Physical Design in Databases

Endre Palatinus

Thesis for obtaining the title of
Doctor of Engineering
of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbriicken, Germany
July 2016

Dean of the Faculty | Prof. Dr. Frank-Olaf Schreyer
Day of Colloquium | 15. December 2016

Examination Board:
Chairman Prof. Dr. Jorg Hoffmann
Reviewers Prof. Dr. Jens Dittrich

Prof. Dr. Sebastian Hack
Academic Assistant | Dr. Swen Jacobs

111

To my family

Acknowledgements

I would like to thank my supervisor, Jens Dittrich for guiding me during my PhD.
I appreciate his efforts on showing me how to present research ideas and results
clearly and effectively. Besides doing research together, I was also lucky enough
to take part in his experiments in novel teaching approaches, namely in multiple
flavours and iterations of the flipped classroom model.

I would also like to thank Dr. Michelle Carnell, the Program Manager of the
Saarbriicken Graduate School, for convincing me to do my PhD at Saarland Uni-
versity, and for the very welcoming atmosphere at the Graduate School.

The research work presented in this thesis was supported by the funding from
the German Ministry of Education and Science (BMBF).

vii

Abstract

We live in an age where data has become one of the most important assets of
companies. Data in itself is valuable, yet it has to be turned into information to
become useful. This is where database management systems come into the picture.
They allow for efficient processing of even terabytes of data, and thus provide
the basis of knowledge extraction and information retrieval. A high-performance
database system is an essential requirement for making big data analysis possible.

The performance of database systems can be improved at multiple levels of the
system, and using various approaches. In this work we focus on data layouts, and
also investigate the performance implications of compiling hand-written queries
and whole database systems as well.

We present an exhaustive experimental study on vertical partitioning algo-
rithms. Vertical partitioning itself is a physical design technique to partition a
given logical relation into a set of physical tables, called vertical partitions. It is a
crucial step in physical database design in legacy row-oriented databases.

We show a survey of query processing on top of flat files, which are text files
containing data encoded in some standard text format. Flat files are commonly
used in various fields of science to store experimental results in a human-readable
format.

We explore the performance implications of compiling both hand-written que-
ries, and whole database systems as well. We present two techniques for improving
query performance that build upon changing compiler setups, and apply them in
a main-memory database system.

X

Zusammenfassung

Wir leben in einem Zeitalter, in dem Daten eine der wichtigsten Ressourcen eines
Unternehmens darstellen. Obwohl Daten bereits in ihrer Rohform ein wertvolles
Gut sind, miissen zunéchst die Informationen aus ihnen herausgearbeitet werden,
um sie verwertbar zu machen. Genau an diesem Punkt treten Datenbanksysteme
in Erscheinung.

Diese erméglichen eine effiziente Verarbeitung von Daten in der Groflenordnung
von Terabytes und stellen damit die Grundlage von Wissensextraktion und Infor-
mationsgewinnung dar. Ein Hochleistungsdatenbanksystem ist daher eine unent-
behrliche Anforderung, um Big Data Analysen iiberhaupt erst moglich zu machen.

Die Leistungsfiahigkeit von Datenbanksystemen kann auf mehreren Ebenen und
unter dem Einsatz verschiedenster Techniken verbessert werden. In dieser Arbeit
konzentrieren wir uns auf die (physische) Anordnung von Daten und untersuchen
dariiber hinaus die Auswirkungen von Kompilierung auf handgeschriebene Anfra-
gen sowie auf komplette Datenbanksysteme.

Zunéchst prasentieren wir eine ausfiihrliche experimentelle Studie iiber vertika-
le Partitionierungsalgorithmen. Vertikale Partitionierung ist eine Methode aus dem
Bereich des physischen Datenbankentwurfs, bei der eine logische Relation in eine
Menge von physischen Tabellen zerlegt wird. Es stellt einen fundamentalen Schritt
des physischen Datenbankentwurfs in zeilenorientierten Datenbanksystemen dar.

Dariiber hinaus prasentieren wir eine Studie {iber Anfrageverarbeitung auf ein-
fach strukturierten Textdateien. Dieses Format wird in verschiedenen Bereichen
des wissenschaftlichen Arbeitens verwendet, um experimentelle Ergebnisse in ei-
ner lesbaren Form abzuspeichern.

Des weiteren untersuchen wir den Einfluss der Kompilierung auf das Lauf-
zeitverhalten von handgeschriebenen Anfragen sowie von kompletten Datenbank-
systemen. Wir présentieren zwei verschiedene Methoden zur Beschleunigung der
Anfrageverarbeitung, die auf Anpassungen der Kompilierungseinstellungen beru-
hen, und wenden diese in einer Hauptspeicherdatenbank an.

el

Contents

Chapter 1: Introduction 1
1.1 Vertical Partitioning for Legacy Row Stores 1
1.1.1 Research questions 1

1.1.2 Contributions o 2

1.1.3 Publications Lo 3

1.2 Query Processing on Top of Flat Files 3
1.2.1 Research questions 3

1.2.2 Contributions 4

1.3 Computer Systems Performance Analysis 4
1.3.1 Contributions o 5

1.4 Runtime Fragility in Main Memory D
1.4.1 Fragility of Hand-coded Queries in Main-Memory D

1.4.2 Fragility of Compiling a Database System 6
Chapter 2: Vertical Partitioning for Legacy Row Stores 9
2.1 Imtroduction 10
2.1.1 Background 10

2.1.2 Effects of Vertical Partitioning 10
2.1.3 Choosing a Vertical Partitioning Algorithm 12
2.1.4 Contributions Lo 12

2.2 Classification of Vertical Partitioning Algorithms 13
2.2.1 Search Strategy 13

2.2.2 Starting Pointo 15
2.2.3 Candidate Pruning 16

2.3 Evaluated Algorithms 16
2.4 Methodology 21
2.5 Comparison Metrics 25
2.6 Simulations and Experiments 26
2.6.1 Comparing Optimization Time 26
2.6.2 Comparing Algorithm Quality 28
2.6.3 Comparing Algorithm Fragility 33

xiil

Xiv CONTENTS

2.6.4 Where does vertical partitioning make sense? 36
2.7 Lessons Learned Lo 41
2.8 Conclusion 44
Appendices
2.A Additional Results oL 45
2.A.1 How soon does vertical partitioning pay-off? 45
2.A.2 Extending our Model to Consider Selectivity 46
2.B Layouts 49
2.C Implementation Notes 51
2.C.1 A short walk-through of vertically partitioning the TPC-H
PartSupp table 0o 51
2.C.2 A Quick-start Guide 53
Chapter 3: Query Processing on Top of Flat Files 55
3.1 Introduction 55
3.1.1 Flat File Databases 59
3.1.2 The Processing Model of Flat File Databases 56
3.1.3 Research questions Y
3.1.4 Contributions oo o7
3.2 Related Worko o7
3.3 Benchmarking Flat File Processing 29
3.3.1 Experimental Setup 59
3.3.2 Loading Data into PostgreSQL 59
3.3.3 A Simple Aggregation Query 61
3.3.4 A More Complex Query 64
3.3.5 The Inherent Costs of Flat File Processing 65
3.3.6 Files in Binary Format 69
3.4 Conclusions 69
Appendices
3.A The CI/O Library 69
Chapter 4: Computer Systems Performance Analysis 71
4.1 Performance Analysis 72
4.1.1 Motivating Example 72
4.1.2 Confidence Intervals 72
4.1.3 Outlier Detection, 73
4.1.4 Choosing the Best Solution when there is no Single Best
Solution 73

4.2 A Framework for Statistical Analysis of Experimental Results . . . 74

CONTENTS XV
4.2.1 Calculating statistics in SQL 75
4.2.2 Finding the best solution of each problem 78

Chapter 5: Runtime Fragility of Hand-coded Queries in Main Mem-

ory 81
5.1 Imtroduction 82
5.2 The six-dimensional Parameter Space of our Experiments 83
5.3 Managing the Experimental Results 85
5.4 Micro Benchmark Results 87
5.4.1 Runtime Fragilityo 90
5.4.2 Conclusions and Guidelines 91
5.5 Revisiting Strided Memory Access 92
5.5.1 Motivationo 92
5.5.2 Background Lo 93
5.5.3 Available Resources for Performance Monitoring 94
5.5.4 Performance Implications on Tuple-reconstruction 95
5.6 TPC-H Experiments 97
5.6.1 Experimental setup L 97
5.6.2 Runtime Fragility o000 98
5.7 Conclusions 99
Chapter 6: The Performance Implications of Compiling a Main-
Memory Database System 101
6.1 Introductiono 101
6.1.1 Motivation 102
6.1.2 Research Questions 103
6.1.3 Contributions 103
6.2 The Six-dimensional Parameter Space of our Experiments 104
6.3 Methodology 107
6.3.1 Building MonetDB 0oL 107
6.3.2 Experimental setup. o0 110
6.4 90 shades of compiling MonetDB 110
6.4.1 What happens if we use another compiler? 110
6.4.2 What happens if we change the O-level as well? 111
6.4.3 What else can happen inside traditional compilation? 111
6.4.4 What changes if we use another machine? 113
6.4.5 What if we use advanced compilation modes? 116
6.5 Query routing 118
6.6 Operator routing 119
6.7 Related work 124
6.8 Conclusion and Future Work 125

XVl CONTENTS

6.8.1 When tocompile oL 125

6.8.2 Putting it all together o000 126

6.8.3 Future worko 127
Appendices

6.A The performance implications of compiling a key-value store 129

6.A.1 Experiments 131

Chapter 7: Summary 133

7.1 Vertical Partitioning for Legacy Row Stores 133

7.1.1 Lessons Learned 133

7.1.2 Future Work 135

7.2 Query Processing on Top of Flat Files 135

7.3 Runtime Fragility in Main Memory 135

7.3.1 Fragility of Hand-coded Queries in Main-Memory 135

7.3.2 Fragility of Compiling a Database System 136

7.3.3 Future Work 137

List of Figures 139

List of Tables 143

Bibliography 145

Chapter 1

Introduction

This work is a journey from data layouts to compiling database systems with a few
pit stops at the blend of both topics — data layouts for flat file processing, man-
aging large-scale experimental results in a statistically sound way, and efficiently
compiling a new main-memory data layout. In the following we elaborate on each
of these topics.

1.1 Vertical Partitioning for Legacy Row Stores

Vertical partitioning is a physical design technique to partition a given logical
relation into a set of physical tables, called vertical partitions. It is a crucial
step in physical database design in legacy row-oriented databases. A number of
vertical partitioning algorithms have been proposed over the last three decades
for a variety of niche scenarios. In principle, the underlying problem remains the
same: decompose a table along its attributes into one or more vertical partitions.
However, it is not clear how good different vertical partitioning algorithms are
in comparison to each other. In fact, it is not even clear how to experimentally
compare different vertical partitioning algorithms.

1.1.1 Research questions

Vertical partitioning strongly affects the query performance in many ways. Various
vertical partitioning algorithms have been proposed by several researchers over
time. As a result, users now have the problem of choosing the right one for their
needs. In contrast to physical design tools, which choose a layout given a vertical
partitioning algorithm, the problem here is to choose the vertical partitioning
algorithm in the first place. Essentially, the questions that we are looking at are:

2 1.1. Vertical Partitioning for Legacy Row Stores

e Which are the major algorithms proposed? What is the difference between
those algorithms?

e For which settings were different algorithms proposed? What are their pros
and cons?

e What are the primary differences between different vertical partitioning set-
tings? Can we abstract the settings from the algorithms?

e How do we compare different algorithms in a common setting? What would
be the right measures for comparison?

e How do the different algorithms compare against each other? When to use
which algorithm?

Thus, there is an absence of a systematic and comparative study of vertical
partitioning algorithms.

1.1.2 Contributions

We present an exhaustive experimental study on vertical partitioning algorithms.
Our main contributions are as follows:

e Given the large number of vertical partitioning algorithms proposed in the
literature, we first understand the fundamental differences between them.
To do so, we first classify them along three dimensions, namely: (i) search
strategy, (ii) starting point, and (iii) candidate pruning.

e From the above categories, we survey six representative vertical partitioning
algorithms, namely: (i) AutoPart [51], (ii) HillClimb [28], (iii) HYRISE [26],
(iv) Navathe’s algorithm [46], (v) OoP [35], and (vi) Trojan layouts [37]. We
present a brief summary and the context of each of the algorithms.

e We describe how the different vertical partitioning algorithms can be applied
in the same setting. Even though each algorithm was proposed for a different
setting, we can still unite them under a common umbrella.

e We present a systematic way of comparing different vertical partitioning al-
gorithms. For this purpose, we introduce four metrics, namely: (i) how fast
in terms of computation times, (ii) how good in terms of workload runtimes,
(iii) how fragile in terms of predictable runtimes, and (iv) where does it make
sense to use vertical partitioning.

Chapter 1. Introduction 3

e We show detailed experimental results from six vertical partitioning algo-
rithms over the TPC-H benchmark and with row and column layouts as
baselines. We discuss each of the four metrics for the six vertical partition-
ing algorithms.

e Finally, we discuss the four key lessons learned.

1.1.3 Publications

Alekh Jindal, Endre Palatinus, Vladimir Pavlov, Jens Dittrich
A Comparison of Knives for Bread Slicing

PVLDB, 6(6):361-372, 2013

1.2 Query Processing on Top of Flat Files

In this chapter we show a survey of query processing on top of flat files, i.e. text files
containing data encoded in some standard text format. Flat files are commonly
used in various fields of science to store experimental results in a human-readable
format. These datasets are considered external to a database management system,
and to efficiently process them using a DBMS, they first have to be loaded into the
database, which imposes a higher time-to-query (the time we have to wait till we
can fire the query). Other ways of processing these datasets are using custom-built
applications that operate on the flat files directly. These approaches are expected
to yield an inferior query performance, yet with zero time-to-query. We will show
cases where this is not completely true, and where flat file processing tools can
even outperform a DBMS.

1.2.1 Research questions

Both databases and scripting languages have a large user base, and both of them
would swear on their tool being the right one for processing data residing in flat
files. In this chapter we try to give a guideline on when one camp should be better
off using the other camp’s tool by answering the following research questions:

e (Can scripting languages compete with database systems in query processing?
e Does it pay off to invest in loading the data into a database?

e How should we choose the proper tool and data format for flat file processing?

4 1.3. Computer Systems Performance Analysis

1.2.2 Contributions

Our main contributions in this chapter are as follows:

e We show how to load data into Postgres in the most efficient way. Hereby,
we discuss various database tuning steps and tools for data loading.

e We compare three different tools for processing flat files: the Postgres
database system, an AWK script, and a hand-written C-application. We
compare them on their query time, and time-to-query as well. The latter
once includes the cost of loading data into the database, which is only ap-
plicable to Postgres.

e We provide two representative examples of queries that exemplify two ex-
treme cases. For single-table queries containing filtering but no grouping,
flat file processing tools are better suited, and databases might never pay off
because of the upfront costs of loading the data. For more complex queries
involving joins, aggregations, and the like, a database system can drastically
improve subsequent query times and thus the loading times will eventually
pay off.

1.3 Computer Systems Performance Analysis

Performance is a key aspect of every system in computer science. As such, it is
often required to build a system that has the highest performance at a given cost.
Often, we have multiple solutions for a given problem, and we have to compare
their performance to choose the most efficient one. The comparison is done along
some metrics of the system, e.g. runtime, latency, throughput, memory usage,
etc. The metrics themselves are either measured or estimated. In the former
case the measurements are repeated multiple times to reduce the possibility of
measurement errors, and to increase the confidence of the results. To summarise
the measurements, some statistics of the data are provided, which is most often
the average value, i.e. the mean. This, however, is not the most reliable statistics,
and thus researchers should favour other statistics.

When comparing a few algorithms that solve a given problem, we usually do
not have a lot of measurements available. We typically calculate some statistics
over the runtime or memory usage of the different algorithms, apply some statistics
over the measurements, and choose the one with the best results. However, when
we also consider multiple factors that could have an influence on the performance
of these algorithms, we end up adding new dimensions to the problem space.
Eventually, managing the experimental results becomes a problem.

Chapter 1. Introduction 5)

1.3.1 Contributions

In this chapter we make the following contributions:

e We present a uniformly applicable method for storing experimental results
and problem dimensions in a relational database.

e We describe a flexible way of exploring the effects of the problem dimensions
on the performance in a statistically sound way.

e We also highlight the importance of statistical confidence when publishing
research results, and discuss the implications on doing statistics the wrong
way.

1.4 Runtime Fragility in Main Memory

A compiler is just another abstraction layer. It is safe to use whatever default
compiler we have on our system. It has a default O-level, which is just fine for
most purposes, thus also for building our database system as well. If we would like
to generate the most efficient code, we just go for the highest O-level available.
Maybe we even use some fancy optimizations our compiler supports on top of
that. Furthermore, if my compiler setup worked well for me, it should work well
for anyone else as well. Why are all of the previous statements plain wrong? That
is what the last two chapters of this thesis are about.

1.4.1 Fragility of Hand-coded Queries in Main-Memory

In this chapter we consider the following problem: Given a database workload
(tables and queries), which data layout (row, column or a suitable PAX-layout)
should we choose in order to get the best possible performance? We show that
this is not an easy problem.

Contributions

e We explore careful combinations of various parameters that have an impact
on the performance including: (1) the schema, (2) the CPU architecture,
(3) the compiler, and (4) the optimization level. We include a CPU from
each of the past four generations of Intel CPUs.

o We demonstrate the importance of taking variance into account, when decid-
ing on the optimal storage layout. We observe considerable variance through-
out our measurements which makes it difficult to argue along means over

6 1.4. Runtime Fragility in Main Memory

different runs of an experiment. Therefore, we compute confidence intervals
for all measurements and exploit this to detect outliers and define classes of
methods that we are not allowed to distinguish statistically.

e We show that the variance of different performance measurements can be so
significant that the optimal solution may not be the best one in practice. Our
results indicate that a carefully or ill-chosen compilation setup can trigger
a performance gain or loss of factor 1.1 to factor 25 in even the simplest
workloads: a table with four attributes and a simple query reading those
attributes.

e We highlight, that besides the compilation setup, the data layout is another
source of query time variance. Various size metrics of the memory subsystem
are round numbers in binary, or put more simply: powers of 2 in decimal.
System engineers have followed this tradition over time. Surprisingly, there
exists a use-case in query processing where using powers of 2 is always a
suboptimal choice, leading to one more cause of fragile query times. Using
this finding, we will show how to improve tuple-reconstruction costs by using
a novel main-memory data-layout.

Publications

Endre Palatinus, Jens Dittrich

Runtime Fragility in Main Memory

Proceedings of the 2016 Joint Workshop on Accelerating Analytics and In-Memory
Data Management Systems

1.4.2 Fragility of Compiling a Database System

High performance database systems are typically written in a compiled program-
ming language, most of the times in C/C++, with few notable exceptions that
are written in an interpreted or JIT-compiled language. The previous systems are
compiled into machine code specific to a target system (hardware and OS) using
a compiler. The compiler is considered as just another abstraction layer in the
software development pipeline, and is either used "as is”, or with a fixed setting.
Any possible interaction between the compiler settings and the target system and
use case are neglected.

Research Questions

Many high-performance database systems are pre-compiled software. Compiling
the system yourself is seen as yet another step in the software development pipeline,

Chapter 1. Introduction 7

and is typically not considered as a performance factor. However, if a developer
would like to tune the compiler setup of a database system, he might end up
finding the compiler having more tuning knobs than the database system itself.
Thus, there are many open questions about compiling a whole database system:

Does changing the compiler settings have only a negligible effect on the query
performance of a whole database system?

Can we improve query performance by choosing a suitable compiler setup
system-wide?

Can we further improve query performance by choosing for each query the
most suitable compiler settings?

Do our findings still hold if we use another machine?

Ultimately, can we consider the compiler as just another abstraction layer?

Contributions

In this work we present an exhaustive experimental study on compiling the
MonetDB database system. Our main contributions are as follows:

Given the large number of tuning knobs of compilers we first discuss the ones
that could be the most important starting points of performance tuning when
compiling a whole database system, namely: i) the compiler itself, ii) the
optimization level, and iii) advanced compilation modes.

For the above categories we consider: i) the three most popular C/C++
compilers (GCC, clang, and the Intel C/C++ compiler), ii) all five standard
O-levels, and iii) link-time optimization (LTO), and profile-guided optimiza-
tion (PGO).

We consider all combinations of the above knobs, which we will call compiler
setup, and build 90 separate MonetDB instances using each of them. We
then measure the query performance of the resulting system instances on
the TPC-H benchmark.

We show the differences in the efficiency of the compiler setups when using
a different machine. Here we consider six servers equipped with CPUs of
subsequent generations.

We present two techniques for improving query performance that build upon
changing compiler setups. These approaches work on two different levels: on
a per-query level, and on the physical database operator level.

8 1.4. Runtime Fragility in Main Memory

Publications

Endre Palatinus, Jens Dittrich
90 Shades of Compiling a Main-Memory Column Store
Manuscript in preparation.

Chapter 2

Vertical Partitioning for Legacy
Row Stores

Vertical partitioning is a crucial step in physical database design in row-oriented
databases. A number of vertical partitioning algorithms have been proposed over
the last three decades for a variety of niche scenarios. In principle, the underlying
problem remains the same: decompose a table along its attributes into one or more
vertical partitions. However, it is not clear how good different vertical partitioning
algorithms are in comparison to each other. In fact, it is not even clear how to
experimentally compare different vertical partitioning algorithms. In this chap-
ter, we present an exhaustive experimental study of several vertical partitioning
algorithms.

We categorize vertical partitioning algorithms along three dimensions: search
strategy, starting point, and candidate pruning. We survey six vertical partitioning
algorithms and discuss their pros and cons. We identify the major differences in
the use-case settings of the investigated algorithms and describe how to make an
apples-to-apples comparison in general of different vertical partitioning algorithms
under the same setting. We propose four metrics to compare vertical partitioning
algorithms: optimization time, quality of solution, fragility of solution, and optimal
target setting. We show experimental results from the TPC-H and SSB benchmark
and present four key lessons learned: (1) we can do four orders of magnitude
less computation and still find the optimal layouts, (2) the benefits of vertical
partitioning depend strongly on the database buffer size, (3) HillClimb is the
best vertical partitioning algorithm, and (4) vertical partitioning for TPC-H-like
benchmarks can improve over column layout by only up to 5%.

The results of this chapter have been accepted for publication in PVLDB,
a peer-reviewed journal [36]. Our implementation of the vertical partition-
ing algorithms have been released at https://github.com/palatinuse/
database-vertical-partitioning.

https://github.com/palatinuse/database-vertical-partitioning
https://github.com/palatinuse/database-vertical-partitioning

10 2.1. Introduction

2.1 Introduction

2.1.1 Background

Vertical partitioning is a physical database design technique to partition a given
logical relation among its attributes into a set of physical tables. This is a com-
mon design step with analytical workloads in traditional as well as in modern
data management systems such as HBase [29], Vertica [61], Hadoop++ [37], and
HYRISE [26]. The basic purpose is to improve the I/O performance of disk-based
systems. More formally this is an optimization problem with the goal of finding a
complete and (disjunct) partitioning of the set of attributes of a table such that it
is optimal with respect to a cost function.

For instance, consider the TPC-H PartSupp table and the following query
workload:

Ql: SELECT PartKey, SuppKey, AvailQty, SupplyCost
FROM PartSupp;

Q2: SELECT AvailQty, SupplyCost, Comment
FROM PartSupp;

For such a workload, we could choose to partition PartSupp into three ver-
tical partitions: P;(PartKey, SuppKey), Po(AvailQty, SupplyCost), and
P3(Comment). Now () accesses partitions P; and P,, while @)y accesses parti-
tions Py and P3. Thus, both ¢); and ()5 read only the required attributes and this
improves the I/O performance of these queries.

Vertical partitioning not only improves the query I/O performance, but also
strongly affects other physical design decisions such as compression and index-
ing, as well as query processing techniques such as parallel and distributed
query processing. Thus, it is no surprise that vertical partitioning has been
researched extensively in the past with researchers proposing a plethora of ap-
proaches [30, 27, 46, 17, 47, 18, 15, 28, 51, 4, 26, 37, 35]. As special cases, two
extremes of vertical partitioning are traditionally more popular, namely: (i) full
vertical partitioning (i.e. column layouts) and (ii) no vertical partitioning (i.e. row
layouts).

2.1.2 Effects of Vertical Partitioning

Let us now understand the effects of vertical partitioning on database design de-
cisions in more detail. The major trade-off in vertical partitioning is the row size
of partitions: large row sized (wide) partitions resemble row layout, while smaller
row sized (narrow) partitions are more similar to column layout. Below, we briefly
discuss the major pros and cons of vertical partitioning by contrasting the wide and

Chapter 2. Vertical Partitioning for Legacy Row Stores 11

narrow vertical partitions. Note that in this work we are considering the majorly
used row-oriented database systems and how to boost their performance using
vertical partitioning. Of course, the other alternative could be using a different
system, e.g. column store, in order to boost performance. However, replacing the
existing, typically row-oriented, database system is not possible in many situations
due to legacy reasons.

Bandwidth. The width of vertical partitions has a considerable effect
on I/O bandwidth, and hence on query performance. Wide vertical parti-
tions force the queries referencing fewer attributes to additionally read the
accompanying attributes in the partition. For example, for queries ()
and ()o above, if we split PartSupp into the following two vertical par-
titions: Py(PartKey, SuppKey,AvailQty, SupplyCost) and Ps(Comment)
then query (s is forced to read attributes PartKey and Suppkey in addition
to AvailQty, SupplyCost, and Comment. These additional reads affect the
I/O bandwidth of Q. In the extreme case, if all attributes are put together into a
single vertical partition (which yields a row layout), then all except the referenced
attributes are read unnecessarily.

Robustness. On the other hand, wide vertical partitions produce predictable
query run times, because the majority of queries would have to touch the same
number of partitions. For example, for queries); and @) above, if we keep all
attributes of table Part Supp in a single vertical partition (i.e. row layout) then
both queries ()7 as well as Q2 have the same I1/O performance, since they both
access all five attributes. Scan-only systems such as [55] are examples of such
robust query processing systems.

Joins. Narrow vertical partitions penalize queries referencing lots of attributes.
This is because the queries need to touch multiple vertical partitions. For ex-
ample, for the workload in Section 2.1.1, if we split table Part Supp into three
vertical partitions: Pj(PartKey, SuppKey), P2(AvailQty, SupplyCost), and
P3(Comment) then query ()2 must touch partitions Po and P3. With this, the
database engine needs to reconstruct the tuples from the referenced vertical par-
titions using tuple reconstruction joins. Since each vertical partition is stored as a
separate physical table, these tuple reconstruction joins could be pretty expensive:
they can negatively affect the query plans and incur CPU overheads.

Random I/0O. Tuple reconstruction joins in narrow vertical partitions incur very
high random I/O costs. This is because all referenced vertical partitions must be
read into the database buffer at the same time for tuple reconstruction. For this
to happen, the database buffer must be split into sub-buffers for each referenced
vertical partition. As a consequence, now we have random I/Os each time any of
the sub-buffers needs to be filled. For instance, ()1 has twice the number of random

12 2.1. Introduction

I/Os for partitions P;(PartKey, SuppKey) and Py(AvailQty, SupplyCost)
than for partition P4(PartKey, SuppKey,AvailQty, SupplyCost).

2.1.3 Choosing a Vertical Partitioning Algorithm

Vertical partitioning strongly affects the query performance in many ways, as
discussed above. A number of vertical partitioning algorithms have been proposed
by several researchers over time [30, 27, 46, 17, 47, 18, 15, 28, 51, 4, 26, 37, 35]. Asa
result, users now have the problem of choosing a vertical partitioning algorithm. In
contrast to physical design tools, which choose a layout given a vertical partitioning
algorithm, the problem here is to choose the vertical partitioning algorithm in the
first place. Essentially, the questions that we are looking at are:

e Which are the major algorithms proposed? What is the difference between
those algorithms?

e For which settings were different algorithms proposed? What are their pros
and cons?

e What are the primary differences between different vertical partitioning set-
tings? Can we abstract the settings from the algorithms?

e How do we compare different algorithms in a common setting? What would
be the right measures for comparison?

e How do the different algorithms compare against each other? When to use
which algorithm?

Thus, there is an absence of a systematic and comparative study of vertical
partitioning algorithms. This work fills this gap.

2.1.4 Contributions

In this chapter, we present an exhaustive experimental study on vertical partition-
ing algorithms. Our main contributions are as follows:

e Given the large number of vertical partitioning algorithms proposed in the
literature, we first understand the fundamental differences between them.
To do so, we first classify them along three dimensions, namely: (i) search
strategy, (ii) starting point, and (iii) candidate pruning (Section 2.2).

Chapter 2. Vertical Partitioning for Legacy Row Stores 13

e From the above categories, we survey six representative vertical partitioning
algorithms, namely: (i) AutoPart [51], (ii) HillClimb [28], (iii) HYRISE [26],
(iv) Navathe’s algorithm [46], (v) O2P [35], and (vi) Trojan layouts [37]. We
present a brief summary and the context of each of the algorithms (Sec-
tion 2.3).

e We describe how the different vertical partitioning algorithms can be applied
in the same setting. Even though each algorithm was proposed for a different
setting, we can still unite them under a common umbrella (Section 2.4).

e We present a systematic way of comparing different vertical partitioning al-
gorithms. For this purpose, we introduce four metrics, namely: (i) how fast
in terms of computation times, (ii) how good in terms of workload runtimes,
(iii) how fragile in terms of predictable runtimes, and (iv) where does it make
sense to use vertical partitioning (Section 2.5).

e We show detailed experimental results from six vertical partitioning algo-
rithms over the TPC-H benchmark and with row and column layouts as
baselines. We discuss each of the four metrics for the six vertical partition-
ing algorithms (Section 2.6).

e Finally, we discuss the 4 key lessons learned (Section 2.7).

2.2 Classification of Vertical Partitioning Algo-
rithms

There are several vertical partitioning algorithms proposed in the literature. In-
stead of simply listing them, it would be more interesting to see the major dif-
ferences between the core ideas of those algorithms. To do this, we categorize
the vertical partitioning algorithms along three dimensions based on the way they
attack the vertical partitioning problem. Table 2.1 shows the classification of the
evaluated vertical partitioning algorithms. We describe each of these dimensions
and categories in the following.

2.2.1 Search Strategy

First of all, we differentiate different vertical partitioning algorithms based on
their search strategy in the solution space.

Brute Force. Algorithms in this category follow the naive approach of enu-
merating all possible vertical partitionings and picking the one giving the best

14 2.2. Classification of Vertical Partitioning Algorithms

AutoPart HillClimb HYRISE Navathe O2P Trojan Brute Force

Whole workload
Starting Point | Attribute subset
Query subset
Brute force
Search Strategy |Top-down
Bottom-up

No pruning
Threshold-based

Candidate Pruning

Table 2.1: Classification of the evaluated vertical partitioning algorithms.

estimated query performance. In this way, a brute force algorithm computes the
best possible vertical partitioning over a given query workload and cost model.
Unfortunately, the number of possible vertical partitionings grow dramatically
with the number of attributes. For instance, for the 16 attributes of the TPC-H
Lineitem table, the number of possible vertical partitionings is 10.5 million.
Therefore, brute force is not a practical approach for large number of attributes.

Top-down. Algorithms in this category start from the set containing all
attributes and try to break it into smaller and smaller subsets. The idea is
to assume no-vertical-partitioning, i.e. row layout, as the ground truth and to
improve upon it as much as possible. The improvement is usually measured
in terms of the expected cost of a query workload (using a cost model). Early
vertical partitioning algorithms of Navathe [46, 47] were based on this approach.
As the starting point the attributes are arranged in some order, e.g. an ordered
sequence in [46] or a connected graph in [47]. Typically, there is a preparatory
step which determines this order, e.g. attribute affinity matrix clustering in [46].
Thereafter, the attribute set is recursively (and greedily) divided into smaller
subsets till no improvement in the expected workload costs is seen. Every
split step preserves the initial ordering of the attributes. Inspired from those
early works, a recent algorithm, OoP [35], does online vertical partitioning using
the top-down approach. The vertical partitioning algorithms in the top-down
category converge faster for highly regular attribute access patterns, i.e. lots of
queries accessing almost the same attributes. This is because only few splitting
steps are required. On the other hand, top-down algorithms consider vertical
partitions incrementally. This means that for any vertical partition to appear in
the final solution, its supersets must appear in all previous iterations. This might
not happen in many situations.

Bottom-up. In contrast to top-down, the bottom-up approach starts with min-
imally small vertical partitions. All algorithms in this category define the latter
property of a partition differently. The underlying assumption is that it does not

Chapter 2. Vertical Partitioning for Legacy Row Stores 15

make sense to sub-divide these initial vertical partitions into smaller vertical par-
titions. The idea then is to recursively merge the vertical partitions into bigger
partitions as long as there is an improvement in expected query costs. Three main
algorithms fall into this category: Chu and Ieong’s algorithm [15], HillClimb [28],
and AutoPart [51]. As the preliminary step, the algorithms produce the set of
minimally small vertical partitions. These can be partitions containing only a sin-
gle attribute (column layout), as in HillClimb [28], or the set of primary partitions,
which are partitions containing attributes that are always accessed together in all
queries, as in Chu and Teong’s algorithm and AutoPart [15, 51]. Thereafter, the
algorithms recursively consider merging two or more partitions. Additionally, Au-
toPart [51] also creates overlapping partitions, i.e. partitions having one or more
attributes in common, thereby allowing for partial replication of attributes. The
bottom-up algorithms converge faster for highly fragmented attribute access pat-
terns, i.e. queries accessing little or no attributes in common. This is because after
a few merge steps the query costs will not improve any more. Similar to the top-
down class, the bottom-up algorithms consider vertical partitions incrementally,
i.e. greedily. For bottom-up algorithms this means that for any vertical partition
to appear in the final solution, its subsets must appear in all previous iterations.

2.2.2 Starting Point

Apart from the search strategy, different vertical partitioning algorithms may
have different starting points. For example, an algorithm may start with only
a subset of the attributes or with only a subset of the workload queries. This
is an important consideration because it helps to first sub-divide the vertical
partitioning problem into smaller problems and find the solution to each of them.

Whole workload. Algorithms in this category neither divide the queries nor the
attributes at the start.

Attribute subset. Algorithms in this category compute vertical partitioning for
a subset of the attributes. For example, HYRISE [26] first sub-divides attribute
sets into groups using a k-way partitioner and then computes the vertical
partitioning for each group using a top-down algorithm. Finally, to produce the
final solution, HYRISE [26] combines the solutions from different sub-problems.
Computing vertical partitioning for attribute subsets reduces the complexity of
the algorithm dramatically. However, such algorithms find the solution for each
subset locally and have to later merge them, which might result in a suboptimal
solution for the global problem.

16 2.3. Evaluated Algorithms

Query subset. Algorithms in this category compute vertical partitioning for only
a subset of the queries in the workload. For example, Trojan [37] first sub-divides
the workload into query groups depending on the similarity between queries and
finds the layout for each query group using a bottom-up algorithm. It is easier
to find vertical partitioning for query subsets, since they are likely to have more
similar access patterns, and hence the algorithm converges quickly. Trojan [37]
does not combine the solutions from different query subsets, as it creates multiple
vertical partitionings, one for each dataset replica. Starting from query subsets
is a very practical approach because typical workloads contain several classes of
queries, each having very similar access patterns.

2.2.3 Candidate Pruning

Finally, vertical partitioning algorithms may also prune the vertical partitioning
candidates in order to reduce the search space.

No pruning. Most algorithms considered in this work do not apply pruning
to the search space, but generate possible solutions in each iteration excluding
locally sub-optimal ones.

Threshold-based. Algorithms with threshold-based pruning prune the input
set based on some heuristics. For example, the algorithm of Agrawal [4] and
Trojan [37] prune the set of column groups based on their interestingness, which
denotes how well a given column group speeds up the queries. The complexity of
these algorithms therefore depends on the effectiveness of their pruning threshold.
Threshold-based pruning algorithms face one basic problem: the algorithm needs
to generate all candidates before actually pruning them. This could be pretty
expensive and hence slow. On the flip side, however, threshold-pruning approach
sees the global picture (not local or incremental) and hence is expected to produce
better results.

2.3 Evaluated Algorithms

In this work, we cover a wide range of representative vertical partitioning
algorithms from the early state-of-the-art to the most recent ones. We
have chosen these algorithms to cover all categories and include the earliest
vertical partitioning algorithm as well as five other recent vertical partitioning al-
gorithms published in the last decade. Below we describe each of these algorithms.

Chapter 2. Vertical Partitioning for Legacy Row Stores 17

Brute Force. The set of all possible vertical partitionings of a table can be enu-
merated using a brute force algorithm. The total number of vertical partitionings
of a set that has exactly n elements are given by the n'* Bell number [8]:

n—1

n—1

Bn:Z(i)Bk,andBlzBozl
k=0

For example, for the TPC-H customer table, having eight attributes, the num-
ber of possible vertical partitionings is Bg = 4 140. On the other hand, for the
TPC-H lineitem table, which has 16 attributes, the number of vertical partition-
ings is as high as 10480 142 147, which makes it computationally rather intensive
to search for the optimal solutions using brute force.

Bell numbers can also be represented as a sum of Sterling numbers:

w2 {1}

where the Sterling number of the second kind {Z} gives the number of ways to
partition n attributes into exactly k partitions. They obey the recurrence relation:

SR A S G R (S T

Here is how this equation can be explained: a partitioning of the n attributes
into k nonempty subsets either contains the n-th attribute as a singleton or it does
not. The number of ways that the singleton is one of the subsets is given by {Z:}}
since we must partition the remaining n — 1 attributes into the available &£ — 1
subsets. In the other case the n-th object belongs to a subset containing other
objects. The number of ways is given by k - {";1} since we partition all attributes
other than the n-th into £ subsets, and then we are left with £ choices for inserting
attribute n.

Inspired by the representation of Bell numbers as a sum of Sterling numbers
of the second kind we can come up with an algorithm to enumerate all possible
vertical partitionings. Note: an empty vertical partitioning does not make sence,
thus we neglect the k¥ = 0 cases. The pseudocode of the algorithm is shown in
Listing 1. The complexity of this brute force vertical partitioning algorithm is
O(n") (for n attributes).

Navathe. One of the earliest approximation-based approaches to vertical
partitioning was proposed by Navathe et al [46]. This is a top-down algorithm
and focuses primarily on disk-based systems. The core idea of this algorithm

18 2.3. Evaluated Algorithms

Algorithm 1 The Brute Force Algorithm

1: procedure BELLNUMBERSBASEDENUMERATION(n)
2: for k< 1tondo
3: StirlingNumbersBased Enumeration(n, k, new int[n])

4: procedure STIRLINGNUMBERSBASEDENUMERATION(n, k, a)
> n is the number of (unpartitioned) attributes
> k is the desired number of partitions
> a is the (partial) mapping of attributes to partitions
> a[l...n] are unmapped, while a[n + 1...length(a)] are already mapped

5: if £ =1 then

6: for i < 1 ton do

7 ali] «+ k > All attributes go into a single partition
8: EmitPartitioning(a)

9: else if £k =n then

10: for i < 1 ton do

11: alfi] <1 > All attributes go into a different singleton partition
12: EmitPartitioning(a)

13: else

14: aln] < k > Put the n-th attribute into a singleton partition
15: StirlingNumbersBasedEnumeration(n — 1, k — 1, a)

16: for i < 1 to k do

17: aln] <1 > Put the n-th attribute into partition ¢
18: StirlingNumbersBasedEnumeration(n — 1, k, a)

is as follows. Given a set of attributes and a set of queries referencing those
attributes, the algorithm constructs an attribute affinity matriz. Cell (i,7) of the
attribute affinity matrix denotes the number of times attribute ¢ co-occurs with
attribute j (also called their affinity). Thereafter, the algorithm clusters the cells
of the matrix such that attributes with higher affinity are close together. The
authors propose to use the bond energy algorithm [39] for matrix clustering. After
that, the algorithm splits the clustered set of attributes into vertical partitions
recursively.

HillClimb. The HillClimb algorithm is a bottom-up algorithm proposed in the
early 2000s [28]. This algorithm focuses on data layouts within a data page. It
proceeds as follows. It starts with column layout, i.e. each attribute resides in
a different vertical partition. Thereafter, in each iteration, the algorithm finds

Chapter 2. Vertical Partitioning for Legacy Row Stores 19

and merges two partitions which, when merged, provide the best improvement in
expected query costs. This means that in each iteration the number of vertical
partitions is reduced by one. The algorithm stops iterating when there is no
improvement in expected query costs. To facilitate computing the expected query
costs, the algorithm pre-computes and maintains a dictionary of the costs of
all possible vertical partitions (or column groups). However, the size of such a
dictionary grows quickly to several gigabytes in case the number of attributes
is large. As a result, we have found that the runtime of the algorithm can be
dramatically improved without maintaining such a dictionary. Thus, we used this
improved version of HillClimb.

AutoPart. The AutoPart is a bottom-up algorithm introduced in 2004 to
compute vertical partitionings over large scientific datasets [51]. First, AutoPart
categorically partitions the table horizontally (based on selection predicates),
such that each horizontal partition is accessed by a different subset of queries.
Thereafter, AutoPart finds a vertical partitioning for each horizontal partition. As
a starting point, AutoPart generates the set of primary partitions (called atomic
fragments). A vertical partition is atomic if all queries accessing it, reference all
attributes in the partition. In other words, there are no queries which access a
subset of an atomic fragment. Thereafter, in each iteration, the fragments are
extended by either combining them with atomic fragments or with fragments
from the previous iteration. The process is repeated till there is no improvement
in estimated costs of the query workload. Note that an attribute may occur in
multiple fragments (i.e. replicated) when combined. Thus, it might be possible
that multiple partition combinations are now suitable to answer a given query. In
such a case, we need to select the partitions to read. It turns out that partition
selection is as difficult a problem as vertical partitioning itself.

HYRISE. The HYRISE is a multi-level algorithm proposed in 2010 to compute
vertical partitionings for main-memory resident data processing systems [26]. In
contrast to disk-based systems, the goal here is to minimize the number of cache
misses. In the first step, the algorithm generates the set of primary partitions,
which are the same as the atomic fragments in AutoPart, i.e. sets of attributes
that are always accessed together. Then, the algorithm builds an affinity graph
for the primary partitions, where primary partitions are represented as nodes and
the co-accessed frequency of two primary partitions as edge weights. HYRISE
then partitions this graph such that each sub-graph contains at most K primary
partitions. This is done using a K-way graph partitioner. Thereafter, HYRISE
finds the layout for each sub-graph separately. In each iteration, the primary
partitions (belonging to the same sub-graph) which give the maximum cost

20 2.3. Evaluated Algorithms

improvement are merged. The merged partition replaces the primary partitions
and the process is repeated until there is no more improvement in cost. As the
final step, HYRISE tries to combine the vertical partitions obtained from different
sub-graphs.

O,P. One-dimensional online partitioning (O5P) is a top-down algorithm proposed
in 2011 with the focus on real time partitioning [35]. The goal is to determine a
vertical partitioning in an online setting, i.e. while the query workload is being
executed. It starts from Navathe’s algorithm and transforms it into an online
vertical partitioning algorithm. To do so, it dynamically updates as well as
clusters the affinity matrix for each incoming query. This is done by adapting the
bond energy algorithm [39], used in Navathe, to an online setting. To compute
the vertical partitioning, O,P employs a greedy approach to create one (the
best) new vertical partition in each step. It also uses dynamic programming to
remember the costs of non-best vertical partitions from the previous step. These
two techniques make the partitioning analysis in OoP extremely fast and hence
suited for an online setting.

Trojan. The Trojan layouts algorithm was proposed in 2011 to create vertical
partitioning for big data [37]. It is a threshold-pruning based algorithm. Unlike
previous algorithms, it considers large data block sizes and existing data block
replication, both being a reality for big data. As the first step it enumerates all
possible column groups and keeps only the ones that are interesting. It introduces a
novel interestingness measure for column groups, based on the mutual information
between the attributes of a column group. The algorithm prunes all column groups
whose interestingness fall below a certain threshold. The interesting column groups
are then merged into a complete (i.e. containing all attributes) and disjoint (i.e. not
containing any attribute twice) set of vertical partitions. This is done by mapping
vertical partitioning to a 0-1 knapsack problem. The Trojan algorithm works
especially well with data replication, such as found in HDFS. To take into account
the default data replication in HDFS, it first groups queries and maps each query
group to a different data replica. It uses the same column grouping algorithm
for query grouping as well. Then, for each query group, it computes the column
groups independently.

Chapter 2. Vertical Partitioning for Legacy Row Stores 21

Granularity |DATA PAGE
DATABASE BLOCK

| | |
IMANMEMORY | | | I N
| | [|
FSINTRTNT=R A A D B

|
Replication |FULL
PARTIAL
CUSTOM

Hardware

Workload

System

OPEN SOURCE

Table 2.2: Settings for different vertical partitioning algorithms.

2.4 Methodology

The vertical partitioning algorithms described in the previous section have all been
proposed for different scenarios and under different settings. In the following, let
us try to understand the major differences between them.

(1.) Granularity. Different algorithms are targeted for different data granularity,
such as data page, e.g. HillClimb, database block, e.g. Trojan, and file, e.g. Au-
toPart.

(2.) Hardware. The algorithms can optimize for different hardware, such as hard
disk, e.g. Navathe, and main-memory, e.g. HYRISE.

(3.) Workload. The algorithms may work with different assumptions for the query
workload. We can consider a fixed set of queries (offline workload), e.g. AutoPart,
or a dynamically growing set of queries (online workload), e.g. O5P.

(4.) Replication. An algorithm may or may not consider data replication. Even if
the algorithm considers replication, it may either consider replicating all attributes
(full replication), e.g. Trojan, or only a subset of the attributes (partial replication),
e.g. AutoPart.

(5.) System. Different algorithms are proposed in different implementations
of data management systems, e.g. Hadoop (Trojan), BerkeleyDB (O5P), main-
memory implementation (HYRISE), etc.

Table 2.2 classifies the six algorithms (from Section 2.3) analyzed in this
work according to their granularity, hardware-, workload-, and replication

22 2.4. Methodology

characteristics. We can see that no two algorithms have the same combination of
these parameters. It seems that the different vertical partitioning algorithms use
quite different configurations even though they have exactly the same underlying
functionality: decompose a table into vertical partitions. In order to have
an apples-to-apples comparison, we use the same configuration for all vertical
partitioning algorithms. Our common settting is marked with green background
in the second column of Table 2.2. To the best of our knowledge, this is the first
work to survey vertical partitioning algorithms under a common configuration.
Essentially this means that we strip the granularity, hardware-, workload-, and
replication characteristics from the different vertical partitioning algorithms,
leaving just the core vertical partitioning functionality. Below we describe the
common configuration used in our experiments.

Common Granularity. For all algorithms, we consider the storage layout of
the vertically partitioned table to be as follows: the table is split into one or
more vertical partitions (column groups), which are stored in separate files. Thus,
each data page contains data from only a single vertical partition. At query
time, we assume that the database system does the following: read all vertical
partition’s files which contain any of the attributes referenced by the incoming
query. This means that even if a query references only some of the attributes in
a vertical partition, we still need to read all attributes in the vertical partition’s file.

Common Hardware. We use the following common testbed for all algorithms:
a single node machine with a quad-core Intel Xeon 5150 processor running at
2.66 GHz with 4 MB L2 cache, having 16 GB RAM and 1.5 TB HDD, running
OpenSuse 12.1 64 bit. We consider the commonly used disk-based storage when
evaluating vertical partitioning algorithms. We measured the disk characteristics
of our testbed using Bonnie++ [12]. We obtained the following results: a disk
read bandwidth of 90.07 MB/s, disk write bandwidth of 64.37 MB/s and average
disk seek time of 4.84 ms.

Common Workload. We consider read-only analytical applications for
comparing different vertical partitioning algorithms. To do so, we take the
query workload from the widely used TPC-H benchmark, and assume a scale
factor of 10. We partition each table in TPC-H separately, as done by other
researchers [15]. We take all 22 queries from the TPC-H benchmark. However,
we consider only scan and projection query operators. This is because in our
cost model, we model only the I/O costs for accessing the data, while excluding
the query execution costs. We do this for two reasons. First, almost all vertical
partitioning algorithms consider only scan and projection operators. Since we

Chapter 2. Vertical Partitioning for Legacy Row Stores 23

are doing a comparative study of different algorithms, we consider the same set
of operators for all algorithms. Extending these algorithms to consider other
operators, such as selection, will be an interesting future work. Second, the
overall query execution costs make sense only when all physical design decisions,
including indexes and materialised views, are considered. Instead, in this work,
we are focussing on vertical partitioning and hence we want to isolate the impact
of vertical partitioning created by different algorithms. Furthermore, overall
query execution costs depend heavily on the query optimizer and executor of
the database system and hence it is not possible to model them in a general setting.

Common Replication. AutoPart and Trojan make use of partial and full data
replication respectively. However, in order to make a fair comparison, we would
need to tweak other algorithms to allow for data replication as well. Moreover,
data replication adds several new dimensions for consideration. These include
storage space constraints, read versus update performances, and most importantly
picking the right replica at query time. Hence, we believe that vertical partitioning
with data replication requires an independent exhaustive study, which is beyond
the scope of this work. Instead, in this work, we limit to no data replication.

Common System. We evaluate all algorithms using the estimated costs from
our I/O cost model. We do this for two reasons. First, as discussed before,
we focus on the I/O costs of queries in order to understand the effects of vertical
partitioning in row-oriented database systems. Second, database systems typically
create a different table for each vertical partition and later use joins for tuple
reconstruction. This makes running just the leaf plans (in order to see the 1/O
costs) very expensive because no operators can be pushed down and we end up
with high join cardinalities. As a result, the I/O costs are overshadowed by the
join processing costs. In a recent work [38], UDFs were exploited to store and
access data in column layouts without performing a join, i.e. we simply merge
the columns. However, this works only for highly selective queries, since for low
selectivities the UDF call overhead shadows the performance gain due to a different
layout. To the best of our knowledge, there is no freely available database system
which queries vertically partitioned data without performing table joins.

Our system assumes buffered read- and write mechanisms for transferring data
between disk and memory. This means that at query time we read all vertical
partitions which contain any of the attributes referenced by the incoming query
into an 1/O buffer (say of size Buff). In our experiments we assume per-tuple
query processing, i.e. the database system passes data tuple-by-tuple to the query
executor. For this, the database system needs to reconstruct the tuples while
reading the vertical partitions. To do so, we will require to buffer-read the vertical

24 2.4. Methodology

partitions at the same time. This means that we have to share the I/O buffer
among the multiple vertical partitions being read. In our cost model, we share the
I/O buffer in proportion to the tuple size of the vertical partitions being read. If
S is the total row size of all referenced partitions and s; is the row size of vertical
partition 4, then the I/O buffer allocated to partition 7 is given as:

buff; = LBuﬂ?- %J .

Given block size b, the number of blocks that can be read at a time into the buffer
for partition ¢ are:

buff;
blocksPf = {UJ .

b

If the table has N rows, the total number of blocks on disk for partition i are:

blocks; =

g

Assume that we have to perform a seek every time the I/O buffer for partition i
needs to be filled. Then the number of times the I/O buffer gets full determines
the seek cost of reading partition 7. Given an average seek time t, of the disk, the
seek cost of reading partition ¢ is given as:

blocks;
costiek = ¢, . [: -‘ .

blocks?uft

On the other hand, the scan cost of partition ¢ is determined by the total number
of blocks of partition i to be read. Given disk bandwidth BW, the scan cost of
partition ¢ is given as:

blocks; - b
BW

scan __
cost; © =

Finally, for a query q referencing a P, set of vertical partitions, the total I/O cost
is the sum of the seek- and scan costs of all referenced partitions:

costy = E (costfeek + Costfcan) .
i€P,

The total I/O costs of the entire workload will be the sum of the I/O costs of each
query in the workload.

Chapter 2. Vertical Partitioning for Legacy Row Stores 25

2.5 Comparison Metrics

As discussed in the previous section, we apply the same setting to all vertical
partitioning algorithms. However, since there is no prior work comparing different
vertical partitioning algorithms, it is not clear how to compare them, i.e. the
comparison metrics are not defined. The authors of HYRISE compared their
algorithm against HillClimb in terms of query costs. However, we believe that
other measures such as time taken to compute the layouts are equally important.
Thus, in this section, we systematically introduce four comparison metrics for
vertical partitioning algorithms and describe them below.

How fast? Vertical partitioning being an NP-hard problem, the first thing that
comes to mind is how fast is a given algorithm, i.e. how long does it take to
come up with a solution. Additionally, the optimization time should be seen in
comparison to the table size (or indirectly the layout creation time). For example,
if it takes fifteen minutes to create the layouts (i.e., a large table) then it might
be acceptable to spend an hour to find the layouts.

How good? Since the goal of a vertical partitioning algorithm is to improve
the workload runtime, it is important to know the expected workload runtime.
Additionally, it is important to know how much does vertical partitioning improve
the workload runtime over row and column layouts. Note that this improvement
comes at a price: we need to invest in the optimization and the creation time.
Thus, we need to see the time invested (optimization + creation) compared to the
expected workload execution cost benefits.

In fact, the ratio of these two quantities gives the fraction (or the multiple) of
query workload that we need to execute before the time invested pays off over the
workload runtime improvements.

How fragile? Heterogenous hardwares/software settings are common in data
centers these days. However, vertical partitioning algorithms can be compu-
tationally expensive, therefore it is not possible to recompute them for each
and every hardware/software setting. Thus, we need to know how fragile the
different vertical partitioning algorithms are over different parameters in the cost
model (which models the hardware/software settings). We measure algorithm
fragility as the change in workload runtime when there is a change in a cost
model parameter. Fragility, thus defined, gives hints on whether or not we should
re-run the vertical partitioning algorithm if the hardware /software settings change.

Where does it make sense? The fragility metric above measures how far off is
the workload performance, if we optimize vertical partitioning for one cost model

26 2.6. Simulations and Experiments

and use it over another. However, at the same time, it is also important to know
how does the workload performance change if we re-optimize vertical partitioning
over different cost models. Thus, we optimize for each new cost model parameter
and show the workload performance. This helps us to find the sweet spots for
vertical partitioning, i.e. the cost model parameters for which vertical partitioning
makes the most sense.

2.6 Simulations and Experiments

We now present the results from the six vertical partitioning algorithms considered
in Section 2.3. We implemented all algorithms in Java 6 and tried to keep the
implementations as close to the original descriptions as possible. However, we did
adapt the algorithms to the unified settings shown in Table 2.2. For example,
Trojan was adapted to work without considering data replication. We ran all
experiments on the common hardware described in Section 2.4. We organize the
results along the four comparison metrics introduced in Section 2.5. We repeated
each measurement five times and report the average. We discarded the results of
the first five runs to allow for just-in-time compilation in the JVM to complete and
use the results of the second five runs. We used cold caches, both for the operating
system as well as the hard disk, for all runs.

2.6.1 Comparing Optimization Time

In this section we address the following questions:
How do the algorithms compare in terms of optimization time?

Figure 2.1 shows the optimization times for different vertical partitioning algo-
rithms.

We can see that the fastest algorithm (O,P) is 5 orders of magnitude faster
than BruteForce. Even the slowest algorithm (Trojan) is 2 orders of magnitude
faster than BruteForce. Thus, all algorithms find a vertical partitioning solution
much faster than BruteForce. The optimization times of AutoPart, HillClimb,
HYRISE, Navathe, and OsP are quite acceptable (at most 5 seconds), however,
Trojan and BruteForce have very high optimization times (1.5 minutes and 1 hour,
respectively). The time to transform from row layout to vertically partitioned
layout for scale factor 10 is around 420 seconds for all algorithms. This means
that it takes much longer to transform the layout than it takes to compute the
layout using one of the fast algorithms mentioned above.

Chapter 2. Vertical Partitioning for Legacy Row Stores 27

10,000

1,000

100
10
0.01 - ||

AutoPart HillClimb HYRISE Navathe O2P Trojan BruteForce

Optimization time (s)

—

Figure 2.1: Optimization time [log scale] for different algorithms

How do the optimization times change with the workload size?

Let us now see how the optimization times change with the workload size. Recall
that, for every vertical partitioning candidate, an algorithm computes the expected
cost of each query in the query workload. Thus, we expected higher optimization
time for larger query workloads. Figure 2.2 shows the optimization times of the
different algorithms over varying workload size. We vary the TPC-H workload size
by taking the first k& queries, k varying from 1 to 22.

3.00
O Autopart O HillClimb HYRISE O Navathe ©O O2P

2.25

1.50

Optimization time (s)

0.75

oo—o—o—o—o—o—o—o-ﬂ—o—o—o-w-w—om

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Workload Size (#queries)

Figure 2.2: Optimization time over varying workload size

We can see that Navathe and AutoPart have a much steeper increase in opti-
mization time in comparison to HYRISE, HillClimb, and OyP. In general, these
algorithms scale well with the workload size. We have excluded Trojan and Brute-

28 2.6. Simulations and Experiments

Force in the figure because of their extremely high optimization time (at least
2 orders of magnitude higher than the others), which distorts the graph.

The most important lesson learned in this section is that the optimization time
of a vertical partitioning algorithm can be several orders of magnitude less than
BruteForce. Still, as we will see in the next section, some algorithms can find the
same (optimal) solution as the BruteForce.

2.6.2 Comparing Algorithm Quality

We investigate a series of five questions in this section. Let’s start with the fol-
lowing one:

How do algorithms compare in terms of query performance?

Figure 2.3 shows the estimated workload costs for all queries of the TPC-H Bench-
mark — when using the partitionings produced by the different vertical partition-
ing algorithms. By estimated workload cost we mean the total 1/O cost of the
entire workload as described in Section 2.4.

2,058
600

450

300
150

AutoPart HillClimb HYRISE Navathe O2P Trojan BruteForce Column

Estd. workload runtime (s)

Figure 2.3: Estimated workload runtime for the produced solutions

We can see that except for Navathe and O5P, all algorithms, including Brute-
Force, have very similar estimated workload costs. In fact, the layouts produced
by AutoPart, HillCimb and Trojan have exactly the same workload cost as that
by BruteForce. This is despite HillClimb requiring 5 orders of magnitude less op-
timization time than BruteForce. As a result, vertical partitioning with HillClimb
can payoff for as little as 25% of the TPC-H workload (See Appendix 2.A.1 for
details).

Now let us analyze the improvement of vertical partitioning over Row or Col-
umn. We can see that the improvement over Row is as high as 80.11%. However,

Chapter 2. Vertical Partitioning for Legacy Row Stores 29

over Column the maximum improvement is only 4.75%. Column even outperforms
the vertically partitioned layouts of Navathe and O,P by 21% and 28%, respec-
tively. This is a surprising result because we expected vertical partitioning to be
very effective for analytical workloads. Let us now dig deeper to understand the
high improvements over Row and low improvements over Column, by asking the
following questions.

What fraction of the data read is unnecessary?
Note that a suitable vertical partitioning improves over Row because it reads
less unnecessary data. Figure 2.4 shows the percentage of data read which is

unnecessary, i.e. not needed by the queries. The amount of unnecessary data read
is calculated as follows:

Data read — Data needed

Unnecessary data read = * 100%
Data read

100%
— 83.81%
S
3 75%
S
[
©
_; 50%
[
?

o)

S o504 01349 2237%
=
5

0% 0.80% 0.80% 0.00% . I 0.91% 0.80% 0%
(o]

AutoPart HillClimb HYRISE Navathe O2P Trojan BruteForce Column Row

Figure 2.4: Fraction of unnecessary data read

We can see that Row reads 84% unnecessary data and all vertically partitioned
layouts have a significant improvement over that. The layouts produced by Au-
toPart, HillClimb, and BruteForce read only 0.8% unnecessary data, while the
layouts from HYRISE do not read any unnecessary data. This explains the dra-
matic improvements over row.

How many tuple reconstruction joins are performed?

Next, let us understand the low improvements of vertical partitioning over Column.
Note that a suitable vertical partitioning improves over Column since it performs
less tuple reconstruction joins. For each query, the number of tuple reconstruction
joins per tuple are given as:

30 2.6. Simulations and Experiments

#Tuple-reconstruction joins = # Vertical partitions accessed — 1

Figure 2.5 shows the tuple reconstruction joins averaged over all tuples and all
queries, when using each of the layouts. Column has to join all attributes refer-
enced by the query. However, vertically partitioned layouts also perform at least
72% of the joins performed by Column. Thus, none of the algorithms produce
layouts which would dramatically reduce the tuple reconstruction joins, which
increases the number of random I/Os in our cost model, hence the marginal im-
provement over Column. Note that the above estimated improvements are only in
terms of I/O costs. In practice, tuple-reconstruction incurs additional CPU-costs
as well.

3

i

AutoPart HillClimb HYRISE Navathe Trojan BruteForce Column

Avg. tuple reconstruction joins

Figure 2.5: Average tuple reconstruction joins

How far is vertical partitioning from perfect materialized views?

We have seen above that the layouts produced by the vertical partitioning algo-
rithms improve marginally over Column. This is in spite of almost all algorithms
having estimated costs very close to the BruteForce, which produces optimal lay-
out (See Figure 2.3). Let us now see how far are the vertical partitioning layouts
from perfect materialized views — a vertical partition, created for each query,
containing exactly the attributes referenced by that query. Figure 2.6 shows the
distance of each of the layout from the perfect materialized views (PMV). The
distance from PMYV is calculated as follows:

Est. costs of layout — Est. costs of PMV

Distance from PMV = st costs of PMV

* 100%

Chapter 2. Vertical Partitioning for Legacy Row Stores 31

517.15%
100%

75%
50%

25%

wanllannl

AutoPart HillClimb HYRISE Navathe O2P Trojan BruteForce Column

Distance from PMV (%)

Figure 2.6: Distance from perfect materialized views

We can see that while Navathe and O,P are 49% and 56% off from the perfect
materialized views, respectively, HillClimb and AutoPart are as low as just 18% off

from it. This is in spite of perfect materialized views needing much more storage
space.

What is the effect of workload size on query performance?

We saw above that vertically partitioned layouts are up to 56% off from the perfect
materialized views. Perfect materialized views and vertically partitioned layouts
are two extremes: creating vertical partitions for each query versus creating ver-
tical partitions for the entire query workload. Let us now see how the query
performance changes in the middle.

In this experiment, we start from the perfect materialized views and gradually
increase the workload size k (from 1 to 22). For each workload size, we compute the
layouts and workload costs. Note that the partitionings produced by AutoPart,
HillClimb, HYRISE, Trojan, and BruteForce have roughly the same estimated
costs (See Figure 2.3), while the costs for Navathe and O,P are always much higher,
but quite close to each other. Thus, in the following we only consider HillClimb
and Navathe. Figure 2.7 shows the estimated workload runtime improvements

over Column for the layouts computed by HillClimb and Navathe, calculated in
the following way:

Est. costs of Column — Est. costs of layout
Est. costs of Column

Improvement over Column =

* 100%

w
O

2.6. Simulations and Experiments

30%

O HillClimb © Navathe

15%

0%

-15%

-30%

-45%

Improvement over Column (%)

-60%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Workload Size (#queries)

Figure 2.7: Estimated workload runtime improvements over Column when re-
optimizing for the first k£ queries.

The improvement over Row remains roughly the same for both of them, so we
have excluded it from this graph. However, the improvement over Column shows
an interesting finding: for up to the first 3 queries, Navathe improves at least 15%
over Column, but afterwards there is no improvement and it is always worse than
Column. HillClimb on the other hand starts with an improvement of 24% over
Column, which decreases to 6.5% for the first 6 queries, and remains roughly the
same afterwards.

Let us now investigate the reason for this behavior, considering only the first
6 queries, i.e. k ranging from 1 to 6. Table 2.3 below shows the percentage of
unnecessary reads for these workloads:

k 1 2 3 4 3 6

HillClimb 0% 0% 0% 0% 0% 0%
Navathe 0% 0% 0% 3% 32% 30%

Table 2.3: Unnecessary data reads over the Lineitem table for the first k£ queries.

From the table, we can see that in case of Navathe, starting from & = 4 the
fraction of unnecessary data read has jumped from 0% to more than 30%. This
explains why Navathe suddenly became worse than Column. On the other hand,
the fraction of unnecessary data read for HillClimb and Column stays 0% for
all these values of k. To understand the declining performance of HillClimb in
Figure 2.7, let us take a look at tuple-reconstruction joins. Table 2.4 shows the
average number of tuple-reconstruction joins over the Lineitem table for up to the
first 6 queries. From the table, we see that more tuple-reconstruction joins were

Chapter 2. Vertical Partitioning for Legacy Row Stores 33

k 1 2 3 4 5 6

HillClimb 0.00 0.00 1.00 1.00 1.75 2.00
Column 6.00 6.00 4.50 3.67 3.50 3.40

Table 2.4: Average number of tuple-reconstruction joins per row of the Lineitem
table for the first k queries.

performed with larger workload size. This is because, with increasing workload
size, the size of partitions decreases and thus the number of referenced partitions
increases. Thus, with increasing values of k, the difference between the query
performances of HillClimb and Column decreases. As a result, we can conclude
that the random I/O accounts for most of the difference in estimated costs between
HillClimb and Column.

In summary, the most important conclusion in this section is that while verti-
cally partitioned layouts improve significantly over Row on the TPC-H benchmark,
the improvement over Column is still less than 5%.

2.6.3 Comparing Algorithm Fragility

Below we will try to understand the fragility of each of the algorithms with the
following main questions.

What is the effect of disk characteristics on query performance?

We proceed this experiment as follows. First, we run the algorithms for the
same disk characteristics: 8 KB block size, 8 MB buffer size, 90 MB/s disk read-
bandwidth and 4.84 ms seek time. Then, we take the layouts obtained from these
disk characteristics and see how query performance would be affected, if these disk
characteristics would change at query time. The idea is to see how much does the
query performance deviate from the original setting’s performance, if the layouts
computed under one setting were used in another setting — also defined as fragility
in Section 2.5. Figure 2.8 shows the fragility of layouts produced by each of the
algorithms, when changing the buffer size. The fragility itself is defined as follows:

. Est. costs with new settings — Est. costs with old settings
Fragility =

Est. costs with old settings

From the figure, we can see that changing the buffer size can significantly affect
the workload runtime, increasing it by up to a factor 24. This is because buffer size

34 2.6. Simulations and Experiments
30
B 008MB M 0.8MB
25 24.23 8 MB B 80 MB
20.00 M s00MB | 8000 MB
= 20 18:12
9
815
2
= 10
(@)
@ 5.24
L 5
1.50 1.54 1.80 0.47
0 w015 -0.16 wm 015 -0.16 mm 017 019 047 -0.05 -0.05
0 -0.16 0 -0.16 0 -0.19 0 -005
-5
HillClimb Navathe Column Row

Figure 2.8: Algorithm fragility — estimated change in workload runtime due to
changing the buffer size at query time.

strongly determines the number of random I/Os during query processing. Other
disk parameters like block size, disk bandwidth, and disk seek time do not have
such an impact on query performance, as shown in the following.

How fragile are different algorithms to block size, disk bandwidth, and
disk seek time?

Figures 2.9a to 2.9c show the fragility of vertical partitioning algorithms when
changing block size, disk bandwidth, and disk seek time at query time, respectively.
From Figure 2.9a, we can see that changing disk block size has negligible impact
— less than 1% — on query workload performance. This is because a database
system needs to read integral number of blocks and changing the block size affects
only the last block. Changing the disk bandwidth deviates the workload runtime
by up to 42% (Figure 2.9b), while changing the seek time deviates the workload
runtime by less than 5% (Figure 2.9¢). Thus, we see that the performance of
vertically partitioned layouts are stable over block size and disk seek time, they
are affected marginally by disk bandwidth, but they highly depend on buffer size,
as seen above. Thus, the take away message is that the performance of vertically
partitioned layouts depends highly on the buffer size.

Chapter 2. Vertical Partitioning for Legacy Row Stores 35

1.50%

B 05KB W 1KB 2KB M 4KB B 8KB
I 16KB M 32KB W 64 KB 128 KB
1.13%
g 0.75%
2
? 038%
“] |
0% _n |
-0.38%
HillClimb Navathe Column Row
(a) Changing the block size
75%
B 60 MB/s B 70 MB/s 80 MB/s B 90 MB/s
B 100MB/s M 110MB/s M 120 MB/s
50%
g
£ 25%
g
L
0%
-25%
HillClimb Navathe Column Row
(b) Changing the disk’s bandwidth
6%
B 35ms W 4ms 45ms M 4.84ms
4, M 5ms W 55ms M 6ms
—~ 2%
x
£ 0%
g
[T

-2%

-4%

-6%
HillClimb Navathe Column Row

(c¢) Changing the seek time

Figure 2.9: Algorithm fragility — estimated change in workload runtime due to
changing a single parameter at query time.

36 2.6. Simulations and Experiments

What happens if the workload changes?

We also ran an experiment to see how the query workload costs change with
changes in the query workload, i.e. to see how fragile the algorithms are to the
workload changes. In this experiment, we split the TPC-H queries on Linetem
table into two sets, query set A and query set B, having roughly equal total costs.
We ran HillClimb for one of the query sets, and gradually changed the mixture of
the two sets of queries in the workload. Figure 2.10 shows the results. We change
the fraction of set A queries along the X-axis.

2,000 4

1,500 = —0

1,000
‘O Layout Optimized for Query Set A

‘O Layout Optimized for Query Set B
500

0

Estd. Runtime of Mixed Workload (s)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of Query Set A in the Mixed Workload

Figure 2.10: Fragility of algorithms over changing workload.

From Figure 2.10, we can see that the query costs change only by 14% for a
50% change in query workload from set A to set B. Thus, we can say that the
algorithm is not fragile to such workload changes.

2.6.4 Where does vertical partitioning make sense?

In this section we concern ourselves with the following issues:
What happens if we adapt to different disk characteristics?

In the previous section, we saw that the performance of vertically partitioned
layouts depend strongly on the buffer size. So let us now see how much do the
query times change, if the partitioning is adapted to the different buffer sizes.
Figure 2.11 shows the estimated workload runtimes for two vertical partitioning
algorithms (HillClimb and Navathe) normalized by the estimated workload run-
time for Column, when the buffer size is changed. The Normalized Estimated
Costs is calculated as follows:

Chapter 2. Vertical Partitioning for Legacy Row Stores 37

Estimated costs of the layout

Normalized Estimated Costs = . * 100%
Estimated costs of Column
150%
S 125% \
X‘) /
(/2]
8 100% AN —
@ 75%
K
N 50%
(] . .
E 50 — HillClimb — Navathe
o Materialized views — Column
0%
0.01 0.1 1 10 100 1,000 10,000

Buffer Size (MB, log scale)

Figure 2.11: Estimated workload runtime compared to Column when re-optimizing
for each buffer size.

Additionally, we also show the workload costs of the perfect materialized views as
well as for Column. We do not show Row because it is out-performed by all other
layouts for all buffer size values. In order to amplify the variation we compare the
workload costs to Column for different buffer sizes. The first thing that we see is
that in the best case, i.e. for the perfect materialized views, vertical partitioning
pays off over Column only up to a buffer size of 100 MB. The layouts produced by
HillClimb perform either better or the same as Column. HillClimb has the best
improvement over Column for a buffer size of 100 KB. The layouts produced by
Navathe, on the other hand, perform better than Column only in a narrow range
of approximately 30 KB to 300 KB. For all remaining buffer size values, Navathe
performs worse than Column.

For the sake of completeness, we also ran experiments to see the adaptivity
of vertical partitioning algorithms over block size, disk bandwidth, and disk seek
time. We have additionally examined the effects of scaling the dataset.

What are the sweet spots for block size, disk bandwidth, and disk seek
time?

Figures 2.12a to 2.12c add to our findings on adaptivity, and show the estimated
workload costs for the vertical partitioned layouts for different block sizes, disk

38 2.6. Simulations and Experiments

bandwidths and disk seek times. We can see that the algorithms are almost unaf-
fected by changes in block size (Figure 2.12a) and disk seek time (Figure 2.12¢) —
the standard deviations of the estimated costs compared to the averages are less
than 0.5% and 9% respectively. To a certain degree, the algorithms are affected
by changes in disk bandwidth (Figure 2.12b) — the afore mentioned metric is 30%
in this case. But there are no interesting regions.

Do the sweet spots change with dataset size?

Let us now examine the effects of changing the buffer size together with scaling
the dataset (i.e. varying the scale factor of TPC-H). We recompute the layouts
for every buffer-size and for every scale-factor, and compare the workload costs
to Column. Figures 2.13a and 2.13b show the results for HillClimb and Navathe.
We can see that there is a jump in improvements over Column from scale factor
0.1 to 1.0 and buffer size larger than 1 MB. This is because for scale factor 0.1
(i.e. 100 MB data size), each query reads the same amount of data as the buffer
size. For all other regions in Figures 2.13a and 2.13b, the impact of dataset size is
negligible.

The key message from this experiment, and also from this chapter, is that
vertical partitioning makes sense only for small buffer sizes, e.g. less than 100
MB. This is indeed the case for many data management systems. For example,
PostgreSQL has a default buffer size of 8 MB. In case we can afford to have big
buffers (due to large main-memory or dedicated nodes) it is better to use column
layout.

Chapter 2. Vertical Partitioning for Legacy Row Stores 39

10,000
@ o o o o
1,000
@ 5 $ e & -]
()
£ 100
S O HillClimb O Navathe Query-optimal
T 0 ©O Column O Row
1
2KB 4KB 8KB 16KB 32KB 64KB 128KB
Block Size
(a) Changing block size
3,000
O HillClimb O Navathe Query-optimal
O Column O Row
2,250
=
(0]
£ 1,500
c
=}
i
750
0
70 MB/s 90 MB/s 110 MB/s 130 MB/s 150 MB/s 170 MB/s 190 MB/s
Disk Read Bandwidth
(b) Changing disk bandwidth
10,000
o - O o O 0
1,000
@ — == —— = - ———
[0]
E 100
5 O HillClimb ‘O Navathe Query-optimal
= 10 O Column O Row
1
1ms 2ms 3ms 4 ms 5ms 6 ms 7 ms

Seek Time

(c) Changing disk seek time

Figure 2.12: Estimated workload runtime when re-optimizing for each block size,
disk bandwidth and seek time

40 2.6. Simulations and Experiments

150%
— 01 — 1 10 — 100 — 1000

100%

Normalized estd. costs (%)

50%
0%
0.01 0.1 1 10 100 1000 10000
Buffer Size (MB, log scale)
(a) Scaling dataset with HillClimb
150%
S — 01 — 1 10 — 100 — 1000

Py
B0

8 100%
el
?
(O]
i

N 50%
©
S
o
p

0%

0.01 0.1 1 10 100 1000 10000

Buffer Size (MB, log scale)
(b) Scaling dataset with Navathe
Figure 2.13: Sweet-spots for vertical partitioning — re-optimizing for each buffer

size and each dataset size, and showing the estimated workload runtime compared
to Column.

Chapter 2. Vertical Partitioning for Legacy Row Stores 41

2.7 Lessons Learned

In this chapter, we compared different vertical partitioning algorithms and studied
ways to pick one vertical partitioning algorithm over another for row-oriented
database systems. Traditionally, vertical partitioning and index selection have
been treated as different problems' and hence we do not consider selection
predicates and indexes in our study. However, we did consider putting the
selection attributes in a different partition. But it turns out that this affects
the data layouts only when the selectivity is higher than 10~* for uniformly
distributed datasets, such as TPC-H. Below we discuss the key lessons learned in
this chapter.

1. We don’t really need brute force. The brute force algorithm spends an
extremely long time to compute the layouts (more than an hour for TPC-H).
On the other hand, the vertical partitioning algorithms evaluated in this work
terminate in at most a few minutes. In fact, AutoPart and HillClimb take less
than 1 second to compute the layouts for all tables in the TPC-H benchmark.
Still both AutoPart and HillClimb find ezactly the same solution as the brute
force algorithm. HYRISE takes slightly more than a second to compute the
layouts but it is only 2.21% off from the brute force algorithm, in terms of query
costs. Similarly Trojan takes a couple of minutes for optimization, however it
is just 0.01% off from the brute force algorithm in terms of estimated runtime.
This is an important result and shows that we do not really need the brute force
algorithm. Several heuristics, as proposed in different algorithms, are good enough.

2. Watch out for the buffer size. The performance of vertically partitioned
layouts depend heavily on the database buffer size. In fact, the buffer size can
impact the query workload runtimes by as much as factor 20. Thus buffer size
is a crucial consideration when computing vertical partitioning. Furthermore,
our measurements reveal that vertical partitioning improves over column layout
only for buffer sizes less than 100 MB. This means if we can have a system with
buffered reads of more than 100 MB at a time, then we better use column layout.
Put another way: if we want to avoid vertical partitioning then we must increase
the buffer size of our database system. This is one of the core results of this chapter.

3. HillClimb is the best algorithm for disk-based systems. Amongst the
six vertical partitioning algorithms compared in this chapter, HillClimb turns out
to be the best for the TPC-H queries. HillClimb offers the best trade-off between
optimization time and workload runtime performance. It spends 4 orders of

n fact, most of the vertical partitioning algorithms do not consider selectivities.

42 2.7. Lessons Learned

magnitude less time in optimization and still finds the same vertical partitioning
as the brute force algorithm. As a result, the optimization time of HillClimb pays
off the earliest (just after 25% of TPC-H workload) over row layout. Furthermore,
from our experience HillClimb is also one of the easiest algorithms to understand
and implement.

4. Column layouts are often good enough. On the TPC-H benchmark
(i.e. all 22 queries) the vertical partitioning algorithms could improve over column
layout by only up to 3.7%. This is because the attribute access patterns over all
22 queries are quite fragmented and it is hard to find column groups which satisfy
most of the queries. Indeed, the improvements over column layout go up to 24%
when using a small subset of the TPC-H workload (see Figure 2.7). But still the
improvements over column layout are not dramatic. To investigate this further, we
tried three changes in our experimental setup — using a different benchmark, using
a different cost model, and using a commercial database system which supports
column grouping.

(a) Using a different benchmark. We used the Star Schema Benchmark[58]. The
Star Schema Benchmark has less fragmented access pattern and so we expect wider
column groups. Table 2.5 compares the results on the TPC-H and the Star Schema
Benchmark (SSB).

Layout TPC-H SSB

AutoPart 3.711% 5.29%
HillClimb 3.711% 5.29%
HYRISE 1.58% 5.27%
Navathe -21.47% 1.64%
O9P -27.74% 1.64%
Trojan 3.71% 0.05%

BruteForce 3.71% 5.29%

Table 2.5: Estimated improvement over column layout with different benchmarks.

We can see that even though column grouping improves over column layout by up
to 5.29% on the Star Schema Benchmark, still the improvement is not dramatic.
Thus, using column layouts in the first place for TPC-H-like workloads is not a
bad idea. This will avoid the complicated vertical partitioning machinery.

(b) Using a different cost model. We used the main-memory cost model from the

paper on HYRISE [26]. It models the number of cache misses when accessing data
from a column grouped layout. For TPC-H queries, we show the estimated work-

Chapter 2. Vertical Partitioning for Legacy Row Stores 43

load runtime improvements over column layout. Table 2.6 compares the results
when using disk (HDD) and main-memory (MM) cost models.

Layout HDD Cost Model MM Cost Model

AutoPart 3.711% 0.00%
HillClimb 3.711% 0.00%
HYRISE 1.58% 0.00%
Navathe -21.47% -15.07%
OsP -27.74% -15.53%
Trojan 3.711% 0.00%
BruteForce 3.71% 0.00%

Table 2.6: Estimated improvement over column layout with different cost models.

From the table we see that except for Navathe and O5P, all other algorithms have
no improvement over column layout in main-memory. This is due to the fact that
the seek-costs compared to the scan costs are way smaller in main-memory than for
disk-based systems, which means that a column-group cannot significantly decrease
the data access costs in main-memory. Instead, column groups can potentially
increase the amount of data read and hence be even worse than column layout
(see Navathe and O,P for main-memory). On the other hand, reading data in
column layout causes the least possible number of cache-misses, thus allows for
the fastest data access. Therefore, in terms of data access costs, it is hard to beat
column layout in a main memory-based system. Indeed, in the HYRISE-paper|26],
the hybrid layouts improve over column layout by just 3.8% in the total workload
cost. This is even when the workload chosen in the paper on HYRISE uses very
wide tables with up to 150 attributes and several queries accessing a large fraction
of those attributes.

(c¢) Using a commercial database system. Finally, we used a commercial disk-
based column-oriented database system (referred to as DBMS-X in the following),
which supports column grouping. The idea is to compare vertically partitioned
layouts with column layouts on the TPC-H benchmark. To do so, we created and
loaded two TPC-H databases with scale factor 10, one with column layout and
the other with a vertically partitioned layout calculated by HillClimb. Like any
other column store, DBMS-X relies heavily on compression and it cannot be turned
off. The default compression for string and floating point numbers is Lempel-Ziv-
Oberhumer-based (LZO), while for integer and date types the compression scheme
is delta encoding. We executed the unmodified queries of the TPC-H workload on

44 2.8. Conclusion

these two databases. Table 2.7 shows the total workload runtime? for row, column,
and the vertically partitioned layout produced by HillClimb.

Compression Row Column HillClimb
Default (LZO or Delta) 1652s 377s 450 s
Dictionary 1265 s 511 s 532 s

Table 2.7: TPC-H workload runtimes with scale factor 10 in DBMS-X for different
layouts and compression schemes

When using the default compression the difference between column layout and
HillClimb is quite high. This is due to the varying length encoding, used in the
vertically partitioned layout as well, which makes the tuple-reconstructions within
a segment of a column-group costly. We ran another experiment in which we forced
all layouts to use the dictionary compression, which is a fixed-size encoding. With
dictionary compression, the gap between column and HillClimb layout reduces.
Still, column layout outperforms HillClimb.

Having said the above, however, there are several practical limitations to using
column layouts in legacy row stores. For instance, the standard practice to create
a separate table for each vertical partition causes the column layouts to incur the
maximum tuple header overheads. Thus, vertical partitioning is still a necessity
for the majority of row stores.

2.8 Conclusion

There are a number of vertical partitioning algorithms proposed in the literature.
In this work, we presented a systematic and comprehensive study of vertical par-
titioning algorithms. We categorized vertical partitioning algorithms along three
dimensions and surveyed six different algorithms. We experimentally evaluated
these six algorithms under a common configuration setting. We introduced four
metrics to compare different vertical partitioning algorithms and showed results
from the TPC-H benchmark. Our results identified the trade-offs between opti-
mization time and workload runtime improvements, improvements over row and
column layouts, and effects of database buffer size.

2We excluded query 9 since DBMS-X has chosen a sub-optimal query plan for it, which caused
an enormously high runtime.

Chapter 2. Vertical Partitioning for Legacy Row Stores 45

14,724.73
10,026 .
100% % 150

75% .
75
° S
. l : . . l
g
9
° o — —
Troj

0%

Pay-off (%)
a
g
8
Pay-off (factor)

N
]
X

AutoPart HillClimb HYRISE Navathe 02P Trojan BruteForce AutoPart HillClimb HYRISE Navathe 0o2pP BruteForce

(a) Pay-off over Row (b) Pay-off over Column

Figure 2.14: Pay-off in workload runtime improvements over optimization- and
creation times.

Appendix

2.A Additional Results

2.A.1 How soon does vertical partitioning pay-off?

Now let us see how soon do the efforts made in vertical partitioning pay off,
i.e. the fraction (or factor) of workload for which the accumulated workload cost
improvements exceed the optimization and layout creation costs. Thus, we define
pay-off as follows:

Optimization time + Creation time

Pay-off = * 100%

Improvement in estimated workload costs

Figure 2.14a shows when the algorithms pay off over Row. We can see that all
algorithms pay off after approximately 25% of the workload has been executed.
Due to the very high query costs for Row we do not see a variation of the pay-off
for the different layouts. Pay-off after 25% of the workload means that just 25% of
the TPC-H workload is enough motivation for computing the vertically partitioned
layouts.

Figure 2.14b shows how soon vertical partitioning pays-off over Column . We
can see that AutoPart pays off the earliest, after running the TPC-H workload
44.5 times. HYRISE is the last to pay off (after running the TPC-H workload
101 times). This long time to pay off over Column is due to the very small
improvement (up to only 5%) in workload costs over Column. As a final remark,
we see in Figure 2.14b that Navathe and O,;P have negative pay-off factors, This
is because these two algorithms do not improve workload costs over Column.

46 2.A. Additional Results

2.A.2 Extending our Model to Consider Selectivity

In this chapter we have excluded query execution costs from our cost model, and
only considered data access costs. Furthermore, we did not distinguish between
columns used in the final result vs. columns used in the selection predicate only.
Instead we have assumed that the benefits and costs of vertical partition lie sim-
ply in columns that are accessed. However, it would be interesting to investigate
the potential benefits of putting the columns used in the selection predicate in a
separate vertical partition. For example, suppose that there were a workload com-
posed mostly of queries that invoke a highly-selective predicate on just PartKey.
In that case, it could be best to have the PartKey in a vertical partition by itself,
and group the rest of the attributes together.

It is to be noted again that almost all vertical partitioning algorithms consider
the scan and projection operators only. Since we were doing a comparative study
of different algorithms, we have considered the same set of operators for all algo-
rithms. Nevertheless, in order to investigate the effects of selection operators on
the results produced by vertical partitioning algorithms, we have extended our cost
model to take selectivity into account. Now, for each query in the workload, we
provide the selection attributes and the overall selectivity, in addition to the list
of referenced attributes. Note that since we are considering vertical partitioning
in legacy row-stores, i.e. tuple-at-a-time processing, we assume buffered-reading
all relevant vertical partitions. This means that we still need to share the read
buffer between selection and projection attributes. Our query processing model
is similar to the one used in the paper on HillClimb [28]. We first execute a full
scan on the partitions containing the selection attributes and collect the row IDs
of the qualifying tuples. Using these row IDs, we can determine which blocks we
need to read from the remaining referenced partitions. Depending on the query
selectivity, we might be able to skip reading some of the blocks from the remaining
referenced partitions.

In our extended cost model we assume a uniform distribution of search keys,
like in the TPC-H benchmark, so the distance between two qualifying rows (jump)
is constant. For each referenced partition we can calculate the number of rows per
block (blocking factor) by dividing the block size with the row size of the
partition. If jump is less than the blocking factor, we cannot skip reading
any blocks of that partition, so we have to do a full scan. Otherwise, we can
skip some of the blocks. From the jump and blocking factor we can easily
calculate the proportion of blocks to read from a given partition. However, it
might not pay off to skip the unreferenced blocks if the additional seeks imposed by
skipping these blocks have a higher cost than what we gain on reading fewer blocks.
Therefore we always compare the costs of full scanning a referenced partition and

Chapter 2. Vertical Partitioning for Legacy Row Stores 47

reading only the blocks that contain qualifying tuples, and choose the execution
plan that is cheaper.

Let us now see what happens if we have a query with a highly selective pred-
icate on a single attribute. We let the vertical partitioning algorithms use our
extended cost model, as described above, when computing the layouts. We con-
sider the following query on the TPC-H PartSupp table projecting two attributes
and preforming a selection on a third one:

SELECT availQty, suppKey
FROM PartSupp
WHERE partKey > c;

We vary the selectivity of the query by setting the value of the constant c. We
chose a scale factor of 1000 for the TPC-H database, which yields a table size of
172 GB, and we read 12 bytes from each 216 bytes long row. We vary the selectivity
from 1, 1071, ..., 1078 to see when the algorithms choose to put partKey into a
separate partition. Figure 2.15 shows the resulting estimated query costs for two
partitionings pl and p2, when varying the query selectivities. Partitioning pl is
produced by the unmodified HillClimb algorithm and p2 extends pl by putting
the selection key (partKey) in a different partition.

pl: {partKey, suppKey, availQty}, {supplyCost}, {comment}
p2: {partKey}, {suppKey, availQty}, {supplyCost}, {comment}

__ 120
(6] [o O O O
3 o O O O
@
£ 90
=
2
S 60
35
O
3
< 30
£ O pl
i 0 O p2
1 0.1 0.01 0.001 1E-04 1E-05 1E-06 1E-07 1E-08

Selectivity (Fraction of Tuples Accessed)

Figure 2.15: Estimated query I/O cost over varying selectivity

48 2.A. Additional Results

From Figure 2.15, we see that p2 (which puts the selection attribute in a separate
vertical partition) becomes better than pl only for selectivities higher than 107,
We also tried considering a third partitioning p3:

p3: {partKey}, {suppKey, availQty, supplyCost, comment}

Partitioning p3 simply puts the selection key into a singleton partition and all the
remaining attributes into another partition. However, we found that p3 becomes
better than pl (and similar to p2) only for selectivities higher than 1075. For lower
selectivies, the performance of p3 becomes much worse than pl and similar to row
layout. Thus, we conclude that considering selectivity affects vertical partitioning
only for very high selectivities. We recalculated the TPC-H query costs with this
new cost model, and interestingly none of the costs change. This indicates that
the above discussed late materialization does not help TPC-H like datasets. This
makes sense because given the uniform data distribution in TPC-H, only very
highly selective queries can skip reading some data blocks. An interesting follow-
up might be to consider vertical partitioning along with sort orders (and indexing)
for selection predicates. However, this calls for developing newer physical design
algorithms and is beyond the scope of this work. In this work, we have focused
only on vertical partitioning in order to compare different vertical partitioning
algorithms.

Chapter 2. Vertical Partitioning for Legacy Row Stores 49

2.B Layouts

Figure 2.16 shows the vertical partitioned layouts for all tables in the TPC-H
workload. Two or more attributes having the same color in a given row means
that they belong to the same vertical partition. For the Lineitem table (Fig-
ure 2.16b) AutoPart, Trojan, and Optimal produce the same results. HillClimb’s
results differ only in not grouping the two unreferenced attributes (LineNumber
and Comment) together. The same occurred for the Part table (Figure 2.16f)
where HillClimb left the two unreferenced attributes (RetailPrice and Comment)
in separate partitions, contrary to AutoPart, HYRISE, Trojan and Optimal. The
reason for Trojan producing a slightly different layout for the Customer and Sup-
plier tables — compared to the other algorithms in the “HillClimb-class” — is
that it uses an interestingness-measure as a heuristic making it sometimes chose
sub-optimal column-groups as well. Navathe and O5P form the second class of the
vertical partitioning algorithms we have considered which is clearly visible on the
partitioning results, since they always produce a partitioning which has significant
differences from the results of the “HillClimb-class”. For the Nation and Region
tables (Figures 2.16g and 2.16e), the partitioning doesn’t influence the I/O cost.
This is because these two tables have only 25 and 5 rows, respectively, and hence
they fit into one block.

20

2.B. Layouts

‘peor{Iom [I-Dd.L o3 107 suoryyred poynduros oy J, :97°g 9IS

uefo)
d2o ‘eureneN
1dO ‘AH ‘OH ‘dv

III NationKey
III SuppKey
III Name
III Address
III Phone
III AcctBal

wyddng (p)

RegionKey
Name

Comment

uo130y (o)

I v

deo

syieneN
quIdIH

PartKey

Name

Type

Size

1red (3)

Container
Brand
RetailPrice

Comment

>
2
T
=
=
o
2

Mfgr

lewndo
3SIHAH

41 ‘d20 ‘eN ‘OH ‘dv

III Comment
III NationKey

Name

III RegionKey

uorje)N (3)

d20 ‘eweneN
3dO ‘4L ‘AH ‘OH ‘dvV

I AvailQty

ddnsyredq (1)

II SupplyCost

woytoury (q)

Iowolsny)) (e)

—~

o
~

SI9PIO

S
v

zd
29
5%
23
H

>
B
F3
)
T
=5
[e]
B

CustKey

OrderKey

I awnionH
I I o 1 ‘av

PartKey
Quantity
SuppKey
ExtendedPrice

Discount

dO ‘4L ‘AH ‘OH ‘dvV

S

III OrderKey
III CustKey
III ShipPriority
III TotalPrice
III OrderDate

Clerk
OrderStatus

III OrderPriority
III Comment

Chapter 2. Vertical Partitioning for Legacy Row Stores 51

2.C Implementation Notes

Our implementation of the vertical partitioning algorithms
have been released at https://github.com/palatinuse/
database-vertical-partitioning. In this section we provide some
background information on the implementation, and use an example workload to
describe the key concepts necessary to understand our codebase.

2.C.1 A short walk-through of vertically partitioning the
TPC-H PartSupp table

Let’s take a look at the TPC-H PartSupp table’s workload, and it’s vertical parti-
tioning. Table 2.8 shows the following informations: which query references which
attribute, marked by an X.

In our implementation each Workload is first reduced by kicking out
queries which do not touch the given table. Furthermore, the workload is
converted to a more efficient representation using primitive types only (called
SimplifiedWorkload in the code), using GNU Trove collections. As a result
of this step performed on the TPC-H PartSupp table we get only 5 queries (with
IDs 0 to 4, shown in the second column in Table 2.8).

Now let’s run the AUTOPART algorithm for the PartSupp table. Here’s the
output of the run:

partsupp

#AUTOPART

.0038134 #seconds computation time
fpartition count -- partitions:

0

fquery count —-- best solutions:
0

0
1

1
0
4
1
2
3
4
5
2
2
2 0
0

1

We get two mappings as a result. Partitions is the result of a VP algo: the list
of partitions with the attributes in them. Thus the first line (1 0) means Partition
0 contains attributes 1 and 0 (marked green in the table).

https://github.com/palatinuse/ database-vertical-partitioning
https://github.com/palatinuse/ database-vertical-partitioning

02

2.C. Implementation Notes

TPC-H
Query

Query

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Qs

Q9

Q10

Qi

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Partition 3
COMMENT
Attribute 4

Table 2.8: Vertical partitioning of the TPC-H PartSupp table.

Chapter 2. Vertical Partitioning for Legacy Row Stores 53

The second mapping, best solutions is a bit more tricky. If we have a vertically
partitioned table, and a query comes in, we have to decide which vertical partitions
we should scan to answer the query. This itself is an NP-hard problem when partial
attribute replication is allowed, like in the AUTOPART algorithm (Note: these
algos are called AbstractPartitionsAlgorithm in the code, in contrast to
AbstractPartitioningAlgorithms that create a disjunct set of partitions,
i.e. without overlaps). The best solutions tells us for each query which partitions
to scan, in order to answer the query WITH THE LOWEST COST, according to
the cost model used (Note: this is only non-trivial for overlapping (non-disjunct)
partitionings). Thus the first line (2 0) means query 0 (which is TPC-H Q2) needs
to scan partitions 2 and 0 (the red and green columns in the table).

2.C.2 A Quick-start Guide

e Build metis (under lib/metis) on your machine

e Create a new instance of experiments.AlgorthmRunner using its de-
fault constructor setting up to run all VP algorithms, the whole TPC-H
benchmark using scale factor 10, and using an HDD cost model.

e Call the experiments.AlgorthmRunner.runTPC_H_Tables ()
method to get the vertical partitionings of all TPC-H tables, for each VP

algorithm.

e Print the resulting partitionings calling the
experiments.AlgorithmResults.exportResults () method,
passing in the results attribute of the experiments.AlgorthmRunner
instance.

AlgorithmRunner algorithmRunner = new AlgorithmRunner ();
algorithmRunner.runTPC_H_All () ;
System.out .println (

AlgorithmResults.exportResults (algorithmRunner.results));

Chapter 3

Query Processing on Top of Flat
Files

In this chapter we show a survey of query processing on top of flat files, i.e. text files
containing data encoded in some standard text format. Flat files are commonly
used in various fields of science to store experimental results in a human-readable
format. These datasets are considered external to a database management system,
and to efficiently process them using a DBMS, they first have to be loaded into
the DBMS, which imposes a higher time-to-query. Other ways of processing these
datasets are using custom-built applications that operate on the flat files directly.
These approaches are expected to yield an inferior query performance, yet with
zero time-to-query. We will show cases where this is not completely true, and
where flat file processing tools can even outperform a DBMS.

3.1 Introduction

Querying data stored in structured text files, called flat files, requires different
methods than data stored in a database. This is imposed by the differences in
their format, data types and storage-layout.

3.1.1 Flat File Databases

A flat file database is a way of encoding and storing data of a single table in a
single file. The data can be stored in text- and binary format as well, but it is
more common to use the text format because of its human-readable form. In each
case we need some means to logically separate the records and the fields from each
other in the file. It is common to store one record per line, therefore the record-
separator is often the character, or depending on the platform a pair of characters,

25

56 3.1. Introduction

denoting the end of a line. There are two main ways of encoding records: the
delimiter-separated values and the fixed-width format.

In delimiter-separated values files the fields are separated by delimiter charac-
ters, such as commas, tabs, or vertical bars. Using delimiters imposes an overhead
on processing, since they have to be located each time when a record is read. Yet,
they are much less wasteful in storage space compared to XML. A well-known
example of this format is CSV, i.e. comma-separated values, where the fields are
separated by commas, and one record is stored per line.

In case of a fixed-width formatted files the records and fields are implicitly
defined by their position within the file, since each field has the same, pre-defined
length in each record. For this format there is no need for record- and field-
separator characters, however, to improve human-readability we can still separate
records by end of line characters. The position of a given field in a given record
can be easily calculated, though this comes at the price of having an increased
storage requirement.

3.1.2 The Processing Model of Flat File Databases

In the following discussion we assume that each file contains data of a single relation
only, and all records have the same schema within a file. The latter restriction can
be easily lifted with some added complexity in the processing steps.

The processing of flat files starts with identifying the tuples. It consists of
finding the records within the file, separating the fields within each record, and
converting the required fields into the proper datatype. Once the tuples are avail-
able the actual processing can begin. In more detail this process consists of the
following steps:

1.) Determining the boundaries of each record using the record-separators.

2.) Tokenisation: determining the boundaries of each field within a record using
the field-separators.

3.) Parsing: converting the required fields into the appropriate binary format.
4.) Selection: evaluating the selection predicates on the record.

5.) Processing: in case of a match, the desired data processing steps are executed,
e.g. printing or aggregation.

The previously introduced two record-encoding formats have different trade-
offs for the above processing model. The most important benefit of the fixed-width
format over the delimiter-separated one is that we do not need to tokenize the fields
at all. Searching for the field-separators imposes a CPU-overhead while processing
delimiter-separated files. On the flip side we have to read less data from storage
if the file is in delimiter-separated values format.

Chapter 3. Query Processing on Top of Flat Files 57

3.1.3 Research questions

Both databases and scripting languages have a large user base, and both of them
would swear on their tool being the right one for processing data residing in flat
files. In this chapter we try to give a guideline on when one camp should be better
off using the other camp’s tool by answering the following research questions:

e Can scripting languages compete with database systems in query processing?
e Does it pay off to invest in loading the data into a database?

e How should we choose the proper tool and data format for flat file processing?

3.1.4 Contributions

Are main contributions in this chapter are as follows:

e We show how to load data into Postgres in the most efficient way. Hereby,
we discuss various database tuning steps and tools for data loading.

e We compare three different tools for processing flat files: the Postgres
database system, an AWK script, and a hand-written C-application. We
compare them on their query time, and time-to-query as well. The latter
once includes the cost of loading data into the database, which is only ap-
plicable to Postgres.

e We provide two representative examples of queries that exemplify two ex-
treme cases. For single-table queries containing filtering but no grouping,
flat file processing tools are better suited, and databases might never pay off
because of the upfront costs of loading the data. For more complex queries
involving joins, aggregations, and the like, a database system can drastically
improve subsequent query times and thus the loading times will eventually
pay off.

3.2 Related Work

Many scientists store their experimental results in flat files [32], and query them
with tools meant for flat file processing, e.g. AWK [5]. The reasons against using
a DBMS for data storage and exploration is the high upfront cost of loading the
data into the database and the administration overhead of setting up and tuning
the DBMS in the first place. For instance, having to migrate the results of an
experiment into the DBMS might be a huge waste of time if it turns out after the

58 3.2. Related Work

first query that it does not contain any information of interest to the researcher. On
the other hand once the data is in the database the user can take advantage of the
sophisticated query processing capabilities of the DBMS and achieve a considerable
performance gain.

To solve this problem NoDB [7], an extension of PostgreSQL, was proposed,
which allows for querying flat files with a DBMS, without having to load the data
into the database first, and enjoying the benefits a DBMS can offer, i.e. SQL and
caching at the same time. NoDB creates a positional map, which is a cache of
the tokenization results, i.e. the field boundaries. It is coined as indexing by the
authors, since it is an index on the starting positions of the fields within the flat
file. Building indexes on the field values themselves as well would make sense, and
would require further extensions of the scan operator.

Invisible loading [3] introduces a technique to speed up future MapReduce jobs
operating on the same data. It proposes to load the attribute values extracted by
the RecordReader into a local column-store database and to read data requested
by subsequent queries from the database instead of the distributed filesystem, if it
has already been loaded.

Data vaults [33] enables a common view of relational databases and scientific
file repositories by offering a common interface for querying data regardless of its
location. Data from file repositories are loaded just-in-time when a query requests
data not residing in the database. Yet, it is unclear what are the costs of this
loading procedure, and whether and for how long the loaded data is kept in the
database.

Efficient loading of CSV-files into a main-memory DBMS has been presented
in [45]. They point out that the traditional bulk-loading does not exhaust the
resources of a modern, multicore CPU and introduce a parallel and vectorized
method for loading CSV-files. They also show how to bulk create index structures
by using merge-able index structures.

The UNIX-community has several tools for querying flat files, e.g. various shells,
perl, python, awk, and grep, which all do a full-scan of the whole file for each
query. Physical design techniques, e.g. data layout transformation and compres-
sion, however, have not yet been integrated into these tools. The more powerful
tools perform also a tokenization for each input line, allowing for accessing each
field separately. Building hash indexes on the queried fields on-the-fly can be
used to speed-up subsequent queries touching the same fields, as done in [21]. On
non-indexed data AWK has been shown to outperform MySQL for simple queries
involving selections and joins [44].

Chapter 3. Query Processing on Top of Flat Files 59

3.3 Benchmarking Flat File Processing

In this section we evaluate flat files processing in various systems, and point out
the possible points of improvements in the processing pipeline.

3.3.1 Experimental Setup

We have used the following common testbed for all experiments: a single node
machine with a dual-core Intel Core i3-2120 processor running at 3.30 GHz with 3
MB Intel smart cache, having 16 GB RAM and 2 TB HDD, running Ubuntu 13.10
64 bit with Linux kernel version 3.11.0. We measured the disk characteristics of
our testbed using Bonnie++ [12], a hard disk and filesystem benchmarking tool,
and obtained the following results: a disk read bandwidth of 172 MB/s, disk write
bandwidth of 128 MB/s and average disk seek time of 3.4 ms.

Unless otherwise stated we have cleared the OS and HDD caches before each
run of an experiment, and have performed 5 runs for each measurement. We have
used the TPC-H database with scale-factor 10 as a data source in our experiments.

3.3.2 Loading Data into PostgreSQL

In this experiment we measure the time it takes to load data into a PostgreSQL
database (version 9.2.4) in various configurations. Our datasets are the Lineitem
and Customer tables from the TPC-H Benchmark with scale-factor 10, stored in
text files in delimiter-separated format. This format is essentially the same as
CSV, except for the field-separator character, where we have used a vertical bar
instead of a comma.

We will examine the following three methods for loading data into the database:

1. psgl \copy: This is a command that is executed by the client, and there-
fore moves files through the network between client and server.

2. SQL COPY: This command is executed on the server, thus it operates on
files local to the server, bypassing any network communication.

3. pg_bulkload module: This is a PostgreSQL extension module capable of
multi-threaded loading.

60 3.3. Benchmarking Flat File Processing

In Table 3.1 we can see the loading times for both tables, and the two loading
commands mentioned above. We have to note that the client-based psgl \copy
command has been executed on the server machine, yet still through a network
connection. Since the Customer table is relatively small, we do not see a significant
difference between the loading times for the two commands. However, for both the
Lineitem and Customer tables, the COPY command executed by the database
server is actually 5% faster than the client-based one.

Table psql \copy SQL COPY

Customer 14.1 sec 16.5 MB/s 134 sec 17.3 MB/s
Lineitem 568.3 sec 12.9 MB/s 540.9 sec 13.6 MB/s

Table 3.1: Loading from text files in PostgreSQL with default configuration set-
tings.

The PostgreSQL manual contains some tuning tips explicitly for loading data.
The most important ones are the following;:

e Don’t interleave loading with index maintenance. It is cheaper to first drop
all indexes on the table, then load the data, and finally bulk-load the indexes.
However, the TPC-H benchmark does not enforce creating indexes on the
tables, therefore we haven’t created any indexes either.

e Adjust WAL-checkpointing behaviour. PostgreSQL writes new transactions
to the database in files called write-ahead log segments that are 16 MB in
size. Every time checkpoint_segments worth of these files have been
written, by default 3, an automatic WAL-checkpoint is created. We have
increased this parameter value to 64, thus there is a checkpoint created per
1 GB of WAL-segments written. The checkpoint _completion_target
parameter specifies the target of checkpoint completion, as a fraction of total
time between checkpoints. This should be adjusted from the default value
of 0.5 to 0.9.

e Adjust the amount of memory used for caching. Even on modern Linux
platforms the default kernel settings allow PostgreSQL to allocate not more
than 32 MB of (shared) memory. Therefore we first have to adjust the kernel
settings, and then increase the shared buffers configuration parameter
to 25% of the RAM size; in our case it has been set to 4 GB.

Chapter 3. Query Processing on Top of Flat Files 61

In Table 3.2 we can see the loading times for the Lineitem table with the SQL
COPY command executed on the server. We have used three Postgres instances
with different levels of tuning:

None: no tuning
Checkpointing : WAL-checkpointing behaviour adjusted

Checkpointing 4+ caches : WAL-checkpointing behaviour and the amount of
memory used for caching also adjusted

In the third column of Table 3.2 we can see the loading time reduction compared
to that of the untuned instance. It shows that adjusting the WAL-checkpointing
behaviour alone brings only 5% improvement over the untuned instance, however,
when adjusting the amount of memory used for caching as well we can achieve a
significant reduction in the loading time: namely 17%.

We can conclude that the most efficient way of loading data into Postgres is by
using the SQI. COPY command, and the latter tuning of the configuration settings.

Tuning Loading time Improvement
None 541 sec 0%
Checkpointing 517 sec 5%
Checkpointing + caches 447 sec 17%

Table 3.2: Loading text files into PostgreSQL with changing level of configuration
settings tuning.

3.3.3 A Simple Aggregation Query

Let us take a simple aggregation query and execute it both in a DBMS, and with
custom-built applications operating on flat files. Our goal is to get a rough idea
about how these two approaches compare to each other in terms of performance.
For that we are going to use the following subquery of Q22 from the TPC-H
benchmark:

SELECT AVG (c_acctbal)

FROM customer

WHERE c_acctbal > 0.00

AND SUBSTRING (c_phone, 1, 2)

N (" [I1]","[12]1"," [1I3]","[14]",
"rIs]", " [Ie]’, " IIT7]")

Listing 3.1: Q224 - a subquery of TPC-H Q22

62 3.3. Benchmarking Flat File Processing

In Listing 3.1 I1 ...I7 are numbers randomly chosen without repetition from
the range [10, ..., 34].

The first system in our evaluation is PostgreSQL. In this case we have to load
the data into the database first, which for the Customer table takes 13.4 seconds.
Only after doing this can we execute the first query. The second one is a
hand-coded C-implementation of the query using the getline function of the
GNU C library (glibc), which is not shown here due to its simplicity. The third
one is an AWK implementation, as listed in the following:

BEGIN { FS="\t" }

—

3 $6 > 0 && substr($5, 1, 2) <= 16 {

4 customerCount++

5 sum_acctbal = sum_acctbal + $6

o }

7

sy END { print "The result is: " sum_acctbal /

customerCount }

Listing 3.2: Q22,, implemented in AWK

An AWK program consists of pattern-action pairs. For each input record the
patterns are evaluated one-by-one, and in case of a match the corresponding action
is executed. This provides the recipe of transforming single-table select-project
SQL queries into AWK programs: the selection becomes the pattern, and the
projection becomes the corresponding action. In case of aggregation queries we
can use the special BEGIN and END patterns matching the beginning and the end
of an input file, respectively, to initialize the variables used for the aggregation, and
to perform the aggregation and print the aggregate values after the input has been
processed completely. Before processing a file we have to specify the record- and
field-separator characters (line 1 in Listing 3.2). With this hint AWK can tokenize
the fields for each record, and we can access them as $i variables, where ¢ denotes
the ordinal number of the field within a record. In the TPC-H Customer table the
c_acctbal and c_phone fields are the 6" and 5" columns, respectively, which
explains how we have transformed the WHERE condition of the SQL query from
Listing 3.1 into the AWK pattern in line 3 in Listing 3.2.

In this experiment we have used two variants of the flat file as input to the
C program and the AWK script: one in tab-separated format and one in fixed-
width format. The sizes of the flat files are 233 MB and 308 MB, respectively. A
full-scan of the files takes on average 2.12 seconds and 2.67 seconds, respectively.
Since Postgres only accepts delimiter-separated files as input to the SQL COPY

Chapter 3. Query Processing on Top of Flat Files 63

operator, we have not conducted experiments using fixed-width files as input to
Postgres.

12 ¥ Load
10 B Cold
B Warm
o 8
(9]
9,
<
g
x 4
2 l_
0
PostgreSQL C on TAB ConFW AWK on TAB AWK on FW

Figure 3.1: Runtimes of the TPC-H Q22-Customer subquery.

The loading- and query runtimes can be seen in Figure 3.1. The runtimes have
been measured with cold and warm caches as well, the latter achieved by per-
forming 5 warm-up runs without dropping the caches in between before executing
and measuring runtimes for the warm runs. For the tab-separated layout it is
interesting to note that for cold caches the hand-coded C-application outperforms
PostgreSQL, and in the case of warm caches their performance is the same. For the
fixed-width formatted file the hand-coded C-application outperforms PostgreSQL
for warm caches by far, and in the case of cold caches their performance is almost
the same. The query times using AWK are higher than both that of Postgres and
the C application, however, they are still lower than the loading times for Postgres.

When considering the culprit of using Postgres, we can conclude that the rel-
atively high initialisation cost of loading the data into PostgreSQL does not pay
off. We have to note, thought, that creating an index on the c_phone field could
change the overall picture. We can also conclude that the time-to-query, i.e. the
sum of the loading time and the runtime of the first query, is significantly lower
for both C and AWK, than for PostgreSQL. For performing a quick analysis it is
a good choice to take AWK executed against the dump file, in case we perform
only a very few number of runs. In terms of coding effort it is easier than im-
plementing it in C, but not as straight-forward as writing a SQL query for that.
The fastest system and file-format combination is the hand-coded C-application

on files in fixed-width format with warm caches, due to the better cache-locality
and reduced CPU costs.

64

3.3. Benchmarking Flat File Processing

3.3.4 A More Complex Query

On the previous single-table query the hand-coded solutions outperformed the
DBMS. In the following we will consider a multi-table query with grouping to see
whether the DBMS can perform better on home-ground, more complex queries.
For the purpose of evaluation we are going to use Q4 from the TPC-H benchmark:

10!

12

13

14

15

16

SELECT o_orderpriority,
COUNT () AS order_count
FROM orders
WHERE o_orderdate >= 71993-07-01"
AND o_orderdate < 71993-10-01"
AND EXISTS (
SELECT «*
FROM lineitem
WHERE 1_orderkey = o_orderkey
AND 1_commitdate < 1_receiptdate
)
GROUP BY o_orderpriority
ORDER BY o_orderpriority;

Listing 3.3: TPC-H Q4

FILENAME == "lineitem.tbl"
&& $12 < $13 {
orderkeys[$1] = 1

}

FILENAME == "orders.tbl"

&& S5 >= "1993-07-01"
&& $5 < "1993-10-01"
&& $1 in orderkeys {
count [$6]++
}
END {
asorti (count, keys)

for (i = 1; i <= length(keys); i++)
print keys[i] " " count[keys[i]]

Listing 3.4: TPC-H Q4 implemented in AWK

Chapter 3. Query Processing on Top of Flat Files 65

This query is relatively complex to implement in C++, therefore we are only
going to use an AWK script in our comparison. Let’s assume the flat files for
the Lineitem and Orders tables are called lineitem.tbl and orders.tbl, respectively.
Providing these files as inputs to AWK in this given order, the script in Listing 3.4
returns the same results as the SQL query executed in a DBMS. The script first
collects the qualifying orderkeys from the Lineitem table, reading 7.3 GB of data.
The intermediate results have a size of 116 MB, and 13.75M tuples qualify out of
the 60M input tuples. After that it reads the Orders table, processing 1.7 GB of
data, and performs a hash-based aggregation.

We have executed the query in PostgreSQL with all configuration parameters
tuned as described in Section 3.3.2. As a first step we loaded the Lineitem table
in 447 seconds, and the Orders table in 92 seconds, which yields a total of 539
seconds spent on loading.

600
B Load
B Cold
480 B Warm

w
(o2}
o

N
S
o

Runtime [sec]

_
N
o

PostgreSQL AWK on TAB AWK on FW

Figure 3.2: Runtimes of the TPC-H Q4 query.

The loading- and query runtimes can be seen in Figure 3.2. The runtimes have
been measured with cold and warm caches as well, as described in the previous
section. PostgreSQL has the fastest query time with 98 seconds, which is twice as
fast as that of the AWK script. However, the time-to-query for PostgreSQL is 638
seconds, which is a significant upfront cost. Nevertheless, owing to the very good
query performance it does pay off to use PostgreSQL for complex queries like the
one used in this experiment. We can see an additional artefact of DBMSs, namely
that they are capable of drastically improving their performance over subsequent
runs, which is not the case for flat file processing tools.

3.3.5 The Inherent Costs of Flat File Processing

The processing of flat files can be subdivided into five steps, as described in the
introduction. The selection and processing steps operate on binary data, similarly

66 3.3. Benchmarking Flat File Processing

to a DBMS, though specialised processing methods, e.g. vectorisation, usually
cannot be applied. Parsing is known to be an expensive step, especially for float-
ing point numbers and dates. Separating the records is a necessary step in any
reasonable query, and is a relatively simple step. Tokenisation is far more complex,
and includes a lot of branching, which yields branch mispredictions in most of the
cases, i.e. for almost every character in the file. In the following we will show the
costs inherent to tokenisation in simple queries.

As a first step we are going to investigate the costs of processing a varying
number of fields in each input record. In this experiment we read the Lineitem
table with scale factor 10 in some text format using AWK, and project the first
k fields of each record. Here we are going to show the total cost till the following
processing steps:

Input: scanning the data on hard-disk,
Tokenization: tokenising the fields, and

Output: projecting the fields.

The resulting runtimes for tab-separated input can be seen in Figure 3.3a.
What we can immediately notice, is that tokenization is the most expensive step,
and it increases only slightly with growing k. To better dissect tokenization, let us
consider counting the number of fields in each record, that is using the value of the
NF built-in variable. Executing this operation takes 184.05 seconds on average,
which is slightly lower than the cost of projecting the first field only. We can
conclude that the tokenization, i.e. finding the boundaries of the fields within a
record has a significant cost, and it has the highest cost in AWK’s processing
pipeline.

As seen before, AWK is capable of reading from flat files in fixed-width format,
too. In this case there is no need for field-separator characters, since the fields
are implicitly defined by their position within the file. This could reduce the
tokenization cost, but on the other hand it increases the size of the file. Projecting
the first k fields of each record again from the Lineitem table in fixed-width format
results in the runtimes shown in Figure 3.3b. It has turned out, that AWK clearly
benefits from the fixed-width layout, which suggests that AWK is able to exploit
the fixed-width format to increase the processing performance. When comparing
the runtimes for the tab-separated and the fixed-width format we can conclude
that a better processing performance can be achieved if the flat file is in the fixed-
width format, especially if only a fraction of the tuples are accessed from each
record.

Reducing the tokenization costs was achieved by using a different input format.
However, for reducing the cost of reading the input, we have to place the input

Chapter 3. Query Processing on Top of Flat Files 67

320 Tnput 320 Tnput

I Input+Tokenization [Input+Tokenization
@ 240 M Input+Tokenization+Output @ 240 M Input+Tokenization+Output
£ £
ST T T |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#projected attributes (k) #projected attributes (k)
(a) Flat file in tab-separated format, (b) Flat file in fixed-width format,
disk-resident disk-resident

320 Input 320 Input

[Input+Tokenization [Input+Tokenization
0 M Input+Tokenization+Output M Input+Tokenization+Output

0 0
12 38 4 5 6 7 8 12 3 4 5 6 7 8

9 10 11 12 18 14 15 16 9 10 11 12 13 14 15 16
#projected attributes (k) #projected attributes (k)

(c) Flat file in tab-separated format, (d) Flat file in fixed-width format,
memory-resident (ramfs) memory-resident (ramfs)

N

S
)
b
&

Average runtime (s)
3
3

Average runtime (s)
>
3

®
]

Figure 3.3: Runtimes of projecting the first k fields of each record of the Lineitem
table in AWK showing the total costs till each processing step.

320 Tnput Input
[Input+Tokenization I Input+Tokenization
240 M Input+Tokenization+Output 240 M Input+Tokenization+Output

AR . —T |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Projected attribute Projected attribute

(a) Flat file in tab-separated format (b) Flat file in fixed-width format

Average runtime (s)
>
3

Average runtime (s)
2
3

Figure 3.4: Runtimes of projecting the k. field only of each record of the disk-
resident Lineitem table in AWK showing the total costs till each processing step.

into main-memory, instead of storing it on disk. Thus, we have repeated the same
experiment as in the previous case, but now with the flat file residing in memory,
in a ramfs partition. In Figures 3.3c and 3.3d we can see the results for both
memory-resident input files. As expected, the time it takes to scan through the
data is decreased, which allows for a better runtime for fixed-width files for k < 4.
For all other cases there is no significant difference in the query times. From these
results we can conclude that these queries in AWK are CPU-bound.

In our next experiment we have examined the costs of accessing only the k™"
field in each record. The resulting runtimes can be seen in Figure 3.4a. We have
to note here, that the cost of accessing a column in the fixed-width format depends
on the column’s position as well, while for the tab-separated file it does not. As

68 3.3. Benchmarking Flat File Processing

Reading records B Extracting fields

T g Reading records+Tokenization
2 M Reading records+Tokenization+Extracting fields | I I

g
2 40
2
LY
g
zZO-lll

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#projected attributes (k) #projected attributes (k)

(a) Flat file in tab-separated format (b) Flat file in fixed-width format

Average runtime (s)

Figure 3.5: Runtimes of projecting the first k fields of each record of the memory-
resident Lineitem table in C++4, showing the total costs till each processing step.

in the previous experiment, the fixed-width format yield faster processing here as
well.

We can imitate the basic tokenization functionality of AWK in a simple C++
program as well. Separating the records can be done by the fgets built-in func-
tion, if the record-separator character is the new-line, and separating the records
by collecting the positions of the field-separator characters found in the record
being processed.

Since we pointed out, that the tokenisation step yields branch mispredictions,
it is interesting to measure the costs of this step when all data is pre-loaded into
memory, so that we can investigate the pure CPU costs. Projecting the first k
fields of each record from the Lineitem table in tab-separated format results in
the runtimes shown on Figure 3.5a. Here we show the total cost till the following
processing steps: scanning the data in main-memory, tokenising the fields, and
copying these fields into local variables. For data in fixed-width format we only
have to extract the fields without tokenising, which is shown on Figure 3.5b.

In contrary to AWK, tokenisation does not increase the runtimes significantly
in our C++ application. By this we mean the runtime of reading in records and
tokenization is not much higher than that of only reading in the records. The
reason behind the moderate cost increase is that tokenisation is performed on the
records that have just been read, and therefore are likely to reside in the caches.
When copying the field values into a different memory location, i.e. extracting
fields, we see a high increase in the costs for the tab-separated layout, and a
smaller increase for the fixed-width format. The latter is due to the completely
predictable memory access pattern over the data stored in fixed-width format. We
can conclude from this experiment that when using a custom-built application for
processing memory-resident data in textual representation, it is much faster to
operate on data in fixed-width format.

Chapter 3. Query Processing on Top of Flat Files 69

3.3.6 Files in Binary Format

Converting a text file into binary would also result in a file with fixed-width fields,
and could reduce the size of numeric fields in many cases. However, there is no
function available in AWK for reading a serialised binary number, nor are there
bit-shifting operators, which makes the deserialization of numbers in AWK costly.

3.4 Conclusions

We have learned that for relatively simple queries operating on a single file only
both a custom-built C++ application and AWK can offer a shorter time-to-query
than PostgreSQL, with the former being the fastest. For more complex queries
operating on multiple files PostgreSQL is the best option. Though it still has the
longest time-to-query, it offers a superior query performance on subsequent runs,
which makes the initial data loading costs quickly pay off.

We have also shown that the standard configuration settings for PostgreSQL
are inappropriate, and using a tuned configuration can reduce the loading time by
17%. Furthermore, if the flat files reside on the server, then we can reduce the
loading time by 5% just by using the right loading command.

We have seen that when processing flat files with AWK, it is better if the
flat files are stored in fixed-width format. This is especially true, if only a few
attributes are accessed from each record, where the increase in performance can
be up to factor 8.

Appendix
3.A The C I/0O Library

In order to perform file processing tasks we need to use an input-output library.
A widely known one to programmers is the I/O library of the C programming
language. It originates from the early years of UNIX, and is the first device-
independent model of input and output, capable of reading and writing files and
devices as well. We are going to discuss this library in the following.

Input and output to and from both devices and files are mapped into logical
data streams. Two forms of mappings are supported: text streams and binary
streams. A text stream consists of one or more lines, consisting of zero or more
characters plus a terminating new-line character. A binary stream on the other
hand is merely an ordered sequence of characters. Apart from the semantic dif-
ferences, there are functional ones as well between the two stream types: some
methods of the 1/0O library work differently on each stream.

70 3.A. The C I/O Library

We can perform the following operations (among others) on streams: open,
close, read, write, and flush. The prerequisite of performing any kind of I1/O
on the stream is to open it. When opened, a stream is fully buffered if and
only if it can be determined not to refer to an interactive device, e.g. a terminal.
Therefore, the I/O library at hand already performs buffered I1/O for files. The size
of the associated buffer is implementation dependent, however, it is also possible
to associate a user-allocated buffer to a stream.

Chapter 4

Computer Systems Performance
Analysis

Performance is a key aspect of every system in computer science. As such, it is
often required to build a system that has the highest performance at a given cost.
Often we have multiple solutions for a given problem, and we have to compare
their performance to choose the most efficient one. The comparison is done along
some metrics of the system, e.g. running time, latency, throughput, memory usage,
etc. The metrics themselves are either measured or estimated. In the former
case the measurements are repeated multiple times to reduce the possibility of
measurement errors, and to increase the confidence of the results. To summarize
the measurements, some statistics of the data are provided, which is most often
the average value, i.e. the mean. This, however, is not the most reliable statistics,
and thus researchers should favour other statistics instead.

When comparing a few algorithms that solve a given problem, we usually do not
have a lot of measurements available. We typically collect the runtime or memory
usage of the different algorithms, apply some statistics over the measurements,
and choose the one with the best result. However, when we also consider multiple
factors that could have an influence on the performance of these algorithms, we
end up adding new dimensions to the problem space. Eventually, managing the
experimental results becomes a problem. In this chapter we present a uniformly
applicable method for storing experimental results and problem dimensions in a
relational database. We describe a flexible way of exploring the effects of the
problem dimensions on the performance in a statistically sound way.

71

72 4.1. Performance Analysis

4.1 Performance Analysis

4.1.1 Motivating Example

The most common way of measuring the performance of algorithms, systems, or
components in the database community is to report the average runtime out of
3 or 5 runs. Let’s look at an example: assume we measured runtimes of a query
when executed against two different layouts. Layout A has an average runtime of
1.75 seconds and Layout B of 1.82 seconds. In this case we would clearly declare
Layout A as superior to Layout B.
However, if we take a look at the runtimes of all 5 runs
in Figure 4.1, we can see that Layout A has a high variance 2 o
(0.06), whereas the query time for Layout B is rather sta-

ble (its variance is 0.00075). Most system designers would " 8 g
probably prefer Layout B, due to its performance being more &, '8
predictable. This example demonstrates that reporting the g 1.7

average runtime alone is not sufficient for comparing two g 16 o
solutions [34, Chapter 13]. Therefore at a minimum the T s

variance or standard deviation of the sample should be pro-

vided along with the average to get a proper description of 14 —O———

the sample. a\;o\ﬁ‘v,&\;o\)"%
We should keep in mind that when experimentally com- M

paring multiple systems, we only get a sample of their per- Figure 4.1: Query

formance metrics which can only be used to estimate the times for two dif-

populations’ performance metrics. Thus, there is always ferent layouts, each

a level of uncertainty in our estimates, which renders the measured five times

necessity of expressing this uncertainty in some way. One

possible way to do this is to use confidence intervals, which

express the following in natural language: “There is a 95% chance that the actual

average runtime of System A is between 1.7 and 1.8 seconds.”

4.1.2 Confidence Intervals

To create a confidence interval we first have to choose our confidence level, typi-
cally 90%, 95% or 99%, denoted by 1 — «, where « is called the significance level.
We require the sample size n, the sample mean z, sample standard deviation o,
and the significance level a. Then the confidence interval is defined as follows:
(T —C x T+ O x \/iﬁ), where C' is the so-called confidence coefficient. The
choice of the confidence coefficient is determined by the sample size [34, p. 206].
If we have a large sample (n > 30), we can use the 1 — a/2-quantile of the stan-
dard normal distribution for the confidence coefficient: C' = Z;_,/,. However,

Chapter 4. Computer Systems Performance Analysis 73

in experiments we usually run only 5 measurements, thus we have a sample size
of n = 5. Therefore, we should only use the 1 — «/2-quantile of the Student’s
t-distribution with n — 1 degrees of freedom: C = t[1_q/2n—1]. The prerequisite is
that the population needs to have a normal distribution, which is a fair assumption
for our runtime measurements. For instance, the 95% confidence intervals for our
example in Figure 4.1 are: (0.23, 3.27) for Layout A, and (1.65, 1.99) for Lay-
out B. This makes Layout B a safer choice, if predictability is of great importance
for the system designer. (See [34, Chapter 13] for details.) When looking at the
measured query times on Layout A in Figure 4.1, we can see that the relatively
wide confidence interval for Layout A is due to the large variance of the sample:
the points are scattered out across the (1.4, 2.0) interval. However, a sample can
have a large variance even if most measured values are “near” to each other, and
only a few of them having a higher or lower value than the rest. These latter are
called outliers.

4.1.3 Outlier Detection

An outlier is an element of a sample that does not “fit” into the sample in some
way. It is hard to quantify the criteria for labelling an element as an outlier, and
it also depends heavily on the use-case. Therefore, the most common technique
used for detecting outliers is plotting the sample on a scatter plot, and visually
inspecting the plot by a human. If we assume, that there is only one outlier in
the sample, and it is either the minimum, or the maximum value, then we can
use Grubbs’ test [24] to automatically detect outliers. The only problem is that
this method tends to identify outliers too often for samples with less than eight
elements. To counter the error rate of the method we have included an additional
condition for labelling an outlier: margin_or_error/z > 2.5%, where the margin of
error is defined as the radius of the confidence interval. This reduces the detection
rate to 3% in the experiments in Chapter 5, and those elements proved to be
outliers after manual inspection.

4.1.4 Choosing the Best Solution when there is no Single
Best Solution

Choosing the best solution using the average runtime is easy, we simply take the
one with the smallest one. We have also seen that this can be arbitrarily wrong,
and that is why confidence intervals provide a better basis of comparison than the
sample mean. However, comparing confidence intervals is not that straight-forward
as comparing scalars. If two intervals are disjoint, they are easily comparable. It
they are not disjoint, and the mean of one sample is inside the other sample’s

74 4.2. A Framework for Statistical Analysis of Experimental Results

confidence interval, they are indistinguishable from each other with the same level
of confidence, as that of the intervals. Finally, if they are not disjoint, but their
means do not fall into the other sample’s interval, an independent two-sample t-
test (Welch’s t-test [62]) can decide whether they are distinguishable, and if so,
which one is better.

4.2 A Framework for Statistical Analysis of Ex-
perimental Results

Experiments in computer science usually have the goal of measuring the perfor-
mance of a couple of algorithms, methods, or the effects of their parameters. The
experimenting itself often consists of changing a single parameter and analysing
the effects of that change. As the number of parameters, methods, algorithms, and
the such, increases it becomes increasingly difficult to analyse the results. This is
when it makes sense to collect and store the experimental results in a database.
Such a database can be composed of several dimension tables — one for each pa-
rameter — and a single fact table, thus it is essentially a star-schema database.
As it is a necessity to repeat experiments 3 or 5 times, we need a time dimension
as well. The fact table might have more than just a single attribute, depending on
how many attributes are needed to characterise the performance. Such a schema
is illustrated in Figure 4.2. Note that for simplicity we have excluded the keys of
the dimension tables in the figure.

Attribute_12 Attribute_21 Attribute_31 Attribute_32
Attribute_11 Dim_1 Dim_2 Dim_3 Attribute_33

\ / e
Fact_Table

:

Dim_N

Dim_Time

Attribute_N1

Figure 4.2: The general schema of a star-schema database for storing experimental
results.

Chapter 4. Computer Systems Performance Analysis 75

As mentioned above, we often need to investigate what happens if we change
some parameter values. However, a changed parameter value might have a different
effect on the performance of each method, algorithm, or system tested. Thus, what
we would alternatively like to see is the effect of changing some parameters on the
performance of each method, algorithm, or system. To answer that question we can
create a view on top of the (possibly filtered) fact table, containing four columns:
problem key, solution key, timelD, and measurement, as shown in Listing 4.3. Here,
the two key columns are compound keys formed by combining some foreign key
fields in the fact table. The solution key identifies the parameters, whose values
are changed in the experiment, while the problem key identifies the methods,
algorithms, or systems, that are affected by this change. To create such a view we
can use the SQL query in Listing 4.4.

analysis_view (
problem_key INTEGER[],
solution_key INTEGERI[],
timeID INTEGER,
measurement DOUBLE PRECISION

Figure 4.3: The schema of the view representing the input of the analysis.

CREATE VIEW analysis_view AS

SELECT ARRAY[Dim_1_key, Dim_2_key, ...] AS
problem_key,
ARRAY [Dim_4_key, Dim_5_key, ...] AS

solution_key,
timeID, measurement
FROM fact_table;

Figure 4.4: The SQL query for performing the mapping from the fact table.

4.2.1 Calculating statistics in SQL

We have mentioned several statistical functions and methods, which are not avail-
able in a typical relational database system. It would be most straight-forward
and efficient to implement these in a language for statistical analysis, and call the

76 4.2. A Framework for Statistical Analysis of Experimental Results

implemented functions from SQL. Fortunately, Postgres has support for calling
functions implemented in R, thus we have been using this system setup. We have
been using PL/R [16], a language extension to PostgreSQL that allows us to write
PostgreSQL functions and aggregate functions in the R language for statistical
analysis.

With PL/R we can create Postgres functions that can call any function avail-
able in R. We can even make the R-function to be called a parameter of the
Postgres function, as shown in Listing 4.5.

CREATE OR REPLACE FUNCTION rsqgl_call_func(
x FLOATSI[],
function_name VARCHAR) RETURNS FLOAT8 AS
"do.call (function_name, list(x))’
LANGUAGE ’'plr’” STRICT;

Figure 4.5: The PL/R function for calling an arbitrary R-function that operates
on vectors.

For calculating confidence intervals we need to determine the sample mean and
the margin-of-error. The latter one cannot be calculated using plain SQL stored
procedures or functions. Thus, we have implemented it also in PL/R, which is
shown in Listing 4.6.

CREATE OR REPLACE FUNCTION
rsgl_margin_of_error(x FLOAT8[]) RETURNS
FLOAT8 AS
"n = length (x)
gt (0.975,df=n-1) *x sd(x) * sgrt(n) '

LANGUAGE ’"plr’ STRICT;

Figure 4.6: The PL/R function for calculating the margin-of-error of a set of
measurements.

Outliers can distort some of the statistics, and thus it would be favourable to
remove them before calculating confidence intervals. As mentioned in Section 4.1.3,
this can be done by using Grubb’s test for outlier detection. The implementation
is given in Listing 4.7.

When choosing the best solution to a problem, we are going to adapt our search
to consider confidence intervals. When comparing two intervals we will essentially

Chapter 4. Computer Systems Performance Analysis 7

CREATE OR REPLACE FUNCTION rsqgl_remove_outlier
(x FLOAT8[]) RETURNS FLOAT8[] AS '

library(outliers)

testResult = grubbs.test (x, two.sided = TRUE
)

n = length (x)

margin_of_error = gt (0.975, df=n-1) * sd(x)
* sqgrt (n)

if (testResult[’’p.value’’] <= 0.05 &&
margin_of_error / mean(x) >= 0.025) {

outlier = strsplit (grubbs.test (x, two.
sided = TRUE) $alternative, " ") [[1]1]11[3]
x = setdiff(x, outlier)

X
" LANGUAGE ’'plr’ STRICT;

Figure 4.7: The PL/R function for removing outliers using Grubb’s test.

decide whether they are statistically indistinguishable. This can be done by the
two-sample t-test, implemented in Listing 4.8.

78 4.2. A Framework for Statistical Analysis of Experimental Results

CREATE OR REPLACE FUNCTION rsqgl_t_test(
x FLOATSI[],
y FLOATS8[])
RETURNS BOOLEAN AS '
t.test(x,y) [’ "p.value’’] >= 0.05
" LANGUAGE ’'plr’ STRICT;

Figure 4.8: The PL/R function for calculating the two-sample t-test.

4.2.2 Finding the best solution of each problem

After we have successfully identified the problem- and solution dimensions, and
created the analysis input accordingly, we can start analyzing the results. As a
first step we calculate the mean, standard deviation, and median values over the
multiple runs of the same experiment. We also calculated the confidence intervals,
where we rely on the PL/R functions defined in the previous section. This is
represented in the form of a database view, shown in Listing 4.9. Building on this
view we can remove the outliers and improve the calculated statistics and narrow
the confidence intervals. This is also represented as a database view, shown in
Listing 4.10.

Finally we can determine the set of best solutions for each problem. This is done
in two steps. First we search for the solutions of each problem, that have the lowest
sample mean. This is shown in Listing 4.11. After that we compare all solutions
of a problem to the one having the lowest sample mean collected in the first step,
and decide using the two-sample t-test whether they are indistinguishable at the
same level of confidence as that of the confidence intervals, which is 95% in our
example. This database view provides the set of indistinguishable best solutions
for each problem. This is shown in Listing 4.12.

Chapter 4. Computer Systems Performance Analysis

CREATE OR REPLACE VIEW v_experiment_stats AS
SELECT problem_key, solution_key, timeid,
array_accum (measurement) as runtimes,
rsqgl_call_func(public.array_accum (
measurement), ’'median’) AS
MedianRuntime,
AVG (measurement) AS avg_runtime,
stddev_samp (measurement) AS stdev_runtime,
rsgl_margin_of_error (array_accum (
measurement)) AS
margin_of_ error_runtime
FROM analysis_input
GROUP BY problem_key, solution_key, timeid;

Figure 4.9: Creating the view for calculating statistics on each experiment.

CREATE OR REPLACE VIEW
v_experiment_stats_outliers_removed AS
SELECT problem_key, solution_key, timeid,

rsgl_call_func(runtimes, ’'median’) AS
MedianRuntime,

rsql_call_func (runtimes, ’'mean’) AS
avg_runtime,

rsgl_call func(runtimes, ’'sd’) AS
stdev_runtime,

rsgl_margin_of_error (runtimes) AS
margin_of_ error_runtime,

runtimes

FROM (

SELECT
problem_key, solution_key, timeid,
rsqgl_remove_outlier (runtimes) AS
runtimes
FROM v_experiment_stats
) AS t;

Figure 4.10: Creating the view for removing outliers.

80 4.2. A Framework for Statistical Analysis of Experimental Results

CREATE OR REPLACE VIEW v_problem minimal_mean
AS
SELECT problem_key, solution_key, runtimes,
MedianRuntime, avg_runtime,
margin_of_error_runtime
FROM (
SELECT problem_ key, solution_key,
runtimes,
MedianRuntime, avg_runtime,
margin_of_error_runtime,
MIN (avg_runtime) OVER
(PARTITION BY problem_key) AS
mean_min
FROM
v_experiment_stats_outliers_removed
) AS t
WHERE avg_runtime = mean_min;

Figure 4.11: The SQL commands for finding the best solution of each problem.

CREATE VIEW v_problem_bests_using _mean AS
SELECT vl.problem_ key, vl.solution_key,
vb.MedianRuntime,
ARRAY [vl.avg_runtime - vl.
margin_of_error_runtime,
vl.avg_runtime + vl.
margin_of_error_runtime]
as confidence_interval
FROM v_experiment_stats_latest vl
INNER JOIN problem _minimal_mean vb
ON (vb.problem_key = vl.problem key)
WHERE public.rsgl_t_test(vl.runtimes, vb.
runtimes) ;

Figure 4.12: The SQL commands for finding the set of indistinguishable best
solutions per problem.

Chapter 5

Runtime Fragility of Hand-coded
Queries in Main Memory

In this chapter we investigate the following problem: Given a database workload
(tables and queries), which data layout (row, column or a suitable PAX-layout)
should we choose in order to get the best possible performance? We show that this
is not an easy problem. We explore careful combinations of various parameters
that have an impact on the performance including: (1) the schema, (2) the CPU
architecture, (3) the compiler, and (4) the optimization level. We include a CPU
from each of the past four generations of Intel CPUs.

In addition, we demonstrate the importance of taking variance into account,
when deciding on the optimal storage layout. We observe considerable variance
throughout our measurements which makes it difficult to argue along means over
different runs of an experiment. Therefore, we compute confidence intervals for
all measurements and exploit this to detect outliers and define classes of meth-
ods that we are not allowed to distinguish statistically. The variance of different
performance measurements can be so significant that the optimal solution may
not be the best one in practice. Our results indicate that a carefully or ill-chosen
compilation setup can trigger a performance gain or loss of factor 1.1 to factor 25
in even the simplest workloads: a table with four attributes and a simple query
reading those attributes.

Besides the compilation setup, the data layout is another source of query time
variance. Various size metrics of the memory subsystem are round numbers in
binary, or put more simply: powers of 2 in decimal. System engineers have followed
this tradition over time. Surprisingly, there exists a use-case in query processing
where using powers of 2 is always a suboptimal choice, leading to one more cause
of fragile query times. Using this finding, we will show how to improve tuple-
reconstruction costs by using a novel main-memory data-layout.

81

82 5.1. Introduction

The results of this chapter have been accepted for publication in
IMDM@PVLDB, a peer-reviewed workshop [50].

5.1 Introduction

The two most common data layouts used in todays database management sys-
tems are row and column layout. These are only the two extremes when vertically
partitioning a table. In-between these extremes there exists a full spectrum of
column-grouped layouts, which under certain settings can beat both of the afore-
mentioned traditional layouts for legacy disk-based row-stores [36]. However, for
main-memory systems column grouped layouts have not proved to be of much use
for OLTP workloads [25], unless the schema is very wide [53].

Another axis of partitioning a table is horizontal partitioning, where the par-
titions are created along the tuples instead of along the attributes. This is usually
based on the values of an attribute with low cardinality, e.g. geographical regions,
but this is not a strict requirement. Forming horizontal partitions can also be done
by simply taking repeatedly k records from the table, which we will call chunks in
the following. Within a horizontal partition we can have any vertically partitioned
layout, including row and column as well. One notable example in disk-based
database systems is the PAX-layout [6], where the horizontal partitions have a
size that is the multiple of the hard disk’s block size, and inside these partitions
the tuples are laid out in column layout.

We can apply a similar strategy in main memory as well, however, we have
more freedom in choosing the size of the horizontal partitions. Therefore in main-
memory we can simply form so-called chunks of the table by repeatedly taking
k records from the table and laying them out in column layout within the chunk.
We denote this layout by memPAXk. In this sense, row layout is the same as
memPAX1, and column layout is equivalent to memPAXn, where n is larger or
equal to the cardinality of the table. The chunks of these layouts are analogous to
PAX pages [6], however, there are two important differences: (1) we can choose any
chunk size (in bytes or tuples) that is a multiple of the tuple size, while for PAX
we are restricted to multiples of the disk’s block size, and (2) we neither store any
helper data structures per chunk, nor use mini-pages as in the disk-based PAX-
layout. The possible memPAX layouts of a table having 2 columns and 8 records,
and using chunk sizes of powers of 2 are illustrated in Figure 5.1. Here we can see
the two extremes: row- and column layout, and memPAX layouts with a chunk
size of 2- and 4 tuples.

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 83

Row lalblalblalblalb|lalblalblalb|alb]

a
memPAX2 |a|a|b|blalalb|lb|lalalb|lb|lalalbl|b
memPAX4 |a|a|ala|b|b|b|b|lalalalalb|b|b]|b
Coumn | a|lala|lalalalalalb|b|b|b|b|b|b]|b]

Figure 5.1: memPAX layouts of a table having 2 columns and 8 records, considering
powers of 2 chunk sizes.

5.2 The six-dimensional Parameter Space of our
Experiments

We are going to explore a six-dimensional parameter space of a fairly simple
workload: a table with four attributes and two simple queries reading those
attributes. The whole experiment is conducted on memory resident tables,
and using hand-coded queries implemented in C++. We are going to refer to
this workload as our micro-benchmark. In the following we specify the dimensions:

(1) The datatype used in the schema. Our dataset is a single memory-resident
table with four integer columns, with a total size of 10 GB. Depending on the data
type chosen (1-byte, 4-byte, or 8-byte integers denoted by int1, int4, and ints8,
respectively) we get the following scenarios:

Label Schema Tuple count
char (a intl, b intl, c¢ intl, d intl) 2560 * 10242
int (a int4, b int4, c int4, d int4) 640 * 10242
long (a int8, b int8, c¢ int8, d int8) 320 % 10242

Table 5.1: The schemas used in our experiments

(2) The presence of conditional statements in the query code. We use
two queries requiring all tuples to be reconstructed for processing as shown in
Figure 5.2. Q1 performs a minimum-search on the sum of all attributes of a tuple,
which being a conditional expression yields a branch in the implementation. We
have tried out a branch-free implementation of the min' calculation as well, which,
however, was consistently slower. Q2 on the other hand performs a branchless cal-

Imin = min XOR ((temp XOR min) AND NEG(temp | min));

84 5.2. The six-dimensional Parameter Space of our Experiments

culation: it sums up the product of the attribute values of each tuple. Since Q2 has
no branches, the measured query times are not affected by branch-mispredictions.

Q1l: SELECT MIN (atb+c+d) FROM T;
Q2: SELECT SUM(axb*xcxd) FROM T;

Figure 5.2: The queries used in the experiments

(3) The CPU architecture. The performance characteristics of a main-memory
database system are influenced the most by the machine’s CPU. As there are usu-
ally significant changes between the subsequent CPU architectures, we have chosen
machines equipped with Intel CPUs of four subsequent architectures, all running
Debian 7.8.0 with Linux kernel version 3.2.0-4-amd64 as shown in Table 5.2, with
hyper-threading either disabled or not supported.

CPU Architecture RAM

Xeon 5150 Core 16 GB DDR2 @ 266 MHz
Xeon X5690 Westmere 192 GB DDR3 @ 1066 MHz
Xeon E5-2407 Sandy Bridge 48 GB DDR3 @ 1333 MHz
Xeon E7-4870 v2 Ivy Bridge 512 GB DDR3 @ 1600 MHz

Table 5.2: The machines used in our experiments

(4) The compiler. In our experiments we have chosen the three most commonly
used compilers®: clang (3.0-6.2), gcc (Debian 4.7.2-5), and icc (15.0.0). clang
and gcc are both open-source, while icc is proprietary software. clang is actually
a C-compiler front-end to the LLVM compiler infrastructure. It compiles C,
Objective-C, and C++ code to the LLVM Intermediate Representation (IR), simi-
lar to other LLVM front-ends, which allows for a massive set of optimizations to be
performed on the IR before translating it to machine code. GCC is short for GNU
Compiler Collection, a compiler supporting among others the C/C++ language.
It support almost all hardware platforms and operating systems, and it is the
most popular C/C++ compiler, and also the default one in most Linux distros.
Intel’s C/C++ compiler can take advantage of Intel’s insider knowledge on Intel
CPUs. It is said to generate very efficient code especially for arithmetic operations.

(5) The optimization level. We intuitively expect to get higher performance
from higher optimization levels, yet there is no guarantee from the compiler’s side

2More precisely their C++ front-ends: clang++, g+, and icpc

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 85

that this will also hold in practice. Thus, we have decided to evaluate all three
standard optimization levels: —01, -02, and -03.

(6) Compile time vs. runtime layouts. The tables in our dataset are physically
stored in a one-dimensional array of integers, using a linearisation order confirming
to one of the layouts described in Section 5.1. Any query fired against this dataset
needs to take care of determining the (virtual) address of any attribute value, and
possibly reconstructing tuples as well. To do this it is required to know the chunk
size, which can either be specified prior to compiling a given query, i.e. at compile
time, or only provided at runtime.

To allow for any compiler optimization to take place, we have been extensively
using templates to create a separate executable for each element of the parameter
space, i.e. we have an executable for every dataset, query, machine, compiler, O-
level, and layout. In case of compile time chunk sizes we have created a separate
executable for each chunk size, while for runtime memPAX layouts only a single
generic one. The generic executable processes the query chunk by chunk, for which
it needs the chunk size provided the latest at runtime. For smaller chunk sizes this
approach has an inherent CPU-overhead caused by the short-living loops.

5.3 Managing the Experimental Results

We have seen in Section 5.2 that there are 6 dimensions in the parameter space of
our experiments. We actually need to add a time dimension as well, as we have
executed 5 runs of each experiment. To make analysing our experimental results
easier, we have created a database for storing the results. The schema of this
database can be seen in Figure 5.3. It is basically a star-schema database with
a dimension table for each dimension of the parameter space, and additionally a
dimension table for the time. We have a single fact table storing the measured
query times. The Dim_Implementation table is used for storing whether the
chunk size was provided at compile time or only at runtime.

We have introduced a framework for statistical analysis of experimental results
in Section 4.2. To take advantage of it, we first have to map our fact table to the
framework’s fact table (experiments.fact_table). There we have to split the
foreign key fields of our fact table into two groups: problem_key and solution_key.
As we are looking for the best way to execute a given query on a given machine,
and on a given table, our problem_key is going to be composed of the following
tuple: (machineid, datasetid, queryid). The “best way” itself is described by the
(compilerid, layoutid, implementation) tuple which thus becomes the solution_key.
Therefore, we can perform the mapping by executing the query in Figure 5.4.

86 5.3. Managing the Experimental Results

CPU architecture
Dim_Machine

/é Fact_Experiment
; L .
templateORUELI Dim_Implementation \
Dim_Time
timestamp

Dim_Compilerflags

Dim_Query

Dim_Layout

s

Dim_Compiler

Dim_Dataset
@ opt. level

tableSchema

Figure 5.3: The schema of the database storing the measured query times.

L —

Once we have the best solution for each problem, we need to map the compound
keys back to the foreign keys used in the fact table of our experiments. This can
be done by splitting the two array fields in the framework’s view calculating the
best solutions (experiments.v_problem bests), as shown in Figures 5.5.

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 87

INSERT INTO experiments.fact_table
(problem_key, solution_key,
timeid, measurement)
SELECT
ARRAY [i.experimentid: :INT,
machineid,
datasetid,
queryid] AS problem_key,
ARRAY [compilerid,
compilerflagsid,
layoutid,
implementationid] AS solution_key,
timeid,
runtime AS measurement
FROM mempax.fact_mempax_experiment £ JOIN
mempax.dim_mempax_experiment i
ON i.id = f.implementationid;

Figure 5.4: The SQL query for performing the mapping between the fact tables.

SELECT
problem_key[1l]::INT AS experimentID,
problem _key[2] AS machineid,
problem_key[3] AS datasetid,
problem_key[4] AS queryid,
solution_key[1l] AS compilerid,
solution_key[2] AS compilerflagsid,

solution_key[3] AS layoutid,

]

3
solution_key[4] AS implementationid,

medianruntime, confidence_interval
FROM experiments.v_problem_bests;

Figure 5.5: The SQL query for mapping the problem key and solution_key
fields of the best solutions calculated by our framework to foreign key fields in our
database.

5.4 Micro Benchmark Results

Table 5.3 displays our recommendations for choosing a data layout and imple-
mentation strategy for each machine, schema and query®. The best solutions are
described by the compiler, optimization level, data layout, and the time the chunk
size should be provided (R for runtime- and C for compile-time layouts). We also
show the 95% confidence interval of the query time of the best solution. Notice
that in some cases there are multiple best solutions. This is a direct consequence

3We have noticed that varying the chunk size of the memPAX layouts between 2'¢ and the
biggest possible one does not make a significant difference in the query times, regardless of the
query, machine, and compiler. Thus, we have excluded those results from our discussion.

88 5.4. Micro Benchmark Results
Machine Table Query | Compiler | Opt. Layout Chunk size | 95% confi-
schema level name provided dence interval
at of query time
Core char Q1 icpc 03 memPAX32 R (3.39, 3.391)
icpc 02 memPAX32 R (3.389, 3.391)
Q2 -+ 02 memPAX1 C (4.655, 4.658)
icpc 01 memPAX1 C (4.656, 4.657)
g+ 03 memPAX2 C (4.655, 4.658)
g++ 03 memPAX4 C (4.656, 4.657)
g+ 02 row n/a (4.656, 4.657)
icpe 01 row n/a (4.656, 4.658)
int Q1 icpc o1 row n/a (3.245, 3.246)
Q2 icpc o1 memPAX1 C (3.195, 3.196)
long Q1 icpc 01 row n/a (3.089, 3.092)
Q2 lang++ | O1 memPAX?2 C (3.081, 3.083)
Westmere char Q1 e++ 03 memPAX4096 | R (0.956, 0.958)
g++ 03 memPAX4096 | C (0.956, 0.958)
Q2 g++ o1 memPAXS8192 | C (3.043, 3.048)
int Q1 icpe o1 memPAX1024 | C (1.003, 1.011)
Q2 icpc o1 memPAX1024 | C (1.002, 1.007)
long Q1 icpc o1 memPAX512 C (0.921, 0.924)
Q2 s o1 memPAX512 | R (0.921, 0.926)
Sandy Bridge | char Q1 icpc 02 memPAX8192 | C (1.431, 1.441)
Q2 Fa— 02 memPAXS102 | C (4.006, 4.008)
int Q1 icpe o1 memPAX4096 | C (1.517, 1.519)
Q2 . 02 memPAX1024 | C (151, 1.522)
g+ 02 memPAX2048 | C (1.51, 1.52)
g++ o1 memPAX2048 | C (1.511, 1.522)
long Q1 icpc o1 memPAX512 R (1.34, 1.375)
Q2 g++ o1 memPAX1024 | C (1.331, 1.357)
Ivy Bridge char Q1 icpc 02 memPAX4096 | C (1.246, 1.253)
Q2 et 02 memPAX4096 | C (3.841, 3.844)
int Q1 icpe o1 memPAX1024 | C (1.28, 1.29)
Q2 clang++ 03 memPAX1024 | C (1.28, 1.289)
g++ o1 memPAX1024 | C (1.281, 1.287)
clang++ 01 memPAX1024 | C (1.281, 1.289)
clang++ 02 memPAX1024 | C (1.28, 1.287)
g+ 02 memPAX1024 | R (1.28, 1.288)
g+ 02 memPAX1024 | C (1.28, 1.289)
Tong Q1 icpe 02 memPAX512 | R (1.199, 1.208)
icpe 03 memPAX512 | R (1.2, 1.207)
Q2 clangt+ | O1 memPAX512 | R (1.249, 1.256)

Table 5.3: The best layouts

our micro-benchmarks

and most

efficient ways of implementing a query in

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 89

. char int long
Machine QL Q2 Q1 Q2 Q1 Q2
Core 6.8 33 1.3 14 1.1 20
Westmere 250 38 19 25 10 1.3
Sandy Bridge 13.2 3.6 1.6 24 15 1.9
Ivy Bridge 144 33 1.7 26 13 1.7

Table 5.4: The performance drop between worst and best query times for each
experiment in our micro-benchmarks. We observe up to a factor 25 difference in

runtime.

of using confidence intervals on the query times when choosing the best solutions.
Looking at these results the question arises: what influences the choice of best
solution? Thus, let us investigate the connection between the elements of the

parameter space and the best layout.

vv

v Q1,char + Q2, char
Qf, int Q2, int
Q1, long Q2, long

2100

BloWISapA

abpug Apueg

Average query time [seconds]
0123 450123 450123450123 4325

<

abpug An|

row =-—

memPAX1
memPAX2
memPAX4 —
memPAX8 —
memPAX16 —
memPAX32 —
memPAX64 —

memPAX128 —
memPAX256 —

memPAX512 —

Best layouts

memPAX1024 —

Figure 5.6: Best layouts and their query times.

schema, and query.

memPAX2048 —

memPAX4096 —

memPAX8192 —

memPAX16384 —

Drilled-down

column

memPAX32768 —
memPAX65536 —

along machine,

90 5.4. Micro Benchmark Results

In Figure 5.6 we can see the query times of the best layouts, drilled-down along
machine, schema, and query. We can immediately notice the radical difference
between Core and the other three CPU architectures. The oldest one, Core, prefers
layouts with smaller chunk sizes, i.e. close to row layout. The three newer ones on
the other hand prefer larger chunk sizes, i.e. close to column layout. For the latter
CPUs we can further notice that the best layout for a dataset is often the one,
where the following holds: k£ = attribute_size * tuple_count = 4KB,
k € {l...attribute_count} — which is when the chunk or an attribute’s
column inside a chunk perfectly fits the memory page: memPAX4096 for char,
memPAX1024 for int and memPAX512 for 1ong.

So far we have seen the best solutions, but have not talked about the perfor-
mance of the other ones. In Table 5.4 we show the performance drop between the
worst and the best query times, drilled-down along machine, schema, and query.
For char we can get factor 3.3 to factor 25 worse by choosing the wrong layout
and/or compiler setup. At this point it would be interesting to know, how does
the best solution’s runtime compare to the others solutions’ runtimes?

5.4.1 Runtime Fragility

We show the runtime fragility of the various data layouts in our micro bench-
marks in Figure 5.7. The fragility is presented by using box plots, which show the
minimum, first quartile, median, third quartile, and the maximum value of the
query times of each layout. Notice that the vertical axis displays the performance
overhead of that method over the best one (displayed till at most 250% overhead;
notice that some box plots leave their plot). As expected according to Table 5.4,
Q1 on char has the highest fragility, with Q2 on char also showing a consider-
able variance. Core’s preference towards layouts with smaller chunk sizes, and the
three newer architectures’ preference towards larger chunk sizes is again apparent
from this plot.

From Figure 5.7 we could already identify that the query time of the set of
best layouts for a particular experiment is not always considerably faster than
that of the second or even the k-th-best method. A database architect may be
willing to live with a data layout that is suboptimal for a very specific case, but
does not incur too much performance overhead in the general case. To facilitate
this decision, we introduce robustness graphs. Given runtime measurements for N
different methods, we depict the overhead of the k-th best method over the best
method set. The result for the 24 different experiments is shown in Figure 5.8.
They display the impact of non-optimal layouts on runtime performance. The
horizontal axis displays the k-th-best data layout picked (where k is in 1,..., N;
normalized to 100%). The bigger the area under the curve, the more likely it is
that a decision for a non-optimal data layout will trigger a performance loss.

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 91

Q1, char Q2, char Q1,int Q2, int Q1, long Q2, long
250% X °|:
200% v °
150% — TTTrpqTTT ° % g)
o ° 0% =
128 f’ °° 0 os oom TTTE i ®
o, 8 T
0% : sochs P
L 250%
§ 200% g
o 150% B
5 100% i A o 1! 3
@ 3 S o 0% v Orf @
£ 50% | | el Lot ppbbrosoceoes [
S o oL 3488 ablizgel L yeus™one
o 250% [
o 200% &
c ° o S
g 150% ° o 11 =
T 100% i . A . ngqj ®
(=} o/ 1 o . 10y rrrrroreT (5
S so it Bald &
@ 0% LU 000000000 Mo
250%
200% s
150% . T @
100% n L 4 L oooo |Q
Ll 1
50% - -Mi '§ -008 To A 8
0% [i L]
TIRALLS LTI NLES
TIIXT © §6 LTI Ry ©
SESSLE FTEEESEE
e cELLs

Figure 5.7: Runtime fragility of the various data layouts in our micro benchmarks

The graphs show that for some situations, e.g. Q1 on char run on Sandy
Bridge, one should be more careful in choosing the layout than in others, e.g. Q2
on long run on Westmere.

5.4.2 Conclusions and Guidelines

Our guideline for choosing the best layout is as follows: For servers equipped
with a Core CPU it is a safe bet to use row layout, while for machines with the
subsequent Westmere, Sandy Bridge, and Ivy Bridge architectures it is just fine to
use column layout. For the latter machines we can exploit the schema for some fine-
tuning, by creating PAX-blocks with the same size as the virtual memory pages.
Having branches in the query is an additional argument for this optimization. The
compiler, O-level, and compile time vs. runtime layouts will not change the choice
of best layout (see Q2 on int run on Ivy Bridge), but they are to be chosen very
carefully for the best performance. For the optimal choice of these latter settings,
however, one has to try out all possible combinations, since it highly depends on
the target system

92 5.5. Revisiting Strided Memory Access

Q1, char Q2, char Q1, int Q2, int Q1, long Q2, long
250%
200% -
150% | o
100% | 3
50%
S 0% -
= 250%
S 200% =

[
% 150% | &
8 100% 3
2 50% - // B
B 0% -

@ 250% -

»
£ 200% ¥
3 150% <
S 100% @
S 50% &
g 0% - ®
B 250% -

200% - =z

<

150% | w

100% — a

50% | ®
0%

ooooooooooooooooooooooooo

40
60
80
100

Relative size of the set of best solutions

Figure 5.8: Robustness of the best solutions in our micro benchmarks

We have also shown how misleading it can be to choose the best solution along
means. Take the case of Q2 on char run on Core, where the 6 best solutions are
statistically indistinguishable from each other with 95% confidence, yet they differ
either in the layout, the compiler, or the optimization level.

5.5 Revisiting Strided Memory Access

5.5.1 Motivation

Various size metrics of the memory subsystem are round numbers in binary, or
put more simply: powers of 2 in decimal. System engineers have followed this
tradition over time. Some well known examples of objects with powers of 2 sizes:
cachelines, caches, RAM modules, HDD blocks, virtual memory pages, and even
HDFS blocks. Surrounded by this flood of round binary numbers a data engineer
feels pressed to develop data structures with similarly ,,round” sizes. So did we
feel, until one day we started to question the optimality of this tradition, and dared
to look at memPAX layouts with chunk sizes in between powers of 2.

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 93

5.5.2 Background

One of the CPU events debunking the random-access nature of main memory is
the memory bank conflict. To understand this event, we first have to explain
interleaved memory. DRAM and caches are both organised into banks. In case of
DDR3 there are typically 4 banks. Caches on the other hand can have a varying
number of banks, depending on the actual CPU generation. Interleaved memory
means that the memory addresses are split among the banks in a round-robin
fashion, i.e. membankID = address mod 4, which allows for requests to different
banks to be fetched — though not transferred — in parallel, thereby improving
the bandwidth utilisation. (See [52, Section 5.2] for more details.)

Sandy Bridge
(54 Entry Unified Scheduler)

128 bits

8 banks

Figure 5.9: The architecture diagram of Intel Sandy Bridge. Image source: http:
//www.realworldtech.com/sandy-bridge/7

In Figure 5.9 we can see the part of the Sandy Bridge architecture diagram
that is related to the memory subsystem. There are two important improvements
over previous generations [19]. Firstly, the Sandy Bridge architecture has two
memory read ports where previous Intel processors had only one. The maximum
throughput is now 256 bits read and 128 bits write per clock cycle. The flip
side of this coin is that the risk of contentions in the data cache increases when
there are more memory operations per clock cycle. It is quite difficult to maintain
the maximum read and write throughput without being delayed by cache bank
conflicts. The second improvement is, that there is no performance penalty for
reading or writing misaligned memory operands, except for the fact that it uses
more cache banks so that the risk of cache conflicts is higher when the operand is
misaligned.

Getting back to memory bank conflicts, the Intel Architecture Optimization
Manual [19, Sections 2.2.5.2 and 3.6.1.3] gives a precise description on this event for

http://www.realworldtech.com/sandy-bridge/7
http://www.realworldtech.com/sandy-bridge/7

94 5.5. Revisiting Strided Memory Access

the Sandy Bridge architecture: “A bank conflict happens when two simultaneous
load operations have the same bit 2-5 of their linear address but they are not from
the same set in the cache (bits 6-12).” Thus, in contrast to our expectations, it
is actually not beneficial for the performance of load bandwidth-bound code to
perform a strided access of addresses with a stride that is a multiple of the cache
line size. In that case the addresses will have the same bits 5-0, but different bits
12-6, thus a bank conflict will occur.

5.5.3 Available Resources for Performance Monitoring

Performance monitoring is the action of collecting information related to how a
system performs. This information is obtained from the CPU itself by reading its
hardware performance counters. There are counters for measuring clock cycles,
stall cycles, cache misses, TLB misses, memory bandwidth utilisation, and many
more. Monitoring is crucial for detecting and solving hardware-related perfor-
mance problems.

All modern CPUs have a Performance Monitoring Unit (PMU), which is a
piece of hardware collecting micro-architectural events. There are large differences
even inside a processor family, e.g. Intel’s Westmere and Sandy Bridge have fairly
different sets of events that they can measure.

Some of the notable monitoring interfaces include:

e perf: https://perf.wiki.kernel.org/index.php
e OProfile: http://oprofile.sourceforge.net

e Intel VTune Amplifier:
https://software.intel.com/en-us/
intel-vtune-amplifier-xe

e Likwid PerfCtr: https://code.google.com/p/likwid/wiki/
LikwidPerfCtr

e Performance Application Programming Interface (PAPI):
http://icl.cs.utk.edu/papi/

e perfmon2: http://perfmon2.sourceforge.net

Out of these perf is the most simple one; it merely reports a few basic counter
values. OProfile is a widely used open-source alternative to the commercially
available VTune Amplifier from Intel. Both provide access to the full set
of performance counters, with VTune also providing derived metrics from the
raw counter values. Additionally VTune provides an intuitive GUI for analysing

https://perf.wiki.kernel.org/index.php
http://oprofile.sourceforge.net
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://code.google.com/p/likwid/wiki/LikwidPerfCtr
https://code.google.com/p/likwid/wiki/LikwidPerfCtr
http://icl.cs.utk.edu/papi/
http://perfmon2.sourceforge.net

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 95

hotspots, timelines, etc. For advanced instrumentation of user code Likwid
PerfCtr or PAPI also has to be used together with OProfile. perfmon2
provides built-in code instrumentation support, therefore it should be considered
instead of OProfile. In our experiments we have been using Intel’s VTune
Amplifier.

5.5.4 Performance Implications on Tuple-reconstruction

To demonstrate the effects of bank conflicts on the performance of an application,
lets consider Q1 and Q2 executed on Sandy Bridge on char fields, compiled with
g++ —-02, and the chunk sizes being provided at compile time. Let us take a
look at the query times for all chunk sizes [measured in tuples| between 2 and
1024, considering multiples-of-2 chunk sizes as well, in Figure 5.10. The black
symbols on the left show the query times for row layout, while the ones on the
right show the query times for column layout. The red line shows the query times
for powers-of-2 chunk sizes, while the blue line shows the runtimes for multiples-
of-2 chunk sizes, which is more fine granular. This exemplifies the details that can
get overlooked when not performing a fine-granular exploration of the parameter
space. Interestingly, there is a periodic spike in the query time, with a period
size of 64, which happens to be the cache line size. Recall, that when executing
Q1 we have to reconstruct the tuples for computing the aggregate value. As we
have two attributes only, the stride of the memory access equals to the chunk size
multiplied by the field size. Thus, for char fields the stride equals the chunk size.
From the above discussion we know that a strided access of memory addresses
with a multiple of 64 stride should result in a bank conflict.

Q1 Q2

45 |]
o 4r 7
@ 351 4
- 3F 4
g 25t :
> 2 ﬁ‘?h"' - » 4
> e :
g 1.5% W i WA WA WA B AR
g 1t *

0.5 |

0 I L L L L I L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000

Chunk size [compile time parameter]

Figure 5.10: Query times of Q1 and Q2 executed on Sandy Bridge on char fields,
compiled with g++ -02, and the chunk size being provided at compile time.

Therefore, we have decided to validated this claim by letting VTune find the
hardware events responsible for the spikes in the query time. We have taken a
sample of the experiments, those with a chunk size between 448 and 512. Both

96 5.5. Revisiting Strided Memory Access

endpoints of this interval are multiples of 64, and where the query time has its
spikes. We have measured all existing PMU events and looked for those that have
a linear correlation with the query time. We have found out that out of the ca. 200
PMU events available for Sandy Bridge, only three correlate significantly with the
query time:

DTLB_LOAD _MISSES.STLB_HIT: data TLB load misses that hit in the sec-
ond level TLB

HW_PRE_REQ.DL1_MISS: hardware prefetch requests that miss in the L1
data cache

L1D BLOCKS.BANK _CONFLICT_CYCLES: memory bank conflict in the
L1 data cache

O Querty time © HW_PRE_REQ.DL1_MISS L1D_BLOCKS.BANK_CONFLICT_CYCLES O DTLB_LOAD_MISSES.STLB_HIT
O O O

———A—AA“AA“M

O Querytime © HW_PRE_REQ.DL1_MISS L1D_BLOCKS.BANK_CONFLICT CYCLES - DTLB_LOAD_MISSES.STLB_HIT

448 450 452 454 456 458 460 462 464 466 468 470 472 474 476 478 480 482 484 486 488 490 492 494 496 498 500 502 504 506 508 510 512
Chunl

(b) Q2

Figure 5.11: PMU events of Q1 and ()2 executed on Sandy Bridge on char fields,
compiled with g++ —02, for chunk sizes in {448, 450, ..., 510, 512}.

We have plotted these three PMU events and the query time in Figure 5.11,
normalised to the respective values measured for chunk size 512. As we have the
same spikes in the query time for the two endpoints of the chunk size interval,
the normalised query times equal 1 at these points, and are below 1 for all other
points. We can see that the memory bank conflicts in the L1 data cache have a
very strong linear correlation to the query time. Basically, both the query time
and the latter metric have only 3 different values. The query time is the lowest
when there are no L1D bank conflicts at all, and it increases together with the
metric just next to the chunk sizes where the spikes are, and reaches its maximum

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 97

together with the metric. The other two events also show a strong correlation,
however, they do not drop to 0 inside the considered chunk size intervals.

As we can see in Figure 5.10, for Q2 choosing a memPAX layout which is not
a power of 2 improves the query time by approximately 20%. This is definitely
a significant improvement in the spectrum of what can be expected from data
layouts. Q2 is a typical example of tuple-reconstruction, and thus memPAX layout
can also be used for improving the tuple-reconstruction part of more complex
queries.

5.6 TPC-H Experiments

Real world analytical workloads are significantly more complex, than our micro-
benchmarks. They have a wider schema with different attribute types, and the
queries use more expensive operators as well, including aggregation and joins. In
order to investigate the runtime fragility of more complex workloads, let us consider
the TPC-H benchmark [59].

5.6.1 Experimental setup

We have implemented Q1 and Q6 of the TPC-H benchmark as hand-coded ap-
plications written in C++. These two queries are single-table queries touching
only the Lineitem table. We have implemented two variants of the Lineitem table:
one matching the schema described in the benchmark, which we will refer to as
uncompressed. The second version, on the other hand, is a compressed table. We
have applied some compression schemes to the Lineitem table, as explained in Ta-
ble 5.5, using the information in Section 4.2.3 ”Test Database Data Generation”
of the TPC-H Standard Specification.

Field name DDL-compliant Compressed Encoding Reason

data type type
L_.LINENUMBER int32_t uint8_t domain in [1..7]
L. QUANTITY int64._t uint8_t domain random value [1..50]
L_DISCOUNT int64_t uint8_t domain random value [0.00 .. 0.10]
L_-TAX int64_t uint8_t domain random value [0.00 .. 0.08]
L_SHIPINSTRUCT char[25] uint8_t dictionary =~ random string from list Instructions
L_SHIPMODE char[10] uint8_t dictionary = random string from list Modes
L.COMMENT char[44] uint32_t dictionary ~ random text [10,43]

Table 5.5: The compression schemes applied to the TPC-H Lineitem table

98

5.6. TPC-H Experiments

5.6.2

Runtime Fragility

We show the runtime fragility of the various data layouts for Q1 and Q6 in the
TPC-H benchmarks in Figure 5.12, for both the uncompressed and the compressed
Lineitem table. For the uncompressed Lineitem table, column layout is the clear
winner in terms of performance. What is more important, is that it also has the
lowest fragility — for Q6 it has almost no variance compared to the other layouts.
On the other hand, for the compressed Lineitem table column layout is not a clear
winner. If we consider the median query times — depicted by the strong dash
inside the boxes — for Q6 it is significantly worse than the memPAX layouts with
larger chunk sizes. There is one very interesting differences to the results on the
uncompressed Lineitem table. First, the layouts of the compressed Lineitem table
are much less fragile: for Q6 the boxes are 2-5 times narrower than that of the
uncompressed table, which means less fragility.

250%
200%
150%
100%
50%
0%
250%
200%
150%
100%
50%
0%
250%
200%
150%
100%
50%

Slowdown compared to best

0% -

250%
200%
150%
100%

50%

0% -

Q1,SF 10 Q6, SF 10

o
© 8706 1
o

00000000,

T
. E TIITTOOOOOTOO
e 100000, 00,
B e -
°1
1
ARy
0 ooy,
° 1%0000to0
. 00000000, 8

3100

)
00%1To
T 1 0®%00000000

] .'”T: ,Trfosg8888e,,

- EIIIII||I||I|I'I11u

lit1ad1ag,111ty
L 115550590,

f

®10

f= =}

1

EYENEETYY

1111
1111111111111111111

n
— °ooo¥°g° M
i °°°°|T 898887888

gTTTT 'TTrrrrelrr g
H oy o Yy, <
- . |
! RN W

- TT b
T
|
. °T°°:|ITTT°°T°o°°
|
oT TT Lt |TTITTTT°
° ° 1
=1 [11110l I

111111111111)3311117%

abpLg Apues

abpug A

(a) Over uncompressed tables

Slowdown compared to best

250% -

200%
150%

100% —
50% —

0%
250%
200%
150%
100%

50%

0%

250%

200% —

150%
100%
50%
0%
250%
200%
150%
100%

50%

0%

Q1, SF 10 Q6, SF 10
€098
_|e, °© ®88g88800806° B
o.',. : g
o 900000000002 | [* ET E?
| T 3
] T
8.0 LT T
8o 11!
o §8é9888008001
fo
—e 9968000000%8 s
o
@
Y 3
. g LT g
Ly, o rrrrreana!
1
¢ Py
1 % o, (%))
1
%8530009000000° 10 2
TT a
1T <
1n L Tr @
D n g Trrrrre’ o
g (9
i L0000y 3050,11 [)
> T
/" —_
8 ML LTTITTPTT . =
15 IlTTTTTTTTTTTT 1811 W
o NIRRT | R TT a
! EeTrrrrrr Mm@
e ‘T ®
L P4 sy ggpaatt EvTyy e
FICTa e FITTLILYS
§& ST © §&STLFES ©
F&ELIILxX s SSLIX
Lo eSS’ SELo s’
& S‘g’g & & @éQé?@
& Layout N

(b) Over compressed tables

Figure 5.12: Runtime fragility of the various data layouts for TPC-H queries

Chapter 5. Runtime Fragility of Hand-coded Queries in Main Memory 99

5.7 Conclusions

In this chapter we have identified various sources of query time fragility — imple-
mentation factors that can change the performance of a query by factors in an
unpredictable way. We have investigated the fragility of both micro-benchmarks
and complex analytical benchmarks. We have considered the CPU architecture,
the compiler, and the compiler flags as important factors. We have introduced the
memPAX layout and compared its fragility to column layout and row layout.

We have shown that when querying tables with 1-byte integer columns a very
high fragility is to be expected, in our case leading to a performance drop of up
to factor 25. In case of more complex schemas and queries the inhomogeneity of
the schema has a direct effect on the fragility. Applying dictionary- and domain
encoding to the columns have reduced fragility by 50% to 80% in our experiments
on the TPC-H benchmark.

We have found a use-case in query processing where using powers of 2 is always
a suboptimal choice, leading to one more cause of fragile query times. We have
shown how to choose the chunk sizes of the memPAX layouts to improve tuple-
reconstruction costs by 20%.

Chapter 6

The Performance Implications of
Compiling a Main-Memory
Database System

A compiler is just another abstraction layer. It is safe to use whatever default
compiler we have on our system. It has a default O-level, which is just fine for
most purposes, thus also for building our database system as well. If we would like
to generate the most efficient code, we just go for the highest O-level available (or
one level higher just to make sure). Maybe we even use those fancy optimizations
our compiler supports on top of that. And anyway, if my compiler setup worked
fine for me, it will work just fine for you as well. Why are all of the previous
statements plain wrong? That is what this chapter is about.

In this work we thoroughly study compiling a whole database system written in
the C programming language, taking MonetDB as our example. We investigate the
effects of varying the compiler, the optimization level, and miscellaneous compiler
flags, and using advanced compilation techniques, like link-time optimization and
profile-guided optimization. We also show what happens when using different
target hardware, considering six subsequent Intel CPU generations. We show
when and how to choose compiler settings to improve query performance for free,
just by compiling the system the most suitable way.

6.1 Introduction

High performance database systems are typically written in a compiled pro-
gramming language, most of the times in C/C++ (MonetDB [10], HyPer [40],
Aerospike [1], Redis [2], SAP HANA [20], Microsoft Hekaton [43]), with few

notable exceptions that are written in an interpreted or JIT-compiled language

101

102 6.1. Introduction

(LegoBase [41] was written in Scala). The previous systems are compiled into ma-
chine code specific to a target system (hardware and OS) using a compiler. The
compiler is considered as just another abstraction layer in the software develop-
ment pipeline, and is either used ”as is”, or with a fixed setting. Any possible
interaction between the compiler settings and the target system and use case are
neglected.

6.1.1 Motivation

Let us see through the eyes of a representative DBA, say Bob, who wants to try
out a new main-memory database system. He is a fan of open-source software,
and thus chooses MonetDB [10]. Bob prefers compiling everything from source
rather than installing a package, thus he downloads the source code of MonetDB.
He then goes through the regular bootstrap, configure, make, and install steps,
and successfully installs his new DBMS. It worked like a charm, the build system
did his job silently, no questions asked. What Bob did not realize, is that under
the hood there was a decision made by the build system on which compiler and
compiler flags to use. In his particular case the compiler was the default system
compiler, and the flags were chosen by the build system depending on the compiler.
Now let us not be hard on Bob. Who of us has ever changed the default compiler
and flags upon installing software?

One day Bob decides to try out Gentoo Linux. That distribution encourages
users to build a Linux kernel tailored to their particular hardware and to customize
which services are installed and running. They even provide an Optimization
Guide for GCC! where they describe many important knobs of the GCC compiler,
called compiler flags. Bob applies the hints from that guide and manages to
reduce the boot time of his shiny new Linux installation by a factor of 4. He is
delighted from the results and starts to think about which software to recompile
next. Then he remembers that open-source database system he installed the other
day, called MonetDB. Bob already sees himself getting promoted to chief DBA
for his new findings: forget column layout, dictionary compression, and indexes.
Simply compile with gcc -042 -mavx2048 -Ofast.

Just before getting his hands dirty with compiling, Bob spots the huge
configure.ac file among MonetDB’s sources. He starts to wonder what could
be so complicated that takes 3,478 lines to ./configure. So he skims through the
script and finds out that there are other compilers out there as well, icc and clang,
for which the build script chooses different compiler options. Even worse, the script
further differentiates between the numerous versions of these compilers. Bob gets

lwiki.gentoo.org/wiki/GCC_optimization

wiki.gentoo.org/wiki/GCC_optimization

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 103

really curious about these other compilers and installs them on his system. Bobs
saga continues in the following sections of this work.

6.1.2 Research Questions

Many high-performance database systems are pre-compiled software. Compiling
the system yourself is seen as yet another step in the software development pipeline,
and is typically not considered as a performance factor. However, if a developer
would like to tune the compiler setup of a database system, he might end up
finding the compiler having more tuning knobs than the database system itself.
Thus, there are many open questions about compiling a whole database system:

e Does changing the compiler settings have only a negligible effect on the query
performance of a whole database system?

e Can we improve query performance by choosing a suitable compiler setup
system-wide?

e Can we further improve query performance by choosing for each query the
most suitable compiler settings?

e Do our findings still hold if we use another machine?

e Ultimately, can we consider the compiler as just another abstraction layer?

6.1.3 Contributions

In this work we present an exhaustive experimental study on compiling the
MonetDB database system. Our main contributions are as follows:

1. Given the large number of tuning knobs of compilers we first discuss the ones
that could be the most important starting points of performance tuning when
compiling a whole database system, namely: i) the compiler itself, ii) the
optimization level, and iii) advanced compilation modes.

2. For the above categories we consider: i) the three most popular C/C++
compilers (GCC, clang, and the Intel C/C++ compiler), ii) all five standard
O-levels, and iii) link-time optimization (LTO), and profile-guided optimiza-
tion (PGO).

3. We consider all combinations of the above knobs, which we will call compiler
setup, and build 90 separate MonetDB instances using each of them. We
then measure the query performance of the resulting system instances on
the TPC-H benchmark.

104 6.2. The Six-dimensional Parameter Space of our Experiments

4. We show the differences in the efficiency of the compiler setups when using
a different machine. Here we consider six servers equipped with CPUs of
subsequent generations.

5. We present two techniques for improving query performance that build upon
changing compiler setups. These approaches work on two different levels: on
a per-query level, and on the physical database operator level.

6.2 The Six-dimensional Parameter Space of our

Experiments

Architecture CPU NUMA #CPUs #cores Clock LLC RAM

(Xeon) /CPU [Size @ Speed]
Core 5150 no 2 2 2.66 GHz 4 MB L2 8 x 2 GB @ 266
Penryn E5430 no 1 4 2.66 GHz 12MBL2 4*4 GB Q 667
Nehalem E5506 yes 2 4 2.13 GHz 4 MB L3 12 * 4 GB @ 800
Westmere X5690 yes 2 6 3.46 GHz 12 MB L3 12x 16GB @ 1066
Sandy Bridge E5-2407 yes 2 4 2.2 GHz 10 MB L3 6 x 8GB @ 1066
Ivy Bridge E7-4870 v2 yes 4 15 23GHz 30MBL3 32x16GB @ 1333

Table 6.1: The machines used in our experiments

(1) The CPU architecture. The performance characteristics of a main-memory
database system are significantly influenced by the machine’s CPU. As there
are usually significant changes between the subsequent CPU architectures, we
have chosen servers equipped with Intel CPUs of six subsequent architectures.
This allows us to investigate whether different CPU architectures favour different
compiler settings.

(2) The compiler. In our experiments we have chosen the three most commonly
used C/C++ compilers: clang (3.5.0-10), gce (4.9.2), and Intel’s C compiler — icc
(16.0.0). clang and gcc are both open-source, while icc is proprietary software.
clang is actually a C-compiler front-end to the LLVM compiler infrastructure. It
compiles C, Objective-C, and C++ code to the LLVM Intermediate Represen-
tation (IR), similar to other LLVM front-ends, which allows for a massive set of
optimizations to be performed on the IR before translating it to machine code.
GCC is short for GNU Compiler Collection, a compiler supporting among others
the C/C++ language. It support almost all hardware platforms and operating
systems, and it is the most popular C/C++ compiler, and also the default one in
most Linux distros. Intel’s C/C++ compiler can take advantage of Intel’s insider
knowledge on Intel CPUs. It is said to generate very efficient code especially for

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 105

arithmetic operations.

(3) The optimization level. Compilers can perform various transformations
during the pre-processing of the code, on the intermediate representation, and
when generating machine code as well. Most of these transformations aim to
improve the performance of the resulting object file or executable, and thus are
called optimizations. Each of these optimizations can be toggled by separate
flags, though there are some special flags that enable a given set of optimizations,
which is termed the optimization level. The optimizations offered by the different
compilers and the definition of the O-levels differ from compiler to compiler. Yet,
the general goals and trade-offs of the O-levels are very similar across compilers.
These are described for the five standard O-levels as follows:

O-level Description

-00 No optimization

-01 Moderate optimizations, fast compiling
-Os Optimize for size

-02 Optimize for speed

-03 Expensive optimizations, slow compiling

Table 6.2: Compiler optimization levels

In case of clang and gcc the set of optimizations enabled by higher O-levels
includes all optimizations enabled by lower O-levels (excluding —0s). For icc this
only holds for —02 and -03. We have to note that compilers differ in optimizing
for size, i.e. how they handle the —Os flag. For clang —02 and -Os are the same
(i.e they activate the same optimization passes), for icc ~01 and —Os are the
same, and for gcc —Os activates all flags that —02 does, except for those that
tend to increase the executables’ size. This is summarized in the following table:

Compiler O-level inclusion

clang 01 CcO0s=02cCO0O3
gce 01cCcOsc02cO3
icc 01=0s¢ 02C 03

Table 6.3: Optimization level inclusion for different compilers

106 6.2. The Six-dimensional Parameter Space of our Experiments

Architecture clang gcce

Default x86_64 x86_64

Core core2 core2
Penryn penryn core2
Nehalem corei? nehalem
Westmere corei? westmere
Sandy Bridge corei7-avx sandybridge
Ivy Bridge core-avx-i ivybridge

Table 6.4: The CPU architecture detected by clang and gcc when generating native
(architecture specific) code.

We intuitively expect to get higher performance from higher optimization
levels, yet there is no guarantee from the compiler’s side that this will also hold in
practice. Thus, we have decided to evaluate all five standard optimization levels
in our experiments.

(4) Miscellaneous compiler flags. Each compiler has a mechanism for
detecting the CPU architecture of the machine they are being executed on. They
can use this information to generate the most efficient machine code for the
target CPU, which is activated by the —march=native flag. This includes
choosing vectorized instructions that use the largest SIMD registers available on
the target CPU. The default behaviour is, however, to generate code that runs
on all x86_64-compatible architectures. In the following we list the architecture
tags detected by clang and gcc. Note that icc does not allow the programmer to
detect which target architecture it has chosen, however, we can assume it makes
a reasonable choice.

We can see that the compilers do not distinguish some of the subsequent CPU
architectures. Nevertheless, we did not override the architecture choices made by
them.

(5) Compilation mode. We can distinguish between the following two compila-
tion modes: conventional compilation and link-time compilation. In conventional
compilation each (preprocessed) source file gets compiled separately, one at a time.
At any given time the compiler has knowledge of a single compilation unit only, and
thus is unable to perform optimizations that would consider the whole program.
On the other hand, link-time compilation involves converting all compilation units
into an intermediate representation (IR), and eventually merging all IRs together

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 107

and compile and optimize the whole program. This allows for optimizations that
over-cross module boundaries. GCC in particular supports this feature as link-time
optimization [23].

Compilers make the same effort when optimizing each part of the code. It
generally holds that 90% of the runtime is spent in 10% of the code, therefore
this equal-efforts strategy is suboptimal. However, it is usually not known during
compilation which part of the code will belong to the so-called hot-spots. This
can only be found out after the code has been compiled, and the program gets
executed. Profiling means to gather runtime information and use it to optimize
the hot-spots of the code. One group of profilers gives the programmer information
on where to manually optimize the code, e.g. perf, oprofile, or Intel’s VTune
Amplifier. Another group of profilers gather profiling information that needs to be
fead back to the compiler, which then uses it to make better optimization choices,
and concentrates the optimization efforts on the hot-spots. This latter process is
called profile-guided optimization [14]. It requires two compilation passes with a
profiling step in between to guide the second pass in choosing branches, etc. This
technique allows us to optimize our program for a target workload, and not just
for the average case, which is determined by the compiler makers. Due to this
tedious double-compiling process it has not yet gained widespread usage, despite
its potential.

(6) DBMS settings. Modern database systems can gain high performance by
using inter- and intra-query parallelism. We only consider inter-query parallelism,
i.e. using multiple threads to execute a given query. The level of parallelism,
however, has to be chosen wisely, as our experiments have shown. We will
consider single-threaded query execution as well, since it allows us to factor out
effects caused by parallel execution, moving around data between threads, etc.
We do not focus on inter-query parallelism in this work, thus we do not conduct
experiments where we would execute different queries in parallel.

6.3 Methodology

6.3.1 Building MonetDB

We have built MonetDB 11.21.5 from source on the six different ma-
chines described in Table 6.1. For benchmarking and production en-
vironments MonetDB’s install guide advises to pass the following op-
tions to the configure script: —-—enable-debug=no —--enable-assert=no
—-—enable-optimize=yes. All three compilers used in this work are supported

108 6.3. Methodology

by MonetDB’s build scripts, and the ——enable-optimize=yes option yields
the —03 optimization level for all of them. We have modified the build script so
that we can specify the optimization level and any other compiler flags we would
like to use, instead of using the default O-level.

We have built a separate MonetDB instance for all possible combinations of
compiler settings investigated in this work: 3 compilers x 5 O-levels x native/non-
native code, yielding 30 different instances using traditional compilation. The
documentation of advanced compilation modes, LTO and PGO, is quite shallow
for clang. Moreover, using these techniques is not applicable to MonetDB’s build
process without major modifications, thus we have decided to not build MonetDB
using clang and the aforementioned advanced compilation modes. For gcc and
icc, however, we have compiled instances using i) only LTO, ii) only PGO, and
iii) both LTO and PGO, yielding an additional 60 instances: 3 advanced compila-
tion modes x 2 compilers x 5 O-levels x native/non-native code, thus ending up
with altogether 90 different MonetDB instances.

We assume the following scenario to be the default compiler setting for compil-
ing MonetDB: gcc?, -03, and non-native code. It is to be noted that the com-
piler switch needed to generate machine code exploiting larger registers, vectorised
instructions, etc. (-march=native) is not enabled by default in MonetDB’s
build scripts when building for a production environment. We are always going
to use the MonetDB instance compiled with the default compiler settings as a
baseline in our comparison.

The build process of MonetDB is comprised of running configure, make,
and make install. Depending of the compiler settings and the machine, the
configure step runs for 20-40 seconds, the make install step for 10 seconds,
and the make step, comprising the actual compiling of the system, varies heavily
depending on the compiler settings.

The compile times against the O-level are shown in Figure 6.1 for the six
machines and for the thirty possible compiler settings. We are going to use the
visualization of this figure throughout this chapter, which is to be parsed as follows:
each measurement has its complete compiler setup encoded using the shape (for
the compiler), fill (for the native code), and color (for the O-level). Furthermore,
to make the figure more readable, we have added some jitter along the categorical
axis, in this case the x-axis showing the O-level. We can see that, as expected,
increasing the O-level yields higher compile times. Furthermore, icc has a steeper
increase in compile time than the others, making icc —03 especially expensive
compared to the other two compilers’ compile times. If we would rather go for
the fastest compile time despite performing expensive optimizations as well, clang

2Gece is currently the most popular C/CH++ compiler, see
http://blog.jetbrains.com/clion/2015/07 /infographics-cpp-facts-before-clion/

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 109

MonetDB compile times
400 - o

210D

J
200 - oy - L A
100 = ® . ® ®0
0 “ Compiler

n e clang
A gcc

® B icc

N
o
o
1
8 E!
5
ufiuad

100 - s \ =

(m |

Native code
o non—native

N

o

o

1

&
s p "
s B
waeysN

e native

O-level
¢ -00
¢ -01

-Os
¢ -02
¢ -03

9I9WISa/\\

o
®

¥
> &

w
o
o
1
[]
>
P ow
abplig Apues

abpug An|

Figure 6.1: MonetDB compile times using the standard compilation mode.

would be our choice. However, as we compile the system only once per setting, we
are more interested in the query performance of the resulting MonetDB instances,
rather than their compile times.

110 6.4. 90 shades of compiling MonetDB

6.3.2 Experimental setup.

To evaluate the performance of the various MonetDB instances we are going to
measure the query times of the 22 different TPC-H queries. As described in the
literature on performance analysis [34] and in Chapter 4, reporting merely the
average of the measured query times can present an arbitrarily imprecise infor-
mation about the query times, caused by high variance or outliers. Therefore, we
report the median query time of 5 runs, since it is not as sensitive to outliers as
the average value.

To achieve high query performance MonetDB tries to utilise all available hard-
ware resources by caching any tables read in main memory, and using all available
CPU-threads for intra- and inter-query parallelism. Since we are interested in
main-memory database performance, we have performed a warm-up run before
each experiment by executing all 22 TPC-H queries to let MonetDB cache all
tables in main-memory. We have set the TPC-H scale factor to 10, yielding ap-
prox. 10 GB of data, which fits into each of our server’s RAM.

Our machines were running Debian 8.2 with Linux kernel version 3.16.0-4-
amd64, with hyper-threading either disabled or not supported. For single-threaded
experiments we have pinned the MonetDB server process to a given CPU core to
avoid runtime variance cased by data- and thread-shuffling.

6.4 90 shades of compiling MonetDB

In this section we are going to benchmark MonetDB, an open-source database sys-
tem developed at CWI. MonetDB is a column-store pioneer, and as such it is most
suited for OLAP-style workloads. We are going to evaluate the performance im-
plications of the MonetDB instances compiled with various settings on the TPC-H
benchmark [60]. Let us now follow Bob on his journey through the 90 shades of
compiling MonetDB.

6.4.1 What happens if we use another compiler?

While Bob was skimming through MonetDB’s configure. ac, he has discovered
that there are other C-compilers as well, apart from gcc. Thus, he gave it a try
to compile MonetDB using clang and icc as well. He then executed the TPC-H
benchmark in the MonetDB instances compiled with the three different compilers,
and measured the query times. This can be seen in Figure 6.2. When looking
at the query times, Bob was really surprised to see at least 10% difference in
performance for 11 out of 22 queries, both improvements and performance drops.
For Q20 we can improve over gcc by 15% when using icc instead. On the flip
side, for Q11 icc has 30% worse query time than gec. Thus, it follows that using

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 111

another compiler changes query times significantly, sometimes improving it, while
at others making it worse.

compiler

e 3 2 B
g 8 3 B8
222
1onies 5,08
@ o
873 £

Query time compared to that of gcc
8
&

~
3
Bl

at Q2 Q3 Q4 Qs Qs Q7 Qs Q@ Q1 Qi Q2 Q13 Q14 Q15 Q6 Q7 Q18 Q19 Q0 Q21 Q2
TPC-H query

Figure 6.2: TPC-H query times using different compilers, compared to that of gcc
(lower is better).

6.4.2 What happens if we change the O-level as well?

Bob was saying to himself, if changing the compiler alone had an effect on the
query times, what would happen when changing the O-level as well, which unlike
the compiler is actually expected to have an effect on performance. Thus he has
decided to compile five-times more MonetDB instances by using all five standard
O-levels with each compiler. This can be seen in Figure 6.3, where the colors
denote the compiler, and the saturation denotes the O-level.

Bob found that surprisingly —02 often yields better runtimes than -03, like
for Q2 and Q14 using gce, Q5 and Q11 using icc. What’s more: clang —01 has
proved to be the most efficient system for queries Q4, Q6, Q14, and Q20. Put
another way: compiler optimization hurts the performance of those queries.

The question is, whether there is a clear winner among the compilation settings.
The workload times are shown in Table 6.5 as a factor of the default workload
time. Here we see up to 44% overall performance drop when using clang -00 or
icc —-00. What comes as a surprise is, though, that gcc —-00 instead of scoring
similiar to the other compilers with —00, it actually slightly improves the workload
time over gcc —03. When looking at how much can we improve over the default
setting, we find that more often than not the workload time is slightly above the
default, and the best we can get is 3% improvement when using icc —02 or icc
-03.

6.4.3 What else can happen inside traditional compilation?

Till now we have explored two out the six dimension of our parameter space: com-
pilers and O-levels. In the following we are going to explore three more dimensions,
and leave the last dimension, using advanced compilation modes, to the very end.

112 6.4. 90 shades of compiling MonetDB

120% -

ool &

TPC H query

Cmpll +0O-level

2
& |gO 901

ioc
&

% | clang -0s [\ gee Os. icc -Os
Ig 02 gec -02 -02
Ig oa gee -03 c-03

Q
3

Query time compared to that of gcc
®
g

<
3

Figure 6.3: TPC-H query times using different compilers and O-levels, compared
to that of gce -O3 (lower is better).

Compiler -O0 -0O1 -Os -02 -03

clang 1.44 1.01 1.00 1.00 1.01
gce 0.99 1.00 1.02 0.99 1.00
icc 1.44 1.04 1.04 0.96 0.97

Table 6.5: TPC-H workload times as a factor of the default workload time, that
of gcc -03 (lower is better).

Forcing single-threaded execution

MonetDB by default uses all available hardware resources for executing a query,
including all CPU threads and caching everything possible in memory. Let us now
restrict MonetDB to using a single CPU thread in order to factor out the potential
performance penalties of multi-threaded execution, including moving data between
NUMA regions, remote reads, and scheduling software threads. The resulting
query times can be seen in Figure 6.4. Compared to the multithreaded query
times we can see less query time fragility, and also smaller maximal improvements
over the default setup, namely at most 10%. On top of that, the resulting query
times are more often worse than the default one, than what we have experienced by
the multithreaded case. This suggests that a suitable compiler setup can improve
the component in MonetDB responsible for intra-query parallelism.

O%-I | ‘ \\ N | | m |m“| I '
Q Q2 Q3 Q4 Q5 Q Q7 Q8 Q¥ Q0 _Qi1 Q2 QI3 Q14 Qi5 Q16 QI7 QI8 Q19 Q20 Q21 Q22

TPC-H query

N
]
2

Compiler + O-level
clang-00 gcc-00 icc 00
clang-O1 goc-O1 icc-O1

| clang -0s [gec -0s [ico -0s

clang -02 [gcc -02 [ice 02
clang -03 [gcc -0 [icc -03

Query time compared to
that of default setup
®x o 3 2
g 8§ 8
I

103s 5,908

<
]

Figure 6.4: TPC-H query times using different compilers and O-levels, compared
to that of gee -O3 (lower is better). Single-threaded query execution.

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 113

Using native code

Bob remembered reading something about generating native-code in Gentoo’s Op-
timization Guide for GCC. Thus he sets out and recompiles all 30 MonetDB in-
stances with using this additional flag that instructs the compiler to generate ma-
chine code that exploits all specialized hardware operations and registers available
on that particular machine. Then he compares the resulting query times with- and
without generating native code. We can see no clear benefit for single-threaded
execution, with improvements and performance drops of up to 10% in some few
cases. In case of multithreaded execution, however, we can see larger changes in
the query times. For Q11, Q14, and Q20 the improvement over non-native code is
about 25%.

6.4.4 What changes if we use another machine?

Bob has remembered something about various system descriptors appearing in
MonetDB’s build scripts, upon which it differentiates what compiler flags it should
use. Bob has found out that these system tags actually refer to the CPU-
generation, or CPU architecture.

Figure 6.5a shows the workload times on the single-threaded MonetDB in-
stances, and all six machines described in Section 6.2. The machines we used vary
in their CPU clock speed and maximal memory bandwidth, and thus have differ-
ent workload times for the same compiler setup. Our server with the Westmere
CPU has much higher CPU clock speed than the others, which explains why it
performs best. Except for this outlier machine, the newer machines (CPU gener-
ation increasing from top to bottom) perform increasingly better on the TPC-H
benchmark. To better see the effects of the O-level, we have put it on the horizon-
tal axis. As expected, the instances compiled without optimization (-00) have a
significantly worse performance: their workload times are on average 50% higher
than that of the default setup.

The difference between the rest of the O-levels, that unlike ~00 do perform
some optimizations, are hard to see in this graphic. This is why we have decided
to scale each workload time to that of the default setting for each machine, which
allows us to spot compiler setups that yield a better performance than the de-
fault one. This is shown in Figure 6.5b. Please note, that this is essentially a
one-dimensional chart with some added jitter on the (non-existing) vertical axis
to enhance readability. The performance gain achieved over the default setup
depends on the machine, and gives us three cases: on Core and Penryn we can
gain 2-3%, on Nehalem and Westmere 5-7%, on Sandy Bridge and Ivy Bridge less
than 2%. It is notable, that the best workload times are achieved by the MonetDB
instances compiled with icc —-02/-03. On the flip side we can more often than

6.4. 90 shades of compiling MonetDB

114

MonetDB singlethreaded TPC-H SF 10 workload times

1504 oA
A wt LRSS ° o o
1004 oy = o
3
50
04
1504 carmo
100 > M L e es |3
E
50 3
04
1504 W oa
— =
51100 o e S caa |8
m 50 3
£
8 1504
k- H
F1007 uw o g
3
W 504 LHows A w Aow o Lo m
04
150
FEEN £
100+ H
At = . im R A - @
50 g
g
04
150
1004 A0m H
n o= An An 2o DAoem 3
50+ i
0- U U U U U
00 o1 os 02 03
O-level

(a) single-threaded

Figure 6.5: The workload time of the TPC-H benchmark using the MonetDB instances compiled

compiler setups

MonetDB singlethreaded TPC-H SF 10 workload times

MonetDB multithreaded TPC-H SF 10 workload times

"on 60 on
Dn.» 1 a ANE . - a0 Aol
ne 9 404 9
A = =]
A . a 7. ® 20 G
o N A -
x0
0-
woye . 60d me
4% ° g 104 a R ™ SN o4 . PPN °
A < 3
A
= N = 20 =
A,
N
0-
o N
woo]
o z 60
" E T40 A g
Ll A . o Q A mekn R . . g
- PD- A 3 B.NOI L Lan AL m
2 Taa o o
Ly 9 £
- S 0+
IS o
;I
ol m a L = 40 H
A 3 S)
% A () = 5
o e . ® 20, A 3
5 2 'ha . o L) " o walr A% .
S 0-
e ° 4
o, ™ o £} 60+ ”
°, af 4 < g
R @ W04 3
. . = .. . N @
N ﬁ 20+ A @ . Y L o _wnw.
o 0-
“, 3z 60 -
A . m.u 2 [™ .W
= a b pers s oA a0 g @
» D». =3 24 e Ao E:
'y £ L 8
o ' ' 1 ' ' 1 '
o v o o o) o =) =) =} o 0-
S @ 9 = S @ b il @ = y T T y y
S o o e i i o o i - 00 o1 Os o2 03
Workload time scaled to that of the default setting O-level

(b) single-threaded scaled

(¢) multithreaded

Compiler
e clang
A gcc
W icc

Native code
o non-native code
e native code

O-level
4 00
4 o1

Os
4 02
4 03

with different

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 115

not actually get a worse query performance by choosing a non-default compiler
setup, yielding up to 5-10% worse workload time (excluding workload times of
instances compiled with —00).

The MonetDB database systems aims for exploiting all available hardware re-
sources by caching all data in main-memory and using all hardware threads. In the
previous experiment we have restricted ourselves to single-threaded execution to
factor out the potential performance penalties of multi-threaded execution, includ-
ing moving data between NUMA regions, remote reads, and scheduling software
threads. In the following we will discuss the effects of the compiler setup for all six
machines in case of multi-threaded execution. The workload times are shown in
Figure 6.5c. It is somewhat surprising, that we again find gcc -00 to yield com-
parable workload times, as we have already seen in Table 6.5. The same situation
occurs now for the Core, Penryn, and Westmere machines as well.

With some profiling we could confirm that the actual number of threads
MonetDB used during query processing equaled to the number of hardware threads
on each machine. Our fastest machine for single-threaded execution, Westmere,
had an advantage in this aspect as well: it has 12 hardware threads and the high-
est CPU clock, which together secured again the fastest average query times in
our comparison. It comes as a surprise that the Ivy Bridge machine with its 60
hardware threads was even outperformed by the Nehalem machine that has only
8 threads. This is in heavy contrast to what we have seen in the single-threaded
case, so we have investigated the reason of this machine performing poorly in the
multi-threaded mode. We have found that TPC-H Q2, Q17, and Q21 have an
extremely high query time when compared to that of Sandy Bridge: a factor of 19,
15, and 2.2 times higher, respectively, for the default setup (see Figure 6.6). These
are queries that are hard to parallelize according to an analysis on the TPC-H
benchmark [11], which perfectly fits our case, since the Ivy Bridge machine has
way more threads than the Sandy Bridge machine. We think that when paralleliz-
ing the query plan for 60 threads and 10 GBs of data (i.e scale factor 10) MonetDB
makes a suboptimal query plan.

In Table 6.6 we show the call counts of the most-expensive operators for some
representative TPC-H queries for Sandy Bridge and Ivy Bridge, obtained using
MonetDB’s tomograph tool [22]. Queries Q1, Q6, and Q13 have a call count ratio
that is near to the ratio of the two machines hardware thread counts (60 / 8 =
7.5), and have a lower query time on Ivy Bridge than on Sandy Bridge. Those
queries that have a much higher runtime on Ivy Bridge, also have a call count ratio
way above the hardware threads ratio, which proves our assumption on MonetDB
choosing a suboptimal plan for these queries.

Similarly to the single-threaded case, the MonetDB instances compiled with
some optimization have very comparable workload times. There are, as mentioned

116 6.4. 90 shades of compiling MonetDB

Query Operator Sandy Bridge Ivy Bridge Ratio
Q1 batcalc.* 27 183 6.78
Q2 algebra.subjoin 106 3865 36.46
Q6 algebra.subselect 34 242 7.12
Q13 algebra.subjoin 8 o7 7.13
Q17 algebra.subjoin 72 3660 50.83
Q21 algebra.subjoin 152 7380 48.55

Table 6.6: Call counts of the most-expensive operator in the multi-threaded query
execution traces of some TPC-H queries.

before, some interesting outliers: on Core, Penryn and Sandy Bridge the instances
compiled with gcc —00 even outperform the default one. We can conclude that
except for Nehalem and Westmere there is no compiler setup that would yield
a significant improvement in the cumulated query times for the whole TPC-H
workload. However, this does not necessarily mean that the compiler setups have
no effect on the individual TPC-H queries’ runtimes, as we have already seen in
the previous sections.

6.4.5 What if we use advanced compilation modes?

Bob has seen a lot of query time variation till now, and is really curious about
what is still to come. Thus, he decides to let the compilers throw all what they
got at MonetDB, and use their advanced compilation modes. Since they are called
advanced, Bob expects to get larger improvements by using them, than what
changing O-levels and the such has brought. There are two major techniques in this
field that should be mentioned: link-time optimization (LTO) and profile-guided
optimization (PGO), both of which have been described in Section 6.2. Thus, Bob
decides to use both of them, and performs first the profiling and eventually builds
the MonetDB instances using the gathered profiling information in the hope of
improving MonetDB exactly there, where it would help the most. Note that when
using advanced compilation modes, we cannot consider clang for reasons detailed
in Section 6.2.

We compared the query times for each query and each MonetDB instance com-
piled using the same compilation settings, but differing only in the compilation
mode — one using LTO and PGO, while the other one using traditional compila-
tion without these two techniques. When compiling with icc the improvements
are between 5% to 30%, and is on average 20%. gcc using these two advanced
compilation modes, on the other hand, reaches at most 10% improvement, aver-
aging at around 5%. Yet, using icc —-0s/-02/-03 with LTO and PGO reduces

Chapter 6. The Performance Implications of Compiling a Main-Memory

Database System 117
15 =
10 =
Q
o
0 - ---IIIIIIIII---IIIIIIIIIIII---III _-_ul"l---l"lllun"llll
15 =
10 el
@
3
5+ 3
0 - ..."llIlllI..."llll"II"---ul ---IIIIII___IIIllllllIIIlll
15 =
__ 10+ &
[3) >
i 5
o 57 3
c
i 0 - -_.l..lll...___lll-llllllll _____ - ___---III---III------IIII..
8 15+
o
c
S 10+ 2
e e
= 3
5= @
0_III------...---___...--..llllll ______ III NN | | BERIE | | [NN wmm
15 =
L
10 = 2
w
5 - 3
] °
0 -_-III---III___III---IIIIII ____________ l..---lll------llllll
15 =
10 = g
o
2
N ||| | ..l ...
o_lll lll---lll___lll---llllll II ___lllIII HIII------ IIII

T T T 1
Q1 Q2 QS Q4 Q5 Q6 Q7 Q8 QQ Q1OQ11Q12C)13014Q15016017Q18Q19Q20Q21 022

Query

Figure 6.6: TPC-H multithreaded query times on different machines using different
compilers and O-levels (lower is better).

118 6.5. Query routing

the workload time by a mere 10% compared to the workload time of the default
MonetDB instance. Thus, we can conclude, that there is no single best choice for
the compiler settings, and Bob has to give up his dream of becoming the new chief
DBA that easily. Luckily for Bob, he has an idea on what he could do with all
this query time fragility.

6.5 Query routing

So far we were most interested in the cumulated query times of the TPC-H bench-
mark. Let us now pick a single machine, and look at the individual query times.
Figure 6.7 shows the query times measured on our Westmere machine scaled to
the default MonetDB instances’s query times for each query. Here we consider
only compiler setups with non-native code, and single-threaded execution. In this
figure we depict the compilers with three different colors, while the O-levels give
the saturation of the colours. Note that we do not show measurements for —00,
because they all perform at least 50% worse than the default instance. We can
see that there is a lot of variance in the performance of the different MonetDB
instances on a per-query level, and it is hard to detect any pattern in which com-
piler setups and when do they yield good performance. E.g. for Q6 clang -0Os
performs best, but for Q13 the same compiler setup is second to worst. Similarly,
icc —01 is the best for Q13, but the worst in case of Q15.

MonetDB non-native code singlethreaded

0

Figure 6.7: Query times of the TPC-H benchmark on Westmere scaled to that of
the default MonetDB instance.

5
=]
ES

Cmpl +O-level

=

-01

-01 icc
clang -Os .g -0s[Hicc-os
clang 02 -02 [icc -02
| ' clang 03 -03 icc -03
22

Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q:

Query time compared to
that of default compiler settings
8
aE

®
3
g

uery

This leads us to the idea of routing each query to the MonetDB instance that
is expected to yield the best query time for that particular query. The routing
mechanism can be based on some initial tuning on a representative workload, or
we can do continuous tuning on the actual production workload as well. When the
system has been tuned, and a new and yet unseen query comes in, we can decide
to first tune it, or to use some query similarity metric to identify the most similar
query we have already tuned, and route the new query accordingly.

In the tuning process we can start with routing a given incoming query each
time to a different MonetDB instance until it has been executed on all instances.

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 119

After that we can route the query there where it has run fastest. This process
takes in our case 90 iterations to complete.

As we have benchmarked all MonetDB instances, we actually have the same
information as a fully-tuned system would have. Therefore, we can calculate the
improvements we could achieve by query routing. Figure 6.8 shows the query time
reduction over the default setup for an interesting subset of the benchmark, for
both single-threaded and multithreaded query execution. We can see that just by
executing a query on a properly compiled MonetDB instance the query time can
be reduced by up to 25% compared to the query time on the default instance. The
improvement that can be achieved depends on the machine, the thread count, and
the query as well. Therefore, for each particular machine and workload we need to
perform the initial tuning of the system to explore the potential in query routing
to eventually use it to run each query on the most suitable MonetDB instance.

MonetDB TPC-H SF 10: query routing

2100

=

)
r
|

:
1

BN

Thread count
1

max

BENN

BN

Bpug Apues aIaunsap | WseysN

Improvement over default setting [%]
ocouoUIcUIoo IO o VI VIO U (4,1

kL
r
L
;
|

Figure 6.8: Query time reduction over the default setup when using query routing.

6.6 Operator routing

When we fire a query at a database system, under the hood the query goes through
the following conceptual steps: it gets parsed, converted into a logical query plan,
and eventually converted into a physical query plan by the optimizer. In this last
step, among others, the set of physical operators and the execution model are
chosen.

120 6.6. Operator routing

MonetDB uses the operator-at-a-time query execution model, i.e. each operator
consumes its input completely before starting to produce the output. This can
also be described as: all operators are blocking. If we restrict ourselves to single-
threaded execution, we can freely exchange the implementation of each operator
in a query plan, as long as they produce the same results. Choosing another
algorithm (like hash-join vs. sort-merge join), or implementation technique (like
branching vs. branch-free selection) are the typical options considered in state-of-
the-art database systems. We do not consider these orthogonal techniques in the
following. Rather, we consider that we could also exchange the physical operators’
binary representation to another one, compiled using a compiler setup that would
yield better performance. To make this possible the operators’ code need to be
dynamically loaded from a library, or the database system has to use just-in-time
compiling. Unfortunately, MonetDB does not currently implement any of these
techniques. Nevertheless, dynamic loading of operators could easily be integrated
into MonetDB.

We can, however, estimate the effects of compiling physical operators using dif-
ferent setups without actually building such a MonetDB instance. Our assumption
is that since MonetDB uses the operator-at-a-time execution model, a single opera-
tor’s runtime does not depend on the compilation setup of the rest of the operators.
Let us illustrate this with an example: Consider the case when the whole system
is compiled with gcc -03, and we would like to estimate the effect of exchanging
the algebra.subselect operator with one compiled using a different setup.
We first compile a MonetDB instance for all of the alternative compiler setups we
would like to consider (e.g. icc —-03 and clang -03). Eventually we execute
a representative query that uses the algebra.subselect operator in its exe-
cution plan in all of the MonetDB instances, and measure the operator’s running
time. If we measured the lowest runtime in the instance compiled with icc -03,
then we should use icc -03 to compile that particular operator, and can compile
the rest of the system using gcc —03. The expected performance gain according
to our assumption should be the difference in the algebra.subselect opera-
tor’s runtime in those two systems.

For the purpose of measuring operator runtimes we can again use MonetDB’s
tomograph tool, which can calculate the running time of each physical operator
in a query plan by collecting traces and cumulating the measurements. This
is what we can see in Figure 6.9 for TPC-H Q4. We only show the five most
expensive operators’ runtimes measured in all 30 MonetDB instances compiled
without advanced compilation techniques, i.e. without link-time optimization
and profile-guided optimization. To better see the differences among the top
performing instances we have scaled each operator’s runtime to that of the best
one, which we show on the right figure. We have a very interesting case here:

Chapter 6. The Performance Implications of Compiling a Main-Memory

Database System

121

MonetDB TPC-H SF 10 Q4 singleThreaded: operator runtimes

1.20
=Y 'S
1.5 lanm 1.15 - D»*D .
104 Ad 8 1.104 ° & g
" et @ "0 R e 3
0.5 e .40 1.05 .aﬂ@my e
e b i A o 3 Soalt
0.0 1.00 A .
1.204
154 =0
i —1.15 .
& Compiler 3] o o
104 A0 2 8 3 P E110- 0w La T o e
it < e clang = o M G <
0.5 g, Aom 3 A 51.05 o A Lok Eoin 3
0.0- Adadfii e gee +~1.00 - iy e a 4 e "
AWAT W icc mp.mo- A
1.5
o ong z = 1.15 - z
e @)] .0 . Agn, [
®»,1.0- EY Y- 4 3 Native code = 1.10- oo = a * 3
i) ® S 8o N 4. A)
20.5- ke PN 3 o FALSE ©1.05- ° = g S 3
£ adiinCion £ - a b &
200 Kéindim e TRUE 5100 a A = . 2
S 1.204 A
c 15+ 3 £ 1.15 ik ° =
© @ O-level c s @ L. @
S10- A 2 21.10- "o g 4 o |5
[0} Obndl A0 aw_u ¢ 00 c R * & A -y A aw_u
=054 g s u e S *lo1 8 1.05+ n P LS)ﬂ%a o
00 Anititn) B 1.00- ® P °% % LY
o Os £1.204 o @
- P P
15 an o wha 2 e 02 2115+ N L - =
1.0 " = T 1.10 s oy = =
i el 2 |(®o08 3 i L z a8
057 e A b S 1059 o . Al o &
0.0- A L W 1.00 - E La ¢ A8 ®o . ®
1.20 x
15+ = _ N\ =
o0 AAme - A S 1.15 . AT e 3
109 aiueip g 1.107 E»- N “ . :
AN o e o a o
0517 LY. as, @ LoS - fLe” Boe A T 2
0.0 Py AL 1.00 4 . A a q B i
N T T T T T T T T T T
< c ks 5 \2 < c k5] o} V.
5 S, 8 g g 5 S 8 2 s
a be)] S < a 2 [= S
s 3 2 [g (=l z e g g
£ R 7 5 3 £ g 3 5 8
z 2 g > g 5 g E=)
E o o [k=4 k=) o @
k3 © 23 ° © S
g ®] ®
=} Qo
S S
G ®
Operator Operator

(a) single-threaded (b) single-threaded scaled

Figure 6.9: Operator runtimes of TPC-H Q4 in MonetDB

MonetDB TPC-H SF 10 Q4 singleThreaded: operator runtimes

Compiler
e clang
A gcc
| icc

Native code
o FALSE
e TRUE

O-level
¢ 00
4 01

Os
¢ 02
¢ 03

122 6.6. Operator routing

to achieve the lowest query time we need to compile the three most expensive
operators using three different compilers, and three different O-levels, as shown in
Table 6.7

Operator Best compiler setup

algebra.leftfetchjoinPath icc -02 -march=native
algebra.subjoin gcc -00 -march=native
algebra.subselect clang —-Os

Table 6.7: Best compiler setups for the long-running operators of TPC-H Q4 on
Sandy Bridge.

As a proof of concept one can hand-compile a MonetDB instance for a given
query. This requires identifying the compilation units where each operator is im-
plemented. If the implementation of multiple operators reside in the same compi-
lation unit, and they happen to require two different compiler setups to reach their
best runtime, we cannot build the optimal MonetDB instance without modifying
the build process. This requires to split such compilation units, that contain more
than one database operator’s implementation, into multiple compilation units.
Only then can we apply the right compilation setup for each database operator
separately.

Thus, we have decided to use runtime profiling to identify the compilation
units and functions where each database operator spends its runtime. For this ex-
periment we consider TPC-H Q4 executed single-threaded on Sandy Bridge. The
runtime breakdowns of the operators in Table 6.7 are shown in Figures 6.10a, 6.10b,
and 6.10c. It is interesting to identify where gcc —-00 wins its performance gain
for the algebra.subjoin operator, namely in the binary search function, by
spending only 40% of the time in that function compared to the other three com-
pilation setups’ runtimes shown in that Figure.

This procedure can be applied to any query for identifying the compilation units
that are relevant for each operator in the query plan. Upon conflicting compilation
setups for the same compilation unit for two or more different operators, special
care has to be taken to split up the affected compilation units into multiple ones,
such that each operator’s code can be compiled using the proper compiler setup.
Due to the complexity of this procedure, we have decided to leave building a perfect
MonetDB instance for a given query as future work.

123

Runtime [sec]

Chapter 6. The Performance Implications of Compiling a Main-Memory

Database System

TPC-H Q4 operator runtimes: algebra.joinpath TPC-H Q4 operator runtimes: algebra.subjoin TPC-H Q4 operator runtimes: algebra.subselect
044 125
1.004
1.0 034
T 50.75
2 2
k) @
202 o
£ E
W m 0.50
087 Wroecvor «
014
0.254
0.0+ 004 0.004
' o o s ' o o e ' o o 'y
Z . . : : i : : : : : g
m L3 5 m m & & m w & 3 m
Compiler call - Compiler call N Compiler call -

(a) (b) (c)
Figure 6.10: Runtime breakdown of the three most expensive operator in TPC-H Q4 on Sandy Bridge.

124 6.7. Related work

6.7 Related work

The major C/C++ compilers offer the same standard optimization levels
(e.g. —03), however, different compilers do not include the same optimizations
for the same O-level. Nevertheless, these compilers allow the users to toggle spe-
cific optimizations one-by-one as well, instead of relying on the predefined set of
optimizations included in the O-levels. This step requires deep understanding of
both the compiler at hand, and general compiler construction knowledge. Since
most compilers have a very large number of individual optimization flags (e.g. GCC
had 207 flags at the time of this writing), it is prohibitive to find the optimal set
of flags for compiling a given application by the user on a trial-and-error basis.
Instead, this should be performed using a heuristic optimizer algorithm. The au-
thors of COLE: Compiler Optimization Level Exploration [31] have done this for
the SPEC CPU Benchmark and the GCC compiler, and have shown that only
25% of the optimizations included in standard O-levels contributed to at least
one of the Pareto-optimal optimization levels. There is one prohibitive factor of
doing the same for the TPC-H benchmark: one benchmark run for TPC-H on
a disk-based database system can take much longer than one run for the SPEC
CPU benchmark, however, for in-memory database systems the runtimes should
be much more comparable.

Some state of the art database systems perform query compilation just-in-
time [64, 65, 66, 57, 42]. This means that each incoming query is compiled into a
separate executable or library function. Yet, to the best of our knowledge, there is
no system that compiles the queries using different compilers and compiler options.
One notable example of a system performing just-in-time query compilation is
LegoBase [41]. The input for the LegoBase system is a physical query plan. As
a first step the nodes in the plan are replaced with operators written in Scala,
by which they get an intermediate representation (IR). By using the Lightweight
Modular Staging [56] system they can perform so-called staging optimizations on
the IR that standard query compilers cannot do. These include inter-operator
optimizations, like transforming a Volcano-style engine to a push-based one and
eliminating redundant materialization steps. Further staging optimizations can
perform data-structure specializations or change the data layout. Another major
in-memory database system that does query compiling is HyPer [40]. It translates
queries [48] using C++ templates and the LLVM framework into very efficient
machine code.

Vectorwise (now Actian Vector) is an improved version of MonetDB, that makes
use of extensive vectorisation. Compared to MonetDB, it has the advantage of per-
forming chunked/vectorised query execution. The authors of [54] propose a frame-
work to be used with Vectorwise, that keep multiple flavours of each database
operator, and choosing the right one adaptively. Vectorised execution makes it

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 125

possible to choose a (possibly) different flavour for the operators for each chunk of
the data. This allows for a faster learning process, since feedback on the flavours’
performance is available already during the query execution. Even more impor-
tantly it gets possible to choose a different operator flavour during query execution
when an abrupt performance deterioration is detected. However, this is a hard on-
line problem, and on top of that it is not known whether the performance drop can
be mitigated by choosing the right operator flavour (e.g. upon changing branching
probabilities). Our work differs from the previous one in that we perform a more
systematic approach for choosing the compiler setup, i.e. not only the compiler,
but also the optimization-level and some other flags as well. Furthermore, we also
explore some advanced compilation modes, including link-time optimization and
profile-guided optimization.

Vectorization and exploiting architecture specific CPU instructions has been
shown to boost performance of some common database operators, e.g. exploiting
SIMD for sorting and fast scans [63, 13]. Their effect on system-wide performance,
however, have not yet been explored. Considering the TPC-H benchmark, it has
been shown in [9] that the TPC-H queries use a wide variety of database operators,
and require a broad set of query plan optimizations to achieve peek performance.

6.8 Conclusion and Future Work

In this work we have considered multiple compilation strategies and approaches,
which we would like to summarize in the following.

6.8.1 When to compile

We can distinguish between static and dynamic compiling. In case of static com-
piling the system is compiled before its first use, and a running system does not get
recompiled. On the other hand, dynamic compilation involves either recompiling
parts of the system, or creating a separate executable for each incoming query.
The latter approach is termed just-in-time compiling, where each incoming query
is first compiled and the resulting binary gets eventually executed. This allows
for extensive optimizations, like avoiding function call overhead, iterator inter-
faces, etc. This technique is applied in some very efficient main-memory database
systems [49, 41].

As introduced before, in case of static compiling we do not recompile a running
system, nor perform on-the-fly compiling on parts of it. Nevertheless, when making
the upfront decision on the compiler settings to be used, we want to make a decision
that yields good query performance. This is an optimization problem that has

126 6.8. Conclusion and Future Work

multiple flavors, as there are multiple granules in query processing where we can
choose a static compiling strategy:

Upon building the system. The simplest and almost omnipresent approach
is to choose a single uniform compiling strategy for the whole data management
system. In this case the compiler and possible optimization flags are typically set
in a Makefile and applied throughout the whole compilation process. Thus, there
is a single instance of the executables and libraries that make up the whole system.

Upon executing a query. Assume we have multiple versions of a database
system, each of them compiled with different compilers and/or compiler flags. In
this case for each incoming query we can choose which instance of the system to
route the query to. The goal of routing is to execute the query on the system that
would yield the lowest query time. Note that in this work we are not considering
this as a load balancing problem, since we do not want to restrict ourselves to
routing each query to be executed in parallel to different instances of the system.
It is further not assumed that the different instances of the system have to share
the computer’s resources according to an upfront decision.

Upon executing an operator. Database systems create a logical query plan for
each incoming query, and their query optimizer transforms this plan to a physical
query plan. A logical database operator might have multiple matching physical
database operators that conceptually all perform the same operation, but differ
either in algorithmic aspects (like sort-merge join vs. hash-join), or in implemen-
tation details (e.g. branch-free selection vs. branching selection). One dimension
not yet fully explored is to choose the compiling strategy as well for a given phys-
ical operator. Data management systems are typically complex enough such that
dynamically loading operator libraries can pay off. This case makes it techni-
cally viable to choose the compiling strategy of the physical database operators
as well, since that would just necessitate to choose the according flavor of the
library storing the procedure to be loaded. In case the whole database system is
built statically, without any components of it being loaded dynamically, some sort
of name mangling has to be applied when linking multiple versions of the same
function compiled with different compiler settings.

6.8.2 Putting it all together

In this concluding section we are going to put all approaches discussed in Sec-
tion 6.8.1 together. In Figures 6.11a and 6.11b we show the query time improve-
ments (if any) over the query time of the MonetDB instance compiled with the
default settings, i.e. gcc —-03. The compiling approaches used in the Figures
correspond to the following techniques discussed so far:

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 127

Single Best Instance: Choosing a single, global compiler setup upon building
the system.

Query Routing: Choosing the compiler setup upon executing each incoming
query.

Dynamically Loaded Operators: Choosing a compiler setup upon executing
each operator in the query plan. Notice that these query times are only estimated
based on the individual operators runtimes measured on a uniformly compiled
MonetDB instances. For reasons discussed in Section 6.6 this leads to a reasonable
approximation of the actual query times.

When looking at the results we can in general tell that the improvements over
the default setup are higher for single-threaded execution, than for multithreaded.
In the latter case we can improve at least 5% for most queries, with some improve-
ments reaching up to 20%. On the other hand, in the single-threaded case we can
improve at least 8% for most queries, and some improvements reach even 30%. We
can also discover some patterns in the results: The four older machines (Core, Pen-
ryn, Nehalem, and Westmere) reach on average significantly higher improvements,
than the two newest ones (Sandy Bridge and Ivy Bridge) in the single-threaded
case. Interestingly, Q1 and Q6 significantly benefited from the various compiling
approaches in all machines. In the multithreaded case there is one interesting
phenomena: seemingly there are missing data points for some queries, e.g. Q1
and Q22 on Core and Penryn, which actually mean non of the approaches could
improve the query time of the default setup.

To conclude, by using the techniques introduced in this chapter we can achieve
a non-negligible performance improvement of at least 5%-8% for most queries,
and for some few queries even 20%-30% when executing the TPC-H benchmark
in MonetDB. We can improve query performance in 50% of the cases by choos-
ing a suitable compiler setup system-wide. However, for improving the query
performance in the rest of the cases, we have to use query routing or eventually
dynamically loaded operators. We have also shown that the efficiency of these
approaches varies drastically between machines with different CPU architectures.
All these findings support, that we should not consider the compiler as just another
abstraction layer, but as a valid candidate for performance tuning when building
main-memory database systems.

6.8.3 Future work

It is interesting future work to explore the same compilation techniques we did
for MonetDB in LegoBase as well. LegoBase produces C-code as an intermediate
result, which gets eventually compiled into machine code. Here we could also
choose proper compiler settings to improve the performance of the resulting query
executable.

128 6.8. Conclusion and Future Work

MonetDB TPC-H SF 10 singlethreaded: runtime reduction of compiling approaches

30

204

810D

104

J.—.JJI el Jeled Jeaills Ja .

@
So

n

o
I
ukiuad

i
o
1

J.—.J_,l_- it ot Sl s
J—.J_.I-Il lﬂﬂ.—lJ‘JJ_I‘ _l_-J'_- i’r;ﬁz:eBestlnstance

So
1

%)

BN
o o
1 1

waleyaN

Query Routing
Dynamically Loaded Operator

TJ_IJJII,__JJljJJJ,_Jl‘

Improvement over defualt setting [runtime reduction in %]
w
oo
1

0
30
%]
204 g
@
10+ =
O_J-‘ d. ' o amll_u_N I. I el e Heal_af
30
204 g
w
104 é
mJ_jJJIJJ-JJulljJiu_JJJ
Q1 QZ Q3 Q4 QS QB Q7 Qa QB Q10 Q(l)l Q12 Q13 Q14 le Q16 Q17 Qla QlB on Q21 sz
uery
(a) Single-threaded execution
MonetDB TPC-H SF 10 multithreaded: runtime reduction of compiling approaches
154
104 g)
54 @
'0\?15-
54
o4 _-I-J J-.‘J. ._‘ J‘J ol J J
154 %
104 5
s rnK i N
o) Sl 1 =l nul ol

Single Best Instance
Query Routing
Dynamically Loaded Operator

5
“ul JJJJ '.J jj ‘J ,JJJ A J_IJ-_IE
1§E‘J‘J i;.ua | I'JJJI.I:JJ
:JIJJJJuJJJ i.JJJ JJJJ.%
Q1 Q2 03 Q4 Q5 QG Q7 Qs Q9 Q10 Qll Q12 013 014 Ql5 Ql6 Q17 le Q19 020 Q21 Q22

(b) Multithreaded execution

Figure 6.11: Query time improvements for the three routing approaches.

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 129

Appendix

6.A The performance implications of compiling
a key-value store

On the market of key-value stores, redis is one of the most popular systems. As a
key-value store it is most suited for point queries, so we have decided to evaluate
its performance on the benchmarks shipped with redis, measuring the throughput
(requests fulfilled per second) of all basic operations of a key-value store. We
report the median throughput for reasons detailed in Section 6.3.2.

We have built redis 3.0.4 from source on the six different machines described
in Section 6.2. We have modified the build script to allow for specifying the
optimization level, or any other compiler flags we would like to use.

We have built a separate redis instance for all possible combinations of compiler
settings investigated in this work: 3 compilers x 5 O-levels x native/non-native
code, yielding 30 different instances. It is worth mentioning that the compiler
switch needed to generate assembly code exploiting larger registers, vectorised
instructions, etc. (-march=native) is not enabled by default in redis’s build
scripts. We assume the following scenario to be the default compiler setting for
compiling redis: gcc —023, and non-native code.

The build process of redis is comprised of running make, and make install.
The latter step runs in less than 1 second. Depending of the compiler settings and
the machine, the runtime of the make step, comprising the actual compiling of the
system, varies heavily depending on the compiler settings. These latter compile
times are shown in Figure 6.12.

3.02 is set by default in the Makefile of redis

130 6.A. The performance implications of compiling a key-value store

redis compile times
25- z ®
20 - o8 .
15- . . o
10- .
5_
25 -
20 - - o
15+ 50 9 T -
10 - 5) - .
5_
__25-
©'20 - . 1
B.15- - : +
© 10 - % '* o - .
E 5- = clang

© 25 - gcc
‘220
€ 15-

8 10- s v .

210D

oo®
.
0
.
.
e
o

ukiuad

L

compiler

wareysN

- licc

25+
20 .
15+ : % -
10+ . " o {1 .
5_
25+
20
15+ . . .o ° °
10+ - 3 %, o 8
5_

abpug Apues alaunsapn

abpug An|

I I I I I
-00 -01 -Os -02 -03
O-level

Figure 6.12: redis compile times.

Chapter 6. The Performance Implications of Compiling a Main-Memory
Database System 131

6.A.1 Experiments

When using a redis instance "as is”, i.e. without any tuning and special care in
starting up the server and client processes, we have experienced huge throughput
variance: for the get operation it oscillated between 120.000 and 200, 000, which
is clearly unacceptable. After some deep investigation on the internals of redis,
we have come to the following guideline on how to make the throughput of redis
stable:

e disable snapshotting of the database to disk

e pin server and client processes to the same CPU, but to different cores

By doing so we could achieve less than 2,5% maximal discrepancy between
median and average throughputs.

redis runtimes compared

3e+05 A

ol 0 NN
EEENENE
0e+00 - I —
3e+05 &
o 26405+ 3
Pl O 0 O] S N
[2]
5 3e+05 1 z Compilation
T 2e+051 5 Setting
= 1e+05 4 3
2055 ol BN NN PeeS— NN N H e
= 3e+05- = [Default
3 2e+05 - 2
< 1e+054 ull e Best
S 0e+00- S —
<} £
© 3e+054 3
 2e+05- =
rez05- [NN N
0e+00 - = = = ——
3e+05 - g
e INININEN N NN N ONE
ggigg:ﬁ—.—.—.—.—'-.———.———.——.—‘.—.—.—.—.—ﬁ%
~ o o I A o (=} o [=} m X w [m] [o
[o O Q =) S =} S [b4 a [o
6c z & DO s 9 9 9 @ 2 I £ 9 4
- woow oW w5 .z O L2
(% (O] O} S O} - 0]]
@ =z =z 2 z T zF o
= £ 3 & f§ & ¢
- | 4 3 4 CéJ o
Benchmark

Figure 6.13: Best and worst redis benchmark throughputs (higher is better) show-
ing the throughputs of the default compiler settings (gcc -O2, non-native code) as
well.

The benchmark results are shown in Figure 6.13. The peek throughput of the
benchmark operations are strongly influenced by the CPU clock speed, similarly

132 6.A. The performance implications of compiling a key-value store

to the case of compiling MonetDB. Clearly the GET and SET operations are
the most interesting ones for a key-value store. Nevertheless, there are other
benchmark operations also included in the standard redis benchmark, performing
utility operations that build upon the basic GET and SET operations.

On all machines there is a negligible difference between the performance of
the best and the default redis instances. On the other hand, the worst possible
compilation setting can result in a visible performance loss, which effects the basic
SET operation as well, especially for our fastest machine, Westmere. The more
complex operations are affected even more: the MSET operation can become factor
3 slower.

We can conclude, that the performance span of the various redis instances is
much more narrow, than what we have seen in case of compiling MonetDB. redis
uses a protocol for communicating between clients and servers, which adds an
overhead on each call to the GET and SET operation. This, ultimately cannot
be "optimized away” by using a suitable compiler setup, nor can it be improved
much, as our experiments have shown. The take-away message is that redis and
probably other key-value stores are not fragile to compilation settings.

Chapter 7

Summary

In this last chapter of this thesis we summarize the main results and lessons learned.
We conclude this work by highlighting some possible future work on vertical par-
titioning and compiling database systems.

7.1 Vertical Partitioning for Legacy Row Stores

There are a number of vertical partitioning algorithms proposed in the literature.
In this work, we presented a systematic and comprehensive study of vertical par-
titioning algorithms. We categorized vertical partitioning algorithms along three
dimensions and surveyed six different algorithms. We experimentally evaluated
these six algorithms under a common configuration setting. We introduced four
metrics to compare different vertical partitioning algorithms and showed results
from the TPC-H benchmark. Our results identified the trade-offs between opti-
mization time and workload runtime improvements, improvements over row and
column layouts, and effects of database buffer size.

7.1.1 Lessons Learned

In this chapter, we compared different vertical partitioning algorithms and studied
ways to pick one vertical partitioning algorithm over another for row-oriented
database systems.

1. We don’t really need brute force. The brute force algorithm spends an
extremely long time to compute the layouts (more than an hour for TPC-H).
On the other hand, the vertical partitioning algorithms evaluated in this work
terminate in at most a few minutes. In fact, AutoPart and HillClimb take less
than 1 second to compute the layouts for all tables in the TPC-H benchmark.
Still both AutoPart and HillClimb find ezactly the same solution as the brute

133

134 7.1. Vertical Partitioning for Legacy Row Stores

force algorithm. HYRISE takes slightly more than a second to compute the
layouts but it is only 2.21% off from the brute force algorithm, in terms of query
costs. Similarly Trojan takes a couple of minutes for optimization, however it
is just 0.01% off from the brute force algorithm in terms of estimated runtime.
This is an important result and shows that we do not really need the brute force
algorithm. Several heuristics, as proposed in different algorithms, are good enough.

2. Watch out for the buffer size. The performance of vertically partitioned
layouts depend heavily on the database buffer size. In fact, the buffer size can
impact the query workload runtimes by as much as factor 20. Thus buffer size
is a crucial consideration when computing vertical partitioning. Furthermore,
our measurements reveal that vertical partitioning improves over column layout
only for buffer sizes less than 100 MB. This means if we can have a system with
buffered reads of more than 100 MB at a time, then we better use column layout.
Put another way: if we want to avoid vertical partitioning then we must increase
the buffer size of our database system. This is one of the core results of this chapter.

3. HillClimb is the best algorithm for disk-based systems. Amongst the
six vertical partitioning algorithms compared in this chapter, HillClimb turns out
to be the best for the TPC-H queries. HillClimb offers the best trade-off between
optimization time and workload runtime performance. It spends 4 orders of
magnitude less time in optimization and still finds the same vertical partitioning
as the brute force algorithm. As a result, the optimization time of HillClimb pays
off the earliest (just after 25% of TPC-H workload) over row layout. Furthermore,
from our experience HillClimb is also one of the easiest algorithms to understand
and implement.

4. Column layouts are often good enough. On the TPC-H benchmark
(i.e. all 22 queries) the vertical partitioning algorithms could improve over column
layout by only up to 3.7%. This is because the attribute access patterns over all
22 queries are quite fragmented and it is hard to find column groups which satisfy
most of the queries. Indeed, the improvements over column layout go up to 24%
when using a small subset of the TPC-H workload (see Figure 2.7). But still the
improvements over column layout are not dramatic. To investigate this further, we
tried three changes in our experimental setup — using a different benchmark, using
a different cost model, and using a commercial database system which supports
column grouping.

Chapter 7. Summary 135

7.1.2 Future Work

We have brought several vertical partitioning algorithms for the sake of an apples-
to-apples comparison under the same unified setting. There we have found that
HillClimb is a simple, yet very fast and efficient algorithm. Thus, it would be
straightforward to adjust HillClimb to work in other interesting settings as well.
In particular, it would be quite promising to apply it for full-replication scenarios,
like Hadoop MapReduce, similarly to Trojan Layouts. More specifically the query-
and attribute partitioning parts of Trojan Layouts could be completely replaced by
HillClimb. This would have the immediate consequence of a runtime reduction by
orders of magnitudes, while still maintaining the close to optimal solution quality,
as observed in the setting without replication.

7.2 Query Processing on Top of Flat Files

We have learned that for relatively simple queries operating on a single file only,
both a custom-built C++ application and AWK can offer a shorter time-to-query
than PostgreSQL, with the former being the fastest. For more complex queries
operating on multiple files PostgreSQL is the best option. Though it still has the
longest time-to-query, it offers a superior query performance on subsequent runs,
which makes the initial data loading costs quickly pay off.

We have also shown that the standard configuration settings for PostgreSQL
are inappropriate, and using a tuned configuration can reduce the loading time by
17%. Furthermore, if the flat files reside on the server, then we can reduce the
loading time by 5% just by using the right loading command.

We have seen that when processing flat files with AWK, it is better if the
flat files are stored in fixed-width format. This is especially true, if only a few
attributes are accessed from each record, where the increase in performance can
be up to factor 8.

7.3 Runtime Fragility in Main Memory

7.3.1 Fragility of Hand-coded Queries in Main-Memory

In this chapter we have identified various sources of query time fragility — imple-
mentation factors that can change the performance of a query by factors in an
unpredictable way. We have investigated the fragility of both micro-benchmarks
and complex analytical benchmarks. We have considered the CPU architecture,
the compiler, and the compiler flags as important factors. We have introduced the
memPAX layout and compared its fragility to column layout and row layout.

136 7.3. Runtime Fragility in Main Memory

We have shown that when querying tables with 1-byte integer columns a very
high fragility is to be expected, in our case leading to a performance drop of up
to factor 25. In case of more complex schemas and queries the inhomogeneity of
the schema has a direct effect on the fragility. Applying dictionary- and domain
encoding to the columns have reduced fragility by 50% to 80% in our experiments
on the TPC-H benchmark.

We have found a use-case in query processing where using powers of 2 is always
a suboptimal choice, leading to one more cause of fragile query times. We have
shown how to choose the chunk sizes of the memPAX layouts to improve tuple-
reconstruction costs by 20%.

7.3.2 Fragility of Compiling a Database System

In this chapter we have presented an exhaustive experimental study on compiling
the MonetDB database system. Given the large number of tuning knobs of com-
pilers we first discuss the ones that could be the most important starting points
of performance tuning when compiling a whole database system, namely: i) the
compiler itself, ii) the optimization level, and iii) advanced compilation modes. For
the above categories we have considered: i) the three most popular C/C++ com-
pilers (GCC, clang, and the Intel C/C++ compiler), ii) all five standard O-levels,
and iii) link-time optimization (LTO), and profile-guided optimization (PGO). We
have considered all combinations of the above knobs, and have built 90 separate
MonetDB instances using each of them. We have evaluated their performance
on the TPC-H benchmark, using six servers equipped with CPUs of subsequent
generations in our experiments. We have presented two techniques for improving
query performance that build upon changing compiler setups. These approaches
work on two different levels: on a per-query level, and on the physical database
operator level.

The techniques introduced in Chapter 6 can help us to achieve a non-negligible
performance improvement of at least 5%-8% for most queries, and for some few
queries even 20%-30% when executing the TPC-H benchmark in MonetDB. We
can improve query performance in 50% of the cases by choosing a suitable compiler
setup system-wide. However, for improving the query performance in the rest of
the cases, we have to use query routing or eventually dynamically loaded opera-
tors. We have also shown that the efficiency of these approaches varies drastically
between machines with different CPU architectures. All these findings support,
that we should not consider the compiler as just another abstraction layer, but as
a valid candidate for performance tuning when building main-memory database
systems.

Chapter 7. Summary 137

7.3.3 Future Work

It is interesting future work to explore the same compilation techniques we did
for MonetDB in LegoBase as well. LegoBase produces C-code as an intermediate
result, which gets eventually compiled into machine code. Here we could also
choose proper compiler settings to improve the performance of the resulting query
executable.

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8

2.9

2.10
2.11

2.12

2.13

2.14

2.15
2.16

3.1
3.2
3.3

Optimization time [log scale] for different algorithms
Optimization time over varying workload size
Estimated workload runtime for the produced solutions
Fraction of unnecessary dataread
Average tuple reconstruction joins,
Distance from perfect materialized views
Estimated workload runtime improvements over Column when re-
optimizing for the first £ queries.
Algorithm fragility — estimated change in workload runtime due to
changing the buffer size at query time.
Algorithm fragility — estimated change in workload runtime due to
changing a single parameter at query time.
Fragility of algorithms over changing workload.
Estimated workload runtime compared to Column when re-
optimizing for each buffer size.
Estimated workload runtime when re-optimizing for each block size,
disk bandwidth and seek time
Sweet-spots for vertical partitioning — re-optimizing for each buffer
size and each dataset size, and showing the estimated workload
runtime compared to Column.
Pay-off in workload runtime improvements over optimization- and
creation times. Lo
Estimated query I/O cost over varying selectivity
The computed partitions for the TPC-H workload.

Runtimes of the TPC-H Q22-Customer subquery.
Runtimes of the TPC-H Q4 query.
Runtimes of projecting the first k fields of each record of the
Lineitem table in AWK showing the total costs till each process-
ing step.

139

67

140 LIST OF FIGURES
3.4 Runtimes of projecting the k. field only of each record of the disk-
resident Lineitem table in AWK showing the total costs till each
processing step.o o 67
3.5 Runtimes of projecting the first k£ fields of each record of the
memory-resident Lineitem table in C++, showing the total costs
till each processing step.o 68
4.1 Query times for two different layouts, each measured five times . . . 72
4.2 The general schema of a star-schema database for storing experi-
mental results. 74
4.3 The schema of the view representing the input of the analysis. . . . 75
4.4 The SQL query for performing the mapping from the fact table. . . 75
4.5 The PL/R function for calling an arbitrary R-function that operates
on vectors. 76
4.6 The PL/R function for calculating the margin-of-error of a set of
measurements.o L Lo 76
4.7 The PL/R function for removing outliers using Grubb’s test. 7
4.8 The PL/R function for calculating the two-sample t-test. 78
4.9 Creating the view for calculating statistics on each experiment. . . . 79
4.10 Creating the view for removing outliers. 79
4.11 The SQL commands for finding the best solution of each problem. . 80
4.12 The SQL commands for finding the set of indistinguishable best
solutions per problem. L. 80
5.1 memPAX layouts of a table having 2 columns and 8 records, con-
sidering powers of 2 chunk sizes. 83
5.2 The queries used in the experiments 84
5.3 The schema of the database storing the measured query times. . . . 86
5.4 The SQL query for performing the mapping between the fact tables. 87
5.5 The SQL query for mapping the problem key and solution_—
key fields of the best solutions calculated by our framework to
foreign key fields in our database. 87
5.6 Best layouts and their query times. Drilled-down along machine,
schema, and query. L 89
5.7 Runtime fragility of the various data layouts in our micro benchmarks 91
5.8 Robustness of the best solutions in our micro benchmarks 92
5.9 The architecture diagram of Intel Sandy Bridge. 93
5.10 Query times of Ql and Q2. 95
511 PMU events of Ql and Q2. 96
5.12 Runtime fragility of the various data layouts for TPC-H queries 98

LIST OF FIGURES 141

6.1
6.2

6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12
6.13

MonetDB compile times using the standard compilation mode. . . . 109
TPC-H query times using different compilers, compared to that of
gee (lower is better).o 111
TPC-H query times using different compilers and O-levels, com-
pared to that of gcc -O3 (lower is better). 112

TPC-H query times using different compilers and O-levels, com-
pared to that of gcc -O3 (lower is better). Single-threaded query

exXecution.l 112
The workload time of the TPC-H benchmark using the MonetDB
instances compiled with different compiler setups 114
TPC-H multithreaded query times on different machines using dif-
ferent compilers and O-levels (lower is better). 117
Query times of the TPC-H benchmark on Westmere scaled to that
of the default MonetDB instance. 118
Query time reduction over the default setup when using query routing.119
Operator runtimes of TPC-H Q4 in MonetDB 121
Runtime breakdown of the three most expensive operator in TPC-H
Q4 on Sandy Bridge. 123
Query time improvements for the three routing approaches. 128
redis compile times.o 130

Best and worst redis benchmark throughputs (higher is better)
showing the throughputs of the default compiler settings (gcc -O2,
non-native code) aswell. L 131

List of Tables

2.1
2.2
2.3
24

2.5

2.6
2.7

2.8

3.1

3.2

5.1
5.2
2.3
5.4

2.5

6.1
6.2
6.3
6.4

6.5

Classification of the evaluated vertical partitioning algorithms. . . . 14
Settings for different vertical partitioning algorithms. 21
Unnecessary data reads over the Lineitem table for the first k queries. 32
Average number of tuple-reconstruction joins per row of the

Lineitem table for the first k queries. 33
Estimated improvement over column layout with different bench-
marks. 42

Estimated improvement over column layout with different cost models. 43
TPC-H workload runtimes with scale factor 10 in DBMS-X for dif-

ferent layouts and compression schemes 44
Vertical partitioning of the TPC-H PartSupp table. 52
Loading from text files in PostgreSQL with default configuration

settings.o 60
Loading text files into PostgreSQL with changing level of configu-

ration settings tuning.o 61
The schemas used in our experiments 83
The machines used in our experiments 84
The best layouts and most efficient ways of implementing a query . 88
The performance drop of worst and best query times for each ex-

periment 89
The compression schemes applied to the TPC-H Lineitem table . . 97
The machines used in our experiments 104
Compiler optimization levels 105
Optimization level inclusion for different compilers 105
The CPU architecture detected by clang and gcc when generating

native (architecture specific) code. 106
TPC-H workload times as a factor of the default workload time,

that of gcc -03 (lower is better). 112

143

144 LIST OF TABLES

6.6 Call counts of the most-expensive operator in the multi-threaded
query execution traces of some TPC-H queries. 116
6.7 Best compiler setups for the long-running operators of TPC-H Q4
on Sandy Bridge.o 122

Bibliography

1]
2]
3]

[10]

Aerospike DBMS. http://www.aerospike.comn.
redis key-value store. http://redis.io.

Azza Abouzied, Daniel J. Abadi, and Avi Silberschatz. Invisible Loading:
Access-Driven Data Transfer from Raw Files into Database Systems. In
EDBT, pages 1-10, 2013.

Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. Integrating Vertical
and Horizontal Partitioning Into Automated Physical Database Design. In
ACM SIGMOD, pages 359-370, 2004.

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK
Programming Language. Addison-Wesley, 1988.

Anastassia Ailamaki et al. Weaving Relations for Cache Performance. In
VLDB 2001, pages 169-180, 2001.

loannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and
Anastasia Ailamaki. NoDB: Efficient Query Execution on Raw Data Files. In
ACM SIGMOD, pages 241-252, 2012.

Eric T Bell. Exponential numbers. The American Mathematical Monthly,
41(7):411-419, 1934.

Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark. In Technol-
ogy Conference on Performance Evaluation and Benchmarking, pages 61-76.
Springer, 2013.

Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database Architec-
ture Evolution: Mammals Flourished long before Dinosaurs became Extinct.
PVLDB, 2(2):1648-1653, 2009.

145

http://www.aerospike.com
http://redis.io

146

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Peter A. Boncz, Thomas Neumann, and Orri Erling. TPC-H analyzed: Hid-
den messages and lessons learned from an influential benchmark. In Perfor-
mance Characterization and Benchmarking - 5th TPC Technology Conference,
TPCTC 2013, Trento, Italy, August 26, 2013, Revised Selected Papers, pages
61-76, 2013.

Bonnie++. coker.com.au/bonnie++.

David Broneske, Sebastian Brefl, and Gunter Saake. Database scan variants
on modern cpus: a performance study. In I'n Memory Data Management and
Analysis, pages 97-111. Springer, 2015.

Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha Ra-
masamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. Taming hard-
ware event samples for FDO compilation. In Proceedings of the 8th annual

IEEE/ACM international symposium on Code generation and optimization,
pages 42-52. ACM, 2010.

W. W. Chu and I. T. leong. A Transaction-Based Approach to Vertical Parti-
tioning for Relational Database Systems. IEEE Trans. Softw. Eng., 19(8):804—
812, 1993,

Joe Conway. PL/R - R Procedural Language for PostgreSQL. www.
joeconway.com/plr/.

Douglas W. Cornell and Philip S. Yu. A Vertical Partitioning Algorithm for
Relational Databases. In ICDFE, pages 30-35, 1987.

Douglas W. Cornell and Philip S. Yu. An Effective Approach to Vertical
Partitioning for Physical Design of Relational Databases. IEEE Trans. Softw.
Eng., 16(2):248-258, 1990.

Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference
Manual.

Franz Farber, Sang Kyun Cha, Jiirgen Primsch, Christof Bornhovd, Stefan
Sigg, and Wolfgang Lehner. SAP HANA database: data management for
modern business applications. ACM Sigmod Record, 40(4):45-51, 2012.

Glenn Fowler. cql: Flat file database query language. In Proceedings of the
USENIX Winter 1994 Technical Conference, pages 11-21, 1994.

coker.com.au/bonnie++
www.joeconway.com/plr/
www.joeconway.com/plr/

BIBLIOGRAPHY 147

[22]

[27]

28]

[29]
[30]

[31]

Mrunal Gawade and Martin Kersten. Tomograph: Highlighting query paral-
lelism in a multi-core system. In Proceedings of the Sixth International Work-
shop on Testing Database Systems, DBTest "13, pages 3:1-3:6, New York, NY,
USA, 2013. ACM.

Taras Glek and Jan Hubicka. Optimizing real world applications with GCC
Link Time Optimization. arXiw preprint arXiv:1010.2196, 2010.

Frank E Grubbs. Sample criteria for testing outlying observations. The Annals
of Mathematical Statistics, pages 27-58, 1950.

Martin Grund et al. HYRISE: a main memory hybrid storage engine. PVLDB,
4(2):105-116, 2010.

Martin Grund, Jens Kriiger, Hasso Plattner, Alexander Zeier, Philippe Cudre-
Mauroux, and Samuel Madden. HYRISE: A Main Memory Hybrid Storage
Engine. PVLDB, 4(2):105-116, 2010.

Michael Hammer and Bahram Niamir. A Heuristic Approach to Attribute
Partitioning. In ACM SIGMOD, pages 93-101, 1979.

Richard A. Hankins and Jignesh M. Patel. Data Morphing: An Adaptive,
Cache-Conscious Storage Technique. In VLDB, pages 417-428, 2003.

HBase. hbase.apache.org.

Jeffrey A. Hoffer and Dennis G. Severance. The Use of Cluster Analysis in
Physical Data Base Design. In VLDDB, pages 69-86, 1975.

Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level explo-
ration. In Proceedings of the 6th annual IEEE/ACM international symposium
on Code generation and optimization, pages 165—174. ACM, 2008.

S. Idreos, 1. Alagiannis, R. Johnson, and A. Ailamaki. Here are my Data
Files. Here are my Queries. Where are my Results? In CIDR, 2011.

Milena Ivanova, Martin Kersten, and Stefan Manegold. Data Vaults: A Sym-
biosis between Database Technology and Scientific File Repositories. In SS5-
DBM, pages 485—-494. Springer, 2012.

Raj Jain. The art of computer systems performance analysis. John Wiley &
Sons, 1991.

Alekh Jindal and Jens Dittrich. Relax and let the database do the partitioning
online. In BIRTE, pages 65-80, 2011.

hbase.apache.org

148

BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[46]

[47]

Alekh Jindal, Endre Palatinus, Vladimir Pavlov, and Jens Dittrich. A Com-
parison of Knives for Bread Slicing. PVLDB, 6(6):361-372, 2013.

Alekh Jindal, Jorge-Arnulfo Quiané-Ruiz, and Jens Dittrich. Trojan Data
Layouts: Right Shoes for a Running Elephant. In ACM SOCC, pages 21:1—
21:14, 2011.

Alekh Jindal, Felix Martin Schuhknecht, Jens Dittrich, Karen Khachatryan,
and Alexander Bunte. How Achaeans Would Construct Columns in Troy. In
CIDR, 2013.

William T. McCormick Jr., Paul J. Schweitzer, and Thomas W. White. Prob-
lem Decomposition and Data Reorganization by a Clustering Technique. Op-
erations Research, 20(5):993-1009, 1972.

Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In Data FEngi-
neering (ICDE), 2011 IEEFE 27th International Conference on, pages 195-206.
IEEE, 2011.

Ioannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. Building
efficient query engines in a high-level language. In Proceedings of the VLDB
Endowment, volume 7, 2014.

Konstantinos Krikellas, Stratis D Viglas, and Marcelo Cintra. Generating
code for holistic query evaluation. In 2010 IEEE 26th International Confer-
ence on Data Engineering (ICDE 2010), pages 613-624. IEEE, 2010.

Per-Ake Larson, Mike Zwilling, and Kevin Farlee. The Hekaton Memory-
Optimized OLTP Engine. IEEE Data Eng. Bull., 36(2):34-40, 2013.

Konrad Lorincz, Kevin Redwine, and Jesse Tov. Grep versus FlatSQL versus
MySQL. 2003.

Tobias Miihlbauer, Wolf Rodiger, Robert Seilbeck, Angelika Reiser, Al-
fons Kemper, and Thomas Neumann. Instant Loading for Main Memory
Databases. PVLDB, 6(14):1702-1713, 2013.

Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical
Partitioning Algorithms for Database Design. ACM TODS, 9(4):680-710,
1984.

Shamkant B. Navathe and Mingyoung Ra. Vertical Partitioning for Database
Design: A Graphical Algorithm. In ACM SIGMOD, pages 440-450, 19809.

BIBLIOGRAPHY 149

[48]

[49]

[50]

[51]

[52]

[55]

[56]

Thomas Neumann. Efficiently compiling efficient query plans for modern
hardware. Proceedings of the VLDB Endowment, 4(9):539-550, 2011.

Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow., 4(9):539-550, June 2011.

Endre Palatinus and Jens Dittrich. Runtime Fragility in Main Memory. In
Proceedings of the 2016 Joint Workshop on Accelerating Analytics and In-
Memory Data Management Systems, LNCS, 2016.

Stratos Papadomanolakis and Anastassia Ailamaki. AutoPart: Automating
Schema Design for Large Scientific Databases Using Data Partitioning. In
SSDBM, pages 383-392, 2004.

D.A. Patterson and J.L. Hennessy. Computer Organization and Design,
Fourth Edition: The Hardware/Software Interface. The Morgan Kaufmann
Series in Computer Architecture and Design. Elsevier Science, 2008.

Holger Pirk et al. CPU and cache efficient management of memory-resident
databases. In ICDE 2013, pages 14-25, 2013.

Bogdan Raducanu, Peter Boncz, and Marcin Zukowski. Micro adaptivity in
vectorwise. In Proceedings of the 2013 ACM SIGMOD International Confer-
ence on Management of Data, pages 1231-1242. ACM, 2013.

Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Di-
alani, Donald Kossmann, Inderpal Narang, and Richard Sidle. Constant-Time
Query Processing. In ICDE, pages 60-69, 2008.

Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. In Acm Sigplan
Notices, volume 46, pages 127-136. ACM, 2010.

Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. Vectorization vs. com-
pilation in query execution. In Proceedings of the Seventh International Work-
shop on Data Management on New Hardware, pages 33—40. ACM, 2011.

Star Schema Benchmark. www.cs.umb.edu/~poneil/StarSchemaB.
pdf.

TPC-H. http://www.tpc.org/tpch/.

Transaction Processing Performance Council. TPC-H benchmark specifica-
tion. Published at hitp://www.tpc.org/tpch, 2013.

www.cs.umb.edu/~poneil/StarSchemaB.pdf
www.cs.umb.edu/~poneil/StarSchemaB.pdf
http://www.tpc.org/tpch/

150 BIBLIOGRAPHY

[61] Vertica. vertica.com.

[62] Bernard L Welch. The generalization of Student’s problem when several dif-
ferent population variances are involved. Biometrika, pages 28-35, 1947.

[63] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexan-
der Zeier, and Jan Schaffner. SIMD-scan: Ultra Fast In-memory Table Scan
Using On-chip Vector Processing Units. Proc. VLDB Endow., 2(1):385-394,
August 20009.

[64] Barry M Zane, James P Ballard, Foster D Hinshaw, Dana A Kirkpatrick, and
Premanand Yerabothu. Optimized SQL code generation, September 30 2008.
US Patent 7,430,549.

[65] Rui Zhang, Richard T Snodgrass, and Saumya Debray. Application of micro-
specialization to query evaluation operators. In Data Engineering Work-
shops (ICDEW), 2012 IEEE 28th International Conference on, pages 315
321. IEEE, 2012.

[66] Rui Zhang, Richard T Snodgrass, and Saumya Debray. Micro-Specialization
in DBMSes. In 2012 IEEE 28th International Conference on Data Engineer-
ing, pages 690-701. IEEE, 2012.

vertica.com

	Chapter 1: Introduction
	Vertical Partitioning for Legacy Row Stores
	Research questions
	Contributions
	Publications

	Query Processing on Top of Flat Files
	Research questions
	Contributions

	Computer Systems Performance Analysis
	Contributions

	Runtime Fragility in Main Memory
	Fragility of Hand-coded Queries in Main-Memory
	Fragility of Compiling a Database System

	Chapter 2: Vertical Partitioning for Legacy Row Stores
	Introduction
	Background
	Effects of Vertical Partitioning
	Choosing a Vertical Partitioning Algorithm
	Contributions

	Classification of Vertical Partitioning Algorithms
	Search Strategy
	Starting Point
	Candidate Pruning

	Evaluated Algorithms
	Methodology
	Comparison Metrics
	Simulations and Experiments
	Comparing Optimization Time
	Comparing Algorithm Quality
	Comparing Algorithm Fragility
	Where does vertical partitioning make sense?

	Lessons Learned
	Conclusion
	Additional Results
	How soon does vertical partitioning pay-off?
	Extending our Model to Consider Selectivity

	Layouts
	Implementation Notes
	A short walk-through of vertically partitioning the TPC-H PartSupp table
	A Quick-start Guide

	Chapter 3: Query Processing on Top of Flat Files
	Introduction
	Flat File Databases
	The Processing Model of Flat File Databases
	Research questions
	Contributions

	Related Work
	Benchmarking Flat File Processing
	Experimental Setup
	Loading Data into PostgreSQL
	A Simple Aggregation Query
	A More Complex Query
	The Inherent Costs of Flat File Processing
	Files in Binary Format

	Conclusions
	The C I/O Library

	Chapter 4: Computer Systems Performance Analysis
	Performance Analysis
	Motivating Example
	Confidence Intervals
	Outlier Detection
	Choosing the Best Solution when there is no Single Best Solution

	A Framework for Statistical Analysis of Experimental Results
	Calculating statistics in SQL
	Finding the best solution of each problem

	Chapter 5: Runtime Fragility of Hand-coded Queries in Main Memory
	Introduction
	The six-dimensional Parameter Space of our Experiments
	Managing the Experimental Results
	Micro Benchmark Results
	Runtime Fragility
	Conclusions and Guidelines

	Revisiting Strided Memory Access
	Motivation
	Background
	Available Resources for Performance Monitoring
	Performance Implications on Tuple-reconstruction

	TPC-H Experiments
	Experimental setup
	Runtime Fragility

	Conclusions

	Chapter 6: The Performance Implications of Compiling a Main-Memory Database System
	Introduction
	Motivation
	Research Questions
	Contributions

	The Six-dimensional Parameter Space of our Experiments
	Methodology
	Building MonetDB
	Experimental setup.

	90 shades of compiling MonetDB
	What happens if we use another compiler?
	What happens if we change the O-level as well?
	What else can happen inside traditional compilation?
	What changes if we use another machine?
	What if we use advanced compilation modes?

	Query routing
	Operator routing
	Related work
	Conclusion and Future Work
	When to compile
	Putting it all together
	Future work

	The performance implications of compiling a key-value store
	Experiments

	Chapter 7: Summary
	Vertical Partitioning for Legacy Row Stores
	Lessons Learned
	Future Work

	Query Processing on Top of Flat Files
	Runtime Fragility in Main Memory
	Fragility of Hand-coded Queries in Main-Memory
	Fragility of Compiling a Database System
	Future Work

	List of Figures
	List of Tables
	Bibliography

