
Distributed Querying
of Large Labeled Graphs

Sairam Gurajada

Thesis for obtaining the title of Doctor of Engineering

of the Faculty of Mathematics and Computer Science

of Saarland University

Saarbrücken

2016

Colloquium

Date : February 6, 2017

Place : Saarbrücken

Dean : Prof. Dr. Frank-Olaf Schreyer

Examination Board

Chair : Prof. Dr. Jens Dittrich

Reviewer & Advisor : Prof. Dr. Martin Theobald

Reviewer & Supervisor : Prof. Dr. Gerhard Weikum

Reviewer : Prof. Dr. M. Tamer Özsu

Reviewer : Prof. Dr. Sebastian Michel

Academic Assitant : Dr. Luciano Del Corro

ii

Abstract

Graph is a vital abstract data type that has profound signi�cance in several appli-

cations. Because of its versitality, graphs have been adapted into several di�erent

forms and one such adaption with many practical applications is the “Labeled

Graph”, where vertices and edges are labeled. An enormous research e�ort has

been invested in to the task of managing and querying graphs, yet a lot challenges

are left unsolved. In this thesis, we advance the state-of-the-art for the following

query models, and propose a distributed solution to process them in an e�cient

and scalable manner.

• Set Reachability. We formalize and investigate a generalization of the basic no-

tion of reachability, called set reachability. Set reachability deals with �nding

all reachable pairs for a given source and target sets. We present a non-iterative

distributed solution that takes only a single round of communication for any

set reachability query. This is achieved by precomputation, replication, and in-

dexing of partial reachabilities among the boundary vertices.

• Basic Graph Patterns (BGP). Supported by majority of query languages, BGP

queries are a common mode of querying knowledge graphs, biological datasets,

etc. We present a novel distributed architecture that relies on the concepts of

asynchronous executions, join-ahead pruning, and a multi-threaded query pro-

cessing framework to process BGP queries in an e�cient and scalable manner.

• Generalized Graph Patterns (GGP). These queries combine the semantics of pat-

tern matching and navigational queries, and are popular in scenarios where

the schema of an underlying graph is either unknown or partially known. We

present a distributed solution with bimodal indexing layout that individually

support e�cient processing of BGP queries and navigational queries. Further-

more, we design a uni�ed query optimizer and a processor to e�ciently process

GGP queries and also in a scalable manner.

To this end, we propose a prototype distributed engine, coined “TriAD” (Triple
Asynchronous and Distributed) that supports all the aforementioned query models.

We also provide a detailed empirical evaluation of TriAD in comparison to several

state-of-the-art systems over multiple real-world and synthetic datasets.

iii

iv |

Kurzfassung

Graphenorientierte Datenmodelle haben in den vergangenen Jahren zunehmend

an Relevanz im Bereich der Datenverarbeitung mittels moderner Information-

ssysteme gewonnen. Eine sehr vielseitige, allgemeine Form der graphenorien-

tierten Repräsentation von Datenobjekten und deren Beziehungen zueinander bi-

eten sogenannte „beschriftete Graphen“, in denen sowohl die Knoten als auch die

Kanten zwischen den Datenobjekten Beschriftungen tragen. Wegen der enorm

vielseitigen Anwendbarkeit dieser graphenorientierten Datenmodelle beschäftigt

sich eine große Anzahl aktueller Forschungsarbeiten insbesondere mit der verteil-

ten Verarbeitung und Anfragebearbeitung von großen Graphdatensätzen. Den-

noch bleiben viele Herausforderungen gerade bezüglich der E�zienz und der

Skalierbarkeit dieser Ansätze weiterhin o�en. Die vorliegende Dissertation er-

weitert die aktuellen Forschungsergebnisse für die folgenden Anfragemodelle auf

großen, beschrifteten Graphen.

• Verteilte Mengenerreichbarkeit. Auf Basis des bekannten Erreichbarkeitsprob-

lems in gerichteten, beschrifteten Graphen formulieren wir eine Verallgemeine-

rung dieses Problems, welches wir als „verteilte Mengenerreichbarkeit“ beze-

ichnen. Mengenerreichbarkeit bezeichnet das Erreichbarkeitsproblem für Men-

gen von Quell- und Zielknoten, zwischen denen wir alle Paare von Quell- und

Zielknoten, die jeweils im zu Grunde liegenden Datengraphen erreichbar sind,

suchen. Im Gegensatz zu bestehenden Ansätzen zur Anfrageauswertung auf

verteilten Graphen präsentieren wir einen nicht-iterativen Lösungsansatz, der

nur einen einzigen Kommunikationsschritt zwischen allen Rechenknoten in

einem Rechnerverbund benötigt. Diese Garantie gilt für beliebige Graphen

und Mengenerreichbarkeitsanfragen und wird durch eine Kombination aus Vo-

rausberechnungen, Replikation und Indexierung der partiellen Erreichbarkeit-

seigenschaften des partitionierten Datengraphen erreicht.

• Einfache Graphenmuster. Anfragen mit sogenannten „einfachen Graphenmustern“

werden von einer Reihe aktueller Anfragesprachen unterstützt und bilden die

häu�gste Form von Anfragen in semantischen Graphen, biologischen Daten-

sätzen und vielen weiteren Formen von graphenorientierten Daten. Zur ef-

�zienten und skalierbaren Auswertung dieser Form von Anfragen präsentieren

v

vi |

wir eine neuartige, verteilte Architektur, die verschiedene Konzepte der Opti-

mierung von Ausführungsplänen innerhalb eines Rechnerverbundes, der paral-

lelen Ausführung dieser Ausführungspläne innerhalb eines jeden Rechenknotens,

sowie der asynchronen Kommunikation zwischen den Rechenknoten miteinan-

der verbindet.

• Verallgemeinerte Graphenmuster. Diese Form der Anfragen kombinieren ein-

fache Graphenmuster mit zusätzlichen Navigationsbedingungen, die in Form

von regulären Ausdrücken zwischen den einfachen Graphenmustern vorliegen.

Diese Anfragen kommen insbesondere dann zum Einsatz, wenn das Schema

des zu Grunde liegenden Datengraphen nicht oder nur teilweise bekannt ist.

Zur verteilten Auswertung dieser verallgemeinerten Graphenmuster präsen-

tieren wir eine Kombination unserer Indexstrukturen zur Auswertung einfacher

Graphenmuster mit unseren Indexstrukturen zur Auswertung von Mengenerre-

ichbarkeitsanfragen. Des Weiteren entwickeln wir einen einheitlichen Ansatz

zur Optimierung und der – sowohl verteilten als auch parallelen – Auswertung

von Anfragen mit verallgemeinerten Graphenmustern.

Zusammenfassend stellt die vorliegende Dissertation die Architektur eines

verteilten Prototypens (genannt „TriAD“ für „Triple-Asynchronous-Distributed“)

zur e�zienten und skalierbaren Auswertung der oben genannten Anfragen auf

großen, beschrifteten Graphen vor. Des Weiteren präsentiert die Dissertation

eine detaillierte, empirische Evaluation von TriAD im Vergleich zu einer Reihe ak-

tueller Systeme auf großen Graphdatensätzen mit unterschiedlichen Eigenschaften.

To my parents

viii |

Acknowledgements

I would take this moment to thank my advisor Prof. Martin Theobald for all the

support and freedom he provided to pursue my research interests. I am glad to

have an advisor like him, who is very responsible and easily accessible for all the

insightful discussions when needed and for all the advice when sought, irrespec-

tive of the place he stays. I would also like to thank him for the immense help he

provided in writing good research articles.

Many thanks to Prof. Sebastian Michel, Prof. Tamer Özsu, and Prof. Gerhard

Weikum for agreeing to review my thesis. I would like to extend my thanks to

Prof. Gerhard Weikum and International Max Planck Research School for provid-

ing �nancial assistance and a conducive environment to pursue my studies.

I thank all my colleagues and sta� at D5 group for making the workplace an

exciting atmosphere. Thanks to Patrick Ernst, Dat Ba Nguyen, and Amy Siu for

being wonderful o�cemates and bringing in a tradition to gift souveniors.

I thank my co-authors Sourav Dutta, Iris Miliaraki, Stephan Seufert, and Ja-

copo Urbani for their inspiring team work and thoughtful technical discussions.

Thanks to Syama Sundar Rangapuram for helping me to adjust to Saarbrücken

and for being an easily approachable person. I thank all my current and former

friends in Saarbrücken for making my stay joyful.

Finally, I would like to distinctively thank and remember my father for all the

care and constant support he had on me to pursue my goals, all while comprising

on his wishes. Special thanks to my mother, brother, and sister for their contin-

uous encouragement. Last, and surely not least, I thank my �ancée Lavanya for

patiently waiting to �nish my studies.

ix

x |

Contents

1 Introduction 1
1.1 Labeled Graphs . 1

1.2 Querying Labeled Graphs . 2

1.3 Challenges . 3

1.4 Contributions . 4

1.5 Organization . 5

2 Background & Preliminaries 7
2.1 Background . 7

2.1.1 Graphs . 7

2.1.2 Relational Databases . 16

2.1.3 Graph Data Management 23

2.2 Preliminaries . 30

2.2.1 Data Model . 30

2.2.2 Query Model . 32

3 Set Reachability 37
3.1 Introduction . 37

3.1.1 Motivation . 37

3.1.2 State-of-the-art . 38

3.1.3 Our Approach & Contributions 40

3.2 Preliminaries . 42

3.2.1 Data & Query Model . 42

3.2.2 Graph Partitioning Strategies 43

3.3 Related Work . 44

3.4 Distributed Reachability . 46

3.4.1 Non-iterative Approach 46

3.4.2 Iterative Approach . 49

3.5 Non-iterative Approaches . 49

3.5.1 Dependency Graph based Approaches 49

3.5.2 Our Approach . 52

3.6 Iterative Approaches . 64

xi

xii | Contents

3.6.1 Vertex-Centric Approach 65

3.6.2 Graph-Centric Approach 65

3.7 Evaluation . 66

3.7.1 E�ciency . 68

3.7.2 Scalability . 69

3.7.3 Updates . 72

3.7.4 Parameters . 72

3.7.5 Applications . 77

3.7.6 Summary of Results . 78

3.8 Summary . 79

4 Basic Graph Patterns 81
4.1 Introduction . 82

4.1.1 Motivation . 82

4.1.2 State-of-the-art . 83

4.1.3 Our Approach & Contributions 85

4.2 Background & Preliminaries . 87

4.2.1 Data & Query Model . 87

4.2.2 Related Work . 89

4.2.3 Graph Summarization . 92

4.3 System Architecture . 94

4.4 Index Organization . 95

4.4.1 Global Summary Graph 95

4.4.2 Encoding Triples . 98

4.4.3 Horizontal Partitioning of Data Triples 98

4.4.4 Local Permutation Indexes 99

4.4.5 Local & Global Statistics 100

4.5 Query Optimization & Distributed Processing 101

4.5.1 Two-Staged Query Processing Overview 101

4.5.2 Generating Supernode Bindings 101

4.5.3 Querying the Data Graph 103

4.5.4 Distributed Query Execution 105

4.6 Evaluation . 108

4.6.1 Datasets & Setup . 108

4.6.2 Results . 109

4.7 Summary . 118

5 Generalized Graph Patterns 119
5.1 Introduction . 120

5.1.1 Motivation . 120

5.1.2 State-of-the-art . 122

5.1.3 Our Approach & Contributions 123

5.2 Preliminaries . 124

5.2.1 Data & Query Model . 124

Contents | xiii

5.2.2 Related Work . 126

5.3 System Architecture . 127

5.4 Index Organization . 128

5.4.1 Local Indexes . 128

5.4.2 Index Statistics . 129

5.5 Query Optimization & Distributed Processing 130

5.5.1 Translation of GGP Queries 130

5.5.2 Plan Optimization . 131

5.5.3 Distributed Query Execution 133

5.6 Evaluation . 136

5.6.1 Datasets & Benchmark . 136

5.6.2 E�ciency . 136

5.6.3 Scalability Tests . 139

5.7 Summary . 139

6 Conclusions and Future Directions 141
6.1 Conclusions . 141

6.2 Future Directions . 142

Appendices

A Additional Details 159
A.1 Giraph Implementations of DSR Queries 159

A.1.1 Giraph . 159

A.1.2 Giraph++ . 159

A.1.3 Giraph++wEq . 160

A.2 SPARQL Queries with Property Paths 161

0 | Contents

Chapter 1
Introduction

1.1 Labeled Graphs

Graph is a simple, versatile, and an age old model for representing complex data.

Starting with the famous “Seven Bridges of Königsberg” problem introduced by the

mathematician Leonhard Euler in 1798, graphs became inherent in many appli-

cations. A graph, basically a pair of vertex and edge sets, capture relationships

among a set of objects. Some of the popular scenarios where a graph is a de facto

model include social networks, knowledge graphs, biological datasets, etc. Be-

cause of its versatility, each application either extend or adapt the graph model to

their respective needs. One of the most common adaption or extension is attach-

ing labels to vertices and edges in a graph, and further allowing multiple edges

between a pair of vertices. This notion of graph, called “Labeled Graph”, is a pop-

ular graph model for expressing large variety of real-world datasets.

Social networks are one of the instance-classes of labeled graph model and

are some of the large graphs available today. These include Facebook
1
, Twit-

ter
2
, etc., which model the information about people, places, events, things, etc.

as vertices and their relationships as edges. Knowledge graphs such as Google’s

Knowledge Graph (Singhal, 2012), Microsoft’s Bing Satori Knowledge Base (Qian,

2013), DBpedia (Bizer et al., 2009), YAGO (Suchanek et al., 2007), etc., on the other

hand, encode semantically rich information in the form of facts such as “Albert
Einstein born in Ulm” or “Diabetes can cause fatigue”. Such an information can

collectively form a labeled graph with the entities such as “Albert Einstein”, “Ulm”

denote vertices and the relation “bornIn” represent an edge in the graph. Appli-

cations such as web search or domain-speci�c medical analysis can bene�t from

such rich knowledge for enhancing the quality of results. Other networks such

as biological datasets (protein-protein interactions, gene co-expressions), Linked-

MDB, GeoSpecies are some of the real-world instances of the labeled graph data

model.

1http://facebook.com
2http://twitter.com

1

http://facebook.com
http://twitter.com

2 | Chapter 1. Introduction

1.2 Querying Labeled Graphs

Querying is one of the most common task on labeled graphs. Depending on the

application in use, queries can be of di�erent models and are of varying complex-

ities. Typical queries on labeled graphs include simple lookups like “�nd whether
two persons are friends on a social network”, or navigational queries like “check if
there exists a multi-hop connecting �ights between two cities”, or complex queries

like “�nd all musicians who are born in Germany and won a Nobel Prize in physics”.
Although simple lookup and navigational queries can be performed in linear time

with respect to the number of edges in a graph, complex queries require a poly-

nomial time in terms of data complexity (Chandra and Merlin, 1977; Vardi, 1982).

In the following we list some of the popular query models which are prominently

used in several applications.

• Connectivity Queries. This class includes simple Boolean reachability queries

that check whether there exists a path between a pair of vertices s, t in a given

graph. Further constraints can be imposed on a path connecting s and t via

regular expressions. Generalizing this notion of simple reachability queries,

connectivity queries include set reachability queries, also known as multi-source

multi-target queries (Gao and Anyanwu, 2013), where the goal is to �nd all

reachable pairs for a given pair of source and target vertex sets.

• Pattern Matching Queries. Pattern matching queries, on the other hand, are used

for querying complex sub-structures, as against connectivity queries which look

only for paths. These queries come in two �avors.

i Basic Graph Patterns (BGP) queries comprise of set of triple patterns, each

representing zero or more edges. Moreover, a BGP query collectively

denotes a set of subgraphs whose vertex (or edge) labels form an answer

to the query.

ii Generalized Graph Patterns (GGP) queries, alternatively called conjunc-

tive regular path queries (CRPQs), combine the semantics of BGP and

connectivity queries that can be used to expresses more complicated query

needs, especially when the schema of the underlying graph is unknown

or partially known, or to query transitive relations.

Although, other query forms such as approximate matching, graph creation,

and aggregation queries are possible, in this thesis, we speci�cally focus on the

three — set reachability, basic graph patterns, and generalized graph patterns —

query models.

Graph Query Languages. Several query languages such as GraphLog (Con-

sens and Mendelzon, 1990), G+ (Cruz et al., 1988), UnQL (Buneman et al., 1996),

SPARQL 1.1 (Prud’hommeaux et al., 2013), Gremlin (Sun et al., 2015), Cypher (Neo4j,

2012) came to prominence with the wide adoption of graphs across multiple do-

mains. Majority of these graph languages support a wide variety of query models,

1.3. Challenges | 3

and prominently, the aforementioned query models. For comprehensive overview

of the graph query languages, we refer the reader to (Angles and Gutierrez, 2008;

Wood, 2012).

Graph Querying Systems. With the meteoric rise in adoption and availability

of large labeled graph datasets across multitude of applications, e�cient man-

agement and querying of graphs became one of the active research areas in re-

cent times. Much research went into the development of e�cient centralized

systems, both in relational world and in native graph-based models. Systems

like Neo4j (Neo4j, 2012), TORNADO (Atkinson et al., 1989), FERRARI (Seufert

et al., 2013), GRAIL (Yildirim et al., 2010), Virtuoso (Erling and Mikhailov, 2010),

RDF-3X (Neumann and Weikum, 2010a), SW-Store (Abadi et al., 2009), Hexas-

tore (Weiss et al., 2008), etc. all provide e�cient support for speci�c query types

in querying labeled graphs. Due to inherent hardware limitations and unable to

pace with the growing size of real-world graph datasets, centralized systems soon

became a bottle-neck in handling large graphs with billion or more edges .

Consequently, distributed systems came into active development with the �rst

prototypes built on top of key-value stores such as MapReduce. These include

H-RDF-3X (Huang et al., 2011), EAGRE (Zhang et al., 2013), SHARD (Rohlo�

and Schantz, 2011), which are scalable to large graphs and support BGP queries,

whilst no or ine�cient support for connectivity queries. Later on, general pur-

pose iterative-based vertex-centric graph processing frameworks like Apache Gi-

raph (Martella et al., 2015), Apache GraphX (Gonzalez et al., 2014), Microsoft’s

Trinity (Shao et al., 2013), Google’s Pregel (Malewicz et al., 2010) rose to promi-

nence and can be programmed to support multiple query types on labeled graphs.

Although these architectures are scalable and can handle graphs with billions of

edges, they are not ideal for real-time processing of queries which is essential in

many applications.

1.3 Challenges

Next, we list some of the challenges with the existing systems that needs to ad-

dressed to build a system that is both scalable and e�cient in distributed querying

of large labeled graphs.

1. Reachability queries, to a great extent, have been addressed in prior works

on centralized systems. While very few works exist for processing set reach-

ability queries in a centralized setting, and moreover, there exist — to the

extent of our knowledge — no prior works in a distributed setting, except

for the work by (Fan et al., 2012) which provides a solution for distributed

single-source single-target reachability. On the other hand, general pur-

pose distributed graph approaches provide a framework for processing set

reachability queries over large graphs in a scalable manner, but lack su�-

cient support to index graphs — like in a centralized setting — to accelerate

query processing.

4 | Chapter 1. Introduction

2. MapReduce-based systems rely on relational joins implemented via Map

and/or Reduce functions to process BGP queries. Although MapReduce-

based joins allow for the execution of multiple join operators in parallel,

they need to synchronize at each level of a query plan. These synchro-

nization steps are heavily dominated by a few stragglers or imbalanced

query plans. On contrary, general purpose graph engines mitigate the prob-

lem by using asynchronous parallel graph explorations instead of relational

joins. As major query languages such as Cypher (Neo4j, 2012), SPARQL

(Prud’hommeaux et al., 2013), etc., require an SQL-style row-oriented out-

put, graph explorations are usually not su�cient without relational joins to

generate �nal answers.

3. Majority of the existing systems (both centralized and distributed) are de-

signed for speci�c query types, i.e., they either support connectivity or BGP

queries, but not both in a single uni�ed system. Queries, like GGP, which

are combination of both connectivity and basic graph patterns are merely

supported by a few centralized and distributed systems such as (Erling and

Mikhailov, 2010; Gubichev et al., 2013).

1.4 Contributions

To overcome the aforementioned challenges and to design an e�cient and scal-

able engine for distributed querying of labeled graphs, we propose a distributed

solution based on the duality of graph and relational concepts. In the following,

we list the contributions made in this thesis.

• In Chapter 3, we formalize and investigate the set reachability querying model,

thus handling both types of connectivity queries. We propose an novel dis-

tributed solution based on graph-based index structures that are commonly

practiced in centralized architectures. Our index structures allow us to process

any set reachability query using a single round of message exchange among the

compute nodes irrespective of the topology of the graph and the selectivity of

the query. We also discuss methods to update our indexes for dynamic graphs

and also using existing centralized indexes as plugins to further accelerate query

processing.

The results of this work was published at (Gurajada and Theobald, 2016b).

• In Chapter 4, we propose a distributed solution to tackle BGP queries following

the principles of relational systems. Leveraging an asynchronous communica-

tion protocol via MPI (The MPI Forum, 1993), we propose an architecture that

supports e�cient asynchronous and parallel join executions via inter-node dis-

tributed and intra-node multi-threading executions. We also propose a novel

join-ahead pruning technique to prune dangling (irrelevant) tuples during dis-

tributed join executions. Finally, we design a distributed-aware query optimizer

1.5. Organization | 5

that generates e�cient plans taking all our ingredients — locality of edges,

multi-threading, and join-ahead pruning — in to consideration.

The results of this work was published at (Gurajada et al., 2014a,b).

• In Chapter 5, we deal with GGP queries and propose a distributed solution com-

bining the techniques from Chapter 3 and 4. Building on top of the distributed

architecture proposed in Chapter 4, we propose a novel uni�ed query optimiza-

tion and processing framework, thus, handling both the navigational and basic

graph patterns aspects of the GGP queries.

The results of this work is available at (Gurajada and Theobald, 2016a).

To this end, we develop a prototype engine, coined “TriAD (TripleAsynchro-

nous and Distributed)”, that integrates all our techniques and supports e�cient

distributed querying of labeled graphs for connectivity and pattern matching query

types.

1.5 Organization

Rest of the thesis is organized as follows. Chapter 2 provides the necessary back-

ground on graphs and relational database systems which is essential for better

understanding of our work. We also brie�y cover existing graph data manage-

ment techniques and establish our data and query model as part of preliminaries.

In Chapter 3, we formalize and investigate set reachability queries in a distributed

setting, and propose a novel technique to process set reachability queries in an ef-

�cient and scalable manner. In Chapter 4, we propose a distributed architecture to

process BGP queries e�ciently. In Chapter 5, we discuss in detail the problem of

distributed processing of GGP queries, and propose an architecture that combines

the techniques discussed in Chapters 3, 4. Finally, Chapter 6 provides a summary

of this thesis, and also we brie�y point out few possible directions in future work.

6 | Chapter 1. Introduction

Chapter 2
Background & Preliminaries

This chapter serves to provide a su�cient background on graph and on relational

models. The duo forms the key building blocks in labeled graph data manage-

ment. We also brie�y discuss graph data management in practice, covering some

of the popular graph data models, query models, and state-of-the-art systems. We

then present our data and query models as part of preliminaries. Furthermore,

this chapter also serves to establish necessary notations that will be used in the

remainder of the thesis.

2.1 Background

2.1.1 Graphs

Graphs provide a very versatile, simple, and �exible data model to capture ob-

jects and their relationships. Many real-world datasets including social networks,

knowledge graphs, and biological datasets are naturally expressible in graph data

models.

One of the most concise de�nitions of a graph can be found in the book by

Reinhard Diestal (Diestel, 2012), it de�nes graph as follows.

Definition 2.1. A graph G is a pair of sets (V , E), denoted by G(V , E), where V is
a set of vertices and E is a set of edges satisfying E ⊆ V × V .

Following the above de�nition, real-world graphs such as social networks can

be modeled by representing people, places, things, etc. as set of vertices V and

a relationship (e.g. “friendship” between two persons) as an edge element in the

edge set E. Analogously, biological datasets can be expressed as graphs by rep-

resenting protein sequences as a set of vertices and their interactions as a set of

edges. Similarly, knowledge graphs, which typically stores facts about real-world

entities can naturally be expressed using graph data models.

In the rest of this section, we brie�y discuss some of the generic graph con-

cepts and properties that are used in further chapters; for the comprehensive back-

ground about graph theory, we refer the reader to the book (Diestel, 2012).

7

8 | Chapter 2. Background & Preliminaries

a b

c d

e

V = {a, b, c, d, e}
E = {{a, b}, {a, c}, {b, d}, {c, d}, {a, e}, {c, e}}

(a)

a b

c d

e

V = {a, b, c, d, e}
E = {(a, b), (a, c), (b, d), (c, e), (d, c), (e, a)}

(b)

Figure 2.1: An example of (a) an undirected graph and (b) a directed graph

2.1.1.1 Directedness

It is not uncommon in many real-world datasets that the relationships are uni-

directional. For instance, in biological datasets, it is often the case that a gene A
“a�ects” gene B but not the vice-versa. To capture such information in graphs,

edges are augmented with the direction. In our example, the relation between

gene A and gene B is represented by a directed edge “A→ B”. On contrary, rela-

tionships such as “friendship”, “marriedto” are bi-directional and are commonly

represented by an undirected edge “A — B”.

A graph is said to be undirected if it comprises of only undirected edges, and

edge between a pair of vertices u and v is represented by an unordered set {u, v}.

An example of an undirected graph is shown in Figure 2.1(a). On the other side, a

graph is said to be directed, if all of the edges have direction associated with them.

An edge in a directed graph is represented by an ordered pair (u, v) stating that

the direction of the edge is from u to v. An example of a directed graph is shown

in Figure 2.1(b).

By representing an edge set E as a set of ordered element pairs, i.e., E =

{ (u, v) | u ∈ V and v ∈ V }, an undirected and a directed graph, respectively,

hold the following the properties.

(u, v) ∈ E ⇔(v, u) ∈ E (undirected)

(u, v) ∈ E 6⇔(v, u) ∈ E (directed)

2.1.1.2 Subgraph

A subgraph G′ of a graph G is de�ned as follows.

Definition 2.2. A subgraph G′(V ′, E′) of a graph G(V , E) is a graph such that the
following holds:

• V ′ ⊆ V , E′ ⊆ E, and
• for u, v ∈ V ′, (u, v) ∈ E′ ⇒ (u, v) ∈ E.

Furthermore, a subgraphG′(V ′, E′) is called a vertex-induced subgraph of graph

G(V , E), if G′ is a subgraph and it contains all of the edges in E that are incident

2.1. Background | 9

on vertices in V ′, i.e., for u, v ∈ V ′, (u, v) ∈ E′ ⇔ (u, v) ∈ E. On the other hand,

G′(V ′, E′) is an edge-induced subgraph of graph G(V , E), if G′ is a subgraph and

it comprises of only vertices that are incident on edges in E′, i.e., for all v ∈ V ′,
either (u, v) ∈ E′ or (v, u) ∈ E′, for some u.

A subgraph, a vertex-induced, and an edge-induced subgraph for the example

graph shown in Figure 2.1(b) are depicted in Figures. 2.2(a), 2.2(b), 2.2(c) respec-

tively.

a b

c d

e

a b

c

e

a b

c d

e

(a) (b) (c)

Figure 2.2: An example of (a) a subgraph, (b) a vertex-induced subgraph,
and (c) an edge-induced sub-graph for example graph shown in Figure 2.1.

2.1.1.3 Graph Properties

Graph properties (or invariants) capture the important characteristics of a graph.

These properties are signi�cant in many applications like isomorphism, connect-

edness, to name a few. Graph properties can be either globally de�ned, i.e., with

respect to an entire graph, or can be de�ned locally for each individual vertex or

edge in a graph. In the following, we de�ne some of the interesting and funda-

mental graph properties that are essential in the context of this thesis.

A. Graph Cardinality

• Size. For a graph G(V , E), the size is the number of edges in G, denoted as |E|.

• Order. The order is the number of vertices in a graph G(V , E), denoted as |V |.

Example 2.1. The size and order of the example graph shown in Figure. 2.1 (or
Figure. 2.1(b)) are �ve and six, respectively.

B. Neighborhood

• Successors. Given a directed graph G(V , E), successors set of a vertex v ∈ V ,

denoted by succ(v), is the set of all immediate neighbors, u, such that (v, u) ∈ E,

i.e., succ(v) = { u | (v, u) ∈ E }.

• Predecessors. Analogously, predecessors set of a vertex v ∈ V in a directed

graph G(V , E), denoted by pred(v), is the set of vertices, u, such that (u, v) ∈ E,

i.e., pred(v) = { u | (u, v) ∈ E }.

10 | Chapter 2. Background & Preliminaries

• Neighbors. For a given vertex v in a directed graph G(V , E), neighbors set of

v, denoted by neigh(v), is the union of sets succ(v) and pred(v), i.e., neigh(v) =

succ(v) ∪ pred(v). In case G(V , E) is undirected, neigh(v) = { u | {u, v} ∈ E }.

Example 2.2. For the example directed graph shown in Figure. 2.1(b), succ(a) = {b, c},
pred(a) = {e}, and neigh(a) = {b, c, e}.

C. Degree

• Out-degree. The out-degree of a vertex v in a directed graph G(V , E) is the size

of the successors set. The out-degree of a vertex v is denoted by deg+
(v) and

de�ned as deg+
(v) = |succ(v)|. Speci�cally, a vertex v with zero out-degree, i.e.,

deg+
(v) = 0, is called a sink or leaf.

• In-degree. On the other side, the in-degree of a vertex v ∈ V in a directed

graph G(V , E) is the size of the predecessors set. Denoted by the deg–
(v), the

in-degree for vertex v, is deg–
(v) = |pred(v)|. A vertex v with zero in-degree,

i.e., deg–
(v) = 0 is called a source or root.

• Degree. Degree (or valency) of a vertex v ∈ V in a graph G(V , E) is the number

of edges incident on v. The degree of a vertex v, in a directed graph, is computed

as deg(v) = deg+
(v) + deg–

(v), or simply deg(v) = |neigh(v)| .

Speci�cally, a vertex v with deg(v) = 0, is called an isolated vertex. Notationally,

the maximum and minimum degree of all vertices in a graph G is represented

by ∆(G) and δ(G), respectively.

Example 2.3. For the example graph shown in Figure. 2.1(b), we have deg+
(a) = 2,

deg–
(a) = 1, and deg(a) = 3 for vertex ‘a’. It can also be observed that the minimum

degree δ(G) = 2 (for ‘b’,‘d’,‘e’) and the maximum degree ∆(G) = 3 (for ‘a’,‘c’).

D. Connectivity

• Connected graph. A graph G(V , E) is said to be connected if there exists a path
between every unordered pair of vertices in V . A path (de�ned later in this

section) between a pair of vertices u, v is a sequence of distinct vertices that lie

in-between u and v. Else, G(V , E) is a disconnected graph.

• Vertex Connectivity. For a given connected graph G(V , E), vertex connectivity

is the smallest set of vertices, X , called cut-vertices, whose removal makes the

resultant vertex-induced subgraph a disconnected graph. Vertex connectivity

of a graph G is denoted by κ(G) and is equal to |X |, such that

arg min

X⊆V
G′(V \X , E′) is a disconnected induced subgraph.

• Edge Connectivity. On the other hand, edge connectivity of a graph is the small-

est set of edges whose removal makes the resultant subgraph a disconnected

2.1. Background | 11

graph. Edge connectivity of a graph G is denoted by λ(G) and is equal to |Y |

where set Y is computed as

arg min

Y⊆E
G′(V , E\Y) is a disconnected subgraph.

Edge connectivity is also referred to as min-cut; the corresponding edge set

and the resultant subgraph are called cut-edges and cut-graph (or simply Cut),
respectively.

• Diameter. For a given connected graph, the diameter refers to the longest of all

the shortest paths between any pair of vertices.

Example 2.4. In our running example, graph G shown in Figure 2.1(b) is a connected
graph, has vertex connectivity κ(G) = 2 with cut-vertices = {a, c} or {a, d} or {b, c}
and the edge connectivity λ(G) = 2 with cut-edges = {(e, a), (c, e)} or {(a, b), (b, d)} or
{(d, c), (b, d)}. It can also be observed that the diameter for the graph in Figure 2.1(b)
is three (via a path from vertices ‘e’ to ‘d’).

2.1.1.4 Connectedness

In the following, we discuss some of the graph connectedness concepts which aid

in understanding of the topology of a graph G(V , E).

• Path. Given pair of vertices s, t ∈ V , a path, denoted by Ps,t (or simply P for

brevity), is a �nite sequence of edges (or vertices) between s and t. Path P , thus,

an ordered set of edges is written as

P = ((s := u0, u1), (u1, u2), . . . , (un–1, un =: t)),

or simply a vertex sequence

P = (s := u0, u1, u2, . . . , un–1, un =: t),

where for i = 1 to n, (ui–1, ui) ∈ E. With vertex set Vp = {u0, . . . , un} and edge

set Ep = {(s := u0, u1), (u1, u2), . . . , (un–1, un =: t)}, a path P(Vp, Ep), thus, can be

alternatively thought as a subgraph of G.

A path is simple if none of the vertices are repeated. We de�ne path length as

the number of edges in a path P ; a path length of size l is denoted by P l . For the

case when P = ∅, the path length is de�ned as in�nity (P∞). Unless otherwise

stated, path length always refers to the length of simple path.

Abusing the notation and representing path as a set, we call two paths P1 and

P2, for a pair of vertices (s, t), distinct if P1 6⊂ P2 or P2 6⊂ P1. Paths P1 and P2

are edge-disjoint, if P1, P2 do not share any edge in common, i.e., P1 ∩ P2 = ∅.
Likewise, two paths P1 and P2 are said to be vertex-disjoint if P1, P2 do not share

any vertex. It is trivial to state that vertex-disjoint paths are also edge-disjoint.

12 | Chapter 2. Background & Preliminaries

A path set, denoted by P , is the set of all distinct paths from s to t, i.e.,

P = {Pi | Pi is a path from s to t}.

A path P is called shortest path if P is simple and the path length P l is the smallest

of (or equal to) all the paths in P .

• Cycle. A cycle is a �nite sequence of edges (or vertices) such that the removal

of an edge (t, s) from the sequence translates into a path P from s to t. A cycle

C, thus, can be written as an edge sequence as follows.

C = ((s := u0, u1), (u1, u2), . . . , (un–1, un =: t), (t, s)),

or as vertex sequence,

C = (s := u0, u1, u2, . . . , un–1, un =: t, s).

A cycle C is simple if the edges (or vertices) are not repeated. We de�ne cycle
length, denoted by Cl

, as the number of edges (or vertices) in C. The minimum

cycle length of a graph G is denoted by g(G), while a maximum cycle length is

called circumference of G.

• Reachability. Given a pair of vertices s, t and a graph G(V , E), we call s and

t reachable, if there exists at least one path from s to t. Denoted by s t,
reachability is a Boolean value expressed as follows.

s t =

{
true if P 6= ∅
false otherwise

Reachability for an undirected graph is symmetric, i.e., s t ⇔ t s, for

s 6= t. While for a directed graph, reachability is not symmetric. Moreover, if it

holds that s t and t s in a directed graph, then there exists a cycle passing

through the vertices s and t. Reachability analysis, thus, can be helpful in cycle

detection, speci�cally, in directed graphs, and connected components (which

we de�ne shortly) in both directed and undirected graphs.

• Connected component. A connected component of a graph G is a subgraph such

that for any pair of vertices s, t in the component, if it holds that s t is true

and/or t s is true.

In a directed graph, a connected component is called strongly connected compo-
nent (SCC), if for any two pairs of vertices s, t in the component, it holds that

s t ⇔ t s. Else, a connected component is referred to as a weakly con-
nected component (WCC). A WCC, thus, holds either s t or t s, but not

always both.

A connected component is maximal, if no other vertex can be added to the

component without breaking its properties.

2.1. Background | 13

Example 2.5. Considering the example graph G shown in Figure. 2.1(b), we observe
the following.

• The pair of vertices e, c is reachable, i.e., e c is true as the path set P =

{(e, a, c), (e, a, b, d, c)} 6= ∅.

• The sequences (e, a, c, a) and (e, a, b, d, c, e) form two cycles in G.

• The vertex-induced subgraphs with vertex sets {a, c, e}, {a, b, c, d, e} are SCCs of G,
while the vertex-induced subgraph with vertex sets {a, b, c, d} is a WCC of G.

2.1.1.5 Special Graphs

Next, we discuss some special graph types which are prominently used in many

graph applications and also used in our setting.

• Directed Acyclic Graph (DAG). A graph G(V , E) is a directed and acyclic graph if

G contains no cycles. That is, for any ordered pair of vertices (u, v), u, v ∈ V , for

u 6= v, its corresponding path setP should be non-empty and contains only sim-

ple paths. For instance, consider an induced subgraph G′(V ′, E′) (shown below)

with vertex set V ′ = {a, b, c, d} of the example graph shown in Figure. 2.1(b).

a b

c d

G′ is a DAG as it contains no (directed) cycles, this can be veri�ed with fact

that for the ordered pair of vertices (c, a), its path set P = ∅. A directed graph

G(V , E) can be transformed into a unique directed acyclic graph by applying

graph condensation operation (which will be introduced shortly).

• Trees and Forests. A graph T (V , E) is a tree if T has no cycles, and for any pair

u, v ∈ V , there exists at most one path from u to v. In other words, the size of

the path set |P | ≤ 1 for any pair of vertices in T . An example of a tree is shown

in Figure. 2.2(a).

A vertex v in a directed tree is called a root if pred(v) = ∅, and is called a leaf if

succ(v) = ∅.
A forest F (V , E) is (disconnected) graph comprising of one or more trees. An

example of a forest is shown in Figure. 2.2(c).

2.1.1.6 Graph Operations

Next, we discuss some of the basic graph operations that are commonly performed

and also used in the context of this thesis.

14 | Chapter 2. Background & Preliminaries

• Updates. Graph update operations mainly constitute operations that change

the topology of the graph. These include insertion and deletion of new vertices

and/or edges. On a graph G(V , E), we de�ne the following update operations.

– Insert(v): updates graph G(V , E) by adding the vertex v. The resultant graph

is G(V ∪ {v}, E).

– Delete(v): deletes the vertex v from G and further deletes all the edges that

are incident on v. The updated graph is G′(V ′, E′), where V ′ = V \{v} and

E′ = E\ { {(u, v) | (u, v) ∈ E} ∪ {(v, u) | (v, u) ∈ E} }.

– Insert(u, v): adds an edge between the vertex u and v. If v (or u) is a new

vertex, Insert(v) (or Insert(u)) is called �rst.

– Delete(u, v): deletes an edge between the vertex u and vertex v.

• Closure. A closure (or transitive closure) ofG is the smallest super graphG+
(V , E+

)

such that

– E ⊆ E+

– ∀(u, v) ∈ E+
, u v is true in G.

A closure G+
(V , E+

) can be obtained by adding an (transitive) edge between two

vertices u, v, if there exists a path from u to v. The size of a closure graph G+
,

i.e., |E+
| satis�es the inequality |E| ≤ |E+

| ≤ (|V | · (|V | – 1)).

As the closure encompasses all the reachability information, a reachability check

for a pair of vertices can be performed inO(1) time complexity. Thus computing

and compactly representing a closure is often used as a preprocessing step in

many reachability evaluation systems (Yildirim et al., 2010; Seufert et al., 2013).

• Reduction. On contrary, a reduction (or transitive reduction) of a graph G(V , E)

is the minimal graph Gr
(V , Er) obtained by iteratively adding/removing edges,

such that addition/removal of an edge (u, v) does not alter the reachability of

u v. That is,

– u v is true in G⇔ u v is true in Gr
,

– (u, v) ∈ E 6⇒ (u, v) ∈ Er and (u, v) ∈ Er 6⇒ (u, v) ∈ E.

Unlike closure, reduction may not always generate a unique minimal graph, and

also it may be the case that Gr
is not a subgraph of G. If G is a directed acyclic

graph (DAG) (which we de�ne later in this section), Gr
is always unique.

• Condensation. Graph condensation is an operation of transforming a graph

G(V , E) into a directed acyclic graph Gc(Vc , Ec) such that

– Vc is the set of non-overlapping maximal SCCs in G;

2.1. Background | 15

a b

c d

e

(a) Closure

a b

c d

e

(b) Reduction

a, b, c, d, e

(c) Condensation

Figure 2.3: An example of (a) closure, (b) reduction, and (c) condensation
for graph shown in Figure. 2.1(b)

– if an edge (u, v) ∈ E then (uc , vc) ∈ Ec i� u ∈ uc , v ∈ vc , and uc 6= vc ,
where uc and vc are represent SCC for vertices u and v, respectively.

Example 2.6. Consider the directed graph G shown in Figure 2.1(b). Th closure of G
is shown in Figure 2.3(a), where dotted edges denote the closure edges, The reduction
of G is shown in Figure. 2.3(b), where the edge (a, c) is removed as a c is still true
after its removal. Figure. 2.3(c) shows the condensation of the graph G (an SCC by
itself), resulting in a single-vertex condensed graph.

2.1.1.7 Graph Representations

Depending on the applications in use, graphs are often represented in the follow-

ing popular forms.

• Edge List. A simple way of representing graphs is to enumerate all edges as

element pairs 〈u, v〉 in a graph, where each pair denotes a directed edge between

vertex u and v. In case of undirected graphs, each edge is enumerated twice,

i.e., 〈u, v〉 and 〈v, u〉
Additional metadata, like edge weights, vertex and edge labels can be associated

with each edge. N-triples (Carothers, 2014) used for representing knowledge

graphs follows an edge list representation.

• Adjacency List. Adjacency list is another widely used graph representation for-

mat that is predominantly used for representing large graphs. In adjacency list,

a graph is typically represented as a key-value pair 〈K ,V 〉, where key K denotes

the vertex and value V is the list of neighbors (in case of undirected graph) or

only successors (in case of directed graphs).

Turtle or N3 format (Beckett et al., 2014) used for representing RDF data is an

example of adjacency list format.

• Adjacency Matrix. Adjacency matrix is conceptually similar to an adjacency

list, where in, a graph is represented as a matrix of rows and columns denoting

vertices. An element (i, j) in the matrix represents an edge between vertex i
(row) and vertex j (column).

16 | Chapter 2. Background & Preliminaries

For sparse graphs, this representation leads to a lot of wasted space, thus an

adjacency list is usually preferred over adjacency matrix. However, adjacency

matrices are widely used representation when dealing with theoretical aspects

of graphs.

• Incidence Matrix. An adjacency matrix representation, where columns are rep-

resented as edges instead of vertices, is referred to as an incidence matrix. An

element (i, j) in an incidence matrix denotes the information that vertex i is in-
cident on jth edge, i.e., (i, v) for some vertex v. Incidence matrices are often used

in representing multi-graphs where more than one edge exists between a pair

of vertices.

Example 2.7. Various representation of the example graph shown in Figure. 2.1(b)
is shown below.

1:(a,b)
2:(a,c)
3:(b,d)
4:(c,e)
5:(d,c)
6:(e,a)

Edge List

a→ b,c
b→ d
c→ e
d→ c
e→ a

Adjacency List

a b c d e
a 0 1 1 0 1
b 0 0 0 1 0
c 0 0 0 0 1
d 0 0 1 0 0
e 1 0 0 0 0

Adjacency Matrix

1 2 3 4 5 6
a 1 1 0 0 0 0
b 0 0 1 0 0 0
c 0 0 0 1 0 0
d 0 0 0 0 1 0
e 0 0 0 0 0 1

Incidence Matrix

2.1.2 Relational Databases

Besides graph model, we rely on concepts from relational databases for managing

and querying graphs. A relational database is one of the age old data management

techniques that is built on the concept of relations (or tables), which capture the

relationships present in structured data. An enormous amount of research and

development went in for many decades in developing relational databases. In

this section, we brie�y cover some key concepts which are useful in our problem

setting.

2.1.2.1 Relational Model

In his seminal work on relational databases, Codd et al. (Codd, 1983) proposed

the relational model which formed the foundation for relational databases. In the

relational model, a relation forms a basic unit that captures two-dimensional struc-

tured data. Also referred to as a table, a relation R is a pair of sets A and I where,

A is a set of attributes and I is a �nite set of instances for relation R. Speci�cally,

each instance, also called as tuple, is a set of constants representing the values for

attributes (A) in R. The values usually belong to the domain of attributes which

explicitly is de�ned along with the schema for R.

The schema of a relation represents the name (of a relation) along with its

attributes. For example shown in Figure. 2.4, “Students(Name, Course)” denotes

the schema for a relation with name “Students” and attributes “Name,Course”. The

2.1. Background | 17

Students
Name Course
Alice Database Systems
Bob Graph Theory
Charlie Database Systems
Dan Algorithms

Courses
Course Tutor
Algorithms T. H. Cormen
Database Systems J. D. Ullman
Graph Theory R. Diestal

Figure 2.4: An example of relational model representing Student-Course
information

Primary Key (PK) of a relation is either an attribute or a set of attributes, where

no duplicate instance values are allowed. For example, attribute Name can be

designated as a PK for relation Students. Moreover, an attribute which is a PK in

one relation is referred to as Foreign Key (FK), if it appears, in another relation. For

instance, attribute Course is a PK in relation Courses and a FK in relation Students.
An example of relational model capturing the student-course information is

depicted in Figure. 2.4. Here the columns {Name, Course} forms the attributes

for Students relation, while each tuple (row), say (Alice, Database Systems), is an

instance of attributes Name and Course, respectively.

2.1.2.2 Relational Algebra

While relational model deals with the structural aspect of the relational databases,

all the data manipulation and querying on relational databases are dealt with

relational algebra, also proposed by Codd et al. (Codd, 1983). According to the

book (Garcia-Molina et al., 2008), relational algebra, like any algebra, comprises

of variables, constants, and operators de�ned with respect to relations.
A relational algebra mainly constitutes relations as variables and constants and

selection, projection, cross product, join as well as the set algebra operators – union,

intersection, and di�erence – as the main algebraic operators. Next, we discuss

some key relational algebraic constructs. For a comprehensive background about

relational algebra, we refer the reader to (Garcia-Molina et al., 2008; Date and

Darwen, 1997; Ramakrishnan and Gehrke, 2003)

A selection operation (σ) is a unary operation de�ned over a relation. Syntac-

tically denoted by the expression S = σC (R), selects all tuples from relation R that

satis�es the condition C (a Boolean expression) and writes them to relation S. For

instance, the query “Find all students who took Database systems course” can be

casted into a selection expression, Result =

(
σcourse="Database Systems" (Students)

)
.

Evaluation of the example selection statement returns the following Result rela-

tion instance.

Result
Name Course
Alice Database Systems
Charlie Database Systems

18 | Chapter 2. Background & Preliminaries

While the selection operation works on the rows of a relation, a projection
operation (π) is a unary operator that selects the desired attributes from a rela-

tion. Denoted algebraically by the expression S = πP (R), the projection creates a

relation S with the attributes P ⊆ A along with the corresponding tuples from the

relation R. For instance, the query “Find all names of students” can be expressed us-

ing a projection operation as Result = πName(Students). Below table shows an in-

stance of Results relation containing the names of students from relation Student.

Result
Name
Alice
Bob
Charlie
Dan

While selection and projection are unary operators, a Cartesian-product (×)

takes a pair of input relations R, S and returns a relation with attributes set com-

prising of attributes from the both relations. The tuples of the output relation

are all the pairs formed from the tuples of both the input relations. A Cartesian-

product over relations R, S is denoted by R× S, and the number of tuples (i.e., car-
dinality) of the Cartesian product |R×S| is |R|· |S|. To exemplify, Cartesian-product

on our example relations Students,Courses, i.e., (Students× Courses), results in the

following output relation.

Name Course Course Tutor
Alice Database Systems Database Systems J. D. Ullman
Alice Database Systems Graph Theory R. Diestal
...

...
...

...
Bob Graph Theory Database Systems J. D. Ullman
Bob Graph Theory Graph Theory R. Diestal
...

...
...

...

Theta-joins
(
on
θ

)
, on the other hand, extend the Cartesian-product opera-

tion by imposing a condition θ. A theta-join over a pair of input relations R, S is

denoted by the expression

T = R on
θ
S.

The evaluation of expression creates an output relation T similar to Cartesian-

product, while only the tuples that satisfy the condition θ, form the tuples for

relation T . Note that, a theta-join can always be written using a combination of

operators selection (σθ) and Cartesian-product (×). The above example theta-join

expression can be equivalently written as T = σθ(R × S).

Another binary operator and more commonly used in practice is join (on).

Analogous to Cartesian-product and theta-joins, join takes a pair of relations as

2.1. Background | 19

SELECT Names
FROM Students, Courses
WHERE Courses.tutor =“J. D. Ullman”

Figure 2.5: An example SQL query

an input and outputs a new relation. Unlike Cartesian-product and theta-joins,

the attribute set of the output relation is the union of the attribute sets of an input

pair of relations. While tuple instances of the output relation depends on the type

of join. A more commonly used type of join is natural join. In natural join, a tuple

belongs to an output relation only if the combined tuple from the input relations

agree on the common attributes. Consider two input relation schemas R(A,B)

and S(B,C), denoted by T = R on S, a natural join operation outputs relation with

schema T (A,B,C). A tuple t = (a, b, c) is an instance of T if there exists tuples

r = (a, b) and s = (b, c) such that r , s are tuples of relations R, S respectively. For

our running example, the natural join operation (Students on Courses) results in

following relation instance.

Students on Courses
Name Course Tutor
Alice Database Systems J. D. Ullman
Bob Graph Theory R. Diestal
Charlie Database Systems J. D. Ullman
Dan Algorithms T. H. Cormen

Analogously to set algebra, relational algebra supports other binary operators

such as union, intersection, and di�erence over relations with identical schemas. A

union operation, denoted by R∪S, returns a relation comprising of tuples from in-

put relations R and S. While intersection, denoted by R∩S, returns a relation with

tuples that are common to both relations R and S. On the other hand, di�erence,

R – S, returns a relation comprising of tuples that are in R but not in S.

2.1.2.3 Structured Query Language (SQL)

SQL is an industry standard declarative language designed for managing and

querying relational database management systems. Although not completely ad-

hering to the relational algebra proposed by E. F. Codd (Codd, 1983), SQL be-

came widely popular and is the de facto language used in commercial relational

database systems (RDBMS). SQL provides several constructs such as CREATE, ALTER,

DELETE, DROP, and RENAME as part of data de�nition language (DDL) for manipu-

lating the schema of a relation, and constructs SELECT, INSERT, DELETE, UPDATE,

and DROP as part of data manipulation language (DML) to manipulate the tuples of

a relation in a relational database. Covering the entire SQL syntax and semantics

is beyond the scope of this thesis; we refer the interested reader to (Garcia-Molina

20 | Chapter 2. Background & Preliminaries

�ery

Parser
�ery

Rewriter
Physical

Plan Generator
Executor

Results

pa
rs
e
tr
ee

lo
gi
ca
lp

la
n

ph
ys
ic
al

pl
an

Optimizer
Compiler

Figure 2.6: A typical relational query processing work�ow

et al., 2008; Date and Darwen, 1997; Ramakrishnan and Gehrke, 2003). Here, we

brie�y discuss the syntax of a simple SQL query to get a glimpse of the language.

An English language query “Find the names of all students who took the course
taught by J. D. Ullman” can be expressed in SQL (using the relations from Fig-

ure. 2.4) as follows.

The above query comprises of three clauses SELECT, FROM, WHERE. The clause

SELECT takes a list of columns as a parameter and is similar to projection opera-

tion (π) from relational algebra. While FROM clause takes a list of input tables, and

the WHERE clause is closely related to semantics of the selection operation (σ) in

relational algebra that take a Boolean expression (Course.tutor = "J. D. Ullman").
The above SQL query can equivalently be expressed in relational algebra as,

πNames(σ(Course.tutor="J. D. Ullman")(Student on Courses)).

2.1.2.4 Query Processing

Processing a relational query, such as the one expressed in SQL, involves a series

of steps, such as parsing, query rewriting, physical plan generation, and query exe-
cution. The �rst three steps come under the purview of the query compiler module

of a relational system; the two steps of query rewriting and physical plan gener-

ation are part of query optimizer, a sub-module of the query compiler. The last

step is performed by query executor module. Here, we brie�y discuss the salient

points in relational query processing and we refer the reader to (Garcia-Molina

et al., 2008; Date and Darwen, 1997; Ramakrishnan and Gehrke, 2003) for a com-

prehensive overview. A pictorial overview of a typical relational query processor

is shown in Figure. 2.6

• Parsing. The �rst step in a relational query processor is to parse the input SQL

query and translate it into a parse tree. A parse tree is a tree (see Section. 2.1.1.5)

comprising of a set of operators (forming internal nodes) and a set of constants

(forming leaf nodes). SQL constructs such as SELECT, FROM, and WHERE form

the operators, while the input relations, literals in the query form the constants.

For the example query shown in Figure. 2.5, a parse tree can be constructed as

follows.

2.1. Background | 21

ROOT

FROMSELECT WHERE

Students.Names Students, Courses =

Courses.tutor “J. D. Ullman”

• Query Rewriting. A parse tree is often represented in algebraic form on which

several query rewriting principles are applied. For instance, the above parse

tree can be expressed in algebraic form as follows.

πStudents.Names σCourses.tutor="J. D. Ullman"
(Students on Courses)

Query rewriting principles are a set of relational algebraic rules that can be

applied such that only the syntactic representation is altered but not the se-

mantics of the query. Such rewriting principles are commonly used to make a

plan that can be executed e�ciently. Some of the rewriting principles include

selection, projection, aggregation rules, and join orderings. A commonly applied

selection rule is push-down selections. To exemplify, consider a selection ex-

pression Q = σC (R on S), if C is a set of constraints that applies to only relation

R’s attributes, then a push-down selection rule can be applied to rewrite the

expression in to an equivalent expression Q = (σC (R) on S). The bene�t of such

a rewrite is that the join operation can be made faster as the cardinality of re-

lation R is reduced to only tuples that satisfy C. On the other hand, if C is a

set of conjunctive constraints involving attributes from both R and S, then the

query Q can be equivalently written as σC′ (R) on σC′′ (S) where C′ is a set of

constraints on R’s attributes and C′′ conditions on S’s attributes. By applying

push-down selections, the example query can be rewritten into a semantically

equivalent form as,

πStudents.Names(Students on σCourses.tutor="J. D. Ullman"
(Courses)).

Push-down rules can be also applicable to other operators like projections (π)

and aggregations (min, max, avg, etc.). More details about rewritings for these

operators can be found in (Garcia-Molina et al., 2008; Date and Darwen, 1997;

Ramakrishnan and Gehrke, 2003).

Joins are one of the most expensive operators in a query plan. Join orderings

are, thus, an important class of query rewriting principles, which rely on the

commutative and associative properties (shown below) of the join operators.

(R on S) ≡ (S on R) (Commutative)

R on (S on T) ≡ (R on S) on T (Associative)

By applying these properties, a query plan can be rewritten into multiple equiv-

alent forms. A join ordering is said to be “optimal”, for a query, if the overall

22 | Chapter 2. Background & Preliminaries

time taken to execute the query is less than or equal to that of all other possi-

ble join orderings. Enumerating all possible join ordering and �nd an optimal

one is considered to be an NP-hard problem with the number of possible join

orderings equal to the Catalan number, i.e.,

Cn =

1

1 + n
.

(
2n
n

)

for a query with n join operators. Most query optimizers, thus, rely on ei-

ther heuristics or cost-based optimizations to compute a low-cost join ordering

which might not be always be optimal. As estimating the cost of an ordering is

dependent on the implementation of individual operators, �nding a good join

ordering is often performed while generating a physical plan for the query.

• Physical Plan Generation. A logical plan generated as a result of several query

rewriting rules is translated into a physical plan by replacing each logical alge-

braic operator into a physical operator. The choice of replacements are usually

many and is often de�ned by the underlying system. For instance, a natural join

operator can be replaced with physical operators like HASH-JOIN, MERGE-JOIN,

or even NESTED-LOOPS. Each choice can have its own cost which is dependent

on the physical implementation. While translating a logical query into a phys-

ical representation, query optimizers often rely on cost-based optimizations to

generate a best possible physical plan.

A typical cost-based query optimizer computes a best possible physical plan,

for a speci�c system setting, by relying on the estimated cost of the individual

operators. Then a bottom-up dynamic programming based algorithm is used to

exhaustively search for a minimal cost plan by relying on the following.

1. Cost of scanning/sorting input relations

2. Cost of unary operations (selections, projections, aggregations)

3. Cost of binary operations (joins, set operations)

4. Alternative join orderings

5. Execution of operators – pipelining or materialization

An example of a physical plan for our running example query is shown below.

PROJECT(Students.names)

HASH JOIN

(Students.course = Courses.course)

SCAN(Students) SELECT

(Courses.tutor= “J. D. Ullman”)

SCAN(Courses)

2.1. Background | 23

• Query Execution. The physical plan (a.k.a operator tree) is executed bottom up

starting with the scan of the left most input relations. Depending on the way

operators share information, a query can be executed either in pipelined or ma-
terialized model.

– In a pipelined model, multiple (possible) operators are executed simultane-

ously. Each operator gets a single tuple or a block of tuples as input, pro-

cesses the tuples and the result is passed on to the higher level operators be-

fore working on next block of tuples. Operators like SELECT, MERGE-JOIN,

PROJECT are the best �t for a pipelined model of execution, as they can be

processed in a streaming fashion. Operators like HASH-JOIN and aggregate

operators like COUNT, MIN, MAX, AVG are pipeline breakers, as they require

looking at all tuples before emitting any output tuples.

– On the other hand, in materialized model, operators are sequentially exe-

cuted, and each operator materializes its output into a temporary relation,

called an intermediate relation. The intermediate relation is then passed on

to the higher level operators. Unlike pipelined model, the materialized model

needs to completely process all the lower-level operators before emitting any

single result tuple.

2.1.3 Graph Data Management

In this section, we provide a brief background about the graph data and query

models that are commonly found in practice. This section also serves to introduce

some of the state-of-the-art graph database systems, which we either build on or

compare with our proposed ideas.

2.1.3.1 Graph Data Models

Graph data models are intrinsic to many application domains. Here, we brie�y

discuss some of the most commonly used graph data models. A comprehensive

overview of the graph database models can be found in (Angles and Gutierrez,

2008).

• Tree Structured Model. Tree structured data models occupy a special place in the

list of graph data models. Often used to represent semi-structured data, a tree

structured data model is a special form of directed, acyclic graph data model

(see Section. 2.1.1.5). Extensible Markup Language (XML) is a well known data

model that adopts tree structured data model. XML was proposed by W3C as

a data format for exchanging information across applications. A typical XML

document comprises of elements, attributes and content (character data). An el-

ement is a logical section of the document with matching start and end tags,

and comprises of zero or more attributes that collectively de�ne the proper-

ties of an element. Elements may encompass additional elements or textual

content. An example snippet of the XML document is shown in Figure 2.7(a),

24 | Chapter 2. Background & Preliminaries

〈students〉
〈student name=“Alice”〉
〈course name = “Database Systems”/〉
〈/course〉

〈/student〉
〈student name=“Bob”〉
〈course name = “Graph Theory”/〉

〈/student〉
〈student name=“Charlie”〉
〈course name = “Database Systems”/〉

〈/student〉
〈student name=“Dan”〉
〈course name = “Algorithms”/〉

〈/student〉
〈/students〉

〈students〉

〈student〉〈student〉 〈student〉

“Alice” 〈course〉

“Database Systems”

“Bob” 〈course〉

“Graph Theory”

“Charlie” 〈course〉

“Database Systems”

. . .

(a) XML document (b) XML tree

Figure 2.7: An example XML document (a) and its tree representation (b)

and its corresponding tree representation is shown in Figure 2.7(b). Here the

tags 〈students〉,〈student〉,〈course〉 are called elements, and for a 〈student〉 or

〈course〉 element, name is an attribute. Elements and attributes are represented

as vertices in an XML tree and an edge set constitutes union of (solid) edges be-

tween two elements and (dashed) edges between an element and a attribute. For

more details about the XML syntax and semantics, we refer the reader to (Bray

et al., 2008).

XLink (DeRose et al., 2010) proposed by W3C is an XML markup language to

create links (both internal and external) among XML documents, thus extending

the tree model of XML into a graph model.

• Directed Labeled Multi-graph Model. In this directed graph model, vertices and

edges are labeled, and between a pair of vertices there exists more than one

edge (all with distinct labels). Real world instances of this graph data model

include knowledge graphs, biological datasets, etc. Resource Description For-

mat (RDF) (Klyne and Carroll, 2004), a W3C recommended and one of the most

widely used representation format in semantic web community, follows the di-

rected labeled multi-graph model. A typical RDF document comprises of a col-

lection of RDF statements, called triples. Each triple is of the form 〈Subject,
Predicate, Object〉, where Subject is a unique web resource or URI, Object can be

either a unique web resource or a literal (a textual string), and Predicate denotes

the relation (property) between a given Subject and Object. An example of an

RDF data snippet and its graph representation is shown in Figure 2.8.

Some large real-world instances include knowledge graphs such as Google Knowl-

edge Graph (Singhal, 2012), Freebase (Bollacker et al., 2008), YAGO (Suchanek

et al., 2007), DBpedia (Bizer et al., 2009), biological datasets like UniProt (The

UniProt Consortium, 2014), Bio2RDF (Belleau et al., 2008), and others like Linked-

MDB (Hassanzadeh and Consens, 2009), SwetoDblp (Aleman-Meza et al., 2007).

2.1. Background | 25

〈John E. Hopcro�, won, Turing Award〉
〈John E. Hopcro�, workedWith, Richard Karp〉
〈Richard Karp, won, Turing Award〉
〈Richard Karp, workedWith, Rajeev Motwani〉
〈Richard Karp, advisorOf, Rajeev Motwani〉

Richard Karp

Turing AwardJohn E. Hopcro� Rajeev Motwani

workedWith

advisorOf

w
on

workedWith

won

(a) RDF data (b) RDF graph

Figure 2.8: An example of (a) RDF data and its (b) graph representation

• Directed Labeled Attributed Multi-graph Model. This type of graph data model

extends the directed labeled multi-graph model by associating attributes to both

the vertices and edges. An attribute is a key-value pair that uniquely de�nes the

properties of a vertex or an edge. An instance of this graph data model is the

property graph used in the popular Neo4j (Neo4j, 2012) graph database. Many

real-world graphs like social networks, citation networks, sensor networks can

be e�ectively represented using this model.

To exemplify more about this data model, consider a social network, say Face-

book
1
, where the vertex set comprises of people, places, businesses, etc. and

the edge set is a set of relationships among vertices. Furthermore, vertices of

type person have attributes like Name, Age, Gender, Birthdate, to name a few.

An edge between two persons can have attributes like Type (denoting the type

of relation), Timestamp (link creation time), etc. Such data is best represented

using directed, labeled attributed multi-graphs (or property graphs). Figure. 2.9

shows an example of social network excerpt represented in this model. It con-

tains three vertices with labels Barack Obama, Hillary Clinton, and Michelle
Obama. Each vertex has attributes such as Birthplace, Birthdate denoted in a

dotted box. Relations between the vertices are labeled, and furthermore, rela-

tions like Spouse, workedFor, have attributes like Since, From, To, etc.

2.1.3.2 Graph Query Models

In this section, we brie�y cover some of the important graph query models and

also point to few relevant query languages that support them. An exhaustive

discussion of query languages and query models can be found in (Angles and

Gutierrez, 2008; Wood, 2012).

• Connectivity Queries. These queries form an important class that are fundamen-

tal to many graph applications. Queries that deal with the connectivity such as

reachability , shortest path queries, fall under the category of connectivity queries.

Given a graph G(V , E) and two vertices s, t ∈ V , reachability checks whether

there exists at least one path between s and t in G (see Section 2.1.1.4). This

1http://facebook.com

http://facebook.com

26 | Chapter 2. Background & Preliminaries

Barack Obama

Birthdate: 04/08/1961
Birthplace: Hawaii

Michelle Obama
Birthdate: 17/01/1964
Birthplace: Chicago

Hillary Clinton

Birthdate: 17/01/1964
Birthplace: Chicago

workedFor

From:21/01/2009
To: 01/02/2013

spouse
Since:1992

knows

Figure 2.9: An example of a property graph

simple notion of reachability has been comprehensively studied in past result-

ing in many approaches that can scale well to large graphs. A few of there

are (Agrawal et al., 1989; Jagadish, 1990; Cohen et al., 2003; Cheng et al., 2006;

Wang et al., 2006; Chen and Chen, 2008; Jin et al., 2009; Yildirim et al., 2010;

Schaik and Moor, 2011; Jin et al., 2011; Seufert et al., 2013; Yu and Cheng, 2010).

Often, in practice, a reachability query is associated with regular expression

(RE) de�ned over the vertex and edge labels. Called regular reachability queries

(Abiteboul et al., 1997; Buneman et al., 1996; Fernández et al., 1998), these check

for the existence of a path between s and t that satis�es the RE. For instance,

an example query “Find if two vertices with labels Barack Obama and USA are
connected by a path containing only edge labels: bornIn, locIn, and captialOf.
Additionally with the condition that bornIn should appear �rst followed by a se-
quence of either locIn or capitalOf” can be expressed as a regular reachability

query,

Barack Obama

bornIn.(locIn | CaptialOf)∗
 USA.

Another kind of connectivity queries include shortest path queries that take a

pair of vertices s and t as input and return the shortest path (or distance) be-

tween them (see Section 2.1.1.4). Like reachability queries, shortest path queries

can also be composed with additional regular expressions (REs) constraints.

Graph query languages like GraphLog (Consens and Mendelzon, 1989),G+ (Cruz

et al., 1988), UnQL (Buneman et al., 2000), SPARQL 1.1 (Prud’hommeaux et al.,

2013), Gremlin (Rodriguez, 2015), Cypher (Neo4j, 2012) provide a framework

for expressing connectivity queries. For instance, the above regular reachabil-

ity query can be expressed in GraphLog as follows.

RRQ(Barack Obama, USA)

← (Barack Obama, (bornIn.(locIn | CaptialOf)∗), USA)

Similarly, a shortest path query “Find shortest distance between Barack Obama
and the USA” with a regular expression constraint mentioned above can be ex-

pressed in GraphLog using the aggregate operators min, sum as follows.

SDQ(min(sum(d)))

2.1. Background | 27

← (Barack Obama, dist(bornIn.(locIn | CaptialOf)∗)(d), USA)

• Pattern Matching Queries. A popular model for querying graph data are pat-

tern matching queries. These queries deal with querying the substructures of

a graph. A pattern matching query, by itself a graph, comprises of a set of pat-

terns, each of which is a representative expression for zero or more edges in the

graph. A pattern, in its typical form, is a triple 〈u, e, v〉, where all of u, e, v can

be either a variable or a constant. The value of u, v takes an element from the

vertex label set, while e takes an element from the edge label set. An answer to

a pattern matching query is a set of possible bindings for all the query variables

such that the graph obtained by replacing each variable with a binding forms

a sub graph of the original graph. For instance, consider a graph like YAGO or

Google’s Knowledge Graph which comprises of information about people and

things, an English query like “Find people who are born in the USA and won both
a Nobel Prize and a Grammy Award” can be expressed as a pattern matching

query (in GraphLog) as shown below.

PMQ(x)← (x, bornIn, y),

(y, locIn, USA),

(x, won, Nobel Prize),

(x, won, Grammy Award)

An answer to the above query is the set of all bindings for the variable x, i.e.,

all names of people who were born in the USA and won both a Nobel Prize and

Grammy Award.

RDF’s de facto query language SPARQL (Prud’hommeaux and Seaborne, 2008),

an SQL like query language, is an another instance which uses pattern matching

as the underlying semantics for expressing queries on RDF knowledge bases.

SPARQL provides several clauses such as SELECT, FROM, WHERE, UNION, etc.

which are alike to SQL constructs. An answer to a SPARQL query is a rela-

tional table where the columns denote the variables in the SELECT clause and

the rows are the combination of bindings such that each combination matches

the patterns expressed in the query. The above query can be represented in

SPARQL as follows.

SELECT ?x
WHERE { ?x bornIn ?y. ?y locIn USA.

?x won Nobel Prize. ?x won Grammy Award.

}

Cypher
2

a declarative query language supported by the popular graph database

Neo4j (Neo4j, 2012) is similar to SPARQL and uses the pattern matching query

model for expressing queries. A typical cypher query has the following struc-

ture,

2https://neo4j.com/developer/cypher-query-language/

https://neo4j.com/developer/cypher-query-language/

28 | Chapter 2. Background & Preliminaries

MATCH (pattern) RETURN (value),

where patterns (patterns) are represented with the MATCH clause and the answer

value to the query is caught using the RETURN clause. Our running example

query can be written in Cypher as follows.

MATCH (x) - [:bornIn] - (y) - [:locIn] -> (USA)

MATCH (x) - [:won] -> (Nobel Prize)

MATCH (x) - [:won] -> (Grammy Award)

RETURN x

• Aggregation Queries. Aggregate queries are the class of queries which are used

in computing graph properties. These include simple property computations

like the size and order of a graph, in- and out-degrees of vertices, and more

complex properties like vertex centrality, number of connected components,

etc. Query languages like GraphLog, SPARQL, Cyper, and others provide sup-

port for aggregation queries. For instance, in GraphLog, constructs like COUNT,

MIN, MAX are natively supported (Consens and Mendelzon, 1989) and SPARQL

1.1 (Prud’hommeaux et al., 2013) supports the aggregation constructs COUNT,

SUM, AVG, MIN, MAX . Revisiting the aforementioned shortest distance example

query in GraphLog,

SDQ(min(sum(d)))

← (Barack Obama, dist(bornIn.(locIn | CaptialOf)∗)(d), USA),

uses two aggregate functions sum and min, where sum returns the path length of

a path between vertices Barack Obama and USA by summing up intermediate

distances returned by the dist function, while min �nds the minimum path

among the set of paths.

• GraphCreationQueries. Unlike connectivity and pattern matching queries, these

queries, on a graph G, create a new graph by extracting or summarizing the

information in G. This is usually achieved by running connectivity, pattern

matching, and/or aggregation queries as subqueries of a graph creation query.

For instance, consider an academic social network where vertices represent

people and edges represent collaboration information, and furthermore, each

person has attributes such as expertise and a�liation. Given such a graph, a

creation query like “Find an a�liation graph where vertices represent universi-
ties and edges represent collaborations between two universities” can be expressed

(using Cypher) as follows.

MATCH (univ1:Person1.a�liation) - [:Collaborate] -> (univ2:Person2.a�liation)

CREATE (univ1) - [:Collaborate] -> (univ2)

Evaluation of the above query returns an a�liation graph comprising of univer-

sities as vertex set, where an edge denotes a collaboration between two universi-

ties if there exist at least two persons, one from each university who have collab-

orated. Such queries can be natively expressed in many query languages such

2.1. Background | 29

as Cypher, SPARQL, GraphLog, G, G+, SNQL (Martín et al., 2011), SoQL (Ronen

and Shmueli, 2009).

• Approximate Queries. Approximate querying is a common model of querying

a graph in a scenarios where the user is not aware of the underlying graph

topology, or in the case where queries are expensive to process. A practical ap-

plication where approximate querying has profound signi�cance, is in the do-

main of shortest path (or distance) querying over large networks such as road

networks or social networks. To exemplify, consider the Facebook
3

social net-

work which contains more than one billion vertices and more than one trillion

edges, computing a shortest path between a pair of vertices, which has a time

complexity of O(|V | + |E|) for a graph of size |E| and order |V | using Djikstra’s

algorithm (Dijkstra, 1959), is impractical to run large graphs like Facebook. In

such scenarios, approximate shortest paths are of more interest than an exact

shortest path. Approximate shortest path approaches like (Sarma et al., 2010;

Gubichev et al., 2010; Cohen et al., 2003) are proposed to quickly estimate the

shortest distance between a pair of nodes in real-time with comprising “a little”

on the quality.

Analogously, approximate methods for pattern matching queries have recently

gained attention and approaches like (Khan et al., 2011; Kelley et al., 2004; Tian

et al., 2007; Liang et al., 2006; Mongiovì et al., 2010; Tian and Patel, 2008; Tong

et al., 2007) have been proposed to process pattern matching queries (with ap-

proximation) on large graphs.

2.1.3.3 Graph Database Systems

Historically, graph database systems belong to two classical types relational-based
or native architectures. Both models have advantages and disadvantages which

make the choice dependent on the application in use. In this section, we provide

a quick glance at a few of the state-of-the-art graph database systems.

• Relational Systems. Continuing with similarities to the entity-relational model

of relational databases, initial graph database systems were built based on the

concept of relations. Some of the state-of-the-art graph systems that rely on this

model include RDF-3X (Neumann and Weikum, 2008), SW-Store (Abadi et al.,

2009), Hexastore (Weiss et al., 2008), SQLGraph (Sun et al., 2015), our own sys-

tem TriAD (Gurajada et al., 2014a), commercial systems like SAP-HANA (Färber

et al., 2012), IBM-DB2-RDF (Bornea et al., 2013), and others.

Treating the graph as sequence of edges, relational-based systems store a graph

either in a single relation or a set of relations partitioned by edge properties

(Abadi et al., 2009). Graph queries are then processed, much alike to SQL queries,

by a sequence of selection, projection, and join operations. With the high

3http://www.facebook.com

http://www.facebook.com

30 | Chapter 2. Background & Preliminaries

performance relational systems underneath, these systems are well suited for

queries that do not have implicit navigational semantics, such include simple

pattern matching queries like basic graph patterns (BGPs) in SPARQL 1.0. On

the other hand, processing connectivity queries such as reachability, shortest

paths, etc. require a number of self-joins to simulate the graph traversals, thus

making the relational approaches not ideal for such queries. An e�cient sup-

port for the navigational queries is crucial in the success of a graph database,

thus leading to the emergence of many native graph systems.

• Native Systems. Native architectures for graph data systems that support navi-

gational queries existed as early as the late 1960s by the introduction of IBM In-

formation Management System (IMS) (Blackman, 1998) based on the principles

of hierarchical data management. Later on systems like TORNADO (Atkinson

et al., 1989), GemStone (Maier et al., 1986) based on the principles of object ori-

ented databases are seen as an alternative to relational databases to store graph

structured data. Late 1990s saw the proposals of numerous XML databases such

as BaseX (Grün, 2011), Berkeley DB XML (Oracle, 2006) to name a few to store

tree-structured XML data models.

Recently, with the advent of social networks and knowledge graphs, native

graph stores based on the NoSQL principles rose to prominence. Numerous

graph stores both in centralized and distributed scenarios were proposed to

tackle large graphs. All these systems use an adjacency list representation for

easier navigation. Special graph systems such as GRAIL (Yildirim et al., 2010),

FERRARI (Seufert et al., 2013), (Jin et al., 2008), etc. use a native graph model

to e�ciently answer reachability queries. On the other hand, general pur-

pose graph systems like Neo4j (Neo4j, 2012), Microsoft’s Trinity (Zeng et al.,

2013; Shao et al., 2013), Google’s Pregel (Malewicz et al., 2010), Facebook’s

Tao (Bronson et al., 2013), Apache Giraph (Martella et al., 2015), Apache Spark

GraphX (Gonzalez et al., 2014), all provide a framework for performing e�cient

navigational and pattern matching queries on large graphs.

With this, we conclude our background section and next we look at the pre-

liminaries where we discuss our data and query models used in this thesis.

2.2 Preliminaries

In this section, we introduce our data and query models and also establish neces-

sary notations.

2.2.1 Data Model

We consider two graph data models. The �rst model is a directed, labeled multi-

graph model (see Section. 2.1.3.1), which forms the basis for the two query models

we considered in this thesis, namely basic graph patterns and generalized graph

2.2. Preliminaries | 31

Richard_Karp

Turing_AwardJohn_E._Hopcro� Rajeev_Motwani

workedWith

advisorOf

w
on

workedWith

won

Richard_Karp

Turing_AwardJohn_E._Hopcro� Rajeev_Motwani

(a) Data graph (b) Simple data graph

Figure 2.10: An example of (a) labeled directed multi-graph model (RDF)
and (b) labeled directed graph model

patterns. The second data model is a simpli�ed version of the �rst model which is

used for dealing with a generalized form of reachability query model, called “set
reachability”.

2.2.1.1 Labeled directed multi-graph

A labeled directed multi-graph (see Section. 2.1.3.1) is de�ned as follows.

Definition 2.3. A labeled directedmulti-graph is a graph GD(V , E, ΣV , ΣE , Φ)

that comprises of vertex set V , vertex labels set ΣV , edge label set ΣE , and an edge
set E ⊆ V × ΣE × V . Function Φ : V → ΣV is an injective labeling function that
maps each vertex in V to a unique label in ΣV , i.e., vi = vi i� Φ(vi) = Φ(vj).

RDF Graph. We consider RDF as an instance for our “labeled directed multi-graph”

model. As mentioned earlier, RDF is a W3C recommended model for representing

linked information on the web. Real-world entities such as people, places, things

or even biological entities such as proteins and genes form the vertex set, while

an edge set denote the relationships among entities. Typical characteristics of an

RDF graph is the injective mapping from vertex set V to vertex label set ΣV , i.e.,

for every vertex, v ∈ V , has a unique label φ(v) ∈ ΣV .

Example 2.8. An example of an RDF graph is shown in Figure 2.10(a).

2.2.1.2 Labeled directed graph

We next de�ne our second data model, called “labeled directed graph”, which is a

simpli�ed notion of the labeled directed multi-graph. In this model each vertex

has a unique label, while edges are unlabeled. A formal de�nition of this graph

data model goes as follows.

Definition 2.4. A labeled directed graph is a graph GS(V , E, ΣV , Φ) that com-
prises of vertex set V , an edge set E ⊆ V × V and function Φ : V → ΣV is an
injective labeling function that maps each vertex in V to a label in ΣV , i.e., vi = vi
i� Φ(vi) = Φ(vj).

32 | Chapter 2. Background & Preliminaries

Richard_Karp

Turing_AwardJohn_E._Hopcro� Rajeev_Motwani

workedWith

advisorOf

w
on

workedWith

won

G1

G2

Richard_Karp

Turing_AwardJohn_E._Hopcro�

w
on

workedWith

(a) Data graph (b) Cut

Figure 2.11: Example of (a) data graph partitioning G = {G1,G2} and it cor-
responding (b) Cut C

Social Network Graphs. As an instance of this model, we consider social network

datasets such as Twitter
4
, Facebook

5
, etc. Twitter graph comprises of people and

the “follows” relationship between two persons. Twitter graph can be modeled as

a labeled directed graph by representing people as a vertex set, and a directed

edge from person p1 to person p2 denotes that p1 follows p2. SNAP (Leskovec and

Krevl, 2014) provides comprehensive list of some of real-world datasets such as

Live Journal, Amazon, Google, Stanford, BerkStan, etc. which all are instances of

second graph model.

Example 2.9. An example of labeled directed graph is shown in Figure 2.10(b).

2.2.1.3 Partitioned Graphs

As we deal with the distributed querying of labeled graphs, we partition our

�rst and second graph models across multiple slaves following a shared-nothing

master-slave setup. This allows us to scale our approaches to very large graphs.

We partition a labeled directed multi-graph (and labeled directed multi-graph) as

follows.

A labeled directed multi-graph G(V , E, ΣV , ΣE ,φ) is partitioned into k vertex-

disjoint subgraphs, G = {G1,G2, . . . ,Gk} where each Gi is a edge-induced sub-

graph of G, and G is called the partitioning of G. Given a partitioning G, we refer

to C(VC , EC , ΣV , ΣE ,φ) as the cut, which is an edge-induced subgraph of G, where

VC ⊆ V , EC = { (u, v) | (u, v) ∈ E, u ∈ Vi, v ∈ Vj and i 6= j } with vertices u, v ∈ VC ,

i� edge (u, v) ∈ EC .

Example 2.10. Figure 2.11(a) shows a graph partitioning for the example RDF data
graph shown in Figure 2.10(a) and Figure 2.11(a) shows the corresponding cut.

2.2.2 Query Model

In this section, we introduce three query models that we address in the thesis. The

�rst query model is “set reachability”, which belongs to the class of connectivitiy

4http://twitter.com
5http://facebook.com

http://twitter.com
http://facebook.com

2.2. Preliminaries | 33

queries. The second query model we consider is the basic graph patterns belonging

to the class of pattern matching queries. Combining the semantics of �rst and

second models, we address the third query model which we refer to as generalized
graph patterns. We next discuss our three query models.

2.2.2.1 Set Reachability

Given a graph G(V , E) and a pair of vertices s, t ∈ V , the reachability query s t
addresses the problem of �nding if there exists a path from s to t in G (see Sec-

tion 2.1.1.4). Set reachability, also known as multi-source multi-target reachabil-

ity (Gao and Anyanwu, 2013) is a generalization of the basic reachability problem

in directed graphs. Given a pair of vertex sets S, T ⊆ V , a set-reachability query,

denoted as S T , is to �nd all pairs (s, t), where s ∈ S and t ∈ T , are reachable.

In our work, we focus on the distributed version of set reachability queries

on the partitioned labeled digraphs and refer to the problem as distributed set
reachability (DSR), a DSR query is a set reachability query over partitioned simple

data graph and formally de�ned as follows.

Definition 2.5. Given a labeled directed graph G(V , E, ΣV ,φ), a k vertex-disjoint
partitioning G = {G1,G2, . . . ,Gk} of G, and a pair of vertex sets S, T ⊆ V , a DSR
query, denoted S T, returns all pairs (s, t), with s ∈ S and t ∈ T, that are
reachable s t in G.

Example 2.11. Consider the example graph shown in Figure 2.10(b), and a pair of sets
S =John_E._Hopcro� and T =Richard_Karp, Rajeev_Motwani. A set-reachability
query S T is the set of all reachable pairs, namely {(John_E._Hopcro�, Richard_Karp),
(John_E._Hopcro�,_Rajeev Motwani)}

2.2.2.2 Basic Graph Patterns

We next de�ne our second query model, basic graph patterns (BGP), which is based

on the semantics of the pattern matching query model de�ned in Section 2.1.3.2.

The fundamental unit of this query model is a triple pattern 〈u, e, v〉, where all of

u, e, v can be either a variable or a constant. A BGP query is a conjunction of set

of triple patterns, which together forms a query graph. An answer to a pattern

matching query is, thus, a set of possible bindings for all variables such that a

graph obtained by replacing each variable with a binding is the subgraph of the

original graph.

For our work, we focus on the distributed version of BGP query model over a

partitioned data graph. Formally the de�nition of a BGP query goes as follows.

Definition 2.6. ABGPquery is a labeledmulti-digraphQ(VQ , EQ , ΣV , ΣE ,V , ΦQ),
where VQ is a query vertex set, V is the set of query variables, and edge set EQ ⊆
VQ × {ΣE ∪ V} × VQ . Function ΦQ is an injective labeling function from VQ to
{ΣV ∪ V}.

34 | Chapter 2. Background & Preliminaries

We consider SPARQL 1.0 (Prud’hommeaux and Seaborne, 2008) query lan-

guage as the representative language for expressing BGP queries. Furthermore,

an answer to a BGP query follows the semantics of SPARQL result semantics,

where the result to a BGP query, however, is not itself a graph but – in analogy

to SQL – a set of rows, each containing distinct set of bindings for the variables

in the query.

Example 2.12. Consider the example RDF graph shown in Figure 2.10(a). A query
to “Find list of collaborators who both won a Turing_Award” can be expressed as a
BGP query using SPARQL 1.0 query language as follows.

SELECT ?p ?p1

WHERE { ?p won Turning_Award.
?p1 won Turning_Award.
?p2 workedWith ?p1}.

Evaluation of the above query returns the following relation.

?p ?p1

John_E._Hopcro� Richard_Karp

2.2.2.3 Generalized Graph Patterns

Our third model constitutes generalized graph patterns (GGP), which again belong

to the class of pattern matching queries and combines the semantics of our �rst

two models, BGP and Set Reachability queries. A generalized triple pattern forms

the basic unit of GGP queries and has the same structure as that of the triple

pattern of BGP queries, i.e., 〈u, e, v〉, where all of u, e, v can be either a variable or

a constant. However e can additionally be a regular expression over the edge label

set ΣE de�ning the constraints on the path from u to v. For instance, consider a

generalized graph pattern,

〈?city, locIn∗, USA〉

where u :=?city is a variable, and v := USA is a constant and e := locIn* is

a regular expression stating that the path between u and v should contain only

edges with label locIn. This translates to a set reachability query S T , say

S := {San Francisco1, Atlanta2, Honolulun, . . .} and T := {USA}.

Thus, GGP queries combines the semantics of BGP and the set reachability

queries. For our work, we use SPARQL 1.1 (Prud’hommeaux et al., 2013) as a

representative query language for GGP queries. However, we focus on a subset of

queries expressible in SPARQL 1.1, in the following called as SwPP (SPARQL 1.0

with Property Paths) queries. Following the notations in SPARQL 1.1, we de�ne

below the grammar for a regular expression of a generalized triple pattern in SwPP

queries.

2.2. Preliminaries | 35

Let path represent a regular expression de�ned for e,

path := path/path (concatenation of paths)

:= σ (single edge element)

:= σ? (zero or one edge element)

:= σ∗ (zero or more edge element)

:= σ+ (one or more edge element) (2.1)

where σ ∈ ΣE . Using the above grammar, we now formally de�ne GGP queries

as follows.

Definition 2.7. AGGPquery is a labeled directed multi-graph Q(VQ , EQ , ΣV , ΣE ,

V ,L, ΦQ) where VQ is a vertex set and edge set EQ ⊆ VQ × {V ∪ L}× VQ , where L
is a language set for regular expressions over ΣE , de�ned using the grammar shown
in Equation 5.1. V is the set of query variable and ΦQ is an injective mapping from
VQ to {ΣV ∪ V}.

Example 2.13. Consider the example RDF graph shown in Figure 2.10(a). A query to
“Find people whowon a Turing_Award and transitively workedwithRajeev_Motwani”
can be expressed as a GGP and written as an SwPP language as follows.

SELECT ?p
WHERE { ?p won Turning_Award.

?p2 workedWith∗ Rajeev_Motwani }.

Evaluation of the above query returns the following relation.

?p
John_E._Hopcro�
Richard_Karp

36 | Chapter 2. Background & Preliminaries

Chapter 3
Set Reachability

In this chapter, we investigate our �rst query model, termed “set reachability”,

a generalization of the well-known reachability problem. Also known as multi-

source multi-target reachability (Gao and Anyanwu, 2013), set-reachability is an

important problem with a plethora of applications in analytics. We tackle this

problem in a distributed setting, where a graph is partitioned and distributed, and

refer to the problem as “distributed set reachability”. We consider a partitioned,

labeled distributed graph model, where the vertices are labeled, edges are directed

and unlabeled, and furthermore, the graph is partitioned across multiple slaves .

3.1 Introduction

3.1.1 Motivation

With the wide adoption of graph models across many domains and the advent

of social networks, knowledge graphs, etc., queries that check the connectivity

between two vertices became a fundamental graph operation in many applica-

tions. The reachability problem in the directed graphs (see Section 2.1.1.4) has

been well studied in this context (Agrawal et al., 1989; Jagadish, 1990; Cohen

et al., 2003; Cheng et al., 2006; Wang et al., 2006; Chen and Chen, 2008; Jin et al.,

2009; Yildirim et al., 2010; Schaik and Moor, 2011; Jin et al., 2011; Seufert et al.,

2013; Yu and Cheng, 2010). To recap, the reachability problem on a labeled di-

rected graph G(V , E, ΣV , Φ), given a source vertex s ∈ V and a target vertex t ∈ V ,

is to determine whether there exists a path from s to t over E.

To avoid redundant computations, many graph applications in fact require a

generalization of this basic notion of reachability, where entire sets S, T of source
and target vertices, respectively, need to be processed “at once”. The resulting

reachability problem, which we coin as set reachability and denote by S T , aims

to retrieve all pairs of source and target vertices (s, t), with s ∈ S and t ∈ T , where

s is reachable to t. Moreover, in case the graph is partitioned into multiple, vertex-

disjoint subgraphs (e.g., when distributed across multiple slaves in a cluster), we

37

38 | Chapter 3. Set Reachability

refer to the resulting set reachability problem as distributed set reachability (or

“DSR” for short).

Applications. The set reachability problem has a plethora of applications in

graph analytics and query-processing tasks. For example, with its recent update,

SPARQL 1.1 (Prud’hommeaux et al., 2013) underwent a major revision in which

the usage of labeled property paths allows a user to formulate transitive reach-

ability constraints among the query variables. Since both the source and target

variables of a property path may become bound to multiple RDF constants at

query processing time, the processing of property paths in SPARQL 1.1 resolves

to processing set reachability queries.

Another interesting application of set reachability is community analysis in

social networks. That is, given a pair of source and target vertex sets, each rep-

resenting social-net users such as on Twitter or Facebook, we may wish to e�-

ciently detect which communities are densely connected. For example, consider

two communities—billionaires and non-pro�t organizations—, it would be inter-

esting to �nd the list of billionaires who are also involved in philanthropic activ-

ities.

Objectives. The key goals in processing a DSR query over a partitioned graph

both e�ciently and in a scalable manner are as follows.

(1) Avoid redundant computations within the local slaves as much as

possible.

(2) Partially evaluate the local components of a set reachability query

S T among all slaves in parallel.

(3) Minimize both the size and number of messages exchanged among

the slaves.

3.1.2 State-of-the-art

A simple, or rather a naïve, way of solving a set reachability query is to translate

it into a set of reachability queries. In other words, a set reachability query S T
can be written as series of (single) reachability queries: {s t | s ∈ S and t ∈ T }.

The reachability problem has been well studied in the literature with a single

reachability query, such as s t, can now be e�ciently solved using state-of-art

indexing techniques like (Gao and Anyanwu, 2013; Jin et al., 2011; Kyrola et al.,

2012; Prabhakaran et al., 2012; Seufert et al., 2013; Trißl and Leser, 2007; Schaik

and Moor, 2011; Veloso et al., 2014; Yildirim et al., 2010). Most of them being

largely limited to a centralized setting and, by design, they only partially address

the point (1) of our objectives. Very recently, to fully address the point (1), there

were attempts by (Gao and Anyanwu, 2013; Then et al., 2014) to more holistically

solve a set reachability query. More speci�cally, (Gao and Anyanwu, 2013) uses a

notion of equivalence sets among the graph vertices which e�ectively resolves to a

preprocessing and indexing step of the input graph to predetermine these sets. On

3.1. Introduction | 39

the other hand, (Then et al., 2014) proposed a multi-source BFS (MS-BFS) strategy

where BFS computations are shared across multiple vertices. Both being central-

ized approaches, are naturally limited to the main memory of a single machine

and usually do not consider a parallel—in this case multi-threaded—execution of

a set reachability query.

With the availability of very large graphs, scalable techniques for reachability

query processing has received a lot of research attention. Fan et al. (Fan et al.,

2012) recently proposed a method for distributed processing of single reachability

queries based on the idea of partial evaluation. Being a single iteration approach,

thus requiring only one round of communication, this approach is a great start in

satisfying the aforementioned key goals. However, being designed to tackle only

single reachability queries, this approach fails to satisfy the �rst objective, and

furthermore, leaving behind the other objectives to be satis�ed only partially.

On the other hand, general purpose distributed graph engines, such as Google’s

Pregel (Malewicz et al., 2010), Berkeley’s GraphX (Xin et al., 2013) (based on

Spark (Zaharia et al., 2010)), Apache Giraph (Martella et al., 2015), Blogel (Yan

et al., 2014) and IBM’s very recent Giraph++ (Tian et al., 2013), allow for the scal-

able processing of graph algorithms over massive, distributed data graphs. All of

these provide generic API’s for implementing various kinds of algorithms, includ-

ing set reachability queries. However, a principal assumption we follow in this

work is that set reachability queries are selective. That is, for any given sets S, T
of source and target vertices, both S and T are usually much smaller than V , while

the set of reachable pairs in turn usually is much smaller than the cross-product

S×T . Just like in relational approaches, an e�cient processing of set reachability

queries thus calls for the aforementioned usage of indexing strategies that take

advantage of the salient properties of the graph. Graph indexing and the pro-

cessing of selective queries however breaks the node-centric computing paradigm

of Pregel and Giraph, where major amounts of the graph are successively shuf-

�ed through the network in each of the underlying MapReduce iterations (the

so-called “supersteps”).

Giraph++ is a very recent approach to overcome this rather myopic form of

node-centric computing, which led to a new type of distributed graph process-

ing that is coined graph-centric computing in (Tian et al., 2013). Blogel (Yan et al.,

2014), on the other hand, proposed a block-centric computing where a graph is

partitioned into coarse grained blocks. By exposing intra-node state information

as well as the inter-node partition structure to the local slaves, both Giraph++ and

Blogel are a great step towards making these graph computations more context-

aware. However, index structures that speci�cally tackle the iterative communi-

cation rounds required for the supersteps are di�cult to accomplish even here,

such that a direct implementation of a reachability query may still result in as

many iterations (and hence communication rounds) as the diameter of the graph

in the worst case.

40 | Chapter 3. Set Reachability

3.1.3 Our Approach & Contributions

3.1.3.1 Our Approach

Being the �rst, to the best of our knowledge, to investigate set reachability queries

in a distributed setting, we propose an e�cient and a scalable distributed solution.

Our approach (Section 3.5.2) is based on the principles of precomputation and in-
dexing for achieving e�ciency, and partial evaluation (Fan et al., 2012) for the

scalability. We assume a shared-nothing master-slave architecture as the under-

lying distributed setup based on which an input graph is partitioned using a either

a hash-based or min-cut (Karypis and Kumar, 1998) partitioning schemes.

• E�ciency. Many centralized reachability approaches rely on indexes for e�-

ciency. These approaches precompute the reachability for every pair of ver-

tices and store them in a compact form which constitutes the index. In our ap-

proach, where the graph is partitioned, computing reachability for every pair of

vertices is neither practical nor needed. Instead, we precompute and replicate

reachability among a partial set of vertex pairs, speci�cally among the boundary

vertices in each partition. Boundary vertices occur in two forms, in-boundaries
and out-boundaries. An in-boundary is a vertex which has incoming edges from

other partitions, while an out-boundary is a vertex which has outgoing edges

to other partitions. We compute the reachability from in-boundaries to out-

boundaries per partition and represent this reachability information along with

the cut-edges in a graph form, called “boundary graph”. The boundary graph is

then replicated across the compute nodes and augmented with the local graph

to form a new graph, called “compound graph”. As the boundary graph en-

compasses transitive reachability information across the graph partitions, our

approach requires at most a single round of communication regardless of the

query size, the query vertices’ locality and the graph topology. This bene-

�ts in minimizing the size and number of messages exchanged during query

processing, ful�lling our third objective. Furthermore, the �rst objective, to

avoid redundant computations, can be accomplished locally by constructing

any o�-the-shelf set-reachability index over the compound graph, and globally

by grouping messages communicated among slaves.

• Scalability. Scalability is the another aspect which we aim to accomplish in our

approach. As we rely on index-based set reachability query processing, scala-

bility in our approach needs to be addressed in two dimensions, i) precompu-

tation and indexing, and ii) query processing. The precomputation step, where

a boundary graph is constructed for each partition, can be very expensive to

compute. Moreover, precomputation, depending on the partitioning strategy,

may result in huge boundary graph sizes. To scale the precomputation step to

large graphs, we propose a novel equivalence-sets-based optimization to group

in- and out-boundaries into equivalent sets and then compute the boundary

graph with respect to the in- and out-equivalent sets. This e�ectively reduces

3.1. Introduction | 41

the precomputation times and further generates a smaller size boundary graphs,

without losing any reachability information. In addition, further scalability can

be achieved by compressing the compound graphs at each partition, and apply-

ing a graph condensation via computing the SCCs (see Section 2.1.1.6).

On the other hand, to scale a set-reachability query processing, we leverage

the partial evaluation strategy proposed in (Fan et al., 2012). Here, the query

S T is �rst written into multiple set reachability queries, Si Ti, each

of which can be executed over a local compound graph residing at partition

i. Further processing involves computing set reachability queries of the form

Si Tj , where i 6= j. We follow a two-step reachability computation, i) Si Ij
at partition i, and ii) I ′j Tj at partition j. Where Ij is the set of in-boundaries

for partition j and I ′j ⊆ Ij is the set of in-boundaries that are reachable from the

source vertex set Si.

• Extensibility. Apart from the aspects such as e�ciency and scalability, we also

look at the extensibility of our indexes to dynamic graphs, which most of cen-

tralized and index-based reachability approaches ignore as the updates due to

dynamic graphs trigger expensive rebuilding of partial or full indexes. In our

approach, which relies on the precomputation and indexing, updates such as

insertions and deletions trigger recomputation of boundary graphs. For (in-

cremental) insertions, where new edges or vertices are added to the graph, the

recomputation step merely comprises of di�erential reachability evaluation, i.e.,

checking only the in- and out-boundary pairs that are not reachable before, but

are reachable after the insertions. As the insertions do not the void the existing

reachability, the recomputation step can be quickly performed, and moreover,

requires no decompression of compound graphs. On the other hand, deletions

are tricky to handle in our approach, as it requires decompressing the com-

pound graphs and may result in the recomputation step that is as expensive as

the reconstruction of the indexes from scratch.

3.1.3.2 Contributions

We summarize the contributions of this chapter as follows.

• We formalize the problem of set reachability over a partitioned, and hence dis-

tributed, directed data graph. To our knowledge, our approach is the �rst to

speci�cally tackle this problem.

• We develop a graph-based index structure that allows us to strictly restrict the

communication protocol among the compute nodes to a single round of mes-
sage exchange in order to resolve the results of any set reachability query posed

against a given partitioning of the graph. This guarantee holds regardless of

the properties of the graph (such as its diameter and partition structure) and

the properties of the query (such as the distribution of the source and target

vertices among the graph partitions).

42 | Chapter 3. Set Reachability

• Our indexing strategy allows for incremental updates of the underlying graph,

with an e�cient support for vertex and edge insertions and a still preliminary

support for respective deletions.

• Our approach is also extensible in the sense that any existing, centralized reach-

ability index can be “plugged-in” at the local compute nodes. We report the re-

sults of our distributed approach in combination with a plain DFS search (Cor-

men et al., 2009), the MS-BFS approach of (Then et al., 2014), and FERRARI

(Seufert et al., 2013) as local search strategies.

• Moreover, we provide an extensive experimental evaluation of our approach over

a variety of both small and large graphs and in comparison to di�erent exten-

sions of Giraph++. We also investigate two application scenarios of our ap-

proach for processing SPARQL 1.1 queries with property paths and for detecting

dependencies among social-network communities.

3.2 Preliminaries

In this section, we revisit the labeled directed graph model and the set reachability

query model de�ned in Section. 2.2, and also establish speci�c notations that are

particularly used in this chapter.

3.2.1 Data & Query Model

We consider a labeled directed graph model (see Section. 2.2.1.2) where vertices

are (uniquely) labeled, and the edges are directed and unlabeled. Following De�-

nition. 2.4, we denote the labeled directed graph as G(V , E, ΣV , Φ) and refer to it

as just “graph” for brevity.

Analogously to the partitioning of a labeled directed multi-graph (De�ni-

tion. 2.3) described in Section. 2.2.1.3, we refer to G = {G1,G2, . . . ,Gk} as the k
vertex-disjoint partitioning, where each Gi(Vi, Ei, ΣV , Φ) is a subgraph of graph

G. We further refer to C(VC , EC , ΣV , Φ) as the cut.

Distribution Function. We denote by ρ : V 7→ N+

0
the distribution function that

determines to which of the compute nodes (or slaves) in a cluster architecture each

graph vertex v ∈ V is distributed. Without loss of generality, and to simplify our

notation for the following presentation, we assume a simple partitioning strategy

by distributing every vertex v ∈ Vi to slave i (i.e., ρ(v) = i for each v ∈ Vi). We

will thus refer to a graph partition and a slave interchangeably. To increase con-

current executions (e.g., when using multi-threading at the local compute nodes),

an “overpartitioning” strategy may be employed instead, by assigning multiple

graph partitions to each of the slaves.

Definition 3.1. For a given graph partitioning G and an implied cut C of a graph G,
we de�ne the set of in-boundaries Ii for partition Gi as Ii = {v | v ∈ Vi,∃(u, v) ∈ EC ,

3.2. Preliminaries | 43

d e

b

fr

a c

g i

l

kh

u

n

m

p

q

v

o

Slave 1

G1

Slave 2

G2

Slave 3

G3

(a) Graph G

f

b

e

c

g

h i n

m

o

G1 G2 G3

(b) Cut C

Figure 3.1: (a) Graph G with partitions G = {G1,G2,G3} and (b) respective
cut C

u ∈ Vj and i 6= j}, i.e., as the set of vertices in Gi that have an incoming edge from
the cut C.

Conversely, we de�ne the set of out-boundaries Oi = {v | v ∈ Vi,∃(v, u) ∈ EC ,

u ∈ Vj and i 6= j} as the set of vertices in Gi that have an outgoing edge into the cut
C.

Example 3.1. Figure. 3.1(a) shows an example graph G with three partitions G =

{G1,G2,G3} which are stored at three slaves. Its corresponding cut C is shown in
Figure. 3.1(b). In- and out-boundaries are I1 = {f },O1 = {b, e}, I2 = {c, g, h}, O2 = {i},
and I3 = {m, n}, O3 = {o}, respectively.

Revisiting De�nition. 2.5, a distributed set reachability (DSR query) takes a

pair of sets as an input S, T and partitioning G of G, where S ⊆ V (“source set”)

and T ⊆ V (“target set”), and returns all pairs (s, t), with s ∈ S and t ∈ T , where

s, t are reachable in G, i.e., s t.

Example 3.2. For the graph G shown in Figure. 3.1, a DSR query S T with S =

{a, d, g} and T = {l, p} returns the following reachable pairs: {(a, l), (a, p), (d, l), (d, p),

(g, l), (g, p)}.

3.2.2 Graph Partitioning Strategies

Graph partitioning plays an important role in that it signi�cantly in�uences the

performance of DSR query processing. Here, we discuss two graph partitioning

strategies, one based on partitioning the vertices of a graph, called as edge-cut
partitioning, and the other based on partitioning the edges, called as vertex-cut
partitioning.

• Edge-Cut Partitioning. Given a partitioningG = {G1,G2, . . . ,Gk} and cutC(VC , EC ,

Σv , Φ) of a graph G(V , E, Σv , Φ), we call G, an edge-cut partitioning, if it holds

that Vi ∩ Vj = ∅, where i 6= j and 1 ≤ i, j ≤ k. In other words, each partition (or

subgraph Gi) holds a non-overlapping subset of vertices from V . This further

implies that each partition comprises of a unique subset of edges, such that an

edge (u, v) ∈ Ei, if and only if, both u, v ∈ Vi. Moreover, the cut graph C com-

prises of the inter-partition edges and the induced vertices, i.e., (u, v) ∈ EC and

u, v ∈ VC , if and only if, (u, v) ∈ E, u ∈ Vi, and v ∈ Vj for i 6= j.

44 | Chapter 3. Set Reachability

An edge-cut partitioning can be done using either a hash-based or a min-cut
strategy. In a hash-based partitioning, a hash function is used to place ver-

tices on to the non-overlapping partitions. An ideal hash function should uni-

formly distribute the vertices such that each partition has an equal number of

vertices, which can result in better load balancing. On contrary, hash-based

methods incur high communication costs which are proportional to the num-

ber of cut-edges, i.e., |EC |. Gonzalez et al. (Gonzalez et al., 2012) provided a

theoretical formulation on the expected fraction of cut-edges for the case of

random hash-based partitioning. Given a random hash-based partitioning G =

{G1,G2, . . . ,Gk} and cut C(VC , EC , ΣV , Φ) of G, expected fraction of cut-edges

is:

E
[

|EC |

|E|

]
= 1 –

1

k

Such a partitioning can signi�cantly impact the performance of both indexing

and querying steps, which can be mitigated with a min-cut based partitioning

strategy. The goal of the min-cut based partitioning is to minimize the expected

fraction of cut-edges, which by itself is a NP-Complete problem (Orlin, 1977).

Several approximate approaches have been proposed (Buluc et al., 2013) and

software tools like METIS (Karypis and Kumar, 1998) provide a very good ap-

proximations for minimizing the expected fraction of cut-edges, while scaling

to very large graphs.

• Vertex-Cut Partitioning. Alternatively, a graph can be partitioned using vertex-

cut partitioning. In this strategy, each edge, rather than a vertex, is hashed on

to a unique partitioning. That is, a partitioning G = {G1,G2, . . . ,Gk} is called a

vertex-cut partitioning of graph G if for each edge (u, v) ∈ E then there exists

a partition i such that (u, v) ∈ Ei. A vertex-cut partitioning may lead to par-

titions having overlapping vertex sets, i.e., |Vi ∩ Vj | ≥ 0 for i 6= j. Since each

edge belongs to a speci�c partition, it is to be noted that the cut graph comprises

only cut-vertices and empty cut-edges. Like in the case of edge-cut partitioning,

vertex-cut partitioning can be done based on either edge hashing or optimizing

on the number of vertex replications (i.e., vertex-cut). Apache GraphX (Gonza-

lez et al., 2014) facilitates using vertex-cut partitioning to partition graphs, for

achieving better load-balance.

Unless otherwise stated, we consider only edge-cut partitioning as the parti-

tioning strategy in our setting. We empirically compare both the hash-based and

min-cut strategies.

3.3 Related Work

Having introduced the set reachability problem, in this section, we list some of the

existing approaches which are related to or aid in solving set reachability queries.

3.3. Related Work | 45

We start with the centralized approaches and then discuss some of the popular

distributed graph frameworks that can be programmed to support set reachability

queries.

• Centralized Approaches. The reachability problem in directed graphs is one of

the most fundamental graph problems and thus has been tackled by a plethora

of centralized indexing techniques (Cohen et al., 2003; Gao and Anyanwu, 2013;

Jin et al., 2011; Kyrola et al., 2012; Prabhakaran et al., 2012; Seufert et al., 2013;

Trißl and Leser, 2007; Schaik and Moor, 2011; Veloso et al., 2014; Yildirim et al.,

2010). All of these aim to �nd better tradeo� between query time and index-

ing space which, for a directed graph G(V , E), are in between O(|V | + |E|) for

both query time and space consumption when no indexes are used, and O(1)

query time and O(|V |
2
) space consumption when the transitive closure is fully

materialized.

Recently, Gao et al. (Gao and Anyanwu, 2013) proposed a suitable, but central-

ized, indexing strategy, based on a notion of equivalence sets of graph vertices

that have the same reachability properties. (Then et al., 2014), on the other hand,

focused on the query-time optimization of multi-source BFS searches. However,

there exist hardly any works so far on distributed reachability queries (Fan et al.,

2012). Fan et al. (Fan et al., 2012) recently discussed distributed, but single-

source, single-target reachability algorithms for partitioned graphs and also

provided performance guarantees. For a directed graph and given cut, (Fan

et al., 2012) uses a partially iterative and partially indexing-based evaluation

to �nd the reachability for a given pair of vertices over a classical master-slave

architecture. In Section 3.4.1, we therefore provide a detailed review of the tech-

niques proposed in (Fan et al., 2012), while the query-time processing we per-

form based on equivalence sets to a large extent resembles also the techniques

described in (Gao and Anyanwu, 2013; Then et al., 2014) for a centralized set-

ting. However, unlike in Gao and Anyanwu (2013), we do not enumerate the

actual path sequences.

• Distributed Graph Engines. Distributed graph engines such as Pregel (Malewicz

et al., 2010), GraphX (Xin et al., 2013), GraphLab (Low et al., 2010, 2012), Trin-

ity (Shao et al., 2013), PowerGraph (Gonzalez et al., 2012), Giraph (Martella et al.,

2015) and Giraph++ (Tian et al., 2013) are either based on MapReduce (Malewicz

et al., 2010; Xin et al., 2013; Gonzalez et al., 2012), or they implement their own,

proprietary communication protocols via Message Passing (Gonzalez et al., 2012;

Low et al., 2012; Shao et al., 2013). Giraph, for example, o�ers the sendMes-
sage(.) and compute(.) methods as generic API functions to implement vari-

ous kinds of graph algorithms (including BFS and DFS). To implement a single-
source, single-target reachability query over a directed graph, each iteration over

the compute(.) method (as it is required for a single BFS/DFS step), however, re-

sults in a new call of the Map function or so-called “superstep”. Among two such

supersteps, messages are communicated among all compute nodes, which is a

46 | Chapter 3. Set Reachability

strategy that—due to the a-priori unknown amount of iterations—usually does

not permit for interactive query response times. For multi-source, multi-target
queries, on the other hand, this approach scales well with the query size due to

the possibility to implement shared computations in the compute(.) method.

A similar observation holds for GraphLab (Low et al., 2012), Trinity (Shao et al.,

2013) and PowerGraph (Gonzalez et al., 2012) which implement asynchronous

protocols based on the Message Passing Interface (MPI) (MPI et al., 2009). Pow-

erGraph, for example, which is speci�cally tuned for skewed graphs, imple-

ments a judiciously chosen schedule of exchanged messages, but also here the

worst-case amount of iterations remains equal to the diameter of the graph. The

very recently proposed Giraph++ (Tian et al., 2013), Blogel framework (built on

top of Giraph) provides further optimizations by shifting from a purely node-

centric to either a graph-centric (“think like a graph”) or block-centric compute

paradigm. All (local) messages among the vertices within the same graph parti-

tion are performed inside a superstep, while other messages are processed only

between two such supersteps. This signi�cantly improves the performance by

minimizing the number of messages, but also gives a much higher degree of

freedom in the implementation of various graph algorithms.

Thus, on the one hand, the generic abstraction layers of these distributed graph

engines make it di�cult to exploit shared computations and yet to fully bene-

�t from the underlying distribution scheme. On the other hand, these engines

generally do not support graph-indexing techniques known from the central-

ized approaches, which could ideally be employed to even completely avoid

iterative communication rounds among the compute nodes. Since Giraph++ of-

fers the most �exible API among the aforedescribed engines, we extensively

compared our approach against two principle implementations of DSR queries

in the very recent Giraph++ framework (including one native Giraph version).

3.4 Distributed Reachability

Here, we discuss two paradigms, a non-iterative and an iterative approach, for

processing a distributed reachability query, i.e., single-source single-target reach-
ability query. We start with a non-iterative approach, which forms the basis for

our approach to process DSR queries. We also discuss iterative approaches which

we compare against our preferred non-iterative approach.

3.4.1 Non-iterative Approach

Fan et al. (Fan et al., 2012) recently proposed a non-iterative approach for process-

ing a distributed reachability query s t over a master-slave architecture and

is evaluated as follows. The master receives the query s t and communicates

it to all slaves. At partition Gi, containing the source s, a local evaluation of the

reachability of s to each vertex in the set of out-boundaries Oi is computed �rst.

3.4. Distributed Reachability | 47

Similarly, at partition Gj , containing the target t, a local evaluation of the reacha-

bility of each vertex in the set of in-boundaries Ij is computed. Additionally, a local

computation of the reachability between all in-boundaries Ii and out-boundaries

Oi is computed at each partition G1, . . . ,Gk , and hence, at all slaves i = 1..k in the

compute cluster in parallel.1

The resulting local reachability information is then encoded into a bipartite

graph with in-boundaries and out-boundaries forming the vertex set and the edge

set represents the local connectivities between the in-boundaries Ii (including the

source s, if present) and the out-boundaries Oi (including the target t, if present)

at each partition Gi. All of these local bipartite graphs are communicated back to

a single master node for the �nal evaluation. A query-speci�c global dependency
graph is then constructed at this master node, for s t, by merging the bipar-

tite graphs and the static cut C. A reachability algorithm is then run over the

dependency graph to answer s t.
Algorithm 1 depicts the pseudo code of the distributed reachability approach

proposed by (Fan et al., 2012) for a master-slave architecture. The master node,

for a given pair of vertices s, t, invokes a partial evaluation, localDG(Gi, s, t), on

each slave and constructs a global dependency graph Gdep by merging the local

bipartite graphs Gi
loc returned from each slave i and the cut C. On this query

speci�c global dependency graph Gdep, a reachability query s t is evaluated

by running a BFS/DFS algorithm. The above algorithm can be implemented with

a single round of communication (Fan et al., 2012) and, for example, can be pro-

cessed in a single MapReduce iteration.

Complexity. The above algortihm performs the following sequence of opera-

tions for a reachability check – 1) partial evaluations at all slaves in parallel, 2)

communication of local bipartite graphs Gi
loc and the construction of global de-

pendency graph Gdep, and 3) reachability evaluation of s t over Gdep. Step 1,

i.e., partial evaluation, constitutes the reachability computation from sets Ii to Oi
at each slave i. Letm be the index of the largest graph partition in G, the time com-

plexity of this step is O
(
(|Vm| + |Em|) ·min(|Im|, |Om|)

)
, i.e., time taken to perform

one BFS traversal from each member in either the set Im or the Om, whichever has

the minimum size. The second step involves communication of locally computed

bipartite graphs and the construction of global dependency graph. The cost of

this step is proportional to the size of all the locally constructed bipartite graphs

and the cut C, which is equal to O
(∑k

i=1
(|Ii | · |Oi |) + |EC |

)
in worst case. Finally,

the third step involves a reachability evaluation of a pair s, t over Gdep, which

can be performed in O(|Vdep | + |Edep |) time by using a BFS/DFS graph traversal

algorithm (Cormen et al., 2009).

Example 3.3. Consider the distributed reachability query d q over the graph
partitioning shown in Figure 3.1. The local evaluation at each partition results in the

1
Note that we follow a slightly di�erent de�nition of in- and out-boundaries than in (Fan et al.,

2012). However, the algorithm in (Fan et al., 2012) directly translates to the one outlined above.

48 | Chapter 3. Set Reachability

Input: Partitioning G = {G1,G2, . . . ,Gk} of graph G, �ery: s t
Output: Boolean value: true /false

1 Master:
2 result := ∅
3 foreach Gi in G do
4 Gdep := Gdep∪ localDG(Gi , s, t) . Local dependency graph evaluation

5 Gdep := Gdep ∪ C
6 if reachable(Gdep, s, t) then return true ;
7 else return false ;

8 Slave i: localDG(Gi , s, t)
9 initialize Gi

loc(V
i
loc , E

i
loc , ΣV , Φ) := ∅ . Vloc := ∅, Eloc := ∅

10 IS := Ii . in-boundaries set

11 OS := Oi . out-boundaries set

12 if s in Vi then IS := IS ∪ {s};
13 if t in Vi then OS := OS ∪ {t};
14 foreach bi in Ii do
15 foreach bo in Oi do
16 if reachable(Gi , bi , bo) then
17 V i

loc := V i
loc ∪ {bi , bo}

18 Eiloc := Eiloc ∪ (bi , bo)

19 return Gi
loc

Algorithm 1: Distributed reachability evaluation (Fan et al., 2012)

following representation of partial reachability information:

• G1 : {d b, d e, f b, f e},

• G2 : {c i, g i, h i},

• G3 : {m q,m o, n q, n o}.

By including the edges in the cut C (Figure 3.1(b)), the global dependency graph
(Figure 3.2) is constructed at the master node to �nally resolve d q. By running a
reachability algorithm (such as backward DFS) over the dependency graph, one can
�nd that d q is indeed true (the red path in Figure 3.2).

f

d

b

e

g

c

h

i n

m

o

q

Master

Figure 3.2: Dependency graph as constructed in (Fan et al., 2012) for a
single reachability query

3.5. Non-iterative Approaches | 49

3.4.2 Iterative Approach

Vertex-centric approaches such as Pregel (Malewicz et al., 2010), Apache Giraph

(Martella et al., 2015), GraphX (Gonzalez et al., 2014) based on Apache Spark (Za-

haria et al., 2010), GraphLab (Low et al., 2010) are popular distributed graph pro-

cessing frameworks, which can be programmed to process reachability queries

and can easily scale well to very large graphs. A typical vertex-centric approach

uses the following processing model.

vertex

Superstep i

predecessors

Superstep (i – 1)

Messages

Compute(·)

successors

Superstep (i + 1)

Messages

Each vertex, in superstep i (i.e., iteration i), receives messages from its prede-

cessors that were sent in the superstep i – 1, processes the messages in its local

compute(.) function, updates the vertex’s value, and �nally sends messages, if

any, to its successors which are subsequently received in superstep i + 1.

Using the above model, a reachability query s t is processed as follows. In

superstep 0, source s, marked as visited, sends a message (s’s ID) to all its succes-

sors in succ(s) (see Section 2.1.1.3). In the next superstep, each vertex v ∈ succ(s)
receives this message, if v is not visited, marks itself as visited and forwards the

received message (s’s ID) to succ(v). This process continues iteratively until either

v = t or v is visited, then v stops forwarding messages to its successors and halts,

reporting s t if v = t. An iterative approach may take at most d iterations to

process a single reachability query, where d is the diameter (see Section 2.1.1.3)

of the input graph.

3.5 Non-iterative Approaches

In this section, we discuss three non-iterative approaches for processing a DSR

query. We start with a naïve approach (Section 3.5.1.1) and then present an im-

proved solution (Section 3.5.1.2), both of which are based on the non-iterative dis-

tributed reachability solution that uses a query speci�c global dependency graph,

as discussed in Section 3.4.1. Next, we present our new approach (Section 3.5.2)

based on the principles of precomputation and indexing of partial reachability in-

formation, and partial evaluation based query processing to mitigate the short-

comings of naïve and improved approaches.

3.5.1 Dependency Graph based Approaches

3.5.1.1 Naïve Approach

A naïve approach to extend the distributed reachability problem (Fan et al., 2012)

to sets of vertices S, T would be to simply invoke a separate reachability query

50 | Chapter 3. Set Reachability

Input: Partitioning G = {G1,G2, . . . ,Gk} of graph G, �ery S T
Output: R {(s, t) | s ∈ S, t ∈ T and s t}

1 Master:
2 result := ∅
3 foreach s in S do
4 foreach t in T do
5 Gdep(Vdep, Edep, ΣV , Φ) := ∅ . Vdep := ∅, Edep := ∅
6 foreach Gi in G do
7 Gdep := Gdep∪ localDG(Gi , s, t)

8 Gdep := Gdep ∪ C
9 if reachable(Gdep, s, t) then result := result ∪ {(s, t)} ;

10 return result

Algorithm 2: A naïve approach to process a DSR query using dependency

graph approach (Fan et al., 2012)

s t for every pair (s, t), with s ∈ S and t ∈ T . Pseudo code for processing

a DSR query S T using this naïve approach is depicted in Algorithm 2. The

master node receives the query and, for each pair (s, t), a dependency graph Gdep
is constructed using the local bipartite graphs Gi

loc returned by the slaves and the

cut C. A local bipartite is constructed at each slave using the localDG(·) function

(see Algorithm 1). OnGdep, which is constructed for every pair (s, t), a reachability

query s t is invoked. If s t is true, i.e., reachable, then the pair (s, t) is added

to the result R.

However, an obvious reason for the limited e�ciency of this approach, even

for reasonably-sized sets S and T , is that this approach tends to repeatedly perform

the expensive global dependency graph computation for each subquery, albeit the

signi�cant portions of the global dependency graph are the same. Consequently,

this approach can also not reuse any intermediate computations and thus likely

to perform many redundant computations, leading to very serious performance

problems in proccesing DSR queries.

In the next subsection, we propose an improved approach to holistically solve

a DSR query that avoids multiple global dependency graphs construction for a

single DSR query.

3.5.1.2 Improved Approach

An improved approach to extend the distributed reachability algorithm provided

in (Fan et al., 2012) to sets is as follows. Let S T be the query received at the

master. First, we partition S T into subqueries S1 T1, S2 T2, . . . , Sk Tk ,

where k is the number of graph partitions, such that each Si ⊆ Vi and Ti ⊆ Vi
contains only vertices that are local to partitionGi. Next, a local evaluation at each

slave i involves �nding the reachability among all pairs of vertices from the sets

Si∪ Ii and Oi∪Ti, respectively. These can again be run in parallel across all slaves.

The resulting reachability information, again represented as a bipartite graph, is

3.5. Non-iterative Approaches | 51

Input: Partitioning G = {G1,G2, . . . ,Gk} of graph G, �ery: S T
Output: R {(s, t) | s ∈ S, t ∈ T and s t}

1 Master:
2 result := ∅
3 partition S, T into {(S1, T2), (S2, T2), . . . , (Sk , Tk)}

. where Si ⊆ Vi and Ti ⊆ Vi
4 foreach Gi in G do
5 Gdep := Gdep∪ localDG(Gi , Si , Ti)

6 Gdep := Gdep ∪ C
7 foreach s in S do
8 foreach t in T do
9 if reachable(Gdep, s, t) then result := result ∪ {(s, t)} ;

10 return result

11 Slave i: localDG(Gi , Si , Ti)
12 initialize Gloc(Vloc , Eloc , ΣV , Φ) := ∅ . Vloc := ∅, Eloc := ∅
13 IS := Ii ∪ Si . in-boundaries set

14 OS := Oi ∪ Ti . out-boundaries set

15 foreach bi in IS do
16 foreach bo in OS do
17 if reachable(Gi , bi , bo) then
18 Vloc := Vloc ∪ {bi , bo}

19 Eloc := Eloc ∪ (bi , bo)

20 return Gloc

Algorithm 3: An improved approach to process a DSR query using depen-

dency graph approach (Fan et al., 2012)

then communicated from all slaves to the master node for the �nal evaluation.

At the master node, the query-speci�c global dependency graph for the sets S, T
is constructed as described in Section 3.4.1, and a local reachability algorithm is

then used to emit all reachable pairs (s, t), with s ∈ S and t ∈ T .

Pseudo code for the improved approach is depicted in Algorithm 3. At the mas-

ter node, the set reachability query S T is �rst partitioned in to k subqueries

S1 T1, S2 T2, . . . , Sk Tk (Line 3). Analogous to the distributed reacha-

bility approach (Algorithm 1), a query speci�c global dependency graph Gdep is

constructed from the local bipartite graphs and the cut C (Lines 4-5). Unlike in

Algorithm 1, the local bipartite graphs are constructed using the reachability in-

formation from the sets Ii ∪ Si to the sets Oi ∪ Ti (Lines 11-19). On Gdep, the DSR

query S T is processed using a plain BFS/DFS traversal algorithm, which is

abstracted by the reachable(·) function.

Example 3.4. Consider the DSR query S T with S = {a, d, g} and T = {l, p} over
the cut C shown in Figure 3.1(b). The sets of Boolean formulas obtained after the
local evaluation at each slave are as follows:

• G1 : {a b, a e, d b, d e, f b, f e},

52 | Chapter 3. Set Reachability

f

d

a

b

e

g

c

h

ii

l

n

m

o

p

Master

Figure 3.3: Dependency graph as constructed in (Fan et al., 2012) for a DSR
query

• G2 : {c i, g i, g l, h i},

• G3 : {m p,m o, n p, n o}.

At the master node, after evaluating S T over the global dependency graph shown
in Figure 3.3, we obtain the following reachable pairs of source and target vertices:
{(a, l), (a, p), (d, l), (d, p), (g, l), (g, p)}.

3.5.1.3 Discussion

Although the second algorithm provides a more viable solution of the DSR prob-

lem than the naïve approach, it still leaves a number of disadvantages that limit

both its e�ciency and scalability.

• First, the query-dependent, global dependency graph is generated “from scratch”

for each query S T , although both the cut C and the local reachability infor-

mation Ii Oi among the in- and out-boundaries at each graph partition Gi
are in fact static.

• Second, the approach does not leverage any distributed computation in its sec-

ond step, as the �nal reachability computation S T over the global depen-

dency graph is performed only by a single master node.

• Third, since the global dependency graph is generated dynamically for each

query S T , a local reachability index for the static cut C and the local Ii Oi
components cannot be constructed, which restricts the �nal reachability com-

putation to either a simple BFS or DFS strategy over the global dependency

graph.

3.5.2 Our Approach

In our approach, instead of computing the global dependency graph for each in-

coming query from scratch at the master node, we precompute a partition-speci�c

variant thereof, called the “boundary graph”, only once and store this boundary

graph in the form of a static reachability index at each slave. This strategy pro-

vides multiple bene�ts. First, it avoids repeated computations of the boundary

3.5. Non-iterative Approaches | 53

graph for each query. Second, since each slave has the complete reachability in-

formation among the boundary vertices of all other slaves available, �nding the

reachability of any two vertices (s, t) in the entire data graph G resolves to a lo-

cal reachability computation at at most two slaves, which is irrespective of the

diameter of the graph and the distribution of the source and target vertices of a

set-reachability query (see Theorems 3.1 and 3.2). Additionally, an index can be

built over the static boundary graph to accelerate this processing. Third, storing

a (compacted version of the) boundary graph at each slave allows for a fully dis-

tributed processing of a set-reachability query and thus avoids the single-node

bottleneck of previous approaches. We next formally de�ne how we generate the

boundary graph and its derived index structures.

3.5.2.1 Boundary Graph

A boundary graph is a directed graph that represents the reachability information

among the in- and out-boundaries of all graph partitions G = {G1, . . . ,Gk} with

respect to a given cut C.

Definition 3.2. Let GB
i (VB

i , EBi , L,φ) denote the boundary graph we compute for
partition Gi, such that the following holds:
• The vertices VB

i =

⋃
i=1..k Ii ∪ Oi consist of the union of all in- and out-

boundaries of all partitions G1, . . . ,Gk .
• There exists an edge (u, v) ∈ EBi , i�

- (u, v) ∈ EC , or
- u ∈ Ij and v ∈ Oj , for j 6= i, and u v (i.e., u and v are both located
at another partition Gj and there exists a path from u to v in Gj).

That is, the boundary graph for partition Gi merges the static cut C with the

static reachability information Ij Oj among all the remaining graph partitions

Gj (for i 6= j) into a new, precomputed graph GB
i . The resulting boundary graphs

are thus partition-speci�c.

Example 3.5. For our graph G with partitions G1, G2, G3 and respective cut C as
shown in Figure 3.1, the boundary graph GB

1
for partition G1 is shown in Figure 3.4(a).

Here, the dashed edges refer to edges in the cut C, while the solid edges denote the
transitive pairwise reachability Ij Oj (for j 6= 1).

Complexity. The construction of the boundary graph requires us to materialize

the pairwise reachability Ii Oi among the in- and out-boundaries for each

partition Gi. Using a simple BFS/DFS-based approach, the worst time complexity

of this computation isO((|Vi |+|Ei |)·min(|Ii |, |Oi |)) per partition. This can be further

improved toO(1 · |Ii | · |Oi |) when using a sophisticated, local reachability index for

this operation. On the other hand, the (worst-case) space complexity for storing

the boundary graph at partition i is O(

∑k
j=1

|Ij | · |Oj | + |EC |), for j 6= i. From this,

one can deduce that both the time and space complexity of the boundary graph

54 | Chapter 3. Set Reachability

f b

e

g

c

h

i n

m

o

(a) Non-optimized

Slave 1

GB
1

f b

e υ3 ν2

υ2 ν3 υ4

ν4

−→c
−→
h −→m

−→n

(b) Optimized

Slave 1

GB
1

Figure 3.4: Boundary graph GB
1
for partition G1

computation strongly depend on the amounts of in- and out-boundaries we obtain

based on the cut C.

Min-k-Cut Partitioning. A standard approach to reduce this number of bound-

ary vertices is to reduce the number of edges in the cut C, while trying to keep the

sizes of the partitionsG1, . . . ,Gk balanced. Although �nding an optimal suchmin-
k-cut partitioning is a well-known NP-complete problem (Cormen et al., 2009),

current graph libraries such as METIS (Karypis and Kumar, 1998) are capable of

achieving very good approximations even for graphs with hundreds of millions

of edges.

Equivalence Sets. Even for a given cut C, we can further reduce the size of the

boundary graph by grouping the in- and out-boundary vertices into equivalence
sets, thus continuing the idea presented in (Gao and Anyanwu, 2013) to a dis-

tributed setting. Speci�cally, we achieve this by grouping the boundary vertices

into forward- and backward-equivalent sets according to the following de�nition.

Definition 3.3. Two in-boundaries b1, b2 are called forward-equivalent with re-
spect to subgraph Gi, i.e., b1 ≡f b2, i� for any vertex v ∈ Vi – Ii and b1 v, it
holds that b2 v.

Conversely, two out-boundaries b1, b2 are called backward-equivalent with
respect to subgraph Gi, i.e., b1 ≡b b2, i� for any vertex v ∈ Vi – Oi and v b1, it
holds that v b2.

That is, once the forward- and backward-equivalent sets of vertices are iden-

ti�ed for each subgraph Gi, each such set is replaced by a new in-virtual vertex
υ (for a forward-equivalent set) and a new out-virtual vertex ν (for a backward-

equivalent set), respectively.

Example 3.6. Following the above de�nition of forward/backward equivalence for
the partitioning G = {G1, . . . ,G3} of G shown in Figure 3.1(a), we can obtain the
following, partition-speci�c equivalence sets:

• At G1, {υ1 = {f }}, {ν1 = {b, e}},

• At G2, {υ2 = {c, h}, υ3 = {g}}, {ν2 = {g}, ν3 = {i}}

• At G3, {υ4 = {m, n}}, {ν4 = {o}}

3.5. Non-iterative Approaches | 55

Next, the in- and out-boundaries are rede�ned with respect to the new virtual

vertices. That is, Ii comprises of all in-virtual vertices and Oi comprises of all out-

virtual vertices. For example, the optimized boundary graph for partition G1 is

shown in Figure 3.4(b). Note that we attach additional labels to the cross-edges

in the boundary graph to obtain a loss-less representation of the boundary graph

with respect to the partitions G1, . . . ,Gk . For example, the cross-edge (b, c) is

represented by connecting the vertex b and the in-virtual vertex υ2 with the label

−→c to denote that b is connected to only c in υ2. The forward arrow denotes that

this connection is valid only for a forward exploration. This is required, since

vertices c, h are forward-equivalent, i.e., c ≡f h, with respect to partition G2 only.

Computing Equivalence Sets. According to De�nition 3.3, two in-boundaries

b1 ∈ Ii and b2 ∈ Ii are forward-equivalent if they are reachable to exactly the same

set of vertices in Vi – Ii. To determine the sets of forward-equivalent boundaries,

we need to (1) compute all reachable pairs from Ii to Vi – Ii and then (2) group

the vertices in Ii into these equivalence sets. For large sets Ii and Vi – Ii, this

computation may be prohibitively expensive. To address (1) and thus reduce the

input that needs to be considered for (2), we apply the following optimizations.

• b1, b2 can only be forward-equivalent with respect to partition Gi if both belong

to the same strongly connected component (SCC) in Gi. We thus condense each

Gi into a more compact DAG by computing the SCCs over Gi.

• Instead of considering all target vertices Vi – Ii, we consider only the direct
successors S(Ii) of Ii, and hence S(Ii) – Ii, to check for forward-equivalence. The

intuition for considering only successors is that if two boundaries b1, b2 are

reachable to the same set of vertices in S(Ii) – Ii, by induction, b1, b2 also are

reachable to the same set of vertices in Vi – Ii.

A similar construction then holds also for backward-equivalence, except that

predecessors P(Oi) are considered instead.

Example 3.7. Consider partition G3 with in-boundary set I3 = {m, n} to compute the
sets of forward-equivalent vertices in I3. In this case, this requires us to only verify
whether m ≡f n, since m, n are the only in-boundaries in I3. First, we run the SCC
algorithm to condense G3 into the DAGG′

3
. In this example, G′

3
= G3, and we see that

m, n do not belong to the same SCC. We then check their forward-equivalence based
on the sets of vertices in V3 – I3 that are reachable from both m and n. To compute
these reachable sets of vertices, we consider only the direct successors S(I3)–I3 = {p, v}

instead of considering all of V3 – I3 = {p, o, q, v}. Thus, the reachable set of vertices
of both m and n is {p, v}, and hence we have m ≡f n.

Algorithm 4 computes the forward-equivalent sets of vertices in each graph

partition Gi as follows. Given a graph partition Gi with in-boundaries Ii, the

forward-equivalent sets EQf
i are computed as follows. First, the graph is con-

densed into its DAG representation G′i by computing the strongly connected com-

ponents of Gi. Next, the target vertices S(Ii)– Ii are chosen as the successors of the

56 | Chapter 3. Set Reachability

Input: Subgraph Gi , In-boundaries Ii
Output: Forward-equivalent sets EQf

i

1 EQf
i := ∅

2 G′i := condense(Gi) . graph condensation via SCC computation

3 S(Ii) := successors(Ii , G′i)
4 rep[1..|Ii |] := true
5 rset[k] := ∅
6 for l = 1 . . . |Ii | do
7 if rep[l] then
8 υ := {bl }
9 if rset[bl] = ∅ then

10 rset := localSetReachability({bl }, S(Ii) – Ii)

11 for m = l + 1 . . . |Ii | do
12 if scc(bl) = scc(bm) then
13 υ := υ ∪ {bm}

14 rep[m] := false

15 else
16 rset := localSetReachability({bm}, S(Ii) – Ii)
17 if rset[bl] = rset[bm] then
18 υ := υ ∪ {bm}

19 rep[m] := false

20 EQf
i := EQf

i ∪ υ

Algorithm 4: Computing forward-equivalent sets

in-boundaries Ii. We de�ne a Boolean array rep[] (for “representative”), whose

truth value for a given boundary bm denotes whether a forward-equivalent set

(i.e., an in-virtual vertex) υ is formed with any other boundary bl , for m > l. The

rep[] array is initially set to “true” for all boundaries. A boundary bl is equivalent

to bm, i� either bl and bm belong to same SCC (Lines 11-14) or have the same

reachability set rset (Lines 17-19). rset[j] for the jth boundary denotes the set of

vertices from S(Ii) – Ii that are reachable from bj . The computed equivalence set

υ starting at boundary bl , where rep[bl]:=true, is added to EQf
i at the end of each

iteration (outer loop – Lines 6-20).

With minor modi�cations from S(Ii) – Ii to P(Oi) – Oi (thus using predeces-

sors instead of successors), the algorithm can similarly be adapted to compute the

backward-equivalent sets EQb
i of out-boundaries.

3.5.2.2 Compound Graph

After compacting the partition-speci�c boundary graphsGB
i by replacing both the

forward- and backward-equivalent sets of vertices with their in- and out-virtual

counterparts, we perform one more step to obtain our �nal graph index for eval-

uating DSR queries. To do so, we merge the partition-speci�c boundary graphs

3.5. Non-iterative Approaches | 57

d e

b

fr

a

υ3

υ2

ν2

ν3

υ4

ν4

−→c
−→
h

−→n

−→m

Slave 1

GC
1

c

g i

l

kh

u
ν1

υ1

υ4

ν4

←−
b

←−e←−e

−→n
−→m

Slave 2

GC
2

n

m

p

q

v

o

ν3υ3υ1

ν1 υ2 ν2

−→
c, h
←−
b, e

Slave 3

GC
3

Figure 3.5: Final compound graphs GC
1
, GC

2
, GC

3
constructed for graph G

with cut C of Figure 3.1

with the local partitions into a compound graph GC
i for each partition Gi. These

compound graphs will facilitate the processing of DSR queries via a combination

of local reachability computations and a single �ltering step among these local

results.

Definition 3.4. Let GC
i (VC

i , ECi , L,φ) denote the compound graph we compute
for partition Gi, such that the following holds:

• The vertices VC
i = Vi ∪VB

i consist of the union of vertices in the local subgraph Gi
and boundary graph GB

i .

• The edges EBi = Ei ∪ EBi consist of the union of edges in the local subgraph Gi and
boundary graph GB

i .

Figure 3.5 shows the compound graphs for the initial data graph G from Fig-

ure 3.1(a).

3.5.2.3 Forward- and Backward-Lists

Our last precomputation step consists of storing the forward- and backward-lists,

Fi and Bi, of boundaries which are non-local to each partition Gi. These will

serve for routing messages to only those partitions Gj which are connected to Gi.

Speci�cally, the forward-list,

Fi =

⋃
j 6=i

{ υ | υ is in-virtualvertex of Gj },

is the set of all vertices that are non-local to Gi and are in-virtual vertices of an-

other partition Gj . Similarly, the backward-list,

Bi =

⋃
j 6=i

{ ν | ν is out-virtual vertex of Gj },

58 | Chapter 3. Set Reachability

consists of all out-virtual vertices that are non-local to Gi.

For instance, for partition G1 shown in Figure 3.5, we have F1 = {υ2, υ3, υ4}

and B1 = {ν2, ν3, ν4}.

3.5.2.4 Evaluating DSR Queries

Given these precomputed index structures, i.e., the compound graphs GC
i and

respective forward- and backward-lists, Fi and Bi, evaluating a DSR query now

becomes straightforward. We again begin with a discussion of the single-source,

single-target case and then explain how it generalizes to the multi-source, multi-

target case.

A. Single Reachability. Consider the reachability query s t. The algorithm

for processing the query is shown in Algorithm 5. Given a data graph G with

partitioning G, we evaluate the query as follows. If both s and t belong to same

partition Gi, then the reachability s t is con�ned to only partition i which

stores the compound graph GC
i . Since the compound graph GC

i augments each

Gi with the global reachability information among all boundary vertices, we can

safely evaluate the reachability of s t on GC
i by calling any centralized reach-

ability algorithm via the function localSetReachability(.) (Lines 11-13). A formal

justi�cation for this is provided by the following theorem.

Theorem 3.1. Let s, t both be local vertices of partition i, i.e., s, t ∈ Vi. Then the
evaluation of the reachability s t over graph G can be answered entirely locally
over the compound graph GC

i without requiring any message exchange among the
partitions.

Proof. Let P = {(s, u1), . . . , (um, u), (u, v), (v, vn), . . . , (v1, t)} denote the set of edges

along a path from source s to target t. Then the following holds: edge (u, v) ∈ P ,

with u ∈ Vi, v ∈ Vj , can either be (1) a cut edge i� i 6= j, (2) a local edge in partition

i i� i = j, or (3) a non-local edge with respect to partition k i� i = j and i 6= k.

Case A: Let all edges in P be either local to partition i (1) or be a cut edge (2)

among partitions i, j. Then, from De�nition 3.4 of the compound graph GC
i =

(VC
i , ECi), it follows that P ⊆ ECi . That is, the reachability s t can be computed

entirely locally at partition i using ECi .

Case B: Let (u, v) ∈ P such that (u, v) is a non-local edge (3) to partition i but a

local edge (1) to another partition j, with i 6= j. That is, (u, v) ∈ ECj but (u, v) /∈ ECi .

From this, it follows that ∃ p, q such that the edges (up–1, up), (vq, vq–1) ∈ P are

cut edges (2), where up, vq ∈ Vj with 1 ≤ p ≤ m and 1 ≤ q ≤ n. Next, we

choose (up–1, up), (vq, vq–1) ∈ P as the edges with the largest indices of p, q for

which this property holds. This choice ensures that a path from up to vq via

(u, v) resides entirely in partition j. Then, vertex up forms an in-boundary while

vertex vp forms an out-boundary of partition j, and the edges of the sub-path

{(up–1, up), . . . , (um, u), (u, v), (v, vn), . . . , (vq, vq–1)} ⊆ P reside in partition j. In

this case, by the construction of the boundary graph GB
i = (VB

i , EBi), we added

3.5. Non-iterative Approaches | 59

Input: Compound graphs: {GC
1

,GC
2

, ...,GC
k }, �ery: s t

Output: true/false
1 Master:
2 ranks := ρ(s) . i.e., s ∈ Vi and Gi is at Slave ρ(i)
3 rankt := ρ(t) . i.e., t ∈ Vj and Gj is at Slave ρ(j)
4 result := false
5 foreach rank do
6 result := result ∨ compute(s, ranks, t, rankt)

. invokes parallel computations at all ranks

7 return result
8 Slave i:
9 method compute(s, ranks, t, rankt) :

10 rset := ∅
11 if ranks = i and rankt = i then

. invoke local reachability evaluation

12 if localSetReachability({s}, {t}) 6= ∅ then
13 return true

14 else if i = ranks then
15 j := rankt
16 Υj

s := localSetReachability({s}, F ji);
. F ji ⊆ Fi is the set of in-virtual vertices local to j

17 rset[s] := Υj
s

18 sendMessage(j, rset)
19 return false

20 else if i = rankt then
21 receiveMessage(i, rset)
22 Υi

s := rset[s]
23 for υ in Υi

s do
24 b := υ.rep . b is a member vertex in eqset υ
25 if localSetReachability({b}, {t}) 6= ∅ then
26 return true

27 return false

Algorithm 5: Distributed reachability processing

60 | Chapter 3. Set Reachability

a reachability edge (up, vq) to EBi (see De�nition 3.2). This means, that in the

optimized EBi , we add an edge (υ, ν), where up ∈ υ is an in-virtual vertex and

vq ∈ ν is an out-virtual vertex. Since EBi ⊆ ECi (see De�nition 3.4), there exists

a path {(s, u1), (u1, u2), . . . , (up–1, υ), (υ, ν), (ν, vq–1), . . . , (v1, t)} in partition i, thus

again ensuring that the reachability of s t can be computed entirely locally at

partition i using ECi .

Example 3.8. Consider the query b f . Both vertices b, f are local to partition
G1. By considering only the subgraph G1, one cannot �nd that f is reachable from
b. But by considering the whole graph G, we see that b f is true via the path
b→ c → i → n→ p → o→ f . However, using the local compound graph GC

1
(see

Figure 3.5), we can indeed �nd that b f is true via the path b → υ2 → ν3 →
υ4 → ν4 → f .

If, on the other hand, s and t are located at two di�erent partitions Gi, Gj ,

with i 6= j, the evaluation of a reachability query works as follows (Lines 14-

25). Starting at partition Gi, we �nd the reachability from s to all the forward-

boundaries υ ∈ F ji ⊆ Fi (Line 15) which are located at another partition Gj . Let

Υj
s ⊆ Fi be the set of in-virtual vertices located at partition Gj (and hence stored

by partition j as per our assumption) which are reachable from s. The message

rset[s]:=〈s, Υj
s〉 is then communicated to partition j. At partition j, we consider

each υ ∈ Υj
s and replace it with any one of its members b, after which we evaluate

the reachability from b to the local target vertex t. If there exists one such b ∈
υ ∈ Υj

s with b t, we report that s t is true (Lines 22-25).

Theorem 3.2. Let s ∈ Vi and t ∈ Vj , with i 6= j. Then, the evaluation of the
reachability s t can be answered over the two compound graphs GC

i and GC
j by

using a single step of message exchange from partition i to partition j.

Proof. The proof is simple and leverages the result of Theorem 3.1. Let P =

{(s, u1), (u1, u2), . . . , (up–1, up), . . . , (un, t)} denote the set of edges along the path

from source s to target t, where s ∈ Vi, t ∈ Vj . If i 6= j, then there exists an edge

(up–1, up) ∈ P which is a cut edge (1). That is, up–1 ∈ Vk , up ∈ Vj and k 6= j.
Next, we choose the largest index p such that the subpath {(up, up+1), . . . , (un, t)}
resides entirely at partition j. Since (up–1, up) is a cut edge and up ∈ Vj , up
forms an in-boundary of partition j. We next choose the smallest q such that

{(s, u1), . . . , (uq–1, uq)} resides entirely at partition i. Note that in the optimized

boundary graph, we actually use virtual vertices instead of the regular ones, which

we omit here for simplicity.

Path P can be thus written as a concatenation of subpaths P1 = {(s, u1), . . . ,
(uq–1, uq), P2 = (uq, uq+1) . . . , (up–1, up}, and P3 = {(up, up+1), . . . , (un, ut)}. Ac-

cording to Theorem 3.1, P1 and P3 can be computed entirely at partition i and

j, respectively. uq and up thus are an out- and in-boundary of partition i and j,
respectively, i.e., uq, up ∈ VC . As per the construction of the local compound

graphs (see De�nition 3.4), P2 can be evaluated at either partition i or j. Thus, the

3.5. Non-iterative Approaches | 61

reachability problem s t is reduced to two reachability problems: (a) s up
at partition i and (b) up t at partition j. To �nd such a up, we iterate over all

in-boundaries b of partition j residing at partition i. We then compute the reach-

ability s b and communicate the reachable in-boundaries to partition j. Thus,

answering s t, where s ∈ Vi and t ∈ Vj , with i 6= j, requires a local processing

at two partitions i, j and involves only a single step of message exchange from

partition i to partition j.

Example 3.9. Consider the query a q, where a is located at partition G1 and q is
located at partition G3. At partition G1, we compute the reachability from a to the
single forward-boundary {υ4} which is located at G3. From the compound graph GC

1

(shown in Figure 3.5), we have Υ3

a = {υ4} since a υ4. Υ3

a is then communicated to
partition 3. At partition 3, we expand the actual vertices represented by the virtual
vertex υ4 (say m, since m ∈ υ4) and �nd the reachability from m to q. Since m q,
we thus �nd that a q is true.

B. Set Reachability. An actual DSR query S T , which is received by the

master node, is processed in our approach as shown in Algorithm 6. First, S T
is partitioned into subqueries S1 T1, S2 T2,. . . , Sk Tk , where k is again the

number of graph partitions. The partitioning of the query into these subqueries is

determined such that each source vertex si ∈ Si and target vertex ti ∈ Ti resides

locally at partition Gi (Line 2).

Step 1. (Lines 13-19) A local evaluation at partition Gi involves processing

the pairwise reachability among the vertices from Si to Ti and from Si to Fi at

all partitions i = 1..k in parallel. This operation generates two types of reachable

pairs: (si, ti) and (si, υj). The �rst type denotes the reachability between both a

local source si ∈ Si and a local target ti ∈ Ti. The second type denotes the

reachability between a local source si ∈ Si and a forward-boundary υj ∈ Fi,
which is represented by an in-virtual vertex located at partition j.

Step 2. (Lines 21-32) The communication of the remotely reachable pairs, each

of the form (si, υj), is performed from partition i to partition j among all pairs of
partitions i, j = 1..k in parallel. In order to reduce the overhead of communicat-

ing individual pairs, each partition bu�ers its partial reachability information and

communicates this bu�er at once. Each bu�er sent from partition i to partition j is

of the form {〈si, Υj
si〉} for all si ∈ Si. For easier processing, the messages received

at partition i from all other partitions are stored in an inverted index Ii(Υi
∗, Li),

where Υi
∗ is the aggregated set of in-virtual vertices (local to partition i). For each

in-virtual vertex υ ∈ Υi
∗, its aggregated non-local source set Sυ ⊆ S is stored in

Li. That is, for s ∈ Sυ and υ ∈ Υi
∗, we already know that s υ.

Step 3. (Lines 34-39) A �nal local evaluation involves processing the set reach-

ability Υi
∗ Ti from the in-virtual vertices Υi

∗ to the target sets Ti at all partitions
i = 1..k in parallel. For each in-virtual vertex υ ∈ Υi

∗ and original vertex b repre-

sented by υ, we evaluate the reachability from b to all targets t ∈ Ti. If b t is

true, then for each s ∈ Sυ , we report that s t is true.

62 | Chapter 3. Set Reachability

Input: Compound graphs {GC
1

,GC
2

, ...,GC
k }, �ery: S T

Output: R {(s, t) | s ∈ S, t ∈ T and s t}

1 Master:
2 partition S, T into {(S1, T2), (S2, T2), . . . , (Sk , Tk)}

. where Si ⊆ Vi and Ti ⊆ Vi
3 result := ∅
4 for i = 1 . . . k do
5 result := result ∪ compute(Si , Ti)

6 return result

7 Partition i:
8 method compute(Si , Ti) :
9 local_rset := ∅

10 remote_rset := ∅
11 result := ∅
12 // Step 1:
13 local_rset := localSetReachability(Si , Ti)
14 remote_rset := localSetReachability(Si , Fi)
15 for s in Si do
16 for t in local_rset[s] do
17 result := result ∪ {(s, t)}

18 for υ in remote_rset[s] do
19 Υj

s := Υj
s ∪ υ

. υ is an in-virtual vertex of partition j

20 // Step 2:
21 for j = 1 to k do
22 if j 6= i then
23 msg := ∅
24 for s in Si do
25 msg := msg ∪ {〈s, Υj

s〉}
26 sendMessage(j,msg)

27 Ii(Υi
∗, Li) = ∅

28 for j = 1 to k do
29 receiveMessage(j, msg)
30 for 〈s, Υi

s〉 in msg do
31 for υ in Υi

s do
32 Ii[υ] := Ii[υ] ∪ {s}

33 // Step 3:
34 for υ in Υi

∗ do
35 b := υ.rep
36 local_rset := localSetReachability({b}, Ti)
37 for s in Ii[υ] do
38 for t ∈ local_rset[b] do
39 result := result ∪ {(s, t)}

40 return result

Algorithm 6: Distributed set reachability Processing

3.5. Non-iterative Approaches | 63

Example 3.10. Consider again the graphG with partitions G1, G2, G3 in Figure 3.1(a).
The respective compound graphs GC

1
, GC

2
, GC

3
are shown in Figure 3.5. Let S =

{d, l, p} T = {a, k, q} be the DSR query received at the master node. The query
is partitioned into {d} {a}, {l} {k}, {p} {q}. At partition G1, we �nd the set-
reachability (Step 1) between {d}, {υ2, υ3, υ4, a}, thus returning the reachable pairs
{(d, υ2), (d, υ3), (d, υ4), (d, a)}. We perform the same operation in parallel at parti-
tions 2 and 3 and communicate the results to all other partitions (Step 2). At partition
1, we receive the following reachability information: {(υ1, [l, p])}. Similarly, at parti-
tion 2, we receive {(υ2, [d, p]), (υ3, [d, p])}; and at partition 3, we receive {(υ4, [d, l])}.
At the end of the local evaluation from boundaries to the �nal targets (Step 3), by
replacing virtual vertices with each of their represented vertices (at partition 1, υ1 is
replaced with f), the following sets of reachable pairs are generated at the partitions.

• At G1, {(d, a), (l, a), (p, a)}

• At G2, {(d, k), (l, k), (p, k)}

• At G3, {(d, q), (l, q), (p, q)}

Local Reachability Evaluation. Algorithms 5 and 6 both require partial reach-

ability processing at each partition via the function localSetReachability(.). For

this, any centralized reachability index (see, e.g. (Cormen et al., 2009; Seufert

et al., 2013; Gao and Anyanwu, 2013; Yildirim et al., 2010)) can be plugged into our

framework. We abstract this by calling “black-box” function localSetReachabil-
ity(.) in our algorithms whenever a local (set-)reachability operation is invoked.

Forward vs. Backward Processing. Our above discussion focused on starting

from the source vertices and ending at the target vertices. If there are less targets

than sources, one may also start from the target vertices and search backwards

to the source vertices to arrive at the same results. We therefore maintain both

forward- and backward-lists, Fi and Bi, to facilitate these two directions of search-

ing.

3.5.2.5 Incremental Updates

Insertions. Insertions over the SCC-condensed compound graphs GC
i can be

implemented without storing the original (i.e., uncondensed) compound graphs.

Let (u, v) denote a new edge that is to be inserted into the graph G. First, as-

sume both u and v belong to the same graph partition i. Further, if u, v belong

to the same SCC, then adding (u, v) to Gi would not change the local compound

graph GC
i (nor any other) at all and thus can be safely ignored. If, on the other

hand, u, v belong to two di�erent SCCs, then a series of update actions are re-

quired. First, we add the new edge to the local compound graph GC
i and locally

recompute the SCCs and equivalence sets. Next, new connections among the lo-

cal in- and out-boundaries, Ii and Oi, are communicated to all other partitions j
(for j 6= i) as additional edges. These can be incrementally merged into all the

64 | Chapter 3. Set Reachability

compound graphs GC
j by updating their SCCs as well. Second, if u and v belong

to two di�erent partitions i and j, then this means we have a new edge in the cut

C, which however does not a�ect the reachability within partitions i and j. Thus,

(u, v) can directly be merged into the distributed compound graphs as described

above.

Let n, m denote the number of vertices and edges in the condensed compound

graph GC
i , and let |Ii |, |Oi | be the number of in- and out-boundaries for partition i,

respectively. By adding a local edge to partition i, a partial or full recomputation

of the connections among vertices from Ii to Oi is required. Thus the worst-case

time complexity of this step is O((n + m) · |Ii | · |Oi |), which is asymptotically opti-

mal (Demetrescu and Italiano, 2006). The SCC recomputation at each compound

graph has a time complexity of O(n′ + m′), where n′ and m′ are the numbers of

vertices and edges in the new GC
i ’s.

Deletions. Deletions over the SCC-condensed compound graphs GC
i , on the

other hand, result in a decremental maintenance of the SCCs, which requires ei-

ther storing the original (i.e., uncondensed) compound graphs or organizing the

SCCs in a hierarchical manner (Roditty and Zwick, 2008). In our implementation,

we resort to storing the uncondensed compound graphs along with the condensed

compound graphs GC
i , albeit approaches like (Roditty and Zwick, 2008) may be

employed for further optimizations.

A deletion of a local edge (u, v) in partition i is processed over the condensed

compound graph GC
i as follows. If the vertices u, v belong to the same SCC, then

we expand this SCC into its original edges and reconnect these edges to the re-

maining SCCs in GC
i . Moreover, in case of deletions, some of the existing bound-

aries may not be connected anymore. We identify such pairs of boundaries and

communicate these to the other slaves. After receiving this list of deleted bound-

ary edges, we reconstruct the local compound graphs GC
j (for j 6= i) analogously

to the insertion case. If, on the other hand, the vertices u, v belong to two di�erent

SCCs, then we expand both of them.

Here, the worst-case time complexity to maintain the local boundary edges is

O((|Vi | + |Ei |) · |Ii | · |Oi |), which is the same as for rebuilding the local boundary

graphs (see Section 3.5.2.1). The new compound graphs are condensed via SCC

computation, whose worst-case time complexity is O(n′ + m′), where n′ and m′

again are the numbers of vertices and edges in the new GC
i ’s.

3.6 Iterative Approaches

Next, we discuss two iterative-based solutions to process DSR queries using a gen-

eral purpose distributed graph processing frameworks. We start with the popular

vertex-centric approach (Section 3.6.1) and then discuss a more e�cient graph-

centric approach (Section 3.6.2) to process DSR queries. Furthermore, we extend

the graph-centric approach by leveraging the equivalence-sets to further improve

the performance.

3.6. Iterative Approaches | 65

3.6.1 Vertex-Centric Approach

As discussed in Section 3.4.2, vertex-centric approaches follow an iterative model

to perform operations on graphs and de�ne a compute(·) function on each ver-

tex. Called supersteps, each vertex v receives messages from its predecessors in

a superstep i that are sent in previous superstep (i – 1), process the messages in

compute(·) function, and sends the messages to v’s successors in the next super-

step (i + 1).

A DSR query S T is processed using the vertex-centric approach as follows.

Each vertex v in the graph maintains a vector v.R, initialized to ∅, that holds the

set of source vertices that are reachable to v. In superstep 0, each source vertex

s ∈ S, update its corresponding vector s.R to s.R∪{s}, and sends s.R as a message to

its successors. In the next superstep, a vertex v receives and aggregates messages

sent by its predecessors into a temporary vector v.R′. Vertex v, then sends the

di�erential information, i.e., v.R′–v.R, to its successors and subsequently updates

its vector v.R to v.R∪ v.R′. If v.R′ – V .R = ∅. Then vertex v is halted and activated
only when v again receives a message from one of its predecessors. This process

continues, and at any superstep i, if all the vertices are halted, then the process

stops. The values of vertices t ∈ T , i.e., vector t.R contains all the reachable

sources s in S, which are then used to generate reachable pairs of the form (s, t).
Appendix A.1.1 provides an implementation of the aforedescribed approach in

Giraph (Martella et al., 2015), a popular distributed graph processing framework.

3.6.2 Graph-Centric Approach

Analogously to vertex-centric approaches, graph-centric approaches follow an

iterative model to perform graph operations. On the contrary, graph-centric ap-

proaches considers a subgraph (or partition) in each superstep rather than an

individual vertex. A compute(·) function is de�ned for each subgraph. In each su-

perstep, zero or more vertices in a subgraph Gi (a partition of G) receive messages

from its predecessors that are located in another subgraph Gj (j 6= i). The received

messages are then internally communicated to all the vertices in Gi, thus updating

their corresponding vertex values. At the end of the superstep, only the vertices

that have successors, that belong to another subgraph, send messages which are

subsequently processed in the next superstep.

DSR queries using the graph-centric approach are processed as follows. First,

using the graph partitioningG = {G1,G2, . . . ,Gk} information, a DSR query S T
is partitioned into k subqueries: S1 T1, S2 T2, . . ., Sk Tk . Additionally,

like in the vertex-centric approach, each vertex maintains a vector v.R, initialized

to ∅, which holds the set of source vertices that are reachable to v. In superstep 0,

on subgraph Gi, we invoke a local reachability evaluation starting from all source

vertices in Si. A local reachability evaluation, using on a typical BFS/DFS traversal

strategy (Cormen et al., 2009), �nds, for all the vertices v in Vi, the list of sources

vertices in Si that are reachable to v, i.e., v.R = {s | s ∈ Si and s v := true}. At

66 | Chapter 3. Set Reachability

the end of the local reachability evaluation, all vertices v ∈ Vi at each partition,

send the vector v.R as message to their remote successors. In the subsequent

superstep, vertices receive messages from their remote predecessors and store

them in a temporary vector v.R′. If (v.R′ – v.R) 6= ∅, v is treated as a new source

and the local reachability evaluation is repeated. If, at any superstep, there are no

new sources, the computation on the partition Gi is halted. If all the partitions are

halted, the process is exited and the values of vertices t ∈ T , i.e., the vector t.R
contains all the reachable sources s in S, which are then used to generate reachable

pairs of the form (s, t)
We implemented the above graph-centric approach in Giraph (Martella et al.,

2015) by exposing the partition information similar to the implementation of Gi-

raph++ (Tian et al., 2013). Appendix A.1.2 provides the implementation details.

Equivalence-Sets Optimization. In addition, we extended the graph-centric

approach further to exploit the equivalence-sets optimization proposed for non-

iterative approaches (see Section 3.5.2.1). More speci�cally, we precompute and

group the boundary vertices of each partition, in to equivalence-sets groups. Then

the input graph is modi�ed as follows. For each vertex v, say belonging to parti-

tion i, i.e., v ∈ Vi, we augment a vector EQv , an equivalence set of vertices for the

corresponding neigbors of v. The vector EQv is built as follows, for each remote

successor r of v, r ′(=rep[r]) is added to EQv , where r ′ is a representative member

and r , r ′ both belong to the same equivalent set. For instance, consider a vertex v
and its list of local successors (l1, l2, . . . , lx) and remote successors (r1, r2, . . . , ry).

The adjacency list representation of v, i.e.,

v → l1, l2, . . . , lx , r1, r2, . . . , ry

is converted to

v → l1, l2, . . . , lx , r ′
1
, r ′

2
, . . . , r ′z

where, r ′p is a representative member of rq, p ≤ z, q ≤ y, and z ≤ y.

DSR query processing with equivalence sets is much alike the one without

equivalence sets except that instead of sending messages to the remote successors,

we send messages to the remote representative members (r ′). Appendix A.1.3

provides the implementation details of the DSR query processing that leverages

the equivalence sets optimization in Giraph++, which we coin as “Giraph++wEq”

in our experiments.

3.7 Evaluation

We next present a detailed empirical evaluation of our proposed index processing

and updating strategies for DSR queries.

DSR Implementation. We implemented our DSR approach in TriAD engine

(which will be discussed in Chapter 4). TriAD follows a master-slave architec-

ture and uses MPICH2 asynchronous communication protocol for communication

3.7. Evaluation | 67

among slaves. We added Graph Parser module to the master node of the TriAD ar-

chitecture to parse graph datasets represented in edge list format 2.1.1.7. We used

the TriAD custom partitioner to partition the input graph into a locality based

partitioning using METIS. At each slave, we used the triple index structures (SPO,

OPS) to store the compound graphs, local graphs and any intermediate graphs

during preprocessing step. In addition, o�-the-shelf centralized indexes maintain

their own custom indexes in our implementation in TriAD. For more details about

the architecture, please refer to Section 4.3.

Variants & Competitors. Speci�cally, we compare the following approaches:

• our DSR approach with a static reachability index implemented in TriAD (coined

“TriAD”), as described in Section 3.5.2;

• a naïve enumeration of all pairs of source and target vertices (coined “TriAD-
Naïve”), as described in Section 3.5.1.1;

• a generalization of the algorithm described by Fan et al. (coined “TriAD-Fan”)

(Fan et al., 2012) to sets of source and target vertices, as described in Section

3.5.1.2;

• an implementation of DSR queries in Apache Giraph (coined “Giraph”) (Martella

et al., 2015), as depicted in Appendix A.1.1;

• an implementation of DSR queries in Giraph++
2

(coined “Giraph++”) (Tian

et al., 2013), as depicted in Appendix A.1.2;

• an extended version of Giraph++ with equivalence sets (coined “Giraph++wEq”),

as depicted in Appendix A.1.3.

Further, for our DSR approach, we report the results in combination with the

following local reachability indexes:

• a plain depth-�rst-search (DFS) strategy which requires no additional index

structures except for those described in Section 3.5.2 (coined “TriAD-DFS”);

• the multi-source, breath-�rst-search (MS-BFS) algorithm described by Then et

al. (Then et al., 2014) which also requires no additional index structures except

for those described in Section 3.5.2 (coined “TriAD-MSBFS”);

• using FERRARI (Seufert et al., 2013) as a local reachability index that is gener-

ated on top of the compound graphs described in Section 3.5.2 (coined “TriAD-
FERRARI”).

Unless stated otherwise, we report the combination of our DSR index with

DFS as the default local search strategy.

2https://issues.apache.org/jira/browse/GIRAPH-818

https://issues.apache.org/jira/browse/GIRAPH-818

68 | Chapter 3. Set Reachability

Small Large
Graphs |V| |E| Graphs |V| |E|
Amazon 0.4M 3.3M LiveJ-68M 4.8M 68.9M

BerkStan 0.7M 7.6M Twitter-1.4B 41.7M 1,468.4M

Google 0.9M 5.1M Freebase-500M 97.3M 499.9M

NotreDame 0.3M 1.5M Freebase-1B 156.6M 999.9M

Stanford 0.3M 2.3M LUBM-500M 115.6M 500.0M

LiveJ-20M 2.5M 20.0M LUBM-1B 222.2M 961.4M

Table 3.1: Graph datasets and sizes

Datasets. The list of graph collections we consider for our evaluation is shown

in Table 3.1. All the smaller graphs (including the two Live Journal versions) are

obtained from the Stanford Snap
3

project. For our evaluation over larger graphs,

we used the real-world Freebase
4

and Twitter
5

snapshots. In addition, we also

used the widely popular synthetic LUBM RDF benchmark, which we generated

using the UBA 1.7
6

data generator.

General Setup. We used MPICH2-1.4.1 for communication among the compute

nodes, using a cluster of 10 nodes which are connected via a 10GBit LAN. Each

node has 64GB of RAM and an Intel X5650@2.67GHz quadcore CPU with HT

enabled. Giraph and its variants are implemented in Java, where we used Hadoop

v0.20 for running Giraph (Martella et al., 2015). Appendix A.1 depicts our actual

implementation of DSR queries for the three Giraph variants.

3.7.1 E�ciency

For this experiment, we considered several real-world data graphs (both small

and large) and the synthetic LUBM graph. We �xed the compute cluster to 6

nodes (i.e., to 5 slaves and 1 master). We randomly selected 10 source and 10

target vertices from all datasets (except LUBM-1B) as queries, thus resulting in

100 reachability comparisons. For LUBM-1B, which is very sparsely connected,

we randomly chose 1,000 sources and 1,000 targets, of which only 131 pairs turned

out to be reachable.

Table 3.2 shows the maximum (i.e., per node) uncondensed (“Original”) and

SCC-condensed (“DAG”) compound-graph sizes as well as the total byte size (“Size”)
for our TriAD in comparison to the dependency-graph sizes for TriAD-Fan and

TriAD-Naïve. In TriAD-Fan, for a given DSR query S T , all of S and T are

used “at once” to generate the dependency graph. In TriAD-Naïve, which gener-

ates the dependency graph per (s, t) pair, the sizes represented in Table 3.2 are the

average dependency-graph sizes over 100 pairs. SCC compression, which is not

feasible for the dynamically generated dependency graph, drastically reduces the

3http://snap.stanford.edu
4http://freebase.com
5http://an.kaist.ac.kr/traces/WWW2010.html
6http://swat.cse.lehigh.edu/projects/lubm/

http://snap.stanford.edu
http://freebase.com
http://an.kaist.ac.kr/traces/WWW2010.html
http://swat.cse.lehigh.edu/projects/lubm/

3.7. Evaluation | 69

TriAD TriAD-Fan TriAD-Naïve
Compound graph Dep.graph Dep.graph

Original DAG Size
Graphs (#edges) (#edges) (MB) (#edges) (#edges)
Amazon 1.0M 34.7K 206 622.3M 622.2M

BerkStan 2.1M 0.5M 383 2.2M 2.1M

Google 1.2M 0.2M 302 43.6M 43.6M

NotreDame 0.8M 68.9K 123 4.7M 4.7M

Stanford 0.8M 41.2K 122 1.2M 1.2M

LiveJ-20M 13.7M 1.0M 1,553 861.4M n/a

LiveJ-68M 44.1M 0.3M 928 n/a n/a

Freebase-1B 460.4M 241.6M 64,141 n/a n/a

Twitter-1.4B 1,285.0M 8.2M 20,053 n/a n/a

LUBM-1B 891.8M 891.3M 107,608 n/a n/a

Table 3.2: Index sizes for DSR variants implemented in TriAD

sizes of the compound graphs stored at each slave. For example, for the Twitter-

1.4B graph, which is highly connected, the size of each compound graph stored at

the slaves initially is comparable to the size of the original graph. Applying SCC

compression condenses these graphs by a factor of about 150. Also for LiveJ-68M,

the SCC compression leads to a much smaller DAG size than for LiveJ-20M, such

that our query times are actually lower for LiveJ-68M than for LiveJ-20M.

Table 3.3 shows our query-processing results. For both the small and large

graphs, our approach clearly demonstrates e�ciency improvements of several

orders of magnitude when compared to the three Giraph variants as well as to

TriAD-Fan and TriAD-Naïve. Even with a single round of communication, TriAD-

Fan and TriAD-Naïve exhibit a considerable overhead in generating the dynamic

dependency graph for each query. Speci�cally, we observed that for LiveJ-20M,

TriAD-Fan generates a dependency graph of about 861 million edges even when

the data graph is partitioned by METIS (Karypis and Kumar, 1998) in order to

minimize the cut. Our TriAD approach, which bene�ts from the optimizations we

apply when constructing the compound graphs, avoids the repeated generation of

a large dependency graph at the master node and therefore is able to achieve very

signi�cant performance gains over TriAD-Fan and TriAD-Naïve. Giraph++ and

Giraph++wEq, on the other hand, perform better than the native Giraph imple-

mentation, as the former bene�t from their local updates of neighboring vertices.

This drastically reduced the number of supersteps required for processing a set-

reachability query. The equivalence-sets optimization for Giraph++wEq further

reduced the communication but only marginally improved the query processing

times.

3.7.2 Scalability

Next, we evaluated our approach in comparison to the Giraph variants under both

strong and weak scaling. We dropped TriAD-Fan and TriAD-Naïve from these

70
|

C
hapter

3.
SetR

eachability

Indexing Time Query Size Query Time
Graphs TriAD |S| |T| TriAD Giraph++ Giraph++wEq Giraph TriAD-Fan TriAD-Naïve

(a) Small Graphs (times in seconds)
Amazon 2.380 10 10 0.008 12.250 11.348 55.034 72.111 855.159

BerkStan 3.048 10 10 0.009 44.180 5.680 779.006 2.219 38.036

Google 3.194 10 10 0.060 60.154 11.426 53.614 25.210 114.078

NotreDame 1.089 10 10 0.057 11.085 12.320 94.787 1.800 50.598

Stanford 1.511 10 10 0.008 7.808 8.922 341.976 0.468 6.211

LiveJ-20M 44.536 10 10 0.227 19.888 19.262 28.075 521.569 n/a

(b) Large Graphs (times in seconds)
LiveJ-68M 144.981 10 10 0.090 64.728 61.940 93.253 n/a n/a

Freebase-1B 1,938.670 10 10 67.849 1,371.423 1,014.442 1,857.124 n/a n/a

Twitter-1.4B 6,963.730 10 10 1.119 3,065.483 3,046.450 n/a n/a n/a

LUBM-1B 2,083.190 1,000 1,000 1.340 146.864 142.142 154.407 n/a n/a

Table 3.3: E�ciency evaluation (indexing and query times) of DSR approaches for small and large graphs

3.7. Evaluation | 71

comparisons, as they could not scale to the larger graphs anymore. We consid-

ered LiveJ, Freebase, Twitter and the synthetic LUBM graph for our scalability

evaluation. We used METIS to partition the graphs and distributed the partitions

to up to 10 compute nodes (one of which used as master), and we considered 10

random source and 10 random target vertices as queries. Figures 3.7(d)(h)(l)(p)

also show the robustness of our approach with respect to larger query sets.

• Live Journal: Figures 3.7(a)-(d) depict the scalability evaluation of our approach

and the Giraph variants for LiveJ-68M. Figure 3.7(a) shows the results for a

strong scaling. Here, we can observe that TriAD scales very well and per-

forms signi�cantly better than the Giraph variants. We also observe that Gi-

raph++ and Giraph++wEq perform slightly better than Giraph by leveraging the

node locality and equivalence-sets optimization, respectively. This observation

is con�rmed further by Figure 3.7(b), where Giraph communicates about two

orders of magnitude more messages compared to Giraph++and Giraph++wEq. Fig-

ure 3.7(c) shows the weak scalability for the 10 by 10 DSR queries.

• Freebase: The scalability results for Freebase-1B are shown in Figures 3.7(e)-(h).

We can observe that our approach scales well on average, even when the graph

sometimes is rather unevenly partitioned as a result of using METIS. This un-

even partitioning also is the reason for the runtime increase from 7 to 8 slaves.

By leveraging node locality in Giraph++ and the equivalence-sets optimization

in Giraph++wEq, both approaches continue to show performance gains over Gi-

raph, but this time with a more visible di�erence in the communication costs

among the three variants as shown in Figure 3.7(f). Figure 3.7(g) shows the

weak scalability.

• Twitter: We next performed a similar scalability evaluation over Twitter, con-

sisting of more than 1.4 billion edges and more than 41 million vertices. METIS

this time resulted in a very skewed partitioning, with one partition containing

almost half of the edges and almost one third of the edges being cut edges. This

constituted a challenge for our approach, because we compute the boundary

graph along with the cut edges. However, since vertices in Twitter are densely

connected, the resulting compound graphs at all slaves can very well be con-

densed using SCC compression, which led to very small graph indexes at the

slaves (with a compression factor of more than 150). Without this optimiza-

tion, Giraph was able to load the Twitter graph but failed to process the set-

reachability query, returning an “out of memory” exception. The strong and

weak scalability of our approach and the Giraph variants are shown in Fig-

ures 3.7(i) and 3.7(k).

• LUBM: As the �nal scalability experiment, we considered the synthetic LUBM-

1B dataset whose results are shown Figures 3.7(m)-3.7(p). Most of the RDF-

based LUBM graph is acyclic and sparsely connected. Thus, our SCC conden-

sation for the compound graphs has very low e�ect on the overall query pro-

cessing. Figure 3.7(m) shows the strong scalability of our approach versus the

72 | Chapter 3. Set Reachability

Giraph variants. Figure 3.7(n) shows the communication costs for di�erent vari-

ants of Giraph and our approach. Again, our DSR approach (TriAD), which eval-

uates a set-reachability query in a single round of communication, exchanges a

very low amount of messages compared to the iterative Giraph variants.

3.7.3 Updates

We considered the six smaller graphs plus the LiveJ-68M dataset (see Table 3.1)

for updates. We distinguish two principal kinds of incremental update workloads,

which we call bulk updates and progressive updates, respectively.

• For bulk insertions, we start with 60% of randomly chosen edges of the original

graph and then increment the graph by 5% of the remaining edges, until we

reach the original graph. For bulk deletions, we start with the original graph

and decrement the graph in 5% steps.

• For progressive insertions, we randomly pick x% (say, 5%) of edges from the

original graph and measure the time to insert these into an index built over

the remaining (100 – x)% (say, 95%) of edges. We increment x in 5% steps. For

progressive deletions, we decrement the original graph by a progressive amount

of edges.

We used the same queries as described in Section 3.7.1 to measure the e�ect

of these update steps on the query times.

Insertions. Figures 3.8(a)(e) show the update and respective query times for our

bulk insertions. It can be observed that the time needed for bulk insertions re-

mains almost constant for each 5% step. Query performance, which depends on

the �nal DAG size, however varied considerably with each update. Next, we con-

sidered progressive insertions. From Figure 3.8(b), it can be clearly seen that the

update times are only a fraction of the total rebuild time (see Table 3.2). Query

performance, shown in Figure 3.8(f), increased marginally at each step, as ex-

pected, although also this depends on the �nal DAG size as a result of the update

operation.

Deletions. Deletions are generally more costly in our setting and took almost

the same time as building the index from scratch (see Table 3.2) for both bulk and

progressive updates. Figures 3.8(c)(g) depict the update and respective query times

for bulk deletions. While deletion times show a downward trend, query times tend

to increase as the graphs become more sparsely connected, thus leading to larger

DAG sizes. This is especially visible for the LiveJ-68M dataset. For the case of

progressive deletions, as shown in Figures 3.8(d)(h), we observe similar trends in

terms of update and query times.

3.7.4 Parameters

A. Local Reachability Indexes. We next measured our DSR approach (TriAD)

in conjunction with three centralized strategies. For all three cases, we condense

3.7.
Evaluation

|73

2 3 4 5 6 7 8 9

10
2

10
4

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

TriAD Giraph++wEq Giraph++ Giraph

2 3 4 5 6 7 8 9

10
1

10
4

10
7

C
o

m
m

.
S
i
z
e

(
i
n

K
B

)

2[20%] 3 4 5 6 7 8 9[90%]

10
3

10
4

10
5

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

10x10 50x50 100x100

10
2

10
4

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

TriAD Giraph++wEq Giraph++ Giraph

3 4 5 6 7 8 9

10
5

10
6

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

3 4 5 6 7 8 9

10
0

10
5

C
o

m
m

.
S
i
z
e

(
i
n

K
B

)

2[20%] 3 4 5 6 7 8 9[90%]

10
2

10
4

10
6

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

10x10 50x50 100x100

10
2

10
3

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Scalability evaluation for LiveJ-68M (a-d) and Freebase-1B (e-h)

74
|

C
hapter

3.
SetR

eachability

3 4 5 6 7 8 9

10
3

10
5

10
7

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

3 4 5 6 7 8 9

10
2

10
4

10
6

C
o

m
m

.
S
i
z
e

(
i
n

K
B

)

2[20%] 3 4 5 6 7 8 9[90%]

10
5

10
6

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

10x10 50x50 100x100

10
3

10
5

10
7

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

x x x

3 4 5 6 7 8 9

10
3

10
4

10
5

Strong Scaling (#Slaves)

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

TriAD Giraph++wEq Giraph++ Giraph

3 4 5 6 7 8 9

0

10

20

Communication Cost (#Slaves)

C
o

m
m

.
S
i
z
e

(
i
n

K
B

)

2[20%] 3 4 5 6 7 8 9[90%]

10
3

10
4

10
5

Weak Scaling (#Slaves[%Data])

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

1kx1k 5kx5k 10kx10k

10
3

10
4

10
5

Query Sizes (|S|x|T|)

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

TriAD Giraph++wEq Giraph++ Giraph

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Scalability evaluation for Twitter-1.4B (a-d) and LUBM-1B (e-h)

3.7.
Evaluation

|75

60% 65% 70% 75% 80% 85% 90% 95%

10
3

10
4

U
p

d
a
t
e

T
i
m

e
(
i
n

m
s
)

5% 10% 15% 20% 25%

10
3

10
4

Amazon Berkstan Google NotreDame Stanford LiveJ-20M LiveJ-68M

100%95% 90% 85% 80% 75% 70% 65%

10
3

10
4

10
5

5% 10% 15% 20% 25%

10
3

10
4

10
5

60% 65% 70% 75% 80% 85% 90% 95%

10
1

10
2

Bulk Insertions

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

5% 10% 15% 20% 25%

10
1

10
2

Progressive Insertions

100%95% 90% 85% 80% 75% 70% 65%

10
1

10
2

Bulk Deletions

5% 10% 15% 20% 25%

10
1

10
2

Progressive Deletions

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Update evaluation (both insertions and deletions) for various graph collections

76 | Chapter 3. Set Reachability

10x10 100x100 1kx1k

10
1

10
2

Query Sizes (|S|x|T|)

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

TriAD-DFS TriAD-Ferrari TriAD-MSBFS

10x10 100x100 1kx1k

10
3

10
4

10
5

Query Sizes (|S|x|T|)

Q
u

e
r
y

T
i
m

e
(
i
n

m
s
)

(a) LiveJ-68M (b) Freebase-1B

Figure 3.9: Comparison of local reachability indexes

the local compound graphs via computing SCCs. TriAD-DFS uses a standard DFS

strategy (Cormen et al., 2009) for processing a DSR query, where no additional

index is built over the compound graphs. For each source s and target t in the

given DSR query, we perform a DFS to evaluate the reachability s t. MS-

BFS (Then et al., 2014) caches, for each vertex v that is visited during a graph

traversal, the reachability of v to all its targets. Thus, if v is another source in

the query, we avoid recomputing the reachability and thus save a graph traversal.

FERRARI (Seufert et al., 2013) �nally provides a tunable tradeo� between index

size and query performance. We set both the number of intervals per vertex and

the number of seed vertices to 1,000.

Figure 3.9 shows the e�ects on query performance when using di�erent local

search strategies. For this experiment, we again considered 10 nodes of which one

was the master node. We used two real-world datasets, LiveJ-68M and Freebase-

1B, for this evaluation. We considered di�erent query sizes to demonstrate the

strengths and weaknesses of the three approaches. Figure 3.9(a) shows the results

for LiveJ-68M. We can observe that TriAD-DFS takes longer compared to the other

two baselines as it requires one graph traversal (in the worst case) for each source.

TriAD-FERRARI, with its compact reachability index, demonstrates signi�cant

performance gains over the other two baselines for di�erent query sizes. On the

other hand, for large query sizes, the TriAD-MSBFS approach bene�ts from its

memoization and less redundant graph traversal and tends to close the gap to

FERRARI. The three strategies show similar trends also for the larger Freebase-

1B dataset (see Figure 3.9(b)).

B. Equivalence-Sets Optimization. By computing equivalence sets among in-

and out-boundaries, we are able to reduce both the boundary-graph sizes as well

as the number of reachability computations required per slave. Table 3.4 shows

the bene�ts of this optimization. Figure 3.10 shows a comparison for the query

performance and communication costs with and without equivalence sets in Gi-

raph.

C. Partitioning Strategy. We next considered the e�ect of the partitioning strat-

egy on the performance of our approach. For this, we used two partitioning strate-

gies: a random hash-partitioning and METIS (Karypis and Kumar, 1998). We used

3.7. Evaluation | 77

Query Time Boundary-Graph Sizes
(times in sec.) (#forward; #backward)

Graph Non-Opt. Opt. Non-Opt. Opt.
Amazon 0.101 0.008 900; 530 18; 5

BerkStan 0.157 0.110 20,750; 49,462 3,916; 4,981

Google 1.416 1.003 47,822; 98,955 3,759; 6,287

NotreDame 1.085 0.768 16,771; 6,899 2,481; 37

Stanford 0.061 0.038 5,411; 13,942 183; 475

Table 3.4: Equivalence-sets optimization in TriAD

A
m

a
z
o
n

B
e
r
k
S
ta

n

G
o
o
g
le

N
o
tr
e
D
a
m

e

S
ta

n
fo

r
d

L
iv

e
J-
2
0
M

10
1

10
2

10
3

#
S
u

p
e
r
s
t
e
p

s

Giraph++wEq Giraph++ Giraph

A
m

a
z
o
n

B
e
r
k
S
ta

n

G
o
o
g
le

N
o
tr
e
D
a
m

e

S
ta

n
fo

r
d

L
iv

e
J-
2
0
M

10
0

10
2

10
4

10
6

C
o

m
m

.
S
i
z
e

(
i
n

K
B

)

Figure 3.10: Equivalence-sets optimization in Giraph

a cluster of 6 nodes (one of which was dedicated as the master) and evaluated

the strategies using a set-reachability query with 10 sources and 10 targets. Ta-

ble 3.5 shows the performance comparison of the two partitioning strategies over

several real-world graphs. It can be clearly observed that the choice of the parti-

tioning strategy in�uences the performance of our approach. Hash partitioning

(i.e., “random sharding”) usually results in a drastic increase of cut edges and thus

in a lower query performance. METIS partitioning in turn helps in minimizing

this cut, which signi�cantly improves the query performance.

Partitioning
(query times in sec.)

Graph Hash METIS
Amazon 0.009 0.008

BerkStan 0.016 0.009

Google 0.330 0.060

Partitioning
(query times in sec.)

Graph Hash METIS
NotreDame 0.085 0.057

Stanford 0.009 0.008

LiveJ-20 0.524 0.227

LiveJ-68 0.188 0.090

Table 3.5: Impact of hash vs. METIS partitioning

3.7.5 Applications

A. SPARQL 1.1 with Property Paths. For this experiment, we considered the

LUBM-500M and Freebase-500M datasets (both in RDF format). We augmented

a distributed RDF store (Gurajada et al., 2014a) with our DSR approach (TriAD)

by modifying its query processor to handle property paths via our new index

structures. To evaluate the performance of our approach in processing SPARQL

1.1 queries, we compared against the commercial Virtuoso RDF store (Erling and

78 | Chapter 3. Set Reachability

Mikhailov, 2010). The results are shown in Table 5.1, while the customized SPARQL

queries we used for this evaluation are depicted in Appendix A.2

(a) LUBM-500M (query times in sec.)
#Slaves L1 L2 L3 Geo. Mean

TriAD 1 6.437 0.331 42.681 4.497

TriAD 5 1.250 0.162 8.516 1.199
Virtuoso (cold) 1 10.050 12.624 57.776 19.425

Virtuoso (warm) 1 4.963 5.452 56.603 11.527

(b) Freebase-500M (query times in sec.)
#Slaves F1 F2 F3 Geo. Mean

TriAD 1 1.084 1.568 0.677 1.048

TriAD 5 0.356 0.642 0.423 0.459

Virtuoso (cold) 1 6.590 4.112 13.809 7.206

Virtuoso (warm) 1 1.196 0.002 5.601 0.238

Table 3.6: SPARQL 1.1 queries with property paths

B. Social-Network Communities. As another DSR application, we detected

connectivities among communities in a social network. This problem is a basic

step in many graph-analytics tasks. That is, given two communities C1 and C2

together with a set of representative members for each community S ⊆ C1, T ⊆
C2, �nd all pairs s, t, with s ∈ S and t ∈ T , such that s t. We considered

two social network datasets, LiveJ-68M and Twitter-1.4B, for this experiment. We

employed the iterative community-detection algorithm by Blondel et al. (Blondel

et al., 2008) to identify communities. We then randomly picked two communities,

and from each we picked 10 to 1,000 members as representatives. We then ran our

DSR approach (TriAD) to identify all reachable pairs among these representatives.

The results are shown in Table 3.7.

LiveJ-68M Twitter-1.4B
#Communities: 5,032 #Communities: 17,121

Query Size Query Time #Pairs Query Time #Pairs
(|S|x|T|) (in sec.) (in sec.)
10x10 0.065 81 1.339 63

100x100 0.164 8,184 2.476 8,526

1kx1k 0.717 784,947 10.175 712,725

Table 3.7: Community connectedness using TriAD

3.7.6 Summary of Results

Our experiments con�rm the signi�cantly improved e�ciency (with a gain in

query times of several orders of magnitude) of our DSR index implemented in

TriAD compared to iterative approaches such as Apache Giraph and variants

of (Fan et al., 2012).

Moreover, we are also able to demonstrate the good update support of our in-

3.8. Summary | 79

dex structure, which—in particular for insertions—behaves much better in prac-

tice than suggested by the worst-case bounds we provide in Section 3.5.2.5. We

believe that insertions are the much more likely use-case for managing large, dy-

namic graphs (e.g., Twitter streams), while deletions, which are costly to han-

dle for any kind of graph-compression technique, are much more uncommon in

practice. Also, there is also hardly any support for updates in the centralized ap-

proaches (such as (Seufert et al., 2013)), which restricts our local search strategy

to a simple DFS or BFS in this case. Further experiments demonstrate the robust-

ness of our approach under di�erent parameters and show its viability for various

large-scale graph-analytics tasks.

3.8 Summary

In this chapter, we investigated a generalized form of the well-known reachability

problem in directed graphs, which (1) considers both sets of source and target ver-

tices as queries, and (2) allows the underlying graph to be partitioned and hence

be distributed across multiple compute nodes. The DSR problem is a basic build-

ing block and thus has a plethora of applications in graph analytics and query-

processing tasks. Thus, we presented as our core contribution, an e�cient and

scalable framework for processing DSR queries and also studied its formal prop-

erties. By precomputing and materializing the reachability information among

vertices along the cut of a partitioned data graph, our approach is guaranteed to

require at most one round of communication among the compute nodes to re-

solve any DSR query. Our approach exhibits a very good support for incremental

vertex and edge insertions, while our current implementation resorts to just a

basic support for respective deletions. Moreover, any state-of-the-art centralized

reachability index may be applied to the local graph partitions to further acceler-

ate query-processing times. In addition, we also discussed DSR query processing

in iterative approaches, which though clearly less e�cient for selective queries

are scalable to large graphs. Our evaluation over both real-world and synthetic

graphs and in comparison to iterative approaches also empirically demonstrated

the viability of our approach.

80 | Chapter 3. Set Reachability

Chapter 4

Basic Graph Patterns

Basic graph patterns (BGP) is an important querying model belonging to the class

of pattern matching queries (see Section 2.1.3.2). A graph pattern (or simply a

pattern) is a basic unit in BGP queries, and typically constitutes a triple of the form

〈u, e, v〉, where each of u, e, v can be either a variable or a constant. An answer to a

BGP query is the set of all vertex bindings to the variables in the query, such that

each vertex binding along with the constants collectively form a subgraph of an

input graph. Because of its varied importance in many application scenarios, BGP

queries are a popular choice of querying graphs and are predominantly supported

by many graph query languages such as SPARQL, Cypher, etc. and by current

graph database systems.

In this chapter, we look at the distributed processing of BGP queries on la-

beled directed multi-graphs. Speci�cally, we focus on conjunctive BGP queries,

where the only allowed set operation is the “conjunction (AND)” among the pat-

terns. We consider labeled directed multi-graphs and conjunctive BGP queries

as the underlying data and query models of our choice, as they provide enough

expressivity to represent many existing real-world datasets and query needs. Fur-

thermore, with the wide adoption of semantic knowledge graphs across multiple

domains, we chose the Resource Description Framework (RDF) and SPARQL 1.0,

both W3C recommendations, as the representative languages for our data and

query model. We propose a novel distributed architecture and a working proto-

type system, coined “TriAD (for Triple Asynchronous and Distributed)”, that can

handle conjunctive BGP queries in an e�cient and scalable manner. The TriAD

system is built on the duality of graph-based and relational concepts to process

BGP queries. With our empirical analysis on multiple real-world and synthetic

datasets, TriAD performs signi�cantly better than the existing state-of-the-art

systems.

81

82 | Chapter 4. Basic Graph Pa�erns

4.1 Introduction

4.1.1 Motivation

Along side connectivity queries discussed in Chapter. 3, BGP queries belong to an

important querying model that has profound signi�cance in many applications.

These queries come with varying degrees of complexity from being as simple as

selecting an edge to a more complex queries like matching a subgraph in an input

graph. A triple of the form 〈u, e, v〉 constitutes a typical pattern in BGP queries,

where each of u, e, v can be either a variable or constant. Processing a single

triple pattern over an input graph resolves to a selection of edges whose labels

match the constants in the given query. For instance, processing a pattern 〈person,

bornIn, Honolulu〉 matches the directed edges such as the edge (Barack_Obama,
bornIn, Honolulu) in the input graph, and the vertex label “Barack_Obama” is

one of the instances for the query variable person. In reality, BGP queries often

comprise of a set of patterns, which together form a query graph. Processing a

multi-pattern BGP query resolves to �nding all the subgraphs of an input graph

that are isomorphic to the query graph. Chandra et al. (Chandra and Merlin, 1977)

discuss an equivalency between the graph isomorphism and conjunctive queries

on databases and further states that the processing a conjunctive queries has poly-

nomial data complexity and non-polynomial expression (query) complexity. We

further refer the reader to (Chandra and Merlin, 1977; Vardi, 1982) for more de-

tails on the complexity of processing conjunctive queries in a relational model,

which we rely on for this work.

Applications. Querying Resource Description Framework (RDF) graphs is

one of the many interesting applications where BGP queries are frequently used.

RDF is a W3C recommended language for representing linked data on the web.

Most knowledge graphs, biological datasets, and to some extent many social net-

works can be expressed as an RDF graph. Some of the real world examples in-

clude knowledge graphs such as DBpedia (Bizer et al., 2009), YAGO (Suchanek

et al., 2007), Google’s Knowledge Graph (Singhal, 2012), Microsoft Bing’s Satori

Knowledge Base (Qian, 2013), etc., biological datasets such as Uniprot (EMBL

et al., 2013), Bio2RDF (Belleau et al., 2008), and social networks such as Live-

Journal
1

support RDF representation of user pro�les and their relationships.

SPARQL (Prud’hommeaux et al., 2013), a W3C recommended, is the de facto lan-

guage for querying RDF graphs. With the increasing number of both commercial

and non-commercial organizations, which actively publish and query RDF data,

the amount and diversity of openly available RDF repositories is growing at an

unprecedented pace. This attracted a lot of research attention in development of

e�cient and scalable RDF stores, which is also the focus of the current chapter.

Other applications that rely on BGP query model include �nding network mo-

tifs in complex networks (Milo et al., 2002), analysis in biological networks (Eck-

1
snap.stanford.edu

4.1. Introduction | 83

man and Brown, 2006; Aittokallio and Schwikowski, 2006), network tra�c anal-

ysis (Natarajan, 2000), graph simulation (Fan et al., 2011, 2014b), etc.

4.1.2 State-of-the-art

In this section, we explore some of the prior state-of-the-art systems that ex-

isted before our approach and support BGP queries. Speci�cally, we focus on

RDF-based systems as they extensively support SPARQL query language which

is largely based on the BGP querying model.

In response to the explosion of RDF data that is available on both the surface

and the deep web, much research e�ort has been invested recently in the devel-

opment of scalable, both centralized and distributed, techniques for indexing RDF

data and for processing SPARQL queries.

CentralizedArchitectures. Among the centralized approaches, native RDF stores

like Jena, Sesame, HexaStore (Weiss et al., 2008), SW-Store (Abadi et al., 2009),

MonetDB-RDF (Sidirourgos et al., 2008), RDF-3X (Neumann and Weikum, 2010a,b),

BitMat (Atre et al., 2010), gStore (Zou et al., 2011), and TripleBit (Yuan et al., 2013)

have been carefully designed to keep pace with the growing scale of RDF collec-

tions. E�cient centralized architectures employ various forms of techniques to

accelerate query processing and reduce database foot print. These include multi-

permutation indexing (Neumann and Weikum, 2010a; Weiss et al., 2008) to facil-

itate low-cost merge join operations, vertical partitioning schemes (Abadi et al.,

2009; Sidirourgos et al., 2008) to reduce the look up and join costs, and sophisti-

cated bit encoding schemes (Atre et al., 2010; Yuan et al., 2013; Zou et al., 2011)

to keep large portions of the index in main memory. Moreover, gStore (Zou et al.,

2011) further relies on a novel hierarchical synopsis index structures to e�ciently

process BGP queries.

Shared-nothing Distributed Architectures. With the increasing popularity of

shared-nothing architectures based on the MapReduce paradigm (Dean and Ghe-

mawat, 2008), systems like SHARD (Rohlo� and Schantz, 2011), (Huang et al.,

2011) (an o�spring of SW-Store, in the following referred to as “H-RDF-3X”), and

EAGRE (Zhang et al., 2013) have been proposed for the scalable, distributed eval-

uation of SPARQL queries. While MapReduce allows for an easy adaptation of

parallel (both Map- and Reduce-side (Lin and Dyer, 2010)) join algorithms on top

of RDF-speci�c index structures, MapReduce frameworks are known to incur a

non-negligible overhead due to their iterative, synchronous communication pro-

tocols and fault-tolerant job scheduling strategies. Even with the currently fastest,

openly available MapReduce implementations, such as Hadoop++ (Dittrich et al.,

2010) and Spark (Zaharia et al., 2010), this typically renders sub-second query re-

sponse times for distributed joins infeasible. Systems like H-RDF-3X (Huang et al.,

2011) and EAGRE (Zhang et al., 2013) thus make use of aggressive data replication

to avoid iterative joins in Hadoop and to restrict query executions to the local RDF

stores as much as possible. However, with longer-diameter queries or unexpected

84 | Chapter 4. Basic Graph Pa�erns

workloads, there is no alternative to running joins via Hadoop, which often slows

down query response times by two or more orders of magnitude.

Trinity.RDF (Zeng et al., 2013) is the �rst distributed RDF engine that employs

a custom communication protocol based on the Message Passing Interface (MPI)

standard (The MPI Forum, 1993). Instead of joining index lists, Trinity.RDF fol-

lows a graph-exploration strategy on top of a distributed, in-memory key-value

store. Although Trinity.RDF is only single-threaded in its �nal join phase, it of-

ten allows for faster response times compared to the Hadoop-based RDF engines,

especially when queries are selective and the graph exploration starts from just a

few initial nodes. For non-selective queries, however, the generic architecture of

Trinity.RDF, which is based on the Trinity graph engine (Shao et al., 2013), does

not allow for the integration of parallel join techniques, as they are common, on

the other hand, in Hadoop (Huang et al., 2011; Zhang et al., 2013).

Limitations with the State-of-the-art. Centralized approaches, though e�-

cient, su�er from the scalability point of view. Because of their natural hardware

limitations, centralized approaches cannot handle today’s large RDF datasets, which

typically comprises of more than 1 billion triples, while linked open data (LOD)
2

comprises of more than 130 billion triples
3
. On the other hand, shared-nothing

distributed architectures, though scalable to large graphs, are not e�cient in pro-

viding a sub-second query time performance which is crucial in many graph ap-

plications. In the next, we summarize our analysis of RDF systems by highlighting

the following limitations that all existing, distributed RDF engines currently face.

1. Synchronous vs. Asynchronous Join Executions. Although

Hadoop-based joins allow for the execution of multiple join operators

in parallel, they need to synchronize at each level of the query plan
before they can continue to process the plan with the next iteration

of joins. These synchronization steps are heavily dominated by a few

stragglers or imbalanced query plans.

2. Graph Exploration vs. Relational Joins. Parallel graph explo-

ration is very e�cient for queries that aim to select just a few sub-

graphs out of the RDF data graph. For a row-oriented output format,

as it is required by the SPARQL 1.0 and 1.1 standards, graph explo-
ration is not su�cient to generate the �nal join results. Thus, the par-

allel execution of joins remains a crucial factor for the e�ciency and

scalability of a SPARQL engine.

3. Sideways Information Passing vs. Join-ahead Pruning. Side-

ways information passing (SIP) is a run-time pruning technique em-

ployed to prune irrelevant tuples during query processing. Though

e�ective in centralized systems, one of the main disadvantages of SIP

is that it requires synchronization across multiple operators, which

2http://http://linkeddata.org
3http://stats.lod2.eu

http://http://linkeddata.org
http://stats.lod2.eu

4.1. Introduction | 85

signi�cantly hinders the performance. On the other hand, join-ahead

pruning, a compile time pruning technique, can be directly embed-

ded inside the operators and provides support for asynchronous ex-

ecutions in a distributed setting.

Current Scenario. Recently, several e�orts have been made, after our work (Gu-

rajada et al., 2014a), in the distributed setting front. In (Peng et al., 2016), au-

thors proposed a partial evaluation and assembly based strategy — popular in

XML, graph simulation — for processing SPARQL queries on distributed RDF

graphs. The queries are �rst evaluated locally at each partition to identify all

partial matches, which are then later assembled using either a centralized or a

distributed assembly framework. In another line of work, (Harbi et al., 2016) pro-

posed an adaptive hashing strategy where the triples are adaptively partitioned

based on a query workload. Authors of (Peng et al., 2016; Harbi et al., 2016)

demonstrated empirical e�ectiveness of this approach over state-of-the-art sys-

tems including our approach.

4.1.3 Our Approach & Contributions

4.1.3.1 Our Approach

To mitigate the above problems and to process BGP queries in an e�cient and scal-

able manner on labeled directed multi-graphs, such as RDF graphs, we propose

a distributed system that is built on the concepts of relational and graph models.

Speci�cally, we propose a novel, shared-nothing, main-memory architecture in

combination with an asynchronous Message Passing (MPI et al., 2009) protocol.

Our engine, coined TriAD (for “Triple-Asynchronous-Distributed”), aims at clos-

ing the gap between current relational shared-nothing Hadoop engines (Huang

et al., 2011; Rohlo� and Schantz, 2011; Zhang et al., 2013), on the one hand, and

pure graph-based exploration strategies based on Message Passing (Shao et al.,

2013; Zeng et al., 2013), on the other hand. TriAD is designed to achieve higher

parallelism and less synchronization overhead during query executions than the

Hadoop engines by adding an additional layer of multi-threading for entire paths

of a query plan that can be executed in parallel. TriAD is the �rst distributed

engine that employs asynchronous join executions (using a custom MPI proto-

col), which are coupled with a lightweight join-ahead pruning technique for the

distributed processing of SPARQL queries. Speci�cally, TriAD builds on the fol-

lowing principles.

Parallel and Asynchronous Join Executions. TriAD in principle follows a

classical master-slave architecture. During query execution, however, the slave

nodes operate largely autonomously and communicate directly via asynchronously
exchanged messages to run multiple join operators along the query plan in paral-

lel. Our form of communication is asynchronous, because sibling execution paths

of a query plan can be processed in a freely multi-threaded fashion and only need

to be merged (i.e., be synchronized) once the intermediate results of entire such

86 | Chapter 4. Basic Graph Pa�erns

execution paths are joined.

Distributed Indexes with Join-Ahead Pruning. Indexing is a primal factor in

the success of e�cient RDF systems such as RDF-3X, Hexastore, etc. On the simi-

lar lines, we employ six permutation indexes which are encoded into a distributed

main-memory data structure that consists only of simple integer structs and vec-

tors. Each index permutation list is �rst hash-partitioned (“sharded”) according to

its join key and then locally sorted in lexicographic order. Thus, even in its basic

con�guration without any multi-threaded execution of the query plan, TriAD can

perform e�cient, distributed merge-joins over the hash-partitioned permutation

lists. In addition to the primary indexes, we employ a form of join-ahead prun-

ing via an additional summary graph at the master node, in order to prune entire

partitions of triples from the index lists that cannot contribute to the results of a

given BGP query.

Distribution-AwareQueryOptimizer. Similar to (Neumann and Weikum, 2008,

2010a), TriAD employs a bottom-up dynamic programming (DP) algorithm for

join-order optimization. In addition to (Neumann and Weikum, 2008, 2010a), we

also consider the locality of the index structures at the slave nodes, the shipping

cost of intermediate join results, and the option to execute sibling paths of the

query plan in a multi-threaded fashion, in order to determine the plan with the

overall least cost estimate. This enables the optimizer to take much better ad-

vantage of the actual hardware capabilities, by taking the network latency and

bandwidth, the CPU capacity for merging and hashing, and parallel query execu-

tions via multi-threading and distribution into account.

4.1.3.2 Contributions

We summarize the novel aspects of this chapter as follows.

• We investigate a new approach to the design of distributed engines with a goal

to process BGP queries in an e�cient and scalable manner and achieving a

sub-second query performance. TriAD exploits both intra-node multi-threading
and asynchronous inter-node communication to run multiple join operators of a

query plan in a distributed and parallel way.

• We propose a novel form of graph summarization for labeled, directed multi-

graphs, such as RDF, to facilitate join-ahead pruning in a distributed environ-

ment. In contrast to sideways information passing, the graph summary is di-

rectly merged into the distributed relational-based indexes and thus allows us to

perform this kind of join-ahead pruning in combination with an asynchronous
execution of the join operators.

• TriAD employs two stages of query optimization (and execution) over both

the summary graph and the data graph (a labeled directed multi-graph). Our

distribution-aware query optimizer employs detailed summary- and data-graph

statistics to determine the best exploration-order for the summary graph and the

4.2. Background & Preliminaries | 87

best join-order for the data graph, respectively. Both optimization steps are im-

plemented via an e�cient DP algorithm.

• Each individual join operator runs against a distributed, horizontally partitioned
index, such that even for a single join or path-like queries TriAD bene�ts from

the distributed evaluation of these joins. In addition, for a more “bushy” query

plan, consisting of multiple root-to-leaf paths (called “execution paths”), the

execution of the joins runs in multiple threads at each compute node, which

allows us to evaluate multiple operators in the query plan in parallel and asyn-

chronously along these execution paths.

• We provide an extensive experimental comparison of TriAD to no less than nine

state-of-the-art RDF, DBMS and Hadoop engines. We achieve the —to our know-

ledge— so far fastest query response times, in comparison to the prior state-of-

the-art systems, for the LUBM, BTC and WSDTS benchmarks reported for a

mid-range server and regular Ethernet setup.

4.2 Background & Preliminaries

In this section, we brie�y review the key concepts that form the basis for the

design of TriAD. We start with de�ning the data and query model used in the

current chapter, and then provide a quick overview of related work in processing

BGP queries.

4.2.1 Data & Query Model

We consider a labeled directed multi-graph (see Section 2.2.1.1), where vertices are

uniquely labeled and allow more than one labeled, directed edge between a pair of

vertices, as the data model for this work. Following the De�nition 2.3, we denote

the labeled directed multi-graph as G(V , E, ΣV , ΣE , Φ) and, henceforth, refer to it

as just “graph”.

As described in Section 2.2.1.3, we partition a graph G into k vertex-disjoint

partitions G = {G1,G2, . . . ,Gk} and refer to G as the partitioning of G.

As real-world instances of the graph G, we consider RDF graph datasets. An

RDF dataset consists of a set of triples of the form 〈subject, predicate, object〉 (or

〈s, p, o〉, for short), where subject denotes a globally unique resource, object may

denote either a unique resource or a literal (i.e., a string or a number), and predicate
denotes a relationship between the subject and object.

Example 4.1. Figure 4.1 shows an example RDF graph G with partitioning G =

{G1,G2,G3,G4} and the corresponding triplet form (NT format) of G is shown in
Table 4.1.

We consider basic graph patterns (BGP), de�ned in Section 2.2.2.2, as the query

model in this work. Re-describing the BGP query model, a BGP query Q(VQ , EQ ,

ΣV , ΣE ,V , ΦQ) is a graph where edge set comprises of a set of triple patterns,

88 | Chapter 4. Basic Graph Pa�erns

Barack_Obama

Democratic_Party
Honululu

USA

Brookline Dallas

John_F._KennedyRepublican_Party

Grammy_Award

Singer Lady_Gaga

New_York_City

Plains Nobel_Peace_Prize

Jimmy_Carter

memOfbo
rn

In

locIn

loc
In

locIn

bornIn diedIn

memOf

isA

won

bo
rn

In

bornIn won

isA
won

locIn

memOf

locIn won

G1 G2

G3 G4

Figure 4.1: RDF graph G with a locality-based partitioning G =

{G1,G2,G3,G4}

Subject Predicate Object
Barack_Obama bornIn Honolulu .
Barack_Obama won Peace_Nobel_Prize .
Barack_Obama won Grammy_Award .
Honolulu locIn USA .
...

...
...

Table 4.1: Example RDF in NT format.

each of the form 〈u, e, v〉. Vertices u, v ∈ VQ , query vertices, can be either a

constant or variable, i.e., u, v ∈ {ΣV ∪V}. While, e denotes an edge label satisfying

e ∈ {ΣE ∪ V}.

Example 4.2. An example query “Find all the people who are born in a city that is
located in the “USA” and won a prize” can be expressed as a BGP query via SPARQL
1.0 4 query language and Cypher 5 as follows.

SPARQL 1.0:

SELECT ?person ?city ?prize
WHERE { ?person bornIn ?city.

?city locIn USA.
?person won ?prize.}

Cypher:

MATCH (person) - [:bornIn] -> (city)

MATCH (city) - [:locIn] -> (USA)
MATCH (person) - [:won] -> (prize)
RETURN person, city, prize

Processing the above BGP query Q against an RDF graph G thus resolves to

�nding all subgraph isomorphisms between Q and G. The result—in analogy to

SQL— is a set of rows, each containing a distinct set of bindings of query variables

in V to constants in ΣV ∪ ΣE .

4www.w3.org/TR/rdf-sparql-query/
5neo4j.com/developer/cypher-query-language/

www.w3.org/TR/rdf-sparql-query/
 neo4j.com/developer/cypher-query-language/

4.2. Background & Preliminaries | 89

Example 4.3. For example, the result of the above SPARQL/Cypher query over our
RDF graph (shown in Figure 4.1) is the following tuples.

person city prize
Barack_Obama Honolulu Peace_Nobel_Prize
Barack_Obama Honolulu Grammy_Award
Lady_Gaga New_York_City Grammy_Award
Jimmy_Carter Plains Peace_Nobel_Prize

4.2.2 Related Work

In the next, we discuss a selection of RDF engines, which extensively support BGP

queries via SPARQL, and we believe are most related to our approach. We also

brie�y discuss their di�erences to our architecture and refer the reader to (Cudré-

Mauroux et al., 2013; Sakr and Al-Naymat, 2010; Sidirourgos et al., 2008) for a

comprehensive overview of recent approaches.

4.2.2.1 Relational Approaches

The majority of the existing RDF stores, both centralized and distributed, follow

a relational approach towards storing and indexing RDF graphs, and processing

BGP queries via SPARQL. In a relational based approach, edges of an input RDF

graph are stored in a relation table R. A BGP query, such as the one expressed in

SPARQL, is then rewritten into an SQL query and processed over the relation R. A

typical BGP query with m patterns thus requires m self-joins over the relation R.

Systems like Apache Jena (Jena, 2007), Sesame (Broekstra et al., 2002), 3store (Har-

ris and Gibbins, 2003) are some of the early RDF engines that rely on relational

backed engines to e�ciently process BGP queries expressed in SPARQL.

For instance, consider the graph shown Figure 4.1. In a relational approach, a

relation R(S, P ,O) is built by storing each edge of the graph as a tuple in R as shown

in Figure 4.2(a). The SPARQL query Q shown in Example 4.2 is then rewritten into

an equivalent SQL query with three self-joins over R as shown in Figure 4.2(a)

One of the major drawbacks of the above technique is the expensive self-

joins involved in query processing. On graphs with millions and billions of edges,

which are common today, this naïve approach would hinder real-time perfor-

mance which is essential in many applications. Recent approaches, such as SW-

store by Abadi et al. (Abadi et al., 2009), vertically partition RDF triples into multi-

ple property tables to mitigate this problem. On the other hand, Hexastore (Weiss

et al., 2008) and RDF-3X (Neumann and Weikum, 2010a,b), still relying on a giant

table, employ index-based solutions by storing triples directly in B
+
-trees over

multiple, redundant index permutations. Including all permutations and projec-

tions of the SPO attributes, this may result in up to 15 such B
+
-trees (Neumann and

Weikum, 2010a). Coupled with sophisticated statistics and query-optimization

techniques, these centralized, index-based approaches still are very competitive

as recently shown in (Tsialiamanis et al., 2012).

90 | Chapter 4. Basic Graph Pa�erns

R
S P O
Barack_Obama bornIn Honolulu
Barack_Obama won Peace_Nobel_Prize
Barack_Obama won Grammy_Award
Honolulu locIn USA
...

...
...

(a)

SELECT R1.S, R1.O, R3.O
FROM R AS R1, R AS R2, R AS R3

WHERE R1.O = R2.O AND R1.S = R3.S
AND R1.P =’bornIn’ AND R2.P =’locIn’
AND R2.O =’USA’ AND R3.P =’won’

(b)

Figure 4.2: An example of RDF graph (a) represented as a relation R and
SPARQL query (b) written as an SQL query

Join-Order Optimization. Determining the optimal join-order for a query plan

is arguably the main factor that impacts query processing performance. RDF-

3X (Neumann and Weikum, 2010a) thus performs an exhaustive plan enumera-

tion in combination with a bottom-up DP algorithm and aggressive pruning in

order to identify the best join order. In TriAD, we adopt the DP algorithm as it

is described in (Neumann and Weikum, 2010a), and we adapt it to �nding both

the best exploration-order for the summary graph and the best join-order for the

subsequent processing against the distributed indexes. Moreover, by including

detailed distribution information and the ability to run multiple joins in parallel

into the underlying cost model of the optimizer, we obtain query plans that are

speci�cally tuned towards parallel execution than with a pure selectivity-based

cost model.

Join-Ahead Pruning. Join-ahead pruning is a second main factor that in�u-

ences the performance of a relational query processor. In join-ahead pruning,

triples that might not qualify for a join, called as “dangling triples”, are pruned

even before the actual join operator is invoked. This pruning of dangling triples

ahead of the join operators may thus save a substantial amount of computation

time for the actual joins. Instead of the sideways information passing (SIP) strat-

egy used in RDF-3X (Neumann and Weikum, 2010a,b), which is a runtime form of

join-ahead pruning, TriAD employs a similar kind of pruning via graph summa-

rization (Milo and Suciu, 1999; Picalausa et al., 2012; Zou et al., 2011). Graph sum-

marization, discussed later in this section, serves as a preprocessing step to the

actual query executions and thus has the crucial advantage that it can be adapted

to an asynchronous execution of the join operators.

MapReduce. Based on the MapReduce paradigm, distributed engines like H-

4.2. Background & Preliminaries | 91

RDF-3X (Huang et al., 2011) and SHARD (Rohlo� and Schantz, 2011) horizontally

partition an RDF collection over a number of compute nodes and employ Hadoop

as a communication layer for queries that span multiple nodes. H-RDF-3X (Huang

et al., 2011) partitions an RDF graph into as many partitions as there are compute

nodes via METIS (Karypis and Kumar, 1998). Then, a one- or two-hop replication

is applied to index each of the local graphs via RDF-3X (Neumann and Weikum,

2010a). Query processing in both systems is performed using iterative Reduce-

side joins, where the Map phase performs selections and the Reduce phase per-

forms the actual joins (Lin and Dyer, 2010). Although such a setting works well

for queries that scan large portions of the RDF data graph, for less data-intensive

queries the overhead of iteratively running MapReduce jobs and scanning all—or

large amounts—of the RDF tuples during the Map phase is signi�cant. Even recent

approaches like EAGRE (Zhang et al., 2013) that focus on minimizing I/O costs

by carefully scheduling Map tasks and utilizing extensive data replication cannot

completely avoid Hadoop-based joins in the case of longer-diameter queries or

unexpected workloads. Our experimental evaluation clearly shows that running

joins via Hadoop should be avoided if interactive query response are desired.

4.2.2.2 Native Approaches

Recently, a number of approaches were proposed to store RDF triples in native

graph format. These approaches typically employ adjacency lists as a basic build-

ing block for storing and processing RDF data. Moreover, by using sophisticated

indexes, like gStore (Zou et al., 2011), BitMat (Atre et al., 2010) and TripleBit (Yuan

et al., 2013), or by using graph exploration, like in Trinity.RDF (Zeng et al., 2013),

these approaches prune many triples before invoking relational joins to �nally

generate the row-oriented results of a SPARQL query. We believe that with Trin-

ity.RDF (Zeng et al., 2013), we provide a detailed experimental comparison to such

graph approaches for RDF, which thus also represents a wider family of more

generic graph engines such as Pregel (Malewicz et al., 2010) or Neo4j (Neo4j,

2012). Other kinds of graph queries, such as reachability, shortest-paths or ran-

dom walks, are partly already included in the SPARQL 1.1 standard and required

for RDF/S-style inferences. Such queries are targeted by various graph engines,

such as FERRARI (Seufert et al., 2013) or GraphX (Xin et al., 2013), but we con-

sider these to be beyond the scope of this chapter. Also beyond our current scope

are workload awareness (Shang and Yu, 2013) and incremental updates (Neumann

and Weikum, 2010b).

Graph Exploration vs. Joins. To avoid the overhead of Hadoop-based joins,

Trinity.RDF (Zeng et al., 2013) is based on a custom protocol based on the Mes-

sage Passing Interface (MPI) (MPI et al., 2009). In Trinity.RDF, however, interme-

diate variable bindings are computed among all slave nodes via graph exploration,

while the �nal results need to be enumerated at the single master node using a

single-threaded, left-deep join over the intermediate bindings. As an example,

consider a SPARQL query with 3 variables 〈?x, ?y, ?z〉, which each become bound

92 | Chapter 4. Basic Graph Pa�erns

to 10 distinct constants during graph exploration. Assuming that each combina-

tion of the bindings generates a valid SPARQL result, the 30 bindings lead to 1,000

rows that need to be generated for the join. Thus, the ability to evaluate joins in

parallel remains a crucial factor for scaling-out an RDF engine.

4.2.3 Graph Summarization

Graph summarization is an e�ective approach to prune dangling triples prior to

the actual query processing. In graph summarization, a large data graph is �rst

summarized into a smaller graph that retains the principal characteristics of the

original RDF data graph in a compact way. The main intuition behind graph sum-

marization is that processing a query over the summary graph allows us to remove

large parts of the data graph that contain no relevant triples with respect to the

query. Running a complex query against both the summary graph and subse-

quently against the pruned data graph may thus be faster than running the query

against the original data graph. We formally de�ne an summary graph as follows.

Definition 4.1. A summary graph GS(VS , ES , ΣS , ΦS) for a given RDF graph
G(V , E, ΣV , ΣE , Φ) again is an labeled directedmulti-graph (with only edge labeling)
where each node ß ∈ VS , with ß⊆ V , called supernode, and each edge 〈ß1, e, ß2〉 ∈
ES ∈ VS × VS × ΣS , called superedge, connects two supernodes in ß1, ß2 ∈ VS ,
Function ΦS maps e to a label in ΣS .

4.2.3.1 Generating Graph Summaries

Here, we discuss two graph summarization techniques that are popular among

RDF stores to summarize RDF graphs.

• Bisimulation-based summaries. Bisimulation (Park, 1981; Vaglini, 1991) is an

important concept in concurrency theory and set theory that deals with the

similarity between transition systems and majorly studied in the context of

labeled transition systems (Sangiorgi, 2009), which are essentially labeled di-

rected graphs. Bisimulation impose a binary relation de�ned on the vertices of

the graph and can be de�ned as follows.

Definition 4.2. Given a graph G(V , E, ΣV , ΣE , Φ), a binary relation uRv, where
u, v ∈ V , is a bisimulation of G, if it holds that, i) for 〈u, p,w〉 ∈ E ⇒ ∃w′ ∈
V such that 〈v, p,w′〉 ∈ E and wRw′, and conversely for 〈v, p,w〉 ∈ E ⇒ ∃w′ ∈
V such that 〈u, p,w′〉 ∈ E and wRw′. Moreover, vertices u, v are called bisimilar.

A few centralized RDF stores have so far been proposed to perform join-ahead

pruning via bisimulation-based graph summarization (Picalausa et al., 2012;

Zou et al., 2011). These extend the idea of bisimulation (Milo and Suciu, 1999),

which was originally employed for XML tree summarization, to RDF graphs.

Bisimulation-based summaries (Picalausa et al., 2012) are particularly e�ective

for join-ahead pruning if only the predicates of the query triple patterns are

4.2. Background & Preliminaries | 93

Lady_Gaga

Barack_Obama

Jimmy_Carter

John_F._Kennedy

Singer

Grammy_Award

Nobel_Peace_Prize

Democratic_Party

Republican_Party

ß

Brookline
Dallas
Honolulu
New_York_City
Plains

USA

bornIn

bornIn

bo
rn

In
bo

rn
In

,d
ie

dI
n

isA

wonisA

won

won

memOf

memOf

won

memOf

lo
cI

n

ß1 ß2

ß3 ß4

memOf

locIn, bornIn

isA,won

won

isA,won, bornIn

locIn

bornIn

memOf,diedIn

lo
cI

n

won,bornIn

won

locIn,
memOf

(a) (b)

Figure 4.3: An example of (a) bisimulation-based summary and (b)
locality-based summarization of RDF graph G shown in Figure 4.1

labeled with constants, such that multiple, possibly disconnected components

of the data graph are merged into compact synopses for indexing.

Figure 4.3(a) shows a summary graph of the example RDF graph (shown in Fig-

ure 4.1) based on the bisimulation. It can be observed that the vertices Brook-
line, Dallas, Honolulu, New_York_City, Plains are pair-wisely bisimilar and are,

thus, grouped to form single supernode vertex (ß) in the summary graph.

Example 4.4. Running the BGP query on the bisimulation summary graph shown
in Figure 4.3(a) binds the variables ?person, ?city, ?prize as shown below.

person city prize
Barack_Obama ß Peace_Nobel_Prize
Lady_Gaga Grammy_Award
Jimmy_Carter

• Locality-based summaries. On the other hand, locality-based summaries (Zou

et al., 2011) are similar to graph clustering, in which nodes of the data graph are

partitioned such that the nodes within each partition share more neighbors than

the nodes that are spread across the partitions. Since SPARQL typically involves

�nding connected components of the data graph, locality-based approaches are

particularly e�ective in pruning if one or more of the subjects or objects in

the query graph are labeled with constants. Such queries are very common in

SPARQL. An example of the locality-based summary graph for the example RDF

graph (shown in Figure 4.1) using the partitioning G = {G1,G2,G3,G4} is shown

in Figure 4.3(b), where ßi denotes supernode for the partition Gi.

Example 4.5. Running our BGP query against the summary graph GS of Figure 4.3
binds partitions ß1, ß2, ß4 to ?person, ß1, ß2, ß4 to ?city and ß2, ß4 to ?prize. Thus,
all RDF triples in G, which are associated with ß3, can safely be pruned when

94 | Chapter 4. Basic Graph Pa�erns

Bidirectional

Dictionaries Partitioner

Query
Plan

SPARQL
Query Parser

Query
PlanResults

Intermediate
Results
Intermediate Query

Plan Results
Intermediate

 Global
Query Plan

....
SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

Triples
Encoded

Triples
Encoded

Triples
Encoded

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

....

SPO

....

SOP

....

PSO

....

OSP

....

OPS

....

POS

Local Query
Processor

Local SPO Indexes

RDF Parser

Statistics

Global
Optimizer

Query

Results

RDF Data METIS Partitions Info

MPICH2 − Asynchronous Communication Protocol

SPARQL Query

........

Statistics
Local

Results
SPARQL

Supernodes

Slave 2 Slave n

Data Triples

Summary Triples

Partitioning
Horizontal

Query Graph

Slave 1

Master Node
Summary Graph

Figure 4.4: TriAD system architecture

processing the query against the data graph without introducing false negatives to
the result. By processing the query against G, we replace these supernode bindings
of the query variables with their actual RDF constants and thus remove also false
positives from the results. Often, this form of join-ahead pruning allows us to detect
empty join results without even touching the data graph at all.

4.3 System Architecture

In this section, we provide an overview of the TriAD system architecture designed

to process BGP queries in a distributed manner. We consider the input labeled di-

rected multi-graph to be represented in RDF and the BGP queries to be expressed

in SPARQL query language. Figure 4.4 depicts the TriAD architecture. TriAD

resembles a typical master-slave, shared-nothing model, in which each compute

node manages its own main memory area and stores disjoint partitions of the

RDF index structures. One designated compute node, the master node, stores all

metadata about the indexed RDF facts and serves as the initial point of contact

for all indexing and query processing tasks. The remaining slave nodes hold the

local index structures and exchange intermediate query results via a direct, asyn-

chronous communication protocol among each other. All communication is based

on the Message Passing Interface (MPI) using the MPICH2
6

API.

Master Node

RDF Parser & Partitioner. This component takes care of parsing RDF �les

(provided in TTL/N3 format) and partitioning the complete set of incoming RDF

6
http://www.mpich.org/

http://www.mpich.org/

4.4. Index Organization | 95

triples into the summary graph and the local SPO index structures (Section 4.4).

SPARQL Parser. The SPARQL parser is responsible for preprocessing incoming

queries. Queries are turned into a graph representation, before the query opti-

mizer compiles the query into a global join plan which is then sent to all slaves

(Section 4.5).

Summary Graph. The initial processing of a SPARQL query pattern against the

summary graph facilitates join-ahead pruning (using a locality-based summariza-

tion strategy) at the slaves by removing graph partitions that contain no matching

triples for the graph pattern denoted by the query (Section 4.4.1).

Bidirectional Dictionaries. The RDF parsing step involves building bidirec-

tional mappings for the incoming RDF triples in order to quickly convert strings

to integer ids and vice versa. To accommodate our graph partitioning scheme for

the summary graph, the forward dictionary maintains the combination of parti-

tion identi�er (a node in the summary graph) and component id (Section 4.4.2).

Global Statistics. When indexing �nishes, the master receives the local index

statistics from the slaves and merges these into its own global statistics to be used

for query optimization (Section 4.4.5).

QueryOptimizer. In a second processing step, the query optimizer (Section 4.5.3)

builds the global query plan based on the global statistics, the locality of the

SPO indexes, and cardinality re-estimations after processing the query against

the summary graph.

Slave Nodes

Local SPO Indexes. At each slave, a local indexer receives the id-formatted

triples and builds its local index structures for each of the six primary SPO per-

mutations (Sections 4.4.3 & 4.4.4).

Local Query Processors. Each slave receives a copy of the global query plan

from the master, whereupon the local query processors initialize their own in-

stances of the physical query operators in the plan. The slaves concurrently start

executing the same plan but scan di�erent partitions of their local SPO indexes.

Along with the global plan, the master also communicates the join-head pruning

information from the summary graph to the slaves (Section 4.5.4).

4.4 Index Organization

In this section, we provide a detailed description of the data partitioning and in-

dexing strategies employed by TriAD.

4.4.1 Global Summary Graph

In order to avoid processing unnecessarily large SPO permutation lists at query

time, we pursue a join-ahead pruning technique at the master node. Speci�-

96 | Chapter 4. Basic Graph Pa�erns

cally, we employ a summary graph, denoted as GS(VS , ES , ΣS ,φS), for this pur-

pose, which is stored at the master and serves as a concise summary of the actual

RDF graph G(V , E, ΣV , ΣE ,φ) (see De�nitions 2.3 & 4.1).

Partitioning. Incoming triples, as they are produced by the RDF parser, are of

the form 〈s, p, o〉, where s, o ∈ V and p ∈ ΣE is a distinct label for a given pair of

vertices s, o. In order to create the summary graph, we �rst consider this set of RDF

facts as one large graph G (using an intermediate dictionary for mapping node

and edge labels to integer ids) and apply a non-overlapping graph-partitioning

algorithm like METIS (Karypis and Kumar, 1998) to it. METIS pursues a min-k-cut

graph partitioning strategy via a form of iterative re�nement. At each iteration,

the size of the graph is reduced by collapsing vertices and edges, which makes it

easier to partition the resulting smaller graph and allows METIS to scale to large

graphs with many millions of edges. In the resulting partitioning scheme, each

distinct subject s or object o that occurs in an RDF triple is assigned to exactly one

graph partition (i.e., supernode) ß ∈ VS .

The resulting summary graph is treated as a new set of triples of the form 〈ß1,

p, ß2〉, where ß1, ß2 ∈ VS are supernodes. For each original 〈s, p, o〉 triple that

lies in the cut between two supernodes ß1,ß2, a new superedge 〈ß1, p, ß2〉 ∈ ES
is added to GS . Within each ßi ∈ VS , the original edges of the RDF data graph

form self-loop edges of ßi. Moreover, among each such pair of supernodes ßi, ßj
∈ VS , the summary graph only stores edges with distinct labels p. Altogether, this

reduces the size of the summary graph in comparison to the data graph drastically

(see Figure 4.3(b)).

Indexing the Summary Graph. After partitioning the data graph, summary

triples of the form 〈ß1, p, ß2〉 are indexed at the master node. To support an

e�cient exploratory search over the summary graph, we index edges in GS in

an adjacency-list-like format. These are stored as two large in-memory vectors

holding the PSO and POS permutations of the summary triples for both forward

(outgoing links) and backward (incoming links) lookups. Each of the two vectors

is sorted in lexicographical order and processed via a combination of binary search

and direct pointer accesses.

Optimal Number of Partitions. Determining the number of partitions that

minimizes the combined query cost over both the summary and the (pruned) data

graph purely empirically may be a very tricky and costly procedure by itself. In

order to obtain an estimation of the best summary graph size, we formulate the

following cost model as an optimization problem that takes both the centralized

query execution at the summary graph and the subsequent distributed execution

at the pruned data graph into account.

Let |V | and |E| be the number of nodes and edges in the data graph, respec-

tively, and let d be the average degree of a node in the data graph, i.e.,

d :=

|E|

|V |

4.4. Index Organization | 97

Further, let cD denote the cost of executing a query against the graph in a central-

ized setting. Ideally, the cost cD,n for processing a query in a distributed setting

linearly scales with the number of slaves n, i.e.,

cD,n =

cD
n

Similarly, let |VS | be the targeted number of nodes in the summary graph. Then

it is reasonable to assume that the cost cS of processing the query against the

summary graph is proportional to the summary graph size, i.e.,

cS :=

|ES |

|E|

· cD =

d |VS |

|E|

· cD

Finally, let |VP | and |EP | be the number of nodes and edges in the data graph pruned

by preprocessing the query against the summary graph. Then the cost cP ,n of

processing the query against the pruned graph in a distributed setting is

cP ,n :=

|EP |

|E|

· cD,n

Assuming further that the size of the pruned data graph—at least for selective

queries—is inversely proportional to the size of the summary graph, we can rewrite

the latter cost as

cP ,n =

λ

|VS |

· cD,n

Putting all these costs together, we obtain the total cost cQ,n of processing a query

against the summary and subsequently against the data graph as follows.

cQ,n := cS + cP ,n

=

d |VS |

|E|

· cD +

λ

|VS |

· cD
n

(4.1)

This yields a cost function that is convex in |VS |. Minimizing cQ,n thus gives an

optimal number of nodes when

|VS | :=

√
λ|E|

d n
(4.2)

We remark that this result coincides with information-theoretic results for

determining the optimal number of clusters in a data set (Sugar and Gareth, 2003).

Although this makes the number of summary graph partitions (e.g., for METIS)

easy to compute, in practice, the best choice of partitions certainly depends on a

multitude of parameters, including the particular characteristics of the given data

set, the query workload, the hardware con�guration, as well as the network band-

width and latency. We project all these latent parameters into a single parameter

λ in our cost model, which we need to measure (only once) empirically for a given

hardware, query workload, and dataset setting.

98 | Chapter 4. Basic Graph Pa�erns

Example 4.6. We empirically veri�ed how well a measured value of λ general-
izes to di�erent scales of a given data set and query workload as follows. Based
on the LUBM-160 benchmark with queries Q1–Q7 (see Section 5.6), we �rst step-
wisely adjusted the number of summary graph partitions to �nd the value of |VS |

that minimized the geometric mean of the queries’ runtimes. LUBM-160 consists of
|E| = 27.9 × 10

6 triples with an average node degree of d = 3.6, and by varying
|VS |, we determined the best number of summary graph partitions to lie at around
|VS | = 17k partitions. Thus, plugging the above values into Equation (4.1) for a clus-
ter of n = 5 slaves, we obtain a value of λ = 187. We next use this value of λ to
predict the best number of partitions for the LUBM-10240 setting (using the same
queries), which consists of |E| = 1.7× 10

9 triples. Equation (4.2) predicts |VS | = 136k
partitions, which is very well within the range of the actual best number of parti-
tions, which we again manually determined to lie in between 100k–200k partitions
(see Figure 4.8.A.4).

4.4.2 Encoding Triples

After determining the summary graph partitions that each subject s and object

o in the RDF data graph belongs to, the master node encodes the partitioning

information directly into these triples. For this, let 〈s, p, o〉 denote a triple in the

RDF data graph, and let 〈ß1, p, ß2〉 be its corresponding triple in the summary

graph. We then obtain the �nal encoding of triples in the RDF data graph as

〈ß1||s, p, ß2||o〉. The integer ids of s and o are obtained by maintaining one separate

dictionary (a hash map) per summary graph partition; the ids of p and ß1, ß2 are

available from the intermediate dictionary and the summary graph itself.

Example 4.7. Following the summary graph shown in Figure 4.3(b), the input RDF
triple 〈Barack_Obama, bornIn, Honolulu〉 is encoded as follows. The subject with
label Barack_Obama is encoded as 1||1, the predicate as 1, and �nally the object as
1||2, thus yielding 〈1||1, 1, 1||2〉 as the �nal encoding for this triple.

4.4.3 Horizontal Partitioning of Data Triples

As with any distributed system, we partition the set of encoded RDF data triples

across the slaves. Our horizontal partitioning scheme aims to preserve the locality

information obtained from the summary graph by hashing entire summary graph

partitions into the grid-like distribution scheme shown in Figure 4.5. Since each

combined ß1||s and ß2||o identi�er contains information about both the summary

graph partition and the actual subject and object identi�ers, we can now “shard”

these triples as follows. Let 〈ß1||s, p, ß2||o〉 be an encoded RDF triple, and let n be

the number of slaves. Then each RDF triple is sharded twice, once by sending it

to slave (ß1 mod n) and once by sending it to slave (ß2 mod n).

Example 4.8. Consider the two triples 〈Barack_Obama, won, Nobel_Peace_Prize〉
and 〈Barack_Obama, bornIn, Honolulu〉 shown in Figure 4.3(b). Here,Barack_Obama

4.4. Index Organization | 99

S P O
1||1 1 1||3

1||1 3 2||4

1||1 5 1||2

1||3 4 1||4

6||1 1 1||1

6||3 1 3||2

6||3 2 1||5

S P O
2||2 1 2||3

2||2 3 2||4

2||3 4 1||4

7||6 1 1||2

7||6 1 3||2

7||9 1 1||2

7||9 2 5||2

S P O
5||2 2 5||2

5||3 2 1||5

5||7 4 1||1

5||7 6 2||9

10||3 5 5||2

10||6 2 9||2

10||9 9 2||5

...

..
.

..
.

..
.

ß1

ß6 ß7

ß2 ß5

ß10

Horizontal Partitioning (SPO shown only)

Slave 1 Slave 2 Slave 5

L
o

c
a
li

t
y

-
b
a
s
e
d

P
a
r
t
it

io
n

in
g

Figure 4.5: Locality-based & horizontal partitioning of triples

and Honolulu belong to Supernode 1 and Nobel_Peace_Prize belongs to Supernode
4. Considering a cluster of 5 slaves, we distribute the �rst triple onto Slaves 1 and 4,
whereas the second triple is hashed twice (but sent only once) to Slave 1.

Locality-Based Sharding and Join-Ahead Pruning. As opposed to the ran-

dom partitioning schemes used, e.g., in (Rohlo� and Schantz, 2011), our hashing

scheme aims to preserve the locality information provided by the summary graph.

Triples belonging to the same supernode are placed on the same horizontal par-

tition which facilitates join-ahead pruning of partitions that do not contain any

triples that are relevant with respect to an entire query. From Example 4.5, as-

sume we know that only partitions ß1, ß2, ß4 are relevant for processing the SPO

permutation of the query triple ?person bornIn ?city because only ß1, ß2, ß4 are

bound to the subject variable ?person after processing the entire example query

against the summary graph shown in Figure 4.3(b). As shown in Figure 4.5 (and

from Example 4.8), only the �rst block each at Slaves 1, 2 and 4 thus is relevant

for scanning the SPO permutation for this triple in this query.

4.4.4 Local Permutation Indexes

Upon receiving the sharded triples from the master, the slaves start creating their

local permutation indexes in parallel. Each slave creates six large, in-memory

vectors of triples, which will serve as our primary index structure for processing

queries. Each of the six vectors corresponds to one SPO permutation of the three

encoded 〈ß1||s, p, ß2||o〉 �elds. For fast lookups of a given query triple with a set of

supernode ids selected from the summary graph, we de�ne methods for random

access (via binary search) and sequential access (in the form of iterators) on top of

these vector-based SPO lists. Figure 4.5 depicts an example of these SPO indexes

at the slaves.

SPO Indexes. At each slave, the six SPO permutations are arranged into two

groups: i) the subject-key indexes (SPO, SOP, PSO), and ii) the object-key indexes

(OSP, OPS, POS). All triples hashed onto a slave node via their subject �eld ß1||s are

added to the node’s subject-key indexes. Likewise, triples hashed by their object

�eld ß2||o are added to the node’s object-key indexes. This way, each encoded RDF

100 | Chapter 4. Basic Graph Pa�erns

triple is replicated exactly six times across the compute cluster. At each slave, the

three subject-key and the three object-key vectors have exactly the same size,

respectively.

Sorting Triples. Each of the six triple vectors at a slave is sorted in lexicographic

order with respect to its corresponding permutation of the 〈ß1||s, p, ß2||o〉 �elds.

The grid structure shown in Figure 4.5 thus preserves both locality information

(i.e., the graph partitions) of the summary graph and guarantees coherence of

triples with the same subjects, objects and predicates, respectively.

4.4.5 Local & Global Statistics

In order to create e�cient join plans, we compute multiple statistics over both the

data and the summary graph. These statistics include i) cardinalities of individual

p1||s (subject), p (predicate), and p2||o (object) arguments in case of the data graph

and ii) cardinalities of individual ßi (supernode), p (predicate) arguments in case

of the summary graph.

In addition, as in (Neumann and Weikum, 2010a), we store cardinalities of iii)

(ß1||s, ß2||o) (subject, object), iv) (p, ß2||o) (predicate, object), v) (p, ß1||s) (predicate,

subject), and vi) selectivities of (p1, p2) (predicate, predicate) pairs as part of the

data graph statistics. We follow a similar approach for the summary graph and

also store the cardinalities of individual vii) (p, ßi) (predicate, supernode) and viii)

selectivities of (p1, p2) (predicate, predicate) pairs.

These statistics can only provide us with an exact cost for the �rst series of

index scans, while cardinalities for joins need to be approximated. Estimating the

cost of an entire query plan thus requires the recursive estimation of the cardi-

nalities of intermediate relations obtained from joins, which can be formalized

as

Card(R1,2) := Card(R1) · Card(R2) · Sel(R1, R2) (4.3)

where Sel(R1, R2) denotes the selectivity of the pair of predicates (p1, p2) asso-

ciated with the triple patterns R1 and R2, respectively. The selectivities for the

entire RDF data graph are �rst aggregated locally at the slaves (in the form of

absolute cardinalities) and then merged globally at the master, while the ones for

the summary graph are aggregated at the master node, only.

Example 4.9. For the triple patterns R1 : 〈?person, bornIn, ?city〉 and R2 : 〈city,

locIn, USA 〉, we store the cardinalities Card(R1) = 4 and Card(R2) = 5 at the

master node. Similarly, we store the selectivity Sel(R1, R2) = 0.2 for the pair of

predicates (bornIn, locIn). From Equation (4.3), we thus obtain Card(R1,2) = 4

as the estimated number of joined triples.

4.5. �ery Optimization & Distributed Processing | 101

4.5 Query Optimization & Distributed Processing

In this section, we present a detailed description of the two-staged optimization

and execution strategy we follow in processing BGP queries in TriAD.

4.5.1 Two-Staged Query Processing Overview

A BGP query expressed in SPARQL query is parsed and translated into a query

graph of the form Q(VQ , EQ , ΣV , ΣE ,V , ΦQ) (see De�nition 2.6) by assigning a

unique id to each distinct variable in V , while constants in ΣV ∪ΣE are replaced

by ids obtained from the forward dictionary. In the following, we refer to EQ =

{R1, R2, . . . , Rn} as the set of query triple patterns that capture a conjunctive BGP

query pattern.

Stage 1. The �rst stage, called “pruning stage”, is performed entirely at the master

node. We �rst process the query against the summary graph to �nd bindings

of supernode identi�ers to query variables. For this, we employ an exploratory

algorithm (similar to the one described in (Atre et al., 2010; Zeng et al., 2013)) for

�nding these supernode bindings. The reason behind choosing an exploratory-

based algorithm over conventional joins is that, here, our objective is to only �nd

supernode bindings for each query variable to facilitate join-ahead pruning at the

actual SPO permutation indexes. For an e�cient graph exploration, we determine

the best exploration order, the exploratory plan, using a �rst DP-based optimizer

over the summary graph statistics. The supernode bindings obtained from the

pruning stage are relayed to the physical operators at the second stage.

Stage 2. In the second stage, we process the query against the data graph which

is distributed across all slaves. Here, we follow a relational style of processing,

aiming to generate the �nal join results of the SPARQL query. We determine the

best join order by using a second DP-based optimizer (see, e.g., (Neumann and

Weikum, 2010a)) in combination with a distribution-aware cost model as objec-

tive function. The supernode bindings obtained at the pruning stage are also used

to (re-)estimate the cardinalities of input relations and are fed into the cost model

for optimization. This global query plan generated at the master is then communi-

cated to all slaves. Along with the global plan, the supernode bindings from Stage

1 are passed on to the slaves for pruning dangling triples (i.e., entire summary

graph partitions) from the SPO permutation indexes. At each slave, the local

query processor executes the plan by asynchronously sending and/or receiving

intermediate join results to/from the other nodes. When query processing termi-

nates, each slave holds its own partial query results which are then �nally merged

at the master.

4.5.2 Generating Supernode Bindings

The �rst stage of processing generates supernode bindings via a graph explo-

ration approach. However, unlike the simpler 1-hop graph exploration described

102 | Chapter 4. Basic Graph Pa�erns

Sharding: R2 ?city ?prize

?person

Cost:max(200,150)+15

Cost:max(105,215)+130

Order:

Cost:

Slaves:

Supernodes:

2 3 4DIS(R) DIS(R) DIS(R) DIS(R)

DMJ(R)DMJ(R)

1,2,3,4

1,2 3,4

1

Sharding: None

1,2

DHJ(R)

Cost:max(100,10)+5

POS

100

[1,2]

POS

200

[1,2]

Sharding:R ,R

POS

10

PSO

150

[1,2]

3,4

[1,2,4] [1,2,4] [1,2,4][1]

[1]

Figure 4.6: Global query plan for the query of Example 4.10

in (Zeng et al., 2013), we perform a full graph exploration with back-propagation.

That is, we add a supernode binding to a join variable only if this binding satis�es

the entire query also with respect to the remaining join variables.

Example 4.10. Consider a SPARQL query consisting of the following four triple pat-
terns R1 to R4.

R1 : ?person bornIn ?city.

R2 : ?city locIn USA.
R3 : ?person won ?prize.
R4 : ?prize hasName ?name.

For the �xed exploration order 〈R1, R2, R3, R4〉, we �rst �nd all possible bindings
for variables ?person and ?city for the query pattern R1. Next, for the second query
pattern R2, we prune those bindings for variable ?city that are not located in “USA”.
We propagate this information back to ?person and thus prune supernode bindings
for ?person. Finally, with query patterns R3, R4, we �lter out the bindings for vari-
ables ?person, ?city and accordingly add new bindings to ?prize and ?name.

Exploratory Plan Optimization

A random exploration order of query patterns might make the summary graph

processing ine�cient and sometimes even slower than processing the data graph.

To avoid this, we estimate the best exploration order by leveraging the summary

graph statistics. To do so, we employ a �rst bottom-up DP algorithm to determine

the order of triple patterns that yields the overall least cost estimate. At each DP

step, we calculate the cost of the partial plan considered so far and prune if the

current branch cannot contribute to the plan with the least cost anymore.

Based on Equation (4.3), the cost of an entire exploration plan that is rep-

resented by a �xed order of triple patterns R1, . . . , Rn can thus be estimated as

follows.

Cost(〈R1, . . . , Rn〉) ∝

Card(R1) +

n∑
i=2

(
Card(Ri)

i∏
j=1

Sel(Ri, Rj)
)

(4.4)

4.5. �ery Optimization & Distributed Processing | 103

Here, Card(Ri) denotes the precomputed cardinality of query pattern Ri, and

Sel(Ri, Rj) represents the join selectivity of pairs of predicates (pi, pj) associated

with triple patterns Ri, Rj , respectively (Section 4.4.5). This selectivity is set to 1

if Ri and Rj do not share any join variable. We remark that this estimation again

assumes independence among join patterns.

4.5.3 Querying the Data Graph

With the supernode bindings at hand, Stage 2 of the query evaluation is performed

over the indexed and sharded RDF data graph. Since there exist six SPO permu-

tations of the entire RDF data graph, which are distributed across n slaves, each

individual query pattern Ri could potentially be scanned in six di�erent ways, and

each such scan can be done in parallel across the slaves.

Physical Operators. Inspired by the reduced set of query operators in RDF-

3X (Neumann and Weikum, 2010a,b), we employ only three distributed operators

to construct a query plan in TriAD:

• Distributed Index Scan (DIS): Invokes a parallel scan over a permutation

list that is sharded across n slaves.

• Distributed Merge Join (DMJ): Invokes a distributed merge-join across

n slaves when both input relations are sorted according to the join key(s)

in the query plan.

• Distributed Hash Join (DHJ): Invokes a distributed hash-join across n
slaves otherwise.

Each physical DIS operator is aware of the locality of the sharded list it scans, the

permutation order chosen by the optimizer, and the pruned summary graph parti-
tions determined by Stage 1. Moreover, both the DMJ and DHJ operators are aware

of the locality of their input relations and their join conditions (see Figure 4.6).

Query-Time Sharding. Both the DMJ and DHJ operators may require sharding

a relation at query time. Due to our index layout, the DMJ operator requires

sharding of only at most one input relation Ri obtained from a DIS operator when

Ri’s triples were previously sharded (Section 4.4.3) on a non-join key. For instance,

consider the left-hand DMJ shown in Figure 4.6.

Here, using a DIS over the POS index yields all triples for R2 whose objects

are bound to “USA”. Since R2’s object is not a join key for the left-hand DMJ, we

need to shard R2’s triples according to the join key ?city (the subject of R2). On the

other hand, the right-hand DMJ operator requires no query-time sharding at all

when scanning the POS and PSO indexes, respectively, since both R3’s and R4’s

triples were sharded on the join key ?prize. Likewise, the upper DHJ operator

requires sharding both of its intermediate input relations, since R1,2 and R3,4 are

not sorted on their common join key ?person and thus are misplaced among the

slaves with respect to this key.

104 | Chapter 4. Basic Graph Pa�erns

Global Query Plan Optimization

The choice of a physical join operator strongly in�uences the cost function deter-

mined by the DP optimizer. To initialize the DP table for each pattern Ri and SPO

permutation k, which is distributed across n slaves, we set the DIS cost as follows.

Cost(Rki) ∝


Card(Ri)/n

if permutation k matches the binding pattern given by the constants in Ri

|ED |/n
otherwise

(4.5)

For example, for the query pattern 〈Barack_Obama, ?p, ?o〉, the cost of scan-

ning the matching triples over the SPO, SOP permutations is expected to be much

lower compared to scanning them over the OPS, OSP, PSO and POS permutations.

For calculating the actual costs Cost(Rki) of an index scan, we multiply the basic

cardinalities with a constant cost factor ηDIS
.

After initializing the DP table with the �rst series of DIS costs, we continue to

build a query plan that aims to re�ect the optimal order of both joining and ship-
ping intermediate results across the slaves. At each DP step, we join two subplans

over two non-overlapping subqueries Qleft
and Qright

into a new combined plan

Q. The cost of Q is then recursively de�ned as follows.

Cost(Q) :=



Cost(Rki)

if Ri denotes a DIS over permutation k; (4.6.1)

Cost(Qleft
) + Cost(Qright

)

+Cost(Qleft onop Qright
)

+Cost(Qleft
op Qright
) otherwise. (4.6.2)

Here, Cost(Qleft onop Qright
) denotes the cost of joining the two subqueries

via operator op, which depends on the cardinalities of both Qleft
, Qright

times a

constant cost factor ηop for the respective join operator op ∈ {DMJ, DHJ}. Con-

versely, Cost(Qleft
op Qright
) denotes the cost of shipping intermediate relations

for Qleft
, Qright

across the slaves before executing the actual join. This is again

computed from the cardinalities of Qleft
, Qright

, which are each multiplied with

the width of their intermediate relations and a constant factor η
 for the com-

munication cost.

Cardinality (Re-)Estimation. Equation (4.6.1) captures the scan costs for a ba-

sic triple pattern Ri to be proportional to the cardinality that is available from

our precomputed global statistics. Preprocessing the query against the summary

graph however lets us re�ne these cardinalities by the amount of summary graph

partitions that are actually selected for each Ri after the initial graph exploration

step. Thus, let Card(Ri) be the precomputed cardinality of a query pattern Ri over

4.5. �ery Optimization & Distributed Processing | 105

the RDF data graph, and let |Cs |, |Co| be the cardinalities of its subject s and ob-

ject o, respectively, obtained from the precomputed summary graph statistics. Let

|C′s |, |C′o| be the number of supernode bindings obtained from Stage 1 of processing

the query over the summary graph. We then (re-)estimate Card′(Ri) via a simple

linear interpolation as follows.

Card′(Ri) :=

|C′s |
|Cs |
· |C′o|

|Co|

· Card(Ri) (4.6)

These re-estimated cardinalities are plugged into Equation (4.6.1) and used by the

optimizer when determining the global query plan.

Accounting for Parallel Operations. To accommodate for the parallel execu-

tion of two subplansQleft
, Qright

(Section 4.5.4), we further re�ne the cost function

of Equation (4.6.2) as follows.

Cost(Q) := max

(
Cost(Qleft

),Cost(Qright
)

)
+ Cost(Qleft onop Qright

)

+ Cost(Qleft
op Qright
) (4.7)

That is, at any DP step, the cost of the current (sub-)plan for Q is proportional

to the cost of the concurrent execution of the subplans for Qleft
, Qright

, rather

than to the cost of their sequential execution. Another signi�cant advantage of

parallel executions—in addition to speeding up computations—is that it also better

exploits the network bandwidth by sending more than one intermediate relation

at a time via asynchronously exchanged messages.

Example 4.11. Figure 4.6 shows an example of a global plan returned by the opti-
mizer for a two-node distribution. One can observe that the plan explicitly includes
the locality and pruning information that each DIS operator has at the leaves. For in-
stance, the POS list chosen for pattern R2 entirely resides at Slave 1, whereas the ones
for R1, R3, R4 are distributed across both slaves. The plan also shows how the parallel
execution of subplans a�ects the cost estimates for the DMJ and DHJ operators.

4.5.4 Distributed Query Execution

The global query plan generated at the master is communicated to all slaves along

with the supernode bindings. Each slave receives this plan, initializes its own in-

stances of the physical operators (but over di�erent chunks of the sharded SPO

lists), and then starts processing the plan concurrently. The protocol that is exe-

cuted at each of the slave nodes concurrently is shown in Algorithm 7.

106 | Chapter 4. Basic Graph Pa�erns

Input: Global query plan with supernode bindings Plan;
local SPO index Idx; number of slaves n;
Output: Relation with partial query results Relation;

1 method Main(Plan, Idx, n, i) {
2 EP[1..l]← CreateExecutionPaths(Plan); //plan with l leaf op’s
3 for j = 1..l do
4 START_THREAD((EP[j], Idx)→ Process);

5 Alive[i]← SendSlaveStatusToMaster(i);
6 WAIT_ALL(EP[1..l]); //synchronize on execution paths
7 return EP[1].Relation; } //return partial result relation for this slave

8 method Process(EP , Idx) {

9 while Op← NextOperator(EP) do
10 if Op is DIS then
11 SN [1..p] := GetSupernodeBindings(Op); //for join-ahead pruning

12 EP .Relation← GetIterator(Op, Idx, SN [1..p]); //binary search

13 else
14 Alive[1..n]← ReceiveSlaveStatusFromMaster();

15 if Op.Sharding then
16 Part[1..n]← Shard(EP .Relation); //repartition relation

17 EP .Relation← Part[i]; //keep partition i locally

18 for j 6= i && Alive[j] do
19 Ack[j]← MPI_Isend(Part[j], j, EP .Id);

20 for j 6= i && Alive[j] do
21 Ack[n + j]← MPI_Ireceive(Part[j], j, EP .Id);

22 EP .Relation←Merge(EP.Relation, Part[j]);

23 WAIT_ALL(Ack[1..2n]); //synchronize on incoming messages

24 SibEP ← FindSiblingExecutionPath(Op);

25 R1← EP .Relation;

26 R2 ← SibEP .Relation;

27 if SibEP.Id < EP.Id then
28 STOP_THREAD(EP);

29 EP .Relation← Join(R1, R2 ,Op); } // Op is DMJ or DHJ

Algorithm 7: Local query processor at Slave i

Multi-Threaded, Asynchronous Plan Execution. The key to allow for a par-

allel, asynchronous execution of the global query plan lies in executing the plan in

a multi-threaded fashion at each slave. The Main method of Algorithm 7 invokes

a new thread (using the C++ Boost API) for each sequential execution path (EP) of

operators in the query plan. An EP is a path from a leaf of the operator tree up to

its root (the vertical dashed lines in Figure 4.7). At each slave, we start a separate

thread for each such EP (Line 4), and we later join (i.e., synchronize) two threads

into one at the lowest common join operator that two such EPs share (Line 28).

As shown in the Process method (and in Figure 4.7), the execution of an EP

always starts with the DIS operators. Each DIS operator obtains the respective su-

pernode bindings for join-ahead pruning as part of the global query plan (Line 11).

4.5. �ery Optimization & Distributed Processing | 107

Instead of building an intermediate relation, a DIS operator returns an iterator that

directly points to the �rst qualifying tuple (obtained via binary search and the su-

pernode bindings) in a sorted SPO permutation list (Line 12). These iterators are

then passed to the parent DMJ operators to perform the joins directly on the raw

indexes. Otherwise, if the operator is DMJ or DHJ and sharding is required, Slave i
�rst shards the intermediate relation that it holds at its current EP (Line 16). Only

in this case, Slave i needs to synchronize on incoming messages (Line 23) from

the other n – 1 slaves in order to merge the incoming (resharded) tuples into the

current EP’s intermediate relation (Line 22). Thus, each EP holds an intermediate

relation which is iteratively passed on to a subsequent join operator (Line 29) in

the execution path. Although the operators within an EP are executed sequen-

tially, multiple such EPs (and thus operators) run in parallel and asynchronously

at each slave, and across all slave nodes.

Asynchronous MPI Communication. Sharding an intermediate relation for a

DMJ or DHJ operator at query time is a blocking operation that requires a syn-

chronization step among all slaves. This may be a signi�cant bottleneck, as it

blocks the slaves from performing their partial join operations until all the slaves

have received their corresponding chunks of tuples. We address this by using

the asynchronous MPI_Isend and MPI_Ireceive methods of the MPICH2 API

(Lines 19 & 21). Thus, without waiting for the entire sharding phase to �nish

among all slaves, a part of a DMJ or DHJ operation can be invoked locally on a

slave as soon as this slave has received the n–1 messages with the chunks of tuples

it is responsible for (denoted by the horizontal dashed lines in Figure 4.7). Con-

versely, once a slave �nishes all its execution paths, it broadcasts its completion

to all other slaves via the master.

In summary, if query-time sharding is required prior to a join, then this step is

comparable to a “Shu�e&Sort” phase of a Map-side join in MapReduce (Lin and

Dyer, 2010). In our case, shu�ing is not always required, and sorting is avoided

entirely. Due to the layout of our distributed index structures (Sections 4.4.2 &

4.4.3), we can always rely on e�cient DMJ operators for the �rst level of joins.

At this �rst level, we need query-time sharding only if we join the subject of

one query pattern on the object of another query pattern (i.e., we have an S-O

or O-S join) and at least one of the non-joining subjects or objects is a constant.

Conversely, a DHJ operator requires query-time sharding of either one (or both)

of its input relations. During plan generation, this is taken into consideration by

the optimizer together with the constant cost factors of the operators, such that

we favor merge joins over hashing whenever possible.

Example 4.12. Figure 4.7 illustrates the distributed execution of the query plan de-
picted in Figure 4.6 (and shown in Example 4.10) for a two-node distributed setup.
At the leafs, the DIS operators (e.g., for R1) obtain the supernode bindings and each
create an iterator over the pruned POS index (shaded partitions). Before invoking the
left-hand DMJ on ?city, and since R2 at Slave 2 is empty, we repartition the triples
of R2 at Slave 1 into two partitions, one of which is sent to Slave 2 (denoted by a hor-

108 | Chapter 4. Basic Graph Pa�erns

DIS(R)1
DIS(R)4

DIS(R)4DIS(R)3DIS(R)2DIS(R)1

DHJ(R)1,2,3,4

DMJ(R) 1,2 DMJ(R) 3,4

DHJ(R)1,2,3,4

DMJ(R) 3,4DMJ(R) 1,2

R2

R1,2 R3,4

DIS(R)2 DIS(R)3

P O S

(bornIn,?o,?s) (won,?o,?s)

P O S

(hasName,?s,?o)

P S O

(locIn,USA,?s) (locIn,USA,?s)

P O S

Partial Results

EP1 EP2 EP3 EP4

Partial Results

Slave 1 Slave 2

P O S

(bornIn,?o,?s) (won,?o,?s)

P O S

(hasName,?s,?o)

P S O

Figure 4.7: Distributed execution of the query shown in Example 4.10with
asynchronous communication (horiz. dashed lines)

izontal dashed line). The two right-hand DMJs on ?prize at Slaves 1 and 2 require
no communication, as their input triples are already in-place. Since the two DMJs
order tuples on di�erent join keys for ?city and ?prize, only the �nal DHJ requires
sharding and shipping for both R1,2 and R3,4 for the join on ?person. All of the DIS
operators are performed in a fully distributed and multi-threaded fashion. Also the
next level of DMJ runs in an asynchronous fashion. Only the �nal DHJ needs to wait
until both of its incoming DMJ operators have �nished generating their intermediate
results.

4.6 Evaluation

We next present the detailed evaluation of BGP query processing using our TriAD

system. For this, we evaluated TriAD in comparison to two centralized RDF en-

gines, RDF-3X (Neumann and Weikum, 2010a) and BitMat (Atre et al., 2010), four

distributed RDF engines, SHARD (Rohlo� and Schantz, 2011), H-RDF-3X (Huang

et al., 2011), 4store (Harris et al., 2009) and the very recent Trinity.RDF (Zeng

et al., 2013) engine, one main-memory DBMS, MonetDB (Sidirourgos et al., 2008),

as well as to Apache’s Hadoop and Spark engines (the latter for comparing to their

plain join performance). To study join-ahead pruning, we consider two variants of

our system. The �rst, referred to as TriAD-SG, makes use of the summary graph,

while the second, referred to as TriAD, performs a random partitioning of triples.

4.6.1 Datasets & Setup

4.6.1.1 Benchmarks

We used the widely popular LUBM
7

synthetic benchmark, the real-world BTC

2012
8

dataset, and the recent WSDTS
9

SPARQL diversity test suite. For LUBM,

we employed the data generator using UBA 1.7 in N3 format. Concerning the

7
http://swat.cse.lehigh.edu/projects/lubm/

8
http://challenge.semanticweb.org/

9
https://cs.uwaterloo.ca/~galuc/wsdts/

http://swat.cse.lehigh.edu/projects/lubm/
http://challenge.semanticweb.org/
https://cs.uwaterloo.ca/~galuc/wsdts/

4.6. Evaluation | 109

queries, we used the benchmark queries published in (Atre et al., 2010) and used

by Trinity.RDF (Zeng et al., 2013). For BTC, we de�ned 8 queries of varying com-

plexity similar to the ones published in (Neumann and Weikum, 2009), replacing

only the operators that TriAD currently does not support (i.e., DISTINCT and []).

4.6.1.2 TriAD Setup

We implemented TriAD in C++ using GCC-4.4 with -O3 optimization. We used

MPICH2-1.4.1 and Boost 1.54.0 as external libraries. For TriAD-SG, we constructed

our summary graph by partitioning the RDF data graph using the METIS 5.1 graph

partitioner with a default con�guration. To achieve a better performance during

partitioning, we ignored edges connecting string literals, resulting in both time

and space savings. We ran all experiments on a local compute cluster with 12

nodes (one of which was dedicated as the master node) which are connected via

a 1GBit LAN connection. Each machine has 48GB of RAM, 16 quad-core CPUs of

2.4GHz, and runs Debian Linux 6.0.6.

4.6.1.3 Competitor Setup

To compare against Hadoop-based engines, we implemented H-RDF-3X (Huang

et al., 2011) as our main competitor. For H-RDF-3X, we �rst partition the graph

using METIS and assign each partition to a slave that runs RDF-3X 0.3.7 as its

local RDF engine. For a fair comparison, and given that all LUBM queries have

a diameter of less than 2, we employ a 1-hop replication. Moreover, since nei-

ther Trinity.RDF (Zeng et al., 2013) nor its underlying Trinity graph engine (Shao

et al., 2013) are openly available, Tables 4.2 and 4.6 thus depict the running times

reported in (Zeng et al., 2013) for the same benchmark setting but over a much

stronger hardware con�guration. Most notably, our available network bandwidth

and main memory lie at 1GBit and 48GB as opposed to 40GBit and 96GB reported

in (Zeng et al., 2013), respectively. All other competitors are o�-the-shelf instal-

lations within our cluster.

4.6.2 Results

4.6.2.1 LUBM-10240 Dataset

E�ciency. In our �rst series of experiments, we use the LUBM-10240 dataset

which consists of about 1.84 billion triples (amounting to a size of 730 GB in raw

N3 format). Queries Q1–Q7 (Atre et al., 2010; Zeng et al., 2013) can be classi�ed as

non-selective (Q2), selective in both the input relations and output size (Q4, Q5,

Q6), and selective in output size (Q1, Q3, Q7). This setup is identical to the one

used for evaluating Trinity.RDF (Zeng et al., 2013), thus allowing us draw a careful

comparison to their performance results. In Table 4.2, we depict the wall-clock

processing times of both TriAD and TriAD-SG in comparison to all competitors.

For TriAD-SG, we experimented with di�erent summary graph sizes. Table 4.2

110
|

C
hapter

4.
B

asic
G

raph
Pa�

erns

TriAD TriAD-SG Trinity.RDF SHARD H-RDF-3X 4store RDF-3X BitMat
(200K) (cold) (warm) (cold) (warm) (cold) (warm) (cold) (warm)

Q1 7,631 2,146 12,648 6.9e5 2.3e6 1.7e5 aborted aborted 1.9e6 1.8e6 17,339 11,295

Q2 1,663 2,025 6,018 2.1e5 5.3e5 4,095 1.1e5 15,113 6.3e5 17,835 2.4e5 1.8e5

Q3 4,290 1,647 8,735 4.7e5 2.2e6 1.3e5 aborted aborted 1.7e6 1.7e6 8,429 2,679

Q4 2.1 1.3 5 3.9e5 166 1 1,903 12 243 3 aborted aborted

Q5 0.5 0.7 4 97,545 85 1 2,429 12 99 1 472 338

Q6 69 1.4 9 1.8e5 5.8e5 23,440 3,572 9 913 287 7,796 5,377

Q7 14,895 16,863 31,214 3.9e5 2.3e6 2.1e5 aborted aborted 6.5e5 46,262 71,157 36,905

Geo. Mean 249 106 450 3.0e5 91,378 2,406 - - 31,345 2,991 - -

Table 4.2: LUBM-10240 – Query processing times (inms)

4.6. Evaluation | 111

depicts our best setting, where 200,000 supernodes and 130,744,241 superedges

reside at the master node.

Starting from the non-selective query Q2, which contains a single join that

returns a large number of results, TriAD outperforms all competitors, thus taking

advantage of its distributed join execution. Trinity.RDF is about 3 times slower,

since here graph-exploration provides no bene�t for non-selective queries, thus

retaining many bindings and performing a single, centralized join at the master

node. H-RDF-3X, due its use of local RDF stores, can execute the join in parallel

and runs faster than Trinity.RDF (warm cache) but due to the unbalanced par-

tition sizes across the local RDF stores, H-RDF-3X remains slower than TriAD.

In addition, TriAD, which uses main-memory backed indexes, can perform fast

random-access jumps over its indexes. Here, the use of the summary graph (see

TriAD-SG) even slightly hurts performance, since Q2 does not bene�t from join-

ahead pruning either.

For the selective queries Q1, Q3, Q7, TriAD manages again to outperform

Trinity.RDF. The slower performance of Trinity.RDF apparently is due to its 1-

hop distributed graph exploration method without back-propagation (which we

conclude from the observation that these queries are only selective in their �-

nal output but non-selective for the lowest level of joins). For both Q1 and Q3,

the summary graph with a full graph exploration (including back-propagation)

improves the performance of TriAD, since pruning is very e�ective for these se-

lective queries. Especially for Q3, which has an empty result, the summary graph

prunes many SPO partitions which leads to performance gains over Trinity.RDF.

This impact of full graph exploration is also shown by the centralized BitMat sys-

tem which is faster than TriAD but slower than TriAD-SG. For query Q7, the

pruning stage in TriAD-SG is not as e�ective, thus retaining many SPO partitions

and resulting in an inferior performance compared to TriAD due to the overhead

of shipping and comparing the supernode identi�ers for our index scans. 4store

repeatedly crashed on queries Q1, Q3, Q7 (marked as “aborted”).

Queries Q4, Q5, which are processed against many low-cardinality input re-

lations, can be considered as the best cases for e�ective join-ahead pruning. For

these queries, the centralized RDF-3X engine with join-ahead pruning is very ef-

�cient. TriAD is slightly faster than RDF-3X (warm cache) and Trinity.RDF by

using distributed joins with skip-ahead jumps over the index lists based on the

supergraph partitions. In the case of TriAD-SG, where the �rst-stage processing

is negligible, it performs similarly to TriAD.

Trinity.RDF performs better than TriAD forQ6, where large intermediate rela-

tions hamper the performance of TriAD. The use of the summary graph in TriAD-

SG however is almost 50 times faster, thus reducing the size of the intermediate

results signi�cantly and outperforming Trinity.RDF. H-RDF-3X performs signif-

icantly worse in this case, since it breaks the query into smaller subqueries and

fails to capitalize on the SIP bene�ts of RDF-3X.

Scalability. We studied both the strong and weak scalability of TriAD by in-

112
|

C
hapter

4.
B

asic
G

raph
Pa�

erns

4 6 8 10

200

250

300

G
e
o
.-

M
e
a
n

[
m
s]

2 4 6 8 10

100

200

300

1 2 4 8

100

200

300

100 200 300 400 500

100

200

300

4 6 8 10

0

1e0

1e1

1e2

1e3

1e4

Q
u

e
r
y

T
i
m

e
[
m
s]

2 4 6 8 10

0

1e0

1e1

1e2

1e3

1e4

1 2 4 8

0

1e0

1e1

1e2

1e3

1e4

100 200 300 400 500

0

1e0

1e1

1e2

1e3

1e4

4 6 8 10

0

1e1

1e3

1e5

Slaves

A
v
g

.C
o

m
m

./
N

o
d

e
[
K
B]

2 4 6 8 10

0

1e1

1e3

1e5

Data Size [k Univ.]

1 2 4 8

0

1e1

1e3

Weak Scalability [# Slaves,k Univ.]

100 200 300 400 500

0

1e1

1e3

1e5

Summary Size [k Part.]

Q1 Q2 Q3 Q4 Q5 Q6 Q7 TriAD TriAD-SG Cost Model

(1) (2) (3) (4)

(A)

(B)

(C)

Figure 4.8: TriAD (Cols. 1–3) & TriAD-SG (Col. 4) scalability experiments for various con�gurations of the LUBM bench-
mark

4.6. Evaluation | 113

creasing the number of available machines and the size of the data set. The re-

sults are shown in Figure 4.8. Figures 4.8.C.1 and 4.8.B.1 show the strong scala-

bility in terms of query time when increasing the number of slaves from 2 to 11.

Figure 4.8.C.1 shows the average communication costs per slave for this increas-

ing number of slaves. For measuring strong scalability, we use the LUBM-10240

dataset. (We omit the setting with a single slave as our indexes and statistics do

not �t into 48GB of RAM.) We observe that our processing time decreases lin-

early as the number of machines increases and, as expected, we see the average

communication cost per slave decreasing while the total communication cost is in-

creasing. We also studied how TriAD performs as we increase the size of the data

while keeping the number of machines �xed. Results are shown in Figures 4.8.A.3,

4.8.B3 and 4.8.C.3 and imply a very good scalability for TriAD with respect to the

data size. Similarly, Figures 4.8.A.2, 4.8.B.2, 4.8.C.2 depict the case when we in-

crease both the size of the data and the number of available machines. From the

geometric means in Figure 4.8.A.2, we can observe that the variance is very low,

thus con�rming the afore behavior also in terms of weak scalability. Notice that

the join multiplicities for Q1–Q7 are larger than 1, such that the result sizes also

grow super-linearly.

Communication Costs. With regard to the communication costs among slaves,

our measurements for LUBM-10240 are shown in Table 4.3 (in KB). The use of

the summary graph generally achieves a better query performance by reducing

the size of the intermediate results via join-ahead pruning, thus decreasing both

the communication costs and the computational costs of the joins. The maximum

gains appear for selective queries Q1, Q3, and Q7.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
TriAD 35,720 0 439 <0.1 <0.1 1.13 73,141

TriAD-SG 4,587 0 107 0 0 0 21,051

Table 4.3: Communication size (in KB) for LUBM-10240

Impact of Summary Graph Size. The query times and the average commu-

nication costs for queries Q1–Q7 for di�erent summary graph sizes are shown

in Figures 4.8.A.4, 4.8.B.4 and 4.8.C.4. With increasing summary graph sizes, we

generally observe increasing query times, which become dominated by process-

ing the queries against the summary graph. We can also observe a decreasing

trend for the communication costs (except for Q7) because of more pruning. Fig-

ures 4.8.A.4, 4.8.B.4 and 4.8.C.4 show the optimal number of partitions predicted

by our cost model (blue vertical line). The TriAD baseline (red horizontal bar)

is shown in Figure 4.8.A.4. The cost predicted by our cost model (green curve in

Figure 4.8.A.4, see also Section 4.4.1) has been scaled linearly to �t this plot, which

however does not a�ect the shape of the plot nor its minimum.

Impact of Multi-Threading. We evaluated the gain of multi-threading and its

e�ect on plan generation for the LUBM-10240 dataset on a 10-node setup. Fig-

ure 4.9 shows the query times of the di�erent variants of TriAD on a logarithmic

114 | Chapter 4. Basic Graph Pa�erns

Q1 Q2 Q3 Q4 Q5 Q6 Q7

1e0

1e1

1e2

1e3

1e4

Q
u

e
r
y

T
i
m

e
[
m
s]

TriAD TriAD-SG TriAD-noMT1 TriAD-noMT2

Figure 4.9: Impact of multi-threading in TriAD
Relation Sizes Dataset Q5 Q2

R1 / R2

LUBM-1000 10B / 3MB 9MB / 180MB

LUBM-10240 70B / 29MB 103MB / 2GB

Query Time (in sec) Q5 Q2

TriAD

LUBM-1000 <0.01 0.16

LUBM-10240 <0.01 1.20

Apache Hadoop

LUBM-1000 21.17 29.69

LUBM-10240 21.83 73.36

Apache Spark (cold / warm)

LUBM-1000 4.07 / 0.14 26.72 / 15.04

LUBM-10240 9.36 / 0.48 116.25 / 96.12

MonetDB (cold / warm)

LUBM-1000 0.05 / 0.01 1.52 / 0.05

LUBM-10240 0.11 / 0.02 26.83 / 0.23

Table 4.4: Single-join performance of various engines

scale. To measure the e�ectiveness of multi-threading on both plan generation

and query execution, we de�ned two variants: i) TriAD-noMT1 (using our multi-

threading-aware cost model for optimization but single-threaded executions), and

ii) TriAD-noMT2 (using a single-threaded mode for optimization and execution).

For queries Q3 and Q4, allowing multi-threaded operations achieves an order of

magnitude better performance results. A main reason for this large di�erence—

besides a better CPU and network utilization—are improved query plans gener-

ated by the optimizer when multi-threading is enabled.

Single-Join Performance. To evaluate the basic performance of joins in Apache

Hadoop and Spark versus TriAD, we compared the built-in Map-side join func-

tion of Hadoop (over two sorted and key-partitioned input �les) with the DMJ

operator in TriAD. We ran the comparison over a 10-node cluster setup with two

di�erent LUBM scale factors. Table 4.4 shows the relation sizes and the query

performance (this time in seconds) of Hadoop and Spark (Zaharia et al., 2010) for

both a selective (Q5) and a non-selective (Q2) LUBM query, each consisting of just

a single join operation. We can clearly observe that Hadoop-based joins should be

avoided. MonetDB, in comparison, yields the by far best join performance when

the input relations �t into the main memory of a single machine. It however de-

grades when optimizing complex SPARQL queries (see Table 4.6). For Apache

Spark, we used a naïve implementation of Map-side joins without any caching,

4.6. Evaluation | 115

for selective query Q2 the warm cache performance is signi�cantly better than

Hadoop as the relations �t into memory, while for non-selective query Q5, warm

cache performance was observed to be lower than Hadoop.

E�ectiveness of Dictionary Encoding in TriAD. Dictionary encoding is

a crucial element in building e�cient RDF systems. Most centralized and dis-

tributed RDF systems encode RDF strings into integer IDs before constructing any

indexes over the triples. This strategy provides multiple bene�ts such as small in-

dex sizes, �exibility to compress indexes, and the faster query processing times.

A naïve dictionary encoding strategy, which many current RDF systems follow,

is to assign incremental integer IDs to RDF strings in the order they appear in

the RDF �le. This may lead to assigning larger IDs to frequently appearing RDF

strings. Moreover, the naïve strategy disallows any locality-based encoding of

RDF strings. In TriAD-SG, this is mitigated to a larger extent by using the locality-

based partitioning and the encoding of RDF triples, but not use a statistical based

approach proposed recently in KOGNAC (Urbani et al., 2016). KOGNAC investi-

gates a novel approach to the dictionary encoding problem by assigning IDs based

on the statistical (frequent and infrequent strings) and locality-based grouping of

RDF triples. For more details, we refer the reader to our paper (Urbani et al., 2016).

Here we brie�y present the empirical evaluation on e�ectiveness of KOGNAC in

TriAD. We considered LUBM-1000 and LUBM-8000 dataset comprising of 100 mil-

lion and 1 billion triples respectively. Table 4.5 shows the performance of TriAD

using three di�erent encoding techniques – KOGNAC, Default (appearance or-

der in �le), Random (randomly assigned IDs). It can be observed that KOGNAC

performs signi�cantly better than Random order, but comparable to Default order.

Queries LUBM-1000 LUBM-8000
(times in ms)

KOGNAC Default Random KOGNAC Default Random
Q1 2,684 2,640 3,090 13,843 12,327 15,205

Q3 106 109 631 471 757 2660

Q4 2 2 3 3 5 3

Q5 1 1 2 1 1 2

Q7 2,558 2,458 3,067 12,107 11,532 16,708

Geo. Mean 68,014 67,628 129,113 188,314 221,904 332,345

Table 4.5: E�ectiveness of dictionary encoding in TriAD

4.6.2.2 LUBM-160 Dataset

We also evaluated the performance of TriAD and TriAD-SG over a smaller dataset.

For a fair comparison, we used a single slave node setup for this, and the results

are shown in Table 4.6. We can observe that TriAD continues to perform well for

selective queriesQ4, Q5, Q6 and the non-selective queryQ2. For the remaining se-

lective queries Q1, Q3, Q7, the large intermediate relations hamper performance,

116 | Chapter 4. Basic Graph Pa�erns

TriAD TriAD-SG Trinity- RDF-3X MonetDB BitMat
(17K) .RDF (cold) (warm) (cold) (warm) (cold) (warm)

Q1 427 97 281 38,802 27,702 10,600 1,500 1,078 1,053

Q2 117 140 132 32,936 347 279 174 3,055 3,030

Q3 210 31 110 27,692 27,678 10,900 1,700 47 40

Q4 2 1 5 76 2 39 25 5,421 5,357

Q5 0.5 0.2 4 1 1 80 23 6 6

Q6 19 1.8 9 59 7 130 51 132 128

Q7 693 711 630 35,485 1,086 10,100 1,700 1,642 1,583

Geo. Mean 39 14 46 1,280 170 748 216 277 362

Table 4.6: LUBM-160 – Query processing times (inms)

thus showing a negative impact on the centralized execution. Still, TriAD-SG ben-

e�ts from join-ahead pruning and delivers a much better performance than the

other systems except for query Q7. In this case, like in the LUBM-10240 dataset,

TriAD-SG performs no pruning in the �rst stage and thus the overhead in the

second stage marginally decreases its performance.

Impact of Summary Graph. The number of summary graph partitions di-

rectly a�ects the performance of the system as highlighted in Table 4.7. With

a smaller number of partitions, each supernode comprises of many triples. Thus,

even though the join-ahead pruning can be done quickly over smaller summary

graphs, due to large supernode sizes, the overall number of pruned tuples remains

low, thus making the second-stage query processing considerably more expen-

sive. Thus, the right choice of the summary graph size has a crucial impact on the

overall performance.

Summary size Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geo-.Mean
10K 153 141 30 0.8 0.5 1.5 692 16

17K 97 140 31 0.7 0.2 1.8 711 14

20K 86 140 36 0.9 0.5 1.5 702 16

Table 4.7: Impact of summary graph partitions for LUBM-160

GraphExploration vsRelational Joins. Finally, we compared three approaches

for processing the summary graph: (1) full graph exploration (Full GE), (2) 1-hop

graph exploration (1-hop GE), (3) a conventional form of relational joins (RJ). Ta-

ble 4.8 shows the runtime performance of the three approaches over a summary

graph with 17K partitions for the LUBM 160 dataset. We can clearly observe that,

in a relational approach, there is a penalty incurred for generating large interme-

diate relations. This is avoided entirely in graph exploration (Full GE) without

increasing the number of false-positive bindings. On the other hand, as expected,

the 1-hop exploration performs faster than the full exploration (Full GE) for the

complex queries Q1,Q3,Q7, but it also retains a lot of false positives, which in turn

makes the second stage of processing more costly.

4.6. Evaluation | 117

Approach Q1 Q2 Q3 Q4 Q5 Q6 Q7 Geo-.Mean
1
st

Stage (times in ms)
Full GE 22 3 22 0.03 0.003 0.5 82 1.3

1-hop GE 13 4 13 1.4 0.3 1.8 17 3.9

RJ 312 6 312 1.4 0.4 1.6 767 16.3

1
st

+ 2
nd

Stage (times in ms)
Full GE 97 140 31 1 0.2 1.8 711 14

1-hop GE 412 139 75 3.1 0.8 2.5 712 29

RJ 312 137 321 2.3 0.9 3 1447 40

Table 4.8: Performance of 1-hop and full graph exploration (GE) vs. rela-
tional joins (RJ) in TriAD-SG for LUBM-160

4.6.2.3 BTC 2012 Dataset

Apart from the synthetic LUBM benchmark dataset, we evaluated TriAD over the

real-world BTC benchmark. We considered queries Q1–Q8 published in (Neu-

mann and Weikum, 2009). QueriesQ1,Q2,Q8 (4 joins),Q3 (5 joins) are star queries

with result sizes of 1, 2, 1, 292, respectively. Queries Q4, Q7 (6 joins) and Q5, Q6 (4

joins) are combinations of star and path queries. Table 4.9 shows the performance

of TriAD against the available competitors. (We omit SHARD and BitMat from

the table as they failed to �nish the indexing step.) We can observe that TriAD

consistently outperforms the competitors. In the case of Q6, which has an empty

result, our summary graph returns no bindings and thus entirely avoids query

processing against the data graph. Also, one can observe the high running times

for H-RDF-3X compared to RDF-3X. The reason again lies in breaking the queries

into smaller queries, such that the SIP gains of RDF-3X remain under-utilized.

#Results TriAD TriAD-SG H-RDF-3X RDF-3X
(200K) (cold) (warm) (cold) (warm)

Q1 1 1.5 0.3 49 6 297 4

Q2 1 61 3 29 6 140 5

Q3 1 1 4 122 23 66 5

Q4 0 0.6 6 31,033 27,415 120 7

Q5 5 51 5 1.3e5 42,638 277 104

Q6 0 0.5 <0.1 5,476 153 53 24

Q7 0 50 39 89,922 34,906 2,900 2,386

Q8 292 128 7 1,338 7 4,590 31

Geo. Mean – 7.4 1.5 2,145 280 299 25

Table 4.9: BTC 2012 – Query processing times (inms)

4.6.2.4 WSDTS Dataset

We �nally evaluated the performance of TriAD and TriAD-SG over the more di-

verse WSDTS dataset which consists of about 109 million triples. We generated

20 queries using the WSDTS query generator and categorize them into L (long

path), S (star), F (snow�ake) and C (complex). Table 4.10 shows the performance

118 | Chapter 4. Basic Graph Pa�erns

#Slaves L1-L5 S1-S7 F1-F5 C1-C3
(Geo.-Mean) (Geo.-Mean) (Geo.-Mean) (Geo.-Mean)

TriAD 1 2 2 94 494

TriAD-SG(75K) 1 8 4 35 767

TriAD 5 2 3 29 270
SHARD 5 3.2e5 5.8e5 7.1e5 7.7e5

RDF-3X (cold) 1 10,066 167 1,749 6,610

RDF-3X (warm) 1 18 2 41 354

MonetDB (cold) 1 3530 10,459 timeout timeout

MonetDB (warm) 1 171 744 timeout timeout

Table 4.10: WSDTS-1000 – Query processing times (inms)

over TriAD and TriAD-SG against the available competitors. We can observe that

TriAD continues to perform well for all query categories, especially for long path

(L) and complex queries (C). On the other hand, TriAD-SG with summary-based

pruning performs well for class F queries. For L, S, C class queries, TriAD-SG in-

deed shows some overhead due to its additional summary-graph processing. The

performance dip of TriAD-SG here seems to be due to the dense nature of the

WSDTS data graph and the lack of constants (besides predicates) in the SPARQL

queries. MonetDB failed to �nish S1, F1–F5, C1–C3 within a 10-minute limit

(marked as “timeout”).

4.7 Summary

In this chapter, we investigated a distributed approach to process BGP queries in

an e�cient and scalable manner. To this end, we presented TriAD, a distributed ar-

chitecture, which combines intra-node multi-threading with asynchronous inter-

node communication for the scalable processing of BGP queries expressed in

SPARQL 1.0. TriAD consistently outperforms both centralized and distributed

RDF engines, which so far still largely rely on Hadoop-based joins, in which mul-

tiple join operators may indeed run in parallel but need to be synchronized at

each level of the query plan before the next iteration of Hadoop-based joins is ini-

tiated. Especially our comparison to a single Map-side join in Apache’s Hadoop

and Spark platforms reveals the overhead of the Map and Reduce paradigm for

such a very basic query operation.

Chapter 5
Generalized Graph Patterns

Generalized graph patterns (GGP) is a generalization of the BGP query model (dis-

cussed in Chapter 4) with navigational semantics extension. A typical pattern in

a GGP query is of the form 〈u, e, v〉, where each of u, e, v can be either a con-

stant or a variable. Moreover, e can denote a regular expression over the edge

label set ΣE , denoting a set of paths (see Section 2.1.1.4) as against a set of edges

as in a BGP query. In other words, a GGP pattern extends the set-reachability

query model (discussed in Chapter 3) with regular expressions. Due to the lack of

schema for many real-world graph datasets, GGP queries are often found to be a

better alternative to BGP queries in expressing user needs. Hence, most general

purpose graph query languages such as Cypher (Neo4j, 2012), GraphLog (Con-

sens and Mendelzon, 1990), and recently SPARQL, with the introduction of prop-
erty paths in its 1.1 update (Prud’hommeaux et al., 2013), started to support GGP

query model.

In this chapter, we focus on the e�cient processing of GGP queries on dis-

tributed labeled directed multi-graphs. As in the case of the BGP query model, we

speci�cally target conjunctive GGP queries, where we allow only the set operation

“AND” among the query patterns. We continue to use RDF (Hayes, 2004), a W3C

recommendation, as the representative framework for our data model and chose

SPARQL 1.1 (Prud’hommeaux et al., 2013), a recently updated and W3C recom-

mended language, as the query language for expressing GGP queries. However,

the techniques discussed in this chapter are general enough to be applied to other

representations of data and query models. We propose an extension to our TriAD

architecture (discussed in Chapter 4) to tackle GGP query model. The modi�ed

system combines the indexing and query processing methods introduced in the

previous chapters for BGP and set reachability query models. With only a few

state-of-the-art systems that provide a native support for GGP queries available,

we evaluated our approach, implemented in TriAD, against them on multiple real-

world and synthetic datasets. On an empirical analysis, our approach was able

achieve impressive gains over its counterparts on almost all datasets and query

workloads.

119

120 | Chapter 5. Generalized Graph Pa�erns

5.1 Introduction

5.1.1 Motivation

One of the main limitations of the BGP query model is the lack of navigational

semantics for the better expressivity and the concise representation of user query

needs, especially when the schema of the underlying graph is either unknown or

partially known. For instance, consider an user intent to

“Find all persons who are born in the USA”.

If in the underlying graph, the schema states that the person vertices are con-

nected to the vertex “USA” via “bornIn” and by a series of zero or more “locIn”

edge labels, expressing the above intent as a BGP query is either impossible or

impractical. To �ll this gap, on the other hand, generalized graph pattern (GGP)

queries allow a single (generalized) pattern to express paths concisely. Recalling

that a typical pattern in GGP query is of the form 〈u, e, v〉, where each of u, e, v can

be either a constant or a variable, and moreover, e can denote a regular expression

over the edge label set ΣE , the above user intent can be concisely expressed as a

pattern in GGP query as shown below.

〈?persons, bornIn/locIn*, USA〉.

Moreover, GGP queries, like BGP queries, allow more than one pattern to be part

of a single query. For instance, the above user intent can be alternatively expressed

as a multi-pattern GGP query as follows.

〈?persons, bornIn ?city〉
〈?city, locIn*, USA〉.

Processing a single GGP pattern such as “?city locIn* USA”, where u :=?city
is a query variable, v := “USA” is a constant, and e :=“locIn*” is a regular expres-

sion, resolves to �nding the set of all vertex bindings for u, such that from each

instance of u there exists at least one path to v containing only the edges with

label “locIn”. In other words, on a “locIn” edge-induced subgraph GlocIn
, the pat-

tern translates to �nding all vertex instances of u in GlocIn
that are reachable to v,

i.e., a set reachabilty query “V locIn {USA}” on GlocIn
, where V locIn

is the vertex

set of the graph GlocIn
. On the other hand, processing a multi-pattern GGP query

requires a combination of set reachability and as well as relational join opera-

tions to, respectively, handle navigational and pattern matching aspects of a GGP

query. Due to the fact the generalized patterns are similar to the SIMPLE PATH

queries described in (Mendelzon and Wood, 1995), the complexity of processing

a single generalized pattern in GGP queries has the polynomial data complexity.

Moreover, conjunctive multi-pattern GGP, like BGP queries, also falls under the

polynomial data complexity and non-polynomial expression (query) complexity

(Chandra and Merlin, 1977; Vardi, 1982).

5.1. Introduction | 121

Applications. GGP queries are often seen to be a better alternative to BGP

queries in many application scenarios. Here, we list some of the applications that

rely on GGP querying model.

• Knowledge graphs. Knowledge graphs (KG) are increasingly popular among web

search applications, NLP architectures, etc. A KG typically comprise of facts

about real-world things, such as “Barack_Obama bornIn Honolulu”, and as well

as ontological facts, such as “Physicists subclassOf Scientists” in a canonicalized

form. As seen from the examples, a fact connects two entities by a relation,

e.g. bornIn is a relation between two entities Barack_Obama and Honolulu.

Some of the relationships, such as locatedIn, parentOf, subClass of, etc., are

transitive relations. Applications that rely on knowledge graphs often need

to handle transitive relations as part of the query processing. With its recent

update, SPARQL, a de facto language for querying KGs represented in RDF,

introduced property paths (Prud’hommeaux et al., 2013). Property paths allow

for annotating pairs of query vertices by regular expressions in which properties

and entire paths may be marked by a Kleene “+” or “*”, thus, introducing a

notion of generalized graph patterns.

• Social networks. Another line of applications where GGP queries are one-of-

the or the-only choice of querying is in the domain of social networks such as

Facebook
1
, Twitter

2
, LiveJournal

3
, etc, where majority of relationships such as

“friend”, “follower”, “following”, etc. are transitive. Social search and analytics

applications query such transitive relations by expressing them as GGP queries,

which are supported by general purpose languages like Cypher (Neo4j, 2012),

SPARQL 1.1 (Prud’hommeaux et al., 2013), GraphLog (Consens and Mendelzon,

1990), etc.

• Biological networks. Biological networks such as protein-protein interactions

(PPI), gene regulatory networks, metabolic networks, etc. are some of the real-

world graph datasets, where GGP queries are often seen as a query model to

study and analyze the biological structures.

Scope. In this chapter, we limit the scope of the problem to conjunctive GGP

queries, where the patterns are either a BGP or a navigational pattern adhering to

the grammar speci�ed in Equation. 5.1, thus, covering a broad range of real-world

query needs. Speci�cally, we consider RDF & SPARQL 1.1, due to their popular-

ity, as the representative languages for our data and query model, and focus on

the problem of distributed processing of conjunctive GGP queries, expressed in

SPARQL 1.1, over large RDF datasets.

Challenges. E�cient and scalable processing of GGP queries in a distributed

setting requires addressing some of the key challenges discussed below.

1http://facebook.com
2http://twitter.com
3http://snap.stanford.edu

http://facebook.com
http://twitter.com
http://snap.stanford.edu

122 | Chapter 5. Generalized Graph Pa�erns

1. Single-Pattern Processing. A generalized graph pattern is the

basic building block of a GGP query representing a navigational query.

The pattern can be translated to a form of set reachability query over

labeled directed multi-graphs. While, Chapter 3 presents an e�cient

technique for processing set reachability queries over labeled directed

graphs, where edges are unlabeled, processing set reachability queries

over labeled directed multi-graphs with regular-expression constraints

has not been addressed so far in the literature, albeit the work (Fan

et al., 2012) addressing only the single-source single-target reachability.

This poses an interesting challenge in e�cient processing of a single

pattern GGP query.

2. Uni�edQueryProcessing. As aforedescribed, typical GGP queries

comprise of more than one graph pattern, each translates to a form

of set reachability query. As noted in Chapter 3, such set reachabil-

ity queries can be best processed using graph-based navigational ap-

proaches. While GGP queries, alike to BGP queries, are often expressed

in an SQL style declarative graph query languages such as Cypher,

SPARQL, etc., where a row-oriented output is required, relational joins

are inevitable in processing GGP queries. An interesting challenge,

thus, lies in the combined optimization of relational joins among the

patterns (based on shared variables) and graph-based set reachability

processing for each pattern.

3. Uni�ed Query Optimizer. An optimal join ordering is one of the

crucial factors impacting the query performance of a relational engine.

TriAD employees a cost-based query optimization to �nd an e�cient

plan for BGP queries. GGP queries, on the other hand, inherently re-

quire a graph-based exploration for processing a pattern alongside re-

lational joins for processing a set of triple patterns. A challenging task

lies in designing a distributed cost-based query optimizer that gener-

ates an e�cient query plan with interleaving graph-exploration and

join operations by considering both the locality of edges and the cost

of individual operators.

5.1.2 State-of-the-art

As opposed to the large variety of BGP query engines, processing of GGP queries

in the context of RDF & SPARQL 1.1 so far has been investigated by only very few

approaches (Erling and Mikhailov, 2010; Gubichev et al., 2013; Przyjaciel-Zablocki

et al., 2012) (of which only (Erling and Mikhailov, 2010) is available), and Horton,

Horton+ (Sarwat et al., 2012, 2013) in the context of social networks. Distributed

graph engines, such as Berkeley’s GraphX (Gonzalez et al., 2014), Apache Gi-

raph (Martella et al., 2015), Microsoft’s Trinity (Shao et al., 2013), on the other

hand, can be programmable to allow for the scalable processing of graph queries

over massive, partitioned data graphs. These engines provide generic API’s for

5.1. Introduction | 123

implementing various kinds of graph queries, including navigational and basic

graph pattern queries that are part of the GGP query model. However, they do not

support the kinds of indexing techniques known from the centralized approaches,

and are not directly amenable to the declarative style of querying which used in

graph query languages like SPARQL, Cypher, etc., albeit in an ine�cient way.

However, processing a single generalized pattern in a GGP query, under these

frameworks, require an iterative form of graph traversal. This may result in as

many iterations (and hence communication rounds) as the diameter of the graph

in the worst case.

5.1.3 Our Approach & Contributions

5.1.3.1 Our Approach

To address the challenges in processing GGP queries, we propose a novel solution,

to �ll the gap between the distributed relational engines and the graph engines

that, in standalone, e�ciently tackle the pattern matching and the navigational

queries respectively. As our focus is on RDF & SPARQL, where an SQL style

row-oriented output is required, our approach relies on the relational semantics,

much like in BGP query model. Our solution, implemented in TriAD, comprises

of triple indexes, for e�cient processing of BGP queries, and graph reachability

indexes, to process property paths. Relying on our previously developed tech-

niques (Chapter 4 and Chapter 3), in our approach, we further adapt the earlier

techniques to process GGP queries in an e�cient and scalable manner. We also

propose a novel, uni�ed and distribution-aware query optimizer that generates

e�cient query plans which are optimized for GGP queries.

5.1.3.2 Contributions

We summarize the contributions of this chapter as follows.

• We present an e�cient and scalable query engine for processing GGP queries.

Speci�cally, we consider GGP queries to comprise of sets of triple patterns with

labeled regular expressions, which allows for formulating the queries as con-

junctive queries of relational joins with additional set-reachability predicates

(including one or more properties marked by a Kleene “+” or “∗”).
• We provide a uni�ed indexing scheme, cost model and query optimization frame-
work to seamlessly integrate set-reachability predicates into the relational query

processor of our TriAD engine (presented in Chapter 4). TriAD employs a

strictly �xed, asynchronous message-passing protocol to evaluate a GGP query

among all of the compute nodes in parallel. Our protocol requires exactly one

round of communication per set reachability predicate and thus avoids a costly,

iterative form of communication.

• Our approach is the �rst to report a true scale-out in processing GGP queries

over a number of large RDF collections. We present a detailed experimental

124 | Chapter 5. Generalized Graph Pa�erns

John_E._Hopcro� Cornell_University

UC_Berkeley Berkeley California USA

“USA”

Ithaca New_York

Rajeev_Motwani Stanford_University Stanford

won workedAt

worked
W

ith locIn

locInworkedAt

locIn

locIn
locIn hasLabel

sa
m

eS
ta

te

ad
vis

or
Of

workedWith
Richard_Karp

won
Turing_Award

workedAt locIn locIn

locIn

Slave 1 Slave 2

Figure 5.1: An example of RDF

evaluation of our approach over multiple RDF datasets under both strong and

weak scaling, and in comparison to the Virtuoso native RDF store.

5.2 Preliminaries

This section serves to establish some of the key notations for our data and query

model used in this chapter, and also reviews some of the related works for solving

GGP queries, both in centralized and distributed settings.

5.2.1 Data & Query Model

As in for BGP queries, we consider a labeled directedmulti-graph (see Section 2.2.1.1)

as the underlying data model in this chapter. Following De�nition 2.3, we denote

the input labeled directed muti-graph as G(V , E, ΣV , ΣE , Φ) and, for brevity, refer

to it as just the “graph”.

We further assume that the graph G is partitioned into a k vertex-disjoint

partitions, G = {G1,G2, . . . ,Gk}, where each of Gi is a subgraph of G and G is

called a partitioning of G. We refer to a vertex u as local boundary of Gi if there

exists an edge (u, v) ∈ E or (v, u) ∈ E and u ∈ Vi and v ∈ (VD –Vi). Speci�cally, u
is labeled as in-boundary (or out-boundary) of Gi if (v, u) (or (u, v)) ∈ E and u ∈ Vi
and v ∈ (V – Vi). For each partition Gi, the sets Ii and Oi denote the in- and

out-boundaries of all Gi, respectively.

In addition to the graph partitioning G, we refer to GC (VC , EC , ΣV , ΣE , Φ) as

Cut, vertex-induced subgraph of G. Where, VC consists of the union of all in- and

out-boundaries,i.e., VC = Ii ∪ Oi, of the graph partitions Gi, for i = 1 . . . k.

Example 5.1. Figure 5.1 shows an example RDF data graph that is partitioned into
the two graph partitions G1, G2 which are located at slaves 1 and 2, respectively.
The gray-shaded vertices represent boundary vertices and the remaining ones rep-
resent local vertices. For the �rst graph partition G1, the out-boundaries are O1 =

{UC_Berkeley, Stanford_University, Cornell_University} and the in-boundaries are

5.2. Preliminaries | 125

I1 = ∅. Similarly, for partition G2, we have O2 = ∅ and I2 = {Berkeley, Ithaca,
Stanford}. Here, the cut GC consists of the three dashed edges.

Generalized graph patterns (GGP), de�ned in Section 2.2.2.3, constitute the

query model of this work. Following De�nition 2.7, we denote GGP query as

Q(VQ , EQ , ΣV , ΣE ,V ,L, ΦQ), where VQ comprises of set of query vertices and the

edge set EQ comprises of a set of triple patterns of the form 〈u, e, v〉. Here u, v ∈
VQ are query vertices, where each of u, v can be either a constant or variable.

Function ΦQ is an injective mapping from VQ to {ΣV ∪ V}. While e is an query

edge label that can be either a variable in V or a regular expression from language

L de�ned over alphabet ΣE .

We consider SPARQL 1.1 as the representative query language for expressing

GGP queries, and speci�cally focus on the subset of SPARQL 1.1 speci�cation. As

discussed in Section 2.2.2.3, we restrict the property regular expressions language
to the adhere to the following grammar and, henceforth, refer the new query

language as SwPP (“SPARQL 1.0 with Property Paths”).

path := path/path (concatenation of paths)

:= σ (single edge element)

:= σ? (zero or one edge element)

:= σ∗ (zero or more edge element)

:= σ+ (one or more edge element) (5.1)

We hereby adopt a simpler de�nition for property paths than the full syntax

proposed by the W3C (Prud’hommeaux et al., 2013). However, by rewriting an

entire path expression (denoted as “path” in the above grammar) into a sequence

of join conditions, each with a property that denotes a single URI (referred to

as “σ”) with an optional Kleene “*” or “+”, we allow a more general syntax for

property paths rather than just a single transitive property. The above grammar

in particular allows concatenations of properties into paths of arbitrary length,

as long as these can be rewritten into a conjunction of triple patterns and thus

conform to De�nition 2.7. In our implementation, the distinction between “+”,

“*” and “?” is very simple. For “+”, we merely disallow an equality between a

source and a target vertex; while for “?”, we restrict the maximum path length to

1.

Example 5.2. For instance, the query “Find all professors who won the Turing

Award and worked in a US university” can be speci�ed as a BGP query via SPARQL
1.0 as follows.

SELECT ?person
WHERE { ?person won Turing_Award.

?person workedAt ?univ.
?univ locIn ?city. ?city locIn ?state.
?state locIn ?country. ?country hasLabel “USA” }

.

126 | Chapter 5. Generalized Graph Pa�erns

The above query can thus concisely be rewritten into a GGP query via SwPP query
language as follows.

SELECT ?person
WHERE { ?person won Turing_Award.

?person workedAt/locIn*/hasLabel “USA”}

5.2.2 Related Work

In this section, we brie�y discuss some of the works that we believe are most

related to our work in this chapter.

RDF & SPARQL 1.1. Combining relational joins with reachability predicates

in SPARQL 1.1 inherently leads to a multi-source, multi-target graph-reachabi-

lity problem. Very few works so far focused on the combined optimization of

relational joins with additional graph-reachability predicates (Cheng et al., 2007;

Fan et al., 2014a; Gubichev et al., 2013). In earlier works, the bisimulation-based

indexing of path expressions for XML trees (Milo and Suciu, 1999) has been ex-

tended to RDF graphs (Picalausa et al., 2012), but the latter did not yet consider

property paths. Likewise, (Cheng et al., 2007) proposed an index structure that is

limited to DAGs obtained from XML/XLink. (Przyjaciel-Zablocki et al., 2012) �-

nally investigated an initial approach to evaluate property paths via MapReduce.

Virtuoso (Erling and Mikhailov, 2010) is a relational backed RDF engine, in its re-

cent update supported SPARQL 1.1 queries. Virtuoso relies on relational joins to

process generalized patterns in GGP queries and can process them in a distributed

setting.

Conjunctive Regular Path Queries. GGP queries can be alternatively thought

as Conjunctive Regular Path Queries (CRPQs). CRPQs has been studied well in

literature (Consens and Mendelzon, 1990; Mendelzon and Wood, 1995; Florescu

et al., 1998; Calvanese et al., 2000, 2002; Deutsch and Tannen, 2002; Calvanese

et al., 2003; Libkin et al., 2013). Neo4j (Neo4j, 2012) is a recent transactional graph

database system that supports CRPQs expressed in Cypher or Gremlin query lan-

guages. Neo4j is majorly a centralized system with minimal distributed function-

ality. Mircosoft’s Horton+ (Sarwat et al., 2013) was one of the recently proposed

distributed system and is most related to our work. Horton+ supports CRPQs

as part of its query language and relies on bulk synchronous processing (BSP)

paradigm like Google’s Pregel (Malewicz et al., 2010), Apache Giraph (Martella

et al., 2015) to process a CRPQs. Unlike ours, Horton+ process queries in an iter-

ative model, though scalable, is not e�cient to process queries in real-time. On

the similar lines G-Path (Bai et al., 2013) uses BSP to process CRPQs over Hadoop

system and like Horton+ is not ideal for real-time processing of queries.

5.3. System Architecture | 127

Bidirectional

Dictionaries Partitioner

Query
Plan

Query
Plan Results

Intermediate Query
Plan Results

Intermediate

 Global
Query Plan

Triples
Encoded

Triples
Encoded

Triples
Encoded

SPARQL
Query Parser

RDF Parser

Results
Intermediate

....

PSO

....

SPO

....

SOP

....

OSP

....

OPS

....

POS

....

PSO

....

SPO

....

SOP

....

OSP
....

OPS

....

POS

....

PSO

....

SPO

....

SOP

....

OSP

....

OPS

....

POS

Optimizer
Query

Results

MPICH2 − Asynchronous Communication Protocol

Statistics
Local

Results
SPARQL

Partitioning
Horizontal

Query Graph

Master Node

...

Slave 1 Slave nSlave 2

SPARQL Query

Data Triples

RDF Data

Local SPO Indexes

Local Query
Processor

Indexes

Local SPO Indexes

Local Query
Processor

Local Reachability
Indexes

Local Reachability

Local SPO Indexes

Local Query
Processor

Local Reachability
Indexes

Statistics

Global

Figure 5.2: Architecture of modi�ed TriAD RDF System to support GGP
queries

5.3 System Architecture

To better describe our approach, we here present the extensions made to the archi-

tecture of our TriAD engine (discussed in Chapter 4) to process GGP queries. As

GGP queries encompass basic-graph and generalized patterns, original TriAD’s

triple indexes are not su�cient to e�ciently process navigational part of the gen-

eralized patterns, i.e., property paths in SwPP queries. We thus augment the triple

indexes with a set of local graph reachability indexes. Having bimodal indexes are

just not su�cient to e�ciently process GGP queries, until we adapt all the bor-

rowed modules such as query optimizer, local query processor, statistics, etc. from

the original TriAD architecture. Figure. 5.2 depicts the architecture of modi�ed

TriAD engine that supports GGP queries. We below highlight the changes made

in TriAD (shown in shaded regions in Figure. 5.2) to get an overview; subsequent

sections present more details of our approach.

Master Node

Global Statistics. TriAD’s cost-based query optimizer relies on statistics to gen-

erate e�cient plans. In original TriAD, we collect multiple single and pair cardi-

nalities along with the selectivities of the pair-wise predicates. This is su�cient to

estimate the cost of basic graph patterns in GGP queries. To estimate the cost of

generalized patterns with navigational properties, we collect reachability statis-

tics and stored at the master node. More details about statistics are discussed in

Section 5.4.2.

128 | Chapter 5. Generalized Graph Pa�erns

Query Optimizer. We extend the TriAD’s cost-based query optimizer by taking

into account both the cost of processing basic and generalized graph patterns.

This helps to generate an e�cient plan (called “operator-tree”) with interleaving

relational joins and set reachability operations. Section 5.5 discusses more details

about the query optimizer module.

Slaves

Local Reachability Indexes. In addition to local triple indexes, we build local

reachability indexes based on the approach presented in Chapter 3. The local

reachability indexes are designed to e�ciently tackle generalized patterns of a

GGP query, while triple indexes are used for processing basic graph patterns.

Local Query Processor. The query plan (an “operator-tree”) returned by the

query optimizer at the master node is communicated to all slaves. Each slave

performs a bottom-up execution of the operator-tree, which comprises of rela-

tional and reachability join operators along with the index scans at the leaves.

Index scans and relational joins are executed over the triple indexes, while spe-

cial reachability joins are executed over the customly built reachability indexes.

Moreover, all these operations leverage the e�ciency of multi-threaded and dis-

tributed execution framework that existed in TriAD.

5.4 Index Organization

5.4.1 Local Indexes

In this section, we discuss the details of indexing layout designed for processing

GGP queries in TriAD. As discussed in previous section, we use a bimodal in-

dexing layout with specialized indexes for basic-graph and generalized patterns

respectively. An RDF fact 〈subject, predicate, object〉 �rst encoded into an inte-

ger format 〈s, p, o〉, using a dictionary based encoding (discussed in Chapter 4), is

indexed as follows.

Sharding. The encoded triple 〈s, p, o〉 is �rst distributed to (at most) two slaves

i, j by choosing i = (s mod k) and j = (o mod k) as sharding conditions, re-

spectively. Although we use a simple hash for sharding triples, any partitioning

schemes such as METIS (Karypis and Kumar, 1998) can be employed in our frame-

work.

Local Triple Indexes. Each slave maintains a six permutation triple indexes

grouped into subject-key (SPO, SOP, PSO) and object-key (OSP, OPS, POS) indexes.

These indexes are used to process basic graph patterns in GGP queries. To recap,

at slave i, the encoded triple 〈s, p, o〉 is indexed using either subject-key indexes

if i = (s mod k), or object-key indexes if i = (o mod k). These indexes are then

sorted lexicographically to facilitate merge joins at the lower levels of operator

tree. For more details about the triple indexes, please refer Section 4.4.

5.4. Index Organization | 129

Reachability Indexes. In order to process generalized patterns with naviga-

tional semantics, local reachability indexes are constructed at each slave. These

indexes constitute a group of set reachability indexes discussed in Chapter 3, built

one each for a property label p. To exemplify, at slave i, the encoded triple 〈s, p,

o〉 is added as an edge (s, o) to the local subgraph Gp
i . This forms a partition-

ing Gp = {Gp
1

,Gp
2

, . . . ,Gp
k }, where each Gp

i denotes a p edge-induced subgraphs

of an input graph G. We then construct compound graph Cp
i at each slave us-

ing the approach discussed in Chapter 3. Any o�-the-shelf centralized indexes

like FERRARI (Seufert et al., 2013), GRAIL (Yildirim et al., 2010), MS-BFS (Then

et al., 2014) can be used over the compound graphs Cp
i . These reachability indexes

built at each slave facilitates e�cient processing of generalized patterns such as

〈?x, p*, ?y〉, 〈?x, p+, ?y〉 for the property label p.

5.4.2 Index Statistics

To optimize GGP queries consisting of both relational joins among basic graph

patterns and of generalized patterns (property paths), we extend the cost-based

plan generator which is part of TriAD’s architecture. For this, we collect various

statistics over the RDF data, both for the basic triple patterns and triple patterns

with property paths.

Statistics for Triple Patterns. As in (Gurajada et al., 2014a), our statistics for

basic triple patterns include:

1. cardinalities Card(Ri) of relations Ri induced by individual subject, property
and object keys, and

2. of relations induced by subject-object, property-subject and property-object pairs

In addition, we compute the join selectivities Sel(pi, pj) of all pairs of properties
pi, pj to estimate the cardinality of a join among two triple patterns.

Statistics for Property Paths. In order to plug triple patterns with property

paths into our optimizer, we need to also estimate the selectivity of a property

path. Analogous to the selectivity in relational systems, selectivity of a propery

p, i.e., Sel(p) is computed as follows. Let Gp
be the p edge-induced subgraph of G,

then

Sel(p) =

|R|

V p × V p

where, R is the set of reachable pairs for the set-reachability query V p
V p

. As it can be seen from the above equation, precomputing these selectivities

for every possible property path that may occur in a query is clearly intractable.

We thus follow a simple sampling-based approach. For each individual property

p, we take a randomized sample for sources and targets sets and determine the

reachability selectivity, Sel(p), as the fraction of randomly sampled source and

target vertices (s, t), for which s t holds with respect to the subgraph Gp
.

130 | Chapter 5. Generalized Graph Pa�erns

SELECT ∗ WHERE {

P1: ?p workedAt ?u.

P2: ?p won Turing_Award.

P3: ?p1 workedAt ?u1.

P4: ?u locIn∗ USA.

P5: ?p workedWith∗ ?p1.

P6: ?u sameState∗ ?u1.}

(a) SwPP Query

R1

R2

RUSA

R3

?u USA

?p ?p1

?p
?p

1

?u
?u

1
?p

(b) Query Graph

Figure 5.3: Example SwPP query and its query graph representation

5.5 Query Optimization & Distributed Processing

To evaluate GGP queries, expressed as SwPP queries and as they occur in SPARQL

1.1, we extend TriAD’s distributed query processing architecture to support gen-

eralized patterns with property paths. We begin with the translation of an SwPP

query into a query-graph representation. Edges in this query-graph express join

conditions as either exact-match conditions on the subjects or objects of two pat-

terns, or as reachability predicates which each express a connection among a sub-

ject and object via a property path. We employ a bottom-up dynamic-programming

(DP) based plan generator to enumerate the possible query plans over these join

conditions. For query optimization, we rely on our previously collected statistics

to compile a logical query plan with the lowest cost estimate. The obtained query

plan is broadcast to all slaves, which then all execute the same plan in parallel,

but each over a di�erent partition of the sharded triple- and reachability-indexes.

5.5.1 Translation of GGP Queries

Similar to the translation of BGP queries expressed in SPARQL 1.0 queries, SwPP

queries are �rst translated into a graphical representation for optimization. These

query graphs are generated by introducing a vertex for each triple pattern (thus

representing a relation) in the query, while the edges that connect two such ver-

tices represent equi-joins. These equi-joins are based on the variables (i.e., either

the subjects or objects) that are shared by two such triple patterns. Edges for

equi-joins are labeled with the shared variables.

In addition to SPARQL 1.0 queries, SwPP queries contain triple patterns with

property paths. Following (Gubichev et al., 2013), we represent a property path by

a distinguished edge among two such query nodes, whose labels denote the reach-

ability predicates among the subjects or objects in the respective nodes’ triple

patterns. In case the subject or object of a connected triple pattern is either a con-

stant or an unbound variable (i.e., the variable is not present in the other triple

patterns), we create a new query node for the same and add an edge between the

respective query nodes.

5.5. �ery Optimization & Distributed Processing | 131

Example 5.3. Figure 5.3 shows an example SwPP query and its corresponding graph
representation. Here, patterns P1, P2, P3 are basic graph patterns (BGP) whose prop-
erty each consists of a single URI. These are represented as nodes R1, R2, R3, respec-
tively, in the query graph. Since, the property path of P4 points to only the constant
USA, a separate node RUSA representing a relation consisting of just a singleton tuple
is added to the query graph. The equi-join on the shared variable ?p is represented by
the continuous line between R1 and R2. A reachability edge, denoted by a dashed line
for each property path, is added between the respective subjects’ and objects’ query
nodes. This is the case between R1 and RUSA for the property path of P4, between R1

and R3 for the property paths of P5 and P6, and between R2 and R3 for P5.

5.5.2 Plan Optimization

Once the query is translated into its graph representation, classical join-order-

enumeration techniques (Gurajada et al., 2014a; Neumann and Weikum, 2010a)

can be employed to �nd a cost-e�cient execution plan. We extend TriAD’s opti-

mizer to handle SwPP queries by adding a new operator—Distributed Reachability
Join (DRJ)—and respective cost estimator for property paths. Next, we brie�y dis-

cuss these operators, which is followed by a discussion of the cost estimation and

join-order enumeration.

5.5.2.1 Physical Query Operators.

TriAD employs three physical operators—coined Distributed Index Scan (DIS),

Distributed Merge Join (DMJ) and Distributed Hash Join (DHJ)—for processing

index scans and equi-joins among triple patterns in SPARQL 1.0. Each of these

operators works over the sharded partitions of the triple indexes described in Sec-

tion ?? in parallel. In short, the DIS operators, which only occur at the leaves of

the query plan, each build a relation by invoking a parallel scan over the respec-

tive SPO permutation index that was selected by the optimizer. The DMJ and DHJ

operators each take two sharded relations plus the join keys (i.e., the shared vari-

ables) as input and perform a hash- or merge-join, respectively, to generate a new

intermediate relation.

Distributed Reachability Join (DRJ). Analogously, we de�ne a new DRJ oper-

ator to process triple patterns with property paths. This enhanced join operator

takes two sharded relations Ri, Rj as input and returns as output the subset of

tuples in the cross-product Ri × Rj , for which all of the attached join conditions C
hold:

• for each shared variable ?x in C, a pair of tuples in Ri and Rj must have

equal values for ?x; and

• for each reachability predicate ?x ?y in C, a vertex s that becomes

bound to ?x by a tuple in Ri must be reachable to a vertex t that becomes

bound to ?y by a tuple in Rj .

132 | Chapter 5. Generalized Graph Pa�erns

The evaluation of the DRJ operator is backed by the index structures for property

paths described in Section 5.4.1.

5.5.2.2 Query Optimization.

The DP table of the optimizer is initialized with the cost estimates for the DIS

operations of each query vertex Ri. The scan costs for Ri depend on whether the

constants in the triple pattern match a respective SPO permutation index “idx”.

For instance, if the subject and predicate are constants and the object is a variable,

choosing an SPO or PSO permutation costs much less compared to any of the

remaining permutations.

In the query graph, we introduce two special kinds of query vertices, namely

one for property paths with a constant subject or object, and one for property

paths with (at least one) unbound variable. Scanning a singleton tuple as input

has a unit cost of 1, while scanning a relation constructed for an unbound variable

corresponds to the number of triples in the subgraph Gp
of G that is induced by

property p. In the latter case, we thus set the cardinality to Card(Ri) of a unary

relation Ri that is constructed from all vertices in Gp
to |V p

|, where V p
is the

vertex set of p edge-induced subgraph Gp
. As an example, consider the property

path ?x locIn∗ ?y, and let variable ?y be unbound (i.e., not occurring as a shared

variable in any other triple pattern). Then the number of unique bindings for ?y
is the number of vertices in the edge-induced subgraph consisting only of locIn
edges. To summarize, we have,

Card(Ri) :=


1 if Ri is a singleton tuple;

Card(Ridxi) if Ri matches the SPO index idx;

|V P
| if Ri is a unary relation for the property p.

(5.2)

Equation 5.3 summarizes the cost estimates we obtain for a DIS operator with

respect to the precomputed cardinalitiesCard(Ri) and available SPO permutations.

Cost(Ri) ∝

{
1 if Ri is a singleton tuple;

Card(Ri)/k if Ri is sharded across k slaves

(5.3)

Once the DP table is initialized with the costs estimates for the DIS operators,

we continue to build the query plan in a bottom-up manner. At each DP step,

we merge two branches Qleft
, Qright

into a combined plan Q by a join operator

op together with a set of join conditions C. If there is at least one reachability

edge between two relations Ri, Rj that connect Qleft
and Qright

, a DRJ operator is

employed. Assuming independence among the join conditions C, we plug in our

precomputed index statistics as follows.

Cost(Qleft onop
C Qright

) ∝
∑
Ci∈C

Card(Qleft
i) · Card(Qright

i) · Sel(Ci) (5.4)

5.5. �ery Optimization & Distributed Processing | 133

onDRJ
{?p ?p

1
}

DIS(R2) DIS(R3)

onDRJ
{?u USA}

DIS(R1) DIS(RUSA)

onDRJ
{?p,?u ?u

1
}

Figure 5.4: Example plan for the query of Figure 5.3

While processing the conditions Ci ∈ C, we also iteratively estimate the car-

dinality Card(Qi) of a subquery Qi of Equation 5.4 as de�ned next.

Card(Qi) :=

{
Card(Qi) if i = 1

Card(Qi) ·
∏i–1

j=1
Sel(Cj) if i > 1

(5.5)

Thus, if Cj is a graph-reachability predicate, Sel(Cj) denotes the reachability

selectivity Sel(p) of the property p that is associated with Cj . If Cj refers to an

equi-join, Sel(Ci) denotes the precomputed join selectivity Sel(pi, pj) for the pair of

properties associated with the two triple patterns of the equi-join. The combined

cost for a (sub-)query Q then is de�ned recursively.

Cost(Q) =


max

(
Cost(Qleft

),Cost(Qright
)

)
+ Cost(Qleft onop

C Qright
)

+ Cost(Qleft
op Qright
)

(5.6)

Here, Cost(Qleft onop
C Qright

) denotes the cost of processing the join operator

op ∈ {DMJ, DHJ, DRJ} with Qleft
and Qright

as operands and join conditions C
(Equation 5.4). Likewise, Cost (Qleft
op Qright

) accounts for the shipping costs

that incur when the resharding of intermediate relations is required. The shipping

cost is proportional to the size and width of Qleft
and Qright

, respectively. Using

max(·, ·) as cost aggregation �nally accounts for the parallel execution of the two

branches (Gurajada et al., 2014a). Figure 5.4 shows an example query plan for the

query of Figure 5.3.

5.5.3 Distributed Query Execution

We embed the new DRJ operator into TriAD’s multi-threaded and asynchronous

processing framework to support the distributed execution SwPP queries. The

principal processing �ow and communication protocol (Gurajada et al., 2014a) re-

main unchanged and merely require an additional initialization of the source and

target vertices for the distributed set-reachability queries, which are now trig-

gered by the DRJ operators at their respective positions in the query plan.

1. Scanning Base Relations. The leaves of the operator tree always rep-

resent distributed index scans (DIS). Each slave scans its local SPO permutation

index and selects tuples according to the constants associated with the DIS op-

erator. Due to the layout of our SPO indexes, this merely requires initializing an

134 | Chapter 5. Generalized Graph Pa�erns

iterator at the �rst tuple in a permutation list that matches the constants. For

a DRJ operator with a reachability predicate, whose source or target is a single

constant, a singleton relation is created directly from that constant. If the DRJ

operator has a reachability predicate with an unbound variable via a property p,

a (sharded) unary relation with the local vertices of V p
is created.

2. Query-Time Sharding. During the execution of the query plan, reshard-

ing of intermediate relations may be required to ensure the proper execution of

joins (DMJ, DHJ) and set-reachability (DRJ) operations. With six SPO permuta-

tions, each DMJ operator requires sharding of at most one of its base relations at

query time, while the DHJ operator requires sharding of at least one of its inter-

mediate relations, depending on the locality of the tuples with respect to the join

key. Sharding for the DRJ operator depends on the locality of the join keys based

on shared variables (if present) and the locality of the vertices that become bound

to the source and target variables of the reachability predicates. Thus, resharding

may be required for both input relations of a DRJ operator.

3. Parallel Execution of Operators. In addition to the concurrent execution

of the operators across the slaves, each slave also locally pursues the execution

of the query plan in a multi-threaded fashion. Starting from the leaves of the

query plan, all operators are locally executed in one separate thread for each ex-
ecution path (EP) (i.e., for each distinct leaf-to-root path) in the query plan. Since

slaves may take di�erent amounts of time to execute an operator over their local

partition of the index, an asynchronous exchange of messages for resharding the

partial relations at query time makes this step more e�cient than a synchronous

protocol. As soon as all the shards for the two input relations of a join opera-

tor are in place, the threads of the two EPs at each slave are merged into one,

and the next join operations can be invoked locally. For a DRJ operator with a

graph-reachability predicate, whose source or target variables become bound to

constants due to a shared variable, the respective source and target sets for the

distributed set-reachability query are initialized from those constants. These are

then resharded to the slaves that hold the graph partitions containing the source

and target vertices.

Example 5.4. Consider the example query of Figure 5.3 together with the plan of
Figure 5.4. Upon receiving this global query plan from the master, each slaves ini-
tializes 4 threads for the 4 EPs in the plan. For our RDF data graph of Figure 5.1 and
a partitioning over k = 2 slaves, we obtain the following sharded base relations.

5.5. �ery Optimization & Distributed Processing | 135

R1 :

?p ?u
John_E._Hopcro� Cornell_University
Richard_Karp UC_Berkeley
Rajeev_Motwani Stanford_University

R2 :

?p
John_E._Hopcro�
Richard_Karp

R3 :

?p1 ?u1

John_E._HopCro� Cornell_University
Richard_Karp UC_Berkeley
Rajeev_Motwani Stanford_University

RUSA :

Slave 1

Slave 2

R1 : R2 :

R3 : RUSA : USA

After the iterators to R1, R2, R3 and RUSA have been initialized, the 4 threads are
merged into 2. The �rst remaining thread executes the DRJ operator for Q1 :=onDRJ

?p ?p1

(R2, R3), which is processed concurrently over the shards of R2, R3 located at both
slaves. For Q1, the source and target columns are ?p and ?p1 respectively, while the
property that is transitively queried is workedWith. First, resharding of R2, R3 is
performed with respect to the values under the source and target columns of the two
relations. The respective shards are sent and received by all slaves asynchronously.
Based on the constants the slaves obtain for ?p and ?p1 from the new shards of R2

and R3, we then invoke the distributed set-reachability query Q(S, T) over the in-
duced subgraph GworkedWith. Finally, the resulting reachable pairs of source and
target vertices are used to generate the result tuples for Q1. In a similar way, and in
parallel to the thread executing Q1, the second remaining thread proceeds with the
execution of the DRJ operator for Q2 :=onDRJ

?u USA (R1, RUSA) again concurrently over
the shards located at both slaves.

RQ
1

:

?p ?p1 ?u1

John_E._Hopcro� John_E._Hopcro� Cornell_University
John_E._Hopcro� Richard_Karp UC_Berkeley
John_E._Hopcro� Rajeev_Motwani Stanford_University

..
.

..
.

..
.

RQ
2

:

Slave1

RQ
1

:
RQ

2
:

?p ?u
John_E._Hopcro� Cornell_University
Richard_Karp UC_Berkeley
Rajeev_Motwani Stanford_University

Slave2

After the threads for Q1, Q2 have both �nished generating their intermediate
relations RQ1 , RQ2 , the two threads are merged into one �nal thread at each slave.

136 | Chapter 5. Generalized Graph Pa�erns

Q3 :=on
{?p,?u ?u1}

(RQ1
, RQ2

) is processed concurrently over the shards of RQ1 , RQ2 .
Unlike Q1 and Q2, Q3 comprises of multiple join conditions which are processed se-
quentially. Starting with the equi-join on the shared variable ?p, we obtain another
intermediate relation RQ3 from which we subsequently also �lter tuples with respect
to the graph-reachability predicate ?u ?u1.

RQ
3

:

?p ?p1 ?u ?u1

John_E._Hopcro� John_E._Hopcro� Cornell_University Cornell_University
John_E._Hopcro� Richard_Karp UC_Berkeley UC_Berkeley
John_E._Hopcro� Richard_Karp UC_Berkeley Stanford_University

..
.

..
.

..
.

..
.

5.6 Evaluation

Here, we provide a detailed evaluation of our approach in processing GGP queries.

We implemented our approach in TriAD RDF engine (discussed in Chapter 4).

We used GCC-4.7.3 with -O3 optimization and MPICH2-1.4.1 and Boost-1.55 as

external libraries. We ran all of the following experiments on a compute cluster

with up to 11 nodes, out of which 1 was dedicated as the master node. Each node

runs Debian 7.5, has 48GB of RAM and an Intel E5530@2.40GHz quad core CPU

with HT enabled.

5.6.1 Datasets & Benchmark

Datasets. We used three large-scale, both real-world and synthetic, RDF datasets

for our evaluation: (i) LUBM-500M
4

(scaled to 500 million triples) is generated

using UBA 1.7 in N3 format, (ii) Freebase-500M (with 500 million triples) refers

to a subset of a recent Freebase snapshot
5

and (iii) a recent snapshot of DBpedia
6

(with 417,445,957 triples).

Queries. We manually designed three queries for each dataset (L1–L3 for LUBM,

F1–F3 for Freebase, D1–D3 for DBpedia) to capture a mixture of reachability

queries and relational joins. All SwPP queries are listed in our Appendix A.2.

5.6.2 E�ciency

We �rst discuss the distributed processing of SwPP queries for the �xed snapshot

of the three datasets described above. For TriAD, we used 5 slaves for this setting

(plus 1 master node). As competitor, we used the Virtuoso 7.1.0 native RDF store,

which is the only available RDF store we are aware of that supports full property-

path processing. We remark that the open-source edition of Virtuoso 7.1.0 does

not support distribution. We thus compare against a centralized installation of

Virtuoso on one of our compute nodes.

4http://swat.cse.lehigh.edu/projects/lubm/
5https://developers.google.com/freebase/data
6http://downloads.dbpedia.org/2015-04/core/

http://swat.cse.lehigh.edu/projects/lubm/
https://developers.google.com/freebase/data
http://downloads.dbpedia.org/2015-04/core/

5.6. Evaluation | 137

(a) LUBM-500M (query times in seconds)
#Slaves L1 L2 L3 Geo.-Mean

TriAD 1 6.437 0.331 42.681 4.497

TriAD 5 1.250 0.162 8.516 1.199
Virtuoso (cold) 1 10.050 12.624 57.776 19.425

Virtuoso (warm) 1 4.963 5.452 56.603 11.527

(b) Freebase-500M (query times in seconds)
#Slaves F1 F2 F3 Geo.-Mean

TriAD 1 1.084 1.568 0.677 1.048

TriAD 5 0.356 0.642 0.423 0.459

Virtuoso (cold) 1 6.590 4.112 13.809 7.206

Virtuoso (warm) 1 1.196 0.002 5.601 0.238
(c) DBpedia (query times in seconds)
#Slaves D1 D2 D3 Geo.-Mean

TriAD 1 24.822 0.713 29.407 8.044

TriAD 5 7.973 0.412 11.223 3.328
Virtuoso (cold) 1 46.185 19.352 317.899 65.741

Virtuoso (warm) 1 27.820 2.395 302.753 27.222

Table 5.1: Performance evaluation of SwPP queries

A. LUBM-500M. The results for processing SwPP queries (L1, L2, L3) are

shown in Table 5.1(a). L1 resembles a single, non-selective reachability join. Pro-

cessing L1 thus involves an index scan for two input relations and a respective

evaluation of the reachability join. We can observe that the centralized version of

TriAD performs better than Virtouso in a cold cache and comparable to Virtuoso

in a warm cache setting. We however achieve a signi�cant scale-out for L1 when

we evaluate the query on a cluster of 5 slaves. Next, L2 is a selective query with

two regular joins and a single reachability join. For this query, we can observe

that TriAD achieves a better performance compared to Virtuoso in both the cold

and warm cache settings. The non-selective query L3 contains two reachability

joins in conjunction with two regular joins. Also here, TriAD continues to per-

form better than Virtuoso under both a cold and warm cache and further scales

out very well in a distributed setting.

B. Freebase-500M. For Freebase, we considered three queries (F1, F2, F3)

which we designed along the lines of the L1, L2, L3 LUBM queries. The per-

formance of TriAD for Freebase-500M shows a similar behavior as the one we

observed for LUBM-500M. The results are shown in Table 5.1(b). For F3, Virtu-

oso tends to report di�erent results over repeated runs, which indicates problems

with their current support for property paths.

C. DBpedia. We once more considered three queries (D1, D2, D3) consist-

ing of a mixture of relational joins and graph-reachability predicates for DBpedia.

The runtime performance of TriAD in comparison with Virtuoso is shown in Ta-

ble 5.1(c). Also here, TriAD continues to perform very well compared to Virtuoso

138 | Chapter 5. Generalized Graph Pa�erns

2 4 6 8 10

0.1

10

1,000

Strong Scaling (#Slaves)

T
i
m

e
(
i
n

s
e
c
o

n
d

s
)

L1 L2 L3 Geo.-Mean

2[20%] 4 6 8 10[100%]

1

100

Weak Scaling (#Slaves[%Data])

T
i
m

e
(
i
n

s
e
c
o

n
d

s
)

2 4 6 8 10

1

10

Strong Scaling (#Slaves)

T
i
m

e
(
i
n

s
e
c
o

n
d

s
)

F1 F2 F3 Geo.-Mean

2[20%] 4 6 8 10[100%]

1

100

Weak Scaling (#Slaves[%Data])

T
i
m

e
(
i
n

s
e
c
o

n
d

s
)

2 4 6 8 10

0.1

10

1,000

Strong Scaling (#Slaves)

T
i
m

e
(
i
n

s
e
c
o

n
d

s
)

D1 D2 D3 Geo.-Mean

4 6 8 10[100%]

1

10

100

Weak Scaling (#Slaves[%Data])

T
i
m

e
(
i
n

s
e
c
o

n
d

s
)

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Scalability (strong,weak) of SwPP queries for LUBM (a,b), Free-
base (c,d) , and DBPedia (e,f) datasets

5.7. Summary | 139

under both cold and warm cache settings.

5.6.3 Scalability Tests

We �nally evaluated the scalability of TriAD for GGP queries by varying the num-

ber of slaves from 1 to 10. For this evaluation, we again considered LUBM-500M,

Freebase-500M and DBpedia. The results under strong scaling are shown in Fig-

ure 5.5(a) for LUBM-500M, in Figure 5.5(c) for Freebase-500M, and in Figure 5.5(e)

for DBpedia, respectively. It can be observed that the our approach is consistently

scalable across multiple datasets. As our last series of runs, we also evaluated the

performance of TriAD underweak scaling, by increasing the size (from 20%–100%)

of the collections as well as the number of slaves (from 2–10) in equal proportions.

The results are shown in Figure 5.5(d)–(f), and depict the textbook results for weak

scalability, albeit with a slight upward trend for Freebase dataset as the result size

increased with higher percentage of data.

5.7 Summary

In this chapter, we presented a distributed solution and an extension to TriAD for

processing GGP queries in an e�cient and scalable manner. Relying on the com-

bination of existing BGP querying framework with the adapted set reachability

algorithms, TriAD, which to our knowledge is the currently fastest, distributed en-

gine that explicitly tackles the processing of generalized patterns in GGP queries.

Speci�cally, in TriAD we augment the index-based set-reachability solution to im-

plement a new relational query operator to tackle the kind of generalized graph-

pattern queries. Our evaluation over both real-world and synthetic RDF collec-

tions con�rm that TriAD achieves very signi�cant gains compared to the only

currently available, native RDF store that supports SPARQL 1.1 with property

paths.

140 | Chapter 5. Generalized Graph Pa�erns

Chapter 6
Conclusions and Future Directions

6.1 Conclusions

This thesis addressed an important and challenging task of e�cient and scalable

querying of labeled graphs. Speci�cally we focused on three query models: set
reachability, basic graph patterns, generalized graph patterns that are vital in many

graph applications. To this end, we presented a distributed architecture called

“TriAD” that adopts both graph-based and relational models to holistically pro-

cess the three query models.

To process set reachability queries in TriAD, we developed a distributed solu-

tion based on a graph model. By precomputing and materializng the reachability

among the boundary vertices and indexing them along with local graphs, our

solution requires only a single round of communication to process any set reach-

ability query irrespective of the size, partitioning, and topology of the graph. On

the other hand, to process BGP queries that belong to pattern matching class, we

resorted to a relational model. A multi-pattern BGP query is thus executed as a se-

ries of relational joins. To facilitate e�cient join executions, we adopted an asyn-

chronous communication protocol in TriAD, and proposed several techniques

such as multi-threaded and asynchronous execution framework, join-ahead prun-

ing via graph summarization, etc. Finally, to process GGP queries, which combine

the BGP and set reachability query model, we proposed an approach based on the

duxality of graph-based and relational model. To this end, we proposed a bimodal

indexing layout that integrates the set reachability and triple indexes. Further, we

developed a uni�ed cost-based query optimizer that generates an e�cient query

plan interleaving set reachability and relation join operations, thereby, processing

the GGP queries in an e�cient and scalable manner.

We empirically evaluated TriAD in comparison to multiple state-of-the-art

systems over several real-world and synthetic datasets. Our evaluation demostrated

the superior e�ciency of TriAD over its competitors. In conclusion, TriAD was

able to achieve success by adopting di�erent strategies for processing set reach-

ability and BGP queries, and integrating them when needed for processing GGP

queries.

141

142 | Chapter 6. Conclusions and Future Directions

6.2 Future Directions

Although, we addressed some of the key challenges in e�cient and scalable query-

ing of labeled graphs. There are many future possiblities which can be extended

with our work. We below list some of them with respect to the considered query

models in our work.

• In solving set reachability queries, we proposed a framework where a query can

be processed using a single round of communication. This approach bene�ts

in acheiving e�ciency over iterative-based techniques and providing real-time

processing of queries. We identi�ed two interesting future works that could

leverage this framework: i) supporting set reachability queries with length re-

striction, and ii) �nding top-k shortest reachable pairs. Both the problems have

many practical applications where real-time processing is a necessity.

• In our second query model, we considered only conjunctive BGP queries. An

immediate next direction would be to tackle BGP queries with other algebraic

operators such as disjunction, negation, di�erence, etc.

• We considered a subset of SPARQL 1.1, i.e., SwPP, language speci�cation as

representation language for our GGP query model. This restricts the grammar

of our generalized patterns to be simple. An interesting and challenging future

work would be to extend this grammar to support arbitrary complex regular

expressions. However, this requires developing solutions �rst to process set

reachability with regular expressions constraints.

Bibliography

Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K. (2009). SW-Store: A

vertically partitioned DBMS for semantic web data management. VLDB Journal,
18(2):385–406.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. (1997). The Lorel

query language for semistructured data. International Journal on Digital Li-
braries, 1(1):68–88.

Agrawal, R., Borgida, A., and Jagadish, H. V. (1989). E�cient management of

transitive relationships in large data and knowledge bases. In Proceedings of the
1989 ACM SIGMOD International Conference onManagement of Data, volume 18,

pages 253–262.

Aittokallio, T. and Schwikowski, B. (2006). Graph-based methods for analysing

networks in cell biology. Brie�ngs in Bioinformatics, 7(3):243–255.

Aleman-Meza, B., Hakimpour, F., Budak Arpinar, I., and Sheth, A. P. (2007). Swe-

toDblp ontology of Computer Science publications. Web Semantics, 5(3):151–

155.

Angles, R. and Gutierrez, C. (2008). Survey of graph database models. ACM Com-
puting Surveys, 40(1):1–39.

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., and Zdonik, S.

(1989). The Object-Oriented Database System Manifesto. Proceedings of the
First International Conference on Deductive and Object-Oriented Databases, pages

223–240.

Atre, M., Chaoji, V., Zaki, M., and Hendler, J. (2010). Matrix Bit loaded: a scalable

lightweight join query processor for RDF data. Proceedings of the 19th interna-
tional conference on World wide web, pages 41–50.

Bai, Y., Wang, C., Ning, Y., Wu, H., and Wang, H. (2013). G-path: Flexible path

pattern query on large graphs. In Proceedings of the 22Nd International Con-
ference on World Wide Web, WWW ’13 Companion, pages 333–336, New York,

NY, USA. ACM.

143

144 | Bibliography

Beckett, D., Berners-Lee, T., Prud’hommeaux, E., and Carothers, G. (2014). RDF

1.1 Turtle.

Belleau, F., Nolin, M. A., Tourigny, N., Rigault, P., and Morissette, J. (2008).

Bio2RDF: Towards a mashup to build bioinformatics knowledge systems. Jour-
nal of Biomedical Informatics, 41(5):706–716.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hell-

mann, S. (2009). DBpedia - A crystallization point for the Web of Data. Journal
of Web Semantics, 7(3):154–165.

Blackman, K. R. (1998). Technical note: IMS celebrates thirty years as an IBM

product. IBM Systems Journal, 37(4):596–603.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfold-

ing of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment, 10008(10):6.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). Freebase. In

Proceedings of the 2008 ACM SIGMOD international conference on Management
of data - SIGMOD ’08, page 1247.

Bornea, M. a., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea,

O., and Bhattacharjee, B. (2013). Building an e�cient RDF store over a relational

database. Proceedings of the 2013 international conference onManagement of data
- SIGMOD ’13, page 121.

Bray, T., Paoli, J., Maler, E., and Microsystems, S. (2008). Extensible Markup Lan-

guage (XML) 1.0 (Fifth Edition). W3C Recommendation, 0:1–37.

Broekstra, J., Kampman, A., and Harmelen, F. V. (2002). Sesame: A Generic Archi-

tecture for Storing and Querying RDF and RDF Schema. International Semantic
Web Conference ISWC, 1:54–68.

Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris, J.,

Giardullo, A., Kulkarni, S., Li, H., Marchukov, M., Petrov, D., Puzar, L., Song,

Y. J., and Venkataramani, V. (2013). Tao: Facebook’s distributed data store for

the social graph. In Presented as part of the 2013 USENIX Annual Technical Con-
ference (USENIX ATC 13), pages 49–60, San Jose, CA. USENIX.

Buluc, A., Meyerhenke, H., Safro, I., Sanders, P., and Schulz, C. (2013). Recent

Advances in Graph Partitioning. arXiv, pages 1–36.

Buneman, P., Davidson, S., Hillebrand, G., and Suciu, D. (1996). A query language

and optimization techniques for unstructured data. ACM SIGMOD Record,

25:505–516.

Bibliography | 145

Buneman, P., Fernandez, M., and Suciu, D. (2000). UnQL: a query language and al-

gebra for semistructured data based on structural recursion. The VLDB Journal,
9(1):76.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. (2000). Containment

of Conjunctive Regular Path Queries with Inverse. Proc.\ of the 7th Int.\ Conf.\
on the Principles of Knowledge Representation and Reasoning (KR˜2000), pages

176–185.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. (2002). Rewriting of

Regular Expressions and Regular Path Queries. Journal of Computer and System
Sciences, 64:443–465.

Calvanese, D., Giacomo, G. D., and Lenzerini, M. (2003). Reasoning on regular

path queries. Acm Sigmod, 32(4):83–92.

Carothers, G. (2014). RDF 1.1 N-Quads - A line-based syntax for an RDF datasets.

Chandra, A. K. and Merlin, P. M. (1977). Optimal implementation of conjunctive

queries in relational data bases. In Proceedings of the Ninth Annual ACM Sym-
posium on Theory of Computing, STOC ’77, pages 77–90, New York, NY, USA.

ACM.

Chen, Y. and Chen, Y. (2008). An e�cient algorithm for answering graph reach-

ability queries. In Proceedings - International Conference on Data Engineering,

pages 893–902.

Cheng, J., Yu, J. X., and Ding, B. (2007). Cost-based query optimization for

multi reachability joins. In Proceedings of the 12th International Conference on
Database Systems for Advanced Applications, DASFAA’07, pages 18–30, Berlin,

Heidelberg. Springer-Verlag.

Cheng, J., Yu, J. X., Lin, X., Wang, H., and Yu, P. S. (2006). Fast computation

of reachability labeling for large graphs. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in
Bioinformatics), volume 3896 LNCS, pages 961–979.

Codd, E. F. (1983). A relational model of data for large shared data banks. Commun.
ACM, 26(6):64–69.

Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2003). Reachability and Dis-

tance Queries via 2-Hop Labels. SIAM Journal on Computing, 32:1338–1355.

Consens, M. P. and Mendelzon, A. O. (1989). Expressing structural hypertext

queries in graphlog. In Proceedings of the Second Annual ACM Conference on
Hypertext, HYPERTEXT ’89, pages 269–292, New York, NY, USA. ACM.

146 | Bibliography

Consens, M. P. and Mendelzon, A. O. (1990). Graphlog: A visual formalism for

real life recursion. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS ’90, pages 404–416, New

York, NY, USA. ACM.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms. MIT Press, Cambridge, MA, third edition.

Cruz, I. F., Mendelzon, A. O., and Wood, P. T. (1988). G+: recursive queries without

recursion. In Expert Database Conf., pages 645–666.

Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth, A.,

Keppmann, F. L., Miranker, D., Sequeda, J. F., and Wylot, M. (2013). NoSQL

databases for RDF: An empirical evaluation. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes
in Bioinformatics), volume 8219 LNCS, pages 310–325.

Date, C. J. and Darwen, H. (1997). A Guide to the SQL Standard (4th Ed.): A User’s
Guide to the Standard Database Language SQL. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simpli�ed data processing on large

clusters. Commun. ACM, 51(1):107–113.

Demetrescu, C. and Italiano, G. F. (2006). Dynamic shortest paths and transitive

closure: Algorithmic techniques and data structures. Journal of Discrete Algo-
rithms, 4(3):353–383.

DeRose, S. J., Maler, E., Orchad, D., and Walsh, N. (2010). XML Linking Language

(XLink). W3C Recommendation, 23(May).

Deutsch, A. and Tannen, V. (2002). Optimization Properties for Classes of Con-
junctive Regular Path Queries, pages 21–39. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Diestel, R. (2012). Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271.

Dittrich, J., Quiané-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V., and Schad, J. (2010).

Hadoop++. Proceedings of the VLDB Endowment, 3(1-2):515–529.

Eckman, B. A. and Brown, P. G. (2006). Graph data management for molecular

and cell biology. IBM Journal of Research and Development, 50:545—-.

EMBL, SIB Swiss Institute of Bioinformatics, and Protein Information Resource

(PIR) (2013). UniProt. In Nucleic acids research, pages 41: D43–D47.

Bibliography | 147

Erling, O. and Mikhailov, I. (2010). Virtuoso: RDF Support in a Native RDBMS, pages

501–519. Springer Berlin Heidelberg, Berlin, Heidelberg.

Fan, W., Li, J., Luo, J., Tan, Z., Wang, X., and Wu, Y. (2011). Incremental graph

pattern matching. In Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’11, pages 925–936, New York, NY,

USA. ACM.

Fan, W., Wang, X., and Wu, Y. (2012). Performance Guarantees for Distributed

Reachability Queries. Proceedings of the VLDB Endowment, 5(11):1304–1315.

Fan, W., Wang, X., and Wu, Y. (2014a). Answering graph pattern queries using

views. In IEEE 30th International Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, pages 184–195.

Fan, W., Wang, X., Wu, Y., and Deng, D. (2014b). Distributed graph simulation:

Impossibility and possibility. Proceedings of the VLDB Endowment, 7(12):1083–

1094.

Färber, F., Cha, S. K., Primsch, J., Bornhövd, C., Sigg, S., and Lehner, W. (2012).

SAP HANA Database - Data Management for Modern Business Applications.

ACM Sigmod Record, 40(4):45–51.

Fernández, M., Florescu, D., Kang, J., Levy, A., and Suciu, D. (1998). Catching

the boat with strudel: Experiences with a web-site management system. In

Proceedings of the 1998 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’98, pages 414–425, New York, NY, USA. ACM.

Florescu, D., Levy, A., and Suciu, D. (1998). Query containment for conjunc-

tive queries with regular expressions. In Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems - PODS
’98, pages 139–148.

Gao, S. and Anyanwu, K. (2013). Pre�xsolve: E�ciently solving multi-source

multi-destination path queries on rdf graphs by sharing su�x computations.

In Proceedings of the 22Nd International Conference on World Wide Web, WWW

’13, pages 423–434, New York, NY, USA. ACM.

Garcia-Molina, H., Ullman, J. D., and Widom, J. (2008). Database Systems: The

Complete Book. Education, page 1248.

Gonzalez, J., Low, Y., and Gu, H. (2012). Powergraph: Distributed graph-parallel

computation on natural graphs. OSDI’12 Proceedings of the 10th USENIX confer-
ence on Operating Systems Design and Implementation, pages 17–30.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., Gonzalez,

J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I. (2014).

GraphX : Graph Processing in a Distributed Data�ow Framework. 11th USENIX
Symposium on Operating Systems Design and Implementation, pages 599–613.

148 | Bibliography

Grün, C. (2011). Basex. the xml database.

Gubichev, A., Bedathur, S., Seufert, S., and Weikum, G. (2010). Fast and accurate

estimation of shortest paths in large graphs. In Proceedings of the 19th ACM
International Conference on Information and Knowledge Management, CIKM ’10,

pages 499–508, New York, NY, USA. ACM.

Gubichev, A., Bedathur, S. J., and Seufert, S. (2013). Sparqling kleene: fast property

paths in RDF-3X. In First International Workshop on Graph Data Management
Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS 2013, New
York, NY, USA, June 24, 2013, page 14.

Gurajada, S., Seufert, S., Miliaraki, I., and Theobald, M. (2014a). TriAD: A Dis-

tributed Shared-Nothing RDF Engine based on Asynchronous Message Pass-

ing. ACM SIGMOD International Conference on Management of Data (SIGMOD
2014), pages 289–300.

Gurajada, S., Seufert, S., Miliaraki, I., and Theobald, M. (2014b). Using graph sum-

marization for join-ahead pruning in a distributed RDF engine. In Proceedings
of the Sixth Workshop on Semantic Web Information Management, SWIM 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 41:1–41:4.

Gurajada, S. and Theobald, M. (2016a). Distributed processing of generalized

graph-pattern queries in SPARQL 1.1. CoRR, abs/1609.05293.

Gurajada, S. and Theobald, M. (2016b). Distributed set reachability. In Proceedings
of the 2016 International Conference onManagement of Data, SIGMOD ’16, pages

1247–1261, New York, NY, USA. ACM.

Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., and Sahli, M. (2016).

Accelerating sparql queries by exploiting hash-based locality and adaptive par-

titioning. The VLDB Journal, 25(3):355–380.

Harris, S. and Gibbins, N. (2003). 3store: E�cient Bulk RDF Storage. Proceed-
ings of the 1st International Workshop on Practical and Scalable Semantic Systems
(PSSS’03), pages 1–20.

Harris, S., Lamb, N., and Shadbolt, N. (2009). 4store: The design and implemen-

tation of a clustered RDF store. In CEUR Workshop Proceedings, volume 517,

pages 94–109.

Hassanzadeh, O. and Consens, M. (2009). Linked movie data base. In CEURWork-
shop Proceedings, volume 538.

Hayes, P. (2004). RDF Semantics. http://www.w3.org/TR/2004/

REC-rdf-mt-20040210/.

Huang, J., Abadi, D. J., and Ren, K. (2011). Scalable SPARQL Querying of Large

RDF Graphs. Proceedings of the VLDB Endowment, 4(11):1123–1134.

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

Bibliography | 149

Jagadish, H. V. (1990). A compression technique to materialize transitive closure.

TODS, 15(4):558–598.

Jena (2007). Jena Semantic Web Framework. http://jena.sourceforge.net/.

Jin, R., Ruan, N., Xiang, Y., and Wang, H. (2011). Path-Tree: An E�cient Reachabil-

ity Indexing Scheme for Large Directed Graphs. ACM Transactions on Database
Systems, 36(1):1–44.

Jin, R., Xiang, Y., Ruan, N., and Fuhry, D. (2009). 3-HOP: a high-compression

indexing scheme for reachability query. Proceedings of the 35th SIGMOD Con-
ference, pages 813–826.

Jin, R., Xiang, Y., Ruan, N., and Wang, H. (2008). E�ciently answering reachability

queries on very large directed graphs. SIGMOD, pages 595–607.

Karypis, G. and Kumar, V. (1998). A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs. SIAM Journal on Scienti�c Computing, 20(1):359–

392.

Kelley, B. P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B. R., and Ideker, T. (2004).

PathBLAST: A tool for alignment of protein interaction networks. Nucleic Acids
Research, 32(WEB SERVER ISS.).

Khan, A., Li, N., Yan, X., Guan, Z., Chakraborty, S., and Tao, S. (2011). Neigh-

borhood based fast graph search in large networks. Proceedings of the 2011
international conference on Management of data - SIGMOD ’11, page 901.

Klyne, G. and Carroll, J. J. (2004). Resource Description Framework (RDF): Con-

cepts and Abstract Syntax. W3C Recommendation, 10:1—-20.

Kyrola, A., Blelloch, G., and Guestrin, C. (2012). GraphChi: Large-Scale Graph

Computation on Just a PC Disk-based Graph Computation. Proceedings of the
10th USENIX conference on Operating Systems Design and Implementation, pages

31–46.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data.

Liang, Z., Xu, M., Teng, M., and Niu, L. (2006). NetAlign: a web-based tool for

comparison of protein interaction networks. Bioinformatics (Oxford, England),
22(17):2175–7.

Libkin, L., Martens, W., and Vrgoč, D. (2013). Querying graph databases with

XPath. Proceedings of the 16th International Conference on Database Theory -
ICDT ’13, page 129.

Lin, J. and Dyer, C. (2010). Data-Intensive Text Processing with MapReduce. Syn-
thesis Lectures on Human Language Technologies, 3(1):1–177.

http://jena.sourceforge.net/
http://snap.stanford.edu/data

150 | Bibliography

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., and Hellerstein, J. M.

(2012). Distributed GraphLab: a framework for machine learning and data min-

ing in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.

(2010). GraphLab: A New Framework for Parallel Machine Learning. The 26th
Conference on Uncertainty in Arti�cial Intelligence (UAI 2010), pages 8–11.

Maier, D., Stein, J., Otis, A., and Purdy, A. (1986). Development of an object-

oriented dbms. In Conference Proceedings on Object-oriented Programming Sys-
tems, Languages and Applications, OOPLSA ’86, pages 472–482, New York, NY,

USA. ACM.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and

Czajkowski, G. (2010). Pregel. In Proceedings of the 2010 international conference
on Management of data - SIGMOD ’10, page 135.

Martella, C., Shaposhnik, R., and Logothetis, D. (2015). Practical graph analytics
with apache giraph. Apress.

Martín, M. S., Gutierrez, C., and Wood, P. T. (2011). SNQL: A Social Network query

and transformation language. In CEUR Workshop Proceedings, volume 749.

Mendelzon, A. O. and Wood, P. T. (1995). Finding Regular Simple Paths in Graph

Databases. SIAM Journal on Computing, 24(6):1235–1258.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.

(2002). Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827.

Milo, T. and Suciu, D. (1999). Index Structures for Path Expressions. Proceedings
of the 7th International Conference on Database Theory, pages:277–295.

Mongiovì, M., Di Natale, R., Giugno, R., Pulvirenti, A., Ferro, A., and Sharan, R.

(2010). SIGMA: a set-cover-based inexact graph matching algorithm. Journal
of bioinformatics and computational biology, 8(2):199–218.

MPI, Lusk, E., Huss, S., Saphir, B., and Snir, M. (2009). MPI: A message-

passing interface standard. International Journal of Supercomputer Applications,
8(3/4):623.

Natarajan, M. (2000). Understanding the Structure of a Drug Tra�cking Organi-

zation: a Conversational Analysis. Crime Prevention Studies, 11:273–298.

Neo4j (2012). Neo4j: World’s Leading Graph Database. http://neo4j.org/.

Neumann, T. and Weikum, G. (2008). RDF-3X: a RISC-style engine for RDF. Pro-
ceedings of the VLDB Endowment, 1:647–659.

http://neo4j.org/

Bibliography | 151

Neumann, T. and Weikum, G. (2009). Scalable join processing on very large rdf

graphs. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 627–640, New York, NY, USA. ACM.

Neumann, T. and Weikum, G. (2010a). The rdf-3x engine for scalable management

of rdf data. The VLDB Journal, 19(1):91–113.

Neumann, T. and Weikum, G. (2010b). x-RDF-3X: fast querying, high update

rates, and consistency for RDF databases. Proceedings of the VLDB Endowment,
3(1):256–263.

Oracle (2006). Anatomy of an XML Database : Oracle Berkeley DB XML. An
Oracle White Paper, (September):1 – 16.

Orlin, J. (1977). Contentment in graph theory: Covering graphs with cliques.

Indagationes Mathematicae (Proceedings), 80(5):406–424.

Park, D. M. R. (1981). Concurrency and automata on in�nite sequences. In

Deussen, P., editor, Theoretical Computer Science, volume 104 of Lecture Notes
in Computer Science, pages 167–183. Springer.

Peng, P., Zou, L., Özsu, M. T., Chen, L., and Zhao, D. (2016). Processing SPARQL

queries over distributed RDF graphs. The VLDB Journal, 25(2):243–268.

Picalausa, F., Luo, Y., Fletcher, G. H. L., Hidders, J., and Vansummeren, S. (2012).

A structural approach to indexing triples. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in
Bioinformatics), volume 7295 LNCS, pages 406–421.

Prabhakaran, V., Wu, M., Weng, X., McSherry, F., Zhou, L., and Haridasan, M.

(2012). Managing Large Graphs on Multi-cores with Graph Awareness. Pro-
ceedings of the 2012 USENIX Conference on Annual Technical Conference, page 4.

Prud’hommeaux, E., Harris, S., and Seaborne, A. (2013). SPARQL 1.1 Query Lan-

guage. Technical report, W3C.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL Query Language for RDF.

W3C Recommendation, 2009(January):1–106.

Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., and Lausen, G. (2012). RDFPath:

Path query processing on large RDF graphs with MapReduce. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti�cial Intelligence
and Lecture Notes in Bioinformatics), volume 7117 LNCS, pages 50–64.

Qian, R. (2013). Understand Your World with Bing. http://blogs.bing.com/

search/2013/03/21/understand-your-world-with-bing/.

Ramakrishnan, R. and Gehrke, J. (2003). Database Management Systems, volume 8.

McGraw-Hill, Inc.

http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/

152 | Bibliography

Roditty, L. and Zwick, U. (2008). Improved dynamic reachability algorithms for

directed graphs. The 43rd Annual IEEE Symposium on Foundations of Computer
Science, 2002. Proceedings., 37(5):1455–1471.

Rodriguez, M. a. (2015). The Gremlin Graph Traversal Machine and Language.

Proc. 15th Symposium on Database Programming Languages, pages 1–10.

Rohlo�, K. and Schantz, R. E. (2011). Clause-iteration with MapReduce to Scal-

ably Query Datagraphs in the SHARD Graph-store. Proceedings of the Fourth
International Workshop on Data-intensive Distributed Computing, pages 35–44.

Ronen, R. and Shmueli, O. (2009). SoQL: A language for querying and creating

data in social networks. In Proceedings - International Conference on Data Engi-
neering, pages 1595–1602.

Sakr, S. and Al-Naymat, G. (2010). Relational processing of RDF queries. ACM
SIGMOD Record, 38(4):23.

Sangiorgi, D. (2009). On the origins of bisimulation and coinduction. ACM Trans-
actions on Programming Languages and Systems, 31(4):1–41.

Sarma, A. D., Gollapudi, S., and Panigrahy, R. (2010). A Sketch-Based Distance

Oracle for Web-Scale Graphs. Wsdm, pages 401–410.

Sarwat, M., Elnikety, S., He, Y., and Kliot, G. (2012). Horton: Online query execu-

tion engine for large distributed graphs. In Proceedings - International Confer-
ence on Data Engineering, pages 1289–1292.

Sarwat, M., Elnikety, S., He, Y., and Mokbel, M. F. (2013). Horton+. Proceedings of
the VLDB Endowment, 6(14):1918–1929.

Schaik, S. J. V. and Moor, O. D. (2011). A Memory E�cient Reachability Data

Structure Through Bit Vector Compression. SIGMOD, pages 913–924.

Seufert, S., Anand, A., Bedathur, S., and Weikum, G. (2013). FERRARI: Flexible

and e�cient reachability range assignment for graph indexing. In Proceedings
- International Conference on Data Engineering, pages 1009–1020.

Shang, Z. and Yu, J. X. (2013). Catch the wind: Graph workload balancing on cloud.

In Proceedings - International Conference on Data Engineering, pages 553–564.

Shao, B., Wang, H., and Li, Y. (2013). Trinity- A Distributed Graph Engine on a

Memory Cloud. Proceedings of the 2013 international conference on Management
of data - SIGMOD ’13, page 505.

Sidirourgos, L., Goncalves, R., Kersten, M. L., Nes, N. J., and Manegold, S. (2008).

Column-Store Support for RDF Data Management: not all swans are white.

Proceedings of the VLDB Endowment, 1(212):1553–1563.

Bibliography | 153

Singhal, A. (2012). O�cial Google Blog: Introducing the Knowledge Graph:

things, not strings. https://googleblog.blogspot.co.za/2012/05/

introducing-knowledge-graph-things-not.html.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: A core of semantic

knowledge. In Proceedings of the 16th International Conference on World Wide
Web, WWW ’07, pages 697–706, New York, NY, USA. ACM.

Sugar, C. and Gareth, J. (2003). Finding the number of clusters in a data set : An

information theoretic approach. Journal of the American Statistical Association,

98:750–763.

Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., and Xie, G. (2015).

SQLGraph: An E�cient Relational-Based Property Graph Store. SIGMOD,

pages 1887–1901.

The MPI Forum (1993). MPI : A Message Passing Interface. In Proceedings of the
Conference on High Performance Networking and Computing, pages 878–883.

The UniProt Consortium (2014). UniProt: a hub for protein information. Nucleic
Acids Research, 43(Database issue):D204–12.

Then, M., Kaufmann, M., Chirigati, F., Hoang-Vu, T., Pham, K., Kemper, A., Neu-

mann, T., and Vo, H. T. (2014). The more the merrier: E�cient multi-source

graph traversal. PVLDB, 8(4):449–460.

Tian, Y., Balmin, A., and Corsten, S. (2013). From “think like a vertex” to “think

like a graph”. Proceedings of the VLDB Endowment, 7:193–204.

Tian, Y., McEachin, R. C., Santos, C., States, D. J., and Patel, J. M. (2007). SAGA: A

subgraph matching tool for biological graphs. Bioinformatics, 23(2):232–239.

Tian, Y. and Patel, J. M. (2008). TALE: A tool for approximate large graph match-

ing. In Proceedings - International Conference on Data Engineering, pages 963–

972.

Tong, H., Gallagher, B., Faloutsos, C., and Eliassi-Rad, T. (2007). Fast best-e�ort

pattern matching in large attributed graphs. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, page

737.

Trißl, S. and Leser, U. (2007). Fast and Practical Indexing and Querying of Very

Large Graphs. Proceedings of the 2007 ACM SIGMOD international conference on
Management of data SIGMOD 07, pages 845–856.

Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., and Boncz, P.

(2012). Heuristics-based query optimisation for SPARQL. Proceedings of the 15th
International Conference on Extending Database Technology - EDBT ’12, page 324.

https://googleblog.blogspot.co.za/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.co.za/2012/05/introducing-knowledge-graph-things-not.html

154 | Bibliography

Urbani, J., Dutta, S., Gurajada, S., and Weikum, G. (2016). KOGNAC: e�cient

encoding of large knowledge graphs. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Arti�cial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, pages 3896–3902.

Vaglini, G. (1991). Communication and concurrency. Information and Software
Technology, 33(6):462.

Vardi, M. Y. (1982). The complexity of relational query languages (extended ab-

stract). In Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing, STOC ’82, pages 137–146, New York, NY, USA. ACM.

Veloso, R. R., Cerf, L., Jr., W. M., and Zaki, M. J. (2014). Reachability queries in very

large graphs: A fast re�ned online search approach. In Proceedings of the 17th
International Conference on Extending Database Technology, EDBT 2014, Athens,
Greece, March 24-28, 2014., pages 511–522.

Wang, H., He, H., Yang, J., Yu, P. S., and Yu, J. X. (2006). Dual labeling: Answerng

graph reachability queries in constant time. In Proceedings - International Con-
ference on Data Engineering, volume 2006, page 75.

Weiss, C. U. O. Z., Weiss, C., Karras, P. N. U. o. S., Bernstein, A. U. o. Z., Karras, P.,

and Bernstein, A. (2008). Hexastore: sextuple indexing for semantic web data

management. Proceedings of the VLDB Endowment archive, 1(1):1008–1019.

Wood, P. T. (2012). Query languages for graph databases. ACM SIGMOD Record,

41(1):50.

Xin, R. S., Gonzalez, J. E., Franklin, M. J., Stoica, I., and AMPLab, E. (2013). GraphX:

A Resilient Distributed Graph System on Spark. First International Workshop
on Graph Data Management Experiences and Systems, page 2.

Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework

for distributed computation on real-world graphs. Proceedings of the VLDB En-
dowment, 7(14):1981–1992.

Yildirim, H., Chaoji, V., and Zaki, M. J. (2010). GRAIL: scalable reachability index

for large graphs. Proceedings of the VLDB Endowment, 3(1-2):276–284.

Yu, J. X. and Cheng, J. (2010). Graph Reachability Queries: A Survey, pages 181–215.

Springer US, Boston, MA.

Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., and Liu, L. (2013). TripleBit: A Fast and

Compact System for Large Scale RDF Data. Proc. VLDB Endow., 6(7):517–528.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).

Spark : Cluster Computing with Working Sets. HotCloud’10 Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, page 10.

Bibliography | 155

Zeng, K., Yang, J., Wang, H., Shao, B., and Wang, Z. (2013). A distributed graph

engine for web scale RDF data. Proceedings of the 39th international conference
on Very Large Data Bases, pages 265–276.

Zhang, X., Chen, L., Tong, Y., and Wang, M. (2013). EAGRE: Towards scalable I/O

e�cient SPARQL query evaluation on the cloud. In Proceedings - International
Conference on Data Engineering, pages 565–576.

Zou, L., Mo, J., Chen, L., Özsu, M., and Zhao, D. (2011). gStore: answering SPARQL

queries via subgraph matching. Proceedings of the VLDB, 4(8):482–493.

156 | Bibliography

Appendices

157

Chapter A
Additional Details

A.1 Giraph Implementations of DSR Queries

A.1.1 Giraph

The following program code illustrates our implementation of DSR queries in

Giraph. In superstep 0, all source vertices are �rst added to a newSources array.

Thus, the function isSource(.) returns true if the vertex is a source. In the

subsequent supersteps, newSources represents the additional sources from which

the current vertex v is reachable. If newSources is not empty, then we iteratively

propagate these sources to all neighbors of vertex v.

Distributed Set Reachability in Giraph

public void compute(Vertex v, Iterable m){
ArrayList<Integer> newSources = new ArrayList<Integer>();
if(getSuperStep() == 0){

if(isSource(v))
newSources.add(v.getId().get());

v.getValue().clearSources()
}else
for(IntWritable msg : m)
newSources.add(m.get());

newSources.removeAll(v.getValue().getSources());
if(newSources.size() > 0){

v.addSources(newSources);
for(Edge<IntWritable, NullWritable> e : v.getEdges()){
IntWritable nb = e.getTargetVertexId();
for(int src: newSources)
sendMessage(nb,new IntWritable(src)); } } }

}

A.1.2 Giraph++

Unlike in Graph, the Giraph++ API exposes the underlying partitioning informa-

tion along with each call of the compute(.) function. The code for DSR pro-

cessing is similar to Giraph, except that the vertices that are local to the current

source vertices are directly updated using a centralized local reachability compu-

tation via localProcess(.). After the local processing, for each vertex we again

communicate its reachable list of vertices to the remote neighbors.

159

160 | Appendix A. Additional Details

Distributed Set Reachability in Giraph++
public void compute(Partition p){

ArrayList<Integer> q_sources = new ArrayList<Integer>();
ArrayList<Integer> newSources = new ArrayList<Integer>();
if(getSuperStep() == 0){

if(isSource(v))
sources.add(v.getId().get();

}else{
MessageStore<IntWritable, IntWritable> mstore

= getCurrentMessageStore();
for(Vertex v : p.getVertices()){
if(mstore.hasMessagesForVertex(v.getId())){

newSources.clear();
for(IntWritable message :

mstore.getVertexMessages(v.getId()))
newSources.add(message.get());

newSources.removeAll(v.getValue().getSources());
if(newSources.size() > 0){

q_sources.add(v.getId());
v.getValue().addNewSources(newSources);

} } }
}
localProcess(p,q_sources);
for(Vertex v : p.getVertices()){
if(v.getValue().getNewSources().size() > 0){

for(Edge<IntWritable, NullWritable> edge
: v.getEdges()){

int nb = edge.getTargetVertexId().get();
if(!p.contains(nb)

for(int src : v.getValue().getNewSources())
sendMessage(nb,new IntWritable(src));

}
v.getValue().addSources(v.getValue().getNewSources());
v.getValue().getNewSources().clear();}

}
}

A.1.3 Giraph++wEq

The following code depicts our DSR implementation in Giraph++wEq, including

our proposed equivalence-sets optimization. We �rst compute equivalence sets

in our DSR system and prepare an adjacency graph as input to Giraph. For each

vertex v in the input graph, in addition to its adjacent neighbors, we also add their

equivalence sets (our in-virtual vertices) as counterparts. This graph is loaded into

Giraph using a custom input reader. The below code shows the DSR computation.

The implementation shares a major part of the code with the Giraph++implementation,

where the only di�erence lies in the communication of the reachable sets of ver-

tices in each superstep. After the local processing, we iterate over each vertex

and send its reachable list of sources to only the in-virtual vertices instead of all

neighbors.

Distributed Set Reachability in Giraph++wEq
public void compute(Partition p){

ArrayList<Integer> q_sources = new ArrayList<Integer>();
ArrayList<Integer> newSources = new ArrayList<Integer>();
if(getSuperStep() == 0){

if(isSource(v))
sources.add(v.getId().get();

}else{
MessageStore<IntWritable, IntWritable> mstore

= getCurrentMessageStore();
for(Vertex v : p.getVertices()){
if(mstore.hasMessagesForVertex(v.getId())){

newSources.clear();

A.2. SPARQL �eries with Property Paths | 161

for(IntWritable message :
mstore.getVertexMessages(v.getId()))
newSources.add(message.get());

newSources.removeAll(v.getValue().getSources());
if(newSources.size() > 0){

q_sources.add(v.getId());
v.getValue().addNewSources(newSources);

} } }
}
localProcess(p,q_sources);
for(Vertex v : p.getVertices()){
if(v.getValue().getNewSources().size() > 0){

for(int eq_nb : v.getEqList())
for(int src : v.getValue().getNewSources())

sendMessage(new IntWritable(eq_nb),new IntWritable(src));
v.getValue().addSources(v.getValue().getNewSources());
v.getValue().getNewSources().clear();}

}
}

A.2 SPARQL Queries with Property Paths

A. LUBM Queries

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix ub: <http://www.lehigh.edu/∼zhp2/2004/0401/univ-bench.owl#>

L1: SELECT ∗
WHERE {?x rdf:type ub:ResearchGroup.

?x ub:subOrganizationOf* ?y.

?y rdf:type ub:University. }

L2: SELECT ∗
WHERE {?x rdf:type ub:FullProfessor.

?x ub:headOf ?d.

?d ub:subOrganizationOf* ?y.

?y rdf:type ub:University. }

L3: SELECT ∗
WHERE {?r1 rdf:type ub:ResearchGroup.

?r1 ub:subOrganizationOf* ?y.

?y rdf:type ub:University. }

?r2 rdf:type ub:ResearchGroup.

?r2 ub:subOrganizationOf* ?y.

B. Freebase Queries

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix fb: <http://rdf.freebase.com/ns>

162 | Appendix A. Additional Details

F1: SELECT ∗
WHERE {?p fb:people.person.place_of_birth ?city .

?city fb:location.location.containedby* ?state.
?country fb:location.location.contains ?state.

F2: SELECT ∗
WHERE {?p fb:people.person.place_of_birth ?city .

?city fb:location.location.containedby* ?state.
?country fb:location.location.contains ?state.
?p fb:award.award _winner.awards_won ?prize.
?p rdf:type fb:government.us _president.

F3: SELECT ∗
WHERE {?p fb:award.award _winner.awards_won ?prize.

?prize rdf:type* ?z
?z fb:award.award_honor.ceremony ?c
?p fb:people.person.sibling_s* ?p1

?p rdf:type fb:government.us _president.
?p1 fb:award.award_winner.awards_won ?prize

C. DBpedia Queries

Namespace pre�xes available from: http://de.dbpedia.org/sparql?nsdecl
D1: SELECT ∗

WHERE {?s1 rdf:type ?s.
?s rdfs:subClassOf* ?o.

?o owl:equivalentClass yago-res:wordnet_medium_106254669

D2: SELECT ∗
WHERE {?s foaf:isPrimaryTopicOf wiki:North_Auburn,_California .

?s dbpedia-owl:isPartOf* ?c
?x dbpedia-owl:hometown ?c.
?x foaf:isPrimaryTopicOf ?r .

D3: SELECT ∗
WHERE {?s dbpprop:leaderTitle ?title.

?title rdf:type ?class.
?class rdfs:subClassOf* ?class2.

?class2 owl:equivalentClass yago-res:wordnet_abstraction_100002137 .

?s dbpedia-owl:isPartOf* ?c.
?x dbpedia-owl:hometown ?c.
?x foaf:isPrimaryTopicOf ?r .

http://de.dbpedia.org/sparql?nsdecl

List of Figures

2.1 An example of (a) an undirected graph and (b) a directed graph . 8

2.2 An example of (a) a subgraph, (b) a vertex-induced subgraph, and

(c) an edge-induced sub-graph for example graph shown in Fig-

ure 2.1. 9

2.3 An example of (a) closure, (b) reduction, and (c) condensation for

graph shown in Figure. 2.1(b) . 15

2.4 An example of relational model representing Student-Course in-

formation . 17

2.5 An example SQL query . 19

2.6 A typical relational query processing work�ow 20

2.7 An example XML document (a) and its tree representation (b) . . 24

2.8 An example of (a) RDF data and its (b) graph representation . . . 25

2.9 An example of a property graph 26

2.10 An example of (a) labeled directed multi-graph model (RDF) and

(b) labeled directed graph model 31

2.11 Example of (a) data graph partitioning G = {G1,G2} and it corre-

sponding (b) Cut C . 32

3.1 (a) Graph G with partitions G = {G1,G2,G3} and (b) respective cut C 43

3.2 Dependency graph as constructed in (Fan et al., 2012) for a single

reachability query . 48

3.3 Dependency graph as constructed in (Fan et al., 2012) for a DSR

query . 52

3.4 Boundary graph GB
1

for partition G1 54

3.5 Final compound graphs GC
1

, GC
2

, GC
3

constructed for graph G with

cut C of Figure 3.1 . 57

3.6 Scalability evaluation for LiveJ-68M (a-d) and Freebase-1B (e-h) . 73

3.7 Scalability evaluation for Twitter-1.4B (a-d) and LUBM-1B (e-h) . 74

3.8 Update evaluation (both insertions and deletions) for various graph

collections . 75

3.9 Comparison of local reachability indexes 76

3.10 Equivalence-sets optimization in Giraph 77

163

164 | List of Figures

4.1 RDF graph G with a locality-based partitioning G = {G1,G2,G3,G4} 88

4.2 An example of RDF graph (a) represented as a relation R and

SPARQL query (b) written as an SQL query 90

4.3 An example of (a) bisimulation-based summary and (b) locality-

based summarization of RDF graph G shown in Figure 4.1 93

4.4 TriAD system architecture . 94

4.5 Locality-based & horizontal partitioning of triples 99

4.6 Global query plan for the query of Example 4.10 102

4.7 Distributed execution of the query shown in Example 4.10 with

asynchronous communication (horiz. dashed lines) 108

4.8 TriAD (Cols. 1–3) & TriAD-SG (Col. 4) scalability experiments for

various con�gurations of the LUBM benchmark 112

4.9 Impact of multi-threading in TriAD 114

5.1 An example of RDF . 124

5.2 Architecture of modi�ed TriAD RDF System to support GGP queries 127

5.3 Example SwPP query and its query graph representation 130

5.4 Example plan for the query of Figure 5.3 133

5.5 Scalability (strong,weak) of SwPP queries for LUBM (a,b), Free-

base (c,d) , and DBPedia (e,f) datasets 138

List of Tables

3.1 Graph datasets and sizes . 68

3.2 Index sizes for DSR variants implemented in TriAD 69

3.3 E�ciency evaluation (indexing and query times) of DSR approaches

for small and large graphs . 70

3.4 Equivalence-sets optimization in TriAD 77

3.5 Impact of hash vs. METIS partitioning 77

3.6 SPARQL 1.1 queries with property paths 78

3.7 Community connectedness using TriAD 78

4.1 Example RDF in NT format. 88

4.2 LUBM-10240 – Query processing times (in ms) 110

4.3 Communication size (in KB) for LUBM-10240 113

4.4 Single-join performance of various engines 114

4.5 E�ectiveness of dictionary encoding in TriAD 115

4.6 LUBM-160 – Query processing times (in ms) 116

4.7 Impact of summary graph partitions for LUBM-160 116

4.8 Performance of 1-hop and full graph exploration (GE) vs. rela-

tional joins (RJ) in TriAD-SG for LUBM-160 117

4.9 BTC 2012 – Query processing times (in ms) 117

4.10 WSDTS-1000 – Query processing times (in ms) 118

5.1 Performance evaluation of SwPP queries 137

165

166 | List of Tables

List of Algorithms

1 Distributed reachability evaluation (Fan et al., 2012) 48

2 A naïve approach to process a DSR query using dependency graph

approach (Fan et al., 2012) . 50

3 An improved approach to process a DSR query using dependency

graph approach (Fan et al., 2012) 51

4 Computing forward-equivalent sets 56

5 Distributed reachability processing 59

6 Distributed set reachability Processing 62

7 Local query processor at Slave i . 106

167

	Introduction
	Labeled Graphs
	Querying Labeled Graphs
	Challenges
	Contributions
	Organization

	Background & Preliminaries
	Background
	Graphs
	Relational Databases
	Graph Data Management

	Preliminaries
	Data Model
	Query Model

	Set Reachability
	Introduction
	Motivation
	State-of-the-art
	Our Approach & Contributions

	Preliminaries
	Data & Query Model
	Graph Partitioning Strategies

	Related Work
	Distributed Reachability
	Non-iterative Approach
	Iterative Approach

	Non-iterative Approaches
	Dependency Graph based Approaches
	Our Approach

	Iterative Approaches
	Vertex-Centric Approach
	Graph-Centric Approach

	Evaluation
	Efficiency
	Scalability
	Updates
	Parameters
	Applications
	Summary of Results

	Summary

	Basic Graph Patterns
	Introduction
	Motivation
	State-of-the-art
	Our Approach & Contributions

	Background & Preliminaries
	Data & Query Model
	Related Work
	Graph Summarization

	System Architecture
	Index Organization
	Global Summary Graph
	Encoding Triples
	Horizontal Partitioning of Data Triples
	Local Permutation Indexes
	Local & Global Statistics

	Query Optimization & Distributed Processing
	Two-Staged Query Processing Overview
	Generating Supernode Bindings
	Querying the Data Graph
	Distributed Query Execution

	Evaluation
	Datasets & Setup
	Results

	Summary

	Generalized Graph Patterns
	Introduction
	Motivation
	State-of-the-art
	Our Approach & Contributions

	Preliminaries
	Data & Query Model
	Related Work

	System Architecture
	Index Organization
	Local Indexes
	Index Statistics

	Query Optimization & Distributed Processing
	Translation of GGP Queries
	Plan Optimization
	Distributed Query Execution

	Evaluation
	Datasets & Benchmark
	Efficiency
	Scalability Tests

	Summary

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Additional Details
	Giraph Implementations of DSR Queries
	Giraph
	Giraph++
	Giraph++wEq

	SPARQL Queries with Property Paths

