
Towards Holistic Machines:

From Visual Recognition To Question Answering
About Real-World Images

A dissertation submitted towards the degree
Doctor of Engineering Science

(Dr.-Ing.)
of the Faculty of Mathematics and Computer Science

of Saarland University

by
Mateusz Malinowski, M.Sc.

Saarbrücken
06.2017

ii

Defense

Day of Colloquium: 20.06.2017

Dean of the Faculty: Univ.-Prof. Dr. Frank-Olaf Shreyer

Examination Committee

Chair: Prof. Jens Dittrich

Reviewer, Advisor: Dr. Mario Fritz

Reviewer: Prof. Dr. Manfred Pinkal

Reviewer: Prof. Trevor Darrell, Ph.D.

Academic Assistant: Dr. Qianru Sun

iii

Acknowledgments

First and foremost, I would like to thank Dr. Mario Fritz for giving me an excellent
opportunity to work under his guidance at Max Planck for Informatics. His advice and
scientific experience have helped me to shape my personality as a scientist, and grow as a
researcher. His enthusiasm and willingness to cross the boundaries of Computer Vision have
resulted in many great memories, also manifested by our projects. I would also like to thank
Prof. Bernt Schiele, whose expertise and enormous energy have made this lab, with so many
great researchers with such diverse experience, very special.

I am truly grateful for Prof. Trevor Darrell and Prof. Manfred Pinkal for serving as
reviewers on the thesis commmitte. Their comments on my work has influenced me to work
further on this exciting project. Special thanks to Prof. Jens Dittrich for being the chair of
the committee and Dr. Qianru Sun for being a part of the committee as well.

I am grateful that I had an opportunity to work with two students, Sreyasi Nag Chowdhury
and Ashkan Mokarian, on different aspects of my main endeavor on Visual Turing Test.
Similarly, collaboration with Apratim Bhattacharyya on boundary extrapolation has made
me interested in the ‘intuitive physics’. I wish all the best in your scientific journey. Moreover,
I am also grateful to my other three fantastic collaborators that I had a chance to work
with: Dr. Zeynep Akata on her project on Zero-Shot Learning, Dr. Marcus Rohrbach whose
advice helped me a lot on my most recent project, and Dr. Andreas Bulling with whom I
was collaborating on the ‘Collective Memories’ project.

Many thanks to my office mate, Walon, whose cheerful attitude helped me during difficult
times. He also supported me many times during our trips. I am truly happy you get an
awesome position back at Taiwan!

I owe an enormous debt of gratitude to Jan Hosang, whose technical expertise made my
work much easier. He has also helped me in many other ways during my stay at Germany.

Special thanks to Dr. Rodrigo Benenson, Dr. Micha Andriluka, Dr. Michael Stark, Dr.
Björn Andres, and Dr. Peter Gehler. Their experience, research projects, and valuable
comments not only have influenced me in many ways, but also helped me to shape my
scientific journey. You guys are constant source of inspirations.

I would like to express my sincere gratitude to all (former and current) members of this
lab, especially to: Maksim Lapin, Siyu Tang, Wenbin Li, Sabrina Hoppe, Julian Steil, Anna
Khoreva, Anna Rohrbach, Leonid Pishchulin, Hosnieh Sattar, Seong Joon Oh, Abhishek
Sharma, Yusuke Sugano, Mohamed Omran, Eldar Insafutdinov, Bojan Pepikj, Gaurav
Sharma, Martin Simonovsky, Yongqin Xian, Yang He, Shanshan Zhang, Margret Keuper,
Fabio Galasso. Many thanks to Connie Balzert for her excellent organizational work. You
guys make this lab very special.

Without my friends, Adam Grycner, Przemek Grabowicz, Barbara Kościelecka, Asia
Biega, Tomek Dudziak, Benjamin Roth, Kasia and Piotr Danilewscy, Krzysiek and Martyna
Klimek, Marta Podgórska, Azim Dehghani Amirabad, Yulia Gryaditskaya, Monika Hosen,
Basileios Anastasatos, Ashutosh Modi, and Lisette Noboa my life abroad would not be
so exciting. I would like to especially thank to my close friend Konrad Jamrozik. He was
always willing to support me in numerous ways. I wish your stay in USA will be a wonderful

iv

experience. I would also like to thank Tomek Dudziak for lending his voice in the spotlight
of our ‘Ask Your Neurons’ paper1.

Spetial thanks to Konrad Jamrozik, Krzysztof Templin, Barbara Kościelecka, Seong
Joon Oh, Jan Hosang, Mohamed Yahya, Kasia Danilewska, and Azim Dehghani Amirabad
for proofreading this thesis. Your valuable comments helped me to shaped this thesis.

I would like to thank my parents, brothers and grandparents for their never-ending
support in my endeavor. As a result of the sense of security that they have given to me I
could have spent my time and energy on my PhD studies.

Last but not least, I want to thank my beloved girlfriend Joanna Pacia for her constant
support and belief in me and my work. Without her help my stay abroad would not be
possible. I am dedicating my thesis to her.

1https://www.youtube.com/watch?v=QZEwDcN8ehs

https://www.youtube.com/watch?v=QZEwDcN8ehs

v

Abstract
Computer Vision has undergone major changes over the recent five years. Together with the
advances on Deep Learning, and creation of large-volume datasets, the progress becomes
particularly strong on the image classification task. Moreover, we also observe a succesful
move from hand-designed to learnt features allowing to adapt to the task at hand. Therefore,
we investigate if the performance of such architectures can also scale up to more complex
tasks that require a more holistic approach to scene comprehension. This thesis has four
main themes that have contributed to these advances in Computer Vision.

First, we extend Spatial Pyramid Matching, an integral part of most traditional visual
recognition frameworks, by introducing a learning-based approach to discriminatively learn a
spatial pooling layout from training data. Our results show a significant improvement over the
original Spatial Pyramid Matching architecture, providing evidence that the hand-designed
spatial division is indeed suboptimal.

Second, we have found a link between the pooling regions, and a computational model
for spatial reasoning, which we applied to a text-to-image retrieval task. Interestingly, spatial
pooling regions can also be related to spatial templates developed in psychological studies on
human spatial reasoning. In this part of the thesis, we also explore a compositional neural
architecture for the image retrieval task. An explicitly parameterization of the proposed
method allows for spatial reasoning. This work is a precursor that has led us to the work on
a Visual Turing Test.

The last two parts are about the Visual Turing Test, the task where a machine has to
answer various questions about the content of images. In the third part, we have introduced,
for the first time, the question answering task about real-world images. We have proposed
DAQUAR, the first ‘question answering about images’ dataset together with the first method
that handles the problem. Since the method relies on a semantic parser as well as a database
of visual facts, we call the method the logic-based visual question answering architecture. In
order to deal with uncertain visual inputs, we have proposed a bayesian extension to the
semantic parser that runs over various possible interpretations of the visual scene. In this
part, we have also introduced the first evaluation metric that embraces uncertainty in the
word’s meaning.

In the fourth part, we continue to work on the Visual Turing Test. Here, we have proposed
the first end-to-end, jointly trained approach to the ‘question answering about images’ task.
Since the method is a multimodal, Deep Learning method that combines a Recurrent
Neural Network with a Convolutional Neural Network, we call the method a neural-based
visual question answering architecture. In addition, we have collected an additional set of
annotations and proposed two extensions of the evaluation metric to embrace uncertainty in
various question and image interpretations.

In summary, this thesis contributes to the Computer Vision field in various ways: from the
visual recognition, through image-to-test retrieval, to ‘question answering about real-world
images’. In most of the parts of the thesis, we argue for the jointly trained, neural-based
methods where the representation of the input is optimized directly towards the end-goal.

vi

Zusammenfassung

Computer Vision hat sich in den letzten fünf Jahren stark verändert. Zusammen mit den
Fortschritten im Bereich Deep Learning und der Erstellung von umfangreichen Datensätzen
wird der Fortschritt besonders im Bereich der Bildklassifizierungsaufgaben deutlich. Des
Weiteren können wir einen erfolgreichen Übergang von manuell gestalteten zu erlernten Funk-
tionen beobachten, der es ermöglicht, die jeweilige Aufgabe anzupassen. Daher untersuchen
wir, ob die Leistung solcher Architekturen auch auf komplexere Aufgaben erweitert werden
kann, die einen eher ganzheitlichen Ansatz an die Szenenerfassung verlangen. Diese These
umfasst vier Hauptthemen, die zu diesen Fortschritten bei Computer Vision beigetragen
haben. Zunächst erweitern wir Spatial Pyramid Matching, ein integraler Bestandteil der
meisten konventionellen visuellen Erkennungsrahmen, durch Einführung eines lernbasierten
Ansatzes, um auf unterschiedliche Weise ein räumliches Bündelungs-Layout von Schulungs-
daten zu erlernen. Unsere Ergebnisse zeigen eine deutliche Verbesserung im Vergleich zur
ursprünglichen Spatial Pyramid Matching-Architektur und liefern den Beweis, dass die
manuell gestaltete räumliche Unterteilung in der Tat suboptimal ist.

Als Zweites haben wir eine Verbindung zwischen Bündelungsregionen und einem com-
puterbasierten Modell für räumliche Argumentation gefunden, die wir auf eine Text-an-
Bild-Wiederherstellungsaufgabe angewendet haben. Interessanterweise können räumliche
Bündelungsregionen auch mit räumlichen Vorlagen in Bezug gesetzt werden, die in psychol-
ogischen Studien zur menschlichen räumlichen Argumentation entwickelt wurden. In diesem
Teil der These untersuchen wir außerdem eine zusammensetzende neurale Architektur für
die Bild-Wiederherstellungsaufgabe. Eine explizite Parametrisierung der vorgeschlagenen
Methode ermöglicht die räumliche Argumentation. Diese Arbeit ist eine Vorstufe, die uns
zur Arbeit an einem Visual Turing Test führte.

Die letzten beiden Teile betreffen den Visual Turing Test, die Aufgabe, bei der eine
Maschine verschiedenste Fragen zum Inhalt von Bildern beantworten muss. Im dritten Teil
haben wir zum ersten Mal die fragenbeantwortende Aufgabe zu echten Bildern eingeführt. Wir
haben DAQUAR vorgeschlagen, den ersten „fragenbeantwortenden Datensatz zu Bildern“,
gemeinsam mit der ersten Methode, die dieses Problem behandelt. Da diese Methode auf
einem semantischen Parser sowie auf einer Datenbank an visuellen Fakten beruht, nennen wir
diese Methode logikbasierte Fragenbeantwortungs-Architektur. Um mit den unbestimmten
visuellen Eingaben umgehen zu können, haben wir eine Bayesian-Erweiterung für den
semantischen Parser vorgeschlagen, die über verschiedenen Interpretationsmöglichkeiten der
visuellen Szene ausgeführt wird. In diesem Teil haben wir auch die erste Bewertungsmetrik
eingeführt, die die Unsicherheit in der Wortbedeutung behandelt.

Im vierten Teil arbeiten wir am Visual Turing Test weiter. Hier haben wir das erste
End-to-End vorgeschlagen, ein gemeinsam geschulter Ansatz an die Aufgabe der „Fragen-
beantwortung über Bilder“. Da diese Methode multimodal ist, die Deep Learning Methode,
die ein Recurrent Neural Network mit einem Convolutional Neural Network kombiniert,
nennen wir die Methode eine neural-basierte visuelle Fragenbeantwortungsarchitektur. Zusät-
zlich haben wir einen weiteren Satz an Anmerkungen gesammelt und zwei Erweiterungen
der Auswertungsmetrik vorgeschlagen, um die Unsicherheit in machen Frage- und Bildinter-

vii

pretationen zu behandeln.
Zusammenfassend trägt diese These zum Computer Vision-Bereich auf verschiedene

Arten bei: von der visuellen Erkennung über Bild-an-Test-Wiederherstellung bis hin zur
„Fragenbeantwortung zu realen Bildern“. Im Großteil dieser These plädieren wir für die
gemeinsam geschulten, neural-basierten Methoden, bei denen die Darstellung der Eingabe
direkt in Richtung des Endziels optimiert wird.

Contents

1 Introduction 1
1.1 Contributions of the Thesis . 3
1.2 Contributions to Other Projects . 6

1.2.1 Intuitive Physics . 7
1.2.2 Zero-Shot Learning . 7
1.2.3 Visual Turing Test . 7

1.3 Outline of the Thesis . 8

2 From Visual Recognition Towards Holistic Machines 13
2.1 Large Volume Datasets . 14

2.1.1 Concluding Remarks . 15
2.2 Visual Recognition . 16

2.2.1 Concluding Remarks . 18
2.3 Natural Language Understanding . 19

2.3.1 Symbolic Representation of the Meaning 19
2.3.2 Sub-symbolic Representation of the Meaning 20
2.3.3 Concluding Remarks . 21

2.4 Holistic Tasks . 21
2.4.1 Combining Vision with Language . 21
2.4.2 Challenges . 23
2.4.3 Concluding Remarks . 23

3 Background: Visual Recognition 25
3.1 Introduction . 25
3.2 Spatial Pyramid Matching (SPM) . 26
3.3 Convolutional Neural Networks (CNNs) . 28
3.4 Recent Recognition Architectures . 31
3.5 Conclusion . 32

4 Background: Natural Language Understanding 35
4.1 Introduction . 35
4.2 Semantic Parsing . 36
4.3 Recurrent Neural Networks . 42
4.4 Conclusion . 46

5 Related Work 47
5.1 Spatial Pooling Regions . 47

5.1.1 Prior Work . 47
5.1.2 Contemporaneous and Subsequent Work 48

5.2 Spatial Relations and Retrieval . 49

x Contents

5.2.1 Prior Work . 49
5.2.2 Contemporaneous and Subsequent Work 50

5.3 Towards a Visual Turing Test . 51
5.3.1 Prior Work . 51
5.3.2 Contemporaneous and Subsequent Work 54

5.4 Concluding Remarks . 59

6 Learning Smooth Pooling Regions for Visual Recognition 61
6.1 Introduction . 62
6.2 Related Work . 62
6.3 Outline . 63
6.4 Method . 63

6.4.1 Parameterized Pooling Operator . 63
6.4.2 Learnable Pooling Regions . 64
6.4.3 Regularization Terms . 65
6.4.4 Approximation of the Model . 66

6.5 Experimental Results . 66
6.6 Conclusion . 71

7 A Pooling Approach to Modelling Spatial Relations for
Image Retrieval and Annotation 73
7.1 Introduction . 74
7.2 Related work . 75
7.3 Method . 76

7.3.1 Modeling spatial representations by spatial pooling 77
7.3.2 Estimating spatial templates . 78
7.3.3 Deep fragment embeddings with spatial reasoning 79

7.4 Experiments . 80
7.4.1 Dataset . 81
7.4.2 Evaluation . 82

7.5 Summary . 86
7.6 Visual inspection . 87

8 Towards a Visual Turing Challenge 93
8.1 Introduction . 93

8.1.1 Towards a Visual Question Answering Task 93
8.1.2 Why a Visual Turing Test? . 95

8.2 Challenges . 96
8.3 DAQUAR: Building a Dataset for Visual Turing Challenge 98
8.4 Quantifying the Performance of Holistic Architectures 99
8.5 Summary . 100

Contents xi

9 A Multi-world Approach to Question Answering
about Real-World Scenes based on Uncertain Input 103
9.1 Introduction . 104
9.2 Related work . 104
9.3 Method . 105
9.4 Experiments . 109

9.4.1 DAQUAR . 109
9.4.2 Quantitative results . 111
9.4.3 Human question-answer pairs (HumanQA) 112
9.4.4 Qualitative results . 112

9.5 Summary . 113

10 Ask Your Neurons:
A Neural-based Approach to Answering Questions about Images 117
10.1 Introduction . 118
10.2 Related Work . 119
10.3 Approach . 121
10.4 Experiments . 123

10.4.1 Evaluation of Ask Your Neurons . 124
10.4.2 Answering questions without looking at images 126
10.4.3 Human Consensus . 126
10.4.4 Qualitative results . 130
10.4.5 Failure cases . 130

10.5 Conclusions . 131
10.6 Additional Material . 134

11 Ask Your Neurons:
A Deeper Analysis 139
11.1 Introduction . 140
11.2 Related Work . 140

11.2.1 Convolutional neural networks for visual recognition 140
11.2.2 Encodings for text sequence understanding 141
11.2.3 Combining RNNs and CNNs for description of visual content. 141
11.2.4 Grounding of natural language and visual concepts. 141
11.2.5 Textual question answering. 142
11.2.6 Visual Turing Test . 142
11.2.7 Datasets for visual question answering 144
11.2.8 Relations to our work. 145
11.2.9 Encoder-decoder Perspective on Visual Turing Test 145

11.3 Analysis on VQA . 149
11.3.1 Experimental setup . 150
11.3.2 Question-only . 151
11.3.3 Vision and Language . 153
11.3.4 Summary VQA results . 155

xii Contents

11.4 State-of-the-art on DAQUAR and VQA . 155

12 Conclusions and Future Perspectives 161
12.1 Concluding Remarks . 161
12.2 Future Perspectives . 164

A DDCNA: Data-Driven Compositional Neural Architecture for Image Re-
trieval based on Compositional Queries 169
A.1 Introduction . 169
A.2 Related work . 171
A.3 Method . 172

A.3.1 Data-Driven Compositional Neural Architecture 172
A.3.2 Inference . 173
A.3.3 Learning . 174

A.4 Experiments . 175
A.4.1 Dataset . 175
A.4.2 Evaluation . 176

A.5 Qualitative results and Conclusions . 179

B Visual FactNet 183
B.1 Introduction . 183
B.2 Additional Analysis with Contemporary Architecture 184

B.2.1 Visual FactNet: Analyzing Question Answering by a Manipulable
Memory Architecture . 184

B.2.2 Performance Analysis by Question Type 185
B.3 Summary . 187

C Tutorial on Answering Questions about Images with Deep Learning 189
C.1 Preface . 190
C.2 Dataset . 191
C.3 Textual Features . 193
C.4 Language Only Models . 196
C.5 Evaluation Measures . 202
C.6 New Predictions . 206
C.7 Visual Features . 208
C.8 Vision+Language . 209
C.9 New Predictions with Vision+Language . 217
C.10 VQA . 218
C.11 New Research Opportunities . 223

Bibliography 225

List of Figures 249

List of Tables 253

Contents xiii

Curriculum Vitae 255

Selected Publications 262

Chapter 1

Introduction

Contents
1.1 Contributions of the Thesis . 3

1.2 Contributions to Other Projects . 6

1.2.1 Intuitive Physics . 7

1.2.2 Zero-Shot Learning . 7

1.2.3 Visual Turing Test . 7

1.3 Outline of the Thesis . 8

Holistic scene understanding is a long-standing goal of Artificial Intelligence (AI).
From the early years of AI, the research community has attempted to develop
machines that can interact with an environment through a natural language

interface [Winograd 1971]. However, due to a series of failures in scaling up the work to real-
world scenarios, which also shows how difficult the holistic comprehension is, the problem has
been decomposed into several subproblems that gave a birth to different scientific disciplines
such as Computer Vision, or Natural Language Understanding. All the aforementioned
fields used to deal with different human faculties, and as such, they set different goals, and
have developed different methods. A significant fraction of the work on Computer Vision or
Natural Language Understanding is Feature Engineering – a discipline of designing a good
representation of the input data. However, we also observe a successful move from such
hand-designed features towards learning-based approaches that learn the features directly
from data. So called Deep Learning, which employs deep neural networks, is often used as a
synonym for the latter. In this thesis, we take a similar view, and show how to incorporate a
learning-based approach to learn a spatial layout into a recognition framework that otherwise
uses a spatial division set up a-priori and arbitrarily (Chapter 6).

Due to the recent advances in Deep Learning, researchers can not only use approaches
to automatically learn features from data, but also successfully apply these techniques to
achieve state-of-the-art results in the image classification [Krizhevsky et al. 2012; Szegedy
et al. 2015; He et al. 2015], and object detection [Girshick et al. 2014; Ren et al. 2015b]
tasks. Interestingly, Deep Learning has also unified, to some degree, Computer Vision with
Natural Language Understanding, as many problems in each field can be tackled with
methods similar in design. Typically, they give a vector representation of an image or a
natural language sentence. This altogether has ignited interest of the research community in
a multimodal setting, where vector representations of both modalities are combined. For
instance, we benefit from such vector-based representations to build approaches to retrieve

2 Chapter 1. Introduction

images based on a textual query (Chapter 7) or to build approaches that answer questions
about real-world images (Chapter 10).

At the same time there is also an interesest of the Computer Vision community in
the general scene understanding, with different tasks set up as testbeds such as object
detection, or semantic segmentation. However, as we are pushing towards a more holistic
line of research, building large-volume datasets by collecting detailed annotations such as
bounding boxes or per-pixel annotations becomes increasingly more problematic. Moreover,
such ‘visual understanding’ should, arguably, also be to some extent agnostic to an internal
representation of various methods. The majority of this thesis, introduces and discusses
our alternative approach to ‘understanding’, where methods are evaluated based on their
performance in answering questions about images. Due to the similarities of such a task
to the famous Turing Test, we call it a Visual Turing Test (Chapter 8). Arguably, a good
performance on such a question answering task is necessary for the human-quality holistic
comprehension of the world.

To base upon our intuition that question answering about images requires a logical
reasoning, and by drawing inspirations from the advances on the ‘textual question answering’
task, we build our first approach using a semantic parser together with an external dataset
representing the visual world by storing uncertain visual facts (Chapter 9). We call such a
method logic-based. However, such an approach, composed of many independent components,
strongly relies on many design choices as well as the visual representation. This contrasts
with the main idea of Deep Learning that emphasizes learning a representation directly from
data. Therefore, considering that Deep Learning approaches have been shown successful in
tackling many Computer Vision and Natural Language Understanding problems, we build
our second approach using a combination of Recurrent Neural Networks with Convolutional
Neural Networks. We call such a method neural-based (Chapter 10 and Chapter 11). This
method, which significantly outperforms a logic-based one, can be jointly and end-to-end
trained. Therefore it does require making fewer design choices, and can more effectively use
the language to come up with answers to numerous questions.

To summarize, in this thesis, we tackle various problems from Visual Recognition, through
Text-to-Image Retrieval, to Visual Turing Test. Considering that the more traditional
approaches are often subject to many undesired issues, we argue for approaches that
automatically build a representation of input data with minimal design decisions, jointly and
end-to-end. First, each design decision introduces an error that cannot be easily corrected.
Second, end-to-end, jointly trained architectures directly optimize towards the end-goal and
therefore have a freedom to build an appropriate representation of the input data given
the final task. Third, it is difficult to hand-design appropriate features in a multimodal
domain. Fourth, such architectures are easier to scale up to new domains or to cover new
scenarios as they do not require re-designing or extending the current features. Fifth, as
we can see not only in this thesis but also in the whole field, such approaches exhibit
competitive or even state-of-the-art performance compared with hand-designed ones. In
addition to jointly trained and end-to-end architectures, we also argue for architectures that
can reason about spatial relations. Ideally such methods should also be trained jointly and
end-to-end. Finally, we argue for tackling more holistic tasks such as a Visual Turing Test for

1.1. Contributions of the Thesis 3

the following reasons. First, owing to the progress on the individual disciplines, Computer
Vision and Natural Language Understanding, we have strong tools to build a representation
of sensory inputs at our disposal. This enables the research community to work on more
holistic problems. Second, building holistic machines that understand sensory inputs, and
can perform actions accordingly is a challenging, open problem. It is particularly interesting
to see if Deep Learning can be extended to model higher cognition. Third, our variant of a
Visual Turing Test does not depend on an internal representation of the input data as the
performance is only measured on the final task. Fourth, arguably the Visual Turing Test
does not require a high annotation effort in comparison with the image segmentation task,
and at the same time is more focused than the image description task.

In the remainder of this chapter, we will revisit our contributions in the context of the
whole thesis as well as the whole research field. Later on, we also briefly outline individual
chapters of the thesis.

1.1 Contributions of the Thesis

This thesis contributes to Visual Recognition, Deep Learning, Natural Language Under-
standing, and Multimodal Learning in various ways. In this section, we have grouped
our contributions, and put them in the relation with other work in the field. Note that
contributions are also presented in individual chapters of the thesis.

Task The most prominent contribution of the thesis is our approach to determine a good
holistic task. On one hand, we would like to have a task that tests visual scene understanding,
however, in contrast to detection and segmentation tasks, with a more scalable annotation
process, and one that is to some extend agnostic to an image representation (does neither
require outputting bounding boxes nor per-pixel labels). On the other hand, in contrast to
the image description task, we would like to have objective ways to automatically monitor
the progress on the task via different evaluation metrics. With all these goals in mind, we
have introduced a task where machines have to answer questions about real-world images,
which we call a Visual Turing Test. In this task, a series of questions about the visual
content of an image are used to test the ‘understanding’. Therefore the overall performance
is only measured based on provided answers, and does not need to evaluate an internal
representation of various methods. In other words, we choose natural language as the final
measure of ‘understanding’ irrespective of any internal specifics of a visual representation.
Moreover, the task, arguably, encourages researchers to take a more holistic view as the whole
chain of visual understanding, question understanding, understanding of human intentions,
and deductive capabilities is needed to come up with an answer to the given questions about
the image. Since our first proposal of the task that comes along with a dataset and a method
[Malinowski and Fritz 2014a,b, 2015], many other research labs have followed up our work
by proposing different datasets that model such a problem (Section 5.3.2). Chapter 8 gives
a more detailed exposition on the task.

4 Chapter 1. Introduction

Datasets Datasets represent some parts of the real-world by abstracting away many
nuances thereof. For the Visual Turing Test, also recently more commonly known as Visual
Question Answering, we have proposed the first dataset for the task, which we call DAQUAR,
consisting of question-answer-image triples [Malinowski and Fritz 2014a]. The dataset reflects
challenges that machines need to deal with. Most prominently different question and scene
interpretations, various naming conventions, ambiguities in spatial relations, reasoning about
states, abstract references, and small objects. Since our introduction of DAQUAR, other
datasets have also been proposed, including Visual Turing Test from Geman et al. [2015],
VQA [Antol et al. 2015], Image QA [Ren et al. 2015a], FM-IQA [Gao et al. 2015], Visual
Madlibs [Yu et al. 2015a], Visual7W [Zhu et al. 2016], Collective Memories [Chowdhury
et al. 2016a], filling the blanks in captions for videos dataset [Zhu et al. 2015], MovieQA
[Tapaswi et al. 2016], FVQA [Wang et al. 2016], KB-VQA [Wang et al. 2015], and SHAPES
[Andreas et al. 2016b]. All the aforementioned datasets represent various aspects of the
whole ‘question answering about images’ task. Chapter 8 and Chapter 9 introduce DAQUAR,
while Section 5.3.2 enumerates, with a greater attention to details, related datasets that
follow up our DAQUAR.

To answer a significant fraction of the questions in DAQUAR some sort of spatial
resolution is needed. To study spatial relations in isolation, we have built a dataset of
structured and compositional human queries [Malinowski and Fritz 2014c]. Structured
queries have form (object, spatial relation, object), while compositional queries are more
complex, e.g. (object, spatial relation, structured query). Chapter 7 and Appendix A
introduce the dataset.

Methods for a Visual Turing Test Together with the task, and the dataset, we have
introduced the first, logic-based, method that answers to questions about real-world indoor
images [Malinowski and Fritz 2014a]. We build a database of visual facts, and use a semantic
parser to transform questions into the formal representations. Such a representation is next
executed on the database in order to conclude the answer to the question. Our next method,
which we call a neural-based method, combines LSTM with CNN [Malinowski et al. 2015].
This is the first jointly trained, end-to-end architecture that generates an answer to the
question. Both methods are presented in Chapter 9 and Chapter 10. Most of the subsequent
models that have appeared in this domain are based on similar ideas shown in this thesis
[Ren et al. 2015a; Gao et al. 2015; Antol et al. 2015; Yu et al. 2015a; Chowdhury et al.
2016a; Zhu et al. 2016, 2015; Ilievski et al. 2016; Yang et al. 2015; Xiong et al. 2016; Shih
et al. 2016; Chen et al. 2015; Wu et al. 2016b,a; Wang et al. 2016, 2015]. Finally, Chapter 11
extends our work from Malinowski et al. [2015] to an analysis on VQA – the largest currently
available dataset for the ‘question answering about images’ task. At the time of writing, to
the best of our knowledge, the method presented in Chapter 11 is the best performing VQA
architecture that uses a global, full-frame image representation [Malinowski et al. 2016].

Multimodal Recurrent Neural Networks Approaches that answers to questions about
images condition on the question and the image in order to infer an answer. However, prior
Recurrent Neural Networks have conditioned only on one modality. Therefore, we extend

1.1. Contributions of the Thesis 5

LSTM – a particularly popular Recurrent Neural Network – to condition on the question
and the image [Malinowski et al. 2015, 2016]. Moreover, our neural-based architectures are
also capable of generating answer words. All the aforementioned architectures are shown in
Chapters 10 and 11.

Semantic parser and probabilistic databases The Semantic Parser that we use in our
logic-based approach to question answering is originally applied only to deterministic factual
databases such as a knowledge base of geographical facts [Liang et al. 2013]. However, in order
to work with the uncertain output of various visual analysis techniques, we have extended the
semantic parser of Liang et al. [2013] to handle probabilistic databases containing (uncertain)
visual facts [Malinowski and Fritz 2014a]. This is covered in Chapter 9.

Data-driven Recursive Neural Networks To ground spatial prepositions in structured
queries, as well as to explicitly exploit the compositional structure in language, we have
developed a recursive architecture, which topology is determined by the output of a syntactic
parser. This architecture, used in Malinowski and Fritz [2014c], differs from Socher et al.
[2011] by using different parameterization of the network that explicitly encodes spatial
relations, and using of the syntactic parser. It is also similar to neural modules of Andreas
et al. [2016b], but mostly focuses on spatial relations. Appendix A presents a more detailed
exposition of the architecture.

Smooth learnable pooling regions In this thesis, we extend Spatial Pyramid Matching,
a traditional recognition architecture, with a learning-based approach to learn a spatial
layout used for pooling [Malinowski and Fritz 2013b,a]. We first generalize the pooling
operator over large spatial regions by a suitable parameterization, and next we jointly train
the pooling layout together with a classifier. Finally, we have shown the importance of
smooth transitions between the pooling regions. This is implemented with a total variation
regularization term. Interestingly, the learnt spatial layout (shown in Table 6.2) together
with the objective function (shown in Equation 6.5) shows some similarities with attention
masks, which are common in neural approaches to image description or question answering
tasks [Xu et al. 2015; Xu and Saenko 2015]. However, once learnt the pooling regions are
fixed. Chapter 6 covers this topic.

Differentiable generalization of the pooling operation Malinowski and Fritz
[2013b,a] generalize a pooling operator with a spatial parameterization. Moreover, our
generalization is differentiable, and therefore can be jointly trained together with a classifier
via backpropagation. Interestingly, we are also observing an interest of the Deep Learning
community in determining a suitable generalization of the pooling operator for Convolutional
Neural Networks, e.g. by sampling weights of the pooling regions or by mixing max-pooling
with the average-pooling [Zeiler and Fergus 2013; Lee et al. 2016]. The generalization is
shown in greater detail in Chapter 6.

Spatial reasoning Spatial reasoning plays an important role in holistic tasks such as
Visual Turing Test or text-to-image retrieval task [Malinowski and Fritz 2014c,a,b, 2015;

6 Chapter 1. Introduction

Chowdhury et al. 2016a]. However, spatial reasoning is challenging, mostly because at least
two objects are involved, the notion of the spatial relation is unclear, and the existence of
ambiguities [Malinowski and Fritz 2014a,b]. Therefore, we have built a dataset, where spatial
relations can be studied in isolation [Malinowski and Fritz 2014c], as well as a neural-based
architecture with an explicit spatial reasoning derived based only on training data. All are
covered in Chapters 7, 8, and Appendix A.

Pooling in spatial reasoning Inspired by studies in psychology [Logan and Sadler 1996],
we have shown a link between spatial templates proposed in the psychological studies [Logan
and Sadler 1996] and learnable pooling regions of Malinowski and Fritz [2013a]. Next, we use
the ideas of the pooling regions [Malinowski and Fritz 2013a] to build a data-driven approach
to spatially reason about the objects in the image via the spatial templates. Finally, we have
successfully applied this technique to the text-to-image retrieval task. This is covered in
Chapter 7.

Learning representations The thesis contributes to the Learning Representation field,
where the goal is to devise automatic approaches to learn a representation of the input. This
contrasts with Feature Engineering, where the representation (features) are mostly hand-
designed. Our work contributes to the field via devising methods that learn a multimodal
representation that combines language with vision [Malinowski et al. 2015, 2016], methods
that learn a spatial layout of the image for the image classification task [Malinowski and
Fritz 2013b,a], and methods that learn to spatially reason about the objects in the scene
[Malinowski and Fritz 2014c]. These contributions are covered in greater detail in Chapters
6, 7, 10, 11, and Appendix A.

Evaluation metrics Although, by constraining a set of possible answers we have limited
the complexity of the output space in the DAQUAR dataset, some ambiguities still remain.
Such ambiguities need to be taken into account while evaluating methods on the dataset. Our
first evaluation metric, WUPS, is a generalization of the traditional Accuracy measure that
works with sets of answers, and takes care of word-level ambiguities such as various names
given to the same ‘thing’ [Malinowski and Fritz 2014a,b]. To deal with various visual and
question interpretations, we have next proposed two Consensus Measures: Min Consensus,
and Average Consensus. Both metrics provide different insights into the task; Min Consensus
desirably gives higher scores to human answers, while Average Consensus can down-weight
or even filter out controversial answers. The latter also partitions the dataset according to
the human agreement level. All the aforementioned metrics are important contributions to
Visual Turing Test. WUPS as well as its extension, Consensus Measures, are presented in
Chapter 9 and Chapter 10 respectively.

1.2 Contributions to Other Projects
While making contributions along the main lines of the thesis, the author of this dissertation
has also been actively engaged in other research projects by either advising, consulting or

1.2. Contributions to Other Projects 7

helping in programming. In the following, the additional contributions are enlisted together
with short descriptions of the projects.

1.2.1 Intuitive Physics

To study an intuitive understanding of physics by neural architectures, we have set up a
task of predicting future frames based on an input video. Since a direct prediction of the
pixel values is a complex task, and is arguably an unnecessary nuisance in understanding of
physics, we have decided to reduce the complexity in the output space by setting up the
goal of predicting future boundaries. In addition to the task definition, we have developed
three neural-based architectures to handle the problem. Our experiments show that the
proposed architectures are able to predict boundaries of many future frames without a
noticeable degradation in the quality of predictions. Moreover, our results, especially the
ones conducted on two billard datasets, show the models exhibit some understanding of
physics. More details can be found in Bhattacharyya et al. [2016a], and Bhattacharyya et al.
[2016b].

The author of this dissertation helped in developing a Convolutional RNN, and guided
the collaborators on using automatic differentiation tools used in the further development of
neural-based architectures.

1.2.2 Zero-Shot Learning

Zero-shot learning studies a problem of making predictions in the scenario where no training
data of test classes are available. In the concrete scenario that we are interested in, we train
a model to transfer an auxiliary information from known to unknown classes in order to
recognize fine-grained, a-priori unseen, birds categories. Ideally, this extra information comes
from readily available textual resources. In this work, we have extended the prior work on
zero-shot learning to incorporate a richer source of information in the form of textual or
visual parts, and we trained a deep architecture to recognize unknown images. Our results
improves over the prior state-of-the-art on this topic. More details can be found in Akata
et al. [2016].

The author of this dissertation has proposed the idea of using a richer, part-based, input
representation. He has also helped in extending the retrieval framework of Karpathy et al.
[2014] to this class of problems.

1.2.3 Visual Turing Test

Chapters 8, 9, 10, and 11 contain in-depth exposition to the Visual Turing Test that has
been pioneered by the author of this dissertation together with the close collaboration with
his supervisor Dr. Mario Fritz, and later widely followed up by the research community
(often under an alternative name – Visual Question Answering). Concisely, the Visual
Turing Test benchmarks scene and language understanding capabilities of Machine Learning
architectures via a series of natural language questions about the content of natural images.
Such the challenge requires a holistic approach towards the scene understanding. In addition

8 Chapter 1. Introduction

to the main line of research outlined in this dissertation in the aforementioned chapters, the
author of this dissertation has helped Dr. Mario Fritz in advising two students on this topic.

The wide body of work on Visual Turing Test considers static scenario where questions
and images are given. In contrast, due to a widespread of mobile and wearable computing
platforms, in Chowdhury et al. [2016a] we envision a situated scenario where natural
language questions are contextualized in a dynamic, ever-changing environment through
GPS coordinates and timestamps. That is, an user asks questions ‘what is in front of me’ or
‘how did this place look like in December’ and expects from the system to retrieve appropriate
media content such as images based on the user’s geolocation and the question. In this
work, we have evaluated our extension of the logic-based question answering architecture
(Chapter 9) on a newly collected dataset of images, GPS coordinates, and natural language
questions. Through our human studies, we show that the presented architecture can cope
well in this situated and dynamic scenario. The author of this thesis came up with the
problem definition where images are treated as ‘answers’, and helped the student to become
comfortable with the suitable framework.

In Mokarian Forooshani et al. [2016], we have extended the neural-based approach to
question answering about images (Chapter 10 and Chapter 11) to work with a richer image
representation in the form of object proposals. Quite counterintuitively, we have found that
a high number of highly overlapping object proposals lead to better results than a small
number of precisely localized ones. In our interpretation of such results, we conclude that
the former approach leads to a multi-part and multi-scale rich image representation that
helps in automatic reasoning. Moreover, we have also taken advantage of Visual Madlibs
[Yu et al. 2015b] formulation, where the architecture is supposed to fill the blank in a
sentence describing a natural image from a set of pre-defined candidates, and trained the
neural-based architecture by maximizing similarities between latent representations of the
multimodal input and candidate answers. The author of this thesis helped the student to
become comfortable with the suitable framework.

1.3 Outline of the Thesis
In this section, we summarize and relate to each other different chapters of the thesis.
Chapters 1, 2, 3, 4, 5, and Chapter 12 introduce an unpublished material, while the
remaining chapters have been shown in various conferences, technical reports (arXiv), or
workshops. Mateusz Malinowski is the lead author of all the papers contributing to the
thesis. His supervisor, Dr. Mario Fritz, is a co-author of all the papers presented in the thesis.
Dr. Marcus Rohrbach has contributed to two papers presented in the thesis in Chapter 10
and Chapter 11. He advised us on the LSTM implementation in Caffe as well as he helped
in editing both papers.

Chapter 1: Introduction This chapter gives a brief introduction to the whole thesis. It
also introduces various research directions that are investigated in the thesis. Next, it presents
how the thesis contributes to the ongoing research in Computer Vision, Natural Language
Understanding, and Deep Learning. Finally, this chapter outlines individual chapters and

1.3. Outline of the Thesis 9

appendices of this thesis.

Chapter 2: From Visual Recognition Towards Holistic Machines The remainder
of the thesis starts with giving a brief historical context on two disciplines: Computer Vision
and Natural Language Understanding. It shows that together with large-volume datasets
as well as the development of Deep Learning methods, both communities have developed
methods that greatly perform on many traditional tasks in each field of study. Interestingly,
similar methods can be used to tackle many problems in both disciplines. Considering this
as a motivation, the chapter argues for seeking more complex, holistic tasks that unites
both disciplines together. It also argues for a development of holistic methods that can
handle such tasks. Finally, the chapter introduces the ‘question answering about real-world
images’ task (also called Visual Turing Test, Visual Turing Challenge, or Visual Question
Answering), as an example of a holistic problem.

Chapter 3: Background: Visual Recognition The subsequent chapter provides a
background knowledge about the Computer Vision methods used in this thesis. It formalizes
the machine recognition, where an informal introduction has been given in From Visual
Recognition Towards Holistic Machines. It shows Spatial Pyramid Matching that used to be
the leading recognition architecture, and is further extended in Learning Smooth Pooling
Regions for Visual Recognition. This chapter also shows Convolutional Neural Networks
(CNNs) that have replaced Spatial Pyramid Matching for the recognition task. What is
more important, Convolutional Neural Networks can be used to extract features for other
tasks. Later on, we use CNNs features to build our neural-based approaches to handle
question answering about images. Finally, the chapter briefly describes the most recent
CNNs architectures.

Chapter 4: Background: Natural Language Understanding Similarly to Back-
ground: Visual Recognition, this chapter provides a background knowledge about the
Natural Language Understanding methods used in the thesis. The chapter first describes a
semantic parser. Next, it introduces a neural-based approach to model the language. We
use a semantic parser in our first, logic-based approach towards a Visual Turing Test. A
neural-based representation of the language has been used in our second, neural-based,
approach to answer questions about images.

Chapter 5: Related Work The next chapter extends the historical context given in
the previous chapters by providing more references. It also explicitly depicts a progress in
methods that handle or datasets that represent the Visual Turing Test. Finally, it relates
each chapter corresponding to our publication with the whole subfield - prior and subsequent
work.

Chapter 6: Learning Smooth Pooling Regions for Visual Recognition This chap-
ter is based on our two publications, Malinowski and Fritz [2013b] and Malinowski and Fritz
[2013a], presented in the International Conference on Learning Representations (ICLR)

10 Chapter 1. Introduction

workshop, and British Machine Vision Conference (BMVC) respectively. Our work, pre-
sented in this chapter, extends the Spatial Pyramid Matching architecture (Chapter 3 has a
more detailed exposition of Spatial Pyramid Matching) by allowing a more holistic, joint
training of a spatial layout together with a classifier via backpropagation.

Chapter 7: A Pooling Approach to Modelling Spatial Relations for
Image Retrieval and Annotation This chapter brings our ideas on learning spatial
pooling regions from Chapter 6 into an image-to-text retrieval scenario with the goal of
retrieving an image that matches the provided textual query. We show that such learnable
pooling regions can subsequently be used to reason about spatial relations. Scene understating,
natural language understanding, and spatial relations grounding arguably play important
roles in holistic tasks. This chapter is based on our Technical Report available on arXiv
[Malinowski and Fritz 2014c].

Chapter 8: Towards a Visual Turing Challenge The first exposition to a novel holistic
task – a Visual Turing Test – that studies if machines can answer questions about images,
is presented in this chapter. This chapter enumerates challenges that holistic machines have
to handle, shows concrete challenges that are present in DAQUAR - the first Visual Turing
Test dataset - and finally discusses a problem of measuring the performance of holistic
architectures. Moreover, question answering about images can also be seen as a generalization
of the image-to-text retrieval tasks, for instance the one presented in Chapter 7. This chapter
is based on our two workshop expositions: Malinowski and Fritz [2014b] and Malinowski and
Fritz [2015]. The former was presented at NIPS Workshop on Learning Semantics, while the
latter at AAAI: Beyond the Turing Test.

Chapter 9: A Multi-world Approach to Question Answering
about Real-World Scenes based on Uncertain Input The first dataset representing
Visual Turing Test, called DAQUAR, is introduced in this chapter. Together with the dataset,
we have also introduced a holistic, logic-based approach to handle the task. It is the first
method that answers to questions about real-world images. Finally, we also present a new
metric that extends standard Accuracy metric to handle world-level ambiguities. Similarly
to Chapter 7, spatial relations consist of a significant part of the task. The work presented
here is a concretization of our abstract ideas shown in Chapter 8. This chapter is based on
our publication [Malinowski and Fritz 2014a] presented at Neural Information Processing
Systems (NIPS).

Chapter 10: Ask Your Neurons:
A Neural-based Approach to Answering Questions about Images The architec-
ture shown in Chapter 9 has a few limitations. For instance, it assumes a hand-designed
representation of an image, and cannot be jointly trained. To alleviate such limitations,
we introduce in this chapter a neural-based approach to handle question answering about
images. It is our second Visual Turing Test architecture, which also liberates us from many
design decisions and allows for a holistic, joint training. Moreover, we also provide further

1.3. Outline of the Thesis 11

insights to the problem of question answering about images, and show two extensions of
the previously introduced, in Chapter 9, metric. This work is based on our publication
[Malinowski et al. 2015] presented at International Conference on Computer Vision (ICCV).

Chapter 11: Ask Your Neurons:
A Deeper Analysis The analysis shown in Chapter 10 has been subsequently extended
in this chapter. Here, we conceptually divide the architecture from Chapter 10 into a few
different modules, and next analyze influences of different modules on the task by replacing
them. Our analysis shows benefits of using LSTM over BOW as well as stronger recognition
architectures. Most of the analysis is performed on the VQA dataset. This chapter is based
on our submission to International Journal on Computer Vision (IJCV).

Chapter 12: Conclusions and Future Perspectives The last chapter concludes the
whole thesis, and presents possible future directions in machine recognition, text-to-image
retrieval, spatial relations, and question answering about images. In other words, the chapter
‘holistically’ binds different chapters together into a concise summary and possible further
extensions.

Appendix A: DDCNA: Data-Driven Compositional Neural Architecture for Im-
age Retrieval based on Compositional Queries In Chapter 7 we either augment the
Deep Fragments Embeddings of Karpathy et al. [2014] with spatial templates, or use our
compositional data-driven neural architecture. The latter is presented in greater detail in
this appendix. The topology of this architecture is formed from textual queries, and therefore
it is instance-dependent. Training is possible as the parameters are shared across many
different input-induced architectures. The network explicitly uses rules of compositionality,
and does a spatial reasoning.

Appendix B: Visual FactNet In this appendix, we show initial results with Vi-
sual FactNet– our novel approach to question answering about images. This architecture
blends a neural-based approach to represent the language of Malinowski et al. [2015], which
we present in Chapter 10, with an explicit visual representation of Malinowski and Fritz
[2014a], which we present in Chapter 9. This appendix also offers a more fine-grained study
of the performance of our initial neural-based architecture from Chapter 10.

Appendix C: Tutorial on Answering Questions about Images with Deep
Learning This appendix shows our tutorial on the ‘question answering about real-world
images’ task [Malinowski and Fritz 2016]. We made an effort to make it accessible to a
broader audience. In particular, we do not assume any prior knowledge on Computer Vision,
nor Natural Language Understanding. The tutorial was shown during the 2nd Summer
School on Integrating Vision and Language: Deep Learning, in Malta, in 2016.

Although it is recommended to read the thesis consequently starting from Chapter 1, there
is a possibility to read chapters in a different order. To avoid confusion, the dependencies

12 Chapter 1. Introduction

Chapter 1

Chapter 2

Appendix C

Chapter 5Chapter 3 Chapter 4Chapter 6

Chapter 7

Appendix A

Chapter 8

Chapter 9

Appendix B

Chapter 10

Chapter 11

Chapter 12

Figure 1.1: Graph depicting dependencies between different chapters.

between chapters are included in Figure 1.1. Appendix C and Chapter 5 can be read
independently from other chapters.

Chapter 2

From Visual Recognition
Towards Holistic Machines

Contents
2.1 Large Volume Datasets . 14

2.1.1 Concluding Remarks . 15

2.2 Visual Recognition . 16
2.2.1 Concluding Remarks . 18

2.3 Natural Language Understanding . 19
2.3.1 Symbolic Representation of the Meaning 19

2.3.2 Sub-symbolic Representation of the Meaning 20

2.3.3 Concluding Remarks . 21

2.4 Holistic Tasks . 21
2.4.1 Combining Vision with Language . 21

2.4.2 Challenges . 23

2.4.3 Concluding Remarks . 23

Visual and linguistic information is ubiquitous in the human world. Humans can not
only recognize objects, understand words, or combine the words into meaningful
phrases or sentences, but also relate linguistic information to their visual counter-

parts, understand abstract concepts, or understand intentions hidden in the utterances of
others. Clearly, human beings operate at different linguistic levels from syntax to pragmatics,
and successfully combine such cues with a visual content. With such abilities, humans can
quickly communicate with each other, act on the external world, and collaborate to perform
more complex, holistic tasks. Similar behaviour is also expected from intelligent machines.
Unfortunately, what is natural to humans is often difficult for machines, therefore such a
human-quality understanding of the world is nowadays rather a part of science-fiction stories
than reality.

On the other hand, we observe a tremendous progress in machine recognition (Sec-
tion 2.2, Chapter 3), and natural language understanding (Section 2.3, Chapter 4). Many
contemporary approaches to vision or language are based on Deep Learning, and therefore
they learn from training examples. With large-volume datasets (Section 2.1), such leading
‘data-hungry’ learnable architectures have shown impressive results on the image classifica-
tion task, achieving a performance comparable to the human-quality recognition under a

14 Chapter 2. From Visual Recognition Towards Holistic Machines

constrained setting [Russakovsky et al. 2014]. Such a few ingredients – large-volume datasets,
hierarchical architectures, joint and end-to-end training – have contributed to a successful
move from hand-designed features to learnt ones. In this thesis, we adopt the same philosophy
to develop architectures that jointly learn spatial pooling regions with a classifier (Chapter 6)
[Malinowski and Fritz 2013b,a], are trained to retrieve images based on structured queries
where a spatial reasoning plays an important role (Chapter 7, Appendix A) [Malinowski and
Fritz 2014c], and can answer to questions about real-world images (Chapter 10, Chapter 11,
Appendix B, Appendix C) [Malinowski et al. 2015, 2016; Malinowski and Fritz 2016].

The progress that has been made in Computer Vision and Natural Language Under-
standing sparks questions if similar methods can also be successfully trained on more holistic
tasks that require among other things a scene understanding from a visual stimulus (e.g.
object and action recognitions or how the things are spatially related to each other), natural
language understanding (e.g. lexical understanding as well as relations between words that
form a meaning of sentences), and human pragmatics (e.g. dealing with subjectivity, or being
equipped with common sense). To study such problems, we propose a task that measures
how well machines answer to questions about real-world indoor images [Malinowski and Fritz
2014b, 2015, 2014a] – a behavioral and holistic test that draws inspirations from the famous
Turing Test [Turing 1950], and which we call a Visual Turing Test – together with two
seemingly antagonistic approaches to handle the task: logic and neural based ones presented
in Chapter 9 and Chapter 10 respectively [Malinowski and Fritz 2014a; Malinowski et al.
2015]. Considering that spatial reasoning is an important part of the human life, which is also
reflected in our dataset implementing the Visual Turing Test, we also argue for architectures
with a spatial component, or even to study such a problem in a more controlled setting
(Chapter 6, Chapter 7) [Malinowski and Fritz 2013a, 2014c].

To sum up, we hypothesize that large-volume datasets, hierarchical, jointly and end-
to-end trained architectures that can reason spatially and are able to answer to questions
about real-world images form necessary ingredients to develop holistic machines that can
achieve a human-quality understanding of the world. In the remainder of this chapter, we
discuss some individual components of a hypothetical holistic machine that combines vision
with language.

2.1 Large Volume Datasets
Recent progress in mobile sensor technologies have allowed consumers to readily record the
visual world in the form of images or short videos with a relatively high resolution and low
cost. In the nearest future, owing to such projects as Kinect1 or Tango2, we may expect an
appearance of more data that capture 3D world, which will lead to even finer representation
of the visual world. At the same time internet sharing platforms become ubiquities. Internet
users share their pictures, videos, knowledge, stories, or ideas through Flickr3, YouTube4,
web-based encyclopedias, blogs, social networks, or other creative internet communities.

1https://en.wikipedia.org/wiki/Kinect
2https://en.wikipedia.org/wiki/Project_Tango
3https://www.flickr.com
4https://www.youtube.com

https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Project_Tango
https://www.flickr.com
https://www.youtube.com

2.1. Large Volume Datasets 15

This altogether leads to a large volume of readily accessible, high quality visual or textual
data. Therefore, the building of large-volume datasets for many tasks involving vision or
language cannot be seen as a serious bottleneck anymore, and the advent of such large
datasets created for the research purpose is inevitable. For instance, the ImageNet dataset
is a particularly popular large-volume recognition dataset created to train and test image
classification methods [Russakovsky et al. 2014]. In the remainder of this section, we first
discuss some ramifications of the existence of large-volume datasets. Subsequently, we discuss
two aspects of a scalability. Both aspects are tightly connected with large-volume datasets,
and are important in the development of learnable architectures.

The existence of large-volume recognition datasets have led to an increased interest in
data-driven, and ‘data-hungry’ methods that work with minimal modeling assumption and
instead let the data to guide the inference [Hays and Efros 2007]. Especially, Deep Learning
methods become recently very popular due to their apparent scalability (we revisit the
scalability later in this section). For instance, the most successful recent Deep Learning
approaches to image classification have achieved a near human-quality performance on the
aforementioned ImageNet dataset [Russakovsky et al. 2014]. Chapter 3 covers this topic
in greater detail. Nonetheless, one can argue that building intelligent machines that can
exploit large amount of data is therefore both inevitable and actually human-like as human
beings have also an access to abundant and diverse data.

As already mentioned in this section, computational and learnable scalability should be
sought while developing new learning-based methods. On one hand, it should be feasible to
train models on large amount of data preferably in an online manner, and to quickly perform
an inference at the test time. On the other hand, the models should have high enough
capacity to leverage an increase in the volume of data. Although there is often a trade-off
between both aspects of scalability, it seems the recent Deep Learning approaches to image
classification can be quickly run on modern GPUs, as well as they can take advantage of
a large amount of data available during the training. For instance, Convolutional Neural
Networks can reportedly perform an inference in about 1ms per image while achieving the
state-of-the-art performance on the image classification task5. Later on in this thesis, the
apparent ‘sweet spot’ of Deep Learning in terms of scalability has motivated us to develop
neural-based approaches that answer to questions about real-world images (Chapters 10
and 11).

2.1.1 Concluding Remarks

Training machines on large-volume datasets has enabled methods to recognize objects in
images at the accuracy that has not seen before (Section 2.2 and Chapter 3). However,
the question whether we can further use visual or textual data to build and benchmark
machines with a hypothetical human-quality world comprehension still remains open (Sec-
tion 2.4). Nonetheless, in this dissertation, we attempt to partially answer to this question
by introducing the first dataset along with the first approaches to answer questions about
real-world images – a task that arguably is necessary to acquire a human-quality holistic

5http://caffe.berkeleyvision.org/performance_hardware.html

http://caffe.berkeleyvision.org/performance_hardware.html

16 Chapter 2. From Visual Recognition Towards Holistic Machines

comprehension.

2.2 Visual Recognition

Visual Recognition is the task to recognize an object in the given image by machines.
First approaches to recognition have reduced the visual reality to a geometrical world by
fitting geometrical primitives to an image [Roberts 1963; Agin and Binford 1976; Mundy
2006], or by representing an object by its (still geometrical) components [Biederman 1987].
Later on, the research community shifted towards appearance-based methods, in which an
appearance of an investigated object (often represented by such cues as a color or pose) is
matched with appearances of already known objects [Murase and Nayar 1995; Swain and
Ballard 1991]; or feature-based methods, in which local representations (e.g. histograms of
oriented gradients extracted from a small patch) are matched with the representations of the
already known (training) images [Lowe 2004; Dalal and Triggs 2005]. Together with larger
recognition datasets (Section 2.1), recognition methods began to exploit machine learning
techniques to successively build global representations from local ones [Csurka et al. 2004;
Lazebnik et al. 2006; Yang et al. 2009]. Most recently, data-driven, neural-based, jointly
optimized, multi-layer methods have become dominant in the recognition task (Chapter 3)
[Krizhevsky et al. 2012]. In the remainder of this section, we first illustrate some challenges
that recognition architectures have to deal with. Next, we discuss the role of an image
representation in Computer Vision. Finally, we briefly describe three popular recognition
tasks and discuss some constraints they impose on the image representation.

Although natural to humans, recognition is challenging for machines for various reasons.
Why is it so difficult? There is a large variability in object categories. For example, instances
of the same category can vary in shapes or appearances (e.g. cat breeds), which makes it
difficult to precisely describe what the whole class is. Even further, we can observe a large
variability in different images of the same instance due to occlusions, self-occlusions, changes
in a scale or lighting conditions, and other complex rigid or non-rigid transformations. Since
there are myriad of ways that pixels belonging to the same object can change, working directly
on the pixel level seems to be not particularly fertile. Therefore the research community
has to develop a higher abstraction that represents an object. This would explain various
directions in developing approaches to recognition, which some of them we already mentioned
in this section, and the importance of an image representation in general.

In principle, the community seeks a representation that not only preserves a notion
of the category under all the ‘interesting’ category-preserving transformations6 like the
aforementioned changes in lighting conditions, but also a representation that makes it easy
to discriminate instances of different categories. Let us consider two extremal examples. The
pixel-level representation, on one hand, is very discriminative, i.e. it is unlikely that two
images of different people have the same pixels. On the other hand, it fails as an invariant
representation, e.g. different lighting conditions often result in color changes of the pixels.

6Let c(o) denote a category of an object o. A transformation T (e.g. translation) that acts on the object
o preserves the category if c(o) = c(T (o)). Note that, at test time category-to-object assignment is unknown.
Moreover, the image of T (o) is often much different than the image of o. This makes the recognition difficult.

2.2. Visual Recognition 17

Alternatively, a mapping an image into a constant number would make the representation
perfectly invariant under (all) transformations, and at the same time completely useless
due to the lack of a discriminative power. Such a trade-off between invariances and a
discriminative power has to be taken into account when designing a representation7.

In addition to all the aforementioned issues with a representation, one can also argue
that the list of all the ‘interesting’ category-preserving transformations is actually unknown.
Therefore the Deep Learning community opposes to hand-designing such a representation,
and instead they call for learnt representations based on the training data. We adopt a
similar viewpoint in most of the chapters of this thesis.

Now, we briefly describe three popular Visual Recognition tasks: image classification,
detection, and segmentation. Next, we discuss some constraints that different tasks impose
on the algorithms that handle them. All the aforementioned tasks are also briefly depicted
in Figure 2.1. All of them are encountered in different parts of this thesis.

Car

Car

Car
Tree

Figure 2.1: From left to right: image classification, detection, and segmentation tasks. The
image classification is about assigning a category to an image, detection classifies and
localizes an object, while segmentation asks for a more detailed scene representation.

Image classification Often, and by default in this thesis, recognition is set up as an
image classification. The goal of the image classification is to categorize a given image into
one out of K pre-defined categories. Low-volume datasets, which are previously used, tend
to use mutually exclusive categories, but with the advent of larger datasets with a larger
number of categories the semantic boundaries that distinguish different categories become
more fuzzy. Nonetheless, most approaches handle the image classification task by training a
K-out classifier on top of (hand-designed, or jointly learnt) features. Often images in the
image recognition datasets have a single, main theme that has to be inferred (classified into)
by a machine.

Detection As objects appear at different scales and locations in the image, the object
detection task deals with localization of an object as well as its classification into a category.
Pascal VOC dataset serves as a standard benchmark for detection [Everingham et al. 2015].
Similar to the image classification task, detection also “has undergone a seismic shift”8 where
traditional sliding window-based approaches with parts-based models and hand-designed
features have been replaced by object proposals and learnt features [Girshick et al. 2014].

7Let I(o) be an image of an object o. Ideally, we would like to have a representation R such that
R(I(o)) = R(I(T (o)) if T is a category-preserving transformation, and R(I(o)) 6= R(I(T (o))) otherwise.

8https://pdollar.wordpress.com/2013/12/10/a-seismic-shift-in-object-detection/

https://pdollar.wordpress.com/2013/12/10/a-seismic-shift-in-object-detection/

18 Chapter 2. From Visual Recognition Towards Holistic Machines

Segmentation We can aim at even richer representation of an image by grouping pixels
together according to their semantics. For instance, pixels that correspond to human beings
are assigned to a different class than pixels that correspond to furnitures. Furthermore, we
can distinguish a class-based and instance-based segmentation. The former distinguishes
only classes while the latter groups pixels that belong to the same instance of a class. For
example, pixels belonging to one person are grouped separately from pixels belonging to
another person. Methods handling semantic segmentation include: clustering of local image
features or cutting edges in a graph describing affinities between pairs of pixels. Most recently,
deep convolutional-deconvolutional architectures [Noh et al. 2015a; Badrinarayanan et al.
2015] have gained an attention in the research community. Semantic segmentation, arguably,
demands a more holistic image understanding than detection or image classification.

Figure 2.1 depicts all the aforementioned tasks: image classification, detection, and
segmentation. Every such a task imposes different constraints on a representation of images.
The image classification cares only about final classes, and therefore is the most liberal
in terms of the choice of the image representation. The object detection demands from
methods to output some geometrical primitive describing an object. Most often it is a
bounding box containing an object of interest. The semantic segmentation asks for a quite
rich visual representation by the means of per-pixel classes. Therefore some methods that
work quite well for the image classification task such as Bag-Of-Visual-Words [Csurka et al.
2004; Lazebnik et al. 2006], are not that commonly used in other tasks such as the semantic
segmentation where the localized information should be preserved.

2.2.1 Concluding Remarks

Models trained to recognize objects also play an important role in other, also holistic, tasks.
Therefore, every bit of progress on the recognition task translates into better visual features
used by more complex architectures and simultaneous advances on the tasks they handle
[Ren et al. 2015b; Venugopalan et al. 2015a; Malinowski et al. 2016]. As we see in this
section, deriving a good image representation plays an important role in Visual Recognition.
Such a representation can be either hand-designed or learnt from data. The latter becomes
recently very popular in the research community due to its strong performance and less
effort that is put on designing various architectures. This viewpoint is also dominant in this
thesis. For instance, in Chapter 6 and Chapter 7, we argue for a learning-based approach to
learn a spatial representation, while in Chapter 10 and Chapter 11, we use Deep Learning to
build approaches that answer to questions about real-world images. Finally, different tasks
put some constraints on the image representation. In this thesis, we argue that the ‘question
answering about real-world images’ task is on one hand as liberal as image classification
regarding the imposed constraints on the image representation. On the other hand, it requires
a quite rich understanding of the visual world that, arguably, can be compared to the image
segmentation task. We revisit this argument in Chapter 8 and Chapter 9.

2.3. Natural Language Understanding 19

2.3 Natural Language Understanding
In this section, we discuss the third pillar of the hypothetical holistic machine that combines
language with vision. Natural Language Understanding by machines deals with compre-
hension of a textual, human-readable input9. Similar to Visual Recognition presented in
Section 2.2, understanding of language is a highly non-trivial task. To be able to understand
language, machines have to deal with ambiguities, incompleteness, and vagueness of utter-
ances. In the remainder of this section, we discuss some causes of ambiguities that, arguably,
are introduced by breaking down the field into separated components, and therefore we
argue for a holistic treatment of the language understanding. Next, we discuss two different
approaches to represent the meaning. We revisit them later in Chapter 4, Chapter 9, and
Chapter 10.

Syntax, semantics, and pragmatics are the three major branches of linguistics. Syntax
allows to decompose a sentence into simpler units according to some grammatical rules.
Semantics is about deriving a meaning JsK of a sentence s. Informally, it is about transforming
strings into ‘things’. Pragmatics is about finding real intentions of a speaker in a broader
context. However, to truly understand language, all the branches should interplay with each
other. Otherwise, many ambiguities may arise. Let us first consider the following sentence
“He eats a meat with a fork”. From a syntactical point of view, the phrase “with a fork”
binds not only with “He eats” meaning the fork is used as a tool to eat the meal, but also
with “a meat” meaning the fork is a part of the meal. Let us consider now another example
with the two following sentences: “The trophy would not fit in the brown suitcase because it
was too big” and “The trophy would not fit in the brown suitcase because it was too small”
[Winograd 1972; Levesque 2011]. Humans can easily resolve the anaphoric references by
pointing the following denotations JitK = ’trophy’ in the first sentence, and JitK = ’suitcase’
in the second sentence. However, these sort of ambiguities cannot be resolved based on words
in isolation, and possessing some sort of a holistic understanding of the world is required.
Arguably, such the interplay is also necessary for the Visual Turing Test, introduced in
Chapter 8.

2.3.1 Symbolic Representation of the Meaning
In this thesis, we build two different approaches to the ‘question answering about real-world
images’ task based on two approaches to represent the meaning. In the following, we present
the first approach, which we call a symbolic or logic based. This approach forms a foundation
to our method presented in Chapter 9. We first illustrate a hypothetical language of thoughts,
a concept that exists in linguistics and philosophy of mind. Next, we briefly describe a
computational tool that apparently has many ideas in common with the aforementioned
linguistic concept.

Mentalese Mentalese is a hypothetical language of thoughts with its own, compositional
syntax, where complex thoughts are built from simpler thoughts [Fodor 1975]. It is often
seen as a formal representation of thoughts and, from a philosophy of mind’s point of view,

9https://en.wikipedia.org/wiki/Natural_language_understanding

https://en.wikipedia.org/wiki/Natural_language_understanding

20 Chapter 2. From Visual Recognition Towards Holistic Machines

it is hypothesized that humans ‘think’ in Mentalese. One compelling trait of Mentalese is its
independence from the ‘public language’. That is, the hypothesis separates a language we
speak in from a language we think in. Another is compositionality10, which, paraphrasing
Wilhelm von Humboldt’s statement about language, allows to express “infinitely many
things with finitely many means”. Lastly, Mentalese can arguably be seen as a computational
representation of thoughts. Such a trait of Mentalese is particularly appealing in building
intelligent machines, especially if one agrees that thoughts are closely related to meaning.

Semantic parser Semantic parser maps a textual input into its formal representation –
its meaning. Predicate logic, lambda calculi, Prolog or SQL formulas can serve as the final
symbolic representation of the otherwise textual utterance. Historically, we can roughly
distinguish three generations of semantic parsers. The first generation of semantic parsers is
rule-based and has been used in Natural Language Understanding systems such as SHRDLU
[Winograd 1971]. In the second generation, semantic parsers are induced (or learnt) from
symbolic forms [Zettlemoyer and Collins 2007]. Learning-based approaches have greatly
improved generality of the semantic parsers, and have also partially liberated designers of
thereof from modeling errors. However, such semantic parsers are still trained from textual
utterances associated with the symbolic counterparts. This makes the annotation effort
quite big, as the annotators need to be familiar with logic. Obviously, relying on costly
annotations limits the applicability of the parser to different domains This issue has been
handled by the most recent generation of semantic parsers that are learnt from textual
input and output pairs for the question answering task [Liang et al. 2013]. Semantic parsers,
arguably, follow the Mentalese school of philosophy, with a well structured, compositional
symbolic representation of the meaning.

2.3.2 Sub-symbolic Representation of the Meaning

In the following, we briefly describe alternative approaches to represent the meaning. They
form a foundation to our neural-based method presented in Chapter 10 and Chapter 11.
We first illustrate a linguistic hypothesis of how the meaning of words is formed. Next, we
briefly describe a computational approach to represent the meaning of words. This tool is
consistent with the aforementioned hypothesis. Finally, we describe another sub-symbolic
approach to represent the meaning.

Distributional hypothesis Distributional hypothesis defines the meaning of a word “by
a company it keeps”11. Intuitively, words that appear in similar contexts should have similar
meanings. As opposite to Mentalese, such the hypothesis grounds the meaning of words in
the ‘public language’.

Words embedding The skip-gram variant of Word2vec [Mikolov et al. 2013], where
the objective is to predict a context of a surrounding the input word, is a computational

10The meaning of the whole depends on a grammar and the meaning of its parts. The following is a more
precise example of the compositionality: if N → ARB then JNK = JRK (JAK, JBK).

11John Rupert Firth

2.4. Holistic Tasks 21

realization of the distributional hypothesis. By predicting the context of the given word,
the architecture arguably learns a good representation of the given word that is implicitly
characterized by its accompanying words – the gist of the distributional hypothesis. In this
thesis, we however often generalize the notion of words embedding and use it in the context
of any linear transformation of the word into a dense vector representation, or the output of
such a transformation (a dense word vector itself).

Recurrent Neural Networks To represent larger linguistic entities such as phrases
or sentences, vector representations (embeddings) of words have to be combined in some
way. Simple summing of words representations leads to a Bag-of-words representations of
the sentence. Such a representation however destroys an order that exists in the sentence.
In order to maintain the order, Recurrent Neural Networks encode embedded words into
a hidden representation h that is next passed to the subsequent step together with the
upcoming word embedding realizing the equation: ht+1 = f(xt,ht), where a function f

models temporal dynamics.

2.3.3 Concluding Remarks
Semantic parsers and Recurrent Neural Networks approach the problem of representing
the meaning from fundamentally different perspectives. The former relies on hand-designed
grammatical rules and a hand-defined set of predicates. On the contrary, the latter is a
data-driven approach that does not require strong modeling assumptions. As we will see
later in the thesis, both approaches have pros and cons. Sub-symbolic semantics seem to be
better at capturing the combined visual and linguistic world, but we have not observed that
they cooperate well with logical operators such as negation or counting.

2.4 Holistic Tasks
Not only should the hypothetical holistic machine perceive the world through books, but
should also perceive visual aspects of the world. Therefore, the holistic machine could
understand the world through a textual and visual inspection. Even further, such the holistic
machine would be engaged in numerous discussions about the world, integrating both visual
and textual knowledge to reason about different aspects of it.

In the remainder of this section, we outline a few tasks that combine vision with language,
arguably a necessary ingredient in building holistic machines. In particular, we describe the
‘question answering about images’ task, which is an important subgoal of a broader Visual
Turing Test. This task is further detailed in the majority of this thesis (Chapters 8, 9, 10, 11,
Appendix B and Appendix C). Next, we outline a few challenges that holistic tasks impose
on machines.

2.4.1 Combining Vision with Language
Due to the recent progress in Computer Vision and Natural Language Understanding, a
growing body of the recent work focuses on a multimodal scenario by tackling the following

22 Chapter 2. From Visual Recognition Towards Holistic Machines

tasks: Zero-Shot Learning, Image-to-Text Retrieval, and Image Description Generation. All
such tasks precede our work on the Visual Turing Test, which is illustrated as the last one
and compared with the other three aforementioned tasks.

Zero-Shot Learning Although image classification has shown a tremendous progress in
recent years [Russakovsky et al. 2014], such approaches need quite a lot of training data
covering all the classes of our interest. In contrast, Zero-Shot Learning presents a scenario
where no training examples of a particular class are shown to a learnable architecture.
However, a knowledge about the category can still be transferred through its description.
For instance, with a detailed description of an unknown bird such as the bird’s attributes,
the machine can correctly recognize the bird even if it ‘sees’ it for the first time [Lampert
et al. 2009; Rohrbach et al. 2011; Akata et al. 2016].

Text-to-Image Retrieval Image-to-Image Retrieval searches for an image in a database
of images that is the best described by a textual input [Lan et al. 2012; Karpathy et al.
2014; Malinowski and Fritz 2014c]. Similarly to Zero-Shot Learning, the problem asks for a
good multimodal embedding that maps visual and textual data into a common space, in
which similarities between both modalities become meaningful.

Image Description Generation Through the research on Visual Recognition and Natu-
ral Language Understanding, methods that describe the content of a given image have been
developed [Vinyals et al. 2014; Xu et al. 2015; Donahue et al. 2015]. Most of the current
architectures can be seen as encoder-decoder methods, where a visual information is first
encoded into a representation from which a decoder generates a description. In contrast to
retrieval tasks, the ultimate goal is to create novel descriptions of images rather than to find
a one from a set of pre-defined textual descriptions that matches well with the image.

Question Answering about Images The recent successes in Visual Recognition, Natu-
ral Language Understanding, as well as advances in multimodal embedding have led us to
develop a holistic task that challenges intelligent machines with a holistic scene comprehen-
sion by asking questions about the content of images that is a part of a broader Visual Turing
Challenge. A good performance on such a question answering task is, arguably, a necessity
in developing holistic machines. It also shares many properties with all the aforementioned
multimodal tasks. Most of all, the task requires finding a multimodal mapping between
language and the vision. Similarly to Zero-Shot Learning, not all questions or answers are
encountered during training. The Visual Turing Test can also be seen as a generalization
of the Text-to-Image Retrieval task, where the retrieved images have to satisfy conditions
imposed by a question. Finally, the Visual Turing Test is a more focused variant of the
Image Description Generation, where generated answers are conditioned on both image and
textual inputs, and hence they have to directly fulfill the conditions imposed by a questioner.

2.4. Holistic Tasks 23

2.4.2 Challenges
As we develop machines that solve harder and more holistic problems, new challenges occur.
Holistic problems are necessarily multimodal, where reasoning should be done not only over
visual and linguistic domains, but likely even more senses are needed. This poses a question
of a suitable representation that, arguably, has to be learnt from data. The architectures
need to reason about more and more concepts with fuzzy semantical boundaries – this
contrasts with traditional classification tasks where mutually exclusive categories are often
assumed. Finally, holistic machines need to work with different sources of ambiguities as
these are inherent to ‘human world’. Chapter 8 enumerates in greater detail challenges that
we find important for the Visual Turing Test.

2.4.3 Concluding Remarks
Over the last few years we have seen a tremendous progress in image classification, and
a major shift towards data-driven, jointly trained, deep recognition architectures. Similar
approaches can also be successfully used to handle other tasks such as object detection,
image segmentation, or natural language modeling. Such success stories provide a strong
evidence on the generality of Deep Learning. However, they have also opened a question
of the role of Deep Learning in handling more holistic tasks like the Visual Turing Test.
In such tasks a joint understanding of a scene, language, human intentions, common-sense
knowledge, and logical reasoning all play an important role. Chapter 10 and Chapter 11
investigate this role, and compare with a logical-based approach presented in Chapter 9.

Chapter 3

Background: Visual Recognition

Contents
3.1 Introduction . 25
3.2 Spatial Pyramid Matching (SPM) 26
3.3 Convolutional Neural Networks (CNNs) 28
3.4 Recent Recognition Architectures 31
3.5 Conclusion . 32

Human ability to efficiently process visual information such as shapes, or colors in
the surrounding environment together with associating semantic attributes to
observed objects play an important role in acquiring knowledge in every-day life.

Therefore, it is unsurprising that we expect a similar behavior from intelligent machines,
and therefore mimicking (at least in a behavioral sense) of the human visual system has a
long-standing tradition in the Computer Vision community. Moreover, every bit of progress in
the development of the visual recognition, presumably, also translates to better performance
in other, more complex tasks requiring processing a visual input such as detection, image
captioning, or question answering about images [Ren et al. 2015b; Venugopalan et al. 2015a;
Malinowski et al. 2016]. This is also explored in Chapter 11 for the latter. Over the most
recent history of Computer Vision, two approaches to recognition have been particularly
important: Spatial Pyramid Matching (SPM) and Convolutional Neural Networks (CNN).
Both methods play an important role in later chapters of the thesis, and are introduced in
greater detail in this chapter.

3.1 Introduction
Origins of visual recognition can be found in the early 1960s [Roberts 1963]. Pioneering
approaches have attempted to reduce complex visual world to geometrical primitives [Roberts
1963; Agin and Binford 1976; Biederman 1987], emphasizing that geometrical shapes of
objects convey the notion of objects themselves. Together with the progress on the color
constancy problem, the problem of perceiving identical colors under different light conditions,
later methods have stressed the importance of color in the identification of objects [Swain
and Ballard 1991]. This can be seen as the root of the appearance-based methods, in which
color or pose becomes an important cue in the machine recognition [Swain and Ballard
1991; Murase and Nayar 1995]. Roughly at the same time, learning-based architectures have
started to dominate the field [Poggio and Edelman 1990]. Most recent recognition methods,

26 Chapter 3. Background: Visual Recognition

such as the Spatial Pyramid Matching and Convolutional Neural Networks architectures,
assume a hierarchical organization of an effective recognition system.

Before delving into details of different recognition architectures, let us first formalize the
notion of visual recognition. For the purpose of this thesis, we are mostly interested in visual
recognition restricted to a classification problem. Hence, recognizing an object in the given
image means assigning a class (most often a noun) from a set of all possible classes to the
image. Formally, the recognition is a function φ that maps images into classes (categories),
that is φ(x) = c where x is an image, and c ∈ C is a class that belongs to a set of all
classes C. For years, the most successful approaches to machine recognition assume that a
function φ comes from some function space F but otherwise is unknown, and therefore must
be learnt from a finite training set Ttrain := {(xj , cj)}j consisting of samples representing
a problem of our interest. Training of recognition architectures is typically conducted
by finding a function that minimizes an expected risk on the training set Ttrain, that is
φ∗ := arg maxφ∈F ETtrain [`(φ(x), c)]. To test how methods generalize to unseen examples,
accuracies are reported on the separated test set Ttest

1, in which images are classified
according to a class assignment procedure, often cx := arg maxc∈C `(φ∗(x), c) for all (x, c) ∈
Ttest. Such a protocol follows a standard paradigm of machine learning.

Recently, due to the increase of computational resources as well as availability of large
volume training datasets Ttrain (see also Section 2.2), we have seen a departure of the
research community from hand-designed architectures such as Spatial Pyramid Matching
(Section 3.2) towards jointly trained, end-to-end convolutional architectures (Section 3.3).
The latter approaches to recognition have dominated the field achieving near human-quality
performance on a particularly popular, large volume recognition dataset – ImageNet.

In the remaining of this chapter, two popular approaches to visual recognition are
juxtaposed. Both methods also play an important role in later chapters. In Chapter 7, we
extend the Spatial Pyramid Matching architecture (Section 3.2) to learn a spatial division
together with the classification objective by a joint optimization strategy. In Chapter 10,
we build our neural-based visual question answering architectures based on Convolutional
Neural Networks (Section 3.3) that are currently the leading visual recognition architectures.

3.2 Spatial Pyramid Matching (SPM)
Spatial Pyramid Matching (shortly SPM) is, based on the locally orderless images idea
[Koenderink and Van Doorn 1999], a framework of building a more abstract global rep-
resentation of an image from local patches. Although building such a representation by
computing a histogram (a pooling step) of local representations has already been used in
orderless Bag-of-Visual-Words methods, Spatial Pyramid Matching preserves some spatial
information by spatially dividing the image into large subregions [Lazebnik et al. 2006; Yang
et al. 2009; Coates and Ng 2011]. At the very first step, patches from all images in the
training set are collected and categorized into K categories in an unsupervised way – for
instance, with K-means clustering or sparse coding algorithms – to form a dictionary of

1We assume the following relation between both sets: Ttrain ∩ Ttest = ∅. Note, however, that the set of all
classes C remains the same. This may not hold in other tasks such as Zero-shot Learning.

3.2. Spatial Pyramid Matching (SPM) 27

Visual
words

Car

Cow

Plane

Local representation Global representation

Pooling stage

Figure 3.1: Patches are encoded into visual words (the local representation) that are next
spatially gathered to form a subregion representation of the image. All the subregion
representations are next concatenated, and serve as a global representation of the whole
image. Such a representation becomes a feature vector used by a classifier. The latter chooses
a correct class from the set of all classes (here, it chooses from ‘Car’, ‘Cow’, ‘Plane’).

visual words V . Sometimes, before the clustering step, a local descriptor such as SIFT [Lowe
2004] is applied to every patch. Next, as Figure 3.1 sketches, local patches collected from
each image are encoded into visual words according to the dictionary V . The pooling stage
concatenates pooled (sum or max pooling is often used) visual words from all L spatially
divided subregions (Figure 3.1 show a 2-by-2 spatial division of the image) to form a global
representation of the image – a K ∗L dimensional feature vector – that is fed into a classifier.
The pooling stage can also form a pyramid of different global representations with an
increasing number of spatial subregions. For instance, Lazebnik et al. [2006] consider 3 levels
of pyramid with the following divisions: 1-by-1, 2-by-2, and 4-by-4. Forming such pyramids
is motivated by the observation that different levels increase invariances such as translation
invariance by disregarding locally spatial information. For example, although 1-by-1 division,
conceptually equivalent to a Bag-of-Visual-Words method, is the most destructive, this level
is also fully invariant to translations. Another possibility to preserve the information and
free the method from arbitrary divisions is to use a weighted pooling operator and learn the
division discriminatively together with a classifier [Malinowski and Fritz 2013b,a].

Conceptually, SPM can also be seen as a dimensionality reduction technique that maps a
high dimensional input image into K ∗ L dimensional feature vector. SPM can also be used
as a ‘trick’ to fix dimensionality of the global feature vector making the method independent
of the number of sampled patches or the size of the image. Finally, some low level vision
descriptors such as HOG or SIFT [Lowe 2004; Dalal and Triggs 2005] can also be viewed as
particular instances of SPM. Under such an interpretation, patches are divided into bins
(division into subregions) and histograms are computed over gradients (pooling).

This framework differs from the next generation of recognition architectures (Section 3.3),
namely Convolutional Neural Networks, mainly by lack of joint training. That is, every
stage in the architecture – namely a sampling scheme used to collect patches, type of local
descriptors applied to the patches, a dictionary learning and encoding methods, a pooling
operator2, a spatial division, number of levels in the pyramid, an employed classifier – is

2Two operators are particularly popular: computing maximum or summation over the visual words within

28 Chapter 3. Background: Visual Recognition

Simple
cells

Complex
cells

3 feature
maps

Simple
cells

5 feature
maps

Figure 3.2: Receptive fields of simple cells are tiled to cover the whole image (convolutions).
A linear mapping of the patch (’cropped’ input according to the receptive field), followed
by a nonlinearity becomes the response of the simple cell (two simple cells connected with
the image are singled out in the figure for the visualization purpose). All the cells from
the same feature map (here: green, yellow, and violet) share the weights. Different neurons
from the same feature map have access to different parts of the image. The last feature
maps are densely connected to a dense layer, followed by a classifier (colors in the last layer
correspond to three classes: ‘Car’, ‘Cow’, and ‘Plane’).

designed and learnt/computed separately. It is worth mentioning that there are variants of
the architecture that replace an arbitrary spatial division step with a learnable scheme, e.g.
the one presented in Chapter 6.

3.3 Convolutional Neural Networks (CNNs)

CNN Convolutional Neural Networks (shortly CNNs) have recently replaced more tradi-
tional, hand-designed recognition architectures. Although they share many basic ideas with
the Spatial Pyramid Matching framework, most prominently the idea of building successively
more global representations from the local ones (compare Figure 3.1 to Figure 3.2), all
layers in CNNs, as opposed to SPM, are jointly trained by back-propagation [LeCun et al.
1998a] and each module (e.g. a layer of simple cells followed by a layer of complex cells
is a single module in Figure 3.2) is, conceptually, the same. Nowadays, owing to better
hardware, advances in initialization of Deep Convolutional Neural Networks consisting of
many consecutive layers, and progress in stochastic training, CNNs can be trained end-to-end,
directly from pixels to classes on large volume datasets.

CNNs are composed of two kind of cells that are called, drawing inspirations from
neuroscience, simple and complex cells [Hubel and Wiesel 1962; Fukushima 1980; LeCun
et al. 1998b; Serre et al. 2007]. Simple cells respond to some patterns like edges within
their receptive fields3, whereas complex cells, with larger receptive fields, bring some sort
of invariances to where the pattern is observed and reduce the dimensionality of previous
stage. The former is computationally realized as responses to linear filters applied to the
input within the corresponding receptive field, followed by some nonlinearity, while the
latter is implemented as a pooling operator, already seen in SPM that is computed over

a subregion.
3Receptive field is a subregion in the input that the cell is sensitive to.

3.3. Convolutional Neural Networks (CNNs) 29

smaller regions and hence less destructive. Since the pattern can be observed anywhere in
the visual input, the receptive fields are tiled to cover the whole input. Such responses of
simple cells over the all tiled receptive fields are mathematically expressed by convolutions.
More formally, the simple cell response is zj = σ(wTxj + b), and the complex cell response
is c = ρ(z1, x2, ..., zk). Here, xj is the j-th patch sampled from the input, ρ is a pooling
operator, and σ is a nonlinearity; often ρ = max, and σ(x) = 1

1+e−x . Note that the size of
xj and k are determined by simple and complex’s receptive fields respectively. Tiling of the
receptive fields can be formalized using convolutions. All the neural cells with translated
receptive fields form a feature maps. All the weights connected to the same feature map
are shared, and hence they respond to the same, but spatially translated, pattern. The
weights are not shared across different feature maps, and so typically different feature maps
respond to different patterns. So that z = σ(wT

k xj + bk) where wk and bk are parameters
from the k-th feature map. As Figure 3.2 suggests, the dot product operations wTxj can
also be generalized to tensor multiplications in order to accommodate for computing a
response over many feature maps. Such a module can be repeated, where the input image
x is replaced by a complex cell response map xl from the l-th layer. With this notation,
we have zklj = σ(wlT

k x
l−1
j + blk) with x0

j representing the input image, and xl = [zklj]jk (for
the sake of simplicity, we ignore complex cell responses in the equation). Finally, the last
convolutional module is flattened, and densely connected with one or two dense layers, just
before such responses are given to a classifier. The whole architecture is trained end-to-end
with back-propagation [LeCun et al. 1998a].

Interestingly, CNNs can also be seen as a features extractor technique that can be used
by methods working on other tasks requiring processing of the visual input (in Chapter 10 we
will see such an application of CNN). That is, once a network is trained, the responses from
some layer (often the last dense or convolutional layer is used) are abstract representation of
the input image and therefore are extracted to serve as a feature vector in other methods.

Finally, CNNs can, presumably, effectively exploit large-volume datasets, and their
performance does not saturate as quickly as the performance of earlier methods. That is,
they exhibit scalability both in computability, and learnability (Section 2.1). As a result, for
about 3 years CNNs are driving advances in recognition, however, each year sees new variants
of CNNs that furnish the plain version described in this section with new components.

AlexNet Until 2012, the most successful approaches to recognition relied on hand-designed
features. Combinations of different classifiers with SIFT, HOG and Fisher Vectors topped
the ladder of the ImageNet challenge [Russakovsky et al. 2014]. This, however, has been
changed due to an architecture introduced by Krizhevsky et al. [2012], which outperformed
other approaches by about 10 percent points achieving 15.31% top-5 error.

The presented model, called AlexNet and shown in Figure 3.3, is a deep CNN approach
to recognition that is trained end-to-end, from RGB pixel values to classes. It has five
convolutional layers, most of which are followed by max-pooling layers, three fully-connected
(or dense) layers and a final 1000-way softmax (Figure 3.3). In total it has about 650, 000
neurons with 60 million parameters. To make training of such a large network feasible,
the network uses novel non-saturating Rectified Linear Units (ReLU) [Nair and Hinton

30 Chapter 3. Background: Visual Recognition

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

Figure 3.3: AlexNet CNN. Note that the delineation of the network in the figure is due to
its parallelization to take advantage of two GPUs. The figure is taken from Krizhevsky et al.
[2012].

2010], that is σ(x) = max(0, x). The objective function that the network maximizes is a
multinomial logistic regression.

For the matter of being more detailed about the AlexNet architecture shown in Figure 3.3,
the network’s input is an RGB ‘crop’ (with the size 224-by-224-by-3) of the original image
that is followed by a convolutional layer with 96 feature maps and a convolutional kernel
of the size 11-by-11-by-3 and stride of 4. A max-pooling layer reduces the size of the
convolutional layer so that each outputted feature map has the size 55-by-55. The second
convolutional layer convolves the previous layer with a convolutional kernel of the size 5-by-
5-by-48, and is followed by a max-pooling layer. This results in the 256 feature maps with
the size 27-by-27 each. The following two convolutional layers have 384 feature maps each,
and convolve their inputs with convolutional kernels of sizes 3-by-3-by-256 and 3-by-3-by-192
respectively. The last convolutional layer has 256 feature maps and a convolutional kernel
of the size 3-by-3-by-192. It is also again followed by a max-pooling layer. The last two
densely connected layers have 4096 neurons each. The last densely connected layer is finally
connected to the 1000-way softmax.

To improve generalization, Krizhevsky et al. [2012] suggest using Local Response Nor-
malization, which implements a form of a ‘lateral inhibition’ between neurons from different
feature maps, together with a novel regularization layer called Dropout [Hinton et al. 2012].
At every training iteration, the Dropout layer sets independently and with probability p a
response of each neuron to zero, effectively removing the neuron from the network. This is a
form of the stacking technique applied to neural models where at each training iteration a
model is sampled from exponentially many possible models that share the same parameters.
Note that higher p puts more pressure on single neurons to have significant responses towards
input patterns and to ‘play well’ with other unknown neurons reducing its co-adaptation.
This results in an ensemble of simpler models that each one is less prone to overfitting. At
test time, we compute an approximation of the expected response of the whole network by
multiplying each neuron by a constant value p. Krizhevsky et al. [2012] use p = 0.5.

Since using more training data often leads to better generalization, Krizhevsky et al.
[2012] augments training data with three class-preserving transformations: image translations,
horizontal reflections, and pixel intensities alternation. The first two transformations are

3.4. Recent Recognition Architectures 31

implemented as random 224-by-224 ‘crops’ and the horizontal reflections of the input image.
At test time, the softmax predictions are averaged over five crops (at the center and four
corners) extracted from the image together with their horizontal reflections. The pixel
intensity alternation scheme captures the observation that object’s classes are invariant
under changes in the intensity and the color of the illumination [Krizhevsky et al. 2012].

All the aforementioned ingredients have greatly improved generalization on the ImageNet
classification challenge, where the model has outperformed the competitors by a large margin,
and hence have changed the way how we design and train recognition architectures.

3.4 Recent Recognition Architectures
After the AlexNet winning entry in 2012, it becomes clearer that depth is essential in
developing modern CNNs. The most recent variants of CNNs extend AlexNet with novel
network’s designs that allow for training deeper models.

GoogLeNet GoogLeNet [Szegedy et al. 2015] builds an Inception module (Figure 3.4) by
performing convolutions at different scales together with dimensionality reduction through
1-by-1 convolutions. The 1-by-1 convolutions allow to efficiently train deeper and wider
architectures. To combat with the gradient vanishing problem, in addition to ReLUs, extra
classifiers are coupled with some Inception modules that provide a supplementary signal of
supervision to lower layers (Figure 3.5).

VGG-net VGG [Simonyan and Zisserman 2015] uses narrow and repeated convolutional
kernels of the size 3-by-3, and stride 1 pixel to build a deep CNN. Both GoogLeNet and
VGG have achieved remarkable performance on the ImageNet 2014 classification challenge:
about 6.7% and 7.3% top-5 error respectively. With depth4 22 and 19 respectively, both
architectures are also significantly deeper than AlexNet (with depth only 8).

Residual Net The next two networks achieve top-5 error about 3.5% on the ImageNet
2015 classification challenge. He et al. [2015] have increased depth of the network to 152
layers. To successfully train such a deep network, the authors have introduced Residual Net
with shortcut connections (Figure 3.6), where it is always easy to learn a perturbed identity
transformation. The architecture uses 1-by-1 convolutions that perform dimensionality
reduction. Interestingly, the design of Residual Net departs from the traditional design that
the previously mentioned models exhibit. The network does not use pooling, there is no
dropout, nor a hidden fully connected layer. The ensemble of Residual Nets achieves 3.08%
top-5 error. Table 3.1 aggregates results of different networks on the ImageNet datasets.

Concluding Remarks All the recent developments of CNNs show a clear trend that
deeper networks work better. This is summarized in Table 3.1. However, training deeper
networks comes with the cost. First, the gradient of very deep networks vanishes causing
difficulties in training their lower layers. Second, deeper networks are computationally more

4Here, depth is defined as the number of consecutive layers with parameters.

32 Chapter 3. Background: Visual Recognition

Name Depth Top-5 Error

Pre-CNN - 26.17%
AlexNet 8 15.31%
VGG-Net 19 7.3%
GoogleNet 22 6.7%
ResNet 152 3.5%

Table 3.1: Performance of different, popular variants of CNNs on the ImageNet dataset.
Pre-CNN refers to the ISI team with the best method from the ImageNet Challenge 2012
that does not use CNNs.

expensive to run. The very or ultra deep networks handle the aforementioned issues with a
clever design. For example, narrow convolutional filters, loss linked to lower layers, lack of
hidden fully connected layers, and shortcut connections are just a few possible remedies.
The three aforementioned networks are collectively illustrated in Figure 3.7.

3.5 Conclusion
This chapter summarizes two popular approaches to image classification that share important
properties: Spatial Pyramid Matching, and Convolutional Neural Networks. Both have left
a mark in the history of Computer Vision, both stress an importance of hierarchies of
representations to build a global image representation, and both use pooling over regions.
However, at the same time, there are important differences between both frameworks.
Convolutional Neural Networks pool over much smaller receptive fields, and are jointly
trained, end-to-end architectures. Whereas Spatial Pyramid Matching pools over large spatial
regions, where each stage (layer) is either hand-designed or separately trained. Chapter 6
makes the gap between both methods smaller by considering a variant of SPM with two
layers of the architecture that are jointly trained. Nonetheless, CNNs are currently driving
advances in the visual recognition, and hence are extensively used in the thesis.

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimensionality reduction

Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3 � 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet
By the“GoogLeNet” name we refer to the particular in-

carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

Figure 3.4: Inception module uses convolutions at different scales together. The figure is
taken from Szegedy et al. [2015].

3.5. Conclusion 33

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimensionality reduction

Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3 � 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet
By the“GoogLeNet” name we refer to the particular in-

carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

5x5 average
pooling

1x1 convolutions

Fully connected

Fully connected

Softmax activation

Output

Figure 3.5: Inception module with a classifier that provides an additional signal of supervision.
The figure is based on Szegedy et al. [2015].

Previous layer

3x3 convolutions

3x3 convolutions

+

Figure 3.6: Residual Net with the shortcut connections.

34 Chapter 3. Background: Visual Recognition

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles.

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

softmax1

Figure 3: GoogLeNet network with all the bells and whistles.

Conv 
11x11 + 4

MaxPool  
3x3 + 2

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

input

Figure 3: GoogLeNet network with all the bells and whistles.

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

LocalResp
Norm

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

Conv  
5x5 + 1

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

MaxPool  
3x3 + 2

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

LocalResp
Norm

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

Conv 
3x3 + 1

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

Conv 
3x3 + 1

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

Conv 
3x3 + 1

MaxPool  
3x3 + 2

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

fc

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

fc

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

fc

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

Figure 3: GoogLeNet network with all the bells and whistles.

Softmax 
Activation

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 , 4

3]. Also, we found that the photometric distortions
of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

input

Figure 3: GoogLeNet network with all the bells and whistles.Figure 3.7: Depiction of deep, very deep, and ultra deep networks. From the left: AlexNet
(depth 8), GoogLeNet (depth 22), and Residual Net (depth 152 - due to the space limit, the
depiction is incomplete). The figure is based on Szegedy et al. [2015] and He et al. [2015].

Chapter 4

Background: Natural Language
Understanding

Contents
4.1 Introduction . 35
4.2 Semantic Parsing . 36
4.3 Recurrent Neural Networks . 42
4.4 Conclusion . 46

Human ability to efficiently process linguistic information by associating a meaning to
words, phrases, sentences is the next fundamental modality that plays an important
role in acquiring knowledge in every-day life. Languages have evolved together

with us, and remain an important communication channel. Therefore, we would also like to
communicate with intelligent machines through the language. While communicating with
others, we do not say everything but rather we rely on a common (unspoken) ground with
the receiver. Similarly, according to our preferences, we may interpret words, phrases, or
sentences in different ways. This is a source of many ambiguities that we can encounter in
language, which machines have to deal with too. In this chapter, we discuss two seemingly
different approaches to handle language understanding: logical-based and neural-based. Both
are used as building blocks of holistic machines that answer questions about images. Both
are also discussed in Chapter 9 and Chapter 10 in the context of the ‘question answering
about images’ task.

4.1 Introduction
Natural Language Understanding dates, arguably, back to the sixties of the twentieth
century. For example, Bobrow [1964] have designed a program that solves high school
algebra homework. Another famous project is SHRDLU [Winograd 1971], where a block
world consisting of some geometrical primitives is provided with the goal of rearranging the
blocks in a certain way by controlling a robot’s hand through natural language instructions
(Figure 4.1 shows the ‘block world’ that SHRDLU operates on). However, projects from that
period of time had limited scope of applications as a result of using hand-designed translation
rules. Much later, approaches to natural language understanding can roughly be categorized
into logic-based approaches that use semantic parsers to translate a textual input into some
formal representation, or neural-bases approaches that transform the textual input into

36 Chapter 4. Background: Natural Language Understanding

some vector representation. Both approaches to represent the meaning are also investigated
in Visual Turing Test, and yield two seemingly different methods. In this chapter, we will
visualize both approaches to represent the meaning of a sentence in greater detail. The first
part concerns semantic parsing. First, we introduce the general idea that stands behind the
semantic parsing, next we briefly provide a brief historical context concerning the semantic
parsing, show how to train a simplified semantic parser (based on the work of Liang and
Potts [2015]), and finish with a brief introduction to Dependency-Based Compositional
Semantics introduced by Liang et al. [2013] that is used in our first approach to answer
questions about real-world images, presented in Chapter 9. The second part concerns with
Recurrent Neural Networks, which have recently gained popularity in processing textual
input. We use the latter approach to language modeling in our second approach to answer
question about real-world images, presented in Chapter 10 and Chapter 11. Indirectly, a
similar basic idea stands behind approaches to retrieve images based on textual queries
that are described in Chapter 7 and Appendix A. A curious reader may also read over our
tutorial presented in Appendix C.

4.2 Semantic Parsing
Overall picture Semantic parsing is footed on the desire to have an automatic tool that
fully specifies the meaning of a sentence by representing it in a formal language. Such
a formal representation must be sufficient to complete a task. For instance, it must be
compatible with formal ways to achieve a final destination in a robot planning scenario
[Tellex et al. 2011], or to withdraw an answer from a database in the ‘question answering
with a Knowledge Base’ task [Liang et al. 2013]. Since in this thesis we use a semantic parser
to represent questions in the ‘question answering about real-world images’ task (Chapter 9),
in this section, we focus on a similar ‘textual question answering with a Knowledge Base’ task
with a semantic parser of Liang et al. [2013] as an exemplar one. All the further references
to the semantic parser in this chapter refer to the aforementioned case.

The task that we are interested in this chapter assumes a Knowledge Base that is a
formal representation of a domain knowledge, as well as textual question-answer pairs that
serve as a signal of a supervision. The Knowledge Base, which we also call a World, is often
implemented as a database storing certain facts about the real-world. For instance, the
Knowledge Base can store geographical facts or jobs descriptions [Liang et al. 2013].

Semantic parsing for question answering Let JsKW denote the meaning of a sentence
s with respect to the Knowledge Base W, and let `(s) be the formal representation of the
sentence. Then, with a slight abuse of the notation, J`(s)KW be the interpretation of the
formula `(s) with respect to W. Depending on the exact design decisions about the formal
language and the Knowledge Base, `(s) can be a SQL formula produced by the semantic
parser, and J`(s)KW would be the result of executing the SQL formula on the database W.
It is also worth noting that in this scenario, the logical formula `(s) is already unambiguous,
and hence, the interpretation J`(s)K is a deterministic mechanism. This, however, contrasts
with the ‘question answering about real-world images’ task, in which the input is inherently

4.2. Semantic Parsing 37

Figure 4.1: The ’Block World’ of SHRDLU. The figure comes from http://hci.stanford.
edu/winograd/shrdlu/.

uncertain due to various (human or machine) interpretations of the scene. Therefore, in
Chapter 9 we extend the interpretation mechanism to work with probabilistic Knowledge
Bases that represent uncertainty in the visual input.

Historical outline So far we have taken semantic parsing for granted by assuming that
the parser somehow transforms strings into logical formulas. But how is it done? Historically,
first semantic parsers use hand-designed rules to do the transformation. In the early seventies,
Winograd [1972] developed SHRDLU, an early conversation machine connected to the ‘block
world’ (see Figure 4.1). Although the SHRDLU’s performance was impressive within the
toy-world domain, extending the architecture to broader domains has failed. Covering all
nuisances of the natural language with hand-designed rules is, reportedly, very difficult
[Liang 2014]. Due to the problems in scaling up rule-based parsers to other domains, the next
generation uses machine learning approaches to induce a semantic parser based on training
data, in which textual sentences are paired with the corresponding formal representations
[Zelle and Mooney 1996; Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010]. Although
shifting to learning-based approaches has been an important step forward in achieving
better scalability, the existence of logical forms representing utterances requires an expert
knowledge and therefore increases the annotation effort, and limits the amount of possible
training data points. To handle such issues, the research community has proposed learning-
based approaches to natural language understanding that induce a semantic parser directly
from question-answer (or utterance-denotation) pairs [Clarke et al. 2010; Liang et al. 2013].
Arguably, the most important property of the learning-based semantic parsers comes from
the following observation. Since good derivations of the meaning are difficult to obtain, the
parsers over-generate the space of good derivations by also allowing to have incorrect ones,
and next rely on machine learning approaches to rank the derivations.

A simplified task of solving algebraic formulas To look closer at how semantic
parsers are trained from utterance-denotation pairs, we examine a simplified task of learn-
ing to solve algebraic formulas from natural language descriptions. This part is inspired
by the work of Liang and Potts [2015]. Let us consider a linguistic object 〈s, t, l, i〉 –
with a sentence s, its syntactic derivation t, its logical representation l, and its inter-

http://hci.stanford.edu/winograd/shrdlu/
http://hci.stanford.edu/winograd/shrdlu/

38 Chapter 4. Background: Natural Language Understanding

Syntax Logical Form

N → one 1
N → one 2
...

...

N → two 1
N → two 2
...

...

R→ plus +
R→ plus −
R→ plus ×
R→ minus +
R→ minus −
R→ minus ×
R→ times +
R→ times −
R→ times ×
N → NleftRNright dRe(dNlefte, dNrighte)

Table 4.1: Grammar for the algebraic formulas task. We follow a standard, mathematical
interpretation of the logical forms. The table is a simplified version of the table shown in
Liang and Potts [2015].

4.2. Semantic Parsing 39
(a) Candidates GEN(x) for utterance x = two times two plus three

y1 y2 y3

N:(+ (⇥ 2 2) 3)) 7

N:(⇥ 2 2)

N:2

two

R:⇥

times

N:2

two

R:+

plus

N:3

three

N:(+ (+ 2 2) 3)) 7

N:(+ 2 2)

N:2

two

R:+

times

N:2

two

R:+

plus

N:3

three

N:(⇥ 2 (+ 2 3))) 10

N:2

two

R:⇥

times

N:(+ 2 3)

N:2

two

R:+

plus

N:3

three

�(x, y1) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y2) =
R:+[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y3) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:⇥] : 1

(b) Learning from logical forms (Section 4.1)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

y = y1

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

y = y1

ỹ = y2 (tied with y1)

) w =

R:⇥[times] : 1

R:+[times] : -1

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [2, 0, 0]

y = y1

ỹ = y1

Iteration 1 Iteration 2 Iteration 3

(c) Learning from denotations (Section 4.2)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y1 (tied with y2)

Iteration 1 Iteration 2

Figure 2: Learning algorithms applied to one example. The utterance is “two
times two plus three”. In (b), we are given the target semantic representation
(+ (⇥ 2 2) 3). In (c), we are given the target denotation 7. In (a), we show
the three candidates GEN(x) that the learning algorithm must decide among,
along with their features �. For example, the first feature in y1 (‘R:⇥[times]’)
has value 1, and says that times was mapped to R:⇥; the last feature ‘top[R:+]’
says that the topmost R is a +. The feature weights start at all zero; we compute
the scores for each of the three candidates (Scorew(x, yi) = w ·�(x, yi)). Either
the target y is provided or, if only the denotation d is given, we choose the
highest scoring y that has denotation d: y = arg maxy02GEN(x,d) Scorew(x, y0).
The prediction ỹ = arg maxy02GEN(x) Scorew(x, y0)+ c(y, y0) is the highest score
(augmented with the cost, which is 1 for y0 6= y and 0 otherwise). Finally, a
weight update is made: w w+⌘(�(x, y)��(x, ỹ)) with ⌘ = 1. The algorithm
terminates in this example when y = ỹ. From logical forms, we eventually
predict the correct answer y1. From denotations, we end up predicting either
y1 or y2, which both have denotation d. With more diverse examples, we would
be able to favor y1.

11

Figure 4.2: Results of the Gen(x) procedure that generates logical formulas, illustrated here
as parsed trees, from a sentence x. φ(x, y) is a feature function between the sentence x and
its logical form y. Features include: number of times an operator appears in y (R : ×[times]
or R : +[plus]), and a binary indicator showing which operator is used as the root of the tree
(top[R : +] or top[R : ×]). The sentence x is ‘two times two plus three’. The figure comes
from Liang and Potts [2015].

pretation i – and training pairs of sentences paired with their denotations. For instance,
T := {(two times three plus four, 10) , (two plus two, 4) , . . .}. The simplified algebraic task
is compelling as its syntax, logical representation, and interpretation are easy to derive
(Table 4.1) or natural (the interpretation procedure is just a standard mathematical interpre-
tation of the formulas that can easily be implemented in modern programming languages),
so that we can focus more on the learning task. Table 4.1 already implies a few challenges
that a semantic parser has to handle. First, the association between syntactic tokens and
logical forms is unknown, for instance N → one can be associated with any single digit
number. Second, correct logical forms are unknown during training as only their denotations
are observed. They are, however, used in an objective function as latent variables. Third,
different logical forms can have the same denotations. For example, both interpretations
of the token plus as + or · lead to the same denotation of the utterance ‘two plus two’. A
proper interpretation of the ‘plus’ token can only be learnt once more training data are
available. Four, precedence of the operators is also unknown and has to be learnt from data.
To train a semantic parser, Liang and Potts [2015] suggest the following learning framework
with a latent Support Vector Machine objective [Schölkopf and Burges 1999]

min
w

∑

(s,i)∈T
max

l∈Gen(s)

[
wTφ(s, l) + ∆(i, JlK)

]
− max
l∈Gen(s,i)

wTφ(s, l) (4.1)

where wtφ(s, l) is a score function of deriving the logical form l from the sentence s, Gen(s)
is a generator of all logical forms that can be derived from s, Gen(s, i) is a generator of
all logical forms that can be derived from s such that their interpretations are exactly i,
and ∆(i, JlK) = 0 if interpretation of l is the same as i but otherwise 1. Equation 4.1 can be
trained with Stochastic Gradient Descent [Bottou 2010] using the following upgrade rule at
sample (s, i) ∈ T

w := w − α
(
φ(s, l̂)− φ(s, l∗)

)

40 Chapter 4. Background: Natural Language Understanding

California

city

major
2
1

1
1

major city in California

loc

1
1

count
1
1

1
2

number of major cities

city

Example: major city in California

z = hcity; 1
1 :hmajori ; 1

1 :hloc; 2
1 :hCAiii

1

1

1

1

major

2

1

CA

loc

city

�c9m9`9s .
city(c) ^ major(m)^
loc(`) ^ CA(s)^
c1 = m1 ^ c1 = `1 ^ `2 = s1

(a) DCS tree (b) Lambda calculus formula

(c) Denotation: JzKw = {SF, LA, . . . }

Figure 2: (a) An example of a DCS tree (written in both
the mathematical and graphical notation). Each node is
labeled with a predicate, and each edge is labeled with a
relation. (b) A DCS tree z with only join relations en-
codes a constraint satisfaction problem. (c) The denota-
tion of z is the set of consistent values for the root node.

for each child i, the ji-th component of v must equal
the j0i-th component of some t in the child’s deno-
tation (t 2 JciKw). This algorithm is linear in the
number of nodes times the size of the denotations.1

Now the dual importance of trees in DCS is clear:
We have seen that trees parallel syntactic depen-
dency structure, which will facilitate parsing. In
addition, trees enable efficient computation, thereby
establishing a new connection between dependency
syntax and efficient semantic evaluation.

Aggregate relation DCS trees that only use join
relations can represent arbitrarily complex compo-
sitional structures, but they cannot capture higher-
order phenomena in language. For example, con-
sider the phrase number of major cities, and suppose
that number corresponds to the count predicate.
It is impossible to represent the semantics of this
phrase with just a CSP, so we introduce a new ag-
gregate relation, notated ⌃. Consider a tree h⌃ :ci,
whose root is connected to a child c via ⌃. If the de-
notation of c is a set of values s, the parent’s denota-
tion is then a singleton set containing s. Formally:

Jh⌃ :ciKw = {JcKw}. (2)

Figure 3(a) shows the DCS tree for our running
example. The denotation of the middle node is {s},

1Infinite denotations (such as J<Kw) are represented as im-
plicit sets on which we can perform membership queries. The
intersection of two sets can be performed as long as at least one
of the sets is finite.

number of
major cities

1

2

1

1

⌃⌃

1

1

major

city

⇤⇤

count

⇤⇤

average population of
major cities

1

2

1

1

⌃⌃

1

1

1

1

major

city

population

⇤⇤

average

⇤⇤

(a) Counting (b) Averaging

Figure 3: Examples of DCS trees that use the aggregate
relation (⌃) to (a) compute the cardinality of a set and (b)
take the average over a set.

where s is all major cities. Having instantiated s as
a value, everything above this node is an ordinary
CSP: s constrains the count node, which in turns
constrains the root node to |s|.

A DCS tree that contains only join and aggre-
gate relations can be viewed as a collection of tree-
structured CSPs connected via aggregate relations.
The tree structure still enables us to compute deno-
tations efficiently based on (1) and (2).

2.2 Full Version

The basic version of DCS described thus far han-
dles a core subset of language. But consider Fig-
ure 4: (a) is headed by borders, but states needs
to be extracted; in (b), the quantifier no is syntacti-
cally dominated by the head verb borders but needs
to take wider scope. We now present the full ver-
sion of DCS which handles this type of divergence
between syntactic and semantic scope.

The key idea that allows us to give semantically-
scoped denotations to syntactically-scoped trees is
as follows: We mark a node low in the tree with a
mark relation (one of E, Q, or C). Then higher up in
the tree, we invoke it with an execute relation Xi to
create the desired semantic scope.2

This mark-execute construct acts non-locally, so
to maintain compositionality, we must augment the

2Our mark-execute construct is analogous to Montague’s
quantifying in, Cooper storage, and Carpenter’s scoping con-
structor (Carpenter, 1998).

1
1

majorBarackObama

city

birth
1
1

city of birth of Barack Obama

1
2

Figure 4.3: Examples of Dependency-Based Compositional Semantics trees. The figure is
created based on the work of Liang et al. [2013].

where α is the learning rate chosen based on a validation set, l̂ := arg maxl∈Gen(s)w
Tφ(s, l)+

∆(i, JlK), and l∗ := arg maxl∈Gen(s,i)w
Tφ(s, l). The feature function φ(s, l) roughly captures

different relationships between the textual input s and its logical representation l, such as
the number of times a rule is used in the logical derivation, or which operator is used in the
root. Figure 4.2 shows a few logical forms derived from the sentence “two plus two times
three” together with used features. Note that, with ‘stronger’ grammatical rules, for instance
by directly associating ‘one’ with 1, ‘two’ with 2, etc., we could significantly simplify the
training effort. However, at the same time, we would loose the generality of the approach.
In the domain of algebraic formulas this may work, but it is less likely to work well in much
broader domains such as question answering about geographic facts [Liang et al. 2013] or
Visual Turing Test [Malinowski and Fritz 2014a].

Dependency-based Compositional Semantics In Liang et al. [2013], the authors
introduce Dependency-Based Compositional Semantics to efficiently encode logical forms
(Figure 4.3 shows a few derivations), and use a probabilistic framework as the learning
framework (shown in Figure 4.4). Despite of such changes, the core principles we have
already presented remain the same. It is also worth mentioning that the Gen procedure in
Equation 4.1 generates, in the worst case, exponentially many trees. To deal with such the
exponential blown up, Liang et al. [2013] consider only the L highest scoring candidates in
each generation step.

Depending on a grammar, and the lexicon, semantic parsers build an unambiguous logical
representation of the given sentence. For instance, “What is the birthplace of Barack Obama?”
could be translated into λX : city(X)∧ birth(Y,X)∧ const(Y,BarackObama). The lexicon
translates words or short phrases into a set of predicates, e.g. (city, birth, const), or set of
entities such as (BarackObama). For instance, a textual ‘birthplace’ can be mapped into
{city, birth}, and a textual ‘Obama’ can be mapped into {BarackObama,MichelleObama}.
Liang et al. [2013] have proposed Dependency-Based Compositional Semantics to efficiently

4.2. Semantic Parsing 41

California

city

major
2
1

1
1

major city in California

loc

1
1

count
1
1

1
2

number of major cities

city

Example: major city in California

z = hcity; 1
1 :hmajori ; 1

1 :hloc; 2
1 :hCAiii

1

1

1

1

major

2

1

CA

loc

city

�c9m9`9s .
city(c) ^ major(m)^
loc(`) ^ CA(s)^
c1 = m1 ^ c1 = `1 ^ `2 = s1

(a) DCS tree (b) Lambda calculus formula

(c) Denotation: JzKw = {SF, LA, . . . }

Figure 2: (a) An example of a DCS tree (written in both
the mathematical and graphical notation). Each node is
labeled with a predicate, and each edge is labeled with a
relation. (b) A DCS tree z with only join relations en-
codes a constraint satisfaction problem. (c) The denota-
tion of z is the set of consistent values for the root node.

for each child i, the ji-th component of v must equal
the j0i-th component of some t in the child’s deno-
tation (t 2 JciKw). This algorithm is linear in the
number of nodes times the size of the denotations.1

Now the dual importance of trees in DCS is clear:
We have seen that trees parallel syntactic depen-
dency structure, which will facilitate parsing. In
addition, trees enable efficient computation, thereby
establishing a new connection between dependency
syntax and efficient semantic evaluation.

Aggregate relation DCS trees that only use join
relations can represent arbitrarily complex compo-
sitional structures, but they cannot capture higher-
order phenomena in language. For example, con-
sider the phrase number of major cities, and suppose
that number corresponds to the count predicate.
It is impossible to represent the semantics of this
phrase with just a CSP, so we introduce a new ag-
gregate relation, notated ⌃. Consider a tree h⌃ :ci,
whose root is connected to a child c via ⌃. If the de-
notation of c is a set of values s, the parent’s denota-
tion is then a singleton set containing s. Formally:

Jh⌃ :ciKw = {JcKw}. (2)

Figure 3(a) shows the DCS tree for our running
example. The denotation of the middle node is {s},

1Infinite denotations (such as J<Kw) are represented as im-
plicit sets on which we can perform membership queries. The
intersection of two sets can be performed as long as at least one
of the sets is finite.

number of
major cities

1

2

1

1

⌃⌃

1

1

major

city

⇤⇤

count

⇤⇤

average population of
major cities

1

2

1

1

⌃⌃

1

1

1

1

major

city

population

⇤⇤

average

⇤⇤

(a) Counting (b) Averaging

Figure 3: Examples of DCS trees that use the aggregate
relation (⌃) to (a) compute the cardinality of a set and (b)
take the average over a set.

where s is all major cities. Having instantiated s as
a value, everything above this node is an ordinary
CSP: s constrains the count node, which in turns
constrains the root node to |s|.

A DCS tree that contains only join and aggre-
gate relations can be viewed as a collection of tree-
structured CSPs connected via aggregate relations.
The tree structure still enables us to compute deno-
tations efficiently based on (1) and (2).

2.2 Full Version

The basic version of DCS described thus far han-
dles a core subset of language. But consider Fig-
ure 4: (a) is headed by borders, but states needs
to be extracted; in (b), the quantifier no is syntacti-
cally dominated by the head verb borders but needs
to take wider scope. We now present the full ver-
sion of DCS which handles this type of divergence
between syntactic and semantic scope.

The key idea that allows us to give semantically-
scoped denotations to syntactically-scoped trees is
as follows: We mark a node low in the tree with a
mark relation (one of E, Q, or C). Then higher up in
the tree, we invoke it with an execute relation Xi to
create the desired semantic scope.2

This mark-execute construct acts non-locally, so
to maintain compositionality, we must augment the

2Our mark-execute construct is analogous to Montague’s
quantifying in, Cooper storage, and Carpenter’s scoping con-
structor (Carpenter, 1998).

1
1

majorBarackObama

city

birth
1
1

city of birth of Barack Obama

1
2

What is the birthplace  
of Barack Obama?

Knowledge  
Base

AnswerLogical FormQuestion

1

N

NX

i=1

min{
Y

a2Ai

max
t2T i

µ(a, t),
Y

t2T i

max
a2Ai

µ(a, t)} · 100 (1)

p(a | s; ✓) =
X

l2Gen(s)

{a = JlKW }| {z }
Interpretation

p(l | s; ✓)| {z }
Semantic parsing

(2)

1

N

NX

i=1

1{T i = Ai} · 100 (3)

1

K

KX

k=1

WUPS(A, T k)

x1, x2, ..., xt�1, xt, xt+1, ..., xT

ht = �(Whhht�1 + W xhxt)

ŷt = softmax(Whyht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT
f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT

ŷt+1, ht�1, ht+1

J(✓) = �
X

k

X

t

X

v

yk
t,v log ŷk

t,v

qj

WUP () = 0.95

WUP () = 0.8

ACC () = 0

WUPS @0.9 () ⇡ 0 < 0.95

3

1

N

NX

i=1

min{
Y

a2Ai

max
t2T i

µ(a, t),
Y

t2T i

max
a2Ai

µ(a, t)} · 100 (1)

p(a | s; ✓) =
X

l2Gen(s)

{a = JlKW }| {z }
Interpretation

p(l | s; ✓)| {z }
Semantic parsing

(2)

1

N

NX

i=1

1{T i = Ai} · 100 (3)

1

K

KX

k=1

WUPS(A, T k)

x1, x2, ..., xt�1, xt, xt+1, ..., xT

ht = �(Whhht�1 + W xhxt)

ŷt = softmax(Whyht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT
f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT

ŷt+1, ht�1, ht+1

J(✓) = �
X

k

X

t

X

v

yk
t,v log ŷk

t,v

qj

WUP () = 0.95

WUP () = 0.8

ACC () = 0

WUPS @0.9 () ⇡ 0 < 0.95

3

1

N

NX

i=1

min{
Y

a2Ai

max
t2T i

µ(a, t),
Y

t2T i

max
a2Ai

µ(a, t)} · 100 (1)

p(a | s; ✓) =
X

l2Gen(s)

{a = JlKW }| {z }
Interpretation

p(l | s; ✓)| {z }
Semantic parsing

(2)

1

N

NX

i=1

1{T i = Ai} · 100 (3)

1

K

KX

k=1

WUPS(A, T k)

x1, x2, ..., xt�1, xt, xt+1, ..., xT

ht = �(Whhht�1 + W xhxt)

ŷt = softmax(Whyht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT
f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT

ŷt+1, ht�1, ht+1

J(✓) = �
X

k

X

t

X

v

yk
t,v log ŷk

t,v

qj

WUP () = 0.95

WUP () = 0.8

ACC () = 0

WUPS @0.9 () ⇡ 0 < 0.95

3

1

N

NX

i=1

min{
Y

a2Ai

max
t2T i

µ(a, t),
Y

t2T i

max
a2Ai

µ(a, t)} · 100 (1)

p(a | s; ✓) =
X

l2Gen(s)

{a = JlKW }| {z }
Interpretation

p(l | s; ✓)| {z }
Semantic parsing

(2)

1

N

NX

i=1

1{T i = Ai} · 100 (3)

1

K

KX

k=1

WUPS(A, T k)

x1, x2, ..., xt�1, xt, xt+1, ..., xT

ht = �(Whhht�1 + W xhxt)

ŷt = softmax(Whyht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT
f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT

ŷt+1, ht�1, ht+1

J(✓) = �
X

k

X

t

X

v

yk
t,v log ŷk

t,v

qj

WUP () = 0.95

WUP () = 0.8

ACC () = 0

WUPS @0.9 () ⇡ 0 < 0.95

3

1

N

NX

i=1

min{
Y

a2Ai

max
t2T i

µ(a, t),
Y

t2T i

max
a2Ai

µ(a, t)} · 100 (1)

p(a | s; ✓) =
X

l2Gen(s)

{a = JlKW }| {z }
Interpretation

p(l | s; ✓)| {z }
Semantic parsing

(2)

1

N

NX

i=1

1{T i = Ai} · 100 (3)

1

K

KX

k=1

WUPS(A, T k)

x1, x2, ..., xt�1, xt, xt+1, ..., xT

ht = �(Whhht�1 + W xhxt)

ŷt = softmax(Whyht)

x1, x2, ..., xt�1, xt, xt+1, ..., xT
f�! y1, y2, ..., yt�1, yt, yt+1, ..., yT

ŷt+1, ht�1, ht+1

J(✓) = �
X

k

X

t

X

v

yk
t,v log ŷk

t,v

qj

WUP () = 0.95

WUP () = 0.8

ACC () = 0

WUPS @0.9 () ⇡ 0 < 0.95

3

Figure 4.4: Probabilistic Graphical Model of the semantic parser proposed by Liang et al.
[2013]. Grey colored circles denote observed variable, while the white colored circle denotes
a latent variable. Latent variable is marginalized out for predictions. Logical form l is
interpreted according to a Knowledge Base W to produce an answer a for the given question
s.

encode logical formulas, in which each formula is represented as a tree with predicates
as nodes and relations between the predicates as edges (Figure 4.3 shows a few examples
of the Dependency-Based Compositional Semantics encoding). Edges encode constrains
between the nodes. Numbers represent localization of bindings between the arguments.
For example, the relation 1 − 2 between city and birth (middle of Figure 4.3) binds the
second argument of the predicate birth(X,Y) with the first, and only one, argument of
the predicate city(X). Let

〈
p, j1

i1
: c1, j2

i2
: c2, ..., jkik : ck

〉
be the formal representation of a

tree with a parent p and k children c1, ..., ck that are related with the parent via a binding
relation j

i each. For instance,
〈
city, 1

2 :
〈
birth, 1

1 : BarackObama
〉〉

represents the middle
tree in Figure 4.3. Then the interpretation of the tree can be defined recursively. Precisely,
J
〈
p, j1

i1
: c1, j2

i2
: c2, ..., jkik : ck

〉
KW equals the interpretation of the parent node intersected

with interpretations of its children, that is {t | t ∈ JpKW} ∩
⋂k
l=1 {t | vil = tjl , v ∈ JclKW}.

Let us consider the denotation of the question “What is the birthplace of Barack Obama?”
using Dependency-Based Compositional Semantics

JWhat is the birthplace of Barack Obama?KW =
J
〈
city, 1

2 :
〈
birth, 1

1 : BarackObama
〉〉

KW =
{t ∈ JcityKW} ∩

{
t | v2 = t1, v ∈ J

〈
birth, 1

1 : BarackObama
〉
KW
}

=
{t ∈ JcityKW} ∩ {t | v2 = t1, v ∈ {u ∈ JbirthKW} ∩ {u | u1 = BarackObama}} =

{t ∈ JcityKW} ∩ {t | v2 = t1, v ∈ {u | birth(BarackObama, u2)}} =
{t ∈ JcityKW} ∩ {t | birth(BarackObama, t1)} =
{t ∈ JcityKW} ∩ {t | birth(BarackObama, t)} =

{Honolulu}

Hence, the final denotation of the question “What is the birthplace of Barack Obama?” is
a singleton {Honolulu}, the answer to the question. Such an encoding of the logical forms

42 Chapter 4. Background: Natural Language Understanding

RNN

Embedding

4.3. Recurrent Neural Networks 45

a node. The interpretation mechanism can be extended to work with other relations (e.g. aggregation
shown in the most right tree in Figure 4.3), but such detailed exposition is beyond the scope of this thesis,
instead the curious reader is welcomed to read Liang et al. [2013]. A detailed exposition on how we have
extended the semantic parser to handle Visual Turing Test is presented in Chapter 8.

4.3 Recurrent Neural Networks
Semantic parsers have a few drawbacks. Most importantly, they have to deal with exponentially many ways
of deriving the meaning, and require a hand-designed ontology. Hence, errors that are made in defining
predicates strongly impact the overall performance of the architecture. This is especially problematic
when dealing with images. Therefore, we seek alternative ways of representing a textual input. Recurrent
Neural Networks are Deep Learning approaches to capture the dynamics of a sequential input. Important
for us, they are jointly trained, end-to-end, and scalable architectures that can be trained for sequential
tasks, e.g. various Natural Language Understanding tasks. They are designed to store an input at the
current time step together with the ‘compressed’ representation of the previously observed inputs.

Among the first Recurrent Neural Networks is the Hopfield network [Hopfield 1982] that is designed
to recover a pattern from a corrupted input. Early discriminatively trained models are introduced by
Jordan [1986], and Elman [1990]. These networks use a hidden layer that is a vector-based representation
of the previously observed input units. The networks from these days were quite di�cult to train due to
the gradient vanishing problem, and therefore they could not represent longer-term dependencies. To
handle such an issue, Hochreiter and Schmidhuber [1997] have proposed a gating mechanism that allows
the ‘history’ to flow unchanged, to add the information from the current input, or to forget the ‘history’.
Such Recurrent Neural Networks are named Long-Short Term Memory Networks, or just LSTM. Later
on numerous variants of LSTM have been proposed. For instance, Gated Recurren Unit [Cho et al. 2014]
not only simplifies LSTM by reducing the number of gates from four to only two, but also maintains a
competitive performance. In this thesis, we use LSTM and GRU. Therefore, now, we will explain both
neural networks formally.

Let q be a sentence represented as an ordered sequence of textual words, i.e. qTq =
!
q1, q2, ..., qTq

"
.

Let aTa = (a1, a2, ..., aTa) be a target sequence. With such a notation, Recurrent Neural Networks are
parameterized functions: F (qTq ; �) = aTa . Parameters are typically learnt in a supervised way based on
the training set. If Tq = 1 and Ta > 1, then we have one-to-many mapping problem, for instance the image
description task. If Tq > 1 and Ta = 1, then we have many-to-one mapping problem, for instance the
video classification task. If Tq > 1 and Ta > 1, then we have many-to-many mapping problem, for instance
the video description task. Recurrent Neural Networks maintain the ‘history’ by repeatedly applying a
function to the current input and its previous hidden state. Formally, ht := f(vt,ht≠1; �), where ht is
a hidden state at time t, vt is a vector-based representation (embedding) of qt, and � are all learnable
parameters. For instance, Simple Recurrent Neural Networks set the update rule ht := f(vt,ht≠1; �) to
be

ht := ‡ (Wvhvt + Whhht≠1 + b) (4.4)

where ‡ is some non-linearity. This is shown in ??. As we can see, training of Recurrent Neural Networks is
feasible due to the weights sharing, i.e. we keep the same weights at di�erent time steps. The hidden state

Figure 4.5: Recurrent Neural Network.

Input

4.3. Recurrent Neural Networks 45

a node. The interpretation mechanism can be extended to work with other relations (e.g. aggregation
shown in the most right tree in Figure 4.3), but such detailed exposition is beyond the scope of this thesis,
instead the curious reader is welcomed to read Liang et al. [2013]. A detailed exposition on how we have
extended the semantic parser to handle Visual Turing Test is presented in Chapter 8.

4.3 Recurrent Neural Networks
Semantic parsers have a few drawbacks. Most importantly, they have to deal with exponentially many ways
of deriving the meaning, and require a hand-designed ontology. Hence, errors that are made in defining
predicates strongly impact the overall performance of the architecture. This is especially problematic
when dealing with images. Therefore, we seek alternative ways of representing a textual input. Recurrent
Neural Networks are Deep Learning approaches to capture the dynamics of a sequential input. Important
for us, they are jointly trained, end-to-end, and scalable architectures that can be trained for sequential
tasks, e.g. various Natural Language Understanding tasks. They are designed to store an input at the
current time step together with the ‘compressed’ representation of the previously observed inputs.

Among the first Recurrent Neural Networks is the Hopfield network [Hopfield 1982] that is designed
to recover a pattern from a corrupted input. Early discriminatively trained models are introduced by
Jordan [1986], and Elman [1990]. These networks use a hidden layer that is a vector-based representation
of the previously observed input units. The networks from these days were quite di�cult to train due to
the gradient vanishing problem, and therefore they could not represent longer-term dependencies. To
handle such an issue, Hochreiter and Schmidhuber [1997] have proposed a gating mechanism that allows
the ‘history’ to flow unchanged, to add the information from the current input, or to forget the ‘history’.
Such Recurrent Neural Networks are named Long-Short Term Memory Networks, or just LSTM. Later
on numerous variants of LSTM have been proposed. For instance, Gated Recurren Unit [Cho et al. 2014]
not only simplifies LSTM by reducing the number of gates from four to only two, but also maintains a
competitive performance. In this thesis, we use LSTM and GRU. Therefore, now, we will explain both
neural networks formally.

Let q be a sentence represented as an ordered sequence of textual words, i.e. qTq =
!
q1, q2, ..., qTq

"
.

Let aTa = (a1, a2, ..., aTa) be a target sequence. With such a notation, Recurrent Neural Networks are
parameterized functions: F (qTq ; �) = aTa . Parameters are typically learnt in a supervised way based on
the training set. If Tq = 1 and Ta > 1, then we have one-to-many mapping problem, for instance the image
description task. If Tq > 1 and Ta = 1, then we have many-to-one mapping problem, for instance the
video classification task. If Tq > 1 and Ta > 1, then we have many-to-many mapping problem, for instance
the video description task. Recurrent Neural Networks maintain the ‘history’ by repeatedly applying a
function to the current input and its previous hidden state. Formally, ht := f(vt,ht≠1; �), where ht is
a hidden state at time t, vt is a vector-based representation (embedding) of qt, and � are all learnable
parameters. For instance, Simple Recurrent Neural Networks set the update rule ht := f(vt,ht≠1; �) to
be

ht := ‡ (Wvhvt + Whhht≠1 + b) (4.4)

where ‡ is some non-linearity. This is shown in ??. As we can see, training of Recurrent Neural Networks is
feasible due to the weights sharing, i.e. we keep the same weights at di�erent time steps. The hidden state

Figure 4.5: Recurrent Neural Network.

Output

46 Chapter 4. Background: Natural Language Understanding

ht, which combines the input at the time step t with the hidden representation of the already observed
subsequence, is a representation of the sequence (q1, q2, ..., qt). In this way, the final representation of the
sentence q is ÂRNN(q) := hTq . A decoder takes some sequence of hidden states, and decodes the target a.
For instance, in many-to-one mapping problems, the decoder is often a classifier that takes ÂRNN(q) and
outputs a class label. In Chapter 10, we consider a decoder which is also a Recurrent Neural Network that
decodes the answer from ÂRNN(q,x), where q is a question, and x is an image. Other possibilities are
best explained by visualizations in ??. Such architectures are jointly trained by backpropagation through
time, often by minimizing the cross-entropy loss:

arg min
�

≠
ÿ

j

ÿ

t

p(ajt | qjt) log p�(ajt | qjt)

where qjt and ajt are respectively an input and target from the j-th data sample, and the t-th time step;
p(·) is a data distribution, and p�(·) is the probability outputted by the Recurrent Neural Network, e.g.
p�(a | s) = exp

!
W(a,:)RNN(s; �RNN)

"
/

q
â exp

!
W(â,:)RNN(s; �RNN)

"
, where RNN(·) is the recurrent

encoder-decoder.
Learning longer-term dependencies by Simple Recurrent Neural Networks, defined by Equation 4.4, is

di�cult [Hochreiter 1991; Bengio et al. 1994]. As a remedy, Hochreiter and Schmidhuber [1997] have pro-
posed Long-Short Term Memory Networks (LSTM), and later on Cho et al. [2014] have introduced Gated
Recurrent Unit (GRU). Both methods approach the problem of maintaining longer-term dependencies by
a data-dependent gating mechanism. Here, we will explain GRU as it is, conceptually, a simpler and yet
competitive network. GRU is described by the following set of equations:

rt = ‡(Wvrvt + Whrht≠1 + br) (4.5)
ut = ‡(Wvuvt + Whuht≠1 + bu) (4.6)
ct = Wvcvt + Whc(rt § ht≠1) + bc (4.7)
ht = ut § ht≠1 + (1 ≠ ut) § „(ct) (4.8)

where ‡ is the sigmoid function, „ is the hyperbolic tangent, and vt, ht are input and hidden states at
the time step t; r and u are reset and update gates respectively, while c is a cell state; § is a piecewise
multiplication of two vectors. The role of the gates, composed of a sigmoid and a piecewise multiplication,
is to decide how much of information should be passed through. Since ‡(·) œ [0, 1], let us consider the
extreme cases. If rt = 1 then the cell state ct is influenced by both, the current input vt and the previous
hidden state ht≠1. If rt = 0 then the cell state ct is influenced only by the current input vt (it is ‘reseted’).
Similarly, if u = 1 then the current input vt is completely ignored in the update of the hidden state ht.
If u = 0 then the hidden state is updated only based on the state cell ct. However, since ‡(·) œ [0, 1] the
information is rather ‘softly’ passed through than completely ignored. This network is depicted in ??,
and it may remind ‘soft’ circuits.

LSTM also uses the gating mechanism, but it is described by more equations:

it = ‡(Wvivt + Whiht≠1 + bi) (4.9)
ft = ‡(Wvfvt + Whfht≠1 + bf) (4.10)
ot = ‡(Wvovt + Whoht≠1 + bo) (4.11)
gt = „(Wvgvt + Whght≠1 + bg) (4.12)
ct = ft § ct≠1 + it § gt (4.13)
ht = ot § „(ct) (4.14)

46 Chapter 4. Background: Natural Language Understanding

ht, which combines the input at the time step t with the hidden representation of the already observed
subsequence, is a representation of the sequence (q1, q2, ..., qt). In this way, the final representation of the
sentence q is ÂRNN(q) := hTq . A decoder takes some sequence of hidden states, and decodes the target a.
For instance, in many-to-one mapping problems, the decoder is often a classifier that takes ÂRNN(q) and
outputs a class label. In Chapter 10, we consider a decoder which is also a Recurrent Neural Network that
decodes the answer from ÂRNN(q,x), where q is a question, and x is an image. Other possibilities are
best explained by visualizations in ??. Such architectures are jointly trained by backpropagation through
time, often by minimizing the cross-entropy loss:

arg min
�

≠
ÿ

j

ÿ

t

p(ajt | qjt) log p�(ajt | qjt)

where qjt and ajt are respectively an input and target from the j-th data sample, and the t-th time step;
p(·) is a data distribution, and p�(·) is the probability outputted by the Recurrent Neural Network, e.g.
p�(a | s) = exp

!
W(a,:)RNN(s; �RNN)

"
/

q
â exp

!
W(â,:)RNN(s; �RNN)

"
, where RNN(·) is the recurrent

encoder-decoder.
Learning longer-term dependencies by Simple Recurrent Neural Networks, defined by Equation 4.4, is

di�cult [Hochreiter 1991; Bengio et al. 1994]. As a remedy, Hochreiter and Schmidhuber [1997] have pro-
posed Long-Short Term Memory Networks (LSTM), and later on Cho et al. [2014] have introduced Gated
Recurrent Unit (GRU). Both methods approach the problem of maintaining longer-term dependencies by
a data-dependent gating mechanism. Here, we will explain GRU as it is, conceptually, a simpler and yet
competitive network. GRU is described by the following set of equations:

rt = ‡(Wvrvt + Whrht≠1 + br) (4.5)
ut = ‡(Wvuvt + Whuht≠1 + bu) (4.6)
ct = Wvcvt + Whc(rt § ht≠1) + bc (4.7)
ht = ut § ht≠1 + (1 ≠ ut) § „(ct) (4.8)

where ‡ is the sigmoid function, „ is the hyperbolic tangent, and vt, ht are input and hidden states at
the time step t; r and u are reset and update gates respectively, while c is a cell state; § is a piecewise
multiplication of two vectors. The role of the gates, composed of a sigmoid and a piecewise multiplication,
is to decide how much of information should be passed through. Since ‡(·) œ [0, 1], let us consider the
extreme cases. If rt = 1 then the cell state ct is influenced by both, the current input vt and the previous
hidden state ht≠1. If rt = 0 then the cell state ct is influenced only by the current input vt (it is ‘reseted’).
Similarly, if u = 1 then the current input vt is completely ignored in the update of the hidden state ht.
If u = 0 then the hidden state is updated only based on the state cell ct. However, since ‡(·) œ [0, 1] the
information is rather ‘softly’ passed through than completely ignored. This network is depicted in ??,
and it may remind ‘soft’ circuits.

LSTM also uses the gating mechanism, but it is described by more equations:

it = ‡(Wvivt + Whiht≠1 + bi) (4.9)
ft = ‡(Wvfvt + Whfht≠1 + bf) (4.10)
ot = ‡(Wvovt + Whoht≠1 + bo) (4.11)
gt = „(Wvgvt + Whght≠1 + bg) (4.12)
ct = ft § ct≠1 + it § gt (4.13)
ht = ot § „(ct) (4.14)

q1 q2 q3

v3v2v1

h1 h2 h3

h0

a1 a2 a3

h1 h2

Figure 4.5: Two equivalent depictions of Recurrent Neural Networks are shown: rolled
(left) and unrolled (right). As we can see, Recurrent Neural Networks repeatedly apply a
non-linearity (blue box) to its input vt, and its previous hidden state ht−1. This is possible
due to the weights sharing.

precisely leads to a valid denotation computed with the following complexity: number of
all nodes times the largest interpretation of a node. The interpretation mechanism can be
extended to work with other relations (e.g. aggregation shown in the most right tree in
Figure 4.3). However, such a detailed exposition is beyond the scope of this thesis, and
instead a curious reader is welcome to read Liang et al. [2013]. This semantic parser is
further extended to handle a Visual Turing Test in Chapter 9.

Pros and cons The representation of the meaning can be as powerful as a formal language
that we use to describe it. For instance, Dependency-Based Compositional Semantics can
represent counting questions, or negations. Moreover, the semantic parser can also explain
decisions made to derive an answer by showing its derivations in the formal language (e.g.
Figure 4.3 show a few derivations). On the other hand, using semantic parsers require a
hand-designed ontology. As we will see later in this thesis (Chapter 9 and Chapter 10), the
dependency on an ontology and the actual content of the Knowledge Base can be a serious
bottleneck of this approach to work within the visual domain. Interestingly, benefits and
drawbacks of the next approach to represent natural language sentences that we discuss in
this chapter are reversed.

4.3 Recurrent Neural Networks

Overall picture Semantic parsers have a few drawbacks. Most importantly, they have to
deal with exponentially many ways of deriving the meaning, and require a hand-designed
ontology. Hence, errors that are made in defining predicates strongly impact the overall
performance of the architecture. This is especially problematic when dealing with images.
Therefore, we seek alternative ways of representing a textual input. Recurrent Neural
Networks are Deep Learning approaches to capture the dynamics of a sequential input.
Important for us, they are jointly trained, end-to-end, and scalable architectures that can

4.3. Recurrent Neural Networks 43

Encoder Encoder Encoder

46 Chapter 4. Background: Natural Language Understanding

GRU Unit

σ Reset 
Gate

ht−1

ht

vt

•

+φ

σ Update  
Gate

•

•

¬

Figure 4.7: Gated Recurrent Unit. ¬ is the negation unit defined as 1 ≠ input. Black dots symbolize
connections.

competitive performance. In this thesis, we use LSTM and GRU. Therefore, now, we will explain both
neural networks formally.

Let q be a sentence represented as an ordered sequence of textual words, i.e. qTq =
!
q1, q2, ..., qTq

"
.

Let aTa = (a1, a2, ..., aTa) be a target sequence. With such a notation, Recurrent Neural Networks are
parameterized functions: F (qTq ; �) = aTa . Parameters are typically learnt in a supervised way based on
the training set. If Tq = 1 and Ta > 1, then we have one-to-many mapping problem, for instance the image
description task. If Tq > 1 and Ta = 1, then we have many-to-one mapping problem, for instance the
video classification task. If Tq > 1 and Ta > 1, then we have many-to-many mapping problem, for instance
the video description task. Recurrent Neural Networks maintain the ‘history’ by repeatedly applying a
function to the current input and its previous hidden state. Formally, ht := f(vt,ht≠1; �), where ht is
a hidden state at time t, vt is a vector-based representation (embedding) of qt, and � are all learnable
parameters. For instance, Simple Recurrent Neural Networks set the update rule ht := f(vt,ht≠1; �) to
be

ht := ‡ (Wvhvt + Whhht≠1 + b) (4.4)

where ‡ is some non-linearity. This is shown in Figure 4.5. As we can see, training of Recurrent Neural
Networks is feasible due to the weights sharing, i.e. we keep the same weights at di�erent time steps.
The hidden state ht, which combines the input at the time step t with the hidden representation of the
already observed subsequence, is a representation of the sequence (q1, q2, ..., qt). In this way, the final
representation of the sentence q is ÂRNN(q) := hTq . A decoder takes some sequence of hidden states, and
decodes the target a. For instance, in many-to-one mapping problems, the decoder is often a classifier
that takes ÂRNN(q) and outputs a class label. In Chapter 10, we consider a decoder which is also a
Recurrent Neural Network that decodes the answer from ÂRNN(q,x), where q is a question, and x is

Decoder Decoder

q1 q2 q3

a1 a2

Many-to-Many

Encoder

46 Chapter 4. Background: Natural Language Understanding

GRU Unit

σ Reset 
Gate

ht−1

ht

vt

•

+φ

σ Update  
Gate

•

•

¬

Figure 4.7: Gated Recurrent Unit. ¬ is the negation unit defined as 1 ≠ input. Black dots symbolize
connections.

competitive performance. In this thesis, we use LSTM and GRU. Therefore, now, we will explain both
neural networks formally.

Let q be a sentence represented as an ordered sequence of textual words, i.e. qTq =
!
q1, q2, ..., qTq

"
.

Let aTa = (a1, a2, ..., aTa) be a target sequence. With such a notation, Recurrent Neural Networks are
parameterized functions: F (qTq ; �) = aTa . Parameters are typically learnt in a supervised way based on
the training set. If Tq = 1 and Ta > 1, then we have one-to-many mapping problem, for instance the image
description task. If Tq > 1 and Ta = 1, then we have many-to-one mapping problem, for instance the
video classification task. If Tq > 1 and Ta > 1, then we have many-to-many mapping problem, for instance
the video description task. Recurrent Neural Networks maintain the ‘history’ by repeatedly applying a
function to the current input and its previous hidden state. Formally, ht := f(vt,ht≠1; �), where ht is
a hidden state at time t, vt is a vector-based representation (embedding) of qt, and � are all learnable
parameters. For instance, Simple Recurrent Neural Networks set the update rule ht := f(vt,ht≠1; �) to
be

ht := ‡ (Wvhvt + Whhht≠1 + b) (4.4)

where ‡ is some non-linearity. This is shown in Figure 4.5. As we can see, training of Recurrent Neural
Networks is feasible due to the weights sharing, i.e. we keep the same weights at di�erent time steps.
The hidden state ht, which combines the input at the time step t with the hidden representation of the
already observed subsequence, is a representation of the sequence (q1, q2, ..., qt). In this way, the final
representation of the sentence q is ÂRNN(q) := hTq . A decoder takes some sequence of hidden states, and
decodes the target a. For instance, in many-to-one mapping problems, the decoder is often a classifier
that takes ÂRNN(q) and outputs a class label. In Chapter 10, we consider a decoder which is also a
Recurrent Neural Network that decodes the answer from ÂRNN(q,x), where q is a question, and x is

Decoder Decoder

q1 One-to-Many

a1 a2

Encoder Encoder Encoder

46 Chapter 4. Background: Natural Language Understanding

GRU Unit

σ Reset 
Gate

ht−1

ht

vt

•

+φ

σ Update  
Gate

•

•

¬

Figure 4.7: Gated Recurrent Unit. ¬ is the negation unit defined as 1 ≠ input. Black dots symbolize
connections.

competitive performance. In this thesis, we use LSTM and GRU. Therefore, now, we will explain both
neural networks formally.

Let q be a sentence represented as an ordered sequence of textual words, i.e. qTq =
!
q1, q2, ..., qTq

"
.

Let aTa = (a1, a2, ..., aTa) be a target sequence. With such a notation, Recurrent Neural Networks are
parameterized functions: F (qTq ; �) = aTa . Parameters are typically learnt in a supervised way based on
the training set. If Tq = 1 and Ta > 1, then we have one-to-many mapping problem, for instance the image
description task. If Tq > 1 and Ta = 1, then we have many-to-one mapping problem, for instance the
video classification task. If Tq > 1 and Ta > 1, then we have many-to-many mapping problem, for instance
the video description task. Recurrent Neural Networks maintain the ‘history’ by repeatedly applying a
function to the current input and its previous hidden state. Formally, ht := f(vt,ht≠1; �), where ht is
a hidden state at time t, vt is a vector-based representation (embedding) of qt, and � are all learnable
parameters. For instance, Simple Recurrent Neural Networks set the update rule ht := f(vt,ht≠1; �) to
be

ht := ‡ (Wvhvt + Whhht≠1 + b) (4.4)

where ‡ is some non-linearity. This is shown in Figure 4.5. As we can see, training of Recurrent Neural
Networks is feasible due to the weights sharing, i.e. we keep the same weights at di�erent time steps.
The hidden state ht, which combines the input at the time step t with the hidden representation of the
already observed subsequence, is a representation of the sequence (q1, q2, ..., qt). In this way, the final
representation of the sentence q is ÂRNN(q) := hTq . A decoder takes some sequence of hidden states, and
decodes the target a. For instance, in many-to-one mapping problems, the decoder is often a classifier
that takes ÂRNN(q) and outputs a class label. In Chapter 10, we consider a decoder which is also a
Recurrent Neural Network that decodes the answer from ÂRNN(q,x), where q is a question, and x is

Decoder

q1 q2 q3

a1

Many-to-One

Encoder Encoder Encoder

46 Chapter 4. Background: Natural Language Understanding

GRU Unit

σ Reset 
Gate

ht−1

ht

vt

•

+φ

σ Update  
Gate

•

•

¬

Figure 4.7: Gated Recurrent Unit. ¬ is the negation unit defined as 1 ≠ input. Black dots symbolize
connections.

competitive performance. In this thesis, we use LSTM and GRU. Therefore, now, we will explain both
neural networks formally.

Let q be a sentence represented as an ordered sequence of textual words, i.e. qTq =
!
q1, q2, ..., qTq

"
.

Let aTa = (a1, a2, ..., aTa) be a target sequence. With such a notation, Recurrent Neural Networks are
parameterized functions: F (qTq ; �) = aTa . Parameters are typically learnt in a supervised way based on
the training set. If Tq = 1 and Ta > 1, then we have one-to-many mapping problem, for instance the image
description task. If Tq > 1 and Ta = 1, then we have many-to-one mapping problem, for instance the
video classification task. If Tq > 1 and Ta > 1, then we have many-to-many mapping problem, for instance
the video description task. Recurrent Neural Networks maintain the ‘history’ by repeatedly applying a
function to the current input and its previous hidden state. Formally, ht := f(vt,ht≠1; �), where ht is
a hidden state at time t, vt is a vector-based representation (embedding) of qt, and � are all learnable
parameters. For instance, Simple Recurrent Neural Networks set the update rule ht := f(vt,ht≠1; �) to
be

ht := ‡ (Wvhvt + Whhht≠1 + b) (4.4)

where ‡ is some non-linearity. This is shown in Figure 4.5. As we can see, training of Recurrent Neural
Networks is feasible due to the weights sharing, i.e. we keep the same weights at di�erent time steps.
The hidden state ht, which combines the input at the time step t with the hidden representation of the
already observed subsequence, is a representation of the sequence (q1, q2, ..., qt). In this way, the final
representation of the sentence q is ÂRNN(q) := hTq . A decoder takes some sequence of hidden states, and
decodes the target a. For instance, in many-to-one mapping problems, the decoder is often a classifier
that takes ÂRNN(q) and outputs a class label. In Chapter 10, we consider a decoder which is also a
Recurrent Neural Network that decodes the answer from ÂRNN(q,x), where q is a question, and x isq1 q2 q3 Many-to-Many 

Simultaneous Encoding-Decoding

Decoder Decoder

a1 a2

Decoder

a3

Figure 4.6: Various mapping problems – many-to-many, one-to-many, many-to-one – that
can be handled with recurrent encoder-decoders. We can also see that the decoder can be
applied directly after the encoder (at the bottom of the figure). The green box, φRNN(q)
depicts the representation of a sequential input q.

be trained for sequential tasks, e.g. various Natural Language Understanding tasks.

Historical outline Hopfield network [Hopfield 1982] is among the first Recurrent Neural
Networks that is designed to recover a pattern from a corrupted input. Early discriminatively
trained models are introduced by Jordan [1986], and Elman [1990]. The networks from
these days were quite difficult to train due to the gradient vanishing problem, and therefore
they could not represent longer-term dependencies. To handle such an issue, Hochreiter and
Schmidhuber [1997] have proposed a gating mechanism that allows the ‘history’ to flow
unchanged, to add the information from the current input, or to forget the ‘history’. Such
Recurrent Neural Networks are named Long-Short Term Memory Networks, or just LSTM.
Later on numerous variants of LSTM have been proposed. For instance, Gated Recurrent
Unit (GRU) [Cho et al. 2014] not only simplifies LSTM by reducing the number of gates
from four to only two, but also maintains a competitive performance. In this thesis, we use
LSTM and GRU. Therefore, now, we will explain both neural networks formally.

Outline of RNN Let qTq be an input sequence consisting of Tq input elements, i.e.
qTq =

(
q1, q2, ..., qTq

)
. Let aTa = (a1, a2, ..., aTa) be a target sequence consisting of Ta target

elements. With such a notation, Recurrent Neural Networks are parameterized functions

44 Chapter 4. Background: Natural Language Understanding

that map source sequences onto target sequences, i.e. F (qTq ; Θ) = aTa . Parameters are
typically learnt in a supervised way based on the training set. If Tq = 1 and Ta > 1, then we
have one-to-many mapping problem, for instance the image description task. If Tq > 1 and
Ta = 1, then we have many-to-one mapping problem, for instance the video classification
task. If Tq > 1 and Ta > 1, then we have many-to-many mapping problem, for instance
the video description or question answering task. Recurrent Neural Networks maintain the
‘history’ by repeatedly applying a function to the current input and its previous hidden state.
Formally, ht := f(vt,ht−1; Θ), where ht is a hidden state at time t, vt is a vector-based
representation (embedding) of the input element qt, and Θ denotes all learnable parameters.
For instance, Simple Recurrent Neural Networks set the update rule ht := f(vt,ht−1; Θ) to
be

ht := σ (Wvhvt +Whhht−1 + b) (4.2)

where σ is some non-linearity. This is shown in Figure 4.5. As we can see, using of Recurrent
Neural Networks is feasible due to the weights sharing, i.e. we keep the same weights at
different time steps. The hidden state ht, which combines the input at the time step t

with the hidden representation of the already observed subsequence, is a representation
of the sequence (q1, q2, ..., qt). In this way, the final representation of the sentence q is
ψRNN(q) := hTq . A decoder takes some sequence of hidden states, and decodes the target a.
For instance, in many-to-one mapping problems, the decoder is often a classifier that takes
ψRNN(q) and outputs a class label. In Chapter 10 and Chapter 11, we consider decoders
that either use a Recurrent Neural Network or a classifier to decode the answer from
ψRNN(q,x), where q is a question, and x is an image. Other possibilities are best explained
by visualizations in Figure 4.6. Such architectures are jointly trained by backpropagation
through time. For instance, ‘simultaneous many-to-many’ architectures (Figure 4.6) are
often trained by minimizing the following cross-entropy loss

arg min
Θ

−
∑

j

∑

t

∑

at

p(at | qjt) log pΘ(at | qjt) (4.3)

where qjt and at are respectively an input and target from the j-th data sam-
ple, and the t-th time step; p(·) is a data distribution, and pΘ(·) is the
probability outputted by the Recurrent Neural Network, e.g. pΘ(a | s) =
exp

(
W(a,:)RNN(s; ΘRNN)

)
/
∑
â exp

(
W(â,:)RNN(s; ΘRNN)

)
, where RNN(·) is the recurrent

encoder-decoder. Often p(at | qjt) := 1

{
at = ajt

}
is used in Equation 4.3, with ajt as the j-th

target sequence from the training set.

GRU Learning longer-term dependencies by Simple Recurrent Neural Networks, defined
by Equation 4.2, is difficult [Hochreiter 1991; Bengio et al. 1994]. As a remedy, Hochreiter
and Schmidhuber [1997] have proposed Long-Short Term Memory Networks (LSTM), and
later on Cho et al. [2014] have introduced Gated Recurrent Unit (GRU). Both methods
approach the problem of maintaining longer-term dependencies by a data-dependent gating
mechanism. Here, we first explain GRU because it is a simpler and yet competitive network.

4.3. Recurrent Neural Networks 45

GRU Unit

σ
Reset 
Gate

ht−1

ht

vt

Update  
Gate

•

φ

σ

¬

•

•

+

Figure 4.7: Gated Recurrent Unit. ¬ is the negation unit defined as 1− input. Black dots
symbolize connections.

GRU is described by the following set of equations:

rt = σ(Wvrvt +Whrht−1 + br) (4.4)
ut = σ(Wvuvt +Whuht−1 + bu) (4.5)
ct = Wvcvt +Whc(rt � ht−1) + bc (4.6)
ht = ut � ht−1 + (1− ut)� φ(ct) (4.7)

where σ is the sigmoid function, φ is the hyperbolic tangent, and vt, ht are input and hidden
states at the time step t; r and u are reset and update gates respectively, while c is a cell
state; � is a piecewise multiplication of two vectors. The role of the gates, composed of a
sigmoid and a piecewise multiplication, is to decide how much of information should be
passed through. Since σ(·) ∈ [0, 1], let us consider the extreme cases. If rt = 1 then the
cell state ct is influenced by both, the current input vt and the previous hidden state ht−1.
If rt = 0 then the cell state ct is influenced only by the current input vt (it is ‘reseted’).
Similarly, if u = 1 then the current input vt is completely ignored in the update of the
hidden state ht. If u = 0 then the hidden state is updated only based on the state cell ct.
However, since σ(·) ∈ [0, 1] a some fraction of current and historical information is passed
through than completely ignored. This network is depicted in Figure 4.7.

LSTM LSTM also uses the gating mechanism, but it is described by more equations:

it = σ(Wvivt +Whiht−1 + bi) (4.8)
ft = σ(Wvfvt +Whfht−1 + bf) (4.9)
ot = σ(Wvovt +Whoht−1 + bo) (4.10)
gt = φ(Wvgvt +Whght−1 + bg) (4.11)
ct = ft � ct−1 + it � gt (4.12)
ht = ot � φ(ct) (4.13)

46 Chapter 4. Background: Natural Language Understanding

σ

σσ

vt
ht-1

ct-1

ht
 = zt

Output
Gate

Input
Gate

Forget Gate

Input Modulation Gate

LSTM Unit

ϕ +
ct

ϕ

Figure 4.8: Long-Short Term Memory.

where σ is the sigmoid function, φ is the hyperbolic tangent, and vt, ht are input and hidden
states at time t; ct represents memory cells; it, ft, ot are input, forget, and output states
respectively; � is a piecewise multiplication of two vectors. Arguably, the most important
change to GRU is an output gate that decides how much of information should be outputted.
A similar analysis, which for the sake of brevity we omit here, that we did before with GRU
lead to a better understanding of the equations. The network is depicted in Figure 4.8.

Pros and cons Recurrent Neural Networks together with Convolutional Neural Networks,
presented in Section 3.3, provide a compelling, unified view that inputs are mapped into fixed-
length vector representations. Afterwards, we can use vector operations to combine the vectors
together. For instance, in Chapter 11, we explore piece-wise summation, multiplication, and
concatenation in order to combine two modalities, questions and images. Moreover, they are
also scalable, jointly and end-to-end trained approaches to represent the meaning, which
handles a few issues we encounter while working with semantic parsers. On the other hand,
such networks are less transparent than semantic parsers, and learning logical operations
still remain an open challenge.

4.4 Conclusion
In this thesis, we use two different approaches to language understanding, Recurrent Neural
Networks and semantic parsers. Each such an approach has unique advantages. Semantic
parsers offer good introspection into the ‘behavior’ of the algorithm, and can readily handle
negations and quantifications. On the other hand, Recurrent Neural Networks are jointly
trained, end-to-end, scalable approaches that currently lead in various variants of Visual
Turing Test. On the other hand, they are less transparent, and learning logical operations
such as negations or quantification has not been yet shown.

Chapter 5

Related Work

Contents
5.1 Spatial Pooling Regions . 47

5.1.1 Prior Work . 47
5.1.2 Contemporaneous and Subsequent Work 48

5.2 Spatial Relations and Retrieval . 49
5.2.1 Prior Work . 49
5.2.2 Contemporaneous and Subsequent Work 50

5.3 Towards a Visual Turing Test . 51
5.3.1 Prior Work . 51
5.3.2 Contemporaneous and Subsequent Work 54

5.4 Concluding Remarks . 59

In this thesis, we pursue three themes: spatial pooling for visual recognition, spatial
relations for text-to-image retrieval, and question answering about images (Visual
Turing Test). This chapter focuses on prior, contemporaneous, and subsequent work

that tightly relates to the thesis, while the following chapters discuss only prior work specific
to the respective chapter at the time of publishing the corresponding work.

5.1 Spatial Pooling Regions
The first theme of the thesis is concerned with spatial pooling regions, in which we contribute
by a generalization of a pooling operator that allows to discriminatively learn a spatial
layout. Our work was presented at ICLR’13 Workshop, and BMVC’13, and is described in
Chapter 6. Consequently, in Section 5.1.1, we discuss various approaches that build upon
the spatial pooling regions idea and precede our work. Next, in Section 5.1.2, we connect
our work with other approaches, to either devise spatial pooling schemes or generalize a
pooling operator, which have appeared after the publication of our work.

5.1.1 Prior Work
Around the year 2011 the leading image classification methods were built following the Spatial
Pyramid Matching (SPM) framework [Lazebnik et al. 2006; Yang et al. 2009], which uses a
hierarchical representation to built image features. However, each level in such a hierarchy
has been either hand-designed, or independently trained. Pooling over spatial regions play a

48 Chapter 5. Related Work

particularly important role in this framework. A few researchers have, however, questioned
the arbitrariness of the spatial division used in the original architecture [Lazebnik et al.
2006; Yang et al. 2009], and proposed alternative approaches to derive spatial layouts [Jia
and Huang 2011; Sharma and Jurie 2011; Jia et al. 2012; Russakovsky et al. 2012; Sánchez
et al. 2012; Feng et al. 2011; Krapac et al. 2011; Koniusz and Mikolajczyk 2011]. Jia and
Huang [2011] optimizes binary pooling strategies that are given by the superposition of the
rectangular basis. Spatial regions of Sharma and Jurie [2011] are also formed of rectangular
receptive fields, but obtained by successive splittings of the cell, and are not interpreted as
basis. Russakovsky et al. [2012], and Sánchez et al. [2012] have shown improvement over
SPM by pooling the objects and background separately. Krapac et al. [2011] and Koniusz
and Mikolajczyk [2011] model spatial location of the visual words by fitting Mixture of
Gaussians. In contrast to the aforementioned approaches, our method [Malinowski and Fritz
2013b,a] discriminatively learns shapes of the pooling regions without resorting to the notion
of the bounding boxes, or any other geometrical primitives. Moreover, we train the spatial
layout, which we believe could also be interpreted as an image-independent variant of an
attention mask [Xu et al. 2015] that has recently gained popularity in the Computer Vision
community.

5.1.2 Contemporaneous and Subsequent Work
In our work, we allow for a discriminative training of a spatial pooling layout by a suitable
generalization of a pooling operator. Most of the contemporaneous and subsequent work
build upon one of the following directions: either by developing alternative approaches to
derive spatial layouts, or by proposing alternative ways to generalize a pooling operator. In
the remaining of this section, we present work belonging to such directions.

Spatial pooling layout Task-dependent spatial regions have also been used in subsequent
works as follows. Eweiwi et al. [2015] argues for more global spatial regions obtained through
applying a Non-negative Matrix Factorization technique to a motion flow for an action
recognition task. Wang and Tan [2016] use a more compact encoding with smaller receptive
fields of the pooling operator to create an image representation. Their argument about the
importance of finer-grained pooling operation while low-dimensional encoding scheme is
used is consistent with our findings. The work of Liu et al. [2016] is tightly connected to our
learnable pooling regions framework. Similarly to us, they also argue for a discriminatively,
and jointly trained spatial regions together with a classifier. However, in addition, they learn
category-specific pooling regions with a boosting-like technique to improve the efficiency of
training.

Generalizing a pooling operator We achieve our goals of obtaining a more efficient
spatial layout by a suitable generalization of the pooling operator. Various ways of generalizing
this operator have also been a research topic of the Deep Learning community. For instance,
Zeiler and Fergus [2013] introduce a stochastic variant of the sum-pooling operator, where
neural activations are multiplied by probabilities. Yu et al. [2014] suggest to randomly
sample either max-pooling or sum-pooling operator in the pooling stage. Lee et al. [2016]

5.2. Spatial Relations and Retrieval 49

have further extended the previous idea by introducing a mixed (sum, max), gated, and tree
pooling operator. Goodfellow et al. [2013] introduce Maxout pooling, where max-pooling
operation is applied to a set of linearly transformed activations. A bit closer to the main
idea of our work, Lebedev and Lempitsky [2015] train a Convolutional Neural Network
to learn a spatial layout of the receptive fields of the network by enforcing group-sparsity
constraints. He et al. [2016] use a data-dependent pooling scheme, where the features from
Fully Convolutional Network are pooled together according to the predicted segmentation
mask, so that features belonging to the same segment are grouped together. Finally, Li et al.
[2015] have proposed a theoretical framework to explain the pooling operation, and base on
the theoretical findings they have developed a multi-scale, multi-domain pooling pipeline.

5.2 Spatial Relations and Retrieval
The second theme of the thesis is concerned with spatial reasoning, in which we contribute by
proposing spatial templates used in spatial reasoning as well as a compositional architecture
for the text-to-image retrieval task. This line of research was summarized in Malinowski
and Fritz [2014c], and is described in Chapter 7, and Appendix A. Consequently, in Section
5.2.1, we discuss prior work from various research fields that we directly drew inspirations
from. Next, in Section 5.2.2, we show how other, contemporaneous and subsequent, work is
related to our work on spatial relations.

5.2.1 Prior Work

In this line of research, we are mostly interested in data-driven approaches to model spatial
relations for the text-to-image retrieval task. In our work, we argue that text-to-image
retrieval architectures should ground spatial relations to handle the image-sentence alignment
problem. Moreover, we also show how to leverage our work on the spatial pooling regions to
build spatial templates that are next used to reason about a spatial relationship between
objects.

Modeling spatial relations This part of the thesis is mainly influenced by the work of
Lan et al. [2012]. In that work, the authors address a problem of the text-to-image retrieval
task with structured queries, in which a textual input with a binary spatial preposition
between the nouns. Our work goes beyond the structured queries and a restricted spatial
vocabulary of the work of Lan et al. [2012]. For the purpose of scaling up such work to
real-world scenarios, instead of using a hand-designed representation of a few relations
(‘above’, ‘below’, ‘overlap’ like in Lan et al. [2012]), we propose a flexible and learnable
representation that is based on spatial templates used in some psychological studies [Logan
and Sadler 1996], and thus can be interpreted as a version of the learnable pooling regions
[Malinowski and Fritz 2013a,b] centered at the reference object. A similar idea of using
spatial templates is also proposed by Fritz et al. [2007] and also used in Fritz et al. [2010].
However, in contrast to our approach, Fritz et al. [2007] and Fritz et al. [2010] hand-design
a set of four such templates to model ‘left of’, ‘right of’, ‘above’, and ‘below’.

50 Chapter 5. Related Work

Grounding spatial relations Although research on grounding of spatial language has a
long standing tradition, previous methods mostly focus on rule-based spatial representation
[Moratz and Tenbrink 2006; Kruijff et al. 2007] or more recently on a set of hand-crafted
spatial features with learnt weights [Tellex et al. 2010; Golland et al. 2010; Lan et al. 2012;
Guadarrama et al. 2013b]. Although the latter approaches show improvements they still
rely on designing the right set of features and their generalization and scalability to many
spatial relations have not been proven yet. For instance, Lan et al. [2012] use only 2 spatial
prepositions.

Image-sentence alignment Successful approaches to handle the text-to-image retrieval
task need to align sentences with the corresponding images [Lin et al. 2014a; Kong et al.
2014]. Recent research on embedding [Socher et al. 2014; Karpathy et al. 2014; Mao et al.
2014] have opened a door for bi-directional methods that retrieve images based on a textual
input, or sentences from a given image. However, in contrast to our work, none of these
methods use spatial reasoning to improve the alignment. Karpathy et al. [2014] learns an
embedding between textual and visual fragments, which becomes particularly attractive to
us as we seek spatial relationships between the pairs of fragments.

Spatial pooling regions Spatial pooling has been proven to work well in many recognition
tasks [Lazebnik et al. 2006; Yang et al. 2009], and is still a part of many recent approaches
[Krizhevsky et al. 2012]. Although the research literature is densely populated with many
variations of the spatial pooling regions framework, to the best of our knowledge there is
no work that links pooling regions with spatial reasoning on object detections in a scene.
In this work, we fill this gap and show a suitable interpretation of the framework. Closely
related to our work is an object-centric pooling [Russakovsky et al. 2012] that relies on the
object localization methods to distinguish between a foreground and background and next
pool over both regions separately. Although, our method is also based on the localization of
different objects, we spatially relate every pair of detections in the image to reason about
their spatial arrangement.

5.2.2 Contemporaneous and Subsequent Work
Spatial relations are further investigated in a few subsequent work that we enlist in this
section. Parser-based compositionality that induces a topology of a neural network, based
on which we build our architecture to deal with spatial relations (Appendix A), turned out
to be investigated, in parallel to our work, in the NLP community, and later also presented
to the Visual Turing Test community.

Spatial relations Christie et al. [2016] propose an approach to simultaneously perform
semantic segmentation and prepositional phrase attachment resolution. They argue that
some language ambiguities can only be resolved together with the corresponding image.
Although a spatial reasoning plays a role in the proposed method, as opposite to our
approach, it is more implicit. Malinowski and Fritz [2014a] show the importance of spatial
relations for the ‘question answering about images’ task. However, the proposed method,

5.3. Towards a Visual Turing Test 51

as opposite to our approach to reason about spatial relations, uses hand-designed set of
rules for the spatial resolution. The work of Andreas et al. [2016b] define neural modules to
handle the question answering about images task. For instance, the neural module Transform
shifts attention of the network according to the spatial preposition. Similarly to our method,
Andreas et al. [2016b] do not define a set of spatial rules, but rather rely on learning them
from data.

Compositional Neural Networks Our Data-Driven Compositional Neural Architec-
tures (DDCNA is presented in Appendix A, but also used in Chapter 7) resemble Recursive
Neural Networks introduced by Socher et al. [2013], in which a topology of the network
depends on the output of a syntactic parser. Similarly, Andreas et al. [2016b] also propose a
neural network that topology is input-dependent.

5.3 Towards a Visual Turing Test
The third theme of the thesis is concerned with the Visual Turing Test– a holistic task in
which machines have to answer on a series of questions about the content of real-world
images. We have contributed to this field in numerous ways: we are first who propose a
dataset about question answering about real-world images, present first methods to handle
the task, and extend the accuracy metric to handle ambiguities in the answers. Various
aspects of this work were presented at NIPS’14 [Malinowski and Fritz 2014a], NIPS’14
Workshop [Malinowski and Fritz 2014b], AAAI’15 Workshop [Malinowski and Fritz 2015],
ICCV’15 [Malinowski et al. 2015], ICMR’16 [Chowdhury et al. 2016a] , and BMVC’16
[Mokarian et al. 2016]. This line of research is also described in Chapter 8, Chapter 9,
Chapter 10, and Chapter 11. Consequently, in Section 5.3.1, we discuss numerous work from
various fields that directly inspired us to pursue the Visual Turing Test. Next, in Section
5.3.2, we discuss work that follow up our research on the Visual Turing Test.

5.3.1 Prior Work

As we argue in Chapter 8, answering questions about the content of images requires taking
a holistic view, and therefore various techniques from Computer Vision, Natural Language
Understanding, and Machine Learning should be employed. These techniques include: a
representation of a visual input (Section 5.3.1.1), a representation of a textual question
(Section 5.3.1.2), and a multimodal fusion (Section 5.3.1.4). ‘Textual question answering’ is
a sister field to the Visual Turing Test that we take some inspirations from (Section 5.3.1.5).
In our endeavor to build a holistic machine that answer questions, we are also influenced by
various techniques proposed to ground language in the visual world (Section 5.3.1.6).

5.3.1.1 Encoding a Visual Input

Extracting a good representation from the visual content is an important component in
developing approaches towards the Visual Turing Test. Since the proposal of AlexNet
[Krizhevsky et al. 2012], Convolutional Neural Networks (CNNs) have become dominant and

52 Chapter 5. Related Work

most successful approaches to build a vector representation of an image. CNNs directly learn
the representation from the raw image data and are trained on large image corpora, typically
ImageNet [Russakovsky et al. 2014]. Interestingly, after these models are pre-trained on
ImageNet, they can typically be adapted to other tasks. In this thesis, among the other
things, we evaluate how well the most dominant and successful CNN models can be adapted
to the Visual Turing Test. Specifically, we evaluate AlexNet [Krizhevsky et al. 2012], VGG
[Simonyan and Zisserman 2015], GoogleNet [Szegedy et al. 2015], and ResNet [He et al.
2015]. These models, reportedly, achieve increasingly better accuracies on the ImageNet
dataset, and hence, arguably, serve as stronger models of the visual perception.

5.3.1.2 Encoding a Textual Input

The other important component to answer a question about an image is to understand the
natural language question, which means here building a representation of a variable length
sequence of words (or characters, but we will focus only on the words in this work). In
this thesis, among the other things, we experiment with numerous approaches to represent
the language, starting from Semantic Parsers [Liang et al. 2013] (Section 5.3.1.3), through
Bag-Of-Words of words embeddings that ignore an order in the sequence of words, ending
with Convolutional Neural Networks [Kim 2014; Kalchbrenner et al. 2014] and Recurrent
Neural Networks [Hochreiter and Schmidhuber 1997; Cho et al. 2014; Sutskever et al. 2014].

5.3.1.3 Semantic Parsers

We build our first approach to answer questions about images based on a semantic parser
(concretely, we use it in Chapter 9 to build a logic-based approach; in Chapter 4 we
briefly introduce a semantic parser to the curious reader). In the following, we enumerate
developments of the semantic parsers, ranging from the first rule-based parsers, to parsers
that are induced from logical forms or denotations.

Rule-based Semantic Parses in the early seventies are rule-based, i.e. they follow a set
of hand-designed templates that transforms a textual input into a formal representation
readily accessible to a machine. Using this approach to interface between textual and
formal representations of the language led to a few projects that gained a particularly
high attention. Examples include STUDENT [Bobrow 1964] for solving high school algebra
problems, and LUNAR [Woods 1978] for natural language interface into database with
moon rocks. Arguably, the most famous project from that era is SHRDLU, which operators
on a ‘block world’ with the goal of rearranging blocks in a certain way through natural
language instructions [Winograd 1972]. Unfortunately, scaling up such approaches to other,
larger domains become prohibitively difficult, and therefore other approaches to language
understanding have gained popularity.

Induced from logical forms The next generation of Semantic Parsers is trained from
the pairs of the form (textual question, logical representation) [Zelle and Mooney 1996;
Zettlemoyer and Collins 2007, 2009; Wong and Mooney 2006; Kwiatkowski et al. 2010].
Although such parsers are more flexible than the rule-based ones, yet an expensive annotation

5.3. Towards a Visual Turing Test 53

effort of the form of annotating textual questions with their logical representations make
them still difficult to scale to other, larger domains.

Induced from denotations Most recently, parsers are induced from denotations, i.e.
from the pairs of the form (textual question, textual answer) [Liang et al. 2013; Berant
et al. 2013; Berant and Liang 2014]. This move has led to a relatively easy annotation
process, and hence made it easier to scale the parser to other domains. In this thesis, we
extend a parser from this generation to work with uncertainty in the representation of the
visual world.

5.3.1.4 Combining RNNs and CNNs

The task of describing a visual content like still images as well as videos has been successfully
addressed with a combination of encoding the image with CNNs and decoding, i.e. predicting
the sentence description with an RNN [Donahue et al. 2015; Karpathy and Fei-Fei 2015;
Venugopalan et al. 2015b; Vinyals et al. 2014; Zitnick et al. 2013]. This is achieved by using
the RNN model that first gets to observe the visual content and is trained to afterwards
predict a sequence of words that is a description of the visual content. In the thesis, we
extend this idea to the Visual Turing Test, where we formulate a model trained to either
generate or classify an answer based on the visual and natural language inputs.

5.3.1.5 Textual Question Answering

Answering on purely textual questions has been studied in the NLP community [Berant and
Liang 2014; Liang et al. 2013] and state-of-the-art techniques typically employ semantic
parsing to arrive at a logical form capturing the intended meaning and infer relevant answers.
Only recently, the success of the previously mentioned Recurrent Neural Networks, has
carried over to this task [Iyyer et al. 2014; Weston et al. 2014]. In the thesis, we stand on
the shoulders of both research threads, and build a visual question answering architecture.

5.3.1.6 Grounding Language in the Visual World

SHRDLU [Winograd 1972] is among the first models that connect the language with an
external world, in this case with so called ‘block world’. More recent approaches to ground the
language in the visual world are presented by Fritz et al. [2007], Fritz et al. [2010], Matuszek
et al. [2012] and Krishnamurthy and Kollar [2013]. All the aforementioned approaches use
images as the representation of the physical world, but concentrate rather on constrained
domains with images consisting of very few objects, and rather simple interactions. For
instance, Krishnamurthy and Kollar [2013] consider only two mugs, a monitor and a table in
their dataset, whereas Matuszek et al. [2012] examine objects such as blocks, and building
bricks. In a related research direction, Tellex et al. [2011] consider commands grounding for
robotic navigation. In contrast, in this part of the thesis, we focus on a diverse collection of
real-world indoor RGBD images [Silberman et al. 2012] - with many more objects in the
scene and more complex spatial relationship between them. Moreover, our work on Visual
Turing Test considers complex questions - beyond the scope of Matuszek et al. [2012] and

54 Chapter 5. Related Work

C
om

pl
ex

ity

Block  
World

Real  
World

201420132012

A Joint Model of Language and Perception for Grounded Attribute Learning

We evaluate this approach on data gathered on Ama-
zon Mechanical Turk, in which people describe sets of
objects on a table. Experiments demonstrate that the
joint learning approach can e↵ectively extend the set
of grounded concepts in an incomplete model initial-
ized with supervised training on a small dataset. This
provides a simple mechanism for learning vocabulary
in a physical environment.

Figure 1. An example of an RGB-D object identification
scene. Columns on the right show example segments, iden-
tified as positive (far right) and negative (center).

2. Overview of the Approach

Problem We wish to learn a joint language and per-
ception model for the object selection task. The goal
is to automatically map a natural language sentence
x and a set of scene objects O to the subset G ✓ O
of objects described by x. The left panel of Fig. 1
shows an example scene. Here, O is the set of objects
present in this scene. The individual objects o 2 O are
extracted from the scene via segmentation (the right
panel of Fig. 1 shows example segments). Given the
sentence x =“Here are the yellow ones,” the goal is to
select the five yellow objects for the named set G.

Model Components Given a sentence and seg-
mented scene objects, we learn a distribution P (G |
x,O) over the selected set. Our approach combines
recent models of language and vision, including:

(1) A semantic parsing model that defines P (z|x), a
distribution over logical meaning representations z for
each sentence x. In our running example, the desired
representation z = �x.color(x, yellow) is a lambda-
calculus expression that defines a set of objects that
are yellow. For this task, we build on an existing se-
mantic parsing model (Kwiatkowski et al., 2011).

(2) A set of visual attribute classifiers C, where each
classifier c 2 C defines a distribution P (c = true|o)
of the classifier returning true for each possible object
o 2 O in the scene. For example, there would be a
unique classifier c 2 C for each possible color or shape
an object can have. We use logistic regression to train

classifiers on color and shape features extracted from
object segments recorded using a Kinect depth camera.

Joint Model We combine these language and vision
models in two ways. First, we introduce an explicit
model of alignment between the logical constants in
the logical form z and classifiers in the set C. This
alignment would, for example, enable us to learn that
the logical constant yellow should be paired with a
classifier c 2 C that fires on yellow objects.

Next, we introduce an execution model that allows
us to determine what scene objects in O would be
selected by a logical expression z, given the classi-
fiers in C. This allows us to, for example, execute
�x.color(x, green)^shape(x, triangle) by testing all of
the objects with the appropriate classifiers (for green
and triangle), then selecting objects on which both
classifiers return true. This execution model includes
uncertainty from the semantic parser P (z|x), classifier
confidences P (c = true|o), and a deterministic ground-
truth constraint that encodes what objects are actually
intended to be selected. Full details are in Sec. 5.

Model Learning We present an approach that
learns the meaning of new words from a dataset D =
{(xi, Oi, Gi) | i = 1 . . . n}, where each example i con-
tains a sentence xi, the objects Oi, and the selected
set Gi. This setup is an abstraction of the situa-
tion where a teacher mentions xi while pointing to
the objects Gi ✓ Oi she describes. As described in
detail in Sec. 6, learning proceeds in an online, EM-
like fashion by repeatedly estimating expectations over
the latent logical forms zi and the outputs of the clas-
sifiers c 2 C, then using these expectations to update
the parameters of the component models for language
P (z|x) and visual classification P (c|o). To bootstrap
the learning approach, we first train a limited language
and perception system in a fully supervised way: in
this stage, each example additionally contains labeled
logical meaning expressions and classifier outputs, as
described in Sec. 6.

3. Related Work

To the best of our knowledge, this paper presents the
first approach for jointly learning visual classifiers and
semantic parsers, to produce rich, compositional mod-
els that span directly from sensors to meaning. How-
ever, there is significant related work on the model
components, and on grounded learning in general.

Vision Current state-of-the-art object recognition
systems (Felzenszwalb et al., 2009; Yang et al., 2009)
are based on local image descriptors, for example
SIFT over images (Lowe, 2004) and Spin Images over

C. Matuszek, et. al. “A Joint Model of
Language and Perception Grounded
Attribute Learning” ICML’12

Environment d Language z and predicted logical form ` Predicted grounding True grounding

monitor to the left of the mugs {(2,1), (2,3)} {(2,1), (2,3)}
�x.9y.monitor(x) ^ left-rel(x, y) ^ mug(y)
mug to the left of the other mug {(3,1)} {(3,1)}
�x.9y.mug(x) ^ left-rel(x, y) ^ mug(y)
objects on the table {(1,4), (2,4) {(1,4), (2,4),
�x.9y.object(x) ^ on-rel(x, y) ^ table(y) (3,4)} (3,4)}
two blue cups are placed near to the computer screen {(1)} {(1,2), (3,2)}
�x.blue(x) ^ cup(x) ^ comp.(x) ^ screen(x)

What cities are in North Carolina? {(CH,NC), (GB,NC) {(CH,NC), (GB,NC)
�x.9y.city(x) ^ in-rel(x, y) ^ y = NC (RA,NC)} (RA,NC)}
What city is east of Greensboro in North Carolina? {(RA,GB,NC), {(RA,GB,NC)}
�x.9y, z.city(x) ^ east-rel(x, y) (MB,GB,NC)}
^ y = GB ^ in-rel(y, z) ^ z = NC

What cities are on the ocean? {(CH,AO), (GB,AO), {(MB,AO)}
�x.9y.city(x) ^ on-rel(x, y) ^ ocean(y) (MB,AO), (RA,AO)}

Figure 5: Example environments, statements, and model predictions from the SCENE and GEOQA data sets.

5.4 Models and Training

The evaluation compares three models. The first
model is LSP-W, which is LSP trained using the
weakly supervised algorithm described in Section 4.
The second model, LSP-CAT, replicates the model
of Matuszek et al. (2012) by restricting LSP to
use category predicates. LSP-CAT is constructed by
removing all relation predicates in lexicon entries,
mapping entries like �f.�g.�x.9y.r(x, y) ^ g(x) ^
f(y) to �f.�g.�x.9y.g(x) ^ f(y). This model is
also trained using our weakly supervised algorithm.
The third model, LSP-F, is LSP trained with full
supervision, using the manually annotated semantic
parses and logical knowledge bases in our data sets.
Given these annotations, training LSP amounts to
independently training a semantic parser (using sen-
tences with annotated logical forms, {(zi, `i)}) and
a set of perceptual classifiers (using environments
with annotated logical knowledge bases, {(di,�i)}).
This model measures the performance achievable
with LSP given significantly more supervision.

All three variants of LSP were trained using the
same hyperparameters. For SCENE, we computed
subgradients in 5 example minibatches and per-
formed 100 passes over the data using � = 0.03. For
GEOQA, we computed subgradients in 8 example
minibatches, again performing 100 passes over the
data using � = 0.02. We tried varying the regular-
ization parameter, but found that performance was
relatively stable under � 0.05. All experiments
use leave-one-environment-out cross-validation to

estimate model performance. We hold out each en-
vironment in turn, train each model on the remaining
environments, then test on the held-out environment.

5.5 Results

We consider two prediction problems in the eval-
uation. The first problem is to predict the correct
denotation �i for a statement zi in an environment
di. A correct prediction on this task corresponds
to a correctly answered question. A weakness of
this task is that it is possible to guess the right de-
notation without fully understanding the language.
For example, given a query like “mugs on the ta-
ble,” it might be possible to guess the denotation
based solely on “mugs,” ignoring “table” altogether.
The grounding prediction task corrects for this prob-
lem. Here, each model predicts a grounding, which
is the set of all satisfying assignments to the vari-
ables in a logical form. For example, for the log-
ical form �x.9y.left-rel(x, y) ^ mug(y), the
grounding is the set of (x, y) tuples for which both
left-rel(x, y) and mug(y) return true. Note
that, if the predicted semantic parse is incorrect, the
predicted grounding for a statement may contain a
different number of variables than the true ground-
ing; such groundings are incorrect. Figure 5 shows
model predictions for the grounding task.

Performance on both tasks is measured using ex-
act match accuracy. This metric is the fraction of
examples for which the predicted set of entities (be
it the denotation or grounding) exactly equals the
annotated set. This is a challenging metric, as the

201

J. Krishnamurthy, et. al. “Jointly
Learning to Parse and Perceive:
Connecting Natural Language to
the Physical World” TACL ‘13

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall divider?,
cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall divider).
Moreover, the perspective plays an
important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations,
such as ‘backside’ which use a object-
centric.

QA1: (what is in front of the curtain behind
the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names to
call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent
on the reference frame. Here the annotator
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here the
annotator infers the 8th drawer from the
context

QA: (What is the object on the counter in
the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation.!

QA: (What is the shape of the green
chair?, horse shaped)!
In this example, an annotator refers to a
“horse shaped chair” which requires a quite
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of
refrigerator)!
On some occasions, the annotators prefer to
use more complex responses. With spatial
relations, we can increase the answer’s
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair.

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
UP
S

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.

8

M. Malinowski, et. al. Towards a Visual Turing Test. NIPS’14

Figure 5.1: Various grounding tasks have been proposed over the years (x-axis). Y-axis
indicates the complexity of the task. Early tasks, such as SHRDLU [Winograd 1972], consider
‘block-world’, while over the years tasks that better and better reflect real-world have been
proposed. This thesis concerns with our project named Visual Turing Test (NIPS’14)
[Malinowski and Fritz 2014a] that is inspired from the work on the grounding tasks. In this
figure, we only show work on grounding that directly influenced us to pursuit the Visual
Turing Test.

Krishnamurthy and Kollar [2013] - and reasoning across different images using only textual
question-answer pairs for training. This imposes additional challenges for the question-
answering engines such as scalability, good scene representation, dealing with uncertainty in
the language and perception, efficient inference and spatial reasoning. Figure 5.1 shows the
evolution of the tasks over the years, along with the increase of the complexity of each task.

5.3.2 Contemporaneous and Subsequent Work

Since our proposal of Visual Turing Test, and the first dataset that implements it [Malinowski
and Fritz 2014a] together with the first methods and metrics, a few research labs have
followed up the work. This section presents some subsequent work that extends the Visual
Turing Test with new datasets, methods, or new insights. Figures 5.2, 5.3, and 5.1 show the
subsequent datasets, models, and tasks respectively.

5.3. Towards a Visual Turing Test 55

5.3.2.1 Datasets

Datasets are a driving force for the recent progress in the Visual Turing Test, recently also
referred to as ‘Visual Question Answering’. We have proposed the first Visual Turing Test
dataset, which we call DAQUAR [Malinowski and Fritz 2014a]. The dataset has been later
extended by including multiple human answers per question [Malinowski et al. 2015].

In parallel to DAQUAR, Geman et al. [2015] developed another variant of the Visual
Turing Test. Their work, however, focuses on yes/no type of questions, provide detailed
object-scene annotations, and does not require understanding of natural language. A large
number of datasets that have appeared since our DAQUAR are summarized in Figure 5.2.
Shortly after the introduction of DAQUAR, three other large-scale datasets have been
proposed. All are based on the MS-COCO dataset of images [Lin et al. 2014b]. Gao et al.
[2015] have annotated about 158k images with 316k Chinese question answer pairs together
with their corresponding English translations. Ren et al. [2015a] have taken advantage of the
existing annotations for the purpose of image description generation task and transformed
them into question-answer pairs with the help of a set of hand-designed rules and a syntactic
parser [Klein and Manning 2003]. This procedure has approximately generated 118k question-
answer pairs. Finally, arguably nowadays the most popular, large scale dataset on question
answering about images is VQA [Antol et al. 2015]. It has approximately 614k questions
about the visual content of about 205k real-world images. Similarly to our Consensus idea
(shown in Chapter 10 and Malinowski et al. [2015]), VQA provides 10 answers per each
image. VQA has also about 150k questions about the abstract scenes. In this thesis, among
the other things, we perform an experimental analysis on the VQA dataset and examine
different variants of our neural-based method.

Although simple, automatic performance evaluation metrics have been a part of building
first visual question answering datasets [Malinowski and Fritz 2014a,b, 2015], Yu et al. [2015b]
have simplified the evaluation even further by introducing Visual Madlibs - a multiple choice
question answering by filling the blanks task. In this task, a question answering architecture
has to choose one out of four provided answers for a given image and the prompt. Formulating
question answering task in this way has wiped out ambiguities in answers, and just a simple
accuracy metric can be used to evaluate different architectures on this task. Yet, the task
requires a holistic reasoning about the images, and despite of simple evaluation, it remains
challenging for machines.

The Visual7W [Zhu et al. 2016] extends canonical question and answer pairs with
additional groundings of all objects appearing in the questions and answers of an image by
annotating the correspondences. It contains not only natural language answers, but also
answers which require to locate the object (so called ‘pointing questions’), which is then
similar to the task of explicit grounding. In contrast to others such as VQA [Antol et al.
2015] or DAQUAR [Malinowski and Fritz 2014a] that has collected unconstrained question,
the Visual7W focuses on the six, so called, Ws: what, where, when, who, why, and how,
which can be answered with a natural language answer. An additional 7th question – which –
requires a bounding box location as the answer. Similarly to Visual Madlibs [Yu et al. 2015b],
Visual7W contains multiple-choice answers.

Related to Visual Turing Test, Chowdhury et al. [2016a] have proposed collective

56 Chapter 5. Related Work

Vo
lu

m
e

Small

Large

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall divider?,
cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall divider).
Moreover, the perspective plays an
important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations,
such as ‘backside’ which use a object-
centric.

QA1: (what is in front of the curtain behind
the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names to
call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent
on the reference frame. Here the annotator
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here the
annotator infers the 8th drawer from the
context

QA: (What is the object on the counter in
the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation.!

QA: (What is the shape of the green
chair?, horse shaped)!
In this example, an annotator refers to a
“horse shaped chair” which requires a quite
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of
refrigerator)!
On some occasions, the annotators prefer to
use more complex responses. With spatial
relations, we can increase the answer’s
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the annotator.!

Figure 4: Examples of human generated question-answer pairs illustrating the associated challenges. In the
descriptions we use following notation: ’A’ - answer, ’Q’ - question, ’QA’ - question-answer pair.

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
U
PS

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 5: WUPS scores for different thresholds.

synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy

HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 3: Accuracy results for the experiments with syn-
thetic question-answer pairs.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0

HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%

Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 4: Accuracy and WUPS scores for the experiments with human question-answer pairs. We show WUPS
scores at two opposite sides of the WUPS spectrum.

Q: What is on the right side of the table?!
H: chair  
M: window, floor, wall!
C: floor

Q: How many red chairs are there?!
H: ()!
M: 6!
C: blinds!

!
Q: How many chairs are at the table?!
H: wall 
M: 4!
C: chair

Q: What is the object on the chair?!
H: pillow!
M: floor, wall!
C: wall

Q: What is on the right side of cabinet?!
H: picture 
M: bed!
C: bed

Q: What is on the wall?!
H: mirror!
M: bed!
C: picture

Q: What is behind the television?!
H: lamp  
M: brown, pink, purple!
C: picture

Q: What is in front of television?!
H: pillow!
M: chair!
C: picture

Figure 6: Questions and predicted answers. Notation: ’Q’ - question, ’H’ - architecture based on human
segmentation, ’M’ - architecture with multiple worlds, ’C’ - most confident architecture, ’()’ - no answer. Red
color denotes correct answer.

8

M. Malinowski et. al. 
DAQUAR  
NIPS’14

1

VQA: Visual Question Answering
www.visualqa.org

Stanislaw Antol⇤, Aishwarya Agrawal⇤, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural
language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such
as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas
of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a
more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA
is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can
be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers
(www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human
performance.

F

1 INTRODUCTION

We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian

• ⇤The first two authors contributed equally.
• S. Antol, A. Agrawal, J. Lu, D. Batra, and D. Parikh are with Virginia

Tech.
• M. Mitchell and C. L. Zitnick are with Microsoft Research, Redmond.

Does it appear to be rainy?
Does this person have 20/20 vision?

Is this person expecting company?
What is just under the tree?

How many slices of pizza are there?
Is this a vegetarian pizza?

What color are her eyes?
What is the mustache made of?

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this
paper, we present both an open-ended answering task and a
multiple-choice task [43], [31]. Unlike the open-answer task
that requires a free-form response, the multiple-choice task
only requires an algorithm to pick from a predefined list of
possible answers.
We present a large dataset that contains 204,721 images from
the MS COCO dataset [30] and a newly created abstract

ar
X

iv
:1

50
5.

00
46

8v
4

 [c
s.C

L]
 1

8
N

ov
 2

01
5

What is the mustache made
of?

S. Antol et. al. 
VQA 
ICCV’15

Image

Question

Answer

公共汽车是什么颜色的？
What is the color of the bus?

公共汽车是红色的。
The bus is red.

草地上除了人以外还有什么动物？
What is there on the grass, except
the person?
羊。
Sheep.

观察一下说出食物里任意一种蔬菜的
名字 ？
Please look carefully and tell me what is
the name of the vegetables in the plate?

西兰花 。
Broccoli.

猫咪在哪里？
Where is the kitty?

在椅子上 。
On the chair.

黄色的是什么？
What is there in yellow?

香蕉。
Bananas.

Figure 1: Sample answers to the visual question generated by our model on the newly proposed
Freestyle Multilingual Image Question Answering (FM-IQA) dataset.

function. To lower down the risk of overfitting, we allow the weight sharing of the word embedding
layer between the LSTMs in the first and third components. We also adopt the transposed weight
sharing scheme as proposed in [25], which allows the weight sharing between word embedding layer
and the fully connected Softmax layer.

To train our method, we construct a large-scale Freestyle Multilingual Image Question Answering
dataset1 (FM-IQA, see details in Section 4) based on the MS COCO dataset [21]. The current
version of the dataset contains 158,392 images with 316,193 Chinese question-answer pairs and
their corresponding English translations.2 To diversify the annotations, the annotators are allowed
to raise any question related to the content of the image. We propose strategies to monitor the
quality of the annotations. This dataset contains a wide range of AI related questions, such as action
recognition (e.g., “Is the man trying to buy vegetables?”), object recognition (e.g., “What is there in
yellow?”), positions and interactions among objects in the image (e.g. “Where is the kitty?”) and
reasoning based on commonsense and visual content (e.g. “Why does the bus park here?”, see last
column of Figure 3).

Because of the variability of the freestyle question-answer pairs, it is hard to accurately evaluate
the method with automatic metrics. We conduct a Visual Turing Test [38] using human judges.
Specifically, we mix the question-answer pairs generated by our model with the same set of question-
answer pairs labeled by annotators. The human judges need to determine whether the answer is
given by a model or a human. In addition, we also ask them to give a score of 0 (i.e. wrong), 1 (i.e.
partially correct), or 2 (i.e. correct). The results show that our mQA model passes 64.7% of this
test (treated as answers of a human) and the average score is 1.454. In the discussion, we analyze
the failure cases of our model and show that combined with the m-RNN [24] model, our model can
automatically ask a question about an image and answer that question.

2 Related Work
Recent work has made significant progress using deep neural network models in both the fields of
computer vision and natural language. For computer vision, methods based on Convolutional Neural
Network (CNN [20]) achieve the state-of-the-art performance in various tasks, such as object clas-
sification [17, 34, 17], detection [10, 44] and segmentation [3]. For natural language, the Recurrent
Neural Network (RNN [7, 27]) and the Long Short-Term Memory network (LSTM [12]) are also
widely used in machine translation [13, 5, 35] and speech recognition [28].

The structure of our mQA model is inspired by the m-RNN model [24] for the image captioning and
image-sentence retrieval tasks. It adopts a deep CNN for vision and a RNN for language. We extend
the model to handle the input of question and image pairs, and generate answers. In the experiments,
we find that we can learn how to ask a good question about an image using the m-RNN model and
this question can be answered by our mQA model.

There has been recent effort on the visual question answering task [9, 2, 22, 37]. However, most of
them use a pre-defined and restricted set of questions. Some of these questions are generated from a
template. In addition, our FM-IQA dataset is much larger than theirs (e.g., there are only 2591 and
1449 images for [9] and [22] respectively).

1We are actively developing and expanding the dataset, please find the latest information on the project page
: http://idl.baidu.com/FM-IQA.html

2The results reported in this paper are obtained from a model trained on the first version of the dataset (a
subset of the current version) which contains 120,360 images and 250,569 question-answer pairs.

2

H. Gao et. al.  
FM-IQA 
NIPS’15

Visual Madlibs: Fill in the blank Image Generation and Question Answering

Licheng Yu, Eunbyung Park, Alexander C. Berg, and Tamara L. Berg

Department of Computer Science, University of North Carolina, Chapel Hill

{licheng, eunbyung, acberg, tlberg}@cs.unc.edu

Abstract

In this paper, we introduce a new dataset consisting of
360,001 focused natural language descriptions for 10,738
images. This dataset, the Visual Madlibs dataset, is col-
lected using automatically produced fill-in-the-blank tem-
plates designed to gather targeted descriptions about: peo-
ple and objects, their appearances, activities, and interac-
tions, as well as inferences about the general scene or its
broader context. We provide several analyses of the Vi-
sual Madlibs dataset and demonstrate its applicability to
two new description generation tasks: focused description
generation, and multiple-choice question-answering for im-
ages. Experiments using joint-embedding and deep learn-
ing methods show promising results on these tasks.

1. Introduction
Much of everyday language and discourse concerns the

visual world around us, making understanding the rela-
tionship between the physical world and language describ-
ing that world an important challenge problem for AI.
Understanding this complex and subtle relationship will
have broad applicability toward inferring human-like under-
standing for images, producing natural human robot interac-
tions, and for tasks like natural language grounding in NLP.
In computer vision, along with improvements in deep learn-
ing based visual recognition, there has been an explosion of
recent interest in methods to automatically generate natural
language descriptions for images [5, 9, 15, 32, 16, 20] or
videos [31, 8]. However, most of these methods and exist-
ing datasets have focused on only one type of description, a
generic description for the entire image.

In this paper, we collect a new dataset of focused, tar-
geted, descriptions, the Visual Madlibs dataset, as illus-
trated in Figure 1. To collect this dataset, we introduce au-
tomatically produced fill-in-the-blank templates designed to
collect a range of different descriptions for visual content in
an image. For example, a user might be presented with an

Figure 1: An example from the Visual Madlibs Dataset.
This dataset collects targeted descriptions for people and
objects, denoting their appearances, affordances, activities,
and interactions. It also provides descriptions of broader
emotional, spatial and temporal context for an image.

image and a fill-in-the-blank template such as “The frisbee
is [blank]” and asked to fill in the [blank] with a descrip-
tion of the appearance of frisbee. Alternatively, they could
be asked to fill in the [blank] with a description of what
the person is doing with the frisbee. Fill-in-the-blank ques-
tions can be targeted to collect descriptions about people
and objects, their appearances, activities, and interactions,
as well as descriptions of the general scene or the broader
emotional, spatial, or temporal context of an image. Us-
ing these templates, we collect a large collection of 360,001

1

ar
X

iv
:1

50
6.

00
27

8v
1

 [c
s.C

V
]

31
 M

ay
 2

01
5

Person A is …

L. Yu et. al.  
Visual Madlibs 
ICCV’15

COCOQA 33827
What is the color of the cat?
Ground truth: black
IMG+BOW: black (0.55)
2-VIS+LSTM: black (0.73)
BOW: gray (0.40)

COCOQA 33827a
What is the color of the couch?
Ground truth: red
IMG+BOW: red (0.65)
2-VIS+LSTM: black (0.44)
BOW: red (0.39)

DAQUAR 1522
How many chairs are there?
Ground truth: two
IMG+BOW: four (0.24)
2-VIS+BLSTM: one (0.29)
LSTM: four (0.19)

DAQUAR 1520
How many shelves are there?
Ground truth: three
IMG+BOW: three (0.25)
2-VIS+BLSTM: two (0.48)
LSTM: two (0.21)

COCOQA 14855
Where are the ripe bananas sitting?
Ground truth: basket
IMG+BOW: basket (0.97)
2-VIS+BLSTM: basket (0.58)
BOW: bowl (0.48)

COCOQA 14855a
What are in the basket?
Ground truth: bananas
IMG+BOW: bananas (0.98)
2-VIS+BLSTM: bananas (0.68)
BOW: bananas (0.14)

DAQUAR 585
What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 585a
Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)

Figure 3: Sample questions and responses of our system

examples. Adding prior knowledge provides an immediate gain on the IMG model in terms of
accuracy on Color and Number questions. The gap between the IMG+PRIOR and IMG+BOW
shows some localized color association ability in the CNN image representation.

5 Conclusion and Current Directions

In this paper, we consider the image QA problem and present our end-to-end neural network models.
Our model shows a reasonable understanding of the question and some coarse image understand-
ing, but it is still very naı̈ve in many situations. While recurrent networks are becoming a popular
choice for learning image and text, we showed that a simple bag-of-words can perform equally well
compared to a recurrent network that is borrowed from an image caption generation framework [1].
We proposed a more complete set of baselines which can provide potential insight for developing
more sophisticated end-to-end image question answering systems. As the currently available dataset
is not large enough, we developed an algorithm that helps us collect large scale image QA dataset
from image descriptions. Our question generation algorithm is extensible to many image description
datasets and can be automated without requiring extensive human effort. We hope that the release
of the new dataset will encourage more data-driven approaches to this problem in the future.

Image question answering is a fairly new research topic, and the approach we present here has a
number of limitations. First, our models are just answer classifiers. Ideally we would like to permit
longer answers which will involve some sophisticated text generation model or structured output.
But this will require an automatic free-form answer evaluation metric. Second, we are only focusing
on a limited domain of questions. However, this limited range of questions allow us to study the
results more in depth. Lastly, it is also hard to interpret why the models output a certain answer.
By comparing our models with some baselines we can roughly infer whether they understood the
image. Visual attention is another future direction, which could both improve the results (based on
recent successes in image captioning [8]) as well as help explain the model prediction by examining
the attention output at every timestep.

Acknowledgments

We would like to thank Nitish Srivastava for the support of Toronto Conv Net, from which we
extracted the CNN image features. We would also like to thank anonymous reviewers for their
valuable and helpful comments.

References
[1] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption generator,” in

CVPR, 2015.

[2] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic embeddings with multimodal
neural language models,” TACL, 2015.

8

What is the color of
the cat?

M. Ren et. al. 
COCO-QA 
NIPS’15

Visual7W: Grounded Question Answering in Images

Yuke Zhu† Oliver Groth‡ Michael Bernstein† Li Fei-Fei†
†Computer Science Department, Stanford University

‡Computer Science Department, Dresden University of Technology

Abstract

We have seen great progress in basic perceptual tasks
such as object recognition and detection. However, AI mod-
els still fail to match humans in high-level vision tasks due
to the lack of capacities for deeper reasoning. Recently the
new task of visual question answering (QA) has been pro-
posed to evaluate a model’s capacity for deep image under-
standing. Previous works have established a loose, global
association between QA sentences and images. However,
many questions and answers, in practice, relate to local
regions in the images. We establish a semantic link be-
tween textual descriptions and image regions by object-level
grounding. It enables a new type of QA with visual answers,
in addition to textual answers used in previous work. We
study the visual QA tasks in a grounded setting with a large
collection of 7W multiple-choice QA pairs. Furthermore,
we evaluate human performance and several baseline mod-
els on the QA tasks. Finally, we propose a novel LSTM
model with spatial attention to tackle the 7W QA tasks.

1. Introduction
The recent development of deep learning technologies

has achieved successes in many perceptual visual tasks such
as object recognition, image classification and pose estima-
tion [15, 21, 25, 38, 39, 42, 43]. Yet the status quo of
computer vision is still far from matching human capabil-
ities, especially when it comes to understanding an image
in all its details. Recently, visual question answering (QA)
has been proposed as a proxy task for evaluating a vision
system’s capacity for deeper image understanding. Several
QA datasets [1, 7, 27, 36, 49] have been released since last
year. They contributed valuable data for training visual QA
systems and introduced various tasks, from picking correct
multiple-choice answers [1] to filling in blanks [49].

Pioneer work in image captioning [4, 5, 13, 45, 47],
sentence-based image retrieval [14, 40] and visual QA [1, 7,
36] shows promising results. These works aimed at estab-
lishing a global association between sentences and images.
However, as Flickr30K [34, 48] and Visual Madlibs [49]

Which paw is lifted?

What is
the dog
doing?

Why is there
foam?

What is the dog
standing on?

Where
does this
scene take
place?
A) In the sea. ✔
B) In the desert.
C) In the forest.
D) On a lawn.

A) Surfing. ✔
B) Sleeping.
C) Running.
D) Eating.

A) Because of a wave. ✔
B) Because of a boat.
C) Because of a fire.
D) Because of a leak.

A) On a surfboard. ✔
B) On a table.
C) On a garage.
D) On a ball.

Figure 1: Deep image understanding relies on detailed knowl-
edge about different image parts. We employ diverse questions to
acquire detailed information on images, ground objects mentioned
in text with their visual appearances, and provide a multiple-choice
setting for evaluating a visual question answering task with both
textual and visual answers.

suggest, a tighter semantic link between textual descrip-
tions and corresponding visual regions is a key ingredient
for better models. As Fig. 1 shows, the localization of ob-
jects can be a critical step to understand images better and
solve image-related questions. Providing these image-text
correspondences is called grounding. Inspired by Geman
et al.’s prototype of a visual Turing test based on image
regions [8] and the comprehensive data collection of QA
pairs on COCO images [25] such as VQA [1] and Baidu [7],
we fuse visual QA and grounding in order to create a new
QA dataset with dense annotations and a more flexible
evaluation environment. Object-level grounding provides
a stronger link between QA pairs and images than global
image-level associations. Furthermore, it allows us to re-
solve coreference ambiguity [19, 35] and to understand ob-
ject distributions in QA, and enables visually grounded an-
swers that consist of object bounding boxes.

Motivated by the goal of developing a model for vi-
sual QA based on grounded regions, our paper introduces
a dataset that extends previous approaches [1, 7, 36] and
proposes an attention-based model to perform this task. We
collected 327,939 QA pairs on 47,300 COCO images [25],
together with 1,311,756 human-generated multiple-choices
and 561,459 object groundings from 36,579 categories. Our
data collection was inspired by the age-old idea of the W

1

Y. Zhu et. al.  
Visual7W 
CVPR’16

how many different lights
in various different shapes
and sizes?

what is the color of the
horse?

what color is the vase? is the bus full of passen-
gers?

is there a red shape above
a circle?

describe[count](
find[light])

describe[color](
find[horse])

describe[color](
find[vase])

describe[is](
combine[and](

find[bus],
find[full])

measure[is](
combine[and](

find[red],
transform[above](

find[circle])))

four (four) brown (brown) green (green) yes (yes) yes (yes)

what is stuffed with
toothbrushes wrapped in
plastic?

where does the tabby cat
watch a horse eating hay?

what material are the
boxes made of?

is this a clock? is a red shape blue?

describe[what](
find[stuff])

describe[where](
find[watch])

describe[material](
find[box])

describe[is](
find[clock])

measure[is](
combine[and](

find[red],
find[blue]))

container (cup) pen (barn) leather (cardboard) yes (no) yes (no)

Figure 3: Example output from our approach on different visual QA tasks. The top row shows correct answers, while the bottom row
shows mistakes (the most common answer from human annotators is given in parentheses).

swering, performing especially well on questions answered
by an object or an attribute. Additionally, we have in-
troduced a new dataset of highly compositional questions
about simple arrangements of shapes, and shown that our
approach substantially outperforms previous work.

So far we have maintained a strict separation between
predicting network structures and learning network param-
eters. It is easy to imagine that these two problems might
be solved jointly, with uncertainty maintained over network
structures throughout training and decoding. This might be
accomplished either with a monolithic network, by using
some higher-level mechanism to “attend” to relevant por-
tions of the computation, or else by integrating with exist-
ing tools for learning semantic parsers [22]. We describe

first steps toward joint learning of module behavior and a
parser in a follow-up to this work [2].

The fact that our neural module networks can be
trained to produce predictable outputs—even when freely
composed—points toward a more general paradigm of
“programs” built from neural networks. In this paradigm,
network designers (human or automated) have access to a
standard kit of neural parts from which to construct mod-
els for performing complex reasoning tasks. While visual
question answering provides a natural testbed for this ap-
proach, its usefulness is potentially much broader, extend-
ing to queries about documents and structured knowledge
bases or more general function approximation and signal
processing.

J. Andreas et. al. 
SHAPES 
CVPR’16

Describe the present
people ride in _ on a lake.
 lounge 0.284
 elevator 0.405
 boat 0.612
 window 0.308

Infer the past
He ____ orange.
 cuts 0.364
 washes 0.253
 picks 0.452
 takes out 0.576

Describe the present
He peels ____.
 food 0.563
 banana 0.752
 orange 0.831
 juice 0.201

Predict the future
He put orange on a ___.
 plate 0.284
 desk 0.405
 table 0.612
 musk 0.308

Describe the present
He put orange on a ___.
 table 0.587
 plate 0.611
 musk 0.288
 desk 0.544

Describe the present
A person feeds a ___.
 rabbit 0.761
 deer 0.878
 wolf 0.652
 groundhog 0.761

Describe the present
He ____ orange.
 peals 0.614
 extracts 0.040
 cuts off 0.591
 washes 0.802

Describe the present
A person ___ a deer.
 cooks 0.020
 feeds 0.198
 punches 0.202
 meal 0.044

Describe the present
A horse tries to ___.
 stand up 0.723
 dress up 0.434
 look 0.121
 pray 0.019

Describe the present
people eat ___ in a restaurant.
 sushi 0.589
 meatball 0.191
 catfish 0.125
 breakfast 0.630

Figure 7. Example results obtained from our model. Each candidate has a score corresponding to a clip. Correct answers are marked in
green while failed cases are in red.

Past Present Future
ConvNets Ours Improv ConvNets Ours Improv ConvNets Ours Improv

Easy 74.8% 78.3% 3.5% 76.3% 79.7% 3.4% 76.4% 78.7% 2.3%
TACoS Hard 62.7% 64.7% 2.0% 65.5% 67.1% 1.6% 64.5% 67.3% 2.8%

Easy 66.8% 72.1% 5.3% 72.0% 74.2% 2.2% 68.7% 73.6% 4.9%
MPII-MD Hard 45.6% 47.0% 1.4% 47.3% 48.2% 0.9% 46.9% 48.0% 1.1%

Table 5. Comparisons between ConvNets and our model for past, present and future modeling.

ble 5. From the result, we have the following observations:

(1) GRU model outperforms ConvNet model in all cases,
and relatively performs better than ConvNet in tasks of in-
ferring the past and predicting the future compared with de-
scribing the present. By comparisons of the performance
among tasks, we find that our GRU model performs rela-
tively better than ConvNets in tasks of inferring the past
and predicting the future, which shows the effectiveness of
our GRU encoder-decoder framework in modeling tempo-
ral structures in videos. As our GRU models are trained
to reconstruct the past and future sequences, they can rep-
resent the past and future in a more reasonable way than
the ConvNet models. Our results also indicate the abil-
ity of our GRU models to capture wider range of tempo-
ral information than ConvNet models. ConvNets trained
from still frames can model temporal structures if objects
in scene don’t change too much in short intervals (one ex-
ample would be in Figure 1, “cucumber” occurs in both cur-
rent and future clip). However, when it comes to modeling
longer sequences, ConvNets will fail to make predictions

due to lack of context.
(2) Our model can achieve better results for future pre-

diction than past inference. For future prediction, we feed
input frames in the order of 4, 5, 6 (Figure 4) and the de-
coder is asked to reconstruct frame in the order 7, 8, 9. As
to past inferring, we feed the same input, but ask the de-
coder to reconstruct target sequence of 1, 2, 3. As the future
prediction model has shorter term dependencies than past
inferring model, future prediction model can be easier to
learn the temporal dependencies, which is consistent with
the observations and hypothesis in [33].

5.3. Limitations and Future Work

Although our results on question answering for video
temporal context are encouraging, our model has multiple
limitations. First, our model is only aware of context of at
most 30 seconds (the longest unroll length). One more flex-
ible and promising approach would be incorporating the at-
tention mechanism [3] to learn longer sequences of context
in videos. Additionally, our model fails to answer questions

8

L. Zhu et. al.  
VideoQA 
arXiv’15

M. Tapaswi et. al. 
MovieQA 
CVPR’16

6 CHAPTER 1. MOTIVATION

The Google Glass Pre-processing Query +Metadata

Semantic Parser
+

Denotation
Collective Memory Predictedanswer

Modified query
 +
dynamic databaseCap

ture
d m

edia

Ret
riev

ed m
edia

Xplore-M-Ego

Figure 1.3: Black-box representation of Xplore-M-Ego

An overview of the basic function of our query-retrieval system is shown in
Figure 1.3.1 The collective memory is constantly updated with the images and
videos that users capture on a daily basis using a wearable device, for example,
the Google Glass (by assumption). The user query, along with metadata such as
the GPS coordinates of the user, his/her heading direction and the timestamp at
the time of query are sent to a pre-processing step where the temporal reference
in the query and the user metadata are written to a dynamic database and the
query is modified according to the user-centric reference frame (calculated from
the direction the user faces). The semantic parser then predicts answers (names
of media files) to the query. The files are then extracted from the collective
memory and sent to the user for viewing.

1Free vector graphics templates from www.freepik.com have been used to create the Info-
graphics in this manuscript.

S. Chowdhury et. al. 
Collective Memories 
ICMR’16

Time

Figure 5.2: Since our DAQUAR (NIPS’14, bottom-left of the figure), numerous datasets
have appeared. In this figure we characterize datasets according to their size (y-axis), and
the time of appearance (x-axis). The volume is mostly influenced by the number of questions.
Note that two datasets, MovieQA and VideoQA, have videos instead of images, and hence
it is more difficult to properly determine their size with respect to other, image questions
answering datasets. The depiction is symbolic.

memories and Xplore-M-Ego - a dataset of images with natural language queries, and a
media retrieval system, in which ‘answers’ are images. This work focuses on a user centric,
dynamic scenario, where the provided answers are conditioned not only on questions but
also on the geographical position of the questioner.

While the majority of datasets include real-world images, Andreas et al. [2016b] have
proposed the SHAPE dataset, which consists of synthetic images of abstract shapes appearing
in various configurations, and compositional questions. Such a dataset allows to study some
phenomena such as spatial relations or compositionality in isolation.

Finally, moving from asking questions about images to questions about videos enhances
typical questions with a temporal structure. Zhu et al. [2015] propose a task which requires
to fill in blanks the captions associated with videos. The task requires inferring the past,
describing the present and predicting the future in a diverse set of video description data
ranging from cooking videos [Regneri et al. 2013] over web videos [Trecvid 2014] to movies
[Rohrbach et al. 2015b]. Tapaswi et al. [2016] propose MovieQA, which requires to understand
long term connections in the plot of the movie. Given the difficulty of the data, both works
provide multiple-choice answers.

5.3. Towards a Visual Turing Test 57

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Scene
analysis

sofa (1,brown, image 1, X,Y,Z)

chair (1,brown, image 4, X,Y,Z)
chair (2,brown, image 4, X,Y,Z)

table (1,brown, image 1,X,Y,Z)
wall (1,white, image 1, X,Y,Z)
bed (1, white, image 2 X,Y,Z)

chair (1,brown, image 5, X,Y,Z)

…

W
world

Q
question

A

answer

Semantic
parsing T

logical
form

Semantic
evaluation

W
latent
worlds

Q
question

A

answer

Semantic
parsing T

logical
form

S

S

semantic 
segmentation

single  
world"

approach

multi-world"
approach

Semantic
evaluation

Figure 1: Overview of our approach to question answering with multiple latent worlds in contrast to single
world approach.

�W(T)] with the evaluation function �W , that evaluates a logical form on the world W . Follow-
ing [1] we use DCS Trees that yield the following recursive evaluation function �W : �W(T) :=Td

j {v : v 2 �W(p), t 2 �W(Tj), Rj(v, t)} where T := hp, (T1, R1), (T2, R2), ..., (Td, Rd)i is
the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td, and
relations Rj that define the relationship between the current node and a subtree Tj .

The distribution over logical forms is modeled by a log-linear distribution P (T |Q) /
exp(✓T�(Q, T)) with features � measuring compatibility between Q and T and parameters ✓ learnt
from training data. The model learns by alternating between searching over a restricted space of
valid trees and gradient descent updates of the model parameters ✓. For a more detailed exposition,
we refer the reader to [1].

Since the method is agnostic to the choice of the knowledge representation W , it can be used for the
grounding problem with the image facts (middle and top parts of Figure 1) as demonstrated by [5].
In the paper, we give a special name to such worlds - perceived worlds.

Question answering on real-world images based on a perceived world Similar to [5], we
extend the work of [1] to operate now on what we call perceived world W . This still cor-
responds the single world approach in our overview Figure 1. However our world is now
populated with “facts” derived from automatic, semantic image segmentations S and we also
define predicates that are spatial relations in visual scenes. Therefore, we build this world
by running a state-of-the-art semantic segmentation algorithm [15] over the images, collect-
ing the recognized information about objects such as object class, 3D position, and color

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

(a) Sampled worlds.

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

(b) Object’s coordinates.

Figure 2: Fig. 2a shows a few sampled worlds. In the clock-wise order: original picture, most confident world,
and three possible worlds. Although, at first glance the most confident world seems to be a reasonable approach,
our experiments shows opposite - we can benefit from imperfect but multiple worlds. Fig. 2b shows object’s
coordinates (original and Z, Y , X images in the clock-wise order), which better represent the spatial location
of the objects than the image coordinates.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Predicate Definition
closeAbove(A, B) above(A, B) and (Ymin(B) < Ymax(A) + ✏)

closeLeftOf(A, B) leftOf(A, B) and (Xmin(B) < Xmax(A) + ✏)
closeInFrontOf(A, B) inFrontOf(A, B) and (Zmin(B) < Zmax(A) + ✏)

Xaux(A, B) Xmean(A) < Xmax(B) and Xmin(B) < Xmean(A)
Zaux(A, B) Zmean(A) < Zmax(B) and Zmin(B) < Zmean(A)
haux(A, B) closeAbove(A, B) or closeBelow(A, B)
vaux(A, B) closeLeftOf(A, B) or closeRightOf(A, B)

au
xi

lia
ry

re
la

tio
ns

daux(A, B) closeInFrontOf(A, B) or closeBehind(A, B)
leftOf(A, B) Xmean(A) < Xmean(B))
above(A, B) Ymean(A) < Ymean(B)

inFrontOf(A, B) Zmean(A) < Zmean(B))

sp
at

ia
l

on(A, B) closeAbove(A, B) and Zaux(A, B) and Xaux(A, B)
close(A, B) haux(A, B) or vaux(A, B) or daux(A, B)

Table 1: Predicates defining spatial relations between A and B. Auxiliary relations define actual spatial re-
lations. The Y axis points downwards, functions Xmax, Xmin, ... take appropriate values from the tuple
predicate, and ✏ is a ’small’ amount. Symmetrical relations such as rightOf , below, behind, etc. can readily
be defined in terms of other relations (i.e. below(A, B) = above(B, A)).

(Figure 1 - middle part). Every object hypothesis is therefore represented as an n-tuple:
predicate(instance id, image id, color, spatial loc) where predicate 2 {bag, bed, books, ...},
instance id is the object’s id, image id is id of the image containing the object, color is esti-
mated color of the object [16], and spatial loc is the object’s position in the image. Latter is
represented as (Xmin, Xmax, Xmean, Ymin, Ymax, Ymean, Zmin, Zmax, Zmean) and defines mini-
mal, maximal, and mean location of the object along X, Y, Z axes. To obtain the coordinates we
fit axis parallel cuboids to the cropped 3d objects based on the semantic segmentation. Note that
the X, Y, Z coordinate system is aligned with direction of gravity [15]. As shown in Figure 2b, this
is a more meaningful representation of the object’s coordinates over simple image coordinates. In
training we use facts from all training images, whereas in test case only facts from the test image.

We realize that the skilled use of spatial relations is a complex task and grounding spatial relations is
a research thread on its own (e.g. [17] and [18]). For our purposes, we focus on predefined relations
defined in Table 1, while the association of them as well as the object classes are still dealt within
the question answering architecture.

Multi-worlds approach for combining uncertain visual perception and symbolic reasoning
Up to now, we have considered the output of the semantic segmentation as “hard facts”. We now
draw on ideas from probabilistic databases [14] and propose a multi-world approach as outlined
in the lower part of Figure 1 that takes the uncertainty in the segmentation of the visual input into
account by marginalizing over multiple possible worlds W derived from the segmentation S . The
posterior over the answer A given question Q and semantic segmentation S of the image is calcu-
lated according to a Bayesian formulation by marginalizing over the latent worlds W in addition to
the logical forms T :

P (A | Q, S) =
X

W

X

T
P (A | W, T)P (W | S) P (T | Q) (2)

The semantic segmentation of the image is a set of segments si with the associated probabilities
pij over the C object categories cj . More precisely S = {(s1, L1), (s2, L2), ..., (sk, Lk)} where
Li = {(cj , pij)}C

j=1, P (si = cj) = pij , and k is the number of segments of given image. Let

Ŝf =
�
(s1, cf(1)), (s2, cf(2)), ..., (sk, cf(k)))

be an assignment of the categories into segments of

the image according to the binding function f 2 F = {1, ..., C}{1,...,k}. Using such notation, for
a fixed binding function f , a world W is a set of tuples consistent with Ŝf , and define P (W |S) =Q

i p(i,f(i)). Hence we have as many possible words as binding functions, that is Ck. Eq. 2 becomes
quickly intractable for k and C seen in practice, wherefore we use a sampling strategy that draws a
finite sample ~W = (W1, W2, ..., WN) from P (·|S):

P (A | Q, S) =
1

N

NX

a=1

X

T
P (A | Wa, T)P (T |Q) (3)

under an assumption that for each segment si every object’s category cj is drawn independently
according to pij . A few sampled perceived words are shown in Figure 2a.

4

LSTM LSTM

qn

a1 at

CNN
x

at-1

LSTM

qn-1

...

...

... ...

Andreas et al. (2015) describe a heuristic ap-
proach for decomposing visual question answering
tasks into sequence of modular sub-problems. For
example, the question What color is the bird? might
be answered in two steps: first, “where is the bird?”
(Figure 2a), second, “what color is that part of the
image?” (Figure 2c). This first step, a generic mod-
ule called find, can be expressed as a fragment of
a neural network that maps from image features and
a lexical item (here bird) to a distribution over pix-
els. This operation is commonly referred to as the
attention mechanism, and is a standard tool for ma-
nipulating images (Xu et al., 2015) and text repre-
sentations (Hermann et al., 2015)

The first contribution of this paper is an exten-
sion and generalization of this mechanism to enable
fully-differentiable reasoning about more structured
semantic representations. Figure 2b shows how the
same module can be used to focus on the entity
Georgia in a non-visual grounding domain; more
generally, by representing every entity in the uni-
verse of discourse as a feature vector, we can obtain
a distribution over entities that corresponds roughly
to a logical set-valued denotation.

Having obtained such a distribution, existing neu-
ral approaches use it to immediately compute a
weighted average of image features and project back
into a labeling decision—a describe module (Fig-
ure 2c). But the logical perspective suggests a num-
ber of novel modules that might operate on atten-
tions: e.g. combining them (by analogy to conjunc-
tion or disjunction) or inspecting them directly with-
out a return to feature space (by analogy to quantifi-
cation, Figure 2d). These modules are discussed in
detail in Section 4. Unlike their formal counterparts,
they are differentiable end-to-end, facilitating their
integration into learned models. Building on previ-
ous work, we learn behavior for a collection of het-
erogeneous modules from (world, question, answer)
triples.

The second contribution of this paper is a model
for learning to assemble such modules composition-
ally. Isolated modules are of limited use—to ob-
tain expressive power comparable to either formal
approaches or monolithic deep networks, they must
be composed into larger structures. Figure 2 shows
simple examples of composed structures, but for
realistic question-answering tasks, even larger net-

black	and	white

Georgia

Atlanta

Montgomery

Georgia

Atlanta

Montgomery

exists

true

find bird

describe color

find state(a) (b)

(c) (d)

Figure 2: Simple neural module networks, corresponding to
the questions What color is the bird? and Are there any states?
(a) A neural find module for computing an attention over
pixels. (b) The same operation applied to a knowledge base.
(c) Using an attention produced by a lower module to identify
the color of the region of the image attended to. (d) Performing
quantification by evaluating an attention directly.

works are required. Thus our goal is to automati-
cally induce variable-free, tree-structured computa-
tion descriptors. We can use a familiar functional
notation from formal semantics (e.g. Liang et al.,
2011) to represent these computations.1 We write
the two examples in Figure 2 as

(describe[color] find[bird])

and
(exists find[state])

respectively. These are network layouts: they spec-
ify a structure for arranging modules (and their lex-
ical parameters) into a complete network. Andreas
et al. (2015) use hand-written rules to deterministi-
cally transform dependency trees into layouts, and
restricted to producing simple structures like the
above for non-synthetic data. For full generality, we
will need to solve harder problems, like transform-
ing What cities are in Georgia? (Figure 1) into

(and
find[city]
(relate[in] lookup[Georgia]))

In this paper, we present a model for learning to se-
lect such structures from a set of automatically gen-
erated candidates. We call this model a dynamic
neural module network.

1But note that unlike formal semantics, the behavior of the
primitive functions here is itself unknown.

Stacked Attention Networks for Image Question Answering

Zichao Yang1, Xiaodong He2, Jianfeng Gao2, Li Deng2, Alex Smola1

1Carnegie Mellon University, 2Microsoft Research, Redmond, WA 98052, USA
zichaoy@cs.cmu.edu, {xiaohe, jfgao, deng}@microsoft.com, alex@smola.org

Abstract

This paper presents stacked attention networks (SANs)
that learn to answer natural language questions from im-
ages. SANs use semantic representation of a question as
query to search for the regions in an image that are related
to the answer. We argue that image question answering
(QA) often requires multiple steps of reasoning. Thus, we
develop a multiple-layer SAN in which we query an image
multiple times to infer the answer progressively. Experi-
ments conducted on four image QA data sets demonstrate
that the proposed SANs significantly outperform previous
state-of-the-art approaches. The visualization of the atten-
tion layers illustrates the progress that the SAN locates the
relevant visual clues that lead to the answer of the question
layer-by-layer.

1. Introduction
With the recent advancement in computer vision and

in natural language processing (NLP), image question an-
swering (QA) becomes one of the most active research ar-
eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-
tems that have been studied extensively in the NLP commu-
nity [28, 14, 4, 31, 3, 32], image QA systems are designed to
automatically answer natural language questions according
to the content of a reference image.

Most of the recently proposed image QA models are
based on neural networks [7, 21, 18, 1, 19]. A commonly
used approach was to extract a global image feature vector
using a convolution neural network (CNN) [15] and encode
the corresponding question as a feature vector using a long
short-term memory network (LSTM) [9] and then combine
them to infer the answer. Though impressive results have
been reported, these models often fail to give precise an-
swers when such answers are related to a set of fine-grained
regions in an image.

By examining the image QA data sets, we find that it is
often that case that answering a question from an image re-
quires multi-step reasoning. Take the question and image in
Fig. 1 as an example. There are several objects in the im-
age: bicycles, window, street, baskets and

Question:
What are sitting
in the basket on

a bicycle?

CNN/
LSTM

Softm
ax

dogs
Answer:

CNN

+
Query

+

Attention layer 1 Attention layer 2

feature vectors of different
parts of image

(a) Stacked Attention Network for Image QA

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. The
stacked attention network first focuses on all referred concepts,
e.g., bicycle, basket and objects in the basket (dogs) in
the first attention layer and then further narrows down the focus in
the second layer and finds out the answer dog.

Figure 1: Model architecture and visualization

dogs. To answer the question what are sitting in
the basket on a bicycle, we need to first locate
those objects (e.g. basket, bicycle) and concepts
(e.g., sitting in) referred in the question, then gradu-
ally rule out irrelevant objects, and finally pinpoint to the re-
gion that are most indicative to infer the answer (i.e., dogs
in the example).

In this paper, we propose stacked attention networks
(SANs) that allow multi-step reasoning for image QA.
SANs can be viewed as an extension of the attention mech-
anism that has been successfully applied in image caption-
ing [30] and machine translation [2]. The overall architec-
ture of SAN is illustrated in Fig. 1a. The SAN consists of
three major components: (1) the image model, which uses

1

ar
X

iv
:1

51
1.

02
27

4v
1

 [c
s.L

G
]

7
N

ov
 2

01
5

Explicit Language

Ex
pl

ic
it

Vi
si

on

Vectors /  
Neurons

Detectors 
Classes

Syntax / SemanticsVector / Neurons

Malinowski et. al. ‘14

Malinowski et. al ‘15  
Antol et. al. ‘15
Ren et.al. '15
Gao et. al. ‘15
Ma et. al. ’16
Q. Wu et. al. ‘16

Zhou et. al. ‘15

Andres et. al. '16

Shih et. al. '16
Xu et. al. '16  
Yang et. al. '16
K. Chen et. al. ’16
J. Lu et. al. ‘16

Ilievski et. al. ‘16

Figure 5.3: Since our first, logic-based approach to Visual Turing Test (NIPS’14, top-right
of the figure), numerous methods have appeared. Similarly, many methods have followed
our neural-based method (ICCV’15, bottom of the figure). In the x-axis, we characterize
methods according to explicit assumptions they make about the structure in the language.
In the y-axis, we characterize methods according to explicit assumptions they make about
the structure in the vision.

5.3.2.2 Methods

Recently, a large number of architectures have been proposed to approach Visual Turing Test
[Malinowski and Fritz 2014b]. They range from symbolic to neural-based approaches. There
are also architectures that combine both symbolic and neural paradigms together. Some
approaches use explicit visual representation in the form of bounding boxes surrounding
objects of interest, while other use global full frame image representation, or soft attention
mechanism. Yet others use an external knowledge base that helps in answering questions.
Figure 5.3 depicts various methods depending on explicit/implicit assumptions they make
while modeling a vision or language.

Symbolic-based approaches In our first work on the Visual Turing Test [Malinowski
and Fritz 2014a], also presented in Chapter 9, we present a question answering system that
is based on a semantic parser on a varied set of human question-answer pairs. Although it is
the first attempt to handle question answering on DAQUAR, and despite its introspective
benefits, it is a rule-based approach that requires a careful schema crafting, is not that
scalable, and finally it strongly depends on the output of visual analysis methods as joint
training in this model is not yet possible. Due to such limitations, the community has rather
shifted towards either neural-based or combined approaches. This method is depicted in the
top-right of Figure 5.3 since the semantic parser that the method uses requires an explicit,

58 Chapter 5. Related Work

compositional grammatical rules. Similarly, the method takes advantage of the bounding
boxes, explicitly pointing to the objects in the image.

Neural-based approaches with full frame CNN Most contemporary approaches use
a global image representation, i.e. they encode the whole image with a CNN. Questions are
then encoded with an RNN [Malinowski et al. 2015; Ren et al. 2015a; Gao et al. 2015] or a
CNN [Ma et al. 2015]. In contrast to symbolic-based approaches, neural-based architectures
offer scalable and joint end-to-end training that liberates them from ontological commitment
that would otherwise be introduced by a semantic parser. Moreover, such approaches are
not ‘hard’ conditioned on the visual input and therefore can naturally take advantage of
different language biases in question-answer pairs, which we interpret as learning common
sense knowledge. Our work, presented in the thesis in Chapter 10 and Chapter 11, belong to
this category [Malinowski et al. 2015, 2016], and is among the very first methods of this kind.
These approaches to the Visual Turing Test are placed in the bottom-left of Figure 5.3 as
they leave decisions about grammar, word and image representations to the neural network.

Neural-based approaches with an enhanced visual representation Global im-
age representation can be enriched by using additional visual cues. For instance, Mokar-
ian Forooshani et al. [2016] show that a better performance on the Visual Madlibs task
can be achieved with a representation extracted from a large number of highly overlapping
object proposals. They argue that such a modeling of the image builds a multi-part, and
multi-scale image representation. A similar idea is also introduced by Tommasi et al. [2016],
but instead of using a large number of proposals, they use a few, different detectors. Finally,
they build a rich visual representation by integrating together different detectors as well as
particular global representations that come from specialized CNNs.

Attention-based approaches Following Xu et al. [2015], who propose to use spatial
attention for image description, Yang et al. [2015]; Xu and Saenko [2015]; Zhu et al. [2016];
Chen et al. [2015]; Shih et al. [2016]; Lu et al. [2016]; Fukui et al. [2016] predict a latent
weighting (attention) of spatially localized images features (typically a convolutional layer
of the CNN) based on the question. The weighted image representation rather than the full
frame feature representation is then used as a basis for answering the question. In contrast
to the previous models using attention, Dynamic Memory Networks (DMN) [Kumar et al.
2016; Xiong et al. 2016] first pass all spatial image features through a bi-directional GRU
that captures spatial information from the neighboring image patches, and next retrieve
an answer from a recurrent attention based neural network that allows to focus only on a
subset of the visual features extracted in the first pass. Another interesting direction has
been taken by Ilievski et al. [2016] who run state-of-the-art object detector of the classes
extracted from the key words in the question. In contrast to other attention mechanisms,
such an approach offers a focused, question dependent, ‘hard’ attention.

Answering with an external knowledge base Wu et al. [2016b] argue for an approach
to the Visual Turing Test that first represents an image as an intermediate semantic attribute

5.4. Concluding Remarks 59

representation, and next query external knowledge sources based on the most prominent
attributes and relate them to the question. With the help of such an external knowledge
base, such an approach captures a richer semantic representation of the world, beyond what
is directly contained in images.

Compositional approaches A different direction is taken by Andreas et al. [2016b] who
predict the most important components to answer the question with a natural language
parser. The components are then mapped to neural modules, which are composed to a
deep neural network based on the parse tree. While each question induces a different
network, the modules are trained jointly across questions. This work compares to Malinowski
and Fritz [2014a] by exploiting explicit assumptions about the compositionality of natural
language sentences. Related to the Visual Turing Test, Malinowski and Fritz [2014c] have
also combined a neural based representation with the compositionality of the language for
the text-to-image retrieval task (Appendix A contains a more detailed exposition of the
architecture).

Dynamic parameters Noh et al. [2015b] have an image recognition network and a
Recurrent Neural Network (GRU) that dynamically change the parameters (weights) of a
visual representation based on the question. More precisely, the parameters of its second
last layer are dynamically predicted from the question encoder network and in this way
changing for each question. While question encoding and image encoding are pre-trained,
the network learns parameter prediction only from image-question-answer triples.

5.4 Concluding Remarks
In this thesis, we present our work that span three different Computer Vision areas: image
recognition, text-to-image retrieval, and Visual Turing Test. We have built our work based
on a large number of methods developed in various scientific fields, with the most tightly
related prior work enlisted in this chapter (and with the following chapters of this thesis
discussing only prior work specific to the respective chapter at the time of its publication).
Two such scientific fields, Machine Recognition and Natural Language Understanding, are
also introduced in Chapter 3 and Chapter 4. We also believe that our work has impacted and
inspired the research community in numerous ways. In particular, with the rich subsequent
work as the evidence, our approach to Visual Turing Test has greatly influenced the field.
Appearance of a large number of various datasets that model different aspects of Visual
Turing Test along with the methods to handle visual question answering is crucial to foster
the progress on the holistic scene understanding, and therefore also building more advanced,
‘intelligent’ machines.

Chapter 6

Learning Smooth Pooling
Regions for Visual Recognition

Contents
6.1 Introduction . 62

6.2 Related Work . 62

6.3 Outline . 63

6.4 Method . 63

6.4.1 Parameterized Pooling Operator . 63

6.4.2 Learnable Pooling Regions . 64

6.4.3 Regularization Terms . 65

6.4.4 Approximation of the Model . 66

6.5 Experimental Results . 66

6.6 Conclusion . 71

Visual recognition sits in the core of the Computer Vision research (Chapter 3), and
is a key component in developing holistic machines (Chapter 1). In this chapter,
we introduce a framework to learn smooth pooling regions. Later on, in Chapter 7,

we show a link between spatial pooling regions and spatial templates that can be used in
the text-to-image retrieval task.

From the early HMAX model to Spatial Pyramid Matching, spatial pooling has played
an important role in visual recognition pipelines. By aggregating local statistics, it equips the
recognition pipelines with a certain degree of robustness to translation and deformation yet
preserving spatial information. Despite of its predominance in current recognition systems,
we have seen little progress to fully adapt the pooling strategy to the task at hand. In
this paper, we propose a flexible parameterization of the spatial pooling step and learn
the pooling regions together with the classifier. We investigate a smoothness regularization
term that in conjuncture with an efficient learning scheme makes learning scalable. Our
framework can work with both popular pooling operators: sum-pooling and max-pooling.
Finally, we show benefits of our approach for object recognition tasks based on visual words
and higher level event recognition tasks based on object-bank features. In both cases, we
improve over the hand-crafted spatial pooling step showing the importance of its adaptation
to the task.

62 Chapter 6. Learning Smooth Pooling Regions for Visual Recognition

6.1 Introduction

Spatial pooling plays a crucial role in modern object recognition and detection systems.
Motivated from biology [Hubel and Wiesel 1962; Fukushima and Miyake 1982; LeCun et al.
1990; Riesenhuber and Poggio 2009] and statistics of locally orderless images [Koenderink
and Van Doorn 1999], the spatial pooling approach has been found useful as an intermediate
step of many today’s computer vision methods ranging from local features based approaches
[Lazebnik et al. 2006; Yang et al. 2009] to higher-level semantic representations Li-Jia et al.
[2010]. In order to form more robust features under translation or small object deformations,
activations of codes and features are pooled over larger areas in a spatial pyramid scheme
[Lazebnik et al. 2006; Yang et al. 2009] via a sum or max operator. Unfortunately, this
critical decision, namely the spatial division, is most prominently based on hand-crafted
layouts and therefore data and task independent.

We propose a flexible parameterization that allows for a richer set of possible pooling
regions and show results on classification tasks using two different pipelines [Coates and Ng
2011; Li-Jia et al. 2010]. Moreover, we extend the learnable pooling regions [Malinowski and
Fritz 2013b] to the events recognition task with object banks as high level features. The
representation is learned jointly with the classifier to support the recognition task. In order
to deal with the increased flexibility of the model, we investigate different regularizers and
efficient learning schemes. In particular, we propose a smoothness regularizer that yields the
strongest performance improvements in our experiments.

6.2 Related Work

There is an increasing interest to push the boundary of learning based approaches towards
fully optimized and adaptive architectures where design choices, that would potentially
constrain or bias a model, are kept to a minimum. Neural networks have a great tradition
of approaching hierarchical learning problems and training intermediate representations
[Ranzato et al. 2007; Le et al. 2012]. Along this line, we propose a learnable spatial pooling
strategy that can discriminatively shape the pooling regions. In contrast to convolutional
neural architectures [Ranzato et al. 2007], our particular architecture has a direct interpre-
tation as a global pooling strategy and therefore subsumes popular spatial pyramids as a
special case. Yet we have the freedom to investigate different regularization terms that lead
to new pooling strategies when optimized jointly with the classifier.

Recent progress has been made in learning pooling regions in the context of image
classification using the Spatial Pyramid Matching (SPM) pipeline [Lazebnik et al. 2006;
Yang et al. 2009]. Some researchers [Jia and Huang 2011; Jia et al. 2012; Russakovsky et al.
2012; Sánchez et al. 2012; Feng et al. 2011; Krapac et al. 2011; Koniusz and Mikolajczyk
2011] have further investigated how to liberate the recognition from preconceptions of
the hand crafted recognition pipelines. However, these methods still make quite strong
assumptions on the solutions that can be achieved. For instance Jia and Huang [2011]
optimizes binary pooling strategies that are given by the superposition of rectangular basis
functions, and Feng et al. [2011] finds pooling regions by applying a linear discriminant

6.3. Outline 63

analysis for individual pooling strategies and training a classifier afterwards. Krapac et al.
[2011] and Koniusz and Mikolajczyk [2011] model spatial location of the visual words by
fitting Mixture of Gaussians. Russakovsky et al. [2012] and Sánchez et al. [2012] have shown
improvement over SPM by pooling the objects and background separately. Although the last
two methods are image-dependent they strongly depend on the object localization which is a
non-trivial task if bounding boxes are absent during training time. In contrast, our method
learns the shape of the pooling region without resorting to the notion of the bounding boxes.
However both Russakovsky et al. [2012] and Sánchez et al. [2012] can be combined with our
approach as they are complementary. Our method is also complementary to van Gemert
[2011] which exploits bias in the photographic style and generalizes SPM to quantize and
pool over such attributes as colorfulness, depth of field, viewpoint, lighting, and saliency. In
contrast, we learn the pooling regions directly without the use of such additional cues.

6.3 Outline
First, we propose our parameterized pooling operator and show how to jointly optimize
the parameters together with the classifier. To cope with the large number of parameters,
we investigate regularizers and an efficient learning scheme. We evaluate our method on
the CIFAR-10 and show strong improvements in the regime of small dictionaries where
our flexible model shows its capability to make best use of the representation by exploring
spatial pooling strategies specific to every coordinate of the code. We also show strong
classification performance on the CIFAR-100 dataset where our method outperforms, to the
best of our knowledge, the state-of-the-art on this dataset in the regime of spatial pyramid
architectures. Finally, we also apply our model to higher level events classification tasks that
utilize a representation based on object-bank features [Li-Jia et al. 2010].

6.4 Method
In contrast to the methods that use fixed spatial pooling regions in the object classification
task [Lazebnik et al. 2006; Yang et al. 2009] our method jointly optimizes both the classifier
and the pooling regions. In this way, the learning signal available in the classifier can help
shaping the pooling regions in order to arrive at better pooled features.

6.4.1 Parameterized Pooling Operator

The simplest form of the spatial pooling is computing histogram over the whole image. This
can be expressed as Σ(U) :=

∑M
j=1 uj , where uj ∈ RK is an encoded patch extracted from

the image (out of M such codes) and an index j refers to the spatial location that the code
originates from1. Another popular pooling scheme that has been proven successful [Yang
et al. 2009] is max-pooling: M(U) := maxMj=1 uj . Since the pooling approach looses spatial
information of the codes, Lazebnik et al. [2006] proposed to first divide the image into
subregions, and afterwards to create pooled features by concatenating histograms computed

1That is j = (x, y) where x and y refer to the spatial location of the center of the extracted patch.

64 Chapter 6. Learning Smooth Pooling Regions for Visual Recognition

over each subregion. There are two problems with such an approach: first, the division is
largely arbitrary and in particular independent of the data; second, discretization artifacts
occur as spatially nearby codes can belong to two different regions as the ’hard’ division is
made.

In this paper we address both problems by using a parameterized version of the pooling
operator

Θw(U) := ρMj=1(wj ◦ uj) (6.1)

where a◦b is the element-wise multiplication, and ρ is a pooling function. Here, we investigate
either sum or max pooling functions and therefore ρ ∈ {max,

∑}. Standard spatial division
of the image can be recovered from Equation 6.1 by setting the vectors wj either to a
vector of zeros 0, or ones 1. For instance, features obtained from dividing the image into
2 subregions using sum pooling can be recovered from Θ by concatenating two vectors:∑M

2
j=1 1 ◦ uj +

∑M
j=M

2 +1 0 ◦ uj , and
∑M

2
j=1 0 ◦ uj +

∑M
j=M

2 +1 1 ◦ uj , where
{

1, ..., M2
}
and{

M
2 + 1, ...,M

}
refer to the first and second half of the image respectively.

In general, let F := {Θw}w be a family of the pooling functions given by Equation 6.1,
parameterized by the vector w, and let w∗,l be the ’best’ parameter chosen from the family
F based on the initial configuration l and a given set of images. First row of Table 6.2 shows
four initial configurations that mimic the standard 2-by-2 spatial image division. Every
initial configuration can lead to different w∗,l as it is shown in Table 6.2. Clearly, the family
F contains all possible ’soft’ and ’hard’ spatial divisions of the image, and therefore is their
generalization.

6.4.2 Learnable Pooling Regions

In the SPM architectures the pooling weights w are designed by hand, whereas here we aim
for joint learning w together with the parameters of the classifier. Intuitively, the classifier
during training has access to the classes that the images belong to, and therefore can shape
the pooling regions. On the other hand, the method aggregates statistics of the codes over
such learned regions and pass them to the classifier allowing to achieve higher accuracy.
Such joint training of the classifier and the pooling regions can be done by adapting the
backpropagation algorithm [Bishop 1999; LeCun et al. 1998a], and so can be interpreted as
a densely connected multilayer perceptron [Collobert and Bengio 2004; Bishop 1999].

Consider a sampling scheme and an encoding method producing M codes each K

dimensional. Every coordinate of the code is an input layer for the multilayer perceptron.
Then we connect every j-th input unit at the layer k to the l-th pooling unit akl via the
relation wkljukj . Since the receptive field of the pooling unit akl consists of all codes at the
layer k, we have akl :=

∑M
j=1 w

k
lju

k
j or akl := maxMj=1 w

k
lju

k
j , and so in the vector notation

al := ρMj=1(wl
j ◦ uj) = Θwl(U) (6.2)

Next, we connect all pooling units with the classifier allowing the information to circulate
between the pooling layers and the classifier. We use logistic regression which is connected

6.4. Method 65

to the pooling units via the formula

J(Θ) := − 1
D

D∑

i=1

C∑

j=1
1{y(i) = j} log p(y(i) = j|a(i); Θ) (6.3)

where D denotes the number of all images, C is the number of all classes, y(i) is a label
assigned to the i-th input image, and a(i) are responses from the ‘stacked’ pooling units
[al]l for the i-th image2. We use the logistic function to represent the probabilities: p(y =
j|x; Θ) := exp(θTj x)∑C

l=1
exp(θT

l
x)
. Since the classifier is connected to the pooling units, our task is

to learn jointly the pooling parameters W together with the classifier parameters Θ, where
W is the matrix containing all pooling weights. Finally, we use standard gradient descent
algorithm that updates the parameters using the following fixed point iteration

Xt+1 := Xt − γ∇J(Xt) (6.4)

where in our case X is a vector consisting of the pooling parameters W and the classifier
parameters Θ.

6.4.3 Regularization Terms

In order to improve the generalization, we introduce regularization of our model as we deal
with a large number of the parameters. For the classification Θ and pooling parametersW , we
employ L2 regularization terms: ||Θ||2l2 and

∑
k ||W k||2l2 . In order to maintain interpretable

pooling regions we constraint the solution to the unit cube. This is implemented via projects
onto the cube during the optimization. To reduce quantization artifacts of the pooling
strategy as well as to ensure smoothness of the output w.r.t. small translations of the image,
the model penalizes weights whenever the pooling region is non-smooth. This can be done
by measuring the spatial variation ||∇xW k||2l2 + ||∇yW k||2l2 for every layer k. Therefore our
overall optimization objective is

minimize
W ,Θ

JR(Θ,W) := (6.5)

− 1
D

D∑

i=1

C∑

j=1
1{y(i) = j} log p(y(i) = j|a(i); Θ)

+ α1
2 ||Θ||

2
l2 + α2

2 ||W ||
2
l2

+ α3
2
(
||∇xW ||2l2 + ||∇yW ||2l2

)

subject toW ∈ [0, 1]K×M×L

where al is the l-th pooling unit described by Equation 6.2, and ||W ||l2 is the Frobenius
norm.

2Providing the codes U (i) are collected from the i-th image and a(i)
l

:= Θwl (U (i)) then a(i) := [a(i)
l

]l.

66 Chapter 6. Learning Smooth Pooling Regions for Visual Recognition

6.4.4 Approximation of the Model

The presented approach is demanding to train in the means of the CPU time and memory
storage when using high dimensional representations. The number of the pooling parameters
to learn grows as K ×M × L, where K is dimensionality of codes, M is the number of
patches taken from the image and L is the number of pooling units. Therefore, we propose
two approximations to our method making the whole approach scalable to large dictionaries.
However, we emphasize that learned pooling regions have very little if any overhead compared
to standard spatial division approaches at test time.

The first approximation does a fine-grained spatial partition of the image (3 by 3 pixels),
and then pools the codes over such subregions. This operation reduces the number of spatial
locations by the factor of the pre-pooling size. The second approximation divides a K

dimensional code into K
D batches, each D dimensional. Then we train our model on all such

batches in parallel to obtain the pooling weights. Afterwards, we train the classifier on top
of the concatenation of the trained, partial models. We also consider a redundant set of such
batches in our experiments in order to compensate for potential approximation errors. As
opposed to the approximations proposed by Le et al. [2012], our training is fully parallel and
doesn’t need communication between different batches/machines. In addition, the training
of the small models per batch shows on average 5 times faster convergence than the full
models.

Implementation details To learn the parameters of the model we use the limited-
memory BFGS algorithm3. The hyperparameters were selected by 5-fold cross-validation.
Our implementation is available at http://mpii.de/learning-smooth-pooling-regions.

6.5 Experimental Results
First, we evaluate our method on the CIFAR-10 and CIFAR-100 object recognition datasets
[Krizhevsky and Hinton 2010]. Furthermore, we provide insights into the learned pooling
strategies as well as investigate transfer between datasets. Second, we show that our method
also translates to a high level recognition task of events in a max pooling setting with object
bank features [Li-Jia et al. 2010] on the UIUC sports events dataset. [Li-Jia and Fei-Fei
2007]. We start by describing our experimental setup.

Datasets The CIFAR-10 and CIFAR-100 datasets contain 50000 training color images
and 10000 test color images from respectively 10 and 100 categories, with 6000 and 600
images per class respectively. All images have the same size: 32×32 pixels, and were sampled
from the 80 million tiny images dataset [Torralba et al. 2008]. UIUC sports events [Li-Jia
and Fei-Fei 2007] is a dataset containing 8 sports categories such as rowing, badminton,
polo, bocce, snowboarding, croquet, sailing, and rock climbing. The number of images varies
per class from 137 to 250. We follow Li-Jia et al. [2010] and use 70 images per class for
training, and 60 images per class for testing.

3implementation by Mark Schmidt: http://www.di.ens.fr/~mschmidt/Software/minFunc.html

http://mpii.de/learning-smooth-pooling-regions

6.5. Experimental Results 67

Feature representations In order to insure comparability we follow the evaluation
pipeline of Coates and Ng [2011] for the object recognition experiment. We extract normalized
and whitened 6× 6 patches from images using a dense, equispaced grid with a unit sample
spacing. As the next step, we employ the K-means assignment and triangle encoding [Coates
and Ng 2011; Coates et al. 2011] to compute codes – a K-dimensional representation of the
patch. As we want to be comparable to Coates et al. [2011], who uses a spatial division
into 2-by-2 subregions which results in 4 ·K pooled features, we use 4 pooling units, too.
Furthermore, we use a standard division (first row of Table 6.2) as an initialization of our
model. In addition to the Coates and Ng [2011] pipeline, we also apply our architecture to
max pooling and object banks [Li-Jia et al. 2010]. The latter use object filters [Felzenszwalb
et al. 2008] and spatial pyramid matching [Lazebnik et al. 2006; Yang et al. 2009] to build a
high-level representation of the image. For both feature representations we use the source
code provided by the authors.

Evaluation of our method on small dictionaries Figure 6.1a shows the classification
accuracy of our full method against the baseline [Coates and Ng 2011]. Since we train the
pooling regions without any approximations in this set of experiments the results are limited
to dictionary sizes up to 800. Our method outperforms the approach of Coates by 10% for
dictionary size 16 (our method achieves the accuracy 57.07%, whereas the baseline only
46.93%). This improvement is consistent up to the bigger dictionaries although the margin
is getting smaller. Our method is about 2.5% and 1.88% better than the baseline for 400
and 800 dictionary elements respectively.

Scaling up to sizable dictionaries In Section 6.4.4 we have discussed how to divide the
codes into low dimensional batches and learn the pooling regions on those. In the following
experiments we use batches with 40 entries extracted from the original code, as those fit
conveniently into the memory of a single, standard machine (about 5 Gbytes for the main
data) and can all be trained in parallel.

Besides a reduction in the memory requirements, the batches have shown multiple benefits
in practice due to smaller number of parameters. We need less computations per iterations
as well as observe faster convergence. Figure 6.1b shows the classification performance for
larger dictionaries where we examined the full model [Our], the baseline [Coates], random
pooling regions (described in Section 6.5), bag of features, and two possible approximation -
the batched model [Our (batches)], and the redundantly batched model [Our (redundant
batches)].

Our test results are presented in Table 6.1. We observe little if any drop in accuracy
when using our approximation scheme. We attribute this to the better conditioned learning
problem of the smaller codes within one batch. With an accuracy for the batched model
of 79.6% we outperform the Coates baseline by 1.7%. Interestingly, we gain another small
improvement to 80.02% by adding redundant batches which amounts to a total improvement
of 2.12% compared to the baseline. Our method performs comparable to the pooling strategy
of Jia and Huang [2011] which uses more restrictive assumptions on the pooling regions and
employs feature selection algorithm. To the best of our knowledge Goodfellow et al. [2013]

68 Chapter 6. Learning Smooth Pooling Regions for Visual Recognition

0 50 100 150 200 250 300 350 400
35

40

45

50

55

60

65

70

75

80

Dictionary size

A
c
c
u

ra
c
y

Our

Coates

Random Pooling

Bag of Features

(a) Small dictionaries.

200 400 600 800 1000 1200 1400 1600
55

60

65

70

75

80

85

Dictionary size

A
c
c
u
ra

c
y

Our (redundant batches)

Our (batches)

Our

Coates

Random Pooling

Bag of Features

(b) Larger dictionaries.

Figure 6.1: Figure 6.1a shows accuracy of the classification with respect to the number
of dictionary elements on smaller dictionaries. Figure 6.1b shows the accuracy of the
classification for bigger dictionaries when batches, and the redundant batches were used.
Experiments are done on CIFAR-10.

achieves the best results on the CIFAR-10 dataset with an accuracy 90.62% with a method
based on convolutional maxout networks architecture and data augmentation – different
from global pooling architectures that we investigate in our study.

Random pooling regions Our investigation also includes results using random pooling
regions where the weights for the parameterized operator (Equation 6.2) were sampled from
normal distribution with mean 0.5 and standard deviation 0.1, that is wl

j ∼ N (0.5, 0.1) for
all l. This notion of the random pooling differs from the Jia et al. [2012] where random
selection of rectangles is used. The experiments show that the random pooling regions can
compete with the standard spatial pooling (Figures 6.1a and 6.1b) on the CIFAR-10 dataset,
and suggest that random projection can still preserve some spatial information. This is
especially visible in the regime of bigger dictionaries where the difference is only 1.09%.

6.5. Experimental Results 69

Method Dict. size Features Acc.
Jia 1600 6400 80.17%
Coates 1600 6400 77.9%
Our (batches) 1600 6400 79.6%
Our (redundant) 1600 12800 80.02%

Table 6.1: Comparison of our methods against the baseline Coates and Ng [2011] and Jia and
Huang [2011] with respect to the dictionary size, number of features and the test accuracy
on CIFAR-10.

regularization pooling weights
dataset: CIFAR-10 ; dictionary size: 200

Coates (no learn.)

l2

smooth

smooth & l2
dataset: CIFAR-10 ; dictionary size: 1600

smooth & batches
dataset: CIFAR-100 ; dictionary size: 1600

smooth & batches

Table 6.2: Visualization of different pooling strategies obtained for different regularizations,
datasets and dictionary size. Every column shows the regions from two different coordinates
of the codes. First row presents the initial configuration also used in standard hand-crafted
pooling methods. Brighter regions denote larger weights.

The obtained results indicate that hand-crafted division of the image into subregions is
questionable, and call for a learning-based approach.

Investigation of the regularization terms Our model (Equation 6.5) comes with two
regularization terms associated with the pooling weights, each imposing different assumptions
on the pooling regions. Hence, it is interesting to investigate their role in the classification
task by considering all possible subsets of {l2, smooth}, where “l2” and “smooth” refer to
||W ||2l2 and

(
||∇xW ||2l2 + ||∇yW ||2l2

)
respectively. Table 6.3 shows our results on CIFAR-10.

We choose a dictionary size of 200 for these experiments, so that we can evaluate different
regularization terms without any approximations. We conclude that the spatial smoothness
regularization term is crucial to achieve a good predictive performance of our method whereas
the l2-norm term can be left out, and thus also reducing the number of hyper-parameters.
Based on the cross-validation results (second column of Table 6.3), we select this setting for

70 Chapter 6. Learning Smooth Pooling Regions for Visual Recognition

Regularization CV Acc. Test Acc.
free 68.48% 69.59%
l2 67.86% 68.39%
smooth 73.36% 73.96%
l2 + smooth 70.42% 70.32%

Table 6.3: We investigate the impact of the regularization terms on the CIFAR-10 dataset
with dictionary size equals to 200. Term “free” denotes the objective function without both
regularization terms. The cross-validation accuracy and test accuracy are shown.

Method Dict. size Features Acc.
Jia 1600 6400 54.88%
Coates 1600 6400 51.66%
Our (batches) 1600 6400 56.29%

Table 6.4: The classification accuracy on CIFAR-100, where our method is compared against
the Coates and Ng [2011] and Jia and Huang [2011].

further experiments.

Experiments on the CIFAR-100 dataset We also investigate how the model performs
on more demanding CIFAR-100 dataset with 100 classes. Our model with the spatial
smoothness regularization term on the 40 dimensional batches achieves 56.29% accuracy. To
our best knowledge, this result constitutes the state-of-the-art performance on this dataset
in the regime of SPM architecture, outperforming Jia and Huang [2011] by 1.41%, and the
baseline by 4.63%. Non-global pooling schemes like the convolutional max-out networks
have recently achieved a performance of up to 61.43% [Goodfellow et al. 2013].

Transfer of the pooling regions between datasets Beyond the standard classification
task, we also examine if the learned pooling regions are transferrable between datasets. In this
scenario the pooling regions are first trained on the source dataset and then used on the target
dataset to train a new classifier. We use dictionary of 1600 with 40-dimensional batches. Our
results (Table 6.5) suggest that the learned pooling regions are indeed transferable between
both datasets. While we observe a decrease in performance when learning the pooling
strategy on the less diverse CIFAR-10 dataset, we do see improvements for learning on the
richer CIFAR-100 dataset. We arrive at a test accuracy of 80.35% which is an additional
improvement of 0.75% and 0.18% over our best results (batch-based approximation) and Jia
and Huang [2011] respectively.

Visualization and analysis of pooling strategies Table 6.2 visualizes different pooling
strategies investigated in this paper. The first row shows the widely used rectangular spatial
division of the image. The other visualizations correspond to pooling weights discovered
by our model using different regularization terms, datasets and dictionary size. The second
row shows the results on CIFAR-10 with the “l2” regularization term. The pooling is most

6.6. Conclusion 71

Source Target Accuracy
CIFAR-10 CIFAR-100 52.86%
CIFAR-100 CIFAR-10 80.35%

Table 6.5: We train the pooling regions on the ’Source’ dataset. Next, we use such regions
to train the classifier on the ’Target’ dataset where the test accuracy is reported.

UIUC sports
Object Banks + SPM [Li-Jia et al. 2010] 76.3%
Object Banks + our method 79.4%

Table 6.6: Our approach described in Section 6.4 with max pooling function and object
banks.

distinct from the other results, as it learns highly localized weights. This pooling strategy has
also performed the worst in our investigation (Table 6.3). The ”smooth” pooling performs the
best. We see that weights are localized but vary smoothly over the image. The weights expose
a bias towards initialization shown in the first row. All methods with the spatial smoothness
regularization tend to focus on similar parts of the image, however “l2 & smooth” is more
conservative in spreading out the weights. The last two rows show weights trained using our
approximation. Visual inspection shows a similar level of localization and smoothness to the
regions obtained without approximation. This further supports the use of our division into
independent batches.

Results using object banks Lastly, we investigate event recognition on the UIUC Sports
database based on object bank features. Li-Jia et al. [2010] proposes a spatial pyramid
matching architecture on top of the object bank features – which makes it an application
target for our learned pooling regions. Please note that this setting is quite different form the
previous task as high level event recognition is addressed and we optimize pooling regions in
a max pooling context. In the experiments we use 4 pooling units with max pooling function
on top of the response maps from the object bank filters [Li-Jia et al. 2010; Felzenszwalb
et al. 2008]. Our results (Table 6.6) show the importance of adaptive approaches also in this
high level recognition context. We improve the results from [Li-Jia et al. 2010] that use a
hand crafted SPM architecture by 3.1%.

6.6 Conclusion
In this paper we propose a flexible parameterization of global pooling operators which can
be trained jointly with the classifier. We study the effect of different regularizers showing the
importance of the smoothness. To train the large set of parameters we propose approximations
to our model allowing efficient and parallel training without loss of accuracy. Our method
outperforms popular hand-crafted pooling-based methods. While our improvements are
consistent over the whole range of dictionary sizes, the margin is most impressive for small
dictionaries with the improvement up to 10% compared to the baseline [Coates and Ng

72 Chapter 6. Learning Smooth Pooling Regions for Visual Recognition

2011]. Finally, we apply our method and improve over SPM to high level event recognition
using object-banks representation. We believe that our method is a flexible framework to
further investigate different pooling strategies and is broadly applicable in spatial pooling
architectures.

Chapter 7

A Pooling Approach to
Modelling Spatial Relations for

Image Retrieval and Annotation

Contents
7.1 Introduction . 74

7.2 Related work . 75

7.3 Method . 76

7.3.1 Modeling spatial representations by spatial pooling 77

7.3.2 Estimating spatial templates . 78

7.3.3 Deep fragment embeddings with spatial reasoning 79

7.4 Experiments . 80

7.4.1 Dataset . 81

7.4.2 Evaluation . 82

7.5 Summary . 86

7.6 Visual inspection . 87

Over the last two decades we have witnessed strong progress on modeling visual object
classes, scenes and attributes that have significantly contributed to automated
image understanding. On the other hand, surprisingly little progress has been

made on incorporating a spatial representation and reasoning in the inference process. In
this chapter, we propose a pooling interpretation of spatial relations that we presented in
Chapter 6. Next, we show how it improves image retrieval and annotations tasks involving
spatial language. Due to the complexity of the spatial language, we argue for a learning-based
approach that acquires a representation of spatial relations by learning parameters of the
pooling operator. We show improvements on previous work on two datasets, two different
tasks, and two different methods. The first method is shown in greater detail in Appendix A.
This architecture creates a recursive network with a topology predicted by a parser. The
second method extends the bi-directional image-to-text architecture of Karpathy et al. [2014]
to explicitly do spatial reasoning. Finally, we provide additional insights on a new dataset
with an explicit focus on spatial relations. This work is a precursor that led us to work on
Visual Turing Test (Chapter 8).

74
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

Figure 2: Computing the Fragment and image-sentence similarities. Left: CNN representations (green) of
detected objects are mapped to the fragment embedding space (blue, Section 3.2). Right: Dependency tree
relations in the sentence are embedded (Section 3.1). Our model interprets inner products (shown as boxes)
between fragments as a similarity score. The alignment (shaded boxes) is latent and inferred by our model
(Section 3.3.1). The image-sentence similarity is computed as a fixed function of the pairwise fragment scores.

We first describe the neural networks that compute the Image and Sentence Fragment embeddings.
Then we discuss the objective function, which is composed of the two aforementioned objectives.

3.1 Dependency Tree Relations as Sentence Fragments
We would like to extract and represent the set of visually identifiable entities described in a sentence.
For instance, using the example in Figure 2, we would like to identify the entities (dog, child)
and characterise their attributes (black, young) and their pairwise interactions (chasing). Inspired
by previous work [5, 22] we observe that a dependency tree of a sentence provides a rich set of
typed relationships that can serve this purpose more effectively than individual words or bigrams.
We discard the tree structure in favor of a simpler model and interpret each relation (edge) as an
individual sentence fragment (Figure 2, right shows 5 example dependency relations). Thus, we
represent every word using 1-of-k encoding vector w using a dictionary of 400,000 words and map
every dependency triplet (R, w1, w2) into the embedding space as follows:

s = f

✓
WR

Wew1

Wew2

�
+ bR

◆
. (1)

Here, We is a d ⇥ 400, 000 matrix that encodes a 1-of-k vector into a d-dimensional word vector
representation (we use d = 200). We fix We to weights obtained through an unsupervised objective
described in Huang et al. [34]. Note that every relation R can have its own set of weights WR and
biases bR. We fix the element-wise nonlinearity f(.) to be the Rectified Linear Unit (ReLU), which
computes x ! max(0, x). The size of the embedded space is cross-validated, and we found that
values of approximately 1000 generally work well.

3.2 Object Detections as Image Fragments
Similar to sentences, we wish to extract and describe the set of entities that images are composed of.
Inspired by prior work [7], as a modeling assumption we observe that the subject of most sentence
descriptions are attributes of objects and their context in a scene. This naturally motivates the use of
objects and the global context as the fragments of an image. In particular, we follow Girshick et al.
[27] and detect objects in every image with a Region Convolutional Neural Network (RCNN). The
CNN is pre-trained on ImageNet [37] and finetuned on the 200 classes of the ImageNet Detection
Challenge [38]. We use the top 19 detected locations and the entire image as the image fragments
and compute the embedding vectors based on the pixels Ib inside each bounding box as follows:

v = Wm[CNN✓c
(Ib)] + bm, (2)

where CNN(Ib) takes the image inside a given bounding box and returns the 4096-dimensional
activations of the fully connected layer immediately before the classifier. The CNN architecture is
identical to the one described in Girhsick et al. [27]. It contains approximately 60 million parameters
✓c and closely resembles the architecture of Krizhevsky et al [25].

3.3 Objective Function
We are now ready to formulate the objective function. Recall that we are given a training set of N
images and corresponding sentences. In the previous sections we described parameterized functions
that map every sentence and image to a set of fragment vectors {s} and {v}, respectively. All
parameters of our model are contained in these two functions. As shown in Figure 2, our model

3

Figure 2: Computing the Fragment and image-sentence similarities. Left: CNN representations (green) of
detected objects are mapped to the fragment embedding space (blue, Section 3.2). Right: Dependency tree
relations in the sentence are embedded (Section 3.1). Our model interprets inner products (shown as boxes)
between fragments as a similarity score. The alignment (shaded boxes) is latent and inferred by our model
(Section 3.3.1). The image-sentence similarity is computed as a fixed function of the pairwise fragment scores.

We first describe the neural networks that compute the Image and Sentence Fragment embeddings.
Then we discuss the objective function, which is composed of the two aforementioned objectives.

3.1 Dependency Tree Relations as Sentence Fragments
We would like to extract and represent the set of visually identifiable entities described in a sentence.
For instance, using the example in Figure 2, we would like to identify the entities (dog, child)
and characterise their attributes (black, young) and their pairwise interactions (chasing). Inspired
by previous work [5, 22] we observe that a dependency tree of a sentence provides a rich set of
typed relationships that can serve this purpose more effectively than individual words or bigrams.
We discard the tree structure in favor of a simpler model and interpret each relation (edge) as an
individual sentence fragment (Figure 2, right shows 5 example dependency relations). Thus, we
represent every word using 1-of-k encoding vector w using a dictionary of 400,000 words and map
every dependency triplet (R, w1, w2) into the embedding space as follows:

s = f

✓
WR

Wew1

Wew2

�
+ bR

◆
. (1)

Here, We is a d ⇥ 400, 000 matrix that encodes a 1-of-k vector into a d-dimensional word vector
representation (we use d = 200). We fix We to weights obtained through an unsupervised objective
described in Huang et al. [34]. Note that every relation R can have its own set of weights WR and
biases bR. We fix the element-wise nonlinearity f(.) to be the Rectified Linear Unit (ReLU), which
computes x ! max(0, x). The size of the embedded space is cross-validated, and we found that
values of approximately 1000 generally work well.

3.2 Object Detections as Image Fragments
Similar to sentences, we wish to extract and describe the set of entities that images are composed of.
Inspired by prior work [7], as a modeling assumption we observe that the subject of most sentence
descriptions are attributes of objects and their context in a scene. This naturally motivates the use of
objects and the global context as the fragments of an image. In particular, we follow Girshick et al.
[27] and detect objects in every image with a Region Convolutional Neural Network (RCNN). The
CNN is pre-trained on ImageNet [37] and finetuned on the 200 classes of the ImageNet Detection
Challenge [38]. We use the top 19 detected locations and the entire image as the image fragments
and compute the embedding vectors based on the pixels Ib inside each bounding box as follows:

v = Wm[CNN✓c
(Ib)] + bm, (2)

where CNN(Ib) takes the image inside a given bounding box and returns the 4096-dimensional
activations of the fully connected layer immediately before the classifier. The CNN architecture is
identical to the one described in Girhsick et al. [27]. It contains approximately 60 million parameters
✓c and closely resembles the architecture of Krizhevsky et al [25].

3.3 Objective Function
We are now ready to formulate the objective function. Recall that we are given a training set of N
images and corresponding sentences. In the previous sections we described parameterized functions
that map every sentence and image to a set of fragment vectors {s} and {v}, respectively. All
parameters of our model are contained in these two functions. As shown in Figure 2, our model

3

Spatial template ‘right of’

Stack of spatial templates

Pooling

Figure 7.1: We propose a pooling regions interpretation of deictic spatial relations, and show
its importance for image retrieval and annotation tasks. We start from a spatial fragment
representing a pair of detections: ’boy’ and ’dog’, and compute spatial representation by
projecting the weighted pooling template at the center of the ’dog’ detection and pooling
the ’boy’ localization accordingly.

7.1 Introduction

In a daily life spatial concepts play an important role in human communication. Our
comprehension and shared understanding of spatial concepts allow us to make references
to specific objects as well as to resolve references made by others. The resolution of such
references consists of two aspects, a linguistic part that expresses a relations and the involved
concepts and perceptual part that allows us to perceive candidate entities that are involved
in the mentioned relations. With spatial relations we can precisely localize object of our
interest, ask an another person to act on that object, and expect from the person that first
she understands the language of spatial relations and second she has a similar understanding
of spatial relations in the environment. As we aim at building machines that “understand”
and act upon our intention expressed in natural language, we need to also take care of
learning spatial concepts from human data so that both – machine and human – refer to a
common apprehension of spatial concepts that are well aligned with each other.

Recent work that has addressed spatial language includes natural language commands for
robotics [Tellex et al. 2011; Guadarrama et al. 2013b] and question answering systems about
the content of real-world scenes [Malinowski and Fritz 2014a] which relies on hand-crafted
approach to spatial representations – often driven by the need for high precision. However,
it is also arguable beneficial for problems requiring high recall such as image search [Hodosh
et al. 2013; Lan et al. 2012] where coverage on a wide range of spatial concepts becomes
important. Yet we are missing techniques to automatically acquire and learn spatial relations
to provide the desired coverage.

Apart from building spatial representations in machine perception, there is a long standing

7.2. Related work 75

interest from psychologists in understanding how human apprehend spatial concepts [Logan
and Sadler 1996; Regier and Carlson 2001]. Mainly based on differences in reference frames,
they categorize spatial concepts into basic, deictic and intrinsic relations. Moreover, the
psychological studies also offer an interesting model of spatial relations, so called spatial
templates [Logan and Sadler 1996]. In our work, we are interested in deriving representations
of deictic spatial relations and their application to today’s image retrieval and annotation
methods. These relations express the position of one object with respect to other objects by
projecting the observer’s frame of reference onto the reference object, and can be modeled
with spatial templates. Conceptually, a spatial template is associated with a spatial relation
and represents regions of acceptability under the relation. It is centered at the object of
reference and computes a goodness of the localization of another object with respect to the
referent.

In our work, we exploit that those models of spatial concepts are tightly related to
the widely used pooling approaches in computer vision. We show in Section 7.3.1, spatial
templates fit into a spatial pooling regions framework [Lazebnik et al. 2006] by fusing ideas of
learning pooling operators [Malinowski and Fritz 2013a] with object-centrism [Russakovsky
et al. 2012].

Finally, we show that our approach to spatial reasoning readily extends two popular
retrieval architectures [Lan et al. 2012; Karpathy et al. 2014] by showing a competitive
or even improved results on a two datasets. We also further analyze our model on a new
datasets with an explicit focus on spatial relations.

Contributions In this work, we show how spatial pooling regions can be used for spatial
representations and reasoning by drawing a link between pooling operators and spatial
templates. Next, we show that the spatial templates can be estimated from data if bounding
boxes are available and there are spatial sentences of the form (object, spatial relation,
object) associated with images. We estimate templates from two sources: our new data
with human annotations, and data with automatically generated annotations according
to some rules [Lan et al. 2012] and point out differences in the obtained templates. The
estimation procedures resembles the experimental scenarios in Logan and Sadler [1996]
but results are obtained from real-world images with many different object categories and
implicit annotations of spatial arrangement. Finally, we extend two retrieval architecture
Lan et al. [2012] and Karpathy et al. [2014] to work with our spatial model. We show how
an explicit representation of spatial relations improves performance quantitatively as well as
qualitatively by showing the association between language and object on example images.

7.2 Related work
Modeling spatial relations in images Previous work has addressed the problem of
image retrieval with structured object queries [Lan et al. 2012] where the authors consider
structured queries - a textual input with a binary spatial preposition between two nouns
- together with a limited number of different spatial prepositions. Our work goes beyond
structured queries and limited spatial vocabulary. For this purpose instead of using a hand-

76
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

crafted representation of a set of only few relations (’above’, ’below’, and ’overlap’ like in
Lan et al. [2012]), we propose a flexible and learnable representation that is based on spatial
templates [Logan and Sadler 1996], and thus can be interpreted as a version of the learnable
pooling regions [Malinowski and Fritz 2013a] centered at the reference object.

Image-sentence alignment While there have been successful methods that align sen-
tences with images [Lin et al. 2014a; Kong et al. 2014] the recent research on embedding
[Socher et al. 2014; Karpathy et al. 2014; Mao et al. 2014] have opened a door for bi-
directional methods that retrieve images based on a textual input, or sentences from a given
image. However, in contrast to our work, none of these methods use spatial reasoning to
improve the alignment. Karpathy et al. [2014] learns an embedding between textual and
visual fragments, while other approaches between an image and a whole sentence.

Spatial pooling regions Spatial pooling has been proven to work well in many recognition
tasks [Lazebnik et al. 2006; Yang et al. 2009] and is still a part of many recent approaches
[Krizhevsky et al. 2012]. Although the research literature is densely populated with many
variations of a spatial pooling regions framework, to the best of our knowledge there is
no work that links pooling regions with spatial reasoning on object detections in a scene.
In this work, we fill this gap and show a suitable interpretation of the framework. Closely
related to our work is an object-centric pooling [Russakovsky et al. 2012] that relies on the
object localization methods to distinguish between a foreground and background and next
pool over both regions separately. Although, our method is also based on the localization of
different objects, we spatially relate every pair of detections in the image to reason about
their spatial arrangement.

Grounding spatial relations Although research on grounding of spatial language has a
long standing tradition, previous methods mostly focus on rule-based spatial representation
[Moratz and Tenbrink 2006; Kruijff et al. 2007] or more recently on a set of hand-crafted
spatial features with learnt weights [Tellex et al. 2010; Golland et al. 2010; Lan et al. 2012;
Guadarrama et al. 2013b]. Although the latter approaches show improvements they still
rely on designing the right set of features and their generalization and scalability to many
spatial relations have not been proven yet. Lan et al. [2012] uses only 2 spatial prepositions,
while Golland et al. [2010] and Guadarrama et al. [2013b] concentrate on 11.

In our work, we propose a simple and uniform learning-based approach to spatial
representation, and validate the proposed approach on different image-retrieval tasks with
many spatial prepositions.

7.3 Method
We are proposing a representation for spatial relations and how it can be applied to image
retrieval and annotation. Motivated by the work on spatial templates [Logan and Sadler
1996], we establish a connection between the popular pooling representations and the spatial
templates.

7.3. Method 77

First, we present our spatial model and describe how it is parameterized. Then, we
present an application of our approach to image retrieval setting [Lan et al. 2012] with
a restricted query language and where ground truth bounding boxes of different objects
are available. We proceed by showing how our spatial model can be incorporated into a
fragment embeddings framework [Karpathy et al. 2014]. Here, annotated bounding boxes
are unavailable and the query language is unrestricted.

In Section 7.3.1, we discuss a novel extension of a spatial pooling approach [Lazebnik
et al. 2006] to support spatial arrangement between detections. In the following sections
we show different instances of our model. In Section 7.3.2, we discuss an application of the
spatial templates where bounding boxes of different objects are known during the training
and the query language has a restricted structure, while Section 7.3.3 shows how to extend
the deep fragment embeddings [Karpathy et al. 2014] to work with spatial templates in
unrestrictive setting without ground truth bounding boxes.

7.3.1 Modeling spatial representations by spatial pooling
Spatial basis Spatial pooling framework [Lazebnik et al. 2006] can be interpreted in
terms of spatial basis

Θk =
M∑

j=1
wk
j ◦ uj (7.1)

where uj is an image feature located at position j = (x, y) in the image, ◦ is a piece-wise
multiplication, and k refers to the k-th spatial pooling template. Hence, the standard
spatial pooling with division into 2-by-1 subregions can be phrased in this representation as
Θ1 =

∑M
2
j=1 1◦uj+

∑M
j=M

2 +1 0◦uj and Θ2 =
∑M

2
j=1 0◦uj+

∑M
j=M

2 +1 1◦uj , where
{

1, ..., M2
}

and
{
M
2 + 1, ...,M

}
refer to the first and second half of the image respectively. Using such

representation, the pooling operator can be included in a learning-based framework where
the pooling weights {wk

j }j,k are jointly optimized together with a classifier [Malinowski
and Fritz 2013a]. Although, originally the logistic regression is used, the whole method
is agnostic to the choice of a classifier and can be easily integrated with other objective
functions with an additional hyper-parameter defining the size of the receptive field (or
equivalently the discretization level) and the number of the pooling templates Θk.

The pooling interpretation of spatial relations In psychology, Logan and Sadler
[1996] have proposed a theory of the spatial relations apprehension by estimating a fit of a
spatial template. The template is centered at the reference object and models the relative
locations of other objects in the environment. Although the theory has existed for a long
time in the psychological community, there is little work that includes similar concepts in
modern computer vision architecture for a spatial reasoning. The theory identifies spatial
templates with different spatial prepositions and represent those as score maps centered at
the object of reference. The support of such score map covers the whole environment and it
‘softly’ computes a spatial fit of a related object to the reference object under the relation by
taking the score at the object’s position. For instance, all the objects at the right position of
the reference object gets a high score under the ‘right template’ and a low score under the

78
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

‘left template’. Most strikingly, such templates can be interpreted in terms of the pooling
regions with an image as the environment.

Consider a pair of detections representing ‘dog’ and ‘boy’ together with a statement ‘A
boy on the right side of a dog’ as shown in Figure 7.1. Let x, y be the center of the ‘dog’
bounding box. Now, we place the center of the weighted spatial pooling regions Θright of at
the position x, y and pool over NxM different subregions according to the weights. This
produces a feature that characterizes the fit of the localization of ‘boy’ according to the
spatial template ‘right of’. Here, N and M characterize the discretization level. Accordingly,
our representation of spatial relations is computed as follows:

Θrel(i,u(d)) =
M∑

j=1
wrel
j ◦ u(d)

i−M2 +j (7.2)

where i is the position of the reference object, u(d) is a score map representing the localization
of the related object d (e.g. a detector score map, or introduced in Section 7.3.3 a Dirac
image), with value 0 for positions outside of the image. In contrast to Equation 7.1, wrel

j

and u(d)
j are scalars. Latter represents the localization score map at position j = (x, y).

In this work, we investigate two special cases of the more general spatial framework
in the context of image retrieval. First, in Section 7.3.2 we take advantage of the ground
truth bounding boxes and initialize the pooling weights with the estimated spatial spatial
templates (Table 7.2). In this scenario, we use queries with a limited structure and vocabulary.
Second, in Section 7.3.3 we consider a challenging scenario with a complex natural language
queries and where ground truth bounding boxes are missing.

7.3.2 Estimating spatial templates

We consider a scenario with a restricted query language of the following form (noun, spatial
preposition, noun) together with a limited vocabulary without inflection - for instance
(‘airplane’, ‘in front of’, ‘building’). Moreover, let assume the annotated bounding boxes are
available during the training with the object categories from the same vocabulary. Thanks
to those restrictions, and in contrast to Section 7.3.3, we can first estimate the spatial
templates from data, and next initialize the pooling weights {wkj }j,k with the estimations.

To exemplify the estimation procedure, consider a spatial preposition ‘above’ and
take all the images that are annotated with a sentence containing ‘above’, for instance
(‘picture’,‘above’,‘bed’). Next, we center a spatial template representing ‘above’ at the center
of ‘bed’ bounding box and copy the content of the ‘picture’ bounding box. Afterwards,
we proceed to the subsequent image with ‘above’ annotation and repeat the ‘copying’
procedure while storing the already copied contents. To obtain smooth spatial templates,
we create the localization score map by filling the whole ‘picture’ bounding box with ones
and take it as its content. Finally, we use such derived spatial template as the initialization
of {wabove

j }j . Table 7.2 shows the estimated spatial templates for spatial relations that
we use in our experiments. Since the initialization already acts as a strong regularization,
unlike in Section 7.3.3, we do not need to resort to discretization of the image space into
large subregions - in other words we consider one pixel sized receptive fields. Note that our

7.3. Method 79

estimation is still based solely on the descriptions of the image and does not require directly
annotating spatial relations.

In Section 7.4 we visually inspect the estimated templates. Interestingly, the estimation
procedure and our visualizations resemble the experimental scenarios in Logan and Sadler
[1996] where templates are estimated from the points drawn by humans on a frame with
respect to a given spatial preposition. Our case is however different in that we collate results
based on real world images with many object categories and implicit spatial arrangement.
That is, for every sentence of the form (object, spatial relation, object), participants of the
experiment only annotated which images satisfy the sentence.

Next section shows how to include a spatial model into the state-of-the-art method on a
retrieval task with missing ground truth bounding boxes and unconstrained language.

7.3.3 Deep fragment embeddings with spatial reasoning
Deep fragment embeddings The main goal of Karpathy et al. [2014] is to retrieve
relevant images based on a sentence query, and conversely. The model learns a bi-directional
embedding on a set of unconstrained images and corresponding sentences. As opposed to
previous work on embedding, it finds a mapping between visual fragments represented as the
image-induced activations of the bottleneck layer of the most certain detections [Girshick
et al. 2014], and textual fragments that are represented as triplets of the form (R, t1, t2),
where t1 and t2 are 1-of-k word encodings under a binary dependency relation R [De Marneffe
et al. 2006]. Moreover, the framework does not require any annotated associations between
the textual and visual fragments nor even annotated bounding boxes. Instead, it incorporates
a MIL [Chen et al. 2006] procedure into the learning process. The objective function consists
of two parts: global ranking objective that learns the image-sentence similarities that are
consistent with the ground truth annotations, and fragment alignment objective that is
based on the intuition that for a given textual fragment at least one of the bounding boxes in
the corresponding image should have a high score with this fragment. The learning process
optimizes a linear combination of both objectives and aims at finding a good inner-product
based similarity between the fragments. For a detailed exposition of the objective function,
we refer the reader to Karpathy et al. [2014].

We use both, textual s = f
(
WR

[
Wet1;Wet2

]
+ bR

)
, and visual fragments v =

Wm [CNN(Ib)] in our work. Here, We is a fixed 400, 000 × 200 matrix that encodes a
1-of-k vector into a 200-dimensional distributed representation [Huang et al. 2012], f is
RELU activation function [Glorot et al. 2011], and CNN(Ib) is a 4096 dimensional activations
of the bottleneck layer induced from the image fragment Ib. The fragment embedding weights
WR, Wm, and bR are learnt jointly using the aforementioned objective function so that the
score vTs is high for the fragments that match well, low otherwise.

Spatial extension In addition to the visual and textual fragments, we introduce spatial
fragments that are based on the pooling interpretation of spatial relations. Let Θk(Oj , ·)
be a weighted spatial division that represents k-th spatial concept centered at the position
of j-th detection. Here, Oj = (xj , yj) represents the center of the j-th bounding box. We
can formally cast such representation into the spatial pooling framework as follows. Let ud

80
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

Lan et al. [2012]

above below

Table 7.1: Visualization of estimated spatial filters. A set of relations from Lan et al. [2012].

Extended set of relations

above across from behind below in in front inside left right on under

Table 7.2: Visualization of estimated spatial filters. Extended set of relations.

be a Dirac image associated with detection d. It is ud(x,y) = 1 if (x, y) is the center of the
bounding box d and ud(x,y) = 0 at other positions. For every pair of detections, we consider
the reference detection d1 and build a Dirac image ud2 of the related detection. Next, we
place the spatial template k at Od1 - the center of the reference detection - and pool over the
Dirac image ud2 , producing a spatial fragment Θk(Od1 ,u

(d2)). We repeat such procedure
for every pair of detections, with the 1st and 2nd elements of the pair as the reference and
related detections, finally producing a D2 such spatial fragments for every spatial concept,
where D is the number of detections.

Such representation can be transformed into the matrix-vector multiplication framework,
which is consistent with Karpathy et al. [2014], by pulling out the weights and a discretization
of the image space: p = Wsg(ud). Here, ud is the Dirac image of a detection d, g(u) takes a
Dirac image u, discretize it into N -by-M subregions, and subsequently vectorize it. The
matrix Ws is a mapping from NM dimensional vector space into a K dimensional space
of spatial concepts. Note that, although this space can directly correspond to K different
prepositions, it can also be treated more abstractly with K chosen based on a validation set.

Analogously, we define spatio-textual fragments

z = f
(
Wz

[
Wet1;Wet2

]
+ bz

)
(7.3)

where Wz maps from the 400 dimensional representation of both words into a K dimensional
space of spatial concept. Finally, we use the same objective function to train the weights so
that pTz give a high score for the matching spatial fragments and a low score otherwise.

7.4 Experiments
We conduct experiments on several datasets. First, two retrieval datasets use a constrained
query language that allow us to use annotated bounding boxes during the training. Here,
we estimate spatial templates as described in Section 7.3.2. Both datasets augment the
SUN09 image dataset with queries. The first dataset is introduced by Lan et al. [2012] and
uses automatically generated queries, while the second dataset is our extension of Lan et al.
[2012] with a human annotated queries and a wider range of spatial relations. Note that the

7.4. Experiments 81

difference between both annotation procedures is substantial, as in our dataset we deal with
human notion of spatial concepts that are inherently ambiguous. In addition to the queries,
both datasets include annotations which images are relevant to a given query. Again, our
proposed annotations are based on human judgement. The last and the most challenging
dataset, Pascal1k [Rashtchian et al. 2010], is a collection of images with associated natural
language sentences. Although it does not contain the relevance annotations, it can still be
used for a retrieval task [Socher et al. 2014; Karpathy et al. 2014].

7.4.1 Dataset
Images All our experiments are based on real-world images. The SUN09 dataset [Choi
et al. 2010] consists of 12, 000 annotated images with more than 200 object categories.
We use 4367 images for training and 4317 images for testing - the same split as in Choi
et al. [2010] and Lan et al. [2012]. The second dataset consists of 1000 PASCAL images
[Everingham et al. 2008; Rashtchian et al. 2010]. Here, we follow Karpathy et al. [2014] and
use 800 images for training, 100 for validation, and 100 for test.

Evaluation measures To be consistent and comparable with Lan et al. [2012] we use
Mean Average Precision (mAP) across all queries to measure the performance of different
methods on our first two datasets. This measure favors the retrievals with high precisions.
Similarly, for the sake of consistency with Karpathy et al. [2014], we use Recall@k (R@k) and
Mean Rank (mean r) performance measures [Hodosh et al. 2013]. Recall@k computes the
fraction of times the correct result is found among the top k retrievals. This measure favors
high recall retrievals and is motivated by the search engines where it is more important to
retrieve correct retrievals among top k results.

Structured queries Structured queries are introduced in Lan et al. [2012], but were not
formally defined. Here, we formalize the notion of structured queries. We say that a query q
is structured if it has the form: q := q1 ∧ q2 ∧ ... ∧ qn, where qi denotes either a noun or a
triplet (noun, preposition, noun).

Our dataset of structured queries with richer and human-based spatial language
We use the structured queries from Lan et al. [2012] of the form (noun, spatial preposition,
noun) with spatial prepositions such as ‘above’ and ‘below’, and extend such set to have
queries with more spatial prepositions: ‘left of’, ‘right of’, ‘in front of’, ‘behind’, ‘inside of’,
‘on’, ‘under’, ‘across from’ and ‘in’. We collect annotations by first asking in-house annotators
to describe randomly selected images from the SUN09 dataset. Only tuples of the form
(‘noun’, ‘spatial preposition’, ‘noun’) are permitted. In the second pass we curate this dataset
and arrive at 53 structured queries. Finally, the annotators annotate a binary relevance of
each image according to every query. Since the latter requires a lot of human effort we have
automatized the process by showing only images containing all objects described in a query.
In this process, we have collected about 450, 000 relevance annotations and 53 structured
queries. In both passes, we instruct the annotators to take an observer’s frame of reference.
Although our dataset uses a more restrictive query language than Rashtchian et al. [2010],

82
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

it is still challenging due to the use of human notion of spatial relations and high variations
of object appearance in real-world images. Although, ideally we would annotate also all
spatial relations in every image, this process turns out to be too expensive as it scales up
quadratically wrt. the number of objects in the scene per relation. Therefore, we decide on a
more scalable approach where only descriptions of the relations are given.

Compared with Lan et al. [2012], our dataset consists of more spatial prepositions. In
additions, our annotations are generated by human annotators while the previous dataset
uses a hand-crafted spatial model that is used to generate image descriptions as well as in
the inference.

Compared with Rashtchian et al. [2010], our dataset provides a more reliable comparison
with ground truth for the image retrieval task due to our relevance annotations. In addition,
instead of focusing on the all aspects of the language, it is mostly about spatial relations.

7.4.2 Evaluation

We investigate several experimental scenarios. First, we compare our method against previous
work on the structured queries [Lan et al. 2012], where we show that with learnt spatial
templates we can achieve comparable results to hand-crafted representations of spatial
relations, but under much weaker assumptions. Second, we also establish a baseline on our
new dataset with human-based spatial relations and show that our method can learn an
extended set of spatial concepts. Third, we show the benefits of using spatial relation during
the inference on a complex task with unconstrained natural language queries and real-world
images without exploiting ground truth bounding boxes [Rashtchian et al. 2010; Karpathy
et al. 2014]. Fourth, we visually investigate the estimated templates, and show improvement
in alignment between language fragments and images.

Comparison to previous work on structured queries In order to establish a com-
parison to previous work on structured queries, we run experiments on the structured queries
from Lan et al. [2012] and compare to their approach in Table 7.3. This dataset consists
of 862 (463 for training and 399 for testing) queries of the form (noun, preposition, noun)
with 111 nouns. Their experiment contains only two different spatial relations: ‘above’ and
‘below’. In this dataset, the spatial relations are automatically extracted by a hand-crafted
formula on the (x, y) coordinates of bounding boxes and serve as exact definitions of the
spatial relations. This spatial model is also used by the system of Lan et al. [2012] during the
inference. In contrast, we assume that the procedure of generating queries is unknown to our
system and we aim at obtaining good representations of the spatial relations only from data.
The model of Lan et al. [2012] implements a structured SVM approach and models both the
spatial relationship between objects in the query and co-occurrence between non-query and
query objects via the compatibility function:

∑

i∈Vq
αTi f(I(li)) +

∑

i∈Vq

∑

j∈X\Vq
γTijf(I(lj)) (7.4)

+
∑

i,j,k∈EQ
βijkdQ(li, lj , k)

7.4. Experiments 83

Structured queries
Method mAP
Part based detector [Felzenszwalb et al. 2010] 7.76%
MARR [Siddiquie et al. 2011] 10.01%
Structure model [Lan et al. 2012] 11.16%
Our model 11.12%

Extended dataset of human queries
Our model 7.90%

Table 7.3: Performance of our model that uses estimated spatial templates to other baseline
approaches. Note that Structure model uses the same rules to generate questions with spatial
prepositions and during the inference.

Here, α, γ and β are weights learnt by the classifier, Vq is a set of all objects (nouns) in
the query, X is a set of all objects available during training, f(I(li)) is a HOG descriptor
extracted [Felzenszwalb et al. 2010] at location li, EQ denotes a set of object pairs and their
spatial relations present in the query Q, and dQ(Ii, Ij , Rk) is used spatial model between
detections Ii and Ij under the spatial relation Rk. The last term is equal to 1 if detections li
and lj are consistent under the spatial relation k, and is equal to 0 otherwise. The consistency
is determined via the same set of rules that are used to create queries. This method achieves
a performance of 11.16% mAP without global features on queries of the type (noun, spatial
preposition, noun). Moreover, we also report the results of two more baselines (special cases
of Equation 7.4): Part based detector where the sum of maximum response scores from each
object detector is used as a score and the MARR model [Lan et al. 2012]. The latter uses
object detections as the features for the classifier and models co-occurrence between the
detections (the second term in Equation 7.4), but without a spatial model.

Since we are mostly interested in learning spatial relations, we implement the same com-
patibility function (Equation 7.4) but with our spatial component Θk(O2, ·) that represents a
spatial filter representing preposition k and centered at the localization of the detection with
a category pointed by a query (object 1, preposition, object 2). This matching between the
category names and queries is possible since both use the same vocabulary for the objects.
For the same reason, we use ’preposition’ to index different spatial templates, hence K is
equal to the size of spatial vocabulary. Note that here, we compute a spatial relationship
between a pair of detections with categories extracted from the query. As Table 7.3 shows,
our approach achieves comparable results at 11.12% to the state-of-the-art despite the fact
that we did not assume knowledge on the underlying representation of the spatial relations
that the data was generated with. The first two rightmost entries in Table 7.1 and Table 7.2
show the templates that we have estimated from data to capture a notion of the spatial
relations.

Extended set of spatial relations with queries annotated by humans We extend
our analysis to our new dataset that contains an extended set of spatial relations that
are – in contrast to the previous dataset – collected from human annotations. Since the

84
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

exact human notion of spatial concepts is unknown, it has to be acquired from data. The
second part of Table 7.3 (Extended dataset of human queries) shows the performance of our
approach, which achieves 7.90% mAP, on our collected data with human queries. Note a
drop in performance compared to the previous experiments as this is a more challenging
setting.

Visualization of spatial templates To gain more insights about the spatial concepts
apprehension, we visualize the estimated templates. The eleven entries in Table 7.2 show the
spatial templates estimated on our new dataset. They follow our intuitions about the spatial
layout (e.g. ‘in’ and ‘inside’ templates are much more focused than other spatial templates).
More importantly, our visualization suggests that human apprehension of ‘above’ and ‘below’
relations clearly differ from the procedure used to generate queries in Lan et al. [2012] and
presented in Table 7.1, both are more focused in our case. Interestingly, even if ‘below’
and ‘under’ are synonyms, the corresponding templates are not exactly the same. This
suggests a slightly different human apprehension of both concepts. Also, pairs ‘left’/‘right’
and ‘above’/‘below’ are not entirely symmetrical. Although, some concepts such as ‘in front’
or ‘behind’ are rather three dimensional, it is still interesting to see how humans perceive
them in a plain image.

Analysis of retrieved images We show the retrieved images by our architecture given
an example query (‘plane’, ‘in front of’, ‘building’). Figure 7.2 shows the images together
with their corresponding ranks. Further analysis revealed that most mistakes come from
failure modes of the object detectors that our and Lan et al. [2012]’s methods are based on.
Although there are stronger object detectors [Girshick et al. 2014] than part based models
[Felzenszwalb et al. 2010], we decide to keep the latter for the sake of consistency with Lan
et al. [2012] and since our work is mainly concerned about spatial concepts.

Experiments on Pascal1k with unconstrained queries Our estimates of the spatial
templates from the previous sections rely on the restricted language in form of structured
queries and annotated bounding boxes. We now turn to the Pascal1k dataset that features
natural language sentences and therefore requires us to deal with implicit supervision for
learning representations of spatial relations. We improve over Deep Fragment Embeddings
[Karpathy et al. 2014]1 to include our spatial model as discussed in Section 7.3.3. For our
method, we choose the dimension of a space of spatial concepts (Section 7.3.3) to be 4,
and a spatial representation of 20 pooling regions (precisely the 2-by-2 + 4-by-4 scheme)
based on the validation set. Here, we treat a space of spatial concepts more abstractly
and we do not associate the prepositions with the indices to spatial templates. Our spatial
fragments are pairs of detections, and spatio-textual fragments are arbitrary triplets (R,
t1, t2) from the dependency parser. We find it more effective to start the training with
the only original model and next proceed to a joint training with our spatial extension.
Following Karpathy et al. [2014] we also compare our method against other embedding

1We downloaded the source code from http://cs.stanford.edu/people/karpathy/defrag/code.zip.
Our performance numbers are on average slightly better then the reported ones in Karpathy et al. [2014], as
the code has been improved after the publication.

http://cs.stanford.edu/people/karpathy/defrag/code.zip

7.4. Experiments 85

A
pl

an
e

in
 fr

on
t o

f a
 b

ui
ld

in
g

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

Figure 7.2: Top ranked retrieved images from the query ‘An airplane in front of a building’
(SUN09 image dataset and our set of human queries). We see a high recall achieved by our
method and two clear mistakes - Rank 7 and Rank 15.

models on this dataset. Table 7.4 shows that our model improves over Deep Fragment
Embeddings and consistently outperforms other methods on both tasks: image retrieval
and image annotation (here the method retrieves sentences based on the image). Adding
our spatial model to Deep Fragment Embeddings improves R@10 by 1.4 and 2.0 units on
both tasks respectively. We have also implemented spatial model based on the distance and
containment features [Golland et al. 2010] but we didn’t achieve satisfactory results - the
model barely outperforms Deep Fragment Embeddings. Table 7.4 proves the point that the
state-of-the-art retrieval architectures benefit from a spatial model that we propose.

Improved and interpretable alignment Given a set of detections representing visual
fragments and two words under a dependency relation representing textual fragments, Deep
Fragment Embeddings learns a binding so that the dot product between the matching
fragments is high. Hence, for a textual fragment (dependency relation, word 1, word 2),
we compute the scores between every detection and the textual fragment, and visualize
top 4 scoring bindings. As we argue in this work, the notion of fragments can naturally be
generalized to pairs of detections that are in a spatial relation. This is particularly attractive
because of the symmetry to textual fragments that always take two words under some
relation dependency into account. Figure 7.3 shows how alignment improves over the original
non-spatial model.

As an example the fragment (‘num’, ‘gentleman’, ‘two’), which comes from a sentence
‘Two gentleman talking in front of propeller plane’, aligns well with a spatial fragment
representing human detections. Another interesting example includes the fragment (‘with’,
‘jet’, ‘gear’) with the second top fragment that relates the plane’s cockpit with its gears
(the top scoring one relates two gears together). Such interpretability is often missing in the
output of the original model (second and fourth rows of Figure 7.3).

86
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

Pascal1k
Image Retrieval

Method R@1 R@5 R@10 Mean r
Random Ranking [Karpathy et al. 2014] 1.6 5.2 10.6 50.0
Socher et al. [Socher et al. 2014] 16.4 46.6 65.6 12.5
kCCA [Socher et al. 2014] 16.4 41.4 58.9 15.9
DeViSE [Frome et al. 2013] 21.6 54.6 72.4 9.5
SDT-RNN [Socher et al. 2014] 25.4 65.2 84.4 7.0
Deep Fragment [Karpathy et al. 2014] 25.0 69.4 83.8 6.9
Our model 29.0 68.6 85.2 6.7

Image Annotation
Method R@1 R@5 R@10 Mean r
Random Ranking [Karpathy et al. 2014] 4.0 9.0 12.0 71.0
Socher et al. [Socher et al. 2014] 23.0 45.0 63.0 16.9
kCCA [Socher et al. 2014] 21.0 47.0 61.0 18.0
DeViSE [Frome et al. 2013] 17.0 57.0 68.0 11.9
SDT-RNN [Socher et al. 2014] 25.0 56.0 70.0 13.4
Deep Fragment [Karpathy et al. 2014] 37.0 69.0 84.0 10.4
Our model 38.0 70.0 86.0 10.3

Table 7.4: Performance of our model that uses a learnable spatial pooling framework to
learn the spatial templates. Our method is built on top of Deep Fragments [Karpathy et al.
2014]. R@k is Recall@K (high is good), Mean r is the mean rank (low is good).

7.5 Summary

We address the problem of missing spatial relations in modern retrieval architectures.
Although the research on spatial concepts has a long tradition, it mostly concerns robotics.
Even then, previous works use either rule-based approaches or a hand-crafted set of features.
In contrast, our work links spatial models with spatial pooling regions framework and offer
a simple and uniform framework for spatial reasoning. Next, we conduct several experiments
where we show that a competitive pooling-based spatial model can be learnt solely from
data. Our analysis on newly collected data shows that automatically generated queries
from the previous work have different distribution of spatial concepts than the real data.
Moreover, our visualization of alignments suggests that spatial model improves bindings
between fragments. Finally, we hope that our results together with our data of spatial queries
will foster further research on spatial concepts. For this purpose we will make our dataset
publicly available. In particular, we are excited to study other spatial categories and higher
order spatial terms.

7.6. Visual inspection 87

prep_under−standing−bridge

Top 4

Top 3

Top 2Top 1

prep_with−jet−gear

Top 4Top 3Top 2Top 1

det−plane−a

Top 4Top 3Top 2Top 1

prep_under−standing−bridge

Top 4

Top 4

Top 3

Top 3

Top 2

Top 2

Top 1

Top 1

prep_on−sits−couch

Top 4

Top 4

Top 3

Top 3

Top 2

Top 2

Top 1

Top 1

det−door−a

Top 4

Top 4

Top 3

Top 3

Top 2

Top 2

Top 1

Top 1

prep_under−photo−tree

Top 4 Top 4Top 3

Top 3

Top 2

Top 2

Top 1 Top 1

prep_with−jet−gear

Top 4
Top 4

Top 3

Top 3

Top 2

Top 2

Top 1

Top 1

prep_next_to−conversing−airplane

Top 4
Top 4

Top 3

Top 3

Top 2

Top 2

Top 1

Top 1

num−gentleman−two

Top 4

Top 4

Top 3
Top 3

Top 2

Top 2

Top 1

Top 1

det−plane−a

Top 4

Top 4

Top 3
Top 3

Top 2

Top 2

Top 1

Top 1

(num, gentleman, two) (det, plane, a)(next to, conversing, airplane) (with, jet, gear)

(under, photo, tree) (det, door, a) (on, sits, couch) (under, standing, bridge)

Sp
at

ia
l m

od
el

O
rig

in
al

 m
od

el
Sp

at
ia

l m
od

el
O

rig
in

al
 m

od
el

num−gentleman−two

Top 4Top 3

Top 2

Top 1

prep_next_to−conversing−airplane

Top 4

Top 3

Top 2

Top 1

det−door−a

Top 4
Top 3Top 2Top 1

det−tree−a

Top 4Top 3
Top 2

Top 1
prep_on−sits−couch

Top 4

Top 3Top 2

Top 1

Figure 7.3: Top 4 best bindings between a textual fragment and all detections. Every column
represents different textual fragments. The first and third rows show a spatial embedding.
The second and fourth rows show an original embedding [Karpathy et al. 2014]. Colors
encode scores of fragments associations. Starting from the top scoring: blue, green, red, and
cyan. If two fragments overlap, we only show the top scoring one. Since spatial fragments
represent pairs of detections, we use the same color encoding for the same pair. Best viewed
in color.

7.6 Visual inspection
In this section, we provide further visualizations of the experiments where two models are
compared: the (non-spatial) Deep Fragment Embeddings and its spatial extension. The
shown results are conducted on the Pascal1k dataset. We show the top 10 ranked retrieved
images and top 5 ranked annotations produced by both models. For the sake of uniform
visualization, we transformed all images to have equal width and height. Correct retrievals
or annotations are shown in red. The qualitative and quantitative results consistently show
the benefits of using our spatial extension, where the model learns a spatial arrangement
between pairs of detections.

88
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation

Sp
at
ia
l

N
on
-s
pa
tia
l

1. The corner of a cluttered room with a television and two full book shelves
2. An open bottle of dark ale beer
3. A bottle of beer with the cap taken off
4. A green painted office with a buster eaten poster and a soda bottle on the wall
5. A woman sits with her head down at a table that has alcohol beverages and accessories on it

1. An open bottle of dark ale beer
2. The corner of a cluttered room with a television and two full book shelves
3. A bottle of beer with the cap taken off
4. A small kitchen with items stacked on the shelves and on the counter
5. Opened bottle of beer

Figure 7.4: Textual retrievals for a given image.

Sp
at
ia
l

N
on
-s
pa
tia
l

1. Several people on bicycles riding over bridge
2. A train is railing between a dead end street and a stand of evergreens
3. A red trolley bus passing by on the opposite side of a city street
4. There is a man riding on the back of a three wheeled bicycle in traffic
5. Three bicyclists crossing a bridge in a city

1. A train is railing between a dead end street and a stand of evergreens
2. Two bicycle riders about to cross a bridge alongside a rail track
3. A red trolley bus passing by on the opposite side of a city street
4. A school bus is driving uphill on a rural road
5. Big Ben clock in London with red double decker bus driving by

Figure 7.5: Textual retrievals for a given image.

7.6. Visual inspection 89

Sp
at
ia
l

N
on
-s
pa
tia
l

1. A jockey wearing blue riding a race horse on the track
2. an Asian man with glasses riding on a horse and a fat woman riding on another horse to the right
3. A jockey in a blue jacket riding a brown horse
4. A jockey rides a horse at a gallop
5. A man wearing a black outfit and hat sits on a large white horse

1. A jockey wearing blue riding a race horse on the track
2. an Asian man with glasses riding on a horse and a fat woman riding on another horse to the right
3. A jockey rides a horse at a gallop
4. A jockey in a blue jacket riding a brown horse
5. A girl in a red shirt is riding a brown horse

Figure 7.6: Textual retrievals for a given image.

Tw
o

pe
op

le
 re

la
x

on
 a

 p
or

ch

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Sp
at

ia
l

N
on

-s
pa

tia
l

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Figure 7.7: Image retrievals for a given query.

90
Chapter 7. A Pooling Approach to Modelling Spatial Relations for

Image Retrieval and Annotation
Su

ns
et

 w
ith

 y
ac

ht
 s

ai
lin

g
on

 th
e

op
en

 o
ce

an

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Sp
at

ia
l

N
on

-s
pa

tia
l

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Figure 7.8: Image retrievals for a given query.

A
lit

tle
 g

irl
 w

ith
 a

 b
ik

e
he

lm
et

 p
os

in
g

by
 h

er
 b

ic
yc

le

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Sp
at

ia
l

N
on

-s
pa

tia
l

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Figure 7.9: Image retrievals for a given query.

7.6. Visual inspection 91

W
hi

te
 a

nd
 b

la
ck

 s
m

al
l d

og
 w

al
ks

 to
w

ar
d

th
e

ca
m

er
a

w
hi

le
 w

om
an

 s
its

 o
n

co
uc

h,
 d

es
k

an
d

co
m

pu
te

r s
ee

n
in

 th
e

ba
ck

gr
ou

nd
 a

s
w

el
l a

s
a

pi
llo

w
, t

ed
dy

be

ar
 a

nd
 m

og
gi

e
to

y
on

 th
e

w
oo

d
flo

or
Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Sp
at

ia
l

N
on

-s
pa

tia
l

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Figure 7.10: Image retrievals for a given query.

A
m

an
 w

ea
rin

g
a

bl
ac

k
ou

tfi
t a

nd
 h

at
 s

its
 o

n
a

la
rg

e
w

hi
te

 h
or

se

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Sp
at

ia
l

N
on

-s
pa

tia
l

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Figure 7.11: Image retrievals for a given query.

Chapter 8

Towards a Visual Turing
Challenge

Contents
8.1 Introduction . 93

8.1.1 Towards a Visual Question Answering Task 93
8.1.2 Why a Visual Turing Test? . 95

8.2 Challenges . 96
8.3 DAQUAR: Building a Dataset for Visual Turing Challenge 98
8.4 Quantifying the Performance of Holistic Architectures 99
8.5 Summary . 100

Progress in language and image understanding by machines – which we briefly
covered in Chapter 1, Chapter 3, and Chapter 4 – has sparked the interest of the
research community in more open-ended, holistic tasks such as the text-to-image

retrieval task covered in Chapter 7. This progress has also refueled an old AI dream of
building intelligent machines. We discuss a few prominent challenges that characterize such
holistic tasks and argue for “question answering about images” as a particularly appealing
instance of such a holistic task. In particular, we point out that it is a version of Turing
Test that is likely to be more robust to over-interpretations and contrast it with tasks like
grounding and generation of descriptions. Moreover, we discuss tools to measure progress in
this field. A more concrete instantiation of the Visual Turing Test – along with a dataset,
methods, and performance metrics – is later covered in Chapters 9, 10, and 11.

8.1 Introduction
I this section we argue for the task of answering to questions abour real-world images.

8.1.1 Towards a Visual Question Answering Task
Recently we witness a tremendous progress in the machine perception [Krizhevsky et al. 2012;
Gupta et al. 2014; Girshick et al. 2014; Pishchulin et al. 2013; Tompson et al. 2014; He et al.
2014; Lee et al. 2014; Simonyan and Zisserman 2015] and in the language understanding
[Blackburn and Bos 2005; Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; Mikolov
et al. 2013; Cho et al. 2014] tasks. The progress in both fields has inspired researchers to build

94 Chapter 8. Towards a Visual Turing Challenge

holistic architectures for challenging grounding [Matuszek et al. 2012; Krishnamurthy and
Kollar 2013], natural language generation from image/video [Farhadi et al. 2010; Kulkarni
et al. 2011; Rohrbach et al. 2014], image-to-sentence alignment [Socher et al. 2014; Karpathy
et al. 2014; Mao et al. 2014; Kong et al. 2014], and recently presented question-answering
problems [Liang et al. 2013; Berant and Liang 2014; Iyyer et al. 2014; Fader et al. 2014;
Malinowski and Fritz 2014a]. In this paper we argue for a Visual Turing Test - an open
domain task of question-answering based on real-world images that resemblances the famous
Turing Test [Turing 1950; LaCurts 2011] and deviates from other attempts [Shan et al.
2013; Lake et al. 2013; Battaglia et al. 2013] - and discuss challenges together with tools to
benchmark different models on such task.

We typically measure the progress in the field by quantifying the performance of different
methods against a carefully crafted set of benchmarks. Crowdsourcing in combination
of machine learning approaches have served us well to generate curated datasets with a
unique ground truth at scale [Welinder and Perona 2010; Welinder et al. 2010]. As the
complexity and the openness of the task grows, the quest of crafting good benchmarks also
becomes more difficult. First, interpreting and evaluating the answer of a system becomes
increasingly difficult and ideally would rely on human judgement. Yet we want to have
objective metrics that we can evaluate automatically at large scale. Second, establishing an
evaluation methodology that assigns scores over a large output domain is challenging, as
any system based on ontologies will have a limited coverage. Third, if our aim is to mimic
human response, we have to deal with inherent ambiguities due to human judgement that
stem from issues like binding, reference frames, social conventions. For instance, Malinowski
and Fritz [2014a] report that for a question answering task on real-world images even human
answers are inconsistent. Obviously this cannot be a problem of humans but rather argues
for inherent ambiguities in the task.

Competing methods are validated against true annotations, but what is the ‘truth” in a
task where even human answers cannot completely agree with each other? Instead of seeking
an unique, ‘true” answer we suggest to look into ‘social consensus’ that takes multiple
human answers as different interpretations of the question into account. This enables us to
incorporate ‘agreement’ between the humans directly into the metric. Although the idea is
not entirely new [Arbelaez et al. 2011; Hodosh et al. 2013; Farhadi et al. 2010], we believe it
sits at the core of building more open and holistic challenges. The first implementations of
the ‘consensus’ idea can be found in Malinowski et al. [2015], which is shown in Chapter 10.
A similar idea is also used in the VQA challenge [Antol et al. 2015].

We exemplify some of our findings on the DAQUAR dataset [Malinowski and Fritz
2014a] with the aim of demonstrating different challenges that are present in the dataset.
We hope that our exposition is helpful towards building a public Visual Turing Test and
will generate a discussion for the agreeable evaluation procedure and designing systems that
can address open domain tasks.

In this chapter, a holistic architecture (also a holistic learner) is a machine learning
architecture designed to work on the task that fuses at least two modalities, e.g. language
and vision. The external world is a part of a task accessible to the holistic learner only via
sensors and it can be either a human world (the world that surrounds us), or a machine

8.1. Introduction 95

world that models some aspects of the human world.

8.1.2 Why a Visual Turing Test?

Can machines answer questions about real-world images? Due to the increasing
matureness of image and language understanding techniques, it seems a timely step to reach
out for a challenging goal that combines the two and asks the question if systems that can
answer questions on images is in reach. While this is an interesting scientific question and
can advance image and language understanding, practical application for surveillance and
assistance for the blind would directly follow.

Holistic task The task of answering questions about images implies a tight integration
of two modalities - language and vision. The task demands a complete pipeline from
interpretation of both modalities, finding a joint representation and inferring or deducing a
coherent answer.

Focused task While there is a wide range of research tasks that aims at extracting
semantic annotations from images, these always target certain aspects of the scene. By
the introduction of a question about the scene, we basically parameterize the task by this
input. Therefore, the question answering task can be seen as an open-ended task, which
comes as an opportunity, but also as a challenge to define meaningful datasets. As we argue
in Malinowski and Fritz [2015], as opposite to the famous Turing Test [Turing 1950] or
an image captioning task [Vinyals et al. 2014], this proposed task should be less prone
to over-interpretations by associating a meaning to machine answers or descriptions by a
human interrogator.

Open-ended task The task that we are proposing does not explicitly constrain the space
of possible questions, and hence presumably can be considered as an open-ended. At the
same time, we can consider many variants of the answer space. On one hand, we can limit the
answer space to K possible answers simplifying at the same time an automatic evaluation
of the architectures on this task [Malinowski and Fritz 2014a]. On the other hand, we can
consider truly open-ended answer space, where we expect from machines to produce answers
reminding short, natural language, descriptions.

End-to-End task The skill of answering a question about an image, for sure requires
some sort of scene and language understanding (Figure 8.1). But in contrast to traditional
approaches that would build a system bottom up, the question answering allows methods
to be to a certain extend agnostic to the internal representation, as no such intermediate
steps are evaluated. By the merits of deep learning, such tasks can be trained end-to-end
and internal representations can remain completely latent, yet their learning target implies
the acquisition of certain competences in language and scene understanding. Methods that
succeed in the task of answering questions about images have succeeded in scene and
language understanding, but can go very different routes that need not to be compared.

96 Chapter 8. Towards a Visual Turing Challenge

Sensor Scene
Properties

Visual 
Turing Test

End-to-End Task

Scene  
Understanding

implies

Figure 8.1: A good performance on a Visual Turing Test implies Scene Understanding.
Yet, in contrast to many popular Image Understanding tasks, a Visual Turing Test is an
end-to-end problem that doesn’t evaluate how an image is represented.

Scalable annotation effort. As we strive to develop methods that understand visual
scenes at increasing detail, the annotation effort becomes more and more laborious. In
contrast, a question answering dataset can focus on particular aspects of a scene that go to
a great level of detail, without the necessity to annotate ‘everything”.

Strategies for automatic evaluation While image captioning provides a great way
to test scene comprehension and natural language generation, there is an issue of focus.
Different human subjects may focus on different aspects of a scene and therefore multiple
descriptions of a scene might be considered reasonable. This causes issues of evaluating such
system. As the output is natural language, judging the quality of predictions require again
a certain level of natural language understanding. Today’s automatic evaluation metrics
have their limitations. Therefore, while building DAQUAR [Malinowski and Fritz 2014a] we
have deliberately decided against natural language answers in order to keep the evaluation
tractable.

8.2 Challenges
As we strive for more holistic and open tasks such as grounding or question-answering based
on images, we need to deal with a large gamut of challenges. In this section we have distilled
and discuss some of the most prominent ones in order to guide the further discussion.

Vision and language Scalability: Perception and natural language understanding are
crucial parts of holistic reasoning as they ground any representation in the external world
and therefore serve as a common reference point for machines and humans. The human
conceptualization divides these percepts into different instances, categories as well as spatio-
temporal concepts. Architectures that aim at mimicking or reproducing this space of human
concepts need to capture the same diversity and therefore scale up to thousands of concepts
[Weston et al. 2011; Perronnin et al. 2012; Hoffman et al. 2014].
Concept ambiguity: As the number of categories grows, the semantic boundaries become
more fuzzy, and hence ambiguities are inherently introduced [Lakoff 1990; Deng et al. 2010].
For instance, sometimes we may overlook the difference between ’night stand’ and ’cabinet’,
or ’armchair’ and ’sofa’. Therefore it is reasonable to expect from the holistic architectures

8.2. Challenges 97

to create alternative hypotheses of the external world during inference. This also relates to
the gradual category membership in human perception as portrayed in the prototype theory
[Lakoff 1990; Rosch 1973].
Attributes: The human concepts are not limited to object categories, but also include
attributes such as genders, colors, states (lights can be either on or off). Often these concepts
cannot be learned on their own, but rather are contextualized by the associated noun. E.g.
white in “white” elephant is surly different from “white” in white snow.
Ambiguity in reference resolution: Reliably answering on questions is challenging even for
humans. The quality of an answer depends on how ambiguous and latent notions of reference
frames and intentions are understood [Malinowski and Fritz 2014a; Golland et al. 2010].
Depending on the cultural bias and the context, we may use object-centric or observer-centric
or even world-centric frames of reference [Levinson 2003]. Moreover, it is even unclear what
’with’, ’beneath’, ’over’ mean. It seems at least difficult to symbolically define them in terms
of predicates. While holistic learning and inference encompassing all the aforementioned
aspects has yet to be shown, current research directions show promise [Beltagy et al.
2013; Rocktäschel et al. 2014; Lewis and Steedman 2014] by adapting the symbolic-based
approaches [Zettlemoyer and Collins 2007; Kwiatkowski et al. 2010; Liang et al. 2013; Berant
and Liang 2014] with vector-based approaches [Mikolov et al. 2013; Socher et al. 2014; Iyyer
et al. 2014] to represent the meaning.

Common sense knowledge It turns out that some questions can solely be answered
with the access to common sense knowledge with high reliability. For instance "Which object
on the table is used for cutting?" already narrows the likely options significantly and the
correct answer is probably “knife” or “scissors”. Other questions like "Which hand of the
teacher is on her chin?" require the mixture of the vision and language. To understand the
question, a holistic learner needs to first detect a person, figure out that the person may be
a teacher, understand a gender of the person, detect her chin, understand ’left’ and ’right’
side, and finally relates ’her’ with the ’teacher’.

However, different parts of the common sense knowledge can be used with different
modality. An ’object for cutting’ is not about seeing but about the affordance of the object
and it cannot be learnt solely from the set of images. On the other hand things that often
co-occur together may stand for the visual-based common sense knowledge. For instance
we may expect to find a scissor or a pen inside a small plastic box, but never a wall or a
window.

Common sense knowledge can help holistic machine learning architectures to either fulfill
the task (question "Which object on the table is used for cutting?" can utilizes this type of
knowledge), or limit the hypothesis space and hence to reduce the computational complexity
of the search problem. For instance an architecture could be guided by its common sense
knowledge to limit the space of possible locations of the ’scissors’ and answer on "What is
in front of scissors?" more effectively.

Defining a benchmark dataset and quantifying performance We argue that the
question answering based on the visual input task significantly differ from the grounding

98 Chapter 8. Towards a Visual Turing Challenge

problem and has unique advantages towards defining a challenge dataset. Most prominently,
the latter is about finding (either with a hand-crafted set of rules or learnt-based approaches)
a mapping between the linguistic fragments and the physical world [Matuszek et al. 2012;
Krishnamurthy and Kollar 2013; Harnad 1990], whereas the question answering task is
about an end-to-end system where we do not necessarily want to enforce any constraints or
penalty for the internal representation of the holistic learner. In this sense grounding is a
latent sub-task that the holistic learner needs to solve, but will not be evaluated on. Finally,
we argue that establishing benchmark dataset based on a question answering task similar
to a turing test, is more tractable. Learning grounding asks for exhaustive symbolic-based
annotations of the world, while question answering only needs textual annotations for the
aspects that the question refers to.

8.3 DAQUAR: Building a Dataset for Visual Turing
Challenge

DAQUAR [Malinowski and Fritz 2014a] is a challenging, large dataset for a question
answering task based on real-world images. The images present real-world indoor scenes
[Silberman et al. 2012], while the questions are unconstrained natural language sentences.
DAQUAR’s language scope is beyond the nouns or tuples that are typical to recognition
datasets [Russakovsky et al. 2014; Rohrbach et al. 2011; Lan et al. 2012]. Other, linguistically
rich datasets either do not tackle images at all [Zelle and Mooney 1996; Berant et al. 2013]
or consider only few in very constrained domain [Krishnamurthy and Kollar 2013], or are
more suitable for the learning an embedding/image-sentence retrieval or language generation
[Kong et al. 2014; Rashtchian et al. 2010; Rohrbach et al. 2012; Gong et al. 2014]. In this
section we discuss in isolation different challenges reflected in DAQUAR.

Vision and language The machine world in DAQUAR is represented as a set of images
and questions about their content. DAQUAR contains 1088 different nouns in the question,
803 in the answers, and 1586 altogether (we use the Stanford POS Tagger [Toutanova
et al. 2003] to extract the nouns from the questions). If we consider only nouns in singular
form in the questions, we still have 573 categories. The current state-of-the-art semantic
segmentation methods on the NYU-Depth V2 dataset [Silberman et al. 2012] can discriminate
only between up to 37 object categories [Gupta et al. 2014; Lin et al. 2013; Gupta et al.
2013], much fewer to what is needed. DAQUAR also contains other parts of speech where
only colors and spatial prepositions are grounded in Malinowski and Fritz [2014a].

Moreover, ambiguities naturally emerge due to fine grained categories that exist in
DAQUAR. For instance ’night stand’, ’stool’ and ’cabinet’ sometimes refer to the same
thing. There is also a variation in the naming of colors among the annotations. Questions
rely heavily on the spatial concepts with different frame of reference.

DAQUAR includes various challenges related to natural language understanding. Any
semantic representation needs to work with the large number of predicates (reaching about
4 million to account different interpretations of the external world), with questions of

8.4. Quantifying the Performance of Holistic Architectures 99

substantial length (10.5 words in average with variance 5.5; the longest question has 30
words), and possible language errors in the questions.

Common sense knowledge DAQUAR includes questions that can be reliably answered
using common sense knowledge. For instance "Which object on the table is used for cutting?"
already provides strong non-visual cues for the “cutting” object. Answers on other questions,
such as "What is above the desk in front of scissors?", can be improved if the search space is
reasonable restricted. Moreover, some annotators hypothesize missing parts of the object
based on their common sense. To sum up, we believe that common sense knowledge is an
interesting venue to explore with DAQUAR.

Question answering task The question answering task is also about understanding
hidden intentions of the questioner with grounding as a sub-goal to solve. Some authors
[Liang et al. 2013; Berant and Liang 2014; Malinowski and Fritz 2014a] treat the grounding
(understood here as the logical representation of the meaning of the question) as a latent
variable in the question answering task. Others [Golland et al. 2010] have modeled the
pragmatic effects in the question answering task, but such approaches have never been
shown to work in less constrained environments.

8.4 Quantifying the Performance of Holistic Architec-
tures

Together with increasing complexity and openness of the task, quantifying performance of
the holistic architectures becomes challenging due to several issues:
Automation: Evaluating answers on such complex tasks as answering on questions requires a
quite deep understanding of natural language, involved concepts and hidden intentions of
the questioner. The ideal but impractical metric would be to manually judge every single
answer of every architecture individually. Since this is infeasible we are seeking an automatic
approximation so that we can evaluate different holistic architectures at scale.
Ambiguity: The complex tasks that we are interested in are inherently ambiguous. The ambi-
guities stem from cultural bias, different frame of reference and fined grained categorization.
This implies that multiple interpretations of a question are possible and hence many correct
answers.
Coverage: Since there are multiple ways of expressing the same concept, the automatic per-
formance metric should take the equivalence class among the answers into the consideration
by assigning similar scores to all members of the same class. There are attempts to alleviate
this issue via defining similarity scores [Wu and Palmer 1994] over the lexical databases
[Miller 1995; Fellbaum 1999]. These approaches, however, lacks of coverage: we cannot assign
a similarity between the terms that are not represented in the structure.

WUPS scores We exemplify the aforementioned requirements by illustrating the WUPS
score - an automatic metric that quantifies performance of the holistic architectures proposed
by Malinowski and Fritz [2014a]. This metric is motivated by the development of a ’soft’

100 Chapter 8. Towards a Visual Turing Challenge

generalization of accuracy that takes ambiguities of different concepts into account via the
set membership measure µ:

1
N

N∑

i=1
min{

∏

a∈Ai
max
t∈T i

µ(a, t),
∏

t∈T i
max
a∈Ai

µ(a, t)} · 100 (8.1)

where for each i-th question, Ai and T i are the answers produced by the architecture and
human respectively, and they are represented as bags of words. The authors of Malinowski and
Fritz [2014a] have proposed using WUP similarity [Wu and Palmer 1994] as the membership
measure µ in the WUPS score. Such choice of µ suffers from the aforementioned coverage
problem and the whole metric takes only one human interpretation of the question into
account.

Future directions for defining metrics Recent work provides several directions towards
improving scores. To deal with ambiguities that stem from different readings of the same
question we are collecting more human answers per question and we propose, based on that,
two generalizations of WUPS score. The first, we call Interpretation Metric, runs Equation 8.1
over many human answers and takes the maximal score, so that the machine answer is
high if it is similar to at least one human answer. However, with many human answers,
we can also rank higher the machine answers that are ’socially agreeable’ by measuring if
they agree with most human answers. This can be done by averaging over multiple human
answers. We call such second extension, Consensus Metric. The problem with coverage
can be potentially alleviated with vector based representations [Mikolov et al. 2013] of the
answers. Although in this case the coverage issues are less problematic, we understand the
concerns that such score is dependent on the training data used to build such representation.
On the other hand, due to abundance of textual data and recent improvements of vector
based approaches [Mikolov et al. 2013; Pennington et al. 2014], we consider it as a valid
alternative to similarities that are based on ontologies.

Experimental scenarios In many cases, success on challenging learning problems has
been accelerated by use of external data in the training, e.g. in object detection [Girshick
et al. 2014]. We believe that a Visual Turing challenge should consists of a sub-task with
a prohibited use of auxiliary data to understand how the holistic learners generalize from
limited and challenging data in a more established setup. On the other hand we should
not limit ourselves to such artificial restrictions in building next generation of the holistic
learners. Therefore open sub-tasks with a permissible use of another sources in the training
have to be stated, including: additional vision and language resources, synthetic data and
curated questions.

8.5 Summary
The goal of this contribution is to sparkle the discussions about benchmarking holistic
architectures on complex and more open tasks. We identify particular challenges that holistic
tasks should exhibit and exemplify how they are manifested in a recent question answering

8.5. Summary 101

challenge [Malinowski and Fritz 2014a]. To judge competing architectures and measure the
progress on the task, we suggest several directions to further improve existing metrics, and
discuss different experimental scenarios.

Chapter 9

A Multi-world Approach to
Question Answering

about Real-World Scenes based
on Uncertain Input

Contents
9.1 Introduction . 104

9.2 Related work . 104

9.3 Method . 105

9.4 Experiments . 109

9.4.1 DAQUAR . 109

9.4.2 Quantitative results . 111

9.4.3 Human question-answer pairs (HumanQA) 112

9.4.4 Qualitative results . 112

9.5 Summary . 113

Following the idea of creating a holistic task, described in Chapter 8, that does not
evaluate on an internal representation of methods, allows for a scalable annotation
effort, and feasible automatic performance metrics, this chapter introduces a concrete

dataset, a method, and metrics for the “question answering about images” task. In this
chapter, we introduce the first method for automatically answering questions about real-world
indoor images by bringing together recent advances from natural language processing and
computer vision. We combine discrete reasoning with uncertain predictions by a multi-world
approach that represents uncertainty about the perceived world in a bayesian framework.
Our approach to Visual Turing Test can handle human questions of high complexity about
realistic scenes and replies with range of answer like counts, object classes, instances and
lists of them. The system is directly trained from question-answer pairs. This chapter sets
the basis that we later on, in Chapters 10 and 11, extend by introducing neural-based
approaches to Visual Turing Test, along with more general performance metrics that account
for uncertainties caused by various interpretations of a question and an image.

104
Chapter 9. A Multi-world Approach to Question Answering

about Real-World Scenes based on Uncertain Input

9.1 Introduction
As vision techniques like segmentation and object recognition begin to mature, there has
been an increasing interest in broadening the scope of research to full scene understanding.
But what is meant by ‘understanding” of a scene and how do we measure the degree of
‘understanding”? Most often ‘understanding” refers to a correct labeling of pixels, regions or
bounding boxes in terms of semantic annotations. All predictions made by such methods
inevitably come with uncertainties attached due to limitations in features or data or even
inherent ambiguity of the visual input.

Equally strong progress has been made on the language side, where methods have been
proposed that can learn to answer questions solely from question-answer pairs [Liang et al.
2013]. These methods operate on a set of facts given to the system, which is refered to as
a world. Based on that knowledge the answer is inferred by marginalizing over multiple
interpretations of the question. However, the correctness of the facts is a core assumption.

We like to unite those two research directions by addressing a question answering task
based on real-world images. To combine the probabilistic output of state-of-the-art scene
segmentation algorithms, we propose a Bayesian formulation that marginalizes over multiple
possible worlds that correspond to different interpretations of the scene.

To date, we are lacking a substantial dataset that serves as a benchmark for question
answering on real-world images. Such a test has high demands on ‘understanding” the visual
input and tests a whole chain of perception, language understanding and deduction. This
very much relates to the ‘AI-dream” of building a turing test for vision. While we are still not
ready to test our vision system on completely unconstrained settings that were envisioned
in early days of AI, we argue that a question-answering task on complex indoor scenes is a
timely step in this direction.

Contributions In this paper we combine automatic, semantic segmentations of real-world
scenes with symbolic reasoning about questions in a Bayesian framework by proposing
a multi-world approach for automatic question answering. We introduce a novel dataset
of more than 12,000 question-answer pairs on RGBD images produced by humans, as a
modern approach to a visual turing test. We benchmark our approach on this new challenge
and show the advantages of our multi-world approach. Furthermore, we provide additional
insights regarding the challenges that lie ahead of us by factoring out sources of error from
different components.

9.2 Related work
Semantic parsers Our work is mainly inspired by Liang et al. [2013] that learns the
semantic representation for the question answering task solely based on questions and
answers in natural language. Although the architecture learns the mapping from weak
supervision, it achieves comparable results to the semantic parsers that rely on manual
annotations of logical forms [Kwiatkowski et al. 2010; Zettlemoyer and Collins 2007]. In
contrast to our work, Liang et al. [2013] has never used the semantic parser to connect the

9.3. Method 105

natural language to the perceived world.

Language and perception Previous work [Matuszek et al. 2012; Krishnamurthy and
Kollar 2013] has proposed models for the language grounding problem with the goal of
connecting the meaning of the natural language sentences to a perceived world. Both methods
use images as the representation of the physical world, but concentrate rather on constrained
domain with images consisting of very few objects. For instance Krishnamurthy and Kollar
[2013] considers only two mugs, monitor and table in their dataset, whereas Matuszek et al.
[2012] examines objects such as blocks, plastic food, and building bricks. In contrast, our
work focuses on a diverse collection of real-world indoor RGBD images [Silberman et al.
2012] - with many more objects in the scene and more complex spatial relationship between
them. Moreover, our paper considers complex questions - beyond the scope of Matuszek
et al. [2012] and Krishnamurthy and Kollar [2013] - and reasoning across different images
using only textual question-answer pairs for training. This imposes additional challenges
for the question-answering engines such as scalability of the semantic parser, good scene
representation, dealing with uncertainty in the language and perception, efficient inference
and spatial reasoning. Although others [Kong et al. 2014; Karpathy et al. 2014] propose
interesting alternatives for learning the language binding, it is unclear if such approaches
can be used to provide answers on questions.

Integrated systems that execute commands Others [Matuszek et al. 2013; Levit
and Roy 2007; Vogel and Jurafsky 2010; Tellex et al. 2011; Kruijff et al. 2007] focus on
the task of learning the representation of natural language in the restricted setting of
executing commands. In such scenario, the integrated systems execute commands given
natural language input with the goal of using them in navigation. In our work, we aim for
less restrictive scenario with the question-answering system in the mind. For instance, the
user may ask our architecture about counting and colors (’How many green tables are in
the image?’), negations (’Which images do not have tables?’) and superlatives (’What is the
largest object in the image?’).

Probabilistic databases Similarly to Wick et al. [2010] that reduces Named Entity
Recognition problem into the inference problem from probabilistic database, we sample
multiple-worlds based on the uncertainty introduced by the semantic segmentation algorithm
that we apply to the visual input.

9.3 Method
Our method answers on questions based on images by combining natural language input with
output from visual scene analysis in a probabilistic framework as illustrated in Figure 9.1. In
the single world approach, we generate a single perceived world W based on segmentations -
a unique interpretation of a visual scene. In contrast, our multi-world approach integrates
over many latent worlds W, and hence taking different interpretations of the scene and
question into account.

106
Chapter 9. A Multi-world Approach to Question Answering

about Real-World Scenes based on Uncertain Input

Scene
analysis

sofa (1,brown, image 1, X,Y,Z)

chair (1,brown, image 4, X,Y,Z)
chair (2,brown, image 4, X,Y,Z)

table (1,brown, image 1,X,Y,Z)
wall (1,white, image 1, X,Y,Z)
bed (1, white, image 2 X,Y,Z)

chair (1,brown, image 5, X,Y,Z)

…

W
world

Q
question

A

answer

Semantic
parsing T

logical
form

Semantic
evaluation

W
latent
worlds

Q
question

A

answer

Semantic
parsing T

logical
form

S

S

segmentation

single  
world

approach

multi-world
approach

Semantic
evaluation

Figure 9.1: Overview of our approach to question answering with multiple latent worlds in
contrast to single world approach.

Single-world approach for question answering problem We build on recent progress
on end-to-end question answering systems that are solely trained on question-answer pairs
(Q,A) [Liang et al. 2013]. Top part of Figure 9.1 outlines how we build on Liang et al. [2013]
by modeling the logical forms associated with a question as latent variable T given a single
world W . More formally the task of predicting an answer A given a question Q and a world
W is performed by computing the following posterior which marginalizes over the latent
logical forms (semantic trees in Liang et al. [2013]) T :

P (A|Q,W) :=
∑

T
P (A|T ,W)P (T |Q). (9.1)

P (A|T ,W) corresponds to denotation of a logical form T on the worldW . In this setting, the
answer is unique given the logical form and the world: P (A|T ,W) = 1[A ∈ σW(T)] with the
evaluation function σW , which evaluates a logical form on the worldW . Following Liang et al.
[2013] we use DCS Trees that yield the following recursive evaluation function σW : σW(T) :=⋂d
j {v : v ∈ σW(p), t ∈ σW(Tj), Rj(v, t)} where T := 〈p, (T1,R1), (T2,R2), ..., (Td,Rd)〉 is

the semantic tree with a predicate p associated with the current node, its subtrees T1, T2, ..., Td,
and relations Rj that define the relationship between the current node and a subtree Tj .

In the predictions, we use a log-linear distribution P (T |Q) ∝ exp(θTφ(Q, T)) over
the logical forms with a feature vector φ measuring compatibility between Q and T and
parameters θ learnt from training data. Every component φj is the number of times that a
specific feature template occurs in (Q, T). We use the same templates as Liang et al. [2013]:
string triggers a predicate, string is under a relation, string is under a trace predicate, two
predicates are linked via relation and a predicate has a child. The model learns by alternating
between searching over a restricted space of valid trees and gradient descent updates of
the model parameters θ. We use the Datalog inference engine to produce the answers from

9.3. Method 107

Predicate Definition
closeAbove(A,B) above(A,B) and (Ymin(B) < Ymax(A) + ε)
closeLeftOf(A,B) leftOf(A,B) and (Xmin(B) < Xmax(A) + ε)

closeInFrontOf(A,B) inFrontOf(A,B) and (Zmin(B) < Zmax(A) + ε)
Xaux(A,B) Xmean(A) < Xmax(B) and Xmin(B) < Xmean(A)
Zaux(A,B) Zmean(A) < Zmax(B) and Zmin(B) < Zmean(A)
haux(A,B) closeAbove(A,B) or closeBelow(A,B)
vaux(A,B) closeLeftOf(A,B) or closeRightOf(A,B)

au
xi
lia

ry
re
la
tio

ns

daux(A,B) closeInFrontOf(A,B) or closeBehind(A,B)
leftOf(A,B) Xmean(A) < Xmean(B))
above(A,B) Ymean(A) < Ymean(B)

inFrontOf(A,B) Zmean(A) < Zmean(B))

sp
at
ia
l

on(A,B) closeAbove(A,B) and Zaux(A,B) and Xaux(A,B)
close(A,B) haux(A,B) or vaux(A,B) or daux(A,B)

Table 9.1: Predicates defining spatial relations between A and B. Auxiliary relations define
actual spatial relations. The Y axis points downwards, functions Xmax, Xmin, ... take ap-
propriate values from the tuple predicate, and ε is a ’small’ amount. Symmetrical relations
such as rightOf , below, behind, etc. can readily be defined in terms of other relations (i.e.
below(A,B) = above(B,A)).

the latent logical forms. The linguistic phenomena such as superlatives and negations are
handled by the logical forms and the inference engine. For a detailed exposition, we refer
the reader to Liang et al. [2013].

Question answering on real-world images based on a perceived world Similar
to Krishnamurthy and Kollar [2013], we extend the work of Liang et al. [2013] to operate
now on what we call perceived world W . This still corresponds to the single world approach
in our overview Figure 9.1. However our world is now populated with “facts” derived from
automatic, semantic image segmentations S. For this purpose, we build the world by running
a state-of-the-art semantic segmentation algorithm [Gupta et al. 2013] over the images
and collect the recognized information about objects such as object class, 3D position, and
color [Van De Weijer et al. 2007] (Figure 9.1 - middle part). Every object hypothesis is
therefore represented as an n-tuple: predicate(instance_id, image_id, color, spatial_loc)
where predicate ∈ {bag, bed, books, ...}, instance_id is the object’s id, image_id is id of
the image containing the object, color is estimated color of the object [Van De Weijer
et al. 2007], and spatial_loc is the object’s position in the image. Latter is represented as
(Xmin, Xmax, Xmean, Ymin, Ymax, Ymean, Zmin, Zmax, Zmean) and defines minimal, maximal,
and mean location of the object along X,Y, Z axes. To obtain the coordinates we fit axis
parallel cuboids to the cropped 3d objects based on the semantic segmentation. Note that
the X,Y, Z coordinate system is aligned with direction of gravity [Gupta et al. 2013]. As
shown in Figure 9.2b, this is a more meaningful representation of the object’s coordinates
over simple image coordinates. The complete schema will be documented together with the
code release.

108
Chapter 9. A Multi-world Approach to Question Answering

about Real-World Scenes based on Uncertain Input

We realize that the skilled use of spatial relations is a complex task and grounding spatial
relations is a research thread on its own (e.g. Regier and Carlson [2001], Lan et al. [2012]
and Guadarrama et al. [2013b]). For our purposes, we focus on predefined relations shown
in Table 9.1, while the association of them as well as the object classes are still dealt within
the question answering architecture.

Multi-worlds approach for combining uncertain visual perception and symbolic
reasoning Up to now we have considered the output of the semantic segmentation as
“hard facts”, and hence ignored uncertainty in the class labeling. Every such labeling of the
segments corresponds to different interpretation of the scene - different perceived world.
Drawing on ideas from probabilistic databases [Wick et al. 2010], we propose a multi-world
approach (Figure 9.1 - lower part) that marginalizes over multiple possible worlds W -
multiple interpretations of a visual scene - derived from the segmentation S. Therefore the
posterior over the answer A given question Q and semantic segmentation S of the image
marginalizes over the latent worlds W and logical forms T :

P (A | Q,S) =
∑

W

∑

T
P (A | W, T)P (W | S) P (T | Q) (9.2)

The semantic segmentation of the image is a set of segments si with the associated probabil-
ities pij over the C object categories cj . More precisely S = {(s1, L1), (s2, L2), ..., (sk, Lk)}
where Li = {(cj , pij)}Cj=1, P (si = cj) = pij , and k is the number of segments of given
image. Let Ŝf =

{
(s1, cf(1)), (s2, cf(2)), ..., (sk, cf(k)))

}
be an assignment of the categories

into segments of the image according to the binding function f ∈ F = {1, ..., C}{1,...,k}. With
such notation, for a fixed binding function f , a world W is a set of tuples consistent with
Ŝf , and define P (W |S) =

∏
i p(i,f(i)). Hence we have as many possible worlds as binding

functions, that is Ck. Equation 9.2 becomes quickly intractable for k and C seen in practice,
wherefore we use a sampling strategy that draws a finite sample ~W = (W1,W2, ...,WN) from
P (·|S) under an assumption that for each segment si every object’s category cj is drawn
independently according to pij . A few sampled perceived worlds are shown in Figure 9.2a.

Regarding the computational efficiency, computing
∑
T P (A | Wi, T)P (T | Q) can be

done independently for every Wi, and therefore in parallel without any need for synchroniza-
tion. Since for small N the computational costs of summing up computed probabilities is
marginal, the overall cost is about the same as single inference modulo parallelism. The pre-
sented multi-world approach to question answering on real-world scenes is still an end-to-end
architecture that is trained solely on the question-answer pairs.

Implementation and scalability For worlds containing many facts and spatial relations
the induction step becomes computationally demanding as it considers all pairs of the facts
(we have about 4 million predicates in the worst case). Therefore we use a batch-based
approximation in such situations. Every image induces a set of facts that we call a batch of
facts. For every test image, we find k nearest neighbors in the space of training batches with
a boolean variant of TF.IDF to measure similarity [Manning et al. 2008]. This is equivalent
to building a training world from k images with most similar content to the perceived world

9.4. Experiments 109

of the test image. We use k = 3 and 25 worlds in our experiments. Dataset and the source
code can be found in our website 1.

9.4 Experiments

9.4.1 DAQUAR

Images and Semantic Segmentation Our new dataset for question answering is built
on top of the NYU-Depth V2 dataset [Silberman et al. 2012]. NYU-Depth V2 contains 1449
RGBD images together with annotated semantic segmentations (Figure 9.3) where every
pixel is labeled into some object class with a confidence score. Originally 894 classes are
considered. According to Gupta et al. [2013], we preprocess the data to obtain canonical
views of the scenes and use X, Y , Z coordinates from the depth sensor to define spatial
placement of the objects in 3D. To investigate the impact of uncertainty in the visual
analysis of the scenes, we also employ computer vision techniques for automatic semantic
segmentation. We use a state-of-the-art scene analysis method [Gupta et al. 2013] which
maps every pixel into 40 classes: 37 informative object classes as well as ‘other structure’,
‘other furniture’ and ‘other prop’. We ignore the latter three. We use the same data split as
Gupta et al. [2013]: 795 training and 654 test images. To use our spatial representation on
the image content, we fit 3d cuboids to the segmentations.

DAQUAR - the first dataset of question-answer pairs about real-world images
In the spirit of a visual turing test, we collect question answer pairs from human annotators
for the NYU dataset, and call it DAQUAR (DAtaset for Question Answering about Real-
world images). In our work, we consider two types of the annotations: synthetic and human.
The synthetic question-answer pairs are automatically generated question-answer pairs,
which are based on the templates shown in Table 9.2. These templates are then instantiated
with facts from the database. To collect 12468 human question-answer pairs we ask 5 in-house
participants to provide questions and answers. They were instructed to give valid answers
that are either basic colors [Van De Weijer et al. 2007], numbers or objects (894 categories) or
sets of those. Besides the answers, we don’t impose any constraints on the questions. We also

1https://www.d2.mpi-inf.mpg.de/visual-turing-challenge

Description Template Example
counting How many {object} are in {image_id}? How many cabinets are in image1?

counting and colors How many {color} {object} are in {image_id}? How many gray cabinets are in image1?
room type Which type of the room is depicted in {image_id}? Which type of the room is depicted in image1?

In
di
vi
du

al

superlatives What is the largest {object} in {image_id}? What is the largest object in image1?
counting and colors How many {color} {object}? How many black bags?
negations type 1 Which images do not have {object}? Which images do not have sofa?

se
t

negations type 2 Which images are not {room_type}? Which images are not bedroom?
negations type 3 Which images have {object} but do not have a {object}? Which images have desk but do not have a lamp?

Table 9.2: Synthetic question-answer pairs. The questions can be about individual images or
the sets of images.

https://www.d2.mpi-inf.mpg.de/visual-turing-challenge

110
Chapter 9. A Multi-world Approach to Question Answering

about Real-World Scenes based on Uncertain Input

don’t correct the questions as we believe that the semantic parsers should be robust under
the human errors. Finally, we use 6794 training and 5674 test question-answer pairs – about
9 pairs per image on average (8.63, 8.75)2. The database exhibit some biases showing humans
tend to focus on a few prominent objects. For instance we have more than 400 occurrences
of table and chair in the answers. In average the object’s category occurs (14.25, 4) times in
training set and (22.48, 5.75) times in total. Figure 9.4 shows example question-answer pairs
together with the corresponding image that illustrate some of the challenges captured in
this dataset.

Performance Measure While the quality of an answer that the system produces can be
measured in terms of accuracy w.r.t. the ground truth (correct/wrong), we propose, inspired
from the work on Fuzzy Sets [Zadeh 1965], a soft measure based on the WUP score [Wu and
Palmer 1994], which we call WUPS (WUP Set) score. As the number of classes grows, the
semantic boundaries between them are becoming more fuzzy. For example, both concepts
‘carton’ and ‘box’ have similar meaning, or ‘cup’ and ‘cup of coffee’ are almost indifferent.
Therefore we seek a metric that measures the quality of an answer and penalizes naive
solutions where the architecture outputs too many or too few answers. Standard Accuracy
is defined as: 1

N

∑N
i=1 1{Ai = T i} · 100 where Ai, T i are i-th answer and ground-truth

respectively. Since both the answers may include more than one object, it is beneficial to
represent them as sets of the objects T = {t1, t2, ...}. From this point of view we have for
every i ∈ {1, 2, ..., N}:

1{Ai = T i} = 1{Ai ⊆ T i ∩ T i ⊆ Ai} = min{1{Ai ⊆ T i}, 1{T i ⊆ Ai}} (9.3)

= min{
∏

a∈Ai
1{a ∈ T i},

∏

t∈T i
1{t ∈ Ai}} ≈ min{

∏

a∈Ai
µ(a ∈ T i),

∏

t∈T i
µ(t ∈ Ai)} (9.4)

We use a soft equivalent of the intersection operator in Equation 9.3, and a set membership
measure µ, with properties µ(x ∈ X) = 1 if x ∈ X, µ(x ∈ X) = maxy∈X µ(x = y) and
µ(x = y) ∈ [0, 1], in Equation 9.4 with equality whenever µ = 1. For µ we use a variant of
Wu-Palmer similarity [Wu and Palmer 1994; Guadarrama et al. 2013a]. WUP(a, b) calculates
similarity based on the depth of two words a and b in the taxonomy [Miller 1995; Fellbaum
1999], and define the WUPS score:

WUPS(A, T) = 1
N

N∑

i=1
min{

∏

a∈Ai
max
t∈T i

WUP(a, t),
∏

t∈T i
max
a∈Ai

WUP(a, t)} · 100 (9.5)

Empirically, we have found that in our task a WUP score of around 0.9 is required for
precise answers. Therefore we have implemented down-weighting WUP(a, b) by one order
of magnitude (0.1 ·WUP) whenever WUP(a, b) < t for a threshold t. We plot a curve over
thresholds t ranging from 0 to 1 (Figure 9.5). Since ‘WUPS at 0’ refers to the most ‘forgivable’
measure without any down-weighting and ‘WUPS at 1.0’ corresponds to plain accuracy.
Figure 9.5 benchmarks architectures by requiring answers with precision ranging from low to

2Our notation (x, y) denotes mean x and trimean y. We use Tukey’s trimean 1
4 (Q1 + 2Q2 + Q3), where

Qj denotes the j-th quartile [Tukey 1977]. This measure combines the benefits of both median (robustness
to the extremes) and empirical mean (attention to the hinge values).

9.4. Experiments 111

high. Here we show some examples of the pure WUP score to give intuitions about the range:
WUP(curtain, blinds) = 0.94, WUP(carton, box) = 0.94, WUP(stove, fire extinguisher) =
0.82.

9.4.2 Quantitative results

We perform a series of experiments to highlight particular challenges like uncertain seg-
mentations, unknown true logical forms, some linguistic phenomena as well as show the
advantages of our proposed multi-world approach. In particular, we distinguish between
experiments on synthetic question-answer pairs (SynthQA) based on templates and those
collected by annotators (HumanQA), automatic scene segmentation (AutoSeg) with a
computer vision algorithm [Gupta et al. 2013] and human segmentations (HumanSeg)
based on the ground-truth annotations in the NYU dataset as well as single world (single)
and multi-world (multi) approaches.

9.4.2.1 Synthetic question-answer pairs (SynthQA)

Based on human segmentations (HumanSeg, 37 classes) (1st and 2nd rows in
Table 9.3) uses automatically generated questions (we use templates shown in Table 9.2)
and human segmentations. We have generated 20 training and 40 test question-answer
pairs per template category, in total 140 training and 280 test pairs (as an exception
negations type 1 and 2 have 10 training and 20 test examples each). This experiment shows
how the architecture generalizes across similar type of questions provided that we have
human annotation of the image segments. We have further removed negations of type 3 in
the experiments as they have turned out to be particularly computationally demanding.
Performance increases hereby from 56% to 59.9% with about 80% training Accuracy. Since
some incorrect derivations give correct answers, the semantic parser learns wrong associations.
Other difficulties stem from the limited training data and unseen object categories during
training.

Based on automatic segmentations (AutoSeg, 37 classes, single) (3rd row in
Table 9.3) tests the architecture based on uncertain facts obtained from automatic semantic
segmentation [Gupta et al. 2013] where the most likely object labels are used to create a
single world. Here, we are experiencing a severe drop in performance from 59.9% to 11.25%
by switching from human to automatic segmentation. Note that there are only 37 classes
available to us. This result suggests that the vision part is a serious bottleneck of the whole
architecture.

Based on automatic segmentations using multi-world approach (AutoSeg, 37
classes, multi) (4th row in Table 9.3) shows the benefits of using our multiple worlds
approach to predict the answer. Here we recover part of the lost performance by an explicit
treatment of the uncertainty in the segmentations. Performance increases from 11.25% to
13.75%.

112
Chapter 9. A Multi-world Approach to Question Answering

about Real-World Scenes based on Uncertain Input

9.4.3 Human question-answer pairs (HumanQA)
Based on human segmentations 894 classes (HumanSeg, 894 classes) (1st row in
Table 9.4) switching to human generated question-answer pairs. The increase in complexity
is twofold. First, the human annotations exhibit more variations than the synthetic approach
based on templates. Second, the questions are typically longer and include more spatially
related objects. Figure 9.4 shows a few samples from our dataset that highlights challenges
including complex and nested spatial reference and use of reference frames. We yield an
accuracy of 7.86% in this scenario. As argued above, we also evaluate the experiments on
the human data under the softer WUPS scores given different thresholds (Table 9.4 and
Figure 9.5). In order to put these numbers in perspective, we also show performance numbers
for two simple methods: predicting the most popular answer yields 4.4% Accuracy, and our
untrained architecture gives 0.18% and 1.3% Accuracy and WUPS (at 0.9).

Based on human segmentations 37 classes (HumanSeg, 37 classes) (2nd row in
Table 9.4) uses human segmentation and question-answer pairs. Since only 37 classes are
supported by our automatic segmentation algorithm, we run on a subset of the whole dataset.
We choose the 25 test images yielding a total of 286 question answer pairs for the following
experiments. This yields 12.47% and 15.89% Accuracy and WUPS at 0.9 respectively.

Based on automatic segmentations (AutoSeg, 37 classes) (3rd row in Table 9.4)
Switching from the human segmentations to the automatic yields again a drop from 12.47%
to 9.69% in Accuracy and we observe a similar trend for the whole spectrum of the WUPS
scores.

Based on automatic segmentations using multi-world approach (AutoSeg, 37
classes, multi) (4th row in Table 9.4) Similar to the synthetic experiments our proposed
multi-world approach yields an improvement across all the measure that we investigate.

Human baseline (5th and 6th rows in Table 9.4 for 894 and 37 classes) shows human
predictions on our dataset. We ask independent annotators to provide answers on the
questions we have collected. They are instructed to answer with a number, basic colors
[Van De Weijer et al. 2007], or objects (from 37 or 894 categories) or set of those. This
performance gives a practical upper bound for the question-answering algorithms with an
accuracy of 60.27% for the 37 class case and 50.20% for the 894 class case. We also ask to
compare the answers of the AutoSeg single world approach with HumanSeg single world and
AutoSeg multi-worlds methods. We use a two-sided binomial test to check if difference in
preferences is statistically significant. As a result AutoSeg single world is the least preferred
method with the p-value below 0.01 in both cases. Hence the human preferences are aligned
with our accuracy measures in Table 9.4.

9.4.4 Qualitative results
We choose examples in Figure 9.6 to illustrate different failure cases - including last example
where all methods fail. Since our multi-world approach generates different sets of facts

9.5. Summary 113

Synthetic question-answer pairs (SynthQA)
Segmentation World(s) # classes Accuracy
HumanSeg Single with Neg. 3 37 56.0%
HumanSeg Single 37 59.5%
AutoSeg Single 37 11.25%
AutoSeg Multi 37 13.75%

Table 9.3: Accuracy results for the experiments with synthetic question-answer pairs.

about the perceived worlds, we observe a trend towards a better representation of high level
concepts like ‘counting’ (leftmost the figure) as well as language associations. A substantial
part of incorrect answers is attributed to missing segments, e.g. no pillow detection in third
example in Figure 9.6.

9.5 Summary
We propose a system and a dataset for question answering about real-world scenes that is
reminiscent of a visual turing test. Despite the complexity in uncertain visual perception,
language understanding and program induction, our results indicate promising progress in
this direction. We bring ideas together from automatic scene analysis, semantic parsing with
symbolic reasoning, and combine them under a multi-world approach. As we have mature
techniques in machine learning, computer vision, natural language processing and deduction
at our disposal, it seems timely to bring these disciplines together on this open challenge.

Human question-answer pairs (HumanQA)
Segmentation World(s) #classes Accuracy WUPS at 0.9 WUPS at 0
HumanSeg Single 894 7.86% 11.86% 38.79%
HumanSeg Single 37 12.47% 16.49% 50.28%
AutoSeg Single 37 9.69% 14.73% 48.57%
AutoSeg Multi 37 12.73% 18.10% 51.47%
Human Baseline 894 50.20% 50.82% 67.27%
Human Baseline 37 60.27% 61.04% 78.96%

Table 9.4: Accuracy and WUPS scores for the experiments with human question-answer
pairs. We show WUPS scores at two opposite sides of the WUPS spectrum.

114
Chapter 9. A Multi-world Approach to Question Answering

about Real-World Scenes based on Uncertain Input

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

(a) Sampled worlds.

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

(b) Object’s coordinates.

Figure 9.2: Figure 9.2a shows a few sampled worlds where only segments of the class ’person’
are shown. In the clock-wise order: original picture, most confident world, and three possible
worlds (gray-scale values denote the class confidence). Although, at first glance the most
confident world seems to be a reasonable approach, our experiments show opposite - we can
benefit from imperfect but multiple worlds. Figure 9.2b shows object’s coordinates (original
and Z, Y , X images in the clock-wise order), which better represent the spatial location of
the objects than the image coordinates.

9.5. Summary 115

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

Figure 9.3: NYU-Depth V2 dataset: image, Z axis, ground truth and predicted semantic
segmentations.

QA: (what is beneath the candle holder,
decorative plate)!
Some annotators use variations on spatial
relations that are similar, e.g. ‘beneath’ is
closely related to ‘below’.!!
QA: (what is in front of the wall divider?,
cabinet)  
Annotators use additional properties to
clarify object references (i.e. wall divider).
Moreover, the perspective plays an
important role in these spatial relations
interpretations.

QA1:(How many doors are in the image?, 1)!
QA2:(How many doors are in the image?, 5)!
Different interpretation of ‘door’ results in
different counts: 1 door at the end of the hall  
vs. 5 doors including lockers

!
QA: (what is behind the table?, sofa)!
Spatial relations exhibit different reference
frames. Some annotations use observer-
centric, others object-centric view!
QA: (how many lights are on?, 6)!
Moreover, some questions require detection
of states ‘light on or off’  

Q: what is at the back side of the sofas?!
Annotators use wide range spatial relations,
such as ‘backside’ which is object-centric.

QA1: (what is in front of the curtain behind
the armchair?, guitar)!!
QA2: (what is in front of the curtain?,
guitar)!!
Spatial relations matter more in complex
environments where reference resolution
becomes more relevant. In cluttered scenes,
pragmatism starts playing a more important
role

The annotators are using different names to
call the same things. The names of the
brown object near the bed include ‘night
stand’, ‘stool’, and ‘cabinet’.

Some objects, like the table on the left of
image, are severely occluded or truncated.
Yet, the annotators refer to them in the
questions.

QA: (What is behind the table?, window)!
Spatial relation like ‘behind’ are dependent
on the reference frame. Here the annotator
uses observer-centric view.!

QA: (How many drawers are there?, 8)!
The annotators use their common-sense
knowledge for amodal completion. Here the
annotator infers the 8th drawer from the
context

QA: (What is the object on the counter in
the corner?, microwave)!
References like ‘corner’ are difficult to
resolve given current computer vision
models. Yet such scene features are
frequently used by humans.!

QA: (How many doors are open?, 1)!
Notion of states of object (like open) is not
well captured by current vision techniques.
Annotators use such attributes frequently
for disambiguation.!

QA: (What is the shape of the green
chair?, horse shaped)!
In this example, an annotator refers to a
“horse shaped chair” which requires a quite
abstract reasoning about the shapes.!

QA: (Where is oven?, on the right side of
refrigerator)!
On some occasions, the annotators prefer to
use more complex responses. With spatial
relations, we can increase the answer’s
precision.!

QA: (What is in front of toilet?, door)!
Here the ‘open door’ to the restroom is not
clearly visible, yet captured by the annotator.!

Figure 9.4: Examples of human generated question-answer pairs illustrating the associated
challenges. In the descriptions we use following notation: ‘A’ - answer, ‘Q’ - question, ‘QA’
- question-answer pair. Last two examples (bottom-right column) are from the extended
dataset not used in our experiments.

116
Chapter 9. A Multi-world Approach to Question Answering

about Real-World Scenes based on Uncertain Input

● ● ● ● ● ●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

W
U
PS

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

HumanQA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HumanSeg, Single, 894
HumanSeg, Single, 37
AutoSeg, Single, 37
AutoSeg, Multi, 37
Human Baseline, 894
Human Baseline, 37

Figure 9.5: WUPS scores for different thresholds.

Q: How many red chairs are there?
H: ()
M: 6
C: blinds

Q: How many chairs are at the table?
H: wall 
M: 4
C: chair

Q: What is the object on the chair?
H: pillow
M: floor, wall
C: wall

Q: What is on the right side of the table?
H: chair  
M: window, floor, wall
C: floor

Q: What is on the right side of cabinet?
H: picture 
M: bed
C: bed

Q: What is on the wall?
H: mirror
M: bed
C: picture

Q: What is behind the television?
H: lamp  
M: brown, pink, purple
C: picture

Q: What is in front of television?
H: pillow
M: chair
C: picture

Figure 9.6: Questions and predicted answers. Notation: ‘Q’ - question, ‘H’ - architecture
based on human segmentation, ‘M’ - architecture with multiple worlds, ‘C’ - most confident
architecture, ‘()’ - no answer. Red color denotes correct answer.

Chapter 10

Ask Your Neurons:
A Neural-based Approach to

Answering Questions about
Images

Contents
10.1 Introduction . 118

10.2 Related Work . 119

10.3 Approach . 121

10.4 Experiments . 123

10.4.1 Evaluation of Ask Your Neurons . 124

10.4.2 Answering questions without looking at images 126

10.4.3 Human Consensus . 126

10.4.4 Qualitative results . 130

10.4.5 Failure cases . 130

10.5 Conclusions . 131

10.6 Additional Material . 134

In this chapter, we follow our main line of research on Visual Turing Test, which we
started in Chapters 8, and 9. By combining latest advances in image representation and
natural language processing, we propose Ask Your Neurons, an end-to-end formulation

of this problem for which all parts are trained jointly. In contrast to previous efforts, we are
facing a multi-modal problem where the language output (answer) is conditioned on visual
and natural language input (question). Our result doubles the performance of our previous
approach to Visual Turing Test (Chapter 9). Moreover, we also provide additional insights
into the problem by analyzing how much information is contained only in the language part
for which we provide a new human baseline. Further annotations were collected to study
human consensus, which is related to the ambiguities inherent in this challenging task.

118
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

What is behind the table ?

chairs window

LSTM

<END>

CNN

Figure 10.1: Our approach, Ask Your Neurons, to question answering with a Recurrent
Neural Network using Long Short Term Memory (LSTM). To answer a question about an
image, we feed in both, the image (CNN features) and the question (green boxes) into the
LSTM. After the (variable length) question is encoded, we generate the answers (multiple
words, orange boxes). During the answer generation phase the previously predicted answers
are fed into the LSTM until the 〈END〉 symbol is predicted.

10.1 Introduction

With the advances of natural language processing and image understanding, more complex
and demanding tasks have become within reach. Our aim is to take advantage of the
most recent developments to push the state-of-the-art for answering natural language
questions on real-world images. This task unites inference of question intends and visual
scene understanding with a word sequence prediction task.

Most recently, architectures based on the idea of layered, end-to-end trainable artificial
neural networks have improved the state of the art across a wide range of diverse tasks.
Most prominently Convolutional Neural Networks have raised the bar on image classification
tasks [Krizhevsky et al. 2012] and Long Short Term Memory Networks are dominating
performance on a range of sequence prediction tasks such as machine translation [Sutskever
et al. 2014].

Very recently these two trends of employing neural architectures have been combined
fruitfully with methods that can generate image [Karpathy and Fei-Fei 2015] and video
descriptions [Venugopalan et al. 2015a]. Both are conditioning on the visual features that
stem from deep learning architectures and employ recurrent neural network approaches to
produce descriptions.

To further push the boundaries and explore the limits of deep learning architectures, we
propose an architecture for answering questions about images. In contrast to prior work,
this task needs conditioning on language as well visual input. Both modalities have to be
interpreted and jointly represented as an answer depends on inferred meaning of the question
and image content.

While there is a rich body of work on natural language understanding that has addressed
textual question answering tasks based on semantic parsing, symbolic representation and

10.2. Related Work 119

deduction systems, which also has seen applications to question answering on images
[Malinowski and Fritz 2014a], there is initial evidence that deep architectures can indeed
achieve a similar goal [Weston et al. 2014]. This motivates our work to seek end-to-end
architectures that learn to answer questions in a single holistic and monolithic model.

We propose Ask Your Neurons, an approach to question answering with a recurrent neural
network. An overview is given in Figure 10.1. The image is analyzed via a Convolutional
Neural Network (CNN) and the question together with the visual representation is fed into
a Long Short Term Memory (LSTM) network. The system is trained to produce the correct
answer to the question on the image. CNN and LSTM are trained jointly and end-to-end
starting from words and pixels.
Contributions: We proposes a novel approach based on recurrent neural networks for
the challenging task of answering of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers conditioning on a question and
an image. Our approach significantly outperforms prior work on this task – doubling the
performance. We collect additional data to study human consensus on this task, propose
two new metrics sensitive to these effects, and provide a new baseline, by asking humans to
answer the questions without observing the image. We demonstrate a variant of our system
that also answers question without accessing any visual information, which beats the human
baseline.

10.2 Related Work
As our method touches upon different areas in machine learning, computer vision and natural
language processing, we have organized related work in the following way:

Convolutional Neural Networks for visual recognition. We are building on the
recent success of Convolutional Neural Networks (CNN) for visual recognition [Krizhevsky
et al. 2012; LeCun et al. 1998b; Russakovsky et al. 2014], that are directly learnt from the
raw image data and pre-trained on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [Simonyan and Zisserman 2015; Szegedy
et al. 2015] is at our disposal.

Recurrent Neural Networks (RNN) for sequence modeling. Recurrent Neural
Networks allow Neural Networks to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber 1997] has shown
recent success on natural language tasks such as machine translation [Cho et al. 2014;
Sutskever et al. 2014].

Combining RNNs and CNNs for description of visual content. The task of de-
scribing visual content like still images as well as videos has been successfully addressed
with a combination of the previous two ideas [Donahue et al. 2015; Karpathy and Fei-Fei
2015; Venugopalan et al. 2015b; Vinyals et al. 2014; Zitnick et al. 2013]. This is achieved by
using the RNN-type model that first gets to observe the visual content and is trained to

120
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

afterwards predict a sequence of words that is a description of the visual content. Our work
extends this idea to question answering, where we formulate a model trained to generate an
answer based on visual as well as natural language input.

Grounding of natural language and visual concepts. Dealing with natural language
input does involve the association of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associated with a sensory input. While
such problems have been historically addressed by symbolic semantic parsing techniques
[Krishnamurthy and Kollar 2013; Matuszek et al. 2012], there is a recent trend of machine
learning-based approaches [Karpathy and Fei-Fei 2015; Karpathy et al. 2014; Kong et al.
2014] to find the associations. Our approach follows the idea that we do not enforce or
evaluate any particular representation of “meaning” on the language or image modality. We
treat this as latent and leave this to the joint training approach to establish an appropriate
internal representation for the question answering task.

Textual question answering. Answering on purely textual questions has been studied in
the NLP community [Berant and Liang 2014; Liang et al. 2013] and state of the art techniques
typically employ semantic parsing to arrive at a logical form capturing the intended meaning
and infer relevant answers. Only very recently, the success of the previously mentioned
neural sequence models as RNNs has carried over to this task [Iyyer et al. 2014; Weston
et al. 2014]. More specifically Iyyer et al. [2014] uses dependency-tree Recursive NN instead
of LSTM, and reduce the question-answering problem to a classification task. Moreover,
according to Iyyer et al. [2014] their method cannot be easily applied to vision. Weston et al.
[2014] propose different kind of network - memory networks - and it is unclear how to apply
Weston et al. [2014] to take advantage of the visual content. However, neither Iyyer et al.
[2014] nor Weston et al. [2014] show an end-to-end, monolithic approaches that produce
multiple words answers for question on images.

Visual Turing Test. Most recently several approaches have been proposed to approach
Visual Turing Test [Malinowski and Fritz 2014b], i.e. answering questions about visual
content. For instance Geman et al. [2015] have proposed a binary (yes/no) version of Visual
Turing Test on synthetic data. In Malinowski and Fritz [2014a], we present a question
answering system based on a semantic parser on a more varied set of human question-answer
pairs. In contrast, in this work, our method is based on a neural architecture, which is
trained end-to-end and therefore liberates the approach from any ontological commitment
that would otherwise be introduced by a semantic parser.

We like to note that shortly after this work, several neural-based models [Ren et al.
2015a; Ma et al. 2015; Gao et al. 2015] have also been suggested. Also several new datasets
for Visual Turing Tests have just been proposed [Antol et al. 2015; Yu et al. 2015a] that are
worth further investigations.

10.3. Approach 121

LSTM LSTM

qn

a1 ai

CNN
x

ai-1

LSTM

qn-1

...

...

... ...

Figure 10.2: Our approach Ask Your Neurons, see Section 10.3 for details.

10.3 Approach
Answering questions on images is the problem of predicting an answer a given an image x
and a question q according to a parametric probability measure:

â = arg max
a∈A

p(a|x, q;θ) (10.1)

where θ represent a vector of all parameters to learn and A is a set of all answers. Later we
describe how we represent x, a, q, and p(·|x, q;θ) in more details.

In our scenario questions can have multiple word answers and we consequently decompose
the problem to predicting a set of answer words aq,x =

{
a1,a2, ...,aN (q,x)

}
, where at are

words from a finite vocabulary V ′, and N (q, x) is the number of answer words for the given
question and image. In our approach, named Ask Your Neurons, we propose to tackle the
problem as follows. To predict multiple words we formulate the problem as predicting a
sequence of words from the vocabulary V := V ′ ∪ {$} where the extra token $ indicates the
end of the answer sequence, and points out that the question has been fully answered. We
thus formulate the prediction procedure recursively:

ât = arg max
a∈V

p(a|x, q, Ât−1;θ) (10.2)

where Ât−1 = {â1, . . . , ât−1} is the set of previous words, with Â0 = {} at the beginning,
when our approach has not given any answer so far. The approach is terminated when ât = $.
We evaluate the method solely based on the predicted answer words ignoring the extra
token $. To ensure uniqueness of the predicted answer words, as we want to predict the set
of answer words, the prediction procedure can be be trivially changed by maximizing over
V \ Ât−1. However, in practice, our algorithm learns to not predict any previously predicted
words.
As shown in Figure 10.1 and Figure 10.2, we feed Ask Your Neurons with a question as

122
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

σ

σσ

vt
ht-1

ct-1

ht
 = zt

Output
Gate

Input
Gate

Forget Gate

Input Modulation Gate

LSTM Unit

ϕ +
ct

ϕ

Figure 10.3: LSTM unit. See Section 10.3, Equations (11.1)-(11.6) for details.

a sequence of words, i.e. q = [q1, . . . , qn−1, J?K], where each qt is the t-th word question
and J?K := qn encodes the question mark - the end of the question. Since our problem is
formulated as a variable-length input/output sequence, we model the parametric distribution
p(·|x, q;θ) of Ask Your Neurons with a recurrent neural network and a softmax prediction
layer. More precisely, Ask Your Neurons is a deep network built of CNN [LeCun et al. 1998b]
and Long-Short Term Memory (LSTM) [Hochreiter and Schmidhuber 1997]. LSTM has been
recently shown to be effective in learning a variable-length sequence-to-sequence mapping
[Donahue et al. 2015; Sutskever et al. 2014].

Both question and answer words are represented with one-hot vector encoding (a binary
vector with exactly one non-zero entry at the position indicating the index of the word in
the vocabulary) and embedded in a lower dimensional space, using a jointly learnt latent
linear embedding. In the training phase, we augment the question words sequence q with
the corresponding ground truth answer words sequence a, i.e. q̂ := [q,a]. During the test
time, in the prediction phase, at time step t, we augment q with previously predicted answer
words â1..t := [â1, . . . , ât−1], i.e. q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the LSTM, while the latent hidden
representation is learnt. We encode the image x using a CNN and provide it at every time
step as input to the LSTM. We set the input vt as a concatenation of [x, q̂t].

As visualized in detail in Figure 10.3, the LSTM unit takes an input vector vt at each
time step t and predicts an output word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the corresponding answer word at. In contrast
to a simple RNN unit the LSTM unit additionally maintains a memory cell c. This allows to
learn long-term dynamics more easily and significantly reduces the vanishing and exploding
gradients problem [Hochreiter and Schmidhuber 1997]. More precisely, we use the LSTM
unit as described in Zaremba and Sutskever [2014] and the Caffe implementation from
Donahue et al. [2015]. With the sigmoid nonlinearity σ : R 7→ [0, 1], σ(v) = (1 + e−v)−1 and
the hyperbolic tangent nonlinearity φ : R 7→ [−1, 1], φ(v) = ev−e−v

ev+e−v = 2σ(2v)− 1, the LSTM

10.4. Experiments 123

updates for time step t given inputs vt, ht−1, and the memory cell ct−1 as follows:

it = σ(Wvivt +Whiht−1 + bi) (10.3)
ft = σ(Wvfvt +Whfht−1 + bf) (10.4)
ot = σ(Wvovt +Whoht−1 + bo) (10.5)
gt = φ(Wvgvt +Whght−1 + bg) (10.6)
ct = ft � ct−1 + it � gt (10.7)
ht = ot � φ(ct) (10.8)

where � denotes element-wise multiplication. All the weights W and biases b of the net-
work are learnt jointly with the cross-entropy loss. Conceptually, as shown in Figure 10.3,
Equation 11.1 corresponds to the input gate, Equation 11.4 the input modulation gate,
and Equation 11.2 the forget gate, which determines how much to keep from the previous
memory ct−1 state. As Figures 10.1 and 10.2 suggest, all the output predictions that occur
before the question mark are excluded from the loss computation, so that the model is
penalized solely based on the predicted answer words.

Implementation We use default hyper-parameters of LSTM [Donahue et al. 2015] and
CNN [Jia et al. 2014]. All CNN models are first pre-trained on the ImageNet dataset
[Russakovsky et al. 2014], and next we randomly initialize and train the last layer together
with the LSTM network on the task. We find this step crucial in obtaining good results. We
have explored the use of a 2 layered LSTM model, but have consistently obtained worse
performance. In a pilot study, we have found that GoogleNet architecture [Jia et al. 2014;
Szegedy et al. 2015] consistently outperforms the AlexNet architecture [Jia et al. 2014;
Krizhevsky et al. 2012] as a CNN model for our task and model.

10.4 Experiments
In this section we benchmark our method on a task of answering questions about images. We
compare different variants of our proposed model to prior work in Section 10.4.1. In addition,
in Section 10.4.2, we analyze how well questions can be answered without using the image
in order to gain an understanding of biases in form of prior knowledge and common sense.
We provide a new human baseline for this task. In Section 10.4.3 we discuss ambiguities
in the question answering tasks and analyze them further by introducing metrics that are
sensitive to these phenomena. In particular, the WUPS score [Malinowski and Fritz 2014a]
is extended to a consensus metric that considers multiple human answers. Additional results
are available in the supplementary material and on the project webpage 1.

Experimental protocol We evaluate our approach on the DAQUAR dataset [Malinowski
and Fritz 2014a] which provides 12, 468 human question answer pairs on images of indoor
scenes [Silberman et al. 2012] and follow the same evaluation protocol by providing results
on accuracy and the WUPS score at {0.9, 0.0}. We run experiments for the full dataset as

1https://www.d2.mpi-inf.mpg.de/visual-turing-challenge

https://www.d2.mpi-inf.mpg.de/visual-turing-challenge

124
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

Accu- WUPS WUPS
racy @0.9 @0.0

Malinowski et al. [Malinowski and Fritz 2014a] 7.86 11.86 38.79

Ask Your Neurons (ours)
- multiple words 17.49 23.28 57.76
- single word 19.43 25.28 62.00
Human answers [Malinowski and Fritz 2014a] 50.20 50.82 67.27

Language only (ours)
- multiple words 17.06 22.30 56.53
- single word 17.15 22.80 58.42
Human answers, no images 7.34 13.17 35.56

Table 10.1: Results on DAQUAR, all classes, single reference, in %.

well as their proposed reduced set that restricts the output space to only 37 object categories
and uses 25 test images. In addition, we also evaluate the methods on different subsets of
DAQUAR where only 1, 2, 3 or 4 word answers are present.

WUPS scores We base our experiments as well as the consensus metrics on WUPS scores
[Malinowski and Fritz 2014a]. The metric is a generalization of the accuracy measure that
accounts for word-level ambiguities in the answer words. For instance ‘carton’ and ‘box’ can
be associated with a similar concept, and hence models should not be strongly penalized for
this type of mistakes. Formally:

WUPS(A, T) = 1
N

N∑

i=1
min{

∏

a∈Ai
max
t∈T i

µ(a, t),

∏

t∈T i
max
a∈Ai

µ(a, t)}

To embrace the aforementioned ambiguities, Malinowski and Fritz [2014a] suggest using a
thresholded taxonomy-based Wu-Palmer similarity [Wu and Palmer 1994] for µ. The smaller
the threshold the more forgiving metric. As in Malinowski and Fritz [2014a], we report
WUPS at two extremes, 0.0 and 0.9.

10.4.1 Evaluation of Ask Your Neurons
We start with the evaluation of our Ask Your Neurons on the full DAQUAR dataset in
order to study different variants and training conditions. Afterwards we evaluate on the
reduced DAQUAR for additional points of comparison to prior work.

Results on full DAQUAR Table 10.1 shows the results of our Ask Your Neurons method
on the full set (“multiple words”) with 653 images and 5673 question-answer pairs available

10.4. Experiments 125

Accu- WUPS WUPS
racy @0.9 @0.0

Ask Your Neurons (ours) 21.67 27.99 65.11

Language only (ours) 19.13 25.16 61.51

Table 10.2: Results of the single word model on the one-word answers subset of DAQUAR,
all classes, single reference, in %.

at test time. In addition, we evaluate a variant that is trained to predict only a single word
(“single word”) as well as a variant that does not use visual features (“Language only”).
In comparison to the prior work [Malinowski and Fritz 2014a] (shown in the first row in
Table 10.1), we observe strong improvements of over 9% points in accuracy and over 11% in
the WUPS scores [second row in Table 10.1 that corresponds to “multiple words”]. Note
that, we achieve this improvement despite the fact that the only published number available
for the comparison on the full set uses ground truth object annotations [Malinowski and
Fritz 2014a] – which puts our method at a disadvantage. Further improvements are observed
when we train only on a single word answer, which doubles the accuracy obtained in prior
work. We attribute this to a joint training of the language and visual representations and
the dataset bias, where about 90% of the answers contain only a single word.

We further analyze this effect in Figure 10.4, where we show performance of our approach
(“multiple words”) in dependence on the number of words in the answer (truncated at 4
words due to the diminishing performance). The performance of the “single word” variants
on the one-word subset are shown as horizontal lines. Although accuracy drops rapidly for
longer answers, our model is capable of producing a significant number of correct two words
answers. The “single word” variants have an edge on the single answers and benefit from the
dataset bias towards these type of answers. Quantitative results of the “single word” model
on the one-word answers subset of DAQUAR are shown in Table 10.2. While we have made
substantial progress compared to prior work, there is still a 30% points margin to human
accuracy and 25 in WUPS score [“Human answers” in Table 10.1].

Results on reduced DAQUAR In order to provide performance numbers that are
comparable to the proposed Multi-World approach in Malinowski and Fritz [2014a], we also
run our method on the reduced set with 37 object classes and only 25 images with 297
question-answer pairs at test time.

Table 10.3 shows that Ask Your Neurons also improves on the reduced DAQUAR set,
achieving 34.68% Accuracy and 40.76% WUPS at 0.9 substantially outperforming Malinowski
and Fritz [2014a] by 21.95% Accuracy and 22.6 WUPS. Similarly to previous experiments,
we achieve the best performance using the “single word” variant.

126
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

1 2 3 4

0

10

20

30

Words number

A
cc
ur
ac
y

1 2 3 4

0

10

20

30

Words number
W

U
PS

0.
9

Figure 10.4: Language only (blue bar) and Ask Your Neurons (red bar) “multi word” models
evaluated on different subsets of DAQUAR. We consider 1, 2, 3, 4 word subsets. The blue
and red horizontal lines represent “single word” variants evaluated on the answers with
exactly 1 word.

10.4.2 Answering questions without looking at images

In order to study how much information is already contained in questions, we train a version
of our model that ignores the visual input. The results are shown in Table 10.1 and Table 10.3
under “Language only (ours)”. The best “Language only” models with 17.15% and 32.32%
compare very well in terms of accuracy to the best models that include vision. The latter
achieve 19.43% and 34.68% on the full and reduced set respectively.

In order to further analyze this finding, we have collected a new human baseline “Human
answer, no image”, where we have asked participants to answer on the DAQUAR questions
without looking at the images. It turns out that humans can guess the correct answer in
7.86% of the cases by exploiting prior knowledge and common sense. Interestingly, our best
“language only” model outperforms the human baseline by over 9%. A substantial number of
answers are plausible and resemble a form of common sense knowledge employed by humans
to infer answers without having seen the image.

10.4.3 Human Consensus

We observe that in many cases there is an inter human agreement in the answers for a
given image and question and this is also reflected by the human baseline performance on
the question answering task of 50.20% [“Human answers” in Table 10.1]. We study and
analyze this effect further by extending our dataset to multiple human reference answers in
Section 10.4.3.1, and proposing a new measure – inspired by the work in psychology [Cohen
et al. 1960; Fleiss and Cohen 1973; Nakashole et al. 2013] – that handles disagreement in
Section 10.4.3.2, as well as conducting additional experiments in Section 10.4.3.3.

10.4. Experiments 127

Accu- WUPS WUPS
racy @0.9 @0.0

Malinowski et al. [Malinowski and Fritz 2014a] 12.73 18.10 51.47

Ask Your Neurons (ours)
- multiple words 29.27 36.50 79.47
- single word 34.68 40.76 79.54

Language only (ours)
- multiple words 32.32 38.39 80.05
- single word 31.65 38.35 80.08

Table 10.3: Results on reduced DAQUAR, single reference, with a reduced set of 37 object
classes and 25 test images with 297 question-answer pairs, in %

10.4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question answering task, we have asked
multiple participants to answer the same question of the DAQUAR dataset given the
respective image. We follow the same scheme as in the original data collection effort, where
the answer is a set of words or numbers. We do not impose any further restrictions on the
answers. This extends the original data [Malinowski and Fritz 2014a] to an average of 5 test
answers per image and question. We refer to this dataset as DAQUAR-Consensus.

10.4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our task, we seek a metric that prefers
an answer that is commonly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that contains multiple answers per
question in order to compute an expected score in the evaluation:

1
NK

N∑

i=1

K∑

k=1
min{

∏

a∈Ai
max
t∈T i

k

µ(a, t),
∏

t∈T i
k

max
a∈Ai

µ(a, t)} (10.9)

where for the i-th question Ai is the answer generated by the architecture and T ik is the
k-th possible human answer corresponding to the k-th interpretation of the question. Both
answers Ai and T ik are sets of the words, and µ is a membership measure, for instance WUP
[Wu and Palmer 1994]. We call this metric “Average Consensus Metric (ACM)” since, in the
limits, as K approaches the total number of humans, we truly measure the inter human
agreement of every question.

Min Consensus: The Average Consensus Metric puts more weights on more “mainstream”
answers due to the summation over possible answers given by humans. In order to measure
if the result was at least with one human in agreement, we propose a “Min Consensus Metric

128
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

0 50 100
0

50

100

Human agreement

Fr
ac
tio

n
of

da
ta

0 50 100
0

50

100

Human agreement
Fr
ac
tio

n
of

da
ta

Figure 10.5: Study of inter human agreement. At x-axis: no consensus (0%), at least half
consensus (50%), full consensus (100%). Results in %. Left: consensus on the whole data,
right: consensus on the test data.

(MCM)” by replacing the averaging in Equation 10.9 with a max operator. We call such
metric Min Consensus and suggest using both metrics in the benchmarks. We will make the
implementation of both metrics publicly available.

1
N

N∑

i=1

Kmax
k=1

min{

∏

a∈Ai
max
t∈T i

k

µ(a, t),
∏

t∈T i
k

max
a∈Ai

µ(a, t)}

 (10.10)

Intuitively, the max operator uses in evaluation a human answer that is the closest to the
predicted one – which represents a minimal form of consensus.

10.4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-Consensus we can show a more detailed
analysis of inter human agreement. Figure 10.5 shows the fraction of the data where the
answers agree between all available questions (“100”), at least 50% of the available questions
and do not agree at all (no agreement - “0”). We observe that for the majority of the data,
there is a partial agreement, but even full disagreement is possible. We split the dataset into
three parts according to the above criteria “No agreement”, “≥ 50% agreement” and “Full
agreement” and evaluate our models on these splits (Table 10.4 summarizes the results). On
subsets with stronger agreement, we achieve substantial gains of up to 10% and 20% points
in accuracy over the full set (Table 10.1) and the Subset: No agreement (Table 10.4),
respectively. These splits can be seen as curated versions of DAQUAR, which allows studies
with factored out ambiguities.

The aforementioned “Average Consensus Metric” generalizes the notion of the agreement,
and encourages predictions of the most agreeable answers. On the other hand “Min Consensus
Metric” has a desired effect of providing a more optimistic evaluation. Table 10.5 shows the
application of both measures to our data and models.

10.4. Experiments 129

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement
Language only (ours)
- multiple words 8.86 12.46 38.89
- single word 8.50 12.05 40.94

Ask Your Neurons (ours)
- multiple words 10.31 13.39 40.05
- single word 9.13 13.06 43.48
Subset: ≥ 50% agreement
Language only (ours)
- multiple words 21.17 27.43 66.68
- single word 20.73 27.38 67.69

Ask Your Neurons (ours)
- multiple words 20.45 27.71 67.30
- single word 24.10 30.94 71.95
Subset: Full Agreement
Language only (ours)
- multiple words 27.86 35.26 78.83
- single word 25.26 32.89 79.08

Ask Your Neurons (ours)
- multiple words 22.85 33.29 78.56
- single word 29.62 37.71 82.31

Table 10.4: Results on DAQUAR, all classes, single reference in % (the subsets are chosen
based on DAQUAR-Consensus).

130
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

Accu- WUPS WUPS
racy @0.9 @0.0

Average Consensus Metric
Language only (ours)
- multiple words 11.60 18.24 52.68
- single word 11.57 18.97 54.39

Ask Your Neurons (ours)
- multiple words 11.31 18.62 53.21
- single word 13.51 21.36 58.03
Min Consensus Metric
Language only (ours)
- multiple words 22.14 29.43 66.88
- single word 22.56 30.93 69.82

Ask Your Neurons (ours)
- multiple words 22.74 30.54 68.17
- single word 26.53 34.87 74.51

Table 10.5: Results on DAQUAR-Consensus, all classes, consensus in %.

Moreover, Table 10.6 shows that “MCM” applied to human answers at test time captures
ambiguities in interpreting questions by improving the score of the human baseline from
Malinowski and Fritz [2014a] (here, as opposed to Table 10.5, we exclude the original human
answers from the measure). It also cooperates well with WUPS at 0.9, which takes word
ambiguities into account, gaining an about 20% higher score.

10.4.4 Qualitative results

We show predicted answers of different variants of our architecture in Table 10.7, 10.8, and
10.9. We have chosen the examples to highlight differences between Ask Your Neurons and
the “Language only”. We use a “multiple words” approach only in Table 10.8, otherwise the
“single word” model is shown. Despite some failure cases, “Language only” makes “reasonable
guesses” like predicting that the largest object could be table or an object that could be
found on the bed is either a pillow or doll.

10.4.5 Failure cases

While our method answers correctly on a large part of the challenge (e.g. ≈ 35 WUPS at
0.9 on “what color” and “how many” question subsets), spatial relations (≈ 21 WUPS at
0.9) which account for a substantial part of DAQUAR remain challenging. Other errors
involve questions with small objects, negations, and shapes (below 12 WUPS at 0.9). Too
few training data points for the aforementioned cases may contribute to these mistakes.

Table 10.9 shows examples of failure cases that include (in order) strong occlusion, a

10.5. Conclusions 131

Accuracy WUPS WUPS
@0.9 @0.0

WUPS [Malinowski and Fritz 2014a] 50.20 50.82 67.27

ACM (ours) 36.78 45.68 64.10
MCM (ours) 60.50 69.65 82.40

Table 10.6: Min and Average Consensus on human answers from DAQUAR, as reference
sentence we use all answers in DAQUAR-Consensus which are not in DAQUAR, in %

possible answer not captured by our ground truth answers, and unusual instances (red
toaster).

10.5 Conclusions
We have presented a neural architecture for answering natural language questions about
images that contrasts with prior efforts based on semantic parsing and outperforms prior
work by doubling performance on this challenging task. A variant of our model that does not
use the image to answer the question performs only slightly worse and even outperforms a
new human baseline that we have collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as forms of common sense and prior
knowledge that humans use to accomplish this task. We observe that indoor scene statistics,
spatial reasoning, and small objects are not well captured by the global CNN representation,
but the true limitations of this representation can only be explored on larger datasets.
We extended our existing DAQUAR dataset to DAQUAR-Consensus, which now provides
multiple reference answers which allows to study inter-human agreement and consensus
on the question answer task. We propose two new metrics: “Average Consensus”, which
takes into account human disagreement, and “Min Consensus” that captures disagreement
in human question answering.

132
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Ask Your Neurons: bed 3 bed

Language only: bed 6 table

Table 10.7: Examples of questions and answers. Correct predictions are colored in green,
incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Ask Your Neurons: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 10.8: Examples of questions and answers with multiple words. Correct predictions are
colored in green, incorrect in red.

10.5. Conclusions 133

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Ask Your Neurons: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 10.9: Examples of questions and answers - failure cases.

Figure 10.6: Figure showing correlation between question and answer words of the ‘Language
only’ model (at x-axis), and a similar correlation of the ‘Human-baseline’ [Malinowski and
Fritz 2014a] (at y-axis).

134
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

10.6 Additional Material
Here, we provide qualitative examples of different variants of our architecture and show the
correlations of predicted answer words and question words with human answer and question
words. The examples are chosen to highlight challenges as well as differences between ‘Ask
Your Neurons’ and ‘Language only’ architectures. Table 10.17 also shows a few failure cases.
In all cases but ‘multiple words answer’, we use the best ‘single word’ variants. Although
‘Language only’ ignores the image, it is still able to make ‘reasonable guesses’ by exploiting
biases captured by the dataset that can be viewed as a type of common sense knowledge. For
instance, ‘tea kettle’ often sits on the oven, cabinets are usually ‘brown’, ‘chair’ is typically
placed in front of a table, and we commonly keep a ‘photo’ on a cabinet (Table 10.10, 10.12,
10.13, 10.16). This effect is analysed in Figure 10.6. Each data point in the plot represents
the correlation between a question and a predicted answer words for our ‘Language only’
model (x-axis) versus the correlation in the human answers (y-axis).

Despite the reasonable guesses of the ‘Language only’ architecture, the ‘Ask Your Neurons’
predicts in average better answers (Table 10.1 that is replicated for the convenience of the
reader) by exploiting the visual content of images. For instance in Table 10.14 the ‘Language
only’ model incorrectly answers ‘6’ on the question ‘How many burner knobs are there ?’
because it has seen only this answer during the training with exactly the same question but
on different image.

Both models, ‘Language only’ and ‘Ask Your Neurons’, have difficulties to answer
correctly on long questions or such questions that expect a larger number of answer words
(Table 10.17). On the other hand both models are doing well on predicting a type of the
question (e.g. ‘what color ...’ result in a color name in the answer, or ‘how many ...’ questions
result in a number), there are a few rare cases with an incorrect type of the predicted answer
(the last example in Table 10.17).

10.6. Additional Material 135

What are the objects close to the wall? What is on the stove? What is left of sink?

Ask Your Neurons: wall decoration tea kettle tissue roll

Language only: books tea kettle towel

Ground truth answers: wall decoration tea kettle tissue roll

Table 10.10: Examples of compound answer words.

How many lamps are there? How many pillows are there on the bed? How many pillows are there on the sofa?

Ask Your Neurons: 2 2 3

Language only: 2 3 3

Ground truth answers: 2 2 3

Table 10.11: Counting questions.

136
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

What color is the towel? What color are the cabinets? What is the colour of the pillows?

Ask Your Neurons: brown brown black, white

Language only: white brown blue, green, red

Ground truth answers: white brown black, red, white

Table 10.12: Questions about color.

What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Ask Your Neurons: clothes faucet lamp

Language only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 10.13: Correct answers by our ‘Ask Your Neurons’ architecture.

10.6. Additional Material 137

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Ask Your Neurons: photo chair 4

Language only: photo basket 6

Ground truth answers: photo chair 4

Table 10.14: Correct answers by our ‘Ask Your Neurons’ architecture.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Ask Your Neurons: sink brown 3

Language only: stove brown 4

Ground truth answers: sink brown 3

Table 10.15: Correct answers by our ‘Ask Your Neurons’ architecture.

138
Chapter 10. Ask Your Neurons:

A Neural-based Approach to Answering Questions about Images

What is on the right most side on the table? What are the things on the coffee table? What is in front of the table?

Ask Your Neurons: lamp books chair

Language only: machine jacket chair

Ground truth answers: lamp books chair

Table 10.16: Correct answers by our ‘Ask Your Neurons’ architecture.

What is on the left side of What are the things on the cabinet? What color is the frame
the white oven on the floor and of the mirror close to the wardrobe?

on right side of the blue armchair?

Ask Your Neurons: oven chair, lamp, photo pink

Language only: exercise equipment candelabra curtain

Ground truth answers: garbage bin lamp, photo, telephone white

Table 10.17: Failure cases.

Chapter 11

Ask Your Neurons:
A Deeper Analysis

Contents
11.1 Introduction . 140
11.2 Related Work . 140

11.2.1 Convolutional neural networks for visual recognition 140
11.2.2 Encodings for text sequence understanding 141
11.2.3 Combining RNNs and CNNs for description of visual content. 141
11.2.4 Grounding of natural language and visual concepts. 141
11.2.5 Textual question answering. 142
11.2.6 Visual Turing Test . 142
11.2.7 Datasets for visual question answering 144
11.2.8 Relations to our work. 145
11.2.9 Encoder-decoder Perspective on Visual Turing Test 145

11.3 Analysis on VQA . 149
11.3.1 Experimental setup . 150
11.3.2 Question-only . 151
11.3.3 Vision and Language . 153
11.3.4 Summary VQA results . 155

11.4 State-of-the-art on DAQUAR and VQA 155

Since our proposed Visual Turing Test presented in Chapter 8 and Chapter 9, we have
witnessed an increased interests of the research community on this task resulting in
many novel methods as well as new datasets. Most notably, Antol et al. [2015] have

proposed a large-scale variant of a Visual Turing Test named “Visual Question Answering”,
or shortly VQA. The advent of such large volume datasets serves as an excellent testbed
for different data-driven approaches such as the one presented in Chapter 10. It turns
out that many neural-based approaches can be framed as special cases of a more general
encoder-decoder framework for a Visual Turing Test that considers four different ’modules’:
visual and question encoders, an answer decoder, and a multimodal embedding. This new
perspective encapsulates advances in particular fields such as machine recognition or language
understanding, and allows to analyse an impact of different design choices on the overall
performance on the task. We believe that further generations of holistic machines should
also follow a perspective of this sort.

140
Chapter 11. Ask Your Neurons:

A Deeper Analysis

11.1 Introduction
With the recent advances in natural language and image understanding, more complex,
demanding and holistic tasks become within our reach. Such advances have contributed in the
development of very deep recognition architectures that achieve near human performance on
the ImageNet dataset [He et al. 2015]. At the same time we also observe alternative to LSTM
[Hochreiter and Schmidhuber 1997] or Bag-Of-Words [Manning et al. 2008] neural-based
approaches to model natural language. For instance, Convolutional Neural Networks can
be naturally extended to work with natural language [Kim 2014; Kalchbrenner et al. 2014].
The latter approach is especially appealing as it sparkles a hope for “one learnable model”.
In practice, such models may, arguably, also benefit from advances in object recognition.

In contrast to the work of Malinowski et al. [2015] who have presented a monolithic
question answering about images architecture, we take an alternative encoder-decoder
perspective and decompose the method of Malinowski et al. [2015] into several ‘modules’.
Most important, each module can be replaced and its influence to other parts as well as
to the whole task can be readily studied. Concretely, we decompose the visual question
answering architectures into the following modules: visual encoder, question encoder, answer
decoder, and multimodal embedding. An abstract depiction of the proposed view is presented
in Figure 11.1. We also frame the work of Malinowski et al. [2015] that combines LSTM with
CNN via a multimodal concatenation as a special case of the newly proposed framework
for a Visual Turing Test. Moreover, such ‘modular’ perspective allows us to also study
different design choices on a large scale visual question answering dataset VQA [Antol et al.
2015], and lead to a better model. Our analysis shows that a stronger visual component and
multimodal embedding are crucial in achieving better results. The lessons learnt on VQA
are also transferable to DAQUAR [Malinowski and Fritz 2014a] leading to a competitive
model that yet uses a global, full-frame image representation.

11.2 Related Work
Since we have proposed a modern approach to a Visual Turing Test [Malinowski and Fritz
2014a,b, 2015], frequently also referred to as “Visual Question Answering”, there has been
a strong interest in this task. In the following we first discuss related tasks and subtasks,
then approaches to tackle the Visual Turing Test and datasets proposed for it. Finally, we
discuss the relations to our work.

11.2.1 Convolutional neural networks for visual recognition
One component to answer questions about images is to extract information from visual
content. Since the proposal of AlexNet [Krizhevsky et al. 2012], Convolutional Neural
Networks (CNNs) have become dominant and most successful approaches to extract relevant
representation from the image. CNNs directly learn the representation from the raw image
data and are trained on large image corpora, typically ImageNet [Russakovsky et al. 2014].
Interestingly, after these models are pre-trained on ImageNet, they can typically be adapted
for other tasks. In this work, we evaluate how well the most dominant and successful

11.2. Related Work 141

CNN models can be adapted for the Visual Turing Task. Specifically, we evaluate AlexNet
[Krizhevsky et al. 2012], VGG [Simonyan and Zisserman 2015], GoogleNet [Szegedy et al.
2015], and ResNet [He et al. 2015]. These models, reportedly, achieve increasingly better
accuracies on the ImageNet dataset, and hence, arguably, serve as stronger models of visual
perception.

11.2.2 Encodings for text sequence understanding

The other important component to answer a question about an image is to understand
the natural language question, which means here building a representation of a variable
length sequence of words (or characters, but we will focus only on the words in this work).
The first approach is to encode all words of the question as a Bag-Of-Words [Manning and
Schütze 1999], and hence ignoring an order in the sequence of words. Another option is to
use, similar to the image encoding, a CNN with pooling to handle variable length input [Kim
2014; Kalchbrenner et al. 2014]. Finally, Recurrent Neural Networks (RNNs) are methods
developed to directly handle sequences, and have shown recent success on natural language
tasks such as machine translation [Cho et al. 2014; Sutskever et al. 2014]. In this work we
investigate a Bag-Of-Words (BOW), a CNN, and two RNN variants (LSTM [Hochreiter and
Schmidhuber 1997] and GRU [Cho et al. 2014]) to encode the question.

11.2.3 Combining RNNs and CNNs for description of visual con-
tent.

The task of describing visual content like still images as well as videos has been successfully
addressed with a combination of encoding the image with CNNs and decoding, i.e. predicting
the sentence description with an RNN [Donahue et al. 2015; Karpathy and Fei-Fei 2015;
Venugopalan et al. 2015b; Vinyals et al. 2014; Zitnick et al. 2013]. This is achieved by using
the RNN model that first gets to observe the visual content and is trained to afterwards
predict a sequence of words that is a description of the visual content. Our work extends
this idea to question answering, where we formulate a model trained to either generate or
classify an answer based on visual as well as natural language input.

11.2.4 Grounding of natural language and visual concepts.

Dealing with natural language input does involve the association of words with meaning. This
is often referred to as the grounding problem - in particular if the “meaning” is associated
with a sensory input. While such problems have been historically addressed by symbolic
semantic parsing techniques [Krishnamurthy and Kollar 2013; Matuszek et al. 2012], there is
a recent trend of machine learning-based approaches [Karpathy and Fei-Fei 2015; Karpathy
et al. 2014; Akata et al. 2016; Kong et al. 2014; Hu et al. 2016; Rohrbach et al. 2015a; Mao
et al. 2016] to find the associations. Answering questions about images can be interpreted
as first grounding the question in the image and then predicting an answer. Our approach
thus is similar to the latter approaches in that we do not enforce or evaluate any particular
representation of “meaning” on the language or image modality. We treat this as latent and

142
Chapter 11. Ask Your Neurons:

A Deeper Analysis

leave it to the joint training approach to establish an appropriate hidden representation to
link the visual and textual representations.

11.2.5 Textual question answering.

Answering on purely textual questions has been studied in the NLP community [Berant and
Liang 2014; Liang et al. 2013] and state of the art techniques typically employ semantic
parsing to arrive at a logical form capturing the intended meaning and infer relevant answers.
Only recently, the success of the previously mentioned neural sequence models, namely
RNNs, has carried over to this task [Iyyer et al. 2014; Weston et al. 2014]. More specifically
Iyyer et al. [2014] use dependency-tree Recursive NN instead of LSTM, and reduce the
question-answering problem to a classification task. Weston et al. [2014] propose different
kind of network - memory networks - that is used to answer questions about short stories.
In their work, all the parts of the story are embedded into different “memory cells”, and
next a network is trained to attend to relevant cells based on the question and decode an
answer from that. A similar idea has also been applied to question answering about images,
for instance by Yang et al. [2015].

11.2.6 Visual Turing Test

Recently, a large number architectures have been proposed to approach the Visual Turing
Test [Malinowski and Fritz 2014b], frequently also referred to as “Visual Question Answering”.
They range from symbolic to neural based approaches. There are also architectures that
combine both symbolic and neural paradigms together. Some approaches use explicit visual
representation in the form of bounding boxes surrounding objects of interest, while other
use global full frame image representation, or soft attention mechanism. Yet others use an
external knowledge base that helps in answering questions.

Symbolic based approaches. In our first work on Visual Turing Test [Malinowski and
Fritz 2014a], we present a question answering system based on a semantic parser on a varied
set of human question-answer pairs. Although it is the first attempt to handle question
answering on DAQUAR, and despite its introspective benefits, it is a rule-based approach
that requires a careful schema crafting, is not that scalable, and finally it strongly depends
on the output of visual analysis methods as joint training in this model is not yet possible.
Due to such limitations, the community has rather shifted towards either neural based or
combined approaches.

Deep Neural Approaches with full frame CNN. Most contemporary approaches use
a global image representation, i.e. they encode the whole image with a CNN. Questions are
then encoded with an RNN [Malinowski et al. 2015; Ren et al. 2015a; Gao et al. 2015] or a
CNN [Ma et al. 2015]. In contrast to symbolic based approaches, neural based architectures
offer scalable and joint end-to-end training that liberates them from ontological commitment
that would otherwise be introduced by a semantic parser. Moreover, such approaches are not
‘hard’ conditioned on the visual input and therefore can naturally take advantage of different

11.2. Related Work 143

language biases in question answer pairs, which can be interpret as learning common sense
knowledge.

Attention-based Approaches. Following Xu et al. [2015], who proposed to use spatial
attention for image description, Yang et al. [2015]; Xu and Saenko [2015]; Zhu et al. [2016];
Chen et al. [2015]; Shih et al. [2016] predict a latent weighting (attention) of spatially
localized images features (typically a convolutional layer of the CNN) based on the question.
The weighted image representation rather than the full frame feature representation is then
used as a basis for answering the question. In contrast to the previous models using attention,
Dynamic Memory Networks (DMN) [Kumar et al. 2016; Xiong et al. 2016] first pass all
spatial image features through a bi-directional GRU that captures spatial information from
the neighboring image patches, and next retrieve an answer from a recurrent attention based
neural network that allows to focus only on a subset of the visual features extracted in the
first pass. Another interesting direction has been taken by Ilievski et al. [2016] who run
state-of-the-art object detector of the classes extracted from the key words in the question. In
contrast to other attention mechanisms, such approach offers a focused, question dependent,
“hard” attention.

Answering with an external knowledge base. Wu et al. [2016b] argue for an approach
that first represents an image as an intermediate semantic attribute representation, and next
query external knowledge sources based on the most prominent attributes and relate them
to the question. With the help of such external knowledge base, such approach captures
richer semantic representation of the world, beyond what is directly contained in images.

Compositional approaches. A different direction is taken by Andreas et al. [2016b]
who predict the most important components to answer the question with a natural language
parser. The components are then mapped to neural modules, which are composed to a
deep neural network based on the parse tree. While each question induces a different
network, the modules are trained jointly across questions. This work compares to Malinowski
and Fritz [2014a] by exploiting explicit assumptions about the compositionality of natural
language sentences. Related to the Visual Turing Test, Malinowski and Fritz [2014c] have
also combined a neural based representation with the compositionality of the language for
the text-to-image retrieval task.

Dynamic parameters. Noh et al. [2015b] have an image recognition network and a
Recurrent Neural Network (GRU) that dynamically change the parameters (weights) of
visual representation based on the question. More precisely, the parameters of its second
last layer are dynamically predicted from the question encoder network and in this way
changing for each question. While question encoding and image encoding is pre-trained, the
network learns parameter prediction only from image-question-answer triples.

144
Chapter 11. Ask Your Neurons:

A Deeper Analysis

11.2.7 Datasets for visual question answering

Datasets are a driving force for the recent progress in visual question answering. A large
number of visual question answering datasets have recently been proposed. The first proposed
datasets is DAQUAR [Malinowski and Fritz 2014a], which contains about 12.5 thousands
manually annotated question-answer pairs about 1449 indoor scenes [Silberman et al. 2012].
While the dataset has originally contained a single answer (that can consist of multiple
words) per question, in this work we extend the dataset by collecting additional answers for
each questions. This captures uncertainties in evaluation. We evaluate our approach on this
dataset and discuss several consensus evaluation metrics that take the extended annotations
into account. In parallel to our Visual Turing Test, Geman et al. [2015] developed another
Visual Turing Test. Their work, however, focuses on yes/no type of questions, and provide
detailed object-scene annotations.

Shortly after the introduction of DAQUAR, three other large-scale datasets have been
proposed. All are based on MS-COCO [Lin et al. 2014b]. Gao et al. [2015] have annotated
about 158k images with 316k Chinese question answer pairs together with their corresponding
English translations. Ren et al. [2015a] have taken advantage of the existing annotations
for the purpose of image description generation task and transform them into question
answer pairs with the help of a set of hand-designed rules and a syntactic parser [Klein and
Manning 2003]. This procedure has approximately generated 118k question answer pairs.
Finally, arguably nowadays the most popular, large scale dataset on question answering
about images is VQA [Antol et al. 2015]. It has approximately 614k questions about the
visual content of about 205k real-world images. Similarly to our Consensus idea, VQA
provides 10 answers per each image. For the purpose of the challenge the test answers are
not publicly available. We perform one part of the experimental analysis in this paper on
the VQA dataset, examining different variants of our proposed approach.

Although simple, automatic performance evaluation metrics have been a part of building
first visual question answering datasets [Malinowski and Fritz 2014a,b, 2015], Yu et al. [2015b]
have simplified the evaluation even further by introducing Visual Madlibs - a multiple choice
question answering by filling the blanks task. In this task, a question answering architecture
has to choose one out of four provided answers for a given image and the prompt. Formulating
question answering task in this way has wiped out ambiguities in answers, and just a simple
accuracy metric can be used to evaluate different architectures on this task. Yet, the task
requires holistic reasoning about the images, and despite of simple evaluation, it remains
challenging for machines.

The Visual7W [Zhu et al. 2016] extends canonical question and answer pairs with
additional groundings of all objects appearing in the questions and answers to the image by
annotating the correspondences. It contains natural language answers, but also answers which
require to locate the object, which is then similar to the task of explicit grounding discussed
above. Visual7W builds question answer pairs based on the Visual Genome dataset [Krishna
et al. 2016], and contains about 330k questions. In contrast to others such as VQA [Antol
et al. 2015] or DAQUAR [Malinowski and Fritz 2014a] that has collected unconstrained
question answer pairs, the Visual Genome focuses on the six, so called, Ws: what, where,
when, who, why, and how, which can be answered with a natural language answer. An

11.2. Related Work 145

additional 7th question – which – requires a bounding box location as answer. Similarly to
Visual Madlibs [Yu et al. 2015b], Visual7W also contains multiple-choice answers.

Related to Visual Turing Test, Chowdhury et al. [2016a] have proposed collective
memories and Xplore-M-Ego - a dataset of images with natural language queries, and a
media retrieval system. This work focuses on a user centric, dynamic scenario, where the
provided answers are conditioned not only on questions but also on the geographical position
of the questioner.

Moving from asking questions about images to questions about video enhances typical
questions with temporal structure. Zhu et al. [2015] propose a task which requires to fill in
blanks the captions associated with videos. The task requires inferring the past, describing
the present and predicting the future in a diverse set of video description data ranging from
cooking videos [Regneri et al. 2013] over web videos [Trecvid 2014] to movies [Rohrbach et al.
2015b]. Tapaswi et al. [2016] propose MovieQA, which requires to understand long term
connections in the plot of the movie. Given the difficulty of the data, both works provide
multiple-choice answers.

11.2.8 Relations to our work.
The original version of this work [Malinowski et al. 2015] belongs to the category of “Deep
Neural Approaches with full frame CNN”, and is among the very first methods of this
kind (Section 10.3). We extend [Malinowski et al. 2015] by introducing a more general
and modular encoder-decoder perspective (Section 11.2.9) that encapsulates a few different
neural approaches. Next, we broaden our original analysis done on DAQUAR (Section 10.4)
to the analysis of different neural based approaches on VQA showing the importance of
getting a few details right together with benefits of a stronger visual encoder (Section 11.3).
Finally, we transfer lessons learnt from VQA [Antol et al. 2015] to DAQUAR [Malinowski
and Fritz 2014a], showing a significant improvement on this challenging task (Section 11.3).

11.2.9 Encoder-decoder Perspective on Visual Turing Test
In the previous Section 10.3 we have described a way to model visual question answering
with a single recurrent network for question and image encoding and answering, in this
section we describe a modular framework where a question encoder has to be combined with
a visual encoder in order to produce answers with an answer decoder (Figure 11.1). This
conceptually modular representation is helpful in investigating the behavior of the whole
architecture while different encoders, multimodal embeddings, and decoders are used.

11.2.9.1 Question encoders

The main goal of a question encoder is to capture a meaning of the question, which we
write here as Ψ(q). Such an encoder can range from a very structured one like Semantic
Parser used in Malinowski and Fritz [2014a] and Liang et al. [2013] that explicitly model
compositional nature of the question, to structureless Bag-Of-Word (BOW) approaches that
temporarily sum up the input question words (Figure 11.3). In this work, we investigate a few
encoders within such a spectrum. Two recurrent question encoders under our investigation,

146
Chapter 11. Ask Your Neurons:

A Deeper Analysis

Question Encoder

Visual Encoder C Answer Decoder

Figure 11.1: Our Refined Ask Your Neurons architecture for answering questions about
images that includes the following modules: visual and question encoders, and answer
decoder. A multimodal embedding C combines both encodings into a joint space that the
decoder decodes from. See Section 11.2.9 for details.

that is LSTM [Hochreiter and Schmidhuber 1997] (see Section 10.3) and GRU [Cho et al.
2014], assume a temporal ordering in questions. Moreover, we also investigate an orderless,
and already aforementioned BOW.

Long-Short Term Memory (LSTM). LSTM is a recurrent neural network that models
a temporal dynamics by encoding an input sequence into its hidden states. Every recurrent
unit depends on the input variable as well as the previous state. To deal with the ‘vanishing
gradient’ problem, LSTM uses different gates that controls the flow of information. LSTM
is expressed by the following set of equations:

it = σ(Wvivt +Whiht−1 + bi) (11.1)
ft = σ(Wvfvt +Whfht−1 + bf) (11.2)
ot = σ(Wvovt +Whoht−1 + bo) (11.3)
gt = φ(Wvgvt +Whght−1 + bg) (11.4)
ct = ft � ct−1 + it � gt (11.5)
ht = ot � φ(ct) (11.6)

where σ is the sigmoid function, φ is the hyperbolic tangent, and vt, ht are input and hidden
state at time t. Variable ct represents memory cells.

Gated Recurrent Unit (GRU). GRU is a simpler variant of LSTM that also uses gates
(a reset gate r and an update gate u) in order to keep long term dependencies. GRU is
expressed by the following set of equations:

rt = σ(Wvrvt +Whrht−1 + br) (11.7)
ut = σ(Wvuvt +Whuht−1 + bu) (11.8)
ct = Wvcvt +Whc(rt � ht−1) + bc (11.9)
ht = ut � ht−1 + (1− ut)� φ(ct) (11.10)

where σ is the sigmoid function, φ is the hyperbolic tangent, and vt, ht are input and hidden
state at time t. The representation of the question q is the hidden vector at last time step,

11.2. Related Work 147

What is behind the table?

Embeddings of one-hot
question words’ vectors

Filter length 3  
(trigram model)

Filter length 2
(bigram model)

Number of filters

Second viewThird view

Question’s representation

Temporal aggregation
(sum pooling, RNN)

Figure 11.2: CNN for encoding the question that convolves word embeddings (learnt or
pre-trained) with different kernels, second and third views are shown, see Section 11.2.9.1
and Yang et al. [2015] for details.

i.e. ΨRNN(q) := hT .

Bag-Of-Word (BOW). Conceptually the simplest, the BOW approach (Figure 11.3)
sums up over the words embeddings:

ΨBOW(q) :=
n∑

t

We(qt). (11.11)

whereWe is a matrix and qt is one-hot binary vector of the word with exactly one 1 pointing
to a place of the ‘word’ in the vocabulary (Figure 11.3). BOW rejects words ordering in
the question, so that especially questions with swapped arguments of spatial prepositions
become indistinguishable, i.e.
ΨBOW(red chair left of sofa) = ΨBOW(red sofa left of chair) in the BOW sentence represen-
tation.

Convolutional Neural Network (CNN). Convolutional Neural Network (CNN) that
models language [Kim 2014; Kalchbrenner et al. 2014; Ma et al. 2015; Yang et al. 2015] is
gaining popularity due to its speed and good accuracy for the language-oriented tasks. Since
it considers a larger context, it arguably maintains more structure than BOW but does not

148
Chapter 11. Ask Your Neurons:

A Deeper Analysis

pixels, and then take the features from the last pooling layer,
which therefore have a dimension of 512⇥14⇥14, as shown
in Fig. 2. 14⇥ 14 is the number of regions in the image and
512 is the dimension of the feature vector for each region.
Accordingly, each feature vector in fI corresponds to a 32⇥
32 pixel region of the input images. We denote by fi, i 2
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer
perceptron to transform each feature vector to a new vec-
tor that has the same dimension as the question vector (de-
scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual
feature vector for the region indexed by i.

3.2. Question Model

As [25, 22, 6] show that LSTMs and CNNs are powerful
to capture the semantic meaning of texts, we explore both
models for question representations in this study.

3.2.1 LSTM based question model

LSTM LSTM LSTM…

what are bicycle

We We We

Question:

…

…

Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell
ct which reserves the state of a sequence. At each step,
the LSTM unit takes one input vector (word vector in our
case) xt and updates the memory cell ct, then output a hid-
den state ht. The update process uses the gate mechanism.
A forget gate ft controls how much information from past
state ct�1 is preserved. An input gate it controls how much
the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is
fed to the output as hidden state. The detailed update pro-
cess is as follows:

it =�(Wxixt + Whiht�1 + bi), (3)
ft =�(Wxfxt + Whfht�1 + bf), (4)
ot =�(Wxoxt + Whoht�1 + bo), (5)
ct =ftct�1 + it tanh(Wxcxt + Whcht�1 + bc), (6)
ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and
memory cell, respectively. The weight matrix and bias are
parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT], where qt is the one hot
vector representation of word at position t, we first embed
the words to a vector space through an embedding matrix
xt = Weqt. Then for every time step, we feed the embed-
ding vector of words in the question to LSTM:

xt =Weqt, t 2 {1, 2, ...T}, (8)
ht =LSTM(xt), t 2 {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting
in the basket on a bicycle is fed into the
LSTM. Then the final hidden layer is taken as the repre-
sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model

unigram
bigram

trigram
max pooling

over time

convolution

w
hat

are

sitting

bicycle
…Question:

embedding

Figure 4: CNN based question model

In this study, we also explore to use a CNN similar
to [11] for question representation. Similar to the LSTM-
based question model, we first embed words to vectors
xt = Weqt and get the question vector by concatenating
the word vectors:

x1:T = [x1, x2, ..., xT]. (10)

Then we apply convolution operation on the word embed-
ding vectors. We use three convolution filters, which have
the size of one (unigram), two (bigram) and three (trigram)
respectively. The t-th convolution output using window size
c is given by:

hc,t = tanh(Wcxt:t+c�1 + bc). (11)

The filter is applied only to window t : t + c � 1 of size c.
Wc is the convolution weight and bc is the bias. The feature
map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T�c+1]. (12)

Then we apply max-pooling over the feature maps of the
convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T�c+1]. (13)

is behind tablethe ?What

Softmax

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

What 
is 

the 
?  

behind  
left  

chair 
table

Vocabulary

+

Figure 11.3: Bag-Of-Words (BOW) for encoding the question, see Section 11.2.9.1 for details.

model such long term dependencies as recurrent neural networks. Figure 11.2 depicts our
CNN architecture, which is very similar to Ma et al. [2015] and Yang et al. [2015], that
convolves word embeddings (we either learn it jointly with the whole model or use GLOVE
[Pennington et al. 2014] in our experiments) with three convolutional kernels of length
1, 2 and 3 (for the sake of clarity, we only show two kernels in the Figure). We call such
architecture with 1, ..., n kernel lengths n views CNN. At the end, the kernel’s outputs are
temporarily aggregated for the final question’s representation. We use either sum pooling or
a recurrent neural network (CNN-RNN) to accomplish this step.

11.2.9.2 Visual encoders

The second important component of the encoder-decoder architectures for Visual Turing
Test is visual representation. Nowadays, Convolutional Neural Networks (CNNs) become
the state-of-the-art framework that provide features from images. The typical protocol of
using the visual models is to first pre-train them on the ImageNet dataset [Russakovsky
et al. 2014], a large scale recognition dataset, and next use them as an input for the rest of
the architecture. Fine-tuning the weights of the encoder to the task at hand is also possible.
In our experiments, we use chronologically the oldest CNN architecture fully trained on
ImageNet – a Caffe implementation of AlexNet [Jia et al. 2014; Krizhevsky et al. 2012] – as
well as the recently introduced deeper networks – Caffe implementations of GoogLeNet and
VGG [Szegedy et al. 2015; Simonyan and Zisserman 2015] – to the most recent extremely
deep architectures – a Facebook implementation of 152 layered ResidualNet [He et al. 2015].
As can be seen from our experiments in Section 11.3, a strong visual encoder plays an
important role in Visual Turing Test.

11.3. Analysis on VQA 149

11.2.9.3 Multimodal embedding

The presented neural question encoders transform linguistic question into a vector space.
Similarly visual encoders encode images as vectors. A multimodal fusion module combines
both vector spaces into another vector space that decoding of answers is feasible. Let Ψ(q)
be a question representation (BOW, CNN, LSTM, GRU), and Φ(x) be a representation of
an image. Then C(Ψ(q),Φ(x)) is a function which embeds both vectors. In this work, we
investigate three multimodal embedding techniques: Concatenation, piecewise multiplication,
and summation. Since the last two techniques require compatibility in the number of feature
components, we use additional visual embedding matrix Wve ∈ R|Ψ(q)|×|Φ(x)|. Let W be
weights of an answer decoder. Then we have WC(Ψ(q),Φ(x)), which is

WqΨ(q) +WvΦ(x) (11.12)
W (Ψ(q)�WveΦ(x)) (11.13)
WΨ(q) +WWveΦ(x) (11.14)

in concatenation, piecewise multiplication, and summation fusion techniques respectively.
In Equation 11.12, we decompose W into two matrices Wq and Wv, that is W = [Wq;Wv].
In Equation 11.13, � is a piecewise multiplication. Similarity between Equation 11.12 and
Equation 11.14 is interesting as the latter is the former with weight sharing and additional
decomposition into WWve.

11.2.9.4 Answer decoders

Answer words generation. The last component of the encoder-decoder architecture for
Visual Turing Test (Figure 11.1) is an answer decoder. Malinowski et al. [2015], inspired by
the work on the image description task [Donahue et al. 2015], uses an LSTM as decoder
that shares the parameters with the encoder.

Classification. An alternative approach that cast answering problem as a classification
task, with answers as different classes, has recently gained popularity, especially in VQA
task [Antol et al. 2015]. Thorough this work, we investigate both approaches.

11.3 Analysis on VQA

While Section 10.4 analyses our original architecture [Malinowski et al. 2015] on the DAQUAR
dataset, in this section, we analyze different variants and design choices for neural question
answering on the large-scale Visual Question Answering (VQA) dataset [Antol et al. 2015].
It is currently one of the largest and most popular visual question answering dataset with
human question answer pairs. In the following, after describing the experimental setup
(Section 11.3.1), we first describe several experiments which examine the different variants
of question encoding, only looking at language input to predict the answer (Section 11.3.1),
and then, we examine the full model (Section 11.3.3).

150
Chapter 11. Ask Your Neurons:

A Deeper Analysis

kernel length single view multi view
k = k ≤ k
1 47.43 47.43
2 48.11 48.06
3 48.26 48.09
4 48.27 47.86

Table 11.1: Results on VQA validation set, “Question-only” model: Analysis of CNN questions
encoders with different filter lengths, accuracy in %, see Section 11.3.2.1 for discussion.

11.3.1 Experimental setup

We evaluate on the VQA dataset [Antol et al. 2015], which is built on top of the MS-COCO
dataset [Lin et al. 2014b]. Although VQA offers a different challenge tasks, we focus our
efforts on the Real Open-Ended Visual Question Answering challenge. The challenge consists
of 10 answers per question with about 248k training questions, about 122k validation
questions, and about 244k test questions.

As VQA consist mostly of single word answers (over 89%), we treat the question answering
problem as a classification problem of the most frequent answers in the training set. For the
evaluation of the different model variants and design choices, we train on the training set and
test on the validation set. Only the final evaluations (Table 11.8) are evaluated on the test set
of the VQA challenge, we evaluate on both parts test-dev and test-standard, where for the
latter the answers are not publicly available. As a performance measure we use a Consensus
variant of Accuracy introduced in Antol et al. [2015], where the predicted answer gets score
between 0 and 1, with 1 if it matches with at least three human answers. We use ADAM
[Kingma and Ba 2014] throughout our experiments as we found out it performs better than
SGD with momentum. We keep default hyper-parameters for ADAM. Employed Recurrent
Neural Networks maps input question into 500 dimensional vector representation. All the
CNNs for text are using 500 feature maps in our experiments, but the output dimensionality
also depends on the number of views. In preliminary experiments we found that removing
question mark ’?’ in the questions slightly improves the results, and we report the numbers
only with this setting. Since VQA has 10 answers associated with each question, we need to
consider a suitable training strategy that takes this into account. We have examined the
following strategies: picking an answer randomly, randomly but if possible annotated as
confidently answered, all answers, or choosing the most frequent answer. In the following,
we only report the results using the last strategy as we have found out little difference in
accuracy between the strategies. To allow training and evaluating many different models with
limited time and computational power, we do not fine-tune the visual representations in these
experiments, although our model would allow us to do so. All the models, which are publicly
available under https://github.com/mateuszmalinowski/Kraino, are implemented in
Keras [Chollet 2015] and Theano [Bastien et al. 2012].

https://github.com/mateuszmalinowski/Kraino

11.3. Analysis on VQA 151

Question Word embedding
encoder learned GLOVE

BOW 47.41 47.91
CNN 48.26 48.53
GRU 47.60 48.11
LSTM 47.80 48.58

Table 11.2: Results on VQA validation set, “Question-only” model: Analysis of different
questions encoders, accuracy in %, see Section 11.3.2 for discussion.

top frequent answers
Encoder 1000 2000 3000

BOW 47.91 48.13 47.94
CNN 48.53 48.67 48.57
LSTM 48.58 48.86 48.65

Table 11.3: Results on VQA validation set, “Question-only” model: Analysis of the number
of top frequent answer classes, with different question encoders. All using GLOVE; accuracy
in %; see Section 11.3.2.4 for discussion.

11.3.2 Question-only

We start our analysis from “Question-only” models that do not use images to answer on
questions. Note that the “Question-only” baselines play an important role in the question
answering about images tasks since it clearly studies effects of added vision. Hence, better
overall performance of the model is not obscured by a better language model. To understand
better different design choices, we have conducted our analysis along the different ’design’
dimensions.

11.3.2.1 CNN questions encoder

We first examine different hyper-parameters for CNNs to encode the question. We first
consider the filter’s length of the convolutional kernel. We run the model over different
kernel lengths ranging from 1 to 4 (Table 11.1, left column). We notice that increasing the
kernel lengths improves performance up to length 3 were the performance levels out, we
thus use kernel length 3 in the following experiments for, such CNN can be interpreted as a
trigram model. We also tried to run simultaneously a few kernels with different lengths. In
Table 11.1 (right column) one view corresponds to a kernel length 1, two views correspond to
two kernels with length 1 and 2, three views correspond to length 1, 2 and 3, etc. However,
we find that the best performance still achieve with a single view and kernel length 3 or 4.

152
Chapter 11. Ask Your Neurons:

A Deeper Analysis

no norm L2 norm

Concatenation 47.21 52.39
Summation 40.67 53.27
Piece-wise multiplication 49.50 52.70

Table 11.4: Results on VQA validation set, vision and language: Analysis of different
multimodal techniques that combine vision with language on BOW (with GLOVE word
embedding and VGG-19 fc7), accuracy in %, see Section 11.3.3.1.

11.3.2.2 BOW questions encoder

Alternatively to neural network encoders, we consider Bag-Of-Words (BOW) approach where
one-hot representations of the question words are first mapped to a shared embedding space,
and subsequently summed over (Equation 11.11), i.e. Ψ(question) :=

∑
word We(word).

Surprisingly, such a simple approach gives very competitive results (first row in Table 11.2)
compared to the CNN encoding discussed in the previous section (second row).

Recurrent questions encoder We examine two recurrent questions encoders, LSTM
[Hochreiter and Schmidhuber 1997] and a simpler GRU [Cho et al. 2014]. The last two rows
of Table 11.2 show a slight advantage of using LSTM.

11.3.2.3 Pre-trained words embedding

In all the previous experiments, we jointly learn the embedding transformation We together
with the whole architecture only on the VQA dataset. This means we do not have any means
for dealing with unknown words in questions at test time apart from using a special token
〈UNK〉 to indicate such class. To address such shortcoming, we investigate the pre-trained
word embedding transformation GLOVE [Pennington et al. 2014] that encodes question
words (technically it maps one-hot vector into a 300 dimensional real vector). This choice
naturally extends the vocabulary of the question words to about 2 million words extracted
a large corpus of web data – Common Crawl [Pennington et al. 2014] – that is used to
train the GLOVE embedding. Since the BOW architecture in this scenario becomes shallow
(only classification weights are learnt), we add an extra hidden layer between pooling and
classification (without this embedding, accuracy drops by 5%). Table 11.2 (right column)
summarizes our experiments with GLOVE. For all question encoders, the word embedding
consistently improves performance which confirms that using a word embedding model
learnt from a larger corpus helps. LSTM benefits most from GLOVE embedding, archiving
the overall best performance with 48.58% accuracy.

11.3.2.4 Top most frequent answers

Our experiments reported in Table 11.3 investigate predictions using different number of
answer classes. We experiment with a truncation of 1000, 2000, or 4000 most frequent
classes. For all question encoders (and always using GLOVE word embedding), we find that

11.3. Analysis on VQA 153

Method Accuracy

BOW 53.27
CNN 54.23
GRU 54.23
LSTM 54.29

Table 11.5: Results on VQA validation set, vision and language: Analysis of different language
encoders with GLOVE word embedding, VGG-19, and Summation to combine vision and
language. Results in %, see Section 11.3.3.2 for discussion.

Method Accuracy

AlexNet 53.69
GoogLeNet 54.52
VGG-19 54.29
ResNet-152 55.52

Table 11.6: Results on VQA validation set, vision and language: Different visual encoders
(with LSTM, GLOVE, the summation technique, l2 normalized features). Results in %, see
Section 11.3.3.3 for discussion.

a truncation at 2000 words is best, being apparently a good compromise between answer
frequency and missing recall.

11.3.2.5 Summary Question-only

We achieve the best “Question-only” accuracy with GLOVE word embedding, LSTM sentence
encoding, and using the top 2000 most frequent answers. This achieves an performance
of 48.86% accuracy. In the remaining experiments, we use these settings for language and
answer encoding.

11.3.3 Vision and Language

Although Question-only models can answer on a substantial number of questions as they
arguably capture common sense knowledge, for further development we also need images.

11.3.3.1 Multimodal fusion

Table 11.4 investigates different techniques that combine visual and language representations.
To speed up training, we combine the last unit of the question encoder with the visual encoder,
as it is explicitly shown in Figure 11.1. In the experiments we use Concatenation, Summation,
and Piece-wise multiplication on the BOW language encoder with GLOVE word embedding
and features extracted from the VGG-19 net. In addition, we also investigate using L2
normalization of the visual features, which divides every feature vector by its L2 norm. The

154
Chapter 11. Ask Your Neurons:

A Deeper Analysis

Question only + Vision

Learnt - GLOVE - word embedding

Question encoding ↓ Top 1000 answers Top 2000 answers

BOW 47.41 47.91 48.13 54.45
CNN 48.26 48.53 48.67 55.34
LSTM 47.80 48.58 48.86 55.52

Table 11.7: Results on VQA validation set, vision and language: Summary of our results,
results in %, see Section 11.3.4 for discussion. Columns denote, from the left to right, word
embedding learnt together with the architecture, GLOVE embedding that replaces learnt
word embedding, truncating the dataset to 2000 most frequent answer classes, and finally
added visual representation to the model (ResNet-152).

Test-dev Test-standard
Trained on Yes/No Number Other All Yes/No Number Other All

Training set 78.06 36.79 44.59 57.48 - - - 57.55
Training + Val set 78.39 36.45 46.28 58.39 78.24 36.27 46.32 58.43

Table 11.8: Results on VQA test set, our best vision and language model chosen based on
the validation set: accuracy in %, from the challenge test server. Dash ’-’ denotes lack of
data

experiments show that the normalization is crucial in obtaining good performance, especially
for Concatenation and Summation. In the remaining experiments, we use Summation.

11.3.3.2 Questions encoders

Table 11.5 shows how well different questions encoders combine with the visual features. We
can see that LSTM slightly outperforms two other encoders GRU and CNN, while BOW
remains the worst, confirming our findings in our language-only experiments with GLOVE
and 2000 answers (Table 11.3, second column).

11.3.3.3 Visual encoders

Next we fix the question encoder to LSTM and vary different visual encoders: Caffe variant
of AlexNet [Krizhevsky et al. 2012], GoogLeNet [Szegedy et al. 2015], VGG-19 [Simonyan
and Zisserman 2015], and recently introduced 152 layered ResNet (we use the Facebook
implementation of He et al. [2015]). Table 11.6 confirms our hypothesis that stronger visual
models perform better.

11.3.3.4 Qualitative results

We show predicted answers using our best model on VQA test set in Tables 11.11, 11.12
,11.13, 11.14. We show chosen examples with ’yes/no’, ’counting’, and ’what’ questions,

11.4. State-of-the-art on DAQUAR and VQA 155

Test-dev Test-standard
Yes/No Number Other All All

DMN+ [Xiong et al. 2016] 80.5 36.8 48.3 60.3 60.4
FDA [Ilievski et al. 2016] 81.1 36.2 45.8 59.2 59.5
AMA [Wu et al. 2016b] 81.0 38.4 45.2 59.2 59.4
SAN(2, CNN) [Yang et al. 2015] 79.3 36.6 46.1 58.7 58.9
Refined Ask Your Neurons 78.4 36.4 46.3 58.4 58.4
SMem-VQA [Xu and Saenko 2015] 80.9 37.3 43.1 58.0 58.2
D-NMN [Andreas et al. 2016a] 80.5 37.4 43.1 57.9 58.0
DPPnet [Noh et al. 2015b] 80.7 37.2 41.7 57.2 57.4
iBOWIMG [Zhou et al. 2015] 76.5 35.0 42.6 55.7 55.9
LSTM Q+I [Antol et al. 2015] 78.9 35.2 36.4 53.7 54.1
Comp. Mem. [Jiang et al. 2015] 78.3 35.9 34.5 52.7 -

Table 11.9: Results on VQA test datasets, comparison with state-of-the-art: accuracy in
%, from the challenge test server. Dash ‘’-’ denotes lack of data. The full table is shown in
Malinowski et al. [2016].

where our model, according to our opinion, makes valid predictions. Moreover, Table 11.14
shows predicted compound answers.

11.3.4 Summary VQA results

Table 11.7 summarises our findings on the validation set. We can see that on one hand
methods that use contextual language information such as CNN and LSTM are performing
better, on the other hand adding strong vision becomes crucial. Furthermore, we use the
best found models to run experiments on the VQA test sets: test-dev2015 and test-standard.
To prevent overfitting, the latter restricts the number of submissions to 1 per day and 5
submissions in total. Here, we also study the effect of larger datasets where first we train
only on the training set, and next we train for 20 epochs on a joint, training and validation,
set. When we train on the join set, we consider question answer pairs with answers among
2000 the most frequent answer classes from the training and validation sets. Training on the
joint set have gained us about 0.9%. This implies that on one hand having more data indeed
helps, but arguably we also need better models that exploit the current training datasets
more effectively. Our findings are summarized in Table 11.8.

11.4 State-of-the-art on DAQUAR and VQA

In this section, we first put our findings on VQA in a broader context, where we compare
our refined version of Ask Your Neurons with other, publicly available, approaches. Next,
guided by our findings on VQA, we re-run the experiments on DAQUAR.

156
Chapter 11. Ask Your Neurons:

A Deeper Analysis

Accuracy on WUPS@0.9 on WUPS@0 on
all single all single all single

Global

Ask Your Neurons 19.43 21.67 25.28 27.99 62.00 65.11
Refined Ask Your Neurons 24.48 26.67 29.78 32.55 62.80 66.25
Refined Ask Your Neurons ∗ 25.74 27.26 31.00 33.25 63.14 66.79
IMG-CNN [Ma et al. 2015] 21.47 24.49 27.15 30.47 59.44 66.08

Attention

SAN (2, CNN) [Yang et al. 2015] - 29.30 - 35.10 - 68.60
DMN+ [Xiong et al. 2016] - 28.79 - - - -
ABC-CNN [Chen et al. 2015] - 25.37 - 31.35 - 65.89
Comp. Mem. [Jiang et al. 2015] 24.37 - 29.77 - 62.73 -

Table 11.10: Comparison with state-of-the-art on DAQUAR. Refined Ask Your Neurons
architecture: LSTM + Vision with GLOVE and ResNet-152. Ask Your Neurons architecture:
originally presented in Malinowski et al. [2015], results in %. In the comparison, we use
original data (all), or a subset with only single word answers (single) that covers about 90%
of the original data. Asterisk ‘∗’ after the method denotes using a box filter that smooths
the otherwise noisy validation accuracies. Dash ‘’-’ denotes lack of data.

VQA. Table 11.9 compares our Refined Ask Your Neurons model with other approaches.
Some methods, likewise to our approach, use global image representation, other attention
mechanism, yet other dynamically predict question dependent weights, external textual
sources, or fuse compositional question’s representation with neural networks. Table 11.9
shows a few trends: better visual representation helps, attention based models (e.g. DMN+,
FDA, SAN) have a slight advantage over models with a global image representation (e.g.
Refined Ask Your Neurons, LSTM Q+I), encoding longer dependencies in questions indeed
helps (e.g. Refined Ask Your Neurons and iBOWIMG), using external textual resources is
beneficial (AMA).

DAQUAR. Based on the VQA experiments, we have also applied the best model to
DAQUAR significantly outperforming Malinowski et al. [2015] presented in Section 10.4.
In the experiments, we first choose last 10% of training set as a validation set in order to
determine number of training epochs K, and next we train the model for K epochs. We
evaluate model on two variants of DAQUAR: all data points (‘all’ in Table 11.10), and a
subset (‘single word’ in Table 11.10) containing only single word answers, which consists of
about 90% of the original dataset. As Table 11.10 shows, our model, Vision + Language
with GLOVE and Residual Net that sums visual and question representations, outperforms
the model of Malinowski et al. [2015] by 5.05, 4.5, 0.8 of Accuracy, WUPS at 0.9, and
WUPS at 0.0 respectively. This shows how important a strong visual model is, as well as
the aforementioned details used in training. Likewise to our conclusions on VQA, we are

11.4. State-of-the-art on DAQUAR and VQA 157

also observing an improvement with attention based models (comparison in Attention and
Global sections in Table 11.10).

158
Chapter 11. Ask Your Neurons:

A Deeper Analysis

Are the dogs tied? Is it summer time? Is this a real person?

Ask Your Neurons: yes no no

Table 11.11: Examples of ‘yes/no’ questions and answers produced by our the best model
on test VQA.

How many kites are only yellow? How many taps are on the sink? How many windows are lit?

Ask Your Neurons: 1 2 12

Table 11.12: Examples of ‘counting’ questions and answers produced by our the best model
on test VQA.

What is the man holding to his ear? What sport is this man enjoying? What brand is the laptop?

Ask Your Neurons: phone snowboarding apple

Table 11.13: Examples of ‘what’ questions and answers produced by our the best model on
test VQA.

11.4. State-of-the-art on DAQUAR and VQA 159

Color of cow? What is the man doing? Where is the TV control?

Ask Your Neurons: brown and white playing wii on table

Table 11.14: Examples of ‘compound answers’ questions and answers predicted by our the
best model on test VQA.

Chapter 12

Conclusions and Future
Perspectives

Contents
12.1 Concluding Remarks . 161
12.2 Future Perspectives . 164

With the advent of large-volume datasets, and advances in Deep Learning, Visual
Recognition has successfully changed its research direction from using hand-
designed to learnt features. This move has resulted in many success stories in

image classification and object detection tasks [Krizhevsky et al. 2012; Szegedy et al. 2015;
He et al. 2015; Girshick et al. 2014; Ren et al. 2015b]. Observing such a progress, we ask in
this thesis the following questions. Can we apply one of the highlights of Deep Learning, i.e.
joint training, to a traditional recognition architecture (Spatial Pyramid Matching)? How
to develop a system with the minimal number of design decisions? Can we build a neural
approach to learn spatial relations that can easily scale up to handle a large number of
spatial prepositions? Can we develop a neural network with an input-dependent structure?
What is a good holistic task? How does the success of Deep Learning in Visual Recognition
translate to other, arguably more holistic tasks? Can neural networks reason logically, and
infer, often hidden, human intentions through communication with human beings? What is
the relation between neural architectures and semantic parsers? In this chapter, we conclude
our findings, and point a few possible research directions out.

12.1 Concluding Remarks
In this thesis, we build architectures that are jointly trained, reason about spatial relations,
work in a multimodal scenario, answer questions about images, and to some extent unite
vision with language through vector-based representations.

Joint training of a spatial layout and a classifier In Chapter 6, we jointly train a
classifier together with a spatial pooling layer in a traditional recognition architecture, so
called Spatial Pyramid Matching. Our results indicate that a-priori fixed spatial division
of the Spatial Pyramid Matching architecture is indeed suboptimal, and hence should be
learnt from data. However, the largest improvement, which reach up to 10 percent points
compared with the baseline, is observed in the case of a limited number of visual words. This

162 Chapter 12. Conclusions and Future Perspectives

effect may be due to that larger, more fine-grained visual vocabularies can preserve some
spatial information, but this hypothesis is not further explored. Notably, in comparison with
most other data-driven approaches to derive a spatial layout, our strategy rely on a minimal
number of assumptions regarding shapes of the pooling regions. On the other hand, our
smooth regularization term has been shown important.

Neural approach to learn spatial relations In Chapter 7, we link spatial templates
with the aforementioned learnable spatial pooling regions. This allows us to build an architec-
ture that spatially reason about the ‘things’ in the image. Unfortunately, we have never been
able to learn such spatial templates from scratch, but instead we first estimate them from the
training data and next use them as an initialization. Moreover, the learnt spatial templates
do not differ that much from the initial estimations. On the other hand, with larger datasets,
advances in Deep Learning, more powerful hardware, and optimized convolutions training
such architecture could, arguably, be feasible. Another possible extension of this work would
learn an image-dependent spatial reasoning. Nonetheless, our estimation has been shown
very competitive to other methods on the dataset of structured queries containing two
spatial prepositions [Lan et al. 2012] but working under weaker assumptions. That is, our
method does not have an access to a ground-truth procedure of generating spatial content.
We also show that our method can easily scale up to work with a larger number of spatial
prepositions.

Neural approach to retrieval with an input-induced architecture In Chapter 7,
we use Data-Driven Compositional Neural Architecture in some experiments. A detailed
exposition of the architecture is presented in Appendix A. The structure of the presented
method is induced from a textual query. More precisely, a parser tree defines the topology of
the network, with leaves representing nouns, and internal nodes representing spatial relations.
The weights are indexed by occurring words, and are shared across all the architectures.
Alternatively, this can be seen as a large set of weights corresponding to all the words, while
only a small subset of them is updated per training example. Such a parameterization on one
hand allows for an efficient training, on the other hand weights that correspond to rare words
are rarely (or even never) updated. In our work, we simplified the problem by considering
only queries of a relatively simple form, e.g. (noun, preposition, noun). Therefore, it is
interesting to see how the architecture extends to real-world textual queries. Interestingly,
this architecture can also be seen as a mixture of a semantic parser used in Chapter 9 and a
neural network used in Chapter 10.

Holistic tasks In many parts of this thesis – e.g. Chapters 8, 9, 10 – we argue for an
alternative, holistic task for a scene understanding. Object detection or semantic segmenta-
tion, two examples of tasks requiring a scene understanding, have a few limitations. The
annotation effort is big, especially costly are per-pixel annotations for the scene segmentation
task, and both tasks unnecessarily impose some representation of an image (rectangular
bounding boxes, or per-pixel labels). Our instantiation of the Visual Turing Test, which is
the DAQUAR dataset, also differs from the image description task by limiting the output

12.1. Concluding Remarks 163

space. This greatly simplifies the evaluation of architectures on this task, and yet imposes
a great challenge to intelligent machines. As a further matter, as we argue in Malinowski
and Fritz [2015], the task of answering questions about images is more focused than image
description and arguably more robust to over-interpretations than the original Turing Test
Turing [1950]. Interestingly, Visual Turing Test already encompasses many prior visual tasks.
For instance, image classification can be seen as a Visual Turing Test with only one question
“what is in the image?”; similarly, Visual Turing Test without questions can be interpreted
as the image description task, where a caption (answer) describing an image has to be
derived. Therefore, presumably, successful Visual Turing architectures can be deployed in
numerous scenarios. Moreover, the task is inherently multimodal, and challenges machines
not only in visual and language comprehension, but also in understanding human intentions
and requiring a complex reasoning. Finally, such a question answering task is, arguably, a
necessary step to achieve a full, human-quality competence in understanding of the world,
and therefore should be a component of AI-complete systems.

Neural and symbolic approaches In this thesis, we propose two approaches to answer
questions about real-world images that are introduced in Chapters 9 and 10. Both mark two
extremes on a spectrum of different methods ordered with respect to explicitness in image
and language representations (Figure 5.3). A logic-based approach relies on a semantic parser
and a database of visual facts. Therefore, the overall performance of the system strongly
depends on the choices made by a designer who decides what information is being extracted
and how the spatial relations are defined. At it turns out, it is not only a highly non-trivial
task, but also errors made at this fundamental level of defining a right representation cannot
be easily corrected [Malinowski and Fritz 2014a,b; Chowdhury et al. 2016a]. Moreover, such
an approach relies too much on the visual information, ignoring a knowledge that comes from
the linguistic channel. To alleviate such issues, we have proposed our second approach, which
we call a neural-based, that relies on a combination of a Convolutional Neural Network and
a Recurrent Neural Network. This architecture requires fewer design decisions, and can learn
a representation of the input data for the task jointly and end-to-end. It can also effectively
exploit information existing in the language channel. On the other hand, we observe little
or even no evidence it can handle questions requiring a logical notion, e.g. negations. It
also relies too much on the language channel making only a moderate improvement when a
visual channel is added (Table 10.1).

Representation In the majority of this thesis, we adopt the Deep Learning point of view
on the representation, and therefore we rather rely on learnt representations. For instance, in
Chapter 6, Chapter 7, and Appendix A, we argue for a representation that is directly derived
from the training data, ideally in the gradient-based manner. In Chapter 10, Chapter 11,
and Appendix C, we build a Deep Learning approach to answer questions about real-world
images. We made a major exception in Chapter 9, where we trained a logic-based approach
to answer question about real-world images that rely on hand-designed representation of
the world. More precisely, we have designed a set of spatial rules, and decided what kind of
visual information shall be extracted from images. In our research, a learnt representation

164 Chapter 12. Conclusions and Future Perspectives

has always achieved better performance. Such results are also consistent with a broader
research done in Computer Vision where the leading approaches to many Computer Vision
tasks use learnt representations.

Scalability In many practical scenarios we seek scalable architectures that are able to
learn more as data grow, and quickly perform an inference at test time (Section 2.1). In
literature, we can find some evidence that neural networks are good in exploiting large-
volume datasets [Krizhevsky et al. 2012]. They have also dominated the VQA challenge
[Antol et al. 2015; Malinowski et al. 2016] that consists of one of the largest Visual Turing
datasets. Moreover, such neural-based architectures can process a large amount of data in a
short time on a high-throughput hardware. For instance, Caffe, a popular Deep Learning
toolkit, spends about 1ms per image to derive an image representation1. This contrasts with
a logic-based approach, shown in Chapter 9, that requires first extracting information from
images to build a database of visual facts, and next deriving a suitable representation of a
question by manipulating potentially exponentially many derivations. Therefore, apparently
it is more difficult to use a semantic parser on large-volume datasets, although there is a
notable progress in this direction [Berant et al. 2013; Choi et al. 2015].

Joint, end-to-end training In this thesis, we mainly advocate for jointly trained ar-
chitectures via back-propagation. This view is covered in the many chapters of the thesis
(Chapters 6, 7, 10, 11). The same view also becomes dominant in the whole Computer Vision
community. Through the thesis, we also observe an increase of the performance whenever a
jointly trained scheme is used. For instance, our variant of the Spatial Pyramid Matching
framework (Section 3.2) is able to discriminatively learn a spatial layout based only on
data, and significantly improves over the original architecture with a hand-designed spatial
layout (Chapter 6). Similarly, our neural-based approach to Visual Turing Test (Chapter 10)
significantly outperforms our prior work that uses a logic-based one (Chapter 9).

12.2 Future Perspectives
This section discusses various items of future work based on different research directions
taken in the thesis. We pay a special attention to our most recent work on the Visual
Turing Test, which has opened the door to many new ideas. Therefore the majority of future
directions are based on our experience while working on the aforementioned problem.

Variants of Visual Turing Test Visual Turing Test encompasses various tasks such as
detection or classification. Due to the generality of the Visual Turing Test, various datasets
that stress different aspects of the challenge have been proposed. For instance, in DAQUAR
spatial relations play an important role [Malinowski and Fritz 2014a], while Zhu et al. [2016]
also allows questions about locations of different objects or their parts (so called ‘pointing’
questions), and Kembhavi et al. [2016] have built a dataset for question answering about
diagrams. In the nearest future, we may expect more variants of the Visual Turing Test,

1On a single NVIDIA K40 GPU: http://caffe.berkeleyvision.org

http://caffe.berkeleyvision.org

12.2. Future Perspectives 165

some could be even more generic than the contemporary datasets, and some could encourage
studies of specific aspects in isolation. For instance, synthetic datasets with compositional
questions could test if machines can ground difficult questions into images.

Common sense knowledge Common sense knowledge plays an important role in the
human decision making process. Arguably, holistic machines also need to be equipped with
the common sense [Malinowski and Fritz 2014b]. However, extracting such a knowledge only
from textual sources is a challenging task, and therefore alternative approaches to acquire it
through multimodal, visual and language, datasets is not only possible [Malinowski et al.
2015], but even become an active research area [Chowdhury 2016; Chowdhury et al. 2016b;
Tandon 2016; Vedantam et al. 2015; Sadeghi et al. 2015]. Nonetheless, we believe in a tighter
interplay between the Visual Turing Test and common sense knowledge.

External sources of knowledge Not all questions in the Visual Turing Test can be
grounded in an image. Some of them can only be answered through external sources of
knowledge such as Wikipedia. For instance, questions such as ‘What city is visible in the
image?’ requires a more holistic knowledge about the world. Work of Wu et al. [2016b], and
Wang et al. [2015] is a notable step towards this direction.

Multimodal fusion Despite of the tremendous progress in visual recognition, where
the most recent approaches achieve human-quality performance on the ImageNet dataset
[Russakovsky et al. 2014; He et al. 2015], the overall performance of the current approaches is
still far from a human-quality understanding. We believe that this is partially due to the lack
of proper multimodal fusion techniques that combine vision with language. The contemporary
fusion techniques either concatenate, piecewise multiply, or sum vector representations of
the question and the image. However, we arguably need more sophisticated tools to combine
both modalities together. A step into this direction is the recent work of Fukui et al. [2016]
that uses the outer product as a fusion technique. This technique allows for multiplicative
interactions, where each element can interact with every other element. Since this approach
has won the VQA challenge, and a novel multimodal fusion technique is an important factor
that contributed to its success, we believe that a further development of the multimodal
fusion techniques is crucial for the Visual Turing Test.

Spatial reasoning A substantial fraction of questions in DAQUAR – our dataset that
represents the Visual Turing Test – consists of spatial prepositions. Such questions are also
nontrivial to answer even to humans due to different sources of ambiguities; e.g. depending
on personal or cultural preferences humans use different frames of references [Malinowski
and Fritz 2014a]. Despite of the initial progress to handle the spatial relations [Malinowski
and Fritz 2014c; Chowdhury et al. 2016a], current results are still somehow dissatisfying.
That is, the performance of our methods on spatial questions is significantly below the
overall performance even though such questions are quite representative in the DAQUAR
dataset. Therefore, we hope that better approaches to spatial reasoning will be developed.

166 Chapter 12. Conclusions and Future Perspectives

Image representation In this thesis, our neural-based approaches to Visual Turing Test
use global, full-frame CNN representation of images. Such a representation may destroy
too much information. This points towards a direction of fine-grained alternatives, such
as detections or object proposals [Ilievski et al. 2016; Mokarian Forooshani et al. 2016;
Tommasi et al. 2016]. At the same time, recently introduced models with attention become
quite successful [Fukui et al. 2016; Lu et al. 2016]. However, it is unclear if the gap between
attention-based and global-based representations is due to the additional constraints imposed
on the attention mask, or unsuccessful, joint, end-to-end training of the methods that use the
global image representation. Moreover, it is also surprising that approaches to Visual Turing
Test that use detections do not perform significantly better to the aforementioned methods.
Finally, DAQUAR contains images with a depth channel that is currently not leveraged by
neural-based methods. Some spatial relations, such as ‘behind’, arguably, require a 3d scene
representation. The question of the importance of such an extra information for the Visual
Turing Test remains open. To sum up, it is still unclear which image representation should
be used to develop future approaches to the Visual Turing Test.

Recurrent Neural Networks Although Recurrent Neural Networks should be better
than Bag-Of-Words approaches in modeling a complex language structure, there is a
surprisingly small gap in the performance between both approaches [Malinowski et al. 2016].
However, some questions clearly require an order. At the same time, such questions are
longer, semantically more difficult, and require better visual understanding of the world. To
handle such questions we may need to improve over the current Recurrent Neural Networks,
find better ways of fusing two modalities, develop better image representations, or build
datasets that stress compositionality of the language more clearly.

Evaluation metrics Although we have WUPS and Consensus measures at our disposal,
both metrics are far from being perfect. Consensus has higher annotation cost for ambiguous
tasks, and is unclear how to formally define a good consensus measure. WUPS is an ontology-
dependent evaluation metric, and hence it rises the question if building one complete ontology
that covers all cases is feasible. Moreover, the currently used evaluation metrics do not
consider the tail of the distribution of answers, and hence encouraging the methods to
focus only on the most frequent answers. Overall, developing good evaluation metrics in a
nontrivial task that requires some attention.

Learning from a few examples In the DAQUAR dataset, many questions are quite
unique. This raises a challenge on the generalization of the methods. On the other hand,
questions are also, to some extent, compositional. Can we build models that leverage such
compositionality in order to build the meaning of the whole question from its parts? Shall
we explicitly model the compositionality of the meaning [Liang et al. 2013; Malinowski
and Fritz 2014a], or leave it as a learning task [Malinowski et al. 2015]? Similarly, the
contemporary models tend to focus on the most frequent answers, ignoring the tail of the
answer distribution. This is arguably not a desired behavior from the intelligent machines.

12.2. Future Perspectives 167

CNNs with smooth pooling regions Our investigation of the smooth learnable pooling
regions have shown good results on the more classical recognition architecture – Spatial
Pyramid Matching, while allowing for introspections by visualization. Despite of differences
between Convolutional Neural Networks and Spatial Pyramid Matching, both architectures
use a pooling operation over its receptive fields. As we did with Spatial Pyramid Matching,
the spatial layout could also be learnt or estimated from data for Convolutional Neural
Networks. Technically, the learnable pooling regions are achieved by a suitable generalization
of the pooling operator together with adding the smoothness-inducing regularization terms.
Finally, the learnt pooling regions also reminds the attention masks that become commonly
used in neural image description or question answering architectures [Xu et al. 2015; Xu and
Saenko 2015]. We also observe an interest of the community in that direction of research
[Yang et al. 2016; Lee et al. 2016; Fukui et al. 2016], and we believe the pooling operator
will undergo significant changes in future.

Personalized question answering architectures Due to many ambiguities that exist
in the real-world, also reflected in some Visual Turing Test datasets such as DAQUAR
[Malinowski and Fritz 2014a], it is difficult to train models to handle all the questions
properly. This suggests personalized approaches to Visual Turing Test, where the methods
are conditioned on the specific user. Chowdhury et al. [2016a] further study this problem
based on which they propose a few possible directions.

Connections with physics As we are pushing the boundaries of Computer Vision,
understanding of physics (at least at the intuitive level [McCloskey 1984]) becomes a key
component of the holistic comprehension. It could be the case that some questions about the
content of images cannot be resolved without a basic understanding of physics. Currently, we
witness initial steps towards this direction by considering scenarios fully specified by physics
[Battaglia et al. 2013; Wu et al. 2015; Mottaghi et al. 2016; Fragkiadaki et al. 2015], or
scenarios where physics play an important but latent role and can, arguably, be internalized
by a neural architecture [Bhattacharyya et al. 2016a,b].

Synergy of neural-based approaches with symbolic reasoning Although we have
observed a remarkable performance improvement of our neural-based approach over our
prior work that uses a semantic parser (Chapters 9 and 10 contain more details about
both approaches to the Visual Turing Test), some types of logical reasoning seems to be
particularly difficult for the former while trivial for the latter. One example is the negation
that is ‘built’ into the semantic parser and therefore handling negations with such an
approach at the semantic level is trivial. However, based on the current evidence we cannot
conclude if the neural-based approach learns to negate the question or its parts. Similarly,
we have not observed that it successfully resolves quantifications. At this point, it is hard to
conclude if there is something fundamental missing or it is just due to lack of enough training
data. However, we believe that this line of research deserves a more thorough investigation,
which may result in hybrid models. Our DDCNA (Appendix A) for the text-to-image
retrieval task, and especially the work of Andreas et al. [2016b] for the visual question

168 Chapter 12. Conclusions and Future Perspectives

answering task can be seen as a step forward in that direction.

Appendix A

DDCNA: Data-Driven
Compositional Neural

Architecture for Image
Retrieval based on

Compositional Queries

Contents
A.1 Introduction . 169
A.2 Related work . 171
A.3 Method . 172

A.3.1 Data-Driven Compositional Neural Architecture 172
A.3.2 Inference . 173
A.3.3 Learning . 174

A.4 Experiments . 175
A.4.1 Dataset . 175
A.4.2 Evaluation . 176

A.5 Qualitative results and Conclusions 179

This appendix supplements Chapter 7. It presents a preliminary work, which precedes
Visual Turing Test and was conducted in 2013-2014, that study a compositional
nature of spatial relations with a neural-based architecture with an instance-induced

topology. The structure of this architecture, which we call DDCNA, is inferred from a textual
query, and therefore its topology is changing per instance. In this sense, each training and
test instance poses a different task. Finally, in this architecture, we stress concept learning,
and spatial reasoning.

A.1 Introduction
Recent advances in object classification and detection [Felzenszwalb et al. 2010; Li et al. 2010;
Krizhevsky et al. 2012] have significantly contributed to the progress towards the challenging

170
Appendix A. DDCNA: Data-Driven Compositional Neural Architecture for

Image Retrieval based on Compositional Queries

(picture on wall) above bedQuery:

rank

above

bedon

picture wall

Compositional 
Neural Architecture:

ImageDB:

…

…

…

le
ar
ni
ng

le
ar
ni
ng

Retrieval:

Figure A.1: We address the image retrieval task by introducing a novel Data-Driven Com-
positional Neural Architecture (DDCNA) whose topology is induced from the query. The
parameters – including concepts and spatial relations – are shared across queries and jointly
learnt with the retrieval task.

task of scene understanding [Lin et al. 2013; Gupta et al. 2013]. Equally, recent methods for
image retrieval [Lan et al. 2012] build on this success by forming queries of single binary
spatial relations and incorporating strong object detectors in their framework. Unfortunately,
such retrieval systems are still working with rather simple queries or with hand-crafted
features to learn spatial relations, where it remains unclear how to extend the language of
spatial relations to new prepositions. In contrast, we envision a data-driven architecture
for image retrieval task with more complex textual queries that learns a representation for
spatial relations directly from data.

In order to facilitate adaptation, ease of deployment and optimal leverage of the visual
classifiers, we seek a system that is jointly trained from example queries only. This implies
that there is no explicit supervision for the association of the visual classifiers to the language
concepts as well as no hand-crafted or annotated information for spatial relations. Moreover,
in our work we investigate jointly learnt representation of the concepts and spatial relations.
For our study, we assume that the query is given in a tree structured form as shown in
Figure A.1.

We address this challenging learning problem by a novel type of neural networks that
we call Data-Driven Compositional Neural Architecture (DDCNA). For our application to
image retrieval, these networks are trained from pairs of queries and images. As outlined in
Figure A.1, the query induces the architecture of the network. In contrast to recent recursive
neural networks [Socher et al. 2011], they are not composed of a single reoccurring network
fragment, but rather of a set of fragments that are shared across all examples. Each fragment
is associated to exactly one part of the query. We show how to perform holistic training
of this network and give insights to the learnt parameters that capture refined notion of
spatial relations.

A.2. Related work 171

Problem statement In our work we have a set of images I and a set of queries Q. All
queries are built of the nouns representing objects and spatial prepositions such as ‘above’,
‘left of’, ‘under’, etc. Next, every query q is represented by a parse tree T (q) [Manning and
Schütze 1999]. Our task is to find a mapping F from T (q) into a set of relevant images to
the query I(q) ⊂ I for every query q.

Our contributions We propose a novel discriminatively trained neural architecture
for image retrieval from textual queries that we call Data-Driven Compositional Neural
Architecture (DDCNA). Our method can deal with more complex queries than previous
approaches [Siddiquie et al. 2011; Lan et al. 2012]. Previous work employes hand-crafted
spatial relations [Moratz and Tenbrink 2006; Kelleher et al. 2006] or more recently learns
relations based on a hand-crafted set of features [Golland et al. 2010; Lan et al. 2012]. In
contrast, our approach is founded on a pooling interpretation of spatial relations [Logan and
Sadler 1996] with the goal of liberating the architecture from manually designed features.
Therefore a rich set of relations can be learnt as convolutional filters. We extend an existing
image retrieval benchmark based on the SUN09 dataset [Lan et al. 2012] with queries
containing more spatial prepositions such as ‘left of’, ‘right of’, ‘in front of’, ‘behind’,
‘inside of’, ‘on’, ‘under’, ‘across from’ and ‘in’. Moreover, we also add complex, compositional
queries (e.g. ‘picture on the wall above a bed’). We experimentally show that our architecture
performs on par with previously proposed method [Lan et al. 2012], but without relying on
hand-crafted representation of the spatial relations. We further highlight the learning-based
approach of our method by showing results on the new extended dataset that features new
spatial relations and complex, composite queries that have previously not been addressed
[Lan et al. 2012].

A.2 Related work
Modeling spatial relations in images Previous work has investigated hand designed
features in order to ground spatial language e.g. for video search [Tellex et al. 2010]. Others
have addressed the problem of image retrieval with structured object queries [Lan et al.
2012] where, in contrast to previous work in image retrieval, the authors consider structured
queries - a textual input with binary spatial relations between objects. Our work considers
not only binary relations but also compositions of those. Furthermore, we aim for an open
vocabulary of the preposition available during training and therefore instead of using a
hand-crafted representation of a set of only few relations (‘above’, ‘below’, and ‘overlap’
like in Lan et al. [2012]), we propose a flexible and learnable representation of such spatial
relations based on a pooling interpretation of spatial relations [Logan and Sadler 1996].

Program induction for question answering Our work is partly inspired by Liang et al.
[2011] who try to find a good semantic representation where utterances are mapped into their
meanings. However, Liang et al. [2011] consider the problem of finding such representation
only from the linguistic perspective, through the mapping into logical forms and retrieving
answers from a knowledge base. In contrast, our work induces a neural architectures that

172
Appendix A. DDCNA: Data-Driven Compositional Neural Architecture for

Image Retrieval based on Compositional Queries

solves an inference task on natural images from textual queries.

Deep architectures Although our architecture has some resemblances to deep neural
networks [Krizhevsky et al. 2012; Vincent et al. 2008], it differs by inducing the network
architecture from the query. Therefore, the topology of our architecture is not fixed a
priori to the dataset but is different for each training/test example. In this aspect it shares
similarities to Socher et al. [2011], but differs in: latent and learnt representation of spatial
relations, a hierarchical network structure that is composed of multiple shared fragments
instead of one, joint training of the whole tree-based architecture as opposed to learning by
greedily merging subtrees.

Image summarization An interesting inverse problem to our task is summarization of
the images [Farhadi et al. 2010; Kulkarni et al. 2011], where text is retrieved based on the
visual query - an image. It is however unclear how to use such architectures for our task.

Spatial reference resolution In contrast to previous attempts to spatial reference
resolution and concept acquisition [Socher et al. 2000; Matuszek et al. 2012], we go beyond
a set of object instances or toy objects to object categories in real-world image data.

A.3 Method
In this section we present our approach, Data-Driven Compositional Neural Architecture
(DDCNA), for learning a representation from image-query pairs for image retrieval. In
contrast to other methods common in deep learning community, the topology of our
architecture is determined by the query. As opposed to recursive neural networks [Socher
et al. 2011], it shares not a whole layer but the parameters associated to the same word
across different instances of the network. The leaves of the resulting architecture correspond
to visual concepts and internal nodes are relations between them. While the visual concepts
are modeled as linear combinations of object detectors, we represent spatial relations as
convolutional filters, that relate to a pooling interpretation of spatial relations [Logan and
Sadler 1996]. The root is a classifier that output is used for the retrieval task. We learn
the shared parameters of the network directly on image-query pairs in order to optimize
performance on the image retrieval task. There is no explicit supervision for the individual
network fragments that associate concepts as well as spatial relations - both are treated as
latent.

A.3.1 Data-Driven Compositional Neural Architecture
Given the query-image pairs as input (q, i) we define an architecture F(q, i) :=
DDCNA(T (q), I(i)) ∈ [0, 1] that measures the relevance of the image i to the query q.
We aim at learning such architecture solely from

{
(qk, ik), yk

}N
k=1 where yk ∈ {0, 1} is a k-th

retrieval label indicating relevance of the image ik to the query qk. Mapping F consists of a
tree structured representation T (q) of the query, an image representation I, and DDCNA -
our new deep architecture.

A.3. Method 173

As shown in Figure A.1, the topology of DDCNA is defined over a tree inferred by T
from the query q consisting of three node types: leaves representing concepts, internal nodes
that combine the concepts via a spatial relation, and a root node predicting a score which is
the relevance of the image w.r.t. a query q. During training, we learn the representation
of the concepts from I(i) together with the representation of the spatial relations and a
classifier’s weights to output the final score. During inference, we start from the leaves of
the tree and next propagate the representation up to the root of the tree via the spatial
relations that combine representations of theirs children.

Formally, we recursively define our architecture as follows. Let Xword
leaf , Xword

internal be the leaf
and internal nodes representing words, and Xroot be a root node - output of DDCNA. Let
I(i) := {Ok}k be a representation of the content of the image. We define a concept Oword

that is associated with a word as a weighted combination: Oword :=
∑
k w

word
k Ok. Similarly,

we have Rword :=
∑
k w

word
k Rk to represent spatial relations for the spatial preposition (a

word). Both sets {Ok} and {Rk} can be seen as basis, and we train the architecture via
backprop by learning the parameters wword

k . The concepts are associated with the leaves,
while the spatial relations with the internal nodes. Following the tree structure, we have

Xword
leaf := Oword

Xword
internal := Xsubtree1 ◦

(
Rword ∗Xsubtree2

)

Xroot := J (pool(Xquery
internal))

(A.1)

where J is a classifier and “pool” is a pooling operator, and Xsubtree is either a leaf or
an internal node. We also use two operators to combine the subtrees: piece-wise multipli-
cation ◦ and convolution ∗. During training, we learn the parameters w : L → RK for a
vocabulary L := {word1,word2, ...}. Note that our architecture is conditioned on the query
representation and therefore instance-dependent.

In our study, we use a parse tree of the query q as its representation T (q)
[Manning and Schütze 1999; Klein and Manning 2003] and an over-complete set
of the object detections [Felzenszwalb et al. 2010; Li et al. 2010] to represent the
content of the image I(i). We use Dirac responses (a single element of an A-by-
B matrix is active) as spatial basis {Rk}A·Bk=1. Moreover, we employ logistic regres-
sion J (X) := E [{y = 1} log(hθ(X)) + {y = 0} log(1− hθ(X))] with the hypothesis space
hθ(x) := 1

1+exp(−θT x) for classification, and max-pooling as the pooling operator.

A.3.2 Inference
Inference is both an inherent component of the learning process and a procedure yielding
predictions from the input, and is defined over a parsing tree of the query instance. In
the inference process, during the tree traversal, two operators are applied to combine the
internal representations:

• Piecewise multiplication ◦ to intersect two internal representations.

• Convolution ∗ to convolve the spatial representation with the internal representation.

where an internal representation is either the output of a leaf (then it is the same as concept
representation) or an internal node. Intuitively, at every pixel p, convolution of the concept

174
Appendix A. DDCNA: Data-Driven Compositional Neural Architecture for

Image Retrieval based on Compositional Queries

Oworda with spatial filter Rwordc computes the confidence that Oworda is related with p via
Rwordc . Intersecting p with another concept Owordb yields the confidence that both concepts
are related via the spatial relation at pixel p. This idea of convolving the object with a
spatial filter is a computational realization of the spatial templates proposed in experimental
psychology [Logan and Sadler 1996].

To illustrate the inference, let us follow Figure A.1 together with the query ’Picture on wall,
above bed’. First, we collect the representation of the image by running object detectors {Ok}.
Those are subsequently linearly combined to build a concept representation for all noun words
in the query: picture, wall and bed. That is, Xpicture

leaf :=
∑
k w

picture
k Ok, Xwall

leaf :=
∑
j w

wall
k Ok,

and Xbed
leaf :=

∑
j w

bed
k Ok. Note that, the learnt parameters wpicture

k , wwall
k , wbed

k are shared
across all queries containing picture, wall and bed respectively. Such a representation of the
concept ’wall’ is next convolved with the spatial filter ’on’ and subsequently intersected
with the concept ’picture’: Xpicture on wall

internal := Xpicture
leaf ◦

(
Ron ∗Xwall

leaf
)
. Similarly, a higher

level internal representation is computed: Xquery
internal := Xpicture on wall

internal ◦
(
Rabove ∗Xbed

leaf
)
. The

final representation is produced by pooling x := pool(Xquery
internal). At the final step such the

representation x is given to the classifier J .

A.3.3 Learning
Training via Backpropagation As we aim for the joint training of the whole archi-
tecture, we use backpropagation [LeCun et al. 1998a] through the tree structure to learn
the parameters of our model. The backprop rules mimic the rules of the forward pass
(Equation A.1), but are executed from the top layers towards the leaves:

∇wwordXroot = (∇ZJ(Z)) θT (∇wwordXquery
internal)

∇wword
[
Xsubtree1 ◦

(
Rword ∗Xsubtree2

)]
= ∇wwordXsubtree1 ◦

(
Rword ∗Xsubtree2

)

+Xsubtree1 ◦ ∇wword
(
Rword ∗Xsubtree2

)

∇wworda

(
Rwordb ∗Xsubtree

)
= 0 if a 6= b

∇wworda

(
Rworda ∗Xsubtree

)
=
(
∇wwordaR

worda
)
∗Xsubtree

+Rworda ∗ (∇wwordaXsubtree)
∇wwordaX

wordb
leaf = 0 if a 6= b

∇wwordaX
worda
leaf = [Oj]j if Xworda

leaf =
∑

j

wworda
j Oj ,

(A.2)

where Z := θTX, notation [Zl]l denotes the vector expansion of Z with respect to index l,
that is [Zl]l := [Z1, Z2, ..., ZK], and Xleft ◦ [Zl]l ◦Xright is re-defined as [Xleft ◦ Zl ◦Xright]l.

Although at first glance the gradient ∇wword needs to ’travel’ over all children paths of a
given node, in practice the same word rarely occurs more than once in a query and therefore
the gradient for the associated parameter. Therefore, most parameters are not updated in a
single stochastic gradient step.

For training, we have applied stochastic gradient descent method [Bottou 2012] with a
constant learning rate:

W := W − α∇WFW (X)

A.4. Experiments 175

where W are all parameters to learn, and FW (X) is the objective function dependent on W
and training data X. We use a GPU-based implementation based on Theano [Bergstra et al.
2010] in order to speed up the inference and training process.

Initialization Previous work has pointed out the importance of a proper initialization
[Erhan et al. 2010; Çaglar Gülçehre and Bengio 2013]. Since our architecture has a very
rich parameterization we seek a good initialization for the spatial filters. For every spatial
preposition we consider all images that are valid under the preposition1, for instance ‘above’.
Next, we consider all combinations of the objects occurring in the image that are consistent
with its annotations, for instance ‘picture above bed’. We center the spatial filter at every
position inside the ‘bed’ detector and copy the content of the ‘picture’ detector.

A.4 Experiments

We conduct experiments on two challenging datasets. The first dataset is introduced by Lan
et al. [2012] and contains structured queries that augments the SUN09 dataset. The second
dataset is our proposed extension of the first dataset with more complex, compositional
queries as well as a wider range of spatial relations. In this section, we describe our dataset,
explain the experimental protocol, and show and discuss results.

A.4.1 Dataset

Images All our experiments are based on the real-world image material from the SUN09
dataset [Choi et al. 2010]. This dataset consists of 12, 000 annotated images with more
than 200 object categories, and 152, 000 annotated object instances. We use 4367 images
for training and 4317 images for testing - the same split as in Choi et al. [2010]. In our
experiments, we use simple structured as well as more complex compositional queries that
augment the SUN09 dataset.

Structured Queries The structured queries are introduced in Lan et al. [2012], but are
not formally defined. Here, we formalize the notion of structured queries. We say that a
query q is structured if it has the form: q := q1 ∧ q2 ∧ ...∧ qn, where qi denotes either a noun
or a triplet (noun, preposition, noun).

Compositional Queries In order to consider a richer set of natural language queries, in
addition to the structured queries we also use compositional queries. We identify a set of
compositional queries Q with queries that can be represented by a syntactic tree. Formally,
Q := {T (q) | q ∈ L}, where L represent a set of all queries in natural language, and T (q)
is a syntactic tree of q. Compositional queries subsumes structured queries as a special
case. In this paper, we work with a subset of such compositional queries of the form [(noun,
preposition, noun), preposition, noun].

1Such information is available during training time anyway as it is needed for training the classifier.

176
Appendix A. DDCNA: Data-Driven Compositional Neural Architecture for

Image Retrieval based on Compositional Queries

New dataset of complex, compositional queries Although the SUN09 dataset has
been originally developed for the scene recognition and object detection, we augment the
dataset with textual queries. We use the structure (a) queries from Lan et al. [2012] of
form (noun, spatial preposition, noun) with spatial prepositions such as ‘above’, ‘below’ and
‘overlap’. However, in order to show that our architecture is capable of learning new relations
we have extended the set of queries to ‘left of’, ‘right of’, ‘in front of’, ‘behind’, ‘inside of’,
‘on’, ‘under’, ‘across from’ and ‘in’. Moreover, we also extend the set of queries to have a
compositional form [(noun, spatial preposition, noun), spatial preposition, noun] such as ‘car
on road, behind truck’, or ‘picture on wall, above bed’ (Figure A.1). We collect annotations
of such type by first asking participants to provide descriptions of randomly selected images
from the SUN09 dataset using these prepositions and compositional queries. In the second
pass we curate this dataset and arrive at 53 structured queries and 15 compositional queries.
Finally, the annotators annotate the relevance of each training and test image according to
all queries. As the latter requires a lot of human effort we have automatized the process by
showing only those images that contain all objects described in a query. In this process we
have collected in total 68 different queries with a total of 590512 annotations. Our dataset
is challenging due to the use of spatial relations by the annotators, variations of object
appearance in real-world images in the SUN09 dataset, and the compositional form of the
queries. Latter makes it intractable to collect a sufficient number of data points that is
large enough to cover all possible queries due to its combinatorial complexity, and therefore
requires algorithms that can efficiently re-use learnt substructure.

A.4.2 Evaluation
We have investigated three experimental settings. First, we compare our method against
previous work on structured queries [Lan et al. 2012], where we show results of our method
alone and together with pairwise terms. Second, we use the proposed dataset of extended
structured queries and show generalization to new spatial relations. Finally, we have measured
the performance of our method on the new complex, compositional query dataset, which go
beyond the scope of the previous work. In all experiments we use Mean Average Precision
(mAP) across all queries to measure the performance of different methods.

Comparison to previous work on structured queries In order to establish a com-
parison to previous work on structured queries, we run experiments on the structured queries
from Lan et al. [2012] and compare to their approach in Table A.3. This dataset consists of
862 (463 for training and 399 for testing) queries of the form (noun, preposition, noun) with
111 nouns and only two different spatial relations (‘above’ and ‘below’). In this dataset, the
spatial relations are automatically extracted by a predefined formula on the (x, y) coordinates
of objects and serve as exact definitions of the spatial relations. This procedure is also used
by the system of Lan et al. [2012]. In contrast, we assume the procedure is unknown to
our system as we are aiming at learning good spatial representations only from data. The
structured model of Lan et al. [2012] that implements a structured SVM approach and
models both the spatial relationship between objects in the query and co-occurrence between
non-query and query objects achieves a performance of 11.16% mAP. Moreover, we also

A.4. Experiments 177

Lan et al. [2012]

above below

Table A.1: Visualization of estimated spatial filters. A set of relations from Lan et al. [2012].

Extended set of relations

above across from behind below in in front inside left right on under

Table A.2: Visualization of estimated spatial filters. Extended set of relations.

report the results of two more baselines: simple object detector where the sum of maximum
response scores from each object detector is used as a score and the MARR model [Lan
et al. 2012]. The latter uses object detectors as the features for the classifier and models
co-occurrence between the detectors.

In order to get more insights about the proposed model, we use five different variants of
the architecture. First, ‘DDCNA init’ denotes our architecture with the estimated spatial
filters and initialized concepts with only the logistic regression layer trained. We achieve
8.48% mAP for this setting which is an improvement over the ‘Part based detector’ by 0.72
percent points of mAP. Next, ‘ßDDCNA with learnt spatial filters’ uses ‘DDCNA init’ but
also backprop to fine-tune the spatial filters which results in a further improvement of 0.18
percent points of mAP. The ‘DDCNA with learnt concepts’ trains both the classifier together
with the concepts, which increases performance by 1.45 percent points. Training spatial
relations, concepts and the classifier jointly yields in further improvements reaching 10.04%
mAP (’DDCNA full’). Finally, the ‘DDCNA full + pairwise terms’ uses ‘DDCNA full’ as a
feature vector for the classifier, and models co-occurrence between the object detector using
equation:

∑

i∈Vq
αTi f(I(li)) +

∑

i∈Vq

∑

j∈X\Vq
γTijf(I(lj)) + βTF(Iq) (A.3)

where α, γ and β are weights learnt by the classifier, Vq is a set of all objects (nouns) in
the query, X is a set of all objects available during training, F(Iq) is ‘DDCNA init’ for the
query q, and f(I(li)) is a detector for the object i. We use the last variant in order to be as
close as possible to the setting of Lan et al. [2012]. We reach a performance of 11.12% mAP
(DDCNA full + pairwise terms) which is on par to the performance of the structured model
[Lan et al. 2012] (Structure model in Table A.3), while not using the pre-defined notion of
spatial relations and rather learning it from data. The two entries in Table A.1 show the
filters that we have learnt to capture a notion of the spatial relations.

178
Appendix A. DDCNA: Data-Driven Compositional Neural Architecture for

Image Retrieval based on Compositional Queries

Method mAP
Part based detector [Felzenszwalb et al. 2010] 7.76%
MARR [Siddiquie et al. 2011] 10.01%
Structure model [Lan et al. 2012] 11.16%
DDCNA init 8.48%
DDCNA with learnt spatial filters 8.66%
DDCNA with learnt concepts 9.93%
DDCNA full 10.04
DDCNA full + pairwise terms 11.12%

Table A.3: Performance of our DDCNA approach that learns spatial concepts from data
compared to the structured model of Lan et al. [2012]

Method Extended relations & Extended relations &
Structured Queries Compositional Queries

DDCNA 7.90% 4.76%

Table A.4: Our approach on more challenging dataset: structured queries with the extended
spatial relations, and compositional queries.

Extended set of spatial relations and compositional queries annotated by hu-
mans We extend our analysis to our new dataset that contains an extended set of spatial
relations and complex, compositional queries. In particular, the annotations were obtained
from human annotators and therefore the notion of spatial concepts has to be acquired in
a learning-based approach. We show results of our full DDCNA approach on the simpler
structured queries as well as the compositional ones in Table A.4. Note a drop in performance
compared to the previous experiment as this is a more challenging setting. We achieve
7.90% mAP for the structured queries and 4.76% for the compositional ones. Furthermore,
we show for the latter experiment all spatial concepts that we have learnt in Table A.2.
They follow our intuition about the spatial layout as well as spatial spread of such spatial
relations (e.g. ‘in” and ‘inside" are more focused). Table A.1 shows spatial relations that
come from the dataset of Lan et al. [2012] containing only two spatial prepositions. Note
that, the spatial templates learnt from the dataset of Lan et al. [2012] (shown in Table A.1)
are less focused to the ones learnt from the extended set of spatial prepositions (shown in
Table A.2). This confirms our hypothesis that we need datasets with a richer set of spatial
prepositions. In addition to quantitative results, we also provide further visualizations of the
retrieved images by our architecture given example queries. Figures starting from Figure 7.2
show the images together with their corresponding ranks sorted according to the confidence
scores of the logistic regression. Further analysis revealed that most mistakes come from
failure modes of the object detectors that our method is based on.

While our architecture has proven effective on this new type of challenging compositional
queries, there is ample room for future work in order to close the performance gap to previous
constraint settings of few spatial relations on simpler queries.

A.5. Qualitative results and Conclusions 179

A.5 Qualitative results and Conclusions
In this document we have presented our novel approach to learn a joint representation
of both images and language for image retrieval. Our DDCNA learns a representation of
spatial relations only from example queries. Moreover, we have achieved results on par
with previous work on structured queries under weaker modeling assumptions. The benefits
of learnt spatial concepts is highlighted on a new, manually annotated, dataset of an
extended set of spatial relations. Finally, we have shown that our architecture is capable
of learning and predicting image relevance w.r.t. complex, compositional queries that have
not previously been addressed. Our new dataset of human annotated queries enables this
research direction. In this document we also provide further visualizations of the experiments
with our architecture (’CNA full’) on the extended and compositional queries. We show the
top ranked retrieved images based on the score given by our architecture. We show images
together with the corresponding ranking at the top of the image.

A
pl

an
e

in
 fr

on
t o

f a
 b

ui
ld

in
g

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

Figure A.2: Top ranked retrieved images from the query ‘An airplane in front of a building’.
We see a high recall achieved by our method and two clear mistakes - Rank 7 and Rank 15.
Rank 7 is placed high in the ranking mainly due to false positive ‘building’ detection, and
Rank 15 due to false positive ‘airplane’ detection.

180
Appendix A. DDCNA: Data-Driven Compositional Neural Architecture for

Image Retrieval based on Compositional Queries
Fl

ow
er

s
in

 a
 v

as
e

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

Figure A.3: Top ranked retrieved images from the query ‘Flowers in a vase’. Images Rank
4, 6, 7, 8, 9, 11, 12, ..., 15 are incorrectly ranked due to false positive ‘vase’ or ‘flowers’
detections with either strong signal response or large detection support.

Pi
ct

ur
e

on
 th

e
w

al
l,

ab
ov

e
a

be
d

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

Figure A.4: Top ranked retrieved images from the query ‘Picture on the wall, above a bed’.
We see a high recall achieved by our method. Although images Rank 2, Rank 6, Rank 8 and
Rank 11 are mistakingly ranked high due to a strong false positive ‘bed’ detector, they are
still reasonable. The architecture mistakingly ranks images Rank 4, 7, 9, 12 and 13 due to
false positive ‘bed’ detection with either strong signal response or large detection support.

A.5. Qualitative results and Conclusions 181
A

va
n

on
 th

e
ro

ad
, b

el
ow

 a
 w

in
do

w

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

Figure A.5: Top ranked retrieved images from the query ‘A van on the road below a window’.
Images Rank 2, 4, 5, 7, 8, 9, 12, 13, 14 and 15 are clearly wrong. Interestingly the model
hallucinates a ‘van’ (with strong signal response) and many ‘windows’ in the image Rank 12.

A
ch

ai
r i

n
fr

on
t o

f a
 d

oo
r,

on
 fl

oo
r

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

Figure A.6: Top ranked retrieved images from the query ‘A chair in front of a door, on floor’.
Images Rank 4, 6, 7, 10, 11, 14, 15 are placed incorrectly due to false positive detections.

Appendix B

Visual FactNet

Contents
B.1 Introduction . 183
B.2 Additional Analysis with Contemporary Architecture 184

B.2.1 Visual FactNet: Analyzing Question Answering by a Manipulable
Memory Architecture . 184

B.2.2 Performance Analysis by Question Type 185
B.3 Summary . 187

This appendix supplements Chapters 9, 10, and 11 with a study, conducted in 2016,
of effects of using an explicit scene representation together with a neural ‘retrieving’
mechanism for the Visual Turing Test. Concisely, the architecture on one hand uses

explicit features extracted from detections as an image representations, and on the other
hand it uses a neural-based approach to represent a question, and to decode an answer.
Therefore, this architecture can be thought as a conceptual combination of the previous two
architectures, a neural and logic-based ones, shown in the aforementioned chapters.

B.1 Introduction
Since our first instantiation of a Visual Turing Test [Malinowski and Fritz 2014a,b, 2015],
also presented in the Chapters 8 and 9, we have seen a progress in the field ranging from a
creation of new datasets to developing new methods. The latter can roughly be categorized
according to the explicitness of a language or a visual representation as shown in Figure 5.3.
Historically, first approaches towards a Visual Turing Challenge are symbolic based, presented
in Chapter 9 [Malinowski and Fritz 2014a], and rely on a semantic parser. Such approaches
require an explicit grammar from the language side, and object detectors or scene parsing
on the visual side. The second generation of Visual Turing architectures are neural-based,
and presented in Chapter 10. They use implicit representations: LSTM on the language side,
and CNN on the visual side. Nowadays, we see an interest in attention-based architectures,
or hybrid methods.

Finally, due to a recent development of Memory Networks [Sukhbaatar et al. 2015]
for textual question answering, we can close the gap between symbolic and neural based
approaches. Here, visual knowledge is collected from the image to form a database of “visual
facts” (memories), and next an important information to an answer decoder is retrieved
based on similarities between an encoded question and every memory cell that represent a

184 Appendix B. Visual FactNet

piece of visual knowledge about the image. From this perspective, originally used semantic
parser has been replaced by a neural-based approach (LSTM), however, the method itself
still allows for some degree of introspection.

B.2 Additional Analysis with Contemporary Architec-
ture

In order to shed more light on the challenges inherent to answering questions on images, we
pursue two directions. First, we propose a contemporary architecture that allows to inject
ground truth information and thereby factoring out perception issues to a certain degree.
Second, we propose a split of the DAQUAR dataset into different question types by which
we can categorize the challenges into different groups.

B.2.1 Visual FactNet: Analyzing Question Answering by a Manip-
ulable Memory Architecture

The approach proposed in Chapter 9 that is based on a symbolic reasoning has a great way
to inspect and manipulate the visual representation and thereby gaining insights into the
performance under different conditions. Yet, the latest models have shown great performance
improvements by moving towards more implicit representations. For instance, neural-based
approaches shown in Chapters 10 and 11 have doubled the performance compared to the
prior symbolic approach – but at the cost of introspection, manipulable and interpretable
representations. The latest memory networks as proposed by Sukhbaatar et al. [2015], strike
a balance here. While still facilitating end-to-end learning, these approaches have an explicit
memory representation. In fact, for the textual question answering, this memory is explicitly
filled with factoids that are represented via a learnt embedding function. Similar architectures
have been explored for VQA (e.g. Yang et al. [2015]).

Visual facts. Based on similar ideas, we present Visual FactNet, which we use as a tool
for analyzing challenges in the ‘question answering about images’ task. The core idea is to
encode ground truth visual information into the memory of a Memory Network in order to
observe changes in performance under the “perfect vision”. First, we represent the ground
truth visual information as “visual facts” as shown in Figure B.1. Each object instance in
the image is encoded in terms of one feature vector that includes the ground truth object
class, size, color and location. All this information is represented as one-hot-vectors that are
concatenated to form a memory entry for each instance. Continuous attributes like size and
position are quantized in order to yield one-hot-vectors.

Architecture. Figure B.2 shows an overview of the proposed architecture that follows
closely the Memory Network architecture of Sukhbaatar et al. [2015]. Therefore, we will
only give an overview here. First, the question is encoded with a Long Short Term Memory
[Hochreiter and Schmidhuber 1997] in order to yield a vector-based encoding. The Visual
Facts are encoded into the memory via a matrix embedding A. The embedded question

B.2. Additional Analysis with Contemporary Architecture 185

lamp bed chairclass:
size:
color:
location:

black red gray
12 24 17

(x,y) (x,y) (x,y)

Visual Facts

Figure B.1: Image to memory encoding.

is then used to retrieve relevant facts (by computing a scalar product between embedded
memories and embedded question). The resulting vector is a sum of all embedded memories
weighted by their relevance. Finally, this linear combination is added to the question encoding
and an answer is determined by a dense layer and a consecutive softmax (only single word
answers architecture is considered here1).

B.2.2 Performance Analysis by Question Type

In order to analyse the challenges of the task in more details, we have identified groups of
question types in the DAQUAR dataset. We have defined the following question types:

• 133 questions involving colors

• 779 counting questions

• 160 questions involving size

• 2544 questions involving spatial relations

• 273 questions involving distances/proximity

1Note that we still evaluate the performance on multiple words answers on the test set.

186 Appendix B. Visual FactNet

p_1

+ o = u + LSTM

bed

Softmax(Wo)

Words Embedding
LSTM

What is the largest object ?

p_2 p_3 p_4 p_5 p_6 p_i = Softmax()

Embedding A

Embedding B

+ u

Figure B.2: Visual FactNet based on Memory Network architecture.

Visual FactNet Ask Your Neurons Performance Difference
acc. WUPS0.9 acc. WUPS0.9 ∆acc. ∆WUPS0.9

all 24.31 29.81 19.43 25.28 4.88 4.5
color 23.31 30.95 24.06 34.53 -0.75 -3.58
count 32.73 38.55 28.75 34.93 3.98 3.62
size 48.12 53.00 16.77 23.98 31.35 29.02

spatial 20.64 26.24 14.62 20.65 6.02 5.59
distance 42.12 45.43 31.87 35.83 10.25 9.6

Table B.1: Performance evaluation on DAQUAR according to question types. For the sake
of the visualization purpose, we only show results on two evaluation metrics.

In order to provide a contemporary baseline, we report results of our neural-based
approach [Malinowski et al. 2015] and compare it to the Visual FactNet that has access to
the ground truth visual information. We show results for both methods in Table B.1 as well
as the performance difference. The strongest improvement is observed for questions involving
size. We hypothesize that size estimates from ground truth bounding boxes are quite well
aligned with human perception. Equally, we observe strong improvements for questions
involving distance, which we attribute to a better reference resolution given the ground
truth object information. The performance even degrades on the color questions when using
the color estimates [Van De Weijer et al. 2007] in the Visual FactNet2. We hypothesize
that this is due to an increased subjectivity for those questions and grounding of color
names. These color subtle ties are also lost and cannot be recovered from if learning does

2Note that DAQUAR doesn’t contain ground truth color information.

B.3. Summary 187

not start from the visual feature. Finally, the improvements in the Visual FactNet analysis
are rather underwhelming for questions involving counting and spatial relations. Counting
questions were already among the questions that are better answered and missing objects
in the ground truth information plays a role here. The relatively small improvement on
questions involving spatial relations points to the challenges of contextualization, reference
frames and ambiguities that makes resolving such spatial language inherently difficult.

B.3 Summary
We present an architecture that ‘sits’ between two extreme approaches (Figure 5.3) –
a symbolic based approach shown in Chapter 9 [Malinowski and Fritz 2014a], and a
holistic, global frame neural architecture shown in Chapter 10 [Malinowski et al. 2015]. The
architecture builds upon the prior work on Memory Networks [Sukhbaatar et al. 2015], and
allows for some degree of the introspection. Our analysis shows that despite of injecting
ground truth information, the results are far from being solved. We attribute this to the
lack of joint training of the visual representation, inherent ambiguities, a mismatch between
visual ground truth information and question-answering annotations, but also partially to
issues in retrieving right information from the memories. At the same time, however, our
analysis shows a big improvement in size and distance questions’s types. Questions about
counting or spatial relations also show an improvement but, arguably, a more thorough
approach handling them should be developed.

Appendix C

Tutorial on Answering
Questions about Images with

Deep Learning

Contents
C.1 Preface . 190

C.2 Dataset . 191

C.3 Textual Features . 193

C.4 Language Only Models . 196

C.5 Evaluation Measures . 202

C.6 New Predictions . 206

C.7 Visual Features . 208

C.8 Vision+Language . 209

C.9 New Predictions with Vision+Language 217

C.10 VQA . 218

C.11 New Research Opportunities . 223

Together with the development of more accurate methods in Computer Vision and
Natural Language Understanding, holistic architectures that answer on questions
about the content of real-world images have emerged. In this tutorial, we build

a neural-based approach to answer questions about images. We base our tutorial on two
datasets: (mostly on) DAQUAR, and (a bit on) VQA. With small tweaks the models that
we present here can achieve a competitive performance on both datasets, in fact, they are
among the best methods that use a combination of LSTM with a global, full frame CNN
representation of an image. We hope that after reading this tutorial, the reader will be able
to use Deep Learning frameworks, such as Keras and introduced Kraino, to build various
architectures that will lead to a further performance improvement on this challenging task.

190
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

C.1 Preface

In this tutorial1 we build a few architectures that can answer questions about images.
The architectures are based on our two papers on this topic: Malinowski et al. [2015] and
Malinowski et al. [2016]; and more broadly, on our project towards a Visual Turing Test2. In
particular, an encoder-decoder perspective of Malinowski et al. [2016] allows us to effectively
experiment with various design choices. For the sake of simplicity, we only consider a
classification-based approach to answer questions about images, although an approach that
generate answers word-by-word is also studied in the community [Malinowski et al. 2015].
In the tutorial, we mainly focus on the DAQUAR dataset [Malinowski and Fritz 2014a],
but a few possible directions to apply learnt techniques to VQA [Antol et al. 2015] are also
pointed. First, we will get familiar with the task of answering questions about images, and
a dataset that implements the task (due to a small size, we mainly use DAQUAR as it
better serves an educational purpose that we aim at this tutorial). Next, we build a few
blind models that answer questions about images without actually seeing such images. Such
models already exhibit a reasonable performance as they can effectively learn various biases
that exist in a dataset, which we also interpret as learning a common sense knowledge
[Malinowski et al. 2015, 2016]. Subsequently, we build a few language+vision models that
answer questions based on both a textual and a visual inputs. Finally, we leave the tutorial
with a few possible research directions.

Technical aspects The tutorial is originally written using Python Notebook, which the
reader is welcome to download3 and use through the tutorial. Instructions necessary to
run the Notebook version of this tutorial are provided in the following: https://github.
com/mateuszmalinowski/visual_turing_test-tutorial. In this tutorial, we heavily use
a Python code, and therefore it is expected the reader either already knows this language,
or can quickly learn it. However, we made an effort to make this tutorial approachable to a
wider audience. We use Kraino3 that is a framework prepared for this tutorial in order to
simplify the development of the question answering architectures. Under the hood, it uses
Theano4 [Bastien et al. 2012] and Keras5 [Chollet 2015] – two frameworks to build Deep
Learning models. We also use various CNNs representations extracted from images that
can be downloaded as explained at the beginning of our Notebook tutorial3. We highlight
exercises that a curious reader may attempt to solve in the following way.

This is an exercise.

https://github.com/mateuszmalinowski/visual_turing_test-tutorial
https://github.com/mateuszmalinowski/visual_turing_test-tutorial

C.2. Dataset 191

Figure C.1: Challenges present in the DAQUAR dataset.

C.2 Dataset
This section introduces the DAQUAR dataset [Malinowski and Fritz 2014a] from a pro-
gramming perspective. Let us first list a few DAQUAR entries to become familiar with the
format.

In [1]: ! head -15 data/daquar/qa.894.raw.train.format_triple

what is on the right side of the black telephone and on the left side of the red chair ?
desk
image3
what is in front of the white door on the left side of the desk ?
telephone
image3
what is on the desk ?
book, scissor, papers, tape_dispenser
image3
what is the largest brown objects ?
carton

1This tutorial was presented for the first time during the 2nd Summer School on Integrating Vision and
Language: Deep Learning.

2http://mpii.de/visual_turing_test
3https://github.com/mateuszmalinowski/visual_turing_test-tutorial/blob/master/visual_

turing_test.ipynb
4http://deeplearning.net/software/theano/
5https://keras.io

http://mpii.de/visual_turing_test
https://github.com/mateuszmalinowski/visual_turing_test-tutorial/blob/master/visual_turing_test.ipynb
https://github.com/mateuszmalinowski/visual_turing_test-tutorial/blob/master/visual_turing_test.ipynb
http://deeplearning.net/software/theano/
https://keras.io

192
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

image3
what color is the chair in front of the white wall ?
red
image3

Note that the format is: question, answer (could be many answer words), and the image. Let
us have a look at the Figure C.1. The figure lists images with associated question-answer
pairs. It also comments on challenges associated with question-answer-image triplets. We
see that to answer properly on the wide range of questions, an answerer not only needs
to understand the scene visually or to just understand the question, but also, arguably,
has to resort to the common sense knowledge, or even know the preferences of the person
asking the question, e.g. what ‘behind’ exactly means in ‘What is behind the table?’. Hence,
architectures that answer questions about images have to face many challenges. Ambiguities
make it also difficult to judge the provided answers. We revisit this issue in a later section.
Meantime, a curious reader may try to answer the following question.

Can you spot ambiguities that are present in the first column of the figure?
Think of a spatial relationship between an observer, object of interest, and the world.

The following code returns a dictionary of three views on the DAQUAR dataset. For
now, we look only into the ‘text’ view. dp[‘text’] returns a function from a dataset split into
the dataset’s textual view. Executing the following code makes it more clear.

In []: #TODO: Execute the following procedure (Shift+Enter in the Notebook)
from kraino.utils import data_provider

dp = data_provider.select[’daquar-triples’]
train_text_representation = dp[’text’](train_or_test=’train’)

This view specifies how questions are ended (‘?’), answers are ended (‘.’), answer words are
delimited (DAQUAR sometimes has a set of answer words as an answer, for instance ‘knife,
fork’ may be an answer answer), but most important, it has questions (key ‘x’), answers
(key ‘y’), and names of the corresponding images (key ‘img_name’).

In []: # let us check some entries of the text’s representation
n_elements = 10
print(’== Questions:’)
print_list(train_text_representation[’x’][:n_elements])
print
print(’== Answers:’)
print_list(train_text_representation[’y’][:n_elements])
print
print(’== Image Names:’)
print_list(train_text_representation[’img_name’][:n_elements])

C.3. Textual Features 193

Summary DAQUAR consists of question-answer-image triplets. Question-answer pairs
for different folds are accessible from executing the following code.

data_provider.select[’text’]

Finally, as we see in Figure C.1, DAQUAR poses many challenges in designing good
architectures, or evaluation metrics.

C.3 Textual Features
We have an access to a textual representation of questions. This is however not very helpful
since neural networks expect a numerical input, and hence we cannot really work with the
raw text. We need to transform the textual input into some numerical value or a vector of
values. One particularly successful representation is called one-hot vector and it is a binary
vector with exactly one non-zero entry. This entry points to the corresponding word in the
vocabulary. See the illustration shown in Figure C.2.

Figure C.2: One hot representations of the textual words in the question.

The reader can pause here a bit to answer the following questions.

Can you sum up the one-hot vectors for the ‘What table is behind the table?’.
How would you interpret the resulting vector?
Why is it a good idea to work with one-hot vector represetantions of the text?

As we see from the illustrative example above, we first need to build a suitable vocabulary
from our raw textual training data, and next transform them into one-hot representations.
The following code can do this.

In []: from toolz import frequencies
train_raw_x = train_text_representation[’x’]
we start from building the frequencies table
wordcount_x = frequencies(’ ’.join(train_raw_x).split(’ ’))
print the most and least frequent words
n_show = 5
print(sorted(wordcount_x.items(), key=lambda x: x[1], reverse=True)[:n_show])
print(sorted(wordcount_x.items(), key=lambda x: x[1])[:n_show])

194
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

In many parts of this tutorial, we use Kraino, which was developed for the purpose of
this tutorial to simplify the development of various ‘question answering’ models through
prototyping.

from kraino.utils.input_output_space import build_vocabulary

This function takes wordcounts,
and returns word2index - mapping from words into indices,
and index2word - mapping from indices to words.
word2index_x, index2word_x = build_vocabulary(

this_wordcount=wordcount_x,
truncate_to_most_frequent=0)

word2index_x

In addition, we use a few special, extra symbols that do not occur in the training dataset.
Most important are < pad > and < unk >. We use the former to pad sequences in order
to have the same number of temporal elements; we use the latter for words (at test time)
that do not exist in the training set. Armed with the vocabulary, we can build one-hot
representations of the training data. However, this is not necessary and may even be wasteful.
Our one-hot representation of the input text does not explicitly build long and sparse
vectors, but instead it operates on indices. The example from Figure C.2 would be encoded
as [0,1,4,2,7,3].

Due to the sparsity existing in the one-hot representation, we can more efficiently operate
on indices instead of performing full linear transformations by matrix-vector multiplications.
This is reflected in the following claim.

Claim: Let x be a binary vector with exactly one value 1 at the position index, that is
x[index] = 1. Then

W [:, index] = Wx

where W [:, b] denotes a vector built from a column b of W . This shows that matrix-vector
multiplication can be replaced by retrieving a right vector of parameters according to the
index.

Can you show that the claim is valid?

We can encode textual questions into one-hot vector representations by executing the
following code.

In []: from kraino.utils.input_output_space import encode_questions_index
one_hot_x = encode_questions_index(train_raw_x, word2index_x)
print(train_raw_x[:3])
print(one_hot_x[:3])

As we can see, the sequences have different number of elements. We can pad the sequences
to have the same length by setting up MAXLEN .

C.3. Textual Features 195

from keras.preprocessing import sequence
MAXLEN=30
train_x = sequence.pad_sequences(one_hot_x, maxlen=MAXLEN)
train_x[:3]

We do the same with the answers.

In []: # for simplicity, we consider only first answer words;
In []: # that is, if answer is ’knife,fork’ we encode only ’knife’

MAX_ANSWER_TIME_STEPS=1

from kraino.utils.input_output_space import encode_answers_one_hot
train_raw_y = train_text_representation[’y’]
wordcount_y = frequencies(’ ’.join(train_raw_y).split(’ ’))
word2index_y, index2word_y = build_vocabulary(this_wordcount=wordcount_y)
train_y, _ = encode_answers_one_hot(

train_raw_y,
word2index_y,
answer_words_delimiter=train_text_representation[’answer_words_delimiter’],
is_only_first_answer_word=True,
max_answer_time_steps=MAX_ANSWER_TIME_STEPS)

print(train_x.shape)
print(train_y.shape)

At the last step, we encode test questions. We need them later to see how well our models
generalize to new question-answer-image triplets. Remember, however, that we should use
the vocabulary we generated from the training samples.

Why should we use the training vocabulary to encode test questions?

In []: test_text_representation = dp[’text’](train_or_test=’test’)
test_raw_x = test_text_representation[’x’]
test_one_hot_x = encode_questions_index(test_raw_x, word2index_x)
test_x = sequence.pad_sequences(test_one_hot_x, maxlen=MAXLEN)
print_list(test_raw_x[:3])
test_x[:3]

With the encoded question-answer pairs we finish this section. However, before delving into
details of building and training new models, let us have a look at the summary to see bigger
picture.

Summary We started from raw questions from the training set. We use them to build
a vocabulary. Next, we encode questions into sequences of one-hot vectors based on the
vocabulary. Finally, we use the same vocabulary to encode questions from the test set. If a
word is absent, we use an extra token < unk > to denote this fact, so that we encode the
< unk > token, not the word.

196
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

C.4 Language Only Models
C.4.0.1 Training

As you may already know, we train models by weights updates. Let x and y be training
samples (an input, and an output), and `(x, y) be an objective function. The formula for
weights updates is:

w := w − α∇`(x, y;w)

with α that we call the learning rate, and ∇ that is a gradient wrt. the weights w. The
learning rate is a hyper-parameter that must be set in advance. The rule shown above is
called the SGD update, but other variants are also possible. In fact, we use its variant called
ADAM [Kingma and Ba 2014].

We cast the question answering problem into a classification framework, so that we
classify an input x into some class that represents an answer word. Therefore, we use,
commonly used in the classification, logistic regression as the objective:

`(x, y;w) :=
∑

y′∈C
1{y′ = y} log p(y′ | x,w)

where C is a set of all classes, and p(y | x,w) is the softmax: ewyφ(x)/
∑
z e

wzφ(x). Here φ(x)
denotes an output of a model (more precisely, it is often a response of a neural network to
the input, just before softmax of the neural network is applied). Note, however, that another
variant of providing answers, called the answer generation, is also possible [Malinowski et al.
2015]. For training, we need to execute the following code.

training(gradient_of_the_model, optimizer=’Adam’)

Summary Given a model, and an optimization procedure (SGD, Adam, etc.) all we need
is to compute gradient of the model ∇`(x, y;w) wrt. to its parameters w, and next plug it
to the optimization procedure.

C.4.0.2 Theano

Since computing gradients ∇`(x, y;w) may quickly become tedious, especially for more
complex models, we search for tools that could automatize this process. Imagine that you
build a model M and you get its gradient ∇M by just executing the tool, something like
the following piece of code.

nabla_M = compute_gradient_symbolically(M,x,y)

This would definitely speed up prototyping. Theano [Bastien et al. 2012] is such a tool that
is specifically tailored to work with deep learning models. For a broader understanding of
Theano, you can check a suitable tutorial6.

The following coding example defines ReLU, a popular activation function defined as
ReLU(x) = max(x, 0), as well as derive its derivative using Theano. Note however that,
with this example, we obviously only scratch the surface.

6For instance, http://deeplearning.net/tutorial/.

http://deeplearning.net/tutorial/

C.4. Language Only Models 197

In []: import theano
import theano.tensor as T

Theano uses symbolic calculations,
so we need to first create symbolic variables

theano_x = T.scalar()
we define a relationship between a symbolic input and a symbolic output
theano_y = T.maximum(0,theano_x)
now it’s time for a symbolic gradient wrt. to symbolic variable x
theano_nabla_y = T.grad(theano_y, theano_x)

we can see that both variables are symbolic, they don’t have any numerical values
print(theano_x)
print(theano_y)
print(theano_nabla_y)

theano.function compiles the symbolic representation of the network
theano_f_x = theano.function([theano_x], theano_y)
print(theano_f_x(3))
print(theano_f_x(-3))
and now for gradients

nabla_f_x = theano.function([theano_x], theano_nabla_y)
print(nabla_f_x(3))
print(nabla_f_x(-3))

Can you derive a derivative of ReLU on your own? Consider two cases.

It should also be mentioned that ReLU is a non-differentiable function at the point 0, and
therefore, technically, we compute its sub-gradient – this is however still fine for Theano.

Summary To compute gradient symbolically, we can use Theano. This speeds up proto-
typing, and hence developing new question answering models.

C.4.0.3 Keras

Keras [Chollet 2015] builds upon Theano, and significantly simplifies creating new deep
learning models as well as training such models, effectively speeding up the prototyp-
ing even further. Keras also abstracts away from some technical burden such as a
symbolic variable creation. Many examples of using Keras can be found by following
the links: https://keras.io/getting-started/sequential-model-guide/, and https:
//keras.io/getting-started/functional-api-guide/. Note that, in the tutorial we use
an older sequential model. Please also pay attention to the version of the Keras, since not
all versions are compatible with this tutorial.

https://keras.io/getting-started/sequential-model-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/

198
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

C.4.0.4 Models

For the purpose of the Visual Turing Test, and this tutorial, we have compiled a light
framework that builds on top of Keras, and simplify building and training ‘question answering’
machines. With the tradition of using Greek names, we call it Kraino. Note that some parts
of the Kraino, such as a data provider, were already covered in this tutorial.

In the following, we will go through BOW and LSTM approaches to answer questions
about images, but, surprisingly, without the images. It turns out that a substantial fraction
of questions can be answered without an access to an image, but rather by resorting to a
common sense (or statistics of the dataset). For instance, ‘what can be placed at the table?’,
or ‘How many eyes this human have?’. Answers like ‘chair’ and ‘2’ are quite likely to be
good answers.

C.4.0.5 BOW

Figure C.3 illustrates the BOW (Bag Of Words) method. As we have already seen before,
we first encode the input sentence into one-hot vector representations. Such a (very) sparse
representation is next embedded into a denser space by a matrix We. Next, the denser
representations are summed up and classified via ‘Softmax’. Notice that, if We were an
identity matrix, we would obtain a histogram of the word’s occurrences.

What is your biggest complain about such a BOW representation?
What happens if instead of ’What is behind the table’ we would have
’is What the behind table’? How does the BOW representation change?

Figure C.3: Bag-Of-Words (BOW) representation of the input that is next follow by ‘Softmax’.

Let us now define a BOW model using our tools.

C.4. Language Only Models 199

In []: #== Model definition

First we define a model using keras/kraino
from keras.layers.core import Activation
from keras.layers.core import Dense
from keras.layers.core import Dropout
from keras.layers.core import TimeDistributedMerge
from keras.layers.embeddings import Embedding

from kraino.core.model_zoo import AbstractSequentialModel
from kraino.core.model_zoo import AbstractSingleAnswer
from kraino.core.model_zoo import AbstractSequentialMultiplewordAnswer
from kraino.core.model_zoo import Config
from kraino.core.keras_extensions import DropMask
from kraino.core.keras_extensions import LambdaWithMask
from kraino.core.keras_extensions import time_distributed_masked_ave

This model inherits from AbstractSingleAnswer,
and so it produces single answer words
To use multiple answer words,
you need to inherit from AbstractSequentialMultiplewordAnswer
class BlindBOW(AbstractSequentialModel, AbstractSingleAnswer):

"""
BOW Language only model that produces single word answers.
"""
def create(self):

self.add(Embedding(
self._config.input_dim,
self._config.textual_embedding_dim,
mask_zero=True))

self.add(LambdaWithMask
(time_distributed_masked_ave, output_shape=[self.output_shape[2]]))

self.add(DropMask())
self.add(Dropout(0.5))
self.add(Dense(self._config.output_dim))
self.add(Activation(’softmax’))

In []: model_config = Config(
textual_embedding_dim=500,
input_dim=len(word2index_x.keys()),
output_dim=len(word2index_y.keys()))

model = BlindBOW(model_config)
model.create()

200
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

model.compile(
loss=’categorical_crossentropy’,
optimizer=’adam’)

text_bow_model = model

In []: #== Model training
text_bow_model.fit(

train_x,
train_y,
batch_size=512,
nb_epoch=40,
validation_split=0.1,
show_accuracy=True)

C.4.0.6 Recurrent Neural Network

Although BOW is working pretty well, there is still something very disturbing about this
approach. Consider the following question: ‘what is on the right side of the black telephone
and on the left side of the red chair ?’ If we swap ‘chair’ with ‘telephone’ in the question, we
would get a different meaning. Recurrent Neural Networks (RNNs) have been developed
to mitigate this issue by directly processing time series. As Figure C.4 illustrates, the
(temporarily) first word embedding is given to an RNN unit. The RNN unit next processes
such an embedding and outputs to the second RNN unit. This unit takes both the output
of the first RNN unit and the 2nd word embedding as inputs, and outputs some algebraic
combination of both inputs. And so on. The last recurrent unit builds the representation of
the whole sequence. Its output is next given to Softmax for the classification. One among the
challenges that such approaches have to deal with is maintaining long-term dependencies.
Roughly speaking, as new inputs are coming in the following steps it is getting easier to
‘forget’ information from the beginning (the first temporal step). LSTM [Hochreiter and
Schmidhuber 1997] and GRU [Cho et al. 2014] are two particularly popular Recurrent Neural
Networks that can preserve such longer dependencies to some extent7.
Let us create a Recurrent Neural Network in the following.

In []: #== Model definition

First we define a model using keras/kraino
from keras.layers.core import Activation
from keras.layers.core import Dense
from keras.layers.core import Dropout
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import GRU
from keras.layers.recurrent import LSTM

7http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

C.4. Language Only Models 201

Figure C.4: Recurrent Neural Network.

from kraino.core.model_zoo import AbstractSequentialModel
from kraino.core.model_zoo import AbstractSingleAnswer
from kraino.core.model_zoo import AbstractSequentialMultiplewordAnswer
from kraino.core.model_zoo import Config
from kraino.core.keras_extensions import DropMask
from kraino.core.keras_extensions import LambdaWithMask
from kraino.core.keras_extensions import time_distributed_masked_ave

This model inherits from AbstractSingleAnswer,
and so it produces single answer words
To use multiple answer words,
you need to inherit from AbstractSequentialMultiplewordAnswer
class BlindRNN(AbstractSequentialModel, AbstractSingleAnswer):

"""
RNN Language only model that produces single word answers.
"""
def create(self):

self.add(Embedding(
self._config.input_dim,
self._config.textual_embedding_dim,
mask_zero=True))

#TODO: Replace averaging with RNN (you can choose between LSTM and GRU)
self.add(GRU(self._config.hidden_state_dim,

return_sequences=False))
self.add(Dropout(0.5))
self.add(Dense(self._config.output_dim))
self.add(Activation(’softmax’))

202
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

In []: model_config = Config(
textual_embedding_dim=500,
hidden_state_dim=500,
input_dim=len(word2index_x.keys()),
output_dim=len(word2index_y.keys()))

model = BlindRNN(model_config)
model.create()
model.compile(

loss=’categorical_crossentropy’,
optimizer=’adam’)

text_rnn_model = model

In []: #== Model training
text_rnn_model.fit(

train_x,
train_y,
batch_size=512,
nb_epoch=40,
validation_split=0.1,
show_accuracy=True)

The curious reader is encouraged to experiment with the language-only models. For
instance, to see the influence of particular modules to the overall performance, the reader
can do the following exercise.

Change the number of hidden states.
Change the number of epochs used to train a model.
Modify models by using more RNN layers, or deeper classifiers.

Summary RNN models, as opposite to BOW, consider order of the words in the question.
Moreover, a substantial number of questions can be answered without any access to images.
This can be explained as models learn some specific dataset statistics, some of them can be
interpreted as common sense knowledge.

C.5 Evaluation Measures

To be able to monitor a progress on a task, we need to find ways to evaluate architectures
on the task. Otherwise, we would not know how to judge architectures, or even worse, we
would not even know what the goal is. Moreover, we should also aim at automatic evaluation
measures, otherwise reproducibility is questionable, and the evaluation costs are high.

C.5. Evaluation Measures 203

C.5.0.1 Ambiguities

Although an early work on the Visual Turing Test argues for keeping the answer words from a
fixed vocabulary in order to keep an evaluation simpler [Malinowski and Fritz 2014a,b, 2015],
it is still difficult to automatically evaluate architectures due to ambiguities that occur in the
answers. We have ambiguities in naming objects, sometimes due to synonyms, but sometimes
due to fuzziness. For instance, is ‘chair’ == ‘armchair’ or ‘chair’ != ‘armchair’ or something
in between? Such semantic boundaries become even more fuzzy when we increase the number
of categories. We could easily find a mutually exclusive set of 10 different categories, but what
if there are 1000 categories, or 10000 categories? Arguably, we cannot think in terms of an
equivalence class anymore, but rather in terms of similarities. That is ‘chair’ is semantically
more similar to ‘armchair’, than to ‘horse’. This simple example shows the main drawback of
a traditional, binary evaluation measure which is Accuracy. This metric scores 1 if the names
are the same and 0 otherwise. So that Acc(‘chair’, ‘armchair’) == Acc(‘chair’, ‘horse’).
We call these ambiguities, word-level ambiguities, but there are other ambiguities that are
arguably more difficult to handle. For instance, the same question can be phrased in multiple
other ways. The language of spatial relations is also ambiguous. Language tends to be also
rather vague - we sometimes skip details and resort to common sense. Some ambiguities
are rooted in a culture. To address world-level ambiguities, Malinowski and Fritz [2014a]
propose WUPS. To address ambiguities caused by various interpretations of an image or a
question, Malinowski et al. [2015] propose Consensus measures. For the sake of simplicity,
in this tutorial, we only use WUPS. On the other hand, arguably, it is easier to evaluate
architectures on DAQUAR than on Image Captioning datasets. The former restricts the
output space to N categories, while it still requires a holistic comprehension. Let us remind
that Figure C.1 shows a few ambiguities that exists in DAQUAR.

C.5.0.2 Wu-Palmer Similarity

Given an ontology a Wu-Palmer Similarity between two words (or broader concepts) is a
soft measure defined as

WuP (a, b) := lca(a, b)
depth(a) + depth(b)

where lca(a, b) is the least common ancestor of a and b, and depth(a) is depth of a in the
ontology. Figure C.5 shows a toy-sized ontology. The curious reader can, based on Figure C.5,
address the following questions.

What is WuP(Dog, Horse) and WuP(Dog, Dalmatian) according to the toy-sized ontology?
Can you calculate Acc(Dog, Horse) and Acc(Dog, Dalmatian)?

C.5.0.3 WUPS

Wu-Palmer Similarity depends on the choice of ontology. One popular, large ontology
is WordNet [Miller 1995; Fellbaum 1999]. Although Wu-Palmer Similarity may work on
shallow ontologies, we are rather interested in ontologies with hundreds or even thousands
of categories. In indoor scenarios, it turns out that many indoor ‘things’ share similar levels

204
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

Figure C.5: A toy-sized ontology.

in the ontology, and hence Wu-Palmer Similarities are very small between two entities. The
following code exemplifies the issue.

In []: from nltk.corpus import wordnet as wn
armchair_synset = wn.synset(’armchair.n.01’)
chair_synset = wn.synset(’chair.n.01’)
wardrobe_synset = wn.synset(’wardrobe.n.01’)

print(armchair_synset.wup_similarity(armchair_synset))
print(armchair_synset.wup_similarity(chair_synset))
print(armchair_synset.wup_similarity(wardrobe_synset))
wn.synset(’chair.n.01’).wup_similarity(wn.synset(’person.n.01’))

As we can see that ‘armchair’ and ‘wardrobe’ are surprisingly close to each other. It is
because, for large ontologies, all the indoor ‘things’ are semantically ‘indoor things’. This
issue has motivated us to define thresholded Wu-Palmer Similarity Score, defined as follows

WuP (a, b) ifWuP (a, b) ≥ τ
0.1 ·WuP (a, b) otherwise

where τ is a hand-chosen threshold. Empirically, we found that τ = 0.9 works fine on
DAQUAR [Malinowski and Fritz 2014a]. Moreover, since DAQUAR has answers as sets of
answer words, so that ‘knife,fork’ == ‘fork,knife’, we have extended the above measure to
work with the sets. We call it Wu-Palmer Set score, or shortly WUPS.

A detailed exposition of WUPS is beyond this tutorial, but a curious reader is en-
couraged to read the ‘Performance Measure’ paragraph in Malinowski and Fritz [2014a].
Note that the measure in Malinowski and Fritz [2014a] is defined broader, and essentially
it abstracts away from any particular similarities such as Wu-Palmer Similarity, or an
ontology. WUPS at 0.9 is WUPS with threshold τ = 0.9. It is worth noting, that a practical
implementation of WUPS needs to deal with synsets. Thus it is recommended to down-
load the script from http://datasets.d2.mpi-inf.mpg.de/mateusz14visual-turing/
calculate_wups.py or re-implement it with caution.

http://datasets.d2.mpi-inf.mpg.de/mateusz14visual-turing/calculate_wups.py
http://datasets.d2.mpi-inf.mpg.de/mateusz14visual-turing/calculate_wups.py

C.5. Evaluation Measures 205

C.5.0.4 Consensus

The consensus measure handles ambiguities that are caused by various interpretations of a
question or an image. In this tutorial, we do not cover this measure. A curious reader is
encouraged to read the ‘Human Consensus’ in Malinowski et al. [2015].

C.5.0.5 A few caveats

We present a few caveats when using WUPS. These can be especially useful if one wants to
adapt WUPS to other datasets.

Lack of coverage Since WUPS is based on an ontology, not always it recognizes words.
For instance ‘garbage bin’ is missing, but ‘garbage can’ is perfectly fine. You can check it by
yourself, either with the source code provided above, or by using an online script8.

Synsets The execution of the following code

wn.synsets(’chair’)

produces a list with many elements. These elements are semantically equivalent9.
For instance the following definition of ‘chair’

wn.synset(’chair.n.03’).definition()

indicates a person (e.g. a chairman). Indeed, the following gives quite high value

wn.synset(’chair.n.03’).wup_similarity(wn.synset(’person.n.01’))

however the following one has a more preferred, much lower value

wn.synset(’chair.n.01’).wup_similarity(wn.synset(’person.n.01’))

How to deal with such a problem? In DAQUAR we take an optimistic perspective and
always consider the highest similarity score. This works with WUPS 0.9 and a restricted
indoor domain with a vocabulary based only on the training set. To sum up, this issue
should be taken with a caution whenever WUPS is adapted to other domains.

Ontology Since WUPS is based on an ontology, specifically on WordNet, it may give
different scores on different ontologies, or even on different versions of the same ontology.

Threshold A good threshold τ is dataset dependent. In our case τ = 0.9 seems to work
well, while τ = 0.0 is too forgivable and is rather reported due to the ‘historical’ reasons.
However, following our papers, you should still consider to report plain set-based accuracy
scores (so that Acc(‘knife,’fork’,‘fork,knife’)==1; it can be computed by our script10 using
the argument -1 to WUPS.

8http://wordnetweb.princeton.edu/perl/webwn
9https://en.wikipedia.org/wiki/Synonym_ring

10http://datasets.d2.mpi-inf.mpg.de/mateusz14visual-turing/calculate_wups.py

http://wordnetweb.princeton.edu/perl/webwn
https://en.wikipedia.org/wiki/Synonym_ring
http://datasets.d2.mpi-inf.mpg.de/mateusz14visual-turing/calculate_wups.py

206
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

C.5.0.6 Summary

WUPS is an evaluation measure that works with sets and word-level ambiguities. Arguably,
WUPS at 0.9 is the most practical measure.

C.6 New Predictions
Once the training of our models is over, we can evaluate their performance on a previously
unknown test set. In the following, we show how to make predictions using the already
discussed blind models.

C.6.0.1 Predictions - BOW

We start from encoding textual input into one-hot vector representations.

In []: test_text_representation = dp[’text’](train_or_test=’test’)
test_raw_x = test_text_representation[’x’]
test_one_hot_x = encode_questions_index(test_raw_x, word2index_x)
test_x = sequence.pad_sequences(test_one_hot_x, maxlen=MAXLEN)

Given encoded test questions, we use the maximum likelihood principle to withdraw answers.

In []: from numpy import argmax
predict the probabilities for every word
predictions_scores = text_bow_model.predict([test_x])
print(predictions_scores.shape)
follow the maximum likelihood principle, and get the best indices to vocabulary
predictions_best = argmax(predictions_scores, axis=-1)
print(predictions_best.shape)
decode the predicted indices into word answers
predictions_answers = [index2word_y[x] for x in predictions_best]
print(len(predictions_answers))

Now, we evaluate the answers using WUPS.

In []: from kraino.utils import print_metrics
test_raw_y = test_text_representation[’y’]
_ = print_metrics.select[’wups’](

gt_list=test_raw_y,
pred_list=predictions_answers,
verbose=1,
extra_vars=None)

Let us see the predictions.

In []: from numpy import random
test_image_name_list = test_text_representation[’img_name’]

C.6. New Predictions 207

indices_to_see = random.randint(low=0, high=len(test_image_name_list), size=5)
for index_now in indices_to_see:

print(test_raw_x[index_now], predictions_answers[index_now])

Without looking at images, a curious reader may attempt to answer the following questions.

Do you agree with the answers given above? What are your guesses?
Of course, neither you nor the model have seen any images so far.

However, what happens if the reader can actually see the images?

Execute the code below.
Do your answers change after seeing the images?

In [1]: from matplotlib.pyplot import axis
from matplotlib.pyplot import figure
from matplotlib.pyplot import imshow

import numpy as np
from PIL import Image

%matplotlib inline
for index_now in indices_to_see:

image_name_now = test_image_name_list[index_now]
pil_im = Image.open(’data/daquar/images/{0}.png’.format(image_name_now), ’r’)
fig = figure()
fig.text(.2,.05,test_raw_x[index_now], fontsize=14)
axis(’off’)
imshow(np.asarray(pil_im))

Finally, let us also see the ground truth answers by executing the following code.

In []: print(’question, prediction, ground truth answer’)
for index_now in indices_to_see:

print(test_raw_x[index_now],
predictions_answers[index_now], test_raw_y[index_now])

In the code above, we have randomly taken questions, and hence different executions of the
code may lead to different answers.

C.6.0.2 Predictions - RNN

Let us do similar predictions with a Recurrent Neural Network. This time, we use Kraino,
to make the code shorter.

In []: from kraino.core.model_zoo import word_generator
we first need to add word_generator to _config

208
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

(we could have done this before, in the Config constructor)
we use maximum likelihood as a word generator
text_rnn_model._config.word_generator = word_generator[’max_likelihood’]
predictions_answers = text_rnn_model.decode_predictions(

X=test_x,
temperature=None,
index2word=index2word_y,
verbose=0)

In []: _ = print_metrics.select[’wups’](
gt_list=test_raw_y,
pred_list=predictions_answers,
verbose=1,
extra_vars=None)

A curious reader is encouraged to try the following exercise.

Visualise question, predicted answers, ground truth answers as before.
Check also images.

C.7 Visual Features
All the considered so far architectures predict answers based only on questions, even though
the questions concern images. Therefore, in this section, we also build visual features. As
shown in Figure C.6, a quite common practice is to:

1. Take an already pre-trained CNN; often pre-training is done in some large-scale
classification task such as ImageNet [Russakovsky et al. 2014].

2. ‘Chop off’ a CNN representation after some layer. We use responses of that layer as
visual features.

In this tutorial, we use features extracted from the second last 4096 dimensional layer of the
VGG Net [Simonyan and Zisserman 2015]. We have already extracted features in advance
using Caffe [Jia et al. 2014] - another excellent framework for deep learning, particularly
good for CNNs.
The following code gives visual features aligned with textual features.

In []: # this contains a list of the image names of our interest;
it also makes sure that visual and textual features are aligned correspondingly
train_image_names = train_text_representation[’img_name’]
the name for visual features that we use
CNN_NAME=’vgg_net’
CNN_NAME=’googlenet’
CNN_NAME=’fb_resnet’
the layer in CNN that is used to extract features

C.8. Vision+Language 209

Figure C.6: Features extractor. Neural responses of some layer to the visual input are
considered as features.

PERCEPTION_LAYER=’fc7’
PERCEPTION_LAYER=’pool5-7x7_s1’
PERCEPTION_LAYER=’res5c-152’
l2 prefix since there are l2-normalized visual features
PERCEPTION_LAYER=’l2_res5c-152’

train_visual_features = dp[’perception’](
train_or_test=’train’,
names_list=train_image_names,
parts_extractor=None,
max_parts=None,
perception=CNN_NAME,
layer=PERCEPTION_LAYER,
second_layer=None
)

train_visual_features.shape

C.8 Vision+Language
Given visual features, we can now build a full model that answer questions about images. As
we can see in Figure C.1, it is hard to answer correctly on questions without seeing images.
Let us create an input as a pair of textual and visual features using the following code.

In []: train_input = [train_x, train_visual_features]

In the following, we investigate two approaches to question answering: an orderless BOW,
and an RNN.

C.8.0.1 BOW + Vision

Similarly to our blind model, we start with a BOW encoding of a question. Here, we
explore two ways of combining both modalities (circle with ‘C’ in Figure C.7): concate-
nation, and piece-wise multiplication. For the sake of simplicity, we do not fine-tune the

210
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

visual representation (dotted line symbolizes the barrier that blocks back-propagation in
Figure C.7).

Figure C.7: BOW with visual features.

In []: #== Model definition

First we define a model using keras/kraino
from keras.models import Sequential
from keras.layers.core import Activation
from keras.layers.core import Dense
from keras.layers.core import Dropout
from keras.layers.core import Layer
from keras.layers.core import Merge
from keras.layers.core import TimeDistributedMerge
from keras.layers.embeddings import Embedding

from kraino.core.model_zoo import AbstractSequentialModel
from kraino.core.model_zoo import AbstractSingleAnswer
from kraino.core.model_zoo import AbstractSequentialMultiplewordAnswer
from kraino.core.model_zoo import Config
from kraino.core.keras_extensions import DropMask
from kraino.core.keras_extensions import LambdaWithMask
from kraino.core.keras_extensions import time_distributed_masked_ave

This model inherits from AbstractSingleAnswer,
and so it produces single answer words

C.8. Vision+Language 211

To use multiple answer words,
you need to inherit from AbstractSequentialMultiplewordAnswer
class VisionLanguageBOW(AbstractSequentialModel, AbstractSingleAnswer):

"""
BOW Language only model that produces single word answers.
"""
def create(self):

language_model = Sequential()
language_model.add(Embedding(

self._config.input_dim,
self._config.textual_embedding_dim,
mask_zero=True))

language_model.add(LambdaWithMask(
time_distributed_masked_ave,
output_shape=[language_model.output_shape[2]]))

language_model.add(DropMask())
visual_model = Sequential()
if self._config.visual_embedding_dim > 0:

visual_model.add(Dense(
self._config.visual_embedding_dim,
input_shape=(self._config.visual_dim,)))

else:
visual_model.add(Layer(input_shape=(self._config.visual_dim,)))

self.add(Merge([language_model,
visual_model], mode=self._config.multimodal_merge_mode))

self.add(Dropout(0.5))
self.add(Dense(self._config.output_dim))
self.add(Activation(’softmax’))

In []: # dimensionality of embeddings
EMBEDDING_DIM = 500
kind of multimodal fusion (ave, concat, mul, sum)
MULTIMODAL_MERGE_MODE = ’concat’

model_config = Config(
textual_embedding_dim=EMBEDDING_DIM,
visual_embedding_dim=0,
multimodal_merge_mode=MULTIMODAL_MERGE_MODE,
input_dim=len(word2index_x.keys()),
output_dim=len(word2index_y.keys()),
visual_dim=train_visual_features.shape[1])

model = VisionLanguageBOW(model_config)
model.create()

212
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

model.compile(
loss=’categorical_crossentropy’,
optimizer=’adam’)

In []: #== Model training
model.fit(

train_input,
train_y,
batch_size=512,
nb_epoch=40,
validation_split=0.1,
show_accuracy=True)

To achieve better results, we can use another operator that combines both modalities
together. For instance, we can use a piece-wise multiplication.

In []: #== Model definition

First we define a model using keras/kraino
from keras.models import Sequential
from keras.layers.core import Activation
from keras.layers.core import Dense
from keras.layers.core import Dropout
from keras.layers.core import Layer
from keras.layers.core import Merge
from keras.layers.core import TimeDistributedMerge
from keras.layers.embeddings import Embedding

from kraino.core.model_zoo import AbstractSequentialModel
from kraino.core.model_zoo import AbstractSingleAnswer
from kraino.core.model_zoo import AbstractSequentialMultiplewordAnswer
from kraino.core.model_zoo import Config
from kraino.core.keras_extensions import DropMask
from kraino.core.keras_extensions import LambdaWithMask
from kraino.core.keras_extensions import time_distributed_masked_ave

This model inherits from AbstractSingleAnswer,
and so it produces single answer words
To use multiple answer words,
you need to inherit from AbstractSequentialMultiplewordAnswer
class VisionLanguageBOW(AbstractSequentialModel, AbstractSingleAnswer):

"""
BOW Language only model that produces single word answers.
"""
def create(self):

C.8. Vision+Language 213

language_model = Sequential()
language_model.add(Embedding(

self._config.input_dim,
self._config.textual_embedding_dim,
mask_zero=True))

language_model.add(LambdaWithMask(
time_distributed_masked_ave,
output_shape=[language_model.output_shape[2]]))

language_model.add(DropMask())
visual_model = Sequential()
if self._config.visual_embedding_dim > 0:

visual_model.add(Dense(
self._config.visual_embedding_dim,
input_shape=(self._config.visual_dim,)))

else:
visual_model.add(Layer(input_shape=(self._config.visual_dim,)))

self.add(Merge([language_model,
visual_model], mode=self._config.multimodal_merge_mode))

self.add(Dropout(0.5))
self.add(Dense(self._config.output_dim))
self.add(Activation(’softmax’))

In []: # dimensionality of embeddings
EMBEDDING_DIM = 500
kind of multimodal fusion (ave, concat, mul, sum)
MULTIMODAL_MERGE_MODE = ’mul’

model_config = Config(
textual_embedding_dim=EMBEDDING_DIM,
visual_embedding_dim=EMBEDDING_DIM,
multimodal_merge_mode=MULTIMODAL_MERGE_MODE,
input_dim=len(word2index_x.keys()),
output_dim=len(word2index_y.keys()),
visual_dim=train_visual_features.shape[1])

model = VisionLanguageBOW(model_config)
model.create()
model.compile(

loss=’categorical_crossentropy’,
optimizer=’adam’)

text_image_bow_model = model

In []: #== Model training
text_image_bow_model.fit(

214
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

train_input,
train_y,
batch_size=512,
nb_epoch=40,
validation_split=0.1,
show_accuracy=True)

At the end of this section, a curious reader can try to answer the following questions.

If we merge language and visual features with ’mul’,
do we need to set both embeddings to have the same number of dimensions?
That is, do we require to have textual_embedding_dim == visual_embedding_dim?

C.8.0.2 RNN + Vision

Now, we repeat the BOW experiments but with RNN. Figure C.8 depicts the architecture.

Figure C.8: RNN with visual features.

In []: #== Model definition

First we define a model using keras/kraino
from keras.models import Sequential
from keras.layers.core import Activation
from keras.layers.core import Dense

C.8. Vision+Language 215

from keras.layers.core import Dropout
from keras.layers.core import Layer
from keras.layers.core import Merge
from keras.layers.core import TimeDistributedMerge
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import GRU
from keras.layers.recurrent import LSTM

from kraino.core.model_zoo import AbstractSequentialModel
from kraino.core.model_zoo import AbstractSingleAnswer
from kraino.core.model_zoo import AbstractSequentialMultiplewordAnswer
from kraino.core.model_zoo import Config
from kraino.core.keras_extensions import DropMask
from kraino.core.keras_extensions import LambdaWithMask
from kraino.core.keras_extensions import time_distributed_masked_ave

This model inherits from AbstractSingleAnswer,
and so it produces single answer words
To use multiple answer words,
you need to inherit from AbstractSequentialMultiplewordAnswer
class VisionLanguageLSTM(AbstractSequentialModel, AbstractSingleAnswer):

"""
BOW Language only model that produces single word answers.
"""
def create(self):

language_model = Sequential()
language_model.add(Embedding(

self._config.input_dim,
self._config.textual_embedding_dim,
mask_zero=True))

language_model.add(LSTM(self._config.hidden_state_dim,
return_sequences=False))

visual_model = Sequential()
if self._config.visual_embedding_dim > 0:

visual_model.add(Dense(
self._config.visual_embedding_dim,
input_shape=(self._config.visual_dim,)))

else:
visual_model.add(Layer(input_shape=(self._config.visual_dim,)))

self.add(Merge([language_model,
visual_model], mode=self._config.multimodal_merge_mode))

216
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

self.add(Dropout(0.5))
self.add(Dense(self._config.output_dim))
self.add(Activation(’softmax’))

dimensionality of embeddings
EMBEDDING_DIM = 500
kind of multimodal fusion (ave, concat, mul, sum)
MULTIMODAL_MERGE_MODE = ’sum’

model_config = Config(
textual_embedding_dim=EMBEDDING_DIM,
visual_embedding_dim=EMBEDDING_DIM,
hidden_state_dim=EMBEDDING_DIM,
multimodal_merge_mode=MULTIMODAL_MERGE_MODE,
input_dim=len(word2index_x.keys()),
output_dim=len(word2index_y.keys()),
visual_dim=train_visual_features.shape[1])

model = VisionLanguageLSTM(model_config)
model.create()
model.compile(

loss=’categorical_crossentropy’,
optimizer=’adam’)

text_image_rnn_model = model

C.8.0.3 Batch Size

We can do training with batch size set to 512. If an error occurs due to a memory consumption,
lowering the batch size should help.

In []: #== Model training
text_image_rnn_model.fit(

train_input,
train_y,
batch_size=512,
nb_epoch=40,
validation_split=0.1,
show_accuracy=True)

A curious reader may experiment with a few different batch sizes, and answer the following
questions.

Can you experiment with batch-size=1, and next with batch-size=5000?
Can you explain both issues regarding the batch size?
When do you get the best performance, with multiplication, concatenation, or summation?

C.9. New Predictions with Vision+Language 217

Summary As previously, using RNN makes the sequence processing order-aware. This
time, however, we combine two modalities so that the whole model ‘sees’ images. Finally, it
is also important how both modalities are combined.

C.9 New Predictions with Vision+Language
C.9.0.1 Predictions (Features)

In []: test_image_names = test_text_representation[’img_name’]
test_visual_features = dp[’perception’](

train_or_test=’test’,
names_list=test_image_names,
parts_extractor=None,
max_parts=None,
perception=CNN_NAME,
layer=PERCEPTION_LAYER,
second_layer=None
)

test_visual_features.shape

In []: test_input = [test_x, test_visual_features]

C.9.0.2 Predictions (Bow with Vision)

In []: from kraino.core.model_zoo import word_generator
we first need to add word_generator to _config
(we could have done this before, in the Config constructor)
we use maximum likelihood as a word generator
text_image_bow_model._config.word_generator = word_generator[’max_likelihood’]
predictions_answers = text_image_bow_model.decode_predictions(

X=test_input,
temperature=None,
index2word=index2word_y,
verbose=0)

In []: _ = print_metrics.select[’wups’](
gt_list=test_raw_y,
pred_list=predictions_answers,
verbose=1,
extra_vars=None)

C.9.0.3 Predictions (RNN with Vision)

In []: from kraino.core.model_zoo import word_generator
we first need to add word_generator to _config
(we could have done this before, in the Config constructor)

218
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

we use maximum likelihood as a word generator
text_image_rnn_model._config.word_generator = word_generator[’max_likelihood’]
predictions_answers = text_image_rnn_model.decode_predictions(

X=test_input,
temperature=None,
index2word=index2word_y,
verbose=0)

In []: _ = print_metrics.select[’wups’](
gt_list=test_raw_y,
pred_list=predictions_answers,
verbose=1,
extra_vars=None)

C.10 VQA
The models that we have built so far can be transferred to other dataset. Let us consider
a recently introduced large-scale dataset, which is named VQA [Antol et al. 2015]. In this
section, we train and evaluate VQA models. Since the reader should already be familiar
with all the pieces, we just quickly jump into coding. For the sake of simplicity, we use only
BOW architectures. Since VQA hides the test data for the purpose of challenge, we use the
publicly available validation set to evaluate the architectures.

C.10.0.1 VQA Language Features

In []: #TODO: Execute the following procedure (Shift+Enter)
from kraino.utils import data_provider

vqa_dp = data_provider.select[’vqa-real_images-open_ended’]
VQA has a few answers associated with one question.
We take the most frequently occuring answers (single_frequent).
Formal argument ’keep_top_qa_pairs’ allows to filter out
rare answers with the associated questions.
We use 0 as we want to keep all question answer pairs,
but you can change into 1000 and see how the results differ
vqa_train_text_representation = vqa_dp[’text’](

train_or_test=’train’,
answer_mode=’single_frequent’,
keep_top_qa_pairs=1000)

vqa_val_text_representation = vqa_dp[’text’](
train_or_test=’val’,
answer_mode=’single_frequent’)

In []: from toolz import frequencies
vqa_train_raw_x = vqa_train_text_representation[’x’]

C.10. VQA 219

vqa_train_raw_y = vqa_train_text_representation[’y’]
vqa_val_raw_x = vqa_val_text_representation[’x’]
vqa_val_raw_y = vqa_val_text_representation[’y’]
we start from building the frequencies table
vqa_wordcount_x = frequencies(’ ’.join(vqa_train_raw_x).split(’ ’))
we can keep all answer words in the answer as a class
therefore we use an artificial split symbol ’{’
to not split the answer into words
you can see the difference if you replace ’{’
with ’ ’ and print vqa_wordcount_y
vqa_wordcount_y = frequencies(’{’.join(vqa_train_raw_y).split(’{’))
vqa_wordcount_y

C.10.0.2 Language-Only

In []: from keras.preprocessing import sequence
from kraino.utils.input_output_space import build_vocabulary
from kraino.utils.input_output_space import encode_questions_index
from kraino.utils.input_output_space import encode_answers_one_hot
MAXLEN=30
vqa_word2index_x, vqa_index2word_x = build_vocabulary

(this_wordcount = vqa_wordcount_x)
vqa_word2index_y, vqa_index2word_y = build_vocabulary

(this_wordcount = vqa_wordcount_y)
vqa_train_x = sequence.pad_sequences(encode_questions_index

(vqa_train_raw_x, vqa_word2index_x), maxlen=MAXLEN)
vqa_val_x = sequence.pad_sequences(encode_questions_index

(vqa_val_raw_x, vqa_word2index_x), maxlen=MAXLEN)
vqa_train_y, _ = encode_answers_one_hot(

vqa_train_raw_y,
vqa_word2index_y,
answer_words_delimiter=vqa_train_text_representation[’answer_words_delimiter’]
is_only_first_answer_word=True,
max_answer_time_steps=1)

vqa_val_y, _ = encode_answers_one_hot(
vqa_val_raw_y,
vqa_word2index_y,
answer_words_delimiter=vqa_train_text_representation[’answer_words_delimiter’]
is_only_first_answer_word=True,
max_answer_time_steps=1)

In []: from kraino.core.model_zoo import Config
from kraino.core.model_zoo import word_generator
We are re-using the BlindBOW mode

220
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

Please make sure you have run the cell with the class definition
VQA is larger, so we can increase the dimensionality of the embedding
vqa_model_config = Config(

textual_embedding_dim=1000,
input_dim=len(vqa_word2index_x.keys()),
output_dim=len(vqa_word2index_y.keys()),
word_generator = word_generator[’max_likelihood’])

vqa_text_bow_model = BlindBOW(vqa_model_config)
vqa_text_bow_model.create()
vqa_text_bow_model.compile(

loss=’categorical_crossentropy’,
optimizer=’adam’)

In []: vqa_text_bow_model.fit(
vqa_train_x,
vqa_train_y,
batch_size=512,
nb_epoch=10,
validation_split=0.1,
show_accuracy=True)

vqa_predictions_answers = vqa_text_bow_model.decode_predictions(
X=vqa_val_x,
temperature=None,
index2word=vqa_index2word_y,
verbose=0)

vqa_vars = {
’question_id’:vqa_val_text_representation[’question_id’],
’vqa_object’:vqa_val_text_representation[’vqa_object’],
’resfun’:

lambda x: \
vqa_val_text_representation[’vqa_object’].loadRes(

x, vqa_val_text_representation[’questions_path’])
}

In []: from kraino.utils import print_metrics

_ = print_metrics.select[’vqa’](
gt_list=vqa_val_raw_y,
pred_list=vqa_predictions_answers,
verbose=1,
extra_vars=vqa_vars)

C.10. VQA 221

C.10.0.3 VQA Language+Vision

In []: # the name for visual features that we use
VQA_CNN_NAME=’vgg_net’
VQA_CNN_NAME=’googlenet’
the layer in CNN that is used to extract features
VQA_PERCEPTION_LAYER=’fc7’
PERCEPTION_LAYER=’pool5-7x7_s1’

vqa_train_visual_features = vqa_dp[’perception’](
train_or_test=’train’,
names_list=vqa_train_text_representation[’img_name’],
parts_extractor=None,
max_parts=None,
perception=VQA_CNN_NAME,
layer=VQA_PERCEPTION_LAYER,
second_layer=None
)

vqa_train_visual_features.shape

In []: vqa_val_visual_features = vqa_dp[’perception’](
train_or_test=’val’,
names_list=vqa_val_text_representation[’img_name’],
parts_extractor=None,
max_parts=None,
perception=VQA_CNN_NAME,
layer=VQA_PERCEPTION_LAYER,
second_layer=None
)

vqa_val_visual_features.shape

In []: from kraino.core.model_zoo import Config
from kraino.core.model_zoo import word_generator

dimensionality of embeddings
VQA_EMBEDDING_DIM = 1000
kind of multimodal fusion (ave, concat, mul, sum)
VQA_MULTIMODAL_MERGE_MODE = ’mul’

vqa_model_config = Config(
textual_embedding_dim=VQA_EMBEDDING_DIM,
visual_embedding_dim=VQA_EMBEDDING_DIM,
multimodal_merge_mode=VQA_MULTIMODAL_MERGE_MODE,
input_dim=len(vqa_word2index_x.keys()),
output_dim=len(vqa_word2index_y.keys()),

222
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

visual_dim=vqa_train_visual_features.shape[1],
word_generator=word_generator[’max_likelihood’])

vqa_text_image_bow_model = VisionLanguageBOW(vqa_model_config)
vqa_text_image_bow_model.create()
vqa_text_image_bow_model.compile(

loss=’categorical_crossentropy’,
optimizer=’adam’)

In []: vqa_train_input = [vqa_train_x, vqa_train_visual_features]
vqa_val_input = [vqa_val_x, vqa_val_visual_features]

In []: #== Model training
vqa_text_image_bow_model.fit(

vqa_train_input,
vqa_train_y,
batch_size=512,
nb_epoch=10,
validation_split=0.1,
show_accuracy=True)

we use maximum likelihood as a word generator
vqa_predictions_answers = vqa_text_image_bow_model.decode_predictions(

X=vqa_val_input,
temperature=None,
index2word=vqa_index2word_y,
verbose=0)

vqa_vars = {
’question_id’:vqa_val_text_representation[’question_id’],
’vqa_object’:vqa_val_text_representation[’vqa_object’],
’resfun’:

lambda x: \
vqa_val_text_representation[’vqa_object’].loadRes(

x, vqa_val_text_representation[’questions_path’])
}

In []: from kraino.utils import print_metrics

_ = print_metrics.select[’vqa’](
gt_list=vqa_val_raw_y,
pred_list=vqa_predictions_answers,
verbose=1,
extra_vars=vqa_vars)

C.11. New Research Opportunities 223

C.11 New Research Opportunities
The task that tests machines via questions about the content of images is a quite new
research direction that recently has gained popularity. Therefore, many opportunities are
available. We end the tutorial by enlisting a few possible directions.

• Global Representation In this tutorial, we use a global, full-frame representation
of the images. Such a representation may destroy too much information. Therefore,
it seems a fine-grained alternatives should be valid options. Maybe we should use
detections, or object proposals (e.g. Ilievski et al. [2016] use question dependent
detections, and Mokarian Forooshani et al. [2016] use object proposals to enrich
a visual representation). We could also use attention models, which become quite
successful in answering questions about images [Lu et al. 2016]. However, there is
still a hope for global representations if they are trained end-to-end for the task, and
question dependent. In the end, our global representation is extracted from CNNs
trained on a different dataset (ImageNet), and for different task (object classification).

• 3D Scene Representation Most of current approaches, and all neural-based ap-
proaches, are trained on 2D images. However, some spatial relations such as ‘behind’
may need a 3d representation of the scene (in fact Malinowski and Fritz [2014a] design
spatial rules using a 3d coordinate system). DAQUAR is built on top of Silberman
et al. [2012] that provides both modes (2D images, and 3D depth), however, such a
richer visual information is currently not fully exploited.

• Recurrent Neural Networks There is disturbingly small gap between BOW and
RNN models. As we have seen in the tutorial, some questions clearly require an order,
but such questions at the same time become longer, semantically more difficult, and
require better a visual understanding of the world. To handle them we may need
other RNNs architectures, or better ways of fusing two modalities, or better Global
Representation.

• Logical Reasoning There are few questions that require a bit more sophisticated
logical reasoning such as negation. Can Recurrent Neural Networks learn such logical
operators? What about compositionality of the language? Perhaps, we should aim at
mixed approaches, similar to the work of Andreas et al. [2016b].

• Language + Vision There is a small gap between Language Only and Vision +
Language models. But clearly, we need pictures to answer questions about images. So
what is missing here? Is it due to Global Representation, 3D Scene Represen-
tation or there is something missing in fusing two modalities? The latter is studied,
with encouraging results, in Fukui et al. [2016].
• Learning from Few Examples In the Visual Turing Test, many questions are quite

unique. But then how the models can generalize to new questions? What if a question
is completely new, but its parts have been already observed (compositionality)? Can
models guess the meaning of a new word from its context?

• Ambiguities How to deal with ambiguities? They are all inherent in the task, so
cannot be just ignored, and should be incorporated into question answering methods
as well as evaluation metrics.

224
Appendix C. Tutorial on Answering Questions about Images with Deep

Learning

• Evaluation Measures Although we have WUPS and Consensus, both are far from
being perfect. Consensus has higher annotation cost for ambiguous tasks, and is unclear
how to formally define good consensus measure. WUPS is an ontology dependent,
which may be quite costly to build for all interesting domains? Finally, the current
evaluation metrics ignore the tail of the answer distribution encouraging models to
focus only on a few most frequent answers.

Bibliography

Gerald J Agin and Thomas O Binford. Computer description of curved objects. IEEE
Transactions on Computers, 100(4):439–449, 1976. 16, 25

Zeynep Akata, Mateusz Malinowski, Mario Fritz, and Bernt Schiele. Multi-cue zero-shot
learning with strong supervision. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 7, 22, 141

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose
neural networks for question answering. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), 2016a.
155

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016b. 4, 5, 51, 56, 59, 143, 167, 223

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence
Zitnick, and Devi Parikh. Vqa: Visual question answering. arXiv:1505.00468, 2015. 4, 55,
94, 120, 139, 140, 144, 145, 149, 150, 155, 164, 190, 218

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and
hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 33(5):898–916, May 2011. ISSN 0162-8828. doi: 10.1109/TPAMI.
2010.161. URL http://dx.doi.org/10.1109/TPAMI.2010.161. 94

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. arXiv:1511.00561, 2015. 18

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed
improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
2012. 150, 190, 196

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of
physical scene understanding. Proceedings of the National Academy of Sciences (PNAS),
110(45):18327–18332, 2013. 94, 167

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, and Raymond
Mooney. Montague meets markov: Deep semantics with probabilistic logical form. In
*SEM, 2013. 97

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.
44

http://dx.doi.org/10.1109/TPAMI.2010.161

226 Bibliography

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL), 2014. 53,
94, 97, 99, 120, 142

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2013. 53, 98, 164

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:
a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), 2010. 175

Apratim Bhattacharyya, Mateusz Malinowski, and Mario Fritz. Spatio-temporal image
boundary extrapolation. arXiv:1605.07363, 2016a. 7, 167

Apratim Bhattacharyya, Mateusz Malinowski, Bernt Schiele, and Mario Fritz. Long-term
image boundary extrapolation. arXiv:1611.08841, 2016b. 7, 167

Irving Biederman. Recognition-by-components: a theory of human image understanding.
Psychological review, 94(2):115, 1987. 16, 25

C. M. Bishop. Neural Network for Pattern Recognition. Oxford University Press, 1999. 64

Patrick Blackburn and Johan Bos. Representation and Inference for Natural Language.
A First Course in Computational Semantics. Center for the Study of Language and
Information (CSLI), 2005. 93

Daniel G Bobrow. Natural language input for a computer problem solving system. PhD
Thesis, 1964. 35, 52

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
COMPSTAT’2010. 2010. 39

Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade,
pages 421–436. Springer, 2012. 174

Çaglar Gülçehre and Yoshua Bengio. Knowledge matters: Importance of prior information
for optimization. Computing Research Repository (CoRR), 2013. 175

Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram Nevatia.
Abc-cnn: An attention based convolutional neural network for visual question answering.
arXiv:1511.05960, 2015. 4, 58, 143, 156

Yixin Chen, Jinbo Bi, and James Ze Wang. Miles: Multiple-instance learning via embedded
instance selection. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 28(12):1931–1947, 2006. 79

Bibliography 227

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk,
Dzmitry Bahdanau, and Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014. 43, 44, 52, 93, 119,
141, 146, 152, 200

Eunsol Choi, Tom Kwiatkowski, and Luke S Zettlemoyer. Scalable semantic parsing
with partial ontologies. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2015. 164

Myung Jin Choi, Joseph J. Lim, Antonio Torralba, and Alan S. Willsky. Exploiting
hierarchical context on a large database of object categories. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2010. 81, 175

François Chollet. keras. https://github.com/fchollet/keras, 2015. 150, 190, 197

Sreyasi Nag Chowdhury. Commonsense for making sense of data. 2016. 165

Sreyasi Nag Chowdhury, Mateusz Malinowski, Andreas Bulling, and Mario Fritz. Xplore-m-
ego: Contextual media retrieval using natural language queries. In ACM International
Conference in Multimedia Retrieval (ICMR), 2016a. 4, 6, 8, 51, 55, 145, 163, 165, 167

Sreyasi Nag Chowdhury, Niket Tandon, and Gerhard Weikum. Know2look: Commonsense
knowledge for visual search. 2016b. 165

Gordon Christie, Ankit Laddha, Aishwarya Agrawal, Stanislaw Antol, Yash Goyal, Kevin
Kochersberger, and Dhruv Batra. Resolving language and vision ambiguities together: Joint
segmentation & prepositional attachment resolution in captioned scenes. arXiv:1604.02125,
2016. 50

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving semantic parsing
from the world’s response. In Proceedings of the Fifteenth Conference on Computational
Natural Language Learning (CoNLL), 2010. 37

A. Coates and A. Y. Ng. The importance of encoding versus training with sparse coding and
vector quantization. In Proceedings of the International Conference on Machine Learning
(ICML), 2011. 26, 62, 67, 69, 70, 71, 251

A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in unsupervised feature
learning. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2011. 67

Jacob Cohen et al. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 1960. 126

R. Collobert and S. Bengio. Links between perceptrons, mlps and svms. In Proceedings of
the International Conference on Machine Learning (ICML), 2004. 64

https://github.com/fchollet/keras

228 Bibliography

Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray. Visual
categorization with bags of keypoints. In Workshop on statistical learning in computer
vision, ECCV, 2004. 16, 18

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. 16,
27

Marie-Catherine De Marneffe, Bill MacCartney, and Christopher D Manning. Generating
typed dependency parses from phrase structure parses. In International Conference on
Language Resources and Evaluation (LREC), 2006. 79

Jia Deng, Alexander C Berg, Kai Li, and Li Fei-Fei. What does classifying more than 10,000
image categories tell us? In Proceedings of the European Conference on Computer Vision
(ECCV), 2010. 96

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional
networks for visual recognition and description. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015. 22, 53, 119, 122, 123, 141,
149

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990. 43

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent,
and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of
Machine Learning Research (JMLR), 11, 2010. 175

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A retrospective. International Journal of
Computer Vision (IJCV), 111(1):98–136, jan 2015. 17

Mark Everingham, Luc Van Gool, CKI Williams, John Winn, and Andrew Zisserman. Pascal
2008 results, 2008. 81

Abdalrahman Eweiwi, Muhammad Shahzad Cheema, and Christian Bauckhage. Action
recognition in still images by learning spatial interest regions from videos. Pattern
Recognition Letters, 51:8–15, 2015. 48

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answering over curated
and extracted knowledge bases. In Proceedings of the ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014. 94

Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus Rashtchian,
Julia Hockenmaier, and David Forsyth. Every picture tells a story: Generating sentences
from images. In Proceedings of the European Conference on Computer Vision (ECCV).
2010. 94, 172

Christiane Fellbaum. WordNet. Wiley Online Library, 1999. 99, 110, 203

Bibliography 229

P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale,
deformable part model. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008. 67, 71

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2010. 83, 84, 169, 173, 178

J. Feng, B. Ni, Q. Tian, and S. Yan. Geometric lp-norm feature pooling for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011. 48, 62

Joseph L Fleiss and Jacob Cohen. The equivalence of weighted kappa and the intraclass cor-
relation coefficient as measures of reliability. Educational and psychological measurement,
1973. 126

Jerry A Fodor. The language of thought. Harvard University Press, 1975. 19

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual
predictive models of physics for playing billiards. International Conference on Learning
Representations (ICLR), 2015. 167

Mario Fritz, Geert-Jan M Kruijff, and Bernt Schiele. Cross-modal learning of visual categories
using different levels of supervision. In Internation Conference on Vision Systems (ICVS),
2007. 49, 53

Mario Fritz, Geert-Jan M Kruijff, and Bernt Schiele. Tutor-based learning of visual categories
using different levels of supervision. Computer Vision and Image Understanding, 114(5):
564–573, 2010. 49, 53

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas Mikolov, et al.
Devise: A deep visual-semantic embedding model. In Advances in Neural Information
Processing Systems (NIPS), 2013. 86

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus
Rohrbach. Multimodal compact bilinear pooling for visual question answering and visual
grounding. arXiv:1606.01847, 2016. 58, 165, 166, 167, 223

K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern recognition
tolerant of deformations and shifts in position. Pattern recognition, 15(6):455–469, 1982.
62

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202,
1980. 28

Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu. Are you
talking to a machine? dataset and methods for multilingual image question answering.
In Advances in Neural Information Processing Systems (NIPS), 2015. 4, 55, 58, 120, 142,
144

230 Bibliography

Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. Visual turing test
for computer vision systems. Proceedings of the National Academy of Sciences (PNAS),
2015. 4, 55, 120, 144

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 580–587, 2014.
1, 17, 79, 84, 93, 100, 161

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier networks. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2011. 79

Dave Golland, Percy Liang, and Dan Klein. A game-theoretic approach to generating
spatial descriptions. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2010. 50, 76, 85, 97, 99, 171

Yunchao Gong, Liwei Wang, Micah Hodosh, Julia Hockenmaier, and Svetlana Lazebnik.
Improving image-sentence embeddings using large weakly annotated photo collections. In
Proceedings of the European Conference on Computer Vision (ECCV). 2014. 98

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks.
In Proceedings of the International Conference on Machine Learning (ICML), 2013. 49,
67, 70

S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar, R. Mooney, T. Darrell, and K. Saenko.
Youtube2text: Recognizing and describing arbitrary activities using semantic hierarchies
and zero-shot recognition. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2013a. 110

Sergio Guadarrama, Lorenzo Riano, Dave Golland, Daniel Gouhring, Yangqing Jia, Dan
Klein, Pieter Abbeel, and Trevor Darrell. Grounding spatial relations for human-robot
interaction. In International Conference on Intelligent Robots and Systems (IROS), 2013b.
50, 74, 76, 108

Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. Perceptual organization and recognition
of indoor scenes from rgb-d images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2013. 98, 107, 109, 111, 170

Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning rich features
from rgb-d images for object detection and segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV). 2014. 93, 98

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1):
335–346, 1990. 98

James Hays and Alexei A Efros. Scene completion using millions of photographs. In ACM
Transactions on Graphics (TOG), volume 26, page 4. ACM, 2007. 15

Bibliography 231

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep
convolutional networks for visual recognition. In Proceedings of the European Conference
on Computer Vision (ECCV). 2014. 93

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv:1512.03385, 2015. 1, 31, 34, 52, 140, 141, 148, 154, 161, 165

Yang He, Wei-Chen Chiu, Margret Keuper, and Mario Fritz. Rgbd semantic segmentation
using spatio-temporal data-driven pooling. arXiv:1604.02388, 2016. 49

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors.
arXiv:1207.0580, 2012. 30

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische
Universität München, page 91, 1991. 44

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
1997. 43, 44, 52, 119, 122, 140, 141, 146, 152, 184, 200

Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking
task: Data, models and evaluation metrics. Journal of Artificial Intelligence Research
(JAIR), 47:853–899, 2013. 74, 81, 94

Judy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross Girshick,
Trevor Darrell, and Kate Saenko. LSDA: Large scale detection through adaptation. In
Advances in Neural Information Processing Systems (NIPS), 2014. 96

John J Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. volume 79, pages 2554–2558. Proceedings of the National Academy of
Sciences (PNAS), 1982. 43

Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng, Kate Saenko, and Trevor Darrell.
Natural language object retrieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 141

Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Improving
word representations via global context and multiple word prototypes. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL), 2012. 79

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962. 28, 62

Ilija Ilievski, Shuicheng Yan, and Jiashi Feng. A focused dynamic attention model for visual
question answering. arXiv:1604.01485, 2016. 4, 58, 143, 155, 166, 223

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III.
A neural network for factoid question answering over paragraphs. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. 53,
94, 97, 120, 142

232 Bibliography

Y. Jia and C. Huang. Beyond spatial pyramids: Receptive field learning for pooled image
features. In NIPS Workshop on Deep Learning, 2011. 48, 62, 67, 69, 70, 251

Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids: Receptive field learning for
pooled image features. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012. 48, 62, 68

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv:1408.5093, 2014. 123, 148, 208

Aiwen Jiang, Fang Wang, Fatih Porikli, and Yi Li. Compositional memory for visual question
answering. arXiv:1511.05676, 2015. 155, 156

Michael I Jordan. Serial order: A parallel distrmuted processing approach. 1986. 43

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural net-
work for modelling sentences. Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2014. 52, 140, 141, 147

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 53, 118, 119, 120, 141

Andrej Karpathy, Armand Joulin, and Li Fei-Fei. Deep fragment embeddings for bidirectional
image sentence mapping. In Advances in Neural Information Processing Systems (NIPS),
2014. 7, 11, 22, 50, 73, 75, 76, 77, 79, 80, 81, 82, 84, 86, 87, 94, 105, 120, 141

John D Kelleher, Geert-Jan M Kruijff, and Fintan J Costello. Proximity in context: an
empirically grounded computational model of proximity for processing topological spatial
expressions. In COLING-ACL, 2006. 171

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. Proceedings of the European Conference
on Computer Vision (ECCV), 2016. 164

Yoon Kim. Convolutional neural networks for sentence classification. Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. 52,
140, 141, 147

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014. 150, 196

Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics-Volume 1, pages
423–430. Association for Computational Linguistics, 2003. 55, 144, 173

Jan J Koenderink and Andrea J Van Doorn. The structure of locally orderless images.
International Journal of Computer Vision (IJCV), 31(2-3):159–168, 1999. 26, 62

Bibliography 233

Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler. What are you
talking about? text-to-image coreference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014. 50, 76, 94, 98, 105, 120, 141

P. Koniusz and K. Mikolajczyk. Spatial coordinate coding to reduce histogram representa-
tions, dominant angle and colour pyramid match. In International Conference on Image
Processing, 2011. 48, 62, 63

J. Krapac, J. Verbeek, and F. Jurie. Modeling spatial layout with fisher vectors for image
categorization. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2011. 48, 62, 63

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, Michael Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense
image annotations. arXiv:1602.07332, 2016. 144

Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transactions of the Association for Computational
Linguistics (TACL), 2013. 53, 54, 94, 98, 105, 107, 120, 141

A. Krizhevsky and G. Hinton. Convolutional deep belief networks on cifar-10. Technical
report, 2010. 66

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
(NIPS), 2012. 1, 16, 29, 30, 31, 50, 51, 52, 76, 93, 118, 119, 123, 140, 141, 148, 154, 161,
164, 169, 172

Geert-Jan M Kruijff, Hendrik Zender, Patric Jensfelt, and Henrik I Christensen. Situated
dialogue and spatial organization: What, where... and why. International Journal of
Advanced Robotic Systems (IJARS), 2007. 50, 76, 105

Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C Berg,
and Tamara L Berg. Baby talk: Understanding and generating simple image descriptions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011. 94, 172

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce,
Peter Ondruska, Ishaan Gulrajani, and Richard Socher. Ask me anything: Dynamic
memory networks for natural language processing. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016. 58, 143

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Inducing
probabilistic ccg grammars from logical form with higher-order unification. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2010.
37, 52, 93, 97, 104

234 Bibliography

Katrina LaCurts. Criticisms of the turing test and why you should ignore (most of) them.
2011. 94

Brenden M Lake, Ruslan Salakhutdinov, and Josh Tenenbaum. One-shot learning by
inverting a compositional causal process. In Advances in Neural Information Processing
Systems (NIPS), 2013. 94

George Lakoff. Women, fire, and dangerous things: What categories reveal about the mind.
Cambridge University Press, 1990. 96, 97

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen
object classes by between-class attribute transfer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 951–958. IEEE, 2009. 22

Tian Lan, Weilong Yang, Yang Wang, and Greg Mori. Image retrieval with structured
object queries using latent ranking svm. In Proceedings of the European Conference on
Computer Vision (ECCV). 2012. 22, 49, 50, 74, 75, 76, 77, 80, 81, 82, 83, 84, 98, 108,
162, 170, 171, 175, 176, 177, 178, 251, 253

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2006. 16, 18, 26, 27,
47, 48, 50, 62, 63, 67, 75, 76, 77

Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y.
Ng. Building high-level features using large scale unsupervised learning. In Proceedings
of the International Conference on Machine Learning (ICML), 2012. 62, 66

Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage.
arXiv:1506.02515, 2015. 49

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Handwritten digit recognition with a back-propagation network. In Advances in
Neural Information Processing Systems (NIPS), 1990. 62

Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient backprop. Neural networks: Tricks
of the trade, pages 546–546, 1998a. 28, 29, 64, 174

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998b. 28, 119, 122

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. arXiv:1409.5185, 2014. 93

Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions in
convolutional neural networks: Mixed, gated, and tree. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2016. 5, 48, 167

Hector J Levesque. The winograd schema challenge. 2011. 19

Bibliography 235

Stephen C Levinson. Space in language and cognition: Explorations in cognitive diversity,
volume 5. Cambridge University Press, 2003. 97

Michael Levit and Deb Roy. Interpretation of spatial language in a map navigation task.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2007. 105

Mike Lewis and Mark Steedman. Combining formal and distributional models of temporal
and intensional semantics. In ACL Workshop on Semantic Parsing, 2014. 97

Chi Li, Austin Reiter, and Gregory D Hager. Beyond spatial pooling: fine-grained representa-
tion learning in multiple domains. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4913–4922, 2015. 49

Li-Jia Li, Hao Su, Eric P Xing, and Li Fei-Fei. Object bank: A high-level image representation
for scene classification and semantic feature sparsification. Advances in Neural Information
Processing Systems (NIPS), 2010. 169, 173

L. Li-Jia and L. Fei-Fei. What, where and who? classifying events by scene and object
recognition. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2007. 66

L. Li-Jia, S. Hao, E. P. Xing, and L. Fei-Fei. Object bank: A high-level image representa-
tion for scene classification and semantic feature sparsification. In Advances in Neural
Information Processing Systems (NIPS), 2010. 62, 63, 66, 67, 71

Percy Liang. Talking to computers in natural language. XRDS: Crossroads, The ACM
Magazine for Students, 2014. 37

Percy Liang and Christopher Potts. Bringing machine learning and compositional semantics
together. Annual Review of Linguistics, 2015. 36, 37, 38, 39, 251

Percy Liang, Michael I Jordan, and Dan Klein. Learning dependency-based compositional
semantics. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2011. 171

Percy Liang, Michael I Jordan, and Dan Klein. Learning dependency-based compositional
semantics. Computational Linguistics, 2013. 5, 20, 36, 37, 40, 41, 42, 52, 53, 94, 97, 99,
104, 106, 107, 120, 142, 145, 166

Dahua Lin, Sanja Fidler, and Raquel Urtasun. Holistic scene understanding for 3d object
detection with rgbd cameras. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2013. 98, 170

Dahua Lin, Sanja Fidler, Chen Kong, and Raquel Urtasun. Visual semantic search: Retrieving
videos via complex textual queries. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014a. 50, 76

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In

236 Bibliography

Proceedings of the European Conference on Computer Vision (ECCV), 2014b. 55, 144,
150

Yinglu Liu, Yan-Ming Zhang, Xu-Yao Zhang, and Cheng-Lin Liu. Adaptive spatial pooling
for image classification. Pattern Recognition, 55:58–67, 2016. 48

Gordon D Logan and Daniel D Sadler. A computational analysis of the apprehension of
spatial relations. 1996. 6, 49, 75, 76, 77, 79, 171, 172, 174

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision (IJCV), 60(2):91–110, 2004. 16, 27

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image
co-attention for visual question answering. 2016. 58, 166, 223

Lin Ma, Zhengdong Lu, and Hang Li. Learning to answer questions from image using
convolutional neural network. arXiv:1506.00333, 2015. 58, 120, 142, 147, 148, 156

Mateusz Malinowski and Mario Fritz. Learning smooth pooling regions for visual recognition.
In Proceedings of the British Machine Vision Conference (BMVC), 2013a. 5, 6, 9, 14, 27,
48, 49, 75, 76, 77

Mateusz Malinowski and Mario Fritz. Learnable pooling regions for image classification. In
ICLR Workshop, 2013b. 5, 6, 9, 14, 27, 48, 49, 62

Mateusz Malinowski and Mario Fritz. A multi-world approach to question answering about
real-world scenes based on uncertain input. In Advances in Neural Information Processing
Systems (NIPS), 2014a. 3, 4, 5, 6, 10, 11, 14, 40, 50, 51, 54, 55, 57, 59, 74, 94, 95, 96, 97,
98, 99, 100, 101, 119, 120, 123, 124, 125, 127, 130, 131, 133, 140, 142, 143, 144, 145, 163,
164, 165, 166, 167, 183, 187, 190, 191, 203, 204, 223

Mateusz Malinowski and Mario Fritz. Towards a visual turing challenge. In NIPS workshop
on Learning Semantics, 2014b. 3, 5, 6, 10, 14, 51, 55, 57, 120, 140, 142, 144, 163, 165,
183, 203

Mateusz Malinowski and Mario Fritz. A pooling approach to modelling spatial relations for
image retrieval and annotation. arXiv:1411.5190, 2014c. 4, 5, 6, 10, 14, 22, 49, 59, 143,
165

Mateusz Malinowski and Mario Fritz. Hard to cheat: A turing test based on answering
questions about images. AAAI Workshop: Beyond the Turing Test, 2015. 3, 5, 10, 14, 51,
55, 95, 140, 144, 163, 183, 203

Mateusz Malinowski and Mario Fritz. Tutorial on answering questions about images with
deep learning. arXiv:1610.01076, 2016. 11, 14

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A neural-based
approach to answering questions about images. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015. 4, 5, 6, 11, 14, 51, 55, 58, 94, 140, 142,
145, 149, 156, 165, 166, 186, 187, 190, 196, 203, 205, 253

Bibliography 237

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A deep learning
approach to visual question answering. arXiv:1605.02697, 2016. 4, 5, 6, 14, 18, 25, 58,
155, 164, 166, 190, 253

Christopher D Manning and Hinrich Schütze. Foundations of statistical natural language
processing, volume 999. MIT Press, 1999. 141, 171, 173

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
information retrieval. Cambridge university press Cambridge, 2008. 108, 140

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L Yuille. Explain images with
multimodal recurrent neural networks. arXiv:1410.1090, 2014. 50, 76, 94

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan Yuille, and
Kevin Murphy. Generation and comprehension of unambiguous object descriptions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 141

Cynthia Matuszek, Nicholas Fitzgerald, Luke Zettlemoyer, Liefeng Bo, and Dieter Fox. A
joint model of language and perception for grounded attribute learning. In Proceedings
of the International Conference on Machine Learning (ICML), 2012. 53, 94, 98, 105, 120,
141, 172

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to parse
natural language commands to a robot control system. In Experimental Robotics, 2013.
105

Michael McCloskey. Intuitive physics. Scientific American, 1984. 167

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems (NIPS), 2013. 20, 93, 97, 100

George A Miller. Wordnet: a lexical database for english. CACM, 1995. 99, 110, 203

Ashkan Mokarian, Mateusz Malinowski, and Mario Fritz. Mean box pooling: A rich image
representation and output embedding for the visual madlibs task. Proceedings of the
British Machine Vision Conference (BMVC), 2016. 51

Ashkan Mokarian Forooshani, Mateusz Malinowski, and Mario Fritz. Mean box pooling:
A rich image representation and output embedding for the visual madlibs task. In
Proceedings of the British Machine Vision Conference (BMVC). BMVA Press, 2016. 8,
58, 166, 223

Reinhard Moratz and Thora Tenbrink. Spatial reference in linguistic human-robot interaction:
Iterative, empirically supported development of a model of projective relations. Spatial
cognition and computation, 2006. 50, 76, 171

238 Bibliography

Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi. " what happens
if..." learning to predict the effect of forces in images. Proceedings of the European
Conference on Computer Vision (ECCV), 2016. 167

Joseph L Mundy. Object recognition in the geometric era: A retrospective. In Toward
category-level object recognition, pages 3–28. Springer, 2006. 16

Hiroshi Murase and Shree K Nayar. Visual learning and recognition of 3-d objects from
appearance. International Journal of Computer Vision (IJCV), 14(1):5–24, 1995. 16, 25

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the International Conference on Machine Learning (ICML),
2010. 29

Ndapandula Nakashole, Tomasz Tylenda, and Gerhard Weikum. Fine-grained semantic
typing of emerging entities. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2013. 126

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network
for semantic segmentation. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1520–1528, 2015a. 18

Hyeonwoo Noh, Paul Hongsuck Seo, and Bohyung Han. Image question answering using
convolutional neural network with dynamic parameter prediction. arXiv:1511.05756,
2015b. 59, 143, 155

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014. 100, 148, 152

Florent Perronnin, Zeynep Akata, Zaid Harchaoui, and Cordelia Schmid. Towards good
practice in large-scale learning for image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012. 96

Leonid Pishchulin, Mykhaylo Andriluka, Peter Gehler, and Bernt Schiele. Strong appearance
and expressive spatial models for human pose estimation. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2013. 93

Tomaso Poggio and Shimon Edelman. A network that learns to recognize 3d objects. Nature,
343(6255):263–266, 1990. 25

M. A. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2007. 62

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier. Collecting image
annotations using amazon’s mechanical turk. In NAACL HLT Workshop, 2010. 81, 82,
98

Bibliography 239

Terry Regier and Laura A Carlson. Grounding spatial language in perception: an empirical
and computational investigation. Journal of Experimental Psychology: General, 2001. 75,
108

Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele,
and Manfred Pinkal. Grounding Action Descriptions in Videos. Transactions of the
Association for Computational Linguistics (TACL), 1, 2013. 56, 145

Mengye Ren, Ryan Kiros, and Richard Zemel. Image question answering: A visual semantic
embedding model and a new dataset. In Advances in Neural Information Processing
Systems (NIPS), 2015a. 4, 55, 58, 120, 142, 144

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in Neural Information
Processing Systems (NIPS), 2015b. 1, 18, 25, 161

M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature
Neuroscience, 2009. 62

Lawrence Gilman Roberts. Machine perception of three-dimensional soups. PhD thesis,
Massachusetts Institute of Technology, 1963. 16, 25

Tim Rocktäschel, Matko Bosnjak, Sameer Singh, and Sebastian Riedel. Low-dimensional
embeddings of logic. In ACL Workshop on Semantic Parsing, 2014. 97

Anna Rohrbach, Marcus Rohrbach, Wei Qiu, Annemarie Friedrich, Sikandar Amin, Mykhaylo
Andriluka, Manfred Pinkal, and Bernt Schiele. Coherent multi-sentence video descrip-
tion with variable level of detail. In Proceedings of the German Confeence on Pattern
Recognition (GCPR), 2014. 94

Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor Darrell, and Bernt Schiele.
Grounding of textual phrases in images by reconstruction. arXiv:1511.03745, 2015a. 141

Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt Schiele. A dataset for movie
description. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015b. 56, 145

Marcus Rohrbach, Michael Stark, and Bernt Schiele. Evaluating knowledge transfer and
zero-shot learning in a large-scale setting. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2011. 22, 98

Marcus Rohrbach, Michaela Regneri, Mykhaylo Andriluka, Sikandar Amin, Manfred Pinkal,
and Bernt Schiele. Script data for attribute-based recognition of composite activities. In
Proceedings of the European Conference on Computer Vision (ECCV). 2012. 98

Eleanor H Rosch. Natural categories. Cognitive psychology, 4(3):328–350, 1973. 97

Olga Russakovsky, Yuanqing Lin, Kai Yu, and Li Fei-Fei. Object-centric spatial pooling
for image classification. In Proceedings of the European Conference on Computer Vision
(ECCV). 2012. 48, 50, 62, 63, 75, 76

240 Bibliography

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge. arXiv:1409.0575, 2014. 14,
15, 22, 29, 52, 98, 119, 123, 140, 148, 165, 208

Fereshteh Sadeghi, Santosh K Divvala, and Ali Farhadi. Viske: Visual knowledge extraction
and question answering by visual verification of relation phrases. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1456–
1464, 2015. 165

J. Sánchez, F. Perronnin, and T. de Campos. Modeling the spatial layout of images beyond
spatial pyramids. Pattern Recognition Letters, 2012. 48, 62, 63

Bernhard Schölkopf and Christopher JC Burges. Advances in kernel methods: support
vector learning. MIT press, 1999. 39

Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Poggio.
Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 29(3):411–426, 2007. 28

Qi Shan, Riley Adams, Brian Curless, Yasutaka Furukawa, and Steven M Seitz. The visual
turing test for scene reconstruction. In International Conference on 3D Vision (3DV),
2013. 94

Gaurav Sharma and Frederic Jurie. Learning discriminative spatial representation for image
classification. In Proceedings of the British Machine Vision Conference (BMVC), pages
1–11. BMVA Press, 2011. 48

Kevin J Shih, Saurabh Singh, and Derek Hoiem. Where to look: Focus regions for visual
question answering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 4, 58, 143

Behjat Siddiquie, Rogério Schmidt Feris, and Larry S Davis. Image ranking and retrieval
based on multi-attribute queries. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011. 83, 171, 178

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation
and support inference from rgbd images. In Proceedings of the European Conference on
Computer Vision (ECCV), 2012. 53, 98, 105, 109, 123, 144, 223

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. International Conference on Learning Representations (ICLR), 2015.
31, 52, 93, 119, 141, 148, 154, 208

Gudrun Socher, Gerhard Sagerer, and Pietro Perona. Bayesian reasoning on qualitative
descriptions from images and speech. Image Vision Computing, 2000. 172

Richard Socher, Cliff C Lin, Andrew Y Ng, and Christopher D Manning. Parsing natural
scenes and natural language with recursive neural networks. In Proceedings of the
International Conference on Machine Learning (ICML), 2011. 5, 170, 172

Bibliography 241

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2013. 51

Richard Socher, Andrej Karpathy, Q Le, C Manning, and A Ng. Grounded compositional
semantics for finding and describing images with sentences. In Transactions of the
Association for Computational Linguistics (TACL), 2014. 50, 76, 81, 86, 94, 97

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In
Advances in Neural Information Processing Systems (NIPS), pages 2440–2448, 2015. 183,
184, 187

Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems (NIPS). 2014. 52, 118,
119, 122, 141

Michael J Swain and Dana H Ballard. Color indexing. International Journal of Computer
Vision (IJCV), 7(1):11–32, 1991. 16, 25

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with con-
volutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 1, 31, 32, 33, 34, 52, 119, 123, 141, 148, 154, 161

Niket Tandon. Commonsense knowledge acquisition and applications. 2016. 165

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun,
and Sanja Fidler. Movieqa: Understanding stories in movies through question-answering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 4, 56, 145

Stefanie Tellex, Thomas Kollar, George Shaw, Nicholas Roy, and Deb Roy. Grounding
spatial language for video search. In International Conference on Multimodal Interaction
(ICMI), 2010. 50, 76, 171

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal Banerjee,
Seth J Teller, and Nicholas Roy. Understanding natural language commands for robotic
navigation and mobile manipulation. In Proceedings of the Conference on Artificial
Intelligence (AAAI), 2011. 36, 53, 74, 105

Tatiana Tommasi, Arun Mallya, Bryan Plummer, Svetlana Lazebnik, Alexander C Berg,
and Tamara L Berg. Solving visual madlibs with multiple cues. In Proceedings of the
British Machine Vision Conference (BMVC). BMVA Press, 2016. 58, 166

Jonathan Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint training of a
convolutional network and a graphical model for human pose estimation. In Advances in
Neural Information Processing Systems (NIPS), 2014. 93

242 Bibliography

A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2008. 66

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich
part-of-speech tagging with a cyclic dependency network. In HLT-NAACL, 2003. 98

Trecvid. Trecvid med 14. http://nist.gov/itl/iad/mig/med14.cfm, 2014. 56, 145

John W Tukey. Exploratory data analysis. 1977. 110

Alan M Turing. Computing machinery and intelligence. Mind, pages 433–460, 1950. 14, 94,
95, 163

Joost Van De Weijer, Cordelia Schmid, and Jakob Verbeek. Learning color names from real-
world images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007. 107, 109, 112, 186

J. C. van Gemert. Exploiting photographic style for category-level image classification
by generalizing the spatial pyramid. In ACM International Conference in Multimedia
Retrieval (ICMR), 2011. 63

Ramakrishna Vedantam, Xiao Lin, Tanmay Batra, C. Lawrence Zitnick, and Devi Parikh.
Learning common sense through visual abstraction. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015. 165

Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell,
and Kate Saenko. Sequence to sequence – video to text. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015a. 18, 25, 118

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney,
and Kate Saenko. Translating videos to natural language using deep recurrent neural
networks. In Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), 2015b. 53, 119, 141

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the
International Conference on Machine Learning (ICML), 2008. 172

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. arXiv:1411.4555, 2014. 22, 53, 95, 119, 141

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL), 2010. 105

Dong Wang and Xiaoyang Tan. Unsupervised feature learning with c-svddnet. Pattern
Recognition, 2016. 48

Peng Wang, Qi Wu, Chunhua Shen, Anton van den Hengel, and Anthony Dick. Explicit
knowledge-based reasoning for visual question answering. arXiv:1511.02570, 2015. 4, 165

http://nist.gov/itl/iad/mig/med14.cfm

Bibliography 243

Peng Wang, Qi Wu, Chunhua Shen, Anton van den Hengel, and Anthony Dick. Fvqa:
Fact-based visual question answering. arXiv:1606.05433, 2016. 4

Peter Welinder and Pietro Perona. Online crowdsourcing: rating annotators and obtaining
cost-effective labels. In CVPR Workshops, 2010. 94

Peter Welinder, Steve Branson, Pietro Perona, and Serge J Belongie. The multidimensional
wisdom of crowds. In Advances in Neural Information Processing Systems (NIPS), 2010.
94

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large vocabulary
image annotation. In International Joint Conference on Artificial Intelligence (IJCAI),
2011. 96

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv:1410.3916,
2014. 53, 119, 120, 142

Michael Wick, Andrew McCallum, and Gerome Miklau. Scalable probabilistic databases
with factor graphs and mcmc. In Very Large Data Base (VLDB), 2010. 105, 108

Terry Winograd. Procedures as a representation for data in a computer program for
understanding natural language. Technical report, DTIC Document, 1971. 1, 20, 35

Terry Winograd. Understanding natural language. Cognitive psychology, 1972. 19, 37, 52,
53, 54

Yuk Wah Wong and Raymond J Mooney. Learning for semantic parsing with statistical
machine translation. In Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL). Association for Computational
Linguistics, 2006. 52

William A. Woods. Semantics and quantification in natural language question answering.
Advances in computers, 1978. 52

Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum. Galileo:
Perceiving physical object properties by integrating a physics engine with deep learning.
In Advances in Neural Information Processing Systems (NIPS), pages 127–135, 2015. 167

Qi Wu, Chunhua Shen, Anton van den Hengel, Peng Wang, and Anthony Dick. Image
captioning and visual question answering based on attributes and their related external
knowledge. arXiv:1603.02814, 2016a. 4

Qi Wu, Peng Wang, Chunhua Shen, Anton van den Hengel, and Anthony Dick. Ask Me Any-
thing: Free-form Visual Question Answering Based on Knowledge from External Sources.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016b. 4, 58, 143, 155, 165

Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL), 1994. 99,
100, 110, 124, 127

244 Bibliography

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual
and textual question answering. arXiv:1603.01417, 2016. 4, 58, 143, 155, 156

Huijuan Xu and Kate Saenko. Ask, attend and answer: Exploring question-guided spatial
attention for visual question answering. arXiv:1511.05234, 2015. 5, 58, 143, 155, 167

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel,
and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. Proceedings of the International Conference on Machine Learning (ICML),
2015. 5, 22, 48, 58, 143, 167

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse
coding for image classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009. 16, 26, 47, 48, 50, 62, 63, 67, 76

Jiaolong Yang, Peiran Ren, Dong Chen, Fang Wen, Hongdong Li, and Gang Hua. Neural
aggregation network for video face recognition. arXiv:1603.05474, 2016. 167

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention
networks for image question answering. arXiv:1511.02274, 2015. 4, 58, 142, 143, 147, 148,
155, 156, 184, 248

Dingjun Yu, Hanli Wang, Peiqiu Chen, and Zhihua Wei. Mixed pooling for convolutional
neural networks. In International Conference on Rough Sets and Knowledge Technology,
pages 364–375. Springer, 2014. 48

Licheng Yu, Eunbyung Park, Alexander C. Berg, and Tamara L. Berg. Visual madlibs:
Fill in the blank image generation and question answering. Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015a. 4, 120

Licheng Yu, Eunbyung Park, Alexander C Berg, and Tamara L Berg. Visual madlibs: Fill
in the blank description generation and question answering. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 2461–2469, 2015b. 8, 55,
144, 145

Lotfi A Zadeh. Fuzzy sets. Information and control, 1965. 110

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615,
2014. 122

Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization of deep convolutional
neural networks. International Conference on Learning Representations (ICLR), 2013. 5,
48

John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the Conference on Artificial Intelligence (AAAI),
1996. 37, 52, 98

Luke S Zettlemoyer and Michael Collins. Online learning of relaxed ccg grammars for parsing
to logical form. In EMNLP-CoNLL, 2007. 20, 37, 52, 93, 97, 104

Bibliography 245

Luke S Zettlemoyer and Michael Collins. Learning context-dependent mappings from sen-
tences to logical form. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2, pages 976–984. Association for Computational Lin-
guistics, 2009. 52

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Simple
baseline for visual question answering. arXiv:1512.02167, 2015. 155

Linchao Zhu, Zhongwen Xu, Yi Yang, and Alexander G Hauptmann. Uncovering temporal
context for video question and answering. arXiv:1511.04670, 2015. 4, 56, 145

Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. Visual7W: Grounded Question
Answering in Images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 4, 55, 58, 143, 144, 164

C Lawrence Zitnick, Devi Parikh, and Lucy Vanderwende. Learning the visual interpretation
of sentences. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2013. 53, 119, 141

List of Figures

1.1 Graph depicting dependencies between different chapters. 12

2.1 Classification, Detection, Segmentation Tasks 17

3.1 From patches to global representation . 27
3.2 Plain CNN . 28
3.3 AlexNet CNN . 30
3.4 Inception . 32
3.5 Inception with classifier . 33
3.6 Residual Net . 33
3.7 The GoogLeNet CNN . 34

4.1 SHRDLU . 37
4.2 Generation procedure and features . 39
4.3 DCS Trees . 40
4.4 Probabilistic Semantic Parser . 41
4.5 Recurrent Neural Networks . 42
4.6 Encoder-Decoder - various mappings . 43
4.7 GRU - internal state . 45
4.8 LSTM - internal state . 46

5.1 Grounding Tasks . 54
5.2 Visual Turing Test Datasets . 56
5.3 Visual Turing Test- Model Zoo . 57

6.1 Performance of learnable pooling regions with respect to the dictionary size 68

7.1 Pooling interpretations of deictic spatial relations 74
7.2 Tom ranked retrieved images from the query ‘An airplane in front of a building’ 85
7.3 Top 4 best bindings between a textual fragment and all detections 87
7.4 Textual retrievals for a given image . 88
7.5 Textual retrievals for a given image . 88
7.6 Textual retrievals for a given image . 89
7.7 Image retrievals for a given query . 89
7.8 Image retrievals for a given query . 90
7.9 Image retrievals for a given query . 90
7.10 Image retrievals for a given query . 91
7.11 Image retrievals for a given query . 91

248 List of Figures

8.1 A good performance on a Visual Turing Test implies Scene Understanding.
Yet, in contrast to many popular Image Understanding tasks, a Visual Turing
Test is an end-to-end problem that doesn’t evaluate how an image is represented. 96

9.1 Overview of our approach to question answering with multiple latent worlds
in contrast to single world approach. 106

9.2 Different sampled worlds and object’s coordinates 114
9.3 NYU-Depth V2 dataset: image, Z axis, ground truth and predicted semantic

segmentations. 115
9.4 Examples of human generated question-answer pairs illustrating the associated

challenges . 115
9.5 WUPS Scores - different threshold . 116
9.6 Questions and predicted answers . 116

10.1 Visual Turing Test architecture . 118
10.2 Our approach Ask Your Neurons, see Section 10.3 for details. 121
10.3 LSTM unit . 122
10.4 Split according to a number of words in answers 126
10.5 Study of inter-human agreement . 128
10.6 Correlation between question and answer words 133

11.1 Our Refined Ask Your Neurons architecture for answering questions about
images that includes the following modules: visual and question encoders,
and answer decoder. A multimodal embedding C combines both encodings
into a joint space that the decoder decodes from. See Section 11.2.9 for details. 146

11.2 CNN for encoding the question that convolves word embeddings (learnt or
pre-trained) with different kernels, second and third views are shown, see
Section 11.2.9.1 and Yang et al. [2015] for details. 147

11.3 Bag-Of-Words (BOW) for encoding the question, see Section 11.2.9.1 for details.148

A.1 We address the image retrieval task by introducing a novel Data-Driven
Compositional Neural Architecture (DDCNA) whose topology is induced
from the query. The parameters – including concepts and spatial relations –
are shared across queries and jointly learnt with the retrieval task. 170

A.2 Top ranked retrieved images from the query ‘An airplane in front of a building’.
We see a high recall achieved by our method and two clear mistakes - Rank 7
and Rank 15. Rank 7 is placed high in the ranking mainly due to false positive
‘building’ detection, and Rank 15 due to false positive ‘airplane’ detection. 179

A.3 Top ranked retrieved images from the query ‘Flowers in a vase’. Images Rank
4, 6, 7, 8, 9, 11, 12, ..., 15 are incorrectly ranked due to false positive ‘vase’
or ‘flowers’ detections with either strong signal response or large detection
support. 180

List of Figures 249

A.4 Top ranked retrieved images from the query ‘Picture on the wall, above a bed’.
We see a high recall achieved by our method. Although images Rank 2, Rank
6, Rank 8 and Rank 11 are mistakingly ranked high due to a strong false
positive ‘bed’ detector, they are still reasonable. The architecture mistakingly
ranks images Rank 4, 7, 9, 12 and 13 due to false positive ‘bed’ detection
with either strong signal response or large detection support. 180

A.5 Top ranked retrieved images from the query ‘A van on the road below a
window’. Images Rank 2, 4, 5, 7, 8, 9, 12, 13, 14 and 15 are clearly wrong.
Interestingly the model hallucinates a ‘van’ (with strong signal response) and
many ‘windows’ in the image Rank 12. 181

A.6 Top ranked retrieved images from the query ‘A chair in front of a door, on
floor’. Images Rank 4, 6, 7, 10, 11, 14, 15 are placed incorrectly due to false
positive detections. 181

B.1 Image to memory encoding. 185
B.2 Visual FactNet based on Memory Network architecture. 186

C.1 Challenges present in the DAQUAR dataset. 191
C.2 One hot representations of the textual words in the question. 193
C.3 Bag-Of-Words (BOW) representation of the input that is next follow by

‘Softmax’. 198
C.4 Recurrent Neural Network. 201
C.5 A toy-sized ontology. 204
C.6 Features extractor. Neural responses of some layer to the visual input are

considered as features. 209
C.7 BOW with visual features. 210
C.8 RNN with visual features. 214

List of Tables

3.1 Performance of different, popular variants of CNNs on the ImageNet dataset.
Pre-CNN refers to the ISI team with the best method from the ImageNet
Challenge 2012 that does not use CNNs. 32

4.1 Grammar for the algebraic formulas task. We follow a standard, mathematical
interpretation of the logical forms. The table is a simplified version of the
table shown in Liang and Potts [2015]. 38

6.1 Comparison of our method against baselines 69
6.2 Visualization of different pooling strategies 69
6.3 Role of different regularization terms . 70
6.4 The classification accuracy on CIFAR-100, where our method is compared

against the Coates and Ng [2011] and Jia and Huang [2011]. 70
6.5 Transfer of the pooling regions . 71
6.6 Our approach described in Section 6.4 with max pooling function and object

banks. 71

7.1 Visualization of estimated spatial filters. A set of relations from Lan et al.
[2012]. 80

7.2 Visualization of estimated spatial filters. Extended set of relations. 80
7.3 Performance of our model that uses estimated spatial templates to other

baseline approaches . 83
7.4 Performance of our model that uses a learnable spatial pooling framework to

learn the spatial templates . 86

9.1 Predicates defining spatial relations . 107
9.2 Synthetic question-answer pairs. The questions can be about individual images

or the sets of images. 109
9.3 Accuracy results for the experiments with synthetic question-answer pairs. . 113
9.4 Accuracy and WUPS scores for the experiments with human question-answer

pairs. We show WUPS scores at two opposite sides of the WUPS spectrum. 113

10.1 Results on DAQUAR, all classes, single reference, in %. 124
10.2 Results of the single word model on the one-word answers subset of DAQUAR,

all classes, single reference, in %. 125
10.3 Results on reduced DAQUAR, single reference, with a reduced set of 37 object

classes and 25 test images with 297 question-answer pairs, in % 127
10.4 Results on DAQUAR, all classes, single reference in % (the subsets are chosen

based on DAQUAR-Consensus). 129
10.5 Results on DAQUAR-Consensus, all classes, consensus in %. 130

252 List of Tables

10.6 Min and Average Consensus on human answers from DAQUAR, as refer-
ence sentence we use all answers in DAQUAR-Consensus which are not in
DAQUAR, in % . 131

10.7 Examples of questions and answers . 132
10.8 Examples of questions and answers - many words 132
10.9 Examples of questions and answers - failure cases 133
10.10Examples of compound answer words . 135
10.11Examples of counting questions . 135
10.12Examples of questions and answers - color 136
10.13Examples of questions and answers . 136
10.14Examples of questions and answers . 137
10.15Examples of questions and answers . 137
10.16Examples of questions and answers . 138
10.17Examples of questions and answers - Failure cases 138

11.1 Results on VQA validation set, “Question-only” model: Analysis of CNN ques-
tions encoders with different filter lengths, accuracy in %, see Section 11.3.2.1
for discussion. 150

11.2 Results on VQA validation set, “Question-only” model: Analysis of different
questions encoders, accuracy in %, see Section 11.3.2 for discussion. 151

11.3 Results on VQA validation set, “Question-only” model: Analysis of the number
of top frequent answer classes, with different question encoders. All using
GLOVE; accuracy in %; see Section 11.3.2.4 for discussion. 151

11.4 Results on VQA validation set, vision and language: Analysis of different
multimodal techniques that combine vision with language on BOW (with
GLOVE word embedding and VGG-19 fc7), accuracy in %, see Section 11.3.3.1. 152

11.5 Results on VQA validation set, vision and language: Analysis of different
language encoders with GLOVE word embedding, VGG-19, and Summation to
combine vision and language. Results in %, see Section 11.3.3.2 for discussion. 153

11.6 Results on VQA validation set, vision and language: Different visual encoders
(with LSTM, GLOVE, the summation technique, l2 normalized features).
Results in %, see Section 11.3.3.3 for discussion. 153

11.7 Results on VQA validation set, vision and language: Summary of our results,
results in %, see Section 11.3.4 for discussion. Columns denote, from the
left to right, word embedding learnt together with the architecture, GLOVE
embedding that replaces learnt word embedding, truncating the dataset to
2000 most frequent answer classes, and finally added visual representation to
the model (ResNet-152). 154

11.8 Results on VQA test set, our best vision and language model chosen based
on the validation set: accuracy in %, from the challenge test server. Dash ’-’
denotes lack of data . 154

List of Tables 253

11.9 Results on VQA test datasets, comparison with state-of-the-art: accuracy
in %, from the challenge test server. Dash ‘’-’ denotes lack of data. The full
table is shown in Malinowski et al. [2016]. 155

11.10Comparison with state-of-the-art on DAQUAR. Refined Ask Your Neurons
architecture: LSTM + Vision with GLOVE and ResNet-152. Ask Your Neu-
rons architecture: originally presented in Malinowski et al. [2015], results in
%. In the comparison, we use original data (all), or a subset with only single
word answers (single) that covers about 90% of the original data. Asterisk ‘∗’
after the method denotes using a box filter that smooths the otherwise noisy
validation accuracies. Dash ‘’-’ denotes lack of data. 156

11.11Examples of ‘yes/no’ questions and answers produced by our the best model
on test VQA. 158

11.12Examples of ‘counting’ questions and answers produced by our the best model
on test VQA. 158

11.13Examples of ‘what’ questions and answers produced by our the best model
on test VQA. 158

11.14Examples of ‘compound answers’ questions and answers predicted by our the
best model on test VQA. 159

A.1 Visualization of estimated spatial filters. A set of relations from Lan et al.
[2012]. 177

A.2 Visualization of estimated spatial filters. Extended set of relations. 177
A.3 Performance of our DDCNA approach that learns spatial concepts from data

compared to the structured model of Lan et al. [2012] 178
A.4 Our approach on more challenging dataset: structured queries with the

extended spatial relations, and compositional queries. 178

B.1 Performance evaluation on DAQUAR according to question types. For the
sake of the visualization purpose, we only show results on two evaluation
metrics. 186

Mateusz Malinowski
mateuszm@google.com

Objective
Building responsive machines that understand natural language, surrounding environ-
ment, as well as human intentions, all necessary for human-like communication.

Positions
2017–now Research Scientist, Google DeepMind, London, U.K.

Description: Working towards holistic machines.
Webpage: mateuszmalinowski.github.io Í (Personal)

2011–2016 Research Student, Max Planck Institute for Informatics, Saarbrücken, Germany.
Group: Scalable Learning and Perception
Advisor: Dr. Mario Fritz
Description: Built the first dataset and architectures that answer questions about images.

Conducted research on Deep Learning, Spatial Reasoning, and Retrieval.
Webpage: people.mpi-inf.mpg.de/~mmalinow Í

2010 Research Assistant, Cluster of Excellence on Multimodal Computing and Interaction,
Saarbrücken, Germany.
Group: Probabilistic Machine Learning and Medical Image Processing
Advisor: Prof. Matthias Seeger

2009–2010 Research Assistant, Max Planck Institute for Informatics, Saarbrücken, Germany.
Group: High Dynamic Range Imaging and Perception Issues in Graphics
Advisor: Prof. Karol Myszkowski

Research Projects (Í Google Scholar profile)

M. Malinowski, M. Rohrbach, M. Fritz. Ask Your Neurons: A Neural-based Approach to Answering Questions about Images

Human-type Comprehension

2

011101011100
1011000100100
010011110000

Is the water
boiling?6=

• How far are we away from human-type comprehension?
• How can we monitor progress and evaluate architectures?

Towards a Visual Turing Challenge (NIPS, ICCV, ICMR, BMVC, IJCV),
Í project page.
In this line of research, we build machines that answer questions about the content of images as
well as we develop automatic performance metrics that monitor progress on this subjective task.
We introduce the first dataset for the visual question answering task with about 1.5k real-world
indoor images and 12.5k natural language questions. We also develop and investigate symbolic
and neural approaches to handle the task. Both methods are trained only on image-question-
answer triples. Moreover, our new performance metrics embrace word ambiguities and many
interpretations of a question and a scene in benchmarking different architectures. This research
is covered in Bloomberg Business.

Figure 2: Computing the Fragment and image-sentence similarities. Left: CNN representations (green) of
detected objects are mapped to the fragment embedding space (blue, Section 3.2). Right: Dependency tree
relations in the sentence are embedded (Section 3.1). Our model interprets inner products (shown as boxes)
between fragments as a similarity score. The alignment (shaded boxes) is latent and inferred by our model
(Section 3.3.1). The image-sentence similarity is computed as a fixed function of the pairwise fragment scores.

We first describe the neural networks that compute the Image and Sentence Fragment embeddings.
Then we discuss the objective function, which is composed of the two aforementioned objectives.

3.1 Dependency Tree Relations as Sentence Fragments
We would like to extract and represent the set of visually identifiable entities described in a sentence.
For instance, using the example in Figure 2, we would like to identify the entities (dog, child)
and characterise their attributes (black, young) and their pairwise interactions (chasing). Inspired
by previous work [5, 22] we observe that a dependency tree of a sentence provides a rich set of
typed relationships that can serve this purpose more effectively than individual words or bigrams.
We discard the tree structure in favor of a simpler model and interpret each relation (edge) as an
individual sentence fragment (Figure 2, right shows 5 example dependency relations). Thus, we
represent every word using 1-of-k encoding vector w using a dictionary of 400,000 words and map
every dependency triplet (R, w1, w2) into the embedding space as follows:

s = f

✓
WR

Wew1

Wew2

�
+ bR

◆
. (1)

Here, We is a d ⇥ 400, 000 matrix that encodes a 1-of-k vector into a d-dimensional word vector
representation (we use d = 200). We fix We to weights obtained through an unsupervised objective
described in Huang et al. [34]. Note that every relation R can have its own set of weights WR and
biases bR. We fix the element-wise nonlinearity f(.) to be the Rectified Linear Unit (ReLU), which
computes x ! max(0, x). The size of the embedded space is cross-validated, and we found that
values of approximately 1000 generally work well.

3.2 Object Detections as Image Fragments
Similar to sentences, we wish to extract and describe the set of entities that images are composed of.
Inspired by prior work [7], as a modeling assumption we observe that the subject of most sentence
descriptions are attributes of objects and their context in a scene. This naturally motivates the use of
objects and the global context as the fragments of an image. In particular, we follow Girshick et al.
[27] and detect objects in every image with a Region Convolutional Neural Network (RCNN). The
CNN is pre-trained on ImageNet [37] and finetuned on the 200 classes of the ImageNet Detection
Challenge [38]. We use the top 19 detected locations and the entire image as the image fragments
and compute the embedding vectors based on the pixels Ib inside each bounding box as follows:

v = Wm[CNN✓c
(Ib)] + bm, (2)

where CNN(Ib) takes the image inside a given bounding box and returns the 4096-dimensional
activations of the fully connected layer immediately before the classifier. The CNN architecture is
identical to the one described in Girhsick et al. [27]. It contains approximately 60 million parameters
✓c and closely resembles the architecture of Krizhevsky et al [25].

3.3 Objective Function
We are now ready to formulate the objective function. Recall that we are given a training set of N
images and corresponding sentences. In the previous sections we described parameterized functions
that map every sentence and image to a set of fragment vectors {s} and {v}, respectively. All
parameters of our model are contained in these two functions. As shown in Figure 2, our model

3

Figure 2: Computing the Fragment and image-sentence similarities. Left: CNN representations (green) of
detected objects are mapped to the fragment embedding space (blue, Section 3.2). Right: Dependency tree
relations in the sentence are embedded (Section 3.1). Our model interprets inner products (shown as boxes)
between fragments as a similarity score. The alignment (shaded boxes) is latent and inferred by our model
(Section 3.3.1). The image-sentence similarity is computed as a fixed function of the pairwise fragment scores.

We first describe the neural networks that compute the Image and Sentence Fragment embeddings.
Then we discuss the objective function, which is composed of the two aforementioned objectives.

3.1 Dependency Tree Relations as Sentence Fragments
We would like to extract and represent the set of visually identifiable entities described in a sentence.
For instance, using the example in Figure 2, we would like to identify the entities (dog, child)
and characterise their attributes (black, young) and their pairwise interactions (chasing). Inspired
by previous work [5, 22] we observe that a dependency tree of a sentence provides a rich set of
typed relationships that can serve this purpose more effectively than individual words or bigrams.
We discard the tree structure in favor of a simpler model and interpret each relation (edge) as an
individual sentence fragment (Figure 2, right shows 5 example dependency relations). Thus, we
represent every word using 1-of-k encoding vector w using a dictionary of 400,000 words and map
every dependency triplet (R, w1, w2) into the embedding space as follows:

s = f

✓
WR

Wew1

Wew2

�
+ bR

◆
. (1)

Here, We is a d ⇥ 400, 000 matrix that encodes a 1-of-k vector into a d-dimensional word vector
representation (we use d = 200). We fix We to weights obtained through an unsupervised objective
described in Huang et al. [34]. Note that every relation R can have its own set of weights WR and
biases bR. We fix the element-wise nonlinearity f(.) to be the Rectified Linear Unit (ReLU), which
computes x ! max(0, x). The size of the embedded space is cross-validated, and we found that
values of approximately 1000 generally work well.

3.2 Object Detections as Image Fragments
Similar to sentences, we wish to extract and describe the set of entities that images are composed of.
Inspired by prior work [7], as a modeling assumption we observe that the subject of most sentence
descriptions are attributes of objects and their context in a scene. This naturally motivates the use of
objects and the global context as the fragments of an image. In particular, we follow Girshick et al.
[27] and detect objects in every image with a Region Convolutional Neural Network (RCNN). The
CNN is pre-trained on ImageNet [37] and finetuned on the 200 classes of the ImageNet Detection
Challenge [38]. We use the top 19 detected locations and the entire image as the image fragments
and compute the embedding vectors based on the pixels Ib inside each bounding box as follows:

v = Wm[CNN✓c
(Ib)] + bm, (2)

where CNN(Ib) takes the image inside a given bounding box and returns the 4096-dimensional
activations of the fully connected layer immediately before the classifier. The CNN architecture is
identical to the one described in Girhsick et al. [27]. It contains approximately 60 million parameters
✓c and closely resembles the architecture of Krizhevsky et al [25].

3.3 Objective Function
We are now ready to formulate the objective function. Recall that we are given a training set of N
images and corresponding sentences. In the previous sections we described parameterized functions
that map every sentence and image to a set of fragment vectors {s} and {v}, respectively. All
parameters of our model are contained in these two functions. As shown in Figure 2, our model

3

Spatial template ‘right of’

Stack of spatial templates

Pooling

Learning Spatial Relations, Í project page.
This project investigates a data-driven approach to learn spatial representation for image-to-text
retrieval. For this purpose we have collected 53 structured queries that augment SUN09 dataset.
The method improves over the state-of-the-art on the image-to-text retrieval task, and is very
competitive to hand-engineered spatial features.

1/5

Learning Smooth Pooling Regions (BMVC), Í project page.
In this project, we argue for a data-driven approach to learn spatial pooling stage - an important
part of the popular recognition architectures. Our formulation enables joint and discriminative
training of the spatial pooling operator together with a classifier. The experimental evaluation
shows that our approach significantly improves over similar recognition architectures with
hand-designed spatial pooling stage.

Education
2011–2017 PhD Student, Saarland University, Saarbrücken, Germany.

Department of Computer Science
Thesis: Towards Holistic Machines:

From Visual Recognition To Question Answering About Real-World Images
Advisor: Dr. Mario Fritz
Committee: Prof. Trevor Darrell, Prof. Manfred Pinkal, Prof. Jens Dittrich, Dr. Qianru Sun

2009–2011 Master of Science, Honor’s degree, Saarland University, Saarbrücken, Germany.
Department of Computer Science
Grade: Excellent, 1.3 in German Scale, 128 ECTS
Thesis: Optimization Algorithms in the Reconstruction of MR Images: A Comparative Study
Advisor: Prof. Matthias Seeger, Reviewer: Prof. Matthias Hein

2008–2009 Erasmus Student, Saarland University, Saarbrücken, Germany.
Department of Computer Science

2004–2009 Undergraduate Studies, University of Wrocław, Wrocław, Poland.
Department of Computer Science

Talks
2016 Towards a Visual Turing Challenge, Microsoft Research, Cambridge, U.K.
2016 Towards a Visual Turing Challenge, DeepMind, London, U.K.
2015 Ask Your Neurons: A Neural-based Approach to Answering Questions about

Images, ICCV, Santiago, Chile.

Awards and Scholarships
2011 Honor’s degree in Computer Science, Saarland University, Saarbrücken, Germany.

2010–2011 International Max Planck Research School Scholarship, Saarbrücken, Germany.

Academic and Working Experience
2015-2016 Teaching Assistant, Deep Learning Seminar, Max Planck Institute for Informatics,

Saarbrücken.

2012-2013 Teaching Assistant, Probabilistic Graphical Models and their Applications, Max
Planck Institute for Informatics, Saarbrücken.

2/5

2007–2008 Programmer, USOS deployment, University of Wrocław, Wrocław.
Advisor: Piotr Witkowski

2007 Programmer, Wevo Developer, University of Wrocław, Wrocław.
Advisors: Dr. Piotr Wnuk Lipiński, Marcin Brodziak

Academic Services
Advisor I helped in advising

{ Ashkan Mokarian. Master’s Thesis co-advisor (2016).
Main supervisor: Dr. Mario Fritz
Title: Deep Learning for Filling Blanks in Image Captions

{ Sreyasi Nag Chowdhury. Master’s Thesis co-advisor (2015).
Main supervisors: Dr. Andreas Bulling, and Dr. Mario Fritz.
Title: Contextual Media Retrieval Using Natural Language Queries
Now, she is a PhD student in MPI for Informatics

Tutor 2nd Summer School on Integrating Vision and Language: Deep Learning, Malta, 2016
Reviewer

(Journals)
Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
International Journal of Computer Vision (IJCV)
Journal of Mathematical Imaging and Vision (JMIV)
Information Processing and Management (IPM)
Transactions on Computational Intelligence and AI in Games
Language and Linguistics Compass

Reviewer
(Conferences)

International Conference on Computer Vision (ICCV)
Conference on Computer Vision and Pattern Recognition (CVPR)
Neural Information Processing Systems (NIPS)
European Conference on Computer Vision (ECCV)
Asian Conference on Computer Vision (ACCV)
The European Chapter of the ACL (EACL)
International Conference on Pattern Recognition (ICPR)

Participant IEEE member, 2016
BMVA member, 2014, 2017
Deep Learning Reading Group, Saarbrücken, Germany, 2015 (Organizer)
GCPR R3 Session. Saarbrücken, Germany, 2013
Graduate Summer School: Deep Learning, Feature Learning. IPAM, UCLA, USA, 2012
Microsoft PhD Summer School. MSR, Cambridge, UK, 2012

Additional
Languages Polish (native speaker), English (fluent)

German (basic), Russian (basic)
Online Courses

(Coursera)
Startup Engineering, Neural Networks for Machine Learning
Modern & Contemporary American Poetry, Compilers

3/5

Publications (Í Google Scholar profile)

M. Malinowski, M. Rohrbach, M. Fritz. Ask Your Neurons: A Neural-based Approach to Answering Questions about Images

Human-type Comprehension

2

011101011100
1011000100100
010011110000

Is the water
boiling?6=

• How far are we away from human-type comprehension?
• How can we monitor progress and evaluate architectures?

Towards a Visual Turing Challenge, Í project page.
{ Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz
Ask Your Neurons: A Deep Learning Approach to Visual Question Answering
International Journal of Computer Vision (IJCV), 2017 Í paper

{ Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter Battaglia, Timothy Lillicrap
A simple neural network module for relational reasoning
Technical Report, 2017 Í paper

{ Mateusz Malinowski, and Mario Fritz
Tutorial on Answering Questions about Images with Deep Learning
2nd Summer School on Integrating Vision and Language: Deep Learning, Malta, March
21-24, 2016 Í paper

{ Ashkan Mokarian, Mateusz Malinowski, and Mario Fritz
Mean Box Pooling: A Rich Image Representation and Output Embedding for the
Visual Madlibs Task
British Machine Vision Conference (BMVC), York, UK, September 19-22, 2016 Í paper

{ Sreyasi Nag Chowdhury, Mateusz Malinowski, Andreas Bulling, and Mario Fritz
Contextual Media Retrieval Using Natural Language Queries
ACM International Conference in Multimedia Retrieval (ICMR), New York, 2016 Í paper

{ Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz
Ask Your Neurons: A Neural-based Approach to Answering Questions about Images
IEEE International Conference on Computer Vision (ICCV, Oral), Santiago, Chile, December
13-16, 2015 Í paper

{ Mateusz Malinowski and Mario Fritz
A Multi-World Approach to Question Answering about Real-World Scenes based on
Uncertain Input
Neural Information Processing Systems (NIPS), Montreal, CA, December 08-12, 2014
Í paper

{ Mateusz Malinowski and Mario Fritz
Hard to Cheat: A Turing Test based on Answering Questions about Images
Beyond the Turing Test (AAAI Workshop), Austin, TX, January 25-26, 2015 Í paper

{ Mateusz Malinowski and Mario Fritz
Towards a Visual Turing Challenge
Learning Semantics (NIPS Workshop), Montreal, CA, December 12, 2014 Í paper

Intuitive Physics, .
{ Apratim Bhattacharyya, Mateusz Malinowski, Bernt Schiele, and Mario Fritz
Long-Term Image Boundary Extrapolation
Technical Report, December, 2016 Í paper

{ Apratim Bhattacharyya, Mateusz Malinowski, and Mario Fritz
Long Term Boundary Extrapolation for Deterministic Motion
NIPS Workshop on Intuitive Physics, December, 2016 Í paper

Zero-Shot Learning, Í project page.
{ Zeynep Akata, Mateusz Malinowski, Mario Fritz, and Bernt Schiele
Multi-Cue Zero-Shot Learning with Strong Supervision
IEEE Computer Vision and Pattern Recognition (CVPR, Spotlight), June, 2016 Í paper

4/5

Figure 2: Computing the Fragment and image-sentence similarities. Left: CNN representations (green) of
detected objects are mapped to the fragment embedding space (blue, Section 3.2). Right: Dependency tree
relations in the sentence are embedded (Section 3.1). Our model interprets inner products (shown as boxes)
between fragments as a similarity score. The alignment (shaded boxes) is latent and inferred by our model
(Section 3.3.1). The image-sentence similarity is computed as a fixed function of the pairwise fragment scores.

We first describe the neural networks that compute the Image and Sentence Fragment embeddings.
Then we discuss the objective function, which is composed of the two aforementioned objectives.

3.1 Dependency Tree Relations as Sentence Fragments
We would like to extract and represent the set of visually identifiable entities described in a sentence.
For instance, using the example in Figure 2, we would like to identify the entities (dog, child)
and characterise their attributes (black, young) and their pairwise interactions (chasing). Inspired
by previous work [5, 22] we observe that a dependency tree of a sentence provides a rich set of
typed relationships that can serve this purpose more effectively than individual words or bigrams.
We discard the tree structure in favor of a simpler model and interpret each relation (edge) as an
individual sentence fragment (Figure 2, right shows 5 example dependency relations). Thus, we
represent every word using 1-of-k encoding vector w using a dictionary of 400,000 words and map
every dependency triplet (R, w1, w2) into the embedding space as follows:

s = f

✓
WR

Wew1

Wew2

�
+ bR

◆
. (1)

Here, We is a d ⇥ 400, 000 matrix that encodes a 1-of-k vector into a d-dimensional word vector
representation (we use d = 200). We fix We to weights obtained through an unsupervised objective
described in Huang et al. [34]. Note that every relation R can have its own set of weights WR and
biases bR. We fix the element-wise nonlinearity f(.) to be the Rectified Linear Unit (ReLU), which
computes x ! max(0, x). The size of the embedded space is cross-validated, and we found that
values of approximately 1000 generally work well.

3.2 Object Detections as Image Fragments
Similar to sentences, we wish to extract and describe the set of entities that images are composed of.
Inspired by prior work [7], as a modeling assumption we observe that the subject of most sentence
descriptions are attributes of objects and their context in a scene. This naturally motivates the use of
objects and the global context as the fragments of an image. In particular, we follow Girshick et al.
[27] and detect objects in every image with a Region Convolutional Neural Network (RCNN). The
CNN is pre-trained on ImageNet [37] and finetuned on the 200 classes of the ImageNet Detection
Challenge [38]. We use the top 19 detected locations and the entire image as the image fragments
and compute the embedding vectors based on the pixels Ib inside each bounding box as follows:

v = Wm[CNN✓c
(Ib)] + bm, (2)

where CNN(Ib) takes the image inside a given bounding box and returns the 4096-dimensional
activations of the fully connected layer immediately before the classifier. The CNN architecture is
identical to the one described in Girhsick et al. [27]. It contains approximately 60 million parameters
✓c and closely resembles the architecture of Krizhevsky et al [25].

3.3 Objective Function
We are now ready to formulate the objective function. Recall that we are given a training set of N
images and corresponding sentences. In the previous sections we described parameterized functions
that map every sentence and image to a set of fragment vectors {s} and {v}, respectively. All
parameters of our model are contained in these two functions. As shown in Figure 2, our model

3

Figure 2: Computing the Fragment and image-sentence similarities. Left: CNN representations (green) of
detected objects are mapped to the fragment embedding space (blue, Section 3.2). Right: Dependency tree
relations in the sentence are embedded (Section 3.1). Our model interprets inner products (shown as boxes)
between fragments as a similarity score. The alignment (shaded boxes) is latent and inferred by our model
(Section 3.3.1). The image-sentence similarity is computed as a fixed function of the pairwise fragment scores.

We first describe the neural networks that compute the Image and Sentence Fragment embeddings.
Then we discuss the objective function, which is composed of the two aforementioned objectives.

3.1 Dependency Tree Relations as Sentence Fragments
We would like to extract and represent the set of visually identifiable entities described in a sentence.
For instance, using the example in Figure 2, we would like to identify the entities (dog, child)
and characterise their attributes (black, young) and their pairwise interactions (chasing). Inspired
by previous work [5, 22] we observe that a dependency tree of a sentence provides a rich set of
typed relationships that can serve this purpose more effectively than individual words or bigrams.
We discard the tree structure in favor of a simpler model and interpret each relation (edge) as an
individual sentence fragment (Figure 2, right shows 5 example dependency relations). Thus, we
represent every word using 1-of-k encoding vector w using a dictionary of 400,000 words and map
every dependency triplet (R, w1, w2) into the embedding space as follows:

s = f

✓
WR

Wew1

Wew2

�
+ bR

◆
. (1)

Here, We is a d ⇥ 400, 000 matrix that encodes a 1-of-k vector into a d-dimensional word vector
representation (we use d = 200). We fix We to weights obtained through an unsupervised objective
described in Huang et al. [34]. Note that every relation R can have its own set of weights WR and
biases bR. We fix the element-wise nonlinearity f(.) to be the Rectified Linear Unit (ReLU), which
computes x ! max(0, x). The size of the embedded space is cross-validated, and we found that
values of approximately 1000 generally work well.

3.2 Object Detections as Image Fragments
Similar to sentences, we wish to extract and describe the set of entities that images are composed of.
Inspired by prior work [7], as a modeling assumption we observe that the subject of most sentence
descriptions are attributes of objects and their context in a scene. This naturally motivates the use of
objects and the global context as the fragments of an image. In particular, we follow Girshick et al.
[27] and detect objects in every image with a Region Convolutional Neural Network (RCNN). The
CNN is pre-trained on ImageNet [37] and finetuned on the 200 classes of the ImageNet Detection
Challenge [38]. We use the top 19 detected locations and the entire image as the image fragments
and compute the embedding vectors based on the pixels Ib inside each bounding box as follows:

v = Wm[CNN✓c
(Ib)] + bm, (2)

where CNN(Ib) takes the image inside a given bounding box and returns the 4096-dimensional
activations of the fully connected layer immediately before the classifier. The CNN architecture is
identical to the one described in Girhsick et al. [27]. It contains approximately 60 million parameters
✓c and closely resembles the architecture of Krizhevsky et al [25].

3.3 Objective Function
We are now ready to formulate the objective function. Recall that we are given a training set of N
images and corresponding sentences. In the previous sections we described parameterized functions
that map every sentence and image to a set of fragment vectors {s} and {v}, respectively. All
parameters of our model are contained in these two functions. As shown in Figure 2, our model

3

Spatial template ‘right of’

Stack of spatial templates

Pooling

Spatial Relations in Retrieval, Í project page.
{ Mateusz Malinowski and Mario Fritz
A Pooling Approach to Modelling Spatial Relations for Image Retrieval and Anno-
tation
Technical Report, Saarbrücken, Germany, 2014 Í paper

Image Recognition, Í project page.
{ Mateusz Malinowski and Mario Fritz
Learning Smooth Pooling Regions for Visual Recognition
British Machine Vision Conference (BMVC), Bristol, UK, September 09-13, 2013 Í paper

{ Mateusz Malinowski and Mario Fritz
Learnable Pooling Regions for Image Classification
International Conference on Learning Representations: Workshop Track (ICLR Workshop),
Scottsdale, Arizona, USA, May 02-04, 2013 Í paper

Reconstructed by Salsa, error = 6.6743

Compressed Sensing.
{ Mateusz Malinowski
Optimization Algorithms in the Reconstruction of MR Images: A Comparative Study
Master’s Thesis, Saarbrücken, Germany, 2011 Í paper

5/5

Selected Publications

[1] Ask Your Neurons: A Deep Learning Approach to Visual Question Answering
Mateusz Malinowski, Marcus Rohrbach, Mario Fritz
IJCV, 2017

[2] Tutorial on Answering Questions about Images with Deep Learning
Mateusz Malinowski, Mario Fritz
2nd Summer School on Integrating Vision and Language: Deep Learning, Malta, 2016

[3] Ask Your Neurons: A Neural-based Approach to Answering Questions about Images
Mateusz Malinowski, Marcus Rohrbach, Mario Fritz
ICCV (Oral), Santiago, Chile, 2015

[4] Hard to Cheat: A Turing Test based on Answering Questions about Images
Mateusz Malinowski, Mario Fritz
AAAI Workshop on ‘Beyond the Turing Test’, Austin, USA, 2015

[5] A Multi-World Approach to Question Answering about Real-World Scenes based on
Uncertain Input
Mateusz Malinowski, Mario Fritz
NIPS, Montreal, Canada, 2014

[6] Towards a Visual Turing Challenge
Mateusz Malinowski, Mario Fritz
NIPS Workshop on ‘Learning Semantics’, Montreal, Canada, 2014

[7] A Pooling Approach to Modelling Spatial Relations for Image Retrieval and Annotation
Mateusz Malinowski, Mario Fritz
Technical Report, Saarbrücken, Germany, 2014

[8] Learning Smooth Pooling Regions for Visual Recognition
Mateusz Malinowski, Mario Fritz
BMVC, Bristol, UK, 2013

[9] Learnable Pooling Regions for Image Classification
Mateusz Malinowski, Mario Fritz
ICLR Workshop, Scottsdale, USA, 2013

	Introduction
	Contributions of the Thesis
	Contributions to Other Projects
	Intuitive Physics
	Zero-Shot Learning
	Visual Turing Test

	Outline of the Thesis

	From Visual Recognition Towards Holistic Machines
	Large Volume Datasets
	Concluding Remarks

	Visual Recognition
	Concluding Remarks

	Natural Language Understanding
	Symbolic Representation of the Meaning
	Sub-symbolic Representation of the Meaning
	Concluding Remarks

	Holistic Tasks
	Combining Vision with Language
	Challenges
	Concluding Remarks

	Background: Visual Recognition
	Introduction
	Spatial Pyramid Matching (SPM)
	Convolutional Neural Networks (CNNs)
	Recent Recognition Architectures
	Conclusion

	Background: Natural Language Understanding
	Introduction
	Semantic Parsing
	Recurrent Neural Networks
	Conclusion

	Related Work
	Spatial Pooling Regions
	Prior Work
	Contemporaneous and Subsequent Work

	Spatial Relations and Retrieval
	Prior Work
	Contemporaneous and Subsequent Work

	Towards a Visual Turing Test
	Prior Work
	Contemporaneous and Subsequent Work

	Concluding Remarks

	Learning Smooth Pooling Regions for Visual Recognition
	Introduction
	Related Work
	Outline
	Method
	Parameterized Pooling Operator
	Learnable Pooling Regions
	Regularization Terms
	Approximation of the Model

	Experimental Results
	Conclusion

	A Pooling Approach to Modelling Spatial Relations for Image Retrieval and Annotation
	Introduction
	Related work
	Method
	Modeling spatial representations by spatial pooling
	Estimating spatial templates
	Deep fragment embeddings with spatial reasoning

	Experiments
	Dataset
	Evaluation

	Summary
	Visual inspection

	Towards a Visual Turing Challenge
	Introduction
	Towards a Visual Question Answering Task
	Why a Visual Turing Test?

	Challenges
	DAQUAR: Building a Dataset for Visual Turing Challenge
	Quantifying the Performance of Holistic Architectures
	Summary

	A Multi-world Approach to Question Answeringabout Real-World Scenes based on Uncertain Input
	Introduction
	Related work
	Method
	Experiments
	DAQUAR
	Quantitative results
	Human question-answer pairs (HumanQA)
	Qualitative results

	Summary

	Ask Your Neurons:A Neural-based Approach to Answering Questions about Images
	Introduction
	Related Work
	Approach
	Experiments
	Evaluation of Ask Your Neurons
	Answering questions without looking at images
	Human Consensus
	Qualitative results
	Failure cases

	Conclusions
	Additional Material

	Ask Your Neurons:A Deeper Analysis
	Introduction
	Related Work
	Convolutional neural networks for visual recognition
	Encodings for text sequence understanding
	Combining RNNs and CNNs for description of visual content.
	Grounding of natural language and visual concepts.
	Textual question answering.
	Visual Turing Test
	Datasets for visual question answering
	Relations to our work.
	Encoder-decoder Perspective on Visual Turing Test

	Analysis on VQA
	Experimental setup
	Question-only
	Vision and Language
	Summary VQA results

	State-of-the-art on DAQUAR and VQA

	Conclusions and Future Perspectives
	Concluding Remarks
	Future Perspectives

	DDCNA: Data-Driven Compositional Neural Architecture for Image Retrieval based on Compositional Queries
	Introduction
	Related work
	Method
	Data-Driven Compositional Neural Architecture
	Inference
	Learning

	Experiments
	Dataset
	Evaluation

	Qualitative results and Conclusions

	Visual FactNet
	Introduction
	Additional Analysis with Contemporary Architecture
	Visual FactNet: Analyzing Question Answering by a Manipulable Memory Architecture
	Performance Analysis by Question Type

	Summary

	Tutorial on Answering Questions about Images with Deep Learning
	Preface
	Dataset
	Textual Features
	Language Only Models
	Evaluation Measures
	New Predictions
	Visual Features
	Vision+Language
	New Predictions with Vision+Language
	VQA
	New Research Opportunities

	Bibliography
	List of Figures
	List of Tables
	Curriculum Vitae
	Selected Publications

