
Structure-aware content creation
Detection, retargeting and deformation

Thesis for obtaining the title of
Doctor of Natural Science of
Faculty of Mathematics and Computer Science of
Saarland University

Vorgelegt von

Xiaokun Wu
吴晓堃

am 25. August 2016 in Saarbrücken, Deutschland

II

Betreuender Hochschullehrer – Advisor
Prof. Dr. Hans-Peter Seidel

Gutachter – Reviewer
Prof. Dr. Hans-Peter Seidel
Prof. Dr. Michael Wand
Prof. Dr. Klaus Hildebrandt
Prof. Dr. Reinhard Klein

Dekan – Dean
Prof. Dr. Frank-Olaf Schreyer

Kolloquium – Examination

Datum – Date:
20. Jan. 2017

Vorsitzender – Chair:
Prof. Dr. Philipp Slusallek

Prüfer – Examiners:
Prof. Dr. Hans-Peter Seidel
Prof. Dr. Michael Wand
Prof. Dr. Klaus Hildebrandt

Protokoll – Reporter:
Dr. Qianru Sun

Abstract

Nowadays, access to digital information has become ubiquitous, while three-
dimensional visual representation is becoming indispensable to knowledge
understanding and information retrieval. Three-dimensional digitization plays
a natural role in bridging connections between the real and virtual world, which
prompt the huge demand for massive three-dimensional digital content. But
reducing the effort required for three-dimensional modeling has been a practical
problem, and long standing challenge in compute graphics and related fields.

In this thesis, we propose several techniques for lightening up the content
creation process, which have the common theme of being structure-aware,
i. e., maintaining global relations among the parts of shape. We are especially
interested in formulating our algorithms such that they make use of symmetry
structures, because of their concise yet highly abstract principles are universally
applicable to most regular patterns.

We introduce our work from three different aspects in this thesis. First, we
characterized spaces of symmetry preserving deformations, and developed a
method to explore this space in real-time, which significantly simplified the
generation of symmetry preserving shape variants. Second, we empirically
studied three-dimensional offset statistics, and developed a fully automatic
retargeting application, which is based on verified sparsity. Finally, we made
step forward in solving the approximate three-dimensional partial symmetry
detection problem, using a novel co-occurrence analysis method, which could
serve as the foundation to high-level applications.

III

Kurzzusammenfassung

Jetzt hat die Zugang zu digitalen Informationen allgegenwärtig geworden. Drei-
dimensionale visuelle Darstellung wird immer zum Einsichtsverständnis und
Informationswiedergewinnung unverzichtbar. Dreidimensionale Digitalisierung
verbindet die reale und virtuelle Welt auf natürliche Weise, die prompt die große
Nachfrage nach massiven dreidimensionale digitale Inhalte. Es ist immer noch
ein praktisches Problem und langjährige Herausforderung in Computergrafik
und verwandten Bereichen, die den Aufwand für die dreidimensionale Modellie-
rung reduzieren.

In dieser Dissertation schlagen wir verschiedene Techniken zur Aufhellung der
Erstellung von Inhalten auf, im Rahmen der gemeinsamen Thema der struktur-
bewusst zu sein, d. h. globalen Beziehungen zwischen den Teilen der Gestalt
beibehalten wird. Besonders interessiert sind wir bei der Formulierung unserer
Algorithmen, so dass sie den Einsatz von Symmetrische Strukturen machen, we-
gen ihrer knappen, aber sehr abstrakten Prinzipien für die meisten regelmäßigen
Mustern universell einsetzbar sind.

Wir stellen unsere Arbei aus drei verschiedenen Aspekte in dieser Dissertation.
Erstens befinden wir Räume der Verformungen, die Symmetrien zu erhalten,
und entwickelten wir eine Methode, diesen Raum in Echtzeit zu erkunden, die
deutlich die Erzeugung von Gestalten vereinfacht, die Symmetrien zu bewahren.
Zweitens haben wir empirisch untersucht dreidimensionale Offset Statistiken
und entwickelten eine vollautomatische Applikation für Retargeting, die auf den
verifizierte Seltenheit basiert. Schließlich treten wir uns auf die ungefähre drei-
dimensionalen Teilsymmetrie Erkennungsproblem zu lösen, auf der Grundlage
unserer neuen Kookkurrenz Analyseverfahren, die viele hochrangige Anwen-
dungen dienen verwendet werden könnten.

V

Contents

1 Introduction . 1
1.1 3D digital content creation . 3
1.2 Contributions . 5
1.3 Thesis outline . 7

2 Background and previous work . 9
2.1 Symmetry . 9
2.2 Shape deformation . 11
2.3 Model retargeting . 14
2.4 Symmetry detection . 15

3 Real-Time Symmetry-Preserving Deformation 19
3.1 Introduction . 19
3.2 Partial Symmetries . 21
3.3 Symmetry-Preserving Deformation 22
3.4 Direct Subspace Construction . 24
3.5 Symmetry-Preserving Editing . 27
3.6 Experiments and Discussion . 30
3.7 Summary . 32

4 3D Model Retargeting Using Offset Statistics 43
4.1 Introduction . 43
4.2 Method . 45

4.2.1 Offset Statistics Detection 46
4.2.2 Model Retargeting . 47

4.3 Sparsity of 3D Offset Statistics . 49
4.4 Implementation . 51
4.5 Results . 53
4.6 Summary . 55

5 Approximate 3D Partial Symmetry Detection Using Co-Occurrence
Analysis . 63

VII

CONTENTS VIII

5.1 Introduction . 63
5.2 Overview . 66
5.3 Method . 67

5.3.1 Pre-processing . 67
5.3.2 Robust Co-occurring Feature Detection 69
5.3.3 Instance Detection . 71

5.4 Implementation Details . 72
5.5 Evaluation . 74

5.5.1 Dataset . 74
5.5.2 Methodology . 75
5.5.3 Results . 76

5.6 Applications . 78
5.6.1 Detecting Clusters of Constellations 78
5.6.2 Unsupervised Co-Detection 79
5.6.3 Retargeting . 79

5.7 Limitation and Future work . 80
5.8 Summary . 81

6 Conclusion . 87
6.1 Final remarks . 87
6.2 Future work . 89

6.2.1 Respective discussions . 89
6.2.2 General outlook . 90

Chapter 1
Introduction

In a nutshell, the field of computer graphics is concerned with the representation
and rendering of 3-dimensional digital content, so one of the major focuses
in this field is on technologies used to create and manipulate such content. If
we look around, almost every modern artificial product would be designed on
computer before final manufacturing. Taking figure 1.1 for example, we can
clearly see that, we are living in a world designed by ourself.

Nowadays, our world is connected through an unified digital network, so people
are becoming more and more interested in digitalizing the entire human world.
This trend is rooted in the fact that modern people are becoming heavily depen-
dent on digital information, either for everyday trivial tasks or for complicated
decision-making processes. To meet people’s strong demand for information,
two necessary infrastructures have to be provided: a data warehouse with com-
prehensive descriptions of each subject, and an intuitive retrieval interface.

Traditionally, both data storage and retrieval are based on text, which clearly
fails to satisfy our expectation. On the one hand, it is very hard to depict every
details of a subject purely using text. On the other hand, it is also hard for people
to imagine that subject’s appearance from those words. Considering vision is
the most informative human sense, it is inevitable that visual representation is
becoming a popular information carrier of digitization, which also establishes
the bridge between the real and the virtual world.

One of the most common information retrieval application in our daily lives
is map service. Just taking a look at our vicinity, as shown in online maps
[Google], we can claim that almost every single activity of our daily lives relates

1

1. INTRODUCTION 2

Figure 1.1: Almost every man-made objects are more or less related to computer
aided geometric processing

to retrieving information from the map: such as looking for a shopping center,
and also searching for the most economic transportation to reach it.

Satellite imagery becomes a very popular way of geographical information dig-
itization, is largely due to the fact that this information acquisition method is
relatively easily realizable, considering our current status of hardware technol-
ogy. But on closer examination we might still be confused by it, because this
2D representation lacks stereoscopic look-and-feel. The extra details provided
by high fidelity only add up to disturbing our attentions. In contrast, intuitive
3-dimensional representation could help to solve the orientation deficiency
problem.

Introducing 3-dimensional content into the digital world is both interesting
and challenging. Back to the map service example, another provider [Aladdin]
illustrated the map content using a very stylish way of non-realistic modeling.
One may find that this new appearance looks much cleaner: it exhibits streets

3 1.1. 3D DIGITAL CONTENT CREATION

and buildings in a very concise manner, but conveys equally comprehensive
information at the same time.

Obviously a properly large 3D digital content data bank is necessary for such
a massive scene. So the first question that came into our mind is: how to eco-
nomically generate those tremendous amount of 3D digital contents? Exploring
effective methods for addressing that problem is also the main theme of this
thesis.

1.1 3D digital content creation

The development of 3D modeling tools has progressed constantly since the
beginning of computer graphics, but only in recent years people started studying
fast massive model production techniques.

Direct modeling The most intuitive and naïve way to model digital shapes is
simply creating everything from scratch, which is exactly the approach adopted
by [Aladdin]. But one can imagine that even for a well-trained artist, this brute-
force approach means extremely high amount of manual work. The modeling
task can quickly becomes impossible, when the load incurred by scale of digital
world surpass its undertaker’s capacity.

Example based modeling In the latest years, researchers are trying to de-
velop semi-automatic or even fully automatic methods to speed-up this model-
ing process [Parish and Müller, 2001; Bokeloh et al., 2010a; Mitra et al., 2013a].
Most of them belong to the example based modeling category, which assumes a
given example geometry could be decomposed into a small set of elementary
parts and generating rules. Those rules could be applied to reassemble input
parts together, or even create new amplified complex. As a natural inference,
the key to its success relies on the correctness of examples’ structural analysis,
and an effective way of utilizing the rules extracted from the input.

The input example is reducible, if it is larger than the union of its elementary
parts. Typically, one possible prerequisite that could lead to a reducible example
is geometric redundancy. Redundancy means if we broke the example model
into any combination of smaller parts, we can always find at least two pieces
that are exactly the same. On the other hand, we also assume those repeated
observation of constituent parts conform to certain identifiable regular pattern,
so even if a small portion of that model is missing, we can still recreate the

1. INTRODUCTION 4

complete model using those rules. The assumption of geometric redundancy
and pattern regularity is the basic motivation of our work.

Figure 1.2: Maximize variance, while keeping shape structure.

For example, as shown in 1.2, those bottles looked different, but actually all
of the left three are derived from the right most neutral template shape. This
creating process relates to human’s ability of abstracting structures from given
input model, and then infer new variances within acceptable perceptual range.
Specifically speaking, the structure entailed here is (rotational) symmetry, which
is a mathematically well defined and actively studied tool in recent work. We will
elaborate the foundations in Chapter 2, and also detailed applications thereafter.

Laser scan technique Example collection through direct modeling is a very
tedious work, so people have been looking for alternative data acquisition meth-
ods. One of the most successfully applied technique is 3D scanning, which has
been widely used in applications from world heritage protection to real-time
city scanning. The data acquired is normally stored as 3-dimensional point
array, which is also called point cloud, and its level of detail depends on scanning
density (Figure 1.3).

5 1.2. CONTRIBUTIONS

The data acquired often exhibit two serious problems as shown in Figure 1.3.
First, light always travel in a straight line, so the area behind cars or other oc-
cluding objects can not be imaged. Second, different materials have their own
reflection and refraction property, and the scanner has its own mechanical
errors, so noisy patches are expected amongst deviated data.

Reconstructing geometry from such messy data also benefit from the informa-
tion redundancy and pattern regularity assumptions. To consolidate the data,
recurring patches with matching features surrounding missing area are good
completion hypothesis. However, inaccurate input data needs special treatment,
so we will discuss it in detail when we come to structure detection problem in
Chapter 5.

Figure 1.3: Even best quality scanning data available still exhibit serious incom-
pletion and noise problems.

1.2 Contributions

We contribute some concrete methodologies of addressing several specific prob-
lems, which could be found in the following publications (this thesis is based on
the last three):

• Kurz, C., Wu, X., Wand, M., Thormählen, T., Kohli, P., and Seidel, H.-P.
(2014). Symmetry-aware template deformation and fitting. Computer
Graphics Forum, 33(6):205–219

1. INTRODUCTION 6

• Wu, X., Li, C., Wand, M., Hildebrandt, K., Jansen, S., and Seidel, H. (2014a).
3d model retargeting using offset statistics. IEEE 3DV

• Wu, X., Wand, M., Hildebrandt, K., Kohli, P., and Seidel, H.-P. (2014b).
Real-time symmetry-preserving deformation. Comput. Graph. Forum,
33(7):229–238

• Li, C., Wand, M., Wu, X., and Seidel, H. P. (2015). Approximate 3d partial
symmetry detection using co-occurrence analysis. In 3D Vision (3DV),
2015 International Conference on, pages 425–433

In [Wu et al., 2014b], we focus on the problem of structure-aware shape defor-
mation, which accommodates classical finite symmetry group properties into
applications. The main contributes of this work are:

• characterizing the shape spaces of fixed symmetry as affine spaces.
• direct construction of basis of spaces of symmetry-preserving deformation,

through an effective sampling strategy.
• simple and efficient shape editing algorithms, based on numeric compu-

tation methodology.

Then we turned our attention to the 3-dimensional model synthesis problem in
[Wu et al., 2014a], by exploiting translational invariance. We made efforts to

• carry out an empirical study that confirms the sparsity of offset statistics
in man-made 3D shapes.

• present an algorithm for detecting dominant offsets from single input
models.

• propose a 3D model synthesis algorithm that utilizes offset statistics for
automatic, high quality model retargeting at interactive speed.

We continued our exploration into the depth of low level shape analysis and
the structure detection problem in [Li et al., 2015], and finally arrived at an
algorithm for partial symmetric structure detection. Our main contributions
can be summarized as:

• We introduce consistently co-occurring patterns as a novel structural
invariance, which remarkably improved feature matching for 3D point
clouds.

• We propose a new unsupervised partial symmetry detector, which outper-
forms previous methods in the difficult case of strong geometric variability.

7 1.3. THESIS OUTLINE

1.3 Thesis outline

In the following text, we will discuss some background and review previous work
in Chapter 2. Then from Chapter 3 to Chapter 5, our work are elaborated in
details. More specifically, Chapter 3 is based on [Kurz et al., 2014] and [Wu et al.,
2014b], Chapter 4 is based on [Wu et al., 2014a], while Chapter 5 is based on [Li
et al., 2015] and some further extensions we have made to it. Finally, Chapter 6
concludes our discussion, and tries to pointing out some possible directions of
future work.

Chapter 2
Background and

previous work

In this chapter, we will briefly summarize relevant background knowledge, as
well as selected state-of-the-art approaches. First, as pointed out in Chapter 1,
symmetry has becoming widely adopted in shape analysis. The success of
symmetry-based approaches in computer graphics is not only due to symmetry
is a well-studied subject in mathematics, but also for the reason that symmetry
is ubiquitous in both artificial and natural world.

So in the following we will discuss some symmetry related topics, which act as
the main clue and will occur frequently throughout the rest of this thesis. After
that, we will list interesting related work that had inspired us.

2.1 Symmetry

Throughout this thesis, we only consider problems in the 3-dimensional space
R3. R3 is a metric space, where the norm is defined by Euclidean distance.

Our problem domain is usually a surface S inR3, which is given by an embedding
x : M →R3 that maps from a two-manifold M to R3. Depending on the practice
of each different application, we could represent such surface in a discrete way
either as triangle mesh or point cloud. In terms of discretization, x is simply the
piecewise linear mapping that maps every vertex (or point) to its positions in
R3. So unless otherwise stated, we will also denote S as its discretization, i. e.,
triangle mesh or point cloud.

9

2. BACKGROUND AND PREVIOUS WORK 10

In 3D, an isometry (or Euclidean motion) is a bijective map onR3 itself, which pre-
serves standard distance. In our discussion, basic isometric mappings that fre-
quently appear are rigid motions (translation or rotation) and reflection. These
different classes of transformations can be arbitrarily combined using function
composition, and they collectively form a subset of Euclidean motions.

The definition of symmetry is always associated with a specific domain. Let’s
denote Ψ(S) as the set of Euclidean motions, which map S to itself ϕ : S → S,
then S is symmetric if S =ϕ(S).

Note that here ϕ is surjective, which makes this definition to be global on S.
Besides, the equation is exactly established on S (without approximation).

Informally speaking, symmetry in 3D geometry means self-congruence under
Euclidean motion. Coincidently, isometric mappings are also called congruence
transformation in geometry.

Symmetry group

Groups are a mathematical tool discussed in abstract algebra. To form a group
< G , · > from a set G , specific binary operator · must be defined that needs to
satisfy four fundamental group axioms:

• Closure: the product of any pair of two elements is still contained in G ,
i. e., ∀a,b ∈G , a ·b ∈G .

• Associativity: the multiplication order can be arbitrarily changed, as long
as the operands are not commuted, i. e., ∀a,b,c ∈G , (a ·b) · c = a · (b · c).

• Identity: there is an unique identity element e in G , such that∀a ∈G ,e·a =
a ·e = a holds.

• Invertible: the inverse of any element always exist, and is also contained
in G , i. e., ∀a ∈G ,∃!a−1 ∈G , a ·a−1 = a−1 ·a = e.

In our discussion, groups are usually applied in function space, so by default the
group operator · is just function composition ◦. For the sake of simplicity, we
sometimes only use the underlying set G to denote group <G , · >.

In practical applications, we always study finite groups, i. e., the number of
elements (group order) is finite. Group can be factorized: if a subset H is closed
under group operator ·, then H is a subgroup of G .

For example, Ψ(S) under function composition ◦ is just the Euclidean symmetry
group E(3). The set of symmetries induced by rigid motions forms special
Euclidean group SE(3), which is a subgroup of E(3).

11 2.2. SHAPE DEFORMATION

Symmetry group examples

From application side, a reference list of well classified groups helps identifying
repetitive elements, which further contributes to discover hidden geometric
patterns. In three dimensions, the list of symmetry groups has been completely
collected as space group symmetries [Hahn, 2002]. This illustration of spacial
configuration is instructive to many natural science branches, especially in
crystallography which studies the arrangement of atoms in the crystal solids.

The general formulation of a space group is the combination of point groups
which keep at least one point fix, and lattice systems which are generated by
translations. In more details, the elements of point group include involution
(identity and inversion), rotation and rotary reflection.

A detailed discussion of space groups in 3D geometry can be found in [Tevs et al.,
2014a], where a symmetry detector was developed for exact geometries.

Generalization

In the previous discussion, we have assumed the range of symmetry mapping
is the whole input domain, but in many real scenes that is not true. The com-
mon solution to this partial symmetry case is subdividing the input domain
into non-overlapping symmetric regions, and then apply global symmetry algo-
rithms onto each of those regions. It is often helpful to make sure each region
is self-contained, i. e., no superset could contain larger number of symmetries.
So we also aggregate small regions into larger ones when possible, and the clas-
sification of symmetry groups can be a very intuitive clue for this process. In
Chapter 3 we will deal with examples with partial symmetry in our application.

As mentioned in Chapter 1, we often encounter cases where input data is noisy.
In this case, symmetric parts can not be congruous under any hypothetical map-
ping. Close-to-exact symmetry also happens in the natural world, as biological
growth almost always shows deviations to perfection. This kind of fuzzy (or
approximate) symmetry is discussed in [Mitra et al., 2013b], where some error
estimation methods have been described. We will also discuss our treatment in
Chapter 5.

2.2 Shape deformation

Shape deformation has become an indispensable tool in shape editing, which is
one of the most important way of creating new variants of example geometry.

2. BACKGROUND AND PREVIOUS WORK 12

In Chapter 3 we will consider a special class of deformations that preserve
symmetries during shape editing. This idea leads to an efficient interactive
algorithm for generating structurally similar shapes. But before describing our
approach we would like to survey previous work, and point out their limitations
that we are attempting to improve.

Early methods used low-dimensional spaces of low-frequency deformations
spanned by spline-bases that were explicitly controlled by the user [Sederberg
and Parry, 1986; Coquillart, 1990]. With increasing level-of-detail, these spaces
become too large to be navigated explicitly by the human modeler, which led
to a wide-spread adaptation of variational deformation models that are usu-
ally based on mimicking physical processes such as elastic or plastic deforma-
tions [Terzopoulos et al., 1987; Welch and Witkin, 1992], or rely on smoothness
assumptions for more general shape deformation [Alexa et al., 2003; Brown
and Rusinkiewicz, 2007]. Geometric approximation such as Laplace surface
modeling or as-rigid-as-possible deformations have recently become particu-
larly popular in this context [Sorkine et al., 2004; Au et al., 2006; Sorkine and
Alexa, 2007; Botsch and Sorkine, 2008]. Computational costs can be reduced by
subspace methods [Huang et al., 2006; Hildebrandt et al., 2011; Jacobson et al.,
2012; von Tycowicz et al., 2013] that restrict the set of feasible deformations to a
low-dimensional subspace.

Structure-aware deformation Structure-aware deformation has been intro-
duced in image processing through seam-carving [Avidan and Shamir, 2007]
for image retargeting. A similar idea for shape-resizing has been introduced by
Kraevoy et al. [2008], using differential properties of shapes to detect suitable
deformation directions and a vulnerability score to protect complex structures.
However, this method only permits axis-aligned stretching of models and only
protects salient area from deformation, rather than maintaining non-local sym-
metry relations. Retargeting has also been extended to noncontinuous oper-
ations [Lin et al., 2011a; Bokeloh et al., 2011a], which is beyond the scope of
our discussion. Other deformation constraints include slippability for joint-
detection [Xu et al., 2009a].

The “iWires” system by Gal et al. [2009] is based on the observation that geo-
metric relations such as parallel lines and planes, right angles, and symmetric
and regular parts are characteristic for man-made-shapes. This method uses
a list of Euclidean invariants and a greedy propagation algorithm to maintain
these shape properties. Most of these invariants arise from the more concise
assumption of preserving the symmetry structure of the input model, i. e., the

13 2.2. SHAPE DEFORMATION

algebraic relation between transformations that form regular correspondences
within a shape [Kurz et al., 2014].

Symmetry-aware deformation Symmetry has been utilized as a tool for
structuring and guiding shape editing in a number of recent shape editing
approaches: Zheng et al. [2011] enforce symmetry of object-aligned proxies for
intuitive shape manipulation. Wang et al. [2011] use hierarchical propagation of
attributes in objects with complex symmetry patterns for structure-preserving
shape editing.

Bokeloh et al. [2011a; 2012a] use translational regularity as invariant for contin-
uous shape deformation (we do not consider their additional option to model
topological changes here). The main drawback of the first method is that it is a
least-squares approach. Computational costs are still considerable despite the
involved numerical treatment in their work. Symmetries are maintained only ap-
proximately and traded-off against user constraints. In practice, this leads to the
problem that the user needs to choose constraints that are roughly satisfiable;
unsatisfiable constraint will lead to bending artifacts. Increasing the penalties
for structure constraints reduces these but a large spread in penalties soon leads
to ill-conditioned optimization problems. The second method [Bokeloh et al.,
2012a] avoids these by fixing the null-space of the deformation energy through
a singular-value-decomposition (SVD). However, the SVD creates a dense ba-
sis, which limits the size of models that can be handled due to the Ω(n2) costs
involved for n vertices.

Our new method in Chapter 3 overcomes this problem by directly constructing
a sparse basis. Further, our technique handles general Euclidean motions, not
being limited to translational symmetry. The work of Kurz et al. [2014] is target-
ing at shape matching rather than editing. A least-squares formulation that is
inaccurate and multiple orders of magnitude slower than our new approach.

Symmetric bases Symmetry-invariant scalar functions have been studied by
Lipman et al. [2010]. Symmetry-invariant functions obviously form a linear space
(linear combinations of symmetric functions maintain the symmetry property),
and they propose a spectral method for determining these spaces. Ovjanikov
et al. [2013] use the subspace property to factor out distracting variability in
the context of shape matching. The concept has various further applications,
such as symmetry-based shape descriptors [Kazhdan et al., 2004a], and robust
intrinsic symmetry detection [Wang et al., 2014].

2. BACKGROUND AND PREVIOUS WORK 14

In Chapter 3, our work extend these previous ideas towards shape deforma-
tion. We will show that symmetry-preserving deformation functions form affine
spaces (more specifically, the displacement fields added to the input form a lin-
ear space). Unlike the scalar case, local frames induced by the group action need
to be taken into account to preserve symmetries. Assuming knowledge of the
symmetry groups, our approach can directly construct a suitable basis without
any need for expensive eigenvalue decompositions. This construction provides
a user-defined level-of-detail and, unlike spectral methods, can preserve the
sparseness of traditional spatial bases for deformation fields.

2.3 Model retargeting

Deformation based shape editing can not cover every aspects of 3D modeling.
Sometimes we want to add or remove elements, change model topology, etc. In
this section we would like to introduce model retargeting based content creation.

Retargeting means given an example described in predefined domain, synthesiz-
ing output with similar content in a different sized domain (usually up-scaling).
Retargeting arise from a very practical 2D problem: we often need to display
images without distortion or important information lost, on screens of various
sizes or aspect ratio. So the image would not looks much different either on a
cellphone with portrait orientation, or on a projector screen with landscape ori-
entation. Seam carving [Avidan and Shamir, 2007] is a representative algorithm
for image resizing, which is optimized to keep content while cropping the image.

We are interested in extending this idea to the problem of 3D content creation.
The difficulties and our solution in a large shape category will be explained in
Chapter 4, while related work is listed in the following.

Model assembly This category of methods decompose an input model into parts
and recombine them from different sources into new shapes. Early work from
[Funkhouser et al., 2004] allowed parts to be assembled interactively to form new
shapes. Shapes can also be created by interpolating parts from two exemplar
shapes, based on parts matching [Jain et al., 2012] or hand coded substructure
[Zheng et al., 2013]. More recently, large collection of shapes have been taken
into consideration. In [Xu et al., 2012a] novel shapes are produced from the
evolution of an initial population of 3D models. Averkiou et al. [2014] analyze
unorganized collections of 3D models to facilitate exploratory shape synthesis
using high-level feedback. Kalogerakis et al. [2012] use a generative probabilistic
model of shape structure trained on a set of compatibly segmented shapes to
learn the structural variability.

15 2.4. SYMMETRY DETECTION

Rertarget based methods People have made initial attempt to apply MRF-based
texture synthesis to 3D modeling. For example, Merell et al. [2011] stitch geom-
etry using adjacency constraint to preserve local consistency. However, MRF-
based 3D model synthesis suffers from the problem of lacking knowledge of
high level structure, and the computational cost of generating detailed models is
high [Merrell, 2009]. In the past decade, great efforts have been made to explore
shape structures for high quality 3D synthesis. For example, global symmetries
[Mitra et al., 2006a; Pauly et al., 2008b] and partial symmetries [Bokeloh et al.,
2010b, 2011b] are extracted from input models, which are used to regularize
synthesis model. This forms the basis for inverse procedural modeling, which
represents families of shapes by automatically inferred context-free grammars
[Bokeloh et al., 2010b]. Bokeloh et al. [2012b] propose an algebraic model that
describes shapes in terms of regular patterns, interlinked with fixed topology.
The shape space is parameterized by a small set of parameters. The limitation is
that their method requires exact regularity (grids of at least 3×3 identical copies)
to be applicable. More complicated (architectural) models can be handled using
manual user annotations [Lin et al., 2011b].

Texture synthesis 3D texture synthesis has been boosted from fruitful progress
recently made in the 2D case [Wei et al., 2009]. Here, various forms of guid-
ance have been employed to overcome the limitations of the MRF models. This
can be achieved using an additional image layer with user annotations [Hertz-
mann et al., 2001] or on-the-fly user interaction [Barnes et al., 2009]. For image
retargeting, results can be improved by better metrics for comparing MRFs.
For example, [Simakov et al., 2008] uses bidirectional matching and a gradual
resizing procedure for retaining the image structure.

We are particularly inspired by the recent success of applying statistics in image
editing [Pritch et al., 2009] and in-painting [He and Sun, 2012]. When using this
idea for 3D synthesis, we can obtain plausible shape variations that previous 3D
texture synthesis algorithms fail to produce without user-guided analysis. This
conceptual novelty leads to a simple but robust implementation in Chapter 4
for content-aware 3D shape synthesis.

2.4 Symmetry detection

Since its introduction to the graphics community by a series of seminal papers
[Podolak et al., 2006; Mitra et al., 2006c; Simari et al., 2006; Gal and Cohen-Or,
2006], symmetry detection and its applications has attracted many attentions
[Mitra et al., 2013b]. We focus on key ideas to deal with geometric variability,

2. BACKGROUND AND PREVIOUS WORK 16

which guided us in Chapter 5 towards an algorithm for detecting approximate
symmetries.

Transformation voting Methods in this category equip every data points with
a transformation-invariant local descriptor, then count transformation votes
casted from matching feature pairs [Mitra et al., 2006b; Podolak et al., 2006; Loy
and Eklundh, 2006]. Voting methods excel at recognizing approximate symme-
try, which is shown clearly in [Mitra et al., 2007]. However, the use of a single
transformation space (marginalizing out location information) limits their de-
tection to coarse scale structures. Details and/or larger numbers of instances
can not be easily identified out of structured background noise in the transfor-
mation space. This problem can be alleviated by a more restrictive hierarchical
decomposition [Mitra et al., 2006b] or additional regularity priors [Pauly et al.,
2008a].

Feature-graph matching This line of work avoids the prerequisite of common
transformation space [Berner et al., 2008; Bokeloh et al., 2009]. Their methods
can be understand as brute-force direct alignment schemes that uses constella-
tions of local features as filters, i. e., rapidly reject clearly non-matching geometry.
Final validation is always obtained via ICP alignment [Chen and Medioni, 1992].
With a careful design, feature-graph matching can providing near-linear scaling
behavior [Kerber et al., 2013]. As these methods rely on direct rigid alignment,
they are able to yield good detection results on exact data (even in the presence
of substantial noise), but direct alignment prohibits systematic shape deforma-
tion. Attempts have been made to handle deformable feature graphs [Berner
et al., 2009, 2011]. However, results on real-world data were rather limited be-
cause they lack an efficient way of validation, when conjectured patterns have
large supporting areas in the data.

Spectral clustering Lipman et al. [2010] recognize symmetric features as clique
members in a matching graph, or equivalently, estimate a transitively (cycle-)
consistent equivalence relation between features [Huang et al., 2012]. Spec-
tral embedding is used to recover the latent equivalence relation from noisy
data. The method does not yet address the problem of how to find the support
region of the match, i. e., how to determine the area of the match during the
optimization. Kalojanov et al. [2012] show that building blocks (coined “mi-
crotiles” in their paper) have consistent constellations of matches under the
transformations that relate them. However, their model cannot handle approxi-
mate matching (it even yields artifacts on exact data due to numerical noise).
Spectral clustering has been extended by Kim et al. [2012] towards shape collec-
tions. They apply diffusion in a sparse matching graph, which avoids unreliable
long-distance matches. Mattausch et al. [2014] cluster feature patches and incor-

17 2.4. SYMMETRY DETECTION

porate co-occurrence by adding a pairwise geometric consistency term, which
is in line with [Leordeanu and Hebert, 2005]. This model does not try to find
consistent co-occurrence patterns that characterize specific building blocks, i. e.,
different arrangements of elementary feature constellations would be treated the
same. Their feature design is optimized for indoor architecture (planar patches),
and requires a global upward direction. A similar approach is employed by Tam
et al. [2014] in an intrinsic setting, where individual point-orbits are assembled
using a greedy algorithm.

Isometric matching Invariance to near-isometric bending can be obtained by
an intrinsic formulation. Ovsjanikov et al. pioneered this approach using a global
Laplacian embedding [2008], then partial matchings have been considered
afterwards [Xu et al., 2009b; Mitra et al., 2010; Kim et al., 2011; Xu et al., 2012b].
Building block area can be optimized using boundary length regularization
[Raviv et al., 2010].Huang et al. [2014a] detect near-regular intrinsic patterns
in shapes with strong geometric variability. To our knowledge, this is the only
method available to date that can automatically detect subtle repetitive features,
such as the scales on the Stanford dragon. However, it requires near-regular
placement of instances (a deformed grid), and only works on manifold geometry.

Co-segmentation Co-segment model collections has received a lot of atten-
tion recently. [Kalogerakis et al., 2010] learn segmentation from examples, and
[Golovinskiy and Funkhouser, 2009; Huang et al., 2011; Sidi et al., 2011; Hu et al.,
2012] extend this idea to unsupervised optimizations. Laga et al. [2013] add
geometric relations in a conditional random field model, which combines lo-
cal feature matching with pairwise neighbor consistency of discrete elements.
Demir et al. [2015] step further to couple segmentation and similarity detection
together, which can reveal shape similarities for architectural models.

Other approaches Geometric moments can be used to detect symmetry [Kazh-
dan et al., 2004b; Martinet et al., 2006], but these methods are limited to global
symmetry. Recursive folding [Simari et al., 2006] can be used for hierarchical
bilateral similarity, with similar restrictions to other direct alignment methods.
Continuous symmetry can be directly detected using differentials of alignment
energies [Gelfand and Guibas, 2004], which is beyond our focus. [Xu et al., 2013;
Liu et al., 2014; Chen et al., 2014; Zheng et al., 2014] reverse engineer the high-
level organization of scenes through geometric invariants or shape grammars.
Fish et al. [2014] characterize shape families by marginal distributions of ge-
ometric properties, which is related to generalized co-occurrence model that
also leverages pairwise marginal distributions of relating geometry. Functional
maps [Ovsjanikov et al., 2012] consider first order marginals of correspondences,
which form a convex Euclidean space. Various matching cues (date terms) can be

2. BACKGROUND AND PREVIOUS WORK 18

integrated through simple linear algebra tools. Regularization is more involved
and requires a careful design of basis functions and additional constraints. For
example, [Huang et al., 2014b] shows how cycle consistency is linked to low-rank
maps.

Chapter 3
Real-Time

Symmetry-Preserving
Deformation

In this chapter, we specifically studied 3D geometric shapes of fixed symmetry
structure, and address the problem of structure-aware shape deformations.
We also made efforts to alleviate the running time issues due to numerically
expensive and poorly conditioned optimization, which normally encountered
in alternative approaches for symmetry-preserving shape editing.

3.1 Introduction

As explained in Chapter 1, content creation is one of the remaining open chal-
lenges in the field of computer graphics, mainly because the creation of digital
3D models is still tedious, technical, and expensive. In this work we stick to the
structure-aware approach, and specifically contributes to the area of structure-
aware shape deformation.

Structure-aware methods try to reduce modeling costs and lift interaction with
digital 3D models to a higher semantic level by an analysis-and-synthesis ap-
proach: A shape (or a collection of shapes) is first analyzed in order to detect
important structural invariants. Afterwards, these constrains are used to narrow
down the space of possible shapes considered in editing and shape synthesis,
thus permitting the user to obtain plausible shape variations more quickly.

19

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 20

This chapter contributes to the area of structure-aware shape deformation. The
task here is to find and apply structural constraints during shape editing, thereby
making the space of possible deformations more easily navigable.

Several such structure-aware deformation methods have been proposed in the
last few years (for example, see [Kraevoy et al., 2008; Xu et al., 2009a; Zheng
et al., 2011]). A significant idea in this domain has been introduced by Gal
et al. [2009]: Their “iWires” system detects relations of Euclidean geometry
(parallelity, orthogonality, symmetry) within shapes, and uses them as invariants
during shape deformation. In particular for man-made shapes, this provides
a very useful tool to fully automatically determine a large class of plausible
shape variations. In more recent work [Bokeloh et al., 2011a; Zheng et al., 2011;
Bokeloh et al., 2012a; Kurz et al., 2014], the model has been simplified towards
preserving the symmetry structure of the model, which reduces the approach to
a simple, abstract principle. While such a formulation is formally appealing, it is
limited by a complex implementation, approximation artifacts (in least-squares
formulations), and computational costs.

In this chapter, we study classes of shapes of fixed symmetry structure. We con-
sider shapes with partial symmetries, i. e., there are one or more groups of affine
transformations that are symmetry groups of subset of a shape, i. e., leave these
subsets invariant. In particular, this includes the important class of symmetry
under Euclidean motions. Extending previous work on symmetry-invariant
functions on shapes [Kazhdan et al., 2004a; Lipman et al., 2010; Ovsjanikov et al.,
2013; Wang et al., 2014], we show that the set of all deformations that preserve
the symmetries of a shape forms an affine subspace of the set of all continuous
spatial deformations.

We use this insight to devise an efficient and simple algorithm for constructing a
basis for these deformation spaces: We perform Poisson-disc sampling of the
domain while replicating points by the group action of the present symmetry
groups. Further, we associate each point with the Jacobian of the transformation
to handle general Euclidean symmetry, and equip it with a Gaussian radial basis
function to span spaces that are band-limiting to the user’s preference.

We apply this construction to create a symmetry-preserving subspace defor-
mation method based on Laplace surface editing (in a non-linear variant with
co-rotation of the local frame, to account for large deformations). Our tech-
nique preserves symmetries exactly while nonetheless being able to represent
low-frequency deformations with a very small set of basis functions. The basis is
redundancy-free in the sense of having symmetry backed-in already; no explicit
constraints need to be solved for to maintain symmetry. This, along with the
subspace approach, leads to a deformation method that is significantly faster

21 3.2. PARTIAL SYMMETRIES

than previous approaches and at the same time is numerically robust and very
easy to implement. We also believe that the idea of a direct construction of a
redundancy-free basis in symmetric domains might be useful beyond the appli-
cation area of shape deformation that we explore as motivating application in
this work.

In summary, we make two main contributions: First, we characterize shape
spaces of fixed symmetry as affine spaces. Second, we use this observation to
directly construct a basis for the space of symmetry-preserving deformations,
which leads to very simple and efficient shape editing algorithms.

3.2 Partial Symmetries

In this section, we revisit notions of (partial) symmetry (see Chapter 2 for a more
detailed exposition of basic concepts), and introduce notations that we need for
deformation problems.

Let us consider a surface in R3 given by a two-manifold M and an embedding
x : M → R3. An automorphism of M is a map ϕ : M → M that is a homeomor-
phism, i. e., is continuous, bijective and has a continuous inverse. Under the
composition of maps, the set of automorphisms of M forms a group that we
denote by Ψ(M). Symmetries of M relate to subgroups of Ψ(M).

For our experiments, we are using triangle meshes in R3. In this case, M is
the surface mesh itself (or any isomorphic simplicial manifold) and x is the
continuous and piecewise linear map that maps every vertex to its positions in
R3.

Symmetry Any Euclidean motion g ∈ E(3) can be composed with the em-
bedding x, which results in a new map g ◦ x : M → R3. Loosely speaking, a
(Euclidean) symmetry of the embedded surface (M , x) is subgroup G of E(3)
such that every g ∈G maps x(M) to itself. More formally, we say that a subgroup
G ≤ E(3) is a symmetry of (M , x) if there is a subgroup Φ≤Ψ(M) such that for
every g ∈G there is a ϕ ∈Φ such that

g ◦x = x ◦ϕ (3.1)

and the map G → Φ induced by this relation is a group isomorphism. The
equality in (3.1) means that g ◦x and x ◦ϕ are the same map from M to R3.

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 22

Remark 1. Note that this concept of symmetry also works if we relax the assump-
tion that the surface is embedded. It suffices that x is locally an embedding, e. g.,
an immersion.

Partial symmetry In addition to symmetries of the whole object, we consider
symmetries of parts of the object and call them partial symmetries. This makes
the concept more powerful as objects often exhibit only partial symmetries. To
define partial symmetries, we consider a submanifold N of M , which need not
be connected. Then, the restriction x�N of x to N is an embedding of N in R3. A
symmetry G of (N , x�N) is a partial symmetry of (M , x).

Symmetry detection Various symmetry detection methods have been pro-
posed in literature (see for example [Mitra et al., 2013b] for a recent survey).
Detection is not a focus of this work; we use both manual annotation as well as
automatic detection based on Tevs et al.’s algorithm [Tevs et al., 2014b] for our
experiments. The resulting symmetry information is encoded as an annotation
of the surface M with regions Si ⊆ M , i = 1. . .m, in which the geometry x(M)
is symmetric with respect to a symmetry group Gi ≤ E(3). Each group Gi and
region Si is maximal with respect to set inclusion, in that order (first maximizing
the group size, then the area covered). The prioritized maximization implies that
the regions Si can be overlapping or even hierarchically nested; see Figure 3.3.
Our current implementation does not handle continuous symmetries, which we
leave for future work.

3.3 Symmetry-Preserving Deformation

We describe deformations of the surface by variations of x. For this we use a
displacement map u : M →R3. Then, the sum x +u describes the deformed sur-
face. Self-intersections are permitted, as it is common for surface deformation
methods. The resulting set of displacements forms a vector space. For triangle
meshes, deformations are described by the displacements of the vertices. Then,
the space of displacements equals R3n , where n is the number of vertices.

23 3.3. SYMMETRY-PRESERVING DEFORMATION

Figure 3.4: If the symmetry transformation commutes with the deformation
x +u (the automorphism ϕ in the input domain turns into the extrinsic map g
here), the deformed shape [x +u](M) will have the same symmetry as x(M).

If we have a group g that describes symmetries of the surface, then a displace-
ment u preserves the symmetry if

g ◦ (x +u) = (x +u)◦ϕ, (3.2)

where ϕ is the automorphism induced by g . Figure 3.4 illustrates how this con-
dition induces a symmetry-preserving deformation field; see Kurz et al. [2014]
for more details.

The basis of our surface modeling scheme is the observation that the set of all
symmetry-preserving displacements forms a subspace of the vector space of all
displacements (and thus the deformations themselves form an affine space).

Lemma 1. Given a symmetry group G of a surface. The set of symmetry-preserving
displacements forms a subspace of the vector space of all displacements.

Proof. We have to show that for two arbitrary symmetry-preserving displace-
ments u, v and any scalar λ ∈R, the displacement λu+v preserves the symmetry
as well. We proceed in two steps: first we show that u+v is symmetry preserving.
Consider an arbitrary g ∈G , and let ϕ denote the corresponding automorphism.
Then, we will show that g ◦ (x +u + v) = (x +u + v) ◦ϕ holds. Since g is a Eu-
clidean motion, there is an orthogonal matrix O and a translation t such that
g (p) =O(p)+ t for all p ∈R3.

g ◦ (x +u + v) = (x +u + v)◦ϕ
⇔ g ◦ (x +u + v)+ g ◦x = (x +u + v)◦ϕ+x ◦ϕ
⇔ O(x +u + v)+ t +O(x)+ t = (x +u)◦ϕ+ v ◦ϕ+x ◦ϕ
⇔ O(x +u)+ t +O(x + v)+ t = (x +u)◦ϕ+ (x + v)◦ϕ
⇔ g ◦ (x +u)+ g ◦ (x + v) = (x +u)◦ϕ+ (x + v)◦ϕ

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 24

In the first step, we used the definition of the symmetry (3.1). The last equation
holds by our assumption that u and v are symmetry-preserving. A similar
argument shows that λu is symmetry-preserving.

3.4 Direct Subspace Construction

In this section, we introduce an explicit construction of subspaces of the space
of symmetry-preserving displacements. For this, we first generate a sampling
of the surface that respects the symmetries (including partial symmetries) of
the surface. This means every symmetry of the surface is a symmetry of the
sampling as well. In addition, the sampling is an r -sampling of the surface,
which means that for every point of the surface there is a point in the sampling
at distance less than r . As a second step, we construct the space of symmetry-
preserving displacements of the point sampling. Finally the displacements
of the sampling are propagated to symmetry-preserving displacements of the
surface. This construction offers two benefits. Most importantly, we obtain
a low-dimensional subspace of the space symmetry-preserving deformations.
Even if the underlying mesh is highly resolved, we can control the size of the
subspace using the parameter r . This is important for obtaining an editing
system that runs in real-time. A second benefit is that even if the input is a set
of approximate symmetries, we can create a symmetric sampling. In this case,
the sample points are not on the surface, but only close to it. To compute the
deformations, we only need to preserve the exact symmetries of the sampling.

Symmetric sampling We propose a symmetry-aware Poisson disc sampling
scheme that scatters points sparsely in the domain such that they conform to
the underlying symmetry group structures. As input, we are given the surface M ,
annotated with potentially multiple, and potentially overlapping regions Si ⊆ M
with symmetry groups Gi ≤ E(3), as discussed above. We now randomly start
with a seed point, chosen with uniform probability from M . We then search for
all annotations Si this point is contained in. Then, for each symmetry group
Gi , whose domain Si contains this point, we add all the corresponding points
transformed by its group action into sample set. To handle overlapping and
nested symmetries correctly, we form the transitive closure: If the transformed
sample point lies within a previously unseen area S j , we recursively apply all
transformations from G j to this point. This process is continued until no new,
previously non-sampled points are discovered anymore (a simple threshold of
10−4× the scene size is used to recognize doublet samples). All of those sample
points will later be coupled, moving coherently and not providing more than

25 3.4. DIRECT SUBSPACE CONSTRUCTION

three degrees of freedom altogether. For each of those newly added samples,
we mark all points with a small radius φsam as invalid, which means they can
not be picked later. We redo this process on the remaining point set, and iterate
until all the points are either picked into the sample set, or marked as invalid.

Symmetry-preserving displacements of the sampling Let us first as-
sume that the shape has only one constant symmetry group: During the sam-
pling, we collect the transformations that map every seed point to its whole
orbit. These can be used to construct the space of symmetry-preserving dis-
placements of the sampling. For this, we use the following fact: whenever a
point p is transformed by a Euclidean motion g (p) =O(p)+ t , a displacement
u of the point is transformed only by the orthogonal matrix O. Hence, we ob-
tain a symmetry-preserving displacement of the sampling by displacing one
vertex and propagating the displacement to the orbit of the point using only
the orthogonal parts O of the Euclidean motions g (Figure 3.7(a)). The orbit
of any sample point p has exactly three degrees of freedom that we obtain by
applying this procedure to the unit displacements of p into each of the three
coordinate directions. To generate a basis of the space of symmetry-preserving
displacements, we construct the three basis vectors for every seed point we
placed during sampling.

Partial, overlapping, and nested symmetry The same construction also
works for nested and overlapping symmetry groups, where the transitive closure
of the orbits is considered (Figure 3.6). The sampling algorithm generates these
points by following and concatenating the local transformations during sam-
pling. Hence, the local frames O are given by concatenations of the orthogonal
mappings involved.

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 26

(a) local frames (b) double frames (c) near-doublets

Figure 3.7: Local frames. (a) Each sample point is associated with a local frame
O. (b) If a point lies within a transformation-invariant set, it can have more
than one frame O1,O2, (c) The problem can be ignored for points in general
position as the contributions of the radially-symmetric basis functions cancel
out and the low-pass kernel maintains the band-limitation.

(a) random sample (b) excluded discs (c) final sampling

Figure 3.8: Symmetric sampling. (a) We pick a random point and apply all
group transformations to it. (b) An exclusion disc is centered at each point for
futher sampling. (c) New points are sampled from non-excluded area until the
object is fully covered.

Degenerate samples A special case occurs if a sampling point is visited
more than once but with different local frames Oi . This can happen on transformation-
invariant sets, such as the diagonals in Figure 3.7(b): Here, we have orbits with
four points from eight transformations, and each point has two different frames,
differing by a reflection. The correct solution is obtained by reducing the di-
mension of the basis to those vectors v for which Oi v =O j v for all i , j , which

27 3.5. SYMMETRY-PRESERVING EDITING

yields is a linear system of equations. Due to the random sampling, this is rarely
encountered in practice. In relevant cases, we can perform an SVD reduction of
the null space to remove spurious degrees of freedom. If points do not perfectly
overlap but only come close (which is still common close to transformation-
invariant sets, see Figure 3.8(c)), we do not need to take special measures — the
contributions of the basis functions cancel out exactly; we only obtain some
overhead due to too dense sampling. The overhead is small as it only occurs
at transformation-invariant sets of measure zero (reflection planes, rotation
centers, Figure 3.7(c)).

Lifting the displacements To propagate a displacement of the sampling
to a displacement of the surface, we compute for each basis vector b̄i of the
space of symmetry preserving displacements of the sampling a corresponding
displacement vector bi of the mesh. Then, the displacement ū = ∑

i qi b̄i of
the sampling is lifted to the displacement u = ∑

i qi bi of the mesh. The basis
vectors b̄i and bi are a vector fields specifying a three dimensional vector for
each sample point and mesh vertex. We denote these three dimensional vectors
by b̄i (v̄l) and bi (vk). A displacement of a sampling point should only affects the
displacement of the mesh vertices in a local neighborhood. We use Gaussian
functions with standard deviation equal to the sampling density around every
sample point to a assign influence weights to the mesh vertices. The Gaussian
functions are cut-off (set to zero) for function values below 0.001. For each pair
of a point v̄l of the sampling and a vertex vk of the mesh, we obtain a weight wkl .
Due to the compact support property this weight matrix is sparse. The basis
vectors bi are given by a partition-of-unity:

bi (vk) = 1∑
l wkl

∑
l

wkl b̄i (v̄l).

The basis bi can be precomputed such that the Gaussians need not be evaluated
in the interactive editing phase.

3.5 Symmetry-Preserving Editing

Once the subspace of symmetry-preserving displacements has been constructed,
any deformation-based editing scheme could be used to produce symmetry-
preserving deformations. Only the set of feasible displacements needs to be
restricted to the subspace. However, as the meshes can be highly resolved, the
computation of a deformation can be expensive. To be able to compute defor-
mations of the surface in real-time, we restrict to low-frequency deformations

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 28

that are liftings of displacements of the sampling. To compute the displace-
ments of the sampling, we use an iterative co-rotated Laplace editing inspired
by the approach proposed in [Au et al., 2006]. The reasons for choosing this are
approach are that on the one hand, we obtain a non-linear editing scheme that
allows for large deformations, and, on the other hand, we only need minimal
additional structure to compute the deformations. Namely, we need a Laplace
matrix for the sampling and a list of neighbors for each vertex.

There are different ways to get a Laplace matrix for the sampling. One is to
compute the Laplace matrix of the original mesh and to restrict this matrix to
the subspace generated by the sampling, see [Huang et al., 2006]. A second way
is to compute a point-cloud Laplacian, see [Liu et al., 2012], of the sampling.
In our implementation, we specify a graph structure on the sampling: any
pair of distinct points closer than 2r is connected by an edge. Then, we use the
discrete Laplace (or Laplace–Kirchhoff) matrix of the graph, which is given as the
difference of the degree matrix and the adjacency matrix. For Laplace editing, the
Laplace matrix is applied not just to one function, but to the three component
functions of the displacement vector field of sample points. Therefore, the n ×n
Laplace matrix is extended to a 3n ×3n matrix by replacing every entry with
the 3×3 matrix that is the entry times the 3×3 identity matrix. We denote this
extended Laplace matrix by L.

Laplace editing The basis of the non-linear iterative co-rotated Laplace edit-
ing is the linear Laplace editing. For a thorough discussion of linear surface
editing methods, we refer to [Botsch and Sorkine, 2008]. Here we briefly review
the variant of Laplace editing our scheme is based on. The deformation is com-
puted by solving a quadratic minimization problem. The objective functional
combines two quadratic functionals: one measures the deviation of the so-called
Laplace coordinate and the other measures the deviation (in a least-squares
sense) from user-specified constraints. We denote by x̄ the vector listing the
coordinates of the sample points and by ū the displacement of the sampling
points. We use the bar to distinguish the coordinates and displacements of the
sampling from those of the surface mesh. The vector of Laplace coordinates is
δ= Lx̄ and the first quadratic functional is

EL(ū) = ‖L(x̄ + ū)−δ‖2 .

In our implementation the user can select handle regions in the sampling and
assign desired positions to the selected sample points by rotating and translating
the handles in space. The deformed sampling will approximate these constraints.
The corresponding least-squares functional is

EC (ū) = ‖A(ū)−a‖2 ,

29 3.5. SYMMETRY-PRESERVING EDITING

where a lists the desired displacements of all vertices in the handle regions. The
matrix A is rectangular and has only one non-zero entry per row, which takes the
value 1. The resulting deformation is given by the displacement that minimizes

E(ū) = EL(ū)+αEC (ū) (3.3)

among all symmetry-preserving displacements. The parameter α ∈R+ controls
how strongly the surface is pulled towards the user-specified handle positions.

To solve the quadratic program, we use the null-space method; see [Nocedal and
Wright, 2006], Chapter 16.2. Let U be the rectangular matrix whose columns
are the basis vectors of the space of symmetry-preserving displacements of the
sampling, and let q be the vector of coordinates with respect to the basis. To
compute the minimizer of (3.3) in the space spanned by U , we have to solve the
linear system

U T (LT L+αAT A)U q =U T (αAT a +LT (δ−Lx̄)) (3.4)

for q . Then, U q is the solution in the space of symmetry-preserving displace-
ments of the sampling. Since the symmetric, positive definite matrix U T (LT L+
αAT A)U only changes when new handle regions are selected or the weight α
is modified, it is efficient to compute a Cholesky factorization of this matrix
and to re-use it for solving the minimization problems. In addition, using a
factorization speeds up the iterative co-rotated Laplace editing.

Iterative co-rotated Laplace editing A limitation of Laplace editing is that
deformations that include larger rotational components lead to visually observ-
able artifacts in the deformed surface, see [Botsch and Sorkine, 2008].

Therefore, we use a non-linear variant obtained by iteratively applying Laplace
editing. The Laplace coordinate can be interpreted as a vector field on the
sampling specifying a 3-dimensional vector δi for every vertex. The Laplace
coordinate is related to the discrete mean curvature normal and every δi should
point into the direction of the surface normal at the corresponding sample point.
The co-rotated Laplace editing process iterates a two-step procedure. First,
the linear system (3.4) is solved. Then, the Laplace coordinates are rotated to
point in normal direction of the deformed sampling. For rotating the Laplace
coordinate of each vertex, we consider the undeformed and deformed local
neighbors of the sample point and compute the rotation such that the rotated
undeformed neighborhood best matches the deformed neighborhood. The
neighborhoods are defined by the graph structure on the sample points. The
rotation matrix can be computed using SVD, as described in (the additional

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 30

material of) [Sorkine and Alexa, 2007]. We stop the process when the maximum
number of iterations (usually 5-10) has been reached. Once a displacement of
the sampling is computed, we use the lifting process described in Section 3.3
to propagate the displacement of the sampling to a deformation of the surface
mesh.

3.6 Experiments and Discussion

We tested our implementation of the proposed method on a set of shapes with
varying complexity. Some shape have only a few symmetries, other have more
complex nested symmetries. The mesh sizes vary from 4k to almost 200k vertices.
Details are listed in Table 3.1. We tested the method with automatically detected
and with manually specified symmetries. For example, the 61 symmetries of
the car model (Figure 3.11) have been detected using the method proposed
in [Tevs et al., 2014b] and the 9 symmetries of the center piece (Figure 3.1) have
be specified manually. For every example, the symmetries are illustrated in
the corresponding figure. We tested with various sampling densities resulting
in 72 to 690 sample points. We used random sampling and feature-sensitive
sampling, where sharp features are selected first. We found the random sam-
pling to produce the same quality of results as the feature-sensitive approach.
Still, we show one example (the bar, Figure 3.5) produced with feature-sensitve
sampling (here, we use the SVD-reduction described in Section 5 to remove
doublet frames; this is not required/performed elsewhere). The dimensions of
the spaces of symmetry-preserving displacements vary from 18 to 234. For many
examples, we show large deformations, which the iterative co-rotated Laplace
editing nicely supports.

Timings Our implementation of the symmetry-preserving modeling runs at
13-60 fps in our experiments. Table 3.1 lists details for the shown examples,
including timings for pre-factoring the Laplace matrix, 5 iterations of the co-
rotated Laplace editing, lifting the deformation from the sampling to the surface
mesh, and rendering. The timings were generated using a single-threaded C++
implementation running on an Intelr Xeonr E5-1620 processor at 3.60GHz
with 16GB of RAM. The timings could be improved using parallelization, in
particular, the time required for lifting the displacement from the sampling to
the surface mesh. The shown run times demonstrate that, except for lifting the
solution from the sampling to the surface and rendering the surface, the time
needed to compute a deformation is independent of the resolution of the surface.
It mainly depends on the dimension of the subspace of deformations, which in

31 3.6. EXPERIMENTS AND DISCUSSION

turn depends on the symmetry structure of the model and the resolution level
of the desired editing operations. For example, though the car and the yard tool
examples have a comparable number of vertices, there is a large difference in the
time needed to compute the deformations, which is due to different sampling
densities.

Comparison We compare our method to the recent scheme of Kurz et al. [2014].
They propose to use symmetry-preserving deformation for template fitting to
incomplete scan data. A comparison of results is shown in 3.12. A difference be-
tween the schemes is that their method enforces the symmetry in a least-squares
sense, whereas our approach exactly preserves the symmetry. The resulting dif-
ference in visual quality can be seen in the figure. For example, our method
better preserves the symmetry of the blades of the fan and better fits the desired
positions of the legs of the armchair. To obtain the deformation that matches
the given incomplete data, they combine handle-guided deformation and ICP.
Let us compare the timings for the fan example. The timings listed in [Kurz et al.,
2014] are 2 seconds and 2 minutes per iteration of the optimization, depending
on whether linear or smooth basis functions (with wider support) are used. Their
main bottleneck is the setup of the transfinite least-squares-constraints that
involve numerical integration and fine discretization (disabling them reduces
the computation times in their approach from 2 seconds to 0.4 seconds, still
including ICP). Our results were produced using only handles. After 43ms for
pre-factoring the Laplace matrix, the time per iteration of our optimization is
less than 1ms. While the numerical implementation of Kurz et al. arguably leaves
room for improvement, a performance gain of at least three orders of magnitude
indicates clear advantages of our approach.

In the following, we discuss relations and differences of the proposed approach
to the other previous work. Similar to our approach, the “ iWires” framework [Gal
et al., 2009] aims at preserving geometric relations of a shape to be edited. Our
symmetry-preservation model (based on [Kurz et al., 2014]) captures most of
their constraints (equal area, equal length, etc.). In addition to conceptual
simplicity, this also provides a navigable shape space that can be utilized as prior
in various applications. Some details are different: For example, our method
does not explicitly parallel lines. However, as linear constraints, they could be
added as special cases to our approach, too. Further, unlike our approach, we
use dense relations on symmetric area rather than feature lines (“wires”), thereby
no relying on the existence of such sharp features. As solver, iWires uses a greedy
propagation algorithm that, unlike our method, does not guarantee to satisfy
all constraints. Nonetheless, our method is still faster (Gal et al. report response
times of 2-4 seconds).

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 32

Wang et al. [2011] use hierarchical propagation of attributes in objects with
complex symmetry patterns for structure-preserving shape editing. The work
differs from ours in that it builds a hierarchical representation, breaking cycles
in symmetry-constraints by perceptual reasoning. In contrast, we utilize all
symmetry information, including arbitrary cycles. By understanding the feasible
set as a linear shape space, efficient navigation can still be guaranteed (whereas
the method of Wang et al. utilizes direct edit propagation in the hierarchy).

3.7 Summary

In this chapter, we specifically consider structure-aware deformations that pre-
serve symmetries of the shape being edited. While this is an elegant approach for
obtaining plausible shape variations from minimal assumptions, a straightfor-
ward optimization is numerically expensive and poorly conditioned. Our work
introduces an convenient method to explicitly construct linear spaces bases of
shape deformations, which exactly preserve symmetries for any user-defined
level of detail. This permits the construction of a low-dimensional spaces, which
allow only low-frequency deformations that preserve the symmetries. We obtain
substantial speed-ups over alternative approaches for symmetry-preserving
shape editing due to (i) the sub-space approach, which permits low-res editing,
(ii) the removal of redundant, symmetric information, and (iii) the simplification
of the numerical formulation due to hard-coded symmetry preservation. We
demonstrate the utility in practice by applying our framework to symmetry-
preserving co-rotated iterative Laplace surface editing, which can easily handle
models with complex symmetry structure, including partial and nested symme-
try.

33 3.7. SUMMARY

Input Deformation #1

Deformation #2 Deformation #3

Handles Symmetry #2 Symmetry #1

Sampling Symmetry #3-7 Symmetry #8-9

Figure 3.1: Shapes generated with our symmetry-preserving modeling system
are shown. These example show a combination of complex symmetries and
large deformations. The symmetries are illustrated in the bottom row.

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 34

Handles Sampling

Symmetry #1 Symmetry #2

Input Deformation

Figure 3.2: A deformation of a wind mill model generated with out symmetry-
preserving modeling system is shown.

35 3.7. SUMMARY

Figure 3.3: Nested and overlapping symmetries. Regions with different symme-
tries overlap. For example, region S1 is four-fold symmetric, and the subset S6 is
8-fold symmetric. The 2-fold symmetry of S12 overlaps partially with S11.

Handles Sampling Symmetry

Input Deformation #1 Deformation #2

Figure 3.5: Symmetry-preserving deformations of a bar are shown. The defor-
mation are generated using three handles.

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 36

Figure 3.6: Nested and overlapping symmetries are treated by propagating
samples along transformations.

37 3.7. SUMMARY

Handles Sampling

Symmetry #1 Symmetry #2

Input Deformation

Figure 3.9: A larger deformation of a yard tool generated with our symmetry-
preserving modeling system is shown.

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 38

Handles Sampling

Symmetry #1 Symmetry #2

Input Deformation #1 Deformation #2

Figure 3.10: Deformation generated with our symmetry-preserving modeling
system are shown.

39 3.7. SUMMARY

M
o

d
el

M
es

h
In

fo
.

Sa
m

p
li

n
g

In
fo

.
T

im
in

g
(m

s)
Fr

am
e

ra
te

N
am

e
F

ig
u

re
V

er
te

x
(k

)
Tr

ia
n

gl
es

(k
)

G
ro

u
p

s
Sa

m
p

le
s

D
o

F
P

re
fa

ct
or

So
lv

e
(5 It

er
.)

Li
ft

R
en

d
er

Fr
am

es
p

er
s

B
ar

3.
5

4
8

1
96

18
13

2
3

12
58

.8
C

en
te

r
p

ie
ce

3.
1

83
16

5
9

69
0

15
0

13
00

21
32

12
15

.4
P

la
n

e
3.

10
18

1
35

9
2

16
0

23
4

75
4

51
18

13
.7

Ya
rd

to
o

l
3.

9
50

97
2

78
27

55
3

22
5

33
.3

C
ar

3.
11

47
95

61
67

5
15

6
41

60
35

3
10

20
.8

W
in

d
m

il
l

3.
2

20
40

2
15

6
33

97
5

7
6

55
.6

Fa
n

3.
12

2
4

3
72

27
43

3
1

13
58

.8
C

h
ai

r
3.

12
15

58
2

32
39

4
2

1
16

52
.6

Ta
bl

e
3.

1:
St

at
is

ti
cs

an
d

ti
m

in
gs

o
f

th
e

sh
ow

n
ex

am
p

le
s.

F
ro

m
le

ft
to

ri
gh

t:
n

u
m

b
er

o
f

ve
rt

ic
es

,n
u

m
b

er
o

f
tr

ia
n

gl
es

,
n

u
m

b
er

o
fs

ym
m

et
ry

gr
o

u
p

s,
n

u
m

b
er

o
fs

am
p

lin
g

p
o

in
ts

,d
im

en
si

o
n

o
ft

h
e

sp
ac

e
o

fs
ym

m
et

ry
-p

re
se

rv
in

g
d

ef
o

rm
at

io
n

s,
ti

m
in

gs
fo

r
p

re
-f

ac
to

ri
n

g
th

e
L

ap
la

ce
m

at
ri

x,
fi

ve
it

er
at

io
n

s
o

fc
o

-r
o

ta
te

d
L

ap
la

ce
ed

it
in

g,
li

ft
in

g
th

e
so

lu
ti

o
n

fr
o

m
th

e
sa

m
p

le
s

to
th

e
su

rf
ac

e
m

es
h

,a
n

d
re

n
d

er
in

g
th

e
m

es
h

,a
n

d
th

e
to

ta
ln

u
m

b
er

o
ff

ra
m

es
p

er
se

co
n

d
.

3. REAL-TIME SYMMETRY-PRESERVING DEFORMATION 40

Handles Sampling

Input Deformation

Symmetry Sets

Figure 3.11: A deformation that preserves 61 symmetries that were automat-
ically detected is shown. Despite of the complex symmetry structures, the
modeling system runs at real-time. Some of the detected symmetries are shown
in the bottom row.

41 3.7. SUMMARY

Template Target Scan [KWW*14] Ours

Figure 3.12: We compare results of our method with results produced by the
scheme proposed by Kurz et al. [2014].

Chapter 4
3D Model Retargeting

Using Offset Statistics

In this chapter we consider discrete translational symmetry, so statistics along
each translational line can be easily summarized. Through the study of offset
statistics, we have observed sparse distribution, and used this property to sim-
plify retargeting process. We also conducted empirical experiments to verify our
sparsity hypothesis, which further serves as a guidance to our algorithm.

4.1 Introduction

As introduced in Chapter 2, retargeting is a very practical method for creating
2D contents. Texture synthesis is one of such applications, which is a versatile
example-based generative model for creating and editing 2D images. However,
generalize its principles to 3D is difficult, due to the higher demand of model ac-
curacy, and the larger search space that also contains many implausible shapes.

Synthesizing shapes from examples involves two key challenges: First, we have
to characterize the shape space of plausible variants of the input data. Second,
we also need an efficient algorithm to explore that shape space.

A necessary requirement for plausibility is local consistency: Shapes should
form closed surfaces that resemble the input data at a local scale. This notion is
captured by Markovian texture synthesis methods [Wei et al., 2009]. However,
local consistency is not sufficient to characterize meaningful shapes (figure

43

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 44

(a) 4992 nodes, 64 labels, 8.035 sec. (b) 378 nodes, 8 labels, 0.195 sec.

Figure 4.1: 3D retargeting without (a) and with (b) offset statistics. Close inspec-
tions are shown on the right. The complexity of the the graph-cut problem and
the corresponding optimization time are reported for each result.

4.1-a); synthesizing complex models (beyond “texture” with stationary statistics)
require additional structure to be maintained.

In this chapter we propose a simple but effective method to retarget 3D models
using the statistics of low-level translational symmetries. Our method is inspired
by the recent success of offset statistics in image in-painting [He and Sun, 2012]
and editing [Pritch et al., 2009]. Intuitively, it uses an MRF model to stitch
translational copies of the input model, where the optimal stitching can be
found using graph-cut based optimization. However, the method only deals
with those shapes that are aligned with salient, frequently observed offsets
between matching features, instead of arbitrary translations. This additional
regularization helps enforcing a more plausible global structure.

The key insight of our work is the sparsity of offset statistics, which reveals im-
portant structural redundancy, and can be used for generating good retargeted
shapes. Frequently appearing offsets represent dominate repetitive structures in
the model, and also indicate promising directions and spacings for retargeting
the model. To utilize this information, we set up a transformation space that is
the linear span of the dominant offset vectors, then use transformations inside
this space to translate the input model. In this way, the structural regularities
within the input model influence the distribution of the translational copies,
so are more likely to be preserved in the retargeted model (figure 4.1-b). In the
meantime, since the number of dominant offsets is relatively small (also due to
the sparsity), retargeting is significantly more efficient (c.f. figure 4.1).

A major advantage of our method is being low-level, which made our algorithm
simple and robust. In contrast, a lot of recent works use much stronger regu-

45 4.2. METHOD

(a) Feature Matching (b) 3D histogram (c) Histogram peaks(d) Principle offsets

Figure 4.2: Our analysis step a) automatically matches features, b-c) find domi-
nates offsets, and d) extracts up to three principle offset vectors.

larities, such as explicit algebraic models [Bokeloh et al., 2012b] or symmetry
hierarchies [Wang et al., 2011; Jain et al., 2012]. However, these methods require
either clean data with exact regularity, or human assistance for pre-segmentation
[Lin et al., 2011b; Zheng et al., 2013], which limit their applicability in practice.
While our method is only limited by a simpler structure representation, texture
synthesis can be easily accommodated for imperfect regularity and other data
imperfections, thereby completing previous methods.

In summary, we made the following main contributions:

• An empirical study that confirms the sparsity of offset statistics in 3D
man-made shapes.

• An algorithm that automatically detects dominant offsets from single
input models.

• A 3D texture synthesis algorithm that utilizes offset statistics for automatic,
high quality model retargeting at interactive speed.

The rest of this chapter is organized as following: section 4.2 provides an overview
of our method. In Section 4.3 we give empirical evaluation for the sparsity of 3D
offset statistics, which is the theoretical foundation of our method. In Section
4.4 we explain implementation details and in Section 4.5 we demonstrate our
results.

4.2 Method

Our method has two main steps: Offset statistics detection and model retargeting
(see figure 4.2 and 4.4).

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 46

(a) Input model (b) Dense samples (c) Features

Figure 4.3: Sampling from input model.

4.2.1 Offset Statistics Detection

In this step we compute offset statistics from the input triangle mesh. To cal-
culate features and their descriptors, we first perform Poisson disc sampling at
two different scales (figure 4.3). Low density samples are stored as features, and
the high density samples are used for computing feature descriptors. We also
include all mesh vertexes as features to improve the matching. For each feature
x, we compute its SHOT [Tombari et al., 2010] descriptor, denoted by S(x).

Next, we match similar features in the input model based on their descriptors.
For each feature x, we compute the offset vector v as the distance to its best
match:

v = argmin
v

|S(x+v)−S(x)| s.t |v| > τ> 0 (4.1)

Here v = (u, v, w) is the translation vector from feature x to its closet match.
Figure 4.2-a illustrates some example mappings (only 10% of the them are shown
for clarity). The similarity between two SHOT feature descriptors is measured
by the L2 norm | · |. The threshold τ (set to 0.15 in our experiments) avoids
matchings between features that are too close. As noted by [He and Sun, 2012],
such a minimum distance constraint is useful for avoiding trivial statistics.

Next, we compute offset statistics from the matched features. To do so we bin all
offsets into a 3D histogram, as shown in figure 4.2-b. Bins with strong magnitude
are rendered in warmer color. We then detect peaks in the histogram using
standard non-maximum suppression (figure 4.2-c) with a radius of 0.15. The
detected peaks (yellow) are the dominate offsets.

In practice we usually have about 20 dominate offsets detected from a model.
Although it is possible to keep all of them for later retargeting, this is not nec-
essary as many of them could be formed from combination of very few gener-

47 4.2. METHOD

(a) Space discretization (b) Offset montage (c) Graph cut (d) Retargeting result

Figure 4.4: Offset based retargeting.

ator vectors, which we call principle offsets. (orange spheres / arrows in figure
4.2-c, 4.2-d). Principle offsets span a regular grid of vectors (a translational
k-parameter group [Pauly et al., 2008b; Bokeloh et al., 2012b]), which provides
candidate offsets for model stitching. As our method aims at retargeting (i. e.,
resizing in principal directions), we keep up to three principle offsets for a single
model (which is also the maximum number of independent generators of a
single 3D lattice [Pauly et al., 2008b]). In consequence, this approach more or
less guarantees correct results if a 3D model actually contains a dominant grid
pattern (figure 4). However, graph-cut-based stitching, as a global optimization
method, still can find plausible solutions for models of much more complex
structure (such as the top three examples in figure 9).

In the next section we continue with the core retargeting algorithm, assuming
that the principle offsets are known. In Section 4.4 we provide details about how
to extract the principle offsets.

4.2.2 Model Retargeting

The basic idea is to retarget models by stitching together translational copies of
the input model. Intuitively, one can discretize the retargeting space into regular
voxels. Each voxel can be assigned with a label, which indicates the source geom-
etry that used for copying into that voxel. The assignment of labels can be solved
using the standard multi-label graph-cut-based optimization [Boykov et al.,
2001a]. However, stitching shapes together is non-trivial in practice, because
graph-cut-based geometry stitching can produce implausible shapes, when the
transformation that used to combine two copies is not chosen carefully.

In our context, it is impossible to stitch shapes into a good model if the boundary
of translational copies are not aligned with grid border. In theory, one can use
larger number of copies to increase the chance of getting a good synthesized

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 48

model (such strategy would also involve a yet to be defined criterion for rejecting
bad offsets). However, this is not practical as the optimization cost quickly
increases with the resolution of discretization (number of nodes and labels in
the graph). In the meantime, even with a very fine discretization, graph-cut
geometry synthesis can still produce invalid shapes if the structure of the input
model is ignored.

Our key insight is to use offset statistics to set up a proper transformation space
that preserves the structure of the input model. To do so, we define the offset
space Φ as the span of pre-detected principle offset vectors:

Φ=
{ K∑

i=1
λi vi |λi ∈Z

}
(4.2)

As previously discussed, the principle offsets {vi }K
i=1 are generators for resizing a

model in different canonical directions. Z in Eq. 4.2 is the set of integer numbers,
so λi is the number of steps to resize a model using vi . We restrict λ to be integer
values for discrete optimization. In this work we use three principle offsets
(K = 3) so the offset space contains M =U ×V ×W translational copies of the
input model, where {U ,V ,W } are the steps for different principle offsets. Each
copy has a unique offset label {li }M

i=1 = (ui , vi , wi), indicating the translational
mapping between the copy and the original model, represented as number of
steps that principle offsets to be applied. For example, l = (1,0,0) indicates the
copy is shifted by one step in the first principle direction. It is clear that M is
also the number of labels for the later multi-label graph-cut optimization.

We now define retargeting space Ω as the volume covering synthesized model.
We discretizeΩ into a regular subdivided volume, once again, using the principle
offsets as the generators so it is consistent with the offset space Φ. Specifically,
the retargeting space has Ω = (Ui n +U)× (Vi n +V)× (Wi n +W) voxels, where
Ui n ,Vi n ,Wi n are the respective dimensions of the input model (in units of princi-
ple offsets). Figure 4.4-a shows an input model, imposed by a 2×2×2 offset space
(red) and the resulting retargeting space (gray). Figure 4.4-b shows a montage of
all translational copies rendered with different colors. These copies collectively
fill up the retargeting space.

To stitch all copies together, we assign each voxel in Ω an offset label: L(x) = li .
Intuitively, it means that voxel x in the synthesized model has its geometry
copied from voxel x−(vi ,ui , wi) in the input model. We find the optimal labeling
assignment by minimizing the following MRF energy function:

E(L) = ∑
x∈Ω

Eu(L(x))+ ∑
(x,x′)|x,x′∈Ω

Ep (L(x),L(x′)) (4.3)

49 4.3. SPARSITY OF 3D OFFSET STATISTICS

The unary term Eu is 0 if the label is valid (that is, x− (vi ,ui , wi) is a known voxel
in the input model). Otherwise the term will receive infinite cost. The pairwise
term Ep encourage smoothness between adjacent voxels in the 26-connected
neighborhood. For each pair of neighboring voxels (x,x′) with label assignment
L(x) = li and L(x′) = l j , we define Ep as:

Es(li , l j) = dH (G(x+ li),G(x+ l j))+dH (G(x′+ li),G(x′+ l j)) (4.4)

This energy function penalizes stitching together voxels that have different
geometries. Here G(x) is the shape descriptor for voxel x. We simply use the set of
SHOT descriptors contained in the voxel. Then similarity between two voxels are
computed as the Hausdorff distance dH between those two sets, while similarity
between individual SHOT features is measured using the L2 norm. Notice the
pairwise feature distances have already been computed in the previous step
(Section 4.2.1) and can be reused here. In practice the target volume often
contains empty voxels. In this case we assign zero distance if both voxels are
empty, or infinite distance if only one of them is empty. It is easy to see that
Es is sub-modular, so we can optimize Equation 4.3 using the alpha-expansion
algorithm [Boykov et al., 2001a], which produces optimal label assignments for
the retargeting space N . Figure 4.4-c, d show the synthesized model output by
the graph-cut optimization, where colors in figure 4.4-c indicate the offset labels
assigned to different parts of the model. In Section 4.5 we will show more results
and compare our method to an alternative method.

4.3 Sparsity of 3D Offset Statistics

The sparsity of offset statistics is the theoretical foundation for our method. In
this section, we give some empirical evidence for the validity of this assumption
using a study similar to [He and Sun, 2012]. We collect two datasets of 3D shapes,
one for man-made objects and the other for natural objects. The man-made
dataset (figure 4.5-c, top row) contains 200 models, including architectures, fur-
niture, vehicle etc. The natural dataset (figure 4.5-c, bottom row) contains 120
models, such as human, animals and foliage. All models are pre-normalized and
centered so the maximal dimension of each model is scaled to [−1,1]. As previ-
ously described (figure 4.3), a dense point cloud is sampled for each model using
Poisson sampling with 0.02 as the sampling space, from which a feature point
cloud is re-sampled using 0.06 as the sampling space. Then 352 dimensional
SHOT descriptor is computed for each feature. We use a fairly large radius (set to
0.2 in our experiment) to encode sufficient geometric information in the SHOT
descriptors [Tombari et al., 2010]. For each feature, we find its closest match as

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 50

(a) Cumulative distribution (b) Zoom-in

(c) Datasets: man-made (top) and natural (bottom) subjects

Figure 4.5: Offset sparsity.

defined in Equation 4.1. We then bin the offsets between matched features and
sort the bins in descending order of their magnitude (number of offsets in a bin).
We use bin of size 0.05 in each dimension, and test different minimum distance
thresholds τ (figure 4.5-a, b) for precluding trivial infinitesimal similarity case.

In order to examine the sparsity of offset statistics, we accumulate the bins
and plot the cumulative distribution (averaged over all models) in figure 4.5-a.
The diagonal line (gray) is the cumulative distribution for a uniform statistics,

51 4.4. IMPLEMENTATION

indicating the most non-sparse distribution. In comparison, man-made objects
have a clearly sparse distribution as the curve is highly non-linear. For example,
when τ= 0.15 (green curve), 79.9% of offsets are distributed in only 7% of bins,
97.1% of offsets are distributed in 20% of bins. We also observe that τ has little
influence on the distribution – as the curves for different τ are very similar. This
can be better seen in the enlarged plot (figure 4.5-b). Notice although the curve
of τ= 0 (blue) is relatively more distanced to the others, the difference is not as
distinct as being observed in 2D image case [He and Sun, 2012]. This is because
3D models have higher degree of accuracy, thus are less likely to have false
positive matchings. Nonetheless in practice we still use τ= 0.15 to eliminate the
possibility of getting trivial peaks around (0,0,0) in the 3D histogram. Figure 4.2
shows an exemplar model where three principle offsets are detected. Figure 4.6
shows cases where only one or two principle offsets can be found in a model.

It is worth mentioning that the sparsity is not equally notable for natural objects,
as the red curve shows. For example, only 40.4% (compare to 79.9% of the man-
made objects) of offsets are distributed in 7% of bins. Although there is still
some sparsity, as the cumulative curve is above the diagonal line of an uniform
distribution, we find it gives little advantage for model retargeting.

4.4 Implementation

In this section we provide implementation details of our algorithm. We use the
popular SHOT descriptor for matching features. But any other descriptors, such
as FPFH [Rusu et al., 2009], can also be used. Since we only consider translational
offsets, we do not need rotationally invariant feature matching. We therefore fix
the local reference frame of each feature to be aligned with the world coordinate
frame. Once features are matched, we bin them into a 3D histogram, where
each bin is a cube of 0.05 on each side. We detect peaks using non-maximum
suppression with a local window size of 0.15 (consistent with the value of τ in
Equation 4.1). Each peak represents a dominant offset of the model. Since those
offsets are not very accurate at this stage, for the reason that they are defined at
the resolution of bins, we increase their precision using a global iterative closest
point algorithm on the entire point cloud.

Next, we find up to three principle offsets (c.f. Section 4.2.1) using a greedy
selection strategy on a list of dominant offsets sorted in decreasing order of their
histogram magnitudes. We select the first dominant offset in the list as the first
principle offset v1, since it has the maximal number of matched features. The
second principle offset v2 is the first remaining dominant offset that satisfies

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 52

Feature Matching 3D histogram Histogram peaks Principle offsets

Figure 4.6: Offset statistics for different structures. Top: 1D grid, Middle: 2D
grid, Bottom: sheared 2D grid.

53 4.5. RESULTS

−cosθ ≤ v1·v2
|v1||v2| ≤ cosθ, which specifies a minimum angle between those two

principle offsets. In practice we set θ=π/3. The third principle offset, if there is
any, is set to be the first remaining dominant offset that satisfies the minimum
angle check with both of the first two principle offsets. Notice the number of
detected principle offsets determines the degree of freedom for model retarget-
ing. For example, if only one principle offset is detected, the model can only be
resized in one direction.

For the graph-cut optimization, we discretize the embedding space of retargeted
model into a regular volume Ω as used in Eq. 4.3. The discretization uses
principle offsets as unit length, so each voxel is of size {|v1|, |v2|, |v3|}, where
| · | denotes the L2 norm. In cases where there are less than three principle
offsets, we create up to two orthogonal dummy directions with length 0.2. These
auxiliary offsets are only used to discretize the model, no actual computation
will be performed along these directions.

To generate new models, we stitch together translational copies of the input
model, as described in section 4.2.2. The translations are restricted to multiples
of voxel size for two important reasons: First, to keep those translations consis-
tent with the repetitive structure of input model. Second, to keep the number of
graph-cut labels low for computational efficiency. In fact, the optimization is
usually run on a graph of less than 1000 nodes with 30 labels, so retargeting can
be performed at interactive speed. Despite using such relatively low complexity
graph, our algorithm is still able to produce high quality results and preserve the
exemplar structure in the synthesized models.

In practice we map the input model into a canonical space (i. e., 3D Cartesian
coordinate system) if the detected principle offsets are not orthogonal to each
other. The mapping is constructed by collecting all 3 normalized principle offset
vectors into a 3D transformation matrix, which is then applied to all model
vertexes. Figure 4.6 (bottom) shows an example where the object has two non-
orthogonal principle offsets. Doing so allows the discretization of the model
to be axis-aligned for fast geometry computation. Figure 4.7-a and 4.7-b show
the same model in ordinary space and in canonical space. The retargeting is
performed in the canonical space, and the result is mapped back to the ordinary
space (figure 4.7-c).

4.5 Results

In this section we show our retargeting results. Figure 4.8 shows side-by-side
comparisons between our results (yellow) and conventional MRF based results

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 54

(a) Input model (b) Canonical space (c) Final output

Figure 4.7: A model with sheared 2D grid (a) is mapped into a canonical space
(b) where the two principle offsets are orthogonalized. The retargeting is per-
formed in the canonical space and mapped back to the normal space (c).

without offset statistics (blue). The gray models are the input examples. The
exact number of graph nodes, number of labels, and time for graph-cut optimiza-
tion are also provided for each result. To generate the blue models, regular offset
(set to 0.1) is used. Despite using much more complex graphs, conventional
MRF produces shapes that do not preserve the structure of the input models,
as highlighted in the close inspections. In contrast, our method uses simpler
graphs but eliminated such artifacts. Our optimization (yellow models) is fast
enough for real time modeling.

From figure 4.9 to 4.11 we show a gallery of our results. Notice that our result
for the book shelf model (the first example) would be difficult to accomplish
by previous methods, such as [Bokeloh et al., 2012b]. Figure 4.12 shows the
detected degrees of freedom (DoF) for resizing this model using Bokeloh et al.’s
method [Bokeloh et al., 2012b]. As it is shown there, the detection only covers
a small part of the model due to irregularities in the shape. This lack of DoF
can be an obstacle to synthesizing plausible new shapes. In particular, it often
locks the entire shape out of being changed. In contrast, a MRF based method
such as ours is less rigid and can still produce convincing results by synthesizing
the model as a “texture” and preserve fuzzy repetitions using offset statistics.
Compare to other retargeting methods that explicitly model shape structure
[Talton et al., 2011; Lin et al., 2011c; Merrell and Manocha, 2011], our method is
more flexible in different ways: it does not require prescribed procedural rules
[Talton et al., 2011] nor manual decomposition [Lin et al., 2011c], and performs
less sensitively to the discretization of shape space [Merrell and Manocha, 2011].
Compare to low level texture synthesis methods such as [Turk, 2001; Bhat et al.,
2004; Zhou et al., 2006], our method handles man-made structures better, due
to the capture of offset statistics.

However, our current implementation has limitations for retargeting more com-
plex structures. Figure 4.13 shows an example. In this case, the offset statistics
is less sparse (top row, middle) and there are more than three dominant offsets

55 4.6. SUMMARY

(top row, right) that influence the structure of the model. We believe such a
shape needs to be modeled by multiple grids, otherwise the retargeting pro-
duces artifacts as shown in figure 4.13-b1. It is an interesting future direction of
extending our method to work with such models of higher structure complexity.

4.6 Summary

In this chapter, we have explored offset statistics for 3D shape retargeting. Our
main argument is that the offset histograms between similar 3D features are
sparse, in particular for man-made objects such as buildings and furniture. This
observation is verified by our empirical studies, and act as a guiding principle in
our pipeline. We employ sparse offset statistics to improve 3D shape retargeting
(i. e., rescaling in different directions). We employ a graph-cut method that
similar to texture synthesis, which iteratively stitches model fragments shifted
by the detected sparse offsets. The offsets help to reveal important structural
redundancies, which further leads to more plausible results and more efficient
optimization. Our method is fully automatic, while intuitive user control can
be incorporated for interactive modeling in real-time. We empirically evaluate
the sparsity of offset statistics across a wide range of subjects, and show our
statistics based retargeting significantly improves quality and efficiency over
conventional MRF models.

1This result uses the top three dominant offsets for discretizing the retargeting space into a
single regular volume, and the top seven dominant offsets for generating translational copies of
the input model.

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 56

(a) Blue: 1600 nodes, 5 labels, 0.139 sec. Yellow: 360 nodes, 3 labels, 0.012 secs.

(b) Blue: 924 nodes, 8 labels, 0.082 sec. Yellow: 32 nodes, 6 labels, 0.008

(c) Blue: 2625 nodes, 25 labels, 0.956 sec. Yellow: 104 nodes, 9 labels, 0.013

(d) Blue: 7429 nodes, 54 labels, 5.151 sec. Yellow: 810 nodes, 8 labels, 0.072 secs.

Figure 4.8: Qualitative comparison between retargeting without (blue) and with
(yellow) offset statistics.

57 4.6. SUMMARY

Figure 4.9: Retargeting results.

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 58

Figure 4.10: Retargeting results, continued.

59 4.6. SUMMARY

Figure 4.11: Retargeting results, continued.

4. 3D MODEL RETARGETING USING OFFSET STATISTICS 60

Figure 4.12: Linear constraints detected by [Bokeloh et al., 2012b].

61 4.6. SUMMARY

(a) Input model, 3D histogram and dominant offsets.

(b) Synthesized model with artifacts in close view.

Figure 4.13: Limitation of our method.

Chapter 5
Approximate 3D Partial

Symmetry Detection Using
Co-Occurrence Analysis

As we have seen the importance of symmetry and its applications in previous
chapters, now we take a step further down to the low level symmetry detection
problem. The algorithm in this chapter could serve as a pre-processing step in
many applications, including our previous work introduced in Chapters 3 and 4.
We will focus on approximate partial symmetry detection, which applies to noisy
data in 3D point clouds.

5.1 Introduction

One of the prime problems in contemporary computer graphics is understand-
ing and organizing 3D models: while manual 3D modeling is still demanding
and expensive, we have nowadays unprecedented data repositories at our fin-
gertips that provide example data of synthetic and real-world geometry, ranging
from fictional space ships to accurate city scans. This has spawned a lot of recent
research in structure-aware modeling category [Mitra et al., 2013a], which base
the synthesis of novel content on the analysis of existing example data.

One of the fundamental tools for analyzing shapes is symmetry detection [Mitra
et al., 2013b]: Structured data differs from maximum-entropy random noise by
some form of characteristic redundancy. Symmetry offers a model that captures

63

5. CO-OCCURRENCE ANALYSIS 64

such redundancy: A shape is globally symmetric if it is invariant under a group
of transformations acting upon it. For example, a gear is invariant under a small
group of rotations, and this property is important for its functionality.

While global symmetry is useful for analyzing isolated objects and small parts
(such as a single gear), the notion of partial symmetry is required to understand
more sophisticated scenes (such as a gear-box). In the broadest sense (as em-
ployed in the graphics literature), a scene is partially symmetric if its non-trivial
parts can be mapped to each other under isometric mappings [Mitra et al., 2006c;
Gal and Cohen-Or, 2006; Bokeloh et al., 2009]. In addition, symmetry group
structure can be imposed to restrict the focus specifically to regularly placed
instances [Pauly et al., 2008a]. We use general model of unrestricted instance
placement, and refer to such instances as building blocks.

Symmetry detection in the case of exact geometry is very well understood. As
we will see in Section 5.2, many algorithms are available to detect both global
and partial symmetries (with or without strict regularity). Unsystematic data
noise and partial acquisition (which often occurs in 3D scanner data) can also
be handled robustly [Mitra et al., 2006c; Bokeloh et al., 2009; Pauly et al., 2008a].
The reason is that transformation matrices have very few parameters, which
can be reliably estimated as long as larger number of data points are available,
even if they are noisy and/or incomplete. The main open issue is dealing with
shape variability: it is still very difficult to detect geometric correlations that
are similar in terms of semantics or functionality, but deviate in local details.
Isometric matching models [Ovsjanikov et al., 2008; Xu et al., 2012c] can still
handle varying embeddings of a fixed Riemannian manifold into 3D space, but
it is challenging to deal with non-isometric deformations.

Robustness can be gained from transformation voting [Mitra et al., 2006c; Podolak
et al., 2006], but their approaches are limited to coarse scale geometric struc-
tures due to the common voting space. Scenes with many instances can only
be handled under further assumptions, such as regularity or hierarchy. As an
alternative, feature-graph matching heuristics have been applied in [Berner
et al., 2009, 2011], which achieved limited success on real-world data. Spectral
diffusion in matching networks [Lipman et al., 2010] helps to cope with noisy
and ambiguous data, but they are limited by failing to observe the notion of
spatially contiguous building blocks.

In this chapter we introduce a novel unsupervised method for detecting ap-
proximate partial symmetry. It takes a 3D point cloud as input and detects its
partial symmetries even when there is considerable geometric variability, and/or
irregular distribution of repetitive instances.

65 5.1. INTRODUCTION

We start by building a feature abstraction of characteristic high-curvature regions
[Bokeloh et al., 2009]. As many recent proposals [Kerber et al., 2013; Herzog et al.,
2015; Song and Xiao, 2014; Rahmani et al., 2014], we use spatial and orientational
pooling to gain invariance against local shape deformation. However, such
invariance comes at the price of increased false positives. We therefore need
to integrate information over larger quantities of data to improve the signal-to-
noise level. Our key idea is to extract each building block instance as a collection
of consistently co-occurring features. While matching individual features is
unreliable, aggregating many feature matches improves the detection. There
are two sources of information to integrate: (i) the mappings between instances,
and (ii) the area covered by each instance. Knowing either the mappings or
the instances simplifies the search of the other. However, in practice we know
neither initially, so this is a chicken-and-egg dilemma.

To solve this problem, we employ an Expectation-Maximization scheme, which
is followed by spectral clustering to find optimal co-occurring constellations
of features. We first build a dictionary of relevant features by k-means cluster-
ing, pruned by a sliding-window filter. Then the pipeline iterates between (i)
the expectation step, which finds pairwise co-occurring features using current
dictionary entries (words); and (ii) the maximization step, which updates the
words so that the affinity between co-occurring features is maximized. This
creates a dictionary of reliable features (Figure 5.1, feature detection). At last
the spectral clustering step optimizes location and area coverage of the building
blocks (Figure 5.1, building block detection).

In comparison to transformation voting [Mitra et al., 2006c; Podolak et al., 2006;
Pauly et al., 2008a], our new approach has no restriction in cardinality and place-
ment of the symmetric elements. Comparing to feature-graph matching [Berner
et al., 2009, 2011], it is able to handle much stronger geometric deformation.
Comparing to symmetry factored embedding [Lipman et al., 2010], our spectral
clustering embeds the distance between spatial patterns of matched features
rather than single correspondences. We demonstrate that our method comes
with significant performance benefits. Unlike most of the previous methods,
our approach optimizes for coherent constellations, therefore outputs building
block instances of different classes rather than only pairwise correspondences
(which are sometimes subject to greedy segmentation). In summary, this chapter
makes two main contributions:

• We introduced consistent co-occurrence patterns as a novel invariant for
improving feature matching in 3D point clouds.

5. CO-OCCURRENCE ANALYSIS 66

• Based on this, we developed a novel unsupervised partial symmetry de-
tector, which outperforms know methods in case of strong geometric
variability.

Figure 5.1: System overview: Input (preprocessed) — Feature Detection (distri-
bution on model and close up look) — Building blocks detection (constellation
visualization) — Detection results (bounding box visualization)

5.2 Overview

Building blocks are local maximal pieces of geometry that can be coherently
mapped, as shown in Figure 5.2 (left). This section explains the concept of
building block and its relation to coherent co-occurrence patterns.

Notation: Let Q = {Qi }M
i=1 denote the set of all M different classes of detected

building blocks. Each class Qi = {qi
j }N

j=1 consists of N instances. The instances

qi
j ⊂ R3 are pieces of geometry that are rigid copies of each other and approx-

imately match the input data. Hence, the j -th instance generates all other
instances by Qi = {T i

j→k ·qi
j }N

k=1,T i
j→k ∈ E(3) (Figure 5.2, left). Without loss of

generality, we consider the first instance qi
1 as template instance, with transfor-

mations T i = {T i
1→k }N

k=1.

Approximate building blocks are detected out of coherently co-occurring fea-
tures that have the same spacial constellation, which appear repeatedly in all
instances of the same class. Such consistent co-occurrence pattern is an invariant
of its containing building block class. Let D = {Di }K

i=1 denote a feature dictio-
nary, where each word Di = {di

k }N
k=1 is associated with a set of matched features

(di
k) ∈ R3. A pair of features co-occur if their lists of matches, i. e., Di and D j ,

are identical, after applying the same local transformation Ti→ j ∈ E(3) to every
member of Di (Figure 5.2, right). In another word, D j = {Ti→ j ·di

k }N
k=1. Using

local coordinates at this point achieves rotationally invariant matching.

During detection, we identify co-occurring feature pairs across the data (in
the EM step) and then assemble the pairs into instances (using spectral clus-

67 5.3. METHOD

Figure 5.2: Left: Tsour ce→t ar g et maps instances of the same building block class.
Right: Tsour ce→t ar g et maps co-occurring features in the same instance. The
black arrows indicate the local frame of the source feature.

tering). In this way we aggregate co-occurrence information over the set of
transformations T i and target geometries Qi .

5.3 Method

This section explains our core algorithm. We will briefly introduce the input data
and the necessary pre-processing step in Section 5.3.1. The two main steps of
our algorithm will be explained in Section 5.3.2 and Section 5.3.3.

5.3.1 Pre-processing

Our input data is a point cloud with oriented normals. We re-sample the input
point cloud using uniform sampling with spacing ε, which controls the process-
ing resolution and consequently the scale of detection (see Section 5.4 for details
about parameter settings). We estimate the maximum principal curvature on
the surface (Figure 5.1, preprocessed input), from which we sample points with
strong curvature as salient features. We denote this feature point cloud by Ω,
and the original input point cloud where the features are sampled by Υ. Then
we set up a local coordinate frame at each feature’s location for computing its
descriptor.

Our descriptor is a 3D variant of the Histogram of Oriented Gradient (HOG)
descriptor [Dalal and Triggs, 2005]. We use curvatures as the analog of 2D-image

5. CO-OCCURRENCE ANALYSIS 68

Figure 5.3: HOC descriptor is created from the curvature statistics of a local
piece of geometry. From left to right: local geometry, curvature, HOC projected
to the tangent plane, HOC projected to a secondary plane, the final descriptor.

gradients for 3D-surfaces, which produce a histogram of oriented curvature
(HOC) descriptor [Kerber et al., 2013; Herzog et al., 2015]. Figure 5.3 shows an
example of this type of descriptor, and Section 5.4 provides implementation
details. Notice our core detection algorithm is independent of the descriptor
design. Prior work also achieves good results from pooling various types of
differential information (position distributions, normals, curvature, etc.) [Song
and Xiao, 2014; Rahmani et al., 2014; Herzog et al., 2015].

Next, we build an initial dictionary D of frequently appearing features using
K -means clustering. Each word Di = {di

k }N
k=1 consists a list of similar features.

W.l.o.g., we mark the first feature as the template ti = di
1, which has smallest

distance to all other cluster members. We purify each word using a sliding
window filter: features that are too close (within a minimum distance threshold
set to half of the value that we used to define HOC descriptor) are excluded.

Now, each word Di represents a list of matched features, which is a transfor-
mation set T i that maps the template ti to all other features in the same word
(we use the terms “word” and “list of matches” interchangeably, following the
formal definition of Di). Figure 5.4-a shows the sliding window response of a
single feature. The response map is imposed onto the entire input geometry.
Notice that the resulting feature response is noisy (a red arrow points at the
query feature, and blue arrow points at a false positive). This is because strong
appearance variation of the dragon scales is beyond the invariance of a single
HOC descriptor. Simply increasing size of the descriptor does not help, since
the feature response will be blurred. This observation shows that a naive feature
dictionary is not sufficient for finding such complex building blocks.

69 5.3. METHOD

a) Initial response b) 1st iteration c) 5th iteration

Figure 5.4: Feature matching can be improved by the proposed EM algorithm.
The heat map encodes the probability of finding a match (white indicates high
probability). a) single feature based detection (red arrow points at the query
feature) is unreliable. For example there is false positives (blue arrow). b) The
output after one iteration. The false positive is removed. But missing detection
still exists (blue arrow). c) The output after five iteration.

5.3.2 Robust Co-occurring Feature Detection

The first contribution of our work is to use pairwise co-occurrence constraint
to improve the low level feature detection. Specifically (and unlike [Li and
Wand, 2015]), we use an iterative EM scheme to enforce pairwise co-occurrence
constraints in the search of reliable features. We prefer pairwise relation instead
of higher order co-occurrence for avoiding over-fitting in the unsupervised
setting. The input of our algorithm is an improved feature dictionary D. At
each iteration, we first estimate the co-occurrence relation using exist words,
then update the words so the affinity between the distributions of co-occurring
features is maximized. A summary of our algorithm is listed in Algorithm 1.

Estimation. The aim is to estimate the probability of co-occurring features.
Given the current feature dictionary, we first compute the best local transfor-
mation Ti→ j that maps Di to D j , which essentially matches these two words’
spatial pattern. A successful match is found for each mapped feature Ti→ j ·di

k
that has a close-by neighboring feature in D j . We exhaustively test all feature
pairs in 〈Di ,D j 〉, and choose Ti→ j as the one that gives the maximum number
of matches. We denote by Ψi , j the union of source features from the matches.

Next, we compute p(di ,d j), which is the probability density function (PDF) for
a pair of features (di = x,d j = y) ∈ R3×2 to co-occur in Ω. We first use a voting
based method to compute p(d j |di): For each x ∈Ω, we predict its counterpart
using Ti→ j ·x, then add the prediction confidence to PDF. Specifically, we find all
y ∈Ω that satisfy ||y−Ti→ j ·x|| <σs , and vote for each of them with the following

5. CO-OCCURRENCE ANALYSIS 70

probability:

p(d j=y|di=x)=exp

(
−||y−Ti→ j ·x||

σ2
s

m(t j ,y)

)
(5.1)

Here σs controls the tolerance of mis-match, and m(t j ,y) computes the distance
between the template and the prediction in descriptor space. Finally we com-
pute the joint probability: p(di ,d j) = p(d j |di)p(di). Here p(di) is the prior of
seeing di in Ω. It is approximated as the spatial distribution of the word:

p(di = x) ≈
{

1 if x ∈ Di ,
0 if x ∉ Di .

(5.2)

Notice this approximation significantly reduces the computational cost, as we
only need to compute p(d j |di) for x ∈ Di instead of x ∈Ω.

Maximization. In this step we maximize the co-occurrence affinity by updat-
ing words. To do so, we recompute p(di) as the integration of all hypothetical
pairwise outcomes: p(di) =

∑K
j=1, j 6=i p(di ,d j), where K is the size of the dictio-

nary. We then update Di as a new set of features detected as the local peaks in
p(di). Again, non-maximum suppression is used for detecting the peaks. Finally,
we update the template ti using new median feature of the word. The output
of this EM process is a set of more reliable features. Figure 5.4 compares the
feature response before and after the EM process: one iteration (Figure 5.4-b)
already improves the feature response, and the result is further improved after
five iterations (Figure 5.4-c).

Algorithm 1: Detection of Pairwise Co-occurrence Features

Data: Input feature dictionary D, size of dictionary K , number of iteration M

for t ← 1 to M do
for i ← 1 to K do

for j ← 1 to K do Estimation:

Ti→ j = Match(Di
t ,D j

t)

for j ← 1 to K do

p(d j
t |di

t) = Vote(t j
t ,Ti→ j) p(di

t ,d j
t) = p(d j

t |di
t)p(di

t)

for i ← 1 to K do Maximization:

p(di
t+1) =

∑K
j=1, j 6=i p(di

t ,d j
t) di

t+1 = FindPeak(p(di
t)) ti

t+1 =

UpdateTemplate(di
t+1)

71 5.3. METHOD

Figure 5.5: Left: Co-occurrence features in the embedded space. Right: The
median of each cluster (blue and red dot) is imposed onto the input model.

5.3.3 Instance Detection

Having found reliable features, our next task is to detect building blocks in-
stances, which is the second contribution of our work. From a global perspective,
we identify building blocks using spectral clustering. First we perform spectral
embedding using co-occurrence measurement of pairwise features, then we use
unsupervised clustering to extract different classes of building blocks and their
supporting regions. Figure 5.5 shows an example of this process.

We define a co-occurrence matrix M , where each entry is the affinity between
spatial distributions of a pair of words (| · | denotes cardinality):

mi , j = |Ψ(i , j)|
max(|Di |, |D j |) (5.3)

From M we create a low dimensional embedding using classical multidimen-
sional scaling, where co-occurring features are close to each other. We extract
modes from this embedding using mean-shift. This results in M different clus-
ters (M ≤ K), each representing a unique building block class Qi , i = 1...M . We

use the median of each cluster Qi as an outlier-robust representation of the

mode. The set of admissible transformations operate on Qi is the T i that oper-
ates on the instances of this class.

Finally, we determine the supporting region of each instance. We build a “star

model”, which uses Q
i

as the centers of the instances, and links co-occurring
features to their center. To do so, we add an edge for each matched feature pair

from Qi and D j , where D j ∈ Qi \Qi . The size of each instance is approximated
by the bounding box of its internal linked features. Figure 5.8 shows examples
of our detection. The bounding boxes of all instances from the same class are
averaged, which produces a more robust estimation.

5. CO-OCCURRENCE ANALYSIS 72

5.4 Implementation Details

We now discuss additional implementation details. We re-sample the input
point cloud using a sample space of ε, which controls the processing resolution
and consequently the scale of the detection. In practice, we use different ε
for data from different sources. It is a relative value to the diagonal length of
each scene: 0.00005 for the Qmulus&TerraMobilita city scan dataset, and 0.0005
for the Stanford 3D scanning repository and the Aimatshape repository. We
estimate surface curvature by applying quadratic moving-least-square [Alexa
et al., 2003] algorithm to local neighborhoods of radius 4ε around each point,
and then estimate the curvature tensor [Cazals and Pouget, 2005] for extracting
the direction of maximum principal curvature t1 and its magnitude κ1.

Feature point extraction. We sample points with strong curvature as salient
features. A non-maximum suppression process is performed with a local search
radius of 2ε. We use a threshold on the magnitude of the maximum principle
curvature κ1 > 0.15 to preclude specious local maxima.

Local feature frame. To set up a local frame for each feature, we use the normal
of the query feature as the local x-axis, and the maximum principal curvature as
the local y-axis. The local z-axis is the cross-product of previous two. To resolve
sign ambiguity of the maximum principal curvature, we set up two different
local frames as one is the 180 degree rotation of the other.

Descriptor. We compute curvature statistics around each query feature: each
nearby sample point is projected onto local tangent plane. We collect the pro-
jected curvature into 8 orientation bins and 8×8 spatial bins, where each spatial
bin has an edge length of 8ε. We also project curvature onto a second plane that
uses local y-axis as the normal. Such dual projection increases the discrimina-
tive performance with just a modest increase of computational cost. In total
our descriptor has 1024 dimensions. We normalize each descriptor so that its L1

norm is one.

Feature Dictionary. The initial dictionary is built using K -means clustering(K
set to 100). During sliding window detection, we compute matching score from

the L1 distance between two descriptors: m(x,y) = exp
(
− |HOC (x)−HOC (y)|

σ2

)
. Here

σ = 0.1 is a standard deviation parameter that models matching noise. The
same matching function is used in Equation 5.1. Matches with score below
0.5 are removed during the non-maximum suppression to avoid spurious local
maximum. The threshold is intentionally set to a relative low value to permit
high noise scenarios and significant geometric variability.

73 5.4. IMPLEMENTATION DETAILS

Co-occurring Feature Detection. While matching the distribution of two fea-
tures, we restrict the maximal spatial distance between the prediction Ti→ j ·di

k
and its nearest neighboring feature in D j to be 8ε (one HOC cell). The matching
process can be sped up by precluding features that are too far away in the input
data: we require the spatial distance between di and d j to be no larger than 64ε.
However, it is still possible to detect instances that are larger than this size, due
to the diffusion effect of spectral clustering. The σs in Equation 5.1 is set to 16ε.
In the maximization step, we need to ensure that only reliable pairwise relations
are kept in the EM process: First, we discard weakly co-occurring feature pairs
via a threshold on cardinality of Ψ(i , j). This threshold depends on the number
of building blocks expected from the shape: 5 is used for individual shapes such
as the Stanford dragon, and 10 is used for city scans. Second, we filter out weak
feature responses during the updating of words (maximization step). In practice
we normalize p(d j) so the highest scored feature has confidence of 1, and weak
detections with confidence below 0.25 are excluded. For efficiency, we use up to
5 iterations for EM, and terminate the process as long as the dictionary does not
have significant change (feature changes are less than 1% of total number).

Spectral Clustering. We perform a 5-dimensional embedding for the affinity
matrix M using classical multidimensional scaling [Seber, 1984]. For unsuper-
vised clustering, we use mean-shift with bandwidth of 0.5.

In practice we observe small building block classes (with fewer instances) can
drift towards bigger building classes due to template updating in Algorithm 1.
To solve this problem, we use an incremental detection scheme motivated by a
minimal description length (MDL) argument. The task is to find the minimal
number of building blocks classes that can describe most of the input data. To
do so we run a sequence of building block detections. In each iteration, only
the largest building block class in the result is kept. We remove features that
are covered by this class from the feature point cloud Ω, so they would have
no influence in the later iterations. In this way, the input model is iteratively
decomposed into building blocks of cardinality in decreasing order. The result
in Figure 5.6 is produced so. In total we found five different building blocks that
can explain the input model in an efficient way.

Platform. We have implemented our algorithm in C++, and run on a 2.5Ghz
quad-core Intel Core-i7 processor. The biggest computational bottle neck is the
iterative EM process. Generally speaking, more complex symmetry has larger
word, which leads to higher computational cost. In practice our implementation
takes less than a minute to process each model in Figure 5.8, 62 seconds to
process “dragon” and 132 seconds to process the model in Figure 5.6.

5. CO-OCCURRENCE ANALYSIS 74

Figure 5.6: Here we find windows (red) and cars (blue) in the initial detection.
We also find balconies (dark yellow) and two classes of smaller windows (with
and without the dormer) as the green and the bright yellow building blocks in
the late MDL iteration.

5.5 Evaluation

We conduct a quantitative evaluation on the Qmulus&TerraMobilita city scan
dataset [Vallet et al., 2015] and on a set of non-man-made shapes from the Stan-
ford 3D scanning repository and the AimAtShape repository. These data sets
contain scan noise, irregular structure and/or strong geometric variability. We
compare our method (EM + SC) with rigid ICP (RigidICP), symmetry factor em-
bedding (Symmetry Embedding) [Lipman et al., 2010], and our implementation
of [Liu and Liu, 2013] in 3D (Grasp). To show the importance of the proposed EM
scheme, we also compare to spectral clustering without the EM optimization
(SC), and to spectral clustering using [Li and Wand, 2015]’s discriminatingly
learned features (DL + SC). We provide precision-recall curves for both datasets
(Figure 5.9 a-b). Like [Liu and Liu, 2013; Li and Wand, 2015], we conduct a
pressure test by varying the minimum overlapping ratio for instance matching
and report the results in Figure 5.9 c-d.

5.5.1 Dataset

Previous work on partial symmetry detection mainly use qualitative evaluation,
since very few dataset provides ground truth annotations. We use our own
interactive tool to create ground truth annotation: a user first paints a piece
of geometry as the template for query, then finds other instances using rigid
ICP. Since rigid ICP does not work with strong geometric variability, the user
often first over-decomposes the data into rigid pieces and then merges them
by semantics. For example, windows of different sizes and styles will first be
labeled as different classes, then will be merged into a single “window” class.
We uniformly partition the entire Qmulus&TerraMobilita dataset into 96 scenes,

75 5.5. EVALUATION

and perform annotation for each scene. There are three common building block
classes across the entire dataset: window, car and balcony. Other smaller classes
represents unique street furniture and building decorations. For the non-man-
made shapes we annotate each individual model, and often build unique set
of classes for them. For example the model “Dragon” has classes “scale” and
“craws”; and the model “Buddha” has a single class for the decorative pattern on
the cloth.

5.5.2 Methodology

We quantify the results using the standard precision and recall (PR) analysis and
an additional stress test described in [Li and Wand, 2015]. Like [Song and Xiao,
2014], we match 3D bounding boxes of the instances from the detection and
the ground truth annotation. Let |D| and |G| denote the number of different
building block classes detected/annotated. We define a symmetric matching
score between two classes D j ∈ D and Gi ∈ G:

score(D j ,Gi) = min(|D j ∩Gi |, |Gi ∩D j |) (5.4)

where X∩Y denotes the set of bounding boxes in D j that overlap with Gi . Taking
the minimum makes the score symmetric and avoids over-counting objects
that have multiple intersections. This matching score can be computed for all
possible assignments between the detected classes and the annotated classes.
We define precision as the number of matched instances in D divided by the
total number of instances in D:

precision =
∑|D|

j=1 maxi=1..|G|(score(D j ,Gi))∑|D|
j=1 |D j |

(5.5)

Notice that each class Gi has its own matching score for D j , and only the highest
score, maxi=1..|G|(score(D j ,Gi)), is kept for D j . We compute recall in a symmetric
way by swapping the D and G terms in Equation 5.5. Like [Li and Wand, 2015],
we generate a PR curve by successively removing building block classes from the
detection, and simultaneously updating the recall and precision. Starting from
the largest class, we remove one class at a time until no class remains. The final
PR curve in Figure 5.9 is the average of all scenes.

We perform a stress test by incorporating a threshold of minimal overlapping ra-
tio in Equation 5.4. Figure 5.9 a-b are generated using threshold 0.125, meaning
there is on average half overlapping for each bounding box dimension. Increas-
ing the threshold from 0 to 0.5 creates the F-measurement v.s. pressure curves
as shown in Figure 5.9 c-d.

5. CO-OCCURRENCE ANALYSIS 76

a) Sym.-fact. embedding b) Rigid ICP c) Grasp

d) SC e) DL + SC f) EM + SC

Figure 5.7: Detection results of different methods.

5.5.3 Results

We first discuss the PR curves of different algorithms (Figure 5.9 a-b). The
baseline is a supervised detection using rigid ICP (purple). For each class in the
ground truth, we perform a sliding window detection using the template from
user annotation. The resulting low F-scores (0.55 and 0.48 on different datasets)
indicate strong geometric variability can not be captured by rigid matching.

Symmetry factored embedding (pink) [Lipman et al., 2010] computes the sym-
metry factored distance between the input data and its transformed copy. Like
[Lipman et al., 2010], we used a fairly large fraction of the entire shape (set to
20%) to compute the symmetry factored distance. We then use this distance
to embed features and apply spectral clustering (with 10 clusters). Doing so

77 5.5. EVALUATION

produces an feature point cloud segmentation. We “cut out” individual instance
using a 26-connected 3D region growing. Doing so produces very low F-scores
(0.48 and 0.45 on different datasets), indicating local diffusion can fail in detect-
ing complex partial symmetry. We also experimented with replacing [Lipman
et al., 2010]’s shape matching function by matching local feature descriptors
computed from the same fraction of geometry (20%). However, no clear im-
provement could be observed in our experiment.

Next we test our 3D implementation of [Liu and Liu, 2013] (Orange), which
uses stochastic search to find correlated features. We implement their search
algorithm with our 3D HOC features, and observe a significant improvement
(F-score 0.63 and 0.60) over the baseline. However, there are still many false
detections. The reasons are three folds: first, unsupervised clustering usually
produces inaccurate low level features; second, inaccurate features can not be
traced due to the lack of iterative refinement; third, their search algorithm is
greedy and the use of average affinity as the optimizing objective biases the
result towards false negatives.

In contrast, our algorithm with EM optimization and less greedy spectral clus-
tering (red) is able to significantly improve the performance. It achieves F-score
of 0.74 on the Qmulus&TerraMobilita dataset and 0.68 on the non-man-made
dataset. We also test intermediate results of our algorithm by dropping the EM
optimization (SC, blue). Doing so significantly drops the performance (0.58 and
0.54). This indicates spectral clustering indeed requires reliable input features.
We also test the discriminative learning scheme from [Li and Wand, 2015] (DL +
SC, green), which trains a one-vs-all linear SVM for each feature. However, in our
experiment this only gives marginal improvement over [Liu and Liu, 2013], due
to the additional frame noise for computing the feature descriptors. Figure 5.7
show a qualitative comparison between different methods.

The same conclusion can be seen from the pressure tests (Figure 5.9 c-d). This
again proofs aggregating consistent co-occurrence information from data im-
proves the signal-to-noise level in the feature matching, and consequently bene-
fits the final detection of building blocks.

Figure 5.8 shows our detection handles different challenges: figure 5.8-a shows it
handles scanning noise; figure 5.8-b shows it detects irregularly placed instances.
Figure 5.8-c is a very challenge case, where the windows have very strong geom-
etry variability. Nonetheless, our algorithm is able to identify most of them as
the same class of building blocks. Figure 5.8 d-f are examples of our detection
on non-man-made shapes.

5. CO-OCCURRENCE ANALYSIS 78

5.6 Applications

To this end we have introduced an effective building blocks detector, and eval-
uated its strength. In this section we show three applications of our method:
detecting clusters of constellations, un-supervised co-detection and shape retar-
geting.

5.6.1 Detecting Clusters of Constellations

Our method works particularly robust with rigid symmetry. Thanks to the in-
variance of HOC descriptor and the co-occurrence clustering, it also has certain
strength in handling non-rigidity. Nonetheless, the model so far is fundamen-
tally a rigid detector because only a single mapping (the one with the highest
number of matches) is allowed for a pair of co-occurrence features. This causes
problems in detecting strongly deforming objects. How to handle free defor-
mation is beyond the scope of this thesis. Nonetheless, we can show that it
is possible to extend our method to handle more general deformations with a
simple relaxation.

To do so we allow multiple transformations between each pair of co-occurrence
features. So Φi , j = {φi , j

1 , ...,φi , j
Ni j

} is no longer a single transformation, but a set

of transformations between {Di ,D j }. However, not all possible transformations
have be considered because only a small subset of them represent building
blocks. These transformations must satisfy two criteria: first, each transforma-
tion applies to multiple instances, which is used to filter out specious transfor-
mations; second, the selected transformations should be exclusive, which is
used to remove redundancy in the mappings. For example, we are not interested
in detecting a group of objects, rather than the same class of objects with shape
variations.

To apply this idea in practice, we modify the matching algorithm of co-occurring
words accordingly: we collect Ni j transformations that satisfy the above two
criteria for each pair of co-occurrence words (Di ,D j). The first transformation
φ

i , j
1 is the one that gives the highest number of matches ψi , j

1 . We then remove
the matching instances from those two words before looking for the next trans-
formation φ1, which is the one that gives the highest number of matches among
the remaining instances. We continue the process until no transformation can
be supported by sufficient number of matches. In the building block detection

stage, the total number of matches Ψi , j =∑Ni , j

k=1ψ
i , j
k is used to compute the co-

79 5.6. APPLICATIONS

occurrence matrix M in Equation 5.3. Figure 5.10 shows an example of detecting
windows of different sizes.

5.6.2 Unsupervised Co-Detection

Another application of our method is un-supervised co-detection on a collection
of data. Figure 5.11 shows an example of our results using data from [Shen et al.,
2012]. We put multiple objects in the scene to have enough re-occurrence of
the building blocks. The uniform distribution of objects is for visualization,
our detection does not require regular spaced objects. As the figure shows
that without changing the detection pipeline, we are able to find most of the
common parts in this example as building blocks in a complete un-supervised
fashion. Nonetheless, our implementation requires curvature based features,
which will get into trouble with a broader range of subjects, for example human
and animals. But still, since our algorithm is not depended on the choice of
features, we would like to leave feature design issues as a future direction.

5.6.3 Retargeting

Our last application is shape retargeting (Figure 5.12), based on a similar idea
as described in Chapter 4. The method has the limitation that it only works
well when low level feature detection is reliable, typically on clean meshes. In
contrast, with our new detection algorithm, we can use the offsets between
building blocks for guidance, which is more robust for noisy input data (e. g.,
from distance sensing). Details of the synthesis algorithm can be found in
Chapter 4. Here we briefly outline the main steps and the differences between
these two methods.

First we discretize both of the ambient spaces containing input data and target
volume into spacial voxel grids. We use the same parametrization, and the voxels
are oriented to align with a user specified generating direction~z and two other
orthogonal directions. Then the task is converted into a labeling problem: each
input voxel has a unique label, and for each of the target voxel, we need to assign
a single label from the input volume, which means the geometry will be copied
exactly from the input voxel with the same label. To well define the problem, we
measure the quality of each possible label assignment, such that target border
voxels can only choose labels from input border voxels, and choosing empty
voxel label is always associated with a penalty.

5. CO-OCCURRENCE ANALYSIS 80

With the weak unary boundary condition described above, we can already find a
plausible solution by optimizing the measurement energy. But the result often
looks messy, since we do not enforce any constraints between neighboring
voxels yet. So we add another binary smoothness condition, which measures
the quality of choosing a pair of labels for adjacent target voxels. For each of
such voxel pairs, we only measure the continuity of their coinciding faces using
a distance function. We define each side of a voxel with η% of volume as a joint,
and normally η is larger than the median of all pairwise point distances to allow
certain level of data noise (in our implementation we choose η= 10). Then the
distance function is constructed by summing up the minimal distances from
each point within a joint to its counterpart. We also use the prior that nearby
voxels from input volume are more consistent to each other than voxels with
large distance, so if the label pair is taken from voxels with distance δ, we apply a
penalty multiplier exp(aδ) to the distance function. Notice that this smoothness
measurement is unaware of geometric feature, which is simple but still produces
correct results by using our robust generator~z. In contrast, the implementation
in Chapter 4 uses special spacial parametrization, so the number of generating
directions is limited.

The final solution is found by solving a functional summing both of the unary
and binary energy using graph-cut [Boykov et al., 2001b]. With the optimal label
assignment, we copy and join geometry pieces from corresponding input voxels,
and output a single point cloud.

5.7 Limitation and Future work

Our method could be improved at both the feature level and the structural level.
Figure 5.13-a shows missing detection due to strong deformation that is beyond
the invariance of HOC features. Figure 5.13-b shows the lack of curvature in
the data leads to non-discriminative features. In this case our method failed to
separate building blocks from the background noise. Using the entire shape for
symmetry detection works better here as shown in [Lipman et al., 2010].

On the structural level, our method detects general re-occurrence patterns
instead of any specific forms of symmetry, such as reflective symmetry or lattice
structure. This has been proved to be flexible while, to our best knowledge, none
of the other specific methods works as general as ours. However, due to the
lack of high level constraints, our method is less accurate when the noise level
is too high. Figure 5.13-c shows miss-detections due to strong variance of data

81 5.8. SUMMARY

sampling density, and figure 5.13-d shows misaligned building blocks. In these
cases, reflective symmetry or lattice structure can be used to improve the results.

Last but not the least, our current implementation is not optimized for very
big (city-scale) dataset. The main issue is that bigger data requires sensitivity
to a growing variety of different items. This leads to larger dictionaries, whose
sizes contribute quadratically to the run-time costs. In addition, with increasing
variability of building blocks, identifying significantly different constellations
might become an issue, e. g., small classes may drift towards big classes. The
MDL approach, which works well enough for the scale of our examples, might
need to be extended here in a more principled way.

a) Deformation b) Weak Feature c) Reflection d) Lattice

Figure 5.13: Limitations of our methods.

5.8 Summary

In this chapter We have presented a new method for approximate partial symme-
try detection in 3D point clouds, a classical and foundational tool for analyzing
geometry. The main idea is that coherent co-occurrence patterns in local frames
reveal building blocks of the shape. By (spectral) clustering these co-occurrence
patterns, we can integrate the whole (yet unknown) area of the whole (yet un-
known) set of instances in order to detect building blocks. This yields three
advantages: First, the simultaneous utilization of all of the available correspon-
dence information reduces matching noise, so that we can use feature detectors
with strong invariance and operate at rather ambiguous matching scenarios
that cannot be handled by previous methods. To the best of our knowledge,
our method is the first object detection method that recognizes subtle patterns
such as the scales on the Stanford dragons or the cars in a city scan without
any supervision and additional regularity assumptions. Second, the notion of

5. CO-OCCURRENCE ANALYSIS 82

coherent co-occurrence patterns does not depend on rigidity; as shown in our
extension towards varying clusters of feature constellations that are detected
as the same class despite strongly non-rigid shape variation. Third, coherent
co-occurrence patterns naturally characterize building blocks in the sense of
maximal permutable pieces [Kolojanov et al., 2012], which yields a canonical en-
coding of the discrete symmetry structure of the scene and avoids ambiguities of
previous methods that rely purely on region growing or boundary regularization.

83 5.8. SUMMARY

Figure 5.8: Detection results of different challenges.

5. CO-OCCURRENCE ANALYSIS 84

a) Qmulus&TerraMobilita b) Non-man-made shapes

c) Qmulus&TerraMobilita d) Non-man-made shapes

Figure 5.9: Quantitative evaluation of our method. a) and b) are precision-recall
curves on different datasets. c) and d) are pressure tests with different settings
of overlapping ratio.

85 5.8. SUMMARY

Figure 5.10: An example of detecting clusters of constellations.

Figure 5.11: An example of un-supervised co-detection.

5. CO-OCCURRENCE ANALYSIS 86

Figure 5.12: An example of shape retargeting. The input models are from
Figure 5.7 and Figure 5.8.

Chapter 6
Conclusion

To conclude this thesis, in Section 6.1 we will briefly summarize our main points
and major contributions. Then in Section 6.2 we will point out possible future
directions on the basis of our constructions.

6.1 Final remarks

In our current information age, 3D digital content creation is gaining ever-
increasing attentions, and becoming an important problem of compute graphics.
Depending on different format of initial input data, the 3D modeling process is
either based on pure manual operations, or post-processing of laser scanned
data. But it is difficult to achieve full automation, due to inherent obstacles in
both of those approaches. In Chapter 1, we introduced these difficulties, and
answered the question why exemplar model is important, and why data analysis
and knowledge extraction is necessary for the raw input.

To alleviate the heavy burden in the modeling process, people have developed
many effective algorithms to solve several specific problems. Most of them
rely on exploiting and conforming to hidden structure guidance, i. e., structure-
aware operations. The combination of pattern-complete examples and gen-
erative rules extracted from structure analysis is the key to achieve automatic
generalization, which made mass-production of shape derivatives possible.
Among structure classes, symmetries attracted most attention, because this
elegant mathematical tool can explain pattern regularities in very few concise
and abstract axioms. In Chapter 2 we elaborated on most necessary background

87

6. CONCLUSION 88

knowledge, especially on formal definitions. We also listed related work there,
and surveyed how other people treated this problem.

Next we have entered into the main body of this thesis. From Chapter 3 to
Chapter 5, we have illustrated different experiments to support our argument for
symmetry-aware content creation. These chapters are based on the published
papers [Kurz et al., 2014; Wu et al., 2014a; Wu et al., 2014b; Li et al., 2015], and
some further extensions by the author of the thesis.

In Chapter 3 we take the manual modeling process as the application con-
text. To ease this tedious task, we presented a method for real-time symmetry-
preserving shape editing. The basic idea is the construction of spaces spanned
by low-frequency deformations that preserve symmetries. Within these low-
dimensional spaces, we apply a non-linear deformation-based editing scheme.
We demonstrate a method for real-time shape deformation that preserves the
symmetries exactly and supports large deformations. The method is easier to
implement than previous optimization-based methods and significantly faster.

In Chapter 4 we developed an automatic scheme to easily create geometric varia-
tions of a given 3D object. In this chapter we explore offset statistics for 3D shape
retargeting. The main contribution is to detect structural redundancy as sparse
offset statistics, and then use it for reducing the search space of suitable shapes.
Our method works fully automatic, and produces significantly better results
than conventional MRF models which do not use offset statistics. However, in
comparison to recent strong structure conforming methods, i. e., approaches
that apply symmetry or regularity as strong constraints, it retains simplicity
and generality, and the ability to handle imperfect regularity. Nevertheless,
the computational cost is kept sufficient low such that real-time modeling is
possible.

In Chapter 5 we switched our focus to the classical low level pattern regular-
ity mining task and presented a new method for partial symmetry detection.
Our main contribution is to use consistent co-occurrence patterns as a novel
invariant to reduce feature matching ambiguity. Based on that, a novel pattern
detection algorithm is developed, which achieves robustness against low quality
data. The algorithm achieved success by aggregating co-occurrence informa-
tion across all building block instances and the volume they cover. We also
conducted experiments to show that our detection approach outperforms previ-
ous methods on data with strong geometric variability and irregular instance
distributions.

89 6.2. FUTURE WORK

6.2 Future work

Our work is only a small step in the direction of 3D digital content creation,
using symmetry derived regularity constraints. Certainly there are limitations in
our approaches, and in turn these imperfections have introduced several open
problems waiting to be solved.

In the following, we will discuss possible future works respectively for each
individual theme. Then in Section 6.2.2 we will raise general open problems, in
the hope of stimulating more work in this direction.

6.2.1 Respective discussions

Symmetry-Preserving Deformation Currently our scheme supports only
finite symmetry groups. A direction of future work would be to integrate contin-
uous symmetries, e. g., arbitrary rotations around a fixed axis. Another limitation
is that editing operations which require frequencies below the sampling density
are not supported. Hence, very localized edits require a dense sampling. It
would be interesting to integrate non-uniform samplings. This would allow for
localized edits in selected regions while preserving the real-time performance. A
challenging problem is to extend the framework to other types of symmetries
like intrinsic or Möbius symmetries.

3D Model Retargeting Our method is a small advance over conventional
MRF models for 3D modeling. For future work, we can think of many interesting
proposals. For example, how to model more complex shapes that cannot be
represented by a single lattice structure. One possible solution might be to
first segment the model into multiple grids, while using a secondary layer for
capturing the relationship between these grids. Another interesting future path
is to extend the model to non-translational mappings, e. g., rotation and scaling.
Finally, it is interesting to apply offset statistics to applications such as structure
from motion and shape completion.

Approximate 3D Partial Symmetry Detection In our algorithm, detection
output have been stored as sparse feature correspondences with coordinate
transformation matrices between each matching pair. While this is sufficient for
discovering exact rigid symmetry in most of scenarios, we can not ignore the case
when the dense correspondences problem brought up by increased invariance
becomes dominant. At this point, we do not have an effective measure to

6. CONCLUSION 90

find high-quality dense correspondences between instances with considerable
shape variability. Our preliminary experiments with standard deformable shape
matching have turned out to be not very robust. This opened the very interesting
question of how we can find more general notions of coherent co-occurrence,
while maintaining statistical robustness and computational efficiency at the
same time. Finally, it would be interesting to study invariant building blocks in
more general applications, e. g., shape synthesis algorithms.

6.2.2 General outlook

User interaction The deformation application in Chapter 3 also illustrated
that user interaction could serve as a very important hint of user intentions. We
did not introduce too much user operations in our other work, in the purpose
of reducing complexity by automating those applications. But we believe mild
amount of user input could help improving our result, which is an interest-
ing trade-off against automatic algorithms. So the study of user interaction’s
effectiveness and robustness could be a promising future direction.

General symmetry structure The algorithm proposed in Chapter 5 is fun-
damental to a lot of high-level applications, including symmetry preserving
deformation. But as we pointed out in Chapter 3, the extension of our framework
to very general symmetry structure needs certainly more work. Both theoretical
study and practical implementation could be very challenging, but we expect
this combination to be very powerful.

Completion problem A very challenging problem is to fill data into missing
area for low quality scanning point cloud. Using pattern regularity is the most
common idea for generating hypothesis. But when the data is noisy and in-
complete, it becomes much harder to extract meaningful structure information.
Another annoying fact is, even the delimitation of holes could be very hard to
automate. Also because of information loss, there is no standard way of judging
the quality of completion. In general, the completion problem is very related to
this thesis, and worth more attentions.

General synthesis Given an arbitrary self-contained example model, it is
very interesting to imagine how much potential difference could be achieved,
if we try to derive meaningful variants of that model using arbitrary copies of
its parts. This relates to the procedural modeling approaches, however, these

91 6.2. FUTURE WORK

are not directly applicable because neither assembling parts nor generating
rules are provided. Previous work heavily depended on precise geometry and
very complicated coding systems, which are very hard to satisfy for ordinary
examples. To solve this problem, it is necessary to develop an algorithm that can
find the most concise representation of an input geometry. We expect this to be
an open problem for a long time.

Bibliography

Aladdin (n.d.). Edushi maps for hangzhou. http://hz.edushi.com/. 2, 3

Alexa, M., Beht, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. (2003).
Computing and rendering point set surfaces. TVCG, 9(1):3–15. 12, 72

Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. (2006). Dual Laplacian editing
for meshes. IEEE Transactions on Visualization and Computer Graphics,
12(3):386–395. 12, 28

Averkiou, M., Kim, V. G., Zheng, Y., and Mitra, N. J. (2014). Shapesynth: Pa-
rameterizing model collections for coupled shape exploration and synthesis.
Comput. Graph. Forum, 33(2):125–134. 14

Avidan, S. and Shamir, A. (2007). Seam carving for content-aware image resizing.
In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA. ACM. 12,
14

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. (2009). Patch-
match: A randomized correspondence algorithm for structural image editing.
ACM Trans. Graph., 28(3):24:1–24:11. 15

Berner, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. (2008). A
graph-based approach to symmetry detection. In Symposium on Point-Based
Graphics, pages 1–8. 16

Berner, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. (2009). Gen-
eralized intrinsic symmetry detection. Research Report MPI-I-2009-4-005,
Max-Planck-Institut für Informatik. 16, 64, 65

Berner, A., Wand, M., Mitra, N. J., Mewes, D., and Seidel, H.-P. (2011). Shape
analysis with subspace symmetries. Computer Graphics Forum (Proc. Euro-
graphics), 30(2):277–286. 16, 64, 65

Bhat, P., Ingram, S., and Turk, G. (2004). Geometric texture synthesis by example.
In Proceedings of the Symposium on Geometry Processing, pages 41–44. 54

I

http://hz.edushi.com/

BIBLIOGRAPHY II

Bokeloh, M., Berner, A., p. Seidel, H., and Schilling, A. (2009). Symmetry detec-
tion using feature lines. CGF, pages 697–706. 16, 64, 65

Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. (2011a). Pattern-aware shape
deformation using sliding dockers. ACM Transactions on Graphics, 30(6). 12,
13, 20

Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. (2011b). Pattern-aware shape
deformation using sliding dockers. In Proceedings of the 2011 SIGGRAPH Asia
Conference, SA ’11, pages 123:1–123:10, New York, NY, USA. ACM. 15

Bokeloh, M., Wand, M., and Seidel, H.-P. (2010a). A connection between partial
symmetry and inverse procedural modeling. In ACM SIGGRAPH 2010 Papers,
SIGGRAPH ’10, pages 104:1–104:10, New York, NY, USA. ACM. 3

Bokeloh, M., Wand, M., and Seidel, H.-P. (2010b). A connection between partial
symmetry and inverse procedural modeling. ACM Trans. Graph., 29(4). 15

Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. (2012a). An algebraic model
for parameterized shape editing. ACM Transactions on Graphics, 31(4). 13, 20

Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. (2012b). An algebraic model
for parameterized shape editing. ACM Trans. Graph., 31(4):78:1–78:10. 15, 45,
47, 54, 60

Botsch, M. and Sorkine, O. (2008). On linear variational surface deforma-
tion methods. IEEE Transactions on Visualization and Computer Graphics,
14(1):213–230. 12, 28, 29

Boykov, Y., Veksler, O., and Zabih, R. (2001a). Fast approximate energy minimiza-
tion via graph cuts. IEEE TPAMI, 23(11):1222–1239. 47, 49

Boykov, Y., Veksler, O., and Zabih, R. (2001b). Fast approximate energy minimiza-
tion via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239.
80

Brown, B. and Rusinkiewicz, S. (2007). Global non-rigid alignment of 3-d scans.
ACM Trans. Graph., 26(3). 12

Cazals, F. and Pouget, M. (2005). Estimating differential quantities using polyno-
mial fitting of osculating jets. Computer Aided Geometric Design, 22(2):121 –
146. 72

III BIBLIOGRAPHY

Chen, K., Lai, Y.-K., Wu, Y.-X., Martin, R., and Hu, S.-M. (2014). Automatic seman-
tic modeling of indoor scenes from low-quality rgb-d data using contextual
information. ACM Trans. Graph., 33(6):208:1–208:12. 17

Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple
range images. Image Vision Comput., 10(3):145–155. 16

Coquillart, S. (1990). Extended free-form deformation: a sculpturing tool for 3d
geometric modeling. In Proc. Siggraph, pages 187–196. 12

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human
detection. In CVPR, pages 886–893. 67

Demir, I., Aliaga, D. G., and Benes, B. (2015). Coupled segmentation and similar-
ity detection for architectural models. ACM Trans. Graph., 34(4):104:1–104:11.
17

Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., and
Mitra, N. J. (2014). Meta-representation of shape families. ACM Trans. Graph.,
33(4):34:1–34:11. 17

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz,
S., and Dobkin, D. (2004). Modeling by example. In ACM Trans. Graph. (Proc.
Siggraph), pages 652–663. 14

Gal, R. and Cohen-Or, D. (2006). Salient geometric features for partial shape
matching and similarity. ACM Trans. on Graphics, 25(1):130–150. 15, 64

Gal, R., Sorkine, O., Mitra, N., and Cohen-Or, D. (2009). iWires: An analyze-
and-edit approach to shape manipulation. ACM Trans. Graph., 28(3). 12, 20,
31

Gelfand, N. and Guibas, L. J. (2004). Shape segmentation using local slippage
analysis. In Symposium on Geometry Processing, pages 214–223. 17

Golovinskiy, A. and Funkhouser, T. (2009). Consistent segmentation of 3D mod-
els. Computers & Graphics (Proc. of SMI), 33(3):262–269. 17

Google (n.d.). Google maps. https://www.google.com/maps/. 1

Hahn, T. (2002). International Tables for Crystallography Volume A: Space-group
symmetry. Springer Netherlands. 11

He, K. and Sun, J. (2012). Statistics of patch offsets for image completion. In
ECCV, pages 16–29. 15, 44, 46, 49, 51

https://www.google.com/maps/

BIBLIOGRAPHY IV

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. (2001).
Image analogies. In SIGGRAPH, pages 327–340. 15

Herzog, R., Mewes, D., Wand, M., Guibas, L., and Seidel, H.-P. (2015). Lesss:
Learned shared semantic spaces for relating multi-modal representations
of 3d shapes. In Proceedings of the Eurographics Symposium on Geometry
Processing, SGP ’15, pages 141–151, Aire-la-Ville, Switzerland, Switzerland.
Eurographics Association. 65, 68

Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. (2011). Interactive
surface modeling using modal analysis. ACM Trans. Graph., 30(5):119:1–11.
12

Hu, R., Fan, L., and Liu, L. (2012). Co-segmentation of 3d shapes via subspace
clustering. Computer Graphics Forum (SGP 2012), 31(5):1703–1713. 17

Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and
Shum, H.-Y. (2006). Subspace gradient domain mesh deformation. ACM Trans.
Graph., 25(3):1126–1134. 12, 28

Huang, Q., Guibas, L. J., and Mitra, N. J. (2014a). Near-regular structure discovery
using linear programming. ACM Trans. Graph., 33(3):23:1–23:17. 17

Huang, Q., Koltun, V., and Guibas, L. (2011). Joint shape segmentation with
linear programming. ACM Trans. Graph., 30:125:1–125:12. 17

Huang, Q., Wang, F., and Guibas, L. (2014b). Functional map networks for analyz-
ing and exploring large shape collections. ACM Trans. Graph., 33(4):36:1–36:11.
18

Huang, Q., Zhang, G., Gao, L., Hu, S., Bustcher, A., and Guibas, L. (2012). An
optimization approach for extracting and encoding consistent maps in a
shape collection. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 31(6).
16

Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. (2012). Fast auto-
matic skinning transformations. ACM Trans. Graph., 31(4):77:1–10. 12

Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. (2012). Exploring Shape
Variations by 3D-Model Decomposition and Part-based Recombination. Com-
puter Graphics Forum, 31(2):631–640. 14, 45

Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. (2012). A Probabilistic
Model of Component-Based Shape Synthesis. ACM Transactions on Graphics,
31(4). 14

V BIBLIOGRAPHY

Kalogerakis, E., Hertzmann, A., and Singh, K. (2010). Learning 3d mesh segmen-
tation and labeling. Proc. of SIGGRAPH, 29(3):102:1–102:12. 17

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2004a). Symmetry descrip-
tors and 3d shape matching. In Proc. Symposium on Geometry Processing
(SGP). 13, 20

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2004b). Symmetry descrip-
tors and 3D shape matching. In Symp. Geometry Processing (SGP), pages
115–123. 17

Kerber, J., Bokeloh, M., Wand, M., and Seidel, H.-P. (2013). Scalable symmetry
detection for urban scenes. CGF, 32:3–15. 16, 65, 68

Kim, V., Lipman, Y., Chen, X., and Funkhouser, T. (2011). Mobiüs transformations
for global intrinsic symmetry analysis. In Symposium on Geometry Processing,
pages 1689–1700. 17

Kim, V. G., Li, W., Mitra, N. J., DiVerdi, S., and Funkhouser, T. (2012). Exploring
collections of 3d models using fuzzy correspondences. ACM Trans. Graph.,
31(4):54:1–54:11. 16

Kolojanov, J., Bokeloh, M., Wand, M., Guibas, L., Slusallek, P., and Seidel, H.-
P. (2012). Microtiles: Extracting building blocks from correspondences. In
Symposium on Geometry Processing. 16, 82

Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. (2008). Non-homogeneous
resizing of complex models. ACM Trans. Graph., 27(5):111:1–111:9. 12, 20

Kurz, C., Wu, X., Wand, M., Thormählen, T., Kohli, P., and Seidel, H.-P. (2014).
Symmetry-aware template deformation and fitting. Computer Graphics Fo-
rum, 33(6):205–219. 7, 13, 20, 23, 31, 41, 88

Laga, H., Mortara, M., and Spagnuolo, M. (2013). Geometry and context for
semantic correspondences and functionality recognition in man-made 3d
shapes. ACM Trans. Graph., 32(5):150:1–150:16. 17

Leordeanu, M. and Hebert, M. (2005). A spectral technique for correspondence
problems using pairwise constraints. In International Conference of Computer
Vision (ICCV), volume 2, pages 1482–1489. 17

Li, C. and Wand, M. (2015). Approximate translational building blocks for image
decomposition and synthesis. ACM Trans. Graph., 34(5):158:1–158:16. 69, 74,
75, 77

BIBLIOGRAPHY VI

Li, C., Wand, M., Wu, X., and Seidel, H. P. (2015). Approximate 3d partial symme-
try detection using co-occurrence analysis. In 3D Vision (3DV), 2015 Interna-
tional Conference on, pages 425–433. 6, 7, 88

Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B.
(2011a). Structure-preserving retargeting of irregular 3D architecture. ACM
Trans. Graph., 30(6). 12

Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B.
(2011b). Structure-preserving retargeting of irregular 3d architecture. ACM
Trans. Graph., 30(6):183:1–183:10. 15, 45

Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B.
(2011c). Structure-preserving retargeting of irregular 3d architecture. ACM
Trans. Graph., 30(6):183:1–183:10. 54

Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. (2010). Symmetry
factored embedding and distance. ACM Trans. Graph., 29:103:1–12. 13, 16, 20,
64, 65, 74, 76, 77, 80

Liu, J. and Liu, Y. (2013). Grasp recurring patterns from a single view. In CVPR,
pages 2003–2010. 74, 77

Liu, T., Chaudhuri, S., Kim, V. G., Huang, Q.-X., Mitra, N. J., and Funkhouser, T.
(2014). Creating consistent scene graphs using a probabilistic grammar. ACM
Transactions on Graphics (Proc. of SIGGRAPH Asia), 33(6). 17

Liu, Y., Prabhakaran, B., and Guo, X. (2012). Point-based manifold harmonics.
IEEE Transactions on Visualization and Computer Graphics, 18(10):1693–1703.
28

Loy, G. and Eklundh, J.-O. (2006). Detecting symmetry and symmetric constella-
tions of features. In Proc. European Conf. Comp. Vision ECCV, pages 508–521.
16

Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. (2006). Accurate detection
of symmetries in 3d shapes. ACM Trans. on Graphics, 25(2):439 – 464. 17

Mattausch, O., Panozzo, D., Mura, C., Sorkine-Hornung, O., and Pajarola, R.
(2014). Object detection and classification from large-scale cluttered indoor
scans. Computer Graphics Forum, 33(2):11–21. 16

Merrell, P. and Manocha, D. (2011). Model synthesis: A general procedural
modeling algorithm. IEEE TVCG, 17(6):715–728. 15, 54

VII BIBLIOGRAPHY

Merrell, P. C. (2009). Model synthesis. PhD Thesis, Stanford University. 15

Mitra, N., Wand, M., Zhang, H. R., Cohen-Or, D., Kim, V., and Huang, Q.-X.
(2013a). Structure-aware shape processing. In SIGGRAPH Asia 2013 Courses,
SA ’13, pages 1:1–1:20, New York, NY, USA. ACM. 3, 63

Mitra, N. J., Bronstein, A., and Bronstein, M. (2010). Intrinsic regularity detection
in 3d geometry. In Proc. European Conf. Comp. Vision ECCV, pages 398–410.
17

Mitra, N. J., Guibas, L., and Pauly, M. (2006a). Partial and approximate symme-
try detection for 3d geometry. ACM Transactions on Graphics (SIGGRAPH),
25(3):560–568. 15

Mitra, N. J., Guibas, L., and Pauly, M. (2006b). Partial and approximate symmetry
detection for 3d geometry. Proc. of SIGGRAPH, 25(3):560–568. 16

Mitra, N. J., Guibas, L. J., and Pauly, M. (2006c). Partial and approximate symme-
try detection for 3d geometry. In SIGGRAPH, pages 560–568. 15, 64, 65

Mitra, N. J., Guibas, L. J., and Pauly, M. (2007). Symmetrization. Proc. of SIG-
GRAPH, 26(3):63:1–63:8. 16

Mitra, N. J., Pauly, M., Wand, M., and Ceylan, D. (2013b). Symmetry in 3d
geometry: Extraction and applications. Computer Graphics Forum, 32(6):1–23.
11, 15, 22, 63

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization (2nd edition).
Springer. 29

Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., and Guibas, L. (2012).
Functional maps: A flexible representation of maps between shapes. ACM
Trans. Graph., 31(4). 17

Ovsjanikov, M., Mérigot, Q., Pătrăucean, V., and Guibas, L. (2013). Shape match-
ing via quotient spaces. Computer Graphics Forum (Proceedings of SGP). 13,
20

Ovsjanikov, M., Sun, J., and Guibas, L. (2008). Global intrinsic symmetries of
shapes. In Symp. Geometry Processing (SGP), pages 1341–1348. 17, 64

Parish, Y. I. H. and Müller, P. (2001). Procedural modeling of cities. In Proceed-
ings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’01, pages 301–308, New York, NY, USA. ACM. 3

BIBLIOGRAPHY VIII

Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. (2008a). Discover-
ing structural regularity in 3D geometry. Proc. of SIGGRAPH, 27(3):43:1–43:11.
16, 64, 65

Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. J. (2008b). Dis-
covering structural regularity in 3d geometry. ACM Trans. Graph., 27(3). 15,
47

Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T.
(2006). A planar-reflective symmetry transform for 3D shapes. Proc. of SIG-
GRAPH, 25(3):549–559. 15, 16, 64, 65

Pritch, Y., Kav-Venaki, E., and Peleg, S. (2009). Shift-map image editing. In ICCV,
pages 151–158. 15, 44

Rahmani, H., Mahmood, A., Huynh, D. Q., and Mian, A. (2014). Hopc: Histogram
of oriented principal components of 3d pointclouds for action recognition. In
ECCV. 65, 68

Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2010). Full and
partial symmetries of non-rigid shapes. Int. J. Comput. Vision, 89(1):18–39. 17

Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (fpfh)
for 3d registration. In ICRA, pages 3212–3217. 51

Seber, G. A. (1984). Multivariate Observations. Wiley. 73

Sederberg, T. W. and Parry, S. R. (1986). Free-form deformation of solid geometric
models. In SIGGRAPH. 12

Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. (2012). Structure recovery by part
assembly. ACM Trans. Graph., 31(6):180:1–180:11. 79

Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. (2011). Un-
supervised co-segmentation of a set of shapes via descriptor-space spectral
clustering. ACM Trans. on Graphics (Proc. SIGGRAPH Asia), 30(6):126:1–126:10.
17

Simakov, D., Caspi, Y., Shechtman, E., and Irani, M. (2008). Summarizing visual
data using bidirectional similarity. In CVPR. 15

Simari, P., Kalogerakis, E., and Singh, K. (2006). Folding meshes: Hierarchical
mesh segmentation based on planar symmetry. In Symposium on Geometry
Processing, pages 111–119. 15, 17

IX BIBLIOGRAPHY

Song, S. and Xiao, J. (2014). Sliding shapes for 3d object detection in depth
images. In ECCV. 65, 68, 75

Sorkine, O. and Alexa, M. (2007). As-rigid-as-possible surface modeling. In Pro-
ceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,
pages 109–116. 12, 30

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P.
(2004). Laplacian surface editing. In Symposium on Geometry processing,
pages 175–184. 12

Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. (2011). Metropo-
lis procedural modeling. ACM Trans. Graph., 30(2):11:1–11:14. 54

Tam, G. K., Martin, R. R., Rosin, P. L., and Lai, Y.-K. (2014). An efficient approach
to correspondences between multiple non-rigid parts. Computer Graphics
Forum (SGP 2014), 33(5):137–146. 17

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically deformable
models. In Proceedings of SIGGRAPH, pages 205–214, New York, NY, USA.
ACM. 12

Tevs, A., Huang, Q., Wand, M., Seidel, H.-P., and Guibas, L. (2014a). Relat-
ing shapes via geometric symmetries and regularities. ACM Trans. Graph.,
33(4):119:1–119:12. 11

Tevs, A., Huang, Q., Wand, M., Seidel, H.-P., and Guibas, L. (2014b). Relat-
ing shapes via geometric symmetries and regularities. ACM Trans. Graph.,
33(4):119:1–12. 22, 30

Tombari, F., Salti, S., and di Stefano, L. (2010). Unique signatures of histograms
for local surface description. In ECCV, pages 356–369. 46, 49

Turk, G. (2001). Texture synthesis on surfaces. In Proceedings of SIGGRAPH,
pages 347–354. 54

Vallet, B., Brédif, M., Serna, A., Marcotegui, B., and Paparoditis, N. (2015). Ter-
ramobilita/iqmulus urban point cloud analysis benchmark. Comput. Graph.,
49(C):126–133. 74

von Tycowicz, C., Schulz, C., Seidel, H.-P., and Hildebrandt, K. (2013). An efficient
construction of reduced deformable objects. ACM Trans. Graph., 32(6):213:1–
10. 12

BIBLIOGRAPHY X

Wang, H., Simari, P., Su, Z., and Zhang, H. (2014). Spectral global intrinsic
symmetry invariant functions. In Graphics Interface. 13, 20

Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y.
(2011). Symmetry hierarchy of man-made objects. Computer Graphics Forum,
30(2). 13, 32, 45

Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. (2009). State of the art in example-
based texture synthesis. Eurographics STARs. 15, 43

Welch, W. and Witkin, A. (1992). Variational surface modeling. In Computer
Graphics (Proceedings Siggraph), volume 26. 12

Wu, X., Li, C., Wand, M., Hildebrandt, K., Jansen, S., and Seidel, H. (2014a). 3d
model retargeting using offset statistics. IEEE 3DV. 6, 7, 88

Wu, X., Wand, M., Hildebrandt, K., Kohli, P., and Seidel, H.-P. (2014b). Real-time
symmetry-preserving deformation. Comput. Graph. Forum, 33(7):229–238. 6,
7, 88

Xu, K., Chen, K., Fu, H., Sun, W.-L., and Hu, S.-M. (2013). Sketch2scene: Sketch-
based co-retrieval and co-placement of 3d models. ACM Transactions on
Graphics, 32(4):123:1–123:12. 17

Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. (2012a). Fit and diverse: Set
evolution for inspiring 3d shape galleries. ACM Trans. Graph., 31(4):57:1–
57:10. 14

Xu, K., Zhang, H., Jiang, W., Dyer, R., Cheng, Z., Liu, L., and Chen, B. (2012b).
Multi-scale partial intrinsic symmetry detection. Proc. of SIGGRAPH Asia,
31(6). 17

Xu, K., Zhang, H., Jiang, W., Dyer, R., Cheng, Z., Liu, L., and Chen, B.
(2012c). Multi-scale partial intrinsic symmetry detection. ACM Trans. Graph.,
31(6):181:1–181:11. 64

Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. (2009a).
Partial intrinsic reflectional symmetry of 3d shapes. ACM Transactions on
Graphics, (Proceedings SIGGRAPH Asia 2009), 28(5):138:1–138:10. 12, 20

Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. (2009b).
Partial intrinsic reflectional symmetry of 3D shapes. Proc. of SIGGRAPH,
28(5):138:1–138:10. 17

XI BIBLIOGRAPHY

Zheng, Y., Cohen-Or, D., Averkiou, M., and Mitra, N. J. (2014). Recurring part
arrangements in shape collections. Computer Graphics Forum (Special issue
of Eurographics 2014). 17

Zheng, Y., Cohen-Or, D., and Mitra, N. J. (2013). Smart Variations: Functional
substructures for part compatibility. Comput. Graph. Forum, 32(2):195–204.
14, 45

Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. (2011). Component-
wise controllers for structure-preserving shape manipulation. Computer
Graphics Forum, 30(2):563–572. 13, 20

Zhou, K., Huang, X., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H.-Y.
(2006). Mesh quilting for geometric texture synthesis. ACM Trans. Graph.,
25(3):690–697. 54

	Introduction
	3D digital content creation
	Contributions
	Thesis outline

	Background and previous work
	Symmetry
	Shape deformation
	Model retargeting
	Symmetry detection

	Real-Time Symmetry-Preserving Deformation
	Introduction
	Partial Symmetries
	Symmetry-Preserving Deformation
	Direct Subspace Construction
	Symmetry-Preserving Editing
	Experiments and Discussion
	Summary

	3D Model Retargeting Using Offset Statistics
	Introduction
	Method
	Offset Statistics Detection
	Model Retargeting

	Sparsity of 3D Offset Statistics
	Implementation
	Results
	Summary

	Approximate 3D Partial Symmetry Detection Using Co-Occurrence Analysis
	Introduction
	Overview
	Method
	Pre-processing
	Robust Co-occurring Feature Detection
	Instance Detection

	Implementation Details
	Evaluation
	Dataset
	Methodology
	Results

	Applications
	Detecting Clusters of Constellations
	Unsupervised Co-Detection
	Retargeting

	Limitation and Future work
	Summary

	Conclusion
	Final remarks
	Future work
	Respective discussions
	General outlook

