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Abstract

For low resource NLP tasks like Keyword Search and domain adaptation with small

amounts of in-domain data, having well-trained language models is essential. Two

major challenges faced while building these language models for such tasks are 1)

how the models handle the long-term dependencies, and 2) how to represent the

words which occur with a low frequency (rare words) in the text. To handle long-

term dependencies in the text, we compare existing techniques and extend these

techniques for domain adaptation for small corpora in Speech Recognition, leading

to improvements in word error rates. Further, we formulate a new language model

architecture to capture long-term dependencies, helping us understand the extent

to which enumeration of dependencies can compare to more popular neural network

techniques for capturing such dependencies. Next, to handle rare words in the text,

we propose an unsupervised technique of generating rare-word representations,

which is more general and requires less mathematical engineering than comparable

methods. Finally, embedding these representations in a language model shows

significant improvements in rare-word perplexity over other such models.



Kurzzusammenfassung

Für Spracherkennungsaufgaben mit geringen Ressourcen wie Babel Keyword Search

und Domainadaptation mit geringen Mengen an Daten aus einem spezifischen Ge-

biet sind gut trainierte Sprachmodelle essenziell. Zwei wesentliche Herausforderun-

gen bei der Erstellung dieser Sprachmodelle sind der Umgang dieser Modelle a)

mit langreichweitigen Abhängigkeiten sowie b) mit Wörtern, die eine niedrige

Häufigkeit in Texten aufweisen (seltene Wörter). Um die langreichweitigen Ab-

hängigkeiten in Texten zu untersuchen, werden bestehende Methoden verglichen

und diese für Domainadaptationsverfahren für kleine Korpora zur Spracherkennung

erweitert. Dieses Vorgehen führt zur Verbesserung der Wortfehlerraten. Weiter-

hin wird ein neues Sprachmodell entwickelt, um langreichweitige Abhängigkeiten

ausfindig zu machen, das im Hinblick auf die Berücksichtigung langreichweitiger

Abhängigkeiten hilft zu verstehen, wie sich deren Auflistung im Vergleich zu mod-

ernen Verfahren mittels Neuronaler Netze verhält. Was den Umgang mit seltenen

Wörtern in Texten angeht, wird ein unüberwachtes Verfahren zur Erzeugung von

Vektordarstellungen seltener Wörter eingesetzt. Dieses Verfahren ist allgemeiner

und erfordert weniger mathematische Berechnungen als vergleichbare Methoden.

Wenn diese Vektordarstellungen in ein Sprachmodell miteinbezogen werden, lassen

sich signifikante Verbesserungen gegenüber herkömmlichen Modellen bei der Per-

plexität von seltenen Wörtern feststellen.
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Chapter 1

Introduction

Natural languages can be differentiated by the amount of resources available. High-

resource languages like English, German and even certain dialects of Chinese, have

an ever growing amount of data available on the Internet. Such big data facilitates

natural language processing (NLP) based studies for these languages. On the other

hand, there exist low-resource languages like Tamil, Zulu etc. which do not have

enough data available, such that standard statistical methods may be applied.

In order to process any of these languages, one can either leverage a structured

view of the data or use the unstructured view of the data. In a structured view,

information is represented as a database capturing abstract and concrete relation-

ships in the language explicitly. The latter would just be the free form with no

restrictions on the representation of information. In the context of our work, we

concentrate on processing unstructured data, leveraging structure only to enhance

the processing of low-resource languages.

As part of this work, we develop NLP systems for Automatic Speech Recogni-

tion (ASR) and Keyword Search (KWS) on unstructured language data. A central

of part of these tasks is to make sequential word predictions, performed using lan-
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guage models.

Various versions of these language models are available, like conventional n-

gram based models, recurrent neural networks etc. for such NLP tasks. At a high

level, these approaches can be classified as being discrete space or continuous space

models. Discrete space models like n-gram based models explicitly enumerate any

kind of dependencies in text and use them to make word predictions. On the

other hand, the continuous space models perform word predictions by mapping

words to an abstract representation space, learning dependencies in this space and

then emitting words back to text space to make predictions. As we apply these

approaches to different NLP tasks, we face two major challenges (Jozefowicz et al.

(2016)):

Handling long-term information in languages

Discrete models explicitly enumerate dependencies between words and then pre-

dict using statistics of such enumerations. In contrast, continuous models use

vector-based word representations to implicitly capture these dependencies and

have mostly enabled predictive systems to outperform the discrete versions. How-

ever, most of these continuous models have limits to the extent of long-term infor-

mation that can be utilized, leaving room for improvement.

Handling rare words

For handling rare words (words which occur with low frequency), discrete models

use a näive approach by treating all words as the same. However, this approach

can be improved upon, in the case of the continuous-space language models, by

effectively leveraging information learned from higher frequency words. This lever-

aging allows the continuous space models to form good representations even for

out-of-vocabulary words — an important set of rare words. However, for low-

resource languages, such strategies can be difficult to implement without the help
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of structured knowledge.

In this dissertation, we concentrate on processing low-resource language corpora,

firstly by focusing on understanding the long-term information in text and by bet-

ter handling such information using continuous-space models on such languages.

Secondly, we address out-of-vocabulary words for low-resource languages and en-

able better representations for language modelling tasks. In both of these cases,

we evaluate our models on a downstream NLP task.

To handle these two challenges, we structure the thesis as follows. In Chapter

2, we discuss the preliminary background on language models, providing details of

various language models considered in this thesis, providing an overview of exist-

ing state-of-the-art methods. This chapter also provides a discussion on how these

models have handled these two challenges and what still remains to be tackled

within this scope.

Next in Chapter 3, we compare alternatives for capturing long-range dependen-

cies in natural language. Specifically, we choose recurrent neural networks (RNNs)

as a baseline and compares to log-linear interpolation of Skip models (i.e. Skip bi-

grams and Skip trigrams). The method as such has been published earlier but, we

investigate the impact of different smoothing techniques on the Skip models as a

measure of their overall performance on four Babel languages: Cantonese, Pashto,

Tagalog and Turkish. Furthermore, we apply these Skip models to a Keyword

Search task evaluating their performance against conventional n-gram models

In Chapter 4 we further analyze the impact of using long-term information

early in Automatic Speech Recognition pipeline. We apply powerful continuous-

space models, like long-short-term-memory neural network based language models

(LSTMs), in early phases of the decoding of the audio signal, and evaluate it in a

language model adaptation-based task. Our experiment had only a small amount

of in-domain text and we explore enhanced versions of LSTMs to enable long-term
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information capturing on such low-resource in-domain corpora.

Furthermore, to analyze and understand the different long-term dependencies

in a text, we develop our own language model in Chapter 5. Using a combination

of matrix-weighted formulation to represent long-term information combined with

conventional n-gram models for short-range information, we compare our language

model with RNNs.

After discussing handling long-term dependencies in a text, in Chapter 6 we

analyze handling out-of-vocabulary words in language corpora. We propose an

algorithm to generate representations for such words and also induce better repre-

sentations for words with not enough training data (rare words). These represen-

tations are qualitatively analyzed against the state-of-the-art and finally applied

in a language modelling framework to observe their performance in predicting rare

words.

Additionally, we combine the techniques proposed in this thesis to evaluate

handling long-term and rare-word information simultaneously on a Keyword Search

task in Chapter 7. We analyze the evaluations using intrinsic and extrinsic metrics,

and also examine the limits of using these techniques in such a downstream task.

Finally, we conclude by discussing the following main contributions of this

dissertation in Chapter 8:

• A comparison of discrete and continuous models that capture long-term in-

formation on low-resourced languages (Chapter 3)

• A novel application of state-of-the-art methods to perform first-pass decoding

with long-short-term-memory neural network language models in language

model adaptation task (Chapter 4)

• A comparison and evaluation of LSTMs for language model adaptation dur-

ing a Speech Recognition task (Chapter 4)
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• A new neural-based continuous language model to capture different long-term

dependencies (Chapter 5)

• A new simple and fast method to handle rare word representations in low-

resourced languages (Chapter 6)

• A combined evaluation long-term and rare-word techniques on Keyword

Search (Chapter 7)

Parts of this dissertation have been published in the following research papers:

• Mittul Singh and Dietrich Klakow. Comparing RNNS and Log-linear in-

terpolation of improved Skip-model on four Babel languages: Cantonese,

Pashto, Tagalog, Turkish. ICASSP 2013

• Mittul Singh, Clayton Greenberg and Dietrich Klakow. The Custom Decay

Language Model for long range dependencies. TSD 2016

• Mittul Singh, Clayton Greenberg, Youssef Oualil and Dietrich Klakow. Sub-

Word Similarity based Search for Embeddings: Inducing Rare-Word embed-

dings for Word Similarity Tasks and Language Modelling. COLING 2016

• Mittul Singh, Youssef Oualil and Dietrich Klakow. Approximated and domain-

adapted LSTM language models for first-pass decoding in Speech Recogni-

tion. INTERSPEECH 2017



Chapter 2

Background

Language modelling has played a key role in building systems for traditional NLP

tasks such as Speech Recognition (Mikolov et al. (2010); Arisoy et al. (2012)),

Machine Translation (Schwenk et al. (2012); Vaswani et al. (2013)) or Text Sum-

marization (Rush et al. (2015); Filippova et al. (2015)). In most cases, training

better language models have improved overall performance of these systems, pro-

viding the impetus to training better language models.

Recently, language modelling research has been given a new shot of life by the

introduction of continuous-space models like recurrent neural network language

models (Cho et al. (2014); Sundermeyer et al. (2012); Oualil et al. (2016)). These

models have alleviated the data sparsity issues faced by discrete models and out-

performed these discrete models significantly. Hence, leading to better-trained

language models.

In this chapter, we take a closer look at both these language model categories

and compare the models’ design choices, while discussing the models’ effectiveness

when handling long-term dependencies and handling rare words.
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2.1 Handling Long-Term Dependencies

In NLP tasks, significant improvements in performances (Momtazi and Klakow

(2011); Sundermeyer et al. (2012)) has been shown by handling long-term depen-

dencies. Both discrete-space models and continuous-space models handle such

dependencies differently. We provide an overview of various state-of-the-art meth-

ods from both these categories and discuss their approach to handling long-term

dependencies in the following sections:

2.1.1 Discrete-Space Models

Discrete space models are the oldest set of language models that are still applied

in various language modelling tasks. This is because of their ease-of-use and sim-

plicity that these models continue to be used.

These discrete space models are constructed by enumerating different-length

dependencies explicitly. To enumerate dependencies explicitly, discrete models

leverage the Markov assumption and express these dependencies as word n-grams.

The frequencies of these n-grams are then accumulated and used to make predic-

tions in a general text. As these n-grams are chosen only from a training set, the

n-grams are not representative of the underlying data distribution. To overcome

such overfitting of the training set, n-gram model distributions are smoothed using

various techniques like Kneser-Ney smoothing and Dirichlet smoothing (Ney et al.

(1994); MacKay and Peto (1994)).

In particular, Kneser-Ney smoothing has performed well in comparison to other

available backing-off smoothing methods (Zhai and Lafferty (2004)). Apart from

this smoothing method, Dirichlet smoothing has been found to be quite useful in

information retrieval tasks.

Smoothing methods allow for a better generalization of n-gram-based methods

but, these methods are still restricted by the size of underlying n-grams. Increas-
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ing the n-gram size does allow for a longer range but creates data sparsity issues

which make such language models hard to use. So, we also utilize skip-gram fea-

tures to control the data sparsity and still have a long range. Next, we discuss

these skip-gram features and other above-mentioned smoothing methods in detail.

Kneser-Ney Smoothing

On sentence-level word prediction tasks, Kneser-Ney improved performance among

different backing-off smoothing methods is due to its ability to model words based

on the diversity of their contexts. This dependence on diversity of context also

means that these models are good for short ranges only and overfit when the size

of the n-grams is increased.

In practice to overcome this bias towards short-range dependencies, such backing-

off models are combined with corpus-level-statistics-based language models, which

provide information with long-range dependencies avoiding overfitting.

Dirichlet Smoothing

Although Kneser-Ney performs well on sentence-level language modelling tasks

like KWS and ASR, we also apply smoothing using Dirichlet priors (pT (w|h)) as

described below:

p(w|h) = c(w;h) + µpT (w|h)
c(h) + µ

(2.1)

where for a given word (w) and its context (h), we train priors (pT (w|h)) on a big

training corpus and smooth the corpus counts with these priors using the param-

eter µ.

For information retrieval related tasks, Dirichlet smoothing priors are able to

capture a document collection statistics better than representing distributions gen-

erating single sentences. Hence, allowing Dirichlet-based smoothing in sentence-

level oriented tasks, like ASR and KWS, enables smoothing short context-based
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language models with the help of a corpora-level language model and hence, pro-

viding a larger range of dependencies to work with.

Skip-gram based Models

In the above-described smoothing methods, we have assumed the n-gram tuple as

a continuous sequence of words. However, this assumption is an unnecessary hur-

dle to capturing long-range dependencies. Instead, skipping words in an n-gram

can capture even longer context than regular n-grams. These skip n-gram features

can be used to construct Skip-gram language models. Extending range using these

language models also allows controlling parametric growth. Moreover, such lan-

guage models have been used successfully for intrinsic evaluation in Momtazi et al.

(2010a).

Earlier work (Peters and Klakow (2000)) has also experimented with differ-

ent frameworks to employ these skip-gram features and log-linear interpolation of

such features has been shown to capture long-range dependencies better than other

frameworks like the linear interpolation. An example formulation using bigram-

based skip-gram features on a window of five words (w1, w2, w3, w4, w5) is described

below:

p(w5|w1, w2, w3, w4) =
1

Z(h)

4∏
i=1

pλi(w5|wi) (2.2)

Here, h is defined to be (w1, w2, w3, w4), Z(h) stands for the normalization constant

dependent on the context (h), λis’ are the parameters of the log-linear interpola-

tion and p(w5|wi) form the distance bigrams with 5−i−1 representing the number

of words skipped in the middle.

Prior work has assessed the usefulness of these models on intrinsic language

modelling tasks like perplexity-based experiments but these models have not been

applied to extrinsic evaluations on tasks like KWS and ASR. As part of this work,

we apply these skip models to extrinsic evaluations and compare them to contem-

porary neural network-based language models.
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2.1.2 Continuous-Space Models

Unlike discrete models, continuous space models represent different dependencies

in text implicitly. These continuous models represent words in an abstract word

space, where words in a similar context are clustered close to each other. This

context and its representation might differ for different continuous space model.

Once this model establishes the word space, it utilizes this space to predict the

words for any newer context.

Few of such models are applied as part of our study, namely, class-based lan-

guage models and recurrent neural network language models. These are briefly

described in the following sections.

Class-based Language Models

Language models like n-gram models through explicit formulation work well on

short-range tasks, but miss out on abstract information contained in the text.

To model this abstract information class-based n-gram techniques (Brown et al.

(1992); Saul and Pereira (1997)) are utilised.

Most of these class-based methods group words in the text, depending on their

context, together in a class. These classes form an abstract representation of words,

sharing this information with the class to make predictions on the word level. But,

this clustering only captures high-level corpus phenomenon and hence, work well

in tandem with conventional n-gram language models.

Recurrent Neural Network Language Models

A major drawback of n-gram- and class-based LMs is data sparsity problem caused

by increasing their range and hence, shorter versions of these model end up being

used. However, limiting range in such a manner discards a lot of long-range de-

pendencies, which can be beneficial for a predictive system.
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Language Vocabulary Size Rare Words

Tagalog 22K 11K

Turkish 25K 14K

Vietnamese 6K 1K

Table 2.1: This table reports the statistics for different low-resource language

corpora used for language modelling. The second column shows the

vocabulary size and the last column shows the rare words (words in

vocabulary with frequency ≤ 1 in the training set).

Recently, with the advent of recurrent neural networks (RNNs) for language

modelling (Mikolov et al. (2010)), capturing long-range dependencies while avoid-

ing data sparsity issues has become simpler. This effect is due the recurrent con-

nections in RNNs, which allows the context information to cycle longer than an

ordinary neural network or an n-gram model.

However, these RNNs suffer from instabilities during training leading to leaking

long-term information (Sundermeyer et al. (2012)). To fix this instability issue,

long-short-term-memory (LSTM) based units are applied to RNNs and LSTM-

based models improve the performance significantly over RNNs. Further improve-

ments (Oualil et al. (2016)) have been made to LSTM which have led to a more

efficient use of information in the memory units of the recurrent neural networks.

LSTM and most of its extensions have focussed on re-purposing within sentence

information for tasks like ASR. Though, for tasks like Question Answering using

across sentence information can be beneficial (Momtazi and Klakow (2011)).

2.2 Handling Rare Words

Apart from research in capturing long-range dependencies, last decade has seen

an undeniable growth in NLP research towards resource poor languages. Cieri



2. Background 13

et al. (2016) states that such growth has been due to impetus by US and EU

funded programs like LORELEI, Babel, METANET, which are only focussed on

low-resource language-based systems.

METANET, an EU-funded program, states that "The majority of European

languages are severely under-resourced" and suggests that a "coordinated, large-

scale effort has to be made in Europe to create the missing technologies and transfer

this technology to the languages faced with digital extinction". The motivations of

METANET focus on improving information access and collaboration across mul-

tilingual Europe. Unlike METANET, US National Science Foundation’s Docu-

menting Endangered Languages program (2014) is differently motivated and they

propose that "We must do our best to document living endangered languages and

their associated cultural and scientific information before they disappear". These

motivations lead us to not only work on low-resource languages but also handle

key language modelling challenges these on low-resource languages.

Specifically, we tackle the problem of providing good representations for words

with not enough training data, such words are referred to as rare words. These

rare words can form up to 50 % portion of the language’s vocabulary, as seen in

the Table 2.1. Though, we address this issue in a language modelling framework,

handling rare words is important to various other NLP tasks.

Most recent work (Luong et al. (2013); Botha and Blunsom (2014); Soricut

and Och (2015)) on handling rare words have worked with morphologically-rich

languages. These prior work can be divided into two categories supervised (Lu-

ong et al. (2013); Botha and Blunsom (2014)) and unsupervised (Soricut and Och

(2015)). In supervised methods existing linguistic knowledge like morpheme-based

analysis is applied to generate good representations of the rare words. On the con-

trary, the unsupervised methods use automatic analysis to obtain good rare-word

representations.

One such unsupervised method which enables generation of rare-word represen-
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tations is Soricut and Och (2015). In their work, a word-to-word based transfor-

mation graph is built, where each such transformation represents a morphological

operation to convert one word into another. And as these transformations are

represented in a high-dimensional semantic vector space, the rare-word represen-

tations generated perform well qualitatively.

Such unsupervised approaches are beneficial in a low-resource scenario, where

good representations can be generated without the need of more resources. How-

ever, the above graph-based formulation can lead to tuning and implementation

overhead in an NLP application. As part of our work, we overcome these overheads

by developing a faster and simple-to-implement technique.

2.3 Combining Long-Term and Rare-Word infor-

mation

Apart from handling long-term and rare-word information separately, efforts have

also been made to develop language models which address these issues simulta-

neously. Character-based neural network language models (Kim et al. (2015);

Jozefowicz et al. (2016)) have shown impressive performance gains by capturing

long-term dependencies and also handling rare words simultaneously. However,

these models have not been applied to downstream tasks like Speech Recognition

and Keyword Search.

Previous language model comparison studies have only used long-range n-gram

based back-off language models (Hartmann et al. (2014)), where using long-range

models have shown promising results. We further this comparison by combining

techniques discussed in our work and enhancing existing techniques for application

to a Keyword Search task.



Part II

Handling long-term dependencies



Chapter 3

Alternatives to RNNLM

3.1 Introduction

Language modelling research has been uprooted with the arrival of neural network

based language models (Bengio et al. (2003); Mikolov et al. (2010); Schwenk et al.

(2012)). This change is due to their ability to model low-level language phenomena

effectively, which can then be leveraged to build classifiers. Such learning machines

have been successfully applied to language modelling tasks (Bengio et al. (2003);

Mikolov et al. (2010); Sundermeyer et al. (2012); Kim et al. (2015)) and other

tasks.

A side effect of this good performance of neural networks is increased applica-

tion of such models to train better LMs but at the expense of not much research to

understand the underlying data. A few language models have approached solving

tasks using Skip-gram based features in a more understanding-driven way (Shazeer

et al. (2015); Chelba and Shazeer (2015)), however, unlike neural network research

have lacked widespread application. In this chapter, we focus on exploring impor-
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tant differences between such Skip-gram-based alternatives and an effective version

of neural networks.

Specifically, we choose to compare to recurrent neural network language mod-

els (RNNLMs). These models obtain the state-of-the-art performance in language

modelling tasks due to their ability to capture long-span information. Recently,

these have also given rise to well-performing modifications (Sundermeyer et al.

(2012); Kim et al. (2015); Oualil et al. (2016)) but we concentrate on comparing

to their easy-to-train version (Mikolov et al. (2011)), described in Section 3.3.1.

While constructing Skip-gram based language models (Section 3.3.2), we em-

bed the Skip-gram features in a log-linear interpolation framework enabling it to

capture the long-span information allowing them to compete with recurrent neu-

ral networks. We also discuss improved smoothing methods to enhance capturing

long-span information in Skip-gram based models. To compare these different

language models, we evaluate their perplexity on various low-resourced language

corpora (Section 7.5.2). Following these perplexity-based experiments, we perform

an extrinsic evaluation of such conventional n-gram approaches on Keyword Search

task on a few IARPA Babel program’s languages datasets (Section 3.5.1).

3.2 Related Work

Apart from Skip-grams-based language models as a long-span information cap-

turing model, there exist other language models like across-sentence-based models

(Momtazi et al. (2010a)). These language models, however, have the advantage of

looking into the previous sentence context which can bolster the language model

prediction of words in the present sentence. Such an advantage is not available

to RNNLMs and hence, we only compare the RNNLMs with regular Skip-gram

language models.

There exist other matrix-based variants of using Skip-gram features (Chelba
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and Shazeer (2015)) for language modelling. Unlike Momtazi et al. (2010a) for-

mulation using a few parameters in log-linear interpolation, this matrix-based for-

mulation uses a lot more parameters to leverage the Skip-gram features. This

increase in parameters also implies a harder to tune method. Thus, we stick to

using a more amenable way of optimizing the use of Skip-gram features i.e. the

log-linear interpolation of Skip-gram features.

Apart from the model variants being discussed here, we explore evaluating the

models on low-resourced languages. To perform this evaluation, we use the low-

resourced language modelling corpora available from the IARPA Babel program.

Prior work (Gandhe et al. (2014)) has utilized these datasets to evaluate neural

network language models. Though in the context long-span language models such

a comparison has not been done to the best of our knowledge.

3.3 Language Models

We want to compare two methods that go beyond the trigram to capture long-span

information: recurrent neural networks (RNN) and the log-linear interpolation of

Skip bigrams and Skip trigrams. In the past years, Mikolov et al. (2010) used

RNNs based language model (RNNLM) to capture long range dependencies. This

model did not have any limits on the size of the context. Recurrent connections of

the neural network allowed it to cycle context information for an arbitrarily long

time and provide contexts of arbitrary lengths. This led the RNN based language

models to show great improvement in performance over the previous state-of-the-

art language models (further discussed in Section 3.3.1).

An alternative is the use of Skip models constructed using log-linear interpola-

tion (Momtazi et al. (2010a)). Unlike RNNs, in this model, all long range depen-

dencies are enumerated explicitly using Skip bigrams and trigrams. Normally these

Skip models are smoothed using standard off-the-shelf smoothing techniques like
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Figure 3.1: The Elman network which forms the basis of RNNLM

the Absolute Discounting variant suggested by Kneser and Ney (Ney et al. (1994))

or the Dirichlet smoothing (MacKay and Peto (1994)). Dirichlet smoothing is very

successful over long contexts and frequently used in information retrieval applica-

tions (Zhai and Lafferty (2004)).

In our experiments, we found that the constituents of Skip n-grams: bigrams

performed well with Kneser-Ney smoothing whereas distance bigrams performed

well with Dirichlet smoothing. Hence, we tried a unification of these techniques

which improved over the RNN based language model. Section 3.3.2 describes this

unification of smoothing techniques in detail. To further improve the performance

of the Skip n-gram model, we applied them in a word cluster based language

framework. Section 3.3.3 briefly discusses the clustering methods used to develop

the above-mentioned application. Section 3.3.4 details the combination of these

techniques generated to form word-cluster based modified Skip n-gram model.
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3.3.1 RNNLM

RNNLMs and its modification have shown state-of-the-art performances for se-

quential prediction task like language modelling. RNNLMs use the Elman archi-

tecture shown in figure 3.1. A special feature of this architecture is the recurrent

connection, through which the context size for these models is essentially infinite,

or at least, formally unconstrained. This makes them especially suitable for long

range dependencies.

The RNNLMs have also given rise to other more complex architecture like

GRU, LSTMs and LSRC (Cho et al. (2014); Sundermeyer et al. (2012); Oualil

et al. (2016)). These modifications are able to overcome the vanishing gradient

problem of RNNLMs but increase training complexity of these model. In this

work, we focus on studying the properties of the fastest of these models, the El-

man network.

While applying RNNLMs, training them can be slow, especially because the

output must be normalized for each word in the vocabulary. Hierarchical soft-

max and related procedures that involve decomposing the output layer into classes

can help with this normalization (Goodman (2001)). Unfortunately, using classes

for normalization complicates the training process, since it creates a particularly

volatile meta-parameter. This can be observed in Fig. 5.2, where even for a small

variation in classes, RNNLMs show unstable variation in perplexity.

For our experiments, we employ a widely used class-based RNNLM implemen-

tation (Mikolov et al. (2011)), which require H2 + 2HV +HC parameters, where

H is the number of hidden units and C is the number of normalization classes. To

produce better RNNLMs, we can increase the hidden layer size by one which in

turn increases the number of parameters linearly in vocabulary size (O(V +H+C)).
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3.3.2 Skip n-grams

To combine the Skip n-gram based features various language modelling frameworks

can be used, like linear interpolation, log-linear interpolation. We apply the log-

linear formulation for its known long-span information capturing abilities (Peters

and Klakow (2000)) in comparison to linear interpolation, which is not well suited

for such long-span information.

While constructing Skip-gram language models using log-linear interpolation,

we combine Skip bigrams, also known as distance bigrams, with conventional uni-

grams. Constructing Skip-gram language models in such a way leads to a quadratic

growth in parameters with respect to the vocabulary size. To add more document

level context to these language models, class-based distance bigrams can be inter-

polated within the log-linear framework. Adding class-based distance bigrams in

this mix leads to a linear increase in the number of parameters with the increase

in context size.

Smoothing Skip n-grams

Using proper smoothing methods for distance bigrams can lead to a large impact on

their performance. We propose to combine the Kneser-Ney smoothed Skip model

(pKN) and the Dirichlet smoothed Skip model (pDir). Table 1 gives a summary

of the various smoothing techniques used. A combination of these techniques is

carried out using the Jelinek-Mercer interpolation method (Jelinek and Mercer

(1980)). The unified smoothing based language model (UniSt) thus obtained is

described as:

pUniSt(w|h) =
λ1pDir(w|h) + λ2pKN(w|h) + pBG(w|h)

λ1 + λ2 + 1

A unified smoothing performed in such a manner shows performance gains

when compared to those obtained by individual smoothing. This is also clear from

the results of the experiments as discussed in Section 3.4.2.
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Method p(w|h)

Dirichlet
c(w;h) + µpBG(w|h)

c(h) + µ

Kneser-Ney
max(c(w;h)− δ, 0)

c(h)
+
δcu(h)

c(h)
pBG(w|h)

Jelinek-Mercer (1− λ)p1(w|h) + λp2(w|h)

Table 3.1: Summary of the smoothing methods used to smooth bigrams and dis-

tance bigrams. Here pBG is the background language model to which

the smoothing methods back-off to. For a detailed description of these

techniques refer to Zhai and Lafferty (2004)

3.3.3 Word Cluster-based Models

To enhance Skip-gram features, we also include distance bigram based class in-

formation with the features. To include such class information we apply brown

clustering and aggregate Markov model based classes. We describe them as fol-

lows:

Brown Clustering

Brown clustering as described in Brown et al. (1992) maximizes the average mutual

information over words. Here the mutual information between two words wi and

wj in the data is defined as follows:

MI = P (wi, wj) log
P (wi, wj)

P (wi)
P (wj)

This is then averaged over all the words in the vocabulary to obtain the average

mutual information (AMI).

To derive the class using this formulation, each cluster is initialized with having

a single word. Thereafter, pairs of clusters with a minimum decrement in AMI

are merged. This goes on until a predefined number of clusters is reached. As

a final step to increase the AMI, each term is moved to that cluster for which
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the resulting partition has the greatest AMI. This formulation of grouping words

together forces the words in similar context to be in the same cluster. Each word’s

cluster membership defines the word representation of it. Hence, many words share

the same representation over the same dataset. Such a representation also forms

the major drawback of this approach, assigning explicit cluster membership to each

word, leading to an inflexible formulation.

After estimating the word clusters, where c(w) represents the class of a given

word w, it can be used to predict the probability of a bigram as follows:

p(w2|w1) = p(w2|c(w2))p(c(w2)|c(w1)) (3.1)

Aggregate Markov Model

In contrast to Brown clustering, aggregate Markov model (AMM) relaxes the ex-

plicit membership assigned by Brown clustering. Thus, one word can belong to

more than one cluster. This form of word membership is formulaized by defining

the probability of the bigram pair as follows:

p(w2|w1) =
C∑
c=1

p(w2|c)p(c|w1) (3.2)

where (w1 , w2) is the bigram pair, c represents the class variable and C is the

number of clusters. In the above model, p(c|w1) is the probability of w1 being

mapped to class c (conceptualizing context) and p(w2|c) denotes the probability

of w2 appearing, after a word from class c has appeared. For a word w, aggregate

Markov models use p(c|w) to define similarity to a context c. Thereby, allowing

a w to belong to different contexts with varying degree. Here, p(c|w) forms a

real valued vector representation for each word, with each element of the vector

constrained to the interval [0, 1]

To solve for different parameters for the model, we use the EM algorithm (Saul

and Pereira (1997)) to evaluate the following steps:
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E-step

pi(l|w2, w1) =
p(w2|l)p(l|w1) + η∑C

k=1 p(w2|k)p(k|w1) + Cη
(3.3)

M-step

pi(w2|l) =
∑

w1inV
N(w1, w2)p(l|w2, w1) + |V |η∑

w′2

∑
l′ N(w1, w′2)p(l

′|w2, w′1) + |V |2η
(3.4)

where N(w1, w2) denotes the absolute frequency of bigram (w1, w2) in the corpus

and |V | is the vocabulary size of the corpus. Here, we modify the E-step and M-

step by smoothing the individual steps using additive smoothing (Lidstone (1920)),

which is controlled by the parameter η. Steps (2.3)-(2.4) are iterated until the

algorithm converges.

3.3.4 The Combined Model

The Skip bigrams can now be reformulated by applying the techniques already

explained in Sections 3.3.2 and 3.3.3. The Skip bigram’s constituent models: bi-

grams (p(w1|w2)) and distance bigrams {p(w1|wj) : j = 2, 3, . . . , n}, are individu-

ally smoothed using the pUniSt (see section 3.3.2). Simultaneously, word clusters

are evaluated over bigrams and distance bigrams (see section 3.3.3). The UniSt

bigrams and distance bigrams are then combined with their clustering-based coun-

terparts (psoft(w|h), phard(w|h)) through the Jelinek-Mercer interpolation method

(pc(w|h)), described as follows:

pc(wi|wj) = σ1pUniSt(wi|wj) + σ2psoft(wi|wj)

+ σ3phard(wi|wj)

where
∑3

i=1 σi = 1. A final log-linear interpolation yields the following modified

Skip (MS ) bigram model:

pMS(w1|h) =
1

Zλ(h)
pc(w1|w2)

λu

×
n∏
i=2

(
pc(w1|wi)
p(w1)

)λi
where λis are the log-linear interpolation parameters.
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Cantonese Pashto Tagalog Turkish Assamese

Training data

Words 410536 379596 320841 329380 74775

Sentences 34890 28180 32851 41668 10999

Test data

Words 23071 19261 14670 15020 72105

Sentences 1768 1313 1298 1784 10310

Vocabulary 9932 9361 13431 23794 7675

Table 3.2: A statistical summary of language datasets used for the experiments

in this chapter. (Vocabulary is measured in number of words)

3.4 Perplexity Experiments

In this section, we compare perplexity of Skip n-gram language models against

other conventional n-grams language models and RNNLMs on various Babel lan-

guage corpora.

3.4.1 Data

We used Cantonese, Pashto, Tagalog and Turkish language datasets in our experi-

ments. The datasets include transcriptions of phone conversations collected under

the IARPA Babel Program language collection releases babel101-v0.4c, babel104b-

v0.4aY, babel106b-v0.2f and babel105-v0.5. Cantonese is a particular dialect of

Chinese spoken in large parts of southern China. It is segmented on a character

level. The Pashto language (also known as Afghani and Pathani) is mainly spo-

ken in Afghanistan and Pakistan. Tagalog is one of the main languages spoken in

the Philippines, and Turkish is the predominantly spoken in Turkey with smaller

groups located in Europe and central Asia.
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Figure 3.2: Variation of perplexity for different distances used to construct the

distance bigrams

To evaluate language models these datasets were divided into training and test

data. We used perplexity as a performance measure. First 200 words of the test

set were used as the development set to tune the parameters involved in language

models. Training and test corpora sizes and respective vocabulary sizes are sum-

marized in Table 3.2.

3.4.2 Smoothing Techniques For Skip Bigrams

We use the unified smoothing technique (UniSt) described in Section 3.3.2 to

compare the performance of bigrams and distance bigrams over a window of five

previous words on the Turkish language dataset. Figure 3.2 shows the variation of

performance of distance bigrams on the test set for different distances. As can be

seen from the figure, for a smaller context we note that the bigrams and distance bi-

grams smoothed using the Kneser-Ney smoothing (KN ) generally performs better

than the ones smoothed using the Dirichlet technique (Dir). However, for larger

contexts Dir (d > 1)performs better than KN. The combined smoothing technique

(UniSt) takes advantage of both these methods and is thus able to outperform
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Figure 3.3: Perplexity of aggregate Markov model based LMs on test and training

set vs smoothing parameter (η) used in the steps of the EM algorithm

plotted on doubly log scale.

its component smoothing techniques. A similar trend was observed for the other

languages demonstrating the robustness of the technique.
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Figure 3.4: Perplexity of AMM and Brown clustering based LM on the test set

as a variation of classes on the x axis. Best result is marked by the

combination which uses C = 500 for both the models.
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Figure 3.6: Variation of test set perplexity for a particular instance of RNN for
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3.4.3 Sensitivity Analysis of Meta-Parameters

We analsye the impact of smoothing parameter on the EM algorithm by varying

it in the range [10−7, 10−3]. It displays a generally robust variation of perplexity

as shown in the Figure 3.3. The best performance of AMMs is noted for η = 3×].
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LM Cantonese Pashto Tagalog Turkish

KN3 85.206 125.853 144.83 266.322

RNN 85.012 122.432 129.150 245.016

SkipKN 83.457 124.657 130.031 236.871

SkipUniSt 78.563 118.405 123.957 224.277

Skip+DistClusters 77.586 116.382 122.558 223.255

Skip+Clusters 75.481 112.529 117.456 216.711

Table 3.3: Perplexity results for different models over Babel language modelling

corpora

Similarly, varying the number of classes from 5 to 500 for AMM and Brown clus-

tering based LMs displays a robust performance, shown in Figure 3.4. Though the

best performing Brown clustering LM (Cbest
brown = 200) and AMM (Cbest

AMM = 500)

differ in number of classes, their combination performs best when 500 classes are

used for each. We attribute the increase in Brown classes for best performance in

the above combination to AMM’s ability to alleviate the data sparseness better

than Brown clustering.

Furthermore, we look at the variation of perplexity with meta parameters of

both the Skip n-gram model and RNN based language model. Figure 3.5 and 3.6

show the variation of perplexity as a function of each of these methods’ meta pa-

rameters. As seen in figure 3.5 and 3.6, we observe that perplexity varies smoothly

with λ4 for the Skip model, whereas the RNN based model shows large variations

even for small changes in its number of hidden units. These large variations make

the Skip model easier to tune than the RNN based model. Tuning the RNN’s

meta parameters on the development set can be done using a grid-search based

algorithm. However, even this might not be enough to obtain a good performance

on the test set.
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3.4.4 Results

To evaluate performance of the various methods discussed in this work, we use the

language datasets from Cantonese, Pashto, Tagalog and Turkish. A Kneser-Ney

smoothed trigram (KN3) is used as the baseline for comparisons with other lan-

guage models. We report the perplexity results of the RNN based language model

and the Skip n-gram model smoothed using Kneser-Ney smoothing (SkipKN). We

compare these results with the unified smoothed Skip model (SkipUniSt). For fur-

ther comparisons, we construct another two versions of the modified Skip model

by adding cluster information to its constituent models: one includes cluster infor-

mation only in the distance bigrams (Skip+DistClusters) and the other adds word

clusters to both bigrams and distance bigrams (Skip+Clusters).

The perplexity numbers of the above language models are summarized in the

Table 3.3. As shown in this table, we observe the following trends: both SkipKN

and RNN show on-par results on the various datasets used. SkipUniSt outperforms

the baseline (KN3 ) on different language datasets by about 8-16 %. In compari-

son to RNN, it gives a performance improvement of 3-8 %, whereas with respect

to SkipKN it shows an improvement of about 5 %. Adding cluster information

to unified-smoothed Skip model’s component distance bigrams only improves its

performance by 1 %. Additionally, if the word clusters are combined with both

the component models of Skip n-gram an improvement of 4 % is observed.

3.5 Keyword Search Experiments

In this section, we compare the Skip-grams with other traditional n-gram models

when applied in IARPA Babel program’s Keyword Search (KWS) task. We first

describe the task briefly and then discuss application of language models within

the task.
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Figure 3.7: An overview of Keyword Search System used for evaluating language

models described here.

3.5.1 Keyword Search Task

Keyword Search Task (KWS), also known as the Keyword Search (KWS) task,

aims to find exact matches of queries in an audio signal. Previously, NIST 2006

KWS had performed such a task on high-resource languages. With this iteration

of KWS, the focus shifts to developing such systems for low-resource languages

like Turkish, hence aiming to develop Keyword Search capabilities for various low-

resourced languages.

A high-level visualization of a KWS system is displayed in the Figure 3.7. This

pipeline displays the audio signal being passed through a large-vocabulary contin-

uous Speech Recognizer (LVCSR), outputting a lattice of words with timestamps.

This word lattice is then be converted to a confusion matrix of words, using ap-

proach described in Hakkani-Tur and Riccardi (2003). A search is then performed

over this word confusions matrix for query terms and the matches are returned.

Applying Language Models in KWS

Language models are used in two different ways as part of this KWS pipeline.

First, while performing Speech Recognition a language model is used for decoding
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audio signals and producing word lattices. Usually a second pass is performed on

this word lattice to rescore the lattice paths with an advanced language model.

Evaluation Metrics

To evaluate this system, Actual Term Weighted Value (ATWV) is used as the

primary metric (Gandhe et al. (2014)). ATWV combines missed detections and

false alarms as follows:

ATWV =
1

Nterms

∑
(1− PMiss(term)− βPFA(term)) (3.5)

PMiss(term) = 1− Ncorrect(term)

Ntrue(term)
(3.6)

PFA(term) = 1− Nspurious(term)

Tspeech −Ntrue(term)
(3.7)

where,

• β = 999.9 as described in Mamou et al. (2007)

• Ncorrect is the number of correct detections retrieved by the system

• Nspurious is the number of spurious detections retrieved by the system

• Ntrue is the true number of occurrences of the terms in the system

• Tspeech is the total amount of speech in seconds

• Nterms is the total number of terms to detected

In ATWV, every term is weighted equally but missing a rare term is more

expensive than missing a frequent term due to PMiss’s dependence on number of

true terms. Also, in ATWV detecting a term falsely is highly discouraged.

This trade-off of misses and false alarms makes this metric fundamentally dif-

ferent from perplexity used in our experiments. In fact, perplexity is agnostic to
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Language Model Tagalog Assamese

Recall ATWV Recall ATWV

KN3 0.40 0.13 0.32 0.14

SkipUniSt 0.40 0.14 0.32 0.13

KN3 + SkipUniSt 0.41 0.14 0.32 0.13

Table 3.4: Lattice Recall and ATWV results for a kneser-ney trigram (KN3),

Skip n-gram smoothed using unified smoothing (SkipUniSt) and also

compared to a combination of these two models

these detection events and does not correlate well with ATWV. As we use language

models optimized for perplexity and not for ATWV, we also evaluate their impact

on lattice recall after a second pass with Skip n-gram language models described

previously. Lattice recall measures the number of correct term detections in the all

the hypotheses of the lattice. This helps measures how the quality of the lattices

change with rescoring with long-span language models.

3.5.2 Keyword Search System Description

As our baseline model, we trained Kneser-Ney smoothed trigram language models

(KN3). Skip n-grams are constructed in house and then converted to backing-off

ARPA formats to be used as part of the Speech Recognition pipeline.

This Speech Recognition pipeline is built using the 10 hour LimitedLP audio

data, available as part of the IARPA Babel program, to train the Janus Speech

Recognition toolkit based system (Soltau et al. (2001)). This system applies the

above discussed ARPA format language models to the Keyword Search task.
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3.5.3 Results

For our experiments with Skip n-grams in KWS, we evaluate ATWV and lattice

recall for two Babel language datasets, LimitedLP Assamese (collection release

babel102b-v0.5a) and LimitedLP Tagalog, details available in Table 3.2.

We compare the unified smoothing based Skip n-grams (SkipUniSt) against a

Kneser-Ney trigram language model. As noted by the performances on these Ba-

bel datasets in Table 3.4, the SkipUniSt performs marginally better on Tagalog in

terms of ATWV and a reverse trend is seen in case of Assamese, where KN3 per-

forms better than SkipUniSt. Similarly, when combining the two language models

(KN3 + SkipUniSt), a performance similar to Skip n-grams in terms of ATWV is

observed.

However, no variation is seen in lattice recall for both these languages when

performing lattice rescoring with Skip n-gram models. We attribute this lacklus-

tre performance of Skip n-grams to dissimilar training objectives for the language

modelling task and the Keyword Search task.

We also note that interpolating neural network based language models along

with KN3 has been shown to perform significantly better than KN3 in terms of

ATWV (Gandhe et al. (2014)). As our interpolated combinations of Skip n-grams

did not perform better than the simple baseline of KN3, we refrained from compar-

ing the combination with other long-span neural network based language models.

3.6 Summary

At the time of this work, Skip n-grams had already inspired longer range lan-

guage models such as Momtazi et al. (2010a). These particular models proved

very beneficial for Question Answering systems (Momtazi and Klakow (2011)).

These models, however, used across sentence statistics which are unavailable to

RNNLM explicitly and hence, we do not compare to them.
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More recent and previous work have utilized Skip n-gram-based features in

newer and novel language modelling frameworks (Shazeer et al. (2015)) to improve

performance on language modelling tasks. This is contrast to this work where we

employ existing smoothing methods to improve the performance of Skip n-grams

for longer range dependencies.

In our perplexity based experiments, our proposed unified-smoothed Skip model

was able to outperform state-of-the-art language models. Moreover, it outper-

formed a recurrent neural network based language model. A simple unification

of the smoothing techniques gave 3-8 % improvement over a connectionist-based

language model across all the four Babel languages. We achieved this by using a

lower training complexity model than RNN.

We also applied the word cluster information at a word level to this model

which further improved its performance. An addition of word clusters to only the

distance bigrams in the Skip model showed a minor improvement, whereas adding

them to both the bigrams and distance bigrams showed a greater improvement.

Sensitivity analysis over meta parameters of Skip n-grams and RNN based

language model showed that the former is more robust towards small changes in

parameters than the latter one. Smooth variation of perplexity in Skip models also

makes them easier to tune than a RNN based technique.

Even though, Skip n-grams were able to perform well on perplexity-based lan-

guage modelling experiments, these models performed comparably with Kneser-

Ney trigram models with respect to ATWV in a Keyword Search task. This is in

contrast to neural network performance, which through its distributed represen-

tation is able to improve upon the KN3 performance in this task. We attribute

this comparable performance of Skip n-grams to KN3, to Skip-grams unfocussed

training with respect to the perplexity measure. Gandhe et al. (2014) details out

one such way of focussed training of language models for Keyword Search task.

In the next chapter, we shift our focus from Skip n-grams to a more contempo-
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rary set of long-span language models, the long-short-term-memory neural network

models, for improving language model adaptation performance in an Automatic

Speech Recognition system.



Chapter 4

Improving applicability of RNNLMs

for Speech Recognition

4.1 Introduction

In the previous chapter, while comparing Skip n-gram models with RNNLMs, we

observed that Skip n-grams models can be easier to tune and even outperform

RNNLMs in terms of perplexity. However, when applying the Skip n-grams in a

Keyword Search task, it is unable to outperform a regular Kneser-Ney smoothed

trigram model. Moreover, linear combinations of these two models performs com-

parably with respect to the trigram model, when previously it has been shown that

similar combinations of trigram model with neural network-based model outper-

form the conventional trigram models (Gandhe et al. (2014)).

Hence, we switch to using recurrent neural networks instead of Skip-gram mod-

els to harness long-span information in languages for a downstream task. Among

the variants of such recurrent neural network-based language models, we exper-
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iment with long-short-term-memory (LSTM) LMs (Sundermeyer et al. (2012))

because of their ability to handle the vanishing gradient problem obtaining state-

of-the-art performance on various language modelling tasks (Graves et al. (2013);

Sutskever et al. (2014); Sundermeyer et al. (2014)).

However, applying such a long-span neural model for in a downstream task like

first-pass decoding in a Speech Recognition pipeline can be difficult leading to loss

of relevant information at an early stage. Improving applicability of such LMs for

first-pass decoding becomes the focus of this chapter.

Here, we explore different approximations of LSTMs enabling the application

to first-pass decoding in Speech Recognition (Section 4.4) and also introduce faster

ways of achieving such approximations. To evaluate these approximations, we ap-

ply these models to Metalogue1 Speech Recognition task.

Due to little audio training data available in the Metalogue task, we apply

our approximation method to help develop two approximate LSTM variants for

language model adaptation (Section 4.3). In the context of language model adap-

tation, such an application of approximated and domain-adapted long-span models

to first-pass decoding has not been studied earlier. This study becomes the focus

of this chapter, where we compare different adaptation techniques for the LSTM-

based long-span model in conjunction with approximation techniques for first-pass

decoding in a Speech Recognition task.

4.2 Prior Work

4.2.1 Approximating LSTM language models

Earlier, different techniques for approximating recurrent neural network language

models using n-gram language models have been compared. These include varia-

tional approximation methods (Deoras et al. (2011a)), probability-based conversion
1http://www.metalogue.eu/
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(Adel et al. (2014)) and iterative conversion (Arisoy et al. (2014)). Comparison

of these techniques has shown that the iterative conversion method has performed

best. Though, while using this method smaller bigram-based approximations of

RNNLMs have outperformed the trigram-based approximation on Speech Recog-

nition tasks. This behaviour of smaller context bigrams performing better than

larger trigrams is unfavourable for including longer range dependencies through

this approximation method. Hence, as part of this work, we only apply the varia-

tional approximation method and a variant of probability conversion method.

In the probability conversion method, RNNLM probabilities are collected for

every word of the training text and these probabilities are assigned to n-grams

related to this word. Then the probabilities of n-grams appearing more than

once are averaged together, before being normalized and smoothened to produce

a backing-off n-gram language model. In contrast, we collect the probability on

single representative n-grams instead of the words from the text and thus, skip the

averaging step.

4.2.2 First-pass Decoding using RNNLMs

The above-described approximation methods have mostly been developed for first-

pass decoding. These methods can be classified as an off-line way of using recurrent

neural network language models for decoding, as these methods are first used to

approximate RNNLMs to produce an off-line copy of n-gram-based language mod-

els, which are later used for decoding purposes.

Another category is the on-line methods for approximating RNNLMs, which

directly apply RNNLMs and perform approximation for decoding dynamically

(Lecorvé and Motlicek (2012); Huang et al. (2014)). These on-line methods employ

a cache-based mechanism, storing RNNLM states in caches and pruning the num-

ber of caches as they perform decoding. A more detailed comparison of different

cache-based mechanisms has been studied earlier in Huang et al. (2014). In the
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context of our work, we only experiment with off-line first-pass decoding methods.

4.2.3 Language Model Adaptation with LSTMs

Recently, recurrent neural network-based architectures have also been applied to

an adaptation task (Deena et al. (2016)). Deena et al. (2016) describes feature-

based adaptation and model-based adaptation of Elman network-based RNNLMs

(Mikolov et al. (2010)), the former includes the auxiliary features from the data

for a single training pass and the latter performs a two-pass training. In Deena

et al. (2016), these models are applied in a multi-domain adaptation setting where

the auxiliary features are either available or can be estimated readily. However, we

concentrate on small-sized single-domain adaptation data where only model-based

adaptation scheme is applicable for adaptation of LSTMs.

To apply these adapted LSTM, we approximate this model to an n-gram LM

for first-pass decoding. Apart from performing adaptation as part LSTM train-

ing, we also explore directly applying language model adaptation techniques to

approximated regular LSTMs.

4.3 Language Model Adaptation for LSTMs

In this section, we describe the application details of two techniques for language

model adaptation techniques used for LSTMs.

4.3.1 Output Adapted Long-Short-Term-Memory Network

Deena et al. (2016) develop a specialized LSTM-based neural network with four

layers, one of which is an adaptation layer for domain adaptation. This adaptation

layer is placed between the LSTM-based hidden layer (second layer) and the output

layer. After training the whole network on background data, the weights between
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adaptation layer and output layer are re-trained on the adaptation training cor-

pus. For simplicity, we construct a three-layered LSTM-based neural network,

where similarly to the Deena et al. (2016) the first layer forms the projection layer

encoding word representations; the next forms the recurrent hidden layer cycling

the long-span information; and the final layer outputs probability based on infor-

mation from the first two layers.

Similarly to Deena et al. (2016), we train this neural network on background

corpus, however, re-train only the weights between the hidden layer and the output

layer on the adaptation data. This output-adapted LSTM LM can then be used

to estimate probabilities for adaptation data. And to use this the output adapted

LSTM in first-pass decoding the model is approximated using above techniques

discussed in Section 4.4.

4.3.2 Fast Marginal Adaptation for Long-Short-Term-Memory-

based n-gram LM

The above method forms a more intrinsic way of adapting an LSTM, we can also

directly use the approximated LSTM LM trained on background corpus in the fast

marginal adaptation framework i.e. applying the approximated LSTM LM trained

on the background corpus as Pback as described in Kneser et al. (1997) (a brief

introduction is given in Chapter 8.2).

4.4 Approximations to LSTM-based LMs

To perform Speech Recognition decoding with a long-span language model like

LSTM LM, we approximate the language model to an n-gram LM. To create

such an approximation we use a variant of the probability conversion method.

Previously, Adel et al. (2014) collect RNNLM probabilities for every word of the

training text and assign these probabilities to n-grams related to this word. Then

the probabilities of n-grams appearing more than once are averaged together, be-
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Figure 4.1: The figure shows the steps that are followed to convert n-grams from

a text to an n-gram LM to approximate an LSTM LM

fore being normalized and smoothened to produce a backing-off n-gram language

model (stored in an ARPA format). When applying this method in our experi-

ments, we directly collect the probabilities on different n-grams instead of the word

and hence, skip the averaging step. These steps are outlined in the Figure 4.1. To

keep these approximated LSTMs tractable for decoding, we only score n-grams up

to the size of five.

Switching from scoring words to n-grams allows us to explore different meth-

ods of instantiating n-grams set. First, where n-grams are extracted from the data

used for training the language models for the Speech Recognition system.

This method, however, might not cover most n-grams present in the test set.

To increase coverage, we apply the second method where we sample text from a

Kneser-Ney trigram LM (Kneser and Ney (1995)). As suggested by the infinite

monkey theorem (Infinte monkey theorem (2002)), given enough time such a tri-

gram LM will produce all the n-grams present in the test set, hence, providing a

better coverage of this set .

Still these methods described above lack the information about the speech data
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being input into the Speech Recognizer. To alleviate this deficiency, we use the

N -best list produced by a well-performing baseline of the Speech Recognizer. This

N -best list is then converted to n-grams, which can then be scored using an LSTM.

4.5 Data

As part of the Metalogue Project, the participants have access to educational

debate sessions’ speech dataset. As this dataset includes only small amounts of

language modelling text, we perform language model adaptation to build an Au-

tomatic Speech Recognizer, using the language modelling text from 1996 English

Broadcast News Speech corpus (Graff et al. (1997)) as the background text. Fur-

ther details about these datasets are presented in the next few sections.

4.5.1 Metalogue Speech Data

The speech corpus was collected during the Metalogue project, which aims to de-

velop a dialogue system to monitor, teach and interact with participants, who are

debating a multi-issue bargaining topic in order to improve their negotiation skills.

The data used in this paper includes debates regarding the implementation of new

anti-smoking regulations. The speech data used in this paper contains 6 under-

graduates of age between 19 and 25, 4 males and 2 females. All the participants

are non-native English speakers. The data comprises 6 different debate sessions,

in the English language, with a total duration of 1 hour of speech.

For our language model adaptation experiments we use the transcriptions 5

of these sessions as our adaptation training data (18k tokens) and the 6th (11k

tokens) is used for evaluating perplexity and word error rates.
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4.5.2 1996 English Broadcast News Speech Corpus

To perform language model adaptation, we use the language modelling text pro-

vided by 1996 English Broadcast News Speech Corpus (HUB4) as background

information. As the Metalogue corpus uses conversational speech, the HUB4 tran-

scriptions of News speech, also conversational speech, forms a good source of back-

ground information.

The HUB4 text is divided into three parts, training (152M tokens) and valida-

tion (23M tokens) sets. The vocabulary size of these sets was restricted to around

80K most frequent words in the transcriptions, with all the out-of-vocabulary words

(OOV) being replaced by a predefined unknown word symbol. Any new words in

the transcriptions of the Metalogue corpus were also added to this vocabulary,

making it a closed vocabulary with zero OOVs in the data. Also, any optimization

of the background corpus-based LMs was performed using the validation set.

4.6 Perplexity Experiments

To create approximated and adapted LSTMs, we first train LSTMs using in-house

GPU enabled tools on the background training corpus and then process this model

using the techniques described in Section 4.3 and Section 4.4. In this section, we

compare different approximated and adapted models, evaluating these models on

test set perplexity.

4.6.1 n-gram Sources for Approximated LSTMs

The LSTM model are approximated to n-gram LMs using variational approxima-

tion and probability-conversion methods. We design the latter method to create an

approximated LSTM LM independently of n-grams’ sources, whereas the former in-

herently produces text to create n-gram LMs. Constructing approximated LSTM-
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n-grams’ Source PPL Size

Variational Approximation

Sampled from LSTM 327.5 5M

Probability Conversion

Sampled from KN3 371.6 5M

Sampled from KN3 302.3 250M

HUB4 292.4 150M

N1000 238.4 21M

Table 4.1: Approximated 3g-LSTMmodels’ perplexity on the adaptation test set.

These approximated LSTM-based LMs are constructed using different

sources of n-grams displayed in the first column, followed by perplexity

in the second column and size of data in millions (M) of tokens
based trigram (3g-LSTM) language models using these approximation methods,

we compare these methods on the usage of different n-grams’ sources and the lan-

guage model perplexities are reported in Table 4.1.

In Table 4.1 for a five million token-size corpora, using sampled text from

LSTM obtains a better perplexity than sampled text from a Kneser-Ney smoothed

trigram model (KN3). Though obtaining the latter text with KN3 is much faster

than the former. For instance, due to the constrained size of GPU memory, the

text sampler took nearly a week to sample five million tokens from an LSTM.

Whereas, using KN3 to sample a similar number of tokens took half an hour as a

single-threaded job. So instead of slowly improving perplexity by sampling more

text from LSTM, we sampled up to 250 million tokens (time to sample ∼ 1 day)

from KN3 to improve the approximated LSTM’s perplexity, which is reflected by

a 7% improvement in perplexity over 327.5 obtained using five million tokens sam-

pled from an LSTM.

As an alternative source of n-grams, we also used the background corpora

(HUB4 with 150 M tokens) and the 1000-best lists (N1000 with 21 M tokens) cre-
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LM HUB4 SAMPLED N1000

n-gram LMs

KN3 198.1 - 247.3

FMA3 202.6 - 169.5

Original LSTMs

LSTMadapt 433.3 - -

LSTMbg 181.1 - -

OA-LSTM 166.5 - -

Approximated and Adapted LSTM LMs

3g-OA-LSTM 258.4 265.9 224.0

3g-LSTMbg + 3g-LSTMadapt 184.2 202.6 180.1

FMA-3g-LSTM 263.4 261.6 185.7

Interpolation of FMA3 and Approximated LSTMs with KN3

FMA3 + KN3 184.4 - 166.1

3g-OA-LSTM + KN3 174.6 178.0 141.4

3g-LSTMbg + 3g-LSTMadapt + KN3 164.4 180.3 148.5

FMA-3g-LSTM + KN3 192.1 191.7 153.0

Table 4.2: Perplexity results on different adapted LSTM-based trigram models,

constructed using various n-gram sources.
ated using KN3 for first-pass of decoding (Section 4.7.1). Using these alternate

sources, approximated 3g-LSTM models further improved the perplexity over the

sampled-text versions. As these alternate sources are more easily available, using

these sources instead of sampled text to construct approximated LSTMs allows for

a faster application of language models to first-pass decoding.
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4.6.2 Approximate LSTMs for Language Model Adaptation

In this section, we compare the following language model adaptation techniques

for LSTMs in terms of perplexity. As baselines for this comparison, we chose

the Kneser-Ney smoothed trigram model (KN3) and its fast marginal adaptation

(FMA3).

LSTMbg and LSTMadapt represent LSTMs trained on background corpus HUB4

and adaptation Metalogue training corpora respectively. To perform first-pass de-

coding with these LMs, we construct approximate trigram versions of these LMs

(as described in Section 4.3), labeled with a prefix 3g-. To apply a simple baseline,

we combine these approximated LMs linearly to perform language model adapta-

tion, forming 3g-LSTMbg + 3g-LSTMadapt.

OA-LSTM are the output-adapted LSTMs trained on HUB4’s training set and

re-trained on adaptation training set as described in Section 4.3.1. To perform

first-pass decoding with this LM, we construct an approximate trigram version of

this LM, represented by 3g-OA-LSTM.

FMA-3g-LSTM are constructed using 3g-LSTMbg, embedded in the fast marginal

adaptation framework (FMA).

Among the baselines and original LSTM LMs, OA-LSTM has the best per-

plexity value. However, applying an LSTM directly to first-pass decoding is pro-

hibitively expensive and hence, we approximate the LSTM LMs using three differ-

ent sources of n-grams, namely, the background corpus (HUB4), the text sampled

using KN3 (SAMPLED) and the 1000-best lists (N1000).

Comparing the approximated adapted LSTMs, 3g-LSTMbg + 3g-LSTMadapt

obtains the lowest perplexity among the approximated LSTM LMs. However,

FMA3 an adapted n-gram LM scoring N1000 n-grams obtains a lower perplexity.

Only after linear interpolation with KN3 the approximated LSTM LMs are able

to improve upon the perplexities with 3g-OA-LSTM + KN3 achieving the lowest
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perplexity.

Moreover, for the different source of n-grams, 1000-best list based corpora

shows the best results across because of the extra decoding-pass information al-

ready contained in these lists.

4.7 Speech Recognition Experiments

We compare the different approximated and adapted LSTM models on Metalogue

Speech Recognition Task. In this section, we describe the relevant system details

and Speech Recognition experiments using these LSTM models.

4.7.1 Metalogue Speech Recognition System

The Metalogue corpus mainly contains non-native English speech with many spon-

taneous speech phenomena such as repetitions, hesitations, etc and this corpus does

not offer much audio training data for a Speech Recognizer. Therefore, we train

a multi-style Speech Recognition system on a collection of corpora, including the

1996 English Broadcast News Speech Corpus, Voxforge2, LibriSpeech (Panayotov

et al. (2015)) and WSJ0 (Pallett et al. (1994); Kubala (1995)), which amounts to

a total training duration of ≈ 1200 hours of training data for the acoustic model.

The acoustic model was trained using the standard GMM/HMM model combined

with Linear Discriminant Analysis (LDA), Maximum Likelihood Linear Transform

(MLLT) estimation and Speaker Adaptive Training (SAT). All these models were

trained and applied using Kaldi toolkit (Povey et al. (2011)) by conveniently mod-

ifying some of its training recipes. Training other types of acoustic models such as

subspace Gaussian mixture models and deep neural networks did not lead to any

noticeable improvement.
2http://www.voxforge.org
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LM HUB4 N1000

Baselines

3g-LSTMadapt 50.0 45.9

3g-LSTMbg 55.7 41.0

FMA3 36.5 36.1

Approximated and Adapted LSTM LMs

3g-OA-LSTM 42.9 39.0

3g-LSTMbg + 3g-LSTMadapt 39.2 37.8

FMA-3g-LSTM 38.8 37.3

Interpolation of Approximated LSTM models with KN3

FMA3 + KN3 35.6 35.0

3g-OA-LSTM + KN3 36.0 36.3

3g-LSTMbg + 3g-LSTMadapt + KN3 36.2 34.7

FMA-3g-LSTM + KN3 35.2 34.8

Table 4.3: WERs on Metalogue Speech Recognition task for adapted and ap-

proximated 3g-LSTMs on n-grams from HUB4 and 1000-best lists

(N1000)

4.7.2 Speech Recognition Experiments with 3g-LSTMs

The aforementioned adapted and approximated LSTM-based trigram models are

applied in the above described Metalogue Speech Recognition system (Section

4.7.1). Table 4.3 reports word error rate (WER) results of these experiments using

HUB4 and N1000 as n-gram sources.

For these experiments, we use 3g-LSTMs trained on the background (bg) and

adaptation (adapt) training sets as the simple baselines. As a more competitive

baseline, we also apply the fast-marginal-adaptation-based trigram language model

to the Metalogue Speech Recognition task.

Among the LSTM-based models, FMA-based LSTM (FMA-3g-LSTM) obtains
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the lowest WERs across different sources of n-grams, in contrast to 3g-LSTMbg

+ 3g-LSTMadapt that showed a better perplexity value. Until these approximated

LSTM LMs are interpolated with a KN3, these LMs are all outperformed by the

FMA3 model. This is quite similar to results obtained during our perplexity ex-

periments.

As KN3 is interpolated with approximated LSTM models and FMA3, we ob-

serve a higher rate of improvement for LSTM models than the FMA3 model.

Moreover, the KN3-interpolated version of LSTMs obtains a lower word error rate

than the KN3-interpolated FMA3 model. We attribute this observation to KN3’s

modelling short-context information that is more complementary to LSTM’s ca-

pabilities to leverage longer-context information than in comparison to a short-

context FMA3 model and hence, the interpolation with KN3 benefits the LSTM

models more.

In Table 4.3, we also observe the impact of using different n-gram sources.

1000-best list based n-grams, which are rich in first-pass decoding information,

obtain lower word error rates in comparison to n-grams from HUB4.

Also, among each of the subcategory of baseline, approximated & adapted and

KN3-interpolated language models, FMA-based language models generally per-

form best for different sources of n-grams. Previously, it has been shown that fast

marginal adaptation generally outperforms simple linear interpolation of language

models trained on background and adaptation training sets (Kneser et al. (1997)).

In most cases, we observe a similar trend. When comparing 3g-OA-LSTM to

FMA-3g-LSTM word error rates, the former performs worse whereas in terms of

perplexity the non-approximated version performs much better than the FMA-3g-

LSTM version. This degradation in performance, we suspect is due to losses in the

approximation process.

We note that, while using sampled text from KN3 as a source we observed

similar language model trends, however, the sampled text as the source was out-
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LM N1000

5g-OA-LSTM + KN3 35.9

5g-LSTMbg + 5g-LSTMadapt + KN3 35.0

FMA-5g-LSTM + KN3 34.4

Table 4.4: 5g-LSTMs interpolated with kneser-ney trigram (KN3) on Metalogue

Speech Recognition task with 1000-best list as the n-grams source
performed by n-grams from HUB4 and N1000 and hence, are not reported.

4.7.3 Speech Recognition Experiments with 5g-LSTMs

In all the above experiments, we chose n-grams up to a size three to be scored by

LSTMs. As LSTMs are long-span models, using a short-range n-grams can be a

hindrance in the models performing well. To alleviate this issue, we score n-grams

up to five built on a 1000-best list with adapted LSTMs (5g-LSTM) to be used

in decoding. We only consider 1000-best list n-grams as these n-grams obtain

the best results in our previous experiments and report the results in the Table

4.4. As shown in this table, the larger context mostly helps improve the Speech

Recognition performance, with the FMA-based 5g-LSTM interpolated with KN3

(5g-LSTM+KN3) performing the best on the Speech Recognition task.

4.8 Conclusion

In this chapter, we applied approximate LSTMs to first-pass decoding as part of

the Metalogue Speech Recognition pipeline. To create these approximate LSTMs,

we scored the n-grams from different texts using an LSTM to create different vari-

ants of approximated LSTMs.

Among these methods, we found that using N -best list based n-grams for

LSTM scoring led to the best performance on the Metalogue Speech Recognition

task. The other n-gram instantiations for LSTM scoring didn’t perform as well but
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increased the overall correct hypotheses recall of the 1000 -best list in comparison

to regular models. In our future work, we plan to explore N -best rescoring meth-

ods along with approximated methods to improve the correct hypotheses scores.

Due to only a small amount of in-domain training data available for Meta-

logue Speech Recognition task, we also applied model-based adaptation directly to

LSTMs and n-gram style language model adaptation to approximate LSTM. This

allowed us to use approximate-adapted LSTMs for first-pass decoding. In all our

experiments, most approximate-adapted LSTMs outperformed the non-adapted

versions. Moreover, when we increase the context size of approximate-LSTM n-

gram LM, we observed further reduced word error rates, which also formed the

best result obtained in our experiments.

In summary, we were able to faster approximate LSTMs to a better perfor-

mance than variational-approximated LSTM and also as a first we were able to use

their adapted versions for first-pass decoding in Speech Recognition. Though we

applied these fast approximation methods to LSTM, these techniques are generic

and can also be applied to other large-context neural network model. Hence, mak-

ing long-span neural models more applicable at the early stages of decoding in

Speech Recognition.



Chapter 5

Capturing Long Range Dependencies

5.1 Introduction

In our foregoing experiments, we saw that the Skip n-grams outperformed RNNLMs

with respect to perplexity on low resourced languages. However, when applied to

downstream tasks like Keyword Search and Automatic Speech Recognition, they

performed comparably with Kneser-Ney trigram LM (KN3) only after a combi-

nation with this trigram model. Also in our ASR experiments, the approximated

LSTM-based LMs combined with KN3 outperform the Skip-gram and KN3 com-

bination. Hence, showing that recurrent neural network based LMs are able to

better capture long-span information than Skip n-gram based LMs.

This is attributed to such a neural network’s recurrent connections, which can

allow old information to cycle in the network. Hence, leading to remember the

information state of the data longer than other simpler neural network and con-

ventional n-gram models, which does not have any such information state. An-

other important difference between recurrent and non-recurrent n-gram models is
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the former’s ability to model word representations and help in alleviating the data

sparseness (Mnih and Hinton (2007); Mikolov et al. (2011)). To understand the

limits of the behaviour of these recurrent neural network models, we build simpler

but comparable models and evaluate their performances. Section 5.2.3 outlines

the development of such a model. As we map long-span information in data,

we observe that such information exists beyond the normal sentence boundary.

To quantify information in dependencies of long distances, we use a variant of

pointwise mutual information. Specifically, for a given pair of words (w1, w2) sep-

arated over a distance d, we examine the ratio of the actual co-occurrence rate to

the statistically predicted co-occurrence rate: cd(w1, w2) =
Pd(w1, w2)

P (w1)P (w2)
. A value

greater than 1 shows it is more likely that the word w2 follows w1 at a distance

d than otherwise expected according to the unigram frequencies of the two words.

In Fig. 5.1, we show an example variation of this correlation for pronouns with the

distance d on the English Gigawords corpus (Graff and Cieri (2003)).

In this corpus, seeing another “she" about twenty words after seeing a first

“she" is more than 13 times more likely than seeing a “she” in general. A similar,

but interestingly weaker, observation can be made for the word “he". Note also

that “she” somewhat suppresses “he” and vice versa, and these cross-correlations, al-

though negative, are still informative for a prediction system. In summary, Fig.5.1

demonstrates that plenty of word triggering information is spread out over long

distance dependencies that is typically beyond the reach of N-gram LMs.

Several models, such as the cache-based LM (Kuhn and De Mori (1990)), Skip

models (??Guthrie et al. (2006); Momtazi et al. (2010b)), and recurrent neural net-

work language models (RNNLMs) (Mikolov et al. (2011)) have been proposed to

capture triggering in large contexts, but they usually only handle auto-triggering

and/or have too many parameters to scale with vocabulary size. In this paper, we

develop a novel modelling scheme, the Custom Decay Language Model (CDLM),

which is specifically built to capture long range dependencies while growth in
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Figure 5.1: Variation of word triggering correlations for pronouns over large dis-

tances

number of parameters remains sub-linear in vocabulary size. CDLMs outperform

large-context-size Skip models, which are not constrained this way. Additionally,

CDLMs show a more robust variation of performance metric against the variation

of meta-parameters than RNNLMs, and they allow us to study the sparseness of

word representations over different context sizes.

In the rest of the paper, we first briefly describe Skip models and RNNLMs

and their limitations in Section 5.2, leading up to the detailed description of our

new modelling technique in Section 5.2.3. We then set up experiments to analyze

performance of these models in Section 5.3. Section 5.4 gives a robustness analysis

of our model in addition to perplexity results for comparing the performance of

various LM types and finally, Section 5.5 gives some concluding remarks.
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5.2 Language models

In this section, we first briefly describe and outline the numbers of parameters

needed by Skip models and RNNLMs for handling long range dependencies. We

then describe our novel CDLM which has been designed to overcome the limitations

of skip models by reducing the number of parameters.

5.2.1 Skip models

Skip models enumerate dependencies like n-grams, but allow wildcards (skips) at

specific positions. This technique in combination with distance-specific smoothing

methods spans larger context sizes and reduces the sparseness problem. However,

the number of parameters still grow by O(V 2) (where V is the vocabulary size)

each time the context size is increased by one, making them computationally in-

efficient. In addition, the skip modeling framework lacks representational power
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when compared to neural network based LMs.

For our experiments, we build skip models by combining unified-smoothing

trigrams and distance bigrams, which extend the range. Previously, such a com-

bination has been shown to outperform state-of-the-art smoothed N-gram LMs

(Singh and Klakow (2013)).

5.2.2 RNNLMs

RNNLMs provide impressive performance gains when compared to other state-of-

the-art language models. Through recurrence, the context size for these models is

essentially infinite, or at least, formally unconstrained. This makes them especially

suitable for long range dependencies. However, training RNNLMs can be slow, es-

pecially because the output must be normalized for each word in the vocabulary.

Hierarchical softmax and related procedures that involve decomposing the output

layer into classes can help with this normalization (Goodman (2001)). Unfortu-

nately, using classes for normalization complicates the training process, since it

creates a particularly volatile meta parameter. This can be observed in Fig. 5.2,

where even for a small variation in classes, RNNLMs show unstable variation in

perplexity.

In our experiments, we employ a widely used class-based RNNLM implementa-

tion (Mikolov et al. (2011)) builds networks that require H2+2HV +HC parame-

ters, where H is the number of hidden units and C is the number of normalization

classes. To produce better RNNLMs, we can increase the hidden layer size by

one which in turn increases the number of parameters linearly in vocabulary size

(O(V +H + C)).
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5.2.3 Custom Decay Language Models

Our new modelling scheme was inspired by log-linear language models, which are

characterized by sub-linear growth in the number of parameters with context size

(Klakow (1998)). This model consists of two parts: a log-linear model and an

N-gram model. For a history of size M , the N-gram part looks at the first N −

1 (N < M) predecessor words and the log-linear part captures the triggering

information stored in distances d in the range [N,M). Given the string of words

{wi−M+2, · · · , wi−1, wi, wi+1} where h = {wi−M+2, · · · , wi}, and supposing that

N = 3, CDLM can be defined as :

P (wi+1|hi) =
1

Z(hi)
× P3-gram(wi+1|wi−1, wi)

× e(E
wi+1vwi−2+

∑i−3
k=i−N+2 E

wi+1Tkvwk
) (5.1)

where i is the position in the document, P3-gram is a standard trigram LM and

vwk
is the vector representation of the word at a distance k from the word to be

predicted in a C-dimensional, continuous, dense latent space (C < V ). Here, the

dimensions of C can be understood as “classes" capturing latent semantic infor-

mation in the data.

Ewi refers to a column of the emission matrix E, which weighs the word vectors

vwk
to predict the next word. Such a matrix can be thought of as an interpretation

function for the current latent state of the model. These latent states exist in the

same space as the word vectors. Presumably, some words are closer to this state

than others. In this way, the latent states represent semantic concepts that the E

matrix can translate into words.

The model also includes a distance specific transition matrix Tk to take word

vectors from one distance-based latent space to another. More directly, the Tk

matrices control the decay of each word within the latent state. Since the Tk are

matrices, as opposed to scalars, which would provide a uniform decay, and as op-

posed to vectors which would provide a class-based decay, the shape of the decay
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function is custom to each word, which is why this model is named the Custom

Decay Language Model.

This setup allows the model to constrain the number of parameters, as each

time a word is added to the latent state, only the Tk matrix needs to be up-

dated. Apart from the O(V 3) parameters required to construct the trigram, it

needs O(V C) parameters to train the E matrix and the word vectors vwk
, and it

needs O(C2) parameters for training the Tk matrices. In all, CDLM parameters

increase sub-linearly with V .

As shown in the last line of Equation 5.1, the model log-linearly combines Tkvwk

at each context position to form a long-distance predictor of the next word. This

approach, though inspired by skip models, is more customizable as it allows the

exponent parameters to include matrix based formulations and not be constrained

only to single values like skip models. Though the exponential element captures

the latent/topical information well, the effects are too subtle to capture many sim-

ple short-distance dependencies (sparse sequential details). In order to make the

model richer in sparse sequential details, we log-linearly combine the long-distance

component with an N-gram LM.

In order to estimate the parameters E, vwk
and Tk, we use the stochastic gra-

dient descent algorithm and minimize the training perplexity of CDLM.

5.3 Language Modeling Experiments

5.3.1 Corpus

We trained and evaluated the LMs on the Penn Treebank as preprocessed in Char-

niak (2001). We used the traditional divisions of the corpus: sections 0-20 for

training (925K tokens), sections 21-22 for parameter setting (development: 73K

tokens), and sections 23-24 for testing (82K tokens). Despite its final vocabulary

of 9,997 words and overall small size, this particular version has become a standard
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for evaluating perplexities of novel language models (Mikolov et al. (2010); Cheng

et al. (2014)). The small size makes training and testing faster, but also makes

demonstrating differences in performance more difficult. We expect our results

would scale for larger datasets.

5.3.2 Experimental Setup

In our experiments, we use perplexity as the performance metric to compare the

language modelling techniques described in this paper.

In order to establish the most competitive baselines, the RNNLMs trained in

our experiment were optimized for a number of classes. Recall that these classes

just aid the normalization process, as opposed to CDLM classes, which form a very

integral part of the model. If classes were overhauled from the RNNLM altogether,

training would take much longer, but the perplexity results would be slightly lower.

We found that 15 classes optimized perplexity values for RNNLMs with 50 and

145 hidden nodes, and 18 classes optimized perplexity values for RNNLMs with

500 nodes. These models were trained using the freely available RNNLM toolkit,

version 0.4b, with the -rand-seed 1 and -bptt 3 arguments.

The N-grammodels used were trained with SRILM. They were a unified smooth-

ing trigram (UniSt) and an interpolated modified Kneser-Ney 5-gram (KN ). The

KN model was trained with the following arguments: -order 5 -gt2min 1 -gt4min

1 -gt3min 1 -kndiscount -interpolate.

CDLM uses the unified-smoothing trigram as the short-distance dependency

component of its model and the long-distance (exponential) element of the model

considers up to five words after the trigram.

The learning rate (η) adaptation scheme is managed by the adaptive gradient

methods (Duchi et al. (2011)). After optimizing on the development set, η was

fixed to 0.1 and the dimensionality of the latent space C was fixed at 45.

While building CDLMs, we first trained a CDLM M = 4 and reused its con-
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Figure 5.3: Perplexity versus number of classes (C) in CDLM

stituent parameters E and v to build CDLM M = 5, only updating Tk while

training. This process iterated up to M = 8.

5.4 Results and Discussion

5.4.1 CDLM Robustness Analysis

CDLM shows a robust variation of perplexity with changes in classes, as shown in

Fig. 5.3. The perplexity values decrease monotonically with increasing classes, as

expected since each increase in class creates more parameters that can be tuned.

Note that moving fromM = 4 toM = 5 doubles the number of Tk matrices, which

caused the large perplexity drop.

Along with the robustness shown by CDLM, the log-linear formulation of

CDLM allows us to study and analyze the sparseness of the transformed word

space matrices represented by Tkvwk
for different distances. We measure sparse-
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Table 5.1: Test set perplexity (PPL) and total number of parameters (PAR) for

each language model (LM).

LM Range Hidden PPL PAR

UniSt 3 - 162.1 2.0M

4 160.0

5 155.8

Skip 6 - 154.4 4.1M

7 153.6

8 153.2

KN 5 - 141.8 3.2M

50 156.5 1.0M

RNNLM ∞ 145 139.3 2.9M

500 136.6 10.3M

4 141.1

5 139.5

CDLM 6 45 139.2 2.9M

7 139.1

8 139.2

5 + 4 137.2

5 + 5 135.7

KN+CDLM 5 + 6 45 135.2 6.1M

5 + 7 134.9

5 + 8 134.9

KN+RNNLM 5 +∞ 50 120.3 4.2M

CDLM+RNNLM 7 +∞ 45 + 50 120.2 3.9M
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Figure 5.4: Sparseness of CDLM’s transformed word space (Tlvwl
) measured at

different threshold (t) versus its context size

ness by counting the matrix entries below a given threshold. By this measure, a

more sparse matrix will have a large number of entries below the threshold than a

less sparse matrix. We plot the variation of the sparseness for Tkvwk
matrices for

different thresholds against the context size of CDLM in Fig.5.4. In most cases,

we observe that as the context size increases the transition matrices have a fewer

number of entries below the threshold making them less sparse. Therefore, we be-

lieve that this matrix formulation alleviates the sparseness problem and also allows

the exponent part to capture latent information.

5.4.2 Perplexity results

Table 5.1 presents our comparison of CDLM with different language models on the

basis of their total numbers of parameters and their perplexities. As shown, skip

models (Skip) outperform the unified smoothing trigram (UniSt3 ) as they have

more parameters and hence, they better encode information spread over larger
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distances.

CDLM outperforms UniSt3 because of spanning larger context size and greater

number of parameters at its disposal. CDLM45 also outperforms the Skip models.

In fact, increasing the context size of Skip to eight words obtains a perplexity of

153.2, which is still less than the CDLM perplexity of 141.1 for a context size of

four words. Also, Skip requires 4.1 million parameters which are more than a third

greater than those required to build the seven-word CDLM. Also, CDLM is able

to perform better than KN with fewer number of parameters. When combining

CDLM with KN, increasing the context size for CDLM obtains progressively bet-

ter performance than KN. This is due to more number of parameters in CDLM

formulation.

We further compare CDLMs with RNNLMs. An RNNLM with 145 hidden

nodes has about the same number of parameters as CDLM and performs 0.1 per-

plexity points worse than CDLM. Increasing the hidden units for RNNLM to 500,

we obtain the best performing RNNLM. This comes at a cost of using a lot of

parameters. To produce better performing LMs with fewer parameters we con-

structed an RNNLM with 50 hidden units, which when linearly combined with

CDLM (CDLM+RNNLM ) outperforms the best RNNLM using less than half as

many parameters. It even nominally outperforms the combination of KN and

RNNLM using fewer parameters, but this difference is likely not significant. Com-

binations of the three different LMs do not result in any large improvements,

suggesting that there is redundancy in the information spread over these three

types of LMs.

Finally, we note that the increase in parameters does not always lead to better

performance. We observe this increase while comparing a Skip model with CDLM

and this increase can be attributed to the richer formulation of CDLM. Increase

in parameters for CDLM+KN does not also lead to a better performance against

the fewer-parameters CDLM+RNNLM. This is also observed when we compare,
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CDLM+KN and KN+RNNLM. In this case, we suspect that the lower perfor-

mance is due to CDLM’s lack of recursive connections which form an integral part

of RNNLMs. But note that CDLMs, which are not recurrent, can capture much

of the long-distance information that the recurrent language models can.

5.5 Conclusion

In this paper, we proposed Custom Decay Language Model, inspired by Skip mod-

els’ log-linear technique of dividing context into smaller bigrams and then recom-

bining them. In contrast with Skip models, CDLM uses a richer formulation by

employing a matrix based exponentiation method to capture long range dependen-

cies. Additionally, CDLM model uses an N-gram model to capture the short range

regularities.

Perplexity improvements are observed for CDLM even when compared to Skip

models with the larger range and Kneser Ney five-grams. This improvement is ob-

served even though CDLM uses fewer parameters compared to larger range Skip

model and KN5 with more parameters. In conclusion, CDLM provides a rich

formulation for language modeling where the growth of the number of parameters

is constrained. We look forward to further enhancing CDLM with recurrent con-

nections and analyzing its performance on other language datasets with a focus on

ASR tasks.



Part III

Handling rare words



Chapter 6

Sub-Word Similarity-based Search for

Rare-Word Embeddings

6.1 Introduction

Previously, we investigated long-span language modelling techniques which enabled

coverage of larger histories. These larger histories helped improve performance on

intrinsic and extrinsic language modelling tasks. In such tasks on low-resource

languages, however, language models face the problem of handling rare words (i.e.

words that generally occur with low frequency). In this Chapter, we describe meth-

ods to handle rare words by generating good representations cheaply which can

then be used in language models to be applied in various tasks.

Recently word representations, also known as word embeddings, have been suc-

cessfully applied to various NLP tasks ((Collobert and Weston, 2008; Collobert,

2011; Socher et al., 2011, 2012; Hermann and Blunsom, 2014; Bengio and Heigold,

2014; Yang et al., 2015)), having shown competitive performance in comparison to
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the state-of-the-art methods. This competitive performance is ascribed to embed-

dings’ ability to substitute common NLP features and leverage large amounts of

data for various NLP tasks.

Even though most of these embeddings are trained on large amounts of data

allowing them to have good coverage of a language’s vocabulary, however, they

still miss out on words when these embeddings are used in tasks with a lot of rare

words. To alleviate this lack of embeddings for rare words, morphology ((Luong

et al., 2013; Botha and Blunsom, 2014; Soricut and Och, 2015)) based methods

have been used and these have shown impressive performance gains over methods

which ignore such rare words.

Among these morphology-based approaches, the ones proposed by (Luong et al.,

2013; Botha and Blunsom, 2014) generate features using a morphological analyzer,

namely Morfessor ((Creutz and Lagus, 2005)). These Morfessor based features are

then combined to form word vector representations. In contrast, (Soricut and

Och, 2015) applies an automatic method to induce morphological rules and trans-

formations as vectors in the same embedding space. More specifically, they exploit

automatically learned prefix and suffix based rules using the frequency of such

transformations in the data and induce a morphological relationship based graph

for words. A search is then performed on this graph for rules, which best explain

the morphology of a rare word. The embedding is then estimated using these rare-

word explaining rules. In this method, creating and tuning this morphological

graph can be a big overhead.

In order to overcome this overhead and still be able to automatically induce rare

word representations, we propose a sub-word similarity based search. This tech-

nique maps a rare word to a set of its morphologically similar words and combines

the embeddings of these similar words to generate this rare word’s representation

(further discussed in Section 6.2). These generated embeddings can then be aug-

mented to existing word embeddings to be applied in various tasks.
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Language V RW #ENF Coverage

German 36602 15715 13103 99.9

Tagalog 22492 10568 8407 98.1

Turkish 24840 13624 9555 99.0

Vietnamese 6423 1332 305 69.1

Table 6.1: This table reports various statistics for different language datasets

used for language modelling. The last column shows the coverage of

our method in percentage.

To evaluate these augmented embeddings, we apply it to word similarity tasks

(Section 6.2.2). We further instantiate log-bilinear language model ((Mnih and

Hinton, 2007)) with augmented word embeddings (Section 6.3) and analyze their

performance on rare words over various language modelling datasets (Section

6.3.1). Finally, we summarise our findings in Section 6.4.

6.2 Rare-Word Embeddings

Rare words can form a large part of a task’s vocabulary. This is illustrated in

Table 6.1, which reports the vocabulary size and number of rare words with zero

or one training set frequency (RW). As can be seen in this table, these rare words

constitute 10%-50% portions of the vocabulary, thus, making it essential for dif-

ferent tasks to handle them to obtain better performance.

In the context of word embeddings related tasks, training good word embed-

dings can incur huge computational costs (Al-Rfou et al., 2013) and thus, we focus

on applying readily available sources rather than creating them. To increase the

availability of resources for many languages, Al-Rfou et al. (2013) provide ac-

cess1 to pre-trained word embeddings for more than a hundred languages. These
1https://sites.google.com/site/rmyeid/projects/polyglot

https://sites.google.com/site/rmyeid/projects/polyglot
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Task V #ENF Coverage

Rare Word Luong et al. (2013) 2951 1073 100

Gur65 Gurevych (2005) 49 4 100

Rare Word + Google News 2951 173 100

Table 6.2: This table reports various statistics of a few language word similarity

datasets used in our experiments. The last column shows the coverage

of our method in percentage.

pre-trained word embeddings, namely Polyglot, are constructed by applying the

method outlined in Bengio et al. (2009) on Wikipedia text, which vary in size from

millions of tokens to a few billion tokens.

Among other available pre-trained word embeddings, Google also provides

word2vec (Mikolov et al., 2013) based embeddings2 trained on Google’s English

News dataset (about 100 billion tokens). In our experiments, we apply both these

embeddings set to jump start generating the rare word embeddings for different

languages.

6.2.1 Inducing Rare-Word Embeddings

The statistics about various language modelling datasets and word similarity tasks

we use in our experiments are shown in Table 6.1 and Table 6.2, respectively. In

these tables, along with the vocabulary size and number of rare words (RW), we

also report the number of words for which the embeddings were not found (ENF

= Embedding Not Found) in the pre-trained embedding sets. For most of the

language and pre-trained embedding pairs, number of ENFs form a large share

of the vocabulary for word similarity tasks and of rare-word set size for language

modelling tasks, hence, we estimate the missing word embeddings before using
2https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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them in our tasks.

We first provide the high level description of the steps of our algorithm to

induce the word embeddings for these missing rare words, followed by detailed

description of each step. For a language dataset with finite vocabulary V and a

finite set of given rare words RW = {w|w /∈ V }, we apply the following steps:

1. Map every word w ∈ V to its sub-word features

2. Index w ∈ V using its sub-word features

3. Search the index for matches of w′ ∈ RW

4. For every w′ ∈ RW , combine matched words’ embeddings to generate its

embedding

More details about these steps are discussed next.

Step 1: Map words to sub-words

When rare words are encountered, it is easier to find similar sub-word units than

the word itself. Hence, we start by creating such sub-word units by breaking

down each word w ∈ V into it’s constituent N -sized sub-word units: DN(w). For

example, given the sub-word size N = 3, the DN(language) is defined as:

DN(language) = {lan, ang, ngu, gua, uag, age}

In our experiments, we worked with value of N = 3.

Step 2: Index word using its sub-words

The pre-trained set of embeddings can have a lot words (for example, Polyglot

embeddings have 100K words in its vocabulary) and can lead to a lot comparisons

to look for matching sub-word units of the rare word. To speed up the search

for sub-word units of these words, we create an inverted index on words. For

each w ∈ V , we treat DN(w) as a document and feed it into a search engine based
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indexer. In this work, we use Lucene3 McCandless et al. (2010) to index the words.

Step 3: Search for matches of a rare word

Next, we break the rare word w′ /∈ V into its sub-word units (DN(w
′)) and search

for DN(w
′) on the index. We restrict the search results set to top K results,

denoted by RK(w′). RK(w′) now contains words having similar sub-word units

as w′, hence, containing words which are morphologically similar to w′. In our

experiments, we fix K = 10 to consider only the top ten results.

Step 4: Generating rare-word embeddings

To estimate the word embedding of w′ ∈ RW , we perform the weighted average

of embeddings (v) of the rare-word matches. To perform the weighted average, we

employ a string similarity function S, such that

vw′ =
∑

w:DN (w)∈RK(w′)

S(w′, w)× vw

The above method particularly hinges on the third step, where we utilise sub-

word similarity of morphologically similar words to search for rare word alterna-

tives, leading to embedding combination in the fourth step. Hence, we refer to

the above technique as Sub-Word Similarity based Search (SWORDSS: pro-

nounced swordz). The SWORDSS embeddings ({vw′ : w′ ∈ RW}) are used along

with {vw : w ∈ V } to perform rare word-related tasks.

In the fourth step, we apply different string similarity functions (S) to average

different embeddings of matches from the third step, described in the list below.

These different similarity functions help provide a more morphologically enriched

scoring of matches and eventually are used in combination to generate a rare-word

embeddings.

• Jaccard Index, Jaccard (1912) computes the size of the character intersec-

tion over the size of the character union. Therefore, order of characters is
3https://lucene.apache.org/

https://lucene.apache.org/
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not considered by this metric. Frequent characters such as vowels lead to

uninteresting intersections, and short words could possibly suffer from an

unfair floor.

• Jaro similarity, Jaro (1989) considers the number of matching characters in

corresponding positions and the number of transpositions detected. So, order

of characters does matter for this metric. Insertions and deletions are treated

similarly, and the frequency and length effects from Jaccard could also affect

this metric.

• Jaro-Winkler similarity, Winkler (1990) is a variation on Jaro similarity and

quite importantly, it deems two strings more similar if a short prefix (at the

beginning of the strings) appears on both strings. This is especially relevant

for our work because it benefits precisely the case in which two strings differ

only in an inflectional suffix.

• Most frequent K Characters similarity, Seker et al. (2014) considers the

counts of the top K characters in each string. Thus, if the “root morphemes”

are long enough to create nontrivial count statistics, this metric may, too,

favor true morphological similarity, but as before, shorter strings could have

unwanted effects.

• Subsequence Kernels, Lodhi et al. (2002) create automatically-generated fea-

tures based on sequences of characters within the strings to be compared.

Therefore, those sequences that do not cross morpheme boundaries could be

especially helpful for estimating morphological similarity.

• Tversky coefficient, Tversky (1977) breaks down the union in the Jaccard in-

dex, allowing different weights for the denominator intersection, those char-

acters that only appear in the first string, and those characters that only

appear in the second string. These meta parameters allow the metric some

flexibility that the others do not.
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In our experiments on rare-word related tasks, we mostly observe that using

SWORDSS leads to high coverage rates, also presented in Table 6.1 and Table

6.2. We note that whenever words w′ result in zero matches in our experiments,

they were either removed completely (in case of word similarity tasks) or substi-

tuted with random vectors (in case of language modelling tasks, Section 6.3).

6.2.2 Word Similarity Task

To test the efficacy of SWORDSS embeddings, we evaluate them on standard

word similarity tasks. In such tasks, the correlation between the human annotator

ratings of word pairs and the scores generated using embeddings, is calculated. A

good set of embeddings would lead to high correlation rates.

Specifically, we evaluate the SWORDSS embeddings on Luong et al. (2013)’s

English Rare Words dataset with 2034 word pairs (Luong2034) and also evaluate

these embeddings on German word similarity task Gurevych (2005) with 65 word

pairs (Gur65).

6.2.3 Experimental Setup

For the German word similarity task, we use only Polyglot word embeddings, which

are 64-dimensional vectors. For English along with Polyglot word embeddings, we

use the Google News word2vec embeddings, which are 300-dimensional vectors.

As a baseline we use the existing pre-trained word embeddings, which are com-

pared to its augmented SWORDSS version. While augmenting the pre-trained set

with the SWORDSS embeddings, we also explore various string similarity functions

to be used in the fourth step (Section 6.2.1), namely, Jaccard Index (SWORDSSji),

Jaro similarity (SWORDSSjaro), Jaro-Winkler similarity (SWORDSSjw), Most

Frequent K Characters similarity (SWORDSSmfk), Subsequence Kernels (SWORDSSssk)

and Tversky Coefficient (SWORDSStc).
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Word Vectors Gur65

Polyglot 28.5

Polyglot+SWORDSSji 37.5

Polyglot+SWORDSSjaro 37.1

Polyglot+SWORDSSjw 37

Polyglot+SWORDSSmfk 37.2

Polyglot+SWORDSSssk 36.9

Polyglot+SWORDSStc 37.6

Polyglot+SWORDSS1 35.8

Table 6.3: Spearman’s rank correlation (%) based evaluation of various string

similarity functions used to generate augmented word vectors for Ger-

man word similarity task (Gur65)

To evaluate the effect of these string similarity functions, we also compare them

to constant function (S(w,w′) = 1, where w and w′ are words) used in the fourth

step, denoting the corresponding embeddings by SWORDSS1. Finally, we also

compare the SWORDSS embeddings to SO2015 Soricut and Och (2015), which

also applies morphological analysis to generate missing word embeddings quite

similar to SWORDSS embeddings.

6.2.4 Results

Using SWORDSS embeddings definitely improves correlation rate in comparison

to the original on the Gur65 task (shown in Table 6.3, though all the different

string similarity functions except the constant function (SWORDSS1) lie in a very

close range. Henceforth, we treat all the string similarity functions except the con-

stant function as one (SWORDSSsim) and report the best correlation value after

applying these functions.
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Word Vectors Luong2034 Gur350 Gur65 ZG222 Es353 Ro353 Ar353

BB2014 w/o morph 18 36 - 6 26 - -

BB2014 w/ morph 30 56 - 25 28 - -

SO2015 w/o morph 44.7 62.4 - 16.6 36.5 51.3 37.1

SO2015 w/ morph 52 64.1 - 21.5 47.3 53.1 43.1

Polyglot 9.7 25 28.5 21.3 14.0 28.1 8.4

Polyglot+SWORDSS1 28.9 33.2 35.8 23 23.2 18 14.6

Polyglot+SWORDSSsim 30.4 33.7 37.6 24.8 25.9 18.3 14.5

Table 6.4: Spearman’s rank correlation (%) based evaluation of techniques with

and without morphological features used to generate representations

for word similarity task.

Word Vectors Luong2034

SO2015 w/ Morph 52

Google News 45.3

GoogleNews+SWORDSS1 51.3

GoogleNews+SWORDSSsim 51.4

Table 6.5: Spearman’s rank correlation (%) based evaluation of augmented

Google News word2vec word vectors on the English Rare Word Simi-

larity task

SWORDSS versions of Polyglot embeddings when compared to the original,

in almost all word similarity tasks lead to a better correlation rate. Though, for

each word similarity task the difference between SWORDSS1 and SWORDSSsim

remains small. These improvements, however, are still lower than the correlation

rates reported by SO2015. This is due to the difference in initial quality of em-

beddings used by each method. As SWORDSS uses Polyglot embeddings trained

on lesser amount of data than SO2015, it is easily outperformed.

In Table 6.5, we alleviate this lower performance issue by replicating our ex-
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periment using Google News word2vec embeddings to jump start the SWORDSS

versions for the Luong2034 task. Using these embeddings, trained on a larger

dataset than used by Polyglot, leads to SWORDSS versions having on par results

with SO2015 result for the Luong2034 task.

Overall SWORDSS technique is able to drastically improve Polyglot embed-

dings across almost all word similarity tasks. Even though SWORDSS embeddings’

ability to compete with SO2015 is marred by the quality initial set of embeddings,

it provides a simpler sub-word search based alternative to a search over the graph

of morphological relationships performed by SO2015.

6.3 Word Embeddings in Language Models

Training language models (LMs) using an expanded vocabulary (having more word

types than contained in the training corpus) leads to having words which are not

present in the training set. These rare words are represented by a default value

of probability conventional N-grams and long short term memory (LSTM) based

reccurrent neural networks LM (Sundermeyer et al. (2012)). This is usually not

beneficial for Keyword Search and Automatic Speech Recognition systems made

for low resourced languages, since presence of rare words in speech queries is high

(Logan et al. (1996, 2005)).

To avoid this misrepresentation of rare words, we apply SWORDSS embeddings

in a language modelling framework. We investigate this further by incorporating

the augmented pre-trained word embeddings in the log-bilinear language model

(LBL) (Mnih and Hinton (2007)).

LBL predicts the next word vector p ∈ Rd, given a context of n− 1 words, as

a transformed sum of context word vectors qj ∈ Rd, as:

p =
n−1∑
j=1

qjCj
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where Cj ∈ Rd×d are position-specific transformation matrices. p is compared

with the next word w’s representation rw. This comparison is performed using the

vector dot product and then is used in a softmax function to obtain the probability

of the next word as follows:

p(wi|wi−1i−n+1) =
exp(p · rw + bw)∑
v∈V exp(p · rv + bv)

where b is the bias term encoding the prior probability of word type w.

First, Q the collection of context word vectors (qj) and R the collection next

word representations (rw) are initialised with the pre-trained word embeddings.

Thereafter, we train the LBL using stochastic gradient descent.

Previously, extensions to class based and factor based formulations have pro-

vided impressive improvements over regular N-gram LMs for morphological lan-

guages (Botha and Blunsom (2014)). But, these LMs do not provide straightfor-

ward ways of incorporating pre-trained word embeddings, so we still choose the

original LBL because of the ease with which it incorporates pre-trained embeddings

in its formulation.

6.3.1 Language Model Evaluation

Datasets

To evaluate the SWORDSS embeddings for language modelling, we use the Eu-

ropean parliament dataset of German (de) language as processed by Botha and

Blunsom (2014). We also perform the language modelling experiments with the

SWORDSS embeddings on the Tagalog (tl), Turkish (tr) and Vietnamese (vi)

datasets, which include transcriptions of phone conversations collected under the

IARPA Babel Program language collection releases babel106b-v0.2f, babel105-v0.5

and babel107b-v0.7 respectively.

The German dataset is processed to have no OOVs, however, it still has a lot

of low-frequency words (refer Table 6.2). Whereas the Babel datasets have OOVs
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Statistics de tl tr vi

Train 1000K 585K 239K 985K

Dev 74K 30K 5K 65K

Test 73K 31K 6K 60K

Voc Size 37K 22K 25K 6K

Table 6.6: Statistical summary of datasets used for the language modelling ex-

periments. Information corresponding to a language is presented in a

column.

as well as other low-frequency words.

The Babel datasets are provided with training and development sets only. We

divide the existing development set into two halves to use one as the test set and

the other half as the new development set. Further statistics on the datasets are

summarised in the Table 6.6.

Earlier in Tables 6.1 & 6.2, we had shown that even though a lot of rare-word

embeddings are missing from the pre-trained set, SWORDSS is able to generate

and obtain high coverage rates for such words, making it suitable to use in the

context of rare words.

Experimental Setup

Before evaluating the SWORDSS embeddings for predicting rare words, we use all

the OOVs to expand the corresponding vocabulary. SWORDSS embeddings for

all the words in the expanded vocabulary are used to initialise LBL framework as

described in Section 6.3. A bigram version of this LBL (LBL2SWORDSS) is further

trained on language datasets before being evaluated.

We compare the LBL2SWORDSS model with the conventional Modified-Kneser-

Ney five-gram LM (MKN5) (Kneser and Ney (1995); Chen and Goodman (1996))

and also with the bigram (LBL2) based log-bilinear LM. As a more powerful base-
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Language Model German Tagalog Turkish Vietnamese

PPL RW1PPL PPL RW1PPL PPL RW1PPL PPL RW1PPL

MKN5 364.2 559K 162.6 420K 478.9 139K 120.8 174K

LBL2 391.1 404K 171.4 204K 649 94K 137.6 100K

LSTM4 323.1 596K 134.7 343K 489.8 110K 102.1 457K

Char-LSTM 315.7 636K 117.4 354K 408.7 168K 182.7 516K

LBL2SWORDSS 369.4 260K 167.2 167K 513.2 110K 136.4 143K

#PAR 4.7 M 2.9 M 3.2 M 0.8 M

Table 6.7: Perplexities on test set (PPL), RW1 perplexities (RW1PPL) in thou-

sands and number of parameters (#PAR) for LBL and LSTM based

language models (LM) in millions, presented on four language datasets

line, we also train an LSTM based RNN LM to compare with LBL2SWORDSS.

Moreover, we compare the LBL2SWORDSS, with a character aware language model

(Kim et al. (2015)), denoted as Char-LSTM. The Char-LSTMs are chosen for com-

parison because of their ability to use character-based features to implicitly handle

OOVs and rare words. For training each of these LMs, we use the expanded

vocabulary as used by LBL2SWORDSS. While training neural network based lan-

guage models, we restrict the number of parameters to have a similar number of

parameters as LBL2SWORDSS.

Perplexity Experiments

We compare the language models described in Section 6.3.1 using perplexity val-

ues calculated on test sets of different languages. The results of the evaluation are

presented in the Table 7.1.

As shown in Table 7.1, LBL2SWORDSS is able to outperform the conventional

LBL2 comfortably on all the datasets except on Vietnamese. For Vietnamese,

LBL2SWORDSS shows an on par performance to LBL2. Due to SWORDSS’ low

coverage of Vietnamese vocabulary, initialising LBL2 with SWORDSS embedding

leads to marginal performance gain.
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Overall in terms of test set perplexity, Char-LSTM outperform LBL2SWORDSS

comfortably on most language datasets. Though, on Vietnamese (which in written

form is character sounds represented as words separated by spaces) Char-LSTM

suffers and LSTM outperforms the other language model. In comparison to LSTM

and Char-LSTM, LBL2SWORDSS’s lower performance on test data is expected as

the former are more powerful language models.

However, for tasks like Keyword Search, having low perplexities on most fre-

quent set of words is not good enough and hence, we compare LMs on the perplexity

of rare-word based test set. To perform this comparison, we compute perplexity

only on rare words (RW1PPL), with training-set frequency of one, present in the

test set. As shown in Table 7.1, we observe that LBL2SWORDSS performs better

than the LSTM based LMs across various languages in terms of RW1PPL.

We also note that Char-LSTM, do not have a straightforward way of in-

cluding SWORDSS embeddings. Hence, they are not directly comparable to

LBL2SWORDSS, as the latter has more information at its disposal. We also note,

that when LSTM’s input layer are initialised with SWORDSS augmented embed-

dings, it obtains the same perplexity values as the LSTM initialised with con-

ventional random embeddings. This observation suggests that the LBL frame-

work is better suited for this naïve way of initialising neural language models with

SWORDSS embeddings and improving perplexity on rare words.

Performance on OOVs and Rare Words

To further compare the performance of aforementioned language models on rare

words, we analyze perplexities of such words (RWPPL) in the test set as a varia-

tion of the frequency classes of these words in the training set. This variation is

displayed in Figures 6.1 & 6.2.

For OOV words (rare words with zero training-set frequency), LBL2SWORDSS

outperforms the other language models built with a similar number of parameters,
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Figure 6.1: Variation of rare-word perplexity versus threshold on frequency of

training-set words on German and Tagalog datasets
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Figure 6.2: Variation of rare-word perplexity versus threshold on frequency of

training-set words on Turkish and Vietnamese datasets

on the Tagalog and Turkish datasets. In these cases, LBL2SWORDSS reduces rare-

word perplexities by a factor of two over the character-feature rich Char-LSTM,

whose design allows it to implicitly handle rare words.

Even for rare words with training set frequency up to one, LBL2SWORDSS

reduces perplexity up to a factor of 2.5 times with respect to Char-LSTM, on the
4when initialised with SWORDSS embeddings it obtains the same perplexity values
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German, Tagalog and Turkish datasets. Interestingly on these particular language

datasets, Figures 6.1 & 6.2 show that LBL also performs better than both the

LSTM based LMs in modelling OOV and rare words of frequency up to ten.

For Vietnamese, LBL alone is able to improve OOV and RW1 words over the

other LMs. We allude this to low coverage of Vietnamese rare words by SWORDSS

than for other languages, where adding SWORDSS embeddings leads to harm the

prediction of OOV and RW1 words.

These perplexity improvements start to wane when higher frequency words

are included into the rare word set, across the different languages. Nevertheless,

in languages with morphological information, initialising LBL with SWORDSS

embeddings reduces perplexities on rare words.

6.4 Conclusion

In this paper, we introduced SWORDSS, a novel sub-word similarity based search

for generating rare word embeddings. It leveraged the sub-word similarity in mor-

phologically rich languages to search for close matches of a rare word, and then

used these close matches to estimate the embedding a rare word.

Even though SWORDSS is an unsupervised approach like Soricut and Och

(2015), it differs from latter in the way it utilizes the morphological information.

The latter automatically induces morphological rules and transformations to build

morphological graphs of words. This graph is then tuned and used to induce em-

bedding of a rare word. Whereas, SWORDSS replaces the overhead of induction

of rules and creation of graph by searching a sub-word inverted index to find rare-

word matches and combining their embeddings to estimate rare-word embedding.

To judge the SWORDSS technique, we use it to augment pre-trained embed-

dings and then evaluate the augmented embeddings on word similarity tasks. The

augmented embeddings outperform the initial set of embeddings drastically. But,
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it lags behind the state-of-the-art performance of Soricut and Och (2015), by using

embeddings trained on larger datasets SWORDSS is able to perform on-par with

it on a rare-word task.

We also investigate the effects of using SWORDSS augmented embeddings for

modelling rare words. To perform this experiment, we train LBLSWORDSS LM

and compare it with language models like character aware LM, LSTM based RNN

LM restricted to similar size. Almost on all datasets, character aware LM out-

performs the other LMs with respect to perplexity on complete test sets. But on

rare words, it shows up to 50 % reduced perplexity values in comparison to other

LMs. Hence, suggesting using SWORDSS embeddings prove useful in modelling

rare-word tasks.

As part of future work, we plan to study SWORDSS embeddings to augment

more complex LMs than LBL and further analyze the different string similarity

functions used in SWORDSS’s formulation.



Part IV

Combining long-term dependencies

and rare word knowledge



Chapter 7

Combined evaluation of techniques for

handling long-term dependencies and

rare words

7.1 Introduction

In the previous chapters, we have introduced techniques to handle long-term de-

pendencies and rare words to improve performance on low-resource tasks. We have

evaluated these two language modelling challenges separately. In this chapter, we

perform a combined evaluation of the proposed techniques on IARPA’s KeyWord

Search task (KWS).

Specifically, we create SWORDSS-based representations for Zulu and incorpo-

rate these rare-word representations in long-span models like LSTMs to perform

first-pass decoding for the Keyword Search task. We also present intrinsic evalua-

tions to verify the results we have observed earlier. Finally, we conduct a perfor-
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mance evaluation based on KWS metrics like actual term weight value (ATWV)

and word error rate (WER).

To apply LSTM-based models to the first-pass decoding, we apply the methods

discussed in Chapter 4. As these are approximate methods, we also analyze the

oracle performance to understand the limitations of these methods.

7.2 Related Work

7.2.1 Sub-word based techniques for Keyword Search

The Keyword Search system’s performance on a low-resource language task is

highly dependent on handling out-of-vocabulary (OOV) words in the list of key-

words. IARPA’s Babel project provides a data setup specifically for this low-

resource setting and also has been studied earlier (Chen et al. (2013); Lee et al.

(2014)). Both of these approaches have concentrated on leveraging acoustic sim-

ilarity for OOV words to enable keyword retrieval. In both cases, this acoustic

similarity information is not transferred to language model. Therefore, comparing

and sorting during retrieval step suffers from an impoverished model. We alle-

viate this problem by enhancing language models with SWORDSS embeddings

described in Chapter 6.

In contrast with above approaches, Hartmann et al. (2014) have also com-

pared sub-word similarity lattice-based techniques for OOV handling in a Key-

word Search task. The underlying principle of comparing sub-words to search for

OOVs is similar to our SWORDSS’ technique. However, Hartmann et al. (2014)

use back-off smoothing based n-gram models, which suffer from data sparsity is-

sues. To overcome such issues, we apply long-span model based n-gram models

for first-pass decoding of our Keyword Search task.
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7.2.2 Applying long-span models for Keyword Search

Previously, LSTM-based neural networks have been applied to Keyword Search

tasks (Cai and Liu (2016); Wöllmer et al. (2013)). While Cai and Liu (2016) have

used LSTMs for training well performing acoustic models, Wöllmer et al. (2013)

have applied these models to decoding speech signal for Keyword Search. Our work

is similar to the latter in applying LSTM models to the first-pass decoding, but we

also improve these models OOV handling capacity by incorporating SWORDSS-

based representations.

7.3 Language Models for Keyword Search

IARPA’s Babel project focusses on developing a KWS system for low-resourced

languages. For these languages, the OOV keywords constitute 50% of keyword

lists. To be able to perform well under such restrictive conditions, the KWS

pipeline needs to handle such words.

In this section, we concentrate on building advanced language models to cope

with this issue in the KWS pipeline. We combine techniques discussed in earlier

chapters (Chapters 4 & 6) to perform the first-pass decoding as part of the KWS

pipeline.

To allow detection of OOV keywords, we augment language models with OOV

keyword representations produced using the SWORDSS technique. The simplest

way to perform such an augmentation is to initialise continuous-space models like

Log-bilinear LMs or LSTMs with these representations and then carry out the

model training.

To use these models to perform a first-pass decoding for the KWS system, we

approximate the continuous-space models to n-gram based models allowing us to

overcome expensive calculations required for using the full versions in first-pass

decoding (For more details refer to Prior Work section in Chapter 4).
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7.4 Keyword Search Pipeline

To build the KWS pipeline, we use the example Babel recipes available at the Kaldi

repository1. Using these recipes we build a Deep Neural Network based acoustic

model that is decoded using the language models described in Section 7.5.2.

Finally, a Keyword Search is performed using an instance of the system de-

scribed in Chen et al. (2013). An important difference is that we use Kaldi-based

recipes for ATWV evaluation instead of NIST provided evaluation tools.

7.5 Experiments

In this section, we compare the effectiveness of language modelling techniques

combining long-term and rare-word information on IARPA’s Keyword Search task,

evaluating perplexity, WER and ATWV.

7.5.1 Experimental Setup

For our experiments, we use the IARPA Babel Program Zulu limited language

collection release babel206b-v0.1d. This language collection contains 10 hours of

transcribed phone conversations, with a lexicon size of 15K words. The collection

also provides 1.5 hours of development corpus that we use as our test set.

This language collection contains 2K keywords, with 50% being not present in

the training corpus. We choose a lexicon for both the in-vocabulary and out-of-

vocabulary words. Choosing a lexicon with pronunciations for OOV words allows

the acoustic model to detect these words. Then, we can focus on measuring the

impact of training specialized language models for the Keyword Search task, as the

decoding process does not suffer from non-detection of OOV words acoustically.
1https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d

https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d
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7.5.2 Language Models

We describe the various language models used in our experiments. These include

the language models studied in the earlier chapters and other simple baselines.

Trigram LM (KN3) is constructed by SRILM (Stolcke et al. (2011)) using Kneser-

Ney smoothing. This forms a popular baseline (Chen et al. (2013); Hartmann et al.

(2014)) used for KWS systems for Babel languages.

Keyword Restricted Trigram LM (KW-KN3) is a trigram LM trained similarly

to KN3 but only on sentences containing at least one keyword. Since the task

is geared towards detection of keywords, restricting training corpus to keyword-

specific sentences can boost keyword probability estimates.

Log-Bilinear LM (LBL) as described in (Mnih and Hinton (2007)), is used as

another simple baseline. An OOV handling variant (LBLSWORDSS) is constructed

in similar fashion to as described in Chapter 6 by initialising weight matrices with

SWORDSS-based embeddings.

Long-Short-Term-Memory-based recurrent neural network models (LSTM) are

trained on available the language collection. These models allow for capturing long-

term dependencies, which have shown benefits in the context of Keyword Search

task (Hartmann et al. (2014)). We develop two variants of this model, a regu-

lar LSTM and an LSTM initialised with SWORDSS-based embeddings (labeled:

LSTMSWORDSS).

Character-Aware LSTM models (Char-LSTM) introduced by Kim et al. (2015)

are character-input-based variants of the LSTM models. These models capture

long-term dependencies along with handling OOV inputs at the time of inference.

Similarly to LSTM models, we compare to a regular variant of this model and

also build SWORDSS-based version by initialising hidden-to-output weights ma-

trix (Char-LSTMSWORDSS) with SWORDSS-based embeddings.

To apply the continuous-space language models like the LBL, LSTM and Char-
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Language Model Regular LMs Approximated LMs

PPL KWPPL OOV-KWPPL #PAR PPL KWPPL OOV-KWPPL

KN3 201.5 16.3K 100.7K 167K - - -

KW-KN3 215.5 11.7K 88.3K 129K - - -

LBL 248.9 20.0K 66.0K 4520K 404.3 57K 307K

LBLSWORDSS 274.7 19.4K 49.8K 4520K 312.8 30K 81K

LSTM 216.5 15.5K 59.4K 9774K 288.0 26K 67K

LSTMSWORDSS 224.5 15.5K 62.2K 9774K 522.0 83K 321K

Char-LSTM 220.5 17.5K 96.7K 6113K 530.8 33K 65K

Char-LSTMSWORDSS 222.4 17.3K 106.3K 6113K 2344.8 216K 933K

Table 7.1: Perplexities and number of parameters (#PAR) of different language

models (LM) on Zulu. The Keyword Perplexity (KWPPL) and Out-

of-Vocabulary Keyword Perplexity (OOV-KWPPL) are reported in

thousands (denoted by K).

LSTM variants, we approximate these models to an n-gram LM using the tech-

niques described in Chapter 4. These models are then applied to first-pass decoding

in the KWS pipeline.

7.5.3 Perplexity Experiments

Comparing these models on test set perplexity (Table 7.1), we observe that simple

trigram LM (KN3) performs best. This is mostly due to the small amounts of train-

ing data available, which leads to overfitting in other models. However, comparing

keyword restricted perplexity (KWPPL) and out-of-vocabulary keyword perplex-

ity (OOV-KWPPL), we observe significant differences. Keyword-restricted trigram

LM (KW-KN3) performs best in terms of keyword perplexity and LBLSWORDSS

performs best on out-of-vocabulary keyword perplexity.

Additionally, initialising continuous-space long-span models with SWORDSS

embeddings does not help, as these models show no change in KWPPL and a

degradation in OOV-based KWPPL. These effects we suspect are due to the small
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Language Model Approximated LMs

ATWV OOV-ATWV WER

KN3 59.0 7.3 67.8

KW-KN3 61.6 7.9 68.3

LBL 60.0 8.1 72.0

LBLSWORDSS 59.7 8.3 71.6

LSTM 60.7 8.3 71.8

LSTMSWORDSS 60.5 8.0 72.3

Char-LSTM 59.2 8.1 72.1

Char-LSTMSWORDSS 57.7 7.8 77.6

Table 7.2: ATWV, OOV-ATWV and WER values of language models (LM) on

Zulu. These metric values are reported as percentages.

amounts of training data available to these complex models.

Approximating the continuous-space models to n-gram LMs is similar to effects

of pruning an n-gram LM. This pruning for continuous-space models initialised

with SWORDSS leads to large losses in KWPPL as the relevant contexts are

removed from the approximated n-grams. In contrast, regular continuous-space

models show smaller degradation where this pruning affects only more frequent

contexts. Generally, however, this approximation of models shows degradation in

different types of perplexities.

7.5.4 ATWV Experiments

In Table 7.2, we report the ATWV and Out-of-Vocabulary ATWV (OOV-ATWV)

results when applying these models in KWS system for decoding. In most cases,

continuous-space models perform better than regular trigram on different versions

of ATWVs. On word-error-rates (WER), however, we observe that any keyword



7. Combined evaluation of techniques for handling long-term dependencies and
rare words 93

Language Model Approximated LMs

OOVPPL OOV-ATWV WER

LBL 308K 8.1 72

+ 1000-best 309K 7.6 71.1

LBLSWORDSS 81K 8.3 71.6

+ 1000-best 85K 7.8 71.5

Table 7.3: OOVPPL, OOV-ATWV and WER values of language models (LM)

for Zulu. Even rows present the metric values when 1000-best list-

based n-grams are used for approximation. The OOV-ATWV and

WER values are reported as percentages.

restriction during training or usage of continuous-space models further degrades

the Speech Recognition results.

Also, long-span models generally perform on-par with smaller context models.

The 3 -gram-based LBL models perform on par with 5 -gram-based LSTM mod-

els. This is mostly due to the approximation process of continuous-space models,

where smaller contexts are not predicted well by these long-span models. Over-

all, a simple keyword-restricted trigram LM (KW-KN3) performs best in terms

of ATWV and SWORDSS-based LBL (LBLSWORDSS) performs best on OOV-

ATWV. Additionally, continuous-space models usually improve the OOV-ATWV

over the trigram models KN3 and KW-KN3, but at the cost of degrading the

overall AWTV performance.

7.6 Discussion

After reporting the results in the previous section, we discuss and justify these

observations in the following section.
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7.6.1 KWS on Zulu

The low Speech Recognition performance on Zulu makes KWS a hard task and

this effect is mostly due to the small amount of training data. Also, as we develop

more advanced models geared towards keyword detection, the Speech Recognition

performance degrades while the keyword detection improves.

7.6.2 1000-best n-grams for Approximating Continuous-Space

Models

Previously in Chapter 4, we had observed improved Speech Recognition perfor-

mance by utilizing 1000-best lists-based n-grams for approximation of continuous-

space models. Similar experiments show improvements in WER performance, as

shown in Table 7.3. But, using these 1000-best n-grams show degradation in the

ATWV performance. We suspect this is because the model assigns lower scores to

keyword-specific hypotheses, which degrades ATWV performance.

7.6.3 Using Approximated LMs for First-Pass

During our KWS experiments, we created approximated versions of continuous-

space models. As pointed out in the earlier sections, this approximation is a

pruning step of probabilities present in the original language model. The pruning

choices are guided by the frequency of n-grams in the training set and hence, rare-

word contexts not present in the training set do not appear in the approximated

language models. This lack of such contexts is reflected in low performance of

these approximated language models on keyword-restricted perplexity and ATWV

results.

Especially for the SWORDSS-based model, such effects are pronounced as these

model’s approximated version lose rare-word contexts , which the SWORDSS-
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based models are better at predicting that regular models.

7.7 Summary

In this chapter, we present a combined evaluation of models described in this thesis.

We applied SWORDSS-based continuous-space models to first-pass decoding in the

Keyword Search Task.

Combining techniques discussed in Chapter 4 and 6, we evaluated ATWV on

keywords and out-of-vocabulary keywords. Our smaller-context SWORDSS-based

models performed on par with Approximated long-span models. We believe that

this effect was mostly due to losses incurred during approximation. Nevertheless,

this chapter outlines ia novel attempt to apply neural-network-based long-span

models for first-pass decoding in the KWS task.

For future work, we hope to introduce keyword-restrictions to long-span models.

Such restrictions helped regular trigram language model to perform competitively

with long-span models and will be interesting to investigate further.
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Chapter 8

Conclusion & Future Work

8.1 Conclusion

For low-resource tasks like the Babel project and language model adaptation for

Speech Recognition, handling the low amount of language resources becomes a key

challenge. Among various challenges posed by such tasks, we specifically looked at

handling long-span information and handling low-frequency words (rare words).

8.1.1 Handling Long-Term Information

Recent work (Deoras et al. (2011b,a); Cho et al. (2014)) has shown that long-span

information can help improve performance in language modelling tasks like Speech

Recognition and Machine Translation. In these tasks, language models are used to

reduce the search space of hypotheses. By leveraging the long-span information,

these models can further reduce the search space of hypotheses by scoring the

correct hypothesis higher than it counterparts.

To reap these benefits in low-resource tasks, we re-evaluated existing techniques



8. Conclusion & Future Work 98

on language modelling tasks. Among the existing techniques, we enhanced the con-

ventional n-gram styled skip-gram models using a Unified Smoothing technique.

This smoothing technique enabled better capturing of information over longer con-

text sizes. We compared these enhanced skip models with contemporary recurrent

neural network language models (RNNLM), known for implicitly infinite history

sizes, on the basis of perplexity on limited-resource Babel datasets. On these

datasets, enhanced skip models outperformed the RNNLM comfortably. On the

Keyword Search task, however, these enhanced skip models performed comparably

with regular trigram models, which are known to be outperformed by neural net-

work methods. Next, we concentrated on using such neural network based methods

for capturing long-span information than enhancing skip-grams for this purpose.

Language model adaptation for Speech Recognition is another low-resource

task, where there is not enough in-domain data to train a Speech Recognition

system on the data. Hence, large amounts of out-domain data are used to train

background acoustic and language models. The language model is then adapted

using the in-domain data and used to perform decoding in the Speech Recognition

system.

In this context, using long-span neural network based methods like LSTM-based

LM can be beneficial, however, applying these methods can result in prohibitive

amounts of computations. To alleviate this issue, we proposed an approximation

to LSTMs by scoring sampled n-grams with this model. Faster than the existing

techniques, this approximation technique made first-pass decoding with LSTMs

possible. To apply these approximated LSTMs to language modelling adaptation

for the Metalogue Speech Recognition task, we extended the underlying architec-

tures to produce adapted-approximated LSTMs. Performing first-pass decoding

with these LSTMs, we were able to perform reasonably better than other language

modelling adaptation techniques.

Aforementioned techniques like skip models and RNNLMs, both capture long-
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term dependencies differently. Skip models enumerate these dependencies and

RNNLMs form an abstract representation of these dependencies. Though RNNLMs

outperform the skip models, the neural network based model do not form a good

framework to study the long-term dependencies due to their abstract nature. To

counter this effect, we introduced the custom decay language models (CDLM).

These models not only enumerate the long-term dependencies but leverage vector

representations for each such dependency to help study them better. Analyzing

the long-term dependencies in the CDLM framework, we contrast its power with

RNNLMs. We observed that a six-gram CDLM is able to perform comparably with

a similar sized RNNLM. Further analysis revealed that the longer-term dependen-

cies have denser vector representations storing more global than local information.

8.1.2 Handling Rare Words

Training good word embeddings for a language requires large amounts of data.

Even then the language can come up with words not present in the training set

leaving the words without embeddings. This lack is detrimental to building systems

for low-resource languages. To overcome this lack of embeddings for such rare

words, existing methods leverage their morphological features to generate their

embeddings. While the existing methods use computationally-intensive rule-based

(Soricut and Och (2015)) or tool-based (Botha and Blunsom (2014)) morphological

analysis to generate embeddings.

In contrast to such techniques, we performed a computationally simpler sub-

word search on words that have existing embeddings. Embeddings of the sub-word

search results were then combined using string similarity functions to generate rare-

word embeddings. Using these rare-word embeddings to augment the pre-existing

embeddings, we evaluated them on various word similarity tasks. On most of the

word similarity tasks, the augmented set of embeddings were able to outperform

the existing set of embeddings by up to three times improvement in correlation
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rates.

Further to evaluate these rare-word embeddings in the framework of language

modelling, we inserted these embeddings into existing language modelling tech-

niques. With these language models, we observed up to 50% reduction in rare-word

perplexity in comparison to other more complex language models.

8.1.3 Combined Evaluation

Working towards handling long-term dependencies and rare-word information bet-

ter in language models, we performed a combined evaluation on the Babel pro-

gram’s Keyword Search task. Previous such evaluations have used sub-word based

regular n-grams, however, in our work we evaluated sub-word based recurrent neu-

ral network language models for first-pass decoding in the KWS task.

In our experiments, smaller context-based sub-word language models performed

on par with long-span neural network models. This was mostly due to the approxi-

mation of long-span models which led to degradation in these model’s performance.

Overall SWORDSS-based augmentation improved results for smaller context mod-

els but degraded the system’s performance for long-span models.

8.2 Outlook

This section briefly outlines possible extensions of methods presented in this thesis

and other possible scenarios related to these methods which may be worthwhile

examining in future work:

• Capturing sentential-based dependencies in continuous-space lan-

guage models: As part of our efforts to handle long-range dependencies,

we developed models to capture long-range dependencies within a sentence.

However, these models are still shorted-sighted as long-range dependencies
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occur much beyond a sentence boundary, spanning multiple sentences. Ear-

lier, Momtazi and Klakow (2011) have shown the benefits of using such sen-

tential context in an n-gram language model and applying them to question

answering task. It would be interesting to incorporate such dependencies in

continuous-space language models like neural network and evaluating them

on tasks like question answering and summarization.

• Analysing usage of various sub-word models: For handling rare words,

in Chapter 6 we used an ad hoc sized unit to perform a search for rare

words without embeddings. A deeper analysis of using differently sized sub-

word units and also leveraging morpheme-based sub-word units could be

performed. This will help us understand the impact of choosing the sub-

word units on the quality of the rare-word embeddings.

• Analysing effects of different similarity functions: Also for handling

rare words as part of our work (Chapter 6), we found that using language-

dependent orthographic similarity functions did not affect the rare-word em-

beddings quality much in comparison to language-agnostic ones. This aber-

ration in our experiments could be a topic of analysis, which explores the

reasons of such functions not working.

• Developing keyword-accurate approximations to LSTMs: A major

hurdle while approximating LSTMs, trained with rare-word information, is

accurately capturing the rare-word knowledge in the approximated language

model. In our combined evaluations (Chapter 7), we observed that rare-word

information augmented LSTMs degrading in performance after approxima-

tion. Further work is required to create approximated LSTMs keep the rare-

word knowledge intact while also not losing much on the overall performance.
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Appendices



A Language Model Adaptation

Language model adaptation techniques can largely be classified into interpolation-

based techniques and techniques applying constraint specification. In both cases, a

combination of language model trained on a large background corpus is combined

with a language model trained on the small adaptation corpus. However, arguably

the latter set of techniques is considered more powerful. In this section, we discuss

one such widely used technique which uses dynamic marginals to perform language

model adaptation.

A.1 Fast Marginal Adaptation

Most adaptation techniques utilize unigram language models trained on adaptation

text to dynamically adapt predictions as the text is transcribed in Speech Recog-

nition. An important part of adapting predictions using such unigrams (padap(w),

where w is the present word) is to combine these models with language models

with background information (pback(w|h), where h is the history for the word w).

Language model adaptation with dynamic marginals is fast way of combining such

unigram information in a background language models (Kneser et al. (1997)) and

arguably more powerful than interpolation-based techniques (Bellegarda (2004)).

Treating the adaptation unigram language model (padap(w)) as a dynamic

marginal, Kneser et al. (1997) applies probabilistic constraints and Minimum Dis-

criminant Estimation to estimate to model adaptative parameters (α(w)) . These

parameters are then estimated (α(w) = padap(w)

pback(w)
) using a Generalized Iterative Scal-

ing scheme, where stopping after the first iteration of the algorithm and substi-

tuting adaptation language models with background corpus-based approximations

produces the final adapted language model (padap(w|h)). This language model is
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defined over T — the set of all n-grams — as follows:

padap(w|h) =



α(w)

z0(h)
· pback(w|h) if (h,w) ∈ T

1

z1(h)
· padap(w|ĥ) else

with the normalization factors z0(h) and z1(h):

z0(h) =

∑
w:(h,w)∈T α(w) · pback(w|h)∑

w:(h,w)∈T pback(w|h)

and

z1(h) =
1−

∑
w:(h,w)∈T padap(w|h)

1−
∑

w:(h,w)∈T pback(w|h)
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