
Universität des Saarlandes

Doctoral Thesis

Constructing Lexicons of
Relational Phrases

Adam Grycner

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

Saarbrücken, März 2017





Degree Colloquium

Dean of the Faculty Prof. Dr. rer. nat. Frank-Olaf Schreyer

Date 28 June, 2017

Place Saarbrücken, Germany

Examination Board

Chairman Prof. Dr. Gert Smolka

Supervisor and Reviewer Prof. Dr.-Ing. Gerhard Weikum

Reviewer Prof. Dr. Dietrich Klakow

Reviewer Prof. Dr. Simone Paolo Ponzetto

Academic Assistant Dr. Daria Stepanova





Abstract

Knowledge Bases are one of the key components of Natural Language Under-
standing systems. For example, DBpedia, YAGO, and Wikidata capture and
organize knowledge about named entities and relations between them, which
is often crucial for tasks like Question Answering and Named Entity Disam-
biguation. While Knowledge Bases have good coverage of prominent entities,
they are often limited with respect to relations.

The goal of this thesis is to bridge this gap and automatically create lexicons
of textual representations of relations, namely relational phrases. The lexicons
should contain information about paraphrases, hierarchy, as well as semantic
types of arguments of relational phrases.

The thesis makes three main contributions. The first contribution addresses
disambiguating relational phrases by aligning them with the WordNet dictio-
nary. Moreover, the alignment allows imposing the WordNet hierarchy on the
relational phrases. The second contribution proposes a method for graph con-
struction of relations using Probabilistic Graphical Models. In addition, we
apply this model to relation paraphrasing. The third contribution presents a
method for constructing a lexicon of relational paraphrases with fine-grained
semantic typing of arguments. This method is based on information from a
multilingual parallel corpus.
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Kurzfassung

Wissensbanken sind Schlüsselkomponenten für sprachverarbeitende Systeme.
Prominente Vertreter wie zum Beispiel DBpedia, Yago und Wikidata enthal-
ten und organisieren Wissen über benannte Entitäten und deren Relationen
zueinander. Das so strukturierte Wissen spielt oft eine zentrale Rolle für Auf-
gaben wie automatische Fragebeantwortung (engl. Question Answering) oder
Disambiguierung von Entitäten. Wissensbanken haben eine gute Abdeckung
an Entitäten, sind aber hinsichtlich Relationen oft limitiert.

Das Ziel dieser Dissertation ist es diese Lücke zu schließen und automatisch
Lexika zu erstellen, die textuelle Repräsentationen von Relationen, so genannte
relationale Phrasen, zur Verfügung stellen. Die Lexika sollten neben Informa-
tionen zu Paraphrasen und der Hierarchie relationaler Phrasen auch semantis-
che Typisierung der Argumente einer Relation umfassen.

Diese Dissertation leistet dafür drei wesentliche Beiträge. Der erste Beitrag be-
handelt die Disambiguierung relationaler Phrasen durch Verknüpfung mit Ein-
trägen des WordNet Lexikons. Diese Verknüpfung ermöglicht es die WordNet
Hierarchie auf relationale Phrasen zu übertragen. Im zweiten Beitrag wird eine
Methode zur Konstruktion eines Graphen aus Relationen mittels probabilistis-
cher graphischer Modelle vorgeschlagen. Das erzeugte Modell wird darüber
hinaus zur Paraphrasierung von Relationen angewandt. Der dritte Beitrag ist
eine Methode zur Lexikonkonstruktion relationaler Paraphrasen mit feingranu-
larer semantischer Typisierung der Argumente von Relationen. Diese Methode
basiert auf Informationen aus multilingualen parallelen Korpora.
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Chapter 1

Introduction

1.1 Motivation

For true Artificial Intelligence, a computer would need to be capable of un-
derstanding texts written in natural language. The Natural Language Un-
derstanding (NLU) community works on creating a system that could face
this challenge. Often, the key components of NLU methods incorporate world
knowledge from Knowledge Bases (KBs) to reason about the text. KBs such
as YAGO (Suchanek et al., 2007), DBpedia (Auer et al., 2007), Freebase (Bol-
lacker et al., 2008), or Wikidata (Vrandečić and Krötzsch, 2014) are rich in
information on Named Entities, relations between them and their semantic
types. This knowledge is a great asset when solving problems such as Named
Entity Disambiguation, Question Answering, or Textual Entailment.

Particularly helpful is the information on relations between Named Entities.
Knowing that the phrase “was born” corresponds to the KB relation bornIn
could help answer the question “Where was Chopin born?” with the KB as
a source of answers. With the knowledge that “’s birthplace” is a synonym
of “was born,” the paraphrased question “What’s the birthplace of Chopin?”
could be answered without directly knowing that “’s birthplace” corresponds to
the KB relation bornIn. However, synonymy is not the only useful relationship
between relations which could help in solving NLU problems.

Additionally, a comprehensive NLU system should know which relations are
more specific and which relations are more general. The sentence “Maria Curie
was a spouse of Pierre Curie” allows the system to answer the question “Who
was Maria Curie married to?”, because “was a spouse of” is a synonym of
“was married to.” In contrast, the sentence “Chopin was in a relationship with
George Sand” should not be used to answer a question about Chopin’s marital
status. On the other hand, the aforementioned two sentences are sufficient to
give an answer for the questions about Chopin’s and Curie’s romantic relation-
ships.

While KBs have a good coverage of Named Entities, they are often limited with
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2 CHAPTER 1. INTRODUCTION

respect to relations. YAGO contains over 100 relations not organized into any
hierarchy. In DBPedia and Freebase, the number of relations exceeds 5,000.
Moreover, the relations are neither organized into clusters of synonyms nor
into a hypernymy hierarchy. In Freebase and Wikidata the relations are orga-
nized into thematic groups (e.g., Person, Relationships, Sportspeople, Road).
However, organizing relations into thematic groups have a limited impact on
textual reasoning.

1.2 Challenges

To solve the problem of a limited number of relations in KBs, Open Infor-
mation Extraction (OpenIE) (Banko et al., 2007) techniques were introduced.
OpenIE methods acquire facts from texts written in natural language. Unlike
standard algorithms for Knowledge Base Construction (KBC), OpenIE meth-
ods are not limited by a set of specified relations. Any word sequence can
represent a relation. Apart from performing relation extraction, some of the
OpenIE techniques organize the extracted relations into a taxonomy. However,
the hierarchy construction and clustering methods presented in OpenIE have
their limitations.

In PATTY (Nakashole et al., 2012), the clustering and hierarchy construction
approaches are based on the approximate overlap and inclusion of sets of ar-
guments of the relations. Two relations are clustered together if their sets of
arguments, extracted from a text, are almost the same as shown in Figure 1.1.
A similar approach was presented for the hierarchy construction of relations.
Relation A is found to be more specific than relation B if the set of arguments
of A is approximately included in the arguments set of B. This organization of
phrases is depicted in Figure 1.2.

<person>entered into wedlock <person> = <person> married <person>

<George W. Bush, Laura Bush>
<Barack Obama, Michelle Obama>
<Vladimir Putin, Lyudmila Putina>
<Tom Hanks, Rita Wilson>

=

<George W. Bush, Laura Bush>
<Barack Obama, Michelle Obama>
<Vladimir Putin, Lyudmila Putina>
<Will Smith, Jada Pinkett Smith>

Figure 1.1: Example of arguments overlap

This approach has led to a hierarchy which is very sparse and consists of hun-
dreds of thousands of root relations. For 350,000 relational phrases, only ap-
proximately 8,000 hierarchical links were found. This situation is caused by the
sparsity of general relations in natural language texts. The system based on
arguments comparison does not have enough data to reason about the general
relations.

Another important problem related to relation hierarchy construction is scal-
ability. There are hundreds of thousands of relations in texts and the system
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<musician> composed <musical_composition> ⊂ <person> created <entity>

<Chopin, Funeral March>
<Mozart, Eine kleine Nachtmusik>
<Beethoven, Für Elise>
<Vivaldi, The Four Seasons>

⊂

<Chopin, Funeral March>
<Mozart, Eine kleine Nachtmusik>
<Beethoven, Für Elise>
<Shakespeare, Romeo and Juliet>
<Picasso, Guernica>
<Leonardo da Vinci, The Last Supper>
<Gaudí, Sagrada Família>

Figure 1.2: Example of subsumption relationship

should be able to construct a hierarchy for such a large number of relations,
and should take into consideration the global structure of the output hierarchy.

Finally, the system for organizing relations should be able to cope with relation
ambiguity. The textual pattern “covered” could mean recording a new version
of a song or creating an article about some event by a journalist. The meaning
of this textual pattern is highly dependent on the context. Usually, these pat-
terns are disambiguated by enriching them with semantic types of arguments.
However, the type system should have sufficient granularity, so that the textual
pattern could be properly disambiguated. High-level semantic types (Person,
Location, Organization, Event) for relation arguments would not be specific
enough to separate two meanings of the relation “cover.”

1.3 Problem Statement

In this thesis, we concentrate on the problem of constructing a taxonomy of
binary relational phrases. The taxonomy, similarly as in WordNet, should con-
tain information about textual representations of relations, namely relational
phrases, and relationships between them. Among those relationships, we focus
on synonymy (finding relations of similar meaning) and hypernymy (detecting
which relations are more specific and which relations are more general). More-
over, we address the problems of finding counterparts of relational phrases in
other taxonomies (e.g., WordNet) and detecting fine-grained semantic types of
relations’ arguments.

1.4 Thesis Contribution

With this thesis we make the following contributions:

• HARPY: The first contribution of the thesis is HARPY (Grycner and
Weikum, 2014) – a system for aligning relational phrases with Word-
Net verb senses. These alignments can help with building a hierarchy of
relational phrases. Collections of relational paraphrases have been auto-
matically constructed from large text corpora, as a WordNet counterpart
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for the realm of binary predicates and their surface forms. However, these
resources fall short in their coverage of hypernymy links (subsumptions)
among the synsets of phrases. This work closes this gap by computing
a high-quality alignment between the relational phrases of the PATTY
taxonomy, one of the largest collections of this kind, and the verb senses
of WordNet. To this end, we devise judicious features and develop a
graph-based alignment algorithm by adapting and extending the Sim-
Rank random-walk method. The resulting taxonomy of relational phrases
and verb senses, coined HARPY, contains 20,812 synsets organized into
a Directed Acyclic Graph (DAG) with 616,792 hypernymy links. Our
empirical assessment indicates that the alignment links between PATTY
and WordNet have high accuracy, with a Mean Reciprocal Rank (MRR)
score 0.7 and Normalized Discounted Cumulative Gain (NDCG) score
of 0.73. As an additional extrinsic value, HARPY provides fine-grained
lexical types for the arguments of verb senses in WordNet.

• RELLY: The second contribution builds on top of HARPY. RELLY
(Grycner et al., 2015) concentrates on the scalable construction of a high-
precision graph of relational phrases. Relational phrases (e.g., “got mar-
ried to”) and their hypernyms (e.g., “is a relative of”) are central for many
tasks including Question Answering, Open Information Extraction, Para-
phrasing, and Entailment Detection. This has motivated the development
of several linguistic resources (e.g. DIRT, PATTY, and WiseNet) which
systematically collect and organize relational phrases. These resources
have demonstrable practical benefits, but are each limited due to noise,
sparsity, or size. We present a new general-purpose method, RELLY, for
constructing a large hypernymy graph of relational phrases with high-
quality subsumptions using collective probabilistic programming tech-
niques. Our graph induction approach integrates small high-precision
knowledge bases together with large automatically curated resources, and
reasons collectively to combine these resources into a consistent graph.
Using RELLY, we construct a high-coverage, high-precision hypernymy
graph consisting of 20,000 relational phrases and 35,000 hypernymy links.
Our evaluation indicates a hypernymy link precision of 78%, and demon-
strates the value of this resource for a document-relevance ranking task.

• POLY: Finally, the third contribution offers an algorithm for cluster-
ing of relational phrases using multilingual information (Grycner and
Weikum, 2016). Language resources that systematically organize para-
phrases for binary relations are of great value for various NLP tasks
and have recently been advanced in projects like PATTY, WiseNet, and
DEFIE. This work presents a new method for building such a resource
and the resource itself, called POLY. Starting with a very large collec-
tion of multilingual sentences parsed into triples of phrases, our method
clusters relational phrases using probabilistic measures. We judiciously
leverage fine-grained semantic typing of relational arguments for identi-
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fying synonymous phrases. The evaluation of POLY shows significant
improvements in precision and recall over the prior works on PATTY
and DEFIE. An extrinsic use case demonstrates the benefits of POLY for
Question Answering.

1.5 Thesis Outline

The outline of the rest of this dissertation is as follows. Chapter 2 intro-
duces necessary concepts. It also gives an overview of tasks such as Relation
Extraction, OpenIE, Relation Clustering, and Automatic Hierarchy Construc-
tion. Additionally, we discuss potential applications for lexicons of relational
phrases. Chapter 3 presents HARPY, a system for finding alignments between
relational phrases and WordNet verb senses. Chapter 4 introduces RELLY, a
scalable system which uses Probabilistic Soft Logic (PSL) to generate a hier-
archy of relational phrases. In Chapter 5, we investigate the applicability of
PSL in the relation clustering domain. Chapter 6 presents POLY, a system
and a resource which offers semantically typed clusters of relational phrases.
The clustering and the semantic typing stages are influenced by multilingual
information. Finally, Chapter 7 provides concluding remarks and discusses
potential future research directions.





Chapter 2

Related Work

In this chapter, we introduce the terminology related to relational phrases
and their paraphrases. We describe sources of these phrases, methods for
discovering relationships between them and potential applications.

2.1 Terminology

Relational phrases and their paraphrases are the main focus of this thesis.
Before going into details let us first define what relational phrases are, how
they are constructed and what kinds of relationships between these phrases
are of interest to us.

2.1.1 Relational Phrases

Relational phrases are natural language phrases that describe some relation.
These phrases can describe some linguistic relation (e.g., is a subclass of, is a
synonym of ), a relation from a Knowledge Base (KB) (e.g., bornIn, actedIn)
or some relation that is not defined in a KB yet. For example, the group of
phrases: “composed a song to commemorate his home country,” “misses his
home,” “would like to return to,” “pined for” implicitly describes a relation
between an emigrant musician and his home country.

In this thesis, we discuss mainly binary relations – relations that can occur
between two common noun phrases or named entities (like relation was born
in in Example 1). The sentence where the relation is extracted from is often
referred to as relation instance.

Example 1. Chopin was born in a village in Poland.

2.1.2 Relational Phrases Representation

There are multiple choices when it comes to representing a relation by a rela-
tional phrase. A relational phrase can be formed as a subsequence of words,

7



8 CHAPTER 2. RELATED WORK

which occur in a sentence (Example 2). We will refer to this representation as
word sequence representation.

Example 2. was born in

A relational phrase can also be represented as a lifted sequence of words. In the
lifted representation, words of a relational phrase can be replaced by names of
classes they belong to (e.g., part of speech tags, wildcards, or ontological types
(Nakashole et al., 2012)). With this representation, the relation from Example
1 can be transformed into the form in Example 3. Lifted sequence of words
gives an interpretable representation. Moreover, it groups together relational
phrases with small word variances.

Example 3. was born [Preposition] a [LOCATION] in

In the dependency parse tree path representation, a relational phrase is depicted
by a path in a dependency parse tree. The extracted relation from Example 1
could be represented by a path in Example 4.

Example 4.

A different option is a latent representation. Relations could then be rep-
resented by a real-valued vector. Vector representations are less interpretable
but can be used in downstream applications such as analogy discovery (Mikolov
et al., 2013). In Chapters 3, 4, 5, we investigate relational phrases with the
lifted sequence of words representation, whereas in Chapter 6 we consider the
word sequence representation.

2.1.3 Semantic Types of Arguments

The representation of relational phrases can be enhanced with information
about the kind of arguments the relation can take. This can be achieved
by adding semantic types of relation arguments. Similarly as with relational
phrases, this information can be represented in many ways.

In the first option, we could omit the information about semantic types of
relation arguments. This approach brings a risk of merging multiple meanings
under one textual representation. For example, if we ignore semantic type
information, the textual pattern “played in” will express both acting in a movie
and participating in a sport competition.

The second option is to provide types of arguments that usually occur with
a relation. In this case, the relation extracted from the sentence in Example
1 could have a form of “<person> was born in <country>,” where <person>
and <country> are textual representations of classes of domain and range



2.1. TERMINOLOGY 9

arguments of the relation. There are multiple design choices when it comes
to the type system. Popular choices are fixed sets of manually selected types
(e.g. Person, Location, Organization), the full set or subset of the WordNet
noun hierarchy (Fellbaum, 1998), or the WordNet hierarchy combined with
the Wikipedia category system (Suchanek et al., 2007; Navigli and Ponzetto,
2012).

A more expressive but less interpretable option of representing the argument
types is the distributional representation (Moro and Navigli, 2012; Bovi et al.,
2015). In this representation, the types of an argument are represented as a
vector of classes with real-valued scores, as shown in Example 5. The scores
represent probabilities of an argument of a class occurring with the relation.

Example 5.<person:0.95, company:0.05> was born <country:0.75, city:0.25>

The last option for arguments semantic type representation is the latent rep-
resentation. Types are represented as real-valued vectors, which correspond
to arguments in a vector space model. In all Chapters, we consider relational
phrases with single types.

2.1.4 Synonymy

The core interest of this thesis is finding the relationships between relational
phrases. One of them is the synonymy relationship that indicates semantic
equality between two relational phrases. In this thesis, we refer to relational
phrases of the same meaning as synonyms or relational paraphrases interchange-
ably. The relational paraphrases can be represented as a list of pairs or they
can be represented as clusters of relational phrases of a similar meaning (with
soft or hard membership). A sample pair of relational paraphrases is shown
in Example 6 and a sample cluster of relational paraphrases is presented in
Example 7.

Example 6. <person>’s birthplace is <city> ≈ <person>’s born in <city>

Example 7. <person> was born in; ’s birthplace was; came from; originated
from; was from <country>

In Chapter 5 and 6, we will investigate finding synonyms between relational
phrases.

2.1.5 Hypernymy

The second interesting relationship between relational phrases is the hyper-
nymy relationship. This relationship, in the verb sense domain, is also referred
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to as a troponymy relationship. Two relational phrases are in a hypernymy
relationship if the first phrase (hyponym) is more specific than the second one
(hypernym). Example 8 depicts this situation.

Example 8. <person> is a spouse of <person> (hyponym) → <person> is
in a relationship with <person> (hypernym)

Moreover, the hypernymy relationship usually implies that arguments that co-
occur with the hyponym phrase should also co-occur with the hypernym phrase.
Figure 1.2 shows an example of this phenomenon. This relationship is strongly
connected with entailment (one can infer the second relational phrase from the
first) and subsumption (first relational phrase occurs with a subset of argument
pairs of the second relational phrase). In Chapters 3 and 4, we will concentrate
on the hypernymy relationship between relational paraphrases.

2.2 Organizing Relational Phrases

After introducing relational phrases and related concepts, we can now explain
how the phrases can be extracted and organized. In Section 2.2.1 (Relation Ex-
traction), we describe methods that extract relational phrases from a text and
classify them into a fixed set of representable relations. In Section 2.2.2 (Open
Information Extraction), we report systems for extracting relational phrases
without the classification step. The set of representable relations is unbounded
in this case. Next, we investigate the methods for organizing relational phrases
by performing relation clustering (Section 2.2.3) and creating a subsumption
graph of relations (Section 2.2.4).

2.2.1 Relation Extraction

In the first scenario, we consider extracting relational phrases for a fixed set of
relations. We define Relation Extraction as a task of extracting and classify-
ing relational phrases from a text. The classification step maps an extracted
relation to a predefined set of relations. For example, a Relation Extraction
algorithm could extract a phrase “’s birthplace was” from a sentence “Chopin’s
birthplace was Poland” and classify it as a bornIn relation in YAGO KB.

The source of representable relations can be divided into two categories. Rela-
tions can come from the manually defined sets or from the semi-automatically
constructed KBs. In the first category, representable relations are limited to
the manually defined sets, such as WordNet (Fellbaum, 1998) or the ACE RDR
dataset1. In this case, relations usually represent linguistic relations (e.g., hy-
pernymy, synonymy, meronymy, or causality) or handcrafted relations (e.g.,
agent, instrument, location, object, or possessor). One of the most notable
extraction methods using a limited manually defined set of relations is the
work by Hearst (1992), where the system, in a text, was looking for relational

1http://itl.nist.gov/iad/mig/tests/ace/2004/
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phrases describing IS-A relation. In the second category, relations come from
KBs (Suchanek et al., 2007; Auer et al., 2007; Bollacker et al., 2008). In this
category, the relations often represent relations obtained semi-automatically
from web sources such as Wikipedia (e.g., wasBornIn, graduatedFrom, partici-
patedIn).

Methods for relational phrases extraction for a fixed set of relations can also be
divided into two categories. The methods can be supervised or semi-supervised.
First of all, the extraction algorithm can be fully supervised. The training data
is then fully annotated like in (Zhao and Grishman, 2005), where the authors
used the ACE RDR dataset to train a relation detection and extraction system.
The training and test data consisted of 23 different kinds of relations and the
training was performed using Support Vector Machines (SVM). More recent
works for relation extraction and classification employed deep neural networks
(Zeng et al., 2014; Xu et al., 2015). These works leverage datasets provided by
SemEval-2010 Task 8 (Hendrickx et al., 2010). However, these two approaches
concentrated on a much smaller set of possible relations. Systems by Weston
et al. (2013) and Wang et al. (2014) created relation embeddings and, based
on them, they mapped extracted textual patterns to Freebase (Bollacker et al.,
2008) relations.

On the other hand, the semi-supervised methods start with a few high-precision
seed training examples. Suchanek et al. (2006) used a list of famous birthdays
and information included in WordNet to annotate a text and create a training
data. The authors employed features extracted from dependency parse trees of
potential relational phrases to classify whether a relational pattern expresses a
given target semantic relation. The classification step was based on SVM and
k-nearest-neighbors classifiers. The list of target relations included birthdate,
synonymy, and instanceOf. Bunescu and Mooney (2007) used a small amount
of positive and negative examples of pairs of named entities that occur with a
particular relation. Based on this small initial dataset, the relation instances
were extracted. Finally, the extracted relation instances were used to train
the SVM classifier. One of the first approaches for semi-supervised relation
extraction were presented in DIPRE (Brin, 1998) and Snowball (Agichtein and
Gravano, 2000) systems. The authors used a bootstrapping approach with a
few high-precision seed relational patterns. A small number of manually se-
lected seed relation instances were used to extract, from a large corpus, new
relational patterns, which were used to extract even more relation instances.
KnowItAll (Etzioni et al., 2005), for learning how to extract relation instances,
utilized two kinds of training data, namely (1) words that describe the class of
the arguments, and (2) a small set of seed extraction patterns. Bootstrapping
was also used to gather semantic types of relations arguments (Kozareva and
Hovy, 2010). In self-supervised approaches, automatic heuristics generated la-
beled data for training the relation extractor. For example, NELL (Carlson et
al., 2010; Mitchell et al., 2015) is a web-scale self-supervised learning system
that runs continuously. A small handcrafted ontology containing argument
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types and relations is used to constrain and steer the relation instance extrac-
tion process.

Unlike previous learning algorithms that use either a small or manually cre-
ated set of initial training data, distantly-supervised methods (a sub-category of
semi-supervised methods) utilize a huge amount of heuristically created train-
ing examples. The initial training examples are often obtained from KBs like
Freebase, DBpedia, or YAGO, which can be seen as a source of supervision.
In (Mintz et al., 2009), the authors started with 102 relations from Freebase
and 17,000 seed relation instances. The pairs of entities, which occur with
a Freebase relation, were mapped to sentences in a large unlabeled corpus.
From those sentences, textual features were extracted to train a relation clas-
sifier. The algorithm combined both supervised (training a relation classifier)
and unsupervised (extracting relational phrases from an unlabeled corpus) ap-
proaches. PROSPERA (Nakashole et al., 2011), on top of bootstrapping and
distant supervision, used logical consistency rules to improve precision of the
relation instance extraction process. PROSPERA extended SOFIE (Suchanek
et al., 2009) but is more scalable and provides higher recall due to a pattern
generalization approach. The other system by Riedel et al. (2010), on top
of distant supervision, incorporated probabilistic graphical models to improve
the quality of the results. This idea was extended by Hoffmann et al. (2011)
and Surdeanu et al. (2012) to a multi-instance multi-label learning framework
(where an extracted relational phrase could represent multiple KB relations).
Another improvement was proposed by Min et al. (2013) where the quality
of distant supervision training data was improved by reducing false negative
examples. A different kind of extension was presented by Yao et al. (2010).
There, in addition to distant supervision, compatibility of relation types and
arguments types was considered by jointly performing relation extraction and
entity identification. More recently, the authors of (Zeng et al., 2015) followed
recent trends and combined deep neural network model with distant supervi-
sion for relation extraction.

Finally, although most of the mentioned approaches concentrate on the English
language, there are still some systems that extract multilingual relations. For
instance, one of the few examples is BOA (Gerber and Ngomo, 2012) – a sys-
tem that use a bootstrapping approach to find English and German relational
phrases.

2.2.2 Open Information Extraction

Open Information Extraction (OpenIE) methods process natural language texts
to produce triples of a surface form for arguments and relational phrases of
binary relations. For instance, an OpenIE method could extract the tuple
(Chopin, was born in, Poland) from the sentence in Example 1. The paradigm
of OpenIE was introduced to overcome the constraint of a fixed set of repre-
sentable relations. In this paradigm, any phrase can represent some relation,
even if that relation does not exist in any schema of any KB. Unlike the meth-
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ods presented in Section 2.2.1, the OpenIE systems are mostly unsupervised,
that is there is no initial set of relations and no training data at all.

The OpenIE paradigm was introduced with the TextRunner system (Banko et
al., 2007). TextRunner is a fast, highly scalable OpenIE system. The scalability
and high speed of the system come from using only shallow linguistic processing
and performing only a single-pass over the source corpus. After the extraction,
relations and their arguments are assigned a score based on the redundancy in
a text. A similar approach was presented in WOEpos (Wu and Weld, 2010).
Additionally, the authors utilized heuristic matches between Wikipedia infobox
attribute values and their corresponding sentences to construct training data.

Another improvement in the OpenIE domain was presented in the ReVerb sys-
tem (Fader et al., 2011). One of the problems in OpenIE is the extraction of
incoherent and uninterpretable relational phrases. The solution proposed in
ReVerb was to define syntactic constraints on top of possible extracted rela-
tional phrases. The relational phrase must be mediated by a verb, that is have
a form "VERB X* PREP." Moreover, the authors used corpus count statistics
to filter out non-informative extractions.

The next step in the advancement of OpenIE was presented in OLLIE (Mausam
et al., 2012). That work expanded the syntactic scope of relation phrases by
allowing not only verb mediated relational phrases like in ReVerb, but also noun
or adjective mediated ones. Furthermore, the system analyzed the context
around an extraction which allows the filtering out of non-factual extractions.

The aforementioned systems used the shallow linguistic processing for the pur-
poses of OpenIE. WOEparse (Wu and Weld, 2010) introduced dependency-
based parsing in the OpenIE domain. In (Xu et al., 2013), dependency parse
trees were used to (1) determine whether there is a relation between two named
entities, and (2) determine if the extracted words of a relational phrases form an
appropriate relation. The method was presented in two versions. The first ver-
sion was supervised and used SVM with dependency tree kernels. The second
was unsupervised and replaced SVM with handcrafted rules on dependency
parse trees. Similarly, DepOE (Gamallo et al., 2012) and EXEMPLAR (de
Sá Mesquita et al., 2013; Schmidek and Barbosa, 2014) used manually defined
extraction rules on top of dependency parse trees. Moreover, DepOE (Gamallo
et al., 2012) enables the extraction not only in the English, but also in Spanish,
Portuguese, and Galician languages.

OntExt (Mohamed et al., 2011), PATTY (Nakashole et al., 2012), and WiseNet
(Moro and Navigli, 2012; Moro and Navigli, 2013) used semantic types of
relation arguments in the domain of OpenIE. A relational phrase is represented
not only by a textual pattern but is also enriched with information about classes
of relation arguments. This semantic type information can steer the extraction.

Linguistic theories about sentence structure were also employed to help OpenIE.
ClausIE (Corro and Gemulla, 2013), similarly as in OLLIE, overcame the con-
straint of representing relations only with the "VERB X* PREP" pattern. The
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authors proposed a clause-based approach for OpenIE. Using linguistic knowl-
edge about the grammar of the English language, they first detected one of
the twelve possible clauses (sentence templates) and then based on that in-
formation the extraction was performed. The authors of CSD-IE (Bast and
Haussmann, 2013; Bast and Haussmann, 2014) explored Contextual Sentence
Decomposition (CSD) for the purposes of OpenIE. The goal of CSD is to com-
pute all parts of a sentence that semantically belong together. Later, based on
the discovered sentence sub-parts, the triples of two arguments and a relational
phrase were generated. A similar idea of decomposing a sentence into smaller
pieces, which simplifies the extraction of relations with arguments, was pre-
sented in (Angeli et al., 2015). Additionally, after the sentence simplification
and relation/argument extraction, the authors used natural logic inference over
the short sentence sub-parts to determine the maximally specific arguments for
each argument-relation-argument triple.

An extension over simple binary relational phrases was introduced in NESTIE
(Bhutani et al., 2016). The authors proposed a nested representation to ex-
tract higher-order relations. Extracting higher-order relations allows for the
inclusion of context under which the assertions are correct and complete. It
also helps to more accurately reflect the meaning of the original sentence.

So far, texts written in the English language are the main focus of OpenIE
systems. Other languages received much less attention. The already men-
tioned DepOE (Gamallo et al., 2012) and ArgOE (Gamallo and García, 2015)
allowed performing OpenIE for the English, Spanish, Portuguese and Galician
languages based on the dependency parsing and language-independent set of
rules. The recent work of (Faruqui and Kumar, 2015) extracted relational
phrases from Wikipedia in 61 languages using cross-lingual projection. The
extraction was performed by combining the OLLIE (Mausam et al., 2012) tool
with a translation system and projecting multilingual sentences back to En-
glish. The aforementioned systems are designed to be language independent.
One of the examples of a system that is tailored towards language different
than English is ExtrHech (Zhila and Gelbukh, 2014), which is developed for
the Spanish language. Kim et al. (2011) used Korean-English parallel corpora
for cross-lingual projection for the purposes of OpenIE. Systems created for
the English language can also be reused for other languages with limitations.
For example, the authors of (Falke et al., 2016) did not start from scratch with
a system for a foreign language but translated OpenIE extraction rules from
English to German.

2.2.3 Relation Clustering

In Subsections 2.2.1 and 2.2.2, we described what kinds of relational phrases
can be extracted and how extraction can be achieved. The next important
question is how we can organize this knowledge of extracted relations. The
first step in organizing relational phrases is performing the relation cluster-
ing. With relation clustering, we can group together relational phrases of the
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same or similar meaning or, in other words, representing the same relation.
The grouping can be performed by clustering textual representations of rela-
tions (relational phrases) or by clustering contexts where the relations occur
(relation instances). This step is strongly connected with OpenIE because
putting relational phrases into clusters of synonyms can help with describing
the meaning of these ambiguous phrases. As mentioned earlier in Section 2.1.4,
the dataset of clusters of synonymous relational phrases could also be seen as
a resource of relational paraphrases.

The first notable effort to build up a resource for relational paraphrases was
DIRT (Lin and Pantel, 2001a). DIRT, for finding relational paraphrases, used
the extended version of Harris’ Distributional Hypothesis. This version states
that paths in the dependency parse trees linking the same sets of words tend
to have the similar meaning. The similarity metric used to detect relational
paraphrases was based on the pointwise mutual information between arguments
of the considered relations. In the end, the paths in the dependency parse trees
represent relational phrases. VerbOcean (Chklovski and Pantel, 2004) extended
the approach presented in DIRT with information about relationships between
verbs, such as similarity, strength, antonymy, enablement, and happens-before.

The classical clustering approaches from the Data Mining domain were also
used for the purposes of the relation clustering. The authors of (Hasegawa
et al., 2004) applied both Harris’ Distributional Hypothesis and Hierarchical
Agglomerative Clustering (HAC). They looked for pairs of named entities that
co-occur with each other. Then, they defined the similarity between pairs of
named entities as the cosine similarity between their contexts in the tf*idf vec-
tor space model. The context was defined as words that occur between two
named entities. Finally, the authors used HAC with the aforementioned simi-
larity measure to obtain clusters of pairs of named entities. The most frequent
words in the named entities contexts represented both the label of a cluster
and a relational phrase. A similar improved idea was introduced in SONEX
(de Sá Mesquita, 2012). The authors extended the tf*idf model with domain
frequency (df). Furthermore, HAC was accelerated with a sampling technique.
A more restricted version was presented in OntoExt (Mohamed et al., 2011).
Here, first of all, clusters of relations were limited to relations whose argument
types belong to a predefined set of semantic types. Secondly, OntoExt used
the k-means clustering algorithm, which requires providing upfront the number
of output clusters. As the last step, OntExt used a classifier to find the label
of a cluster, namely the most representative and semantically valid relational
phrase.

Relation clustering can also be performed with Probabilistic Graphical Mod-
els. A further extension of aforementioned ideas was presented in RESOLVER
(Yates and Etzioni, 2009). Here, the synonymity of relational phrases and the
synonymity of relation arguments was modeled jointly. The second improve-
ment was a probabilistic relational model that incorporates both information
about distributional similarity as well as textual similarity.
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The usage of Latent Dirichlet Allocation (LDA) was an another improvement
proposed in (Yao et al., 2011; Yao et al., 2012). The authors employed a
latent topic model with signals like relation argument words, words in the con-
text, document theme and sentence theme to group similar relational phrases
together. Moreover, the model allowed for putting a single relational phrase
to multiple clusters. As a result, that approach was able to model polysemy
among relational phrases – a phenomenon where a single relational phrase can
have multiple meanings.

A related approach to latent topic models is Matrix Factorization. The authors
of (Takamatsu et al., 2011) introduced matrix factorization for the purposes
of finding synonymous relational phrases. The matrix columns represented the
extracted relations and the rows represented features describing these relations
– unigrams, bigrams and entity tags in the context. The matrix factorization
algorithm was based on Latent Semantic Indexing (LSI). This approach worked
well for small corpora. The next step, Universal Schema (Riedel et al., 2013)
enabled matrix factorization for the relation extraction on a bigger scale. In this
setup, rows in the matrix represented disambiguated pairs of relation arguments
(named entities) and columns represented either OpenIE relational phrases or
Freebase (Bollacker et al., 2008) relations. The outcome of the factorization
generated similarity scores between relational phrases and Freebase relations.
The produced scores were asymmetric; the similarity between relation A and
B can be different than between B and A. Later, the idea from Universal
Schema was extended with additional contextual information (Petroni et al.,
2015) like pairs of co-occurring entities, semantic types of relation arguments
or documents topics.

The combination of the fine-grained typing and the relational phrase cluster-
ing was proposed in PATTY (Nakashole et al., 2012). Fine-grained typing,
which comes from the YAGO KB (Suchanek et al., 2007), helps to disam-
biguate relational phrases and handle polysemy – a situation where the same
textual pattern can have multiple meanings. For example, “<person> covered
<song>” (recording a new version of a song) and “<person> covered <event>”
(reporting an event in a newspaper) can be separated and put into two differ-
ent clusters. The clustering in PATTY was based on the textual similarity
and argument co-occurrence. In a similar work by Moro and Navigli (2012),
called WiseNet, the clustering was performed before assigning the fine-grained
semantic types. In their case, the clustering was based on Harris’ Distribu-
tional Hypothesis, where the left-hand side and the right-hand side context
was modeled separately. Unlike in PATTY, the types of arguments of relations
were not modeled by a single semantic type, but by a distribution of semantic
types (in WiseNet represented with Wikipedia categories). The extension of
WiseNet (Moro and Navigli, 2013) performed relational phrase clustering using
distributed soft kernel k-medoids algorithm, which allowed a single relational
phrase to belong to different clusters with different strength. The metric used
in the clustering algorithm was based on syntactic and semantic features. A
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more recent work for the clustering of semantically typed relational phrases
was presented in DefIE (Bovi et al., 2015). DefIE restricted relational phrases
to those that come from well-formed sentences from the definitions dictionary.
Similarly as before, the arguments types were represented by a distribution of
semantic types. However, the clustering here came from the Word Sense Dis-
ambiguation (WSD) of relational phrases and the alignment of these phrases
with BabelNet (Navigli and Ponzetto, 2012).

Similarly as in Section 2.2.1 (Relation Extraction) and Section 2.2.2 (Open
Information Extraction), there are far fewer examples of methods for relation
clustering that work with multilingual data. One of such methods is a work
by Lewis and Steedman (2013), where semantically equivalent English and
French relational phrases were clustered together based on the relation argu-
ments’ co-occurrence in French and English monolingual corpora. Another
work, which considered multilingual relational phrases, is an extension of the
Universal schema project (Verga et al., 2016). In that extension, English and
Spanish relational phrases were mapped to Freebase relations and the similarity
score among relational phrases was also computed.

2.2.4 Hierarchies of Relations

Organizing relations into clusters of synonyms, presented in Section 2.2.3, has
a potential in helping with tasks like paraphrase generation and paraphrase
detection. However, clustering leads to a resource that provides only symmet-
ric relationships between relational phrases. There exist application domains
where also asymmetric information could be useful. Constructing a hierarchy
of relational phrases could help with storing the asymmetric relationships be-
tween relational phrases (entailment, hypernymy/hyponymy, or subsumption).

The easiest approach to organizing relations into a hierarchy is to perform it
manually. An example of such endeavor is WordNet (Fellbaum, 1998), where
verb senses, which can also be interpreted as short relations, were manually
organized into a hypernymy/hyponymy hierarchy. Other examples of manually
curated hierarchical taxonomies of verbs or verb classes are included in VerbNet
(Kipper et al., 2008) and FrameNet (Baker et al., 1998).

A semiautomatic method for the verb taxonomy construction was presented
in VerbOcean (Chklovski and Pantel, 2004). Among semantic relationships
like similarity, antonymy, enablement, the resource offers also the happens-
before relationship. With this extra relationship, verbs can be organized into a
hierarchical structure.

So far, we discussed hierarchies that were constructed either in a manual or
semiautomatic way. A significant approach for automatic construction of re-
lation hierarchy is global learning of entailment graphs (Berant et al., 2010;
Berant et al., 2011; Berant et al., 2012b; Berant et al., 2012a; Berant et al.,
2015). Organizing relations in terms of entailment is one way of construct-
ing a relation hierarchy. The first paper in this line of work (Berant et al.,
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2010) used a local classifier for the entailment detection between pairs of rela-
tions, as well as a global optimization criterion executed with Integer Linear
Programming (ILP). With ILP, a transitivity constraint was imposed on the
outcome hierarchy. An extension of this work (Berant et al., 2011) computed
entailment relationships between semantically typed relations using again ILP,
but with an additional graph decomposition. Later, even more computational
optimizations were introduced (Berant et al., 2012a; Berant et al., 2015).

The previously discussed resources concentrated mostly on short or single-
verb relational phrases. An extension of a hierarchy of relational phrases was
provided by Levy et al. (2014), where Berant et al. (2011)’s approach was
used to create an entailment graph of OpenIE style relational phrases. A more
data-driven system, PATTY (Nakashole et al., 2012), used information about
relations arguments co-occurrence to not only cluster relational phrases, but
also organize them into a subsumption hierarchy of relational phrases. Bovi et
al. (2015) employed WSD and hierarchical information from BabelNet to find
hypernymy/hyponymy pairs among relational phrases.

Classical methods for words/concepts hierarchy construction focused on noun
phrases. A famous approach by Hearst (1992) used manually defined lexico-
syntactic patterns (e.g. such NP as NP) to find hypernyms among noun
phrases. This method was extended by Snow et al. (2004). In that extension,
the lexico-syntactic patterns were automatically discovered using a machine
learning approach and semi-supervision. Navigli and Velardi (2010) extracted
hypernyms of words and concepts by (1) detecting whether a sentence is a def-
inition, and (2) extracting hypernyms from the definition template. Ponzetto
and Strube (2011) detected whether Wikipedia category links express the hy-
pernymy relationship based on syntax-based and graph-based methods. A
more recent methods proposed using word embeddings for hypernymy dis-
covery (Anke et al., 2016) and combining huge text corpus with Hearst-like
patterns (Seitner et al., 2016).

The aforementioned systems focused only on detecting whether a pair of noun
phrases are in the hypernymy/hyponymy relationship. More powerful tech-
niques consider the structure of the whole final hypernymy hierarchy using e.g.,
probabilistic (Snow et al., 2006), graph-based (Navigli et al., 2011; Velardi et
al., 2013), or factor graph formulation (Bansal et al., 2014).

2.3 Applications

The creation of lexicons of relational phrases can be related to multiple prob-
lems. Moreover, relational phrases, semantic types of relation arguments, and
relational paraphrases have shown their usefulness in many applications. Here,
we discuss related problems and potential applications for lexicons of relational
phrases.



2.3. APPLICATIONS 19

2.3.1 Knowledge Base Construction

In recent years, the creation of KBs enabled advancement in computer science
by organizing human knowledge in a more structured way. Usually, these
constructs form information in terms of facts. A fact is most often structured in
a (subject, predicate, object) tuple where predicate represents a relation between
subject and object.

The first steps toward organizing human knowledge is visible in manually cu-
rated projects such as Cyc (Lenat, 1995), WordNet (Fellbaum, 1998), and
FrameNet (Baker et al., 1998). WordNet contains information about nouns,
verbs, and adjectives, as well as relationships between them like synonymy,
antonymy, or hypernymy. Offering a hierarchy of verb senses, which can also
be interpreted as simple relations, WordNet is also one of a few resources with
a hierarchy of relations. FrameNet organizes over 1,200 semantic frames, which
can also be interpreted as relations.

More recent endeavors for Knowledge Base Construction (KBC) concentrate on
semi-automatic and automatic approaches on a large scale. These KBs focus
on the storage and organization of Named Entities and relationships between
them. However, the number of represented relations is usually limited.

YAGO (Suchanek et al., 2007; Hoffart et al., 2013; Mahdisoltani et al., 2015)
extracts facts from the Wikipedia category system and Wikipedia infoboxes.
Additionally, it maps Wikipedia named entities and categories to the WordNet
taxonomy. DBpedia (Auer et al., 2007; Lehmann et al., 2015), similarly as
YAGO, is based on Wikipedia. These KBs differ with respect to the number of
represented relations. Whereas YAGO contains around 100 relations, DBpedia
offers thousands concentrating more on the recall rather than on the precision
of included facts. Freebase (Bollacker et al., 2008), for the creation of KB, con-
siders information obtained via crowdsourcing. Later, Freebase was migrated
to Wikidata (Vrandečić and Krötzsch, 2014), which is another example of a
collaboratively edited KB. KnowItAll (Etzioni et al., 2005), unlike previously
mentioned KBs, extracts facts directly from an unstructured content, namely
texts available on Web pages. NELL (Mitchell et al., 2015) learns iteratively
new facts from Web pages and integrates them into previously extracted facts.
KnowledgeVault (Dong et al., 2014) and DeepDive (Shin et al., 2015) are other
examples of KBs. They represent large-scale KBs where automatic methods
extract facts with probabilistic annotation (facts have a probability of being
true). Finally, a multilingual KB, BabelNet (Navigli and Ponzetto, 2010; Nav-
igli and Ponzetto, 2012), merges multiple KBs into one structure.

All aforementioned KBs can benefit from the existence of a large taxonomy of
relational phrases. First of all, knowing the relationships between the predi-
cates in a KB can help with the extraction of new facts. With the knowledge
that “<professor> works for <university>” is a hypernym of “<professor> is
a professor at <university>,” we can generate a new fact (Chris, works for,
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Stanford) from (Chris, is a professor at, Stanford). Moreover, the relations in
a taxonomy of relational phrases could be incorporated in a KB.

2.3.2 Textual Entailment

Another relevant application for a taxonomy of relational phrases is the textual
entailment task. The task is defined as detecting whether there is a directional
relationship between two textual expressions – T text and H hypothesis. T
entails H if the meaning of H can be inferred from T (Dagan et al., 2013).

Lexicons of relational phrases and relational paraphrases were analyzed for
their usefulness in the textual entailment scenario. Marsi et al. (2007) used
DIRT’s (Lin and Pantel, 2001a) relational paraphrases for Textual Entailment
Recognition. The relational paraphrases were treated as rewriting rules in the
paraphrase substitution algorithm on dependency parse trees. A similar idea
was presented in (Dinu and Wang, 2009a; Dinu and Wang, 2009b), where DIRT
paraphrases were additionally extended and refined with WordNet synonyms.

2.3.3 Question Answering

Another natural place for applying relational paraphrases is the Question An-
swering (QA) domain. A taxonomy of relational phrases could improve the
question transformation component. For example, a QA system would not
know how to answer the question “What’s the birthplace of Frédéric Chopin?”
if the sentence “Chopin’s birthplace is Poland” did not occur in the text. How-
ever, with the relational paraphrases “<person> ’s birthplace is <country>”
and “<person> ’s born in <country>,” the system could answer that ques-
tion with the sentence “Chopin was born in Poland.” The task of finding a
concrete, short textual answer for a question formulated in natural language is
called Open-Domain Question Answering (Harabagiu et al., 2003).

The Open-Domain Question Answering problem was used multiple times for
the extrinsic evaluation of relational phrases (Lin and Pantel, 2001b) and entail-
ment rules (Schoenmackers et al., 2010). Both DIRT (Lin and Pantel, 2001b)
and SHERLOCK (Schoenmackers et al., 2010) were shown to have a positive
impact on the QA results. Ravichandran and Hovy (2002) went beyond rela-
tional phrases and used bootstrapping approaches to extract regular expression
patterns applied to query paraphrasing on the TREC-10 dataset.

The potential of relational paraphrases was shown also in the Semantic Pars-
ing problem. The goal of Semantic Parsing is to transform a natural language
question into a logical representation that can be executed by a database. The
enhanced ReVerb triples (Lin et al., 2012), containing semantically typed rela-
tional phrases, were used by Berant et al. (2013) to connect natural language
expressions with the predicates from Freebase. That work was extended by a
version containing a paraphrasing model (Berant and Liang, 2014). Another
example of using connections between natural language relational phrases with
KB predicates was shown by Yahya et al. (2013).
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The aforementioned systems operate over a curated KB and consider a limited
set of possible relations between entities. PARALEX (Fader et al., 2013) and
its extension (Fader et al., 2014) offer end-to-end systems for QA which do
not transform questions into logical representations but consider only (subject,
predicate, object) query representation. The systems made use of both cu-
rated KBs, as well as automatically extracted resources like ReVerb, to answer
natural language questions. The automatically extracted resources provided
information about more relations between named entities. Moreover, the sys-
tems included PPDB (Ganitkevitch et al., 2013) as one of the ingredients of
the question paraphrasing component. A similar idea of using relational para-
phrases for question reformulation was presented in (Xu et al., 2016).

Another extension was presented in (Bordes et al., 2014) where the system, as
one of the components, learned vector embeddings of ReVerb relational phrases.

2.3.4 Other Applications

Knowledge Base Construction, Textual Entailment, and Question Answering
are the main problems where relational phrases and relational paraphrases
could be applied to. However, lexicons of relational phrases could be used in
many other application domains.

Relational paraphrases can be employed for Information Extraction (IE). Pre-
emptive IE (Shinyama and Sekine, 2006) grouped the same types of events. For
example, it can group articles about hurricane emergencies and discover what
relations represent this kind of event (e.g., “<hurricane> hit <city>”). The
clustering was performed based on the overlapping relational phrases between
the articles. The fact spotting projects (Tylenda et al., 2014b; Tylenda et al.,
2014a) used relational paraphrases to find textual evidence of facts included in
KBs.

Another domain where relational phrases can be applied is Information Re-
trieval. Cafarella et al. (2006) considered using DIRT paraphrases to navigate
over OpenIE-like tuples via query reformulation. Information about synonyms
and hypernyms of relational phrases can be also employed in the search over
Web tables (Gupta et al., 2014).

Bingel and Søgaard (2016) utilized conditional random fields and paraphrases
from PPDB (Ganitkevitch et al., 2013) for text simplification. The PPDB
resource, among available paraphrases, also includes relational paraphrases.
Apart from text simplification, relational phrases were also used for headline
generation (Alfonseca et al., 2013) and text summarization (Pighin et al., 2014).
A taxonomy of relational phrases could be of use in the paraphrase generation
and paraphrase detection tasks (Androutsopoulos and Malakasiotis, 2010). Re-
lational paraphrases can serve as rewriting rules that transform a sentence into
another one (Bar-Haim et al., 2007; Bar-Haim et al., 2009).
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Rahman and Ng (2011) used relational phrases between Named Entities and
noun phrases to perform Coreference Resolution. RESOLVER (Yates and Et-
zioni, 2009), for an extrinsic evaluation of the relational paraphrases mining
mechanism, considered the Cross-Document Entity Resolution task.

The semantically typed relational phrases from PATTY (Nakashole et al., 2012)
were employed for Named Entity Typing (Nakashole et al., 2013). The pre-
sented method was suitable for typing emerging entities, which have not been
included in any KB yet. In that situation, typed relational phrases, which oc-
cur in the neighborhood of the named entity, give a very strong signal about
its potential semantic type.

Relational paraphrases could be used to improve Machine Translation. Using
paraphrases to generate more training data was shown to have a positive in-
fluence on Machine Translation systems (Nakov, 2008a; Nakov, 2008b; Marton
et al., 2009).



Chapter 3

HARPY: Alignment of Relational
Phrases

This chapter describes the first step into building a taxonomy of relational
paraphrases. A taxonomy of relational paraphrases could help with the reason-
ing problem in natural language in tasks such as paraphrasing and entailment
detection. The first resource presented in this thesis, HARPY (Grycner and
Weikum, 2014), offers high-quality alignments between the relational phrases
from the PATTY taxonomy (Nakashole et al., 2012) and the verb senses from
WordNet (Fellbaum, 1998). Alignment information can form a useful resource
for analyzing relational phrases. In addition, it can be used as a component
of methods for relation hierarchy construction (e.g. RELLY (Grycner et al.,
2015)).

3.1 Introduction

Motivation: This work addresses the task of discovering and organizing para-
phrases of relations between entities (Lin and Pantel, 2001a; Fader et al., 2011;
Nakashole et al., 2012; Moro and Navigli, 2012; Alfonseca et al., 2013). This
task involves understanding that the phrases “travels to,” “visits” and “on
her tour through” (relating a person and a country) are synonymous and that
“leader of” and “works with” (relating a person and an organization) are in a
hypernymy relation: the former is subsumed by the latter. This kind of lexical
knowledge can be harnessed for advanced tasks like question answering (Fader
et al., 2013), search over web tables (Gupta et al., 2014), or event mining over
news (Alfonseca et al., 2013).

Work along these lines has developed large repositories of relational para-
phrases, most notably, the collections ReVerb (Fader et al., 2011), PATTY
(Nakashole et al., 2012), and WiSeNet (Moro and Navigli, 2012). The largest of
these, PATTY, contains approximately 350,000 synsets of phrases, each anno-
tated with ontological types of their two arguments (e.g., person × country, or
politician × political_party). However, the subsumption hierarchy of PATTY

23
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is very sparse. It contains only 8,000 hypernymy links between phrases, and
the entire taxonomy is kind of fragmented into a many-rooted DAG (directed
acyclic graph). Moreover, the synsets are rather noisy in the long tail with
low confidence. WiSeNet, an alternative resource, has approximately 40,000
synsets and no hypernymy links.

WordNet (Fellbaum, 1998), on the other hand, is a very rich resource on syn-
onymy and hypernymy. However, its coverage of binary relations (as opposed
to unary predicates, mostly nouns) is restricted to (mostly) single-word verbs.
WordNet has approximately 13,767 verb synsets, organized into a hierarchy
with 13,239 hypernymy links. Unlike PATTY, though, WordNet does not as-
sociate verb senses with a lexical type signature for the subject and object
arguments of a verb, and it is sparse in multi-word phrases. Resources like
VerbNet (Kipper et al., 2008) or FrameNet (Baker et al., 1998) aim to over-
come these deficiencies, but are much smaller.

Goal and Approach: In this work, our goal is to overcome the limitations
of resources like PATTY and WordNet. We want to reconcile the wealth of
PATTY’s multi-word paraphrases with lexical typing, on one hand, and the
clean hypernymy organization of WordNet verbs, on the other hand. To this
end, we compute an alignment between the phrase synsets that PATTY pro-
vides with the verb senses of WordNet. This has mutual benefits:

1. we enhance many PATTY phrases with the clean hypernyms of WordNet,
this way augmenting the subsumption hierarchy.

2. we extend WordNet verb senses with the lexical type signatures derived
from PATTY.

Our approach uses a variety of features from both of the two aligned resources,
as well as further auxiliary sources. Algorithmically, we build on an advanced
notion of random walks over graphs, known as SimRank (Jeh and Widom,
2002). The system architecture is presented in Figure 3.1.

Contributions: Our method is able to construct a high-quality taxonomy of
relational paraphrases, coined HARPY, that combines the richness of PATTY
with the clean hierarchy of WordNet. The algorithm for computing the align-
ment is efficient and robust. One can think of the alignment as a way of sense-
disambiguating PATTY phrases by mapping them to WordNet. HARPY links
20,812 of the PATTY phrases to WordNet. Conversely, 4,789 out of 13,767
WordNet verb senses are enriched with information from PATTY. We evalu-
ate the quality of HARPY by extensive sampling with human assessment. We
also demonstrate its benefit by the extrinsic use-case of annotating WordNet
verb senses with lexical type signatures. The experimental data and HARPY
resource are publicly available at www.mpi-inf.mpg.de/yago-naga/patty/.
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Figure 3.1: HARPY system architecture

3.2 Constructing a Candidate Alignment Graph

The general idea of the main algorithm is to align phrase synsets from the
PATTY taxonomy with verb synsets in WordNet. To this end, we first con-
struct a directed Candidate Alignment Graph (CAG). Section 3.3 will then
discuss the actual alignment algorithm.

Vertices of the CAG represent:

• synsets of relational phrases in PATTY, or phrases for short,

• verb senses from WordNet, verbs for short,

• features of either phrases or verbs.

Edges of the CAG correspond to relations between phrases, verbs, and features.
We consider three types of relations here: similarity, hypernymy, and vertex-
features. Edges are weighted (see Section 3.2.5).

3.2.1 Vertex Types

There are 6 kinds of vertices in the CAG. Since we aim to connect PATTY
phrases with WordNet verbs, these two are the main kinds of vertices. Ad-
ditionally, the graph contains feature vertices representing noun senses from
WordNet (nouns for short), surface verbs as occurring in sample texts, sentence
frames from WordNet, and specifically derived phrase-verb vertices connecting
phrases and verbs. The latter are constructed by combining each phrase with
its top-10 most similar verb senses. To this end, we retrieve all verb synsets
from WordNet and rank the verb synsets by the cosine similarity between the
support sentences that PATTY provides for its phrases (i.e., sentences from
Wikipedia that contain instances of a phrase) and the usage examples in Word-
Net glosses. The resulting vertices are labeled by the combination of phrase id
and verb-sense id. Having these combinations as vertices, rather than simply
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connecting phrases and verbs via edges, leads to a CAG structure that is bet-
ter suited for our random walk algorithms (see Section 3.3). Table 3.1 gives
examples of the 6 vertex types.

3.2.2 Edge Types

Edges in the graph represent 3 different types of relationships between vertices:

• For all relational phrases, all verb senses from WordNet and also all noun
senses (as feature vertices), we capture their hypernymy relations as edges.

• We connect phrase-verb vertices with their constituents, phrase vertices
and verb vertices, by similarity edges, with weights derived from the
similarity computation.

• The remaining edges connect phrases or verbs with their respective fea-
ture vertices. There are 6 kinds of such vertex-feature edges, explained
next.

3.2.3 Verb Features

The following features are associated with verb senses. A lemma edge connects
a verb sense with one or more surface-verb vertices, as given in WordNet glosses.
A domain edge edge connects a verb sense with noun senses that describe
the usage domain of the verb (e.g. literature, politics). This information is
retrieved from WordNet and the WordNet Domains project (Bentivogli et al.,
2004). While the latter does not provide sense-disambiguated information,
we need to add a mechanism which maps domain information to its WordNet
noun sense counterpart. Therefore, we map domain surface nouns to their most
frequent senses.

In addition, we harness the WordNet links of type derivationally related form
to construct further edges between verb senses and noun-sense features in our
CAG. The last types of edges for verb-sense features are sentence frame edges,
between verb vertices and feature vertices of type sentence frame. WordNet
for each verb sense provides information about its sentence frames. There are
defined 35 possible sentence frames.

3.2.4 Phrase Features

Relational phrases are associated with the following features. A verb-in-phrase
edge connects a phrase with a surface verb whenever the phrase contains the
verb after lemmatization. Analogously to the domain edges for verb senses, we
introduceWikipedia-category edges between relational phrases and noun senses.
PATTY provides us with Wikipedia articles where instances of a phrase oc-
cur. We consider all Wikipedia categories of such an article as a source for
related noun senses. We use ontological types of the articles and the categories
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and their mappings to WordNet provided by the YAGO project (Suchanek et
al., 2007). Finally, we also introduce sentence-frame edges between relational
phrases and sentence-frame feature vertices. To avoid polluting the CAG with
overly noisy connections, we apply specific tests. First, we check if the lexical
argument types of a phrase and a frame are compatible (e.g., musician is com-
patible with person, but not with location). Second, we compare characteristic
prepositions in the phrase and the frame. We create and edge only if these
additional tests are affirmative.

Examples of vertices connected by the different edge types with verb vertices
and phrase vertices are shown in Table 3.2 and 3.3, respectively.

3.2.5 Edge Weights

All edges in the graph are weighted. The weights are derived from frequency
counts of features and/or similarity scores, or are simply set to 1 for binary
cases (e.g., hypernymy edges). Lemma edges between verb senses and surface
verbs vertices are weighted in proportion to the frequency count of a verb
sense, as given by WordNet. Wikipedia-category edges have weights based on
the number of occurrences of a relational phrase in Wikipedia articles and the
frequencies of categories. Similarity edges have weights set according to the
cosine similarity between examples of a verb sense and examples of a relational
phrase.

Finally, we normalize all weights in the graph by requiring that the sum of
weights of the incoming edges is equal to 1 for every vertex. For the verb and
phrase vertices, we perform an additional normalization so that each kind of
edge has the same impact in terms of the total edge weight per edge kind as
shown in Figure 3.2.

phrase

category

w1

category

w2

category

w3

syntax

w4

syntax

w5

types

w6

examples

w7

hypernym

w8

w1 + w2 + w3 = w4 + w5 = w6 = w7 = w8

w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 = 1

Figure 3.2: Example of the edge weights normalization procedure

The above procedure leads to a CAG with 238,437 vertices and 4,776,116 edges.
Figure 3.3 shows an excerpt for illustration.
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Figure 3.3: Excerpt from Candidate Alignment Graph

3.3 Alignment Algorithm

Our algorithm runs on the directed CAG. Intuitively, it aims to find “strong
paths” between relational-phrase vertices and verb-sense vertices. We use
random-walk methods to this end. For each relational phrase, we compute
scores and a ranked list of verb senses to which the phrase likely corresponds.
The top-ranked verb would ideally be the desired alignment.

3.3.1 SimRank

We employ the SimRank algorithm (Jeh and Widom, 2002), an advanced form
of random walks. SimRank computes similarity scores between a pair of ver-
tices in a weighted graph, based on the neighborhoods of the two vertices.
The definition, formally given in Equation 3.1, is recursive: two vertices are
similar if their neighborhoods are similar. In the standard SimRank equation,
Ii(a) represents the ith (incoming) neighbor of vertex a, and C is a constant
dampening factor.

s(a, b) = C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s (Ii(a), Ij(b)) (3.1)

SimRank helps capturing long-distance dependencies between vertices in a
graph. This would not be achieved by simpler similarity measures of context
vectors. Note that SimRank is quite different from (Personalized) PageRank
methods; SimRank can be seen as a random walk over pairs of nodes, not
over individual nodes. During the CAG construction, we tried to keep the
path lengths between phrase vertices and verb vertices uniform for all kinds
of feature vertices, to avoid biasing the influence of specific features. Since
the SimRank similarity is based on two random walks meeting, the method
works best when all paths between source-target node pairs have even length.
With this property SimRank produces better results; we introduced explicit
phrase-verb vertices for this reason.
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3.3.2 SimRank with Fingerprints

Unfortunately, SimRank has very high computational complexity: the run-
time of a straightforward implementation is O(Kn4), where n is the number of
vertices in the graph and K is the number of iterations in an iterative fixpoint
computation (in the style of the Jacobi method). However, there are much
faster approximations of SimRank. We use a variant known as SimRank with
fingerprints (Fogaras and Rácz, 2005) To approximate the SimRank score for
two vertices, this method computes the expected first meeting time for two
random walks originating from the two vertices (with randomized restarts).
To this end, the method precomputes a fingerprint for each vertex a: a data
structure holding the visiting probabilities of vertices for standard random
walks originating in a. A fast implementation actually runs random walks
a specified number of times, to estimate the visiting probabilities. For two
vertices a and b, the expected number of hops until their random walks meet
in a common vertex is then efficiently computed from the fingerprints of a and
b. Moreover, this method allows computing the SimRank score for a pair of
vertices on demand, only for vertex pairs of interest, rather than having to
compute all O(n2) scores.

The original SimRank method works with unweighted graphs. In our setting,
we modify transition probabilities according to edge weights. Our extended
SimRank variant is equivalent to Equation 3.2, where W (a, b) denotes the
weight of the edge between a and b. This equation is similar to the weighted
variant of (Antonellis et al., 2008).

sw(a, b) = C ∗
|I(a)|∑
i=1

|I(b)|∑
j=1

W (a, Ii(a)) ∗W (b, Ij(b)) ∗ sw(Ii(a), Ij(b)) (3.2)

Unlike the original SimRank method, we also incorporate random jumps in
the underlying random-walk model. Each vertex has a different random jump
probability, explained next.

3.3.3 Random Jumps

The original SimRank definition favors vertices with smaller neighborhoods. To
avoid this bias, we introduce a form of smoothing on the graph. Whenever a
phrase vertex or verb vertex lacks some of the feature types that other vertices
may have, we introduce an option for random jumps from the given vertex to
any other vertex in the graph. For each missing kind of feature (e.g., domain
feature or sentence-frame feature), we assign a probability mass of ε, a small
constant, for a random jump. So if several features are missing, there is an
accumulated probability for a jump. The target of a random jump is always
chosen with uniform distribution. A final normalization of edge weights (with
linear adjustment) ensures that the possible transitions from a vertex form a
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proper probability distribution. The method works also without smoothing
(i.e., setting the constant to 0), but the results tend to be worse. The results
are not very sensitive to the exact choice of the random-jump parameter.

3.3.4 Filtering and Candidate Pruning

The target of our alignment is the WordNet verb hierarchy, but not all rela-
tional phrases can be mapped into this target space. Therefore, we restrict
ourselves to a subset of relational phrases that contain exactly one verb. This
eliminates noun phrases (e.g. “father of”) and phrases that contain multiple
verbs (e.g. “succeed and died,” “succeeded in persuading”). Noun phrases
should be aligned to the WordNet noun hierarchy and it should be treated as a
different task (using e.g. state-of-the-art work (Ponzetto and Navigli, 2010)).
Multi-verb phrases often pose semantic difficulties. Note that the verbs in
these phrases are always transitive verbs, as PATTY is derived from subject-
phrase-object structures in large corpora. We also used the cardinalities of the
support sentences in PATTY for pruning the noisy tail of phrases, by dropping
all phrases that have only a single instance.

To avoid computing SimRank scores for every pair of vertices, we prune the
search space as follows. We consider only pairs of relational phrases and verb
senses which contain the same surface verb (with lemmatization).

3.3.5 Deriving Hypernymy Links

Once we have alignments between phrases and verbs, we derive hypernymy re-
lations among phrases as follows. Whenever phrases p1 and p2 are aligned with
verb senses v1 and v2, respectively, and v1 is a direct or transitive hypernym
of v2, we infer that p1 is a hypernym of p2. We consider transitive hypernyms
because not every WordNet verb sense has a phrase aligned with it; without
transitivity we would obtain a very sparse hierarchy. By the acyclicity of the
WordNet hypernymy structure, the process yields a proper DAG. However, the
output contains redundant links (direct ones and transitive ones connecting the
same pair of phrases); these are subsequently eliminated by a transitive reduc-
tion algorithm (Aho et al., 1972). The example of deriving hypernymy links is
presented in Figure 3.4.

3.4 Evaluation

We evaluated the quality of the HARPY alignments by manual assessment of
a large sample set, and compared it against several alternative methods.

Baselines: We compared our SimRank-based method against the following
baselines, each given the same feature set:

• Cosine Similarity: for each relational phrase and verb sense, we create a
contextual vector (in the spirit of distributional semantics) consisting of
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Figure 3.4: Deriving Hypernymy Links

the features described in Section 3.2, with tf-idf-based weights (Manning
et al., 2008a). The alignment ranking is computed by the cosine similarity
of tf-idf-weighted contextual vectors.

• Modified Adsorption (MAD): a label propagation algorithm (Talukdar
and Crammer, 2009) run on the Candidate Alignment Graph. In our
setting, each relational phrase is a label. Initially, only the respective
phrase vertices have this label. The algorithm propagates labels to other
vertices, based on the graph’s edge weights. The top-k results for the
alignment of a phrase are the verb senses with the highest probability for
the phrase label. We use the Junto Label Propagation Toolkit 1.

• Personalized PageRank (PPR): a method for random walks with random
jumps back to the start vertex (Haveliwala, 2002). For each phrase, a
separate PPR is performed. The ranking of verb senses is produced by
the visiting probabilities according to the PPR scores.

• Most Frequent Sense (MSF): For each phrase, we consider only verb
senses that contain the same surface verb (with lemmatization), and rank
them by the WordNet frequency information.

Assessment: We retrieved a random subset of 261 relational phrases consid-
ered for alignment, and showed the results of the different alignment methods
to two human judges. For each relational phrase, we displayed its textual form,
list of usage examples, and the top-5 ranked list of verb senses computed by
each method under comparison. Each verb sense was enriched with informa-
tion about its lemmas, its gloss, and examples. The evaluators were asked to
identify the verb sense that is semantically equivalent to the given relational
phrase (including the option of saying “none”). The example of the evaluated
phrase is presented in Figure 3.5.

Quality Measures: As all methods compute a ranked list of verb senses for
a given phrase where exactly one list item is correct, we use quality measures

1http://code.google.com/p/junto/
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Figure 3.5: Excerpt from the evaluation framework

geared for such rankings: Mean Reciprocal Rank (MRR) and Normalized Dis-
counted Cumulative Gain (NDCG). In addition, we report on the precision
for top-k results, for small k (1, 3, or 5). Here, a top-k result is considered
good if the correct verb senses appear among the top-k alignments, for a given
phrase.

Results: The results are shown in Table 3.4. Our method outperforms all
baselines. Among the competitors, MFS shows the best performance. This is
not so surprising; MFS is rarely outperformed in word sense disambiguation
(McCarthy et al., 2004; Navigli and Lapata, 2010). Our gains over MFS are
remarkable. In total, HARPY aligned 20,812 phrases to 4,789 verb senses, and
also obtained 616,792 hypernymy links between phrases.

The evaluation process led to high inter-judge agreement, with Cohen’s Kappa
around 0.678. The number of samples, 261, was large enough for statistical
significance: we performed a paired t-test forMRR, NDCG and Precision@1
of the SimRank results against each of the baselines, and obtained p-values
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below 0.05.

SimRank MFS PPR MAD Cosine
MRR 0.698 0.664 0.553 0.463 0.252
NDCG 0.733 0.705 0.584 0.510 0.279
Precision@1 0.571 0.517 0.410 0.318 0.161
Precision@3 0.793 0.778 0.644 0.594 0.307
Precision@5 0.874 0.866 0.736 0.670 0.391

Table 3.4: Evaluation

Tables 3.5 and 3.6 shows example results that HARPY computed. Table 3.5
has correct outputs. We see that HARPY manages to distinguish between the
sport, musical, and theatrical senses of the verb “play.” As shown in Table 3.6,
HARPY also produces some spurious results, with various factors contributing
to these errors. For example, the phrase “covered on album” was aligned with
the first sense of “cover” since there is no musical sense for “cover” in WordNet.
Other errors arise from mistakes in the original PATTY repository of relational
phrases. For example, the travel sense of the verb “head” was aligned with the
phrase “head of” because “head of” and “head to” were in the same PATTY
synset. Yet another cause of problems is the extremely fine granularity of
WordNet: even for humans it is often hard to distinguish between love as a
state of liking and love as being enamored.

3.5 Extrinsic Study: Lexical Types for WordNet Verbs

As an extrinsic use-case for the HARPY resource, we studied the task of in-
ferring lexical types for the subject and object arguments of a WordNet verb
sense. For a given verb sense, we propagate the type signature of the relational
phrase with the highest alignment score.

For comparison, this procedure is performed with the HARPY alignments as
well as the alignments by the baseline methods. We showed a uniformly sam-
pled set of 261 results to human judges, who assessed as valid or invalid. Ad-
ditionally, we had a set of the 100 most-confident results (those derived from
the highest alignment scores) assessed in the same manner.

For the uniform samples, the type signature derived from HARPY had a pre-
cision of 0.46, whereas the best of the baselines (PPR and Cosine) achieved
0.39. For the top-100 samples, HARPY achieved a precision of 0.81. Table 3.7
shows some example results, demonstrating the added value beyond WordNet.

3.6 Related Work

With the proliferation of knowledge bases, like Freebase (Google Knowledge
Graph), DBpedia, YAGO, or ConceptNet, there is a wealth of resources about
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Relational phrase Verb Sense WordNet definition
[musician] played with [musician] play3 play on an instru-

ment
[actor] played role in [event] act3 play a role or part
[person] played hockey for [club] play1 participate in

games or sport
[person] was shooting [person] shoot2 kill by firing a mis-

sile
[movie] be shot in [city] film1 make a film of

something
[composition] written by [composer] compose2 write music
[writer] writing at [organization] write1 produce a literary

work
[musician] performed in [city] perform3 give a performance
[architect] also designed in [city] design3 create the design
[sovereign] succeeded his father [person] succeed2 be the successor of
[person] succeeds in [artifact] succeed1 attain success
[person] wrote nine books [person] publish3 issued for publica-

tion
[artist] illustrated works [write] illustrate3 supply with illus-

trations
[aviator] flew for [organization] fly3 operate an airplane

Table 3.5: Correct examples

Relational phrase Verb Sense WordNet definition
[person] covered on album [artifact] cover1 provide with a cov-

ering or cause to be
covered

[person] head of [artifact] head1 to go or travel to-
wards

[person] becomes sure that [person] become1 enter or assume
a certain state or
condition

[person] is loved by [person] love1 have a great affec-
tion or liking for

[wrestler] wrestled in [organization] wrestle1 combat to over-
come an opposing
tendency or force

Table 3.6: Wrong alignment examples

entities and semantic classes (i.e., unary predicates and their instances). In con-
trast, the systematic compilation of paraphrases for relations (i.e., binary pred-
icates) has received much less attention. Some of the knowledge-base projects,
especially those that center on Open Information Extraction (OpenIE), make
intensive use of surface patterns (e.g., verbal phrases) that indicate relations
(e.g., (Carlson et al., 2010; Fader et al., 2011; Mausam et al., 2012; Speer and
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Havasi, 2012; Wu et al., 2012)); however, they do not organize these patterns
into a WordNet-style taxonomy.

Prior work towards such taxonomies go back to the projects DIRT (Lin and
Pantel, 2001a), VerbOcean (Chklovski and Pantel, 2004), and VerbNet (Kip-
per et al., 2008). However, the resulting resources were mostly restricted to
single verbs. ReVerb (Fader et al., 2011) extended these approaches by au-
tomatically mining entire phrases from Web contents, but still with the focus
on verbal structures. PATTY (Nakashole et al., 2012) used sequence min-
ing algorithms for gathering a general class of relational phrases, organizing
them into synsets, and inferring lexical type signatures. WiseNet (Moro and
Navigli, 2012) harnessed phrases from Wikipedia articles and clustered them
into synsets of relational phrases. All of these works are fairly limited in their
coverage of subsumptions (hypernymy) between relational phrases.

There is ample work on computing alignments among different kinds of lexi-
cal thesauri, dictionaries, taxonomies, ontologies, and other forms of linguistic
or semantic resources. Prominent cases along these lines include the align-
ments between FrameNet and WordNet (Ferrández et al., 2010), VerbNet and
PropBank (Palmer, 2009), Wikionary and WordNet (Meyer and Gurevych,
2012), and across multilingual WordNets and/or Wikipedia editions (e.g., (de
Melo and Weikum, 2009; Navigli and Ponzetto, 2012)). For aligning ontologies
based on OWL and RDF logics, there is a series of annual benchmark competi-
tions (Grau et al., 2013). Most approaches are based on relatedness measures
and context similarities between words or concepts and their neighborhoods
in the respective resources (e.g., (Banerjee and Pedersen, 2003; Budanitsky
and Hirst, 2006; Gabrilovich and Markovitch, 2007)). Algorithmically, this
translates into a nearest-neighbor (most-similar) assignment between entries
of different resources. More sophisticated methods use similarities merely to
assign weights to relatedness edges in a graph, and then employ random walks
on such a graph (e.g., (Pilehvar et al., 2013)). The prevalent method of this
kind uses Personalized Page Rank (Haveliwala, 2002)), computing stationary
probabilities for reaching nodes in one resource when starting random walks
on a given node of the other resources (with randomized restarts).

Computing alignments between resources can sometimes be viewed as a task
of disambiguation words or concepts in one resource by mapping them to
the other resource (e.g., mapping Wiktionary entries onto WordNet senses).
Thus, the huge body of work on word sense disambiguation (WSD) is relevant,
too. Methodologically, this research also relies, to a large extent, on relat-
edness/similarity measures and random walks on appropriately constructed
graphs. See (Navigli, 2009) for an extensive survey.

There is remotely related work on several other tasks in computational linguis-
tics and text mining. These include semantic relatedness between concepts or
words (e.g., (Gabrilovich and Markovitch, 2007; Pilehvar et al., 2013)), type
inference for the arguments of a phrase (e.g., (Kozareva and Hovy, 2010; Nakas-
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hole et al., 2013)), and entailment among verbs (e.g., (Hashimoto et al., 2009)).
The SemEval-2010 task on classification of semantic relations (Hendrickx et al.,
2010) addressed the problem of predicting the relation for a given sentence and
pair of nominals, but was limited to a small prespecified set of relations.

3.7 Conclusion

HARPY is a new resource that aligns lexically typed multi-word phrases for
binary relations with WordNet verb senses. By judiciously devising appropri-
ate features and adapting and extending an advanced random-walk method,
SimRank, we achieved high-quality alignments, as shown in our evaluation.
This creates added value for both the resource of relational phrases, PATTY,
and WordNet. Phrases are now organized into a hypernymy hierarchy with
high coverage, an important aspect on which the PATTY work fell short.
WordNet verb senses, on the other hand, are extended by a rich set of para-
phrases and also by lexical type signatures inherited from the phrases. We
believe that this new resource is a useful asset for computational linguis-
tics. The future work could concentrate on aligning additional resources like
WiseNet (Moro and Navigli, 2012), FrameNet (Baker et al., 1998) or Verb-
Net (Kipper et al., 2008). The HARPY resource is publicly available at
www.mpi-inf.mpg.de/yago-naga/patty/.



Chapter 4

RELLY: Hierarchy of Relational
Phrases

The work in Chapter 3 offers high-quality alignments between relational phrases
and WordNet verb senses. Using alignment information, we could impose the
WordNet verb sense hierarchy on the relational phrases. This simple approach
leads to a hierarchy which has high recall (unlike the hierarchy in PATTY) but
unfortunately suffers from low precision. This chapter describes RELLY (Gryc-
ner et al., 2015), which improves the HARPY output hierarchy by combining
multiple signals within the Probabilistic Soft Logic (PSL) framework.

4.1 Introduction

One of the many challenges in natural language understanding is interpreting
the multi-word phrases that denote relationships between entities. Semanti-
cally organizing the complex relationships between diverse phrases is crucial to
applications including question answering, open information extraction, para-
phrasing, and entailment detection (Yahya et al., 2012; Fader et al., 2011;
Madnani et al., 2012; Dagan et al., 2005). For example, a corpus containing
the phrase “George Burns was married to Gracie Allen” allows us to answer the
query “Who was the spouse of George Burns?”. However, “Jay Z is in a rela-
tionship with Beyoncé” provides insufficient information to determine whether
the couple is married. To capture the knowledge found in a text, relational
phrases need to be systematically organized with lexical links like synonymy
(“married to” and “spouse of”) and hypernymy (“in a relationship” generalizing
“married to”).

Many projects address the challenge of understanding relational phrases, but
existing linguistic resources are often limited to synonymy, suffer from low
precision, or have low coverage. Systems such as DIRT (Lin and Pantel,
2001a), RESOLVER (Yates and Etzioni, 2009), and WiseNet (Moro and Nav-
igli, 2012) have used sophisticated clustering techniques to determine synony-
mous phrases, but do not provide subsumption information. The PATTY

39
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(Nakashole et al., 2012) project goes beyond clustering and introduces a sub-
sumption hierarchy, but suffers from sparsity and contains few hypernymy links.
The HARPY (Grycner and Weikum, 2014) project extended PATTY, gener-
ating 600,000 hypernymy links, but with low precision. Berant et al. (2011)
introduced entailment graphs that provided a high-quality subsumption hi-
erarchy. This method required partitioning the graph and the largest com-
ponent consisted of 120 relations. A number of manually-curated relational
taxonomies such as WordNet (Fellbaum, 1998), VerbNet (Kipper et al., 2008),
and FrameNet (Baker et al., 1998) also offer high-precision hierarchies with
limited coverage.

In this work, we introduce RELLY, a method for producing a hypernymy graph
that has both high coverage and precision. We build on previous work, inte-
grating the high-precision knowledge in resources such as YAGO (Suchanek
et al., 2007) and WordNet with noisy statistical information from OpenIE
projects PATTY and HARPY. RELLY maintains a consistent graph by includ-
ing collective global constraints such as transitivity, asymmetry, and acyclicity.
Scalability is often a concern when employing collective reasoning over large
corpora, but our system can produce graphs with over 100,000 edges on conven-
tional hardware. As a result, we produce a large, complete, and high-precision
hypernym graph that includes alignments and type information.

RELLY leverages Probabilistic Soft Logic (PSL) (Bach et al., 2015), a pop-
ular probabilistic modeling framework, to collectively infer hypernymy links
at scale. PSL uses continuously-valued variables and evidence, allowing easy
integration of uncertain statistical information while encoding dependencies
between variables using a first-order logic syntax. We define a PSL model with
rules that combine statistical features, semantic information, and structural
constraints. Statistical features, such as argument overlap and alignments to
WordNet verbs senses, allow RELLY to learn from large text collections. Se-
mantic information, such as type information for relation arguments, improves
precision of the resulting inferences. Structural constraints, such as transitivity
and acyclicity, enforce a complete and consistent set of edges. Using this PSL
model, we learn rule weights with a small amount of training data and then
perform joint inference over all hypernymy links in the graph.

We highlight three major contributions of our work. First, we introduce RELLY,
a scalable method for integrating statistical and semantic signals to produce a
hypernymy graph. RELLY is extensible and can easily incorporate additional
information sources and features. Second, we generate a complete and precise
hypernymy graph over 20,000 relational phrases and 35,000 hypernymy links.
We have publicly released this hypernymy graph as a resource for the NLP
community. Third, we present a thorough empirical evaluation to measure the
precision of the hypernymy graph as well as demonstrate its usefulness in a
real-world document ranking task. Our results show a high precision (0.78)
and superior performance in document ranking compared to state-of-the-art
models such as word2vec (Mikolov et al., 2013).
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4.2 Background

Before describing the details of RELLY, we begin with necessary background
information on the task of semantically organizing relational phrases, as well
as the probabilistic soft logic modeling language which we use to develop our
hypernymy graph construction method.

4.2.1 Relational Phrases

Relational phrases are textual representations of relations which occur be-
tween named entities (e.g., “Terry Pratchett”) or noun phrases (e.g., “the great
writer”). Nakashole et al. (2012) identify relational phrases with the semantic
type signature of the relation, i.e. the fine-grained lexical types of left- and
right-hand side arguments. For example, “Terry Pratchett published his new
novel The Colour of Magic” is an instance of the relational phrase “<person>
published his * ADJ novel <book>.” In this case, the left-hand argument (the
domain of the relation) has the type <person> and the right-hand argument
(the range of the relation) has the type <book>.

Several projects from the Open Information Extraction (OpenIE) community
have addressed the task of finding synonyms of relational phrases using cluster-
ing algorithms. The biggest collection of relational phrases and their synonyms
is currently the PATTY project (Nakashole et al., 2012), with around 350,000
semantically typed relational phrases. Prominent alternatives are WiseNet
(Moro and Navigli, 2012), which offers 40,000 synsets of relational phrases,
PPDB (Ganitkevitch et al., 2013), which contains over 220 million paraphrase
pairs, as well as DIRT and VerbOcean (Lin and Pantel, 2001a; Chklovski and
Pantel, 2004) which inspired the approach and results pursued here.

Relational phrases can be further organized into a hierarchical structure accord-
ing to their hypernymy (subsumption) relationships. For example, “<person>
moves to <country>” is a hypernym of the relational phrase “<musician>
emigrates to <country>.” Of the aforementioned collections, only PATTY
attempts to automatically create a subsumption hierarchy for the extracted re-
lational phrases. The authors of the HARPY system argue that the sparseness
of PATTY’s graph comes from the lack of general phrases in the source corpus.
As a solution, they propose using the WordNet verb hierarchy (which contains
general verb senses) to construct a similar hierarchy with PATTY’s relational
phrases. The graph obtained by HARPY consists of around 600,000 hyper-
nymy links for around 20,000 relational phrases. However, the final graph was
not evaluated for precision; rather, the evaluation was instead concentrated on
the alignment between verb senses and relations.

In this work, we will make use of several concepts that are closely related to
hypernymy, which we define below. Note that although the following definitions
concern verbs, we also apply them to relational phrases:
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• hypernym: the verb Y is a hypernym of the verb X if Y is more general
than X. To perceive is a hypernym of to listen (Bai et al., 2010).

• troponym: the verb Y is a troponym of the verb X if doing Y is doing
X, in some manner. To lisp is a troponym of to talk (Bai et al., 2010).
Troponym is a verb counterpart for hyponym, which applies to nouns. In
this work we use these two terms interchangeably.

• entailment: the verb Y is entailed by X if, by doing X, you must be
doing Y . To sleep is entailed by to snore (Bai et al., 2010).

4.2.2 Probabilistic Soft Logic

Our approach is based on Probabilistic Soft Logic (PSL), a popular statistical
relational learning system which we briefly describe here. PSL is a templating
language for a class of graphical models known as hinge-loss Markov random
fields. PSL models are specified using rules in first-order logic syntax, express-
ing dependencies between interrelated variables. For example, the PSL rule

w : Hypernym(P1, P2) ∧Hypernym(P2, P3)
⇒ Hypernym(P1, P3)

expresses the transitivity of hypernyms: if phrase P1 is a hypernym of phrase
P2 and P2 is a hypernym of P3, then P1 is a hypernym of P3. Rules are
weighted (w) to indicate their importance in the model, and weight learning in
PSL allows these weights to be learned from training data.

Each rule is grounded by substituting the variables in the rule with constants,
e.g.“married to” and “relative of” for P1 and P2. However, unlike previous
approaches such as Markov Logic Networks, the atoms in each logical rule
take values in the [0,1] continuous domain. In addition to providing a natural
way of incorporating uncertainty and similarity into models, continuous-valued
variables allow the inference objective to be formulated as convex optimization
making MAP inference extremely efficient, with empirical performance that
scales linearly with the number of ground rules.

4.3 Hypernymy Graph Construction

In this section we detail RELLY, our system for constructing a hypernymy
graph. RELLY incorporates semantic and statistical information from sources
such as YAGO, WordNet, PATTY, and HARPY, and uses PSL to combine and
reason over these sources. For each source, we introduce a PSL predicate (Table
4.1). The predicates are divided into three categories: statistical (continuous-
valued features arising from statistical methods), semantic (binary predicates
acquired from knowledge bases) and output (the target variables). We relate
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these predicates with a series of rules which combine alignment links, argument
similarity, and hierarchical information. The collection of rules defines the PSL
model, which we describe in Section 4.3.1 and Table 4.2.

In the resulting hypernymy graph, an edge from a relational phrase R1 to a
relational phrase R2 denotes that R1 is more specific than R2, i.e. R2 is a
hypernym of R1. For example, there is an edge from R1 = “<musician>
emigrates to <country>” to R2 = “<person> moves to <country>.” In the
PSL model the strength of this edge is represented by the confidence score of
the predicate hyponym(R1, R2).

4.3.1 PSL Rules

The PSL rules that define the model are shown in Table 4.2. Each of the
rules is additionally supplied with a weight which describes its importance
in the model. The weights are learned from a small hand-crafted hierarchy
of relational phrases. The full PSL model combines multiple statistical and
semantic signals into the hypernymy graph.

Our model includes rules to encode signals that provide evidence for hyper-
nymy, as well as rules to encode consistency in the graph. One statistical
signal for phrase subsumption is argument overlap. If the arguments to a re-
lational phrase R1 are also found as arguments to another relational phrase
R2, R1 and R2 may be synonymous or R2 may be a hypernym of R1. We use
two measures of argument overlap, weedsInclusion and pattySubsumption, in
rules 1 and 2, respectively, to capture the relationship between argument over-
lap and subsumption. Another signal, used in rule 3, is the alignment between
relational phrases and WordNet verb senses. If relational phrases R1 and R2
are aligned to WordNet verb senses V b1 and V b2 which are in a hyponymy
relationship, then this is the evidence that R1 is more specific than R2. An
example of using HARPY alignment links and WordNet hierarchy is shown in
Figure 4.1.

We encode local consistency requirements using Rules 4–6. Rule 4 (types com-
patibility) is a constraint to restrict hypernymy links to be between relations
whose types are compatible, i.e they are identical or the types of the more
specific relation are subtypes of the types of the more general relation. Rules
5 and 6 create a transitive closure of both WordNet and YAGO hierarchies.
As a result of these rules, we can use indirect hyponyms (in rule 3) or indirect
subtypes (in rule 4).

Finally, rules 7, 8 and 9 shape the structure of the output graph with collective
global constraints. Rule 7 (asymmetry) removes bidirectional links, rule 8
(transitivity) creates a transitive closure of the graph and rule 9 (acyclicity)
prevents the creation of small cycles in the graph.
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<person> created a <artifact> make.03

create_verbally.01

<person> wrote a poem <artifact> write.01
HARPY alignment

HARPY alignment

WordNet
hierarchy

WordNet
hierarchy

hyponym

Figure 4.1: HARPY alignment usage

4.3.2 RELLY Overview

RELLY has four stages: data pre-processing, rule weight learning, inference,
and thresholding.

First, in the data pre-processing stage, we assign confidence scores of 0 or 1
for the binary-valued semantic predicates in the PSL model. For example, the
wordnetHyponym(V b1, V b2) confidence score is set to 1 if there is a hyponymy
link between verb senses V b1 and V b2 and 0 otherwise. In other cases, the
confidence is set to a similarity score of a feature which is represented by a
predicate. For example, the weedsInclusion(R1, R2) confidence is equal to
the Weeds inclusion score between relations R1 and R2.

In the next stage the weights of the PSL rules described in Table 4.2 are learned
from a small handcrafted graph of relational phrases. The weight learning
is performed using an EM algorithm. Later, the most-probable explanation
(MPE) state of the output predicates is inferred.

Finally, we export the inferred confidence scores of the predicate hyponym and
perform additional cleaning. Whenever two links contradict each other (e.g. we
have both hyponym(R1, R2) and hyponym(R2, R1)) we remove the link with
the lower confidence score. If both predicates have the same confidence score
we exclude them both from the final graph. Additionally, we only consider
links with a confidence score above an empirically chosen threshold of 0.2.

4.4 Evaluation

In our experiments, we use a large corpus of relational phrases to construct
a hypernymy graph using RELLY. We evaluate RELLY using both intrinsic
and extrinsic evaluation. In the intrinsic evaluation, we asked human anno-
tators to judge the relationship between two relational phrases and compared
results from several hypernymy graphs. In the extrinsic evaluation, we used the
hypernymy graph for a real-world document ranking task and measured the
mean reciprocal rank (MRR) for a number of methods. In both evaluations,
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the hypernymy graph constructed by RELLY demonstrates significantly better
performance than competing algorithms.

4.4.1 Dataset

We use RELLY to build a hypernymy graph with data from the PATTY
and HARPY projects. The input to our system consists of 20,812 relational
phrases and the associated argument types extracted from the English-language
Wikipedia website using the PATTY system. For simplicity, we only include
relational phrases that contain exactly one verb (e.g. “took the throne”), ex-
cluding noun phrases (e.g. “member of”) and phrases containing multiple verbs
(e.g. “hit and run”). The verb “to be” and modal verbs were not considered
in the dataset. We also include HARPY alignments to the corresponding verb
senses in WordNet for each phrase in the corpus. Additionally, we use a subset
of the type-subsumption hierarchy from YAGO consisting of 144 types and 323
subsumption relationships.

During graph inference, RELLY evaluated 7.9M possible hypernymy links using
9.7M ground logical rules and constraints. Ultimately, RELLY produced 35,613
hypernymy links between relational phrases with confidence scores above 0.2.
The hypernymy graph consisted of 3,730 roots. Running RELLY on a multi-
core 2.27GHz server with 64GB of RAM required approximately 20 hours. For
comparison, PATTY produced 8,162 subsumption links out of 350,569 phrases
with approximately 2,300 roots.

4.4.2 Intrinsic Evaluation

In our intrinsic evaluation, we assess the precision of hypernymy links inferred
by RELLY and compare with the precision of hypernymy graphs of PATTY and
HARPY. In this evaluation, we measure precision for both the most confident
hypernymy links in the system (precision@100) and the precision of a random
sample of 100 hypernymy links. Each set of hypernymy links were presented
to several human annotators for labeling.

To measure precision@100, we choose the top 100 hypernymy links using the
confidence scores reported by PSL. We similarly choose the top 100 links from
PATTY using the PATTY subsumption score. Since HARPY does not provide
confidence scores, we were unable to compute precision@100 for HARPY.

For each of the three systems, we used the full set of hypernymy links they pro-
duce, which consisted of 8,000 links from PATTY, 600,000 links from HARPY
and 35,000 links from RELLY. We randomly sampled 100 hypernymy links
from each of these systems.

We presented the selected hypernymy links to several human annotators. The
labeling task required the annotator to judge the relationship between two
relational phrases in a hypernymy link. For each relational phrase, we provided
annotators with type information about the phrase arguments (domain and
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Prec. Range Cvg.
precision@100
RELLY 0.87 0.81 - 0.92 35K
PATTY 0.83 0.76 - 0.90 8K
random sample
RELLY 0.78 0.71 - 0.84 35K
PATTY 0.75 0.68 - 0.82 8K
HARPY 0.43 0.35 - 0.52 600K

Table 4.3: Intrinsic evaluation

range) and examples of sentences that use the relational phrase. Based on this
information, annotators could make one of four judgments:

1. the phrases are unrelated.

2. the phrases are synonymous.

3. the first phrase is more specific than the second phrase.

4. the second phrase is more specific than the first phrase.

The example of the evaluation survey is presented in Figure 4.2. This evaluation
task had good inter-annotator agreement, with a Cohen’s Kappa of 0.624.
Separately, the precision@100 dataset had Cohen’s Kappa of 0.708 and the
randomly sampled dataset had Cohen’s Kappa of 0.521.

We show the results of the intrinsic evaluation in Table 4.3 with 0.9-confidence
Wilson score interval (Brown et al., 2001). In comparison to HARPY and
PATTY, RELLY has higher precision for both precision@100 and random eval-
uations. Precision in RELLY is comparable to PATTY, but RELLY has more
than four times as many hypernym links. HARPY has far more hypernymy
links, but with a precision of 0.43, we find that many of these links are incorrect.

Table 4.4 includes example hypernymy links from RELLY. There are examples
where PATTY’s subsumption is a dominant signal (“<person> publicly ac-
cused <person>”⇒ “<person> accused <person>”). We also observe YAGO
type hierarchy influence (“<athlete> played for <team>”⇒ “<person> played
for <organization>”), as well as the influence of combined WordNet hierarchy
with HARPY alignments (“<person> marry daughter <person>” ⇒ “<per-
son> joins <person>”). The advantage of RELLY is that it computes the final
graph jointly and incorporates transitivity, asymmetry and acyclicity rules. It
leads to less semantic drift in longer hypernymy chains (e.g. Figure 4.3) com-
pared with PATTY where “<organization> merged <organization>” can lead
to “<team> beat <team>.”
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<organization> acquires <organization>

<organization> purchased share <organization>

<organization> bought half of <company>

<company> bought half of <company>

<company> later bought half of <company>

Figure 4.3: Chain of hypernymy

4.4.3 Ablation Study

Two advantages of RELLY that we have highlighted are easily incorporating
new information sources and collectively enforcing global constraints. To ana-
lyze the influence of these system components, we performed an ablation study
where we omitted PSL rules corresponding to specific model features. Using
this approach, we quantify the importance of these features to RELLY’s per-
formance.

First, we demonstrate the value of type information in determining hyper-
nymy. The YAGO type hierarchy allows RELLY to detect hypernymy links
between relational phrases where types do not match exactly, but are com-
patible through type subsumption. When the YAGO type hierarchy rules are
omitted from the model, coverage is reduced dramatically; the resulting hy-
pernymy graph contains only 12,000 hypernymy links in contrast to the 35,000
links in the original model. Additionally, removing YAGO type information
harms precision, with a precision of 0.75 ± 0.09 with 0.9-confidence Wilson
score interval for a random sample of 100 examples.

Next, we show how global constraints on the hypernymy graph such as anti-
symmetry and acyclicity improve the quality of the hypernymy graph. Since
the relational phrases generated by PATTY are clustered to find synonymous
relations, these global constraints prevent RELLY from merging clusters. When
the anti-symmetry and acyclicity rules were removed from the model, the re-
sulting hypernymy graph included approximately 500 additional hypernymy
links, while 10 existing links were removed. We manually evaluated the newly
introduced links, and found that the majority of links were false positives.

4.4.4 Entailment Graph Induction

We compared the performance of PSL against the Integer Linear Programming
(ILP) formulation by Berant et al. (2011). The comparison was performed on
the task of creating entailment graphs as described by Berant et al. (2011). this
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Prec. Rec. F1
Berant et al. (2011) 0.422 0.434 0.428
PSL 0.461 0.435 0.447

Table 4.5: Results for Entailment graphs induction

task is strongly related to finding hypernyms of relational phrases. The experi-
ments were executed on the dataset of 10 manually annotated graphs. In total
this dataset contains 3,427 positive and 35,585 negative examples. Our model
uses the transitivity rule (entails(A,B)∧ entails(B,C)⇒ entails(A,C)). We
also include the local entailment scores (score(A,B) ⇒ entails(A,B)) which
were released by Berant et al. (2011). Table 4.5 presents micro-averaged pre-
cision, recall and F1 scores for this comparison.

PSL was much faster than the other exact methods used for this problem. To
compare efficiency we measured the run-time of our method. Without any
graph decomposition it took on average 232 seconds. The experiments were
performed on a multi-core 2.67GHz server with 32GB of RAM. The methods
reported in (Berant et al., 2012a), which did not utilize graph decomposition
method, had run-time above 5000 seconds.

4.4.5 Extrinsic Evaluation

The ultimate goal of producing a high-quality hypernymy graph is to deepen
our understanding of natural language and improve performance on the many
NLP applications. One such application is document retrieval, where billions
of queries are performed each day through search engines. In our extrinsic
evaluation, we demonstrate how a hypernymy graph can improve performance
on a document ranking and retrieval task.

We consider a task where an input query document is compared to a cor-
pus of documents with the aim of finding the most relevant related docu-
ments. To isolate the evaluation to relational phrases, we anonymize the docu-
ments, by replacing all named entities and noun phrases with placeholders. For
example, the sentence “The villain has already fled to the Republica
de Isthmus” is anonymized to “* has already fled to *.” Anonymized re-
trieval has potential applications in security and for sensitive documents.

We collected a dataset consisting of movie plot summaries from two differ-
ent websites, Wikipedia and the Internet Movie Database (IMDB). We chose
plot synopses from 25 James Bond movies and 23 movies based on the Mar-
vel Comics characters. For each plot synopsis, we have two plot descriptions:
one from Wikipedia and another from IMDB. Given a query in the form of
an anonymized plot description from one website, the task is to rank the
anonymized plot descriptions from the other dataset using relational phrase
similarity. For example, given a query plot description of “Iron Man” from
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Wikipedia, rank plot descriptions from IMDB with the goal of maximizing
the ranking of the corresponding “Iron Man” plot summary. We evaluate
the quality of these rankings using the mean reciprocal rank (MRR) score,
MRR = 1

|Q|
∑|Q|

i=1
1

ranki
. Here, Q is the number of documents in the collection

(i.e. 2*48 = 96) and ranki is the position of the counterpart document in the
ranking of document i.

As baseline algorithms, we use a unigram word2vec model and a bigram model.
In the unigram word2vec model documents are represented by the average
of the 300-dimensional word vectors trained on part of Google News dataset
(about 100 billion words) (Mikolov et al., 2013). We could not use the bigram
word2vec model because of the frequent occurrence of the placeholder symbol.
In the bigram model, documents are represented by vectors in the bag-of-
bigrams model with bigram frequency weights. The similarity measure in both
cases is the cosine similarity measure.

As the first of our approaches we proposed a solution purely based on relational
phrases. In the relational phrases model we extract relational phrases from a
text and we map them to their synsets from PATTY (clusters of synonyms).
A phrase is mapped to a synset if the Jaccard similarity between tokens of
extracted relation and tokens of one of the phrases in the synset is above
a threshold. Next we represent the document as a vector of the relational
phrase synsets weighted by the frequency of the synset in the document (bag-of-
relational_phrases). The similarity score between two documents is the cosine
similarity between two vectors representing two documents. The ranking is
created based on the similarity scores. In the relational phrases + hypernyms
model we add hypernyms of the extracted relational phrases to the document
vector (based on the hypernymy graph). Hypernyms are additionally weighted
by the confidence score produced by the algorithm described in the Section 4.3.
In the second approach, we combine relational phrases models with the best
of the baselines. The similarity score is then equal to λsim1 + (1 − λ)sim2.
The λ parameter is trained on a different dataset (2*8 plot descriptions of
Harry Potter movies). Training was performed by maximization of the MRR
score using grid search. We consider the combination of the bigram model
with relational phrases, as well as the combination of the bigram model with
relational phrases + hypernyms.

The results of the experiment are presented in Table 4.6. The best MRR score
was obtained by relational phrases + hypernyms + bigrams model. The number
of samples, 96, was large enough for statistical significance. We performed a
paired t-test for MRR between each of these methods. The obtained p-values
were below 0.05.

4.5 Related Work

The biggest sources of hypernyms, subsumptions, and hierarchical structure
can be found in existing knowledge bases. Examples of these are Freebase
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MRR score
word2vec 0.26
bigram 0.55
relational phrases 0.28
+ hypernyms 0.25
+ bigrams 0.58
+ hypernyms + bigrams 0.60

Table 4.6: Extrinsic evaluation (Bond & Marvel)

(Bollacker et al., 2008), YAGO, DBPedia (Lehmann et al., 2015), and Google
Knowledge Vault (Dong et al., 2014). However, these knowledge bases are
mainly concentrated on named entities and noun phrases, and the variety of
relations between entities is much smaller. Relations and information about
them are underrepresented.

OpenIE systems try to solve this problem by extracting new relations from nat-
ural text. These new relations do not necessarily follow the standard schema
of knowledge bases. Additionally, these systems often organize the newly ex-
tracted relations by clustering or hierarchy construction. A first attempt to
extract and cluster similar relations was presented in DIRT. This work was
followed by projects such as ReVerb, PATTY, WiseNet, NELL (Carlson et al.,
2010), and RESOLVER (Yates and Etzioni, 2009). PATTY and WiseNet also
introduced semantic types to their concept of relational phrases. All of these
systems rely on the co-occurrence of arguments of clustered relations. A differ-
ent approach was presented in PPDB, where the authors cluster phrases based
on the similarity of translations to other languages.

Of these systems, only PATTY attempted to create a hierarchy of relations
and the result was very sparse. HARPY aimed to overcome this problem by
disambiguating and aligning relational phrases with WordNet, and performing
a simple reconstruction of the WordNet hierarchy on top of relational phrases
from PATTY. A very similar problem was addressed in the entailment graph
project (Levy et al., 2014). The authors automatically created graphs of entail-
ments between propositions, using ILP as one of the main components. Propo-
sitions can be encoded as triples of form (subject, relation, object). Edges in
the entailment graph occur between these triples, whereas edges connect typed
relations in PATTY and HARPY. Moreover, the relations in the propositions
were mainly limited to single verbs, whereas in our case we also consider longer
relational phrases. Relations with semantic types were also used in typed en-
tailment graphs (Berant et al., 2011). However, the type hierarchy was not
considered there, which prevented from creating links between two relations
with different semantic types. The input dataset was also smaller – the biggest
graph consisted of 118 relations.

Although there is a scarcity of automatically created taxonomies of relations,
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there exist several manually curated taxonomies. Manually crafted verb or
relation hierarchies are available in WordNet, VerbNet and FrameNet. Word-
Net has 13,767 verb synsets, which are organized into a hierarchy with 13,239
hypernymy links.

Automatic construction of taxonomies of named entities or noun phrases has re-
ceived much more attention than organization of verbs or relations. In Snow et
al. (2006), the WordNet taxonomy was extended by 10,000 novel noun synsets
with hypernym-hyponym links. In Bansal et al. (2014), the authors recon-
structed WordNet’s noun hypernymy/hyponymy hierarchy from scratch using
a probabilistic graphical model formulation. Another method of organizing
noun phrases was proposed by Mehdad et al. (2013), where an entailment
graph of noun phrases was constructed.

Building a hypernymy graph for relational phrases is strongly related with the
textual entailment task (Dagan et al., 2010). This concept was introduced in
the Recognizing Textual Entailment (RTE) shared task (Dagan et al., 2005).
Instead of short typed relational phrases, the input data are two texts – the
entailing text T and the hypothesis text H. According to Dagan et al. (2005)’s
definition, “T entails H if, typically, a human reading T would infer that H is
most probably true.”

In RELLY, we use Probabilistic Soft Logic (PSL) as the main ingredient of our
approach. PSL was successfully used for numerous other applications including
knowledge graph construction (Pujara et al., 2013), trust in social networks
(Huang et al., 2012b), ontology alignment (Broecheler and Getoor, 2009), and
social group modeling (Huang et al., 2012a).

4.6 Conclusion

This work presents RELLY, a scalable method for integrating statistical and
semantic signals to produce a hypernymy graph of relational phrases. We
used RELLY to create a hypernymy graph that has both high coverage and
precision, as shown in our evaluation. RELLY is extensible and can easily in-
corporate additional information sources and features. The hypernymy graph
of relational phrases could potentially be useful for many problems of natu-
ral language processing and information retrieval. For example, we applied
the hypernymy graph to a document-relevance task, which we used to eval-
uate RELLY extrinsically. In a future work, RELLY could incorporate more
information sources and statistical signals and be expanded to infer multi-
verb or noun relational phrases. The RELLY resource is publicly available at
www.mpi-inf.mpg.de/yago-naga/patty/.

www.mpi-inf.mpg.de/yago-naga/patty/




Chapter 5

Relational Clustering with PSL

In the previous chapter (Chapter 4), we discussed the hierarchy construction
of relational phrases using Probabilistic Soft Logic (PSL). In this chapter, we
explore the applicability of PSL framework to finding clusters of synonymous
relational phrases (Grycner et al., 2014).

5.1 Introduction

To fully understand a written text, a machine must be able to understand the
meaning of the relational phrases occurring within it. Relational phrases are
textual representations of relations which occur between common noun phrases
(e.g., “the movie star”) or named entities (e.g., “George Clooney”) with the
same semantic type signature. For example, “Bob is married to Alice” connects
two entities of the type <person>, and is an instance of the relational phrase
“<person> is married to <person>.” In this case, both the left side (domain)
and the right side (range) arguments of the phrase have the type <person>.
The problem of discovering and organizing relational phrases was addressed in
many previous works (Fader et al., 2011; Mohamed et al., 2011; Nakashole et
al., 2012; Moro and Navigli, 2012).

A key step toward detecting the meaning of these phrases is to find their syn-
onyms, in a task known as semantic clustering. In this problem the goal is to
group together phrases which have similar meanings. For example, “<person>
is married to <person>” should be clustered together with a relation “<per-
son> is a spouse of <person>.” This kind of clustering has many applications,
including paraphrase detection or generation, information extraction, semantic
parsing, and question answering.

State of the art systems for clustering of relational phrases concentrate mostly
on two aspects – syntactic similarity and argument co-occurrence statistics.
The PATTY system (Nakashole et al., 2012) performs clustering using both
argument overlap statistics and phrase syntactic similarity. WiseNet (Moro
and Navigli, 2012) uses similar ideas but includes a soft clustering option.

57
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Universal Schema (Riedel et al., 2013) applies collaborative filtering on the
relation-arguments co-occurrence matrix to find similarity scores between re-
lational phrases. Moreover, it learns vector representations for phrases, which
allows to encode asymmetry between them. Universal Schema additionally
combines closed IE (prespecified) with open IE (newly discovered) phrases.
NELL (Carlson et al., 2010) also organizes extracted relations into groups of
synonyms, but the number of clusters is limited to a fixed set of prespecified re-
lations. In our case, the number of clusters is unknown. DIRT (Lin and Pantel,
2001a) was one of the first works which addressed finding synonymous relational
phrases using the distributional hypothesis (Harris, 1954). RESOLVER (Yates
and Etzioni, 2009) extended that idea with computing pairwise similarities
between relations and applying Hierarchical Agglomerative Clustering (HAC).
Unlike PATTY, WiseNet or our PSL models, both of the aforementioned sys-
tems work with untyped relational phrases. The PPDB paraphrase database
(Ganitkevitch et al., 2013) uses a very different approach, employing bilingual
texts. However, they concentrate on paraphrases of textual phrases rather than
finding synonymous or similar relations.

The above approaches are capable of performing semantic clustering at large
scale. However, they are limited in terms of the relational features used. On-
tExt (Mohamed et al., 2011) uses richer contextual information for clustering
but can extract and cluster relations of only one pair of argument semantic
types at one time. There is a need for more powerful methods which can in-
corporate many types of relational features, yet can solve large-scale semantic
clustering problems.

To address this challenge, in this work, we present a method for clustering
relational phrases using a statistical relational learning system called Proba-
bilistic Soft Logic (PSL) (Kimmig et al., 2012). The proposed method has
several advantages. First, the PSL modeling language allows us to easily build
a rich model incorporating both similarity measures and relational features.
Moreover, it is efficient enough to be applied to a dataset containing 200,000
relational phrases. More details about PSL are included in Section 4.2.2.

We perform a quantitative evaluation of the proposed PSL model on a small
dataset. The performance of our approach is compared against a set of base-
lines, including textual similarity and argument overlap, demonstrating the ef-
ficacy of the technique. Additionally, we report the outcome of the PSL method
on the large-scale dataset extracted by PATTY (Nakashole et al., 2012), illus-
trating that the proposed method is highly scalable.

5.2 Semantic Clustering using PSL

The proposed models begin with the ideas of (Nakashole et al., 2012) and (Moro
and Navigli, 2012), and build upon them using relational learning techniques.
This is accomplished using probabilistic soft logic, a declarative language for
specifying templates for probabilistic graphical models. The resulting models,
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known as hinge-loss Markov random fields (HL-MRFs) (Bach et al., 2013), de-
fine probability densities over continuous random variables in the range [0,1].
Inference in this setting is a convex optimization task, which can be solved
efficiently and at scale. PSL has been successfully applied to problems such as
entity resolution (Pujara et al., 2013), trust in social networks (Huang et al.,
2012b), ontology alignment (Broecheler and Getoor, 2009), and social group
modeling (Huang et al., 2012a). A PSL model is specified by a set of weighted
first order logical rules. The resulting Markov random field gives higher proba-
bility density to states where the rules are closer to being satisfied, as measured
by a continuous relaxation of Boolean logic. We now describe our proposed
approach.

Predicates: The PSL models introduced in this work use the following pred-
icates:

• args(R1, X, Y ) - is true when relational phrase R1 occurs with domain
argument X and range argument Y .

• types(R1, T1, T2) - is true when T1 and T2 are domain and range types of
relation R1.

• phrase(R1, STR1) - is true when STR1 is a textual representation of rela-
tional phrase R1. It is an implementation detail which allows us to separate
numerical identifier R1 from string STR1 in the logic of our models.

• simPattern(STR1, STR2) - is true when Jaccard similarity of tokens of
strings STR1 and STR2 is above a threshold.

• similar(R1, R2) - an open predicate which is true when relational phrases
R1 and R2 belong to the same cluster.

PSL rules: The rules used in the PSL models are shown in Table 5.1. We
employed standard similarity functions for argument similarity and textual
similarity (rules 1,2,3,4). Rule 5 ensures that the similarity relation between
relational phrases is transitive. Additionally, we define a prior on the inference
predicate similar (rule 6). It says that we should assume that two phrases
are not similar with a small weight. This can be overridden with evidence as
defined in the other rules.

PSL models: We have developed three sets of rules used by the PSL frame-
work. The full list of rules used by our models is shown in Table 5.1. Each
model runs in two stages – weight learning and inference. Weight learning is
performed on a separate training data set. In the inference stage, for each
model, the defined rules with learned weights are applied to the test data. We
used the following models:

• PSL_sim: In this model we use argument and textual similarity without
types (rules 1,2,6)

• PSL_types: In this model we add to PSL_sim information about the se-
mantic types of the domain and the range (rules 3,4,6)
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• PSL_trans: This model extends PSL_types with transitivity rules (rules
3,4,5,6)

5.3 Evaluation

To assess the quality of PSL models we evaluated the proposed models and
compared the results against baseline algorithms.

Baselines: To be able to compare PSL models we have implemented a set of
baselines. All of these methods predict similarity between relational phrases.
We consider four baselines:

• Random: for every pair of relations we randomly decide whether they are
similar or not.

• Arguments overlap: two relations are similar if they occur with the same
arguments. The higher the percentage of common arguments is, the more
similar the relations are. This follows the distributional hypothesis (Harris,
1954). For example, if the relations “is married to” and “is husband of”
occurred only with arguments “George Clooney” and “Amal Alamuddin”
then they would be clustered together because of 100% arguments overlap.
The threshold above which two relations are clustered together is set using
training data with the grid search algorithm.

• String similarity: to determine the similarity of two relations we use the
Jaccard similarity of the sets of tokens of their textual representations.
Again, two relations are said to be similar if their textual similarity is
above a threshold, chosen using a grid search.

• String & types similarity: we use string similarity and add an additional
feature, types compatibility. Type compatibility introduces a constraint
which requires that two relations can be similar only if the semantic types
of the domains of each relation are equal and the semantic types of the
ranges are also equal.

Dataset: We prepared the ground truth semi-automatically based on the clus-
ters of relational phrases produced by the PATTY system (Nakashole et al.,
2012). For the first experiment we used all together 526 relational phrases which
were divided into training and test sets. The training set contains 399 phrases
and 3,454 argument-relation-argument triples. These phrases were divided into
229 clusters. The test set contains 127 phrases and 1,494 argument-relation-
argument triples. These phrases were divided into 58 clusters.

Evaluation setup: We treat our problem in two ways – first as a link pre-
diction task and second as a clustering problem. In the first setting the goal
is to predict which relational phrases are similar. For every pair of relational
phrases the algorithms determine whether there should be a similarity link be-
tween them. The similarity links form a similarity graph. Next we compare
the produced similarity links against the similarity links in the ground truth.
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As the evaluation metrics for the link prediction task we use F1 score and area
under the receiver operating characteristic curve (AUC).

In the second setting the goal is to form clusters of synonymous relational
phrases. In this case we take the output of the previous setting and organize
phrases into clusters by applying a connected component detection algorithm
(Hopcroft and Tarjan, 1973). Relational phrases which are in the same compo-
nent are put to the same cluster. For the purpose of the evaluation we assume
that phrases inside a cluster are all connected with similarity links. Again,
we compare similarity links against the ground truth and compute F1 score
and AUC. Additionally, we compute Normalized Mutual Information (NMI)
(Manning et al., 2008b) – a metric used specifically for the clustering problem.

In order to compute statistical significance the experiment was repeated 20
times on random subsets of the patterns in the test data. We performed a
paired t-test for all metrics (F1, AUC for link prediction and clustering; NMI
for clustering) of the PSL models results against baselines and obtained p-
values below 0.05.

Results: The results of the evaluation are shown in Table 5.2. The String
& types similarity method performs the best out of all baselines in terms of
all metrics and settings. The PSL_types and PSL_trans models have higher
scores than baselines in both link prediction and clustering tasks. Moreover,
in the link prediction task, we can see the difference between PSL_types and
PSL_trans models. This shows us the influence of the transitivity rule.

After the application of the connected components detection algorithm there is
no difference between PSL_types and PSL_trans models. This means that the
transitivity rule in PSL models tends to play the same function as the connected
components detection algorithm. However, PSL allows us to incorporate it in
a single model rather than in a few separate algorithms. The cause of the equal
scores of PSL_types and PSL_trans could be the size of the dataset. We do
not observe big clusters in the data, therefore the transitivity cannot be often
applied.

Link prediction Clustering
F1 AUC F1 AUC NMI

Random 0.0174 0.5000 0.0221 0.5000 0.8020
Arguments overlap 0.1204 0.5337 0.1167 0.5349 0.8740
String similarity 0.4017 0.6281 0.5878 0.7312 0.9236
String & types similarity 0.4085 0.6283 0.6350 0.7326 0.9321
PSL_sim 0.3675 0.6146 0.5684 0.7205 0.9193
PSL_type 0.6690 0.7538 0.7151 0.8011 0.9448
PSL_trans 0.7290 0.8017 0.7151 0.8011 0.9448

Table 5.2: Evaluation
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Studies on the PATTY dataset: We also investigated the performance of
the best performing PSL model on a larger amount of data. To increase the
speed of the algorithm we used precomputed similarities of textual represen-
tations of relational phrases. We used a subset of the patterns taken using
PATTY (Nakashole et al., 2012). The subset consisted of 200,000 patterns,
contained information about 1,158,417 argument-relation-argument triples and
was originally organized into 162,289 clusters. As a result of running the algo-
rithm we obtained 144,634 clusters. Some example clusters created during this
process are shown in Table 5.3.

Cluster Domain Phrases Range
1 sovereign became emperor as; ascended the

throne as; succeeded as; took the
throne as

head of state

2 person be consecrated by; enthroned as; also
consecrated;

priest

3 actor had starred in; best known for playing
on; again starred in;

event

4 person and defeated the; successfully de-
fended against;

team

Table 5.3: Example clusters of phrases

5.4 Conclusion

In this work, we demonstrate an approach for semantic clustering of relational
phrases. This approach uses the PSL framework for modeling similarities be-
tween phrases. In the experiments, we showed that our method outperforms
several baselines and is capable of reconstructing a clustering performed by
PATTY (Nakashole et al., 2012). Moreover, we applied PSL to a dataset
whose size is comparable with datasets used by state of the art systems for ex-
traction and clustering of relational phrases. Since we used basic features and
basic similarity measures there is still the potential for further improvement.
The future work could include checking the expressiveness of PSL to incorpo-
rate other similarity measures into our models. Furthermore, other sources of
relational phrases can be used (e.g. WiseNet (Moro and Navigli, 2012)).





Chapter 6

POLY: Mining Relational
Paraphrases

The projects presented in previous chapters used textual and distributional
similarity as the main cues for reasoning about relationships between rela-
tional phrases. Additional similarity signals could improve both precision and
recall of relational paraphrases resources. In this chapter, we present POLY, a
resource and a method for relation argument typing and finding paraphrases of
semantically typed relational phrases using translation information (Grycner
and Weikum, 2016).

6.1 Introduction

Motivation. Information extraction from text typically yields relational triples:
a binary relation along with its two arguments. Often the relation is expressed
by a verb phrase, and the two arguments are named entities. We refer to the
surface form of the relation in a triple as a relational phrase. Repositories
of relational phrases are an asset for a variety of tasks, including information
extraction, textual entailment, and question answering.

This work presents a new method for systematically organizing a large set
of such phrases. Specifically, we aim to construct equivalence classes of syn-
onymous phrases, analogously to how WordNet organizes unary predicates as
noun-centric synsets (aka. semantic classes). For example, the following rela-
tional phrases should be in the same equivalence class: “sings in,” “is vocalist
in,” “voice in” denoting a relation between a musician and a song.

State of the Art and its Limitations. Starting with the seminal work on
DIRT (Lin and Pantel, 2001a), there have been various attempts on building
comprehensive resources for relational phrases. Recent endeavors of this kind
include PATTY (Nakashole et al., 2012), WiseNet (Moro and Navigli, 2012)
and DEFIE (Bovi et al., 2015). Out of these DEFIE is the cleanest resource.
However, the equivalence classes tend to be small, prioritizing precision over

65
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recall. On the other hand, PPDB (Ganitkevitch et al., 2013; Pavlick et al.,
2015) offers the largest repository of paraphrases. However, the paraphrases
are not relation-centric and they are not semantically typed. So it misses out
on the opportunity of using types to distinguish identical phrases with different
semantics, for example, performance in with argument typesmusician and song
versus performance in with argument types athlete and competition.

Our Approach. We start with a large collection of relational triples, obtained
by shallow information extraction. Specifically, we use the collection of Faruqui
and Kumar (2015), obtained by combining the OLLIE tool with Google Trans-
late and projecting multilingual sentences back to English. Note that the task
addressed in that work is relational triple extraction, which is orthogonal to
our problem of organizing the relational phrases in these triples into synonymy
sets.

We canonicalize the subject and object arguments of triples by applying named
entity disambiguation and word sense disambiguation wherever possible. Using
a knowledge base of entity types, we can then infer prevalent type signatures for
relational phrases. Finally, based on a suite of judiciously devised probabilistic
distance measures, we cluster phrases in a type-compatible way using a graph-
cut technique. The resulting repository contains about 1 Million relational
phrases, organized into around 160,000 clusters.

Contribution. This work makes the following contributions:

• a novel method for constructing a large repository of relational phrases,
based on judicious clustering and type filtering;

• a new linguistic resource, coined POLY, of relational phrases with seman-
tic typing, organized in equivalence classes;

• an intrinsic evaluation of the POLY resource, demonstrating its high
quality in comparison to PATTY and DEFIE;

• an extrinsic evaluation of POLY, demonstrating its benefits for question
answering.

The POLY resource is publicly available 1.

6.2 Method Overview

Our approach consists of two stages: relational phrase typing and relational
phrase clustering. In Section 6.3, we explain how we infer semantic types of
the arguments of a relational phrase. In Section 6.4, we present the model for
computing synonyms of relational phrases (i.e., paraphrases) and organizing
them into clusters.

1www.mpi-inf.mpg.de/yago-naga/poly/
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A major asset for our approach is a large corpus of multilingual sentences
from the work of Faruqui and Kumar (2015). That dataset contains sentences
from Wikipedia articles in many languages. Each sentence has been processed
by an Open Information Extraction (OpenIE) method (Banko et al., 2007),
specifically the OLLIE tool (Mausam et al., 2012), which produces a triple of
surface phrases that correspond to a relational phrase candidate and its two
arguments (subject and object). Each non-English sentence has been translated
into English using Google Translate, thus leveraging the rich statistics that
Google has obtained from all kinds of parallel multilingual texts. Altogether,
the data from Faruqui and Kumar (2015) provides 135 million triples in 61
languages and in English (from the translations of the corresponding sentences).
This is the noisy input to our method. Figure 6.1 shows two Spanish sentences,
the extracted triples of Spanish phrases, the sentences’ translations to English,
and the extracted triples of English phrases.

The figure shows that identical phrases in the foreign language - “fue filmado
por” - may be translated into different English phrases: “was shot by” vs. “was
filmed by,” depending on the context in the respective sentences. This is the
main insight that our method builds on. The two resulting English phrases
have a certain likelihood of being paraphrases of the same relation. However,
this is an uncertain hypotheses only, given the ambiguity of language, the noise
induced by machine translation and the potential errors of the triple extraction.
Therefore, our method needs to de-noise these input phrases and quantify to
what extent the the relational phrases are indeed synonymous. We discuss this
in Sections 6.3 and 6.4.

6.3 Relation Typing

This section explains how we assign semantic types to relational phrases. For
example, the relational phrase “wrote” could be typed as “<author> wrote
<paper>,” as one candidate. The typing helps us to disambiguate the mean-
ing of the relational phrase and later find correct synonyms. The relational
phrase “shot” could have synonyms “directed” or “killed with a gun.” How-
ever, they represent different senses of the phrase shot. With semantic typ-
ing, we can separate these two meanings and determine that “<person> shot
<person>” is a synonym of “<person> killed with a gun <person>,” whereas
“<director> shot <movie>” is a synonym of “<director> directed <movie>.”

Relation typing has the following steps: argument extraction, argument dis-
ambiguation, argument typing, and type filtering. The overview of the whole
process is shown in Figure 6.2. The output is a set of candidate types for the
left and right arguments of each English relational phrase.

6.3.1 Argument Extraction

For the typing of a relational phrase, we have to determine words in the left
and right arguments that give cues for semantic types. To this end, we identify
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(British director, filmed, Memento)

(director, filmed, Memento)

(wn:director4, filmed, <Memento_(film)>)

filmed
<director>
<person>
<entity>

<movie>
<event>
<entity>

filmed<director> <movie>

argument extraction

argument disambiguation

argument typing

type filtering

Figure 6.2: Relation typing pipeline

named entities, whose types can be looked up in a knowledge base, and the
head words of common noun phrases. As output, we produce a ranked list of
entity mentions and common nouns.

To create this ranking, we perform POS tagging and noun phrase chunking
using Stanford CoreNLP (Manning et al., 2014) and Apache OpenNLP2. For
head noun extraction, we use the YAGO Javatools3 and a small set of manu-
ally crafted regular expressions. Since the input sentences were the results of
a machine translation system we could not use dependency parsing, because
sentences were often grammatically incorrect.

Finally, we extract all noun phrases which contain the same head noun. These
noun phrases are then sorted according to their lengths.

For example, for input phrase contemporary British director who also created
“Inception”, our method would yield contemporary British director, British
director, director in decreasing order.

6.3.2 Argument Disambiguation

The second step is responsible for the disambiguation of the noun phrase and
named entity candidates. We use the YAGO3 knowledge base (Mahdisoltani et
al., 2015) for named entities, and WordNet (Fellbaum, 1998) for noun phrases.
We proceed in the ranking order of the phrases from the first step.

We employ several heuristics to find the best sense. Candidate senses are looked
up in YAGO3 and WordNet, respectively, and each candidate is scored. The
scores are based on the following:

2https://opennlp.apache.org/
3https://www.mpi-inf.mpg.de/yago-naga/javatools/

https://opennlp.apache.org/
https://www.mpi-inf.mpg.de/yago-naga/javatools/
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• Frequency count prior: This is the number of Wikipedia incoming links
for named entities in YAGO3, or the frequency count of noun phrase
senses in WordNet.

• Wikipedia prior: We increase scores of YAGO3 entities whose URL
strings (i.e., Wikipedia article names) occur in the Wikipedia page from
which the triple was extracted.

• Translation prior: We boost the scores of senses whose translations occur
in the original input sentence. For example, the word “stage” is disam-
biguated as opera stage rather than phase, because the original German
sentence contains the word “Bühne” (German word for a concert stage)
and not “Phase.” The translations of word senses are obtained from Uni-
versal WordNet (UWN) (de Melo and Weikum, 2009).

Generally, we prefer WordNet noun phrases over YAGO3 named entities since
noun phrases have lower type ambiguity (fewer possible types). The final score
of a sense s is:

score(s) = αfreq(s) + βwiki(s) + γtrans(s) (6.1)

where freq(s) is the frequency count of s, and wiki(s) and trans(s) equal max-
imal frequency count if the Wikipedia prior and Translation prior conditions
hold (and otherwise set to 0). α, β, γ are tunable hyper-parameters (set using
withheld data, in experiments).

Finally, from the list of candidate noun phrases and named entities, we gener-
ate a disambiguated argument: either a WordNet synset or a YAGO3 entity
identifier.

6.3.3 Argument Typing

In the third step of relation typing, we assign candidate types to the dis-
ambiguated arguments. To this end, we query YAGO3 for semantic types
(including transitive hypernyms) for a given YAGO3 or WordNet identifier.

The type system used in POLY consists of a subset of the WordNet noun hier-
archy. We restrict ourselves to 734 types, chosen semi-automatically as follows.
We selected the 1000 most frequent WordNet types in YAGO3 (including tran-
sitive hypernyms). Redundant and non-informative types were filtered out by
the following technique: all types were organized into a directed acyclic graph,
and we removed a type when the frequency count of some of its children was
higher than 80% of the parent’s count. For example, we removed type trainer
since more than 80% of trainers in YAGO3 are also coaches. In addition, we
manually removed a few non-informative types (e.g. expressive style).

As output, we obtain lists of semantic types for every argument of every rela-
tional phrase.
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6.3.4 Type Filtering

In the last step, we filter types one more time. This time we filter candidate
types separately for each distinct relational phrase, in order to choose the most
suitable specific type signature for each phrase. This choice is made by type
tree pruning.

For each relational phrase, we aggregate all types of the left arguments and
all types of the right arguments, summing up their their frequency counts.
This information is organized into a directed acyclic graph, based on type
hypernymy. Then we prune types as follows (similarly to Section 6.3.3):

• We remove a parent type when the relative frequency count of one of
the children types is larger than 80% of the parent’s count (Example in
Figure 6.3(a)).

• We remove a child type when its relative frequency count is smaller than
20% of the parent’s count (Example in Figure 6.3(b)).

location

region

country

100

100

100

((a)) Parent removal

person

engineer entertainer leader

100

20 20 60

((b)) Children removal

Figure 6.3: Example of type filtering. Numbers represent aggregated frequency
counts.

For each of the two arguments of the relational phrase we allow only those
types which were left after the pruning. The final output is a set of relational
phrases where each has a set of likely type signatures (i.e., pairs of types for
the relation’s two arguments).

6.4 Relation Clustering

The second stage of the POLY method addresses the relation clustering. The
algorithm takes semantically typed relational phrases as input, quantifies the
semantic similarity between relational phrases, and organizes them into clus-
ters of synonyms. The key insight that our approach hinges on is that that
synonymous phrases have similar translations in a different language. In our
setting, two English phrases are semantically similar if they were translated



72 CHAPTER 6. POLY: MINING RELATIONAL PARAPHRASES

from the same relational phrases in a foreign language. For example, the two
phrases “was shot by” and “was filmed by” in Figure 6.1 are both obtained
from the same Spanish phrase “fue filmado por.” Moreover, the triples with
that Spanish phrase had the same types for the left arguments and right argu-
ments, respectively.

Similarities between English phrases are cast into edge weights of a graph with
phrases as nodes. This graph is then partitioned to obtain clusters.

6.4.1 Probabilistic Similarity Measures

The phrase similarities in POLY are based on probabilistic measures. Let us
first introduce the notation:

• F : a set of relational phrases from a foreign language F

• E: a set of translations of relational phrases from language F to English

• c(f, e): number of times of translating relational phrase f ∈ F into rela-
tional phrase e ∈ E

• c(f), c(e): frequency counts for relational phrase f ∈ F and translated
relational phrase e ∈ E

• p(e|f) = c(f,e)
c(f) : (estimator for the) probability of translating f ∈ F into

e ∈ E

• p(f |e) = c(f,e)
c(e) : (estimator for the) probability of e ∈ E being a transla-

tion of f ∈ F

We define
p(e1|e2) =

∑
f

p(e1|f) ∗ p(f |e2) (6.2)

as the probability of generating relational phrase e1 ∈ E from relational phrase
e2 ∈ E.

Finally we define

support(e1, e2) =
∑
f∈F

c(f, e1) ∗ c(f, e2) (6.3)

and
confidence(e1, e2) = 2

1
p(e1|e2) + 1

p(e2|e1)
(6.4)

Confidence is the final similarity measure used in POLY. We use the harmonic
mean in Equation 6.4 to dampen similarity scores that have big differences in
their probabilities in Equation 6.2. Typically, pairs e1, e2 with such wide gaps
in their probabilities come from subsumptions, not synonymous paraphrases.
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Cluster of relational phrases
<location> is the heart of <location>
<location> is situated in <location>
<location> is enclosed by <location>

<location> is located amidst <location>
<location> is surrounded by <location>

<location> lies in <location>
<location> is located in <location>

<location> is in <location>
<location> is spread in <location>
<location> is bounded by <location>

Table 6.1: Example of a cluster of relational phrases

Finally, we compute the support and confidence for every pair of English rela-
tional phrases which have a common source phrase of translation. We prune
phrase pairs with low support (below a threshold), and rank the remaining
pairs by confidence.

6.4.2 Graph Clustering

To compute clusters of relational phrases, we use modularity-based graph parti-
tioning. Specifically, we use the partitioning algorithm of Blondel et al. (2008).
The resulting clusters (i.e., subgraphs) are then ranked by their weighted graph
density multiplied by the graph size (Equation 6.5). The example of a cluster
of relational phrases is shown in Figure 6.1.

∑
(ei,ej)∈E sim(ei, ej)
|V | ∗ |V − 1| ∗ |V | (6.5)

6.5 Evaluation

For the experimental evaluation, we primarily chose triples from the German
language (and their English translations). With about 23 million triples, Ger-
man is the language with the largest number of extractions in the dataset from
Faruqui and Kumar (2015), and there are about 2.5 million distinct relational
phrases from the German-to-English translation. The POLY method is imple-
mented using Apache Spark, so it scales out to handle such large inputs.

After applying the relation typing algorithm, we obtain around 10 million typed
relational phrases. If we ignored the semantic types, we would have about
950,000 distinct phrases. On this input data, POLY detected 1,401,599 pairs
of synonyms. The synonymous phrases were organized into 158,725 clusters.

In the following, we present an intrinsic evaluation, an ablation study, and an
extrinsic use case. For the intrinsic evaluation, we asked human annotators
to judge whether two typed relational phrases are synonymous or not. We



74 CHAPTER 6. POLY: MINING RELATIONAL PARAPHRASES

Precision Range
Top 250 0.91 0.87− 0.94
Random 0.83 0.78− 0.87

Table 6.2: Precision of synonym pairs in POLY

also studied source languages other than German. In addition, we compared
POLY against PATTY (Nakashole et al., 2012) and DEFIE (Bovi et al., 2015)
on the relation paraphrasing task. For the extrinsic evaluation, we considered
a simple question answering system and studied to what extent similarities
between typed relational phrases can contribute to answering more questions.

6.5.1 Precision of Synonyms

To assess the precision of the discovered synonymy among relational phrases
(i.e., clusters of paraphrases), we sampled POLY’s output. We assessed the 250
pairs of synonyms with the highest similarity scores. Additionally, we assessed
a sample of 250 pairs of synonyms, randomly drawn from POLY’s output.

These pairs of synonyms were shown to several human annotators to check
their correctness. Relational phrases were presented by showing the semantic
types, the textual representation of the relational phrase and sample sentences
where the phrase was found. The annotators were asked whether two relational
phrases have the same meaning or not. They could also abstain. The example
from the evaluation framework is shown in Figure 6.4.

The results of this evaluation are shown in Table 6.2 with (lower bounds and
upper bounds of) the 0.95-confidence Wilson score intervals (Brown et al.,
2001). This evaluation task had good inter-annotator agreement, with Fleiss’
Kappa around 0.6. Table 6.3 shows anecdotal examples of synonymous pairs
of relational phrases.

These results show that POLY’s quality is comparable with state-of-the-art
baselines resources. WiseNet (Moro and Navigli, 2012) is reported to have pre-
cision of 0.85 for 30,000 clusters of relational phrases. This is also the only prior
work where the precision of synonymy of semantically typed relational phrases
was evaluated. The other systems did not report that measure. However, they
performed the evaluation of subsumption, entailment or hypernymy relation-
ships which are related to synonymy. Subsumptions in PATTY have precision
of 0.83 for top 100 and 0.75 for a random sample. Hypernyms in RELLY are
reported to have precision of 0.87 for top 100 and 0.78 for a random sam-
ple. DEFIE performed separate evaluations for hypernyms generated directly
from WordNet (precision 0.87) and hypernyms obtained through a substring
generalization algorithm (precision 0.9).

Typical errors in the paraphrase discovery of POLY come from incorrect trans-
lations or extraction errors. For example, “heard” and “belongs to” were clus-
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Precision Recall F1
PATTY 0.63 0.32 0.42
DEFIE 0.66 0.32 0.44
POLY 0.79 0.46 0.58

Table 6.4: Comparison to the competitors

tered together because they were translated from the same semantically am-
biguous German word “gehört.” An example for extraction errors is that “took”
and “participated in” were clustered together because “took” was incorrectly
extracted from a sentence with the phrase “took part in.” Other errors are
caused by swapped order of arguments in a triple (i.e., mistakes in detecting
passive form) and incorrect argument disambiguation.

6.5.2 Comparison to Competitors

To compare POLY with the closest competitors PATTY and DEFIE, we de-
signed an experiment along the lines of the evaluation of Information Retrieval
systems (e.g. TREC benchmarks). First, we randomly chose 100 semantically
typed relational phrases with at least three words (to focus on the more inter-
esting multi-word case, rather than single verbs). These relational phrases had
to occur in all three resources. For every relational phrase we retrieved syn-
onyms from all of the systems, forming a pool of candidates. Next, to remove
minor syntactic variations of the same phrase, the relational phrases were lem-
matized. In addition, we removed all leading prepositions, modal verbs, and
adverbs.

We manually evaluated the correctness of the remaining paraphrase candidates
for each of the 100 phrases. Precision was computed as the ratio of the correct
synonyms by one system to the number of all synonyms provided by that
system. Recall was computed as the ratio of the number of correct synonyms
by one system to the number of all correct synonyms in the candidate pool
from all three systems.

The results are presented in Table 6.4. All results are macro-averaged over the
100 sampled phrases. We performed a paired t-test for precision and recall of
POLY against each of the systems and obtained p-values below 0.05. POLY
and DEFIE offer much higher diversity of synonyms than PATTY. However,
DEFIE’s synonyms often do not fit the semantic type signature of the given
relational phrase and are thus incorrect. For example, was assumed by was
found to be a synonym of “<group> was acquired by <group>.” PATTY, on
the other hand, has higher recall due to its variety of prepositions attached
to relational phrases; however, these also include spurious phrases, leading to
lower precision. For example, “succeeded in” was found to be a synonym of
“<person> was succeeded by <leader>.” Overall, POLY achieves much higher
precision and recall than both of these baselines.
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Precision Coverage
POLY 0.83 1,401,599
− disambiguation 0.66± 0.06 1,279,941
Type system 100 0.76± 0.05 858,053
Type system 5 0.62± 0.06 236,804
Type filtering 0.7 0.81± 0.05 192,117
Type filtering 0.9 0.73± 0.05 2,061,257

Table 6.5: Ablation Study

6.5.3 Ablation Study

To evaluate the influence of different components, we performed an ablation
study. We consider versions of POLY where Wikipedia prior and Translation
prior (Section 6.3.2) are disregarded (− disambiguation), where the type system
(Section 6.3.3) was limited to the 100 most frequent YAGO types (Type system
100 ) or to the 5 top-level types from the YAGO hierarchy (Type system 5 ), or
where the type filtering parameter (Section 6.3.4) was set to 70% or 90% (Type
filtering 0.7/0.9 ). The evaluation was done on random samples of 250 pairs of
synonyms.

Table 6.5 shows the results with the 0.95-confidence Wilson score intervals.
Without our argument disambiguation techniques, the precision drops heavily.
When weakening the type system, our techniques for argument typing and type
filtering are penalized, resulting in lower precision. So we see that all compo-
nents of the POLY architecture are essential for achieving high-quality output.
Lowering the type-filtering threshold yields results with comparable precision.
However, increasing the threshold adversely affects the noise filtering.

6.5.4 Evaluation with Other Languages

In addition to evaluating the paraphrases derived from German, we also eval-
uated the relational phrase synonymy derived from a few other languages with
lower numbers of extractions. We chose French, Hindi, and Russian, which
were also used in the evaluation of the precision of relational phrases presented
by Faruqui and Kumar (2015). The results are presented in Table 6.6, again
with the 0.95-confidence Wilson score intervals.

Synonyms derived from French have similar quality as those from German.
This is plausible as one would assume that French and German have similar
quality in translation to English. Synonyms derived from Russian and Hindi
have lower precision due to the lower translation quality. The precision for
Hindi is lower, as the Hindi input corpus has much fewer sentences than for
the other languages.
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Top 250 Random 250
French 0.93± 0.03 0.85± 0.04
Hindi 0.86± 0.05 0.71± 0.05
Russian 0.85± 0.05 0.77± 0.05

Table 6.6: Precision of synonym pairs for other languages

6.5.5 Extrinsic Evaluation: Question Answering

As an extrinsic use case for the POLY resource, we constructed a simple Ques-
tion Answering (QA) system over knowledge graphs such as Freebase, and
determined the number of questions for which the system can find a correct
answer. We followed the approach presented by Fader et al. (2014). The system
consists of question parsing, query rewriting and database look-up stages. We
disregard the stage of ranking answer candidates, and merely test whether the
system could return the right answer at all (i.e., would return it if the ranking
were perfect).

In the question parsing stage, we use 10 high-precision parsing operators by
Fader et al. (2014), which map questions (e.g., “Who invented papyrus?”) to
knowledge graph queries (e.g., (?x, invented, papyrus)). Additionally, we map
question words to semantic types. For example, the word who is mapped to
person, where to location, when to abstract entity and the rest of the question
words are mapped to type entity.

We harness synonyms and hyponyms of relational phrases to paraphrase the
predicate of the query. The paraphrases must be compatible with the semantic
type of the question word. In the end, we use the original query, as well as found
paraphrases, to query a database of subject, predicate, object triples. As the
knowledge graph for this experiment we used the union of several collections: a
triples database from OpenIE (Banko et al., 2007; Fader et al., 2011), Freebase
(Bollacker et al., 2008), Probase (Wu et al., 2012), and NELL (Carlson et al.,
2010). In total, this knowledge graph contained more than 900 Million triples.

We compared six systems for paraphrasing semantically typed relational phrases:

• Basic: no paraphrasing at all, merely using the originally generated
query.

• DEFIE: using the taxonomy of relational phrases by Bovi et al. (2015).

• PATTY: using the taxonomy of relational phrases by Nakashole et al.
(2012).

• RELLY: using the subset of the PATTY taxonomy with additional en-
tailment relationships between relational phrases (Grycner et al., 2015).

• POLY_DE: using synonyms of relational phrases derived from the Ger-
man language.
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• POLY_ALL: using synonyms of relational phrases derived from the 61
available languages.

Since DEFIE’s relational phrases are represented by BabelNet (Navigli and
Ponzetto, 2012) word sense identifiers, we generated all possible lemmas for
each identifier.

We ran the paraphrase-enhanced QA system for three benchmark sets of ques-
tions:

• TREC: the set of questions used for the evaluation of information re-
trieval QA systems (Voorhees and Tice, 2000)

• WikiAnswers: a randomly sampled set of questions from the WikiAn-
swers portal (Fader et al., 2013).

• WebQuestions: the set of questions about Freebase entities (Berant et
al., 2013).

From these question sets, we kept only those questions which can be parsed
by one of the 10 question parsing templates and have a correct answer in the
gold-standard ground truth. In total, we executed 451 questions for TREC,
516 for WikiAnswers and 1979 for WebQuestions.

For every question, each paraphrasing system generates a set of answers. We
measured for how many questions we could obtain at least one correct answer.
Table 6.7 shows the results.

The best results were obtained by POLY_ALL. We performed a paired t-
test for the results of POLY_DE and POLY_ALL against all other systems.
The differences between POLY_ALL and the other systems are statistically
significant with p-value below 0.05. Additionally, we evaluated paraphrasing
systems which consist of combination of all of the described datasets and all
of the described datasets without POLY. The difference between these two
versions suggest that POLY contains many paraphrases which are available in
none of the competing resources.

6.6 Related Work

Knowledge bases (KBs) contribute to many NLP tasks, including Word Sense
Disambiguation (Moro et al., 2014), Named Entity Disambiguation (Hoffart
et al., 2011), Question Answering (Fader et al., 2014), Coreference Resolution
(Rahman and Ng, 2011), and Textual Entailment (Sha et al., 2015). Widely
used KBs are DBpedia (Lehmann et al., 2015), Freebase (Bollacker et al.,
2008), YAGO (Mahdisoltani et al., 2015), Wikidata (Vrandečić and Krötzsch,
2014), and the Google Knowledge Vault (Dong et al., 2014). KBs have rich
information about named entities, but are pretty sparse on relations. In the
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TREC WikiAnswers WebQuestions
Basic 193 144 365
DEFIE 197 147 394
RELLY 208 150 424
PATTY 213 155 475
POLY_DE 232 163 477
POLY_ALL 238 173 530
All 246 176 562
All / POLY 218 157 494
Questions 451 516 1979

Table 6.7: Number of questions with correct answer by each system for three
question sets.

latter regard, manually created resources such as WordNet (Fellbaum, 1998),
VerbNet (Kipper et al., 2008) or FrameNet (Baker et al., 1998) are much richer,
but still face the limitation of labor-intensive input and human curation.

The paradigm of OpenIE was developed to overcome the weak coverage of re-
lations in automatically constructed KBs. OpenIE methods process natural
language texts to produce triples of surface forms for the arguments and re-
lational phrase of binary relations. The first large-scale approach along these
lines, TextRunner (Banko et al., 2007), was later improved by ReVerb (Fader
et al., 2011) and OLLIE (Mausam et al., 2012). The focus of these methods
has been on verbal phrases as relations, and there is little effort to determine
lexical synonymy among these phrases.

The first notable effort to build up a resource for relational paraphrases is DIRT
(Lin and Pantel, 2001a), based on Harris’ Distributional Hypothesis to cluster
syntactic patterns. RESOLVER (Yates and Etzioni, 2009) introduced a prob-
abilistic relational model for predicting synonymy. Yao et al. (2012) incorpo-
rated latent topic models to resolve the ambiguity of relational phrases. Other
probabilistic approaches employed matrix factorization for finding entailments
between relations (Riedel et al., 2013; Petroni et al., 2015) or used probabilistic
graphical models to find clusters of relations (Grycner et al., 2014). All of these
approaches rely on the co-occurrence of the arguments of the relation.

Recent endeavors to construct large repositories of relational paraphrases are
PATTY, WiseNet and DEFIE. PATTY (Nakashole et al., 2012) devised a se-
quence mining algorithm to extract relational phrases with semantic type sig-
natures, and organized them into synonymy sets and hypernymy hierarchies.
WiseNet (Moro and Navigli, 2012) tapped Wikipedia categories for a similar
way of organizing relational paraphrases. DEFIE (Bovi et al., 2015) went even
further and used word sense disambiguation, anchored in WordNet, to group
phrases with the same meanings.

Translation models have previously been used for paraphrase detection. Barzi-
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lay and McKeown (2001) utilized multiple English translations of the same
source text for paraphrase extraction. Bannard and Callison-Burch (2005) used
the bilingual pivoting method on parallel corpora for the same task. Similar
methods were performed at a much bigger scale by the Paraphrase Database
(PPDB) project (Ganitkevitch et al., 2013; Pavlick et al., 2015). Unlike POLY,
the focus of these projects was not on paraphrases of binary relations. More-
over, POLY considers the semantic type signatures of relations, which is missing
in PPDB.

Research on OpenIE for languages other than English has received little atten-
tion. Kim et al. (2011) uses Korean-English parallel corpora for cross-lingual
projection. Gamallo et al. (2012) developed an OpenIE system for Spanish
and Portuguese using rules over shallow dependency parsing. The recent work
of Faruqui and Kumar (2015) extracted relational phrases from Wikipedia in
61 languages using cross-lingual projection. Lewis and Steedman (2013) com-
puted clusters of semantically equivalent English and French phrases, based on
the arguments of relations.

6.7 Conclusions

We presented POLY, a method for clustering semantically typed English rela-
tional phrases using a multilingual corpus. We used POLY to create a repos-
itory with both high coverage and precision, as shown in our evaluation The
synonyms of relational phrases could potentially be useful for many problems
of natural language processing. As a use case, we showed that POLY can en-
hance question answering. The future work could include jointly harnessing all
61 languages in the corpus, rather than considering them pairwise, and aim-
ing for a paraphrase resource in all languages. The POLY resource is publicly
available at www.mpi-inf.mpg.de/yago-naga/poly/.
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Conclusion

7.1 Thesis Contribution

This dissertation addresses the problem of automatic construction of lexicons
of relational phrases. Throughout this thesis, we analyzed automatic ways
of finding counterparts of relational phrases in other taxonomies, automatic
construction of a graph of relational phrases, methods for finding synonyms
among them, and an approach for detecting fine-grained types of arguments
of textual representations of relations. Information included in the lexicons,
such as synonymy and hypernymy, could help in Question Answering (QA),
Textual Entailment, Named Entity Disambiguation and extending Knowledge
Bases (KBs).

The first contribution of this dissertation is HARPY (Grycner and Weikum,
2014). In HARPY, we investigated a graph-based method for aligning rela-
tional phrases from PATTY (Nakashole et al., 2012) with WordNet verb senses.
The algorithm is based on SimRank applied to a graph consisting of phrases,
verbs, and their shared features. The evaluation shows the high quality of the
alignment links compared to the set of baselines and presents the potential in
the extrinsic task, that is detecting fine-grained lexical types for the arguments
of verb senses in WordNet. Obtaining the alignment links is the first step
in constructing a hierarchy of relational phrases through WordNet hierarchy
transfer.

The second contribution of this dissertation is RELLY (Grycner et al., 2015).
The RELLY algorithm is a highly-scalable method for the construction of a
large hypernymy graph of relational phrases. The collective probabilistic pro-
gramming framework – Probabilistic Soft Logic (PSL) – integrates resources
like PATTY, YAGO, and HARPY. Additionally, it allows us to impose the local
and global constraints on the final structure of the graph. The evaluation shows
the high precision of the hypernymy links in the output graph and a positive
influence in the downstream application of comparing anonymized documents.
Moreover, we analyzed the potential of PSL in the relation clustering task.

83
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The third contribution of this dissertation is POLY (Grycner and Weikum,
2016). Our method, using a parallel corpus of sentences parsed into triples
of phrases, clusters relational phrases using probabilistic measures. Moreover,
multilingual information included in the corpus is used to detect fine-grained
types of arguments of relational phrases. We compared POLY against other
resources of relational paraphrases in the intrinsic evaluations and in the down-
stream application task - a simplified QA problem. The evaluation showed
improvements over the competing resources.

7.2 Outlook and Future Work

Here, we discuss the limitations of the presented methods and various research
opportunities for future work.

In Chapter 3 and Chapter 4, for the alignment and graph construction, we
considered only relational phrases available in the PATTY resource. The align-
ment and graph construction for other resources (e.g., WiseNet, DefIE, POLY,
or PPDB) could produce new interesting resources. Moreover, considering
all resources jointly could improve the quality of the final graph of relational
phrases.

Most of the relational phrases used in the projects in this thesis are built around
verb phrases. The natural step for an extension would include considering verb
phrases and noun phrases jointly within one graph of relations. Furthermore,
an improvement of all methods could come from using relational phrases of
higher-arity or higher-order. Throughout the thesis, we used and produced
only relational phrases which represent first-order binary relations. However,
the ultimate graph of relational phrases should also contain information about
higher-arity and higher-order of relational phrases.

The focus of the thesis was on finding the synonymy (in the paraphrase clus-
tering) and hypernymy relationships (in the graph construction) between re-
lational phrases. A comprehensive KB of relations should also contain other
relationships. Interesting examples of such relationships are antonymy, enable-
ment, or causality.

Finally, the graph and the clusters of relational paraphrases contain relations
expressed only in the English language. Finding relational paraphrases for
languages other than English would bring added value. Similarly, a graph of
foreign relational phrases would help to solve Natural Language Understanding
(NLU) problems in under-resourced languages. Moreover, considering jointly
multiple languages within one lexicon of relational paraphrases enables new
application opportunities.
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Appendix A

Acronyms

CAG Candidate Alignment Graph

DAG Directed Acyclic Graph

HAC Hierarchical Agglomerative Clustering

IE Information Extraction

ILP Integer Linear Programming

KB Knowledge Base

KBC Knowledge Base Construction

LDA Latent Dirichlet Allocation

LSI Latent Semantic Indexing

NLU Natural Language Understanding

OpenIE Open Information Extraction

PSL Probabilistic Soft Logic

QA Question Answering

SVM Support Vector Machines

WSD Word Sense Disambiguation
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