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ABSTRACT

People are often a central element of visual scenes, particularly in real-world street
scenes. Thus it has been a long-standing goal in Computer Vision to develop methods
aiming at analyzing humans in visual data. Due to the complexity of real-world
scenes, visual understanding of people remains challenging for machine perception.
In this thesis we focus on advancing the techniques for people detection and tracking
in crowded street scenes. We also propose new models for human pose estimation
and motion segmentation in realistic images and videos.

First, we propose detection models that are jointly trained to detect single person
as well as pairs of people under varying degrees of occlusion. The learning algorithm
of our joint detector facilitates a tight integration of tracking and detection, because
it is designed to address common failure cases during tracking due to long-term
inter-object occlusions.

Second, we propose novel multi person tracking models that formulate tracking
as a graph partitioning problem. Our models jointly cluster detection hypotheses
in space and time, eliminating the need for a heuristic non-maximum suppression.
Furthermore, for crowded scenes, our tracking model encodes long-range person
re-identification information into the detection clustering process in a unified and
rigorous manner.

Third, we explore the visual tracking task in different granularity. We present a
tracking model that simultaneously clusters object bounding boxes and pixel level
trajectories over time. This approach provides a rich understanding of the motion of
objects in the scene.

Last, we extend our tracking model for the multi person pose estimation task. We
introduce a joint subset partitioning and labelling model where we simultaneously
estimate the poses of all the people in the scene.

In summary, this thesis addresses a number of diverse tasks that aim to enable
vision systems to analyze people in realistic images and videos. In particular, the
thesis proposes several novel ideas and rigorous mathematical formulations, pushes
the boundary of state-of-the-arts and results in superior performance.
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ZUSAMMENFASSUNG

Personen sind oft ein zentraler Bestandteil visueller Szenen, besonders in natürlichen
Straßenszenen. Daher ist es seit langem ein Ziel der Computer Vision, Metho-
den zu entwickeln, um Personen in einer Szene zu analysieren. Aufgrund der
Komplexität natürlicher Szenen bleibt das visuelle Verständnis von Personen eine
Herausforderung für die maschinelle Wahrnehmung. Im Zentrum dieser Arbeit
steht die Weiterentwicklung von Verfahren zur Detektion und zum Tracking von
Personen in Straßenszenen mit Menschenmengen. Wir erforschen darüber hinaus
neue Methoden zur menschlichen Posenschätzung und Bewegungssegmentierung
in realistischen Bildern und Videos.

Zunächst schlagen wir Detektionsmodelle vor, die gemeinsam trainiert werden,
um sowohl einzelne Personen als auch Personenpaare bei verschiedener Verdeckung
zu detektieren. Der Lernalgorithmus unseres gemeinsamen Detektors erleichtert eine
enge Integration von Tracking und Detektion, da er darauf konzipiert ist, häufige
Fehlerfälle aufgrund langfristiger Verdeckungen zwischen Objekten während des
Tracking anzugehen.

Zweitens schlagen wir neue Modelle für das Tracking mehrerer Personen vor,
die das Tracking als Problem der Graphenpartitionierung formulieren. Unsere Mod-
elle clustern Detektionshypothesen gemeinsam in Raum und Zeit und eliminieren
dadurch die Notwendigkeit einer heuristischen Unterdrückung nicht maximaler De-
tektionen. Bei Szenen mit Menschenmengen kodiert unser Trackingmodell darüber
hinaus einheitlich und genau Informationen zur langfristigen Re-Identifizierung in
den Clusteringprozess der Detektionen.

Drittens untersuchen wir die visuelle Trackingaufgabe bei verschiedener Gran-
ularität. Wir stellen ein Trackingmodell vor, das im Zeitablauf gleichzeitig Begren-
zungsrahmen von Objekten und Trajektorien auf Pixelebene clustert. Diese Herange-
hensweise ermöglicht ein umfassendes Verständnis der Bewegung der Objekte in
der Szene.

Schließlich erweitern wir unser Trackingmodell für die Posenschätzung mehrerer
Personen. Wir führen ein Modell zur gemeinsamen Graphzerlegung und Knoten-
klassifikation ein, mit dem wir gleichzeitig die Posen aller Personen in der Szene
schätzen.

Zusammengefasst widmet sich diese Arbeit einer Reihe verschiedener Aufgaben
mit dem gemeinsamen Ziel, Bildverarbeitungssystemen die Analyse von Personen
in realistischen Bildern und Videos zu ermöglichen. Insbesondere schlägt die Arbeit
mehrere neue Ansätze und genaue mathematische Formulierungen vor, und sie
zeigt Methoden, welche die Grenze des neuesten Stands der Technik überschreiten
und eine höhere Leistung von Bildverarbeitungssystemen ermöglichen.
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1I N T R O D U C T I O N

Contents
1.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Vision is arguably the most important human sense. It masters immense visual
information and allows people to recognize, organize, and interact with their
egocentric world. No other human sense is comparable to vision in terms of

its versatility and richness. For decades, it has been a fascinating research topic for
scientists to understand the human ability to interpret visual scenes and utilize the
information to interact with the external world. Computer vision, as the counterpart
of human vision, has made significant progress in the past. Together with ubiquitous
cameras in our everyday life, image and video understandings become essential for
building autonomous and intelligent computer systems.

Computer systems require different levels of visual understanding when perform-
ing different tasks. These range from low-level tasks such as super resolution and
image de-blurring to high-level tasks such as image classification and face detection.
Immense progress has been made in many areas, and in some computers even sur-
pass the quality of human perception, e.g. image classification (He et al., 2016), and
are successfully employed in consumer electronics. However, visual understanding
of crowded real-world street scenes still remains challenging. People are often a
central element of such scenes, thus it is particularly important to develop methods
aiming at analysing human movements. Despite the tremendous capability that
computer vision systems have today, machine perception is still far from competing
with human perception for interpreting people in crowded street scenes. One exam-
ple could be autonomous driving/road safety, where humans effortlessly identify
and localize the positions of pedestrians and predict their motion and intention,
while the performance of vision systems is far from satisfactory. The variety and
complexity of motions, cluttered backgrounds, or partial occlusions make it difficult
for machines to interpret the visual information of crowded real-world street scenes.

The main focus of this thesis is to develop algorithms for tracking multiple people
in street scenes, a task that is often referred as multi person tracking and sometimes
as multi target tracking. In general, the multi person tracking task is to identify
the location of each person at every time step and to reconstruct the trajectories of
individuals in a dynamic scene without manual initialization. Given that pedestrian
detectors are rather robust nowadays and produce good detections on non-occluded
and reasonably sized pedestrians, a commonly explored strategy for the multi person
tracking task is tracking-by-detection, where the tracking task is split into two steps:

1



2 chapter 1. introduction

Figure 1.1: Several examples of images of street scenes. Notice that the street scene
videos have a large varieties of imaging conditions and camera angles.

generate people hypotheses at every time step (people detection) and associate the
hypotheses that describe the same person (people tracking) over time. In this thesis,
we explore new techniques and propose new algorithms for both people detection
and people tracking, with the focus on (semi-) crowded real-world street scenes.

People detection is an essential component in any tracking-by-detection based
method. People detection in street scenes, which is often referred to as pedestrian
detection, has been studied intensively. While continuous progress has been made,
heavy occlusion remains challenging. The performance of state-of-the-art pedestrian
detectors decreases dramatically in the presence of significant partial occlusion, as
shown in Tang et al., 2014 and Tang et al., 2012. The challenges of handling heavy
occlusion are related to several factors: little image support, under-representation in
public pedestrian detection benchmarks, and high diversity of occlusion scenarios.
In this thesis, we advance people detection techniques by explicitly addressing these
factors. First, we explore person person occlusion patterns. One intuitive way to
handle partial occlusion is to first detect the occluding person, remove the image
evidence of the detected person and then detect the potentially occluded person
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using the remaining image evidence. This type of method treats occlusions as a
nuisance and performs inference based on the image information that corresponds to
the visible part of the occluded person. We propose an alternative strategy: instead of
treating occlusion as a distraction, we explore the person/person occlusion patterns
that exhibit regularities which can be used to detect the presence of partial occluded
people. Second, we propose a person/person occlusion dataset (MPII-2person
dataset) where the occlusion levels are carefully annotated. In popular pedestrian
detection benchmarks such as Caltech (Dollár et al., 2012), significant partial occlusion
is often under-represented. For evaluation, many works even exclude such cases by
mainly reporting the number on a subset like the so called reasonable set of Caltech
(Dollár et al., 2012). Our MPII-2Person dataset allows analysing the performance
on partially occluded people in detail. Last, to model the diversity of occlusion
scenarios, we propose a detector training algorithm which automatically discovers
frequent and discriminative occlusion patterns that exhibit variations in several
factors, such as people’s body articulation, and their position and orientation relative
the camera. Furthermore, we combine our occlusion pattern mining algorithm with
a multi-person tracker in the loop. To this end, we are able to learn a pedestrian
detector that is explicitly optimized for the task of tracking multiple people.

People tracking is another problem intensively studied in computer vision.
However the robustness of tracking algorithms is far from satisfactory, especially for
crowded street scenes. The challenges come from several sources. First, as discussed
in the previous paragraph, the performance of state-of-the-art person detectors
decreases significantly in crowded scenes, suffering both from false positives and
missing detections. Distinguishing the detections on pedestrians and the detections
on background is a hard problem inherited from the detection step. In addition,
the bounding box localization becomes less accurate due to occlusion. Handling
such noisy detection input is a well-known challenge for data association methods.
Second, in crowded street scene videos, it is not only difficult to estimate the exact
number of people present but also a large number of people are occluded for more
than 50% of the entire video. In particular, for these cases it is difficult to determine
the starting and ending moment of the tracks. Last, affinity measures that are robust
to camera motion, occlusion, and illumination are essential for improving tracking
performance, as tracking through partial occlusion and re-identifying after full
occlusion are highly dependent on good similarity measures. We explicitly address
all these challenges and advance tracking techniques in this thesis. We propose
novel tracking formulations that are rigorous and robust to handle the unknown
number of people as well as detection noise. Our tracking formulation is defined as
an optimization problem with respect to a graph. The nodes of the graph correspond
to people hypotheses or detections. Edges are introduced to connect detections
that hypothetically represent the same person. One common approach is to model
tracking as finding disjoint paths in the graph, where the paths do not branch or
merge, just as one person can not split into two persons. While being intuitive, such
models ignore the fact that typical people detectors produce many similar hypotheses
for the same person. For the disjoint paths based method, it becomes hard to choose
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one best path among many plausible good ones. In this thesis, we propose a novel
tracking formulation, the Minimum Cost Multicut Problem, that models tracking
as a graph decomposition problem. The advantages of this mathematical abstraction
are that the number of persons in the video is not fixed or biased, but optimized
and determined by the solution of the problem. Meanwhile, it clusters multiple
detections of the same targets jointly over space and time, producing a more robust
association. However, a rigorous tracking formulation is only one part of the solution.
As shown in Fig 1.1, the street scene videos have a large variety of imaging conditions
and camera angles. E.g. The camera could be mounted on a moving bus or the video
could be captured in standard surveillance setting. The appearance of individual
pedestrians also changes significantly depending on where and when the videos
are captured. Finally, the size of a pedestrian varies largely within and between
videos. All these factors present an exponentially increased state space of appearance
patterns which is difficult to compare and associate. In such videos, the commonly
explored and simple linear motion model does not work well. To address these
problems, in the thesis, we propose robust affinity measures by combining local
image patch matching and person re-identification information. The intuition is that
the local image patch matching provides reliable measures between detections that
are temporally close. The re-identification information provides reliable information
for detections that are distant in time. In crowded street scenes, our combined
pairwise features are able to produce accurate affinity measures even for irregular
camera motions and long-term occlusions.

Incorporating long-range re-identification into the tracking model is not trivial
even when the corresponding affinity measures are quite accurate One reason is that
similar-looking people may not be identical. Thus, the long-range information should
be integrated in a way that it is supported by the majority of the local information.
Based on this intuition, we propose another tracking formulation, the Minimum
Cost Lifted Multicut Problem, which is in particular designed to incorporate the
long-term person re-identification information into the tracking model. For the
Minimum Cost Lifted Multicut Problem, we introduce two type of edges, regular
and lifted edges, in to the graph. The regular edges define the feasible solution of
the problem and the lifted edges introduce the long-range person re-identification
information into the objective. The model is able to express the fact that similarly
looking persons are identical only if there is a valid path formed by the regular edges.
By combining the robust affinity measures and the lifted multicut tracking model,
we achieve state-of-art tracking performance on the challenging MOT16 benchmark
(Milan et al., 2016).

One closely related task to multi person tracking is motion segmentation (mov-
ing object segmentation), where the goal is to segment point trajectories on each
moving object. These two tasks are interrelated problems because their goal is to
determine the regions that belong to the same object in an image sequence. The
point trajectories carry local and low-level image information which can be robust to
partial occlusion. In contrast, the high-level detection bounding box contains seman-
tic information which is robust to articulated motion and coherent motion between
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objects. To leverage the cues from both levels, we propose a unified graphical model
in which the multi target tracking and motion segmentation tasks are simultaneously
solved.

Another closely related problem we explore in this thesis is multi person pose
estimation. Single-person articulated pose estimation has been studied intensively,
but the problem of multi person pose estimation has been largely neglected, particu-
larly because of the inherent challenges related to the fact that it is hard to estimate
the number of partially visible people and their poses. The multicut formulation
we propose for tracking is able to automatically identify the number of people and
robustly associate the detections that belong to the same identity. This property is
also desirable for multi person pose estimation. We start with the body part detectors
and propose a bottom-up approach where we jointly estimate the relation between
body part detections and the part label of individuals. We extend the Minimum
Cost Multicut Problem to a joint Graph Partition and Node Labeling problem. By
solving this optimization problem, we are able to obtain the number of people, their
positions, their poses and their partial visibilities simultaneously.

1.1 contributions of the thesis

This thesis makes contributions to the tasks of people detection and multi person
tracking in street scenes. The thesis also makes contributions to motion segmentation
and multi person pose estimation.

The contributions to people detection are as follows:

• We propose a novel approach to simultaneously detect two people that overlap
in image. We introduce a joint person detector that is trained to detect the
presence of a single person as well as two people that are in close proximity.

• We create a new person/person occlusion dataset (MPII-2Person dataset) where
the occlusion level of each image is carefully annotated. The MPII-2Person
dataset focuses on partially occluded people which are under-represented in
popular pedestrian benchmarks.

• We propose a novel algorithm that optimizes detector performance for tracking.
The algorithm automatically mines dominant people/people occlusion patterns
and exploit tracking performance on partially occluded people.

The contributions to multi person tracking are as follows:

• We propose a novel multicut tracking model where the number of persons
is not fixed or biased by the definition of the problem but is estimated in an
unbiased fashion from the video sequence and is determined by the solution
of the problem. Multiple detections of the same person in the same frame
are effectively clustered, which eliminates the need for heuristic non-maxima
suppression.
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• We propose various features to measure the similarity between detections.
Particularly, for long-range person re-identification, we design a novel deep
neural network which fuses the human pose information with deep features.
This provides us a mechanism to re-identify people that are distant in time.

• We further propose to model tracking as a minimum cost lifted multicut
problem, where two types of edges (regular and lifted edges) are introduced.
Our formulation encodes long-range information by the lifted edges which
do not define possibilities of directly joining nodes. In order to assign two
detections that are far apart in time and similar in appearance to the same
cluster (person), there must exist a path (track) along the regular edges, that
certifies this decision. The lifted multicut model obtains new state-of-the-art
tracking performance on the MOT16 benchmark.

The contributions to joint tracking and motion segmentation are as follows:

• We extend our tracking works by proposing a unified graphical model where
multi person tracking and motion segmentation are jointly cast as one graph
partitioning problem. The unified model produces consistent identity labels at
the bounding box tracks level as well as at pixel-level segmentations.

• We demonstrate experimental results on both tracking and motion segmenta-
tion benchmarks, achieving (on MOT16 benchmark) or surpassing (on FBMS
benchmark) the state-of-the-art.

The contribution to multi person articulated pose estimation are as follows:

• We extend the multicut model by introducing node labels to the objective
function. The novel graph partition and node labeling formulation is able to
estimate the number of people, their location, and their poses in a unified
manner.

1.2 outline of the thesis

The thesis is structured as follows:

Chapter 2: Related work. This chapter gives an overview of the related work in
people detection and tracking in crowded scenes. In particular, we discuss how
these works differ from the approaches presented in this thesis. In addition,
we survey the literature related to pose estimation and motion segmentation
with a focus on methods that target realistic and challenging scenarios.

Chapter 3: Detection and Tracking of Occluded People. In this chapter we present
a novel approach to people detection in realistic street conditions. Given that
in street scenes the dominant occlusion cases are person/person occlusions,
we leverage these characteristic occlusion patterns in the image domain and
propose a joint-person detector to detect single persons as well as pairs of
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persons. We integrate the joint person detector into a tracking approach and
demonstrate its potential for people detection and tracking of occluded people
in challenging benchmarks.

The content of this chapter was first presented at BMVC12 with the title
Detection and Tracking of Occluded People (Tang et al., 2012). It has been further
extended to a journal article that appeared in IJCV14 (Tang et al., 2014).

Chapter 4: Learning People Detectors for Tracking. In this chapter, we improve
the joint-person detector presented in chapter 3 by proposing a novel structured
loss formulation which combines the VOC loss and the detection type loss. We
further propose to train a people detector by optimizing tracking performance.

The content of this chapter was presented at ICCV13 with the title Learning
People Detectors for Tracking in Crowded Scenes (Tang et al., 2013).

Chapter 5: Subgraph Decomposition for Multi-Target Tracking. In this chapter, we
introduce a novel minimum cost subgraph multicut formulation for the multi-
target tracking task. Our formulation jointly selects and clusters detections over
space and time. In order to conduct a direct comparison with conventional
network flow based methods, we also propose a minimum cost disjoint path
formulation for the tracking task. We compare both formulations from a theo-
retical perspective as well as experimentally. We conclude that the multi-cut
formulation produces more robust connections and thus is more suitable for
the tracking task.

The content of this chapter was presented at CVPR15 with the title Subgraph
Decomposition for Multi-Target Tracking (Tang et al., 2015).

Chapter 6: Multi-Person Tracking by Multicut and Deep Matching. In this chap-
ter, we present our extensions of the work Tang et al., 2015. We propose a novel
local pairwise feature based on local appearance matching that is robust to
partial occlusion and camera motion. We also perform extensive experiments
to compare different pairwise potentials and to analyze the robustness of the
tracking formulation. We demonstrate the effectiveness of our method on the
MOT16 benchmark. The work is the winner of the Multiple Object Tracking
Challenge at ECCV16.

The content of this chapter was presented at ECCV16 multi target tracking
workshop with the title Multi-Person Tracking by Multicuts and Deep Matching.

Chapter 7: Lifted Multicuts and Deep Re-identification. In this chapter, we present
an advanced clustering based tracking formulation which is called the min-
imum cost lifted multicut formulation. The novel formulation can be seen
as a constrained clustering model, where the detection pairs that are tempo-
rally distant from each other are treated differently from the detection pairs
that are in neighboring frames. Detection pairs in neighboring frames can
be directly clustered into one cluster, but detection pairs that are far away
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can only be clustered if there exists a path in the frames between them. This
formulation prevents false joints between the distant detections and signifi-
cantly improves tracking accuracy. Besides the novel tracking formulation, we
also propose various deep person re-identification networks for modeling the
appearance relations between detections. We demonstrate the effectiveness of
our formulation outperforming the state-of-the-art for the MOT16 benchmark.

The content of this chapter is accepted to CVPR2017 with the title Multi-Person
Tracking by Lifted Multicuts and Deep Re-Identification.

Chapter 8: Joint Segmentation and Tracking of Multiple Objects. In this chapter,
we propose to cluster high-level information (detection bounding boxes) and
low-level information (motion trajectories) jointly in videos. We utilize the
minimum cost multicut formulation, where the nodes in the corresponding
graphical model are composed of detections and pixel-level trajectories. By
decomposing the graphical model into an optimal number of connected com-
ponents, the detections and pixel trajectories belong to the same objects in
the video are linked and clustered into one component over space and time.
The results on motion segmentation benchmarks and multi target tracking
benchmarks indicate the effectiveness of the proposed method.

The content of this chapter was published in arXiv with the title A Multi-cut
Formulation for Joint Segmentation and Tracking of Multiple Objects. Siyu Tang
proposed the idea of jointly modeling tracking and motion segmentation with
the multicut formulation and contributed the multi person tracking side of the
work.

Chapter 9: Multi Person Pose Estimation by DeepCut. In this chapter, we present
a novel formulation for human pose estimation problem by jointly clustering
and labeling body part detections. We propose two CNN variants to generate
body part candidates. Then the pose estimation task is cast as an integer linear
program. By optimizing the objective function, we obtain the number of people,
their spatial configuration, their articulated poses and occlusion information.
The proposed model surpasses state-of-the-art results on four benchmarks.

The content of this chapter was presented at CVPR16 with the title DeepCut:Joint
Subset Partition and labeling for Multi Person Pose Estimation (Pishchulin et al.,
2016)). Siyu Tang proposed the idea of modeling the multi person pose estima-
tion task with the multicut formulation, and contributed and implemented the
modeling side of the work.

Chapter 10: Conclusions and future perspectives. In this chapter, we conclude the
thesis by summarizing the contributions, results and also the limitations of the
proposed methods. Furthermore, we present an outlook on future research
directions towards rich video understanding.
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In this chapter, we mainly discuss recent developments and seminal works in
people detection and multi person tracking with a focus on crowded scenes. We will
also include related work on motion segmentation and human pose estimation for
the complex scene scenarios in section 2.3 and section 2.4.

2.1 pedestrian detection and people detection

People detection in street scenes is often referred to as pedestrian detection, which
has been significantly improved by diverse methods over the last years. In this
section, we compare state-of-art pedestrian detectors and people detectors in terms
of image representation and learning method, and we discuss their relations to our
work.

2.1.1 Pedestrian Detection

Arguably the most popular image representation for pedestrian detection is the
Histogram of Oriented Gradients (HOGs) that was introduced by Dalal and Triggs,
2005. By decomposing an image into overlapping cells and carefully aggregating

9
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local gradients information, Dalal and Triggs, 2005 were able to significantly improve
the performance of pedestrian detection. Many variants of HOGs have been proposed
afterwards: Wang et al., 2009b propose to combine the Local Binary Pattern (LBP)
feature that uses the difference sign as signal with HOGs, which is more robust to
partial occlusion; Lin and Davis, 2008 propose to learn a global descriptor derived
from the original HOGs feature, that is shape invariant as well as articulation
insensitive, and is capable of distinguishing human/non-human image patterns.

The Integral Channel Feature proposed by Dollár et al., 2009 is another seminal
work for pedestrian detection. Dollár et al., 2009 and its many variants are able to
reliably detect pedestrians under a variety of imaging conditions, people poses, and
appearance. Benenson et al., 2013 show that learning a set of irregular rectangle cells
significantly improves over the HOGs style hand-designed patterns. Lim et al., 2013

introduce Sketch token, which is a local contour-based image feature that is learned
using middle level image information.

In order to improve detection quality, several works propose to increase and
diversify the features computed on the input images. The intuition is that giv-
ing higher dimensional and diverse image representations, the classification task
(person/non-person in the region of interest) becomes easier. Zhang et al., 2014

employ different types of low-level Haar-like features from multiple rectangle re-
gions to represent various human appearance in street scenes. Another simple yet
effective approach for pedestrian detection proposed by Paisitkriangkrai et al., 2014

extracts multiple low-level image features on multiple image regions based on spatial
pooling. Daniel Costea and Nedevschi, 2016 propose to use multi-resolution filtered
LUV and HOG channels for pedestrian detection as well as semantic segmenta-
tion. Furthermore, the resulting semantic segmentation information is employed as
additional channels for pedestrian detection, resulting in a more powerful detector.

Recently, several works apply convolutional neural networks (CNNs) to learn
image representation for pedestrian detection. Hosang et al., 2015 use people detec-
tors to generate region proposals and then classify the region proposals using the
same pipeline as Girshick et al., 2014a. Tian et al., 2015 apply Dollar et al., 2014 to
obtain detection proposals and propose a task specific CNN to jointly optimize the
detection task as well as semantic attribute recognition. In Zhang et al., 2016, authors
combine the Region Proposal Network (RPN) from Ren et al., 2015 with a boosted
forest to improve the detection performance on several public benchmarks.

2.1.2 People Detection

General people detection is a challenging task due to the unconstrained setting
where people exhibit a large variety of articulated poses, clothing, occlusion, etc.
Many approaches to people detection are able to reliably detect people under a
variety of imaging conditions, people poses, and appearances. One of the seminal
works, which is proposed by Felzenszwalb et al., 2010, introduces the deformable part
model (DPM). The DPM model represents people by a set of parts that are spatially
deformable. Each part captures the characteristic local appearance of a person, and
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structure. In our experience maintaining performance
seems to require gradual enrichment of the model.

One reason why simple models can perform better in
practice is that rich models often suffer from difficulties
in training. For object detection, rigid templates and bag-
of-features models can be easily trained using discrimi-
native methods such as support vector machines (SVM).
Richer models are more difficult to train, in particular
because they often make use of latent information.

Consider the problem of training a part-based model
from images labeled only with bounding boxes around
the objects of interest. Since the part locations are not
labeled, they must be treated as latent (hidden) variables
during training. More complete labeling might support
better training, but it can also result in inferior training
if the labeling used suboptimal parts. Automatic part
labeling has the potential to achieve better performance
by automatically finding effective parts. More elaborate
labeling is also time consuming and expensive.

The Dalal-Triggs detector [10], which won the 2006
PASCAL object detection challenge, used a single filter
on histogram of oriented gradients (HOG) features to
represent an object category. This detector uses a slid-
ing window approach, where a filter is applied at all
positions and scales of an image. We can think of the
detector as a classifier which takes as input an image,
a position within that image, and a scale. The classifier
determines whether or not there is an instance of the
target category at the given position and scale. Since
the model is a simple filter we can compute a score
as � · �(x) where � is the filter, x is an image with a
specified position and scale, and �(x) is a feature vector.
A major innovation of the Dalal-Triggs detector was the
construction of particularly effective features.

Our first innovation involves enriching the Dalal-
Triggs model using a star-structured part-based model
defined by a “root” filter (analogous to the Dalal-Triggs
filter) plus a set of parts filters and associated deforma-
tion models. The score of one of our star models at a
particular position and scale within an image is the score
of the root filter at the given location plus the sum over
parts of the maximum, over placements of that part, of
the part filter score on its location minus a deformation
cost measuring the deviation of the part from its ideal
location relative to the root. Both root and part filter
scores are defined by the dot product between a filter (a
set of weights) and a subwindow of a feature pyramid
computed from the input image. Figure 1 shows a star
model for the person category.

In our models the part filters capture features at twice
the spatial resolution relative to the features captured by
the root filter. In this way we model visual appearance
at multiple scales.

To train models using partially labeled data we use a
latent variable formulation of MI-SVM [3] that we call
latent SVM (LSVM). In a latent SVM each example x is

(a) (b) (c)

Fig. 1. Detections obtained with a single component
person model. The model is defined by a coarse root filter
(a), several higher resolution part filters (b) and a spatial
model for the location of each part relative to the root
(c). The filters specify weights for histogram of oriented
gradients features. Their visualization show the positive
weights at different orientations. The visualization of the
spatial models reflects the “cost” of placing the center of
a part at different locations relative to the root.

scored by a function of the following form,

f�(x) = max
z2Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent
values, and �(x, z) is a feature vector. In the case of one
of our star models � is the concatenation of the root
filter, the part filters, and deformation cost weights, z is
a specification of the object configuration, and �(x, z) is
a concatenation of subwindows from a feature pyramid
and part deformation features.

We note that (1) can handle very general forms of
latent information. For example, z could specify a deriva-
tion under a rich visual grammar.

Our second class of models represents an object cate-
gory by a mixture of star models. The score of a mixture
model at a particular position and scale is the maximum
over components, of the score of that component model
at the given location. In this case the latent information,
z, specifies a component label and a configuration for
that component. Figure 2 shows a mixture model for the
bicycle category.

To obtain high performance using discriminative train-
ing it is often important to use large training sets. In the
case of object detection the training problem is highly un-
balanced because there is vastly more background than
objects. This motivates a process of searching through
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(b)

Figure 2.1: Images are from Felzenszwalb et al., 2010. (a) Example image, the red
rectangles indicate person detections, the blue rectangles indicate the deformable
parts. (b) Visualization of the root filter, the part filters, the spatial configuration of
the part filters of the DPM.

the relation between pairs of parts are modeled by spring-like connections. As there
is no ground truth information for the part locations, the DPM model adapts a
latent variable formulation of support vector machine (LSVM) to learn the model
parameters as well as the latent values of the part configuration. Although the DPM
model is effective when people are fully visible, its performance degrades when
people become partially occluded. Various remedies have been proposed, including
a combination of multiple detection components (Felzenszwalb et al., 2010), using a
large number of part detectors (Poselets) (Bourdev and Malik, 2009), detection of
interactions between people and objects (Desai and Ramanan, 2012), and careful
reasoning about association of image evidence to detection hypotheses (Leibe et al.,
2012, Barinova et al., 2010, Wang et al., 2009a). Leibe et al., 2012 propose an approach
that first aggregates the evidence from the local image features into a probabilistic
figure-ground segmentation, and then relies on a Minimal Description Length (MDL)
formulation to assign foreground regions to detection hypotheses. Barinova et al.,
2010 propose a probabilistic formulation of the generalized hough transform that
prevents association of the same image evidence to multiple person hypotheses.
These approaches treat partial occlusion as a nuisance and perform decisions based
on the image evidence that corresponds to the visible part of the person. This
makes them unreliable in cases of severe occlusions (i.e. more than 50% of the
person is occluded). Several works have aimed at improving weak detections using
information from additional sensing modalities (Enzweiler et al., 2010) or by joint
reasoning about people hypotheses and 3D scene layout (Wojek et al., 2011). In
Wojek et al., 2011, a bank of partial people detectors is used to generate the initial
proposals that are refined based on the 3D scene layout and temporal reasoning.
However the detectors used in Wojek et al., 2011 still assume that a significant portion
of the person is visible. Besides reasoning about 3D scene layout requires camera
calibration and additional assumptions on the scene geometry. Recently, Stewart
et al., 2016 propose a model to decode an image into a set of people head detections.
They first use a CNN to encode image information, then a recurrent long short-term
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memory (LSTM) layer to decode the image feature into a sequence of detections.
The whole model is end-to-end trainable with a novel loss function that is defined
on the sets of detections.

2.1.3 Synthetic Training Data for People Detection

Using synthetic training data to obtain a better object model in general and for
human in particular has been studied in many literature. An early work (Grauman
et al., 2003) proposes to use a computer graphics model of articulated human bodies
to render a multi-view synthetic images of human silhouettes. The rendered training
images are augmented with 3D joint angle locations which enable the authors to
learn a joint structure and shape model prior. Marin et al., 2010b show that a HOG-
based human detector can be effectively learned from the synthetic examples that are
generated by a game engine. Pishchulin et al., 2011 propose to utilize a morphable
3D body model to generate a large number of synthetic training images from a few
recorded persons and views.

2.1.4 Joint People Detection and Tracking

As one of the objectives of this thesis is to detect and track people in crowded
scenes. It is an interesting direction to explore how we could combine these two
tasks in a unified framework. Addressing both detection and tracking as a joint
problem has been considered in the literature. In Leibe et al., 2007, the task is
formulated as a quadratic Boolean program to combine trajectory estimation and
detection. The objective function is optimized locally, by alternating between the
two components. In contrast, Wu et al., 2012 formulate a joint integer linear program
and allow data association to influence the detector. However, their approach is
based on background subtraction on a discretized grid. A slightly different strategy
is followed by Yan et al., 2012, where data association not only relies on detector
responses, but also on a set of other trackers.

2.1.5 Relations to Our Works

The people detectors proposed in Chapter 3 and 4 build on the general people
detector of Felzenszwalb et al., 2010, which we extend in two ways. First, we propose
a double-person detector that simultaneously detects two people occluding each
other and second, we propose a joint detector that can detect both one person as well
as two people due to joint training. Our strategy is possible because overlapping
people result in characteristic appearance patterns that are otherwise uncommon.
Our approach is related to the “visual phrases” approach which is proposed by
Farhadi and Sadeghi, 2011. We train a joint detector for the combination of two
object instances. A similar idea is proposed in Desai and Ramanan, 2012 as well that
they train mixtures of detectors with some of the mixture components representing
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appearance of typical occluders. To capture typical appearance patterns of people
occluding each other, we automatically generate a dataset of training images with
controlled and varying degrees of occlusion. In this respect our work is also related
to recent work combining real and artificially generated images to train people
detectors (Marin et al., 2010a, Pishchulin et al., 2011).

Furthermore, in Chapter 4 we propose a detector learning approach tailored to
the requirements of people tracking, and in particular propose to train a people
detector based on feedback from the tracker. Unlike previous work, in Chapter 4,
we do not only consider detection and tracking jointly, but also explicitly adapt the
detector to typical tracking failures.

2.2 multi person tracking

Object tracking is one of the fundamental problems in Computer Vision, the body of
related literature is enormous. They range from the early studies about tracking in
human perception (Pylyshyn and Storm, 1988), filter-based tracking (E.g. Kalman
filter Kalman, 1960) to single and multi object tracking. In recent years, object
tracking is often categorized into two main classes. One class is called "model-free"
tracking or single object tracking. This line of tracking works does not utilize the
prior knowledge of the type of target object. Manual initialization is required to
identify the region of interest in the scene. The second class of object tracking method
is called multi object tracking, where the object category is known, but the number
of objects in the video is unknown. A powerful object detector can be therefore
applied to identify the location and size of the objects.

Also note that, multi person tracking is a specialization of multi object tracking.
Most of the recent multi object tracking works focus on the people category. In this
thesis, we are particularly interested in tracking people in image sequences as they
are often the central character in street scenes.

Before we go to the literature review of object tracking, we will first discuss
guided filter based tracking approaches, where tracking is modelled as a sequential
state estimation from noisy observations.

2.2.1 Guided Filter Based Object Tracking

Kalman filter (Kalman, 1960) proposed in sixties is well known for estimating the
state of tracking targets from a sequence of noise observation. The algorithm has
recursive two steps. In the prediction step, it generates the estimated states of
variables and the corresponding uncertainties. In the evaluation step, the estimated
states are updated according to the newly arrived observations. The kalman filter
works under certain assumptions, namely, the observation models and the state
transition need to be linear functions. Several extensions have been proposed to relax
such linearity constraint. Julier and Uhlmann, 1997 proposed extended Kalman filter,
which doesn’t require the linear transition function and observation model, it only
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requires differentiable functions. Another well known state estimation technique is
particle filters, which is proposed by Gordon et al., 1993. It uses a set of particles
to represent the state given some noisy observations. The particle filter can model
non-linear state-space and the observation model can take any form.

To apply particle filter to the object tracking task, Isard and MacCormick, 2001

introduce a particle filter that is used to jointly estimate the number of objects and
their state space. Khan et al., 2005 also propose to use a particle filter to jointly
model all the objects, additionally, a Markov Random Field (MRF) motion prior
is introduced to estimate the object interactions. To efficiently sample for a larger
number of objects, a Markov chain Monte Carlo (MCMC) sampling is used to replace
the traditional importance sampling step in the particle filter. In a more recent work
(Santhoshkumar et al., 2013), a set of two particle filters is proposed for each object
in the target video. The local particle filter estimates the local motion of the target
object, and the global particle filter models the interaction between the target object
and its surrounding objects.

2.2.2 Single Object Tracking

In the visual tracking community, single object tracking is the task of estimating the
target location in an image sequence, the tracking target is manually defined by a
bounding box in the first frame. Several challenges often occur such as occlusion,
illumination changes and abrupt motion. The goal of most single object tracking
methods is to construct a robust appearance model for the tracking target, so that
it can be easily distinguished from the background of the video, despite the above
mentioned challenges.

Early single target tracking works focus on building a matching model between
the representation of the tracking target in the past frame and the current frame.
Adam et al., 2006 propose to represent the target by multiple image patches, then
matching the similarity between the past and current frame is performed by measur-
ing the histograms of the patches. The mean-shift tracker proposed by Comaniciu
et al., 2000 is another popular early tracking approach. In this approach, the target
is represented by the statistic distribution of its color and texture. The matching
model is expressed by a metric that is characterized by the Bhattacharyya distance.
Oron, 2012 proposes a Locally Orderless Tracking (LOT) algorithm which estimates
a probabilistic model of the variations of the target object over time using the Earth
Mover’s Distance (EMD). The model is defined in a joint spatial-appearance space
to estimate the variations of the tracked object. The above mentioned approaches
all work in a generative tracking fashion. The discriminative trackers, on the other
hand, often show superior performance, where online learning strategies of the
appearance of the tracking target have been extensively investigated (Collins et al.,
2005, Avidan, 2007, Grabner et al., 2006, Babenko et al., 2009, Kalal et al., 2010, Dinh
et al., 2011, Danelljan et al., 2016, Nam and Han, 2016). Collins et al., 2005 propose
to model the tracking as a foreground/background classification task. The feature
space is continuously evaluated over time by an online feature tracking ranking
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where the earlier part of a sequence is more important since
the results from the frames after one tracking failure are not
informative, TRE addresses this issue.

Spatial robustness evaluation. Accurate initialization of a
target object is often important for tracking algorithms, but
in practice, it is difficult to achieve this due to errors caused
by the detectors or by manual labeling. To evaluate whether
a tracking method is sensitive to initialization errors, we

generate the object states by slightly shifting or scaling the
ground-truth bounding box of a target object. In this work,
we use eight spatial shifts (four center shifts and four corner
shifts), and four scale variations (see Fig. 2). The amount for
shift is 10 percent of the target size, and the scale ratio varies
from 80 to 120 percent of the ground truth at the increment
of 10 percent. The SRE score is the average of these 12
evaluations.

Fig. 1. Annotated image sequences for performance evaluation. The first frame of each sequence is shown with the initial bounding box of the target
object. The 50 targets marked with green bounding boxes are selected for extensive evaluations. The newly added sequences compared to [83] are
denoted by a red cross at the upper right corner of each image. Some frames are cropped for better illustration.

1840 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 9, SEPTEMBER 2015

Figure 2.2: Visualization of the sequences used in the object tracking benchmark.
The images are from Wu et al., 2015. The bounding box in each frame indicates the
tracking target. The green bounding boxes indicate that the corresponding sequence
is used for extensive evaluations. The sequences are also annotated with attributes.
E.g. IV represents significant illumination variation, OCC represents partial or full
occlusion. For the detailed explanation of the attribute annotations, please refer to
Wu et al., 2015.
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approach which is integrated into their tracking framework. In the work proposed
by Avidan, 2007, the tracking task is also modelled as a binary classification problem.
The difference comparing to the previous work is that instead of evolving features
overtime, a boosting technique is utilized to ensemble weak classifiers to a strong
classifier. As a result, each pixel in the next frame is labelled as the object or the
background, giving the confidence map obtained by the strong classifier. The new
position of the object is obtained by applying the mean shift algorithm on the confi-
dence map. Similar idea is proposed by Grabner et al., 2006, particularly the on-line
trained classifier is trained with the negative examples that are selected from the
image regions that surround the object. This way of choosing the negative examples
makes the classifier more robust against the drifting problem that often occurs in
challenging tracking videos. Babenko et al., 2009 propose to model the tracking task
as a Multiple Instance Learning (MIL) problem instead of the binary classification
problem. The authors argue that the major challenge of the single object tracking
task to choose reliable positive and negative examples over time. A slight inaccurate
example may degrade the binary classifier and the final tracking performance. The
MIL tracker allows the appearance model to be updated with a set of image patches
instead of an individual image patch. A set is considered as a positive set if there
is at least one positive instance. The classifier has to figure out which examples
are the positive ones by itself, which injects flexibility in finding a good decision
boundary. Recently, deep learning based single object trackers have been proposed
and obtained superior performance. Hong et al., 2015 propose to extract the image
features of the tracking target using a deep CNN that is originally trained for large-
scale image classification task. The extracted deep features are then used for on-line
training of a SVM to distinguish positive and negative examples. The deep features
that belong to the positive examples are back-projected to obtain a saliency map
of the target on the input image. The saliency map highlights the image regions
that discriminating the object from the background. Sequential Bayesian filtering
is performed to track the object, where the saliency map is used as the observation.
Nam and Han, 2016 propose a Multi-Domain Network (MDNet) which consists
of several shared convolutional layers and separate branches, each has a binary
classification layer. The shared convolutional layers are meant to capture a generic
object representation and each branch is used for modelling the domain-specific
information. The network is pre-trained with a large set of videos to learn a general
representation of moving objects in videos. The focus of single object tracking task
is to distinguish an arbitrary tracking target and the background, whereas for the
multi object tracking task, the challenge is to estimate the number of objects and to
recover the trajectory of each object over time. Most of the work proposed for the
single object tracking task is then not suitable for the multi object tracking task. In
the following, we will review the literature on multi object tracking.
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Note that the likelihood function P (xi|T ) can model not
only the observations that are associated in T , i.e. true de-
tections, but also those that are not associated, i.e. false
alarms. This allows the method to select observations,
rather than assume all the inputs to be true detections, with-
out additional processing to remove false trajectories after
association.

3.2. Min-cost flow solution

To couple the non-overlap constraints with the objective
function, the following 0-1 indicator variables are defined
as

fen,i =

{
1 ∃Tk ∈ T , Tk starts from xi

0 otherwise (6)

fex,i =

{
1 ∃Tk ∈ T , Tk ends at xi

0 otherwise (7)

fi,j =

{
1 ∃Tk ∈ T , xj is right after xi in Tk

0 otherwise (8)

fi =

{
1 ∃Tk ∈ T ,xi ∈ Tk

0 otherwise (9)

It’s easy to see that these variables are determined for a
given association hypothesis T , and vice versa. T is non-
overlap if and only if

fen,i +
∑

j

fj,i = fi = fex,i +
∑

j

fi,j , ∀i (10)

Next, we incorporate indicators in logarithm of the ob-
jective function,

T = argmin
T

∑

Tk∈T
− log P (Tk) +

∑

i

− log P (xi|T )

= argmin
T

∑

Tk∈T
(Cen,k0

fen,k0

+
∑

j

Ckj ,kj+1
fkj ,kj+1

+ Cex,klk
fex,klk

)

+
∑

i

(− log(1 − βi)fi − log βi(1 − fi))

= argmin
T

∑

i

Cen,ifen,i +
∑

i,j

Ci,jfi,j

+
∑

i

Cex,ifex,i +
∑

i

Cifi (11)

subject to Eqn.10, where

Cen,i = − log Pentr(xi) Cex,i = − log Pexit(xi)

Ci,j = − log Plink(xj |xi) Ci = log
βi

1 − βi

This formulation can be mapped into a cost-flow network
G(X ) with source s and sink t. Given an observation set
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Figure 2. A example of the cost-flow network with 3 timesteps and
9 observations

X : for every observation xi ∈ X , create two nodes ui, vi,
create an arc (ui, vi) with cost c(ui, vi) = Ci and flow
f(ui, vi) = fi, an arc (s, ui) with cost c(s, ui) = Cen,i

and flow f(s, ui) = fen,i, and an arc (vi, t) with cost
c(vi, t) = Cex,i and flow f(vi, t) = fex,i. For every tran-
sition Plink(xj |xi) ̸= 0, create an arc (vi, uj) with cost
c(vi, uj) = Ci,j and flow f(vi, uj) = fi,j . An example
of such a graph is shown in Figure 2. Eqn.10 is equivalent
to the flow conservation constraint and Eqn.11 to the cost
of flow in G. Finding optimal association hypothesis T ∗ is
equivalent to sending the flow from source s to sink t that
minimizes the cost.

The cost-flow network formulation is an intuitive repre-
sentation of multiple object tracking: each flow path can be
interpreted as an object trajectory, the amount of the flow
sent from s to t is equal to the number of object trajectories,
and the total cost of the flow on G corresponds to the log-
likelihood of the association hypothesis. The flow conser-
vation constraint guarantees that no flow paths share a com-
mon edge, and therefore no trajectories overlap. If all the
edge costs in G were positive, the min-cost flow would be
the trivial empty zero-cost flow. However, for any observa-
tion xi that is more likely to be a true detection (βi < 0.5),
the cost Ci of edge (ui, vi) is negative; this allows the op-
timal cost to become below zero by sending flows through
these negative-cost edges.

The optimal cost should be calculated over all possible
f(G), where f(G) is the amount of flow sent from source
to sink. It is known that for a given f(G), the minimal
cost can be solved for in polynomial time by a min-cost
flow algorithm[11]. The entire optimization process is de-
scribed as Algorithm 1. It can also be proven that the min-
imal cost is a convex function w.r.t f(G). Hence the enu-
meration over all possible f(G) can be replaced by a Fi-
bonacci search, which finds the global minimal cost by at
most O(log n) executions of the min-cost flow algorithm.

Let n = |X |, m be the number of edges in G, which

Figure 2.3: Visualization of the min-cost flow algorithm for tracking proposed by
Zhang et al., 2008. s and t represent the source and sink of the flow and there are 3

timesteps and 9 observations in this example. Image is from Zhang et al., 2008.

2.2.3 Multi Object Tracking

To obtain the track of each person in a street scene video, which is the main topic of
this thesis, multi object tracking methods are often used. Therefore, in this section,
we mainly discuss the milestone works for multi object tracking, we also look at
the most recent developments and their relations to our work. We categorize the
related work by their main underlying concept. Note that it is not possible to clearly
summarize each method using one keyword, as many tracking algorithms overlap
at some point.

Network flow based tracking approach. A large body of multi target tracking
methods are formulated as network-based optimization problems. One early work
in this direction is proposed by Jiang et al., 2007, where multi target tracking is
cast as a multi-path searching problem. The interactions and mutual occlusions
of tracks are explicitly modeled. The optimization is performed for all tracks
simultaneously by linear programming relaxation. Another seminal work on network
flow based tracking approach is propoed by Zhang et al., 2008. In this work, the data
association problem of multi-target tracking is cast as a min-cost flow problem which
is illustrated in Fig. 2.3. The model intrinsically solves initialization and termination
of tracks, as well as false alarms. The globally optimal solution can be obtained in
polynomial time. More recently, Shitrit et al., 2011 propose to model all potential
locations over time and find trajectories that produce the minimum cost. Wang et al.,
2016 extend the work of Shitrit et al., 2011 to track interacting objects simultaneously
by using intertwined flow and imposing linear flow constraints. Pirsiavash et al.,
2011 show that their network flow formulation can be solved in polynomial time by
a successive shortest path algorithm. A two-frame maximum weight independent
set formulation followed by hierarchical merging and linking is proposed for the
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tracking task in Brendel et al., 2011.

Hierarchical data association. Hierarchical data association is another popular
scheme in the tracking literature. A small batch of frames is first considered and
produces local confident tracklets, and then longer tracks are built on such tracklets.
In general, tracklet-based association is capable to reduce the state space and recover
the trajectory of a target from long-term occlusions. However, such approaches need
a separate tracklet generation step, and any mistakes introduced by the tracklet
generation are likely to be propagated to the final solution. The early work Kaucic
et al., 2005 proposes a tracking-suspending-matching scheme. The areas where
the objects are likely to be occluded are first identified. For the occluded area,
tracking is suspended and re-initiated. The suspended tracklets are matched by
motion appearance similarities. Wu and Nevatia, 2007 proposes a two-stage tracking
scheme, combining network-flow and set cover techniques. The local information
is aggregated to distinguish objects by bipartite-graph matches. For long-term
occlusions, the linking of local tracklets is obtained by a logarithmic approximation
solution to the set cover problem. Much of the recent literature on multi-target
tracking follows the tracking-by-detection strategy which uses target detectors to
establish an initial state-space of detection hypotheses in each frame. Wen et al., 2014

also proposes to group detections into tracklets first, and then in the subsequent
stage into tracks. In particular, Wen et al., 2014 find tracks one at a time by relying
on the greedy heuristic.

Variable number of targets. Determining the number of target is a well known
difficulty for multi-target tracking. Various strategies are proposed to deal with the
problem. Pirsiavash et al., 2011 and Zamir et al., 2012 rely on a greedy approach that
recovers tracks one at a time by iteratively reducing the state space. Andriyenko
et al., 2012 jointly optimizes tracking trajectories and the number of tracking targets.
Segal and Reid, 2013 implicitly encode the number of tracks by linking individual
detection hypothesis between neighboring frames.

Re-identification for tracking. Several prior works have been proposed to exploit
appearance information for multi-person tracking. Kim et al., 2015 propose a target-
specific appearance model which integrates long-term information and utilizes
features from a generic deep convolutional neural network. Xiang et al., 2015

propose to formulate tracking as a Markov decision process with a policy estimated
on the labeled training data and present novel appearance representations that rely
on the temporal evolution in appearance of the tracked target. Recently, Leal-Taixé
et al., 2016 propose to model the similarity between pairs of detections by CNNs.
Several architectures have been explored and they present similar findings to our
works, namely that forming a stacked input to CNNs performs best. However, our
model proposed in Chapter 7 additionally incorporates human pose information,
which improves the similarity measures by a notable margin.

Literature on multi-target tracking is vast, but several key properties reappear in
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a number of successful approaches: leveraging long-range associations to prevent ID
switches and recover missing detections caused by long-term occlusion (Andriyenko
et al., 2012, Zamir et al., 2012); jointly inferring the number of tracks and solving the
data association problem (Segal and Reid, 2013, Andriyenko et al., 2012); exploring
appearance information and combine it with long-range associations (Zamir et al.,
2012, Segal and Reid, 2013); integrate non-maximum suppression with tracking
(Andriluka et al., 2008, Pirsiavash et al., 2011). Note that our Multicut based tracking
formulations allow to combine all these in one framework.

2.2.4 Relations to Our Works

Approaches of Segal and Reid, 2013 and Zamir et al., 2012 are perhaps the closest
to ours. Similarly to Segal and Reid, 2013 we implicitly encode the number of
tracks by linking detection hypotheses. However our approach jointly reasons
about the connectivity of groups of hypotheses, whereas they connect individual
hypotheses only. This allows us to postpone non-maximum suppression until
temporal connections are resolved. Our tracking models incorporate long-range
connections between hypotheses, and we show that our approaches achieve better
experimental results compared to Segal and Reid, 2013. Zamir et al., 2012 also
introduce long-range connections between hypotheses and use an iterative greedy
procedure finding tracks one at a time, whereas we jointly solve for all tracks.
Henschel et al., 2014 aim to delay resolution of local ambiguities by introducing “tree-
tracklets” that delay locally ambiguous decision until more information is available.
Our approach achieves the same goal by jointly associating groups of detections.

2.3 joint motion segmentation and tracking

In this section, we briefly visit the literature of motion segmentation and focus on
the recent works that combine tracking and segmentation in a unified framework.

Estimating object-level segmentation from long-term motion information has a
long history of research. One popular way is to cast it as a dense point trajectory
grouping problem. Related approaches have been suggested in (Brox and Malik, 2010,
Lezama et al., 2011, Ochs and Brox, 2012, Li et al., 2013, Shi et al., 2013, Ochs et al., 2014,
Rahmati et al., 2014 and Ji et al., 2014). Most of them employ the spectral clustering
paradigm to generate segmentations. The seminal work on object segmentation
by analysis of point trajectories (Brox and Malik, 2010) proposes an unsupervived
object-level segmentation scheme by uitilizing long term motion cues. Ochs and Brox,
2012 further extend this idea by including high-order terms for modeling complex
motions such as scaling and out-of-plane rotation. Other approaches (Zografos et al.,
2014, Elhamifar and Vidal, 2013) also model higher order motions by different means,
where the approaches of (Cheriyadat and Radke, 2009, Dragon and Rosenhahn, 2012,
Ochs et al., 2014, Li et al., 2013) base their segmentations on various pairwise affinities.

Combining high-level cues with low-level cues is an established idea in computer
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vision and has been used successfully e.g. for image segmentation (Bertasius et al.,
2015). Similarly, motion trajectories have been used for tracking (Fragkiadaki and Shi,
2011, Fragkiadaki et al., 2012). Object detections are also employed for segmenting
moving objects Fragkiadaki et al., 2015.

In Milan et al., 2015, tracking and video segmentation are approached as one
problem. Their approach employs a conditional random field (CRF), and is built
upon temporal superpixels (Chang et al., 2013) instead of point trajectories and
strongly relies on unary terms on these superpixels learned using support vector
machines. The proposed CRF model utilizes the high-level semantic information
from object detectors and low-level information from superpixels. As a result, the
segmentation as well as the bounding box track of each object in the scene are
obtained.

2.3.1 Relations to Our Works

Our proposed method in Chapter 8 is substantially different in that we provide
a unified graph structure whose partitioning both solves the low level problem,
here, the motion segmentation task, and the high-level problem, i.e. the multi target
tracking task, at the same time. In that spirit, the most related previous work is
Fragkiadaki et al., 2012, where detectlets, small tracks of detections, are classified in
a graphical model that, at the same time, performs trajectory clustering. While we
draw from the motivation provided in Fragkiadaki et al., 2012, the key difference to
our approach is that we cast both, motion segmentation and multi-target tracking,
as clustering problems, allowing for the direct optimization of the Minimum Cost
Multicuts (Chopra and Rao, 1993, Deza and Laurent, 2009). Thus, we perform
bottom-up segmentation and tracking in a single step.

Furthermore, comparing to Zografos et al., 2014 and Ochs and Brox, 2012, our
joint multicut mode does not make use of any higher order motion models. In fact,
much of the information these terms carry is already contained in the detections we
are using, such that we can leverage this information with pairwise terms.

2.4 multi person pose estimation

In this section, we present a brief literature review of articulated human pose
estimation. Human pose estimation methods traditionally work in the scenarios
where the location of the person in the image is given either by cropping the image
region that contains the person or by providing a person detection bounding box.
The literature on this simplified pose estimation problem is numerous and we mostly
discuss the seminal works. Then we review the works that tackle the problem of
multi person pose estimation in unconstrained monocular images.
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2.4.1 Single Person Pose Estimation

Most work on pose estimation targets the single person case. Methods progressed
from simple part detectors and elaborate body models (Ren et al., 2005, Ramanan,
2006, Jiang and Martin, 2009) to tree-structured pictorial structures (PS) models with
strong part detectors (Pishchulin et al., 2013, Yang and Ramanan, 2013, Chen and
Yuille, 2014, Sapp and Taskar, 2013). Impressive results are obtained predicting
locations of parts with convolutional neural networks (CNN) (Toshev and Szegedy,
2014, Tompson et al., 2015). Tompson et al., 2015 proposes a model that does not rely
on explicit body modeling, and instead encodes appearance of part configurations
via a convolutional multi-scale image representation. While body models are not a
necessary component for effective part localization, constraints among parts allow to
assemble independent detections into body configurations as demonstrated in Chen
and Yuille, 2014 by combining CNN-based body part detectors with a body model
(Yang and Ramanan, 2013). Wei et al., 2016 propose a convolution pose machine
for pose estimation where the spatial relation of human body part is modelled
by a sequential architecture of convolutional networks. The belief maps of the
previous steps are incorporated into the current stage, so that the localization of
body joints are refined without explicit spatial models. Newell et al., 2016 propose
a stacked hourglass network where a sequence of hourglass networks is stacked
to capture the body joint location as well as their spatial relations. Intermediate
supervision is exploited and the results suggest that such supervision is critical for
the final pose estimation performance. Chu et al., 2017 propose to integrate multi-
context attention mechanism into the stacked hourglass network. The attention
mechanism is used to exploit the contextual information over the whole human
body by incorporating CRFs to model the kinematic relations of body joints. The
attention model is multi-scale as well, on one side, the holistic attention capture
the consistency of the global pose configuration, on the other side, the detailed
representation of human body is captured by the body part attention models. The
final model presents the state-of-the-art single person pose estimation results on the
MPII Human Pose Dataset.

2.4.2 Multi Person Pose Estimation

A popular approach to multi-person pose estimation is to detect people first and
then estimate body pose independently (Sun and Savarese, 2011, Pishchulin et al.,
2012, Yang and Ramanan, 2013, Gkioxari et al., 2014). Yang and Ramanan, 2013

propose a flexible mixture-of-parts model for detection and pose estimation. Yang
and Ramanan, 2013 obtains multiple pose hypotheses corresponding to different
root part positions and then performing non-maximum suppression. Gkioxari et al.,
2014 detect people using a flexible configuration of poselets and the body pose is
predicted as a weighted average of activated poselets. Pishchulin et al., 2012 detects
people and then predicts poses of each person using a PS model. Belagiannis et al.,
2014 estimates poses of multiple people in 3D by constructing a shared space of
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3D body part hypotheses, but use 2D person detections to establish the number of
people in the scene. These approaches are limited to cases with people sufficiently
far from each other and only limited overlapping body parts.

Similar to our work, Cao et al., 2017 propose to detect body joint locations in the
image then assemble the body joints into individual person so that the number of
the people as well as the body pose of each person are obtained by the bottom-up
assembling approach. They propose a novel non-parametric pairwise representation
where the limbs of body are modelled by part affinity field. The final pose estimation
of each person is obtained by performing a greedy matching algorithm.

2.4.3 Relations to Our Works

Our multi-person pose estimation work in Chapter 9 is closely related to Eichner
and Ferrari, 2010 and Ladicky et al., 2013 who also propose a joint objective to
estimate poses of multiple people. Eichner and Ferrari, 2010 propose a multi-person
pictorial structure (PS) model that explicitly models depth ordering and person-
person occlusions. Our formulation is not limited by a number of occlusion states
among people. Ladicky et al., 2013 propose a joint model for pose estimation and
body segmentation coupling pose estimates of individuals by image segmentation.
Eichner and Ferrari, 2010 and Ladicky et al., 2013 use a person detector to generate
initial hypotheses for the joint model. Ladicky et al., 2013 resort to a greedy approach
of adding one person hypothesis at a time until the joint objective can be reduced,
whereas our formulation can be solved with a certified optimality gap. In addition
Ladicky et al., 2013 rely on expensive labelling of body part segmentation, which our
proposed approach does not require.

Similarly to Chen and Yuille, 2015, we aim to distinguish between visible and
occluded body parts. Chen and Yuille, 2015 primarily focus on the single-person case
and handles multi-person scenes akin to Yang and Ramanan, 2013, by performing
part-based non-maximum suppression on the set of pose estimates. We consider
the more difficult problem of full-body pose estimation, whereas both Eichner and
Ferrari, 2010 and Chen and Yuille, 2015 focus on upper-body poses and consider a
simplified case of people seen from the front.

Our work is related to early work on pose estimation that also relies on integer
linear programming to assemble candidate body part hypotheses into valid configu-
rations (Jiang and Martin, 2009). Their single person method employs a tree graph
augmented with weaker non-tree repulsive edges and expects the same number of
parts. In contrast, our novel formulation relies on a fully connected model to deal
with an unknown number of people per image and visible body parts per person.
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In this chapter, we consider the problem of detecting multiple people in crowded
street scenes. State-of-the-art methods perform well in scenes with relatively few
people, but are severely challenged by scenes with many subjects that partially

occlude each other. This limitation is due to the fact that current people detectors
fail when persons are strongly occluded. We observe that typical occlusions are
due to overlaps between people and propose a people detector tailored to various
occlusion levels. Instead of treating partial occlusions as distractions, we leverage the
fact that person/person occlusions result in very characteristic appearance patterns
that can help to improve detection results. We demonstrate the performance of our
occlusion-aware person detector on a new dataset of people with controlled but
severe levels of occlusion and on two challenging publicly available benchmarks
outperforming single person detectors in each case.

3.1 introduction

Single people detectors such as the powerful deformable part models (DPM, Felzen-
szwalb et al., 2010) have shown promising results on challenging datasets. However,
it is well known that current detectors fail to robustly detect people in the presence
of significant partial occlusions. In fact, as we analyze in this chapter, the DPM
detector starts to fail already at about 20% of occlusion and beyond 40% of occlusion
the detection of occluded people becomes mere chance. Several methods, i.e. track-
ing and 3D scene reasoning approaches, have been proposed to track people even
in the presence of long-term occlusions. Although these approaches allow us to
reason across potentially long-term and full occlusions, they still require that each
person is sufficiently visible at least for a certain number of frames. In many real

23
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Figure 3.1: Detection results at equal error rate obtained with the approach of
Barinova et al., 2010 (top) and our joint detector (bottom) on the TUD-Crossing
Andriluka et al., 2008 dataset. False-positive detections are shown in red and missing
detections in green. One of the two bounding boxes predicted from the two-person
detection is shown with the dotted line.

scenes, however, e.g. when people walk side-by-side across a pedestrian crossing
(see Fig. 3.1), a significant number of people will be occluded by 50% and more for
the entire sequence.

To address this problem this chapter makes three main contributions. First, we
propose a new double-person detector that allows us to predict bounding boxes of
two people even when they occlude each other by 50% or more as well as a new
training method for this detector. This approach outperforms single-person detectors
by a large margin in the presence of significant partial occlusions (Sec. 3.2). Second,
we propose a joint person detector that is jointly trained to detect single- as well as
two-people in the presence of occlusions. This joint detector achieves state-of-the-art
performance on challenging and realistic datasets (Sec. 3.3). Last, we integrate the
above joint model into a tracking approach to show its potential for people detection
and tracking occluded people (Sec. 3.4).

3.2 double-person detector

Our double-person detector builds on the DPM approach Felzenszwalb et al., 2010.
The key concept of our double-person model is that person/person occlusion patterns
are explicitly used and trained to detect the presence of two people rather than to
treat these occlusions as distractions or nuisance as it is typically done. Specifically,
our double-person detector shares the deformable parts across two people which
belong to the same (two-person) root filter. In that way localizing one person
facilitates the localization of the counterpart in the presence of severe occlusions and
the deformable parts allow us to improve the localization accuracy of both people
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(a) (b) (c) (d)

Figure 3.2: Procedure to synthetically generate training images for our double-person
detector. (a) background person, (b) foreground person, (c) foreground person map,
(d) generated synthetic training image.

(a) (b) (c) (d)

Figure 3.3: Visualization of the deformable parts of the double-person detector.
(a) and (c) are the test images from MPII-2person dataset. (b) and (d) are the
visualization of the parts locations.

using the above mentioned occlusion patterns whenever appropriate (cf. Fig. 3.3).
For this we build on the DPM framework to detect the presence of two people and
to predict the bounding boxes of both people, the occluding person as well as the
occluded person.

3.2.1 Double-person detector model

In full analogy to DPMs, our double-person detector uses a mixture of components.
Each component is a star model consisting of a root filter that defines the coarse
location of two people and n deformable part filters that cover representative parts
and occlusion patterns of the two people. The vector of latent variables is given
by z = (c, p0, . . . , pn) , with c denoting the mixture component and pi specifying
the image position of the part and feature pyramid level li. The score of a double-
person hypothesis is obtained by the score of each filter at the latent position
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(a) (b)

(c) (d)

Figure 3.4: Examples of synthetically generated training images for different levels
of occlusion: 5% to 10% (a), 20% to 30% (b), 40% to 50% (c) and 70% to 80% (d).

pi (unary potentials) minus the deformation cost between root position and part
position (pairwise potentials). As in Felzenszwalb et al., 2010, the un-normalized
score of a double-person hypothesis is defined by 〈β, Ψ(x, z)〉, where vector β is a
concatenation of the root and all part filters and the deformation parameters, and
Ψ(x, z) is the stacked HOG features and part displacement features of sample x.
Ψ(x, z) is zero except for a certain component c. Therefore, we obtain the construction
〈β, Ψ(x, z)〉 = 〈βc, ψc(x, z)〉. Detection in the test image is done by maximizing over
the latent variables z: arg max(z)〈β, Ψ(x, z)〉.

3.2.1.1 Model training

Let D = (〈x1, y1〉, . . . , 〈xN, yN〉) denote a set of positive and negative training exam-
ples, with xi corresponding to a bounding box enclosing either a pair of people or
a background region and yi ∈ {−1, 1}. Given this training set we learn the model
parameters β using latent SVM Felzenszwalb et al., 2010. This involves iteratively
solving the quadratic program:

min
β,ξ≥0

1
2

max
c
‖βc‖2 + C ΣN

i=1ξi

sb.t. yi〈β, Ψ(xi, z)〉 ≥ 1− ξi ξi ≥ 0, (3.1)

and optimizing for the values of latent parameters z. The optimization objective in
Eq. 3.1 includes a regularizer that has been proposed in Girshick et al., 2010 and is
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slightly different from the one in Felzenszwalb et al., 2010. Instead of penalizing the
norm of the whole parameter vector, it only penalizes maximum over the norms
of the parameters of each component. The purpose of such regularization is to
prevent one single component from dominating the model, and to make the scores
of individual components more comparable. We solve the quadratic program with
stochastic gradient descent and employ data-mining of hard-negative examples after
each optimization round as proposed in Felzenszwalb et al., 2010.

3.2.1.2 Initialization

The objective function of the latent SVM is non-convex, which makes the training
algorithm susceptible to local minima. Instead of relying on the bounding box
aspect ratio as in Felzenszwalb et al., 2010, we initialize our model using different
occlusion levels, which we found to produce slightly better results compared to
standard initialization. This follows the intuition that the degree of occlusion is one
of the major sources of the appearance variability and can be captured by different
components. Other sources of appearance variability such as poses of people and
varying clothing are then captured by displacement and appearance parameters
of each component. In the experiments reported below we use a three component
double-person model. The components are initialized with the occlusion levels
5%–25%, 25%–55%, and 55%–85%. The percentage of occlusion is defined as a
percentage of the occluded pixels in the person segmentation.

3.2.1.3 Bounding box predictions

Given a double-person detection we predict the bounding boxes of individual people
using linear regression. The location of each bounding box is modelled as

Bi = gi(z)Tαc + εi, (3.2)

where Bi is the predicted bounding box for a detection i, c is the index of the DPM
component that generated the detection, and gi(z) is a 2 ∗ n + 3 dimensional vector
that is constructed by the upper left corners of the root filter and the n part filters
as well as the width of the root filter. εi is a Gaussian noise that models deviations
between the predicted and observed location of the bounding box.

The regression coefficients αc are estimated from all positive examples of com-
ponent c. For each of the model components we estimate two separate regression
models that correspond to the two people in the double-person detection. This
procedure allows us to accurately localize both people despite severe occlusions, as
can be seen e.g. in Fig. 3.6.

3.2.1.4 Training data generation

As it is difficult to obtain sufficient training data for the different occlusion levels
of our double-person detector, we synthetically generate it. Fig. 3.2 illustrates this
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(a) (b)

(c) (d)

Figure 3.5: Example images from the MPII-2Person dataset. The levels of occlusion
in (a) to (d) are 30%, 50%, 70% and 80% respectively.

process. For each person we first extract the silhouette based on the annotated
foreground person map. Next, another single-person image is selected arbitrarily
and combined with the extracted silhouettes. In order to generate a double-person
training dataset, we randomly select background images, 2D positions and scale
parameters. Each synthetic image provides an accurate occlusion ratio estimated
from the two persons’ silhouettes. For the experiments reported below we generate
1,300 double-person training images from the 400 TUD training images (Andriluka
et al., 2008). For the synthetic dataset we uniformly sample occlusion levels between
0% and 85%, and scale factors between 0.9 and 1.1.

3.2.2 Experimental study

In order to explicitly compare single-person and double-person detector performance
for person/person occlusion scenarios, we captured several video sequences and
constructed a new double-person dataset (MPII-2Person) where the 850 double-
person images are categorized by different occlusion levels1 (see Fig. 3.5). The
person segmentation and occlusion level are estimated from 2D truncated quadrics
which are constructed from stick-man annotation.

1The training and test datasets are available at www.d2.mpi-inf.mpg.de/datasets

www.d2.mpi-inf.mpg.de/datasets
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Single-person detector: Fig. 3.7(a) shows the performance of the standard DPM
single-person detector on our double-person dataset. In case of little partial occlusion
(red curve, below 5%), the single-person detector obtains good performance both
in terms of recall (up to 90% recall) and high precision. However, the single-person
detector already misses many people when the occlusion level is increased up to
15% (blue curve, maximal recall below 80%), and further decreases in the presence
of more occlusion. When the occlusion level is 35% or more, the achieved recall is
only slightly above 50%, indicating that in most cases only one of the two people is
correctly detected.

Double-person detector: Fig. 3.7(b) shows the performance of our proposed double-
person detector. The detector reaches nearly 100% recall with very few false positives,
which is a significant improvement over the single-person detector. Interestingly, the
performance for the lowest occlusion level (red curve, up to 5%) is lower than for the
levels with more occlusion, which can be explained by the difficulty to differentiate
a single person that does not occlude a second person from the case that a person
occludes a second person significantly (e.g. 80%) (for an example of 80% occlusion
see Fig. 3.6). Overall the detection precision is very high for all but the highest
occlusion level (green line, up to 85%).

We now compare the double-person detector with two baselines that rely on
the single-person detector. The first baseline is obtained by varying the threshold
τ used in the non-maximum suppression (NMS) step. This parameter determines
the minimum value of the “intersection over union” ratio required for one detection
bounding box to suppress the other. The results of this experiment are shown in
Fig. 3.8. For each detector we plot the area under the recall-precision curve (AUC) for
the range of occlusion levels. For low occlusion levels, the detectors with low NMS
thresholds perform reasonably well, however, their performance degrades quickly
for higher levels of occlusion. Increasing the NMS threshold improves performance
for the higher occlusion levels because the larger number of candidate detections
survive NMS, but the performance for the low occlusion levels drops due to an
increased number of false positives. The first observation from this experiment is
that there is no single NMS threshold which works equally well for all levels of
occlusion. The second observation is that our two-person detector (blue dashed line)
outperforms all single-person detectors above.

Our second baseline is obtained by predicting the detection bounding boxes
for two people based on the output of the single-person detector. To that end the
bounding box of the second person is randomly generated in the vicinity of the
single-person detection. We purposefully choose a small value of non-maximum
suppression parameter τ = 0.3 to prune the detections close to each other and to
prevent conflicts between generated and detected bounding boxes. The result of this
experiment corresponds to the “Predict double from single” curve in Fig. 3.8. The
performance is similar or better than single-person detectors for a full range of NMS
thresholds. Recall that the MPII-2Person dataset used in this experiment contains
only images of two people walking close to each other, and good performance of the
second baseline is not surprising. The performance of the second baseline however
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Figure 3.6: Qualitative comparison of single- and double-person detectors for differ-
ent occlusion levels.

drops on images with small amounts of occlusion (less than 15%). Note that our
double-person detector also clearly improves over the second baseline.

From these experiments we conclude that our double-person detector is much
more robust than the single-person detector and obtains excellent performance
both in terms of recall and precision, even for the heavy occlusion cases. Single
person localization (bounding boxes prediction) is not a trivial task, especially for
intermediate occlusion level cases (30% ∼ 60%), because we observe fair evidence
from both persons, which can be distracting for single bounding box localization.
However, the results show that our double-person detector accurately and robustly
predicts the single bounding box for the above mentioned case as well. Fig. 3.6
shows comparative qualitative results. For the same test examples, our double-
person detector correctly detects the position of two persons and predicts their
respective bounding box with high accuracy.
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Figure 3.7: Detection performance of single- and double-person detectors for different
occlusion levels on the MPII-2Person dataset.
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Single−person detector, τ = 0.4
Single−person detector, τ = 0.5
Single−person detector, τ = 0.6
Single−person detector, τ = 0.7
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Figure 3.8: Comparison of the double-person detector with various baselines based
on the single-person detector on the MPII-2Person dataset. See Fig. 3.7 for the
definition of occlusion levels (x-axis).
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3.3 multi person detector

The previous section has shown that our double-person detector can indeed out-
perform a single person detector when people occlude each other by 25% or more.
However, the employed dataset was somewhat idealistic as it contained exactly two
people that occluded each other at various degrees. In realistic datasets we will
have both single people that are fully visible and two and more people that occlude
each other. This section therefore proposes a detector that combines both single and
two-person detectors into a single model that is jointly trained. The model is again
built upon the DPM-approach where the role of the different components is now to
differentiate between single and two people as well as between different occlusion
levels among two people.

3.3.1 Joint Person Detector

We jointly train single- and double-person detectors by representing them as different
components of the DPM. We allocate three components for the double detector and
three components for the single-person detector which, after mirroring, results in
a 12 component DPM model. Similarly to Sec. 3.2 we initialize the double-person
components with training examples corresponding to gradually increasing levels of
occlusion. For the single-detector components we rely on the standard initialization
based on the bounding box aspect ratio. During learning we allow training examples
to be reassigned to other components of the DPM model, but prevent assignments
of 2-person examples to 1-person components and vice versa. We found this to be
important to improve detection of two people in cases of particularly strong occlusion
that are otherwise often incorrectly handled by the single-person components.

The performance of the joint detector strongly depends on its ability to distin-
guish between single and double-person hypotheses, which requires the scores of
single and double person components to be comparable to each other. To achieve
such comparability we jointly optimize the parameters of all detection components.
The optimization procedure used for learning the DPM parameters described in
Sec. 3.2 couples the training of each component in several ways. The components
are jointly regularized by penalizing the maximum over the norms of the compo-
nent parameters (cf. Eq. 3.1). In addition the training examples can be reassigned
between components after each optimization round, and hard negative mining and
optimization stopping criterion depends on the full model and not on an individual
component. Even though we fix the assignment of training examples to single and
double-person components, the other coupling mechanisms remain. The empirical
evidence suggests that such joint training makes the output scores of each com-
ponent comparable Girshick et al., 2010. In this chapter we follow this standard
practice, but refer to the work in Chapter 4 where we further address this issue by
reformulating our joint detector using structural SVM framework and modifying the
loss function to penalize detection of single people with double-person components
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Figure 3.9: Visualization of the root filters (first row), part filters (second row) and
mean part locations and detection bounding boxes (third row) of the joint person
detector. The first three columns correspond to the single-person and the last three
columns to the double-person components.

and vice versa. In Fig. 3.9 we visualize the root and part filters of the joint detector.
Note the substantial differences between the filters of the single and double-person
components.
Training data: We train our joint detector on the combination of 1-person and
2-person training sets described in Sec. 3.2.1.4, but slightly modify the initial assign-
ment of images to the DPM components. We assign training images with less than
5% occlusion to the single-person training dataset, because in that case the single-
person detector already obtains high performance for both people. We initialize the
3 double-person DPM components with images corresponding to occlusion levels:
5%–25%, 25%− 55%, and 55%− 75%.
Non-maximum suppression (NMS): The NMS in the joint detector is more compli-
cated than in the standard DPM since we have bounding box predictions from two
different types of detections (single and two-person detections) as well as strongly
overlapping bounding box predictions from our two-person components. We thus
implement NMS in two steps. The first step is performed prior to bounding box
prediction and already removes a large portion of multiple detections on the same
person. In this first step two-people detections and single-person detections compete
and suppress each other depending on the respective score. The remaining multiple
detections are either due to multiple two-person detections in cases when more than
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Figure 3.10: Detection performance on TUD-Pedestrians (a) and TUD-Crossing (b).

two people appear close to each other (e.g. rightmost three people in the fourth
image in Fig. 3.1) or detections with significantly different bounding box aspect
ratios. Given the reduced set of hypotheses after the first round of NMS, we perform
bounding box prediction followed by the second round of NMS. This second step
corresponds to the NMS typically performed for DPM Felzenszwalb et al., 2010.
The second round is done independently for single-person and two-person compo-
nents of DPM, as we found that one-person detections may incorrectly suppress
two-person detections otherwise. During NMS of detections from the two-person
components we additionally prevent two bounding boxes predicted from the same
double-person detection from suppressing each other. As an illustrative example,
we could correctly detect all three people in the fourth image on Fig. 3.1 despite
strong occlusion of the middle person. In that case the single-person detections
were predicted from two double-person detections and multiple detections on the
middle person were correctly removed by the second stage of the non-maximum
suppression.

3.3.2 Results

We evaluate the performance of our joint detector on two publicly available datasets,
“TUD-Pedestrians” and “TUD-Crossing”, originally introduced in Andriluka et al.,
2008. “TUD-Pedestrians” contains 250 images of typical street scenes with 311 people
all of which are fully visible. “TUD-Crossing” contains a sequence of 201 images
with 1008 annotated people that frequently occlude each other partially or even fully.
To capture the full range of occlusions we extended the annotations of the “TUD
Crossing” dataset to include also strongly occluded people, which resulted in 1186
annotated people.

We begin our analysis with the “TUD-Pedestrians” dataset. Detection results are
shown in Fig. 3.10(a) as recall-precision curves. Since this dataset does not contain
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any occluded people our double-person detector (Sec. 3.2) generates numerous false
positives, interpreting each person as a pair of people in which one of the persons
is severely occluded. As expected the single-person detector performs well on this
dataset, achieving an equal error rate (EER) of 87% . The joint detector slightly
improves over the single person detector achieving 90.5% EER. This result is a bit
surprising because the joint detector is trained to solve a more difficult problem
of detecting both fully visible and partially occluded people. We attribute the
improvement of the joint detector to the training set that in addition to real images
has been augmented with artificial training examples (c.f. Sec. 3.2). This parallels the
recent results on using artificially generated data for training of people detection
and pose estimation models (Shotton et al., 2011; Pishchulin et al., 2011).

The evaluation on “TUD Pedestrian” demonstrates that integrating single- and
double-person detectors in the same model does not result in a performance penalty
in the case when people are fully visible. In order to assess the joint detector in
realistic scenes that contain both occluded and fully visible people we evaluate
its performance on the TUD-Crossing dataset. Quantitative results are shown on
Fig. 3.10(b) and a few example images in Fig. 3.1 (bottom row). First we compare the
performance of single and double-person detectors, which achieve approximately
the same EER of 76%. The double-person detector achieves higher recall compared
to the single-person detector, being able to detect even strongly occluded people.
However, the precision of the double-person detector suffers from multiple detections
of fully visible people. The single-person detector produces fewer false positive
detections, but also fails to detect occluded people, saturating at a recall of 76%.
Finally, the joint detector significantly improves over both single and double person
detectors, achieving an EER of 83%. In order to gain further insight into the workings
of our approach, we conduct an additional experiment in which we measure the
performance of the detector composed of the single-person components of the joint
detector. The results are also shown in Fig. 3.10(b). The single-components detector
performs slightly better than the single-person detector (76% vs. 77% EER), but does
not reach the performance of the complete joint detector (77% vs. 83% EER).

Note that while demonstrating overall improvement, the joint detector has a
somewhat lower performance in the high precision area compared to the single
person detector. Inspecting the false positives of the joint detector with highest
scores reveals that most of them correspond to cases when one-person and two-
person components of the detector fired simultaneously on the same pair of people,
but these detections where sufficiently far from each other to persist through the
non-maximum suppression step (e.g. false positive detection in the first image on
Fig. 3.1).

Finally, we compare the performance of our approach with the Hough transform
based detector of Barinova et al., 2010, which is specifically designed to be robust
to partial occlusions. The authors of Barinova et al., 2010 kindly provided us their
detector output (in terms of bounding boxes) which allows to compare their result on
our full ground-truth annotations, making these results directly comparable to the
rest of our experiments (Fig. 3.10(b)). The approach of Barinova et al., 2010 improves
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over the single-person detector in terms of final recall, but loses some precision, likely
because their local features are rather weak compared to the discriminatively trained
DPM model. Our joint model outperforms the approach of Barinova et al., 2010

by a large margin. Fig. 3.1 shows a few example frames from the “TUD-Crossing”
sequence, comparing our joint detector with the results of Barinova et al., 2010. Note
that our approach is able to correctly detect occluded people in the presence of very
little image evidence (e.g. three pairs of people in the second image), whereas the
approach of Barinova et al., 2010 fails in such cases. At the same time our approach
also correctly handles detection of single people (e.g. second and third images).

3.4 multi person tracking

In this section we compare the performance of the single-person and the joint
detectors (Sec. 3.3) in the context of multiple people tracking. To that end we rely
on two recently proposed tracking approaches Andriyenko and Schindler, 2011;
Pirsiavash et al., 2011. Both of them employ the tracking-by-detection strategy and
require output of the person detector as a prerequisite for tracking. In the following
we first introduce these approaches and then discuss the experimental results.

The approach of Andriyenko and Schindler, 2011 formulates tracking as a contin-
uous energy minimization problem. Given a set of person detections in each frame
it recovers tracks of people by minimizing an objective function of the form

E(X) = Eobs + αEdyn + βEexc + γEper + δEreg, (3.3)

where X is a set of tracks, Eobs is a data term that encourages tracks that align
well with the person detections, and the terms Edyn, Eexc, and Eper encode prior
assumptions on the tracking trajectories that encourage smooth and persistent
trajectories without collisions. The term Ereg is a regularizer that penalizes the total
number of trajectories. All terms in Eq. 3.3 depend on X, and we omit explicitly
stating this dependency for the brevity of notation. We refer to Andriyenko and
Schindler, 2011 for the detailed description of the terms in Eq. 3.3.

The approach of Andriyenko and Schindler, 2011 is particularly suited for our
task of evaluating different detectors in the context of tracking-by-detection because
it relies on a clean formulation that directly accepts object detections as input, and
only depends on a handful of free parameters. The only adaptation needed to
integrate a particular object detector into the tracking system is to estimate the
parameters α, β, γ and δ in Eq. 3.3. In our evaluation we rely on the publicly
available implementation provided by the authors2, but re-estimate the parameters
of the objective function by performing a grid search independently for each of the
detectors.

As second tracking approach in our experiments we use the multi-person tracker
from Pirsiavash et al., 2011. Similarly to Andriyenko and Schindler, 2011 this ap-
proach recovers tracks of multiple people by minimizing the joint objective function

2http://www.gris.tu-darmstadt.de/~aandriye

http://www.gris.tu-darmstadt.de/~aandriye


3.4 multi person tracking 37

that combines the people detection likelihood with the smoothness prior on the track
locations. The optimization is performed using an iterative greedy shortest-path
algorithm. At each iteration it finds the best track and removes its hypotheses from
the search space. The procedure is repeated as long as the newly found tracks have
a negative cost and therefore decrease the value of the overall objective function.
The objective function optimized in Pirsiavash et al., 2011 is conceptually similar
to the one used in Andriyenko and Schindler, 2011, but differs in the details of
the likelihood and motion smoothness terms. The approach of Pirsiavash et al.,
2011 directly links the people detections across frames, whereas the approach of
Andriyenko and Schindler, 2011 has a soft constraint that pulls the tracks towards
detections but permits slight deviations. Moreover, the approach of Andriyenko and
Schindler, 2011 relies on a constant velocity prior that is more suitable for tracking
walking pedestrians compared to constant position prior used in Pirsiavash et al.,
2011. Finally, Andriyenko and Schindler, 2011 explicitly discourage multiple expla-
nations of the image detections by several tracks via the exclusion term, whereas
Pirsiavash et al., 2011 achieves this using non-maximum suppression. The tracker in
Pirsiavash et al., 2011 also incorporates occlusion handling by allowing tracks that
skip several consecutive frames with low detection likelihood. In our experiments
we rely on the publicly available implementation of Pirsiavash et al., 2011 and use
the default tracking parameters provided by the authors3.
We quantify the tracking performance using the CLEAR MOT metrics Bernardin and
Stiefelhagen, 2008. The tracking results are evaluated with respect to the following
characteristics: recall, precision, multi-object tracking accuracy, multi-object tracking
precision, and the number of mostly tracked and mostly lost targets. Recall and
precision are computed in the same way as in the evaluation of the detection
performance, but using the ground truth targets and the tracker outputs. Multi-
object tracking accuracy (MOTA) is the combined metric that takes missed targets,
false alarms and identity switches into account. Multi-object tracking precision
(MOTP) is computed using the average distance between the predicted track and the
ground truth trajectory. MT is the absolute number of mostly tracked trajectories,
and ML is the absolute number of mostly lost trajectories. The hit/miss threshold is
50% overlap between the ground truth targets and the tracker outputs in 2D.

We evaluate the full system composed of either our single-person or our joint de-
tector and one of the tracking algorithms Andriyenko and Schindler, 2011; Pirsiavash
et al., 2011 on the TUD-Crossing dataset. The results are shown in Tab. 3.1.

First, we present the results obtained with the tracker of Andriyenko and
Schindler, 2011. The single-person detector significantly improves over the result
of Andriyenko and Schindler, 2011 that was obtained using a detector from Wojek
et al., 2010 based on the HOG and optical flow features. The best result is obtained
using our joint detector, that improves over the single-person detector both in terms
of recall, and with respect to MOTA/MOTP tracking metrics. Fig. 3.11 shows several
example frames visualizing the tracking results. Note that the tracker based on the
joint detector is able to track people even under significant partial occlusions (e.g.

3http://people.csail.mit.edu/hpirsiav

http://people.csail.mit.edu/hpirsiav
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track 2 in the first three images), and is able to track subjects for longer periods
of time (e.g. track 10 of the joint detector (third row) corresponds to two tracks of
the single-frame detector (second row)). Tracking based on the output of the joint
detector also results in fewer identity switches (16 for the single-person detector
vs. 11 for the joint detector). Inspection of the output of the single-person detector
reveals that in the case of strong partial occlusions the detection output often jumps
between occluder and occluded subjects, which results in frequent identity switches
in corresponding track. In contrast the joint detector typically includes detections of
both subjects into the hypotheses set, which facilitates more consistent tracking.

Note that although the joint detector achieves the best result, the improvement
over the single-person detector is only 3.2% of MOTA. This is somewhat surprising
given the large improvement of the joint detector on the detection task. This result
could be due to the particular choice of the objective function which contains the
term Eexc which explicitly penalizes tracks which collide with each other in the
image space. In the case of strong partial occlusions tracks of both subjects might be
rather close to each other, where this exclusion term is likely to be suboptimal. The
tracking algorithm does not take advantage of the additional information contained
in the output of the joint detector that is able to explicitly label detections as a pair of
occluded and occluding people. We envision that a more careful integration of the
joint detector into the tracking framework could lead to larger performance gains
and leave such integration to the future work.

Next, we evaluate our proposed detectors in combination with the tracking
algorithm of Pirsiavash et al., 2011. The results are shown in the last two rows of the
Tab. 3.1. The tracking results obtained both with single and joint-person detectors
are somewhat lower than with the tracker of Andriyenko and Schindler, 2011. The
large difference in tracking recall is particularly striking. For example, in the case
of the single-person detector we obtain 79.9% for the tracker of Andriyenko and
Schindler, 2011 and 68.3% for the tracker of Pirsiavash et al., 2011. The difference
could be due to a more sophisticated design of the objective function in Andriyenko
and Schindler, 2011 that explicitly encourages longer tracks by incorporating the
persistence term. Importantly, for both trackers we achieve noticeable improvement
from substituting the single-person with the joint-person detector. The improvement
for the tracker of Pirsiavash et al., 2011 is particularly pronounced. For example, the
joint detector is able to improve the aggregated tracking accuracy measure MOTA
from 63.3 to 70.7. We hypothesize that the improvement for Pirsiavash et al., 2011

is larger because it operates by linking a discrete set of detection hypotheses over
time and is therefore more sensitive to missing detections. In contrast the tracker of
Andriyenko and Schindler, 2011 only uses detections as observations for tracking
and explicitly reasons about continuous trajectories, which allows it to better handle
gaps in detections.
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Method Recall Precision MOTA MOTP MT ML
Andriyenko and Schindler, 2011 69.8 92.4 63.0 % 75.5 % 7 1

Our single-person detector
+ Andriyenko and Schindler, 2011 79.9 96.2 75.2 % 77.7 % 7 0

Our joint detector
+ Andriyenko and Schindler, 2011 82.8 96.2 78.4 % 77.9 % 8 0

Our single-person detector
+ Pirsiavash et al., 2011 68.3 98.4 63.3 % 76.3 % 5 0

Our joint detector
+ Pirsiavash et al., 2011 77.7 96.2 70.7 % 77.1 % 6 0

Table 3.1: 2D tracking evaluation on the TUD-Crossing dataset.

Figure 3.11: Tracking results on the TUD-Crossing dataset obtained with the ap-
proach of Andriyenko and Schindler, 2011 (top row), our single-person detector
(middle row) and our joint detector (bottom row). Colors and numbers indicate
tracks corresponding to different people.
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3.5 conclusions

Occlusion handling is a notorious problem in computer vision that typically requires
careful reasoning about relationships between objects in the scene. Building on
the state-of-the-art DPM detector Felzenszwalb et al., 2010, we developed a joint
model that is trained to detect single people as well as pairs of people under
varying degrees of occlusion. In contrast to standard people detectors that treat
occlusions as nuisance and degrade quickly in the presence of strong occlusions,
our detector is specifically trained to capture various occlusion patterns. Our joint
detector significantly improves over a single-person detector when detecting people
in crowded street scenes, without losing performance on images with one person
only. On the challenging TUD-Crossing benchmark our joint detector improves
the previously best result of Barinova et al., 2010 from 73% to 83% EER. Finally,
we demonstrated the effectiveness of our joint detector as a building block for
tracking-by-detection. We envision that our approach can be applicable to detection
of multiple people in various domains (e.g. surveillance videos or sports scenes)
and can be used as a building block for tracking-by-detection, pose estimation, and
activity recognition in multi-people scenes.
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People tracking in crowded real-world scenes is challenging due to frequent
and long-term occlusions. Recent tracking methods obtain the image evi-
dence from object (people) detectors, but typically use off-the-shelf detectors

and treat them as black box components. In this chapter we argue that for best
performance one should explicitly train people detectors on failure cases of the
overall tracker instead. To that end, we first propose a novel joint people detector
that combines a state-of-the-art single person detector with a detector for pairs
of people, which explicitly exploits common patterns of person-person occlusions
across multiple viewpoints that are a frequent failure case for tracking in crowded
scenes. To explicitly address remaining failure modes of the tracker we explore two
methods. First, we analyze typical failures of trackers and train a detector explicitly
on these cases. And second, we train the detector with the people tracker in the
loop, focusing on the most common tracker failures. We show that our joint multi-
person detector significantly improves both detection accuracy as well as tracker
performance, improving the performance on standard benchmarks.

4.1 introduction

People detection is a key building block of most people tracking methods (An-
driyenko et al., 2012; Yang and Nevatia, 2012; Zamir et al., 2012). Although the
performance of people detectors has improved tremendously in recent years, de-
tecting partially occluded people remains a weakness of current approaches Dollár

41
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Figure 4.1: Tracking results using the proposed joint detector on four public datasets:
(clockwise) TUD-Crossing, ParkingLot, PETS S2.L2 and PETS S1.L2.

et al., 2012. This is also a key limiting factor when tracking people in crowded
environments, such as typical street scenes, where many people remain occluded for
long periods of time, or may not even become fully visible for the entire duration of
the sequence.

The starting point of this chapter is the observation that people detectors used
for tracking are typically trained independently from the tracker, and are thus not
specifically tailored for best tracking performance. In contrast, the present work
aims to train people detectors explicitly to address failure modes of tracking in order
to improve overall tracking performance. However, this is not straightforward, since
many tracking failures are related to frequent and long-term occlusions – a typical
failure case also for people detectors.

We address this problem in two steps. First, we target the limitations of people
detection in crowded street scenes with many occlusions. Occlusion handling is a
notoriously difficult problem in computer vision and generic solutions are far from
being available. Yet for certain cases, successful approaches have been developed
that train effective detectors for object compositions, which can then be decoded into
individual object detections. Their key rationale is that objects in such compositions
exhibit regularities that can be exploited. We build on these ideas, focusing on
person-person occlusions, which are the dominant occlusion type in crowded street
scenes. Our first contribution is a novel structural loss-based training approach for a
joint person detector, based on structured SVMs.

In the second step of our approach, we specifically focus on patterns that are
relevant to improving tracking performance. In general, person-person occlusions
may result in a large variety of appearance patterns, yet not all of these patterns
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are necessarily frequent in typical street scenes. Furthermore, not every pattern
will possess a discriminative appearance that can be detected reliably in cluttered
images. Finally, some of the person-person occlusion cases are already handled well
by existing tracking approaches (e.g., short term occlusions resulting from people
passing each other). We argue that the decision about incorporating certain types
of occlusion patterns into the detector should be done in a tracking-aware fashion,
either by manually observing typical tracking failures or by directly integrating the
tracker into the detector training.

Our second contribution is to propose and evaluate two alternative strategies
for the discovery of useful multi-view occlusion patterns. First, we manually define
relevant occlusion patterns using a discretization of the mutual arrangement of
people. In addition to that, we train the detector with the tracker in the loop, by
automatically identifying occlusion patterns based on regularities in the failure
modes of the tracker. We demonstrate that this tighter integration of tracker and
detector improves tracking results on three challenging benchmark sequences.

4.2 joint people detection

Before describing our multi-view joint people detector, let us briefly review the
deformable parts model (DPM, Felzenszwalb et al., 2010), which forms the basis
of our approach. The DPM detector is based on a set of M detection components.
Each component is represented by a combination of a rigid root filter F0, and several
part filters F1, . . . , Fn, which can adjust their positions w.r.t. the root filter in order
to capture possible object deformations p1, . . . , pn. The detection score of the DPM
model is given by the sum of the responses of the root and part filters, a bias b,
and the deformation costs between the ideal and the inferred locations of each part
(with parameters d1, . . . , dn). The positions of the part filters and the component
assignment m are assumed to be latent variables h = (p1, . . . , pn, m), which need
to be inferred during training and testing. Given training images with ground
truth labels, the parameters β = (F0, F1, . . . , Fn, d1, . . . , dn, b) are trained by iterating
between finding the optimal position of the latent parts in each training example
and optimizing the model parameters given the inferred part locations. At test time
the model is evaluated densely in the image and each local maximum is used to
generate a detection bounding box hypothesis, aided by the model parts. The initial
set of detections is then refined by non-maximum suppression.

4.2.1 Overview.

We now use the DPM model to build a joint people detector, which overcomes the
limitations imposed by frequent occlusions in real-world street scenes. In doing so,
we go beyond the work in Chapter 3 in several significant ways: (1) The approach
in Chapter 3 focused on side-view occlusion patterns, but crowded street scenes
exhibit a large variation of possible person-person occlusions caused by people’s
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(a) Double person outscores single person
with ∆VOC

(b) Double person outscores single person
with ∆VOC+DT

Figure 4.2: Structured training of joint people detectors: Green – correct double-
person bounding box. Red – single-person detection whose score should be lower
by a margin.

body articulation or their position and orientation relative to the camera. To address
this we explicitly integrate multi-view person/person occlusion patterns into a joint DPM
detector. (2) We propose a structured SVM formulation for joint person detection,
enabling us to incorporate an appropriate structured loss function. Aside from
allowing to employ common loss functions for detection (Jaccard index, a.k.a. VOC
loss), this allows us to leverage more advanced loss functions as well. (3) We model
our joint detector as a mixture of components that capture appearance patterns
of either a single person, or a person/person occlusion pair. We then introduce
an explicit variable modeling the detection type, with the goal of enabling the joint
detector to distinguish between a single person and a highly occluded person pair.
Incorporating the detection type into the structural loss then allows us to force
the joint detector to learn the fundamental appearance difference between a single
person and a person/person pair.

Before going into detail on learning occlusion patterns in Sec. 4.4, let us first turn
to our basic structured SVM formulation for joint person detection.

4.2.2 Structural learning for joint detection.

We adapt the structured SVM formulation for DPMs proposed in Pepik et al., 2012

for our joint person detection model. Given a set of training images {Ii|i = 1, . . . , N}
with structured output labels yi = (yl

i , yb
i ), which include the class label yl

i ∈ {1,−1}
and the 2D bounding box position yb

i , we formulate learning the parameters of the
DPM, β, as the optimization problem

min
β,ξ≥0

1
2
‖β‖2 +

C
N

N

∑
i=1

ξi (4.1)

sb.t. max
h
〈β, φ(Ii, yi, h)〉 −max

ĥ
〈β, φ(Ii, ŷ, ĥ)〉

≥ ∆(yi, ŷ)− ξi, ∀i ∈ {1, . . . , N}, ŷ ∈ Y ,
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Figure 4.3: Detection performance on TUD-Crossing.

where ξi are slack variables modeling the margin violations. For the loss function
∆, we employ the area of the bounding box intersection A(yb

i ∩ ŷb) over their union
A(yb

i ∪ ŷb)

∆VOC(y, ŷ) =

{
0, if yl = ŷl = −1

1− [yl = ŷl]A(yb∩ŷb)
A(yb∪ŷb)

, otherwise,
(4.2)

as it enables precise 2D bounding box localization. The advantage of the proposed
structured learning of a joint people detector is that it learns that a detection with
larger overlap with the ground truth bounding box has higher score than a detection
with lower overlap. Hence, the single person component should also have a lower
score than the double person component on double person examples (see Fig. 4.2(a)).

4.2.3 Introducing detection type.

One limitation of the loss ∆VOC for joint person detection is that it does not encourage
the model enough to distinguish between a single person and a highly occluded
double person pair. This is due to the large overlap of the ground truth bounding
boxes, as illustrated in Fig. 4.2(b). In order to teach the model to distinguish a single
person and a highly occluded person pair, we extend the structured output label
with a detection type variable ydt ∈ {1, 2}, which denotes single person or double
person detection. The overall structured output is thus given as y = (yl, yb, ydt). We
can then additionally penalize the wrong detection type using the loss

∆VOC+DT(y, ŷ) = (1− α)∆VOC(y, ŷ) + α
[
ydt 6= ŷdt

]
. (4.3)

4.2.4 Experimental results.

In order to fairly compare our joint detector with the joint detector proposed in
Chapter 3, we explicitly train a side-view joint person detector using the same
synthetic training images4 and initialize the single and double person detector

4 The data is available at www.d2.mpi-inf.mpg.de/datasets.

www.d2.mpi-inf.mpg.de/datasets


46 chapter 4. learning people detectors for tracking

components in the same way. Fig. 4.3 shows the benefit of the proposed structured
training (Joint detector, no det. type). By introducing the detection type loss (Joint
detector, α = 0.5), the joint detector further improves precision and achieves similar
recall. At 95% precision it outperforms the detector proposed in Chapter 3 by 20.5%
recall.

4.3 multi-target tracking

Our proposed detector learning algorithm (Sec. 4.4) is generic and can, in principle,
be employed in combination with any tracking-by-detection method. Here, we use a
recent multi-target tracker based on continuous energy minimization (Andriyenko
and Schindler, 2011). The tracker requires as input a set of person detections in
a video sequence, and infers all trajectories simultaneously by minimizing a high-
dimensional, continuous energy function over all trajectories. The energy consists
of a data term, measuring the distance between the trajectories and the detections,
and several priors that assess the (physical) plausibility of the trajectories. We use a
fixed parameter setting throughout all experiments. Note that the employed tracking
approach does not include any explicit occlusion handling. It is thus important
to consider occlusions directly at the detector level, so as to provide more reliable
information to the tracker.

Baseline results. Table 4.1 shows tracking results on the TUD-Crossing sequence
(Andriluka et al., 2008), using various detector variants as described above. As
expected, tracking based on the output of the joint detector shows improved per-
formance compared to the single-person DPM detector. Note that the side-view
joint detector in Chapter 3 was specifically designed to handle the occlusion pattern
prevalent in sequences of this type. Even so, structured learning with a detection
type variable slightly increases the multi-object tracking accuracy (MOTA, Bernardin
and Stiefelhagen, 2008). This experiment is meant to serve as a proof of concept and
demonstrate the validity of the joint people detector. Please refer to Sec. 4.5 for an
extensive experimental study on more challenging datasets.

Method Rcll Prcsn MOTA MOTP MT ML
single (DPM) 78.0 94.1 72.1 % 78.5 % 4 0

Joint detector (Chapter. 3) 79.9 96.5 75.6 % 79.1 % 6 0

Joint det. (no det. type) 81.9 93.2 75.1 % 79.1 % 8 0

Joint detector 82.7 93.9 76.0 % 78.6 % 7 1

Table 4.1: Tracking performance on TUD-Crossing evaluated by recall (Rcll), precision
(Prcsn) and standard CLEAR MOT metrics (Bernardin and Stiefelhagen, 2008), includ-
ing Multi-Object Tracking Accuracy (MOTA) and Tracking Precision (MOTP). MT
and ML show the number of mostly tracked and mostly lost trajectories, respectively
(Wu and Nevatia, 2006).
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4.4 learning people detectors for tracking

So far we have shown that the proposed structured learning approach for training
joint people detectors shows significant improvements for detection of occluded peo-
ple in side-view street scenes. This suggests the potential of leveraging characteristic
appearance patterns of person/person pairs also for detecting occluded people in
more general settings. However, the generalization of this idea to crowded scenes
with people walking in arbitrary directions is rather challenging due to the vast
amount of possible person-person occlusion situations. This variation may arise from
several factors, such as people’s body articulation, or their position and orientation
relative to the camera. The number of putative occlusion patterns is exponential
in the number of factors. The crucial point here is, however, that not all of them
are equally relevant for successful tracking. For example, short term occlusions
resulting from people crossing each other’s way are frequent, but can be often easily
resolved by modern tracking algorithms. Therefore, finding occlusion patterns that
are relevant in practice in order to reduce the modeling space is essential for applying
joint person detectors for tracking in general crowded scenes.

We now propose two methods for discovering occlusion patterns for people walk-
ing in arbitrary directions by (a) manually designing regular occlusion combinations
that appear frequently due to long-term occlusions and are, therefore, most relevant
for tracking (Sec. 4.4.1); and (b) automatically learning a joint detector that exploits
the tracking performance on occluded people and is explicitly optimized for the
tracking task (Sec. 4.4.2).

4.4.1 Designing occlusion patterns

For many state-of-the-art trackers, the most important cases for improving tracking
performance in crowded scenes correspond to long-term partial occlusions.
Occlusion pattern quantization. We begin by quantizing the space of possible
occlusion patterns as shown in Fig. 4.4 (left). Given the position of the front person,
we divide the relative position of the occluded person with respect to the occluder
into 6 equal angular sectors. We consider the full half circle of the sectors behind
the occluder, and do not explicitly quantize the space of possible relative distances
between subjects; instead we only consider a fixed threshold, below which the second
subject is significantly occluded.

In addition to quantizing the relative position, we also quantize the orientation
of the front person with respect to the camera. To keep the number of constellations
manageable, we use four discrete directions corresponding to four diagonal views.
Independent of the orientation of the front person, the first and last sectors shown in
Fig. 4.4 (left, no heavy occlusion) correspond to people walking side-by-side, slightly
in front or behind each other. We found that these cases are already handled well
by current person detectors. We denote the remaining four sectors as “A”, “B”, “C”
and “D”, according to the relative position of the occluded and occluding person.
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Figure 4.4: Bird’s eye view of occluded person’s state space (left). Synthetically
generated training images for different occlusion patterns and walking directions
(right).

The sector “D” corresponds to a constellation of people walking directly behind
each other at close proximity. Although physically possible, this configuration is
extremely unlikely in real-world scenes, because people usually tend to leave some
space to the person in front when walking. We restrict ourselves to cases in which
people walk in the same direction, as they cause long-term occlusions and moreover
appear to have sufficient regularity in appearance, which is essential for detection
performance in crowded scenes. The occlusion patterns that we consider in the rest
of this analysis correspond to a combination of the four walking directions of the
subjects and one of the three remaining sectors (“A”, “B” or “C”).

Joint detector with designed occlusion patterns. Our joint detector uses a mixture
of components that capture appearance patterns of either a single person or of a
person/person occlusion pair. In case of double person components, we generate
two bounding boxes of people instead of one for each of the components’ detections.
The training procedure in Sec. 4.2 is based on the optimization of a semi-convex
objective, thus susceptible to local minima. Therefore, a meaningful initialization
of the detector components is important for good performance. One option is to
initialize the double-person components with different degrees of occlusion as in
Chapter 3. However, in the multi-view setting, the same degree of occlusion can
result in very different occlusion patterns. Here, we instead initialize the components
from the quantized occlusion patterns from above (Fig. 4.4, left), combining different
walking directions with relative positions of the person/person pair; we construct
6 double-person components. The single-person components are initialized with
different orientations, clustering appearance into 10 components, and mirroring.

Generating synthetic training examples. Training of our model requires a sufficient
amount of training images. As it is very difficult and expensive to collect a repre-
sentative training dataset with accurate occlusion level annotation for each image,
we choose to synthetically generate training data. Most importantly, this allows
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us to control the data’s variation with respect to viewpoint, degree of occlusion,
and variability of backgrounds, as opposed to uncontrolled clutter often present in
manually collected datasets.

We collect 2400 images of people walking in 8 different walking directions
to construct a synthetic training image pool. We mirror the training images to
double the training set. For each captured image, we segment the person and use
the segmentation to generate a number of training examples by combining the
segmented person with novel backgrounds. In a similar fashion, we are able to
generate training examples for different occlusion patterns and walking directions
by overlaying people on top of each other in a novel image. In our experiments, we
use 4000 synthetic images for training the single-person components, and up to 1200

synthetic images for the double-person components. Fig. 4.4 (right) shows several
examples of our synthetically generated training images for different constellations
illustrated in Fig. 4.4 (left).
Occlusion-aware NMS. We perform non-maximum suppression in two rounds:
First, we consider single-person detections and the predicted occluder bounding
box of double-person detections. If the occluder is suppressed by a single-person
detection, then the occludee is also removed. For the second round, we allow
the predicted individual bounding boxes to suppress each other, except when two
bounding boxes are generated by the same double-person component.

4.4.2 Mining occlusion patterns from tracking

As we will see in Sec. 4.5 in detail, carefully analyzing and designing occlusion
patterns by hand already allows to train a joint detector that generalizes to more
realistic and challenging crowded street scenes. Nonetheless, the question remains
which manually designed occlusion patterns are most relevant for successful tracking.
Furthermore, it is still unclear whether it is reasonable to harvest difficult cases from
tracking failures and explicitly guide the joint detector to concentrate on those. In
the following, we describe a method to learn a joint detector specifically for tracking.
We employ tracking performance evaluation, occlusion pattern mining, synthetic
image generation, and detector training jointly to optimize the detector for tracking
multiple targets. The approach is summarized in Alg. 1.
Input: For our study, we use the first half (frames 1–218) of the challenging PETS
S2.L2 dataset (Ferryman and Shahrokni, 2009) as our mining sequence. We use
the same synthetic training images to train a single-person baseline detector, as we
used for training the single-component of our joint detector with manually designed
occlusion patterns (see Sec. 4.4.1). Moreover, we employ a recent multi-target tracker
(Andriyenko and Schindler, 2011), cf. Sec. 4.3. Note that our algorithm can optimize
the joint detector for any target trackers which requires bounding box detection as
inputs.
Output: A joint detector that is tailored to detect occlusion patterns that are most
relevant for multi-target tracking.
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Algorithm 1 Joint detector learning for tracking
Input:

Baseline detector
Multi-target tracker
Synthetic training image pool
Mining sequence

Output:
Joint detector optimized for multi-target tracking

1: run baseline detector on mining sequence
2: run target tracker on mining sequence, based on the detection result from baseline detector
3: repeat
4: collect missing recall from the tracking result
5: cluster occlusion patterns
6: generate training images for mined patterns
7: train a joint detector with new training images
8: run the joint detector on mining sequence
9: run the target tracker on mining sequence

10: until tracking results converge

Step 1 and 2 are to perform baseline detector and target tracker on the mining
sequence.

Tracking evaluation (step 4): We concentrate on missed targets, which are the main
source of failure in crowded scenarios. To that end, we extract all missed targets,
evaluated by the standard CLEAR MOT metrics (Bernardin and Stiefelhagen, 2008)
for the next step.

Occlusion pattern mining (step 5): The majority of missed targets are occlusion
related. For our mining sequence, the total number of missed targets is 1905, only
141 of them are not caused by occlusions (Fig. 4.5(a)). Missed targets can be occluders
and/or occludees for a pair of persons (Fig. 4.5(b)), or within a group of multiple
people (Fig. 4.5(c)). Here, we concentrate on mining occlusion patterns for pairs
of persons and consider the multiple people situation as a special case of a person
pair, augmented by distractions from surroundings. Note that our algorithm can
be easily generalized to multiple people occlusion patterns given sufficient amount
of mining sequences that contain certain distributions of multi-people occlusion
patterns. From the missed targets (step 4), we determine the problematic occlusion
patterns and cluster them in terms of the relative position of the occluder/occludee
pair. We only consider the most dominant cluster. Fig. 4.5(d) and 4.5(e) show the
dominant occlusion pattern of the first and second mining iteration. Note that we
only mine occlusion patterns and no additional image information (see next step).

Synthetic training example generation (step 6): We generate synthetic training
images for the mined occlusion pattern using the same synthetic image pool as
in Sec. 4.4.1, which requires the relative position of a person pair, as well as the
orientation of each person. To that end, we sample the relative position of a person
pair from a Gaussian distribution centered on the dominant relative position cluster
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(a) (b) (c) (d) (e)

Figure 4.5: Missed targets from PETS S2.L2 mining sequence and mined occlusion
patterns: (a) No person nearby; (b) interfered by one person; (c) interfered by more
persons; (d) mined occlusion pattern – 1st iteration; (e) mined occlusion pattern – 2nd

iteration.

from step 5. We further extract a dominant orientation of the mined examples for
occluders and occludees. Training image generation, in principle, thus enables us
to model arbitrary occlusion patterns in each iteration. We generate 200 images for
every new occlusion pattern, which amounts to the same number of training images
as we used in the context of manually designed occlusion patterns. The major benefit
of learning these patterns is that more training images can be easily generated for
the next iteration, specifically for those relevant cases that still remain unsolved.

Joint detector training with mined occlusion patterns (step 7): The single-person
component of the joint detector is initialized with the same training images as the
baseline detector. For each iteration, we introduce a new double-person component
that models the mined occlusion pattern. Joint training is based on the structured
SVM formulation from Sec. 4.2. Learning stops when the tracking performance does
not improve further on the mining sequence.

4.5 experiments

We evaluate the performance of the proposed joint person detector with learned
occlusion patterns and its application to tracking on three publicly available and
particularly challenging sequences: PETS S2.L2 and S1.L2 (Ferryman and Shahrokni,
2009), as well as the recent ParkingLot dataset (Shu et al., 2012). All of them are
captured in a typical surveillance setting. S2.L2 and S1.L2 show a substantial amount
of person-person occlusions, in particular. We employ the first half of S2.L2 (frames
1–218) as our only mining sequence and use the remaining data for testing. Note
that our mining algorithm only extracts occlusion patterns and no additional image
information. Also note that we do not mine on any of the other sequences, and that
the results on the second PETS sequence (S1.L2) and ParkingLot allow to analyze
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the generalization performance of our approach to independent sequences.
To quantify the tracking performance on the test sequences, we compute recall

and precision, as well as the standard CLEAR MOT metrics (Bernardin and Stiefel-
hagen, 2008): Multi-Object Tracking Accuracy (MOTA), which combines false alarms,
missed targets and identity switches; and Multi-Object Tracking Precision (MOTP),
which measures the misalignment of the predicted track with respect to the ground
truth trajectory.
Single-person detector. We begin our analysis with the baseline detector, which
is a standard DPM single-person detector (Felzenszwalb et al., 2010). For a fair
comparison, we use the same synthetic training images and component initialization
as for the joint detector. Note that this already yields a rather strong baseline, with
far better performance than DPM-INRIA and DPM-VOC2009 (see Fig. 4.6). Tracking
results using this baseline detector are also quite competitive and already outperform
a state-of-the-art method (Andriyenko and Schindler, 2011) on S1.L2.
Joint detector with designed occlusion patterns (Sec. 4.4.1). Next, we evaluate the
performance of our joint detector with manually designed occlusion patterns (see
Fig. 4.6). The joint detector (blue) shows its advantage by outperforming the single-
person detector on all sequences. It achieves 10% more recall at high precision for
S1.L2 and ParkingLot. For the S2.L2 test sequence, the joint detector outperforms the
baseline detector by a large margin from 0.9 precision level. These detection results
suggest that the joint detection is much more powerful than the single detector; the
designed occlusion patterns correspond to compact appearance and can be detected
well.

The performance boost is also reflected in the tracking evaluation. Using the
joint detector (Joint-Design) yields a remarkable performance boost on the S2.L2 test
sequence (reaching 57.6% MOTA), improving MOTA by 10.1% points and MOTP
by 1.7% points at the same time. It also improves Recall by 4.2 and Precision by
7.9 compared to the single-person detector (Single DPM). On the S1.L2 and the
ParkingLot sequences, the joint detector also outperforms the single-person detector
with a significantly higher recall achieved by detecting more occluded targets.

By carefully analyzing and designing the occlusion patterns, we obtain very
competitive results on publicly available sequences, both in terms of detection and
tracking, which shows the advantage of the proposed joint detector for tracking
people in crowded scenes.
Joint detector with learned occlusion patterns (Sec. 4.4.2). We report the joint
detector performance for one and two mining iterations. As mentioned above, we
employ the first half of S2.L2 (frames 1–218) as mining sequence, extracting occlusion
patterns, but no further image information.

On the S2.L2 test sequence (frames 219–436), which is more similar to the mining
sequence than the other two sequences, our joint detector (black, Joint-Learn 1st,
56,5% MOTA) is nearly on par with the hand-designed patterns after the first
iteration, as shown in Fig. 4.6(a). This is because the most dominant occlusion
pattern is captured and learned by the joint detector already. For the second iteration
(cyan, Joint-Learn 2nd), we also achieve higher recall on the S2.L2 test sequence,
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but the precision slightly decreases because the dominant occlusion pattern of the
second iteration only contains about 48 missed targets, compared to 5861 ground
truth annotations, thus limiting potential performance improvement and introducing
potential false positives.

Additionally, we compare our tracking results with Andriyenko and Schindler,
2011 and Breitenstein et al., 2011 on the S2.L2 sequence, as shown in Tab. 4.6(a). They
report tracking performance for the whole sequence, ours is for the second half of
the sequence. After the second iteration of mining, we obtain a tracking performance
of 56.9% MOTA, significantly outperforming the other methods.5

Next, we verify the generalization ability of our algorithm on two more sequences:
PETS S1.L2, which is extremely crowded, and the ParkingLot sequence, which
contains relatively few occlusions. On PETS S1.L2, the learned joint detector (black) is
already slightly better than the Joint-Design detector after the first iteration, as shown
in Fig. 4.6(b). The second iteration (cyan) once again improves the performance, both
in terms of recall and precision. The tracking result is also very promising. Directly
mining occlusion patterns from the tracker improves the accuracy (MOTA) with each
iteration (from 21.8% over 23.4% to 26.8% MOTA). Note that, similar to the findings
above, the tracking performance reaches competitive levels after only one iteration,
when compared to manually designed occlusion patterns. This is remarkable, since
for the S1.L2 sequence many targets are occluded for long time periods. Our mining
algorithm is able to fully recover twice as many trajectories and increase the recall
by over 8%.

The ParkingLot sequence contains relatively few occlusions, such that our mining
algorithm cannot fully unfold its benefits, and does not improve further after the
first iteration. As shown in Fig. 4.6(c), the joint detector from the first iteration
outperforms all other detectors, and reaches similar performance for tracking (Fig.
4.6(c)). We also compare our method to two other state-of-the-art multi-person
trackers (Shu et al., 2012,Zamir et al., 2012). To enable a fair comparison, we compute
the performance of Zamir et al., 2012 using the authors’ original results and ground
truth. Our joint detector yields state-of-the-art results, both w.r.t. MOTA and MOTP.
Qualitative Comparison. We first demonstrate the qualitative comparison between
our joint detector and the joint detector proposed in Chapter 3 using the detector. The
results are shown in Fig. 4.7. The joint detector here successfully detects occluded
persons in frames 40, 190, and 200 at a high precision level. At the same time, it
correctly detects single people even in the presence of background clutter (frame
130), and correctly distinguishes between detection of a single person and two people
(frame 70).

We next demonstrate the qualitative comparison between the best performing
single-person DPM detector and our joint detector. Fig. 4.8 shows detection results on
the PETS S2.L2 sequence (frames 218–436). The results demonstrate the advantages of
our joint detector for detection of people in the presence of person-person occlusions.
In particular, our joint detector is able to correctly detect partially occluded people

5Note that, for the first half of the S2.L2 sequence where we mine the occlusion patterns, we even
achieve 63.8% MOTA.
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in frames 348, 378, and 436, and also avoid false positives on the occluded people in
frames 228, 258, and 436. Our joint detector is able to deal with different occlusion
patterns, such as people walking next to each other (frame 378), and people behind
each other that are partially visible due to an elevated camera position (frames 348

and 378). Note, that in a few cases our joint detector mistakenly identifies single
person detections as detections of two people introducing false positives (frames 258

and 348).
Fig. 4.9 shows detection results on the PETS S1.L2 sequence that depicts a very

crowded scene with a large number of partially occluded people. Similarly to the
results on PETS S2.L2, the joint detector is more robust to various occlusions and is
able to detect people correctly in most of the frames. Note that occluded people are
correctly detected despite occlusion by more than one person, as is shown in frames
100 and 130.

Fig. 4.10 shows detection results on the ParkingLot sequence. Although this
sequence contains only a moderate amount of occluded people, the joint detectors
still demonstrates a reasonable improvement in performance over the single-person
detector. In particular the joint detector is able to correctly detect partially occluded
people in frames 80, 140, and 160. Interestingly, our joint detector also improves over
the single-person detector in detection of single people, as can be seen in frames 120,
140, and 160.
Discussion. We observed that the proposed approach converges already after two
iterations; further iterations do not lead to an additional performance boost for
detection or tracking. We attribute this mainly to the limited size of the mining
sequence and its limited diversity. Still, the experimental results on the S1.L2 and
ParkingLot sequences suggest that our detector learning algorithm is not limited to
particular occlusion patterns or crowd densities. For more complex scenes such as
PETS S1.L2, the performance could be further improved by utilizing a more crowded
mining sequence. To that end, we plan to build a large dataset of crowded street
scenes to mine a more diverse set of occlusion patterns. Another promising future
extension would be to learn a joint upper-body detector on extremely dense scenes,
yielding specialized upper-body occlusion patterns.
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Method Rcll Prcsn MOTA MOTP

Single (DPM) 60.8 83.8 47.5 % 73.5 %
Joint-Design 65.0 91.7 57.6 % 75.2 %
Joint-Learn 1st 60.6 95.0 56.5 % 75.7 %
Joint-Learn 2nd 64.0 91.7 56.9 % 74.4 %
Andriyenko and Schindler, 2011 51.0 95.5 47.8 % 73.2 %
Breitenstein et al., 2011 - - 50.0 % 51.3 %

(a) PETS S2.L2 (frames 219–436).

Method Rcll Prcsn MOTA MOTP

Single (DPM) 24.8 90.1 21.8 % 70.6 %
Joint-Design 28.5 86.3 23.0 % 70.8 %
Joint-Learn 1st 28.9 86.2 23.4 % 69.8 %
Joint-Learn 2nd 32.7 86.7 26.8 % 69.3 %
Andriyenko and Schindler, 2011 24.2 83.8 19.1 % 69.6 %

(b) PETS S1.L2.

Method Rcll Prcsn MOTA MOTP

Single (DPM) 90.5 97.7 87.9 % 77.2 %
Joint-Design 91.3 97.5 88.6 % 77.6 %
Joint-Learn 1st 91.0 98.5 89.3 % 77.7 %
Joint-Learn 2nd 91.0 98.0 88.7 % 76.9 %
Shu et al., 2012 81.7 91.3 79.3 % 74.1 %
Zamir et al., 2012 95.0 94.2 89.1 % 77.5 %

(c) ParkingLot.

Figure 4.6: Tracking (top) and detection (bottom) performance on PETS S2.L2, S1.L2,
and ParkingLot: Single (DPM): single-person detector; Joint-Design: joint detector
with designed occlusion patterns; Joint-Learn 1st: joint detector with learned occlusion
pattern after the first mining iteration; Joint-Learn 2nd: joint detector with learned
occlusion pattern after the second mining iteration.
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Figure 4.7: Detection results (every 30 frames) on the TUD-Crossing dataset at
precision 0.95 obtained with the joint detector from Tang et al., 2012 (top) and our
joint detector (bottom). The true positive detections are visualized using green and
the false positive detections using red color. The red arrows indicate the detections
mentioned in the text.
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Figure 4.8: Detection results on the PETS S2.L2 (test sequence, frames 228–436) at
precision 0.9 obtained with our DPM single-person detector (top) and our joint
detector (bottom). The true positive detections are visualized using green and the
false positive detections using red color. The red arrows indicate the detections
mentioned in the text.
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Figure 4.9: Detection results on the PETS S1.L2 dataset at precision 0.9 obtained
with our DPM single-person detector (top) and our joint detector (bottom). The true
positive detections are visualized using green and the false positive detections using
red color. The red arrows indicate the detections mentioned in the text.
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Figure 4.10: Detection results on the ParkingLot dataset at precision 0.95 obtained
with our DPM single-person detector (top) and our joint detector (bottom). The true
positive detections are visualized using green and the false positive detections using
red color. The red arrows indicate the detections mentioned in the text.
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4.6 conclusions

In this chapter, we presented a novel joint person detector specifically designed
to address common failure cases during tracking in crowded street scenes due to
long-term inter-object occlusions. First, we showed that the most common occlusion
patterns can be designed manually, and second, we proposed to learn reoccurring
constellations with the tracker in the loop. The presented method achieves improved
performance, surpassing state-of-the-art results at the time of publication of this
work on several particularly challenging datasets.
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Tracking multiple targets in a video, based on a finite set of detection hypotheses,
is a persistent problem in computer vision. A common strategy for tracking is to
first select hypotheses spatially and then to link these over time while maintaining
disjoint path constraints Pirsiavash et al., 2011; Segal and Reid, 2013; Zamir et al.,
2012. In crowded scenes multiple hypotheses will often be similar to each other
making selection of optimal links an unnecessary hard optimization problem due to
the sequential treatment of space and time. Embracing this observation, we propose
to link and cluster plausible detections jointly across space and time. Specifically, we
state multi-target tracking as a Minimum Cost Subgraph Multicut Problem. Evidence
about pairs of detection hypotheses is incorporated whether the detections are in
the same frame, neighboring frames or distant frames. This facilitates long-range
re-identification and within-frame clustering. Results for published benchmark
sequences demonstrate the superiority of this approach.
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5.1 introduction

Multi-target tracking can be formulated as an optimization problem with respect to
a graph whose nodes correspond to detection hypotheses and whose edges connect
detection hypotheses that hypothetically describe the same target. A commonly
employed objective of the optimization is to select a subset of nodes and edges
in such a graph to maximize similarity of connected detection hypotheses, while
maintaining constraints that prevent splits and merges of tracks.

By far the most common approach is to choose the initial graph such that
detection hypotheses are connected only across time (not within the same time
frame) and to constrain the solution such that connected components of selected
detection hypotheses are paths (that do not branch). With respect to a linear objective
function, this problem is a Minimum Cost Disjoint Paths Problem with respect to the
initial graph. It is used, explicitly or implicitly, in many modern tracking algorithms
including Pirsiavash et al., 2011, Segal and Reid, 2013, Andriluka et al., 2008, Zhang
et al., 2008.

While being intuitive, the Disjoint Paths formulation has a notable caveat: Typical
target detectors yield, for each time frame, many similar (and typically equally
plausible) detections of the same target. Within the Disjoint Paths formulation,
it becomes necessary to choose, for each time frame and target, one best out of
many similar (and plausible) hypotheses. Various recipes are proposed in the
literature to address this challenge. E.g., Pirsiavash et al., 2011 and Andriluka
et al., 2008 rely on a greedy iterative procedure that finds one track at a time and
then removes corresponding hypotheses, or Zhang et al., 2008 perform several
rounds of optimization that merge detections into tracklets and then into full tracks.
Unfortunately, all these methods depend on parameters that need to be tuned
carefully, as noted in Pirsiavash et al., 2011, Andriluka et al., 2008, Zhang et al., 2008.

Embracing the possibility of having multiple plausible hypotheses per target and
frame motivates us to formulate multi-target tracking as a Minimum Cost Subgraph
Multicut Problem. The feasible solutions of this formulation are such that possibly
multiple hypotheses per track and time frame are selected and clustered, resulting
in an overall rigorous and elegant approach to link, cluster and track targets jointly
across space and time. To illustrate the similarities and differences to prior work we
implement a version of a tracking algorithm based on the Minimum Cost Disjoint
Path Problem. Although conceptually simple, its output is already on par with the
state of the art for public benchmark sequences, as we show in Sec. 5.5.

This work makes the following contributions: First, to our knowledge, our work is
the first to propose a Subgraph Multicut model for the multi-target tracking problem
jointly solving the spatial and temporal associations of detection hypotheses. Second,
we provide an in-depth analysis and comparison of the Subgraph Multicut and
the Disjoint Paths models. Our results suggest that the Subgraph Multicut model
has considerable advantages due to the fact that state-of-the-art object detectors
output multiple hypotheses per target. Third, besides proposing an exact solver, we
also provide a heuristic solution based on the Kernighan-Lin algorithm (Kernighan
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Figure 5.1: Overview of the Subgraph Multicut tracking method: (clockwise) de-
tection hypotheses, overlapping tracklet hypotheses, hypotheses decomposition
(clustering jointly across space and time) and final tracks (dotted rectangles are
interpolated tracks).

and Lin, 1970), which makes the method applicable to large sequences. Finally
we perform extensive experiments and present superior results compared to the
state-of-the-art.

5.2 formulation of multi-target tracking

Before introducing the formulations for the Subgraph Multicut Problem and the
Disjoint Paths Problem, we illustrate the difference between them by visualizing a
toy example in Fig. 5.2: (c) shows a solution of the Minimum Cost Disjoint Paths
problem that finds disjoint trajectories for all targets in a directed graph; and (e)
shows a solution to the Minimum Cost Subgraph Multicut problem that corresponds
to a decomposition of an undirected graph.

5.2.1 Disjoint Paths Problem

We now summarize the formulation of multi-target tracking as a Minimum Cost
Disjoint Paths Problem (Def. 1). The formulation is with respect to a directed graph
G = (V, E) whose nodes V are all hypothesized detections of an entire video and
whose edges E connect pairs of detection hypotheses that hypothetically describe
the same target in the different frames. More specifically, every edge vw ∈ E points
forward in time, i.e., the frame of the detection v is strictly smaller than the frame of
the detection w .

The feasible solutions of the Minimum Cost Disjoint Paths Problem (Def. 1) are
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(b) (c)

(a) (d) (e)

Figure 5.2: Two person detection hypotheses in three consecutive frames (ground
truth assignment depicted in color) (a); The disjoint paths (c) obtained by solving
a Minimum Cost Disjoint Paths Problem with respect to a directed graph (b); The
decomposition (e) obtained by solving a Minimum Cost Subgraph Multicut Problem
with respect to an undirected graph (d).

subgraphs G′ = (V′, E′) of G which are encoded by x ∈ {0, 1}V , the characteristic
function of the subset V′ = {v ∈ V | xv = 1} ⊆ V of nodes, and y ∈ {0, 1}E, the
characteristic function of the subset E′ = {vw ∈ E | yvw = 1} ⊆ E of edges. More
specifically, the subgraph G′ is constrained (by Def. 1) to be a set of disjoint paths in
G. The objective function is linear in the coefficients of x and y:

Definition 1. With respect to a directed graph G = (V, E), c ∈ RV and d ∈ RE, the
01-linear program written below is called an instance of the Minimum Cost Disjoint Paths
Problem.

min
x∈{0,1}V

y∈{0,1}E

∑
v∈V

cvxv + ∑
e∈E

deye (5.1)

subject to ∀e = vw ∈ E : yvw ≤ xv (5.2)
∀e = vw ∈ E : yvw ≤ xw (5.3)

∀v ∈ V : ∑
vw∈E

yvw ≤ 1 (5.4)

∀w ∈ V : ∑
vw∈E

yvw ≤ 1 (5.5)

Here, cv and de correspond to the unary and pairwise costs. The constraints (5.2)
and (5.3) state that an edge can only be selected if both its nodes are selected. The
constraints (5.4) and (5.5) state that every node has at most one incoming edge and
at most one outgoing edge, respectively, effectively implementing the Disjoint Paths
constraint.
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(a) An undirected graph G (b) A feasible solution (c) Violation of the cycle
constraint

Figure 5.3: (a) An undirected graph G; (b) A feasible solution of the Minimum Cost
Subgraph Multicut Problem (Def. 2) on G, two connected components are in red
and blue respectively, the set of edges with value 0 (dotted lines) is a multicut of the
graph G; (c) The cycle constraint (5.9) is violated for the cycle depicted in green.

5.2.2 Subgraph Multicut Problem

We now formulate multi-target tracking as a Minimum Cost Subgraph Multicut
Problem (Def. 2). The formulation is with respect to an undirected graph G = (V, E)
whose nodes V are all hypothesized detections of an entire video and whose edges
E connect pairs of detection hypotheses that hypothetically describe the same target,
including pairs in the same video frame.

The feasible solutions of the Minimum Cost Subgraph Multicut Problem (Def. 2)
define subgraphs G′ = (V′, E′) of G which are encoded by x ∈ {0, 1}V , the charac-
teristic function of the subset V′ = {v ∈ V | xv = 1} ⊆ V of nodes, and y ∈ {0, 1}E,
a characteristic function defining the subset E′ = {vw ∈ E | yvw = 1} ⊆ E of edges.
More specifically, the subgraph G′ is constrained (by Def. 2) such that each connected
component (V′′, E′′) of G′ contains all edges E′′ = (V′′

2 ) ∩ E. We show an example
graph and a feasible solution in Fig. 5.3.

The objective function of the Minimum Cost Subgraph Multicut Problem is linear
in the coefficients of x and y:

Definition 2. With respect to an undirected graph G = (V, E), c ∈ RV and d ∈ RE, the
01-linear program written below is called an instance of the Minimum Cost Subgraph
Multicut Problem.

min
x∈{0,1}V

y∈{0,1}E

∑
v∈V

cvxv + ∑
e∈E

deye (5.6)

subject to ∀e = vw ∈ E : yvw ≤ xv (5.7)
∀e = vw ∈ E : yvw ≤ xw (5.8)
∀C ∈ cycles(G) ∀e ∈ C :

(1− ye) ≤ ∑
e′∈C\{e}

(1− ye′) (5.9)

Here, the constraints (5.7) and (5.8) state that an edge can only be selected if both
its nodes are selected. The cycle constraints (5.9) state, firstly, that every component
of the selected subgraph G′ is also a component of G and, secondly, that every edge of



64 chapter 5. subgraph decomposition for multi-target tracking

Fv

Xv

v ∈ V

Θj

j ∈ J

Ge

Ye

e ∈ E

Θ′k
k ∈ K

Z
Figure 5.4: A Bayesian Network of probability measures of characteristic functions
of subgraphs.

G whose nodes are in the same component of G′ is also in G. An example of violation
is shown in Fig. 5.3(c). In the context of multi-target tracking this implies that if
a detection hypothesis is connected (spatially or temporally) to another detection
hypothesis, all neighbors of the first hypothesis have to be connected to all spatial
and temporal neighbors of the second hypothesis as well.

5.2.3 Probabilistic Model

Toward the goal of learning and inferring the parameters c and d of both optimization
problems (Def. 1 and 2) from video data and toward the goal of comparing the
two formulations of the multi-target tracking problem, we now define a probability
measure on subgraphs of a graph G = (V, E) such that a maximally probable set of
disjoint paths is precisely a solution of the Minimum Cost Disjoint Path Problem
(Def. 1) and such that a maximally probable subgraph multicut is precisely a solution
of the Minimum Cost Subgraph Multicut Problem (Def. 2).

More specifically, we define a probability measure on the characteristic functions
x ∈ {0, 1}V and y ∈ {0, 1}E with respect to the Bayesian Network depicted in Fig. 5.4.
Realizations of the random variables X and Y are the characteristic functions x and
y. For a finite index set J and every v ∈ V, a realization of the random variable Fv is
a vector f v ∈ RJ of features of the node v. For a finite index set K and every e ∈ E, a
realization of the random variable Ge is a vector ge ∈ RK of features of the edge e.
A realization of the random variable Θ (Θ′) is a vector θ ∈ RJ (θ′ ∈ RK) of model
parameters. Finally, a realization of the random variable Z is a set Z ⊆ {0, 1}V∪E of
feasible characteristic functions.

From the conditional independencies enforced by the Bayesian Network (Fig. 5.4)
follows that a probability measure of the conditional probability of characteristic
functions x of nodes and y of edges and model parameters θ and θ′, given features f
and g and given a feasible set Z, factorizes according to

p(x, y, θ, θ′| f , g, Z)

∝ p(Z|x, y) · ∏
v∈V

p(xv| f v, θ) ·∏
j∈J

p(θj)

·∏
e∈E

p(ye|ge, θ′) ·∏
k∈K

p(θ′k) . (5.10)
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In order to constrain the characteristic functions x and y jointly to the feasible set
Z, the first term, the probability density of a feasible set Z, given x and y, is defined
to be 0 if (x, y) /∈ Z; It is defined to be positive and constant, otherwise:

p(Z|x, y) ∝

{
1 if (x, y) ∈ Z
0 otherwise

. (5.11)

The second and third term in Eq. 5.10 are a probabilistic model for the inde-
pendent 01-classification of nodes (detections). The fourth and fifth term are a
probabilistic model for the independent 01-classification of edges (pairs of detec-
tions). Specifically, we consider a linear logistic model and a Gaussian prior with
σ ∈ R+. These are stated below for nodes. The definition for edges is independent
and analogous.

p(xv = 1| f v, θ) =
1

1 + exp(−〈θ, f v〉) (5.12)

p(θj) = N (0, σ2) (5.13)

Estimation (Learning and Inference). Estimating maximally probable model pa-
rameters θ, θ′ from training data x, y, f , g requires the solution of two (convex) logistic
regression problems, one for nodes and one for edges.

Estimating maximally probable characteristic functions x and y for previously
unseen data f , g, given a feasible set Z and given (learned) model parameters θ, θ′

amounts to solving the 01-linear problem stated in Lemma 5.2.1. This problem
specializes to the problems in Definitions 1 and 2 for the respective feasible sets Z
and motivates our choice of the parameters c and d.

Lemma 5.2.1. Given a graph G = (V, E), a feasible set Z, feature vectors f , g, and model
parameters θ, θ′, all as defined above with respect to G, a pair (x, y) with x ∈ {0, 1}V and
y ∈ {0, 1}E is maximally probable with respect to the measure defined above if and only if it
is a solution of the 01-linear program written below, with cv = −〈θ, f v〉 and de = −〈θ′, ge〉.

min
x∈{0,1}V

y∈{0,1}E

∑
v∈V

cvxv + ∑
e∈E

deye (5.14)

subject to (x, y) ∈ Z (5.15)

Proof. Let G = (V, E) be a graph and Z ⊆ {0, 1}V∪E. For every v ∈ V, let f v ∈ RJ .
For every e ∈ E, let ge ∈ RK. Finally, let θ ∈ RJ and θ′ ∈ RK. Moreover, recall from
(10)–(13) in the main text the definition of the probability measure

p(x, y, θ, θ′| f , g, Z)

∝ p(Z|x, y) · ∏
v∈V

p(xv| f v, θ) ·∏
j∈J

p(θj)

·∏
e∈E

p(ye|ge, θ′) ·∏
k∈K

p(θ′k) (5.16)
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with

p(Z|x, y) ∝

{
1 if (x, y) ∈ Z
0 otherwise

(5.17)

p(xv = 1| f v, θ) =
1

1 + exp(−〈θ, f v〉) (5.18)

p(ye = 1|ge, θ′) =
1

1 + exp(−〈θ′, ge〉) (5.19)

p(θj) = N (0, σ2) (5.20)

p(θ′k) = N (0, ρ2) . (5.21)

Although p(Z|x, y) can be zero, the probability measure is well-defined for any
Z 6= ∅ because p(xv| f v, θ) > 0, by (5.18), and p(ye|ge, θ′) > 0, by (5.19).

It is such that

p(x, y|θ, θ′, f , g, Z)

= p(Z|x, y) ∏
v∈V

p(xv| f v, θ) ∏
e∈E

p(ye|ge, θ′) (5.22)

because p(θj) > 0, by (5.20), and p(θ′k) > 0, by (5.21), and by conditioning on θ and
θ′.

Moreover, it is such that

argmax
x∈{0,1}V

y∈{0,1}E

p(x, y|θ, θ′, f , g, Z)

= argmax
(x,y)∈Z

∏
v∈V

p(xv| f v, θ) ∏
e∈E

p(ye|ge, θ′) (5.23)

= argmax
(x,y)∈Z

∑
v∈V

log p(xv| f v, θ) + ∑
e∈E

log p(ye|ge, θ′) (5.24)

= argmax
(x,y)∈Z

∑
v∈V
〈θ, f v〉xv + ∑

e∈E
〈θ′, ge〉ye . (5.25)

In this statement that concludes the proof, (5.23) holds by (5.22) and (5.17). (5.24)
follows by the strict monotonicity of the logarithmic function, and (5.25) follows by
the arithmetic transformations stated below for p(xv| f v, θ). The transformations for
p(ye|ge, θ′) are analogous.

log p(xv| f v, θ)

= xv log p(xv = 1| f v, θ) + (1− xv) log p(xv = 0| f v, θ)

= xv log
p(xv = 1| f v, θ)

p(xv = 0| f v, θ)
+ log p(xv = 0| f v, θ)

= xv〈 f v, θ〉 − log(1 + exp(−〈 f v, θ〉)) (5.26)
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Here, (5.26) follows by (5.18). Note that the second term in (5.26) does not depend
on xv and can hence be dropped from the objective function (5.25).

Certified Optimal Solutions. The Minimum Cost Disjoint Paths Problem has poly-
nomial time complexity. We solve instances of this problem by Branch-and-Cut.
The Minimum Cost Subgraph Multicut Problem is NP-hard (Bansal et al., 2004) and
APX-hard (Demaine et al., 2006). In order to solve instances of this problem exactly,
we make use of the Branch-and-Cut loop of the closed-source commercial software
Gurobi6 which represents the state of the art in integer linear programming (ILP).

In every iteration of an outer cutting plane loop, we consider a relaxed ILP with
the full objective function and a subset of the cycle inequalities (none in the first
iteration). In order to solve this relaxed ILP to optimality, in an inner loop, we
resort to the general classes of branches and cuts implemented in Gurobi. Once
a solution of the relaxed ILP is found, we separate violated cycle inequalities, by
breadth-first-search, and add these to the relaxed ILP, thus tightening the relaxation.
The procedure stops when all cycle inequalities are satisfied and, thus, the full
problem has been solved to optimality.

Heuristic Solutions. Alternatively, we propose a heuristic solution for the uncon-
strained set partition problem by making use of the Kernighan Lin (KL) algorithm as
defined in Kernighan and Lin, 1970, which uses the KL for the bi-partition problem,
also defined in Kernighan and Lin, 1970, as a subroutine. The procedure starts
from an initial decomposition defined, in our case, by the components of the graph
containing precisely the edges e ∈ E for which de > 0. In every iteration, an attempt
is made to strictly improve the current decomposition via a sequence of transfor-
mations: In an outer loop, every pair of adjacent components is considered. For
any such pair, it is assessed, in an inner loop, whether moving nodes from one
set to the other improves the objective value. In every iteration of this inner loop,
an optimal move is chosen and saved, together with the difference of the objective
value caused by this move. Having ordered all possible moves in this way, the
smallest k is chosen such that the first k moves, carried out in order, improve the
objective value maximally. If the improvement is positive, the moves are made and
thus, the current decomposition is improved. If the improvement is not positive, the
procedure terminates.

5.3 tracking details

In this section, we describe our tracklet hypotheses generation method in Sec. 5.3.1,
definitions of the unary feature f and the pairwise feature g in Sec. 5.3.2 and further
implementation details about the Disjoint Paths and Subgraph Multicut tracking
model in Sec. 5.3.3.

6Version 6.0, http://www.gurobi.com

http://www.gurobi.com
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5.3.1 Tracklet Generation

We start with person detections produced by the Deformable Part Model (DPM)
(Felzenszwalb et al., 2010). Instead of using the detections as person hypotheses
directly, we generate overlapping tracklet hypotheses by the method proposed in
Andriluka et al., 2008. Let the length of a tracklet be M, the set of all detections in
frame t is denoted by ht = [ht

1, . . . , ht
nt]. Then a tracklet H = [h1

t1, . . . , hM
tM] is optimal

given all the detections in M frames if H maximizes the following probability:

p(H) = p(h1
t1) ·

M

∏
k=2

p(hk
tk) · p(hk

tk, hk−1
tk−1). (5.27)

where p(hk
tk) denotes the probability of detection htk being true, and p(hk

tk, hk−1
tk−1) is

the transition probability which models a simple Gaussian position dynamics. In
our implementation, M = 5 for sequences which are shorter than 300 frames and
M = 9 for others due to the computation cost.

Overlapping Tracklets. For all the detections in every M consecutive frames, we
apply the Viterbi algorithm to maximize Eq. (5.27) to obtain the optimal sequence
of detections - our tracklet hypotheses. We remove the selected detections from
the set of detections and maximize Eq. (5.27) iteratively until all the detections are
considered. Our tracklets are obtained in an over-complete fashion in two aspects
(1) Non-Maximum Suppression (NMS) is not applied for the detections and (2) we
compute overlapping tracklets starting at every frame of the sequence. Each strong
detection contributes M times to different tracklets (which have different starting
frames). Our overlapping tracklets contain a sufficient number of good ones which
is arguably a good basis for a tracking algorithm.

5.3.2 Unary and Pairwise Features

Each tracklet contains the following information: spatial-temporal location, speed,
scale, appearance and confidence (tracklet score). Here, with respect to the detection
in the middle frame of a tracklet, we use x and y to denote the tracklet center; t is
the frame index; vx and vy is the velocity fo the tracklet along x and y coordinate
respectively; h and a denotes the scale and appearance of the tracklet; s is the
tracklet score. Given two tracklets (x, y, t, vx, vy, h, a, s) and (x′, y′, t′, v′x, v′y, h′, a′, s′),
the unary feature is simply the tracklet score and we define the following auxiliary
variables for the pairwise feature:

m1 = x′ − x m2 = vx(t′ − t) m3 = v′x(t
′ − t)

n1 = y′ − y n2 = vy(t′ − t) n3 = v′y(t
′ − t)
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which are all further normalized by h̄ where h̄ = max(h, h′). The pairwise features
are defined as

g1 = |t− t′| g4 = |m1 −m2| g7 = |n1 − n2|

g2 =
|h− h′|

h̄
g5 = |m2 −m3| g8 = |n2 − n3|

g3 = D(a, a′) g6 = |m1 −m3| g9 = |n1 − n3| (5.28)

where g1 denotes temporal distance between two tracklets, g2 is the normalized scale
difference, g4 . . . g9 describe the relations between speed and temporal-spatial loca-
tions of two tracklets, g3 is the euclidean distance between two tracklets’ dColorSIFT
features proposed in Zhao et al., 2013.

We introduce a non-linear mapping from the feature space to the cost space by ex-
tending our unary and pairwise features to quadratic and exponential terms. Unary
feature f v is extended as ( f1, f 2

1 , e(− f1)) and pairwise feature ge is (g1, . . . , g9, g2
1 . . . g2

9,
e(−g1) . . . e(−g9)).

5.3.3 Further Details

NMS for the Disjoint Paths Model. The above technical details are identical for
the Subgraph Multicut model and the Disjoint Paths model. However, pre-selection
of tracklet hypotheses (tracklet NMS) and post-processing of the final tracks (tracks
NMS) are necessary steps for the Disjoint Paths model. In our implementation, these
two steps are performed in a standard way: the tracklet NMS is performed in full
analogy to a greedy NMS for people detection, with respect to the middle frame of
the tracklet. For the NMS of the final tracks, the suppression is performed on the
overlapping fragment of each track, which means that if the optimal track of a target
is obtained, it suppresses all other suboptimal redundant tracks of the target. The
extensive evaluation described in Sec. 5.5.3 shows that our Disjoint Paths model with
the standard NMS technics achieves results which are on par with state-of-the-art,
indicating that our Disjoint Paths model is a good baseline to conduct valid analyses
and comparisons.

Tracks from the Subgraph Multicut Model. While the Disjoint Paths model
directly produces tracks for each target by its definition, our Subgraph Multicut
model produces a connected component for each target. Generating tracks from
connected components is straight-forward: in each frame, for all the hypotheses
which belong to the same component, we obtain representative location x,y and
scale s in this frame by averaging all the connected hypotheses weighted by their
probability defined in Eq.5.12. The final track of the target is a smoothed trajectory
which links the representative hypotheses across all the frames.
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5.4 subgraph multicut for detection nms

Our Subgraph Multicut model has the property of jointly addressing the problem
of spatial (within-frame) and temporal (across-frame) associations. Non-Maximum
Suppression (NMS) for detections in single frames, on the other hand, is a spatial
association problem. Therefore, it is straight-forward to apply the Subgraph Multicut
model to the NMS problem.

In full analogy to our Subgraph Multicut tracking model, for detection hy-
potheses, the unary feature is the detection score, the pairwise feature is derived
from Eq.5.28. Given that we have |t′ − t| = 0, the pairwise feature g is defined as
(|h− h′|, |m1|, |n1|). The final representation of each target is obtained by weighted
averaging of all the detections which are associated together.
Results. We evaluate the Subgraph Multicut NMS method on the TUD-Campus and
TUD-Crossing datasets (Andriluka et al., 2008), which are challenging for pedestrian
detection due to partial occlusions. Given the detections obtained from DPM
(Felzenszwalb et al., 2010), two state-of-the-art NMS methods are used as baselines.
(1) NMS intersection over union (NMS-IOU) (Girshick et al., 2014b) and (2) NMS
intersection over minimum (NMS-IOM) (Dollár et al., 2009).

In Fig. 5.5(a), NMS-IOU with threshold 0.3 gets better precision and NMS-IOU
with threshold 0.5 obtains higher recall. For NMS-IOM, we use threshold 0.65 which
is the best setting for this method (Dollár et al., 2009). Our Subgraph Multicut model
is able to improve the performance comparing to all the NMS methods evaluated
here. In Fig. 5.5(b), our Subgraph Multicut model is on par with NMS-IOM at equal-
error-rate, and outperforms others at high precision. The parameters used in the
Subgraph Multicut NMS model for TUD-Crossing are learned from TUD-Campus
and vice versa.
Summary. Only spatial relations between two detections are considered in the
current pairwise feature, which is a fair comparison between our Subgraph Multicut
model and local greedy NMS methods. Our model performs better because (1)
associations of detections are obtained in a globally optimal fashion and (2) different
spatial relations between two detections are learned for associations. Note that, our
Subgraph Multicut model has the potential of leveraging other information in the
pairwise term, e.g., appearance and prior knowledge about object layout.
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(a) TUD-Campus (b) TUD-Crossing

Figure 5.5: Performance comparison between the Subgraph Multicut model and
local greedy NMS methods.

5.5 tracking evaluation

We evaluate the performance of the proposed Subgraph Multicut model on three
publicly available sequences: TUD-Campus, TUD-Crossing (Andriluka et al., 2008)
and ParkingLot (Zamir et al., 2012). We perform extensive experiments and analysis
on TUD-Crossing and present quantitative, superior results compared to other
competitive methods on three sequences.

We use standard CLEAR MOT as evaluation metrics that include recall (Rcll),
precision (Prcsn), multiple object tracking accuracy (MOTA), and multiple object
tracking precision (MOTP) (Bernardin and Stiefelhagen, 2008). MOTA is a cumulative
measure that combines missed targets (FN), false alarms (FP), and identity switches
(IDs). MOTP measures overlap between the ground truth and estimated trajectory.
We also report mostly tracked (MT), partly tracked (PT), mostly lost (ML) and
fragmentation (FM) for measuring track completeness.

We analyze the performance of the proposed methods in four aspects. (1)
We compare the exact integer linear programming (ILP) solver and the heuristic
Kernighan Lin (KL) solver in terms of run time and MOTA. For the same tracklet
hypotheses, KL obtains nearly the same MOTA compared to ILP, but much faster
(Sec. 5.5.1). (2) We evaluate the influence of long-term associations both for the
Disjoint Paths model and the Subgraph Multicut model. By associating tracklet
hypotheses that are temporally far from each other (up to 30 frames), MOTA is
improved for both models and the number of ID switches is substantially reduced
(Sec. 5.5.2). (3) We provide an in-depth analysis of the Disjoint Paths model and the
Subgraph Mutlicut model. Extensive experimental results indicate that the properties
of leveraging multiple hypotheses per target within and across frames facilitate the
Subgraph MultiCut model to obtain a more robust association (Sec. 5.5.3). (4) We
show that our Subgraph Multicut model obtains superior results over the state-of-
the-art (Sec. 5.5.4).

Training sequences. For the Subgraph Multicut and Disjoint Paths models,
we need training data to learn the model parameters θ and θ′ (Sec 5.2.3). In our
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KL solver ILP solver
|V| |E| Run time (s) MOTA Run time (s) MOTA

277 4835 0.86 79.4 0.48 79.4
616 35424 1.82 80.8 76.39 83.3

1453 199333 12.49 83.3 79986.01 83.3
(a) Solver comparison

(b) Long-term influence (c) MOTA (d) ID switches

Figure 5.6: (a) Comparison of tracking performance and convergence speed of
KL and ILP solvers on TUD-Campus; (b) Long-term association for the Subgraph
Multicut model on TUD-Crossing; MOTA (c) and ID switches (d) comparison for
the Subgraph Multicut model and the Disjoint Paths model on TUD-Crossing.

experiments, we use the parameters learned from TUD-Crossing for the experiments
on TUD-Campus and ParkingLot. For TUD-Crossing, we use the parameters learned
on TUD-Campus.

5.5.1 Solver Comparison

We start by comparing the performance of the Subgraph Multicut model optimized
by the KL and ILP solvers on TUD-Campus. In this experiment we vary the number
of initial person hypotheses |V| by adjusting the threshold τ of NMS and report
tracking performance and convergence speed of each solver. Results are shown in
Tab. 5.6(a).

Setting τ to 0.5 results in 277 tracklet hypotheses and 4835 pairwise terms. Both
solvers achieve the same MOTA (79.4%) within comparable runtime (0.86 sec. vs.
0.48 sec.). Increasing τ to 0.7 results in 616 tracklet hypotheses. In this regime
ILP achieves better MOTA, but is 40 times slower than KL. Omitting NMS further
increases the number of tracklet hypotheses to 1453. KL achieves the same MOTA
as ILP in 12.5 seconds, compared to ILP that takes 22 hours. These results indicate
that the KL algorithm achieves results comparable to ILP but significantly faster.
For efficiency, we apply the KL solver for the Subgraph Multicut Problem in the
following experiments. Note that reducing amount of NMS leads to improved
performance, likely because NMS makes local decisions on the level of individual
frames that are potentially suboptimal in the context of global optimization.
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Method Rcll Prcsn FAR GT MT PT ML FP FN IDs FM MOTA MOTP MOTAL

Pirsiavash et al., 2011 66.6 95.5 0.15 8 3 4 1 11 118 10 13 60.6 78.2 63.2
Breitenstein et al., 2011 - - - - - - - - - 2 - 73.3 67.0 -
Segal and Reid, 2013 - - - - 5 - - - - 0 3 82.0 74.0 -

Subgraph Multicut 83.8 99.3 0.03 8 5 2 1 2 58 0 1 83.3 76.9 83.3

Table 5.1: Tracking performance on TUD-Campus.

Method Rcll Prcsn FAR GT MT PT ML FP FN IDs FM MOTA MOTP MOTAL

Pirsiavash et al., 2011 73.9 95.0 0.21 13 6 7 0 43 286 50 42 65.5 76.8 69.9
Breitenstein et al., 2011 - - - - - - - - - 2 - 84.3 71.0 -
Segal and Reid, 2013 - - - - 7 - - - - 2 12 74.0 76.0 -
Tang et al., 2013 82.7 93.9 - - 7 - 1 - - - - 76.0 78.6 -
Zamir et al., 2012 88.4 96.2 0.19 13 9 4 0 38 128 2 5 84.8 74.5 84.9

Disjoint Paths 74.5 98.6 0.06 13 6 7 0 12 281 18 18 71.8 77.7 73.3
Subgraph Multicut 82.0 98.8 0.05 13 8 3 2 11 198 1 1 80.9 78.0 81.0

Table 5.2: Tracking performance on TUD-Crossing.

Method Rcll Prcsn FAR GT MT PT ML FP FN IDs FM MOTA MOTP MOTAL

Pirsiavash et al., 2011 69.4 97.8 0.16 14 2 1 - 39 754 52 60 65.7 75.3 -
Shu et al., 2012 - - - - - - - - - - - 79.3 74.1 -
Wen et al., 2014 90.8 98.4 0.16 14 11 - 0 39 227 21 23 88.4 81.9 -
Tang et al., 2013 91.0 98.5 - - - - - - - - - 89.3 77.7 -
Zamir et al., 2012 85.3 98.2 0.02 14 - - - - - - - 90.4 74.1 -

Disjoint Paths 89.0 98.5 0.14 14 11 3 0 34 272 25 24 86.6 76.7 87.5
Subgraph MultiCut 96.1 95.4 0.45 14 13 1 0 113 95 5 18 91.4 77.4 91.5
Subgraph MultiCut7

96.9 97.0 0.37 14 13 1 0 46 47 1 6 93.8 78.3 93.9

Table 5.3: Tracking performance on ParkingLot.

5.5.2 Long-Term Association

Next, we evaluate the robustness of the Disjoint Paths and Subgraph Multicut models
with respect to long-term associations between hypotheses. To that end we apply
both models to graphs that connect each tracklet hypothesis to every other tracklet
hypothesis within a neighborhood of 30 frames. Intuitively enabling such long-range
connectivity should be helpful for misdetection and occlusion cases that otherwise
result in ID switches. We conduct this experiment on TUD-Crossing that has a large
number of people that frequently occlude each other.

The baseline model in this comparison corresponds to a graph in which each
hypothesis is connected to hypotheses in the next and previous frames only. This
baseline model for the Disjoint Paths formulation results in 66.8% MOTA. Adding
long-range connections improves the performance of the Disjoint Paths model to
71.8% and reduces the number of ID switches from 34 to 18. The results for the
Subgraph Multicut model are shown in Fig. 5.6(b). The performance improves from
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72.5% to 80.9% MOTA, and the number of ID switches is reduced from 27 to 1. This
result indicates the importance of long-term associations across frames which the
Subgraph Multicut model can leverage.

5.5.3 Subgraph Multicut vs. Disjoint Paths Models

The Disjoint Paths model achieves results on par with the state-of-the-art, as shown in
Tab. 5.2 and Tab. 5.3 (71.8% MOTA for TUD-Crossing, 86.6% MOTA for ParkingLot).
This suggests that the Disjoint Paths model is a good baseline to conduct a detailed
analysis. Note that both models are based on the same set of tracklet hypotheses as
well as unary and pairwise terms as detailed above.

An important difference between the Disjoint Paths and Subgraph Multicut
models is that the Disjoint path model imposes mutual exclusion constraints when
connecting tracklet hypotheses. This is in contrast to the Subgraph Multicut model
that allows each tracklet hypothesis to associate with an appropriate number of
tracklet hypotheses in the same and other frames resulting in more robust associa-
tions.

When the tracklet hypotheses are pre-selected by performing NMS, as shown
in Fig 5.6(c), with τ = 0.5, the Disjoint Paths model performs best. However, the
model is sensitive to the NMS threshold. Decreasing the level of NMS or skipping
the NMS step altogether results in a substantial performance drop for MOTA (from
71.8% to 56.9%). Additionally, the number of ID switches increases from 18 to 33
(red line in Fig 5.6(d)). This is an inherent limitation of the Disjoint Paths model
resulting from the mutual exclusion constraints. This and similar models require
both pre-processing of person hypotheses (detection/tracklets-NMS) as well as
post-processing of tracks (tracks-NMS) to obtain good performance.

In contrast, decreasing the level of NMS improves the performance of the Sub-
graph Multicut model constantly from 76.0% MOTA to 80.9% (blue curve in Fig.
5.6(c)). This is due to the ability of the Subgraph Multicut model to associate hy-
potheses jointly across space and time, thereby aggregating information about the
targets which results in more robust associations over the whole sequence.

With respect to ID switches, the Subgraph Multicut model constantly outperforms
the Disjoint Paths model for all NMS thresholds by a large margin as shown in Fig.
5.6(d). This performance difference is explained by the fact that finding a disjoint
path for a target precisely in a graph across all frames is a substantially harder
problem than clustering nodes that correspond to the same target.

5.5.4 Comparison to the State-of-the-art

We now compare our approach to recent approaches on TUD-Crossing, TUD-
Campus, and “Parking Lot” datasets. TUD-Campus and TUD-Crossing show
people from the camera at low viewpoint resulting in frequent occlusions, and
TUD-Campus also includes substantial variation in people scale. The Parking Lot
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sequence is captured in a surveillance setting with a camera elevated above the
ground that results in pedestrians’ walking patterns substantially different compared
to TUD-Campus and TUD-Crossing. Tables 5.1, 5.2 and 5.3 show results for TUD-
Campus, TUD-Crossing and “Parking Lot” respectively. The ground truth tracks
used in all experiments are from Andriyenko et al., 2012. Our Subgraph Multicut
model achieves state-of-the-art MOTA results overall. In particular the number of
ID switches is substantially improved compared to other approaches. Zamir et al.,
2012 also report tracking results on TUD-Crossing. Based on the tracking results
they provided to us, we obtain 84.8% MOTA and 2 ID Switches on the ground truth
from Andriyenko et al., 2012.

On the ParkingLot sequence, the Disjoint Paths model again performs on par
with state-of-the-art (86.6% MOTA), suggesting that it is a good baseline to conduct
comparison and analysis. With our Subgraph Multicut Model and parameters
learned from TUD-Crossing, we achieve 91.4% MOTA and 5 ID Switches. To
evaluate sensitivity of our model to particular training set we split the “Parking
Lot” sequence into to training(1-345) and testing(346-989) sequences, and retrain
parameters of our pairwise and unary terms on the training subset. This results in
slight improvement in performance compared to the model with parameters trained
on TUD-Crossing. We obtain 93.8% MOTA and ID switches are reduced to 1, as
shown in the last row of Tab. 5.3.

5.6 conclusions

In this chapter, we propose to formulate multi-target tracking as a Minimum Cost
Subgraph Multicut Problem. In contrast to the Minimum Cost Disjoint Paths formu-
lation, which selects a set of disjoint paths as tracks and which is similar in spirit to
many state-of-the-art methods, the Subgraph Multicut model selects and clusters
all suitable hypotheses for each target jointly in space and time. Experiments show
that our Subgraph Multicut model improves the multi-target tracking performance
on several datasets underlying both the usefulness as well as the applicability of
the proposed formulation. We also show initial results to the classic problem of
Non-Maximum Suppression that without any changes achieves performance on par
with top-performing NMS-schemes. In the future we will explore more powerful
unary and pairwise terms to further improve NMS and tracking performance.
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In the previous chapter, we proposed a graph-based formulation that links and
clusters person hypotheses over time by solving a minimum cost subgraph
multicut problem. In this chapter, we modify and extend the previous chapter in

three ways: 1) We introduce a novel local pairwise feature based on local appearance
matching that is robust to partial occlusion and camera motion. 2) We perform
extensive experiments to compare different pairwise potentials and to analyze the
robustness of the tracking formulation. 3) We consider a plain multicut problem
and remove outlying clusters from its solution. This allows us to employ an efficient
primal feasible optimization algorithm that is not applicable to the subgraph multicut
problem proposed in the previous chapter. Unlike the branch-and-cut algorithm
used there, this efficient algorithm used here is applicable to long videos and many
detections. Together with the novel pairwise feature, it eliminates the need for the
intermediate tracklet representation.

6.1 introduction

Multi person tracking is a problem studied intensively in computer vision. While
continuous progress has been made, false positive detections, long-term occlusions
and camera motion remain challenging, especially for people tracking in crowded
scenes. Tracking-by-detection is commonly used for multi person tracking where
a state-of-the-art person detector is employed to generate detection hypotheses for
a video sequence. In this case tracking essentially reduces to an association task
between detection hypotheses across video frames. This detection association task
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is often formulated as an optimization problem with respect to a graph: every
detection is represented by a node; edges connect detections across time frames. The
most commonly employed algorithms aim to find disjoint paths in such a graph
(Pirsiavash et al., 2011, Segal and Reid, 2013, Andriluka et al., 2008; Zhang et al.,
2008). The feasible solutions of such problems are sets of disjoint paths which do
not branch or merge. While being intuitive, such formulations cannot handle the
multiple plausible detections per person, which are generated from typical person
detectors. Therefore, pre- and/or post-processing such as non maximum suppression
(NMS) on the detections and/or the final tracks is performed, which often requires
careful fine-tuning of parameters.

The minimum cost subgraph multicut problem proposed in Chapter 5 is an
abstraction of the tracking problem that differs conceptually from disjoint path
methods. It has two main advantages: 1) Instead of finding a path for each person
in the graph, it links and clusters multiple plausible person hypotheses (detections)
jointly over time and space. The feasible solutions of this formulation are components
of the graph instead of paths. All detections that correspond to the same person are
clustered jointly within and across frames. No NMS is required, neither on the level
of detections nor on the level of tracks. 2) For the multicut formulation, the costs
assigned to edges can be positive, to encourage the incident nodes to be in the same
track, or negative, to encourage the incident nodes to be in distinct tracks. Thus, the
number and size of tracks does not need to be specified, constrained or penalized
and is instead defined by the solution. This is fundamentally different also from
distance-based clustering approaches, e.g. Wen et al., 2014 where the cost of joining
two detections is non-negative and thus, a non-uniform prior on the number or size
of tracks is required to avoid a trivial solution. Defining or estimating this prior
is a well-known difficulty. We illustrate these advantages in the example depicted
in Fig. 6.1: We build a graph based on the detections on three consecutive frames,
where detection hypotheses within and between frames are all connected. The costs
assigned to the edges encourage the incident node to be in the same or distinct
clusters. For simplicity, we only visualize the graph built on the detections of two
persons instead of all. By solving the minimum cost subgraph multicut problem,
a multicut of the edges is found (depicted as dotted lines). It partitions the graph
into distinct components (depicted in yellow and magenta, resp.), each representing
one person’s track. Note that multiple plausible detections of the same person are
clustered jointly, within and across frames.

The effectiveness of the multicut formulation for the multi person tracking task
is driven by different factors: computing reliable affinity measures for pairs of
detections; handling noisy input detections and utilizing efficient optimization
methods. In this work, we extend Chapter 5 on those fronts. First, for a pair
of detections, we propose a reliable affinity measure that is based an effective
image matching method DeepMatching (Weinzaepfel et al., 2013). As this method
matches appearance of local image regions, it is robust to camera motion and
partial occlusion. In contrast, the pairwise feature proposed in Chapter 5 relies
heavily on the spatio-temporal relations of tracklets (a short-term tracklet is used
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Figure 6.1: An example for tracking by multicut. A graph (bottom) is built based on
the detections in three frames (top). The connected components that are obtained
by solving the multicut problem indicate the number of tracks (there are two tracks,
depicted in yellow and magenta respectively) as well as the membership of every
detection.

to estimate the speed of a person) which works well only for a static camera and
when people walk with constant speed. By introducing the DeepMatching pairwise
feature, we make the multicut formulation applicable to more general moving-
camera videos with arbitrary motion of persons. Secondly, we eliminate the unary
variables which are introduced in Chapter 5 to integrate the detection confidence into
the multicut formulation. By doing so, we simplify the optimization problem and
make it amenable to the fast Kernighan-Lin-type algorithm of Keuper et al., 2015b.
The efficiency of this algorithm eliminates the need for an intermediate tracklet
representation, which greatly simplifies the tracking pipeline. Thirdly, we integrate
the detection confidence into the pairwise terms such that detections with low
confidence simply have a low probability to be clustered with any other detection,
most likely ending up as singletons that we remove in a post-processing step. With
the above mentioned extensions, we are able to achieve competitive performance on
the challenging MOT16 benchmark.

6.2 multi-person tracking as a multicut problem

In Section 6.2.1, we recall the minimum cost multicut problem that we employ as
a mathematical abstraction for multi person tracking. We emphasize differences
compared to the minimum cost subgraph multicut problem proposed in the pre-
vious chapter. In Section 6.2.2, we define the novel DeepMatching feature and its
incorporation into the objective function. In Section 6.2.3, we present implementation
details.
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6.2.1 Minimum Cost Multicut Problem

In this work, multi person tracking is cast as a minimum cost multicut problem
(Chopra and Rao, 1993) w.r.t. a graph G = (V, E) whose node V are a finite set of
detections, i.e., bounding boxes that possibly identify people in a video sequence.
Edges within and across frames connect detections that possibly identify the same
person. For every edge vw ∈ E, a cost or reward cvw ∈ R is to be payed if and only
if the detections v and w are assigned to distinct tracks. Multi person tracking is
then cast as a binary linear program

min
x∈{0,1}E

∑
e∈E

cexe (6.1)

subject to ∀C ∈ cycles(G) ∀e ∈ C : xe ≤ ∑
e′∈C\{e}

xe′ . (6.2)

Note that the costs ce can be both positive or negative. For detections v, w ∈ V
connected by an edge e = {v, w}, the assignment xe = 0 indicates that v and w
belong to the same track. Thus, the constraints (6.2) can be understood as follows:
If, for any neighboring nodes v and w, there exists a path in G from v to w along
which all edges are labeled 0 (indicating that v and w belong to the same track), then
the edge vw cannot be labeled 1 (which would indicate the opposite). In fact, (6.2)
are generalized transitivity constraints which guarantee that a feasible solution x
well-defines a decomposition of the graph G into tracks.

We construct the graph G such that edges connect detections not only between
neighboring frames but also across longer distances in time. Such edges vw ∈ E
allow to assign the detections v and w to the same track even if there would otherwise
not exist a vw-path of detections, one in each frame. This is essential for tracking
people correctly in the presence of occlusion and missing detections.

Differences compared to Chapter 5. The minimum cost multicut problem (6.1)–
(6.2), we consider here differs from the minimum cost subgraph multicut problem
proposed in Chapter 5. In order to handle false positive detections, in Chapter 5, we
introduces additional binary variables at the nodes, switching detections on or off. A
cost of switching a dectection on is defined w.r.t. a confidence score of that detection.
Here, we do not consider binary variables at nodes and incorporate a detection
confidence into the costs of edges. In order to remove false positive detections, we
remove small clusters from the solution in a post-processing step. A major advantage
of this modification is that our minimum cost multicut problem (6.1)–(6.2), unlike
the minimum cost subgraph multicut problem, is amenable to efficient approximate
optimization by means of the KLj algorithm (Keuper et al., 2015b), without any
modification. This algorithm, unlike the branch-and-cut algorithm of Chapter 5,
can be applied in practice directly to the graph of detections defined above, thus
eliminating the need for the smaller intermediate representation by tracklets.

Optimization. Here, we solve instances of the minimum cost multicut problem
approximatively with the KLj algorithm (Keuper et al., 2015b). This algorithm
iteratively updates bipartitions of a subgraph. The worst-case time complexity of any
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Figure 6.2: Visualization of the DeepMatching results on the MOT16 sequences

such update is O(|V||E|). The number of updates is not known to be polynomially
bounded but is small in practice (less than 30 in our experiments). Moreover, the
bound O(|V||E|) is almost never attained in practice, as shown by the more detailed
analysis in Keuper et al., 2015b.

6.2.2 Deep Matching based Pairwise Costs

In order to specify the costs of the optimization problem introduced above for
tracking, we need to define, for any pair of detection bounding boxes, a cost or
reward to be payed if these bounding boxes are assigned to the same person. For
that, we wish to quantify how likely it is that a pair of bounding boxes identify the
same person. In Chapter 5, this is done w.r.t. an estimation of velocity that requires
an intermediate tracklet representation and is not robust to camera motion. Here, we
define these costs exclusively w.r.t. image content. More specifically, we build on the
significant improvements in image matching made by DeepMatching (Weinzaepfel
et al., 2013).

DeepMatching applies a multi-layer deep convolutional architecture to yield
possibly non-rigid matchings between a pair of images. Fig. 6.2 shows results of
DeepMatching for two pairs of images from the MOT16 sequences8. The first pair of
images is taken by a moving camera; the second pair of images is taken by a static
camera. Between both pairs of images, matched points (blue arrows) relate a person
visible in one image to the same person in the second image.

Next, we describe our features defined w.r.t. a matching of points between a pair
of detection bounding boxes. Each detection bounding box v ∈ V has the following
properties: its spatio-temporal location (tv, xv, yv), scale hv, detection confidence ξv
and, finally, a set of keypoints Mv inside v. Given two detection bounding boxes
v and w connected by the edge {v, w} = e ∈ E, we define MU = |Mv ∪Mw| and

8We use the visualization code provided by the authors of Weinzaepfel et al., 2013
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MI = |Mv ∩Mw| and the five features

f (e)1 := MI/MU (6.3)

f (e)2 := min{ξv, ξw} (6.4)

f (e)3 := f (e)1 f (e)2 (6.5)

f (e)4 := ( f (e)1 )2 (6.6)

f (e)5 := ( f (e)2 )2 (6.7)

Given, for any edge e = {v, w} ∈ E between two detection bounding boxes v
and w, the feature vector f (e) for this pair, we learn a probability pe ∈ (0, 1) of these
detection bounding boxes to identify the same person. More specifically, we assume
that pe depends on the features f (e) by a logistic form

pe :=
1

1 + exp(−〈θ, f (e)〉) (6.8)

with parameters θ. We estimate these parameters from training data by means of
logistic regression. Finally, we define the cost ce in the objective function (6.1) as

ce := log
pe

1− pe
= 〈θ, f (e)〉 . (6.9)

Two remarks are in order: Firstly, the feature f (e)2 incorporates the detection
confidences of v and w that defined unary costs in Chapter 5 into the feature f (e) of
the pair {v, w} here. Consequently, detections with low confidence will be assigned
with low probability to any other detection. Secondly, the features f (e)3 , f (e)4 , f (e)5 are

to learn a non-linear map from features f (e)1 , f (e)2 to edge probabilities by means of
linear logistic regression.

6.2.3 Implementation Details

Clusters to tracks. The multicut formulation clusters detections jointly over space
and time for each target. It is straight-forward to generate tracks from such clusters:
In each frame, we obtain a representative location (x, y) and scale h by averaging all
detections that belong to the same person (cluster). A smooth track of the person is
thus obtained by connecting these averages across all frames. Thanks to the pairwise
potential incorporating a detection confidence, low confidence detections typically
end up as singletons or in small clusters which are deleted from the final solution.
Specifically, we eliminate all clusters of size less than 5 in all experiments.

Maximum temporal connection. Introducing edges that connect detections
across longer distance in time is essential to track people in the presence of occlusion.
However, with the increase of the distance in time, the pairwise feature becomes
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less reliable. Thus, when we construct the graph, it is necessary to set a maximum
distance in time. In all the experiments, we introduce edges for the detections that
are at most 10 frames apart. This parameter is based on the experimental analysis
on the training sequences and is explained in more detail in Section 6.3.1.

6.3 experiments

We analyze our approach experimentally and compare to prior work on the MOT16

Benchmark (Milan et al., 2016). The benchmark includes training and test sets
composed of 7 sequences each. We learn the model parameters for the test sequences
based on the corresponding training sequences. We first conduct an experimental
analysis that validates the effectiveness of the DeepMatching based affinity measure
in Sec. 6.3.1. In Sec. 6.3.2 we demonstrate that the multicut formulation is robust to
detection noise. In Sec. 6.3.3 we compare our method with the best published results
on the MOT16 Benchmark.

6.3.1 Comparison of Pairwise Potentials

Setup. In this section we compare the DeepMatching (DM) based pairwise po-
tential with a conventional spatio-temporal relation (ST) based pairwise potential.
More concretely, given two detections v and w, each has the following properties:
spatio-temporal location (t, x, y), scale h, detection confidence ξ. Based on these
properties the following auxiliary variables are introduced to capture geometric
relations between the bounding boxes: ∆x = |xv−xw|

h̄ , ∆y = |yv−yw|
h̄ , ∆h = |hv−hw|

h̄ , y =
|yv−yw|

h̄ , IOU = |Bv∩Bw|
|Bv∪Bw| , t = tv − tw, where h̄ = (hv+hw)

2 , IOU is the intersection over
union of the two detection bounding box areas and ξmin is the minimum detection
score between ξv and ξw. The pairwise feature f (e) for the spatio-temporal relations
(ST) is then defined as (∆t, ∆x, ∆y, ∆h, IOU, ξmin). Intuitively, the ST features are able
to provide useful information within a short temporal window, because they only
model the geometric relations between bounding boxes. DM is built upon matching
of local image features that is reliable for camera motion and partial occlusion in
longer temporal window.

We collect test examples from the MOT16-09 and MOT16-10 sequences which
are recorded with a static camera and a moving camera respectively. The positive
(negative) pairs of test examples are the detections that are matched to the same
(different) persons’ ground truth track over time. The negative pairs also include the
false positive detections on the background.
Metric. The metric is the verification accuracy, the accuracy or rate of correctly
classified pairs. For a pair of images belong to the same (different) person, if the
estimated joint probability is larger (smaller) than 0.5, the estimation is considered
as correct. Otherwise, it is a false prediction.
Results. We conduct a comparison between the accuracy of the DM feature and
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MOT16-09: Static camera
Feature 4t = 1 4t = 2 4t = 5 4t = 10 4t = 15 4t = 20

ST 0.972 0.961 0.926 0.856 0.807 0.781

DM 0.970 (-0.2%) 0.963 (+0.2%) 0.946 (+2%) 0.906 (+5%) 0.867 (+6%) 0.820 (+3.9%)

MOT16-10: Moving camera
Feature 4t = 1 4t = 2 4t = 5 4t = 10 4t = 15 4t = 20

ST 0.985 0.977 0.942 0.903 0.872 0.828

DM 0.985 0.984 (+0.7%) 0.975 (+3.3%) 0.957 (+5.4%) 0.939 (+6.7%) 0.925 (+9.7%)

Table 6.1: Comparison of tracking results based on the DM and the ST feature. The
metic is the accuracy or rate of correctly classified pairs on the MOT16-09 and the
MOT16-10 sequences.

the accuracy of the ST feature as a function of distance in time. It can be seen
from Tab. 6.1 that the ST feature achieves comparable accuracy only up to 2 frames
distance. Its performance deteriorates rapidly for connections at longer time. In
contrast, the DM feature is effective and maintains superior accuracy over time.
For example on the MOT16-10 sequence which contains rapid camera motion, the
DM feature improves over the ST feature by a large margin after 10 frames and it
provides stable affinity measure even at 20 frames distance (accuracy = 0.925). On
the MOT16-09 sequence, the DM feature again shows superior accuracy than the
ST feature starting from 4t = 2. However, the accuracy of the DM feature on the
MOT16-09 is worse than the one on MOT16-10, suggesting the quite different statistic
among the sequences from the MOT16 benchmark. As discussed in Sec. 6.2.3, it is
necessary to set a maximum distance in time to exclude unreliable pairwise costs.
Aiming at a unique setting for all sequences, we introduce edges for the detections
that are maximumly 10 frames apart in the rest experiments of this work.

6.3.2 Robustness to Input Detections

Handling noisy detection is a well-known difficulty for tracking algorithms. To
assess the impact of the input detections on the tracking result, we conduct track-
ing experiments based on different sets of input detections that are obtained by
varying a minimum detection score threshold (Scoremin). For example, in Tab. 6.2,
Scoremin = −∞ indicates that all the detections are used as tracking input; whereas
Scoremin = 1 means that only the detections whose score are equal or larger than 1

are considered. Given the fact that the input detections are obtained from a DPM
detector (Felzenszwalb et al., 2010), Scoremin = −∞ and Scoremin = 1 are the two
extreme cases, where the recall is maximized for the former one and high precision
is obtained for the latter one.

Metric. We evaluate the tracking performance of the multicut model that operates
on different sets of input detections. We use the standard CLEAR MOT metrics.
For simplicity, in Tab. 6.2 we report the Multiple Object Tracking Accuracy (MOTA)
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MOT16-09

Scoremin −∞ -0.3 -0.2 -0.1 0 0.1 1

|V| 5377 4636 4320 3985 3658 3405 1713

|E| 565979 422725 367998 314320 265174 229845 61440

Run time (s) 30.48 19.28 13.46 11.88 8.39 6.76 1.71

MOTA 37.9 43.1 43.1 44.9 45.8 44.1 34.1

MOT16-10

Scoremin −∞ -0.3 -0.2 -0.1 0 0.1 1

|V| 8769 6959 6299 5710 5221 4823 2349

|E| 1190074 755678 621024 511790 427847 365949 88673

Run time (s) 88.34 39.28 30.08 21.99 16.13 13.66 1.94

MOTA 26.8 32.4 34.4 34.5 34.5 33.9 23.3

Table 6.2: Tracking performance on different sets of input detections. Scoremin
indicates the minimum detection score threshold. |V| and |E| are the number of
nodes (detections) and edges respectively.

that is a cumulative measure that combines the number of False Positives (FP), the
number of False Negatives (FN) and the number of ID Switches (IDs).
Results. On the MOT16-09 sequence, when the minimum detection score threshold
(Scoremin) is changed from 0.1 to −0.3, the number of detection is largely increased
(from 3405 to 4636), however the MOTA is only decreased by 1 percent (from 44.1%
to 43.1%). Even for the extreme cases, where the detections are either rather noisy
(Scoremin = −∞) or sparse (Scoremin = 1 ), the MOTAs are still in the reasonable
range. The same results are found on the MOT16-10 sequence as well. Note that, for
all the experiments, we use the same parameters, we delete the clusters whose size
is smaller than 5 and no further tracks splitting/merging is performed.

These experiments suggest that the multicut formulation is very robust to the
noisy detection input. This nice property is driven by the fact that the multicut
formulation allows us to jointly cluster multiple plausible detections that belong to
the same target over time and space.

We also report run time in Tab. 6.2. The KLj multicut solver provides arguably
fast solution for our tracking problem. E.g. for the problem with more than one
million edges, the solution is obtained in 88.34 second. Detailed run time analysis of
the KLj algorithm are shown in Keuper et al., 2015b.

6.3.3 Results on MOT16

We test our tracking model on all the MOT16 sequences and submitted our results
to the ECCV 2016 MOT Challenge 9 for evaluation. The performance is shown
in Tab. 7.2. The detailed performance and comparison on each sequence will be

9https://motchallenge.net/workshops/bmtt2016/eccvchallenge.html
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Method MOTA MOTP FAF MT ML FP FN ID Sw Frag Hz

NOMT (Choi, 2015) 46.4 76.6 1.6 18.3% 41.4% 9753 87565 359 504 2.6
MHT (Kim et al., 2015) 42.8 76.4 1.2 14.6% 49.0% 7278 96607 462 625 0.8
CEM (Milan et al., 2014) 33.2 75.8 1.2 7.8% 54.4% 6837 114322 642 731 0.3
TBD (Geiger et al., 2014) 33.7 76.5 1.0 7.2% 54.2% 5804 112587 2418 2252 1.3

Ours 46.3 75.7 1.09 15.5% 39.7% 6449 90713 663 1115 0.8

Table 6.3: Tracking Performance on MOT16.

(a) MOT16-06 (b) MOT16-12 (c) MOT16-03

(d) MOT16-08 (e) MOT16-07 (f) MOT16-01

(g) MOT16-14 (frame 290) (h) MOT16-14 (frame 360) (i) MOT16-14 (frame 390)

Figure 6.3: Qualitative results for all the sequences from the MOT16 Benchmark.
The first and second rows are the results from the MOT16-01,MOT16-03,MOT16-06,
MOT16-07, MOT16-08 and MOT16-12 sequence. The third row is the result from the
MOT16-14 sequence when the camera mounted on a bus is turning fast at a street
intersection.
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revealed at the ECCV 2016 MOT Challenge Workshop. We compare our method with
the best reported results including NOMT (Choi, 2015), MHT-DAM (Kim et al., 2015),
TBD (Geiger et al., 2014) and CEM (Milan et al., 2014). Overall, we achieve the second
best performance in terms of MOTA with 0.1 point below the best performed one
(Choi, 2015). We visualize our results in Fig. 6.3. On the MOT16-12 and MOT16-07

sequences, the camera motion is irregular; whereas on the MOT16-03 and MOT16-08

sequences, scenes are crowded. Despite these challenges, we are still able to link
people through occlusions and produce long-lived tracks. The third row of Fig. 6.3
shows images captured by a fast moving camera mounted on a bus turning at a
street intersection. Under such extreme circumstance, our model is able to track
people in a stable and persistent way, demonstrating the reliability of the multicut
formulation for multi-person tracking task.

6.4 conclusions

In this work, we revisit the multi-cut approach for multi-target tracking that is
proposed in the previous chapter. We propose a novel pairwise potential that is
built based on local image patch appearance matching. We demonstrate extensive
experimental analysis and show state-of-art tracking performance on the MOT16

Benchmark. In the future we plan to further develop our approach by incorporating
long-range temporal connections in order to deal with longer-term occlusions, and
will extend the model with more powerful pairwise terms capable of matching
person hypothesis over longer temporal gaps.





7
L I F T E D M U LT I C U T S A N D D E E P R E - I D E N T I F I C AT I O N

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Multi-Person Tracking as an Optimization Problem . . . . . . . . . . 91
7.3 Pairwise Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 96

7.4 Person Re-identification for Tracking . . . . . . . . . . . . . . . . . . 97
7.4.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.2 Fusing Body Part Information . . . . . . . . . . . . . . . . . . 99

7.4.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . 99

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5.1 Lifted Edges versus Regular Edges . . . . . . . . . . . . . . . 100

7.5.2 Results on the MOT16 Benchmark . . . . . . . . . . . . . . . 102

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

In this chapter we revisit the modeling and representation of long-range depen-
dencies for multi-person tracking. Humans can master it even if they loose track
of a person locally by re-identifying the same person based on their appearance.

Care must be taken across long distances, as similar-looking persons need not be
identical. In this work, we propose a novel graph-based formulation that links
and clusters person hypotheses over time by solving an instance of a minimum
cost lifted multicut problem. The model generalizes the multicut tracking model
proposed in the previous chapter by introducing a mechanism for adding long-range
attractive connections between nodes in the graph without modifying the original
set of feasible solutions. This allows us to reward tracks that assign detections of
similar appearance to the same person in a way that does not introduce implausible
solutions. To effectively match hypotheses over longer temporal gaps we develop
new deep architectures for re-identification of people. They combine holistic rep-
resentations extracted with deep networks and body pose layout obtained with a
state-of-the-art pose estimation model.

7.1 introduction

Multiple people tracking has improved considerably in the last two years, driven
also by the MOT challenges (Leal-Taixé et al., 2015, Milan et al., 2016). One trend
in this area of research has been to develop CNN-based feature representations
for people appearance to effectively model relations between detection hypotheses

89
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Figure 7.1: Qualitative results on the MOT16 Benchmark. The solid line under each
bounding box indicates the life time of the track. The lifted multicut tracking model
is able to link people through occlusions and produces persistent long-lived tracks

(Kim et al., 2015, Leal-Taixé et al., 2016). This trend has two advantages: Firstly,
representations of people appearance can be learned for varying camera position
and motion, a goal less easy to achieve with simple motion models, especially for
monocular video due to the complexity of motion under perspective projection.
Secondly, appearance facilitates the re-identification of people across long distances,
unlike motion models that become asymptotically uncorrelated. Yet, incorporating
long-range re-identification into algorithms for multiple people tracking remains
challenging. One reason is the simple fact that similar looking people are not
necessarily identical. To address these challenges, in this chapter, we generalize
the mathematical models proposed in Chapter 5 and 6 so as to express the fact that
similar looking people are considered as the same person only if they are connected
by at least one feasible track (possibly skipping occlusion). In 5, multi-person
tracking is cast as a minimum cost multicut problem (Grötschel and Wakabayashi,
1989, Chopra and Rao, 1993). There and in this chapter, every detection is represented
by a node in a graph; edges connect detections within and across time frames, and
costs assigned to edges can be positive, to encourage the incident nodes to be in the
same track, or negative, to encourage the incident nodes to be in distinct tracks. Such
mathematical abstraction has several advantages. Firstly, the number of persons is
not fixed or biased by definition of the problem, but is estimated in an unbiased
fashion from the video sequence and is determined by the solution of the problem.
Secondly, multiple detections of the same person in the same frame are effectively
clustered, which eliminates the need for heuristic non-maxima suppression. In order
to avoid that distinct but similar looking people are assigned to the same track, a
distinction must be made between edges that define possible connections (i.e., a
feasible set) and edges that define the costs or rewards for assigning the incident
nodes to distinct tracks (i.e., an objective function). We achieve this by casting the
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multi-person tracking problem as a minimum cost lifted multicut problem (Andres,
2015).

Specifically, we make three contributions:
Firstly, we design and train deep networks for re-identifying persons by fusing

human pose information. This provides a mechanism for associating person hy-
potheses that are temporally distant and allows to obtain correspondence before and
after occlusion.

Secondly, we propose a novel formulation of multi-person tracking as the mini-
mum cost lifted multicut problem. We introduce two types of edges (regular and lifted
edges) into the graph. The regular edges define the set of feasible solutions in the
graph, namely, which pair of nodes can be joint/cut. The lifted edges add additional
long range information to the objective on which nodes should be joint/cut without
modifying the set of feasible solutions. Our formulation encodes long-range infor-
mation, yet penalizes long-term false joints (e.g., similar looking people) by forcing
valid paths in the feasible solution in a unified and rigorous manner.

Thirdly, we show that tracks defined by local optima of this optimization problem
define a new state-of-the-art for the MOT16 benchmark.

7.2 multi-person tracking as an optimization problem

We now turn to our mathematical abstraction of multiple people tracking as a mini-
mum cost lifted multicut problem (lmp). The lmp is an optimization problem whose
feasible solutions can be identified with decompositions of a graph. Comparing to
the minimum cost multicut problem (mp), which is defined w.r.t. a graph whose
edges define possbilities of joining nodes directly into the same track, the lmp is
defined, in addition, w.r.t. additional lifted edges that do not define possibilities of
directly joining nodes. The decision of joining the nodes needs to be supported by
the regular edges.

Our motivation for modeling the lifted edges comes from the simple fact that
persons of similar appearance are not necessarily identical. Given two detections
that are far apart in time and similar in appearance, it is more likely a priori that
they represent the same person. At the same time, this decision has to be certified a
posteriori by a track connecting the two. We achieve precisely this by introducing the
two classes of edges: In order to assign two detections that are far apart in time and
similar in appearance to the same cluster (person), there must exist a path (track)
along the regular edges, that certifies this decision.

Two intuitive examples are given in Fig. 7.2. In (a) and (b) there are three persons
in the scene, v1 is the detection on the first person, v2 and v3 are the detections
on the second, v4 is on the third. The costs on the edges v1v2 and v3v4 are −3,
suggesting strong rewards towards cutting the edges, and this is correct. However,
the cost on the edge v1v4 suggests that the first and the third person look similar and
introduces a strong reward towards connecting them. As a result, the mp incorrectly
connects v1 and v4 as the same person; the lmp does not connect v1 and v4, as such
long-range join is not supported by the local edges. (c) and (d) is another example
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Figure 7.2: Comparison between Multicut Problem (mp) and Lifted Multicut Problem
(lmp). Ground truth track of each person is depicted in gray. Regular edges are
depicted in black, lifted edges are in green. Solid lines indicate joints, dotted
lines indicate cuts. Costs of cutting edges are indicated by the numbers on the
corresponding edges. (Best view in color)

where all the detections are on the same person, namely, a track that connects all
the nodes in the graph is desirable. Due to partial occlusion or inaccurate bounding
box localization, the costs on the local edges v1v2 and v3v4 could be ambiguous,
sometimes even reverse. The long-range edge v1v4 correctly re-identifies the person.
The mp, however, produces two clusters for a single person because the long-range
edge does not have influence on the local connections. In contrast, the lmp allows us
to influence an entire chain of connections between person hypotheses with a single
confident long-range observation.

In the following, we discuss in detail first the parameters, then the feasible set,
and finally the objective function.

Parameters. Given an image sequence, we consider an instance of the lmp with
respect to the parameters defined below. The estimation of these parameters from
the image sequence is discussed in the next section.

• A finite set V in which every element v ∈ V represents a detection of one person
in one image, i.e., a bounding box. For every detection v ∈ V, we also define
its scale sv ∈ N and the coordinates xv, yv, tv ∈ N of its center in the image
sequence.

• For every pair v, w ∈ V: a conditional probability pvw ∈ (0, 1) of v and w to
represent distinct persons, given their scales, coordinates and appearance.

• A graph G = (V, E) whose edges are regular edges that connect detections
v, w in the same image tv = tw and also connect detections v, w in distinct
images tv 6= tw that are close in time, i.e., for some fixed upper bounds δt ∈N :
|tv − tw| ≤ δt.

• A graph G′ = (V, E′) with E ⊆ E′ whose additional edges {v, w} ∈ E′ \ E are
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lifted edges which connect detections v, w that are far apart in time and similar
in appearance, i.e., for some fixed p0 ∈ (0, 1

2):

|tv − tw| > δt (7.1)
pvw ≤ p0 (7.2)

The graph G defines the decomposition space, and the graph G′ adds lifted edges
E′ \ E on top of G and defines the structure of the cost function.

Feasible Set. The feasible solutions of the lmp can be identified with the decompo-
sitions (clusterings) of the graph G. Here, in the context of tracking, every component
(cluster) of detections defines a track of one person. It is therefore reasonable to
think of our approach as tracking by clustering.

Formally, any feasible solution of the lmp is a 01-vector x ∈ {0, 1}E′ in which
xvw = 1 indicates that the nodes v and w are in distinct components. In order to
ensure that x well-defines a decomposition of G, it is further constrained to the set
XGG′ ⊆ {0, 1}E′ of those x ∈ {0, 1}E′ that satisfy the system of linear inequalities
written below.

∀C ∈ cycles(G) ∀e ∈ C :

xe ≤ ∑
e′∈C\{e}

xe′ (7.3)

∀vw ∈ E′ \ E ∀P ∈ vw-paths(G) :

xvw ≤ ∑
e∈P

xe (7.4)

∀vw ∈ E′ \ E ∀C ∈ vw-cuts(G) :

1− xvw ≤ ∑
e∈C

(1− xe) (7.5)

The constraints (7.3) are generalized transitivity constraints which mean: For any
neighboring nodes v and w, if there exists a path from v to w in G along which all
edges are labeled as 0, then the edge vw can only be labeled as 0. The constraints
(7.4) and (7.5) guarantee, for every feasible solution and every lifted edge vw ∈ E′ \ E,
that the label xvw of this edge is 0 (indicating that v and w belong to the same track)
if (7.4) and only if (7.5) v and w are connected in the smaller graph G by a path of
edges labeled 0. By assigning a cost or reward cvw ∈ R to a lifted edge vw ∈ E′ \ E,
we can thus assign this cost or reward precisely to those feasible solutions for which
v and w belong to distinct tracks, without introducing the additional possibility of
joining v and w directly.

Objective function. We consider instances of the lmp of the form

min
x∈XGG′

∑
e∈E′

cexe (7.6)
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with the costs ce defined as

ce = log
1− pe

pe
. (7.7)

The objective function is chosen such that solutions are decompositions of G into
tracks that maximize the probability of detections representing the same or distinct
persons. More specifically, we define pe as a logistic form:

pe :=
1

1 + exp(−〈θ, f (e)〉) . (7.8)

Then the cost ce has the form:

ce := log
1− pe

pe
= −〈θ, f (e)〉 . (7.9)

The model parameter θ is estimated on the training set by means of logistic regression.
The feature f (e) describes the similarity between detections. In this work, f (e) is
defined as a combination of person re-identification confidence (Sec. 7.4), deep
correspondence matching, and spatio-temporal relations, which is discussed in
Sec. 7.3

Optimization. The minimum cost lifted multicut problem defined by (7.6) is APX-
hard (Demaine et al., 2006). Given the size of instances of our tracking problems,
solving to optimality or within tight bounds using branch and cut is beyond feasi-
bility. In this work, we exploit a primal heuristic proposed by Keuper et al., 2015b,
where the bi-partitions of a subgraph are updated by a set of sequences of transfor-
mations. The update has the worst-case complexity of O(|V||E|) which is almost
never reached in practice. Detailed run time analysis can be found in Keuper et al.,
2015b.

7.3 pairwise potentials

As discussed in Sec. 7.2, the cost ce in the objective function (7.6) is defined as
ce = −〈θ, f (e)〉. In this section, we introduce the feature f (e), which is based on
three information sources: spatio-temporal relations (ST), dense correspondence
matching (DM) and person re-identification confidence (Re-ID) that is described in
the previous section.
ST. The spatio-temporal relation based feature is commonly used in many multi-
person tracking works (Pirsiavash et al., 2011, Xiang et al., 2015, Choi, 2015), as it is
a good affinity measure for pairs of detections that are in close proximity. Given
two detections v and w, each has spatio-temporal locations (x, y, t) and scale s. The

ST feature is defined as fst =

√
(xv−xw)2+(yv−yw)2

s̄ , where s̄ = (sv+sw)
2 . Intuitively, the

ST features are able to provide useful information within a short temporal window.
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Figure 7.3: Accuracy of pairwise affinity measures on the MOT16-02 (a) and MOT16-
11 (b) sequences.
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They model the geometric relations between bounding boxes but do not take image
content into account.

DM. DeepMatching (Weinzaepfel et al., 2013) is introduced as a powerful pairwise
affinity for multi-person tracking in the previous chapter. We apply it in this work
as well. Given two detections v and w, each has a set of matched keypoints M. We
define MU = |Mv ∪Mw|, and MI = |Mv ∩Mw| between the set Mv and Mw. Then
the pairwise feature between the two detections is defined as fdm = MI/MU.

Re-ID. The DM feature is based on local image patch matching, which makes it
robust to irregular camera motion and to partial occlusion in short temporal distance.
As shown in Chapter 6 and in the experiment section of this chapter, the performance
of the DM feature drops dramatically when increasing temporal distance. ReID is
explicitly trained for the task of person re-identification. It is robust with respect to
large temporal and spatial distance and allows long-range association. We utilize our
deep re-identification model (StackNetPose) for modeling the long-range connections.
Our final pairwise feature f (e) is defined as ( fst, fdm, freID, ξmin, f 2

st, fst · fdm, . . . , ξ2
min),

where ξmin is the lower detection confidence within the pair, and freID is the proba-
bility estimated by our StackNetPose. The quadratic terms introduce a non-linear
mapping from the feature space to the cost space.

7.3.1 Experimental Analysis

In this section, we present an analysis of the pairwise features. We also choose
MOT16-02 and MOT16-11 from the MOT16 training set for the analysis, as the
imaging conditions and camera motion are largely different between these two
sequences. The test example collection and the evaluation metric are the same as
for evaluating the person re-identification networks, namely for every test pair, we
estimate the probability of the pair of images containing the same person. For the
positive (negative) pairs, if the estimated probabilities are larger (smaller) than 0.5,
they are considered as correctly classified examples. Any bias toward cut or joint
decreases the tracking performance. A higher accuracy leads to a better tracking
performance. We conduct a comparison between features as a function of temporal
distance. Unlike the previous work where the temporal distance is only up to
20 frames (e.g. Choi, 2015), we demonstrate much longer temporal distance (200

frames), as our model is able to incorporate such information.

Results. It can be seen from Fig. 7.3 that the DM feature achieves the best accuracy
up to 20 frames, but its performance deteriorates for connections at longer time span.
The performance of the ST feature drops quickly after 5 frames. This is especially
pronounced on the MOT16-11 sequence that has rapid camera motion. In contrast,
the Re-ID feature is effective and maintains high accuracy over time. For example
on the MOT16-11 sequence the Re-ID (red line) improves over DM (black line) by
a notable margin for the temporal distances that are larger than 50 frames. When
we combine the three features (Comb, green line in Fig. 7.3), we obtain the best
accuracy at all the temporal distances. The reason is that, at different temporal
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distance, our combined feature is able to take advantage from different information
sources. E.g., when the temporal distance is smaller than 30 frames (1 sec. for these
two sequences), the DM and ReID features combine both low-level (local image
patch matching) and high-level (person-specific appearance similarity) to produce
high accuracy pairwise affinity measures. When the temporal distance increases
gradually, the ReID feature becomes more and more informative. However, still
adding the ST and DM feature improves the overall accuracy, because they act as a
regularizer, that forbids physically impossible associations. Based on these results,
we use the combined feature in our tracking experiments.

7.4 person re-identification for tracking

Traditionally, person re-identification is the task to associate observed pedestrians
in non-overlapping camera views. In the context of multi-person tracking, linking
the detected pedestrians across the whole video can be viewed as re-identification
with special challenges: occlusions, cluttered background, large difference in image
resolution and inaccurate bounding box localization. In this section, we investigate
several CNN architectures for re-identification for the multi-person tracking task. Our
basic CNN architecture is VGG-16 Net (Simonyan and Zisserman, 2014). Particularly,
we propose a novel person re-identification model that combines the body pose
layout obtained with state-of-the-art pose estimation methods.
Data Collection. One of the key ingredients of deep CNNs is the availability of
large amounts of training data. To apply to re-identification for tracking, we collect
images from 8 training sequences of the MOT15 benchmark (Leal-Taixé et al., 2015)
and 5 sequences of the MOT16 benchmark (Milan et al., 2016). We also collect person
identity examples from the CUHK03 (Li et al., 2014), Market-1501 (Zheng et al., 2015)
datasets that are captured by 6 surveillance cameras. We use the MOT16-02 and
MOT16-11 sequences from the MOT16 training set as test sets. Overall a total of 2511

identities is used for training and 123 identities for testing.

7.4.1 Architectures

In this chapter, we explore three architectures, namely ID-Net, SiameseNet, and
StackNet.
ID-Net. We first learn a VGG net Φ to recognize N = 2511 unique identities from
our data collection as an N-way classification problem. We re-size the training
images to 112× 224× 3. Each image xi, i = 1, ..., M associates to a ground truth
identity label yi ∈ {1, ..., N}. The VGG estimates the probability of each image being
each label as pi = Φ(xi) by a forward pass. The network is trained by the softmax
loss.

During testing, given an image from unseen identities, the final softmax layer
is removed and the output of the fully-connected layer Φ f 7 is used as the identity
feature. Given a pair of images, the Euclidean distance between the two identity
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(a) (b) (c) (d)

Model Acc. (%)

ID-Net 80.4
SiameseNet 84.7
StackNet 86.9
StackNetPose 90.0

(e)

Figure 7.4: (a) SiameseNet. (b) StackNet. (c) StackNetPose. Red rectangles indicate
the convolutional, relu and pooling layers of VGG16. Blue rectangles indicate the
fully-connected layers. Grey rectangles on the top of each network are the loss
layers. Green boxes are the stacked body part score maps. (d) Example results from
StackNetPose. (e) Comparison of person re-identification models.

features can be used to decide whether the pair contains the same identity. In the
experiments we observe that this identity feature already provides good accuracy.
However, the performance is boosted by turning to a Siamese architecture and a
StackNet, explained next.

SiameseNet. A Siamese architecture means the network contains two symmetry
CNNs which share the parameters. We start with a commonly used Siamese
architecture (Chopra et al., 2005) as shown in Fig. 7.4(a). To model the similarity we
use fully connected layers on top of the twin CNNs. More specifically, the features
FC6(xi), FC6(xj) from a pair of images are extracted from the first fully-connected
layer of the VGG-based Siamese network that shares the weights. Then the features
are concatenated and transformed by two fully-connected layers (FC7, FC8), where
FC7 are followed by a ReLU non-linearity. FC8 uses a softmax function to produce a
probability estimation over a binary decision, namely the same identity or different
identities.

StackNet. The most effective architecture we explored is the StackNet, where we
stack a pair of images together along the RGB channel. The input to the network
becomes 112× 224× 6. Then the filter size of the first convolutional layer is changed
from 3× 3× 3 to 3× 3× 6, and for the rest of the network we follow the VGG
architecture. The last fully-connected layer models a 2-way classification problem,
namely the same identity or different identities. During testing, given a pair of
images, both SiameseNet and StackNet produce the probability of the pair being the
same/different identities by a forward pass.

The StackNet allows a pair of images to communicate at the early stage of
the network, but it is still limited by the lack of ability to incorporate body part
correspondence between the images. Next, we propose a body part fusing method
to explicitly allow modeling the semantic body part information within the network.
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7.4.2 Fusing Body Part Information

A desirable property of the network is to localize the corresponding regions of the
body parts, and to reason about the similarity of a pair of pedestrian images based
on localized body regions as well as the full images. We implement such a model
by fusing body part detections into the CNN. More specifically, we utilize the body
part detectors proposed in Pishchulin et al., 2016 to produce individual score maps
for 14 body parts, namely, head, shoulders, elbows, wrists, hips, knees, and ankles,
each with left/right symmetry body parts except the head which is indicated by
head top and head bottom. We combine the score maps from every two symmetry
body parts which results in 7 scores maps; each has the same size as the input
image. We stack the pair of images as well as the 14 score maps together to form a
112× 224× 20 input volume. Now the filter size of the first convolutional layer is
set as 3× 3× 20, and the rest of the network follows the VGG16 architecture with
a 2-way classification layer in the end. In Fig. 7.4(d) we show several examples of
estimated body poses on our dataset. Note that augmenting the network with body
layout information can be interpreted as an attention mechanism that allows us
to focus representation on the relevant portions on the input. It can also be seen
as a mechanism to highlight the foreground and enable the network to establish
corresponding regions between input images.

7.4.3 Experimental Analysis

Training. Our implementation is based on the Caffe deep learning framework (Jia
et al., 2014). To learn the ID-Net, our VGG model is pre-trained on the ImageNet
Classification task. Following a common practice in face recognition/person ReID
literature (Parkhi et al., 2015), we use our ID-Net as initialization for learning
the SiameseNet, StackNet and StackNetPose, which makes the training faster and
produces better results.
Setup. We have 123 person identities as test examples which are collected from the
MOT16-02 and the MOT16-11 sequence. More specifically, on these two sequences,
detections that are considered as true positives for a certain identity are those whose
intersection-over-union (IOU) with the ground truth of the identity is larger than
0.5. Given the true positive detections for all the identities, we randomly select
1,000 positive pairs from the detections assigned to the same identity and 4000

negative pairs from the detections assigned to different identities as our test set. A
larger ratio of negative pairs in the test set is to simulate the real positive/negative
distribution during the tracking. For every test pair, we estimate the probability of
the pair of images containing the same person. For the positive (negative) pairs, if the
estimated probabilities are larger (smaller) than 0.5, they are considered as correctly
classified examples. The metric is the verification accuracy, the accuracy or rate
of correctly classified pairs. For the ID-Net, the verification result (same/different
identities) of pairs of images is obtained by testing whether the distance between
the extracted features is smaller than a threshold. The threshold is obtained on a
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separate validation data to maximize the verification accuracy.
Results. It can be seen from Fig. 7.4(e) that the l2 distance of the Φ f 7 features from
the ID-Net already produces reasonable accuracy. The performance is improved by
applying the SiameseNet, from 80.4% to 84.7%. The accuracy is further improved
when using the StackNet, achieving 86.9% accuracy. Fusing the body part informa-
tion (StackNetPose) outperforms all other models by a large margin, achieving 90.0%
accuracy. For our tracking task, we use the StackNetPose model to generate person
re-identification confidence. We show three pairs of detections that are correctly
estimated by StackNetPose in Fig. 7.4(d). It can be seen that the body part maps
enable the network to localize the person despite the inaccurate bounding boxes (the
first/second pairs) and cluttered background (the third pair).

7.5 experiments

We perform our tracking experiments and compare to prior works on the MOT16

Benchmark (Milan et al., 2016). The test set contains 7 sequences, where camera
motion, camera angle, and imaging condition are largely different. For each test
sequence, the benchmark also provides a training sequence that is captured in the
similar setting. Therefore, we learn the model parameter θ (defined in Eq. (7.9)) for
the test sequences on the corresponding training sequences.

For analyzing our tracking models, we use MOT16-02 and MOT16-11 from the
training set as validation sequences, the same as previous sections. The model
parameter θ trained on MOT16-02 is used for MOT16-11 and vice versa. To obtain
the final tracks from the clusters generated by mp or lmp, we estimate a smoothed
trajectory from the detections that belongs to the same cluster. We do not consider
any clusters whose size are less than 5 in all the experiments.
Evaluation Metric. We follow the standard CLEAR MOT metrics (Bernardin and
Stiefelhagen, 2008) for evaluating multi-person tracking performance. The met-
rics includes multiple object tracking accuracy (MOTA), which combines identity
switches (IDs), false positives (FP), and false negatives (FN). Beside we also report
multiple object tracking precision (MOTP), mostly tracked (MT), mostly lost (ML)
and fragmentation (FM).

7.5.1 Lifted Edges versus Regular Edges

The graph for the lifted multicut (lmp) includes two types of edges: regular edges
and lifted edges. The regular edges define the decomposition of the graph. The
lifted edges introduce long-range information on which nodes should be joint/cut
without modifying the set of feasible solutions. They penalize long-term false joint
(e.g. similar looking people) by forcing valid paths in the feasible solution. As shown
in Fig. 7.3, even beyond 50 frames, the accuracy of our pairwise affinity measure is
still above 90%, Such good pairwise affinity should be leveraged into the tracking
model. However, if we encode them by regular edges, we have 10% chances of
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MOT16-11

δmax 30 60 90 120 150

mp 54.2 54.1 49.4 43.9 32.1
lmp 54.5 (+0.3) 55.1 (+1) 55.3 (+5.9) 55.0 (+11.1) 51.1 (+19.1)

MOT16-02

δmax 30 60 90 120 150

mp 19.9 21.5 21.2 19.1 17.2
lmp 21.3 (+1.4) 22.4 (+0.9) 21.3 (+0.1) 22.3 (+3.2) 19 (+1.8)

(a) Varying δmax
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Figure 7.5: Comparison of Multicut model (mp) and Lifted Multicut model (lmp)
with different δmax values (a) and different δt values (b).

Method MOTA MOTP FAF MT ML FP FN ID Sw Frag Hz Detector

Milan et al., 2014 33.2 75.8 1.2 7.8% 54.4% 6837 114322 642 731 0.3 Public
Geiger et al., 2014 33.7 76.5 1.0 7.2% 54.2% 5804 112587 2418 2252 1.3 Public
Le et al., 2016 37.6 75.9 2.0 9.6% 55.2% 11,969 101,343 481 1,012 0.6 Public
Ban et al., 2016 38.4 75.4 1.9 7.5% 47.3% 11,517 99,463 1,321 2,140 0.3 Public
Fagot-Bouquet et al., 2016 41.0 74.8 1.3 11.6% 51.3% 7896 99224 430 963 1.1 Public
Kim et al., 2015 42.9 76.6 1.0 13.6% 46.9% 5668 97919 499 659 0.8 Public
Choi, 2015 46.4 76.6 1.6 18.3% 41.4% 9753 87565 359 504 2.6 Public

Multicut (mp) 46.3 75.7 1.1 15.5% 39.7% 6373 90914 657 1114 0.8 Public
Lifted Multicut (lmp) 48.8 79.0 1.1 18.2% 40.1% 6654 86245 481 595 0.5 Public

Table 7.1: Tracking Performance on the MOT16 test set. Best in bold, second best in
blue.

making a false joint, such errors directly produce long false-positive tracks. If they
are lifted edges, connecting those detections must be certified by the majority of the
local regular edges. Two intuitive examples are shown in Fig. 7.2. In this section we
perform experimental analysis on the two graph variants: Multicut (mp) and Lifted
Multicut (lmp), to validate the effectiveness of the proposed methods.

Given a tracking instance, intuitively, we would connect detections with regular
edges up to a certain temporal distance to overcome potential missing detections
due to occlusion. For the further distant detections, we would connect them with
lifted edges to incorporate person re-identification information into the model to
gain better tracking performance. Following the intuition, our mp is constructed in
the way that besides having the regular edges between neighboring frames, we also
introduce regular edges between all pairs of detections whose temporal distance are
up to δmax. The lmp has a combination of regular edges and lifted edges, we denote
the temporal distance where we start to change the regular edges to the lifted edges
as δt.
Varying δmax. In our first analysis, we gradually change the value of δmax from 1 to
150 frames. As shown in Fig. 7.5(a), on the MOT16-11 sequence, the mp achieves com-
petitive MOTA (54.2%) when δmax equals 30 frames, but the performance decreases
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significantly when δmax is increased to 150 frames (5 sec on the MOT16-11). The
reason is that the long-range regular edges change the feasible solution of the mp.
Although the accuracy of the pairwise affinity at 150 frames is near 90%, the model
can still make catastrophic false joint, which introduces long-term false positive
tracks. Similar results are obtained on the MOT16-02 sequence, MOTA drops to
17.2% when δmax = 150.

For the lmp, we also change δmax from 1 to 150 frames and we set δt = δmax/2.
Comparing to the mp, the lmp obtains the best MOTA on the MOT16-11 sequence
(55.3%) as well as on the MOT16-02 sequence (22.4%). Moreover, it presents a
superior performance in all the settings. Particularly for the long-range connections,
the margin between the mp and the lmp is more than 10% on the MOT16-11 sequence.
Note that, these experiment results reveal a very desirable property of the lmp:
stability with respect to the range of connections. Given a new tracking instance,
due to unknown camera motion and imaging condition, it is not trivial to build a
proper graph for the mp. As to the lmp, due to its robustness and stability, we are
free to choose any sensible range of connections. In the next experiment, we further
reveal the stability of the lmp by varying δt.
Varying δt. As shown in Fig. 7.5(b), we evaluate the influence of δt on lmp under
3 different δmax settings, namely δmax = 60, 90, 120. As a baseline, the tracking
performance of mp with δmax = 15, 30, 45, 60, 75, 90 is also shown in the Fig. 7.5(b),
depicted as the green line. It can be seen that at all the temporal distances, adding
lifted edges improves the tracking performance over mp, suggesting that long-range
person re-identification information is useful for the tracking task. Furthermore, for
the longer temporal distance (e.g. δmax = 90), MOTA of the mp drops significantly
(49.4%); however, for the lmp with δmax = 90, MOTA maintains at higher levels for
δt = 15, 30, 45, 60 (black line), indicating that lmp is also robust to a large range of δt.
Overall, the results show that our lmp is able to encode long-range information in a
more rigorous manner, such that it produces much more stable and robust tracking
results.

7.5.2 Results on the MOT16 Benchmark

Here we present our results on the MOT16 test set. We first use the public set
of detections and compare our method with the best published results on the
benchmark, including NOMT (Choi, 2015), MHT-DAM (Kim et al., 2015), OVBT
(Ban et al., 2016), LTTSC-CRF (Le et al., 2016), CEM (Milan et al., 2014), TBD (Geiger
et al., 2014) and Multicut (Chapter 6). Multicut (Chapter 6) is the most relevant
approach comparing to the lifted multicut model, where the deep matching feature
is employed and tracking is cast as the minimum cost multicut problem. It can be
seen from Tab. 7.2 that our method establishes a new state-of-the-art performance
in terms of MOTA, MOTP and false negative (FN). Comparing to the previous best
result, we improve MOTA by 2.5% and MOTP by 3.1%. For FAF, MT, ML and FM,
our method achieves the second best performance. The improvement over Multicut
demonstrates the advantage of incorporating the long-range person re-identification
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Method MOTA MOTP FAF MT ML FP FN ID Sw Frag Hz detector

Choi, 2015 62.2 79.6 0.9 32.5% 31.1% 5119 63352 406 642 3.1 -
Lee et al., 2016 62.4 78.3 1.7 31.5% 24.2% 9855 57257 1394 1318 34.9 -
Yu et al., 2016 66.1 79.5 0.9 34.0% 20.8% 5061 55914 805 3093 9.9 Yu et al., 2016

Yu et al., 2016 68.2 79.4 1.9 41.0% 19.0% 11479 45605 933 1093 0.7 Yu et al., 2016

lmp (our) 71.0 80.2 1.3 46.9% 21.9% 7880 44564 434 587 0.5 Yu et al., 2016

Table 7.2: Comparison of our lifted multicut (LMP) approach with the best-
performing methods on the MOT16 benchmark. In this comparison we use the
people detections privided by Yu et al., 2016. We achieve the best result over all
approaches using either private or public set of detections.

Method MOT1
6
-01

MOT1
6
-03

MOT1
6
-06

MOT1
6
-07

MOT1
6
-08

MOT1
6
-12

MOT1
6
-14

Average MOTA

Choi, 2015 54.1 72.7 61.3 49.9 42.9 50.3 39.8 53.0
Lee et al., 2016 54.7 73.2 57.7 54.4 41.9 42.3 42.0 52.3
Yu et al., 2016 57.7 78.1 63.6 57.0 36.2 48.0 46.2 55.3
Yu et al., 2016 51.7 81.4 63.6 58.4 39.6 48.2 45.4 55.5

lmp (our) 65.6 82.8 65.7 62.1 38.0 51.6 55.6 60.2

Table 7.3: Tracking performance (MOTA) on each of the test sequences from the
MOT16 benchmark.

information with the lifted multicut formulation.
Furthermore, we provide the tracking result obtained using the detections pro-

vided by Yu et al., 2016. The comparison of our approach with the best published
results, including NOMT (Choi, 2015), MCMOT (Lee et al., 2016), POI (Yu et al.,
2016) and KDNT (Yu et al., 2016) is shown in Tab. 7.2. Note that our results are
directly comparable with POI (Yu et al., 2016) and KDNT (Yu et al., 2016) since we
use the same set of detections provided by Yu et al., 2016. The accuracy of detections
from Yu et al., 2016 is considerably higher compared to the public detections. This
translates to improvements in tracking accuracy and allows us to achieve the best
result on the MOT16 benchmark accross all methods. The results in Tab. 7.2 show
that our approach achieves the best performance in terms of MOTA, MOTP, MT,
false negatives (FN) and track fragmentation (Frag). Compared to the previously
best result of Yu et al., 2016 we improve MOTA by 2.8 percent points.

In Tab. 7.3 we evaluate the tracking results individually for each of the test

Method MOT1
6
-01

MOT1
6
-03

MOT1
6
-06

MOT1
6
-07

MOT1
6
-08

MOT1
6
-12

MOT1
6
-14

Total

#Boxes 6,395 104,556 11,538 16,322 16,737 8,295 18,483 182,326

#Tracks 23 148 221 54 63 86 164 759

Density 14.2 69.7 9.7 32.6 26.8 9.2 24.6 30.8

Table 7.4: Statistics of the test sequences from the MOT16 benchmark.
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sequences. Notice that our approach achieves the best result on 6 out or 7 se-
quences improving on some of the sequences by a large margin. For example on
the sequences “MOT16-01” and “MOT16-14” the improvement is 7.9 and 9.4 MOTA
points respectively, whereas the improvement on the easier sequence “MOT16-02”
is smaller (1.4 MOTA). The improvement on the full banchmark (c.f. Tab 7.2) is
less pronounced since the overall MOTA is obtained by jointly considering all the
sequences. Therefore sequences with larger number of people have more influence
on the overall MOTA. We show the number of annotated bounding boxes and tracks
in each sequence in Tab. 7.4. Notice that more than half of all annotated bounding
boxes belong to the sequence “MOT16-03”, which biases the overall result towards
the results on this sequence.

7.6 conclusions

Incorporating long-range information for multi-person tracking is challenging. In
this work, we propose to model such long-range information by pose aided deep
neural networks. Given the fact that similar looking people are not necessarily
identical, we propose a minimum cost lifted multicut formulation where the long-
range person re-identification information is encoded in the way that it forces valid
paths along the local edges. In the end, we show that the proposed tracking method
outperforms previous works on the challenging MOT16 benchmark.
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In previous chapters, the Minimum Cost Multicut Formulations have been pro-
posed and proven to be successful for the multi target tracking task. In this chapter,
we show that such formulation can be used for jointly solving the motion segmen-
tation and the multi-target tracking tasks. Both tasks benefit from decomposing
a graphical model into an optimal number of connected components based on at-
tractive and repulsive pairwise terms. The two tasks are formulated on different
levels of granularity and, accordingly, leverage mostly local information for motion
segmentation and mostly high-level information for multi-target tracking. In this
chapter we argue that point trajectories and their local relationships can contribute
to the high-level task of multi-target tracking and also argue that high-level cues
from object detection and tracking are helpful to solve motion segmentation. We
propose a joint graphical model for point trajectories and object detections whose
Multicuts are solutions to motion segmentation and multi target tracking problems
at once. Results on the FBMS59 motion segmentation benchmark (Ochs et al., 2014)
as well as on pedestrian tracking sequences demonstrate the promise of this joint
approach.

8.1 introduction

Several problems in computer vision, such as image segmentation or motion seg-
mentation in video, are traditionally approached in a low-level, bottom-up way
while other tasks like object detection, multi-target tracking, and action recognition
often require previously learned model information and are therefore traditionally
approached from a high-level perspective.

In this chapter, we propose a joint formulation for one such classical high-level

105
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problem (multi-target tracking) and a low-level problem (moving object segmen-
tation). Multi-target tracking and motion segmentation are both active fields in
computer vision (Segal and Reid, 2013, Huang et al., 2008, Wojek et al., 2010, An-
driluka et al., 2010, Fragkiadaki et al., 2012, Zamir et al., 2012, Wojek et al., 2013,
Henschel et al., 2014, Tang et al., 2014, Shi et al., 2013, Ochs et al., 2014, Rahmati et al.,
2014, Ji et al., 2014, Keuper et al., 2015a). These two problems are clearly related
in the sense that their goal is to determine those regions that belong to the same
moving object in an image sequence.

We argue that these interrelated problems can and should be addressed jointly
so as to leverage the advantages of both. In particular, the low-level information
contained in point trajectories and in their relation to one another form important
cues for the high-level task of multi-target tracking. They carry the information
where single, well localized points are moving and can thus help to disambiguate
partial occlusions and motion speed changes, both of which are key challenges
for multi-target tracking. For motion segmentation, challenges are presented by
(1) articulated motion, where purely local cues lead to over-segmentation and (2)
coherently moving objects where motion cues cannot tell the objects apart. High level
information from an object detector or even an object tracking system is beneficial
as it provides information about the rough object location, extent, and possibly
re-identification after occlusion.

Ideally, employing such pairwise information between detections may replace
higher-order terms on trajectories as proposed in Ochs and Brox, 2012. While it
is impossible to tell two rotational or scaling motions apart from only pairs of
trajectories, pairs of detection bounding boxes contain enough points to distinguish
their motion. With sufficiently complex detection models, even articulated motion
can be disambiguated.

To leverage high-level spatial information as well as low-level motion cues in
both scenarios, we propose a unified graphical model in which multi-target tracking
and motion segmentation are both cast in one graph partitioning problem. As a
result, the method provides consistent identity labels in conjunction with accurate
segmentations of moving objects.

We show that this joint graphical model improves over the individual, task
specific models. Our results improve over the state of the art in motion segmentation
evaluated on the FBMS59 (Ochs et al., 2014) motion segmentation benchmark as well
as over the state of the art in multiple object tracking evaluated on the 2D MOT
2015 (Leal-Taixé et al., 2015) and the MOT 2016 (Milan et al., 2016) benchmarks, while
additionally providing fine-grained motion segmentations.

8.2 joint multicut problem formulation

Here, we describe the proposed joint high-level - low-level Minimum Cost Multicut
Problem formulation which we want to jointly apply to multi-target tracking and
moving object segmentation. Our aim is to build a graphical model representing



8.2 joint multicut problem formulation 107

V high

V low

(a) high-level and low-level entities (b) proposed graph (c) feasible Multicut

Figure 8.1: (a) While pedestrian detections, here drawn as bounding boxes, represent
frame-wise high-level information, point trajectories computed on the same sequence
represent spatio-temporal low-level cues. Both can be represented as vertices in a
joint graphical model (b). The optimal decomposition of this graph into connected
components yields both a motion trajectory segmentation of the sequence as well as
the tracking of moving objects represented by the detections (c).

detection and point trajectory nodes and their relationships between one another in
a simple, unified way such that the Multicut Problem on this graph directly yields a
joint clustering of these high-level and low-level nodes into an optimal number of
motion segments and according object tracks.

We define an undirected graph G = (V, E), where V = {Vhigh, Vlow} is composed
of nodes vhigh ∈ Vhigh representing high-level entities (detections), and nodes vlow ∈
Vlow representing fine-grained, low-level entities (point trajectories) as depicted in
Fig. 8.1 (b).

To represent the three different types of pairwise relations between these nodes,
we define three different kinds of edges. The edge set E = {Ehigh, Elow, Ehl} consists
of edges ehigh ∈ Ehigh defining the pairwise relations between detections (depicted
in cyan in Fig. 8.1 (b)). These can provide pairwise information computed from
strong, very specific object features, reflected in the real-valued edge costs cehigh . The
edges elow ∈ Elow represent pairwise relations between point trajectories (depicted in
black in Fig. 8.1 (b)). The according costs celow are mostly based on local information.
The edges ehl ∈ Ehl represent the pairwise relations between these two levels of
granularity (depicted in magenta in Fig. 8.1 (b)). The Minimum Cost Multicut
Problem on this graph defines a binary edge labeling problem:

min
y∈{0,1}E

∑
ehigh∈Ehigh

cehighyehigh + ∑
elow∈Elow

celowyelow + ∑
ehl∈Ehl

cehlyehl

subject to y ∈ MC, (8.1)

where MC is the set of exactly all edge labelings y ∈ {0, 1}E that decompose the
graph into connected components. Thus, the feasible solutions to the optimization
problem from Eq. 8.1 are exactly all partitionings of the graph G. In the optimal case,
each partition describes either the entire backgroud or exactly one object throughout



108 chapter 8. joint segmentation and tracking of multiple objects

the whole video at two levels of granularity: the tracked bounding boxes of this
object and the point trajectories of all points on the object. In Fig. 8.1 (c), the proposed
solution to the Multicut problem on the graph in Fig. 8.1 (b) contains four clusters:
one for each pedestrian tracked over time, and two background clusters in which no
detections are contained.

Formally, the feasible set of all multicuts of G can be defined by the cycle
inequalities (Chopra and Rao, 1993) ∀C ∈ cycles(G), ∀e ∈ C : ye ≤ ∑

e′∈C\{e}
ye′ , making

the optimization problem APX-hard (Demaine et al., 2006). Yet, the benefit of
this formulation is that (1) it contains exactly the right set of feasible solutions,
and (2) if pe denotes the probability of an edge e ∈ E to be cut, then an optimal
solution of the Minimum Cost Multicut Problem with the edge weights computed
as ce = logit(pe) = log pe

1−pe
is a maximally likely decomposition of G. Note that the

logit function generates real valued costs ce such that trivial solutions are avoided.

8.2.1 Pairwise Potentials

In this section, we describe the computation of the pairwise potentials ce we use in
our model. Ideally, one would like to learn terms from training data. However, since
the available training datasets for motion segmentation are quite small, we choose
to rather define intuitive pairwise terms whose parameters have been validated on
training data.

8.2.1.1 Low-level Nodes and Edges

In our problem setup, low-level information for motion segmentation and multi-
target tracking is built upon point trajectory nodes vlow over time and their respective
pairwise relations are represented by edge costs celow .

Low-level Nodes vlow: Motion Trajectory Computation A motion trajectory is a
spatio-temporal curve that describes the long-term motion of a single tracked point.
We compute the motion trajectories according to the method proposed in Ochs et al.,
2014. For a given point sampling rate, all points in the first video frame having some
underlying image structure are tracked based on large displacement optical flow
(Brox and Malik, 2011) until they are occluded or lost.

The decision about ending a trajectory is made by considering the consistency
between forward and backward optical flow. In case of large inconsistencies, a point
is assumed to be occluded in one of the two frames. Whenever trajectories end, new
trajectories are inserted to maintain the desired sampling rate, unless the underlying
region is too homogeneous such that accurate point tracking fails.

Trajectory Edge Potentials clow
e The edge potentials celow between point trajectories

vlow
i and vlow

j are all computed from low-level image and motion information. Motion

distances dm(vlow
i , vlow

j ) are computed from the maximum motion difference between
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two trajectories during their common life-time as in Ochs et al., 2014. Additionally,
we compute color and spatial distances dc(vlow

i , vlow
j ) and dsp(vlow

i , vlow
j ) between

each pair of trajectories with a common life-time and spatial distances for trajectories
without temporal overlap as in Keuper et al., 2015a and combine them non-linearly
to z := clow

e = max(θ̄0 + θ1dm + θ2dc + θ3dsp, θ0 + θ1dm). The model parameters θ
are set as in Keuper et al., 2015a. These costs can be mapped to cut probabilities pe
by the logistic function pe =

1
1+exp(−z) .

8.2.1.2 High-level Nodes and Edges

The high-level nodes vhigh we consider represent object detections. Since these
build upon strong underlying object models, the choice of the object detector is task
dependent. the faster R-CNN (Ren et al., 2015). Details on the specific detectors and
resulting vertex sets Vhigh are given in the experimental section (Sec. 8.3).

We assume, the safest information we can draw from any kind of object detec-
tion represented by a node vhigh

i is its spatio-temporal center position pos
vhigh

i
=

(x
vhigh

i
, y

vhigh
i

, t
vhigh

i
)> and size (w

vhigh
i

, h
vhigh

i
)>. Ideally, the underlying object model

allows to produce a tentative frame-wise object segmentation or template T
vhigh

i
of

the detected object. Such a segmentation template can provide far more information
than the bounding box alone. Potentially, a template indicates uncertainties and
enables to find regions within each bounding box, where points most likely belong
to the detected object.

Detection Edge Potentials chigh
e Depending on the employed object detector and

the specific task, a variety of different object features could be used to compute high-
level pairwise potentials. In our setup, we compute the high-level pairwise terms
from simple features based on the intersection over union (IoU) of their bounding
boxes, their normalized distances dsp

dsp(vhigh
i , vhigh

j ) = 2

∥∥∥∥∥∥∥∥∥∥
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(8.2)

and their confidence measures.
While for nearby frames, the IoU of two detections can be directly computed

from the detection bounding boxes or template masks, this is error prone for larger
temporal distances. To introduce robustness, in Chapter 6 we proposed to compute
the IoU based on Deep Matching (Weinzaepfel et al., 2013). Deep Matching is
based on a deep, multi-layer convolutional architecture and performs dense image
patch matching. For every pair of frames ta and tb and every detection vhigh

i in ta,
Deep Matching generates a set of matched keypoints Mi,tb inside the detection. For
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T

V low

v high
i

circle with 
radius σ

e hl

Figure 8.2: Edges ehl between high and low level nodes. For every detection vhigh
i ,

an edge with an attractive cost chl
e is introduced when it hits the according template

T (green edges). If the template is not hit and the distance is larger than a threshold
σ (indicated by the gray circle), an edge with repulsive edge cost is introduced (red).
If the template is not hit but the distance is smaller than σ, no edge is introduced.

every pair of detections vhigh
i in ta and vhigh

j in tb with ta 6= tb, we can compute the
intersection as MIij = |Mi,tb ∩Mj,ta| and the union as MUij = |Mi,tb ∪Mj,ta |. Then,
the Deep Matching based IoU can be computed as

IoUM
ij =

MIij

MUij
(8.3)

The exact implementation details of the edge potentials chigh
e depend on the used

detector and will be specified in the experimental section (Sec. 8.3).

8.2.1.3 Pairwise Potentials chl
e between High-level and Low-level Nodes

For point trajectory nodes vlow
j , the spatio-temporal location (xt

vlow
j

, yt
vlow

j
)> is the

most reliable property. Therefore, we compute pairwise relations between detections
and trajectories according to their spatio-temporal relationship, computed from the
normalized spatial distance

dsp(vhigh
i , vlow

j ) = 2

∥∥∥∥∥∥∥∥∥∥




x
v

high
i
−xt

vlow
j

w
v

high
i

y
v

high
i
−yt

vlow
j

h
v

high
i
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for t = t
vhigh

i
(8.4)

and the template value at the trajectory position T
vhigh

i
(xt

vlow
j

, yt
vlow

j
). If a trajectory

passes through a detected object in frame t, it probably belongs to that object. If it
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passes far outside the objects bounding box in a certain frame, it is probably not part
of this object.

Thus, we compute edge cut probabilities pehl from the above described measures
as

pehl
ij
=





1− T
vhigh

i
(xt

vlow
j

, yt
vlow

j
), if T

vhigh
i

(xt
vlow

j
, yt

vlow
j
) > 0.5

1, if dsp(vhigh
i , vlow

j ) > σ

0.5, otherwise

(8.5)

using an application dependent threshold σ large enough in order not to conflict
with the first case. See Fig. 8.2 for an illustration.

8.2.2 Solving Minimum Cost Multicut Problems

The Minimum Cost Multicut problem defined by the integer linear program in
Eq. (8.1) is APX-hard (Demaine et al., 2006). Still, instances of sizes relevant for
computer vision can potentially be solved to optimallity or within tight bounds
using branch and cut (Andres et al., 2012). However, finding the optimal solution
is not necessary for many real world applications. Recently, the primal heuristic
proposed by Kernighan and Lin (Kernighan and Lin, 1970) has shown to provide very
reasonable results on image and motion segmentation tasks (Keuper et al., 2015b,a).
Alternative heuristics were in Beier et al., 2014, 2015. In our experiments, we employ
the Kernighan and Lin (Kernighan and Lin, 1970) because of its computation speed
and robust behavior.

8.3 experiments

We evaluate the proposed Joint Multicut Formulation on motion segmentation and
multi target tracking benchmarks. First, we show our results on the FBMS59 (Ochs
et al., 2014) motion segmentation dataset containing sequences with various object
categories and motion patterns. Then, the tracking performance is evaluated on the
2D MOT 2015 benchmark (Leal-Taixé et al., 2015) and the MOT 2016 benchmark
(Milan et al., 2016) for multi target pedestrian tracking.

8.3.1 Motion Segmentation Dataset

The FBMS59 (Ochs et al., 2014) motion segmentation dataset consists of 59 sequences
split into a training set of 29 and a test set of 30 sequences. The videos are of varying
length (19 to about 500 frames) and show diverse types of moving objects such as
cars, persons and different types of animals.

To exploit the Joint Multicut model for this data, the very first question is how
to obtain reliable detections in a video sequence without knowing the category of
the object of interest. Here, we evaluate on detections from two different methods
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Figure 8.3: Examples of the object detections and according segmentations. Top:
LSDA detections on images from FBMS59 sequences (Ochs et al., 2014). The first
row shows the best 20 detections. The second row shows three exemplary selective
search proposals and third row visualizes the average segmentation of all proposals.
Bottom: The corresponding faster R-CNN detections. The first row shows the best
20 detections with a minimum detection score of 0.2. The second row shows three
exemplary segmentations from deepLab (Chen et al., 2015; Papandreou et al., 2015)
on these detections and third row visualizes the average segmentation.

: Large Scale Detection through Adaptation (LSDA) (Hoffman et al., 2014) and the
Faster R-CNN (Ren et al., 2015).

Large Scale Detection through Adaptation. The LSDA is a general object detector,
trained to detect 7602 object categories (Hoffman et al., 2014). In our experiments,
we directly use the code and model deployed with their paper. It operates on a set
of object proposals, which is produced by selective search (Uijlings et al., 2013b). The
selective search method operates on hierarchical segmentations, which means that
we obtain a segmentation mask for each detection bounding box. This segmentation
provides a rough spatial and appearance estimation of the object of interest.

To better capture the moving objects in the video, we additionally generate
selective search proposals from optical flow images and pass them to the LSDA
framework. Example results for the detections and according frame-wise segmenta-
tions are given in Fig. 8.3 (top).
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(a) The detection performance of
LSDA (Hoffman et al., 2014) and faster
R-CNN (Ren et al., 2015). We com-
pare the recall for three different IoU
thresholds 0.9, 0.7, and 0.5.

(b) The Variation of Information for
the proposed object masks over the
number of detections (lower is better).

Figure 8.4: Evaluation of the detection and segment proposals on the annotated
frames of the FBMS59 (Ochs et al., 2014) training set.

Faster R-CNN. Faster R-CNN is an object detector that integrates a region proposal
network with the Fast R-CNN (Girshick, 2015) network. It achieves state-of-the-art
object detection accuracy on several benchmark datasets including PASCAL VOC
2012 and MS COCO with only 300 proposals per image (Ren et al., 2015). In our
experiments, we directly used the code and model deployed with their work.

On the detections, we generate segmentation proposals using DeepLab (Chen
et al., 2015, Papandreou et al., 2015), again by directly using their implementation.
Example results for the detections and according frame-wise segmentations are given
in Fig. 8.3 (bottom).

Evaluation. Fig. 8.4(a) shows the achieved recall over the number of detections
for LSDA (Hoffman et al., 2014) and faster R-CNN (Ren et al., 2015) for different
thresholds on the intersection over union (IoU) on the FBMS59 (Ochs et al., 2014)
training set. For the higher thresholds, the performance of LSDA is improved when
proposals from optical flow images are used (LSDA+OF) and for IoU ≥ 0.9, this
setup yields best recall. However, for smaller IoU thresholds, faster R-CNN yields
highest recall even without considering optical flow. The comparison of the segment
mask proposals from selective search (for LSDA) and deepLab (for faster R-CNN)
(Fig. 8.4 b(b)) shows the potential benefit of DeepLab. The visual comparison on the
examples given in Fig. 8.3 shows that the selective search segmentation proposals
selected by LSDA are more diverse than the DeepLab segmentations on the faster
R-CNN detection. However, the overall localization quality is worse. We further
evaluate detections from both methods in the Joint Multicut model.

Implementation Details. In our graphical model, high-level nodes represent de-
tections from either of the above described methods. For both detectors, we use
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Training set (29 sequences) Test set (30 sequences)
P R F O P R F O

Ochs et al., 2014 85.10% 62.40% 72.0% 17/65 79.61% 60.91% 69.02% 24/69

Ochs and Brox, 2012 81.55% 59.33% 68.68% 16/65 82.11% 64.67% 72.35% 27/69

MCe Keuper et al., 2015a 86.73% 73.08% 79.32% 31/65 87.88% 67.7% 76.48% 25/69

MCe + det. (LSDA) 86.43% 75.79% 80.7617% 31/65 - - - -
JointMulticut (LSDA) 86.43% 75.79% 80.7634% 31/65 87.46% 70.80% 78.25% 29/69

MCe + det. (f. R-CNN) 83.46% 79.46% 81.41% 35/65 - - - -
JointMulticut (f. R-CNN) 84.85% 80.17% 82.44% 35/65 84.52% 77.36% 80.78% 35/69

Table 8.1: Results on the FBMS-59 dataset on training (left) and test set (right). We
report P: average precision, R: average recall, F: F-measure and O: extracted objects
with F ≥ 75%. All results are computed for sparse trajectory sampling at 8 pixel
distance.

the same setup. First, we select the most confident detections 10. From those, we
discard some detections according to the statistics of their respective segmentations.
Especially masks from the selective search proposals sometimes only cover object
outlines or leak to the image boundaries. Thus, if such a mask covers less than
20% of its bounding box or more than 60% of the whole image area, the respective
detections are not used as nodes in our graph.

The pairwise terms between detections are computed from the IoU and the
normalized distances dsp of their bounding boxes

dsp(vhigh
i , vhigh

j ) = 2
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are defined as in Eq. (8.4). For all pairs of detections

within one frame and in neighboring frames, the pseudo cut probability is computed
as

p
ehigh

ij
=





1− 1
1+exp(20∗(0.7−IoU(vhigh

i ,vhigh
j )))

, if IoU(vhigh
i , vhigh

j ) > 0.7

1
1+exp(5∗(1.2−dsp(vhigh

i ,vhigh
j )))

, if dsp(vhigh
i , vhigh

j ) > 1.2

0.5, otherwise

(8.6)

The parameters have been set such as to produce reasonable results on the FBMS59

training set. Admittedly, parameter optimization on the training set might further
improve our results.

The pairwise terms cehl are computed from pehl as defined in Eq. (8.6) with σ = 2.
This large threshold accounts for the uncertainty in the bounding box localizations.

10above 0.47 for LSDA and 0.97 for faster R-CNN - on a scale between 0 and 1.
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Figure 8.5: Comparison of the proposed Joint Multicut model and the multicut
on trajectories (MCe) (Keuper et al., 2015a) on the marple6 sequence of FBMS59.
While with MCe the segmentation breaks between the shown frames, the tracking
information from the bounding box subgraph helps our joint model to segment the
two men throughout the sequence. Additionally, static, consistently detected objects
like the car in the first part of the sequence are segmented as well. As these are not
annotated, this causes over-segmentation on the FBMS59 benchmark evaluation.

Results. Our results are given in Tab. 8.1. The motion segmentation considering only
the trajectory information from Keuper et al., 2015a performs already well on the
FBMS59 benchmark. However, the Joint Multicut model improves over the previous
state of the art for both types of object detectors. Note that not only the baseline
method of Keuper et al., 2015a is outperformed with quite a margin on the test set
- also the motion segmentation based on higher-order potentials (Ochs and Brox,
2012) can not compete with the proposed joint model.

To assess the impact of the joint model components, we evaluate not only the
full model but also its performance if pairwise terms between detection nodes
are omitted (denoted by MCe + detections). For LSDA detections, this result is
pretty close to the Joint Multicut model, implying that the pairwise information
we currently employ between the bounding boxes is quite weak. However, for the
better localized faster R-CNN detections, the high-level pairwise terms contribute
significantly to the overall performance of the joint model.

Qualitative examples of the motion segmentation and object tracking results
using the faster R-CNN detections are given in Fig. 8.5 and 8.6. Due to the detection
information and the repulsive terms between those object detections and point
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Figure 8.6: Comparison of the proposed Joint Multicut model and the multicut on
trajectories (MCe) (Keuper et al., 2015a) on the horses06 sequence of FBMS59.

trajectories not passing through them, static objects like the car in the marple6
sequence (yellow cluster) can be segmented. The man approaching the camera in
the same sequence can be tracked and segmented (green cluster) throughout the
sequence despite the scaling motion. Similarly, in the horses sequence, all three
moving objects can be tracked and segmented through strong partial occlusions.

Since the ground truth annotations are sparse and only contain moving ob-
jects, this dataset was not used to quantitatively evaluate the multi-target tracking
performance.

8.3.2 Multi Target Tracking

Here, we evaluate our Joint Multicut model on the pedestrian tracking task and
show the benefit of the Joint Multicut model for the tracking performance. To allow
for a comparison to other state-of-the-art multi-target tracking methods, we evaluate
our joint multicut approach on 2D MOT 2015 (Leal-Taixé et al., 2015) and MOT
2016 (Milan et al., 2016). Both benchmarks contain videos from static and moving
camera recorded in unconstrained environments. MOT15 contains 11 training
and 11 test sequences, MOT16 contains 7 sequences each in training and test. In
both benchmarks, detections for all sequences are provided and allow for direct
comparison to other tracking methods. While the detections in MOT15 are computed
using the Aggregate Channel Features pedestrian detector (Dollár et al., 2009), DMP
(Felzenszwalb et al., 2010) detections are provided for MOT16.
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MT ML FP FN IDs FM MOTA
Choi, 2015 12.2% 44% 7,762 32,547 442 823 33.7
Milan et al., 2015 5.8% 63.9% 7,890 39,020 697 737 22.5
JointMulticut 23.2% 39.3% 10,580 28,508 457 969 35.6

Table 8.2: Multi target tracking results on the 2D MOT 2015 benchmark.

Implementation Details. We link every detection node vhigh
i to every other detec-

tion node vhigh
j within 3 frames. From a feature vector f = (IoUM

ij , minConf, IoUM
ij ·

minConf, IoUM
ij

2
, minConf2)>, where minConf is the minimum of the detection scores

of vhigh
i and vhigh

j and IoUM
ij is computed according to eq. (8.3), we learn cut propa-

bilities using logistic regression.
The computation of pairwise terms between detections and trajectories is done

using an undirected template computed as the average pedestrian shape from the
shape prior training data provided in Cremers et al., 2008 and its horizontally flipped
analogon.

The cut propability p(vhigh
i , vlow

j ) between a detection vhigh
i and a trajectory vlow

j is
computed according to Eq. (8.6) with σ = 1.2. Since the publicly provided detections
are relatively sparse (provided after non-maximum suppression), the statistics of
the graph are altered. We compensate for this fact by weighting the costs chl

e by a
constant factor 11. Detections before non-maximum suppression are unfortunately
not provided.

Results. Our tracking performance is evaluated on the official MOT15 (Leal-Taixé
et al., 2015) and MOT16 (Milan et al., 2016) benchmarks in terms of the CLEAR
MOT evaluation metrics. Here, we report MOTA (multiple object tracking accuracy),
which is a cumulative measure combining missed targets (FN), false alarms (FP), and
identity switches (IDs), as well as the number of mostly tracked (MT) and mostly
lost (ML) objects, and the fragmentation (FM). Results on the MOT15 benchmark
are given in Tab. 8.2. Compared to the state-of-the-art multi-target tracking method
(Choi, 2015), we have an overall improvement in MOTA. We observe a decrease
in the number of false negatives while false positives increase. Also, we show
a clear improvement over the performance of the previously proposed method
for joint tracking and segmentation (Milan et al., 2015). Our final results on the
MOT16 benchmark are given in Tab. 8.3. Here, we also compare to the baseline
minimum cost multicuts model proposed in Chapter 6. Our joint model can improve
over the baseline in particular by reducing the number of identity switches and
fragmentations while keeping the number of false alarms low, resulting in a better
MOTA.

Last, we evaluate our sparse segmentations on the pedestrian tracking sequence
tud-crossing from the MOT15 benchmark. For this sequence, segmentation annota-
tions in every 10th frame have been published by E. Horbert, 2011. The pedestrian

11By factor 20 for MOT15 and factor 4 for MOT16.
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frame 20 40 60 80 100

Figure 8.7: Results of the proposed Joint Multicut model on the tud-crossing sequence
from MOT15.

MT ML FP FN IDs FM MOTA
Choi, 2015 18.3% 41.4% 9,753 87,565 359 504 46.4
Tang et al., 2016 15.5% 39.7% 6,373 90,914 657 1.114 46.3
JointMulticut 20,4% 46.9% 6,703 89,368 370 598 47.1

Table 8.3: Multi target tracking results on the MOT16 benchmark.

motion segmentation is evaluated with the metrics precision (P), recall (R), f-measure
(F) and number of retrieved objects (O) as proposed for the FBMS59 motion segmen-
tation benchmark (Ochs et al., 2014).

A qualitative result is given in Fig. 8.7. The bounding boxes overlayed on
the image sequence are, for every frame and cluster, the ones with the highest
detection score. These were also used for the tracking evaluation. The second
row visualizes the trajectory segmentation. Both detection and trajectory clusters
look very reasonable. Segmentations provide better localizations for the tracked
pedestrians. The quantitative results and a comparison to the motion segmentation
methods from Ochs et al., 2014 and Keuper et al., 2015a is given in Tab. 8.4. To assess
the importance of the model parts, we not only evaluate the full Joint Model but

TUD-Crossing
P R F O (≥ 75) O (≥ 60)

SC Ochs et al., 2014 67.92 20.16 31.09 0/15 1/15

MCe Keuper et al., 2015a 43.78 38.53 40.99 1/15 1/15

MCe + det. 62.05 54.72 58.15 1/15 9/15
MC + traj. 69.37 48.88 57.35 2/15 9/15
JointMulticut 67.22 55.11 60.57 2/15 9/15

Table 8.4: Motion Segmentation on the Multi-Target Tracking sequence tud-crossing.
We report P: average precision, R: average recall, F: F-measure (all numbers in %) and
O: extracted objects with F ≥ 75% and with F ≥ 60%. All results are computed for
sparse trajectory sampling at 8 pixel distance, leading to an average region density
of 0.85%.
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also the performance of the Multicut formulation when not considering pairwise
terms between trajectories (Tracklet MC + traj.) as well as the performance when
omitting the pairwise terms between tracklet nodes (MCe + det.). The comparison
confirms that the full, joint model performs better than any of its parts. On the
important f-measure, the proposed Joint Multicut model improves over the previous
state-of-the-art in motion segmentation on this sequence.

8.4 conclusions

This chapter proposes a Multicut Model that jointly addresses multi target tracking
and motion segmentation so as to leverage the advantages of both. Motion segmen-
tation allows for precise local motion cues and correspondences that support robust
multi target tracking results with high recall. Object detection and tracking allows a
more reliable grouping of motion trajectories on the same physical object. Promising
experimental results are obtained in both domains with a strong improvement over
the state of the art in motion segmentation.
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This chapter considers the task of articulated human pose estimation of multiple
people in real-world images. We propose an approach that jointly solves the tasks
of detection and pose estimation: it infers the number of persons in a scene, iden-
tifies occluded body parts, and disambiguates body parts between people in close
proximity of each other. This joint formulation is in contrast to previous strategies,
that address the problem by first detecting people and subsequently estimating their
body pose. We propose a partitioning and labeling formulation of a set of body-part
hypotheses generated with CNN-based part detectors. Our formulation, an instance
of an integer linear program, implicitly performs non-maximum suppression on
the set of part candidates and groups them to form configurations of body parts
respecting geometric and appearance constraints. Experiments on four different
datasets demonstrate the effectiveness of our model for both single person and multi
person pose estimation.

9.1 introduction

Human body pose estimation methods have become increasingly reliable. Powerful
body part detectors (Tompson et al., 2015) in combination with tree-structured body
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models (Tompson et al., 2014, Chen and Yuille, 2014) show impressive results on
diverse datasets (Johnson and Everingham, 2011, Andriluka et al., 2014, Sapp and
Taskar, 2013). These benchmarks promote pose estimation of single pre-localized
persons but exclude scenes with multiple persons. This problem definition has
been a driver for progress, but also falls short on representing a realistic sample
of real-world images. Many photographs contain multiple people of interest (see
Fig 9.1) and it is unclear whether single pose approaches generalize directly. We
argue that the multi person case deserves more attention since it is an important
real-world task.

Key challenges inherent to multi person pose estimation are the partial visibility
of some people, significant overlap of bounding box regions of people, and the
a-priori unknown number of people in an image. The problem thus is to infer
the number of persons, assign part detections to person instances while respecting
geometric and appearance constraints. Most strategies use a two-stage inference
process (Pishchulin et al., 2012, Gkioxari et al., 2014, Sun and Savarese, 2011) to first
detect and then independently estimate poses. This is unsuited for cases when
people are in close proximity since they permit simultaneous assignment of the same
body-part candidates to multiple people hypotheses.

As a principled solution for multi person pose estimation a model is proposed
that jointly estimates poses of all people present in an image by minimizing a joint
objective. The formulation is based on partitioning and labeling an initial pool of
body part candidates into subsets that correspond to sets of mutually consistent
body-part candidates and abide to mutual consistency and exclusion constraints.
The proposed method has a number of appealing properties. (1) The formulation
is able to deal with an unknown number of people, and also infers this number by
linking part hypotheses. (2) The formulation allows to either deactivate or merge
part hypotheses in the initial set of part candidates hence effectively performing
non-maximum suppression (NMS). In contrast to NMS performed on individual part
candidates, the model incorporates evidence from all other parts making the process
more reliable. (3) The problem is cast in the form of an Integer Linear Program (ILP).
Although the problem is NP-hard, the ILP formulation facilitates the computation of
bounds and feasible solutions with a certified optimality gap.

The chapter makes the following contributions. The main contribution is the
derivation of a joint detection and pose estimation formulation cast as an integer
linear program. Further two CNN variants are proposed to generate representative
sets of body part candidates. These, combined with the model, obtain state-of-the-art
results for both single-person and multi-person pose estimation on different datasets.
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(a) (b) (c)
Figure 9.1: Method overview: (a) initial detections (= part candidates) and pairwise
terms (graph) between all detections that (b) are jointly clustered belonging to one
person (one colored subgraph = one person) and each part is labeled corresponding
to its part class (different colors and symbols correspond to different body parts); (c)
shows the predicted pose sticks.
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9.2 problem formulation

In this section, the problem of estimating articulated poses of an unknown number of
people in an image is cast as an optimization problem. The goal of this formulation
is to state three problems jointly: 1. The selection of a subset of body parts from a set
D of body part candidates, estimated from an image as described in Section 9.4.1 and
depicted as nodes of a graph in Fig. 9.1(a). 2. The labeling of each selected body part
with one of C body part classes, e.g., “arm”, “leg”, “torso”, as depicted in Fig. 9.1(c).
3. The partitioning of body parts that belong to the same person, as depicted in
Fig. 9.1(b).

9.2.1 Feasible Solutions

We encode labelings of the three problems jointly through triples (x, y, z) of binary

random variables with domains x ∈ {0, 1}D×C, y ∈ {0, 1}(
D
2 ) and z ∈ {0, 1}(

D
2 )×C2

.
Here, xdc = 1 indicates that body part candidate d is of class c, ydd′ = 1 indicates that
the body part candidates d and d′ belong to the same person, and zdd′cc′ are auxiliary
variables to relate x and y through zdd′cc′ = xdcxd′c′ydd′ . Thus, zdd′cc′ = 1 indicates
that body part candidate d is of class c (xdc = 1), body part candidate d′ is of class c′

(xd′c′ = 1), and body part candidates d and d′ belong to the same person (ydd′ = 1).

In order to constrain the 01-labelings (x, y, z) to well-defined articulated poses
of one or more people, we impose the linear inequalities (9.1)–(9.3) stated below.
Here, the inequalities (9.1) guarantee that every body part is labeled with at most
one body part class. (If it is labeled with no body part class, it is suppressed). The
inequalities (9.2) guarantee that distinct body parts d and d′ belong to the same
person only if neither d nor d′ is suppressed. The inequalities (9.3) guarantee, for any
three pairwise distinct body parts, d, d′ and d′′, if d and d′ are the same person (as
indicated by ydd′ = 1) and d′ and d′′ are the same person (as indicated by yd′d′′ = 1),
then also d and d′′ are the same person (ydd′′ = 1), that is, transitivity, cf. Chopra
and Rao, 1993. Finally, the inequalities (9.4) guarantee, for any dd′ ∈ (D

2 ) and any
cc′ ∈ C2 that zdd′cc′ = xdcxd′c′ydd′ . These constraints allow us to write an objective
function as a linear form in z that would otherwise be written as a cubic form in x
and y. We denote by XDC the set of all (x, y, z) that satisfy all inequalities, i.e., the
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set of feasible solutions.

∀d ∈ D∀cc′ ∈ (C
2) : xdc + xdc′ ≤ 1 (9.1)

∀dd′ ∈ (D
2 ) : ydd′ ≤ ∑

c∈C
xdc

ydd′ ≤ ∑
c∈C

xd′c (9.2)

∀dd′d′′ ∈ (D
3 ) : ydd′ + yd′d′′ − 1 ≤ ydd′′ (9.3)

∀dd′ ∈ (D
2 )∀cc′ ∈ C2 : xdc + xd′c′ + ydd′ − 2 ≤ zdd′cc′

zdd′cc′ ≤ xdc

zdd′cc′ ≤ xd′c′

zdd′cc′ ≤ ydd′ (9.4)

When at most one person is in an image, we further constrain the feasible
solutions to a well-defined pose of a single person. This is achieved by an additional
class of inequalities which guarantee, for any two distinct body parts that are not
suppressed, that they must be clustered together:

∀dd′ ∈ (D
2 )∀cc′ ∈ C2 : xdc + xd′c′ − 1 ≤ ydd′ (9.5)

9.2.2 Objective Function

For every pair (d, c) ∈ D× C, we will estimate a probability pdc ∈ [0, 1] of the body
part d being of class c. In the context of CRFs, these probabilities are called part
unaries and we will detail their estimation in Section 9.4.

For every dd′ ∈ (D
2 ) and every cc′ ∈ C2, we consider a probability pdd′cc′ ∈ (0, 1)

of the conditional probability of d and d′ belonging to the same person, given that d
and d′ are body parts of classes c and c′, respectively. For c 6= c′, these probabilities
pdd′cc′ are the pairwise terms in a graphical model of the human body. In contrast to
the classic pictorial structures model, our model allows for a fully connected graph
where each body part is connected to all other parts in the entire set D by a pairwise
term. For c = c′, pdd′cc′ is the probability of the part candidates d and d′ representing
the same body part of the same person. This facilitates clustering of multiple body
part candidates of the same body part of the same person and a repulsive property
that prevents nearby part candidates of the same type to be associated to different
people.

The optimization problem that we call the subset partition and labeling problem is
the ILP that minimizes over the set of feasible solutions XDC:

min
(x,y,z)∈XDC

〈α, x〉+ 〈β, z〉, (9.6)
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where we used the short-hand notation

αdc := log
1− pdc

pdc
(9.7)

βdd′cc′ := log
1− pdd′cc′

pdd′cc′
(9.8)

〈α, x〉 := ∑
d∈D

∑
c∈C

αdc xdc (9.9)

〈β, z〉 := ∑
dd′∈(D

2 )

∑
c,c′∈C

βdd′cc′ zdd′cc′ . (9.10)

9.2.3 Optimization

In order to obtain feasible solutions of the ILP (9.6) with guaranteed bounds, we
separate the inequalities (9.1)–(9.5) in the branch-and-cut loop of the state-of-the-art
ILP solver Gurobi. More precisely, we solve a sequence of relaxations of the problem
(9.6), starting with the (trivial) unconstrained problem. Each problem is solved
using the cuts proposed by Gurobi. Once an integer feasible solution is found, we
identify violated inequalities (9.1)–(9.5), if any, by breadth-first-search, add these to
the constraint pool and re-solve the tightened relaxation. Once an integer solution
satisfying all inequalities is found, together with a lower bound that certifies an
optimality gap below 1%, we terminate.

9.3 pairwise probabilities

Here we describe the estimation of the pairwise terms. We define pairwise features
fdd′ for the variable zdd′cc′ (Sec. 9.2). Each part detection d includes the probabilities
fpdc (Sec. 9.4.4), its location (xd, yd), scale hd and bounding box Bd coordinates. Given
two detections d and d′, and the corresponding features ( fpdc , xd, yd, hd, Bd) and
( fpd′c , xd′ , yd′ , hd′ , Bd′), we define two sets of auxiliary variables for zdd′cc′ , one set
for c = c′ (same body part class clustering) and one for c 6= c′ (across two body
part classes labeling). These features capture the proximity, kinematic relation and
appearance similarity between body parts.
The same body part class (c = c′). Two detections denoting the same body part
of the same person should be in close proximity to each other. We introduce
the following auxiliary variables that capture the spatial relations: ∆x = |xd −
xd′ |/h̄, ∆y = |yd − yd′ |/h̄, ∆h = |hd − hd′ |/h̄, IOUnion, IOMin, IOMax. The latter
three are intersections over union/minimum/maximum of the two detection boxes,
respectively, and h̄ = (hd + hd′)/2.

Non-linear Mapping. We augment the feature representation by appending
quadratic and exponential terms. The final pairwise feature fdd′ for the variable zdd′cc
is (∆x, ∆y, ∆h, IOUnion, IOMin, IOMax, (∆x)2,
. . . , (IOMax)2, exp (−∆x), . . . , exp (−IOMax)).
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Two different body part classes (c 6= c′). We encode the kinematic body con-
straints into the pairwise feature by introducing auxiliary variables Sdd′ and Rdd′ ,
where Sdd′ and Rdd′ are the Euclidean distance and the angle between two detections,
respectively. To capture the joint distribution of Sdd′ and Rdd′ , instead of using Sdd′

and Rdd′ directly, we employ the posterior probability p(zdd′cc′ = 1|Sdd′ , Rdd′) as
pairwise feature for zdd′cc′ to encode the geometric relations between the body part
class c and c′. More specifically, assuming the prior probability p(zdd′cc′ = 1) =
p(zdd′cc′ = 0) = 0.5, the posterior probability of detection d and d′ have the body
part label c and c′, namely zdd′cc′ = 1, is

p(zdd′cc′ = 1|Sdd′ , Rdd′)

=
p(Sdd′ , Rdd′ |zdd′cc′ = 1)

p(Sdd′ , Rdd′ |zdd′cc′ = 1) + p(Sdd′ , Rdd′ |zdd′cc′ = 0)
,

where p(Sdd′ , Rdd′ |zdd′cc′ = 1) is obtained by conducting a normalized 2D histogram
of Sdd′ and Rdd′ from positive training examples, analogous to the negative likelihood
p(Sdd′ , Rdd′ |zdd′cc′ = 0). In Sec. 9.5.1 we also experiment with encoding the appear-
ance into the pairwise feature by concatenating the feature fpdc from d and fpd′c from
d′, as fpdc is the output of the CNN-based part detectors. The final pairwise feature
is (p(zdd′cc′ = 1|Sdd′ , Rdd′), fpdc , fpd′c).

9.3.1 Probability Estimation

The coefficients α and β of the objective function (Eq. 9.6) are defined by the proba-
bility ratio in the log space (Eq. 9.7 and Eq. 9.8). Here we describe the estimation
of the corresponding probability density: (1) For every pair of detection and part
classes, namely for any (d, c) ∈ D× C, we estimate a probability pdc ∈ (0, 1) of the
detection d being a body part of class c. (2) For every combination of two distinct
detections and two body part classes, namely for any dd′ ∈ (D

2 ) and any cc′ ∈ C2,
we estimate a probability pdd′cc′ ∈ (0, 1) of d and d′ belonging to the same person,
meanwhile d and d′ are body parts of classes c and c′, respectively.

Learning. Given the features fdd′ and a Gaussian prior p(θcc′) = N (0, σ2) on the
parameters, logistic model is

p(zdd′cc′ = 1| fdd′ , θcc′) =
1

1 + exp(−〈θcc′ , fdd′〉)
. (9.11)

(|C| × (|C|+ 1))/2 parameters are estimated using ML.

Inference. Given two detections d and d′, the coefficients αdc for xdc and αd′c for
xd′c are obtained by Eq. 9.7, the coefficient βdd′cc′ for zdd′cc′ has the form

βdd′cc′ = log
1− pdd′cc′

pdd′cc′
= −〈 fdd′ , θcc′〉. (9.12)

Model parameters θcc′ are learned using logistic regression.
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9.4 body part detectors

We first introduce our deep learning-based part detection models and then evaluate
them on two prominent benchmarks thereby significantly outperforming state of the
art.

9.4.1 Adapted Fast R-CNN (AFR-CNN)

To obtain strong part detectors we adapt Fast R-CNN (Girshick, 2015). FR-CNN
takes as input an image and set of class-independent region proposals (Uijlings et al.,
2013a) and outputs the softmax probabilities over all classes and refined bounding
boxes. To adapt FR-CNN for part detection we alter it in two ways: 1) proposal
generation and 2) detection region size. The adapted version is called AFR-CNN
throughout the chapter.

Detection proposals. Generating object proposals is essential for FR-CNN, mean-
while detecting body parts is challenging due to their small size and high intra-class
variability. We use DPM-based part detectors (Pishchulin et al., 2013) for proposal
generation. We collect K top-scoring detections by each part detector in a common
pool of N part-independent region proposals and use these proposals as input to
AFR-CNN. N is 2K in case of single and 20K in case of multiple people..

Larger context. Increasing the size of DPM detections by upscaling every bounding
box by a fixed factor allows to capture more context around each part. In Sec. 9.4.3
we evaluate the influence of upscaling and show that using larger context around
parts is crucial for best performance.

Details. Following standard FR-CNN training procedure ImageNet models are
finetuned on pose estimation task. Center of a predicted bounding box is used for
body part location prediction. See supplemental for detailed parameter analysis.

9.4.2 Dense architecture (Dense-CNN)

Using detection proposals for body part detection may be sub-optimal. We thus
develop a fully convolutional architecture for computing part probability scoremaps.

Stride. We use VGG (Simonyan and Zisserman, 2014) as our basis architecture.
Converting VGG to fully convolutional mode leads to 32 px stride which is too
coarse for precise part localization. We thus use hole algorithm (Chen et al., 2015) to
reduce the stride to 8 px.

Scale. Selecting the scale at which CNN is applied is crucial. We empirically found
that scaling an image such that an upright standing person is 340 px high leads to
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best results. This way 224× 224 VGG receptive field sees sufficiently large portion
of human to disambiguate body parts.

Loss function. Similar to AFR-CNN we start with a softmax loss function that
outputs probabilities for each body part and background. The downside is its
inability to assign probabilities above 0.5 to several close-by body parts. We thus
re-formulate the part detection as multi-label classification problem, where at each
location a separate set of probability distributions is estimated for each part. We use
sigmoid activation function on the output neurons along with cross entropy loss. We
found this loss to perform better than softmax and converge much faster compared
to MSE (Tompson et al., 2014). During training a target scoremap is constructed as
follows: at each location for each joint a positive label 1 is assigned if the location is
within 15 px to the ground truth, and negative label 0 otherwise. Locations with all
0 are the negatives.

Location refinement. While scoremaps provide sufficient resolution, location pre-
cision can be improved. Tompson et al., 2015 train additional net to produce fine
scoremaps. We follow an alternative and simpler route (Girshick, 2015): we add a
location refinement FC layer after the FC7 and use the relative offsets (∆x, ∆y) from
a scoremap location to the ground truth as targets.

Regression to other parts. Similar to location refinement we add an extra term to
the objective function where for each part we regress onto all other part locations.
We empirically found this auxiliary task to improve the unary performance (c.f.
Sec. 9.4.3). We envision these predictions to improve the spatial model as well and
leave this for the future work.

Training. We follow best practices and use SGD for CNN training. In each iteration
we forward-pass a single image. After FC6 we select all positive and random negative
samples to keep the pos/neg ratio as 25%/75%. We finetune VGG from Imagenet
model to pose estimation task and use training data augmentation. We train for 430k
iterations with the following learning rates (lr): 10k at lr=0.001, 180k at lr=0.002, 120k
at lr=0.0002 and 120k at lr=0.0001. Pre-training at smaller lr prevents the gradients
from diverging.

9.4.3 Evaluation of part detectors

Datasets. For training and evaluation we use three public benchmarks: “Leeds
Sports Poses” (LSP) (person-centric (PC) annotations) including 1000 training and
1000 testing images of people doing sports; “LSP Extended” (LSPET) (Johnson
and Everingham, 2011) consisting of 10000 training images; “MPII Human Pose”
(“Single Person”) (Andriluka et al., 2014) consisting of 19185 training and 7247 testing
people in every day activities. The MPII training set is used as default. In some
cases LSP training and LSPET is included, this is denoted as MPII+LSPET in the
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Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

oracle 2000 98.8 98.8 97.4 96.4 97.4 98.3 97.7 97.8 84.0

DPM scale 1 48.8 25.1 14.4 10.2 13.6 21.8 27.1 23.0 13.6

AlexNet scale 1 82.2 67.0 49.6 45.4 53.1 52.9 48.2 56.9 35.9
AlexNet scale 4 85.7 74.4 61.3 53.2 64.1 63.1 53.8 65.1 39.0

+ optimal params 88.1 79.3 68.9 62.6 73.5 69.3 64.7 72.4 44.6

VGG scale 4 optimal params 91.0 84.2 74.6 67.7 77.4 77.3 72.8 77.9 50.0
+ finetune LSP 95.4 86.5 77.8 74.0 84.5 78.8 82.6 82.8 57.0

Table 9.1: Unary only performance (PCK) of AFR-CNN on the LSP (Person-Centric)
dataset. AFR-CNN is finetuned from ImageNet to MPII (lines 3-6), and then finetuned
to LSP (line 7).

experiments. As LSPET has severe labeling noise, all original high-resolution images
were re-annotated.

Evaluation measures. We use the standard “Percentage of Correct Keypoints
(PCK)” evaluation metric (Sapp and Taskar, 2013; Toshev and Szegedy, 2014; Tomp-
son et al., 2014). We use evaluation scripts available on the web page of (Andriluka
et al., 2014) and thus are directly comparable to other methods. In addition to PCK
at fixed threshold, we report “Area under Curve” (AUC) computed for the entire
range of PCK thresholds.

AFR-CNN. Evaluation of AFR-CNN on LSP is shown in Tab. 9.1. Oracle selecting
per part the closest from 2000 proposals achieves 97.8% PCK, as proposals cover ma-
jority of the ground truth locations. Choosing a single proposal per part using DPM
score achieves 23% PCK – not surprising given the difficulty of the body part detec-
tion problem. Re-scoring the proposals using AFR-CNN with AlexNet (Krizhevsky
et al., 2012) dramatically improves the performance to 56.9% PCK, as CNN learns
richer image representations. Extending the regions by 4x (1x ≈ head size) achieves
65.1% PCK, as it incorporates more context including the information about sym-
metric parts and allows to implicitly encode higher-order part relations. Using data
augmentation and slightly tuning training parameters improves the performance to
72.4% PCK. We refer to the supplementary material for detailed analysis. Deeper
VGG architecture improves over smaller AlexNet reaching 77.9% PCK. All results so
far are achieved by finetuning the ImageNet models on MPII. Further finetuning to
LSP leads to remarkable 82.8% PCK: network learns LSP-specific image represen-
tations. Strong increase in AUC (57.0 vs. 50%) is due to improvements for smaller
PCK thresholds. No bounding box regression leads to performance drop (81.3%
PCK, 53.2% AUC): location refinement is crucial for better part localization. Overall
AFR-CNN obtains very good results on LSP by far outperforming the state of the
art (c.f. Tab. 9.3, rows 7− 9). Evaluation on MPII Single Person shows competitive



9.5 deepcut results 131

Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

MPII softmax 91.5 85.3 78.0 72.4 81.7 80.7 75.7 80.8 51.9
+ LSPET 94.6 86.8 79.9 75.4 83.5 82.8 77.9 83.0 54.7

+ sigmoid 93.5 87.2 81.0 77.0 85.5 83.3 79.3 83.8 55.6
+ location refinement 95.0 88.4 81.5 76.4 88.0 83.3 80.8 84.8 61.5

+ auxiliary task 95.1 89.6 82.8 78.9 89.0 85.9 81.2 86.1 61.6
+ finetune LSP 97.2 90.8 83.0 79.3 90.6 85.6 83.1 87.1 63.6

Table 9.2: Unary only performance (PCK) of Dense-CNN VGG on LSP (PC) dataset.
Dense-CNN is finetuned from ImageNet to MPII (line 1), to MPII+LSPET (lines 2-5),
and finally to LSP (line 6).

performance (Tab. 9.4, row 1).

Dense-CNN. The results are in Tab. 9.2. Training with VGG on MPII with softmax
loss achieves 80.8% PCK thereby outperforming AFR-CNN (c.f. Tab. 9.1, row 6). This
shows the advantages of fully convolutional training and evaluation. Expectedly,
training on larger MPII+LSPET dataset improves the results (83.0 vs. 80.8% PCK).
Using cross-entropy loss with sigmoid activations improves the results to 83.8% PCK,
as it better models the appearance of close-by parts. Location refinement improves
localization accuracy (84.8% PCK), which becomes more clear when analyzing AUC
(61.5 vs. 55.6%). Interestingly, regressing to other parts further improves PCK to
86.1% showing a value of training with the auxiliary task. Finally, finetuning to LSP
achieves the best result of 87.1% PCK, which is significantly higher than the best
published results (c.f. Tab. 9.3, rows 7− 9). Unary-only evaluation on MPII reveals
slightly higher AUC results compared to the state of the art (Tab. 9.4, row 3− 4).

9.4.4 Using detections in DeepCut models

The SPLP problem is NP-hard, to solve instances of it efficiently we select a subset
of representative detections from the entire set produced by a model. In our ex-
periments we use |D| = 100 as default detection set size. In case of the AFR-CNN
we directly use the softmax output as unary probabilities: fpdc = (pd1, . . . , pdc),
where pdc is the probability of the detection d being the part class c. For Dense-CNN
detection model we use the sigmoid detection unary scores.

9.5 deepcut results

The aim of this work is to tackle the multi-person case. To that end, we evaluate the
proposed DeepCut models on four diverse benchmarks. We confirm that both single
person (SP) and multi-person (MP) variants (Sec. 9.2) are effective on standard SP
pose estimation datasets (Andriluka et al., 2014). Then, we demonstrate superior
performance of DeepCut MP on the multi-person pose estimation task.
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Figure 9.2: Pose estimation results over all PCK thresholds.

Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

AFR-CNN (unary) 95.4 86.5 77.8 74.0 84.5 82.6 78.8 82.8 57.0
+ DeepCut SP 95.4 86.7 78.3 74.0 84.3 82.9 79.2 83.0 58.4

+ appearance pairwise 95.4 87.2 78.6 73.7 84.7 82.8 78.8 83.0 58.5
+ DeepCut MP 95.2 86.7 78.2 73.5 84.6 82.8 79.0 82.9 58.0

Dense-CNN (unary) 97.2 90.8 83.0 79.3 90.6 85.6 83.1 87.1 63.6
+ DeepCut SP 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1 63.5
+ DeepCut MP 96.2 91.2 83.3 77.6 91.3 87.0 80.4 86.7 62.6

Tompson et al., 2014 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3 47.3
Chen and Yuille, 2014 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4 40.1
X. Fan and Wang, 2015

∗
92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0 43.2

∗ re-evaluated using the standard protocol, for details see project page of X. Fan and
Wang, 2015

Table 9.3: Pose estimation results (PCK) on LSP (PC) dataset.

9.5.1 Single person pose estimation

We now evaluate single person (SP) and more general multi-person (MP) DeepCut
models on LSP and MPII SP benchmarks described in Sec. 9.4. Since this evaluation
setting implicitly relies on the knowledge that all parts are present in the image we
always output the full number of parts.

Results on LSP. We report per-part PCK results (Tab. 9.3) and results for a variable
distance threshold (Fig. 9.2 (a)). DeepCut SP AFR-CNN model using 100 detections
improves over unary only (83.0 vs. 82.8% PCK, 58.4 vs. 57% AUC), as pairwise
connections filter out some of the high-scoring detections on the background. The
improvement is clear in Fig. 9.2 (a) for smaller thresholds. Using part appearance
scores in addition to geometrical features in c 6= c′ pairwise terms only slightly
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improves AUC, as the appearance of neighboring parts is mostly captured by a
relatively large region centered at each part. As geometrical only pairwise lead
to faster experiments. The performance of DeepCut MP AFR-CNN matches the SP
and improves over AFR-CNN alone: DeepCut MP correctly handles the SP case.
Performance of DeepCut SP Dense-CNN is almost identical to unary only, unlike the
results for AFR-CNN. Dense-CNN performance is noticeably higher compared to
AFR-CNN, and “easy” cases that could have been corrected by a spatial model are
resolved by stronger part detectors alone.

Comparison to the state of the art (LSP). Tab. 9.3 compares results of DeepCut
models to other deep learning methods specifically designed for single person
pose estimation. All DeepCuts significantly outperform the state of the art, with
DeepCut SP Dense-CNN model improving by 13.7% PCK over the best known re-
sult (Chen and Yuille, 2014). The improvement is even more dramatic for lower
thresholds (Fig. 9.2 (a)): for PCK @ 0.1 the best model improves by 19.9% over
Tompson et al. (Tompson et al., 2014), by 26.7% over Fan et al. (X. Fan and Wang,
2015), and by 32.4% PCK over Chen&Yuille (Chen and Yuille, 2014). The latter is
interesting, as (Chen and Yuille, 2014) use a stronger spatial model that predicts the
pairwise conditioned on the CNN features, whereas DeepCuts use geometric-only
pairwise connectivity. Including body part orientation information into DeepCuts
should further improve the results.

Results on MPII Single Person. Results are shown in Tab. 9.4 and Fig. 9.2
(b). DeepCut SP AFR-CNN noticeably improves over AFR-CNN alone (79.8 vs.
78.8% PCK, 51.1 vs. 49.0% AUC). The improvement is stronger for smaller thresholds
(c.f. Fig. 9.2), as spatial model improves part localization. Dense-CNN alone trained
on MPII outperforms AFR-CNN (81.6 vs. 78.8% PCK), which shows the advantages
of dense training and evaluation. As expected, Dense-CNN performs slightly better
when trained on the larger MPII+LSPET. Finally, DeepCut Dense-CNN SP is slightly
better than Dense-CNN alone leading to the best result on MPII dataset (82.4% PCK).

Comparison to the state of the art (MPII). We compare the performance of
DeepCut models to the best deep learning approaches from the literature (Tompson
et al., 2014, 2015)12. DeepCut SP Dense-CNN outperforms both (Tompson et al., 2014,
2015) (82.4 vs 79.6 and 82.0% PCK, respectively). Similar to them DeepCuts rely on
dense training and evaluation of part detectors, but unlike them use single size recep-
tive field and do not include multi-resolution context information. Also, appearance
and spatial components of DeepCuts are trained piece-wise, unlike (Tompson et al.,
2014). We observe that performance differences are higher for smaller thresholds (c.f.
Fig. 9.2 (b)). This is remarkable, as a much simpler strategy for location refinement
is used compared to (Tompson et al., 2015). Using multi-resolution filters and joint
training should improve the performance.

12Tompson et al., 2014 was re-trained and evaluated on MPII dataset by the authors.
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Setting Head Sho Elb Wri Hip Knee Ank PCKh AUC

AFR-CNN (unary) 91.5 89.7 80.5 74.4 76.9 69.6 63.1 78.8 49.0
+ DeepCut SP 92.3 90.6 81.7 74.9 79.2 70.4 63.0 79.8 51.1

Dense-CNN (unary) 93.5 88.6 82.2 77.1 81.7 74.4 68.9 81.6 56.0
+LSPET 94.0 89.4 82.3 77.5 82.0 74.4 68.7 81.9 56.5

+DeepCut SP 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 56.5

Tompson et al., 2014 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6 51.8
Tompson et al., 2015 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0 54.9

Table 9.4: Pose estimation results (PCKh) on MPII Single Person.

9.5.2 Multi-person pose estimation

We now evaluate DeepCut MP models on the challenging task of MP pose estimation
with an unknown number of people per image and visible body parts per person.

Datasets. For evaluation we use two public MP benchmarks: “We Are Family”
(WAF) (Eichner and Ferrari, 2010) with 350 training and 175 testing group shots of
people; “MPII Human Pose” (“Multi-Person”) (Andriluka et al., 2014) consisting of
3844 training and 1758 testing images of multiple interacting individuals in highly
articulated poses with variable number of parts. We use a representative subset of 288
testing images for evaluation. We first pre-finetune both AFR-CNN and Dense-CNN
from ImageNet to MPII and MPII+LSPET, respectively, and further finetune each
model to WAF and MPII Multi-Person. For WAF, we re-train the spatial model on
WAF training set.

WAF evaluation measure. Approaches are evaluated using the official toolkit (Eich-
ner and Ferrari, 2010), thus results are directly comparable to prior work. The toolkit
implements occlusion-aware “Percentage of Correct Parts (mPCP)” metric. In addi-
tion, we report “Accuracy of Occlusion Prediction (AOP)” (Chen and Yuille, 2015).

MPII Multi-Person evaluation measure. PCK metric is suitable for SP pose esti-
mation with known number of parts and does not penalize for false positives that
are not a part of the ground truth. Thus, for MP pose estimation we use “Mean
Average Precision (mAP)” measure, similar to (Sun and Savarese, 2011; Yang and
Ramanan, 2013). In contrast to (Sun and Savarese, 2011; Yang and Ramanan, 2013)
evaluating the detection of any part instance in the image disrespecting inconsistent
pose predictions, we evaluate consistent part configurations. First, multiple body
pose predictions are generated and then assigned to the ground truth (GT) based on
the highest PCKh (Andriluka et al., 2014). Only single pose can be assigned to GT.
Unassigned predictions are counted as false positives. Finally, AP for each body part
is computed and mAP is reported.
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Setting Head U Arms L Arms Torso mPCP AOP

AFR-CNN det ROI 69.8 46.0 36.7 83.7 53.1 73.9
DeepCut MP AFR-CNN 99.0 79.5 74.3 87.1 82.2 85.6

Dense-CNN det ROI 76.0 46.0 40.2 83.7 55.3 73.8
DeepCut MP Dense-CNN 99.3 81.5 79.5 87.1 84.7 86.5

Ghiasi et al., 2014 - - - - 63.6 74.0
Eichner and Ferrari, 2010 97.6 68.2 48.1 86.1 69.4 80.0
Chen and Yuille, 2015 98.5 77.2 71.3 88.5 80.7 84.9

Table 9.5: Pose estimation results (mPCP) on WAF dataset.

Baselines. To assess the performance of AFR-CNN and Dense-CNN we follow a
traditional route from the literature based on two stage approach: first a set of
regions of interest (ROI) is generated and then the SP pose estimation is performed
in the ROIs. This corresponds to unary only performance by DeepCuts. ROI are
either based on a ground truth (GT ROI) or on the people detector output (det ROI).

Results on WAF. Results are shown in Tab. 9.5. det ROI is obtained by extending
provided upper body detection boxes. AFR-CNN det ROI achieves 57.6% mPCP
and 73.9% AOP. DeepCut MP AFR-CNN significantly improves over AFR-CNN det
ROI achieving 82.2% mPCP. This improvement is stronger compared to LSP and
MPII due to several reasons. First, mPCP requires consistent prediction of body
sticks as opposite to body joints, and including spatial model enforces consistency.
Second, mPCP metric is occlusion-aware. DeepCuts can deactivate detections for
the occluded parts thus effectively reasoning about occlusion. This is supported by
strong increase in AOP (85.6 vs. 73.9%). Results by DeepCut MP Dense-CNN follow
the same tendency achieving the best performance of 84.7% mPCP and 86.5% AOP.
Both increase in mPCP and AOP show the advantages of DeepCuts over traditional
det ROI approaches.

Tab. 9.5 shows that DeepCuts outperform all prior methods. Deep learning
method (Chen and Yuille, 2015) is outperformed both for mPCP (84.7 vs. 80.7%)
and AOP (86.5 vs. 84.9%) measures. This is remarkable, as DeepCuts reason about
part interactions across several people, whereas (Chen and Yuille, 2015) primarily
focuses on the single-person case and handles multi-person scenes akin to (Yang
and Ramanan, 2013). In contrast to (Chen and Yuille, 2015), DeepCuts are not limited
by the number of possible occlusion patterns and cover person-person occlusions
and other types as truncation and occlusion by objects in one formulation. DeepCuts
significantly outperform (Eichner and Ferrari, 2010) while being more general:
unlike (Eichner and Ferrari, 2010) DeepCuts do not require person detector and not
limited by a number of occlusion states among people. Qualitative comparison to
(Chen and Yuille, 2015) is provided in Fig. 9.3.
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Figure 9.3: Qualitative comparison of our joint formulation DeepCut MP Dense-CNN
(middle) to the traditional two-stage approach Dense-CNN det ROI (top) and the
approach of Chen&Yuille Chen and Yuille, 2015 (bottom) on WAF dataset. In contrast
to det ROI, DeepCut MP is able to disambiguate multiple and potentially overlapping
persons and correctly assemble independent detections into plausible body part
configurations. In contrast to Chen and Yuille, 2015, DeepCut MP can better predict
occlusions (image 2 person 1− 4 from the left, top row; image 4 person 1, 4; image 5,
person 2) and better cope with strong articulations and foreshortenings (image 1,
person 1, 3; image 2 person 1 bottom row; image 3, person 1-2). See supplementary
material for more examples.
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Setting Head Sho Elb Wri Hip Knee Ank UBody FBody

AFR-CNN det ROI 71.1 65.8 49.8 34.0 47.7 36.6 20.6 55.2 47.1
AFR-CNN MP 71.8 67.8 54.9 38.1 52.0 41.2 30.4 58.2 51.4
AFR-CNN MP UB 75.2 71.0 56.4 39.6 - - - 60.5 -

Dense-CNN det ROI 77.2 71.8 55.9 42.1 53.8 39.9 27.4 61.8 53.2
Dense-CNN MP 73.4 71.8 57.9 39.9 56.7 44.0 32.0 60.7 54.1
Dense-CNN MP UB 81.5 77.3 65.8 50.0 - - - 68.7 -

AFR-CNN GT ROI 73.2 66.5 54.6 42.3 50.1 44.3 37.8 59.1 53.1
Dense-CNN GT ROI 78.1 74.1 62.2 52.0 56.9 48.7 46.1 66.6 60.2
Chen&Yuille SP GT ROI 65.0 34.2 22.0 15.7 19.2 15.8 14.2 34.2 27.1

Table 9.6: Pose estimation results (AP) on MPII Multi-Person.

Results on MPII Multi-Person. Obtaining a strong detector of highly articulated
people having strong occlusions and truncations is difficult. We employ a neck
detector as a person detector as it turned out to be the most reliable part. Full body
bounding box is created around a neck detection and used as det ROI. GT ROIs
were provided by the authors (Andriluka et al., 2014). As the MP approach (Chen
and Yuille, 2015) is not public, we compare to SP state-of-the-art method (Chen and
Yuille, 2014) applied to GT ROI image crops.

As shown in Tab. 9.6. DeepCut MP AFR-CNN improves over AFR-CNN det ROI
by 4.3% achieving 51.4% AP. The largest differences are observed for the ankle, knee,
elbow and wrist, as those parts benefit more from the connections to other parts.
DeepCut MP UB AFR-CNN using upper body parts only slightly improves over the
full body model when compared on common parts (60.5 vs 58.2% AP). Similar
tendencies are observed for Dense-CNNs, though improvements of MP UB over MP
are more significant.

All DeepCuts outperform Chen&Yuille SP GT ROI, partially due to stronger part
detectors compared to (Chen and Yuille, 2014) (c.f. Tab. 9.3). Another reason is that
Chen&Yuille SP GT ROI does not model body part occlusion and truncation always
predicting the full set of parts, which is penalized by the AP measure. In contrast,
our formulation allows to deactivate the part hypothesis in the initial set of part
candidates thus effectively performing non-maximum suppression. In DeepCuts part
hypotheses are suppressed based on the evidence from all other body parts making
this process more reliable.

9.6 conclusions

Articulated pose estimation of multiple people in uncontrolled real world images is
challenging but of real world interest. In this work, we proposed a new formulation
as a joint subset partitioning and labeling problem (SPLP). Different to previous
two-stage strategies that separate the detection and pose estimation steps, the SPLP
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model jointly infers the number of people, their poses, spatial proximity, and part
level occlusions. Empirical results on four diverse and challenging datasets show
significant improvements over all previous methods not only for the multi-person,
but also for the single-person pose estimation problem. On multi-person WAF
dataset we improve by 30% PCP over the traditional two-stage approach. This
shows that a joint formulation is crucial to disambiguate multiple and potentially
overlapping persons.
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In this chapter, we summarize the contributions of this thesis and discuss potential
directions for future work.

10.1 discussion of contributions

Visual understanding of people in unconstrained monocular images and videos,
especially street scene videos, has been extensive studied and significantly advanced
over the past years. Still machine perception is far below human quality level. In
order to handle the complexity of this problem, it has been decomposed into well
defined and highly correlated sub-problems, such as people detection, tracking,
human pose estimation. The focus of this thesis is to propose novel algorithms
and models for each sub-problems, as well as to bridge the gaps between them by
proposing joint formulations that simultaneously solve two or more sub-tasks. In
the following, we summarize the challenges of visual understanding of people in
realistic images and videos and summarize the contributions of thesis.

Occlusion handling is a well-known challenge for people detection in crowded
scenes and generic solutions are far from being available. People detectors such
as the deformable part models (Felzenszwalb et al., 2010) and the faster RCNN
(Ren et al., 2015) have demonstrated good detection results on challenging datasets.
However, the performance degrades quickly in the presence of heavy occlusions.
Such detectors treat occlusions as distractions or nuisance. The dominant occlusions
in crowed street scenes are due to overlaps between people. Our intuition is that
person/person occlusion patterns are characteristic and could be explicitly used
to detect the presence of occlusions. Localizing the person in front facilitates the
localization of the occluded person and vice versa.

As our first contribution towards people detection, we propose joint detection
models that are trained to detect single person as well as pairs of people under
varying degrees of occlusion. As presented in Chapter 3, the joint detectors signifi-
cantly improve over single-person detectors for detecting people in crowded street
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scenes, without losing performance on images with one person only. To deal with
the difficulties of obtaining sufficient training data for varying degrees of occlusion,
we propose to generate synthetic training images. The focus of Chapter 3 is to detect
people in the side-view images, where the configuration of occlusion patterns can be
characterized by the relative scale, postion of the occluding and occluded people.
The results are very promising and suggest the potential of leveraging characteristic
appearance patterns of person/person pairs also for detecting occluded people in
more general settings. However, the generalization of this idea to crowded scenes
with people walking in arbitrary directions is rather challenging due to the vast
amount of possible person-person occlusion situations. This variation may arise from
several factors, such as people’s body articulation, or their position and orientation
relative to the camera. The number of putative occlusion patterns is exponential in
the number of factors. The crucial point here is, however, that not all of them are
equally relevant for successful tracking. Therefore, finding occlusion patterns that
are relevant in practice in order to reduce the modeling space is essential for apply-
ing joint person detectors for tracking in general crowded scenes. As our second
contribution towards people detection, the joint models proposed in Chapter 3 are
further extended in Chapter 4 where the learning of the joint models is designed to
address common failure cases during tracking due to long-term inter-object occlu-
sions. The reoccurring constellations of person/person occlusions are learned with a
multi-person tracker in the loop. The tighter integration of tracker and detector that
is proposed in the thesis improves tracking results on several challenging benchmark
sequences.

Tracking multiple people in a sequence of images is often modelled as a data
association problem. Given person detections in each frame, by far the most common
approach is to define a graph whose nodes represent the detections and edges link
detections that hypothetically describe the same person. With respect to a linear
objective function, the tracks of multiple people can be obtained by solving a
Minimum Cost Disjoint Paths Problem. Disjoint paths mean that the paths do
not branch or merge, which is rather intuitive as a single person can not either
occupy the same physical space or split into two persons. However, typical people
detectors generate many similar detections for the same person. Non-maximum
Suppression (NMS) is often applied to pre-select a single detection for each target.
Such approaches have a notable caveat: NMS could remove the detections for
partially occluded person. Acknowledging the fact that target detectors produce
multiple equally plausible detections per target and frame, we propose a novel
mathematical abstraction for multi person tracking, namely, the Minimum Cost
Subgraph Multicut Problem (Chapter 5). As our first contribution towards multi
person tracking, the Minumum Cost Subgraph Multicut model is superior to the
conventional Minimum Cost Disjoint Paths formation in the way that the Subgraph
Multicut model selects and clusters all suitable hypotheses for each target jointly in
space and time, eliminating the needs for the heuristic Non-maximum Suppression.
Besides, the number of persons is not fixed or biased by definition of the problem,
but is estimated in an unbiased fashion from the video sequence and determined by
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the solution of the problem. A notable challenge for tracking in crowded scenes is to
associate detections before and after long-term occlusions. One trend in the research
area of tracking is to utilize the deep person re-identification networks to effectively
model the relations between detections that are far in time. However, incorporating
such long-term information into tracking algorithms is not trivial. Because, one
has to model the fact that similar looking people are not necessarily identical. As
our second contribution towards multi person tracking, we propose another novel
formulation for multi person tracking, namely, Minimum Cost Lifted Multicut
Problem (Chapter 7). It has the advantage that distinction can be made between the
edges that define possible connections and the edges that define the costs or rewards
for assigning the incident nodes to distinct tracks. This allows us to avoid assigning
the distinct but similar looking people to the same track. The Minimum Cost Lifted
Multicut Model encodes the long-range person re-identification information, and at
the same time penalizes long-term false joints by forcing valid paths along the regular
edges in a rigorous manner. The tracking model achieves the top performance on
the challenging MOT16 benchmark.

The tracking summarized in the previous paragraph requires previously learned
semantic knowledge of the target object category and is therefore traditionally
approached from a high-level perspective. Motion segmentation, which aims at
tracking pixels in a sequence of images, could be considered as a low-level visual
understanding of the motion in a video. These two problems are highly related
in the sense that their goal is to determine the image regions that belong to the
same object in the video. In Chapter 8, we further explore visual tracking in these
two different granularities. More specifically, we aim to understand the motion
of the scene and the objects in the scene both in the pixel trajectory level and the
detection bounding box level. To that end, we propose a joint multicut model that
simultaneously addresses multi object tracking and motion segmentation so as to
leverage the advantages of both. The pixel trajectories carry the information that
how each single, well localized points are moving and can be used to disambiguate
partial occlusion and motion speed changes. Therefore, motion segmentation allows
for precise local motion cues and correspondences that support robust multi-object
tracking results with high recall. Object detection and tracking allows a more reliable
grouping of motion trajectories on the same physical object. These high-level cues
also provide the information about the rough object location and re-identify the
object after occlusion. The experimental results are obtained in both domains with a
strong improvement over the state of the art in motion segmentation.

Towards the goal of a richer understanding of people in realistic images and
videos, we further extend the multicut tracking model for multi person pose es-
timation in Chapter 9. By far the most common approach for the multi person
pose estimation task is to separate the detection and pose estimation steps. This
is unsuited for the cases when people are in close proximity. The detection errors
are inherently propagated into the pose estimation step. In contrast, we propose to
model the task as a joint subset partitioning and labelling problem (SPLP) where
we jointly estimate poses of all people present in an image by minimizing a joint
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objective. The formulation is based on partitioning and labelling an initial pool of
body part candidates into subsets that correspond to sets of mutually consistent
body-part candidates and abide to mutual consistency and exclusion constraints.
The proposed method has several advantages. Firstly, the fomulation is able to
deal with an unknown number of people, and also infers this number by linking
part hypotheses. Secondly, the formulation allows to either deactivate or merge
part hypotheses in the initial set of part candidates hence effectively performing
non-maximum suppression (NMS). In contrast to NMS performed on individual
part candidates, the model incorporates evidence from all other parts making the
process more reliable. And last, the problem is cast in the form of an Integer Linear
Program (ILP). Although the problem is NP-hard, the ILP formulation facilitates
the computation of bounds and feasible solutions with a certified optimality gap.
Empirical results on four diverse and challenging datasets show significant improve-
ments over all previous methods not only for the multi-person, but also for the
single-person pose estimation problem.

In thesis, we address a number of diverse tasks that aim to enable vision systems
to understand people in realistic images and videos, at human perception level or
even better. In particular, we propose several novel ideas and rigorous mathematical
formulations for each task, push the boundary of state-of-the-arts and result in
superior performance. However, some of the ideas proposed in this thesis are not
fully explored. Next, we discuss how to further advance the techniques for visually
understanding of people in images and videos in the future.

10.2 perspectives for people detection

The people detection methods proposed in this thesis are mainly for crowded street
scenes. Despite the heavy occlusions, recent techniques in this area have shown
significant detection performance on large scale pedestrian detection benchmarks.
In the future, we would like to develop detection models for more general scenarios,
where people are no longer restricted to the upright orientation. The general people
detection task is much more challenging due to several factors, such as large pose
changes, appearance variance and partial occlusions. To address these challenges,
we plan to focus on the following directions.

Modelling interaction between people and their environments. In real-world
scenes, people often interact with objects. E.g. A person could sits on a chair and be
heavily occluded by a table that is in front of him. In this case, the visual recognition
of the chair and the table provides useful information for detecting the significantly
occluded person. Meanwhile, the detection for the person could help us to reason
about the existence of the table and the chair. Therefore how to jointly model people,
their surrounding objects and the relations between them is an interesting direction
to explore in the future. In particular, we would like to focus on designing structure
models which take the object recognition information into account for the people
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detection task.

Learning non-maximum suppression (NMS). Modern object detectors yield mul-
tiple equally plausible detections for a single object, which often requires a separate
post-processing step to select a single detection hypothesis for the object. Several
works have been proposed to learn a selection mechanism (Hosang et al., 2017,
Henderson and Ferrari, 2016, Hosang et al., 2016). However none of them produce
significant improvement over the traditional NMS. We believe that for a superior
performance, the loss function should be designed in a way that instead of suppress-
ing non-maximum detections, it should allow multiple detections and encourage a
proper clustering of all plausible detections.

People detection by pose estimation and instance segmentation. The joint par-
titioning and labelling model proposed in Chapter 9 can be viewed as a person
detector that is able to detect people under significant occlusions. The key element
is that the detection task is operated on pre-defined body joints (key points) level,
which is different from the typical bounding box to a full person extent. A straight-
forward way to further improve the detection performance in crowded scenes is
to utilize the instance segmentation technique for the detection task. The Mask
RCNN, recently proposed by He et al., 2017, is a deep convolutional neural network
architecture that is jointly trained for detection, instance segmentation and key
points localization tasks. The results presented in the paper are encouraging and
suggest that segmentation and pose aided detection model is a very promising future
direction to explore.

10.3 perspectives for multi person tracking

In this thesis, we have focused on rigorous mathematical abstractions for the multi
person tracking task. Our minimum cost multicut formulation (Chapter 5) and
minimum cost lifted multicut formulation (Chapter 7) produce robust detection
association results and define the state-of-the-art tracking performance on the chal-
lenging multi object tracking benchmark (Milan et al., 2016). However, there are
several limitations. First, the tracking approaches proposed in this thesis are stage-
wise approaches. The training is performed in a piece-wise fashion, which does
not necessarily result in a good estimation of model parameters. Second, we follow
the traditional tracking-by-detection framework, where detection and tracking are
considered as well-defined, separate tasks (An exception is the detector learning
algorithm proposed in Chapter 4). Such decomposition is not ideal as these two
tasks are highly correlated. A joint solution could be much more desirable. Third,
in this thesis, multi person tracking is performed on 2D image domain and 3D
scene information is completely ignored. We believe that jointly estimating 3D scene
estimation and 3D object tracking is a very interesting direction to explore. In the
following, we discuss several concrete directions for the multi person tracking task.
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End-to-end modelling. Deep learning techniques have been used in many com-
puter vision tasks, often obtaining superior performance. Researchers have been
exploring deep learning based tracking algorithms as well (Sadeghian et al., 2017,
Milan et al., 2017). However, there is arguably no convincing work yet. Reasons are
two-fold: first, deep learning based methods often need a large amount of training
data, which is not the case for multi person tracking, where annotating tracking
data is very expensive; second, the multi person tracking task involves detection,
association, re-identification, and counting. The deep features learned for one task
are not necessarily suitable for another task. E.g. the features for the detection task
should be characteristic to distinguish people and background. However, features
for associating people detections should be conscious of fine-grained differences
between people. Therefore designing an end-to-end deep architecture to accomplish
the above-mentioned multiple tasks is an interesting and challenging topic to work
on.

Tracking across multiple cameras. Another interesting direction for multi person
tracking is to explore multi-camera setting. The tracking approaches proposed in this
thesis are dedicated to single camera settings. However, multiple camera systems are
largely used in video surveillance. Therefore, visual tracking across multiple cameras
that without overlaps or small overlap regions is crucial for certain application, e.g.
security. The main challenge of tracking across multiple cameras is to re-identify
the target under various lighting, background, viewpoints. Given the powerful
person re-identification model proposed in Chapter 7, extending the current tracking
framework to the multiple camera setting is a straightforward direction for the future
work.

Combing tracking and flow. Tracking and flow are typically considered as two
separate problems. But to certain extent, they are not. Flow can be considered as
"tracking" of pixels and tracking is the crude "flow" on the object level. Sevilla-Lara
et al., 2016 propose a semantic flow approach, where the objects in a video are first
identified and tracked. The flow is then computed relative to the translation and
scale that are obtained from the tracking result. We could further extend the semantic
flow to utilize tracking to reason about the occlusion relation between objects, which
is one of the toughest problems in flow estimation. The flow on the rigid part of
the scene can be explored to estimate the depth of the scene across time, and then
the tracks could be further extended with the depth information. Overall, we could
obtain a detailed motion representation of both rigid and non-rigid scenes over time.

10.4 perspectives for human pose estimation

In the following, we discuss two future directions towards human pose estimation.
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End-to-end multi person pose estimation approach. The Minimum Cost Multicut
Problems that are intensively explored in this thesis present an interesting area
of research in Computer Vision. The plain multicut formulation and the joint
partitioning and node labelling formulation often consist of four individual steps.
E.g. in the case of multi person pose estimation, the individual steps are detecting key
points, computing similarity measures (costs on the edges), solving the optimization
problem, and converting clusters to poses. The learning of the key point detector
and the similarity measures are independent, which could lead to a suboptimal
model parameters for the later optimization step. One important aspect that is not
addressed by the thesis is the joint training of detection and similarity measures.
Although lots of methods for learning structural model have been proposed, they
typically rely on conditional random field models, which only concerns the labelling
of node variables. Our models are applicable to the node labelling problem and
the edge labelling problem. To our best knowledge, an end-to-end model for the
combined problem has not yet been proposed. In the future, we would like to
explore the end-to-end multi person pose estimation approach.

Human pose estimation in 3D. Another important aspect of future directions is
to lift the human pose estimation from 2D image coordinates to 3D space. Single
person 3D pose estimation has been studied and many works have been proposed
(Ionescu et al., 2014, Ramakrishna et al., 2012, Li and Chan, 2014). But there are only
a few works on 3D multi person pose estimation. One example is the work proposed
by Rogez et al., 2017, where the 2D and 3D pose estimation of multiple people are
simultaneously obtained from an end-to-end trainable deep neural network. The
network uses a pose proposal generator to produce a set of person-level bounding
boxes and possible poses at different locations on the image. The estimated poses are
later refined both in 2D and 3D. Instead of operating on the full person extent, a very
interesting future direction for us is to extend our bottom-up 2D pose estimation
approach to simultaneously estimate 3D locations and rotations of the key points.
We believe that such bottom-up pose estimation approach could be more suitable for
heavily occluded people. Another way of performing 3D human pose estimation
is to utilize generative 3D human models and combine them with discriminative
models. Such hybrid models could bring the complementary information from the
both sides, resulting in a generic and scalable solution to 3D human pose estimation
task.

10.5 the bigger picture

In the previous section, we have discussed the future works that are highly related
to each contribution of this thesis. In the following, we will present a broader view
and long-term directions towards a holistic understanding of visual scenes and in
particular, visual understanding of people in the scenes.
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Closing the gap. Due to the complexity and diversity of realistic visual scenes,
people detection, tracking, articulated pose estimation are typically considered as
well-defined and isolated research areas. While such simplifications seem to make
each task easier, there are several notable problems. First, a large portion of image
content is ignored, which normally contains information about 3D scene structure,
surrounding objects, interaction between people. We argue that instead of discarding
the rich visual information, we should utilize them as complementary observation
when we infer the location, pose and motion of people in the scene. Second,
detections errors introduced in the detection phase could directly influence the
performance of tracking and pose estimation. As discussed in previous paragraphs,
we believe that jointly modelling multiple tasks could be beneficial and is a promising
direction for future work. In this thesis, we move towards the idea of jointly
modeling different tasks. For instance, the detection approach proposed in Chapter
4 is optimized for the tracking performance, which facilitates a tighter relationship
between people detector and tracker. Another example is the multi person pose
estimation model proposed in Chapter 9. Instead of a two-stage approach where
detection and pose estimation are performed separately, we utilize a single objective
function to obtain the location and the pose estimation of each person in the scene.
In our very recent work (Insafutdinov et al., 2017), we propose a pose tracking
approach where pose estimation as well as temporal association are jointly modelled.
Last, higher-level vision tasks, such as activity recognition, body language, and
social relation are not explored in this thesis, however these tasks could facilitate the
recognition tasks such as detection, tracking and pose estimation. We argue that
closing the gap between the higher level and lower level recognition tasks is a very
promising long-term direction for future exploration.

Holistic understanding of real world videos. Visual understanding of general
scenes is arguably the most important goal of many vision systems. The visual
information contains many aspects, such as 3D scene geometry, object recognition,
people recognition, the intersection between people and objects, and even physical
constraints. When we go beyond single images, visual information also includes mo-
tion of the scene. As a long-term direction, we aim to obtain a holistic understanding
of realistic videos. We would like to have a rich representation about how each pixel
moves in the scene. By analysing the scene geometry and semantic information, we
could split the scene into rigid and non-rigid parts. The motion of the rigid part of
the scene could be the cues for uncovering the camera pose and motion. For the
non-rigid part, we could explore tracking to understand their motion. As people
are often the central characters for real world videos, it is particular interesting to
understand their motion and behavior. We could utilize generative and discrimina-
tive human models to uncover their pose, shape and motion. We could also explore
physical constraints that are inherent in the natural world to model the interaction
between humans and objects. We argue that such holistic understanding of realistic
images and videos is essential for building autonomous and intelligent computer
systems and it is our long-term direction for future research.
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