging arms synchronously. Column 8: Rising the head by bending.

phase estimates were less reliable as the signal needs to be convolved for a discrete
set of phase-frequency combinations. In contrast, the Gabor filter gives phase
analytically and only requires to sample the frequency dimension. Shiratori and
Hodgins [2008] use auto-correlation to measure the periodicity of a signal. It
requires two motion periods for comparison, hence, introduces a lag of one period
compared to cross-correlation and our approach. Moreover, it was less reliable in
our experiments (Figure 9.5c-d). Overall, cross-correlation is an alternative to Gabor
filtering, but was discarded due to its drawbacks.

Our main contribution to the AFP estimation problem is the separation of simul-Simultaneous
analysis taneously performed motions into independent intermediate representations. We

demonstrate its importance with the hand-controlled dog, where talking, shaking
and scratching the paw are controlled by rotating the thumb and shaking the
whole hand. Direct frequency decomposition methods (e.g., Unuma et al. [1995])
do not consider prior knowledge of a particular reference control motion, and
would lead to permanent undesired control and superposition. Directly applying
cross-correlation to the input motion (e.g., Shiratori and Hodgins [2008]) activates
all character motions simultaneously when only one of the corresponding input
motions is performed, as all involve motion of the thumb (Figure 9.15). This is
effectively prevented by our separation method, as only very subtle interference is
visible.

Gesture activation classification [Seol et al., 2013]. We compare our method to SVM
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Figure 9.15: Analysis of control independence. Our Gabor filtering of independent wave representations
separates rotation of the whole hand (top) from thumb rotation (bottom), with high amplitude
in true motion areas and low otherwise. Cross-correlation (e.g. Shiratori and Hodgins [2008])
suffers from strong interference with high amplitude in all areas of motion. SVM classification
(averaged over 30 frames as proposed by Seol et al. [2013]) falsely detects no hand motion,
and also detects thumb motion during hand motion.

classification on the task of detecting the active control gesture. We train a Gaussian-
kernel SVM on position, velocity, and acceleration features and average the activa-
tion of each gesture over 30 frames, as proposed by Seol et al. [2013]. For control
motions which are spatially separated (e.g. left and right arm control of caterpillar),
SVM and our method are equally robust, with a slightly lower delay for SVM.
However, for hand input where the same finger is used during multiple gestures,
SVM falsely detects thumb motion instead of hand rotation, and also fails to detect
the hand rotation at all, because instantaneous velocity and acceleration features
do not distinguish the performed quick hand motions reliably (Figure 9.15). In
contrast, our method separates control motions correctly in this challenging case
with very little interference.

Pose mappings. To see the effect of our motion mapping in contrast to existing pose
mappings, we compare against a shared GPLVM with 15 latent dimensions (similar
to Yamane et al. [2010]), a latent volume nearest neighbor (NN) pose mapping with
15 neighbors (similar to the mapping of Seol et al. [2013] for cyclic motions), and
a linear pose mapping (similar to Rhodin et al. [2014], which was explained in
Chapter 8, and Seol et al. [2013]). We train all systems with an arm swing control
motion of 32 frames, corresponded to horse walk and horse stand animations.

Our method is able to reproduce all details of the horse animations and extrapo- Extrapolation
capabilitieslates to smaller step lengths by reducing the control arm swing extent. No other

compared method is able to generalize this change in control: The shared GPLVM
method shows very strong jitter. The NN lookup cannot reproduce the temporal
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9. Generalizing wave gestures from sparse examples for real-time character control

Figure 9.16: Comparison with Rhodin et al. [2014, Chapter 8]. Top: User body and face pose, used for
both techniques. Middle: Our animation using the parametrized horse motion class; from left
to right: stand, trot, happy gallop, and sad gallop. Bottom: Rhodin et al. shows distortions
in the stand and is not able to generalize to a gallop when speeding up (column 3) nor to
different moods (column 4).

evolution of the original animation exactly due to input noise and user imprecision,
and also cannot generalize the transition from walk to stand. The linear map suffers
from less jitter, but the animation detail is reduced. Moreover, at high control
motion speed, it exhibits unnatural exaggerated rotations in the hooves, as the
mapping was learned from a single example motion at fixed velocity and the used
velocity features do not generalize to significantly different input speeds. None of
these artifacts occur in our generated animation.

Pose mappings—Seol et al. [2013]. We directly compare to the dinosaur animation
presented by Seol et al. [2013]. Cyclical motions are classified and mapped by NN
maps, which are limited as they do not generalize to motions of varying amplitudes.
Our method improves the control of cyclic motions as it is able to recover very slow
and very fast motions, with independent control of dinosaur step length and step
speed, all generalized from a single user motion training example. Moreover, we
provide more controls (jumping and tail wiggle) within the same control sequence
due to independence of controls. Finally, our control is more robust, and so the
synthesized cyclic dinosaur walk contains less temporal jitter and no foot sliding.

Pose mappings—Rhodin et al. [2014] and Chapter 8. Compared on horse locomotion
(Figure 9.16), our method provides improved control over motion style and emotion
by mapping to a parametrized locomotion class of stand, trot, and gallop animations
in happy, neutral, and sad emotion variations (seven animation examples). Neither
the richness of control nor the extrapolation from a single example control motion
is possible with the linear mapping used by Rhodin et al. [2014, Chapter 8].
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Figure 9.17: User study tasks. Left: Task 1. Follow the path with the dog character, trying to stay within the
path width. Center: Task 2. Move through the terrain and gates, and switch motions with the
caterpillar character when moving through each one. Right: Task 3. Mimic the white horse by
matching the step frequency, stride length, and dynamics (walk or trot or gallop).

9.6.4. User evaluation

We studied wave gestures with 10 participants. For fair comparison, we predefined Gesture vs.
game padcontrol motions for all participants, as per a typical game setting. In a pilot study,

we rejected NN mapping (similar to Seol et al. [2013]) as this did not generalize well
to different user body proportions nor to variations in user-specific control motion
characteristics. Direct pose mapping (similar to Rhodin et al. [2014, Chapter 8])
worked well for control; but output animations look stilted, with foot skating,
floating, and temporal jitter. Specifically, very slow or fast control motions that
differ strongly from the reference control motion lead to unpleasant artifacts. Thus,
we chose the familiar gamepad as a baseline. Amplitude and frequency map to
left/right analog triggers, heading to left thumb stick, and motion transitions to
face buttons. Progression is obtained by integrating frequency.

We tested three game-like tasks: 1) Follow a curved path, to test world locomotion Control tasks
control; 2) Transition between motion classes at specific world points, to tests action
or event response; 3) Control horse step length and frequency to match a reference,
to test precise control. Figure 9.17 depicts the test scenarios. The path has width 4×
character width and 10 turns with average maximum curvature 0.26× path width.
After training of one minute for each task, all subjects were able to solve all tasks
with both methods. We applied the following task descriptions and metrics.

Task 1: Follow the shown path with the dog character without leaving it. Steering

Quantitative metric 1:

– Number of times the path was left by the controlled character during completion
of the course.

– Duration in seconds until the controlled character returns to the path after first
leaving the path.

Task 2: Control caterpillar through obstacles (stones), start crawling, move through Acting
small gap, switch to walk after first stone gate, lift head fully after second stone
gate, reduce head lift to half the height, and finally jump three times in a row.

Quantitative metrics 2:

– Number of trials until successful transition.
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Figure 9.18: Box and whisker plots for our task and questionnaire evaluation of our approach against a
familiar gamepad controller. Two-tailed P values are provided from paired Student’s t-test
analysis, which significant at the 95% confidence level (P < 0.05) marked with a star.

– Number of unintentional activated motions.

– Number of missed gates.

– Success of lifting head completely, then to half height.

– Difference from 3 jumps.

Task 3: Follow the leading horse, try to mimic its gait rhythm/beat and strideReacting
length as close as possible.

Quantitative metrics 3:

– Absolute difference between reference amplitude and user controlled amplitude
(The reference was created by performance as well.)

– Absolute difference between reference gait frequency and user controlled fre-
quency.

In summary, wave gestures are a competent alternative to a gamepad for ourStatistical
evaluation tasks. With the same control motions, all 10 participants were able to complete all

tasks. This shows robustness to different body shapes and input motion variations,
including to children. Figure 9.18 reports the main study results, it shows box plots
with outlier rejection computed using ROUT at Q = 1%, P values computed using
paired Student’s t-test analysis, and significance shown at the 95% confidence level.

In detail, for task 1, our method is slightly worse than the gamepad, straying fromSignificance
the path 0.6 times on average per participant and taking on average 4 seconds to
get back on track, though this is somewhat expected as directional control is simple
with the familiar gamepad. That said, users found it easier to adapt character speed
to narrow or wide curves with wave gestures. Task 2 was comparable with both
methods, but gamepad character animation looks less convincing with many abrupt
changes in direction, amplitude, and frequency. For task 3, wave gestures were
significantly more accurate (p-value = 3.95× 10−2), with frequency also showing
improvements (p-value = 5.18× 10−2). We believe this is because frequency control
is intuitive if performed with cyclic motions, as is change in stride length through
amplitude control. We strengthened this belief in a post-task questionnaire, with
wave gestures rated significantly more intuitive for stride length and step frequency
control. The whole result is displayed in Figure 9.19.

Users identified two significant limitations which apply broadly to gesture control:Delay and
demand greater control delay vs. gamepad, and higher physical demand. Should a motion
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9. Generalizing wave gestures from sparse examples for real-time character control

be uncomfortable, one benefit of our approach is that different control motions
can be interactively defined in just a few seconds, with no required limb or part
association. Our approach also allows different motion trackers to be swapped in
easily as, after character authoring, the only input we require is 2D or 3D skeleton
points. For example, we track the hand, which is more suitable for longer control
sessions or desk work.

One aspect that is untested in this study is the superposition of multiple motions,Coordination
which is hard to map to a gamepad but is easily solved with wave gestures. The
lack of more negative significant differences may be surprising given the familiarity
of gamepads, though it is clear that both schemes have strengths and weaknesses.

9.6.5. Expert animation practitioners

We invited three professionals to asses our system: a live animator, an offline
animator, and a game animation middleware developer.

Live animator. Our trained performance animator was very enthusiastic about ourRequires large
motion dictionary system. They imagined a large potential for character control on stage through the

mixing of pre-authored animations. However, the stage has demanding standards:
while our approach is robust, slight delays when transitioning can cause inexpe-
rienced users to repeat actions, and the user must learn to trust this behavior in
performance. She requested additional database animations, such as foot scratching
and jumping; our system scales well to these additional animations by the motion
graph.

Offline animator. Our offline animator saw the largest potential for our system atFor quick
prototyping the prototyping stages of the animation pipeline, where quick and easy generation

of animations would help communicate with the director. Furthermore, they saw
potential during content creation as a blocking tool for creating an initial animation
from a storyboard, which is then later refined offline in the standard animation
pipeline.

Game animation middleware developer. Our developer suggested that our approachFor games and
game creation fits many game requirements, notably the user flexibility, speed, and robustness.

Our authoring pipeline is very similar, with games typically using animation
blend trees (synonymous with parametric motion classes) and state machines (a
simplified motion graph). Beyond real-time control, he saw a benefit for games
companies who buy off-the-shelf motion databases, where our technique would
allow animators to create new sequences in the style of the original database but
with expanded variety, particularly for quadrupeds where existing data is rarer.

9.6.6. Controlling physical robots

Thus far, this performance-driven character animation approach has been evaluatedFrom virtual to
real worlds solely on virtual characters. The problem was formulated as finding a mapping

that transforms a stream of input poses to a stream of character poses, with the
character pose represented by its mesh configuration. Existing approaches also
used lower-dimensional rig parameters instead of direct mesh representations [Seol
et al., 2013]. In principal, low-dimensional rigs could be the output too, as the
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Figure 9.20: Intuitively controlling a physical robot with directional and cyclic hand gestures through a
course of landmarks. From left to right: closeup on hand motion input, robot start position,
moving towards the triangle mark, reaching triangle, and reaching second triangle. Please note,
that a second person passively secured the robot to prevent fatal crashing in a potential failure.

inferred mapping does not depend on the target representation structure. In fact,
there is no requirement that the target is a virtual character. It could also be any
other parametric target domain, for instance, the tempo of music, or a physical
robot parametrized by a space of control variables.

We probed performance-driven robot control on the four-legged StarlETH robot, Four-legged
robotwhich has parametric gait styles [Hutter et al., 2012]. A rotating finger reference

motion, captured by the Leap motion sensor, is defined as input. It is mapped
onto robot walk, where rotational speed maps onto robot step frequency, and
rotation amplitude maps onto robot stride length. In addition, the hand orientation
was configured to drive the robot direction and hand-sensor distance maps to
robot crouching height. The translation from control variables to gait control was
performed by the robot software, where only minor adaptation from the originally
supported keyboard interface was necessary.

This mapping allowed to steer the four legged robot through predefined landmarks, Intuitiveness
see Figure 9.20. In particular, the control of locomotion and step frequency was intu-
itive, and allowed slowing down when approaching the target locations. Moreover,
the direction of the whole robot could be controlled by changing the 3D direction of
the hand. Such directional control could be useful in a remote setup, to control the
view direction of the robot’s primary camera, or to control an actuator to interact
with the environment. We noticed that low delay was crucial to navigate safely. To
reduce lag, we reduced the Gaussian filter window width λ to 0.5, which greatly
improved controllability (Section 9.4.2). Different gait types, such as trot and gallop
beat patterns, could also be controlled akin to different character motions. Once
associated in a motion graph, a switch in control gesture would initiate a switch in
robot gait style.

While this preliminary study demonstrates the applicability of performance-driven Prove of concept
character animation to physical robot control, additional investigations are nec-
essary to explore and prove its use in real applications such as remote rescue
scenarios.
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9.7. Discussion and limitations

Any method is a point in a design space with trade-offs. For real-time characterA trade-off
control methods, these are typically expressiveness, learnability, flexibility, and
robustness. Our choices focus on improving the last three of these attributes.
However, we limit expressiveness, in contrast to retargeted ‘one-to-one’ mapping
approaches, with a need for authored character animations. Having said that, our
approach is a good fit for games and virtual worlds. One way to overcome the
general expressiveness problem is to allow a gesture to switch into a retargeted
animation mode as a node in the motion graph, e.g., when appropriate for direct
interaction with an object. For environmental context triggering, our activation
variables work similarly to Ishigaki et al. [2009], so moving in the world could
trigger motion control changes.

One might suspect that our 2D intermediate representation is too drastic a reduc-Information content
tion in dimensionality. However, the intrinsic dimensionality of individual motions
is low, and a drastic reduction is actually desirable: 1) To combat ‘noise’, as user
shape and coordination skills vary greatly (e.g. children), with tracking inaccuracy
also affecting the result; 2) Each parametric motion class has one reference control
motion, and control through variations of this motion are inherently similar. A
drastic reduction is also sufficient: If we attempt to reconstruct original control
motions from our wave representation by the inverse linear map Φ+, we measure
reconstruction error as ≈ 0.3× the standard deviation (over all dimensions) of the
original signal. Empirically, our examples show that we compete with or exceed the
flexibility, ease of control, and animation quality of alternative high-dimensional
pose mapping approaches. In principle, the intermediate representation and filter-
ing could also be extended to capture multiple harmonic frequency bands, which
would allow multiple frequency motion detection, but this complicates user control
and is harder to understand for novice users.

The applied Gabor filtering infers AFP from ≈one period of motion, which limitsDelay
the ability to control speed and amplitude of character motions within a single
period. Control can become difficult at very abrupt changes such as quickly tran-
sitioning to high jumps. There is a fundamental trade-off between robustness
and responsiveness; though different filtering techniques might adapt to this spe-
cific case, e.g. cubature Kalman filter [Arasaratnam and Haykin, 2009]. If desired,
physical constraints could be incorporated to restrict unrealistic motions, such as
stopping during jumps or flight phases.

Our approach to distinguishing gestures is robust as competing reference controlSeparability
motions are used as negative examples in training. We show scalability to many
different control motions; however, we have difficulty distinguishing gestures
which are very similar, for instance, hand waving in a straight line vs. on an arc.
Any control gestures which are more than two edges apart in a motion graph
are independent, so ‘scalability’ must also consider how many edges are typically
needed per node? For a game, this is governed by the available control DOFs. A
typical gamepad has 10-12 binary buttons, two linear triggers, and two 2D linear
thumbsticks. In our example of the dog controlled by the hand and face, we show
independent linear or cyclic control of four locomotion, one emotion, and six action
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parameters. Under this comparison, we fare comparably: we have less binary states,
but we offer more expression per DOF. While the scalability problem is general
to gestural approaches, we somewhat relieve these restrictions through the graph
design.

The question of intuitive gestures for arbitrary characters is open-ended, involving Subjective use
issues such as learnability, comfort, and user preference. We demonstrate a flexible
approach which allows interactive mapping of different controls learned with a
single reference control motion from the user. Our user study shows that people of
many shapes and sizes could quickly adapt to using the system with good accuracy.

Our approach is applicable to characters created by various animation tools because Animation
pipelineit is always possible to export any animation format to our mesh representation

(e.g. rig or deformation cages), but it is harder to take our synthesized mesh anima-
tion and recover rig parameters to continue animation with traditional pipelines.
Our core mapping is independent of character representation, as demonstrated with
the legged robot control; however, demonstrating a mapping to rigged characters
remains future work.

Currently, we do not extrapolate outside the animation database. However, this Extrapolation
would be possible by embedding into a latent space with extrapolation capabilities,
such as, non-linear Gaussian process latent variable model (GPLVM) embeddings
[Lee and Elgammal, 2004; Levine et al., 2012] and multi-dimensional scaling [Shin
and Lee, 2006; Cashman and Hormann, 2012]. Our focus is instead on robust
input generalization—the output of our algorithm could be used as input to these
techniques to drive animation synthesis.

9.8. Summary

We present an approach to decompose robustly and in real-time high-dimensional Robust and rich
input motions into wave parameters of amplitude, frequency, and phase for a set of
control motions. We interactively learn a mapping from single reference examples
of a user defined control motion to an intermediate 2D sinusoid representation,
which lets us generalize variations of wave parameters during live motion. This
provides intuitive control variation, particularly for cycles, and produces higher-
quality character animation than competing approaches. The result quality is greatly
improved in comparison to the pose based methods introduced in Chapter 8, and
dynamics are faithfully transferred to the target character. Furthermore, complex
motions can be superimposed, and inferred global character motion is realistic due
to foot-sliding prevention. For instance, when interpolating within a parametrized
database, simply increasing the frequency of a gesture enables natural transitions
from walking to running. The approach applies to arbitrary characters, and so for
quadrupeds, we solve the locomotion interpolation problem with a time-shifted
approach that separates temporal alignment from pose interpolation and partially
decouples character segments (e.g. limbs). In a user study, we verified that our
system was intuitive to learn and operate, and applies well to different users,
control motions, and motion trackers. As such, it had the potential to be useful for Suited for

VR and ARsituations where traditional controllers are inappropriate. It is particularly suited
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for game and VR applications and, as we shall see, also serves the demands from
other application fields.
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From acquisition to

animation and beyond 10
We envision a future in which the complete human body is reconstructed at high The holy grail
temporal and spatial resolution from non-intrusive, easy-to-setup sensors, and
in general unconstrained environments. Future reconstruction algorithms should
be general enough to operate in casual living room environments, offices, and
other workplaces, for quick athletic motions, and at medical precision standards.
Besides metrically accurate reconstructions, semantics information should also be
extracted, such as the intent of a motion or gesture. To attain these ideal properties,
challenging algorithmic problems need to be solved.

In this dissertation we have used performance-driven character animation in VR Contribution
generalityas our major example: for consumer adoption, it requires most if not all of the

’holy grail’ target properties; yet is currently hampered by imprecise, invasive, and
difficult to use systems which work only in constrained scenarios. Our contributions
alleviate some of these problems, but their impact is not restricted to VR. The core
algorithmic, mathematical, and conceptual contributions of this dissertation are
general. To better place our contributions in the wider world of applications, and to
see where new contributions must be made to reach the ’holy grail’, we will discuss
the applications of the augmented body, virtual interaction, sports coaching, and
computer aid (see Figure 10.1).

In the following sections, we summarise the core contributions, subsequently Overview
discuss their merit in the four application scenarios, and sketch possible future
solutions to remaining open challenges.

10.1. Contribution summary

The volumetric scene model handles occlusions in a smooth and differentiable Smooth volumetric
model for pose esti-
mation

way. The developed theory is applicable to diverse problems, such as rigid object
tracking, shape estimation, and articulated pose estimation. For pose estimation, we
demonstrated that the advanced occlusion handling yields higher reconstruction
quality compared to existing solutions, in particular when using few input views.

The volumetric contour model directly aligns object boundaries with image edges, Volumetric contours
for shape estimationavoiding the typical and error-prone silhouette extraction. It is particularly useful

for the proposed actor model initialization, where no prior appearance model is
available. This is in contrast to methods using segmentation and a foreground color
model, such as GrabCut segmentation.
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Figure 10.1: This dissertation advances motion-capture and character-animation algorithms to enable new
levels of performance-driven character animation. This figure lists the main features of the
proposed algorithms (center) and relates them to diverse applications (bottom). The attained
advances are general and have merit in augmented reality and virtual interaction, and also in
fields outside virtual reality, such as sports coaching and computer aid. Some remaining open
challenges are marked in light gray.

The egocentric tracking approach allowed inside-in motion estimation withoutOptical inside-in
motion capture using external sensors and reference objects. Its design avoids occlusion problems

in crowded scenes and reduces setup time compared to outside-in arrangements.
Furthermore, it provides free roaming, while maintaining minimal instrumentation.
The proposed automatic annotation and augmentation strategy eases the creation
of large databases, which are required for machine learning methods—for both
outside-in and inside-in approaches.

The interactive pose mapping with automated guidance lowered the entry barrierGuided inter-
active control and enabled performance-driven character animation for novice non-technical users.

The mathematical formulation as a general mapping between well chosen input and
character representations proved state-of-the-art generalization to various character
types, and the use of unlabeled data in a semi-supervised learning framework was
crucial for regularization.

The wave gesture generalization is designed to handle cyclical motions, a keyCyclical ges-
ture processing ingredient to enable rich control of the important motion class of locomotion.

Working in the time-frequency domain increased robustness to sensor, control,
and mapping inaccuracies, which significantly advanced the quality of real-time
character animation. Together with improved quadruped interpolation, the quality
of performance-driven character animation was greatly improved.

In summary, the pipeline from sensing, motion capture, and character animationFrom motion cap-
ture to interactive

virtual worlds
is advanced significantly. The algorithmic improvements attain new theoretical
properties and have practical merit in virtual reality applications and beyond, as
we outline below.
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10.2. Future applications

10.2.1. The augmented body

We argued that using the user’s real body motion has high potential for natural Dynamic body
augmentationhuman-computer interaction. A precise reconstruction of the user enables new

immersive experiences, for instance, by augmenting the user’s appearance with
an avatar that precisely follows the user motion. With a VR or AR head mounted
display, it is be possible to place the user into a virtual surrounding and into a
virtual character. By exactly overlaying the avatar on the user’s position, the user
gets the impression of embodying the avatar. For instance, to embody a super hero
or to wear a new clothing style.

Body augmentation requires extremely low delay and high frame rate pose esti- Real-time
mation Even a slight delay would lead to ghosting artifacts. In EgoCap we used a
ConvNet to estimate pose. For (discriminative) neural network-based reconstruc-
tion, the network depth is the limiting factor, since the execution time is limited by
the sequential dependency of layers. In our EgoCap project, 100 layers are used and
lead to frame rates of about 5 fps. Attaining similar reconstruction quality with less
layers is an open problem. In our framework, the discriminative neural network is
combined with a generative model. It might be bearable to use the discriminative
part at lower frame rate for reinitialization only. The proposed gradient-based gen-
erative optimization scales well to higher input frame rates. For a constant motion,
pose changes between frames become proportionally smaller with increasing frame
rate. That means, that higher input frame rates reduce the required step size and
the number of gradient iterations per frame can be reduced.

Besides technical challenges, the design and manufacturing of HMDs and motion Low-cost
lightweightcapture equipment that is small and non-intrusive is difficult. However, aesthetics

are very important for social acceptance. The current commercial HMD solutions
are relatively bulky and are intended for home use. The proposed egocentric setup
requires cameras mounted at small extensions, to provide a sufficient viewing angle
and reduced occlusions of the lower body. While these extensions are lightweight
and do not hamper most applications, they likely pose a problem for social ac-
ceptance outside the living room. Together with future miniaturization of HMDs,
these extensions should be replaced by alternative on-body camera positioning. The
proposed algorithm is not specific to head-mounted inside-in capture. Miniature
cameras are available and could be placed at different body locations, such as at
the shoe and by integration into digital smart clothes. It is an open challenge where
to best place cameras to reduce intrusion, while maintaining reconstruction quality.

The proposed egocentric pose estimation is not yet ready for real-time augmenta- Easy to use
tion, but we outlined possible advances towards this goal. EgoCap was designed
to require little manual initialization and can be pre-calibrated, yet it provides
full-body motion capture. The proof-of-concept VR application successfully demon-
strated that the generative component has real-time performance. It creates a solid
foundation for future consumer-level pose estimation for augmented reality.
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10.2.2. Virtual interaction

One limitation of virtual interaction is the lack of haptic feedback, such as whenHigh resolution
engaging in an handshake. Nevertheless, most of the every day interaction is audio-
visual. A realistic avatar with high temporal and spatial resolution is demanded to
facilitate natural visual interaction, i.e., a perfect visual replication of the interacting
users.

In this dissertation, we focused on advances of skeleton motion estimation and bodyFrom medium
to high resolution shape estimation. The developed algorithms provide a good overall reconstruction,

but no fine detail such as cloth wrinkles. However, this medium-scale detail forms
a good starting point for refinement methods, for instance the method of Robertini
et al. [2016] could be used to reconstruct detail of deforming cloth. To enable high-
detail visual interaction, exiting refinement methods need to be extended. Among
others it is a challenge to increase accuracy in general environments, to support
the egocentric perspective, to reconstruct loose clothing, and to support topology
changes. Intriguing is also the utilization of today’s high-resolution cameras, which
allow to observe fine details, such as fine-grained hand articulation, even from
distant cameras. Increased resolution creates new challenges: it requires good
runtime scalability and closeup views show new characteristics and ambiguities. For
instance, fabric strains and skin pores form repetitive patterns which make it hard
to find reliable correspondences between frames and multiple views. Nevertheless,
they provide structure that can be used for fine-scale geometry reconstruction

While a very realistic reconstruction would enable rich human-human interactionSemantic
analysis in virtual worlds, human-computer interaction requires to interpret performance

capture data semantically. For instance, to estimate the intent of a motion [Ishigaki
et al., 2009]. In Chapter 9, we proposed to separate simultaneously performed
gestures and to estimate continuous motion parameters. Besides controlling virtual
characters, it would be interesting to extend these approaches and to use them in
general interfaces, such as for navigating in menus, browsing (web) content, and
giving instructions.

Detailed information on the user’s hand is necessary for accurate interaction withFull-body
detail the virtual world, such as picking up items, placing objects, and turning control

knobs. Promising for the future are combinations with existing hand tracking
algorithms, for instance, the color camera based work of Wang and Popović [2009]
and Sridhar et al. [2014]. However, adaptation for the egocentric placement and
fisheye camera distortion is required. As a first step, coarse discrete information
could be extracted, for instance, for picking up an item it is sufficient to determine
whether the hand is open or closed.

Haptic feedback would provide an additional communication channel. While it isInverse mapping,
character to human already used in dedicated flight simulators and some VR applications, in the context

of performance-driven character animation, a stronger feedback loop could be
explored. This would include integrating physics to simulate character-environment
collisions and providing the user with corresponding haptic feedback. While we
developed While we developed a human to non-human character mapping, this
would require us to map in the inverse direction: to translate character collisions to
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semantically equivalent haptic force on the human user.

10.2.3. Virtual sports coach

Professional sports exploits motion pattern analysis to run faster, throw further, The virtual
trainerand harmonize team play. To train athletes, 2D video analysis is an established

analysis tool in professional sports. Motion capture technology, as developed in
this dissertation, can provide further 3D cues and insights [Bregler, 2012]. For
instance, comparing multiple reconstructions allows us to automatically analyze
the edge an olympic athlete has on his competitors, possibly exposing details not
visible to the human eye. Such advanced supervision and coaching is currently only
accessible to professionals. With future consumer level hardware and software, even
amateur athletes could be coached by virtual trainers. Autonomous assessment of
a performed action would be possible through highlighting the difference of the
performed motion to the ideal motion pattern of a professional. More informed
analyses could suggest the better timing of actions and overall body posture.

For such a coaching analysis, unconstrained motion reconstruction in large en- Free-roaming
non-intrusivevironments is required, and the methods developed in Part II are a good match.

Additionally, semantic analysis requires accurate advanced motion property esti-
mation, which can be attained with the real-time estimation methods proposed in
Part III. Together with new augmented reality devices, a system is conceivable that
gives immediate and non-stop feedback during training.

10.2.4. Computer aid

One long lasting hope of digitalization is the compensation of handicaps by as- Supervision and
service robotssistance. This requires to understand human needs, and among others the recon-

struction of human motion. For instance, real-time motion analysis would allow
us to detect the fall of elderly people living alone, and to alert the ambulance. It
could also be used to support medical treatment, for instance, to count Parkinsons
syndromes during a day and to adjust medication doses accordingly [Dai et al.,
2015]. Long-term recording and supervision over weeks or months could also
estimate convalescence, and guide rehabilitation activities. Across populations, the
analysis of groups of people over extended periods could statistically identify the
ideal treatment for a specific illness.

The proposed egocentric approach allows recording in general scenes for several Robustness
minutes. It is a first step towards day-long recordings, which requires high robust-
ness. It is an open question of how to best tolerate strong illumination changes,
with one approach being to integrate shading estimation into the objective, such
as proposed by [Wu et al., 2012]. Discriminative methods can generalize well, so
long as the provided training data includes examples of sufficient variation. The
automatic augmentation and annotation method proposed in Chapter 6 makes it
easy to extend databases to additional subjects, environment conditions, occlusion
cases, and clothing.

Moreover, gestural control could allow people suffering from immobility and other Intuitive
fully automaticphysical handicaps to interact and navigate by simple gestures, e.g., using simple
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hand gestures to control a service robot, as demonstrated in Section 9.6.6. It would
be interesting to further advance human-robot collaboration with natural motion
interfaces.

Through predicting future applications, we have described promising researchConclusion
directions in which to advance. Like any prediction, the proof of time will measure
their true value; however, we hope that the contributions in this thesis—the new
algorithms, representations, and devices—further our ability to understand and
support humans via natural motion interfaces.
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