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ABSTRACT

This thesis theoretically discusses the dynamics of small Coulomb
crystals of ions confined in state-dependent potentials following a
sudden quench of the mechanical forces on a single ion embedded in
the crystal. This dynamics is analysed using the principle of Ramsey
interferometry, for which purpose the electronic state of the ion is put
into a superposition, thereby entangling the ion’s internal degrees of
freedom with the crystal wavefunction due to the state-dependent
dynamics. Measuring the electronic state after a time of free evolution
and determining the interferometric visibility enables us to deduce
information about the motional state of the crystal. We analyse the
temporal variation of this visibility in dependence on the trap par-
ameters, the crystal size, and the temperature close to a structural
transition, which allows us to infer the equilibrium properties of
the crystal close to criticality as well as the crystal’s features as a
non-Markovian bath.

ZUSAMMENFASSUNG

Diese theoretische Arbeit behandelt die Dynamik von kleinen Ionen-
Coulomb-Kristallen in zustandsabhédngigen Potentialen nach einer
rasch erfolgten Anderung des Fallenpotentials fiir ein einzelnes Ion.
Diese Dynamik analysieren wir mittels des Konzepts der Ramsey-
Interferometrie indem wir den elektronischen Zustand in eine Uberla-
gerung bringen, sodass sich dieser aufgrund der zustandsabhédngigen
Dynamik mit der Wellenfunktion des gesamten Kristalls verschréankt.
Die Messung des elektronischen Zustands des Ions nach einer freien
Zeitentwicklung und die Bestimmung des interferometrischen Kon-
trasts dieser Messung ermoglichen es uns, Riickschliisse auf den Bewe-
gungszustand des gesamten Kristalls zu ziehen. Wir analysieren die
zeitliche Veranderung des Kontrasts fiir verschiedene Fallenparameter,
Kristallgroien und Temperaturen nahe eines strukturellen Ubergan-
ges, wortiber sich die Gleichgewichtseigenschaften des Kristalls nahe
des kritischen Uberganges sowie die Charakteristik des Kristalls als
nicht-markovsches Bad ableiten lassen.
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INTRODUCTION

What comprises the border between the classical and the quantum
world? This question puzzled the founders of quantum mechanics
since the establishment of the theoretical framework in the 1920s, and
it has kept on puzzling numerous scientists ever since (see Wheeler
and Zurek 1983, for a comprehensive collection of milestone articles
on the subject). On the theoretical side, much progress has been made
within the so-called decoherence program (Paz and Zurek 2002; Joos
et al. 2003; Zurek 2003; Schlosshauer 2005). In this framework the
evident instability of macroscopic quantum mechanical superpositions
is explained as resulting from entanglement, that is established via
a quantum mechanical interaction between the physical system of
interest and the surrounding physical systems, the latter being col-
lectively termed environment or bath. Such entanglement leads to an
apparent degradation of the system’s quantum mechanical features
such as the disappearance of interference, the presence of which is
one manifestation of the quantum mechanical superposition principle.
Despite the achievements of the decoherence program, several funda-
mental problems remain unsolved (Penrose 2005, Ch. 29, pp.782-815;
Schlosshauer 2005). One question that is especially relevant to this
thesis is the systematic development of a statistical mechanics frame-
work allowing the description of the emergence of the classical world
in a consistent manner and starting from the individual constituents.
Such a framework would permit, amongst other things, the identifica-
tion of the relevant physical properties that preserve or alternatively
destroy quantum mechanical coherence. It would thus be instrumental
for finding efficient ways to combat the loss of quantum coherence,
which is the main obstacle to the development of deployable quantum
technologies such as quantum computers, quantum metrology, and
quantum sensors.

Some theoretical studies go beyond the typical approach of deriv-
ing Born-Markov master equations (Gardiner and Zoller 2000, Ch. 5,
pp- 130ff.; Englert and Morigi 2002) for the description of the system-
bath interaction; instead they consider, for instance, spin systems by
analysing the dynamics of a single spin coupled to a spin environ-
ment (Khaetskii et al. 2002; Merkulov et al. 2002). Since these systems
exhibit quantum critical behaviour, they constitute an ideal setting
for analysing the emergence of thermalization after a sudden or slow
quench of the external magnetic field crossing the critical value (Igléi
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and Rieger 2011; Calabrese et al. 2011; Polkovnikov et al. 2011; Eisert
et al. 2015). With this in mind, Porras and Cirac (2004) and Schneider,
Porras et al. (2012) theoretically proposed to simulate the behaviour of
spin chains by engineering the coupling of trapped ions with external
fields.

As a matter of fact, cold trapped ions are well suited for an exper-
imental setup addressing these open questions: Not only are they
one of few quantum systems to possess outstanding controllability in
almost all their degrees of freedom, they are also better separable from
their surroundings than many other physical systems. Applications
with trapped ions include high precision spectroscopy measurements
of the g-factor of elementary particles and anti-particles (Brown and
Gabrielse 1986), antecendent approaches for quantum computation
(Héffner et al. 2008; Blatt and Wineland 2008)," realizations of quantum
simulation of various physical model systems (Johanning et al. 2009;
Schneider, Porras et al. 2012), and also atomic clocks (Riehle 2005) with
higher accuracy than those currently in use to establish the common
time standard. Because of the outstanding control over practically all
degrees of freedom, trapped ions are ideally suited for the investiga-
tion of open questions in quantum mechanics. Take for instance the
experimental creation of Schrodinger cat states of a single trapped
ion (Monroe, Meekhof, King and Wineland 1996) and the experi-
mentally verified fragility of such states when subjected to external
noise (Myatt et al. 2000; Turchette et al. 2000).

One possible alternative to analysing the stability of such superposi-
tion states under the influence of external noise would be a combined
arrangement under which one part is considered as the system and
the remainder is regarded as an environment or bath. Many of the
paradigmatic models have a collection of harmonic oscillators as the
bath system, to which another quantum system is coupled, e.g. a
central particle in a potential (Ford et al. 1965; Caldeira and Leggett
1983) or a two-level system (also called the spin-boson model, which is
equivalent to a particle in a double well coupled to a bath of harmonic
oscillators; Leggett et al. 1987; Weiss et al. 1987). Some of these paradig-
matic models have been investigated theoretically for cold trapped
ion Coulomb crystals (Porras, Marquardt et al. 2008). For the former
system, recent studies have shown that even entanglement between
distant particles in a harmonic chain can be generated (Audenaert
et al. 2002; Paz and Roncaglia 2008; Wolf et al. 2011), and a feas-
ible experimental verification can be implemented for ion Coulomb
chains (Fogarty et al. 2013; Taketani et al. 2014).

However, due to a lack of scalability, trapped ions probably never mature beyond the
current antetype status.



In this work, we investigate another approach under which the
harmonic oscillators themselves become dependent on the state of a
two-level system. This scheme can be implemented for trapped ion
Coulomb crystals by the addition of a state-dependent potential on
top of the regular trapping potential. We then examine how the co-
herence between two electronic levels of a single ion embedded inside
such a crystal is affected by a local quantum quench of the external
state-dependent potential. When we put the ion into a quantum su-
perposition of its electronic levels such that the equilibrium positions
become dependent on the electronic state, the system realizes a dy-
namical quantum superposition that simultaneously oscillates around
equilibrium positions of different crystalline structures. This setup is
then combined with a scheme of Ramsey interferometry, previously
suggested by Poyatos, Cirac, Blatt et al. (1996) and De Chiara et al.
(2008), in order to probe the motional state by monitoring the coher-
ence between the two electronic levels. We identify the properties
of various calculated instances of this visibility as a function of the
time between the Ramsey pulses and provide an explanation rooted
in the dynamics of the normal modes after the quench. When the tem-
perature of the initial motional state is increased, we observe a quick
drop of the visibility with certain periodically occurring “thermal
revivals”, which are absent at absolute zero temperature. These ori-
ginate from the interplay of the dynamical phases of the initial and
evolving thermally excited motional states of the ion Coulomb crystal.
The result suggests that thermal dephasing of the environment can
indeed have an important (and possibly underestimated) impact on
the coherence of an embedded two-level system.

This thesis is composed of two parts: The first part is concerned with
the creation of ion Coulomb crystals in state-dependent potentials and
their properties. After reviewing the basic physics of trapped ions and
of ion Coulomb crystals in Chapter 1, we exemplify how to implement
such a state-dependent potential in Chapter 2, where we also discuss
the possible state-dependent structures for a three-ion crystal. We
then derive the necessary tools for analysing the dynamical evolution
of such an ion Coulomb crystal in a state-dependent potential in
Chapter 3.

In the second part of this thesis, we show that after a local quantum
quench of an ion Coulomb crystal in a state-dependent potential, the
coherence between two electronic levels of a single ion embedded in
the crystal is determined by the dynamics of the motional state of
the whole crystal. The coherence can be monitored by making use
of the scheme of Ramsey interferometry, which we review for that
purpose in Chapter 4; in particular, we show how this scheme allows
the extraction of information about the motional degrees of freedom
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by simply monitoring the visibility of the Ramsey interference fringes
over time. In Chapters 5 and 6 we examine different characteristics of
the visibility in dependence on the parameters of the quench, like the
initial state preparation or the strength of the quench, and additionally
on the temperature.

In the Conclusions we suggest possible extensions to the work
presented here.



Part1

ION COULOMB CRYSTALS IN
STATE-DEPENDENT POTENTIALS

In this part, we first review the physics of trapped ions
and trapped ion Coulomb crystals. Then we discuss how
to subject ion Coulomb crystals to a state-dependent po-
tential and propose how to implement such a potential in
an experiment. Finally, we discuss the equilibrium config-
urations of ion Coulomb crystals in such state-dependent
potentials and develop the theoretical methods for ana-
lysing the dynamics of ion Coulomb crystals after a local
quantum quench.






TRAPPED IONS AND ION COULOMB CRYSTALS

In this chapter we introduce the background for the system studied
in this thesis, a small trapped ion Coulomb crystal. For this purpose
we review first the basic principles of commonly used ion trapping
apparatus in Section 1.1; then, we turn to a brief review of the physics
of many trapped ions and the conditions for observing plasmas and
crystals in Section 1.2; finally, we present an overview of the different
crystalline structures and the possible structural transitions between
them in Section 1.3, with particular emphasis on the linear-zigzag
transition.

1.1 TRAPPING IONS
Why Trap Ions?

Before the advent of ion traps, all experiments involving the measure-
ment of atomic properties, such as frequencies of spectral lines, were
performed on ensembles of a large number of particles. Measurements
on ensembles such as gaseous atoms in evacuated cells are affected
primarily by two effects. First, interactions between the particles may
change the measured properties; for example, the collisions between
the atoms of a gas induce a collisional broadening of the measured spec-
tral linewidths (Allen and Eberly 1987). Second and more profoundly,
any measurement over an ensemble yields an averaged result (Paul
1990). In particular, an ensemble of atoms inside a gas cell has a
certain velocity distribution; atoms with different velocities experience
different Doppler shifts and thus have resonance curves which are
centred at different frequencies. The measured curve is given by the
superposition and hence the average of the resonance curves of the
individual atoms; it is much broader than the individual resonance
curves. Any measurement on a sample of atoms at non-zero temper-
ature thus suffers from this so-called inhomogeneous broadening (Allen
and Eberly 1987), limiting the precision of the measured results.

The achievement of laser cooling for trapped ions (Neuhauser et al.
1978; Wineland, Drullinger et al. 1978) allowed for the first observation
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of a single trapped atomic ion (Neuhauser et al. 1980)." This milestone
experiment paved the way for examining the pure interaction of a
single atomic particle with the electromagnetic field, and thus for more
precise spectroscopic measurements. Soon after, it was realized that a
single trapped atomic ion could provide a new method for establishing
a more accurate frequency standard (Dehmelt 1981): Laser cooling
makes possible the elimination of the non-relativistic Doppler shift,
and the electric field — and with it any Stark shifts — vanish at the
centre of the trap (see Rosenband et al. 2008, Chou et al. 2010, King
et al. 2012, Huntemann et al. 2012, and Madej, Dubé et al. 2012 for
recent experiments, and Madej and Bernard 2001 or Riehle 2005, Ch.
10, pp. 315-352 for an overview on atomic clocks).

The successful demonstration of ground-state cooling of a single
ion (Diedrich, Bergquist et al. 1989) gave the means to controlling and
manipulating the motional state of a single trapped ion (Leibfried
et al. 2003). These achievements led to a method allowing actual
control over the motional state of a single or a small number of
trapped ions (Meekhof et al. 1996), most striking result being the first
demonstration of the basic constituents of a quantum computer (Cirac
and Zoller 1995; Monroe, Meekhof, King, Jefferts et al. 1995; Schmidt-
Kaler et al. 2003; Leibfried et al. 2003).>

Moreover, trapped ions are a promising platform for realizing cer-
tain instances of quantum simulators of complex problems, otherwise
inaccessible with state-of-the-art computers; a number of different
models are currently being explored (Johanning et al. 2009; Schneider,
Porras et al. 2012; Blatt and Roos 2012; see Georgescu et al. 2014,
for a review comparing the potential of trapped ions for quantum
simulation with other physical systems). By and large, the presence of
a regular lattice is advantageous for employing ion Coulomb crystals
as quantum simulators, as many models considered for simulation
are indeed defined on regular lattices. There a several different crystal
structures occurring for ion Coulomb crystals (Dubin and O’'Neil 1999),
which we shall review later in this chapter. These structures are the
focus of a number of interesting studies in the realms of quantum
reservoir engineering (Poyatos, Cirac and Zoller 1996), quantum phase
transitions (Islam et al. 2011; Bermudez and Plenio 2012; Shimshoni
et al. 2011b), non-equilibrium statistical mechanics (Huber et al. 2008;

The trapping of a single electron had been achieved some years earlier by Wineland,
Ekstrom et al. (1973).

In fact, trapped ions for demonstrating a useful quantum computer lacks one of
the essential requirements listed by DiVincenzo (2000), namely the scalability of the
system, i. e. the trapped ion quantum computer can be implemented only for a small
number of trapped ions (Monz et al. 2011) but not for arbitrarily large numbers of
ions. Hence, tremendous efforts are currently being spent in making the system
scalable, e.g. by using micro-fabricated traps. For a review of quantum computation
with trapped ions see Blatt and Wineland (2008); Héffner et al. (2008).
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Dorner et al. 2013; Mazzola et al. 2013), and thermalization of many-
body systems (Lin and Duan 2011). Before turning to the physics of
ion Coulomb crystals in Section 1.2, though, we start by reviewing
how a single ion is trapped.

1.1.1  The Basic Principles of Trapping lons

A reasonable first attempt at trapping a charged particle would be to
assemble a set of electrodes in such a way that they provide an electric
field which would enclose the ion within a small spatial region from
which it cannot escape. This is equivalent to creating a local minimum
in the electric potential, as the force by which the charge is accelerated
is proportional to the gradient of the potential. However, it turns out
that this is impossible to achieve by an electrostatic potential alone.
This conclusion goes by the name of Earnshaw’s theorem (Earnshaw
1842), which states that an electric charge3 cannot be trapped in all
three spatial dimensions by an electrostatic potential only.# This
stems from the mathematical properties of the solutions of Laplace’s
equation for the free electrostatic potential (Landau and Lifschitz 1971,
Ch. 5, § 35, pp- 88). Hence, for trapping electric charges, we are left
with basically two choices, which define the two main types of ion
traps encountered in laboratories: either adding a magnetic field, or
making the electric field time-dependent.

1.1.2  Trapping with Electrostatic and Magnetic Fields: Penning Trap

The first of these two methods employs a magnetic field superim-
posed on an electric quadrupole field. One realization with such a
configuration is the cold-cathode ionization gauge, a manometer build
by Penning (1937) to measure low gas pressures; Dehmelt (1968) ad-
apted this device for the purpose of trapping electrons. the trapping
mechanism of the so-called Penning trap, see Figure 1.1 for a sketch,
has first been described by Pierce (1954; for a historical account see
Holzscheiter 1995), works as follows: A cylindrically symmetric elec-
tric quadrupole potential confines the charged particles along one

It is possible to trap a dipole with nothing but static electric fields. This is actually in
complete analogy to the trapping of particles with magnetic dipoles (Phillips 1998;
Chu 1998) in static magnetic fields. Curiously, this mechanism allows trapping of
diamagnetic objects in strong magnetic fields by inducing magnetic dipole moments,
which has been demonstrated by having even living frogs levitating in a strong
magnetic field (Berry and Geim 1997; Geim 1998).

More interestingly, in his original work Earnshaw (1842) concluded that the stability
of particles subject to an attractive interaction with inverse-square forces (such as
electromagnetic interactions) requires forces with a higher inverse power than two to
achieve a stable equilibrium; see Scott (1959); Bassani (2006) for a discussion.

9
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spatial dimension but it does not confine them in the other two spatial
dimensions; choosing the confining direction along the z-direction,
the potential is of the following form,

P(x,y,2z) = ;@(222 —x*—y?), (1.1)
which conforms to Laplace’s equation. Here, U is the voltage applied
between the ring electrodes and the endcaps, and d is a normalizing
factor to fulfil the boundary conditions at the surface of the electrodes.
Figure 1.2a shows how the confining part of the field traps the charged
particles in x—y-plane, while the anti-confining part pushes them
radially outward, away from the z-axis. Additionally, a strong uniform
magnetic field is applied along the z-direction, B(x,y,z) = By2. The
resulting Lorentz force guides the charged particles onto circular
trajectories, so-called cyclotron orbits. The anti-confining electric field
is perpendicular to the magnetic field, so it accelerates and decelerates
the particles on their orbits in such a way that they obtain a net
azimuthal acceleration component perpendicular to both the magnetic
and electric field. The centres of the cyclotron orbits undergo a circular
E X B-drift (Jackson 1999, Ch. 12.3, pp. 586ff.) around the trap centre;
this drift is called magnetron motion.

Penning traps are used in many sophisticated experiments as, for
instance, the measurement of the g-factors of the electron, positron
and other elementary particles (Brown and Gabrielse 1986), and are
among the experimental standard devices in the study of non-neutral
plasmas (Dubin and O’Neil 1999; Davidson 2001). However, a Penning
trap involves considerable technical overhead in the experimental
realization as the magnetic fields, being in the order of several Tesla,
require superconducting magnets; usually the whole trap together
with the vacuum chamber is immersed inside a dilution refrigerator
filled with liquid helium. Due to this, optical access, meaning the
possibility for manipulating the ions inside the trap by electromagnet
radiation, is much more limited than in the second kind of trap, which
we are going to discuss next.

1.1.3 Trapping with Time-Varying Electric Fields: Paul Trap

The second way to trap charged particles uses time-dependent elec-
trical fields. Paul and co-workers devised (Paul and Steinwedel 1953)
and built (Paul and Raether 1955) an apparatus operating such fields
for applications in mass spectroscopy (Paul, Reinhard et al. 1958; Paul
1990; March 2009). In the original version of this apparatus, henceforth
named Paul trap, the electrodes are manufactured as for the Penning
trap, such that their surfaces are exactly aligned along the equipo-
tential surfaces of the potential of an ideal quadrupole located at the
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);, Y 1  ring electrode 3 Helmholtz coils

2 endcap electrodes 4 trap centre

Figure 1.1: Sketch of a typical Penning trap; the electrodes are shown in cross-section. The
inner surfaces of the electrodes are formed along one hyperboloid-shaped equipotential
surface of an ideal quadrupole located at the trap centre. The voltage is chosen such
that the potential of the two endcap electrodes is above that of the ring electrode. The
Helmholtz coils provide a homogeneous magnetic field in the centre of the trap.
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Figure 1.2: (a) Electric (violet arrows) and magnetic field (green arrows) of an idealized
Penning trap. The electric field confines a positively charged particle towards the x—y-plane
(z = 0), but expels it outward in the radial direction. In the z = 0 plane the electric and
magnetic fields are perpendicular to each other. The electrostatic equipotential lines are
shown as straight lines. (b) In the x—y-plane the electrostatic potential ®(x,y) (surface
and contours) is anti-confining. Trapping is still possible as the conservation of angular
momentum keeps a trapped particle moving on epitrochoidal orbits (blue line).
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endcap electrodes 3 rf electrodes

= = 2 dc electrodes 4 trap centre = =

Figure 1.3: Sketch of a typical linear Paul trap. Maintaining a positive potential at the
left and right endcap electrodes traps the ions along the x-direction. The four main rod
electrodes consist of two pairs of opposing electrodes; one pair is grounded, while the
other pair is connected to a potential oscillating at radiofrequency. These four electrodes
provide a dynamical confinement in the y—z-plane (see Figure 1.4).

(a) (b)

Figure 1.4: Time-dependent electric potential of a Paul trap. (a) At time t = 0 and
at multiples of the rf-period Ty = 27/} the electric potential is confining along the
z-direction, but anti-confining along the y=direction. (b) After evolving for times that
are half-integer multiples of the rf-period the confining and anti-confining directions are
interchanged. The potential in the centre of the trap remains constant. Outside the trap
centre, a charged particle experiences alternately an outward pushing and an inward
pulling force. By switching between those two situations quickly the particle is effectively
confined, though the particle undergoes a fast motion because of the driving.
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centre. However, now instead of a static electric field a time-varying
one is applied: The angular frequency of the time-varying field is typ-
ically in the radio-frequency (rf) domain, i. e. several hundred kHz up
to some ten MHz for trapping ions. It turns out that for applications
employing trapped linear ion Coulomb crystals there is another, more
advantageous arrangement of electrodes (Beaty 1987; Prestage et al.
1989), consisting of four> main rod electrodes and endcap electrodes,
see Figure 1.3. The endcap electrodes, which exist in many different
realizations such as rings, tips, or as cut-off extensions of the main
rods as shown in Figure 1.3, are kept on a positive potential which
ensures a confinement along one direction (say along the x-direction);
the electrostatic potential satisfies the boundary conditions given by
the potentials on the electrodes. The potential has a saddle point in
the centre of the trap and can therefore be approximated around the
trap centre by the following quadrupole potential (Raizen et al. 1992),

Dy(x,y,2) = ;Ig(sz —y?—2?), (1.2)
where U is the applied voltage and d is a factor depending on the
distance between the endcap electrodes and also their geometry.® The
main rod electrodes are connected pair-wise such that two diagonally
opposing electrodes are grounded, and the other pair is connected to
a time-varying rf-potential, which at the trap centre is of the following
form (Raizen et al. 1992):

2 2
D(x,y,z,t) = % (1 + yd_22> cos(Qyyt) . (1.3)
Each of the two potentials ®(x,y,z) and ®(x,y,z,t) — and thus also
their sum — conforms to Laplace’s equation. The static part confines
the particle along the x-direction but anti-confines along the other
two directions. Thus, in order to confine the particle in the remaining
directions, we also need to overcome this anti-confining part.
Although no static confinement is possible along all three spatial di-
mensions, we could utilize time-dependent fields to achieve a situation
which is called dynamical stabilization, similar to, e.g., the vertically

The modified set-up of the main rods bent to closed rings actually corresponds to
a quadrupole storage ring (Church 1969). Choosing more than four rods results in
higher multipole potentials in the centre, e.g. an octopole potential for using eight rod
electrodes. In recent years, many experiments have been setup using micro-structured
ion traps for realizing a scalable trapped ion quantum computer. In many cases,
these have a two-dimensional electrode design such that the ions are trapped above
the surface (Haffner et al. 2008; Wineland and Leibfried 2011).

dyp is exactly equal to the distance if the endcap electrods are hyperboloids of two
sheets. For other geometries a scale factor is necessary (Raizen et al. 1992), as the
potential in Eq. (1.2) is only an approximation valid close to the trap centre, but which
does not conform to the boundary conditions.

13



14

TRAPPED IONS AND ION COULOMB CRYSTALS

driven inverted pendulum (Stephenson 1908; Kapitza 1951d,a; Landau
and Lifschitz 1969a, § 30, p. 95).

First let us look only at the time-varying potential in the y-z plane,
which is shown for different points in time in Figure 1.4. At any
instant of time, the potential is such that in one of the directions in the
plane it is confining while in the other direction it is anti-confining,
as illustrated in Figure 1.4a. The centre of the trap is an unstable
saddle-point equilibrium, and for small deviations away from the
centre along the anti-confining direction the forces on the particle are
expelling it further outward. Now, the trick here is to quickly switch
the anti-confining and confining directions, quite similar to balancing
a long stick vertically on the palm of the hand. The forces along the
direction which was expelling just an instant of time ago now becomes
restoring and vice versa, such that the charge turns back to the origin.
The charge then would escape along the originally confining direction,
but the potential is quickly switched back again before it can do so. By
keeping the switching fast enough the charged particle never departs
far away from the centre of the trap.

From these qualitative arguments it is not obvious that the resulting
trajectory is a closed one, or that the motion will be restricted to a
small area around the unstable equilibrium point. In fact, the question
of the stability of a trajectory depends on the actual driving, which
for a sinusoidally varying voltage leads to equations of motion for the
y-coordinate of the following form (Paul 1990; Leibfried et al. 2003),

dzy

Fr [ay — 2qy cos(2t)y] =0, (1.4)

and to a similar equation for the z-coordinate. Here, t = (),t/2 is the
time rescaled by half the driving period, and

ay = —4QU0/(mefd%) , (1.5a)
Gy = 2QUy/(mO%d%), (1.5b)

are dimensionless parameters, which both depend on the charge Q
and mass m of the ion as well as the driving angular frequency O,
while a, depends on the dc-voltage Uy and qy depends on the ac-
voltage U,¢ only (Paul 1990; Leibfried et al. 2003). Equation (1.4) is a
Mathieu differential equation (McLachlan 1947) which describes a class
of physical and mathematical problems such as the vibration of elliptic
membranes, parametric resonances, and the propagation of waves in
periodic potentials. The general solution of the Mathieu equation (1.4)
is given by

400 400
y(t) = A Y cppcos[(2k+By)tl + B Y copsin[(2k+ By)t], (1.6)

k:700 szoo
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where the coefficients cy; and By are dependent on the parameters
ay and gy and can be calculated by recursion methods (McLachlan
1947; Leibfried et al. 2003). The solution given by Eq. (1.6) is stable
(i-e. not exponentially growing) for 0 < B, < 1; the regions in the
parameter space spanned by a, and qy, for which these inequalities
hold are called stability regions.

The stability for trapping an ion depends also on the analogous
Mathieu equation for the z-direction, for which the parameters a;
and q; are not independent from ay and gy. In addition, the static
trapping along the x-direction demands for ay, a; < 0 (Drewsen and
Brener 2000), so that the intersection of these stability regions for the
different directions gives the overall stability diagram for the linear
Paul trap (Paul 1990; Drewsen and Brener 2000; Leibfried et al. 2003).

Most, if not all experiments with trapped ions cited in this thesis
are operating in the lowest stability region for which |ay|,|qy| <
1, with the time-dependent field oscillating in the radio-frequency
range of hundreds of kHz up to several MHz. In this region, one
can assume that the higher terms in Eq. (1.6) are negligible, as the
higher coefficients c,; vanish for small q values (Leibfried et al. 2003).
Keeping just the lowest terms (Leibfried et al. 2003), the solution turns
into the much simpler form

y(t) = Acq cos(Byt) [1 + %COS(Z’()} . (1.7)

Approximating By ~ y/ay + qyz/ 2 (McLachlan 1947; Leibfried et al.
2003) and converting back to real units, the motion of the ion y(f)

can be decomposed into two parts by y(t) = Y(t) + {y(t). The secular
motion Y (t) is a harmonic oscillation with angular frequency

vy = Byy/2, (1.8)

and {y(t) is a superposed harmonic oscillation at the rf-frequency Q.
The latter has an amplitude that is smaller by a factor of g, /2 than the
secular motion and is therefore called micromotion.”

The secular motion can also be obtained by replacing the time-
dependent potential energy with an effective energy or pseudopoten-
tial (Landau and Lifschitz 1969a, Ch. V, § 30, pp. 93ff.; Dehmelt 1968).
A charged particle oscillating in an inhomogeneous electric field exper-
iences a net force over the average of a period; the mean position thus
moves as if it were subjected to an effective (mechanical) potential,
which is rewritten as a harmonic potential,

L 2y2
V(Y) = Emva , (1.9)
The advantage of the linear ion trap is the two-dimensional rf-potential, which causes
the micromotion to vanish along the whole trapping axis, whereas in the original Paul
trap the rf-potential extends along all three spatial dimensions and the micromotion
only vanishes strictly at the centre of the trap
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with the secular angular frequency vy, given in Eq. (1.8).

As the micromotion can be considered a small correction for q, < 1,
we may neglect it within the so-called pseudopotential approximation by
approximating the motion by the secular oscillation, y(t) = Y(t), in
the following.

Similar, by repeating the steps as above we obtain a pseudopotential
along the z-direction, given by V(z) = %mv%zz, where v; can be
adjusted to a different value than vy, by adding an appropriate offset
voltage to the electrodes (which changes a, and a;). The trapping
along the axial x-direction is given by the dc-voltages on the endcaps,
which can be written as a harmonic confinement with axial trap

angular frequency

Uy = 4Ql§0 . (1.10)
\/ mdg

We are going to retain this approximation for the remainder of this
thesis.

Since in the following chapters we are going to analyse the quantum
properties of the ion motion, we need to justify the assumption that
this approximation carries over to the quantized description. The
quantum motion of a single ion inside a Paul trap has been discussed
in several articles (Cook et al. 1985; Combescure 1986; Brown 1991;
Stenholm 1992; Glauber 2007). Despite the fact that the total energy
is not conserved — as the Hamiltonian is time-dependent —, it is still

possible to define a basis of quasi-stationary states with a fixed excita-
tion or quasi-energy® similar to the energy eigenstates of a harmonic
oscillator. Further, it is possible to define creation and annihilation
operators that connect these states of different quasi-energy just like
for the harmonic oscillator in a static potential. What is more, the
analogues to coherent states can be constructed as eigenstates of the
annihilation operator. Astonishingly, the wave packets of these quasi-
coherent states follow classical trajectories and their width does not
spread out, but rather keeps pulsating or breathing periodically with
the period Ty = 27t/ (Glauber 2007). Although the kinetic en-
ergy associated with the micromotion is of the same order as the
energy of the secular motion (Berkeland et al. 1998), for high values of
radio-frequency (compared to the secular angular frequency v) it is
sensible to average this breathing of the wavepacket width over one
period of the rf-driving field (Cook et al. 1985) and to quantize only
the motion resulting from the harmonic pseudopotential within the
approximation described above.

These are in fact the quasi-energies of the Floquet formalism when applied to the
Mathieu equation (Combescure 1986; Glauber 2007). The Floquet formalism is a
commonly applied technique to solve the Schrodinger equation with a time-periodic
Hamiltonian (Chu et al. 1985).
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1.1.4 Miscellaneous Requirements for Trapped Ion Experiments

Besides trapping ions with fields, it is necessary to isolate them from
the perturbations originating from the surroundings, such as inter-
actions with other particles or fluctuating electromagnetic fields. In
particular, by so-called background gas collisions with gas particles
surrounding the trap, the momentum of such a gas particle can be
transferred to an ion such that it gains enough kinetic energy to leave
the trap. Another possible occurrence is the induction of a chemical
reaction, caused by the collision of an atom or molecule with a trapped
ion, forming a molecular ion which replaces the original ion in the
trap. In order to avoid such collisions as much as possible, the ion
trap is mounted inside a vacuum chamber operating in an ultra-high
vacuum with typical pressures around 108 Pa, ensuring a low density
of the residual gas inside the vacuum chamber.

For trapping ions of a desired element (or isotope), typically an
oven filled with that element is mounted inside the vacuum chamber,
which is usually heated to some hundred degrees Celsius such that
atoms evaporate at a sufficiently high rate. Before reaching the trap
centre these atoms are ionized e. g. by electron impact ionization or
photo-ionization. Those ions with a kinetic energy below a certain
threshold are eventually trapped. For further discussion of technolo-
gical requirements see Ghosh (1995, Ch. 4) or Major et al. (2005, Ch. 5
and App. E).

Initially, the trapped ions form a hot cloud or plasma, where the
individual particles follow complicated trajectories with a kinetic en-
ergy typically much larger than the energy of the Coulomb interaction
between the ions. For the preparation of an ion Coulomb crystal, the
temperature has to be reduced to a few mK by appropriate cooling
methods (Itano, Bergquist et al. 1995; Ghosh 1995, Ch. 5; Major et al.
2005, Ch. 10-15).

1.2 PHYSICS OF TRAPPED IONS — PLASMAS AND CRYSTALS

We now turn to the physics of many trapped ions, in particular that
of trapped plasmas and ion Coulomb crystals. For typical densities
around 10'% cm—3 and temperatures of several mK, quantum effects
are unimportant for the thermodynamic properties of the system, so
we shall first discuss the classical energy of the system.

1.2.1  Classical Energy of the System

The classical dynamics of the trapped ions is determined by the clas-
sical energy of the system. For this, we assume that N atomic ions of

17
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equal mass m and equal charge Q are confined and sufficiently cold
such that their trajectories remain close to the trap centre. We shall
now label the ions by the indexn =1, ..., N, so that

Iy = XpX +yn¥ + zn2, (1.11)

denotes the position vector from the coordinate origin to the nth,
where X, § and 2 are the unit vectors in the x-, y- and z-direction,
respectively.

Let us summarize the list of assumptions and approximations we
are going to apply in order to have a simple and tractable description
for the ions in the trap. The approximations are as follows:

1) We shall neglect the form of the electrodes and assume that the
equipotential surfaces are perfect hyperboloids of revolution, so
any effects originating from the form of the electrodes or from
the finite size of the trapping apparatus are neglected.

2) In the case of the Paul trap we shall employ the pseudopotential
approximation, i.e. we neglect any effects caused by the fast
oscillation of the electric field leading to micromotion and sub-
stitute the actual time-dependent potential energy with a static
harmonic potential. In the case of the Penning trap, we shall
assume that the total classical® angular momentum of the ions
is zero, which is the condition for not having a complicated
interplay between cyclotron-like and magnetron motion (Major
et al. 2005, Ch. 3). It is then possible to change into a coordinate
frame that is rotating at half the cyclotron frequency (Landau
and Lifschitz 1969a, Ch. VI, §39, pp. 128f.), in which the effective
potential appears harmonic (Dubin and O’Neil 1999, p. 92).1°

3) We also shall neglect the effect of the image charges induced
at the surface of the electrodes, which can become important
for large ion numbers. Further, any other effects originating
from charges on the surface of the trap electrodes or the in-
sulating material between them are neglected. Actually, these
charges, called patch-charges, are suspected to be the origin of
heating effects which can not be explained solely by temperature
effects (Haffner et al. 2008, Sec. 3.2).

These approximations affect the potential energy of the trapping po-
tential, which is now replaced in all three spatial dimensions by a pure

9 The total classical angular momentum is not taking the spin and orbital angular
momenta of the electrons and the nuclei into account.

10 It is also possible to calculate the structures of Coulomb crystals and their dynamics

in the case of non-zero total classical angular momentum and without the need for
transformation into a special rotating frame (Baltrusch, Negretti et al. 2011; Wang
et al. 2013).
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harmonic potential energy. The angular frequencies of the pseudopo-
tential depend on the mass and charge of the trapped ions. As we
assume that all ions are of the same atomic isotope and are ionized by
the same number of electrons, they all have the same mass and same
charge. In that case, the pseudopotential takes the following simple
harmonic form,

Virap (1) = 2 (Vxxn + Vy yn + sz Z%z) (1.12)

where the angular trap frequencies vy, vy and v; are along the axes x,
y and z, respectively, and depend on the mass m and charge Q as
well as on the rf-angular frequency Q¢ applied to the electrodes, see
Egs. (1.5), (1.8) and (1.10).

The total potential energy is the sum of the trap potential, Eq. (1.12),
and the unscreened'" Coulomb interaction energy,

Vpot = Vtrap + VCoul . (1.13)

The Coulomb interaction energy is summed up over the contribution
of all mutual pairs of charges,

1NNQ2 1

Vcoul = T (1.14)
SRR ey e K

k#n
were € is the vacuum permittivity and || - || is the Euclidean norm

in R3, specifying the distance between the ions.

Together with the kinetic energy of the ions, we can write down a
Lagrangian function (Landau and Lifschitz 1969a, Ch. I, §5; Goldstein
1950, Ch. I, Sec. 1-4) for the system,

L = Tyin — Vpot - (1.15)

By following the standard procedure (Landau and Lifschitz 1969a,
Ch. II, § 7 and Ch. VII, § 40; Goldstein 1950, Ch. VII, Sec. 7-1), we
obtain the canonical momenta p;, foralln =1,...,N,

oL

Fr (1.16)

Pn =

and derive the classical Hamiltonian function from the Lagrangian
function. This consists of three parts

H = Tyin + Veoul + Virap (1.17)

In the field of plasma physics and for the classical theory of electrons in metals one
usually takes a screened Coulomb interaction into account. In this case, a continuum
theory with an uniform charge background is used, while the discrete size of the
charge carriers is neglected. If an impurity charge is immersed under these conditions,
the free charge carriers of the charge background move to shield the field so that
the Coulomb interaction gets screened, which usually gives rise to an additional
exponential damping factor in Eq. (2.2) as a function of the distance between two
charges.
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where the kinetic energy in terms of the canonical momenta (and in
absence of magnetic fields) reads
N 2

Tyin = Pu (1.18)

=1 2m

while the other two terms are identical to those given above in
Egs. (1.12) and (2.2). The equations of motion are then given by
Hamilton’s equation (Landau and Lifschitz 1969a, Ch. VII, § 40),

Pny = — aH/aQH,v ’ Gny = aH/aPn,v . (1.19)

Dimensionless Hamiltonian

It is useful to recast the Hamiltonian function in a dimensionless
form. Basically, this means rescaling all lengths, time scales, and
masses by some characteristic length, time scale, and mass of the
system. These characteristic scale units can be chosen arbitrarily for
the independent base units, but need to be chosen consistently for
all derived quantities. As we are interested in effects resulting from
the interaction between the ions, a sensible choice for the scaling
is such that the Coulomb interaction energy of two ions separated
by the unit distance is scaled to unity."> For this, we introduce a
length scale I by which we define new dimensionless position vectors
t;, = 1,/l. Instead of using a time scale, we could alternatively
use a frequency scale f such that the dimensionless frequencies are
defined by v, = 27t x f; = 2n(fy/f) = v/ ¥ (implying f = 7, as all
quantities with the same units transform by the same scale factor),
where 7 is the scale quantity for angular frequencies which could be
used equivalently. Finally,’3 the dimensionless masses are given by
m' = m /i, where 1 is the characteristic mass. Any other quantities
can be rescaled in terms of these base units, e.g. the energy is rescaled
by dividing it by a factor 71272, With this, we can rewrite the total
Hamiltonian function Eq. (1.17), where we choose the value of these
scale factors such that we can eliminate most of the constants in front
of the terms of the Hamiltonian. So, by choosing the length scale as

I = Q%3/(4neymiv®)t/3 (1.20)

These could be any two ions at this distance, not necessarily neighbouring ones; yet,
as we are going to see below, the distance between the ions in a crystal will be of the
order of the unit distance for the scaling chosen.

There is no need to also transform the electrical charges, as one might expect initially,
for the Ampere being defined as another basic unit in the international SI unit system.
The reason for defining the Ampere as a basic unit is to avoid having non-integer
exponents of basic units in the definition of other frequently used units. In other
unit systems, charge is given in units of (Length)3/?(Mass)!/?(Time) !, e.g. in the
cgs-unit systems, the electric charge is given in Franklin (1Fr = 1 gl/ 2em3/257 1),
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and rescaling the energy as stated above, we get rid of all constants in
front of the Coulomb interaction term. We are then free to choose the
remaining scaling quantities, e. g. such as

m=m, 7 =vy. (1.21)

Here, we arbitrarily took vy as the reference scale for the angular
frequencies. It could have been any of the angular trap frequencies, or
even some other (angular) frequency, but as we are assuming a fixed
angular axial trap frequency in the following chapters, it is convenient
for us to choose this quantity as the reference scale.

Using these scaled quantities, the dimensionless terms in the Hamilto-
nian read

1y,
Tyin = 5 E P, (1.22a)
n=1
1 N
Virap = ) Z ("‘xx% + "‘yy% + DCZZ%) , (1.22b)
n=1
1 N N

VCoul - 5 2 Z

2,54 IIrn—rkH
k#n

(1.220)

where we have replaced the unprimed quantities by the primed ones
(not shown) and dropped the primes outright in order to keep the
notation simple. An overview for all scale factors is given in Table 1.1.
Further, in Eq. (1.22b) we have defined the dimensionless paramet-
ers ax, ay and az, given by

2 12 2
1% 1%
R I -2 (1259
v v v

These are the anisotropy parameters in the y- and z-directions, which
determine the shape of the cloud and crystals in the trap, as discussed
in the following sections. Since we have already defined the scale
parameter for the angular frequencies by 7 = vy, the anisotropy
parameters are given by

2 V2 2

v v
ay=—5=1, ny = % , az = 5. (1.23b)

Vx Vx Vx

1.2.2  Plasmas and Crystals

Consider now that a large number of ions is confined inside the trap
apparatus, forming an ion cloud. At high temperatures, the ion cloud
is not in the gas phase; a substance present in the gas phase consists
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quantity scale factor value
length [ Q%/3/ (4megmuv2)1/3
mass m m
time 1/v 1/vy
frequency v Vyx
angular frequency v Uy
energy mi2 12 mv%fz

Table 1.1: Conversion table for dimensionless quantities

of neutral particles with a weak short-range interaction such as van-
der-Waals forces. An ion cloud, of course, is composed of charged
particles interacting via the long-ranged Coulomb interaction and thus
is not in the gas phase but in the plasma phase. A plasma features a
class of physical phenomena absent in real gases, for example oscil-
lations of the charge density, called plasma oscillations, which have
a frequency that is approximately independent of the wave length of
the oscillation.™

Many of the plasmas that are observed in nature or in experiments
emerge from a neutral gas where the neutral particles are ionized and
separated into electrons and ions, which together compose a neutral
two-component plasma. In the case of the trapped ion cloud we have
a non-neutral one-component plasma. A one-component plasma consists
only of one kind of charge carriers — ions or electrons —, hence it is
non-neutral by definition. Unlike for neutral plasmas, recombination
of charge carriers is not possible for a one-component plasma at cold
temperatures due to the absence of any charge carriers of opposite
charge. Also, non-neutral plasmas can be trapped by static fields
and simultaneously stay in a thermal equilibrium state, which is not
possible for neutral plasmas (the different sign of the charges prevents
the two components from having the same Boltzmann distribution
and being confined at the same time; see Dubin and O’Neil 1999,
pp- 95f.).

Another specific feature of these plasmas is that in thermal equilib-
rium the density is nearly homogeneous over the whole sample. The
sum of the external (effective) potential and of the interaction potential
has to stay constant within the cloud at equilibrium. Evaluating the
self-consistent Poisson equation gives a constant density for harmonic

This phenomenon is actually responsible for the reflection of electromagnetic radiation
with frequencies below the plasma frequency of the electrons inside a metal, which
happens for radio frequency up to optical frequencies (for higher frequencies, i.e.
UV-light, X-ray and higher, the radiation is absorbed by the metal).
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confinement (Dubin and O’'Neil 1999, pp. 98—99). The density drops
to zero close to the edges, within a distance of about the Debye length,
Ap = (egkgT/nQ?), which is of the order of milli- to micrometers or
even smaller, depending on temperature and density.'>

By cooling down the ionic plasma (for an overview of different
cooling techniques see Major et al. 2005, Part V; Ghosh 1995, Ch. 5;
Riehle 2005, Sec. 10.2.2), the kinetic energy of the ions decreases such
that the cloud becomes denser, by which in turn the Coulomb inter-
action energy increases. By further cooling the ions, they condense
first into a liquid-like phase and then eventually into a phase with
long-range order, which is called an ion Coulomb crystal, first observed
experimentally by Diedrich, Peik et al. (1987); Wineland, Bergquist
et al. (1987). The transitions between these phases are characterised
by the so-called coupling parameter I', which is defined as the ratio
between the mean Coulomb interaction energy and the mean kinetic
energy of the particles,

2 1

" dmegaws kgT (1:24)

Here, kg is the Boltzmann constant and T the temperature of the ion
sample. The Wigner-Seitz radius awyg is defined as the radius of a
sphere of volume that equals the average volume occupied by one
particle, i.e. 47UZ‘3NS /3 x n =1, where n is the average particle density.

For an infinite homogeneous system, calculations (Dubin and O’Neil
1999, pp. 113—115) predict the appearance of strong correlations around
a value of I = 2 and that of long-range order for a value of I > 174,
which is believed to be a first-order phase transition from a liquid-like
state to a body-centered cubic (bcc) crystal for an isotropic confinement
(meaning ay = ay = &z). The corresponding temperature at which this
transition happens depends on the inter-particle density; for typical
experimental realizations with ionic plasmas it occurs at around 1 to
10 mK (Bollinger et al. 1994).

Shapes

When the confinement is anisotropic, different structures may occur
upon crystallization. In fact, the anisotropy parameters defined in
Eq. (1.23a) determine the shape of the plasma cloud of ions or the crys-
tal structure, respectively. The shape can vary from flat pancake-like
two-dimensional over disc-shaped and spherical three-dimensional
forms to elongated cigar-shaped and quasi-one-dimensional chain-
like shapes. In the crystalline phase, these different shapes also have
various crystalline structures, which we discuss in the next section.

This is apparently only true for plasmas for which the Debye length is much greater
than the typical ion separation.
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1.3 CRYSTALLINE STRUCTURES AND STRUCTURAL TRANSITIONS

Suppose that the ion cloud has been cooled down to such a low
temperature that the ion cloud forms a crystal. The ions are then
localized close to some fixed equilibrium positions around which they
are oscillating.

The equilibrium positions are determined by the balance of forces
coming from the trap potential and the mutual interaction between
the ions. This condition can be written quantitatively by requiring
that the gradient of the total potential with respect to every particle
coordinate vanishes at equilibrium,

Ve, V(ry,...,tn) =0 VYn=1,...,N. (1.25)

The equilibrium positions of the ions {R; } are found by the solution
of these 3N equations. These are not spaced equidistantly because
the ions farther outside experience a stronger force from the trapping
potential, thus pressing the inner ions together to agglomerate more
densely in the centre. Yet, for large crystals, the inner part of the
crystal is described to a good approximation by a periodic lattice.
The onset of long-range order can be analysed by e.g. a two-particle
correlation function, which transforms from a smooth distribution for
a plasma to one with clear distinct peaks (Dubin and O’Neil 1999,
pp- 120-122) for a crystal. For small crystals, however, the equilibrium
positions of the ions do not coincide with a regular lattice.

1.3.1  Owverview of Crystalline Structures

Depending on the anisotropy parameters, the ion crystal takes dif-
ferent shapes and the ions arrange themselves inside the crystal in

anisotropy  dimensions shape crystal structures
Qx > ay Az 2 pancake-like hexagonal
ax > 0y RN oz 3 oblate multiple planes, shells
Ny Ny N oz 3 spherical shells
ayx < oy R oz 3 prolate shells, tubes
ay L oy Aoz 3 chain helical
2 chain zigzag
1 chain linear

Table 1.2: Overview of crystal shapes and lattice structures. Quantitative relations were
obtained by Dubin (1993) and measured by Birkl et al. (1992).
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(a) (b) (©

Figure 1.5: Schematic drawing of the crystal structures of Coulomb chains. The ions are
spaced equidistantly along the x-axis, an arrangement found in the middle of large chains.
(a) For strong confinement along the y and z-direction, the crystal is in a linear chain
configuration. (b) For weaker transverse confinement, the ions align within a plane in a
zigzag structure with alternating positions. (c) For even weaker transverse confinement the
ions take a three-dimensional structure where the zigzag gets tilted into a helical structure.

different lattice structures. In the case of two anisotropy paramet-
ers being equal and one being much larger than the other two, e. g.
ax > ay ~ az, the shape of the crystal is pancake-like. In the most
extreme case, the crystal is forms only a single layer with a hexagonal
lattice as crystal structure. Decreasing the large anisotropy parameter
causes the crystal to align in multiple planes, with different structures
such as square or bcc lattices (Dubin and O’Neil 1999, pp. 140-146).
Then, for real three-dimensional structures, shell structures appear
with different crystal lattices within the shells.

On the other extreme, where one anisotropy parameter is much
smaller than the other two, e.g. ax < ay,az, the crystal forms a
quasi-one-dimensional chain, i. e. its dimensions perpendicular to the
axis with the smallest confinement are of the order of the mean-ion
separation. The most extreme case of this is a linear chain, where
all ions are arranged exactly on the axis next to each other; see Fig-
ure 1.5a for a schematic drawing. Reducing the inequality between
the anistropy parameters ay < ay,az, i.e. opening the trapping in
the directions transverse to the chain, or equivalently increasing the
trapping frequency along the chain, causes the linear chain to undergo
a transition to a planar, so-called zigzag structure, see Figure 1.5b. In
this configuration, the ions deviate away from the axis in alternating
directions such that they minimize their interaction energy by increas-
ing their mutual distance. We shall discuss these two structures and
the transition between them in more detail in the next section. By
further decreasing the anisotropy inequality, the zigzag gets twisted
into a three-dimensional helical structure as shown in Figure 1.5¢,
and after that assumes even more complicated structures arranged in
shells (Dubin and O’Neil 1999, p. 136).

In this thesis, we only discuss the linear chain and the zigzag chain
and the transition between these two configurations.
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1.3.2 Linear and Zigzag Structures and the Linear—Zigzag Transition

Linear Chain

In the case of high anisotropy, meaning one anisotropy parameter
much smaller than the other two, the ions align in a linear chain
where they are arrayed periodically along one axis. The distance
between them is given by the lattice constant 4 and is constant along
the axis (until boundary effects become important).

In the limit where the system can be regarded’® as infinite and
homogeneous, a solution of the eigenmodes and eigenfrequencies is
feasible (Morigi and Fishman 2004). Experimentally, this situation is
reached by putting the ions into a storage ring as realized by Birkl
et al. (1992); Waki et al. (1992) and Schitz et al. (2001). That device is
basically a linear Paul trap, only with the endcaps removed; instead the
trap is elongated and bent with a large radius such that the electrodes
form closed rings (Church 1969). If the radii of these ring electrodes
are large enough, their curvature may be neglected. The ions then
arrange themselves evenly spaced along the ring (with a equal to the
mean circumference of the ring divided by the number of ions). This
corresponds to the theoretical description of a crystal with periodic
boundary conditions.

The symmetries of this crystal configuration are: (i) translation by
a along the axis; (ii) reflection at planes perpendicular to the crystal
axis containing an ion; (iii) reflection at planes perpendicular to the
crystal axis in the middle of two ions, and (iv) all possible point group
transformations in the plane perpendicular to the crystal axes, i.e. of
the continuous symmetry group O(2), which is called the orthogonal
group. The latter symmetry transformation also contains the reflection
at the axis; the result is the same as that of a m-rotation around the
axis.

Zigzag Chain

If the ratio between the anisotropy parameters is reduced, the mutual
Coulomb repulsion between the ions becomes stronger in comparison
to the transverse trapping (by either increasing the confinement in
axial direction or by releasing it in transverse direction). There exists
a critical value for the ratio between the anisotropy parameters (or
the trapping frequencies) for which the linear chain is still a stable
configuration. If the ratio is reduced further, the ion is located at the
equilibrium positions of the linear chain are still force-free but do
not remain stable. Instead, another possible solution of equilibrium
positions appears where the equilibrium positions are located away

16 The confinement along the chain has to vanish for the density to stay constant.
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from the axis. The change of equilibrium positions is continuous,
meaning that for an infinitesimal decrease of the anisotropy ratio below
the critical one, there will be only an infinitesimal deviation of the
equilibrium positions away from the axis. The new set of equilibrium
positions has the property that all ions are arranged within a single
plane going through the trap axis. The orientation of this plane is
fixed if the anisotropy parameters in the directions perpendicular
to the trap axis are different — either due to choosing intentionally
different voltages on the electrodes or having a small difference in the
tield strengths because of alignment errors, unbalanced or fluctuating
electric circuits, or other unwanted stray fields.

But even in the case of a perfectly symmetric device and carefully
adjusted voltages on the electrodes, and despite the fact that the
Hamiltonian of the system is invariant under rotations around the
crystal axis, the crystal aligns itself spontaneously in a single plane.

Within the plane, the symmetries of the crystal configuration'” are
given by: (i) translation by a along the axis together with a reflection
at the axis; (ii) reflection at planes perpendicular to the trap axis
containing an ion, and (iii) point reflection in the middle of two ions.

The Linear—Zigzag Transition

In ion crystals, the linear-zigzag transition has been studied numer-
ically by Molecular Dynamics simulations (Schiffer 1993), by Monte
Carlo simulations (Piacente et al. 2004), and by density functional
theory (Dubin 1997, see also Dubin and O’Neil 1999). For a long time
it was suspected that this transition is a second-order phase transition
in the thermodynamic limit. Fishman et al. (2008) have shown that
in the classical limit the linear-zigzag transition is indeed a second-
order phase transition described by the Landau model (Landau 1965,
Ch. 29, pp. 193f,, and Ch. 73, pp. 546f.; Landau and Lifschitz 1969b,
Ch. XIV), and Shimshoni et al. (2011b,a) have shown that this trans-
ition at T = 0 is a quantum phase transition that, in two dimensions
(in a plane), is of the same universality class as the Ising model in a
transverse field (Huang 1987, Ch. 14). Additionally, Silvi et al. (2013)
have confirmed this mapping by sophisticated numerical studies using
a density matrix renormalization group algorithm.

For describing the structural phase transition in the thermodynamic
limit, the phase in which the symmetry is still present is called the
disordered phase, whereas the phase with the broken symmetry is
denoted as the ordered phase. These phases are distinguished by a
suitable order parameter, which is usually described by a continuous
field; in our case, the order parameter is the displacement of the zigzag
mode. In the disordered phase, the mean value of the order parameter

17 The symmetries of the Hamiltonian are unchanged with respect to the linear chain.
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is zero (for one specific spatial point the order parameter takes a
random value in the presence of thermal or quantum fluctuations,
thus the term disordered phase), and it takes a finite value in the
ordered phase. In general, in the symmetry-broken phase the order
parameter has two or more equivalent possible values, attaining a
specific value randomly. The main idea of Landau theory is to expand
the relevant thermodynamic potential in terms of the order parameter
around the critical point of the phase transition.

In the disordered phase, the soft mode — which is a term usually used
in the realm of critical phenomena in statistical mechanics to denote
the mode of vanishing excitation energies (in the case of a continuous
broken symmetry this is just the appearing Goldstone mode) — is the
zigzag mode. For this mode, the ions move in alternating direction
in a single plane; here it is the transverse mode with the shortest
wavelength, in contrast to the long wavelength modes associated
with a phase transition in the case of ferroelectric crystals (Cochran
1960, 1961; Ginzburg 1987). The frequency of this mode vanishes
at the critical point and attains an imaginary frequency below the
critical point. Thus the equilibrium positions of the crystal in the
disordered phase become unstable; however, there appears a new set
of equilibrium positions, around which the zigzag configuration is
build up.

Structural Defects

So far, we have discussed only the lowest energy configurations. Yet,
meta-stable structural configurations are possible, too, which can be
associated with structural defects of the crystal lattice; these kinds of
defects typically result from a fast change of the trapping potential, a
so-called quench, across the structural instability. Surprisingly,18 the
abundance of these defects in dependence upon the quench rate of
the external potential can be predicted for quenches across any kind
of phase transitions by a universal scaling law (see del Campo and
Zurek 2014, and references cited therein). In the context of trapped ion
Coulomb crystals, such defects have been studied theoretically (del
Campo, De Chiara et al. 2010; Landa, Marcovitch et al. 2010) and have
been observed experimentally (Mielenz et al. 2013; Keller et al. 2013;
Ulm et al. 2013). Most interestingly, a recent theoretical proposal (Dzi-
armaga et al. 2011) suggested the superposition of structural defects in
a quantum Ising chain, which could possibly be applied to structural
defects in ion Coulomb crystals as well.

It is surprising in the sense that the scaling law describes a non-equilibrium response
of a system across a phase transition by critical exponents which are derived in
thermodynamic equilibrium (del Campo and Zurek 2014).
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Spontaneous Symmetry Breaking

Even if the Hamiltonian (or equivalently the Lagrangian) of a system is
invariant under a certain symmetry, its ground state or lowest-energy
configuration does not need to preserve that symmetry: It might be
that there is a set of two or more degenerate configurations (i. e. they
have the same energy) that do not meet the symmetry individually,
but which are transformed by the symmetry operation into each other.
In the example of the zigzag chain locked in a plane, each of the
two classical equilibrium configurations does not meet the reflection
symmetry along the main crystal axis, but the two configurations
transform into each other by reflecting their positions on the axis.

In quantum mechanics the ground state still preserves the symmet-
ries of the Hamiltonian. For instance, consider the one-dimensional
motion of a particle in a symmetric double well where the wells are
sufficiently deep for the potential barrier to be much higher than the
lowest energy levels. Naively, one could argue that the ground state
is given by a wavefunction centred around one of the two potential
minima as if the potential were locally approximated by its second-
order Taylor expansion around the corresponding minima. One would
then assume two equivalent “ground states”, one for the left and right
well respectively. However, the wavefunctions of the left and the right
“ground states” extend across the potential barrier such that they have
a non-zero overlap and thus a non-zero transition probability for tun-
nelling from one well to the other. Therefore, these “ground states”
cannot be energy eigenstates of the system. The proper ground state
is given by a wavefunction that is symmetric in both wells, which is
approximately given by the symmetric superposition of the left and the
right “ground states”.™d

Yet, in real physical systems the double well (or the system in
general) is not isolated from its surrounding environment. Depending
on the details of the environment, the type of the interaction between
system and environment and the temperature of the environment, the
state of the particle can become localized in one of the minima of the
double well (Leggett et al. 1987). The origin of this localization may
be understood as follows: Because of the entanglement of the particle
with its surrounding environment we cannot describe the sub-state
of the particle by a pure quantum state but need to represent it as

The left and right “ground states” are given by the sum and difference of the actual
ground state and the first excited state, which has an anti-symmetric wavefunction.
The energy difference between the ground state and the first excited state is commonly
called ground state splitting, and it determines the tunnelling rate between the left
and the right state. This energy splitting can be calculated approximately by the
WKB-approximation (Landau and Lifschitz 1965, Ch. VII, § 50, Problem 3, p. 175;
Bender and Orszag 1978, Ch. 10, Problem 10.45) or by the instanton method (Coleman
1979), yielding the same result (Garg 2000).
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a mixed state, which is obtained from the total entangled state of
system and environment by tracing out the degrees of freedom of the
environment (Simonius 1978). The wavefunction of the particle thus
becomes localized in the left or the right well with equal probability in
the case of a symmetric double well.?° This kind of processes, where
the system attains a asymmetric state despite everything in the system
including the Hamiltonian is symmetric, is called spontaneous symmetry
breaking.

The theory of ferromagnetism (Heisenberg 1928) is maybe the most
prominent representative of a system in which spontaneous symmetry
breaking occurs. Exceeding the Curie temperature results in a disor-
dering of the magnetic moments in the metal lattice so no preferred
direction exists, meaning that the system is rotationally invariant
(depending on the symmetries of the lattice). Below the Curie tem-
perature, a macroscopic magnetization occurs in some specific but
random direction. The magnetization thus is asymmetric although the
Hamiltonian of the system perfectly fulfils the symmetry.

If the symmetry broken is a continuous symmetry, there is always
a specific kind of excitation emerging in the system (Goldstone 1961;
Goldstone et al. 1962), which is called a Nambu-Goldstone mode. This
excitation, or mode, is now invariant with respect to the symmetry
broken by the ground state. Moreover, this mode turns out to be
gapless, i. e. in the dispersion relation the frequency is vanishing when
the momentum approaches zero, w(k) — 0 for k — 0. In this mode,
excitations can be created with infinitesimally small energy transfers
to the system, and this mode connects the different ground states
dynamically.

These kind of excitations are also responsible for the absence of fer-
romagnetic or antiferromagnetic order in the one- or two-dimensional
isotropic Heisenberg models (Wagner 1966; Mermin and Wagner 1966;
Hohenberg 1967), or generally for the absence of spontaneous sym-
metry breaking in two dimensions (Coleman 1973).

Although in this work we are not dealing with structural phase
transitions in the thermodynamic limit but rather with small crystals
composed of just a few ions, many of the phenomena discussed here
turn up again in a related manner, as we are going to see in the
following chapter.

Our reasoning does not rule out a mixed state in the eigenstate basis. The type of
coupling plays a more crucial role here, as the type of system observable determines
the type of steady states the system evolves to (Zurek 1981).



STATE-DEPENDENT STRUCTURES OF ION
COULOMB CRYSTALS

The main goal of this chapter is to discuss the structures of ion Cou-
lomb crystals in state-dependent potentials. We first review the crys-
tal structures of small ion Coulomb crystals in absence of a state-
dependent potential in Section 2.1. We present a proposal achieving a
state-dependent trapping potential in Section 2.2. In Section 2.3, we
discuss the observable structures for small ion Coulomb crystals in
the presence of a state-dependent potential for different parameters,
and analyse their stability regions.

2.1 SMALL ION COULOMB CRYSTALS IN HARMONIC POTENTIALS

In this section we review the features of a small ion Coulomb crystal
homogeneously trapped in the potential of a standard trap.

2.1.1  Setting the Stage

In order to simplify the description, we adopt the approximations
introduced in Section 1.2.1, which we summarize here:

1) We shall neglect the form of the electrodes and assume a per-
fect quadrupole potential with hyperboloids of revolution as
equipotential surfaces.

2) We shall employ the pseudopotential approximation for the case
of the Paul trap, i. e. replacing the time-dependent potential by
an averaged harmonic potential. Equivalently, for the Penning
trap we choose a crystal rotation where the coupling between
momenta and coordinates vanishes.

3) We shall neglect the effect of image charges at the electrodes.

Hamiltonian of Trapped Ions

The potential energy of N trapped ions is composed of two parts,
the potential energy originating from the trapping potential and the
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potential energy originating from the mutual Coulomb interaction
between the ions. The part originating from the trapping potential is
given by the sum of the single-particle contributions,

N

m
Vtrap(rlz CTN) = Z %(V%,xx% + V%,y ]/31 + V%,z Z%) , (2.1)

n=1
where the mass of the ions might be different in general (see Home
2013 for a review of ion Coulomb crystals with different species).
Eq. (2.1) takes into consideration that, in general, the trap frequencies
are dependent on the mass and the charge of the ions, and thus may
be different for different ion species. The potential energy originating
from the mutual Coulomb interaction between the ions is given by

1 ¥ Y00 1
Vi r,...,In) = = ,
COul( 1 N) Zn;l; 47'[60 ||r1’l_rlH
I#n

with €( the vacuum permittivity and Q;, Q; the charges of the particles.*
Together with the kinetic energy,

(2.2)

N

2
Pn

Tiin(P1,---, PN) = ) 5=, (2.3)
m = zmn

we obtain the total classical Hamilton function of the system by the
sum of the three terms,

H = Tyin(p1,-- -, PN) + Veour (t1, - -+ IN) + Virap(r1, ..., 1N) - (2.4)

Single Ion Species

Now let us assume that all ions have the same charge Q, which
simplifies the Coulomb energy to

Veoul (1, -+, IN) _! ﬁ ﬁ & L (2.5)
2 = = 4neg |ty — 17|

Similarly, we take it as given that all the ions have the same mass (they
are of the same isotope), therefore the kinetic energy simplifies to

N p2
Tin(P1, - PN) = ) L. 26
n=1

Presupposing equal masses and charges, the pseudo-potential is the
same for all ions, and we can assume that the potential is of the
following form

m
2

M=z

Virap (t1, - .-, IN) = (v2x2 + 1/5 y2 +v222), (2.7)

n=1

For experiments with ion Coulomb crystals with differently charged ions, see
Kwapien et al. (2007); Feldker, Pelzer et al. (2013).
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with vy, v, and v; the angular trap frequencies along the axes x, y and
z respectively. We refer to this situation where all ions experience the
same trapping potential as homogeneously trapped ions.

Flat Land

We now employ an additional restriction by assuming that the confine-
ment along one dimension is much stronger than that in the remaining
two dimensions, e. g.

Ve, Vy L Vz, (2.8)

with the z-direction being strongly confined. Further, we assume that
the kinetic energy in the z-direction is negligibly small such that the
motion along this direction can be considered as “frozen”. For this to
happen, the ion crystal needs to be laser cooled close to the motional
ground state in the z-direction, such that

<”j,z> <1 Vj, (2.9)

where (1) are the quantum mechanical expectation values of the
occupation numbers of the corresponding normal modes (labelled
with j) in the z-direction. We shall apply this assumption throughout
the remainder of the thesis with respect to the evaluated examples
and numerical calculations while keeping the main discussion three-
dimensional. For the dimensionless description along the lines of
Eq. 1.2.1, only one anisotropy parameter is needed to describe the trap
potential, so that we can write a; = « in the following.

Dimensionless Hamiltonian

For later convenience, we convert the Hamilton function into dimen-
sionless variables just like in Section 1.2.1 on page 20f. The full
Hamiltonian is given by

H = Tiin(P1,-- -, PN) + Virap (11, - -, tN) + Vcoul (11, - -+, 1N) - (2.10)

Here, the dimensionless kinetic energy is given by

1 N
Tin(P1/-- PN) = 5 Y. pr (2.11)
n=1

and the obtained dimensionless potentials are given by

1 N
Virap (11, ---,TN) = 5 Y (63 +a?y3), (2.12)
n=1
1Y XN 1
VC l(rl,...,rN) = - (2.13)
o Zn:1 l; |17 — 1]
l#n
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where we employ the same notation for the rescaled quantities as for
the unscaled ones.

We will apply this dimensionless Hamiltonian for actual calcula-
tions, but keep the dimensions for the general derivations.

2.1.2  Equilibrium Positions

Let us first pay some attention to the classical trajectories of the ions.
For Hamiltonian dynamics,? an equilibrium state is defined as a fix
point of the dynamics in phase space spanned by the canonically
conjugate variables. This means that the state of the system is not
changing with time if its is initially prepared in the state at this fix
point.

A fix point for Hamilton’s equations is given when these all equate
to zero,

oH . oH

aPn,v Py aCin,v ( 4)

Dn,v

When the kinetic energy depends only on the momenta and the poten-
tial energy depends only on the coordinates,3 we find the following
conditions:

i) The momenta should all be zero, p, =0 V n=1,...N, such
that all ions are at rest4 and the kinetic energy is zero, Ty;, = 0.

ii) All derivatives with respect to all coordinates of the potential
energy need to vanish, so that we have to solve the following 3N
equations:

Vi, V(ry,...,tn) =0 vn=1,...,N. (2.15)

This is essentially the requirement that all the forces each ion
experiences balance out, as a net residual force would lead to
an acceleration and a dynamical evolution. The set> of positions
fulfilling these equations are called equilibrium positions, denoted
by {Ry,..., RN}, or {R;} for short. We also might label them

For parametrically driven systems the more general concept of Lyapunov stability is
applicable (Arnol’d 1980, Ch. 5, Sec. 25).

This is not the case for the Penning trap, in which the magnetic field couples momenta
and coordinates such that they do not separate into kinetic and potential energy.
Actually, in the Paul trap the velocities of the ions are not zero because of the
micromotion; for the full treatment of equilibrium states and their stability see Landa
et al. (2012b,a).

The equilibrium positions constitute a set as the order of the equilibrium positions is
not relevant for indistinguishable ions; the permutation of two positions leads to a
completely equivalent physical situation. Also, the equilibrium positions of two ions
cannot be identically for the divergence of the interaction energy, so each element can
only appear once.
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by an additional upper index, e.g. {R)},{RL},..., if there is
more than one possible set.

If the initial conditions are chosen to correspond exactly to the equi-
librium positions with zero kinetic energy, the positions of the ions
will remain stationary. However, small perturbations may change the
positions by a tiny amount, which could lead the system to change
its state to one very different from the initial state. So we need to
additionally impose the concept of stability.

An equilibrium state is called stable if for any arbitrarily given region
in phase space around that state one can find a subregion of initial
conditions such that the dynamical evolution of the system remains
bounded within the provided region for all times.

The stability of the equilibria is connected to the convexity of the
energy of the system at the equilibrium state; the energy of the system
increases if one moves away from the equilibrium in phase space,
hence the equilibrium is a minimum of the energy. As the kinetic
energy is convex, we find this condition to be equivalent to the po-
tential energy having a strict minimum (Arnol’d 1980, Ch. 5, Sec. 22),
such that around the equilibrium the particles experience forces which
accelerate them back toward the positions of equilibrium.

Mathematically, this can be expressed by expanding the potential
energy in a Taylor series around the equilibrium positions. At the
point of equilibrium, the first order vanishes, so the first relevant term
is of second order. Therefore, the stability is equivalent to checking the
Hessian of the total potential evaluated at the equilibrium positions,
given by

82

m [Vtrap(l‘l, ce ,I'N) + VCoul(rlr .. .,rN)]

Vnlyr =

(R}
(2.16)

for positive-definiteness (the kinetic energy being positive-definite in
any case):

Y ol >0 ¥V EE e RN\ {0}, (2.17)

nlv,A

which is equivalent to all eigenvalues of matrix 7" being larger than

zero.6

Let us summarize the two conditions for a stable equilibrium:

If a classical Goldstone mode exists, the Hessian would possess a zero eigenvalue,
thus not fulfilling this strict requirement for stability. In fact, in this case motion is
always allowed along the direction of the broken continuous symmetry, so the phase
space for the coordinate belonging to the Goldstone mode would not be restricted. In
the case of degeneracy of the two transverse trapping directions, this mode would be
the rotation around the axial direction of the trap.
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I) The forces on the particles must balance out.

II) The eigenvalues of the Hessian matrix of the total potential evaluated
at the equilibrium positions must be larger than zero.

To find the stable equilibrium positions for a given set of parameters,
we need to solve for Eq. (2.15) and evaluate the Hessian. Often, there
is more than one possible set of equilibrium positions for a given set
of parameters. But then, in most of the cases these sets are connected
by the transformations leaving the symmetry of the Hamiltonian
invariant. Yet, sometimes we also encounter situations where there is
more than one type of solution for the equilibrium positions, a case
usually referred to as bistability (see e.g. Cormick and Morigi 2012).

While in most cases it is necessary to solve the equations numerically,
for three ions an analytical solution is feasible, as will be discussed in
Section 2.1.4.

2.1.3 Normal Modes

We now restrict ourselves to an even smaller region of phase space
than the stable region around the equilibrium point. We analyse the
motion of the ions only for small deviations around their equilibria
where we can linearise the forces acting upon them, thereby treating
their dynamics similar to the mathematical pendulum in classical
mechanics. We then decompose the position vectors of each ion ry
into the equilibrium position vector R; and the deviation q;, away
from it,

ry =Ry +qu, (2.18)

and perform a Taylor expansion of the potential energy around the
equilibrium positions up to second order,

N
V(ry,...,tn) = V(Ry,...,Ry) + 2 Vi, V(Ry,...,RN) - qn
n=1 (2.19)

82
V(Ry,...,RN) Guuqp + O(4°).

arn,yarl,/\

N —

N
+5 X
nl=1v,A=xy,z

In this expansion, the first term is the energy of the equilibrium
configuration, which does not affect the classical dynamics, so it will
be dropped from now on. The second term is proportional to the
gradient of the potential evaluated at the equilibrium positions, which
is zero according to Eq. (2.15), i. e. the requirement of the equilibrium
for all forces balancing out. The third term is the first relevant term for
the dynamics. It is given by the Hessian defined in Eq. (2.16), which is
evaluated at the equilibrium positions.
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n 1 2 ... N 1 2 ... N 1 2 ... N
v 11 ... 1 2 2 e 2 3 3 .03
j 1 2 ... N N+1 N+2 ... 2N 2N+1 2N+2 ... 3N

Table 2.1: Mapping between different index notations. n labels the different ions, v the
spatial dimensions, i.e. v = 1 for the x-coordinate, etc. j is a combined index where we
take the convention to number first all x-coordinates, then all y-coordinates, and finally all
z-coordinates of the ions.

At this point it is convenient to replace the double index by a single
index j = (n,v), e.g. by the mapping j = n + (v — 1)N, where all the
x-coordinates are mapped to indices from 1 to N, the y-coordinates
from N 4+ 1 to 3N, and so on (see Table 2.1).

The (non-dimensionless) Hamiltonian can then be approximated in
a region around the equilibrium positions by the following expression,

3N p7 3N

m
H =~ Hqyaq = Z + ZE Vikqiqk - (2.20)
jk

= 2m

There, the Hamilton function is now expressed as a quadratic form
in the momenta and coordinates, neglecting the constant energy from
the equilibrium positions.

The region for which the quadratic Hamiltonian (2.20) is a good
approximation is generally smaller than the largest neighbourhood
for which stable trajectories are guaranteed. It is also smaller than
the convergence radius of the Taylor series. As a matter of fact, the
Taylor series approximates the Coulomb interaction between the ions
only for a small region (not containing the poles), whereas it diverges
elsewhere. As a practical estimate, the range of where the Taylor
expansion is expected to yield a faithful approximation should be
considered to be much smaller than the typical ion distance in order
to avoid the non-linearities of the Coulomb interaction between the
ions, see for instance Morigi, Eschner, Cirac et al. (1999); Marquet et al.
(2003).

We assume that we stay within this region, such that the dynamics
determined by Eq. (2.20) is essentially described by a set of coupled
harmonic oscillators. The Hamilton function of Eq. (2.20) can now be
transformed into a set of uncoupled harmonic oscillators by defining
a new set of coordinates, the so-called normal modes. Hamilton’s
equations for the normal mode coordinates are independent from
each other, which enables us to solve them straightforwardly. This
uncoupled form can be immediately seen when the Hamilton function
is written as a quadratic form in the momenta and coordinates as in
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Eq. (2.20); having uncoupled Hamilton’s equations is then equivalent
to the matrix describing the quadratic form to be diagonal.

The general procedure for obtaining the normal modes is to determ-
ine a canonical transformation (Landau and Lifschitz 1969a, Ch. VII, 8§45,
pp-143ff.; Goldstein 1950, Ch. VIIL; Fasano and Marmi 2006, Ch. 10)
of the coordinates g;, the momenta p;, and of the Hamiltonian H to
a new set of coordinates Q]- and momenta Pj, and a new Hamilton
function H. This transformation is given by

{a;} = {Qj(p1,--- P3N/ 1, -, q3N) } (2.212)
{pj} = {Pi(p1,--- P3N/ G1,-- - 43N) } (2.21b)

and

H(Plx---zP3Nr‘71z---r‘73N) — H(Pl,...,P3N,Q1,...,Q3N) . (2.21C)

A transformation is canonical if the equations of motion for Hamilto-
nian systems, Hamilton’s equations, are left invariant. This is equi-
valent to the invariance of the Poisson brackets between all possible
combinations of coordinates and momenta under this transformation.
Mathematically, a canonical transformation is described by a symplectic
transformation (Fasano and Marmi 2006, Ch. 10) of the combined vector
of momenta and coordinates, which algebraically is represented by
a 6N x 6N-matrix M that fulfils MIJM = J, where MT denotes the
transpose of matrix M and J is the symplectic form (which reflects the
inherent geometry of phase space for Hamiltonian dynamics),

J = ( 0 1) , (2.22)
-1 0

with 1 denoting the 3N x 3N identity matrix.

As the momenta are already diagonal in the Hamiltonian, and as
there is no coupling between coordinates and momenta, the form of
the transformation is much simpler, and it can be represented by a
simultaneous orthogonal transformation of momenta and coordinates.”

The new momenta P]- and coordinates Q]' are then defined by

Py = ZMjkPk ’ Q=) Migqy - (223)
k k

Here, M is the same orthogonal matrix in both equations, which is
obtained by diagonalizing the Hessian, Eq. (2.16),

Yk = ) MjQMy, (2.24)
1

Since in a Penning trap the magnetic field couples the ions’ momenta and coordinates,
only a general symplectic transformation leads to normal mode coordinates. The
representation of this transformation can be determined with the help of Williamson’s
theorem (Williamson 1936).



2.1 SMALL ION COULOMB CRYSTALS IN HARMONIC POTENTIALS

where () is a diagonal matrix, with positive entries () = 6 lkwlz, which
follows from the positive-definiteness of the Hessian. The matrix M
is orthogonal because the Hessian is real and symmetric (Horn and
Johnson 1985, Theorem 2.5.6, p. 104). These new collective coordinates
and momenta are called normal mode coordinates and momenta. They
are given by a linear combination of the original coordinates and
momenta, with weights given by the entries in the kth row of the
orthogonal matrix M. This allows us to identify the rows of the
orthogonal matrix M directly with the normal modes, which is also
evident from the inverse relations given by

pj =2 My, i = ) MjQx - (2.25)
k k

Here we made use of the property of the inverse of an orthogonal
matrix to be equal to the transpose of it.
Inserting this for the kinetic energy, we obtain

ZP] m;(ZMk]Pk) (ZMI]PI>

1
=5 Z D MMy PP = 53 PF, (2:26)
i Ik ~—~— '

=0 !

while the potential energy transforms to
% Y Yikdidk = % Y Yk (Z MijQi) (; Mlel)
jk ik i

m m 22
= 3 LY MMy QiQ) = 5 L wiQi . (2:27)
il jk [
N———
ZmOleéil

The Hamiltonian thus transforms to
212 8
quad Z + 5 Zw Qs (2.28)

which is a collection of 3N uncoupled harmonic oscillators, as anticip-
ated above.

2.1.4 Equilibrium Positions and Normal Modes for Three Ions

As an illustration of the considerations of the previous sections we
provide here the equilibrium positions and the normal modes for
three ions, this being the smallest crystal where one may observe
a zigzag structure. Under the assumptions stated before, we take
the confinement along the y-direction to be stronger than the one in
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Figure 2.1: Equilibrium positions for three ions in a potential which is homogeneous for
all ions. (a) The linear chain is the stable configuration for & > a. = 12/5. (b) The zigzag
structure, here for « = 2, is the stable configuration for a < a..

x-direction, so we have a > 1 hereafter.? We shall refer to the direction
of weaker confinement as the axial direction, and to the direction of
stronger confinement as the transverse direction.

Under this assumption, there are only two distinct types of con-
figurations, shown in Figure 2.1; the linear chain, where each ion is
located on the x-axis, and a planar, so-called zigzag structure, where
the ions form an isosceles triangle with the y-axis as symmetry axis.
We review these configurations in the following sections.

Linear Configuration

The dimensionless equilibrium coordinates for the ions in the linear
configuration are (Rafac et al. 1991):

X, = —+/5/4, Y, =0, (2.29a)
Xo = 0, Y, =0, (2.29b)
X3 = +/5/4, Y3 =0. (2.29¢)

This set of positions is always a solution to the condition of balanced
forces, Eq. (2.15), but it does not necessarily fulfil the condition of
stability, Eq. (2.17). Clearly, for &« — oo we expect this to be the unique
stable configuration.

The linear configuration becomes unstable when at least one of the
eigenvalues of the Hessian turns negative and thus the corresponding
angular normal mode frequency imaginary. For determining the eigen-
values, we diagonalize the Hessian via an orthogonal matrix; we find
that the Hessian is already block-diagonal with blocks corresponding

8 We could also allow for « = 1, but in this case the equilibrium positions will form an
equilateral triangle which is free to rotate in the x—y-plane.
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Figure 2.2: The normal modes of the linear chain configuration for three ions. Their
dimensionless angular frequencies w; are given by (a) w1 = v/a —12/5 for the zigzag
mode, (b) wy = 1 for the axial COM-mode, (c) w3 = v/a — 1 for the rocking mode, (d)
wy = y/a for the transverse COM-mode, (e) ws = /3 for the stretch mode, and (f)
we = v/29/5 for the Egyptian mode.

to the x- and y-coordinates. From this block-diagonal structure we
can immediately conclude that the normal modes are grouped in axial
modes, where all ions move collectively in the x-direction only, and
transverse modes, where the ions move collectively in the y-direction.

Diagonalizing the block for the x-coordinates, we get the dimen-
sionless angular eigenfrequencies along the axial direction, given by
(1,v/3,1/29/5). The modes are depicted graphically in Figure 2.2. The
axial modes (see also James 1998) and their frequencies depend only
on the choice of the trapping potential in the axial direction, so in the
dimensionless units chosen they are constant.

The angular frequencies of the normal modes in the transverse
direction, however, depend all on the ratio between the transverse and
axial trapping potential. The dimensionless angular frequencies in
the transverse direction read \/a — «. for the zigzag, v/a — 1 for the
rocking, and /« for the COM-mode, where a; = 12/5 is called the
critical anisotropy parameter that specifies the transition from the linear
to the zigzag configuration (Rafac et al. 1991). As the linear structure is
the configuration in the limit of large &, apparently the linear structure
is stable from & — oo down to the value of a for which the first of the
eigenfrequencies becomes negative. The mode for which this happen
turns out to be the zigzag mode, whose eigenfrequency attains the
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Figure 2.3: Normal modes of the zigzag chain configuration for three ions. The dimension-
less angular eigenfrequencies of the two COM-modes are (c) wz = 1 for the COM-mode in
x-direction, and (d) wy = /& for the COM-mode in y-direction. The other angular eigen-
frequencies have no simple analytical form, thus they are more conveniently calculated
numerically, see Figure 2.4.

value zero at @ = &, and that turns imaginary for a being smaller.
Thus & = « is the lower stability boundary for the linear structure.

Zigzag Configuration

For &« < a¢ (and a« > 1) a new set of equilibrium positions emerges,
for which the forces caused by the trap potential and the Coulomb
interaction get balanced out. This is the zigzag structure as shown in
Figure 2.1b, where the dimensionless equilibrium positions are given
by (Fishman et al. 2008)

X =—-X, Y, =Y, (2.30a)
X, = 0, Y, = 2Y, (2.30b)
X3= X, Y;=-Y. (2.30¢)

Here, we introduced the two dimensionless parameters X and Y,
which are determined analytically by (Fishman et al. 2008)

te a5 @
v=1 (37 oz (2:31)
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Figure 2.4: Dimensionless angular normal mode frequencies for three ions confined in
a harmonic potential in units of the angular trap frequency vy, as a function of the ratio
vy /vy, which is the square root of the anisotropy parameter a = 1/5 /v2. The dashed vertical
line indicates the critical value \/a; ~ 1.5492, separating the zigzag (x < a.) from the
linear configuration (& > a.).

The angular normal mode frequencies could in principle be calculated
analytically; we can reduce the characteristic polynomial from sixth
order down to fourth order by “guessing” the eigenvalues 1 and « for
the two COM-modes that are, of course, eigenmodes of the crystal.
This fourth order polynomial can then be solved for the remaining four
eigenvalues by the method of reducing it to a depressed quartic; hence
one of the methods for solving depressed quartics can be applied, such
as factorizing into two quadratics (Brookfield 2007) or the method
of Ferrari, see Turnbull (1947, Ch. X, pp. 130f.). However, the general
solution of such a quartic is quite intricate and therefore omitted here.
For practical calculations it is convenient to resort to a numerical
solution of the eigenvalues and eigenmodes. The angular normal
mode frequencies as a function of the ratio between the angular trap
frequencies vy, /vy are plotted in Figure 2.4 for both, the linear and the
zigzag regime.

Nevertheless, it is possible to analytically obtain the conditions for
when the eigenvalues become imaginary in terms of the discriminant
of the quartic. It turns out to be more practical to calculate the sign
of the determinant of the Hessian for determining the stability of the
structure instead. Of course, this procedure cannot detect regions
where an even number of eigenvalues turns negative simultaneously,
but this is not likely to occur at all. Therefore, finding the parameters
for which the determinant equals to zero gives virtually all possible
limits of stability.
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Structures for lon Crystals with More than Three lons

For small ion Coulomb crystals up to 15 ions, typical linear and zigzag
structures for odd ion numbers are shown in Figure 2.5. The transition
between the two structures depends on the number of ions, and it
shifts to higher values of the anisotropy parameter for increasing
N (Schiffer 1993; Dubin 1993; Morigi and Fishman 2004). For larger
N, one can recognize two effects: First, the ions in the centre are
much closer together than those on the edges in both the zigzag
and the linear structures. And second, for the zigzag configuration,
the transverse displacements are decreasing quickly from the centre
to the edges such that the ions on the edges experience just tiny
displacements as compared to those in the centre of the crystal.

2.2 STRUCTURAL SUPERPOSITION STATES

In this thesis, we want to investigate the dynamical behaviour of the
ions after a sudden quantum quench of the external potential. Generally,
in a quantum quench the dynamics for one part of the system —
called the quenched system — depends on the quantum state of another
part of the system, which we call the control system (we shall return
to a more detailed discussion of quantum quenches in Chapter 5.)
Evidently, there has to be a part in the Hamiltonian which governs
the dynamics of the quenched system in dependence on the state of
the control system; mathematically, this is expressed by a sum of the
projectors onto the eigenspaces of the control system. Assuming that
the dynamical variables of the quenched system are described by a set
of coordinates and momenta, and assuming further that the dynamics
after the quench only affect the coordinates of the ions, this part in the
Hamiltonian can be written in the form of a state-dependent potential as

Vsdp = Z|¢j><¢j|\7¢j(r1/---/rN)/ (2.32)
i

where [¢;) are eigenstates of the control system and \747;' (ry,...,rN) is
the potential energy for the quenched system when the state of the
control system is prepared in the eigenstate |¢;).

In our case, the control system is the electronic state of the ion in the
centre of the crystal for which we assume the two-level approximation
to hold (Allen and Eberly 1987, Ch. 2, pp.28 ff.). Denoting the two
states by [1) and |]), the state-dependent potential has then the
following form,

Vaap = I V(1 o) + [ Vi (e, 1n) (2.33)

Here, we treat the potential for the motional degrees of the ions as
classical, but assume that it depends on the electronic state of a spe-
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Figure 2.5: Equilibrium positions for ion Coulomb crystals with up to 15 ions. As the
value of the critical anisotropy parameter depends on N, the plots for the linear chain
(left) are for the value of « = 1.02a.(N), while the zigzag structures (right) are plotted for
a = 0.9 a,(N), respectively.
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cific ion. Later, when considering the dynamics of the ions, we are
quantizing the vibrations of the ions around their classical equilibrium
positions. Since we are considering single atoms at ultracold tem-
peratures, we should in principle treat their motional state quantum
mechanically by assigning to it a total wavefunction given in the tensor
product space of the Hilbert spaces of the individual particles. In that
case we would need to include the statistics of the ions under particle
exchange. Yet, the distance between the ions, of the order of around
ten um, is usually much larger than the spread of the wavefunction of
the individual ions, which is of the order of tens of nm or below (see
Wineland, Monroe et al. 1998, e. g.). Therefore, we can treat the ions
as practically distinguishable particles.

2.2.1 Implementation of a State-Dependent Potential

We shall now turn to the question of how such a potential as in
Eq. (2.33) can be prepared. Generally, the potential has to have com-
ponents which project onto subspaces of the control system. Any
coupling between these subspaces is detrimental to the capability of
controlling the quenched system, as then the dynamics would not
evolve separately in distinct subspaces.

There are several possibilities for realizing such a state-dependent
potential. One realization is implemented by the dispersive interaction
of atoms with light within a so-called optical dipole potential. ~ This
experimental technique has been mastered in the field of ultracold
atoms, where different types of traps employing light fields are in
use. It utilizes the dispersive interaction of the light field with an
electrical dipole, far-detuned from resonance. This results in the so-
called dipole force, which can be described by a potential (Grimm et al.
2000). The dipole potential is used for trapping neutral atoms with
light in focused beams, standing waves (so-called optical lattices), and
other schemes that are reviewed in Grimm et al. (2000). Furthermore,
this kind of interaction is at the heart of many proposals that attempt
to devise a trapped ion quantum computer, in which fundamental
two-qubit gate operations between the ions are mediated by state-
dependent forces (see Blatt and Wineland 2008, for instance).

Another, but seemingly equivalent possibility uses magnetic fields
that are coupled to an internal magnetic dipole. This alternative
possibility has been demonstrated successfully for quantum computa-
tion (Mintert and Wunderlich 2001; Wunderlich 2002), too. Yet another
proposal suggests to excite one ion into a Rydberg-excited state, where
the dipole-ion interaction energy then shifts the potential energy in a
state-dependent way (Li and Lesanovsky 2012; Feldker, Bachor et al.
2015). In this thesis, we shall restrict ourselves to discussing the former
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scheme, which is reviewed in the upcoming section, with specific fo-
cus on the requirements for the implementation of a state-dependent
potential.

Optical Dipole Potential

When light interacts with an atom it can induce an atomic dipole mo-
ment, which in turn affects and modifies the light field. The simplest
understanding of the dipole force can then be gained by examining
a classical oscillator model (Grimm et al. 2000, Sec. IIA). Here we
focus on a more involved explanation of the dipole potential,® using
the concept of dressed states (Cohen-Tannoudji 1998; Cohen-Tannoudji,
Dupont-Roc et al. 1992, Ch. VI). These are the new eigenstates (the
“bare” atomic states being “dressed” by the light field) of the Hamilto-
nian of the coupled system of atom and light field. We consider the
case of a single atom interacting with the radiation field of a single
laser mode. This mode is modelled in the following as a single ring
cavity mode in order to derive the workings of the dipole force (Cohen-
Tannoudji, Dupont-Roc et al. 1992, Ch. VI). Later, the specific paramet-
ers of the model will turn out to be unimportant for the mechanism of
the dipole force in the limit of strong laser intensities, enabling us to
replace the quantized electromagnetic field by its classical expression.
The Hamiltonian of the atom is given by

Hp = hwpg|E)(E], (2.34)

where wgg is the angular frequency of the dipole transition between
the atomic eigenstates labelled |G) and |E). The Hamiltonian for the
electromagnetic field of the laser mode is

- a1

Hy, = hwy, (a a—+ 5) , (2.35)
where 4 and 4 are the creation and annihilation operators of the laser
mode with angular frequency wy .

The eigenstates of the Hamiltonian of the uncoupled system F +
H; are denoted by |G,M) and |E, M), where M = 0,1,2,... is the
number of photons in the laser mode. The difference between the an-
gular frequency of the laser beam wp, and the angular atomic transition
frequency wgg is characterized by the detuning, given by

AL = Wi, — WEG - (236)

The Hamiltonian of the interaction between the atomic dipole and
the laser field is given in the electric dipole representation by

I:Iint = _a : EJ_ (1‘) ’ (2'37)

9 The effect described here is often referred to as the ac-Stark effect.
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where r is the COM-coordinate of the atom. Further, we introduced
the atomic dipole operator d; assuming the matrix elements of the
dipole operator for the transition between |G) and |E) to be real (and
thus equal),

dge = (G|d|E) = (E|d|G), (2.38)
we can re-express the dipole operator as
d = dge(|G)(E| + |E)(G]). (239)

The second quantity in the interaction term Eq. (2.37) is the transverse
electric field,

~ th +
E =5 —eL(@t+a .
J_(r) 2€OVCF:1V eL(a + a ) 4 (2 40)

where € is the vacuum permittivity and ey is the unit polarization
vector of the laser mode, and V is the volume of the cavity. The
interaction can be rewritten as

Flint = a(/G)(E| + [E)(G[) (4 +a"), (2.41)

where g is the coupling constant

th
= —ey -d —_ .
g eL-dGey/5 coVer (2.42)

In the case where the laser radiation is close to resonance of the
atomic dipole transition, i.e. |A} | = |wpg — wi| € wgg, the interac-
tion Hjp,; gives rise to a resonant coupling between the states |G, 9)
and |E, 91 — 1). Transitions to other states are non-resonant and can
therefore be neglected.™®

The matrix elements for the resonant transitions are given by

(E,M — 1[Hine|G, M) = gVN ~ g1/ (N), (2.43)

where the approximation is justified by assuming that the cavity is
initially prepared in a coherent state with a large mean photon number
(M), such that

(M) > AN >1, (2.44)

with AN being the standard deviation of the photon number distri-
bution. Consequently, for the laser mode being in a coherent state

These non-resonant couplings can become important for the interaction of atoms with
radiation of lower frequencies such as rf-fields, which are leading to the so-called
Bloch-Siegert shift of energy levels (Bloch and Siegert 1940).
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that has a large photon number all matrix elements are approximately

equal.
Evaluating the expectation value for the electric field operator in
such a coherent state |xe L), we obtain
<zx e WLHE (r) ‘zxe_i“’Lt> = &y(r) cos(wr t), (2.45)

where the field amplitude is given by

h
Eo(r) = 2er/ 260‘;; NER (2.46)

Henceforth, the electric field can be replaced by its expectation value
corresponding to the classical value of the electric field in this limit.

Further, we define the Rabi frequency Qg(r), which we define as real
and positive by

Qo(r) e = —dgp - &(r)/h, (2.47)

such that the matrix elements in Eq. (2.43) are given by
(E, M — 1{Hjpe(r) |G, M) = 7O (x) 9T /2. (2.48)

Taking the interaction into account, the states |G,9) and |E, 9 — 1)
get coupled to new eigenstates (Dalibard and Cohen-Tannoudji 1985),

11(M)) = e 9/ 25in[6(r)] |G, M) + ¢)/2 cos[0(x)] |E, N — 1),
2(N)) = e @/ 2c05[0(1)] |G, M) — e/ 2sin[6(x)] [E, N — 1),

(2.49)
where the dressed state “angle” 0 is given by
tan[20(r)] = _Qg(r)’ 0<0<m/2. (2.50)
L

The energies of the eigenstates get shifted apart from each other such
that their energy difference is given by

hQO(r) = hy /O3 (x) + A . (2.51)

The interaction Eq. (2.37) thus “repels” the energy levels by displa-
cing the higher bare energy level up to higher energy and moving
the lower bare energy level energetically further down. In the limit
of large detuning, |Ar| > Qq(r), the dressed-state angle  remains
small so that the states |1(91)) and |2(91)) contain each a large and a
small component of the states |G,0M) and |E, 9 — 1) (depending on
the sign of the detuning A ). The shift of the energy level of that state
that contains mainly the atomic ground state can be approximated by

AE(r) = hQ3(r) /4AL . (2.52)

49
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Figure 2.6: The interaction between atoms and the radiation field leads to new eigenstates,
the dressed states |1(91)) and |2(91)), which are separated by an energy 71Q). The splitting
is shown for (a) for Ar, > 0 (blue-detuning), and (b) for Ap < 0 (red-detuning). The figure
is adapted from Dalibard and Cohen-Tannoudji (1985).

Which of the atomic states is associated with the lower or the higher
bare energy state depends on the detuning of the light field with
respect to the atomic transition: If the detuning A is positive, the
energy of the ground state dressed by 91 photons is larger than the
energy of the excited state dressed by 91 — 1 photons; this situation is
called blue-detuning. In the case of red-detuning, Ay < 0, the energy of
the excited atomic state dressed by 91 — 1 photons is higher than the
energy of the ground atomic state dressed by 91 photons.

If now the intensity of the laser has a spatially varying profile, the
potential energy depends on the position of the atom in the laser beam,
as the square of the Rabi frequency is proportional to the intensity
of the light field, see Figure 2.7. Therefore, the atom experiences a
force whose direction depends on the detuning and on the gradient of
the intensity; it attracts the atom into the direction of higher intensity
for red-detuning, while it repels the atom away from the direction of
higher intensity for blue-detuning.

These two situations lead to two families of possible optical dipole
traps for red- and for blue-detuned light (Grimm et al. 2000, Sec-
tions IV and V), respectively. In the following, we will only discuss
the case of red-detuning.

Besides the shift of the energy levels, we have also to consider the
effect of the finite line width of the excited atomic state. As the dressed
states are linear combinations of the bare states, meaning that they
are a linear combination of the ground state with 91 photons and the
excited atomic state with 91 — 1 photons. Therefore, the lower dressed
state now attains a finite line width, which is essentially the rate of
absorption of a photon, while the line width of the upper state is
reduced compared to the one of the bare excited state. The finite line
width now causes unwanted transitions to the excited atomic state.
Thus one has to analyse in detail how the broadening and the shift
relate to the actual detuning of the laser from the atomic transition.
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Figure 2.7: In an inhomogeneous laser beam, the energy splitting Q(y) of the dressed
states depends on the spatial variation (here shown for the y-direction) of the intensity of
the laser beam, which is here taken as a Gaussian beam. The laser frequency is red-detuned
(AL = wiL — wgg) from the atomic transition. The figure is adapted from Dalibard and
Cohen-Tannoudji (1985).

The shift and the broadening of the dressed states can be calculated
in the limit of large detuning Ay (Cohen-Tannoudji 1998). The broad-
ening of the ground state is given by

) r

Ig=0"—>——, (2.532)
2 +4A7
and the energy shift by
A
AE =hO2 "L (2.53b)
2
2 +4A7

The ground state broadening scales like ~ 1/ A% in the large detun-
ing limit (i.e. for |Ap | > T, Q)), while the level shifts scale like ~ 1/A;.
By keeping the detuning sufficiently large, it is possible to achieve con-
siderable energy shifts by increasing the laser intensity while keeping
the probability of exciting the atom below a chosen threshold.

If the detuning is not sufficiently large, there will be transitions
between the dressed states and the dipole force will fluctuate around a
mean value. As this leads to unwanted excitations of the atom, we ex-
clude this case by restricting ourselves to the limits of the appropriate
parameters. Even more, these unwanted excitations lead to heating
of the atomic motion through the fluctuating forces. Surprisingly,
and despite this difficulty, the first experimental demonstration of an
all-optical trapping of a single ion has been achieved in precisely this
regime (Schneider, Enderlein et al. 2010, and personal communication
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Figure 2.8: Linewidths of the dressed states. Of the two bare states only the excited
atomic state exhibits a line width. Since the dressed states are a superposition of the
bare states, now both dressed states obtain a finite line width. The figure is adapted
from Cohen-Tannoudji (1998).

by Tobias Schitz), even though the detuning had to be chosen in such
a way mainly because of technical reasons.™*

Level Scheme for State-Dependent Potential

For the implementation of a state-dependent potential we need to
choose two electronic levels that will lead to different potential ener-
gies. We have seen in this section how the interaction of an atom with
a detuned light field can lead to a dipole potential. We now choose
two electronic levels and the polarization of the laser field in such a
way that only one of the two levels couples via the interaction with the
light field to an additional auxiliary level. For the other level no upper
electronic level is available with which the light field could interact
with; therefore this level experiences no shift in energy.

Another equivalent possibility not discussed here is that both states
couple to an upper auxiliary state, but experience different energy
shifts.

Modelling of the Dipole Potential

Now we choose a specific experimental arrangement to draft a model
of the dipole potential. Of course, other arrangements can be chosen
and evaluated in a similar manner.

For this, we consider a laser beam propagating parallel to the axial
direction of the trap. In order to achieve a sufficiently strong intensity
gradient close to the centre of the trap, the beam is focused down to
a waist with a size of the order of the inter-ion separation. Such a

11 The element used in this experiment — in the present case, Mg — has a transition
frequency in the UV domain, where the commonly available lasers provide limited
laser power only.
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Figure 2.9: Level scheme and laser setup for dipole potential. The laser frequency and
its polarization are chosen such that only the state |E) has an excited state partner to
couple to via the interaction with the light field. Thus only the state |E) and its auxiliary
counterpart become dressed states (denoted previously by |G) and |E)) which lead to the
dipole potential.

focused laser beam is well described by a Gaussian beam (Saleh and
Teich 2007, Ch. 3, p. 79), which propagates along the x-direction with
an intensity specified by

2
I(x,r) = 10<wa<}3>) e /w7, (2.54)

where r = /Y2 4 z2 is the radial distance away from the beam axis.
The beam has a Gaussian profile in the directions transversal to the
propagation direction, see Figure 2.10a for the profile at x = 0. The
beam radius w(x) defines the distance at which the intensity has
dropped by 1/e? ~ 0.135 of the maximum intensity I(x,0) = I
within the corresponding cross-section. The beam radius has an axial

dependency given by

2
wlx) = w14 (), (259)
where wy is the minimum beam radius or the beam waist. The de-
pendence of the beam radius along the x-direction is depicted in
Figure 2.10b. xy = ﬁw% /A is the so-called Rayleigh length that is
dependent on the wavelength A of the laser; the cross section area,
when measured at a Rayleigh length’s distance from the beam waist,
is twice as large as the cross section area when measured at the beam
waist. Integrating the intensity in Eq. (2.54) over the total transverse
section yields the total beam power; this allows us to calculate the
maximum intensity Iy attained at x = 0,7 = 0 (corresponding to the
focal point for geometric optics).

Now let us assume that the length of the crystal is smaller than
the waist and thus much smaller than the Rayleigh length, such
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Figure 2.10: Approximation of a Gaussian beam. (a) The radial dependence of the intensity
I(r,0) at the beam waist x = 0 is shown (straight line). Close to the centre of the beam for
r < wy the beam profile can be approximated by a parabola. (b) The axial dependence
of the beam radius w(x) is shown (straight line). Here the beam is approximated by a
constant intensity close to the beam waist for x < x.

that the beam radius w(x) can be assumed to be constant over the
crystal size, w(x) ~ w, and there is no resulting intensity gradient
along the x-direction. In the direction radially to the beam, we can
expand the transverse profile in 7 /wg, where r is the distance of the
ion transversally to the trap axis. The exponential in Eq. (2.54) can
be expanded up to second order, so that we obtain the following
approximate intensity profile

2r?
I(r) = Iy <1 - 2> . (2.56)
“o
The dipole potential obtained is proportional to the intensity and
has a parabolic shape with a minimum at » = 0 for red-detuning.
Thus we can take the following expression for the dipole potential for
the central ion, which is labelled by n,

m
Vdip(rnO) - _VO + Evélp (ygl() + Z%lo) |T>7’lo<T| . (257)

The first term, — V), would be the trap depth if we would consider this
as a particle trap in the spirit of the experiment of Schneider, Enderlein
et al. (2010). The angular frequency vg;, of this parabolic dipole
potential can be calculated by Egs. (2.47), (2.51), (2.53b) and (2.56) for
given intensity and detuning. If we were to choose a blue-detuning,
the second term in Eq. (2.57) would acquire a minus sign, as the sign
of the detuning determines the direction of the dipole force.

With Eq. (2.57), we have now found an appropriate model for a
state-dependent potential. We assume that the ion has two meta-stable
electronic energy levels. These states, denoted by |]) and |1), can
then be manipulated by further external laser pulses; in particular, by
driving resonant transitions between them - e. g. a two-photon Raman
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transition — one can control the probability to be in one of these two
states between zero and one arbitrarily. If the central ion is in the
state | ), it experiences only the potential arising from the trap. If the
central ion is, however, in the state |1), it is additionally exposed to
the dipole potential given by Eq. (2.57). This additional potential for
the central ion might change the equilibrium positions of the whole
crystal, provided the crystal is sufficiently small. This change in the
structural configurations is examined in the next section.

2.3 STATE-DEPENDENT CRYSTALLINE STRUCTURES

In this section we discuss the state-dependent equilibrium configura-
tions close to the linear-zigzag transition only. For a comprehensive
discussion of the possible structural configurations, we refer to Ap-
pendix B. We start this section by discussing the changes in the
Hamiltonian before we exemplify the change for a three-ion crystal
close to the linear-zigzag transition.

2.3.1 State-Dependent Potential Energy

The Hamiltonian for the motional degrees of freedom, Eq. (2.4), de-
pends on the electronic state of the excited ion labelled by n(, which
we always take to be the central one (except in Appendix B, where we
also discuss a three-ion crystal with one of the outer ions excited).™?
The Hamiltonian now contains a state-dependent potential,

H = Tyin(p1,-- - PN) + Voo (rr, - - - IN) + Vsdp (11, - - -, 1N) , (2.58)

given by

N
Vsdp = Z Vtrap(l'n) + Vdip(rﬂo) [ Pno( Tl (2.59)
i=1

with Vtrap(l'n) and Vdip(rno) given by Egs. (2.1) and (2.57), respectively.
To highlight the state-dependency we added explicitly a projection
operator in the above equation. The state-dependency becomes even
more evident by the following decomposition,

Vsdp = H>n0<“ Vi(l'll .., IN) + ‘T>n0<ﬂ VT(rlr .o, IN),  (2.60)
where the potentials in the subspaces of the projectors are given by

Vi(r1, ..., tN) = Virap(r1,- .-, 1N), (2.61a)
VT(rlr e ,I'N> = Vtrap(rlr ce ,I'N) + Vdip(r”0> . (2.61b)

Alternatively, one can imagine to have more than one ion’s electronic state ma-
nipulated, or to have even the electronic states of many ions entangled with each
other.
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In the same way it is possible to write the Hamiltonian in an explicit
state-dependent form by

H = [Lno(H Hy A [T)no (T Hy (2.62)

where the state-dependent Hamiltonians are given by
Hy = Tyin(p1,---,PN) + Vi (11, 1n) + Veou(rs, - 1N)
(2.63a)
Hp = Tign(P1,-- -, PN) + Vi (1, -+ 1n) + Veoul (11, -+, TN) -
(2.63b)

Writing out the state-dependent parts of the potential explicitly, we
can determine the relevant parameters for the further discussion:

2 N

mv
Vi(ry,...,tn) = 2x ) (x% + ocyy% + uczz%) , (2.64a)
n=1
21 N
my
v = 8] (o 02
n=1

+ agip (Y, + z%o)] , (2.64b)

where we have rescaled the angular frequency of the dipole potential
by the angular axial trapping frequency as

2
V5
;p . (2.65)
Vx

‘Xdip =

In the dimensionless form introduced in Eq. (1.22) the energies get
divided by the scale factor mI?vZ; thus the parameters determining the
crystal structure are the number of ions N, the anisotropy parameters
ay and az, and the additional anisotropy aq;, experienced by the
central ion only.

2.3.2  State-Dependent Crystalline Structures

Now we discuss the effect of the state-dependent potential on a three-
ion crystal close to the linear-zigzag transition. Dropping the de-
pendency along the z-direction and restricting the discussion to two
dimensions as before, the structures the crystal attains depend on the
two parameters a, = a and ag;;, only.

LINEAR cHAIN For the linear chain configuration, we obtain the
equilibrium positions given in Egs. (2.29), i.e. the same as before,
as the forces at those positions have not changed. However, the
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normal modes and their angular frequencies do change. Consider, for
instance, the original COM-mode in y-direction: The central ion now
experiences a steeper potential and thus can not move synchronously
with the outer ions. The corresponding normal mode thus has a
smaller mode vector for the central ion than for the outer ones.

The normal mode frequencies change too, now given by

g
I
—_

, (2.66a)
V3, (2.66b)
V29/5, (2.66¢)
wyg=Va—1, (2.66d)
ws = /a—1—pq, (2.66€)
wg m , (2.66f)

1

wy
w3

where

—agip +2/5+ \/ucghp — 8agip/5+144/25
M2 = 5 : (2.67)

Since the normal mode frequencies are real and positive only for
stable equilibria, the roots of these equations determine the stability
boundaries for the linear structure.

The stability boundary of the linear configuration is given by

Xdip,c = <5{X8_ i 1>0¢ fora > 1. (2.68)

The linear configuration corresponds to the stable equilibrium posi-
tions for all values of ag;, > aqjp ¢, or implicitly all values of a such
that the point in the parameter space is lying above or to the right of
the curve shown in Figure 2.11.

Z1GzaG cHAIN For all values below and to the left of this curve
(at least for & > 2 as discussed below), the zigzag structure is the
equilibrium configuration. The equilibrium positions are given by

X, ==X, X, =0, X3 =X, (2.69a)

Yl = Y, Y2 = —ZRY, Y3 = Y, (269b)
where the coordinates of the outer ions are

_ o -1/3

= [4<1_1+2R)} ’ (2:70)

- 1 14+2R\2/3  _,1/2

Y_i1+2R[( « > _X} ' (2.71)
Here we introduced the parameter R, defined as

o
(2.72)

e tagp
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Figure 2.11: The linear—zigzag transition for three ions where the central ion is subjected to
an additional potential. The outer ions experience a trapping potential that is characterized
by the anisotropy parameters «, while the central ion experiences an additional potential
agip- The boundary between the linear and the zigzag configurations is now a curve which
can be characterized by a4ip ., given by Eq. (2.68).
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Figure 2.12: Normal mode frequencies for a three-ion crystal in which the central ion
experiences a different potential (straight line) as a function of the trapping frequency ratio
vy /vy compared to those of the homogeneously trapped crystal (dashed line), see Figure 2.4.
The strength of the additional dipole potential is held constant. The inhomogeneous
trapping potential is an additional harmonic potential in the transverse y-direction with a
frequency vgip ~ 0.219v,. The dash-dotted vertical line (light-blue) indicates the critical
value a. = 1.5492 of the homogeneously trapped crystal.
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By setting ag;, = 0 we recover the formulae for the homogeneous
case.

The normal modes of the zigzag, again, are too involved to calculate
analytically. In Figure 2.12 we show the normal mode frequencies
for a three-ion Coulomb crystal in a state-dependent potential as a
function of the ratio of the trapping frequencies.

The zigzag structure is the stable configuration for values of ag;, <
Kdip,c for given «, or for values of a and ag;, that are to the left of
and below the transition boundary given by Eq. (2.68) as shown in
Figure 2.11. For lower values of a, however, other configurations
are possible; since these are not at the focus of this thesis, they are
discussed systematically in Appendix B. Yet we need to be sure to
choose the parameter space for our considerations in such a way
as to avoid any of these other possible configurations. The results
of Appendix B show that by taking & > 2 we can establish a safe
lower boundary for our considerations. (The highest value of vy /vy
for which a different configuration than the linear and the zigzag
configurations becomes possible is around vy, /vy ~ 1.31, which is well
below vy, /vy = V& = /2, see Figure B.1.)

In this chapter we discussed how to implement a state-dependent
potential in an ion trap, and we described the obtained state-dependent
equilibrium positions of trapped ion Coulomb crystals. In the next
chapter, we shall turn to the dynamics of ion Coulomb crystals in such
state-dependent potentials.
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DYNAMICS OF STATE-DEPENDENT ION COULOMB
CRYSTALS

In this chapter we derive the necessary formalism for describing the
dynamics of an ion Coulomb crystals confined by a state-dependent
potential. First, in Section 3.1 we review the various levels of describing
the dynamics of an ion Coulomb crystal as a set of coupled harmonic
oscillators in the case of state-dependent equilibrium configurations.
Then we discuss the transformations between the different descriptions
of the dynamical variables such as coordinates and momenta, normal
mode variables, and harmonic oscillator operators in Section 3.2. The
main result of this chapter is then obtained in Section 3.3, where
we derive the transformation between the quantum ground states
belonging to different configurations of ion Coulomb crystals.

3.1 DYNAMICS OF STATE-DEPENDENT HARMONIC OSCILLATORS

We presuppose for now a state-dependent potential superimposed
with the trap potential, as discussed in Chapter 2. Further, we discuss
only the concrete case in which the electronic state of the central ion
is manipulated for controlling the state-dependent potential.

As before, the position and momentum of the nth ion are denoted
by r, and py, respectively. Since the equilibrium positions depend on
the electronic state of the central ion, the equilibrium position of the
nth ion is labelled by R}, with an additional upper index s = |, 1 that
indicates the electronic state the central ion is in. The ion coordinates
are then expanded around the equilibrium positions by r, = R}, + q3,,
and the potential energy can be approximated by a Taylor series up to
second order in the deviations qj,.

For convenience, we shall again switch to the single index notation
(see also Table 2.1),

Gnx = q; with j=mn,
nz 7 4 with j=2N+n.
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The Hamiltonian of the crystal, depending on whether the central
ion is in state s = |, 1, takes the in the approximations discussed the
following form

3N p}? 3N
~ ) o .S S S
Hs I~ ]; m +]Zk 5 Af/Jkﬂl]qk, (31)

where the Hessian ¥ is defined as

82
7/]?( - 3 = [‘/S(rlr' . .,T3N) + VCoul(rlf' ..,1’3N):|

8rjark (32)

{r}={Rs)

and Vs(ry,...,7r3n) = (s[Veqp(r1,- -, 73N)|[s).
Hamiltonian (3.1) is transformed into a set of uncoupled oscillators
by an orthogonal matrix M® such that

Y MM = m(w§) 5, (3-3)
ij

where wlsc are the normal mode frequencies with I = 1,...,3N; the
corresponding normal mode coordinates are related to the original dis-
placements by the transformation Qf =Y M]ilqi, withl =1,...,3N.

The quantized Hamiltonian is obtained by the standard procedure
by promoting the canonical coordinates and momenta to quantum
mechanical operators,

Q? — Q7, P]-S — P?, with | ?,Pi] = ihdj . (3-4)
The commonly used harmonic oscillator form of the Hamiltonian,
. N cstps 1
_ s{fstfs 4 =
Hs = ]; hews <b]. bj + 2) , (3.5)

is obtained by introducing annihilation and creation operators, defined
as linear combinations of the position and momentum operators,

N mw] AS i HS
]
st mw; AS i DS
b]' = o5 [Q] s P]'] ’ (3.6b)
)

with [B;,Bfr] = djk. The total Hamiltonian can then be written as

H= Z |s)(s|Hg, (3.7)
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where we left out the index labelling the central ion. Each of the
two effective Hamiltonians HS for s =1, possesses a complete and
orthonormal basis of eigenstates, given by { |n1,...,n35),} with

BB ny,.... man)y = mj |y, man),  formj=0,1,2,.... (38)

The eigenstates are constructed from the ground state by successive
application of the creation operators on the ground state,

B GO )™
V! V! V13N!

0,...,0,...,0)

S
= [ny,...,mj... n3Nn)s - (3.9)

The motional ground state |0, ...,0) is often written as |0), for short.
The eigenstates of FH 0 and I:IT are related by a transformation that
we derive in Section 3.3.

3.2 TRANSFORMATIONS BETWEEN DYNAMICAL VARIABLES

In this section we are going to discuss the transformation between the
dynamical variables for classical mechanics, first in spatial coordinates,
then in normal modes coordinates. As the discussion applies also for
the quantized version of the dynamical variables, we conclude this
section by reviewing the transformation between harmonic oscillator
operators.

3.2.1  Spatial Coordinates

In this section we introduce the transformation between the spatial
coordinates of the ions. The state of the crystal is specified by the
coordinates r; and their conjugate momenta p;, cf. Eq. (1.16) in Sec-
tion 1.2.1.

The coordinates are expanded around the equilibrium positions,
which depend on the internal state of the central ion; thus there
may exist more than one set of equilibrium positions. In the case of
two different sets of equilibrium positions — provided the harmonic
approximation holds for both sets simultaneously — we may take this
expansion equivalently around both sets, finding the following two
equations:

¥
j

1= R]T + q]T (3.10b)

rpi= R} +q (3.10a)
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Here, RY is the equilibrium value of the coordinate labelled by j
when the probed ion, labelled by ny, is in the state |]), and accord-
ingly for R]T. The dynamical variables are now the deviations from the

S T

equilibrium positions, g i and ¢ i
formation between them. By setting the expressions (3.10a) and (3.10b)
equal (both specify the same coordinate but in different expansions),

and we need to determine the trans-

4 — . —prT 0
and by introducing the displacement vectors d]H and clN dH
between both sets of equilibrium positions for each ion,
clH Ri RT (3.12a)
N _ T _ i
d]. _Rj R]., (3.12b)
we can relate them in the following way:
q} = q]T dw (3.13a)
al =q] - d]“- (3.13b)

In order to completely describe the system classically, we need also
to specify how the momenta transform. They are independent of the
choice of equilibrium positions, just as they do not dependent on the
choice of the coordinate origin. Therefore, the transformation between
the canonical momenta is just the identity operation,
P =7 (3.14)
Starting from Egs. (3.13) and (3.14) we turn towards the transforma-
tion between the normal mode coordinates.

3.2.2  Normal Mode Coordinates

As discussed in Chapter 2, the concept of normal modes is essentially
just a change in the basis representation; each normal mode coordinate
is given by a linear combination of several ion coordinates, and accord-
ingly each conjugate normal mode momentum is given by a linear
combination of several momenta conjugated to the ion coordinates.
The key point is that in these new coordinates the up-to-second-order
expanded Hamiltonian is written in a diagonal representation, mean-
ing that the equation of motion for each normal mode coordinate does
only depend on itself and on its conjugate momentum, but not on
other coordinates and momenta.
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Figure 3.1: Expansion of the position vector around different equilibrium positions. The
actual positions of the ions are marked by the black dots, while the equilibrium positions
are marked by crosses, dependent on the electronic state of the central ion. A position vec-
tor, here r3, can be equivalently expanded around the two different equilibrium positions,
either as the deviations q3 around the equilibrium positions Ré, or as the deviations q
around the equilibrium positions R}.

As we recall the discussion in Chapter 2, the definitions of the
normal mode coordinates for both realizations are given by

ZMkﬂk ’ (3.15a)
ZMkﬂk (3.15b)

Inserting Egs. (3.13a) and (3.13b) into Egs. (3.15a) and (3.15b), we
obtain the relations

ZMk] qk diT) (3.16a)
and
ZMk] gr —dlb). (3.16b)
Now we use the relations inverse to Eq. (3.15), given by
i = Xk:M}Linf (3-172)
7 = ;M]Tlef (3.17b)

and insert Eq. (3.17b) into Eq. (3.16a), respectively Eq. (3.17a) into
Eq. (3.16b), to arrive at the following equations:

Q}L = ZM% (Z M;Iz QlT - diT) =) T]'kQ,I - DjH , (3.18a)
k

ZM (): MyQy —dl) = Y TQr - DJ*. (3.180)
k
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Figure 3.2: The modes of the zigzag structure can be written as the sum of the normal
modes of the linear structure, here demonstrated for the transformation between &« = 2.16
and « = 2.64. (a) The rotor mode of the zigzag structure is composed of 0.493 times
the Egyptian mode and 0.870 times the rocking mode. (b) The twist mode of the zigzag
structure is given by 0.870 times the Egyptian mode minus 0.493 times the rocking mode.

In the last step, we have combined the two orthogonal normal mode
transformations into the product T,

Ty = ;Miijizl ’ (3-19)
which is orthogonal too, following from the orthogonality of the nor-
mal mode matrices M' and MY and the group properties of orthogonal
matrices. The matrix T is the transformation matrix for the change of
representation from one normal mode basis to the other; we can dir-
ectly observe the mixing of the modes from its entries. The columns
of the matrices M+ and MT can be regarded as the normal modes,
since any entry Tj; is obtained as the projection of the mode j of the
configuration | onto the mode [ of configuration 1. As the matrix T is
orthogonal, its inverse is just equal to its transpose. The transformed
modes are calculated by the matrix product of the transformation mat-
rix with the initial modes: A transformed mode labelled by the index j
is therefore given by a linear combination of the old modes with the
entries along the jth row of the transformation matrix T as weights;
an old mode labelled by [ is decomposed into a linear combination of
new modes with entries along the /th column of the transformation
matrix as weights. So a mode that is invariant under a change of
the Hamiltonian leads to zeros everywhere in the jth row and the I/th
column except for an entry equal to 1 for the element Tj; where the
row and the column intersect.
In Eq. (3.18), we have also defined the normal mode displacements,

D].H = ;MijdiT' (3.20a)
D].N = ;ngd?. (3.20b)

Here, the information about the displacement between the equilib-
rium positions of the two configurations is contained: The normal
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mode displacement tells us how far any mode of one configuration
is displaced when having the other mode as an initial condition. The
two different mode displacements are transformed into each other by

DH Z DIN, (3.21)

which is directly derived from their definitions (3.20) and the relation
between the displacements in coordinate space, Eq. (3.12).

For the transformation of the normal mode momenta we perform
similar steps as for the normal mode coordinates. The normal mode
momenta are defined as

Pi = ZMk]pk , (3.22a)

ZMk]Pk ’ (3.22b)

However, as the particle momenta do not change, according to Eq. (3.14),

the momenta are consequently just mapped into each other by the
transformation matrix T,

Z kP / (3-232)

P].T = ZTk]'PIf. (3.23b)
k

without any mode displacement, as the change of equilibrium posi-
tions does not influence the momenta.

In order to illustrate the transformation between the normal mode
coordinates, we write out explicitly the transition matrix T for the
transformation between the homogeneously trapped structures with
the values for &« = 2.16 to &« = 2.64, that is between a linear and a
zigzag configuration (the linear-zigzag transition is at a. = 2.4). The
transition matrix for these parameters is given approximately by

0.786 0 0 0 —0618 0
0 0 0870 O 0 0.493
T 0 1 0 0 0 0 (3.24)
0 O 0 1 0 0
0.618 0 0 0 0.786 0
0 0 —-0493 0 0 0.870

Modes that are common to both configurations show up here as one
in a diagonal entry, with the row and column filled up with zeros.
The other modes are transformed into linear combinations of normal
modes in the new normal mode coordinate basis. A few examples of
such a transformation are illustrated in Figure 3.2.
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So far, we have derived the transformation between the classical nor-
mal mode momenta and positions. The same transformation holds
for the quantized normal mode momentum and position operators,
as the transformation given by Eq. (3.19) is linear and involves no
cross-terms between momenta and coordinates. Now we can turn to
the transformation of the harmonic oscillator creation and annihilation
operators in the following section.

3.2.3 Harmonic Oscillator Operators

The transformation between the harmonic oscillator operators is com-
monly called a Bogoliubov transformation, and it is a standard tool used
in quantum field theory (Fetter and Walecka 1971, Ch. 35; Abrikosov
et al. 1965, Ch. 4) and in the theory of ultracold atomic gases (Pit-
aevskii and Stringari 2003, Ch. 4). A Bogoliubov transformation is a
linear transformation of harmonic creation and annihilation operators,
and it is canonical if the commutation relations are preserved by the
transformation. It is generally given in the form of the following
Hermitian conjugated equations:

¢ : A1t
b} =) ujkbl - ijb,;r - ﬁ} / (3-250)
k k
A -|- A -|- A
bt = ; upblt - ;v,jjbl - B/, (3-25b)

where the transformed annihilation and creation operators inherit the
commutation relations of harmonic oscillator operators,

[B]T,B?} = 6]~k, [B]T,BH =0, {B]TJF,BF] =0, (3.26a)

provided that the untransformed operators fulfil these kind of com-
mutation relations a priori,

b1,6c | =8 [BLB| =0 BB =0 (26b)

Essentially, this is a restatement of the requirement for the transforma-
tion to be canonical, which sets certain conditions on the coefficients,
Ujx and Vj, and the displacements, ﬁ]i, which we discuss in the fol-
lowing paragraphs.” The transformation (3.25) is derived by inserting

Egs. (3.18) and (3.23) into the definition of the annihilation operators,

1
B‘L _ mwl
! 2h

The terms of the displacements 8+ in Eq. (3.25) are usually absent in the commonly
used Bogoliubov transformation; these originate from a possible change in the
equilibrium positions. This generalized form of transformation is discussed in
Bogoliubov and Bogoliubov Jr. (2010, Part III, Ch. 2, Sec. 1. g).

QF + — iP}]

mwl
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ma AT _plt, i p!
=\ 5 | L TwQ, — Dy ' + Y TyP;
|4 1 e

mwl

: (3-27)

By using the expansion of the canonical momentum and position
operators in terms of the corresponding creation and annihilation
operators,

/r.
S B L D Y L e
Q = 2mwT(b" +b}), Pl =i\ —~(b6l"-B]), (29

k

we arrive at Eq. (3.25) after a regrouping of the terms. By this, we sim-
ultaneously determine the relations for the Bogoliubov coefficients U
and V]-k,

- /]\ J’_
T, w w

L\ @) Wy |

- /]\ J’_
T, w w

L\ @) Wy |

which are real and dimensionless. At the same time we obtain the
relation for the displacements,

ﬁ} = @/mw].i/Zh D].i, (3.30)

which are real since we only have a shift in the position coordinates (a
shift in momentum would result in a complex-valued displacement).

In order to comply with Egs. (3.26), the Bogoliubov coefficients have
to fulfil the following relations,

). (ujkulk - ijVlk> =0, (3.31a)
k
) <ujlek - ijulk> =0 Vj,l. (3.31b)
k

These are derived by inserting Egs. (3.29) and making use of the
orthogonality of the transformation matrix T. We can also obtain
the inverse relations, either by using the just derived properties after
multiplying Egs. (3.25) by the Bogoliubov coefficients and adding
them together, or by employing the inverse Bogoliubov transformation
by starting from the definition of B]T instead. In either way, the result
is given by

- - AUt
b = Y uybt — Y vibi" - gl (3-320)
k k

B}Ml_ = Z Ukjbi‘t — EVkJBi — ‘B]T . (332b)
k k
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Having gathered these relations, we can now re-express any operator
compound of the harmonic oscillator operators of one basis as a
decomposition in the other basis. For ease of calculation, it is desirable
to have also a transformation relating the phase space displacements,
which can be obtained by Egs. (3.31),

o
w
51T =) %Tklﬁi =) (Uy + Vkl)ﬁi/ (3:332)
k wk k
(o T
By =Y, —5 TikBy = Y (Ui — Vig) By - (3.33b)
k wk k

With this, we conclude the discussion of the transformation of the
operators and turn now to the transformation of the motional quantum
states.

3.3 TRANSFORMATIONS BETWEEN QUANTUM STATES
3.3.1  Motional Ground States

Before moving on to the transformation of arbitrary motional states
in Section 3.3.2, we will discuss in this section the transformation
between the ground states. The reader, familiar with the concept of
unitary transformations in quantum mechanics, might wonder why
we distinguish here between a transformation of ground states and one
of arbitrary states. After all, any quantum state can be transformed
from one basis into another one by a specific unitary operation, which
does not depend on the state on which the transformation is applied
to. What is then the point of having a different transformation for
the ground state that turns out to even be non-unitary? The answer
is simply that it is much easier for us to first find the transformation
which can be applied only onto the ground states and then advance
it to the full unitary transformation. The derivation of this simpler
transformation, based on a work by Fetter (1972), is the subject of this
section.

Replacing a Unitary by a Non-Unitary Transformation

Let us now start with the derivation of this non-unitary transformation.
For this, first consider the general unitary transformation connecting
two arbitrary quantum states,

A,

¥y, =Uly)y . (3-34)



3.3 TRANSFORMATIONS BETWEEN QUANTUM STATES 71

In general, unitary transformations generated by up to quadratic bo-
sonic operators are made up of four different building blocks (Ferraro
et al. 2005, Ch. 1.4; Olivares 2012, Sec. 4), consisting of the operations
of:

1. harmonic oscillation,

Oy (p) = exp{ i ; plbI"6] }, (3-350)

2. displacement,

Di(y) = eXP{;(va]“ —7761) }, (3-35b)

3. one- (for j = k) and two-mode (for j # k ) squeezing,
A 1 A A A A
5:(8) = eXP{§ _Xk:(g]’kb; b - ;'kkb]TbD } (3.35¢)
]

4. and two-mode mixing (also called beam-splitter operation),

. At ArnTt
N,(0) = exp{ Y. (€:b] "B + B )} (3:35d)
]
j7k
Thus, the most general transformation is given by the product of these
building-blocks,

U =D, (7) 5:(2) O4(9) My (§), (3.36)

where the order of the transformations is arbitrary, but not interchange-
able.? This transformation is between Hamiltonians of up to quadratic
order in the annihilation and creation operators; thus we need to make
sure that the local harmonic approximation of the potential is still
valid. We are going to discuss the aspect of the validity domain in
more detail in Chapter 5.

As already mentioned, we now want to find a simpler transform-
ation connecting only the ground states, assuming the following an-
satz (Fetter 1972):

0), = W [0) . (3:37)

The different possibilities for the ordering correspond to different parametrizations of
the Lie group generated by the Lie algebra of the bosonic operators. These different
parametrizations are then related by specific disentangling formulae, see Gilmore
(2008, Ch. 7.4, pp. 110ff.) and Appendix C. Changing the order thus leads to other

parameters 7, ¢, , ¢.
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We can further assume the following identity, only valid for the map-
ping between the ground states,

U0); =W |0);, (3.38)

where both transformations lead to the same result when applied onto
the ground state, but generally yield different outcomes when applied
onto other states. The relation (3.38) between the transformations is
going to help us find the full transformation in Section 3.3.2, and it also
enables us to determine the form of the non-unitary transformation W
based on the ansatz of the unitary transformation U of Eq. (3.36). For
this, we evaluate the operators in Eq. (3.36) onto the ground state
and replace them in two steps by their simpler counterparts, which
conform to Eq. (3.37).

First, we make use of the choice of the order of the operators in
Eq. (3.36). The first and the second operators (counting from right to
left), i. e. the two-mode mixing and the harmonic oscillation operators,
yield just the identity operation when applied onto the ground state.
(This can be seen by expanding the exponentials and realizing that all
terms from the first order expansion on contain annihilation operators
to their very right, which, when applied on the ground state, all vanish.
So only the zeroth order expansion remains, which is just the identity
operation.)

Second, we apply the disentangling theorem (cf. Appendix C) onto
the squeezing operator to split it up into separate factors as

A A ) 7/\1.
S, = ZetreBe ™A (3-39)

The operators in the exponents are given by the disentangling theorem,
see Egs. (C.29a) and (C.29b), and have the following form,

i1 ATt

A= 5 Zk;A]-kb]T blz , (3.40a)
j

A A~ +/\

B=-Y By b]T b]T, (3.40b)
jk

where the matrices A and B are real? and can be chosen symmetric,
as the creation operators belonging to different modes commute. The
factor Z is a normalization constant which we determine later.

It is instructive to analyse the effect of this operator when it is
applied to the ground state. The utmost right operator contains only
annihilation operators in the exponential, thus, when applying it to
the ground state and expanding the exponential, only the zeroth order
gives a non-zero contribution,

_ AT
e 10), = |0), ,

They could have an imaginary part if the momentum had changed between both
structures, which is not the case here.



3.3 TRANSFORMATIONS BETWEEN QUANTUM STATES

which is just the identity. For the second operator, we find that, by the
same reasoning, only the zeroth order contributes,
B
e”[0), = [0)

e e’

resulting in the identity operation when applied on the ground state.
Thus, for the last two operators, only the terms of zeroth order survive
— whereas all orders of the first term remain. Therefore, we have the
following identity

5 it R
ZeheBe A 0y =2 et [ (3-41)

which justifies the ansatz (3.38). Thus, applied to the ground state |0),,
the transformation U is just given by the first two terms of Eq. (3.36),
effectively. By this we have found a form of the non-unitary transform-
ation W, which mimics the effect of the unitary U transformation for
the application to the motional ground state. As already mentioned,
this substitution of the unitary transformation has been previously
introduced by Fetter (1972), whose approach we follow here. The
non-unitary transformation thus is given by

W=2D.(71,...,738) €*, (3-42)

which is invertible. It can now be employed as the transformation
between the ground states, Eq. (3.37).

Before we make use of this transformation, we still need a method
for relating the actual coefficients Vjs the matrix elements Ajkr and
the normalization constant Z to the results of the discussion in the
previous sections.

Calculating the Parameters of the Transformation

The general idea for calculating the coefficients A of the operator A
and the displacements 7j in Eq. (3-42) is to make use of specific
properties of the transformed ground state. One such property is that
any annihilation operator B}, applied to the ground state, yields zero,

by [0y, =0 Vj. (3-43)

In this equation we replace the ground state by its transformed version
using Eq. (3.37), and map the annihilation operator with the help of
the Bogoliubov transformation Eq. (3.25) to a sum of creation and
annihilation operators for the other harmonic oscillator basis, arriving
at

_thioy - 5T v _ gt w
0=} 10), = [(ubl - vibl') ~g{ Wiy G
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We can expand the bracket such that the transformation W is right
next to each of the harmonic oscillator operators, and we then insert
the identity operator, 1 = WW-1 directly to the left of them. By this,
we obtain the following terms

Wlh W= e ADI (7, - L 13N) by I D (71, 738) €,
(3-452)
WIBTW $(71, 1N B Dy (1w €
(3.45b)
which are evaluated with the help of the Baker-Campbell-Hausdorff
identity (BCH)-identity (Mandel and Wolf 1995, p.519 £.),

31' %[ 9]+
(3.46)

This identity is applied twice to Egs. (3.45); first evaluating the unitary

N A R A A 1 R A
Ve X =Y+ [X,Y] +E[X’[X Y]}

displacement operators mode-by-mode, we find that the BCH-series
terminates, yielding

DI () B} Di(m) = ‘3} + ks (3-472)

2 AR o1t

DF(“Yk)b]T Dy (k) = b]T + YkDjk - (3-47b)
Applying the identity to the exponential operators and employing

the commutation relations [A,BZ] and [A,BF] , we find that the non-
trivial terms terminate, 4 too, resulting in

e_AB} eh = B]T + ;Aklgr , (3.48a)
e—AB]T+ A =bl", (3.48b)
The identities for the transformation W are summarized by
W_lf)ZW = B]T + Zl:Ale]ﬁ + YOk (3.492)
W—lﬁ,ﬁw = B]ﬁ + Vidjk - (3.49b)

Using the results of these identities in Eq. (3.44), we can evaluate
all annihilation operators by applying them to the ground state |0),,
such that we obtain the following equation:

0= W{; [ujk(; AblT) - ijﬁﬂ
+ {;(U]’k - ij) Tk~ ﬁﬂ } 0)+ - (3-50)

4 If we had used the not-disentangled squeezing operator instead, the last identity
would yield infinite series instead of the closed expressions.
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By multiplying both sides by W1, we first remove the transforma-
tion W on the right-hand-side, leaving two terms in the braces on
the right-hand side. The first one contains only a sum of creation
operators — and no annihilation operators — belonging to different
modes, which are applied to a state vector. When a creation operator
is applied to the ground state vector, it will yield a state vector with a
single excitation; altogether, it leads to a sum of linearly independent
state vectors, each one weighted by a certain coefficient. In the second
term, there are just numbers, so the whole term is proportional to the
ground state [0);. Consequently, there are two terms on the right-
hand side: a sum of states with one excitation each and the ground
state, each with given coefficients. For this equation to be valid, each
of these coefficients needs to vanish separately.

For the coefficients in front of the singly excited states, we obtain for
each of the 3N modes a set of 3N equations, totalling (3N)? equations,
all of which can be summarized in the following matrix equation,

Y UjAy — Vi =0 Vjl. (3.51)
k

This equation relates the coefficients Aj; to the presumably already
known matrices U and V; it is well defined as U is non-singular,
which is warranted by Eq. (3.29a). We can solve for the matrix A by
inverting U,

Aj = ;(Ul)]’lvlk- (3-52)

Since U and V are real-valued, cf. Egs. (3.29), it follows immediately
that A is real as well.

For the coefficients in front of the ground state, we obtain the
following set of equations for the 7;’s,

;(U]‘ = Vi) vk — /3} =0 Vj. (3-53)

We can solve these equations to obtain the displacements v; for each
mode, which turn out, not surprisingly, to be just the inverse phase
space displacements ,B]T introduced in Eq. (3.33). This is not surprising
when we recall that the operation of the displacement operator onto a
Gaussian wavepacket just shifts it centre.

Calculating the Normalization Constant Z

Finally, we need to evaluate the value of the constant Z. The evaluation
makes use of a variant of a linked cluster expansion (also known as
Mayer cluster expansion), which is a known technique in statistical
physics, (Huang 198y, Sec.10.1, 10.2, pp. 213ff.; Feynman 1972, Sec. 4.3,
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pp. 105ff.; see Domb 1974, for a historical account). For this, we start by
checking whether the normalization condition of the states is fulfilled,

= 1{0]0); = +(0|WW|0); . (3:54)

The normalization for the right expression is not trivially guaranteed,
since W is not a unitary operator; its Hermitian conjugate is not equal
to its inverse, W' # W1, so that we cannot replace the product by the
identity. However, by inserting the definition of W, the displacement
operators cancel each other out as they are unitary,

1= |Z[> (0] DI(7)Dy (1) e |0) = |Z* 1{0]e™ e*[0);, (3.55)

while the non-unitary exponential operators do not.> We then expand
the exponential functions of the operators A and AT,

n=0m=

00 A'l'l’lAm
=1k ol £ £ 208 oy 556

First, we inspect an arbitrary summand for which we have n # m.
As A is a sum containing two creation operators in each summand,
and likewise AT involves only summands containing two annihilation
operators each, we know that there are 2m creation operators and
2n annihilation operators in such a term. For n # m there are either
more creation or more annihilation operators in any summand. But
for any expression containing an unequal number of creation and
annihilation operators, the expectation value for the ground state
vanishes. Therefore, all terms in the sum of Eq. (3.56) with n # m are
zero and only one sum remains,

B %) A-I-nAn B %) T<0|A+”A”|O>T B [
z| 2 <0|<Zo(m)z>!0>¢— ZOT_ 2 W

n—=

Here, we introduced W, as a short-hand notation for the nth summand.
Inserting the definition of the operator A, we arrive at the following
expression for Wy,

1

Wi = (znn;)z Z Ah]z ’ 'Ajzn—ﬂznAklkz . 'Aanflan
J1rerj2n
klr /k2n
NENE ct ot attptt oottt
T<O|b]'1b]'2 b]2n 1b]2nbk1b kan 1bk2 |0>T (3.58)

Clearly, the normalization constant Z will be only determined up to a phase factor by
this method.
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where any of the indices j,jp,...,kq,kp,... runs from 1 to 3N, the
number of modes.

Let us inspect a summand in W; a bit closer. Inside the matrix
element, we are allowed to commute any two operators as long as they
are of the same types, i.e. two creation operators or two annihilation
operators. Thus we may rewrite Eq. (3.58) with the operators in any
arbitrary order as long as all the annihilation operators remain to
the left of the creation operators. For the evaluation of any matrix
element in Eq. (3.58), therefore, only the unordered multisets® of indices
{j1,---,jon} and {kq, ..., kp,} are important, and not the 2n-tuples
(j1,---,jon) and (kq, ..., kp,). If in a matrix element a mode index is
not occurring as often in one of the multisets as in the other one, then
for that mode the quantity of creation and annihilation operators in
the matrix element is unequal, so the matrix element vanishes. Hence,
any summand in Eq. (3.58) is non-zero only if the two multisets of
indices {ji,...,jon} and {kq, ..., ky, } are identical.

Let us check these considerations for the first few terms. The
term Wy is trivially given by Wy = 1. The next term Wj is then given

by

1 ST et ptgtt
Wy = 2 Z Ajijy Ak, T<0|bhb]’2bkl bkz |0) - (3.59)
J1)2
ks
We can evaluate the matrix element by commuting all annihilation
operators to the right, making use of the commutation relations,

Egs. (3.26),

ST AT e (e dbet | Ta o]\ pft
+01B] 61 B/75/¥]0)s = (0[5} (bkl bl + [10].2,1ok1 } )bk2 10}

et ettt ot NN
= 1{01b}; by b, b, 01 + 401 by [0} 851

(3.60)

where the second term on the right contains now only two operators.
We can simplify it further by commuting the remaining operators,

RN _ NN ot Tt
T<0|b]'1bkz 101 Ojoky = T<O| (bkz bjl + {bh’bkz})m>T 6j2k1

_olBTe! _
= 101y, b, 1001 ity + 8j1k28jaky = 8jukr Dok -

=0

(3.61)

obtaining a product of two Kronecker-6 symbols.

A multiset is similar to a set, but the elements may appear more than once. The order
of the elements is irrelevant, in contrast to tuples.
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We can evaluate the first term in Eq. (3.60) in the same manner,

STt BTN = ot BT (BTt 4 [BT BTt
H0[6] 66 B/¥|0) = 4(0[b] B] (bkzb] [b.,b D|o>
<0|bTb“bT*bT|o> + 1{0[B! BL" [0} 8;

0

101 (B'B] + (6], BL1]) 0} 8,

NN
—'T<O|b b ‘O>T jzkz*_éhk16pk2'_'Shkléhkz'

:0

2ko

(3.62)

In summary, we obtain the following expression for Wy,

1 2
Wy = 2 Z A]l]zAk1k2{6]1k16]2k2 +5]1k26]2k1} - ETI{A }, (363)

J1j2
kika

where we used the symmetry of A to evaluate the summations in the

last step.
The term W,, when evaluated in the same manner, has 24 sum-
mands, each of which containing four Kronecker-6 symbols,

W2 ( Z Ajijp Ajsja Akikey Aksky { O1k; 0ok Ojsks Ojuky +
]1]2]3]4
kykoksky

81k Ojky Ojaky Ojgks T+ 81y ks O sk, Oy } :

(3-64)

When carrying out the summations over jq,kq, jp, kp, ..., we find two
different kind of results for the summands. We exemplify the calcula-
tion for two of such terms; for the term & ¢, 57, 8;:k,8/,k, We obtain

_ 4
Z A]l]z ]3]4Ak1k2Ak3k46f1k46f2k15j3k26j4k1 —Tr{A }’ (3.65)
J1j2j3]4
Ky kokaks

while the term §; ¢, 8;,¢,8.,8;,k, can be factorized into two subterms,

Z Ah]z A]3]4 Ak1 ko Ak3k4 ZS]1k1 6]2k2 6]3k4 6]4k3

J1)2j3]4
kykoksky
2
<z:f%U2 hn> <Z:f¥y4 MB) = P}{Ag}}' (}6@
J1J2 1374

So the value of any term depends on the specific combination of
mode indices into linked pairs, which appear as arguments of the
Kronecker-5 symbols.
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Figure 3.3: Principles for the graphical representation of index contraction. (a) Graphical
representation for the indices of the A matrices appearing in Eq. (3.58). (b) The contraction
by 8k, between the two indices j, and ki, e.g., is graphically represented by a straight
line between the corresponding circles.

We can evaluate the 24 terms of the second order all by hand,
but for the third order term, W3, we get already 720 summands
with six Kronecker-6 symbols each. For arbitrary W) the number of
summands is (2n)! with 2n Kronecker-5 symbols each.

It is obvious that we need a more systematic treatment for the evalu-
ation of the terms Wj,, which we are going to base on the presentation
in (Huang 1987, Sec.10.1, pp. 213ff.). We introduce a symbolic notation
for the calculations, which is displayed in Figure 3.3. We represent
the indices of each matrix A appearing in Eq. (3.58) by two adjacent
circles and write all pairs of circles containing the j-indices next to
each other in a row. Inside each circle we write the subscript of the
index, i.e. for j; we write just 1, for j, we write 2, etc. The remaining
pairs containing all the k-indices are drawn in a row below the other
circles, with the numbers filled in in the same way. The two types
of indices are now only distinguished by their position in the upper
or lower row. The order of the pairs is not important at all, so we
keep them in the natural sequence of the positive integers to avoid
unnecessary difficulties.

The evaluation of the Kronecker-5 symbols via summation over half
of the indices, say over the j’s, is a common tensor contraction, which
means for any d; i, the index ji; is replaced by the index k; if a sum
over the former one is evaluated. We can graphically illustrate this by
connecting the two corresponding circles by a straight line. For each
Kronecker-5 we need to connect the corresponding two circles by such
a line. It follows that each circle must be connected with one other
circle, and that there is a total of 2n lines. Thus each circle has exactly
one line attached. We call each such representation of a summand in
Wy, a n-graph.

For the evaluation of each graph associated with Wy, as shown in
Figure 3.4, there is no point for this graphical representation, as both
possible terms yield the same result. However, when displaying all
terms of W,, we see two different types of graphs in Figure 3.5: the
corresponding summands for the graphs (1), (2), (7), (8), (17), (18),



8o

DYNAMICS OF STATE-DEPENDENT ION COULOMB CRYSTALS

(21), and (22) all yield the result [Tr{A?}]?, while the remaining ones
have the value of Tr{A*}.

By close inspection we find the following: For the graphs yielding
the result of [Tr{A?}]?, each pair is only connected to one other pair
by the lines, whereas for all remaining graphs, each pair is connected
to two other pairs. To put it another way, for the latter graphs one
could follow the lines connecting the pairs visiting all pairs in the
graph, while for the former graphs one would be stuck in just a part
of the full graph. Those graphs where we could connect all pairs
by such a procedure we call a fully connected graph; other graphs can
be decomposed into several fully connected subgraphs which we
call clusters. In particular, we want to specify how many pairs are
connected in such a cluster; therefore we call those clusters where
one pair of j-indices is connected only with one pair of k-indices a
1-cluster, those with two pairs of j- and k-indices each a 2-cluster, etc.

As each line of a cluster corresponds to a tensor contraction, we
can quickly identify the previous calculations by the following: For
each line connecting a pair to a new pair, the contraction yields only a
matrix multiplication; for the last line, which is closing the [-cluster,
the contraction yields the trace operation. Therefore, the evaluation
of a 1-cluster always yields the result Tr{A?}, of a 2-cluster always
Tr{A%*}, and of a I-cluster Tr{A?'}, in general. For the evaluation
of Wi, we now have to determine how to decompose any arbitrary
n-graph into /-clusters.

A 2-graph is either composed of two 1-clusters or of one 2-cluster.
Correspondingly, an arbitrary n-graph can be decomposed into a
product of mq 1-clusters, my 2-clusters, ..., and my n-clusters, where
the numbers m; have to fulfil the equation

Y ml=n, (3.67)

as there are in total n columns of pairs in an n-graph. The sum over
all possible 2-graphs can be decomposed into a sum over all 2-graphs
composed of two 1-clusters plus the sum over all 2-graphs composed

00 00
‘ Y,
00 o6
(1) ()

Figure 3.4: All graphs associated with W;.
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of a single 2-cluster. In general, the evaluation of Wj, can then be
written as follows,

Wy = (znl 72 (sum of all possible n-graphs)
n!
1
= 22 Y S{(my,m,...)} (3.68)
' (ml,mz,...)

where the primed sum denotes a summation over all possiple n-
tupels (mq,my, ..., my), which are restricted by Eq. (3.67). The term
S{(mq,my,...)} is the sum over all n-graphs which are decomposed
into mq 1-clusters, my 2-clusters, etc., as specified by the n-tupel. In
the sum S{(mq,my,...)}, the total multisets of indices {ji,...,jon }
and {kq, ..., kp,} are then distributed in all possible partitions into
several sub-multisets, in particular into m sub-multisets containing
two indices, my sub-multisets containing four indices, and for arbitrary
| there are m; sub-multisets containing 2/ indices each.

We now want to find a way to evaluate the value of such an I-
cluster for any sub-multisets of indices {j; ,...,ji, } and {k;,... ki, }
assigned to it beforehand. First, we determine the number of ways to
draw such an [-cluster independently of the assigned subset of indices.
Then, we draw the pairs of circles again in two lines, but now without
filling in any indices as they are not yet determined. We can count the
ways to draw fully connected graphs as follows: For having a fully
connected graph, we need to connect all pairs, so we first count the
number of distinct possibilities of drawing lines between pairs. To
this end, we need to choose some convention for the counting; we
may draw the ‘outgoing’ lines emerging from the right circle of the
pair and attach the “incoming’ lines to the left circle. Without loss of
generality, we start at the first pair in the top left corner. From there,
we need to draw a line to one of the pairs in the lower row, giving us
| possibilities to connect the first two pairs, cf. Figure 3.6a. The next
line then must go again to an arbitrary pair of the upper row excluding
the first upper pair, giving us | — 1 possibilities, cf. Figure 3.6b. Going
down, there are again | — 1 possibilities, as we have to exclude the
pair in the lower row chosen in the first connection. When we keep
connecting the pairs like that, the last pair in the lower line then must
be connected to first pair of the upper row to close the graph, and
we obtain in total ! (I —1)! possibilities of connecting the pairs, cf.
Figure 3.6c.

Then, we get a new graph for exchanging the two circles in each
pair, thereby intertwining the graph. When we are intertwining all
pairs, though, we do not get a new graph, hence we have to omit this
possibility from the count, giving us a total factor of 2/2/~1 we have to
include, cf. Figure 3.6d. An example for this can be seen by inspecting
Figure 3.5: the basic two graphs which are obtained by counting the
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(c) (d)

Figure 3.6: Counting of the possibilities drawing an /-cluster. (a) There are [ possibilities
of connecting the first pair of indices in the upper left corner to a pair in the lower row. (b)
For the next connection, there are I — 1 possibilities. (c) For the last connections from up to
down and from down to up there is only one possibility left each. (d) We get a doubling of
possibilities for each intertwining of a pair (dashed light grey links before and grey links
after the intertwining), keeping the first upper pair fixed.

possibilities of linking pairs for the 2-clusters are graphs (10) and (14);
by combining all possibilities for intertwining while skipping the pair
(j1,j2), we obtain the graphs (3) to (6) and (9) to (12) from graph (10);
the remaining graphs, (13) to (16), (19), (20), (23) and (24), are obtained
by successive exchange of pairs starting from graph (14). However,
by intertwining all pairs, we just transform graph (10) into (14). The
1-cluster and 2-clusters are kind of exceptional in the way that all
graphs can be obtained by intertwining only, but for higher I-clusters
this is not the case anymore since there are more than two possible
pairs for the first connection.

To summarize, there are 2! I! 2/=1(1 — 1)! ways to draw a I-cluster.
Now we can evaluate the matrix elements belonging to each I-cluster,
defining the I-cluster integral (also called Mayer’s cluster integral) as
the sum of all possible clusters for I pairs of circles in each row, which
is given by

by =212 — 1A% (3.69)

The first four terms are given by by = 1, by = 2Tr(A?), by = 16 Tr(A*)
and by = 384 Tr(A°).
Now we can formulate how to write the sum

S{(ml,...,ml)}:Zblmlbgiz---, (3.70)
)

where the summation over P extends over all possible ways of distrib-
uting the n pairs of indices {(ji; j2), ..., (jan_1;j2r) } into the circles in
the upper row and the n index pairs {(ki;kp),..., (koy_1;kp,) } into
those in the lower row, with the aim of obtaining only distinct graphs.
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The summands do not depend on the distribution of indices, thus each
of the summands gives the same contribution; we can simply count
the number of summands and multiply the summand by this number.
There are n! ways of distributing n pairs (the ordering of a pair is
already contained inside the cluster integral), which yields a factor
(n!)? for the upper and lower row. But we have already counted some
of the possibilities by counting the number of graphs. A permutation
of two [-clusters with the same | does not give a new graph; there
are m; I-clusters with m;! possible ways to exchange them. Hence,
we need to divide by the factor [];(m;!). Moreover, we have also
accounted for the permutation of pairs inside a cluster integral, so this
leads to no new graphs; there are I! ways to permute the upper and
lower pairs each, and there are m; clusters such that we have to take
this to the n;"th power. Therefore we divide by [;(1!)?™ to remove
these doubly counted graphs. Equation (3.70) is then given by

ml

S{(mj,...,mp)} = (n! ZH (3.71)

-1 ml l' my!(11)2m

For the full evaluation for the terms W,, we obtain
1 / 1 1 by \™
W= e & 00 TT b = e & T ()
T S S R O "y 11t A ()2
(3.72)

where we can pull the factor 22" into the restricted sum by making
use of Eq. (3.67),

W= T s T ()
8 (o 22(mlbma2e) g\ (11)2

vyl b, )’”l
{%}zq ((211') ' (3-73)

By summing over all W, we obtain
e} n my
2 ! 1 by
2= BT () o7

Summing over all combinations of {(my,...,m;)} followed by a sum-

mation over all n is equivalent to summing over all mq,m,, ... from 0
to co separately, so we can replace the restricted sum,

B 00 00 © 1 b m
772 = 3 -~]‘[<(le’|) ) (3-75)

0
[e¢] [e¢] 1 b m
-1 [ L i (i) ] ’ 070
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where we exchanged the summation with the product in the last line.

The obtained result is in the form of the exponential series, so we get

_ kad b = b
72 _ ZI;[lexp [(lel')z] = exp [Z (2111,)2] . (3.77)

=1

Now we can insert the value of the /-cluster integral to finally obtain

o Tr( A2 0 21
Z_Z:exp [ZTgAl )] = exp (;Tr[—Z—(AZ )]> (3.78)
1

In the square brackets we recognize the power series expansion of the

logarithm, In (1 — x) = — 37 | %k, which allows us to reformulate the
result as
1 1
-2 o
Z7° =exp (2 Tr [ln 1—A2]> , (3.79)

provided that 1 — A? is non-singular.

Now we are going to prove the non-singularity of 1 — A? by finding a
matrix norm ||-|| for which ||A|| is smaller than unity. The eigenvalues
of a matrix A have the property to be located inside a circle bounded
by any matrix norm (Horn and Johnson 1985, Theorem 5.6.9, p. 297 ).
Therefore, if the absolute value of all the eigenvalues of A is smaller
than one, none of the eigenvalues of 1 — A can be zero. Using the
spectral norm?|| - ||, the orthogonal decomposition form A = AxAT
derived in Eq. (C.29a), and the submultiplicativity of the matrix norm,
we obtain the following inequality,

T
[Allz < [[Allz[tanh x[|o[| AT 2 = [[tanh x{|, (3.80)

where the equality follows from the fact that the spectral norm of
the orthogonal matrices A is unity. Because of the decomposition
Eq. (C.29a) we find that yx is diagonal, real, and positive, thus the
spectral norm is equal to the tangent hyperbolicus of the largest
eigenvalue of x. It follows that ||A||, < 1 as the tangent hyperbolicus
is smaller than one in its full domain.

So we find for Z the following form,

Z = exp(—iTr [ln 1—1A2}> , (3.81)

which can be further simplified, using the identity for the determinant
of the matrix exponential, exp{Tr X} = det{exp X},

Z = det |(1- A%))4] . (3.82)

7 For a quadratic matrix A the spectral norm || - |, is defined by ||A|l, = max{v/A :
A is an eigenvalue of ATA}, see Horn and Johnson (1985, Def. 5.6.6, p. 295).
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Now we have established all the necessary relations of the coefficients
of the transformation (3.37) with the normal mode transformations.

By determining the Aj’s, the ﬁ]T’s, and Z via Egs. (3.30), (3.52)
and (3.82), we can directly calculate the overlap between the two
different ground states, given by

G = 1(0[0), = Z4(0[D;(pT)e?(0);
S AT S T N
j j

3.3.2 Arbitrary Motional States

The transformation between arbitrary motional states makes use of
the representation of the annihilation and creation operators in both
bases, as these can be used to connect any state with the ground state.

Additionally, we can also determine the squeezing parameters i
of the general transformation (3.34) by using the results of the disen-
tangling theorem in Appendix C. We find

ik = Y NixiDua (3-84)
1

where the x; are given by x; = arctanha;. Aj; is the orthogonal
transformation which diagonalizes A, Eq. (C.29a), where the 4; are the
resulting eigenvalues. As A is real and symmetric, we find straight
away that the ¢j are all real and positive.



Part II

RAMSEY INTERFEROMETRY

In this part, we discuss the use of Ramsey interferometry
as a tool for probing the motional state of an ion Coulomb
crystal. We show that the visibility of such a Ramsey
interferometer has unique characteristics across the linear-
zigzag transition and that it can therefore be employed as
an indicator for this structural transition.






RAMSEY INTERFEROMETRY WITH ION COULOMB
CRYSTALS

In this chapter, we discuss how Ramsey interferometry can be used
to extract information about the motional state of an ion Coulomb
crystal after a state-dependent quench of the trapping potential for a
specific ion. First, in Section 4.1, we review the general principle of
Ramsey interferometry and introduce the basic method for extracting
information about the motional state after the quench. Poyatos, Cirac,
Blatt et al. (1996) proposed to use a Ramsey interferometry scheme
for a single trapped ion to determine the position of an ion, which
could be used, for example, to measure magnetic field gradients more
precisely. This proposal has been developed further by De Chiara et al.
(2008) for application in an ion Coulomb crystal, where the impact of
the photon recoil on the linear ion crystal close to the linear-zigzag
transition could be revealed in the time-dependence of the visibility.
For the presentation of the basic principle of the scheme in Section 4.2
we neglect many of the practical details of how to implement this
for an ion Coulomb crystal, which are then presented in Section 4.3
for relevant experimental setups. Finally, in Section 4.4 we derive
the formula for obtaining the visibility of the Ramsey interferometer,
including the effects of the photon recoil as well as an initial thermal
occupation of the motional state, thereby providing a more realistic
description of the system.

4.1 THE PRINCIPLE OF RAMSEY INTERFEROMETRY

The original proposal by Ramsey was conceived as an improvement
of the so-called magnetic resonance method that had been introduced
earlier by Rabi, Zacharias et al. (1938); Rabi, Millman et al. (1939).
The magnetic resonance method allows the measuring of the Larmor
precession and hence the nuclear magnetic moment of molecules by
letting a beam of hot molecules pass through a region of a rotating
magnetic field (see Ramsey 1956, Ch. V, pp.115ff.). It is the foundation
of nuclear magnetic resonance (NMR)-method introduced by Bloch,
Hansen et al. (1946) and Purcell et al. (1946) with a multitude of applic-
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ations in solid state physics (Kittel 2005, Ch. 13, ), chemistry (Warren
et al. 1993), and in particular in medicine, where it forms the basis
of the magnetic resonance imaging (MRI) technique used for medical
diagnosis (Bethge et al. 2004, Ch. 7, pp. 101ff.). The method sub-
sequently developed by Ramsey (Ramsey 1949, 1950; Ramsey 1956,
Ch. V.4, pp.124ff.) allowed the measuring of the Larmor precession
with much greater accuracy. It has also been applied to electronic
transitions in atoms, leading to a new frequency and time standard by
using a certain stable atomic transition for atomic clocks (Ramsey 1956,
Ch. IX.11, pp.282ff.; Ramsey 1983; Itano and Ramsey 1993; Diddams
et al. 2004), providing the definition of the second ever since.

Magnetic Resonance

We first review the magnetic resonance method for a classical magnetic
moment m driven by magnetic fields in a rather qualitative way in
order to get a first intuitive understanding of the involved physics.
Before we turn to the Ramsey method we are going to review the
basics of the magnetic resonance method.

To this purpose, consider a particle with a magnetic moment m = vj
that is proportional to its angular momentum j; the proportionality
constant vy is called the gyromagnetic ratio of the particle under con-
sideration. Now let this particle be subjected to a static magnetic
field By = Bpz pointing along the positive z-direction, as shown in
the top left corner in Figure 4.1a. The potential energy of an ideal
magnetic moment in a magnetic field is given by Vinm = —m - By; the
force on the magnetic moment is F = V(m - By); and the torque on it
is dj /dt = m X By (Jackson 1999, Sect. 5.7, pp. 188ff.). The solution
to the equation of motion for the angular momentum is such that the
magnetic moment is gyrating around an axis parallel to the magnetic
field, the so-called Larmor precession (Cohen-Tannoudji, Diu et al. 1997,
Complement Fyy, pp. 443ff.); the angular frequency w; = —|Bg| of
this gyration is called Larmor frequency, and it depends on the product
of the gyromagnetic ratio with the magnetic field strength.

Next, a second magnetic field Bg(¢) is applied which is perpendic-
ular and rotating® with a certain frequency wg around the axis of
the static field, see Figure 4.1b. If this second field were not rotating

According to the so-called rotating-wave approximation (RWA) (Allen and Eberly
1987, Ch. 2.4, pp. 41f.), an oscillating field is approximately equivalent to a rotating
field. Bloch and Siegert first considered the case for a non-rotating field (Bloch and
Siegert 1940), which gives rise to a shift of the resonance frequency which depends
on the ratio B%/(16B3). This shift is negligible for appropriately chosen magnetic
field strengths Bg < By for magnetic resonance experiments as well as for quantum
optical experiments in which the condition is () < wy, i.e., that the Rabi frequency
is much lower than the frequency of the driving laser field.
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Figure 4.1: The principle of magnetic resonance. (a) The Bloch sphere of a spin pointing
along m is shown in the case of a static magnetic field By in z-direction. The magnetic
moment m gyrates around the axis of the magnetic field. (b) A weak second magnetic
field By is applied that is perpendicular to By, but rotating in the x—y-plane with angular
frequency wg. (c) The resulting dynamics is best described in a coordinate frame rotating
with wg. In this frame, the field Br appears to be static, whereas the static field apparently
vanishes if the rotating field is on resonance with the Larmor frequency, wr = wy.
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Figure 4.2: Sequence of Ramsey’s method of separated oscillatory fields. The illustration
shows the direction of the magnetic moment of a spin system at the top, while at the
bottom the y-component of an rotating (or oscillating) magnetic field is shown. First, to
the very left, the spin is polarized along the positive z-direction and the rotating field is off.
Then, the rotating field is switched on for a duration 71, such that the spin rotates into the
x—y-plane. The rotating field is switched off again and the spin precesses freely around the
z-axis. After time tg the rotating field is switched on again for a time 7, while keeping the
phase of the rotation. Only if the frequencies of the rotating field and the precessing spin
are equal will the second field pulse turn the spin in the negative z-direction. In all other
cases, the phases of the two fields do not match and the second pulse will rotate the spin
only partially toward the negative z-axis or even into the other direction (see Figure 4.3).
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(a) Spin and field in phase (b) Spin and field out of phase

Figure 4.3: Effect of the second Ramsey pulse dependent on the phase between spin and
field. (a) If spin precession and rotating field are in phase when the second pulse sets in,
the spin is rotated toward the negative z-direction. (b) If spin precession and rotating field
are out of phase before the second pulse, the spin rotates on a smaller circle parallel to the
x—z-plane, thus not having a maximal z-component.
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Figure 4.4: Illustration of the Ramsey fringes. Theoretically calculated probabilities P;
and P| for measuring the different spin orientations 1 and | of the magnetic moment in
the final measurement of the Ramsey interferometer scheme as a function of the phase
shift ¢ between the spin and the rotating field.
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but fixed, the magnetic moment would precess around the resulting
vector of the sum of both fields; yet, as the second field rotates in the
x—y-plane, the resulting vector does so, too. Therefore, the magnetic
moment is revolving around a rotating axis.

The situation can be described much simpler in a coordinate frame
(%,9',2') that is rotating around the z-axis at just exactly the rotation
frequency wpr of the second field (Rabi, Ramsey et al. 1954). The
effect of such a coordinate transformation (%,¥,2) — (%,9/,2) is that
Coriolis forces are appearing in the new coordinate frame that have
the same mathematical structure as a magnetic field along the z-axis;
therefore, the net effect of the rotating coordinate frame is to change
the apparent magnitude of the magnetic field By (besides that the
rotating field Bg () revolves with a different angular frequency). The
resulting magnetic field is given by

B = (By +wg/7)2' + BgX'. (4.1)

If the rotation of the field is in resonance with the Larmor frequency of
the static field,

wr = —7By =wr, (4-2)

the first term in Eq. (4.1) vanishes and only the term BrX’ remains as
a static field in this frame. Hence, the total dynamics in the rotating
frame is given by a Larmor precession around the &’-axis with Larmor
frequency () = —yBg. As this basic idea of magnetic resonance was
introduced by Rabi, Zacharias et al., the precession of the magnetic
moment around the rotating magnetic field is usually called Rabi
oscillation and the angular frequency () of the precession is called Rabi
frequency, accordingly.

Ramsey’s Method of Separated Oscillatory Fields

Now we turn to Ramsey’s method, which we have illustrated in
Figure 4.2. Suppose the magnetic moment m is initially pointing
along the positive z-direction. Then, a rotating field By is applied
with a definite strength and for a specific duration such that the
magnetic moment is rotated by 90° into the x—y-plane. After the field
has been switched off, the magnetic moment keeps precessing in the
x—y-plane until, at some later time, the rotating field is switched on
again in such a way that it points into the direction it would have
had if it had been kept on all the time. A rotating field with this
property is called phase-coherent. If now the phase of the field Bg and
the phase of the Larmor precession match, the rotating field remains
perpendicular to the magnetic moment in such a way that the magnetic
moment precesses further around the axis of the rotating field. If the
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strength and duration are chosen as for the first pulse, the magnetic
moment will afterwards point in the direction of the negative z-axis,
see Figure 4.3a. If, however, the phases of the Larmor precession and
the field are not equal, this second field rotates the magnetic moment
only partially into the negative z-direction, see Figure 4.3b, or it turns
it into the positive z-direction (if it has a phase shift of 7 it turns until
it points again along the initial direction). In the rotating frame, this
mismatch of the phases means that the magnetic moment and the field
Br are not perpendicular anymore, hence the precession is such as if
only the perpendicular component of the magnetic moment revolved
around the magnetic field axis. The origin of the phase mismatch may
be either that the frequencies are not exactly in resonance, or it may
be a deliberately introduced phase shift.

The final step in the Ramsey method is to measure the direction
of the magnetic moment; in a quantum mechanical description, the
result of this measurement for a single particle is not deterministic,
hence the experiment needs to be repeated in an identical way for
a certain number of times in order to obtain the relative frequencies
of the possible measurement outcomes. As the first experiments of
this kind were performed with beams of molecules flying through
different spatial zones, they provided a continuous flow of particles,
such that the current of particles with the right final magnetic moment
could simply be maximized by matching the frequency of the rotating
field to that of the Larmor precession. The measured probability for
obtaining a full turn of the magnetic moment is dependent on the
phase shift, see Figure 4.4. When the phase shift originates from a
detuning away from the resonance condition, one obtains an oscillating
pattern in frequency space with a sharp resonance for wg = wr, the
so-called Ramsey fringes.?

In summary, the Ramsey interferometer compares the precession
of a magnetic moment with an external frequency. This method
is sensitive to any phase shifts the magnetic moment experiences
between the two applied fields. Also, it is applicable to many other
systems, in particular any two-level system, where it measures the
coherence i. e. phase relation between the two levels.

One important application used in numerous physical systems con-
taining spins or spin-similar systems is to measure the rate with which
the coherence between different quantum states is lost due to external
noise or coupling to the environment. These processes are described

The usage of the term “fringes” originates from the analogy with the interference
pattern of a double-slit experiment. Here, the two slits are separated in time instead of
in space, and the interference pattern is in frequency space instead of in momentum
space. In the original experiments with molecular beams, the final magnetic moment
was detected by a spatial deflection in an inhomogeneous magnetic field resulting in
fringes on a screen similar to those of a common interference experiment.
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by introducing two relaxation rates in the equations of motion for
the magnetic moment, the so-called Bloch equations (Bloch 1946): First,
the longitudinal relaxation time Ty, which denotes the time from
which a fully polarized state — meaning a magnetic moment parallel
to the Z-axis — relaxes back to a thermal equilibrium distribution. And
second, the transversal relaxation time or spin-spin relaxation time T,
which appears when the magnetic moment is subjected to a transverse
relaxation process or dephasing process. That is, instead of pointing
in a discrete direction, the magnetic moment is smeared out into a
continuous distribution of the azimuthal phase angle, so that the total
magnetization is given by the integral over the phase, which in general
is smaller in amplitude than the initial value. The T; time is then
defined as the time scale after which the total magnetization decays
to 1/ e of its original value. The method of Ramsey interferometry
is capable of detecting the loss of a fixed phase relation between the
two spin states arising from such dephasing processes. The origin of
the T-dephasing in NMR is commonly explained by the interaction
between different spins in the sample which have random phases; the
spin-spin coupling then leads to an averaging of the individual spins.
In real-world experiments, another quantity, namely the T3 time, is of
practical importance. It includes the effect of spatially inhomogeneous
magnetic fields, which are another possible cause of dephasing for
samples with a considerable spatial extent or particles moving along
drawn-out trajectories.

In an experiment T, and T could be distinguished by the spin-echo
technique (Hahn 1950), which can undo the effects of stationary field
inhomogeneities by reversing the precession direction of the spins,
whereas the spin-spin relaxation is still present because of quasi-
random fast fluctuations of the spins induced by the coupling among
them.4

In the examples provided here, Ramsey interferometry is applied to
ensembles either with a Maxwellian velocity distribution as in the case
of molecular and atomic beams, or in macroscopically large samples
where single spins cannot be resolved. In the following, we are going
to examine the opposite case, in which Ramsey interferometry is
applied to single atoms or ions close to their motional ground state.

The latter was actually the initial motivation for Ramsey to replace the single region
of an oscillatory field with two separate ones, see Interview with Dr. Norman Ramsey
by Ursula Pavlish at his office in Lyman Hall, Harvard University, December 4, 2006.
Transcript by Center for History of Physics of the American Institute of Physics.
This is actually the basis for many applications in MRI (Bethge et al. 2004, Ch. 7,
pp. 101ff.), in which a magnetic gradient is used in combination with the spin-
echo technique or other advanced pulse sequences such as, e.g., the Carr-Purcell
sequence (Carr and Purcell 1954; Slichter 1980, Ch. 8), to image organic tissue with dif-
ferent T, or T; times in a spatial dependent way. Actually, all three phenomenological
decay rates Ty, T, and T, are used for the imaging of different tissues.

95



96

RAMSEY INTERFEROMETRY WITH ION COULOMB CRYSTALS

Of course, the technique has been in use for a long time in most if
not all of the fields and subfields of atomic and molecular physics,
and in particular it is among the standard tools used in trapped ion
experiments.

Next we present a detailed theoretical description of Ramsey inter-
ferometry applied to a single quantum system, as already discussed
by Ramsey (Ramsey 1950) himself, and show how this technique can
also be used as a probe for a coupled system.

4.2 RAMSEY INTERFEROMETRY AS A PROBE
4.2.1  Degrees of Freedom, Hilbert Space and States

Now consider having a quantum system for which the degrees of
freedom split into a two distinct sets, that we call internal and external
degrees of freedom. Let further the internal degrees of freedom be
described by a two-level system, while the external degrees of freedom
can be arbitrary and even continuous. In our case, we take a single
atom within the two-level approximation, where two electronic states
form a basis of a two-dimensional Hilbert space; the external degrees
of freedom are described by the wavefunction of the COM-coordinate
of the atom.

The total Hilbert space of the system thus is given by tensor product
space,

H = A5 Q@ Hext - (4.3)

The Hilbert space 771 g of the two-level system is two-dimensional,
and it is spanned by the orthonormal basis { |} ), |1)}, with | standing
for ground state and 1 for excited state. The naming scheme is
arbitrary and should not exclude the possibility of degenerate states.
Specifically, we assume the states ||) and |1) to be a meta-stable
states, meaning that there is no spontaneous decay channel from one
state to the other, at least not within the timespan of the experiment.
With that, any pure state may be written as®

[s) =c )+ e 1), (4-4)

with |c| | 2y (=N 2 — 1 for normalization. The complex coefficients c4
and c| uniquely determine the state [s) for the two-level system.

Any state of a two-level system may also be expressed by the density matrix prrs =
%(1 + 0 -s), where 0 = oyey + oyey + oze; is the vector of Pauli matrices and s is
the Bloch vector, obtained by s = Tr[oprig]; for a spin-1/2 system it is parallel to the
magnetic moment of the spin. Thus one is motivated to use the analogy of a two-level
system with the direction of the magnetization of a spin, in particular in the graphical
representation of a Bloch sphere, which is essentially equivalent to the sphere shown
in Figure 4.1.
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The Hilbert space of the external degrees of freedom can take
many different forms, but let us assume for simplicity’s sake that
it could be spanned by a single variable. In the case of a continu-
ous basis { |¢(17))}, we can then write any arbitrary pure quantum
state |¢) as

#) = [ die(n) lo(n) - (45
For a countable basis { |¢,) }, we have similarly
@) =Y cnlen) (4.5b)

where the basis is orthonormal (¢;; |¢,,/) = 0,,,,» (from which we find for
the coefficients ), |cx| 2 — 1). The continuous basis is not necessarily
orthonormal, and it can be also overcomplete as in the example of the
coherent states basis (Le Bellac 2006, p. 366). The state |¢) is uniquely
determined by the function c(7) of the continuous parameter 7 or by
the coefficients ¢, withn =0,1,2,..., respectively. The generalization
to more than one variable is straightforward.

In general, the combined state of the system may then be written as

9) = [an [ertn 1)@ o0n) +e ) 1 ® [e)], @6

or
) =2 [ern 1) ® len) +cpnlh) © gm)] - (4.6b)

We may rewrite any arbitrary state vector always in the following
form,

) =c V)@ 1g)) +er [ @ [9y) (4.7)

where we merged the expansion into basis states of the external
degrees of freedom into two wavepackets,

o) = [ dne tnlotn), (4.82)

or) =i [ dnern o) (4.80)
for the continuous case, and

¢y =c) ! Ycunlon) (4.8¢)

91) = e Lt ) (4.8d)

for the countable basis. In the following we are going to leave the
“®”-symbol out when writing a state of the form of Eq. (4.7).

Next, we are going to analyse the effect of the Ramsey interferometry
scheme on the total quantum state.
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4.2.2  Description of the Sequence

The Ramsey sequence then consists of the following steps:
1. INITIALIZATION,
2. FIRST RAMSEY PULSE,
3. FREE EVOLUTION,
4. SECOND RAMSEY PULSE,
5. MEASUREMENT.

We are now going to describe these steps for the ideal implementa-
tion. In Section 4.3 we describe the implementation in trapped ion
experiments and also discuss the limitations before we present a more
realistic theoretical description in Section 4.4.

1. INITIALIZATION. The two-level system is prepared in one of its
eigenstates, say ||). The state of the quantum system after the initial-
ization at time t( is given by

[9(t0)) = [1) 19y (to)) - (4.9)

In that way we do not have to synchronize the phase of the internal
state with the phase of the applied pulses. Moreover, there is no initial
entanglement between internal and external degrees of freedom.

2. FIrsT RAMSEY PULSE. A pulse of radiation resonant with the trans-
ition between the two levels is applied for a duration 7y > 0 such
that the state of the two-level system afterwards is in an equal super-
position between both eigenstates of the two-level system. The time
evolution operator for such an interaction reads (we are discussing
this in more detail in Section 4.3)

N

Oy = 5 (14D = 14+ 1) (410)

The state at time t; = ty + 77 is given by

i) = 5 (11 lon(t) + 1) 9y(12))

1
= 5 (M +10) oy} a1
Here we are assuming that there is no evolution for the external

degrees of freedom, i.e., ‘4’T(t1)> = |4>¢(t0)> and |4>¢(t1)> = |4>¢(t0)),
and that the state at the end of the pulse is still separable.
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3. FREE EVOLUTION. After the pulse, the external degrees of freedom
are undergoing a state-dependent time-evolution for a time tg,

U(tr) = 1O (tr) + [T (tr), (4.12)

with the state-dependent time-evolution given by the unitary operators
acting on ext,

UT(tR) = exp[—iI:ITtR/h] , (4.13a)
U¢(tR) = exp[—iﬁitR/h] ) (4.13b)

Here we assume that the free Hamiltonian of the system can be
decomposed into two state-dependent parts,

I:Ifree = |T><T’Hfree”><ﬂ + |¢><¢|Hfreeu><u = HTHMT‘ +H¢|~L><~L| ’
(4.14)

where the Hamiltonians I:IT = (1|Hfee|T) and H L= (}|Hfree|d) are
operators on the Hilbert space of the external degrees of freedom ¢
only. We further assume that the free Hamiltonian Hy,, is time-
independent during the interval of the evolution.

The state at time ty = t1 + tg is given by

p(t2)) = 5 (1) 101(02)) + 1) 04820, (415)
with

P1(t2)) = Uy (tr) @y (o)) (4.162)

¢y (£2)) = U, (tr) |9y (t0)) - (4.16b)

If the unitary operators UT and U, give rise to different dynamics, the
internal and motional degrees of freedom for the state in Eq. (4.15)
become entangled as a matter of course.

4. SECOND RAMSEY PULSE. After the free evolution, a second pulse
of radiation resonant with the transition is applied such that if this
pulse is directly applied after the first one, the state after the pulse
is one of the two eigenstates of the two-level system. Consequently,
there are two possibilities: Either the same unitary operation of a
n/2-pulse is applied and the internal state is mapped to |1) (as the
two pulses immediately combined together form a 7-pulse); or the
inverse unitary operation brings the internal state back to the state |])
by a —n/2-pulse (which is the identity upon the combination of the
two pulses). We shall choose the latter possibility in the following, so
that the evolution operator is given by

A 1

O sz = 5 (INH = NG+ + 114 (417)
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This pulse should be phase coherent with the first pulse, but allow a
controlled phase shift with respect to the first pulse. The effect of this
phase shift is expressed by the following unitary,® which is applied
right before the unitary of the second pulse, Eq. (4.54),

Up = eIM {1+ [ (4.18)
The two unitary operators can be combined into a single one,

A 1 . .

O nyap = 75 (S4IN01 = NI+ ML+ D) - @19
Denoting the duration of this pulse by 1, the state at time t3 = t; +
reads

1
9(t)) = —={ 11) 9182 + 1) 194t} } (420)
with
1 .
#1(15)) = (= Iy (12)) + € lgy (1) ) (4:212)
1 .
#105)) = 75 lgy(12)) + €@ 91 (12)) ). (4.21b)

which are, using the previous results of Egs. (4.16),

91(t3)) = — =0, (tr) ¢y (t0)) + €T (tr) ¢ (10)))
V2

(4.22a)

04030 = —= ( 0,(tR) [0y (t0)) + €90, (1R) [y (t0)) )

2
(4.22b)

5. MEASUREMENT. At the end of the sequence the state of the two-
level system is measured by a projective measurement, and the relative
frequencies of observing the two-level system in one of its eigenstates
are recorded. These relative frequencies or probabilities are given by

Pi() = (pe) N9 (13) = {1~ Re(#0(R))}, (4230)

PL() = (p(e) D9 (13) = {1+ Re(#0(R)) L. (4.23b)

These probabilities depend directly on the phase with which the
second pulse is applied as well as on the complex contrast factor (Englert

1996):
O(tr) = (9, (t0) U] (tr) U4 (tr)[¢, (£0)) - (4-24)

6 Here, we neglect a global phase shift and a phase that does not change the following
result.
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The complex contrast factor is actually identical to the overlap between
the differently evolved motional wavefunctions, and it depends there-
fore on the time fR elapsed in between the two Ramsey pulses.

Another way of looking at the complex contrast factor or overlap is
to consider it as the scalar product between the initial state |¢(fg)) !
itself and an evolved version of it that is subjected to two consequent
time evolution operators: First, it is evolved with GT( tgr), which is the
usual time evolution operator evolving the initial state forward in time.
Then, in a second step, the so-obtained state is evolved with the unitary
operator ﬂI(t r), which can also be regarded as a (hypothetical) time
evolution by U i(t r) backward in time due to the time-reversibility
of unitary dynamics. Thus, the overlap can serve as a measure of
how good the time-evolution of UT(t r) can be “reversed” by UI(t R)-
A more common version of such a measure is obtained by taking
the modulus-square of the overlap, which is the so-called quantum
Loschmidt’ echo (Peres 1984; Jalabert and Pastawski 2001; Gorin et al.
2006). It is employed as a useful method in various fields such as
quantum chaos (Peres 1984; Jacquod et al. 2001), decoherence (Cucchi-
etti et al. 2003; Casabone et al. 2010), and quantum criticality (Quan
et al. 2006; Zanardi and Paunkovi¢ 2006) in many-body systems.

In Eq. (4.23), the sum of the probabilities always adds up to unity,
P (¢) + P+(¢) =1, of course. As we vary the phase ¢ continuously,
however, we observe oscillations in the probabilities (4.23), as sketched
in Figure 4.4; these oscillations appear with a certain contrast or
visibility,

maxP| —minP|

= i <YV < .
4 max P| +min P’ with0 sV <1, (4-25)

which is given by the absolute value of the complex contrast factor,

V(tr) = [O(tr)]- (4.26)

For the theoretical treatment in the following, the visibility is given
by the simpler formula V = maxP| —minP|, as, in theory, the sum
of maxP| + minP| = 1 always. In actual experiments, this sum may
deviate from unity because of statistical and systematic measurement
errors, so it is necessary to draw upon Eq. (4.25) for the evaluation of
the visibility.

In the following chapters, our analysis concentrates on the visibility
as the main quantity used to characterize the motional state of an ion

In a famous debate with Ludwig Boltzmann about entropy, Joseph Loschmidt based
his claims on the time-reversal invariance of classical mechanics. The naming of
the Loschmidt echo refers to him, though this argument of sudden time-reversal,
or equivalently the reversal of the velocities of all molecules, has been put forward
earlier by Thomson (1875).
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Coulomb crystal. As we have seen by its definition via Egs. (4.25)
and (4.26), the visibility is given by the overlap of the motional states,
and thus its temporal behaviour can give us some information about
the actual dynamics of the motional state. Specifically, any change
in the visibility is directly related to a change of the overlap of the
wavefunctions of the two differently evolving parts of the motional
states. If we now assume that the dynamics of one branch of the
motional state is already known, it can serve us as a probe for the other
state.

A simple case is realized for one of the branches remaining in its
motional ground state, where the ions are located around their classical
equilibrium positions. Assuming that there will be no significant
spread in the wavefunctions, we will find the following: The visibility
will decrease when the centre of the wavefunction of the second
branch departs from these equilibrium positions, and it will grow
when the centre of the wavefunction returns back. We are going to
analyse this particular case in the next chapter. As the overlap can be
used to characterize the “distance” between two quantum states, this
statement can be generalized; in fact, as the overlap is just the scalar
product between the two differently evolved states, the norm follows
naturally from the scalar product. In that sense, the visibility is zero
for orthogonal quantum states of the motional degrees of freedom,
and almost zero for quasi-orthogonal states.

Another realization might use the known evolution of a coherent
state or squeezed motional state; these states exhibit the minimum
uncertainty allowed by the Heisenberg-Robertson relation (just like the
ground state) and they follow the trajectories of the classical equations
of motion. Most importantly, the spread in the wavefunction does not
disperse for coherent states and it oscillates periodically for squeezed
states. The positions and spreads of their wavefunctions are thus
known and could be employed as a dynamical probe.

This overlap is taken between the two separately evolved motional
states at time f, just before the application of the second Ramsey pulse,
O(tr) = (¢, (t2)|p4(t2)). Assume the evolution of one initial state is
already known; the other component may now evolve dynamically,
and we can extract some information directly by looking at the overlap
- or even at the visibility. For instance, the deviation of the wavepacket
of the excited component away from the initial state will result in
a reduced overlap. Depending on the form of the evolution, the
wavepacket may also return back to the initial state, thereby being the
cause of revivals in the visibility. These simple arguments already hint
at the fact that a certain amount of information about the motional
state of the excited component can be extracted. We present in the
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Figure 4.5: The visibility of the Ramsey fringes is given by V =

min P )/(max P + min P} ), which is V ~ 0.68 in this example.
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Figure 4.6: In a Mach-Zender interferometer (a), a low intensity light pulse is split by a
50/ 50 beam splitter into two paths and recombined again. The measured intensities on the
detectors depend on the phase shift induced in one arm of the interferometer. In a Ramsey
interferometer (b), pulses split up the quantum state in Hilbert space and recombine it
later. (b) is adopted from Cohen-Tannoudji and Guéry-Odelin (2011, Fig. 2.5, p. 28)
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Y,

(b)

Figure 4.7: The visibility depends on the overlap of the wavefunctions via Equations (4.25)
and (4.26). (a) A time-evolution that decreases the overlap leads to a falling visibility.
(b) An increasing overlap results in a rise of the visibility.

later chapters a detailed analysis for these scenarios for the case of ion
Coulomb crystals in state-dependent potentials.

Equivalence to a Mach-Zender-Interferometer

In order to improve our understanding of the Ramsey interferometry
scheme we draw on an analogy with an interferometer in a common
Mach-Zender setup. All the steps described in the previous section
find their analogue in such an interferometer.

In a Mach-Zender interferometer, see Figure 4.6a, an incoming
light beam is split up by a 50/50 beam splitter into two paths. With
mirrors, the two paths are reflected onto a second beam splitter where
they interfere. The interference can be controlled by introducing
a phase shift into one arm of the interferometer, so that one can
see a varying intensity at the output. The interference is also valid
if instead of continuous light beams just short pulses are sent into
the interferometer, even if each pulse contains only a single photon
excitation.

In the Ramsey interferometer, Figure 4.6b, the beam splitters corres-
pond to the +7/2 pulses; the free propagation along each path of the
Mach-Zender interferometer is analogous to the free time evolution
between the pulses. Thus, the phase shift and the measurement of
the probabilities are equivalent in both cases. The difference is that
in a Mach-Zender interferometer, the light beams are split spatially
whereas in the Ramsey interferometer the initial state is put into a
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superposition. Yet, in the Mach-Zender interferometer, one can also
regard the field along the different paths as a superpositions state, in
which the two arms correspond to two different field modes. Moreover,
the spatial separation of the beam splitters can also be regarded as a
temporal separation via the group velocity of the light fields.

In that sense, both interferometers are equivalent and can be de-
scribed in the same framework, in which quantum mechanical prob-
ability amplitudes interfere at the “output” of the interferometer. In
fact, this is also true for other two-way interferometers such as the
Young’s double-slit experiment, e. g., which could be compared with
the Ramsey interferometer in a similar way.

Visibility and Which-Way Information

The time variation of the visibility allows us to extract some informa-
tion about the motional dynamics. In Young’s double slit experiment
with single photons, the visibility of the interference at the output
vanishes if the path of the photon is determined by any means. The
explanation of this phenomenon dates back to the Bohr-Einstein de-
bate (Wheeler and Zurek 1983, pp. 3ff.), in which Niels Bohr explained
the vanishing of the interference fringes via the Heisenberg-Robertson
uncertainty relation: The determination of the position leads to an
uncertainty in the momentum of the scattered photon large enough
to wash out the interference pattern. Another famous discussion
can be found in The Feynman Lectures on Physics, where electrons are
diffracted by a double slit and monitored by a light source placed
behind the slits to determine which slit the electron took (Feynman
et al. 1965b, Sections 1-6 and 3-2, pp. 1-6ff. and 3-5ff.). The uncertainty
principle has been employed to explain this observation also for other
proposed setups that try to determine the which-way information in
two-way interferometers with single particles, such as schemes trying
to employ the Aharonov-Bohm effect to determine the path of the
particle (Furry and Ramsey 1960). It has been pointed out that this
is an inherent feature of the complementarity of quantum mechanics,
which is necessary for the consistency of the theory.

By analysing the double-slit experiment in which one is about to
obtain only partial which-way information, Wootters and Zurek (1979)
quantified the obtainable amount of information and showed that it is
maximal for a pure state. This work was extended in the following
by Bartell (1980); Tan and Walls (1993), and Greenberger and Yasin
(1988), the latter deriving a first inequality between “wave versus
particle knowledge”. This notion was put on a firmer footing by the
introduction of an inequality between the interferometric visibility and
the distinguishability, derived by Jaeger et al. (1995) and independently

105



106

RAMSEY INTERFEROMETRY WITH ION COULOMB CRYSTALS

by Englert (1996). They assumed that the which-way information,
which is connected with the distinguishability, is obtained by a second
“which-way marker” particle that is entangled with the particle in
the interferometer. The distinguishability D =  tr(| P —pyLl) is
defined as the trace distance between the two density matrices of the
which-way marker particle that correspond to the detection of the two
paths denoted by 1 and |. In the pure state case, the density matrices
are simply given by p11 = |¢4(3)){(p1(t3)| and py | = || (t3)) (¢ (t3);
the case of mixed states is treated in Section 4.4. In other words, the
distinguishability measures the distances between the states or their
orthogonality. The inequality between the distinguishability and the
visibility of the interference fringes is given by (we take the notation
of Englert)

D>+ V2 <1, (4.27)

It is worth emphasizing that the derivation of this inequality does
not employ any kind of Heisenberg-Robertson uncertainty relation,
but rather takes advantage of the mathematical properties of the total
entangled state. The loss of the interferometric visibility by detection
of the path taken by the particle is commonly explained in terms of
random momentum kicks enforced by the uncertainty relation that
result in a blurring of the phase. Yet, the analysis of a proposed
experiment by Scully, Englert and Walther (1991) shows that a which-
path detection without a momentum transfer is possible but still leads
to a loss of coherence (Scully, Englert and Schwinger 1989) that follows
from the entanglement of the interfering particle with the which-way
marker. This work triggered a vivid debate whether complementarity
is independent or derived from uncertainty relations (Storey et al. 1994;
Englert et al. 1995; Storey et al. 1995, Wiseman and Harrison 1995;
Wiseman, Harrison et al. 1997; Luis and Sanchez-Soto 1998; Englert
et al. 2000; Bjork et al. 1999; Diirr and Rempe 2000). The possibility
of “erasing” the which-way information and thereby regaining the
full visibility of the interference in the so-called quantum eraser (Scully
and Driihl 1982), which could moreover be performed as a delayed-
choice experiment (Wheeler 1983), showed the connection between
complementarity and entanglement in a quite striking way (Mohrhoff
1996; Englert et al. 1999; Mohrhoff 1999). Nevertheless, other studies
concluded that a hidden momentum transfer (Drezet et al. 2006),
which could possibly be revealed by a weak measurement (Aharonov
et al. 1988, Wiseman 2003; Garretson et al. 2004; Mir et al. 2007), is
present in any which-way experiment.

The present status of the debate is probably best summarized by
Busch and Shilladay:

[...] it seems indeed moot to try and establish a hierarchy
of principles of uncertainty, complementarity, or entanglement
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within quantum mechanics. As seen from within this theory,
these features are linked with each other but cannot be claimed
to be reducible to one another. They are not logically independ-
ent, nor simply consequences of each other. (Busch and Shilladay
2006, italics in original)

Irrespective of these considerations, the relation between the path
distinguishability and the fringe visibility has been verified in various
experiments (Mittelstaedt et al. 1987, Summhammer et al. 1987; Zou
et al. 1991; Kwiat et al. 1992; Eichmann et al. 1993; Pfau et al. 1994;
Chapman et al. 1995; Buks et al. 1998; Diirr et al. 1998b,a; Schwindt
et al. 1999; Bertet et al. 2001; Braig et al. 2003; Jacques, Lai et al. 2008;
Jacques, Wu et al. 2008; Barbieri et al. 2009; Liu et al. 2012; Kaiser
et al. 2012; Ma et al. 2013; Tang et al. 2013; Banaszek et al. 2013),
including experiments on delayed-choice and the quantum eraser.
Currently, there are no experimental results that are in contradiction
with inequality (4.27), despite the claims of a recent proposal (Afshar
2005; Afshar et al. 2007; see also Steuernagel 2007; Flores 2008; Kastner
2009; Flores and Tata 2010).

In a Ramsey interferometer with trapped ions, the which-way in-
formation is given by how far the wavepackets of the ions separate
from each other and thereby decrease their overlap. A possible meas-
ure is given by the orthogonality between the state vectors corres-
ponding to the wavepackets; if the states were orthogonal, we could
perfectly distinguish them. So any time the visibility is low, the wave-
packets separate from each other, and theoretically it might be possible
to determine to which “path” the wavepacket belongs. In turn, a high
visibility occurs only for those times when the two wavepackets over-
lap almost perfectly. Thus we can infer something from the change of
the visibility as a function of the time, namely how close or how far
separated the motional wavepackets are.

4.3 IMPLEMENTATION OF RAMSEY INTERFEROMETRY WITH TRAPPED

IONS

We now turn to a short discussion of our assumptions and of the
requirements for the implementation of the Ramsey interferometry
protocol for experiments with ion Coulomb crystals. The discussion
here then guides the theoretical description of a more realistic Ramsey
interferometry setup presented in Section 4.4.

Electronic States and Transitions Between them

Since the scheme of Ramsey interferometry is based on the notion of a
two-level system, we focus on the case where the electronic excitation
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can only occupy two meta-stable states, denoted by |]) and |1), out of
the entire level structure of the atom. For this, we need to assume that
the frequency and polarization of the light field is chosen such that
from all possible transitions between the levels of the whole manifold
only a single transition is resonant and allowed by atomic selection
rules (Allen and Eberly 1987, Ch. 2, pp.28ff.). This does not necessarily
mean that the two levels are connected by a dipole-allowed transition;
the two levels could also be connected by an electrical quadrupole
transition driven by a laser field with sufficient intensity.

Further, we require that the electronic excitation does not decay
out of any of these electronic levels by spontaneous emission of a
photon, such that the excitation rather stays in the state in which
it was prepared — at least with a high probability — for the typical
time-intervals of the experiment. As the lifetime of dipole allowed
transitions is typically of the order of 1 x 1078 s (Kramida et al. 2014),
none of the two levels should be connected to any lower level by
such a transition. One possibility is to choose different Zeeman or
hyperfine sublevels of the ground-state manifold, as has been done in
experiments with 9Be* ions for the former and with 43Ca* or 71Yb™*
ions for the latter. Both realizations would potentially require an
additional magnetic field to lift the degeneracy between the states. For
electric quadrupole or magnetic dipole transitions, the lifetime can be
of the order of seconds, and as the time scale of experiments is usually
shorter than this, we can also allow meta-stable levels decaying via
such transitions. In such a scheme, the two levels are chosen to be the
S and D manifolds as in 4°Ca™ ions, e. g., as used in many trapped
ion laboratories.

In any case, we assume that there are two well-defined levels which
are denoted by ||) and |1). The Hamiltonian of the electronic degrees
of freedom can be written as

I:Iatom ~ thH\XN + h%M(U
ey
~ o [N~ = (DG = D), (428)

where the equivalence relation links the Hamiltonians by unitary
transformations; the effect of these transformations is a shift of the
zero-point energy to fiw |, respectively to (w4 + w) ) /2 afterwards, and
a new definition of the angular frequency w;| = w4 — w) is defined
by the difference between the two atomic angular frequencies.

Apart from well-defined and (meta-)stable states, we also need to
have full control over the initialization of a certain state, e. g. by means
of optical pumping techniques (Kastler 1950, 1967). We also assume
that it is possible to deterministically change the electronic state by
coupling the ion to incident light or radio-frequency fields.
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Addressing a Single Ion

The sequence of Ramsey interferometry is made up of a series of
pulses of electromagnetic radiation. Each of these Ramsey pulses
manipulates the electronic state of just a single ion while avoiding
excitation of the electronic states of the other ions.

There are several possibilities of implementing this in an experiment.
One is by tightly focussing a laser beam such that only the probed
ion is illuminated and the other ions are not excited by the laser. This
usually means that the laser beam is directed roughly perpendicularly
to the symmetry axis of the crystal and is focused by an optical system
to a beam waist of just a few pm width.

Another possibility of implementing single ion addressing is adding
a magnetic field gradient, in which the Zeeman effect shifts certain
electronic states in energy depending on the ion’s positions (Johanning
et al. 2009). Then the frequency of the incident radiation is in resonance
with the atomic transition at just one particular spatial position. If
the probed ion now sits exactly at this point, it is in resonance with
the radiation field, while the other ions are at other spatial positions
where they are not resonant.

A third possibility is to choose different electronic levels for the
other ions such that the choice of the frequency and polarization of
the laser does not allow exciting them in accordance with the atomic
selection rules.

Finally, one could also choose different ion species, meaning dif-
ferent isotopes of the same atomic element, e.g. *'Ca™ and *Ca™
as used in experiments in Innsbruck (Hempel et al. 2013), or even
different atomic elements with a larger mass difference as “Be™ and
2%Mg™ as used in National Institute of Standards and Technology-
experiments in Boulder (Jost et al. 2009). Different isotopes usually
have different nuclear spins leading to different level structures and
different atomic frequencies. Hence one can prepare the ions of one
isotope in a state which is resonant to the incoming radiation, while
for the other isotope the transition is non-resonant. However, different
isotopes have different atomic masses, which complicates the descrip-
tion of the motional dynamics of the ions. As we want to expand
on our discussion of state-dependent structures and normal modes
in Chapter 2, we shall not consider this option (see Home 2013 for a
review on mixed-species ion Coulomb crystals). Still, it might lead
to interesting and rich physics and might be a motivation to general-
ize the findings of Chapter 2 and apply them to the case of crystals
consisting of ions with different masses.
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Manipulating the Electronic State of an Ion

The manipulation of the electronic states depends on the nature of
the chosen levels. For the case of different Zeeman sublevels or
hyperfine states of a single manifold, the transition between the states
|4) and |1) is either driven by two-photon Raman transitions or driven
directly by strong microwave or radio-frequency fields. In the case
of having different manifolds, the transition between the states is a
dipole-forbidden transition such as a quadrupole transition, which
can be driven by using a laser with sufficient high intensity.

All three types can be described theoretically as if they were a dipole
transition, as shown by Leibfried et al. (2003, Appendix), where an
effective transition frequency wy, an effective wave vector k, and a Rabi
frequency () for the Raman and quadrupole transitions are introduced.
Hence, for the theoretical description of the interaction induced by
the Ramsey pulses, we can treat the transition as a dipole-allowed
transition.

Hamiltonian of the Ramsey Pulses

For the Ramsey pulses, the ion is addressed by pulses of a travelling
wave laser beam, which is modelled as a classical electrical field.
The Hamiltonian for the interaction of the two-level system with the
classical electromagnetic field is given by Allen and Eberly (1987, Ch. 2,

pp- 34f.),

N N A thi ~
H; = Hatom +Hpulse = T(’T><T’ - |¢><“) —d- E(rrt) , (4.29)

where fiwy | is the energy difference between the electronic states |1)
and || ), and d is the atomic dipole operator. It is given by

d = dy D) +d (1]
= Redy) (I +1)0) +imdg (1) = (1), @430

where we assume that the dipole moment is real, dT 1= dIT =d 1

and given by d 4+ = (1|d|1). The electromagnetic field is given by a
monochromatic plane wave propagating transverse to the trap axis,

E(r,t) = &yepsin(wpt — kg cr+¢) . (4.31)

The field is evaluated at the position of the ion r = r(f) (we are taking
the dipole approximation for the atom-field interaction, so this is
the COM-position of the nucleus and all electrons). Here, wy is the
frequency of the laser field and k; the corresponding wavevector
pointing in the direction of propagation, and ey the polarization



4.3 IMPLEMENTATION OF RAMSEY INTERFEROMETRY WITH TRAPPED IONS 111

vector perpendicular to k; ; for simplicity’s sake, we assume the dipole
transition is excited by radiation with linear polarization. The field
amplitude &y may be assumed to be constant during the duration of
the pulses and zero at other times. The phase ¢ is explicitly included
in Eq. (4.31) as it will be varied for the two pulses.

By transformation into a suitable interaction picture and apply-
ing the RWA (Allen and Eberly 1987, Ch. 2, pp. 41ff.), the Hamilto-
nian (4.29) is rewritten as

£ =~ 2L (1101 - )
+ OO (ypetrio - e it (g

where we introduced the detuning 6; = w — wy of the laser fre-
quency wy from the atomic transition frequency wy|, and Q(t) =
&oer - dy | /N is the Rabi frequency, which depends on the projection of
the field polarization onto the atomic dipole moment, ey - dT W and on
the field amplitude &; of the laser beam.

Choosing the laser frequency on resonance, i.e., wy = w4, the first
term in Eq. (4.32) vanishes. If we are taking the motional degrees of
freedom in harmonic approximation into account, the full Hamiltonian
is given by

H= I:Imo’c + I:Ia’com + Hpulse ’ (4-33)

with Fimot given by Eq. (3.1). When changing to the interaction picture,
we need to transform the motional Hamiltonian Hpet too, since the
photon recoil operators depend on the position operator of the probed
ion. The various terms appearing in the transformed Hamiltonian
can be compared with each other (Poyatos, Cirac, Blatt et al. 1996).
If we assume to be in the strong-excitation regime, in which the Rabi
frequency is much larger than the motional normal mode frequencies,
Q > wq,...,wsy, it turns out that the terms originating from the
transformation of the motional Hamiltonian Fyot can be neglected
for sufficiently short times.

Another way of seeing this is to compare the typical time scales of
each of the different Hamiltonians separately; if there are terms that
are evolving much faster than others, the slow terms may be safely
neglected within the sudden approximation (Gottfried and Yan 2003,
Sec. 4.1, pp. 168f.). As long as the interaction is in effect for a sufficient
short time period, as it is the case for one period of the Rabi oscillation
or shorter, we may consider the motional dynamics as frozen.8 This

It is worth mentioning that this approximation does not necessarily rely on the
trapped ions being in the Lamb-Dicke regime; if the Lamb-Dicke parameter is larger
than one, it may still be possible to fulfil the inequality.
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means we definitely” need a sufficiently strong interaction Hpulse in
order to drive the state significantly out of ||). Without this require-
ment, the motional state would change during the interaction in a
continuous way into a non-trivial state as any pumped population
will instantly start evolving because of the state-dependent potential.

A experimental setup capable of using such fast pulses has been
realized in the group in Maryland, for which Rabi oscillations have
been achieved within 50 ps (Campbell et al. 2010; Mizrahi, Senko et
al. 2013; Mizrahi, Neyenhuis et al. 2014) by employing a high-power
frequency-comb laser system (Hayes et al. 2010) with ultrafast pulses.

Neglecting the motional Hamiltonian during the duration of the
pulses, the unitary evolution operator for this Hamiltonian is

U'(t) = exp(—iHjt/h), (4-34)
which can be worked out by expanding the exponential function of
the operator. The result is surprisingly simple,

A

0’ () = cos[Q0)E/2) (I1) (1] + [4)(4)
+sin[Q()t/2)(|1) (HRye ™™ — 1) (1R ), (4.35)
where we introduced the recoil operator
R, = el (4-36)

Here, r = r(t) is the position of the ion that is affected by the pulse,
which need not coincide with the trap centre. For the zigzag structure,
the ion is initially away from the trap axis, resulting in a phase shift
dependent on the equilibrium position of the ions. After the first
pulse, due to the state-dependent potential, a part of the wavefunction
of the ion starts evolving dynamically. The position of the probed ion
at the time of the second pulse thus depends on the actual dynamics
of all ions. This leads to a dynamical phase shift in the wavefunction
that depends on the parameters of the motional Hamiltonian and the
time elapsed before the second pulse is applied. This phase shift has
no actual influence on the visibility, though, if it can be kept constant
for a certain number of repetitions of experimental cycles with the
same initial conditions and the same waiting time between the pulses,

In Baltrusch, Cormick and Morigi (2013, Endnote 28) it was claimed that alternatively
one could assume that the dipole laser is switched off during the pulse duration such
that a weak driving field for the 7/2-pulses could be used instead. After the pulse, the
dipole laser is switched on again. It was claimed that the proposal would equivalently
work if the switching times for the laser are much shorter than the typical time scales
of the motional dynamics. However, this is only true for the first pulse. During the
second pulse, the crystal is already in motion, and switching off the dipole potential
does not “freeze” the motion; even worse, it changes the dynamics completely.
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as it only shifts the origin of the Ramsey fringes. We shall include the
effect of the position at the time of the second pulse in the theoretical
description later in this chapter.

State Measurement and Initialization

By illuminating the ion with a different laser, which couples one of
the two levels ||) and |1) to another auxiliary level |aux) by a dipole
transition, the state can be measured and initialized by the so-called
electron shelving method (Dehmelt 1975; Nagourney et al. 1986). This
electronic state needs to have an extremely short lifetime, usually ns
or less, and it should decay with certainty back to only one of the two
states. This second requirement is usually fulfilled by choosing this
auxiliary state such that the only decay allowed by atomic selection
rules is the one from |aux) — ||) (or equivalently |aux) — |1)). If
the electronic state of the ion is excited to |aux) by the laser, it rapidly
decays back to the state |]) by spontaneously emitting a photon in
a random direction. Then it is excited again, emits another photon,
and so on. This cycle is repeated continuously with the emitted
photons collected by a lens and focused onto a CCD-camera such that
the fluorescent light is visible. If the ion is in state |1), no photons
are emitted. Thus, on a CCD-camera with sufficient resolution and
sensitivity it is possible to determine if a certain ion is fluorescing or
not, which directly determines the electronic state of the ion. The effect
of this measurement can be described by the projectors P 1= D

and 1 — P L= IA’T = |1)(1|, assuming that |]) is the fluorescent level.
During this measurement, the motional state experiences a heating
since the fluorescing photons are radiated in random spatial directions
and thus give random momentum kicks to the corresponding ion.
Yet, this change in the motional state is irrelevant to us since we only
need to measure the relative frequencies of finding the probed ion in
state |1) and ||), respectively.

4.4 RAMSEY INTERFEROMETRY WITH ION COULOMB CRYSTALS
AT FINITE TEMPERATURES

In this section we describe in detail the principle of using Ramsey
interferometry as a probe, including all the physical constraints dis-
cussed in the previous section. For this we employ the density matrix
formalism for the motional states, which allows us to treat all cases
in one general calculation. In particular, we can apply this immedi-
ately to the case of thermal states at a given temperature T to which
the crystal has been cooled before the experiment. We are going to
use the results obtained in this section for the analysis of quantum
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quenches for which the ion Coulomb crystal has been prepared at a
finite temperature, which is the subject of Chapter 6.

Preparation

We assume that the electronic state can be prepared with certainty via
the techniques discussed before in one of the two states, say ||), which
reads as ||)(]| when written as a density matrix. The initial motional
state of the ion crystal can generally be described by a density matrix
po = p(t = 0). The total initial state gy is then, assuming no initial
entanglement between electronic and motional degrees of freedom,
given by

0 = [ ®pp- (437)

The motional states is either given by

po = |9) (] (4.38)

for a pure state [¢) |, or by

Lol (4:39)
PO=Z &P\ TiT 4.39

for a thermal state (Cohen-Tannoudji, Diu et al. 1997, Complement
Em, pp. 304). Here, kg is the Boltzmann constant, T is the temperature
of the thermal state, and

zZ= Tr{ e H/ (kBT)} (4.40)

is the partition function for the canonical ensemble (Huang 1987,
Ch. 7).

Actually, this state is the description for the equilibrium state of the
crystal at any temperature T as it is reached through the coupling
to a thermal bath, which for laser cooling, e.g., is the vacuum field
of all modes of the electromagnetic field. After applying Doppler
cooling (Neuhauser et al. 1978; Wineland, Drullinger et al. 1978) to the
crystal, it attains a temperature of around 1 to 10 mK (Itano, Bergquist
et al. 1995) at the so-called Doppler-cooling limit. For lower temper-
atures, other cooling techniques must be used (Eschner et al. 2003),
such as motional sideband cooling (Diedrich, Bergquist et al. 1989;
Monroe, Meekhof, King, Jefferts et al. 1995) or electromagnetically
induced transparency-cooling (Morigi, Eschner and Keitel 2000; Roos
et al. 2000; Lin, Gaebler et al. 2013), which reach a thermal distribution
close to the motional ground state.
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In order to describe the operations in the following, we introduce a
matrix notation in the basis of the two-level system as follows:

mm:(l O>, rw:(o 1>,

00 00

Dt = (0 0), D = (O 0).
1 0 01

The density matrices of the motional states then can be written as
simple elements of that matrix, e. g. the initial state is written as

00 = 1)L ® po = (0 O>®POE (O °>. (442)
01 0 po

First Pulse

(4.41)

A laser pulse applied for a time 77 resonantly drives the transition
|[4) — |T) of the central ion, which we label by nj. The absorption
and emission of a photon by the ion introduces, via the photon recoil,
a coupling between motional and electronic degrees of freedom, which
is described by the operators Rk and Rk’ in Eq. 6.1. The impact on the
probed ion then affects the whole crystal motion via the long-range
Coulomb interaction. Immediately after the absorption or emission
event, the electronic state and the motional state of the crystal turn
from a separable into an entangled state. This entanglement allows us
to reveal partial information about the crystal motion by just measur-
ing the electronic degrees of freedom. In fact, this is at the heart of the
proposal by De Chiara et al. (2008), in which the crystal is probed by
the photon recoil. Here we have an additional cause generating entan-
glement — the state-dependent evolution after the pulse. In this thesis
we focus on the latter, but also provide a comparison in Section 6.2.
The operation of the pulse on the total density matrix is described
by multiplying the unitary operator (which is a generalization to

Eq. (4.10))

. 1 3 X
Unpa(m) = ﬁ<!T>no<T| + g (U 4 Rye [T (L —th|¢>n0<T|) (4-43)

from left and right onto the initial density matrix,
o1(t1) = U, ()00 (to) U5 (1), (4-44)

where the operator Rk = IA{k(rno) = el js again describing the
mechanical effect of an absorption event of a laser photon. In terms of
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the matrix notation introduced, the unitary U(7;) has the following
form,

. 1 1 R
— k
Uy pp(m) = NG <—Rﬂ h > , (4.45)

and the result of equation (4.44) is computed by simple matrix multi-
plication,

1 R p0R+ R °0
— k k k
1=73 o , (4-46)
PoRy Po

where we dropped the time arguments for clarity. From this form,
we can acknowledge the effect of the first pulse: Neglecting the recoil
operators for a second, we see that the pulse distributed the initial
population of the state ||)(|| equally onto all elements of the new
density matrix. If, after the evolution, all elements are still equal, the
density matrix can be perfectly mapped back to the initial electronic
state. If they are not equal, this mapping can be achieved partially
at most. Therefore, including the recoil, this is already an entangled
state in general.

Free Evolution

After this first pulse, the system evolves freely for a duration tg, with
the dynamics given by the following unitary time-evolution operator,

—iH, (t—to) /7 H. (t—tg

Ulttg) = || ® e + 1Nt @ e TR () 4

where we assumed that the Hamiltonians A % HT are time-independent.
These state-dependent Hamiltonians for the motional degrees of free-
dom A L= (}|A}) and HT = (1|HA|1) are obtained by projecting from
left and right to the subspaces of the electronic degrees of freedom,

H = (1) + DA+ ) = F DG+ 4.48)

as the Hamiltonian (3.7) is diagonal. It is important to avoid any off-
diagonal terms at the present step, as these would lead to continuous
Rabi oscillations between the electronic states. Instead, we want the
evolution to entangle the electronic and motional degrees of freedom
by providing different dynamics for the motional states depending on
the electronic state.

The unitary operator for the free evolution from t to ty = t; +tg is
given by the following expression,

Uty 1) = Utliz t1) . 0 , (4.49)
0 U, (2, t1)
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where

ﬁs(tZI t1) = eXp(—iI:IS(tz - tl)/h) . (4.50)

The density matrix after a time f elapses, i.e. at time t, = t; + t, reads

02(t2) = (pTT(tZ) Pu(f2)> , (4.51)
pi1(t2) pyy(t2)

where the entries are given by

prr(t2) = 2 (UL (R0 RLOT (D)) (4.522)
o1 (t2) = 5 (03 (DRl (1), (4.52b)
p11(t2) = 5 (0, (DRl (1), (4:520)
py(ta) = %(Q(f)f?oﬁi(f)) : (4.52d)

For U ! # GT’ atomic motion and internal degrees of freedom are
now entangled by the state-dependent evolution in general even if the
recoil is neglected.

Second Pulse

After the free evolution, the second pulse is applied. In the recoil
operator, the position vector may be replaced by the expansion into
the equilibrium position and the deviation from it. As the equilibrium
positions depend on the internal state (see Section 2.3), we can expand
around both of them; it is convenient, however, to express the recoil
operators in the same basis, e. g. the one related to the state |1). Then,
we can account for a phase shift of the equilibrium positions, as the
displacement of the central between the two equilibrium structures is
of the same order of magnitude as the typical laser wavelength. We
have

. 4 T Lol ; ik;-q)
oFikr Ty _ (FHKL(Riyg+dng) _ Gigo oFikL-dng , (4-53)

where ¢g = kj - RZO is the phase of the laser at the equilibrium

position REO of the illuminated ion. Its matrix representation is given

A i f{, el 0
s~ (L ¥)(S )
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where first (to the right) the state-dependent phase shift is applied,
and then the inverse of the unitary operation given by Eq. (4.43). The
state after this pulse at time t3 = t; + 1 is given by

o(ts) = (Qﬁ(tf‘) QN(t3)> : (4.55)
011(f3) 0y (t3)

with
1 e
op(ts) =5 (QTT(tZ) —e "Ryo1(f2) (4.56a)
— eop ) ()RE + ﬁk/eu(fz)ﬁf(/),
ei(P _i¢
o1 (t3) = 7<Qﬁ(fz)Rk' —e Ry 4(t2) Ry

+ €04 (t2) — Rk'Qu(tz))f

(4.56b)
e ot it t
011(t3) = <5 (Rivery (2) — ¥REs0y, (t2)RY (4:560)
+ e_i(pglﬁ(tz) + Qii(tZ)th’)’
1 .
o (ts) =5 (RlJr(IQTT<t2)Rk’ + e o 4(t) Ry (4.56d)

+ e R0 (t2) + Qu(tz))-

Measuring the Populations

Immediately after the second pulse, the populations are measured
at time {¢ = t3 + 7. They are obtained by taking the trace over the
corresponding projection operators,

P tr) = Te{oflng(HE = Tr{ogy (t6) ) (4-572)
Pr(¢,tr) = Te{of Dng(T} = Tr{os 41 (te)}- (4-57b)
Here, we arrived at the last expression in each line by first evaluating
the partial trace over the electronic degrees of freedom. The probabil-
ities are thus calculated by taking the remaining trace over the density
matrices p14 and p| | of the motional degrees of freedom respectively.

Using Egs. (4.56), these motional density matrices are, fully written
out,

Lig k. o BIOT _ 01 B. o (IHRT
or1(ty) = 5 (U;RpoRLUT — &0, R UTRY,
— e ¥R U poREDT + Ry, U g UTRY, )
(4.58a)
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and
1 A A A A A, A : A A A A
01(tp) = 5 (RE O RypoRLUTR,, + ¥R}, U, Ry U
+ e 0 poREUTR,, + 0 0o 0T ) .
(4.58b)

Taking the trace over these expressions, the first and the last term each
result in 1, as each of them is a density matrix.’® The phase is attached
to the middle terms, which are Hermitian conjugates of each other.
Thus, taking the trace, we can exploit the following relation,

TrAt = (TrA),

which then is taking the trace of one term summed to its conjugate
complex, giving twice the real part of that term. Therefore, we can
write the probabilities in the following form,

P (¢, t) = %(1 —i—Re[ei‘r”O(t)]), (4-59a)
Pr(p,t) = %(1 — Re[ei‘l’(’)(t)]), (4.59b)

where O(t) is the overlap between the differently evolving motional
components, given by

Ot) = Tr{ﬁ;,mﬁkpoq}. (4.60)

The visibility V of the Ramsey signal is then again determined
through the relation V = |O].

With this, we have all the necessary tools to apply the principle of
Ramsey interferometry on the dynamics of ion Coulomb crystals.

10 In fact, they are both just the initial density matrix unitarily transformed.
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QUANTUM QUENCHES AT THE LINEAR-ZIGZAG
TRANSITION - GROUND STATE PREPARATION

In this chapter we theoretically analyse the visibility of a Ramsey
interferometer experiment with an ion Coulomb crystal in a state-
dependent potential as discussed in Chapter 4. First, in Section 5.1,
we discuss the proposal of the experiment, which involves inducing
a transition between the electronic states of a single ion and thereby
activating the dipole potential for that ion. Then, in Section 5.2, we
derive the analytical formula for obtaining the visibility of such a
Ramsey interferometer experiment as a function of the time between
the Ramsey pulses. Finally, in Section 5.3, we turn to the numerical
analysis of the visibility for various settings. Both, the analytical
formula and the analysis are thereby subject to simplifications, some
of which are dropped later in Chapter 6.

5.1 QUANTUM QUENCHES IN ION COULOMB CRYSTALS
5.1.1  Quantum Quenches

Consider a physical system that has some unique lowest energy state
depending on one or more externally controllable parameters, like the
magnetic field strength in a spin system. A gquench of this system may
be defined as an abrupt temporal change of these external parameters
that leads to a dynamical response. The term originates from material
sciences, where a rapid cooling of a material probe may bring it into
a thermodynamic phase which would not be accessible by adiabatic
processes alone. A typical example is that of quench hardening of
steel.

Even if only a single parameter is changed, the behaviour of the
quench can depend on other system parameters too. In order to
completely describe a quench it is necessary to specify the functional
changes of all parameters even if they remain constant during the
quench. For the changing parameters, a common choice in many
theoretical and experimental works is that of a linear ramp, which
means that the final value is approached by a constant rate of change
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for the varying parameter. In this thesis, we consider the case where
the change of one parameter is sudden, i.e. on a much shorter time
scale than that of the dynamics of the system,* so that the quench only
depends on the initial and final values of the control parameters.

There are many different ways to perform such a quench for a
trapped ion Coulomb crystal. One possibility is the change of one
of the trapping frequencies by controlling the voltages on the elec-
trodes, thus inducing a global quench on the crystal. This can lead
to the creation of structural defects (Landa, Marcovitch et al. 2010;
del Campo, De Chiara et al. 2010; Mielenz et al. 2013) for the case
when the initial and final values of the trap frequencies lie on different
sides of the linear-zigzag instability.> We focus here on the case where
the state-dependent dipole potential of only one ion of the crystal is
changed. This different potential for the single ion can be considered
as an impurity, which also affects the dynamics of the other ions
(recall Chapter 2). Since the dynamics of cold trapped ions need to be
described by quantum mechanics, we might regard this situation as a
local quantum quench.

One realization of such state-dependent quantum dynamics in a
related approach is the analysis of quenches in central-spin mod-
els (Quan et al. 2006), where all degrees of freedom are typically
described by spin-1/2-variables only. The central spin can then trigger
a quantum phase transition in the state of the remaining spins in
dependence on the parameters like the spin-spin interaction and the
coupling to a transverse magnetic field.

For an ion Coulomb crystal in a state-dependent potential, in this
thesis modelled as a two-level-system (or spin) coupled to a chain of
harmonic oscillators, the quench dynamics is induced by a sudden
change of the electronic state of the central ion. By putting one ion into
a quantum superposition of its electronic levels instead, the crystal
becomes entangled with the electronic degrees of freedom via the
quench in the state-dependent potential and the Coulomb interaction.
Following this step, salient features of this dynamics can be extracted
by the method of Ramsey interferometry as discussed in Chapter 4.

5.1.2  Symmetric Quenches

As described in Chapter 1, we consider here an ion Coulomb crystal
trapped in a combined potential. This potential consists of the static
homogeneous trapping potential, which confines all the ions in the

See the discussion in Section 4.3 for the validity of this assertion.

2 In particular, the density of the created defects is correlated to the change rate of the

involved parameter via the so-called Kibble-Zurek scaling, see Zurek (1996); Kibble
(2007); del Campo, De Chiara et al. (2010)
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same way, and of the dipole potential, which affects only the central
ion and which can be controlled by the manipulation of that ion’s
electronic state. In the following, we choose to restrict the change of
the dipole potential in such a way that the symmetries of the system
are preserved, simplifying the analysis considerably. While examin-
ing local quenches close to and across the linear-zigzag transition
(cf. Chapter 1), we need to respect the symmetries which are inherent
in both the linear and the zigzag configurations: The only symmet-
ries that are actually present in both structural configurations are the
mirror symmetry on the y—z-plane, x — —x for crystals containing
an odd number of ions, and the inversion symmetry r + —r for
crystals with an even number of ions. Since the potential is changed
for a single ion only, this ion should therefore be the central one of
an ion Coulomb crystal containing an odd number of ions, and the
equilibrium positions of the central ion should lie in the y—z-plane. We
therefore require the dipole potential to have the same symmetries as
the trapping potential. By these restrictions, a quench can only excite
modes that respect these symmetries.

5.1.3 Characterization of the Quench Parameters

Recalling the discussion of Chapters 1 and 2 and the approximations
made there, the ion trap and the dipole potential can both be described
by harmonic potentials. Now we want to reduce the trap frequencies
characterizing these potentials to a minimal set of dimensionless
parameters. As mentioned above, the frequencies of the trapping
potential are held fixed while only that of the dipole potential is
changed. Nevertheless, the value of the trapping frequencies can play
an important role: The change in the dipole potential can make a
bigger or smaller change in the configuration of the crystal, depending
on whether we are close or far away from the linear-zigzag transition
(cf. Chapter 2). Using the assumptions made in Chapter 2, namely that
the axial potential along the x-direction is held fixed, we only need
to give the aspect ratio, which is the squared ratio of the transverse
to the axial frequency, & = Vf/ v2, to fully characterize the structural
configuration of the crystal.

In order to compare quenches for crystals composed of different
numbers of ions, we use the transverse trapping frequency normalized
to the critical frequency of the linear-zigzag transition, since this
is rising with the number of ions (Morigi and Fishman 2004), or
equivalently, the aspect ratio to the critical aspect ratio. As only the
distance to the transition point is of interest, it is sensible to define the
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following dimensionless parameter describing the chosen values of
the trapping potential:

2 2
v, —V —
y y,C N — K¢

Vﬁ,c X

Subsequently, we shall call this new parameter the trapping strength.
In the absence of an additional dipole potential (see Chapter 1) it
equivalently describes the linear-zigzag transition: It is positive for
vy > Vyc (or @ > ac), which means that the transverse trapping
frequency is above the critical trapping frequency and the crystal is in
a linear configuration. For v, < vy (or a < ac) it is negative and the
crystal is in a zigzag configuration.

As discussed in Chapter 2, the dipole potential can change the
configuration of equilibrium positions for a small classical crystal
because of the long-range nature of the Coulomb interaction. The
requirement for the crystal to be small originates from the fact that
a single ion cannot appreciably perturb the structure of an infinitely
large crystal. The thermodynamic quantity which describes how far a
localized perturbation has an effect is the correlation length (Fishman
et al. 2008), which is determined by thermal or, at T — 0, by quantum
fluctuations. As long as the size of the crystal is smaller than the
correlation length, we can assume that the change of the potential on
the central ion can affect the whole crystal. Conversely, for crystals
much larger than the correlation length, the change of the potential
for a single ion will merely be a local perturbation, leading to the
formation of a defect in the crystal.

For convenience, we also introduce the dipole potential strength by3

chiip Xdip
A= —= . (5.2)
Vijc Xc

The parameters g and A are sufficient to describe the equilibrium
positions of the crystal before and after the quench. They do not
suffice, however, to describe dynamical properties, as the equations of
motion contain the masses of the ions. Instead of specifying directly
the masses of the ions, which are assumed to be equal for all the
ions of the crystal, we want to introduce some dimensionless quantity
which describes the effect of the mass. It is also advantageous for
numerical calculations to use dimensionless units rather than Sl-units.
In Section 1.2.1, we already introduced a dimensionless length scal-
ing [ that is of the order of the inter-ion distance of the equilibrium

The squares of the trapping frequencies are given by vﬁ for no dipole potential present,
and by 1/5 + véip with dipole potential. We can rewrite them with the new parameters

defined as vj = vj (1 +¢) and vj + VG, = v (1+g+A).
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9Be* 24Mg+ 40Cyt 138Ba+ 173yp*

2nx100kHz 2.2073 1.8750 1.7221 1.4009 1.3516
2nx1MHz 3.2398 2.7521 2.5276 2.0562 1.9839
2nx10MHz 4.7554 4.0396 3.7101 3.0181 2.9129

Table 5.1: Comparison of the values for {y x 10° for different masses and axial trapping
frequencies.

configuration. Another possible way of defining a length scale is to
look at the ground state properties of the crystal wavefunction. For
this, we can simply take the ground state spread of the COM-mode
along the x-direction, which is equal to the ground state spread of just
a single ion trapped at the same frequency. This parameter, given by
h/(2mvy), provides a different way of looking at the scaling of the
spatial coordinates than the one given by /. As the former depends
on the mass, but the latter does not, we can simply take their ratio to
incorporate the mass of the ions by introducing a new parameter,

1
_ ho [k )4mey (vx)®
G0 = \/ 2muyl? \/; \\ 42 <m> ' (53)

This parameter essentially compares the typical quantum length scale of
the ion Coulomb crystal, the ground state width of the COM-mode,
with the typical classical length scale, which is of the order of the inter-
ion separation. In that sense, it will characterize the “quantumness”
of the probed system. Table 5.1 shows values of {( for various ion
species and for different axial trapping frequencies for comparison.

This parameter only appears in a single quantity when changing to
dimensionless variables, in the phase space displacements f;’s (or via
Eq. (3.33) the ,BZ’S), which read

L pt
1 wy D
ZCO Vx l
where wlﬁ /vy is the kth eigenfrequency normalized by the axial trap-
ping frequency, and Di /1 is the dimensionless displacement of the kth
as calculated by Egs. (3.11), (3.12) and (3.20).

Specifications of the Parameters

In the last section we have seen that a sudden quench is characterized
by the initial and final values of the parameters (g;,A;) and (g7, Af).
In the following we introduce further restrictions: As discussed in
Chapter 4, the quench is performed by suddenly exciting the electronic
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state of the central ion. As the trapping potential is not changed by
this kind of quench, this leaves the initial value g; constant, g¢ = g;.
Moreover, the initial value of the dipole trapping strength is set to
zero, A; = 0. In the following, we analyse quenches in which just
the values of g; and Ay are varied, as shown in Figure 5.2. For
simplicity of notation and as there is no risk of confusion, we shall drop
from now on the indices in the set of parameters, (g;, A;; 8f A f) =
(8,0 8i, Af) = (&, D).

As discussed in Chapter 2, the linear and zigzag crystal config-
urations are separated by a curve I'(a, txdip) in the parameter space
spanned by « and ag4j,, as shown in Figure 2.11. Equivalently, this
curve can be represented in the parameter space spanned by g and
A, which is represented in Figure 5.2. The curve I'g, A can be rep-
resented by the equation for the critical value Aq(g) of the dipole
potential strength as a function of the trapping strength g, derived
from Eq. (2.68),

aclg) = (

As we are restricting ourselves in the description of the dynamics
to the second-order expanded Hamiltonian Eq. (2.28), we need to
carefully choose the parameters in accordance with the harmonic

8
Bac(ltg)—4 1) (1+g)ac. (5.5)

approximation, which we show schematically in Figure 5.3. Close to
the linear-zigzag transition the approximation of simple harmonic
oscillators is not valid any more. Close to the transition, the higher-
order terms in the expansion of the Hamiltonian become of the same
order of magnitude for typical deviations away from the equilibrium
positions, and we cannot simply neglect them in the description. In
particular, the potential expanded in terms of the normal modes gives
rise to a “Mexican hat”-potential for the zigzag eigenmode (Fishman
et al. 2008), or it allows tunnelling between two different realizations
of the zigzag configuration (Retzker et al. 2008). Neither the initial
nor the final set of parameters should therefore be too close to the
separation curve in Figure 5.2, as shown there by the cases (3) and (5).

Additionally, the dynamics after the quench need to be restricted
as well. If the amplitude of the oscillation excited after the quench
becomes of the order of the validity range of the harmonic approxim-
ation, which is of the order of the convergence radius of the Taylor
series performed around the equilibrium positions, the description by
simple harmonic oscillators breaks down (cf. Chapter 2). This puts an
upper bound on the absolute value of A chosen. We therefore do not
consider quenches as that of case (1) in Figure 5.3.

Further, there exists the special case when the parameters before
the quench are chosen such that the crystal is a linear chain close to
the transition. A sufficient large negative value of A results in new
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Figure 5.1  Quantum quench for an ion Coulomb crystal. (Left) The ion crystal is initially
prepared in the ground state of one structural configuration. An ultra-fast pulse of
electromagnetic radiation changes the electronic state of the central ion. (Right) In the
new electronic state the central ion is subjected to a different potential, which also changes
the motional ground state of the crystal. The motional state after the quench is therefore
dynamically evolving, which affects the whole crystal via the Coulomb interaction between
the ions. (Figure taken from Baltrusch, Cormick and Morigi (2013) © held by American
Physical Society)
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Figure 5.2 The parameter space for a quench of an ion Coulomb crystal is the structural
diagram of Chapter 2, redrawn for the dimensionless parameters ¢ and A. The solid
red line separates the parameter regions where the ions form a zigzag (bottom left) or
a linear chain (top right) for a three-ion crystal. The crystalline structure corresponding
to the initial electronic state is at A = 0. Henceforth, quenches are restricted to gr = g;
and A; = 0, such that a quench is described by the values of g; = ¢ and Af = A, which
corresponds to the scheme discussed in Figure 5.1.
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Figure 5.3: The validity region for applying a harmonic approximation approach to the
quenches discussed in Figure 5.2 (schematic only). For case (1) the difference between the
two equilibrium structures is too big to be able to describe the state immediately after the
quench within the harmonic approximation. For (3) and (5) either the initial or the final
equilibrium configuration is too close to the linear—zigzag instability (red stripe), which
defies a harmonic description. For (6) the state immediately after the quench is in between
two symmetric equilibrium positions and cannot be described in a harmonic framework.
Subsequently only the cases (2), (4) and (7) are considered.
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Figure 5.4: For quenches with ion Coulomb crystals in a state-dependent potential with
a fixed dipole strength as described in Figure 5.2, we consider three regimes that are
governed by the parameters of the states before and after the quench: (i) for g < g, the
equilibrium configuration for both initial and final parameters is a zigzag structure, (ii) for
g > 0, the equilibrium configurations are both linear, while (iii) for g. < g < 0, the initial
equilibrium configuration is the zigzag and the final configuration is the linear chain.
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equilibrium positions with a zigzag structure, as shown in case (6) of
Figure 5.3. But this situation does not specify the preferred alignment
of this zigzag, whether the central ion is at positive or negative values
with the other ions arranged in an alternating pattern. In that case, the
quench actually simulates the same spontaneous symmetry breaking
that is associated with the structural transition (Fishman et al. 2008).
This is an interesting subject to study theoretically and experimentally,
yet, in order to facilitate a theoretical description which is easy and
feasible, we do not address that situation here, but rather restrict the
discussion for positive values of A close to the transition.

Different Regimes for the Quenches

With these restrictions, we are left to examine three different scenarios
for quenching the ion Coulomb crystal, as shown in Figure 5.4: First,
we choose the value of the trapping strength ¢ such that the crystal
aligns as a linear chain. As we want to study quenches close to the
linear-zigzag transition, the value of the trapping strength should
remain sufficiently close the transition; in particular, we want the
lowest eigenfrequency, which is attained by the zigzag eigenmode,
to be well below the other eigenfrequencies (compare Figure 2.4).
As we are restricting ourselves to positive values of A, the quench
does not change the equilibrium positions — we have a linear chain
before the quench and a linear chain afterwards. The quench only
suddenly tightens the transverse trapping potential for the central
ion. Classically, this situation would not induce any dynamics at
all, as the ions of the crystal, which are described as point-particles,
are resting at their equilibrium positions that are unchanged during
the quench. However, quantum mechanically, the wavefunctions
have a finite spread because of the uncertainty relation, therefore
the wavefunctions will be affected by a change in the steepness of
the potential. We expect for such a quantum quench to induce the
dynamics of squeezed states, as we shall see in the following sections.

Second, we analyse quenches in which the trapping potential is
such that the crystal configurations before and after are both in a
zigzag structure. In that case, the equilibrium positions change and
we expect a quasi-classical harmonic oscillation of the ions around
their new positions, as given by the time-evolution of coherent states. Of
course, there is also an effect of the different steepness of the trapping
potential, but for the parameters we are employing in this chapter,
the effect due to squeezing will be minor compared to the that of the
oscillation. This can be estimated quantitatively by comparing the
spread of the single ion wavefunctions with the shift between the two
equilibrium positions.
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Finally, in the third situation the trapping strength is smaller but
close to the structural transition while still obeying the restrictions
given above, i. e. being sufficiently far away from the transition to avoid
any anharmonic corrections that are becoming significantly close to
it. Before the quench, the crystal is in a zigzag structure, but after
the quench the equilibrium positions are aligning in a linear chain
configuration. The dynamics after the quench results in oscillations
around the new equilibrium positions that are superimposed with a
more dominant squeezing than in the case in which the quench is
initiated in the region of the zigzag configuration.

In all three cases the initial state of the crystal is the motional ground
state for all the normal modes. As discussed in Chapter 4, the ground
state can be prepared via sub-Doppler cooling (cf. Section 4.4).4 In
order to evaluate the visibility of the Ramsey interferometry sequence
discussed in Chapter 4, we apply the results from Chapter 3 for the
transformation of the ground states via Eq. (3.37), trying to find an
analytical expression, which we carry out in the next section.

5.2 ANALYTICAL FORMULA FOR THE VISIBILITY FOR QUENCHES
OUT OF THE GROUND STATE

In this section we want to find an analytical expression for the visibility
of the Ramsey experiment in which the Ramsey pulse triggers a
quench of the trap frequency as described in the previous section. The
formula for the visibility is evaluated by determining the absolute
value of the overlap Eq. (4.24) between the initial ground state and the
evolving state after the quench, which is given by

V(tr) = | (¢ (t0)[O] (tr) U4 (tR) |94 (t0))| = |O(t)]. (5.6)

For the evaluation, we take the motional ground state as the initial
motional state, (¢ (t9)) = [0),.

Evaluation of the Overlap

With the help of the results from Chapter 3 we can express the initial
ground state in the eigenbasis of the Hamiltonian after the quench.
By doing so, the dynamics induced by the unitary operator GT are
calculated straightforwardly. Hence, using Eq. (3.37) to substitute the
expressions for the ground states in the overlap matrix element, we
can write the overlap as follows:

O(t) = 22 (0] A DL T, (1D, (BT e o). (5.7)

Actually, this preparation leads to a thermal state at a very low temperature which
approximately resembles the ground state, i.e. it has an overlap with the ground
state close to unity.
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Here we already evaluated the time evolution operator acting on the
bra-vector on the left, yielding a dynamical phase which, however, we
are going to omit in the following equations (as we take the absolute
value in the end anyway). For evaluating this expression we first
commute the displacement and exponential operators via the relation

D, (ph)eh = AEID,(p1), (5.8)

where we defined the displaced A-operators by

N ZA]k (65T — B7) (B — B) - (5.9)
]k

As A = A’(0), we can leave the prime that labels the displaced operator

out and introduce a generalized A (B)-operator defined by Eq. (5.9).

When the displacement operators are applied to the ground states, we
obtain coherent states ]ADT( BT 0)y = |,BT)/r and arrive at the following
expression for the overlap,

O(t) = 72 T<,BT‘eA+(ﬁT)UT(t)eA(ﬁT)‘ﬁT>T. (5.10)

The evaluation of the unitary time evolution operator I:TT(t) can be
simplified by inserting the representation of the identity operator in
the overcomplete coherent state basis,

1
1= SN /dzle o dPagy ) (el (5.11)

into Eq. (5.10),

0t = / d2ay ... 2y (BT A BT, () )yl A BV BT,
(5.12)

which allows us to evaluate the remaining time evolution operator for
the coherent state by

U (1) |y = lajexpf—ic] £})s = [a;(8))y - (5.13)

We evaluate the two matrix elements in the integral (5.12), which yield
A+l ot
(BT B () =
exp{ ZA]k( —B) (a(t) - B}) } HBla (D) (5:14)

for the first matrix element, and

Ha AP gl = exp{égAjk (= B]") (a1 - B") } Nl BT
J
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(5.15)

for the second one. Here we made use of the coherent states being
eigenstates to the annihilation operator. Comparing these expressions
with the diagonal matrix elements, i. e., the expectation values ( - ) § =
] - |a)y with respect to the coherent state |a)y,

(eAED), = (a]eAED|a),

1 * * * *
—exp{ DAl Bl — Bl |, (a6
jk
and the one with respect to the coherent state |a(t))4,

(AN = () A EDfa(t))y

we can rewrite the overlap in the following form:

72
(’)(t) = 3N /dzle .. .d2a3N
(B0 x4y +a(t) B (A D), palBhy . G7)

The overlaps between the multimode coherent states yield
1 1, 4,2
HalBhy =exp{ L |5 lol> = 51811 +afpl]},  (5.189)
J

B () = exp{ [~ 1B11 — S0 + Bl 0y (1)] ),
)
(5.18b)

such that in Eq. (5.17) all operator expressions are now evaluated and
the remaining calculation for the overlap is just a complex-valued
integral in two times 3N dimensions.

Calculation of the Complex-Valued Integral in Eq. (5.17)

Before we can calculate the integral in Eq. (5.17) in the integration
variables «;,
e it from of the ucj(t)’s in expressions (5.16) by shifting them to the

we first need to remove the time-dependent phase factors

coefficients Ajk/ thereby defining
A]k(t) = A]'keii(wﬂrwk)t . (519)

The integrand of Eq. (5.17) contains four exponentials in the integration
variables a; and (x;.‘ ; by merging them into a single one (now there
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are only numbers in the exponents, so there is no need to employ the
BCH formula), we can sort the terms inside the exponential by orders
of aj’s,

Z2
O(t) = N /dztxl . dPagyexp{ly+ I + I}. (5.20)

The terms inside the exponent are

T
I, = 12 % Ajr(t) =8jk | [ (5.21a)
27 ¢ * iy A x| >
ik \% ik 7k o

]
L = —ZS [B* ] ES e iwjt o (5.21b)
j
Ip=G"(B) +G(B), (5.21¢)
where we defined the shorthands
S;lBl = ;A]’kﬁk — B, (5.22)
and
1B;l?
G(,B) Zk: :B] ﬁk Z 2 (523)
] j

For the integration, we change to real and imaginary parts of the
integration variables, a; = u; 4 iv; and zx;‘ = uj — ivj. Reordering the
terms according to this representation, the quadratic terms read

T
L=-Y (" U Nk Pk <uk> . (5.242)
]'k ZJ]' — 1A]7( 6]'k + A]—;—( O

with complex symmetric 3N x 3N-matrices defined by

A% = 2 (Ag(t) = Al0)) (5.24b)

The linear term in the new integration variables u j and v; has the form

I =—- Z {S}Fuj — iS]._vj] , (5.25a)
J
with
s]i = Sj[p*] & Sj[Ble . (5.25b)
By combining all integration variables into the 6 N-dimensional vector
wl = (uT,vT), with ul = (uq,...,uzy) and vl = (v1,...,03N), the
overlap integral is written in the following compact form,

2
o(t) = ieG*(ﬁ)eG(ﬁ) /dw e*W'S*WTQW, (5.26a)
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with
S+ 1— AT —iA—
s = ) Q= ! . (5.26b)
—iS~— —iAT 14+AT

The result of this Gaussian integral for the complex symmetric mat-
rix Q) is given by (cf. Appendix D)

e wT [ N 1 1~-1
/dwe ws—w Ow _ deth4s Q s, (5.27)

such that we can write the final result as

Ot) = LGZRG{G(ﬁ)}eiSTQ_ls_ (5.28)

vdet(Q)
This allows us to analytically calculate the visibility for any given
value and time.

Convergence of the Integral

While evaluating the Gaussian integral in Eq. (5.27), we implicitly
assumed that it is converging. To justify this, we need to show that
the real parts of the eigenvalues of the matrix () are all greater than
zero. As we can write the matrix () as ) = 1 — B, with

AT iAT
B = <'A_ A+> , (5.29)
1 —

we see that it is equivalent to showing that the eigenvalues of the
matrix B are bounded by one. To this end we consider the spectral
radius of the matrix B, given by

o(B) = max{|Ag|}, (5:30)
{A}

where {Ag} is the set of eigenvalues of B. The spectral radius fulfils

the following inequality

p(B) < [B|, (5.31)

for any matrix norm || - || (Horn and Johnson 1985, Theorem 5.6.9,
p- 297). So if we have ||B|| < 1, we know that all eigenvalues of
B are confined inside a circle centred around zero with a radius of
p(B) < 1. As B is complex symmetric in its blocks, we can use Takagi’s
factorization (Horn and Johnson 1985, Corollary 4.4.4, pp. 204£.) to
bring it to a block-diagonal form using an unitary matrix Ug,

B % (1 1> (A(t) 0) (1 1) — UgDgU3%, (5.32)
1 -1 0 A/ A\l —i
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and use the sub-multiplicativity property of matrix norms (Horn and
Johnson 1985, Sec. 5.6, p. 290),

IBJl = ||UsDUg|| < [1Us|l 1Dl |Ug]l - (5:33)

As we are free to use any matrix norm for the inequality (5.31), we
can use the spectral norm for convenience, defined by

A, := max{v/A : A is an eigenvalue of ATA} . (5.34)

Since unitary matrices generally have a spectral norm of 1, the spec-
tral norm of B is bounded by the spectral norm of Dy by virtue of
inequality (5.33). As Dg is block-diagonal, the spectral norm of Dy is
given by the maximum of the spectral norm of the two block matrices
A and A(t),

IDglly = max{[[A()l], [|All2} - (5-35)

The spectral norm of ||BJ|, is bounded from above by the spectral
norm of the matrix ||A||,, since the spectral norm of the two matrices
is equal, [A(D)]], = 1Al

In order to show the convergence of the integral in Eq. (5.27) we
need to show that the spectral norm of A is bounded by 1, which is
guaranteed by the results from Appendix C.

5.3 ANALYSIS OF QUENCHES OUT OF THE GROUND STATE

In this section we analyse the properties of the visibility of the Ramsey
fringes after the quench with the crystal motion initially prepared in
the motional ground state. We first describe the kind of visibility one
would expect for the different parameters in Section 5.3.1. Then we
take a closer look at the different properties of the visibility, such as
the time of the first revival, the short-time decay, the behaviour for
long times, and the Fourier properties of the visibility.

Numerical Evaluation

The visibility is given by the analytical formula derived in Section 5.2,
which is in the following evaluated via the scientific programming
environment MATLAB. The numerical evaluation is necessary since
the analytical form of the eigenmodes for a three-ion crystal in the
zigzag configuration is, though analytically feasible, too involved to be
practical for further analytical processing as demanded by the formula
of the visibility, Eq. (5.28). For bigger ion crystals an analytical formula
for the eigenmodes is not feasible anyway, so that we determine the
eigenmodes numerically and evaluate Eq. (5.28) by including the
formula directly into the code of the algorithm. All of the plots in this
chapter are generated by this procedure.
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5.3.1  General Form of the Visibility Close to the Linear-Zigzag Transition

We want to determine the dependence on the initial crystal configur-
ation, so we examine the visibility for different trapping strengths g
(see Section 5.1.3 and the discussion in Chapter 2). As discussed
before, there are three different regimes in which we can analyse
the quench: First the linear regime, in which the value of the trap-
ping strength is ¢ > 0, the crystal is in a linear chain configuration
both before and after the quench. Second the zigzag regime, with
g < gc(A, N) such that the initial and final equilibrium configurations
are both a zigzag configuration. And the third regime in which the
initial equilibrium configuration of the crystal is in a zigzag structure
and the final configuration is a linear chain, i.e. gc < g < 0.

As we shall see in the plots of the evaluation, for a domain of the
zigzag regime which is very close to the linear-zigzag instability the
visibility will have a very similar form to that of the third regime. Thus
we restrict the zigzag regime to values of ¢ just below g. — €, with
€ > 0 some constant, and add this interval to the third regime and
treat these cases together. A reasonable estimate for € is the absolute
value of gc < 0, so that this regime is bounded by ¢ < 2gc. Therefore
we define the third regime, which is close to the instability, as lying
in the interval 2g. < ¢ < 0. We shall therefore analyse the following
three regimes:

(a) the linear regime for g > 0,
(b) the zigzag regime for ¢ < 2gc,
(c) the regime close to the transition for 2g. < g < 0.

The behaviour of the visibility in these regimes is discussed in the
next sections.

Linear Regime

In the linear regime for g > 0 the central ion is always trapped more
tightly after the quench; this is due to the restriction to positive values
of the dipole potential A > 0 only. Therefore, the structure after
the quench remains a linear chain, more specifically, the equilibrium
positions before and after the quench are perfectly identical. The only
parameter changing is the transverse confinement of the central ion.
Thus, in the case of classical dynamics we would not expect any
motion to be excited at all. Yet, in a quantum mechanical description
we anticipate a dynamical evolution because of the sudden tightening
of the potential. The ground state wavefunction of the initial state is
not the ground state for the new parameters any more, and we expect
the spread of the wavefunction to be evolving in time.
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Figure 5.5: Visibility as a function of the time t between the two Ramsey pulses for three

Be* ions, where the axial trapping frequency is given by 2t x 1MHz. In all plots the
crystal is prepared in a linear chain configuration before the quench, and the dipole

strength is chosen to be A = 0.020 while the transverse trapping strength ¢ is varied.
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Figure 5.6: Visibility as a function of time between the Ramsey pulses for varied dipole
strength A. The transverse trapping strength is held fixed at g = 0.020, while the other

parameters are chosen identical to those in Figure 5.5.
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Figure 5.7: Visibility between the pulses for varied g as in Figure 5.5, but now the crystal
state is initially prepared in a zigzag configuration.
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Figure 5.8: Visibility between the Ramsey pulses for varied dipole strength A as in
Figure 5.6 but in the zigzag regime at a fixed value of g = —0.060.
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Indeed, the calculated visibility as a function of the time between the
two Ramsey pulses can be explained by such a dynamical evolution,
as we can see in Figure 5.5. In all plots, the visibility is always close
to unity with some sinus-like oscillation on top. The origin of this
oscillating modulation comes from the sudden tightening of the con-
fining potential: The wavefunction before the quench was described
by the ground state wavefunction with a definite spread in the posi-
tions and momenta; in the sudden approximation (cf. Chapter 4) the
wavefunction remains unchanged in its initial form. Yet, this state has
now a considerably higher spread in the positions and a lower spread
in the momenta compared to the new ground state wave function;
this state turns out to be a multi-mode (momentum-)squeezed state.
Such a state has an evolution for which the spread in the positions
is oscillating around the value of the spread of the new ground state.
We shall see in the following pages that this squeezing is, for the
parameters and constraints considered, dominated by the single-mode
squeezing of one specific mode, the zigzag mode.

In the subplots of Figure 5.5 we show the visibility for different
values of the trapping strength g. By increasing the trapping strength,
the amplitude of the oscillation decreases but its frequency increases.
For higher trapping strengths, the relative effect of the dipole potential
becomes smaller such that the amount of squeezing immediately after
the quench is reduced, thus explaining the decreasing amplitude.

Next, in Figure 5.6, we examine the dependence of the visibility
on the strength of the dipole potential. Here we see an increase of
both the amplitude and the frequency of the modulating visibility
for higher A. The amplitude is rising for a stronger quench as the
wavefunction gets increasingly squeezed through the change of the
confinement. The frequency is increasing as a stronger quench with
larger A puts the final state farther away from the transition boundary
shown in Figure 5.2. If the new state is farther away from the transition
boundary its zigzag eigenfrequency will increase, and with it the
frequency of the oscillating modulation of the visibility.

Zigzag Regime

When the crystal is prepared in a zigzag configuration before the
quench, the visibility has a seemingly different behaviour. In Figure 5.7
the visibility as a function of time between the Ramsey pulses is
shown for various values of g. The visibility is quickly decaying (on a
time scale shorter than 1ps) to a value practically indistinguishable
from zero on the plot scale, while at definite and periodic times a
series of revivals appears. The height of these revivals is in general
clearly below unity and varies from peak to peal, depending on the
parameters. We see further that in some cases the height of the revivals
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apparently follows some rule, as in Figure 5.7b, while at other values
of ¢ no regularity is obvious. As the value of ¢ moves toward 0, the
time between the revivals grows and the peaks get slightly wider. We
shall see later that as the trapping strength comes even closer the
critical value gc, these revivals become double-peaked; we discuss
this case in Figure 5.9 and in the next section together with quenches
across the transition.

In Figure 5.8 we examine the properties of the visibility for varied
dipole strength A. For weak quenches, i. e. small values of the dipole
strength A, the variation in the height of the revivals is less than for
larger quenches. The width of the revivals becomes narrower as the
strength of the dipole potential is increased, and the distance between
the peaks also increases slightly.

The main functional behaviour of the visibility in the zigzag regime
can be explained by the oscillatory dynamics resulting from the sud-
den change of equilibrium positions for all the ions, which is following
the classical dynamics. This oscillatory dynamics is governed by the
interplay of different normal modes, by which we can also explain
the specific properties of the details of the visibility: For these para-
meters, the total overlap is dominated by the contribution from the
terms (5.18), which can be regarded as the product of the individual
overlapping wavefunctions of coherent states for each of the normal
modes. As we shall show later, the dominant contribution comes from
a single mode, the zigzag mode, which determines the appearance of
the main peaks. The height of the peaks and the degree of regularity
of the height of the peaks can be explained by the interplay of different
modes. The separate overlap factors for each of the normal modes in
Egs. (5.18) exhibit revivals at the respective eigenfrequency, therefore
the total overlap will be governed by the interplay of all these revivals.
Therefore, the total overlap and thus the visibility will be larger for
the cases in which revivals of separate modes are closer together. In
the case of weaker quenches the wavepackets do not become so far
separated from each other during the evolution, so that the peaks of
the visibility become wider.

Quenches Close to the Linear-Zigzag Instability

Figure 5.9 displays the visibility when the final state of the quench
moves closer to the linear-zigzag instability and when it finally crosses
it, taking the restrictions of the previous section into account. In
Figure 5.9a the peaks of the visibility already show small subpeaks,
which turn into double peaks for Figures 5.9b, 5.9c and 5.9d. These
double peaks can become separate as in Figure 5.9d, in which minor
tertiary and even quaternary peaks become recognizable as well. The
distance between the (double) peaks is also increasing for ¢ moving



5.3 ANALYSIS OF QUENCHES OUT OF THE

~ 08 :
E 06 | s
2 o4l .
9]
202 t h :
0 | | |
0 5 10 15 20
tin ps
(a)
1
~ 08} -
2t |
2 o4l M .
] 0.2
<02 i
0 L | |
0 5 10 15 20
tin ps
(©
A =0.020, g = —0.008
1 T T T
~ 08| s
E 06 |- s
28 04l .
9]
<02 f ” -
0 l | | |
0 5 10 15 20
tin ps
(e)
A =0.020, g = —0.006
1 T T T
~ 08| -
E‘ 06 |- -
2 04l .
0
502 A i
0 A | AA |
0 5 10 15 20
tin ps
(8)

Visibility V Visibility V Visibility V

Visibility V

0.8
0.6

04 |-

0.2

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

GROUND STATE

A =0.020, g = —0.0225

141

)

5 10 15 20
tin ps
(b)
A =0.020, g = —0.0175
T T T
| |
5 10 15 20
tin ps
(d)
A = 0.020, g = —0.007
T T T
1 ! N L
5 10 15 20
tin ps
(f)
A =0.020, g = —0.005
T T T
| | il
0 5 10 15 20
tin ps
(h)

Figure 5.9: Visibility as in the previous figures in the regime where the quench is close to
the linear—zigzag instability. In (a) to (a), the quench for both initial and final configurations
remains in the zigzag regime. For (e) to (h), the structure before the quench is a zigzag
configuration, while after the quench the ions are oscillating around the equilibrium

positions of the linear chain.
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towards g.. For values of ¢ closer to g., we are approaching the
regime where the harmonic approximation fails to provide a correct
description of the dynamics.

Next, Figures 5.9e-5.9h show plots of the visibility when the ini-
tial equilibrium configuration before the quench is still in the zigzag
regime, while the final state will be oscillating around a linear equilib-
rium configuration, in accordance with the discussion of Section 5.1.3.
In this regime, we see that the visibility shows fast decay and peri-
odic revivals which are composed of a series of peaks. So in this
regime the functional behaviour of the visibility is very similar to the
one in which the equilibrium positions of the final parameters of the
quench are in the zigzag regime. But this comes as no surprise when
recognizing that both cases induce an oscillatory behaviour around
some new equilibrium positions; it is not of importance that they
belong to different types of crystal structures. In both cases, the main
contribution comes from the oscillation of the COM motion, while the
squeezing contributes to a much smaller degree.

Comparison of the Different Regimes of the Visibility

For a more systematic analysis of the visibility we compare the form of
the visibility as a function of the time elapsed between the pulses and
of the trapping strength, while keeping the dipole strength constant.
In order to make this comparison, we display the data in a density
plot, shown in Figure 5.10a, where the value of the visibility is colour-
coded, the time evolved is plotted along the y-axis, and the values of
the trapping strength g are along the x-axis. The previous plots for the
same value of the dipole strength A in Figures 5.5, 5.7, and 5.9 would
correspond here to vertical cuts in the figure at the corresponding
value of g.

In this plot we also include values of ¢ which are too close to the
linear-zigzag instability for the harmonic approximation to be valid;
therefore, the plot does not show the actual visibility of a quench with
an ion Coulomb crystal but rather that of a multidimensional har-
monic oscillator model with the normal mode frequencies as oscillator
frequencies. In an experiment we therefore expect a deviant beha-
viour for the parameter domain where the harmonic approximation is
invalid.

In the density plot of Figure 5.10a we can clearly distinguish two
different regions which are separated at g = 0 vertically. In the first
region, for g < 0, where the initial configuration is a zigzag structure,
the visibility is most of the time close to zero with several revivals.
The revivals are continuously appearing at later times as g increases
up to the value g, the point at which the revival time diverges. Later
revivals always occur on approximately multiples of the first one.
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To further investigate the properties of the revivals, we show in
Figure 5.10b the same plot with the revival times of the zigzag mode
of the final configuration overlaid. By the revival time we mean the
time when the overlap of the quantum state of the zigzag mode is
regaining its original distribution in phase space. For instance, for
an oscillation of a coherent state, this time will be the period time of
the corresponding classical oscillation, while a squeezed state returns
to its initial state within half of a period of the classical oscillation.
Therefore, we define the revival times by

2 f <0,
TZ2 _ nm/wzz org with n=1,2,3,... (5.36)

revival —
nm/wz, for g >0,

Here we take half the period time for the linear regime in which we
expect squeezing dynamics.

In comparing these times with the visibility in Figure 5.10b, we see
that for all values of n they are located exactly on top of the local
maxima of the visibility along the time dimension. This is a strong
indication that the main revivals” appearance is governed by the zigzag
mode.

While the curves of the occurrence of the revivals appear to be
continuous as a function of g, the height of the revivals varies along
these curves. The cause for this is rooted in the interplay of the zigzag
mode with other modes; while the zigzag mode has completed a full
period, or multiples thereof, the other relevant modes usually have not
completed an integer number of periods. Thus we expect the visibility
along these curves to peak only at coincidental resonances with the
other modes.

To check this assertion we have replotted the relevant region of the
zigzag regime in Figure 5.10c and have overlaid this with the revival
times of two other relevant modes. These are the COM-mode in y-

direction and the breathing mode, see Figure 2.3 for an illustration. For

COM,y

these modes, we define T and TPreath analogously to Eq. (5.36)

evival revival

with wy; replaced by wcom,y and by wreatn, respectively (only for
g < 0). The other modes do not contribute because of the symmetry
of the excitation created by the state-dependent potential.

In the plot the revivals closely follow the zigzag revival time, as
shown before. The main revivals display local maxima exactly at the
crossing points of the zigzag revival time with the revival times of
other modes. For the ion crystal deep in the zigzag regime, these
maxima regularly occur at the points where the revivals of the zigzag
and the COM-mode in y-direction coincide; closer to the linear—zigzag
instability the local maxima of the revivals are located at the crossing
points of the zigzag and the breathing mode revival times (there may
be coincidences of all three revival times falling together, too). At the
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identically to those in the previous figures. The symbols are the peak times determined
by a numerical routine, and the lines determine the time of the period of the zigzag
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Figure 5.12: Comparison of the revival times for ¢ < 0 and the periods of the modulation
for g > 0 for different ion numbers. For all curves, the dipole strength is A = 0.020,
while the remaining parameters are chosen as before. The symbols are the peak times
determined by a numerical routine, and the lines determine the time of the period of the
zigzag eigenfrequencies for ¢ < 0 and half the time for g > 0. The values of g.(N) are
displayed as vertical dashed lines. In the inset, the same plot is shown with the origin of
the x-axis shifted to g.(N) and the time axis rescaled by v.(N).
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regime close to the instability we can also identify the cause for the
appearance of double peaks: A vertical cut in this diagram crosses
several peaks resulting from the crossing of revival times of different
modes and different order.

The second region in Figure 5.10a is identified for ¢ > 0 with the
initial configuration being a linear chain. Here, the visibility is for
the main part close to unity. Close to ¢ = 0 there are modulations
showing up which become more pronounced as they approach the
boundary. Also, their frequency of modulation is decreasing as g — 0.
Again, we can overlay the time period of the zigzag eigenmode on
this graph as before. Yet, we choose here to overlay it with only half
of the period, as the revival times are half the oscillation periods for
pure squeezing dynamics. And indeed, in Figure 5.10a the time of the
first local maximum of the visibility coincides with the plotted overlay.
Here, the influence of the other modes is negligible as no features at
other time scales are distinguishable in the plot.

Next we examine the times of the first revivals for ¢ < 0 and the first
maximum for ¢ > 0 for different values of the dipole strength A. In the
main plot, the times of the first peaks for both regions are determined
by a numerical routine (O’Haver 2011) and plotted as symbols for
different values of A. These data points are then compared for g < 0
to the period time of the zigzag eigenmode and for ¢ > 0 to half
the period time of the zigzag eigenmode, with the curves matching
the data points. For the decreasing values of the dipole strength A,
the value of the critical trapping strength gc(A) is shifted closer to
zero, and with it the divergences of the various curves. In the inset
of the figure, we have replotted the same graphs with the origin of
the x-axis shifted to the respective value of g¢(A); in this graph the
three curves all fall closely together, as the dependence of the zigzag
eigenfrequency is approximately identical for all values of A.

5.3.2  Short-Time Behaviour of the Visibility

We now analyse the short-time behaviour of the visibility. For this,
we first look at the expansion of the modulus of the overlap for times
around ¢t = 0, where t is the time between the Ramsey pulses. First,
we expand the overlap as

O(t) ~1—i0;t — %Oztz, (537)

where the quantities O; = dO(0)/dt and O, = d?0(0)/dt* are
the first two time derivatives of O(t) evaluated at t = 0. Then the
expansion of the visibility is directly calculated to be

V(t) ~144t2/2, (5.38)
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where we identified the curvature 7 < 0asn = —(Op — (9%)

As it turns out, the curvature of the decay of the visibility at very
short time intervals already allows us to infer information about how
close to the linear-zigzag transition the system is. This can be seen
by taking the formula for the overlap, Eq. (4.24), by expanding the
unitary time-evolution operator in powers of ¢,

0= 0le Mi"M0), ~ ¢(0|<1—iHTt/h—H%tz/thnL--~)\0)¢,
(5.39)

and evaluating the time-derivatives at t = 0 for the ground state |0).
We have then that the term O is just proportional to the expectation
value of the Hamiltonian of the new configuration, HT' evaluated with
respect to the ground state of the initial configuration:

do©) 1, .
0 = dg ) _ = 1{O[FL;[0), . (5.40)

Evaluating in the same way the term O,

_do) _ 1

2
Oy=—3—= ;TN(O’HH%' (5-41)

we find that the curvature is proportional to the variance of the
Hamilton operator of the new structure evaluated in the initial ground
state:

11 - -
1="13 | JOIFE2[0}, — (4(0[FL;]0},)°] (5-42)

In order to facilitate the calculation of the curvature, it is advant-
ageous to reformulate the matrix ) for calculation of its inverse and
determinant. First, for simplifying the notation, we introduce the
definitions

E=1+AT, Y=1-AT. (5.43)

Then, the identities for the determinant and the inverse for a parti-
tioned matrix (Henderson and Searle 1981) involve the Schur comple-
ment O of &, defined by

O=Y+A EZ A, (5.44)

With that, provided that & and ® are non-singular, the inverse and
the determinant are given by

-1 A1
-1 _ © i 1A=
0 (iE_lA_G—l =1 _ E—lA—®—1A_E_1> , (545)
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and
det() = detE - det®. (5.46)

The non-singularity of Z and © is warranted by the results of Ap-
pendix C.

In Figure 5.14, the curvature is plotted for three 9Bet ions for
varying values of ¢ and A. On the plot scale, the curvature far away
from the linear-zigzag transition is practically indistinguishable from
0. When the parameters are approaching the critical line, the curvature
shows a sudden decrease. This means that the visibility decays much
stronger when the final parameters are close to the linear-zigzag
instability. Thus, by just observing the curvature of the visibility decay
it is possible to infer the position at which the final state crosses the
linear-zigzag instability.

An interesting feature of the short-time dependence of the visibility
is the independence of the curvature on the strength of the dipole
potential for a fixed value of the trapping strength g (as long as
g > gc(A) is valid). We refer to similar results obtained in the context
of the Loschmidt echo or fidelity approach, where the so-called fidelity
susceptibility (You et al. 2007) is a quantity related to the curvature used
here. For instance, Mukherjee et al. (2012) show that the short-time
scaling of the decay rate of the Loschmidt echo close to the quantum
critical point of a central spin model (Quan et al. 2006) is independent
of the quenching.

Fourier Spectra of Logarithmic Visibility

Alternatively, we may study the Fourier spectra of the visibility. The
Fourier transform of the visibility is given by

Folw) = 5 [~ dtv(pe i, (5.47)

For the following evaluation, however, we do not calculate the spectra
analytically but evaluate the visibility for sufficiently long times, typ-
ically 1000 ps, and with a high sampling rate such that all features are
still resolved. As the obtained visibility is already discretized by the
numerical evaluation, we apply the common fast Fourier transform
(FFT) algorithm implemented within MATLAB, which is based on a
discrete Fourier transform (Frigo and Johnson 2005). Some exemplary
Fourier spectra are displayed on the left panel of Figure 5.15. Ex-
cept for the linear case, there is a multitude of peaks which makes it
difficult to extract the relevant information. To gain more insight,
we might take the logarithm of the visibility before performing the
Fourier transform; this step is motivated by the functional form of
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the visibility, cf. Eq. (5.28). The Fourier spectrum of the logarithmic
visibility is defined as

Finvl@) = 5 [~ dtin(nleier. .49

Indeed, as we look at the right panels of Figure 5.15, the spectra of
the logarithmic visibility now show clear distinct peaks at specific
frequencies.

The spectrum of the logarithmic visibility in the linear case in
Figure 5.15b displays one clear peak. The location of the peak coincides
with twice the frequency of the zigzag mode, confirming the previous
argument about the squeezing origin of the dynamics in this case. The
next peak is considerably smaller, hardly observable in Figure 5.15b,
located at the inverse of a sum of two of the eigenfrequencies. This
means the small modulation in the Figure 5.5 originates from the
squeezing of two modes. As this effect becomes more apparent in the
other regimes, we shall discuss it there in detail, neglecting it here as
it is only a small correction.

In the zigzag regime, plotted in Figure 5.15d, we identify the major
peak located at the zigzag eigenfrequency. In this case, the quench pre-
dominantly excites an oscillatory motion around the new equilibrium
positions. Here we see some other peaks, again considerably smaller:
One is located at twice the zigzag eigenfrequency, thus showing also
the presence of single-mode squeezing. The other two are located
at eigenfrequencies of other modes which are excited by the quench.
These other peaks are much smaller than the main peak, so our intu-
itive interpretation of the motion to be dominated by an oscillatory
dynamics similar to that of coherent states is justified.

Finally, the visibility is displayed in Figures 5.15f and 5.15h for the
regime close to the linear-zigzag instability. There, the spectrum is
similar to the one in Figure 5.15d, with the main peak again located
at the zigzag eigenfrequency and a minor peak at twice the zigzag
eigenfrequency, hinting at oscillation and single-mode squeezing in
the dynamics after the quench. But there are also two minor peaks,
more visible than in the linear case of Figure 5.15b, originating from
two-mode squeezing of two involved eigenmodes. The peak of the
zigzag mode has shifted more toward the low-frequency region (as the
zigzag mode has a lower frequency in this region), which explains the
less regular behaviour of the visibility on longer time scales. We can
identify the modes of the most important minor peaks to be the zigzag
mode and the COM-mode in y-direction, which become two-mode
squeezed.

Before concluding, we want to discuss the feasibility of performing
the Fourier transformation of the logarithmic visibility in an experi-



5.3 ANALYSIS OF QUENCHES OUT OF THE GROUND STATE 151

—_
N
w
'S

-10° -10°

0 2 4 6 8 1 2 3 4
w 106 w 106
() g = —0.060 (d) g = —0.060
1072
6 T 60

Fy

o ) IS

| |

]:logV

) o~

o S S

< \; T T
[

| |

0 2 4 6 8 1 2 3 4
w -10° w -10°
(e) g = —0.020 (f) g = —0.020
102
40 E
30 -
~
& 20 i
M 10 .
oL —— ;
0 1 2 3 4
w -100 w -100
(g) g = —0.006 (h) g = —0.006

Figure 5.15: Spectra (left) and logarithmic spectra (right) for different regimes. All spectra
have been calculated from visibility signals with sampling time 50 ns and total time 100 ps.



152 QUANTUM QUENCHES AT THE LINEAR—-ZIGZAG TRANSITION

N =5, ¢g=0.020 N =5, g=-0.060
1 : 1 T T T
~ ~ 08| :
E 0.98 - N E 0.6 |- N
i) S o4l .
£ 096 | 8 < 02| n A A “ s
> 0 :
! ! ! 0 A Vb A Al L
0 5 10 15 20 0 5 10 15 20
tin ps tin ps
(a) (b)
N =7, g=0020 N=7,g=—-0.060
1 T 1 T T T
~ ~ 08| :
E 0.98 - N E 0.6 |- N
S 2 04l .
=096 | s < 02 A “ s
=0 2Ll
! ! ! oL Uiy, A\ Il A |
0 5 10 15 20 0 5 10 15 20
tin ps tin ps
Q) (d)
N =9, ¢=0.020 N =9, ¢g=-0.060
1 1 T T T
~ ~ 08| :
E 098 - N E 0.6 |- N
S 2 04l .
2096 |- . £ 02 l ‘ ' ﬂ
> o | i
! ! ! 0 A | A A Al \A 1 A A A
0 5 10 15 20 0 5 10 15 20
tin ps tin ps
(e) )
N =11, g = 0.020 N =11, g = —0.060
1 I 1 T T T
~ ~ 08| s
E 0.98 |- . E 0.6 |- 1
£ 2 04l .
<096 |- s < 02 s
- 0 .
! ! ! 0 ﬂ m“A sl hy \Akﬂl
0 5 10 15 20 0 5 10 15 20
tin ps tin ps
(8 (h)

Figure 5.16: Comparison of the visibility in the linear and zigzag regimes for different ion
numbers for A = 0.02. On the left, the crystals are all prepared in the linear chain before
the quench with ¢ = 0.02, while on the right the crystals are prepared in the zigzag regime
at g = —0.060.
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ment in which the data taken will be discretized. Yet, there are two
reasons why the logarithmic spectra of the visibility as shown in the
plots on the right side of Figure 5.15 might not be something one might
hope to measure in an actual experiment. First, the need for longer
time windows to capture all the long-time features of the visibility
conflicts with the requirement to have the time between the pulses
sufficiently short as to avoid the effects of coupling to the environment
to come in. Also, it might be quite wearisome to take the necessary
amount of data points for a long-time record of the visibility with a
sufficiently high sampling rate in an experiment, where every data
point is determined by some hundred single measurements. Second,
taking the logarithm of the visibility requires to have a low noise in
the visibility measurement. The plots shown here take advantage of
the fact that the numerical algorithm for the FFT can evaluate the
temporal behaviour for the visibility being close to zero; in fact, on a
logarithmic scale the seemingly constant parts between the peaks, for
instance in Figure 5.7¢, have a strong oscillatory dependence which is
accounted for when performing the theoretical Fourier analysis.

Yet, despite these short-comings for an actual experimental veri-
fication, these plots give us more insight into the spectral properties
of the calculated signals and into their dependence on the different
parameters.

5.3.3 Scaling with the Number of lons

Finally, we might ask ourselves how the visibility changes when the
number of ions in the crystal increases. For this, we compare the
visibility signals for small ion crystals containing an odd number of
up to 11 ions, which are plotted in Figure 5.16 for the zigzag and the
linear regime.

In the linear regime, here with a chosen value of ¢ = 0.020, there
are two variations appearing as the number of ions increases. First,
the amplitude of the modulation shrinks. The reason is that even
though the dipole strength is scaled to the critical transverse trapping
frequency, the impact of a change in confinement for a single ion
becomes less important. Second, the frequency of the modulation
increases, since the eigenfrequency of the zigzag mode is increasing.

For the plots in the zigzag regime, shown on the right side, the
dipole strength is chosen to be g = —0.060, so that we can compare
it with Figure 5.7c as well. For an increasing number of ions in the
crystal, the peaks of the revivals become smaller in height, on average.
Some of the peaks, in particular, become so weak that they vanish
on the plot scale. Then again, the time between the peaks becomes
shorter as the zigzag eigenfrequency increases for larger ion crystals.

153



154

QUANTUM QUENCHES AT THE LINEAR—-ZIGZAG TRANSITION

Additionally, we might compare the scaling of the first peaks for the
crystals with different ion numbers. In the main figure, the times of
the first peaks are plotted, similar to Figure 5.12 but with a different
number of ions. The values of other symbols are again determined
by findpeaks.m (O’Haver 2011), and the lines show the times of the
full period for g < 0 or the half period for g > 0 of the zigzag mode.
The data points and curves coincide, and they diverge at the critical
trapping strength ¢.(N), which depends on the ion number. In the
inset, we plotted the same graphs but with the origins of the x-axis
shifted to gc(N) and the time on the y-axis rescaled in units of the
critical transverse trapping frequency, i. e. in units of 1/v.. Again, the
curves and data are all approximately located on top of each other, as
they all depend only on the form of the zigzag eigenmode.

Comparison of Masses and Trapping Frequencies

In this section we compare the visibility for different masses and differ-
ent axial trapping frequencies while keeping all the other parameters
fixed. Essentially, this means varying the parameter {y between the
minimum and maximum values it attains in Table 5.1, which means
we can change the quantumness of the quench. It suffices thus to
compare the following combinations to qualitatively understand the
behaviour:

i) a light ion with a high axial trapping frequency,

ii) a light ion with a medium axial trapping frequency,
iii) a heavy ion with a medium axial trapping frequency,
iv) a heavy ion with a low axial trapping frequency.

The results of these comparisons are plotted in Figures 5.17 and 5.18.
In Figure 5.17, the comparison is drawn for the fixed parameters
g = —0.050 and A = 0.010. In the zigzag regime, smaller mass and
higher axial trapping frequency result in revival peaks that are wider,
higher, and more regular.

In Figure 5.18, all the plots for different mass and axial trapping
frequency but with fixed parameters ¢ = 0.020 and A = 0.010 are
merged into a single plot. This plot, which is in the linear regime,
shows all curves lying exactly on top of each other, so that there is no
effect whatsoever of mass and axial trapping frequency on the form
of the visibility. This at first quite surprising result can be explained
by recalling that the change of the visibility is induced purely by the
squeezing dynamics of the quantum quench. Although the ground
state wavefunction depends on the mass and the initial steepness of
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the potential, the relative squeezing induced is identical in all cases
because the relative change of the potential is also identical in all cases.
From another perspective, the quench in the linear regime is already
a pure quantum quench and the parameter ( therefore not important
(as long as quantum degeneracy can be neglected). In the zigzag
regime, the quantumness parameter (( allows us to change the form
of the visibility, in particular to adjust the width of the revival peaks.

With this, we conclude the discussion of the ground state quenches,
and turn to thermal effects and imperfections, the topic of the next
chapter.



QUANTUM QUENCHES OF THERMALLY EXCITED
ION COULOMB CRYSTALS

In this chapter we investigate the visibility of the Ramsey interfero-
metry scheme under more realistic conditions than for those of the
results presented in Chapter 5. In particular, in Section 6.2, we take
into account the effect of a possible momentum kick transferred to the
ions by recoil of the absorption and emission of photons accompany-
ing the 7/2-pulses. We find that the recoil of the photons is decreasing
the visibility of the Ramsey interferometry. The effect of the photon
recoil is much stronger in the linear regime, in which the quench does
not lead to an oscillation of the ions.

Then, in Section 6.3, we analyse the visibility for quenches when for
which the initial state of the crystal is not perfectly in the motional
ground state in all modes but rather has some thermal excitation. As
a result the visibility for higher temperatures is in general lower than
the one for the ground state cooled crystal, but a new revival time
scale emerges that is absent at T = 0K, and that occurs at times that
are independent of the temperature. In the next section we derive the
expression of the visibility that takes into account the effect of the
finite temperature and the mechanical effects of the Ramsey pulses.

6.1 EVALUATION OF THE VISIBILITY FOR THERMAL STATES

We now evaluate the visibility of the Ramsey interferometer with an
ion Coulomb crystal prepared initially in a thermal state, Eq. (4.60).
Besides taking a finite thermal occupation into account, we are also
including the effect of the photon recoil of the Ramsey pulses in the
calculation.

The operators that describe the recoil which the photon exchanges
with the absorbing or emitting ion are given by

A

Ry () = exp(ik - £y,), (61)

where k is the wave vector of the laser beam and t,, is the position
operator of the central ion. The recoil operator can be written in
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the form of a displacement operator acting on all normal modes. In
particular, we have

A A

Ry (%) = Dy(x), (6.2)

D, (x) = ﬁT(Kl) Q& ﬁT(KgN) = exp{;(KjB]ﬁ — KfB]T) } , (6.3)

where the displacements in the modes are given by

h
;=1 | ——K:. (6.4)
/ meT J

J
Here we have expanded the wave vector k of the photon, which is
absorbed or emitted by the ion labelled by 7, into the basis spanned
by the normal modes, such that

Kj=kM kML kM (6.5)
is the projection onto the normal mode labelled by j (jo, labels the
coordinate describing the & = x,y,z displacement of the ngth ion,
i.e. jox = no, joy = N +ng and jo, = 2N + ng in the convention of
Table 2.1).

Second, we consider the case in which the initial motional state is
in thermal equilibrium at some finite temperature. For describing this
thermal state we use the density matrix as introduced in Chapter 4.
The overlap, as derived in Section 4.4, is determined by the formula

Eq. (4.60),
O(t) = Tr{R{, U, Ry po U7} (6.6)

Then, we can evaluate the trace in any basis that is convenient for the
calculation — which here turns out to be the overcomplete coherent
state basis with respect to the equilibrium positions of the crystal
when the central ion is in the state |1). In this basis, the trace operator
explicitly reads as

T} = i [N glal-fa)y, 67)

where |a); = ®; |a;), describes a multi-mode coherent state as it is
generated by application of the multi-mode displacement operator
onto the ground state,

R D, ()10} = @ ly)y - (6.5)
] ]
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Before we turn to the evaluation of this matrix element and the integral,
we first make use of the cyclic property of the trace operation, that is,
we write the overlap as

dNa o et o

In this way, the time evolution operator [:TT is applied directly to the
coherent state, which simplifies the evaluation.

For the next step in the evaluation, we need to insert the explicit
form of pg, which may be represented in an arbitrary basis. A conveni-
ent choice is a basis in which the initial density matrix is expressed
in terms of coherent states, and in which it is diagonal no matter the
form of the initial state. Such a basis representation exists, called
the Glauber-Sudarshan-P distribution (Carmichael 1998, Ch. 3, pp. 75f.).
With the help of this distribution any arbitrary initial density matrix
can be written in the following form,

doN !
p0= [ S PoAHIAb M, (610)

where [AY) 1 =®j |A j )| is the basis of coherent states when the central
ion is in state ||), with A} = ()\i . /\i N, of course.

6.1.1  Calculation of the Overlap

Inserting Eq. (6.10), the equation for the overlap, Eq. (6.9), is written
as a double integral in the coherent states,

= [ S5 [ SR P Ry A (A OTRE Oy
(6.11)

The integrand is composed of two matrix elements which need
to be evaluated first. In the first matrix element, we replace the
coherent state M¢> by the corresponding identity involving the multi-
mode dlsplacement operator applied on the ground state, |AV), = 1=

¢()\i) 0) - In the definition of the displacement operator, Eq. (6.3),
we change the basis of the operators by means of the Bogoliubov
transformation, Egs. (3.25), such that we can write the displacement
operator in the changed basis as

D i()&) = e“MDT(AT ), (6.12)
where the displacements in the changed basis are given by

/\JT - Z()‘iukf T /\i*vk]') : (6.13)
k
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When applying this transformation the following phase factor needs
to be included,

Pl = 2Im [Z A}ﬁﬂ ’ (6.14)
J

where B} is the displacement between the ground states of the two
different configurations, Eq. (3.30).

Putting in the transformation between the ground states, Eq. (3.42),
we can write the coherent state |A+) | as

A%y, = zD,(AN)D, (8T)e? [0), . (6.15)

Using this result and replacing the recoil operator via Egs. (6.2), (6.4)
and (6.5), we arrive at the following expression for the first matrix
element,

HaRy [AY), = Ze T(oc]f)T(K)f)T(AT)f)T(ﬁT)eA\O)T. (6.16)

To evaluate this matrix element, we first combine the three displace-
ment operators, using the BCH formula, into a single operator,

DT(K)f)T()\T)f)T(ﬁT) = ei¢9f)T(9), (6.17)
where the new combined displacement 6 is given by
6; = x; + ﬁ]T + A}, (6.18)

with a phase factor

9p = Im [Z(Kj()L]T* +Bl)+ /\]Tﬁm . (6.19)
]
In the step, we exchange the displacement with the exponential op-
erator, as in Egs. (5.8), obtaining again a generalized or displaced
A-operator in the exponent. Summing up, we have simplified the first
matrix element to be

N Ry [AV)) = ZePrs el (a| PO j6), . (6.20)

In the same way, we can simplify the second matrix element in
Eq. (6.11) by transforming the operators and ground states. But before
we do so, we first apply the evolution operator UI from the left to the
coherent state (AV| |- Tesulting in the time-dependent coherent state

(A4 1 IAJI = (A1) |- When this coherent state is rewritten as the
ground state with a displacement operator applied to it, as before, and
when we transform all quantities into the other basis, the transformed
displacements are now time-dependent,

T — } —iwrt b o Hiwpt
Aj (t) = ;(Ake kg + AT e Tk Ukj) : (6.21)
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Again, we have to accompany this displacement operator in the trans-
formed basis with a phase factor, exp{—i¢, L) I3

Pl = 2Im [Z 4 t/\il[j’ﬂ (6.22)
]

which is time-dependent in this case. Comparing the complex conjug-
ate of the second matrix element with the first one in Eq. (6.11), we
figure out that the displacement operators appear in the same order as
before, with A+ replaced by A¥(t) and « replaced by «’. Thus they can
be merged just as before in Eq. (6.17), thereby defining the combined
displacement

9]’. = K; + ﬁ]T + /\]T(t) , (6.23)
with the phase factor exp{ ¢y }, where

¢g = Im [Z(K],(A]T*(t) + ,B;r) + A]T*(t),B]T)} : (6.24)
J

Hence, the second matrix element reads in its simplified version as

JAHOIRE O )y = Ze 40 e 190 (0| X (O a(n)); . (6.25)

Combining all of the steps above, the overlap, Eq. (6.11), is written as

d6N d6N)L .
- / N / — 7262 py(A%)

x (] @0y, (0[N O a(t))y, (6.26)

where we merged all the phase factors into a single one,

P=PAl — Palp) + P9 — Py - (6.27)

In order to proceed with the evaluation, we first exchange the order
of the integrations,

6Nyl
o =2 T A dopy(Ah) 3. (AY), (6.28)

Tt

where we defined the inner integral by

deN N At
Je(AY) = / NTZ\;X T(a!eA(Q) 10)4 +(6| NG |ac(t))r . (6.29)

Exchanging the two matrix elements, we arrive at the following form
for the inner integral,

~ d6NDC t(p A
3 = [N O )y laleA Oy, (630
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where we can evaluate the matrix elements by using the same methods
as presented in the previous chapter, see the evaluation following
Eq. (5.12), giving us the result

d6N N . N
Mﬂ):/ o (MO )]0 (AO), (aloy . 631

A comparison with Eq. (5.17) shows that both integrals are almost
identical, with BT replaced by 6 in the scalar product on the right
and by 6’ in the scalar product on the left. Indeed, performing the
calculation in the same way, i.e. merging all terms into a common
exponent and grouping them by their order in the « variables, we see
that only the linear and constant terms are different to Eq. (5.21). The
integral takes the following form,

Te(AY) = 7269 6C*(#) (GO) / :;Z‘\’] oW swow 6.32)

with a result similar to before:

2 _
’sz()\i) — \/dzeﬁem)e(; (6") G(6) o38™ Q7 1s (6.33)

In this equation we introduced the following abbreviations:

Ajx ]2
CN=Y 5 1%L (6.34)
jk j

with ; =0, 9]’- ; () is a complex symmetric 6N-by-6 N matrix, which is

defined by
o+t ot 1— At —iA~
Q= = o (6.35)
O+t 0 AT 14+ AT
with
1 il !
AG =3 [A]-k(e i(wj+wp)t 1)} ; (6.36)

s is a 6N-dimensional vector given by
S+
s = ( . _> p (6.37)
—iS

s]i[e,e’] = 5[0] + S7[0']e T, (6.38a)
Silvl = Zk)Ami; = ;- (6.38b)

with
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The discussion of the convergence of the integration in Eq. (6.32)
applies in exactly the same way as in Chapter 5, so there is no need to
repeat it here.

In summary, the double integral Eq. (6.11) is reduced to a single
integral over the variables A,

6Nyl 2 i . B
Of) = / dnsz\); Po(A) iljﬁe(; ()e6Oeis™ s (639)
where we need to insert the corresponding Glauber-Sudarshan-P
distribution Py(AY) of the initial density matrix.

Equation (6.39) gives the visibility as a function of an arbitrary
initial state for an arbitrary number of ions N while also accounting
for the mechanical effect associated with the absorption of a photon
out of and emission of a photon into the laser pulse. We evaluate the
visibility for different initial states in the next sections.

6.1.2 Initial Preparation of Coherent States

The Glauber-Sudarshan-P distribution for the single-mode coherent
state |ag) is given by

P(a) = 8@ (x—ag). (6.40)

If the initial motional state of an ion Coulomb crystal is prepared in a
coherent state |a)| = ®; |«;) , with [a;) | being a coherent state in the
normal mode labelled by j, the corresponding Glauber-Sudarshan-P
distribution is given by

Po(AY) =TT (A} —w)). (6.41)
]

The visibility of an ion Coulomb crystal initially prepared in a coher-
ent state can be calculated with the formulae derived in the previous
section. The expected behaviour of the visibility for a coherent state
would depend strongly on the exact point of time of the first Ramsey
pulse, as the coherent states are following the trajectories of classical
harmonic oscillators. To correctly predict the visibility for an experi-
ment, we would first need to determine the phases of all the coherent
states. There exists an abundance of possible choices for these initial
phases, which would obfuscate a clear analysis. For this reason, we
chose not to include a discussion of the coherent state case in this
thesis, even if it might be useful for measuring the motional state of
an ion Coulomb crystal.

To conclude this section we would like to check if we regain the
formula for ground state as a special case of the derived formula.
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The ground state is the coherent state [0); = ®; [0;)|, so that the
Glauber-Sudarshan-P distribution is simply given by

Po(Ar) =TT (A}) . (6.42)
]
The overlap is then given by inserting the P-distribution into Eq. (6.39),
yielding
9
o) = Z=e'? oG (0') oG (6) o3sTO7 s (6.43)

VdetQ ’

which is a generalisation of Eq. (5.28), which allows for the inclusion
of the effect of the photon recoil. By setting x and «’ to zero we recover
the result of Eq. (5.28).

6.1.3 Initial Thermal State

We now consider the case of the initial motional state being a thermal
state. A particular instance of such a state is the steady state of a
laser cooling process of an ion Coulomb crystal. A thermal state of a
mode of a harmonic oscillator, as given by Eq. (4.39), has the following
Glauber-Sudarshan-P-distribution (Carmichael 1998, Ch. 3, p. 85),

2
1 A
Pxy) = @l ¢ [_ <rz&> ] (6.44)

]
where the expectation value of the occupation number <n]¢> fulfils the
following relation (Carmichael 1998),
e-hw}/kBT

Al = ey = &~ 6.
(A7) = (b;"b7) T (6.45)

where kg is the Boltzmann constant, T the temperature and (ni) the
mean vibrational number of mode j.

By integrating Eq. (6.39) over the variables A taking the distribution
Py(AY) = I PO(A}), we obtain the overlap for the thermal state. The

integral in the variable A} is a Gaussian integral and the resulting
visibility reads:

726if oG exp {%ETX_lﬁ}
@h - (aty)  VdetQdet X

3N

o(t) =

(6.46)

This is the main result for the overlap for any initial temperature T and
any number of ions; it is valid as long as the harmonic approximation
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is feasible (cf. the discussion in Chapter 5). The visibility is then simply
the absolute value of the overlap. In Eq. (6.46) we have defined a set of
new expressions that allowed us to write the result in such a compact
form. The rest of this section is devoted to expanding these expressions
and relating them to the terms established in the previous chapters.
The derivation of these expressions is simply lengthy arithmetic of no
considerable difficulty whatsoever; for this reason we have moved it
to Appendix E. The derivation of these expressions is not difficult but
just lengthy arithmetic, so we leave it here but include it in Appendix E
for completeness.

The prefactors in Eq. (6.46) contain two exponentials, whose expo-
nents take the form

¢ = (plx] — 9lx'])/2, (6.47)
and
3N ¢k, ') [P SP [k, «]
G=G@)+G @+ Y ¥ - S (648)
jk=1ap=+
where
Gy =K+l gl =K +B]. (6.49)

The 6 N-dimensional vector L is conveniently split into three parts,
L=T+J+K. (6.50)

The first term on the right-hand side is given by

I
1 1¢ 7% 271 Tiwit
I]'z _ I]-(é)—l—Ij(é)e . 1 (6.51)
) \B@)+@)e ™
where the 3N-dimensional vectors are
* * 1 *
) =) viAply — 5 Y (Ulej + ulj€j> , (6.52a)
jk j
2 (% * 1 *
§*) = Y wjAply — 5 ). (“lj@j + Uz;éj) : (6.52b)
jk ]
The second term can be written as
—i(‘),i —i i
(3,}) C[BHA= e LU () — I () e 659
- iw? why | 7Y
Te) \pHe™ 1)+ 30 () — () et

with

Ji (k) = Z(Kj(”kj +0yj) £ ,BJT(“kj - Ukj)) (6.54)
j
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The third term reads

IC,%)Z le[Q_l]?]fS]’f[K,K/] . S;‘[K,K’][Q_l]?lfYkl
<2 5 (Y;f‘z[ﬂl]j‘fsf[m’] sefi, [0 11E | |

Ki/  ap ik i
(6.55)
where
le = EAjkvlk — Lll]' , (656&)
k
IRV PN
y]#lt =+Y e ey —wp)t. (6.56b)

The matrix X in Eq. (6.46) is given by the following expression,
11 yl12 0 1 —i(wf—wp)t
o X U -5 Y, eHlwiren)!
~11#p —114p
Y 0 [ ]jk [ ]jk Yo O 6
+ ZZ 0 Y“ 01 ap 01 ap 0 Yﬁ , (6:57)
ap jk jl Q7] jk (7] jk km
o 1
Yim =7 ZUIijm, (6.58)
]
and the thermal excitation,

Tim = Oim <nz¢>_1 . (6.59)

The integration in At is facilitated by changing to real and imaginary
parts of A} = xj + 1y, thereby introducing

Xy 11 12 :

(X;;; le> _ (1 1) (le X1m> <1 1> (6.60)
yx vy ; ; 21 22 ;
le le i —i le ylm 1 —i

L£x £+ r?
fy = 11 12 . (6.61)
c L}~ L5

Equations (6.47) to (6.61) allow the calculation of the visibility of any

and

thermal state.
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6.2 ANALYSIS OF QUENCHES INCLUDING THE PHOTON RECOIL

First we shall examine the influence of the photon recoil of the Ramsey
pulses on the form of the visibility. A previous study (De Chiara et al.
2008) has already analysed the effect of the recoil on the visibility for
ion chains in the linear configuration without any state-dependent
potential. Here, we shall extend this approach to the quench scenarios
examined in Chapter 5. The relevant formulae of Section 6.1 are
included into the numerical MATLAB code to account for the effect of
the photon recoil.

For this analysis we focus on one particular experimental setup for
which we expect the maximal effect of the photon recoil. It turns
out that the best suited choice is an ion crystal composed of 9Be*
ions. First, by virtue of Eq. (6.4) the low mass of the 9Be™ ions gives
the biggest displacement in phase space for the typical ion species
considered in experiments. Second, the relatively short wavelength
of the transition between the S;/, and the P;/, levels, which is ap-
proximately 313 nm and thus no longer in the visible, but in the UV
spectrum, results in large absolute values of the wave vector k. Third,
the two metastable states for 9Be™ ions are usually two different hy-
perfine states of the ground state domain, which are connected via a
Raman transition employing the S,/, to Py, transition. Such a Raman
transition is achieved by two laser pulses, each with a wavelength
of approximately 313nm but sufficiently tuned out of resonance to
avoid unwanted transition to the P;/, level. The total recoil transferred
from the light fields to the ion is then given by the effective wave vector,
which is given by the difference between the individual wave vectors,

Keff = kRaman,l - kRaman,2 (6.62)

This allows us to tune the effective wave vector from having double

the length of the wave vector of a single photon at 313 nm to virtually

zero by just changing the angle ¢r between the two Raman pulses.
Here, we shall consider three different values for the angle:

i) ¢r = 0, for no effect of the recoil,
ii) ¢r = /2, for medium effect of the recoil,
iii) ¢r = 7, for maximum effect of the recoil.

In Figure 6.1 we compare the effect of the recoil for these three
values on the visibility. In Figure 6.1a, the signals are in the linear
regime we see that the recoil has quite a strong effect compared to the
change resulting from the state-dependent potential. This is, however,
not a big surprise as the kick obtained by the absorbed and the re-
emitted photons leads to a centre-of-mass oscillation of the wavepacket
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of the central ion and, by virtue of the Coulomb interaction, of the
other ions in the crystal. Therefore, the other normal modes are more
excited than in the case of no recoil, and the visibility shows a much
more irregular behaviour than in the case without a recoil. The quench
inside the state-dependent potential leads here only to an evolution
of the spread of the wavefunctions. The visibility including the recoil
is always below the visibility with no recoil, and the visibility with a
stronger recoil always below the visibility with a medium recoil.

Figure 6.1b shows the analogous plots in the zigzag regime. Here,
the visibility including the recoil is always below the visibility without.
As the ions are already oscillating around new equilibrium positions
due to the quench in the state-dependent potential, the recoil does not
have such a large effect as in the linear regime. The only visible effect
on this plot scale is therefore a decreased peak height for higher recoil.

A similar behaviour is apparent in the regime close to linear-zigzag
instability in Figure 6.1c. The only effect is, again, a decreasing height
of the double peaks for stronger recoil.

To show that the recoil has a bigger effect on the visibility in the lin-
ear regime than the quench dynamics, we can compare the behaviour
of the visibility for fixed recoil and different values of the trapping
strength ¢ in Figure 6.2a and of the dipole strength A in Figure 6.2c.
Although the trapping strength ranges from ¢ = 0.01 to A = 0.10
there is hardly a difference visible on the plot scale in Figure 6.2a.

The same is true for the dipole whose strength is varied from A =0
to A = 0.030, although there is no big difference between the plots
in Figure 6.2¢c. Again, this is rooted in the fact that the photon recoil
induces a motion of the centre-of-mass of the wavepackets of the
ions while the quench in the state-dependent potential does not. In
Figure 6.2d we compare the visibilities for varied A in the zigzag
regime. The visibility for A = 0, i.e. for no quench at all, has a
remarkable similarity to visibilities of the linear regime. All other
plots are mostly well below the plot for A = 0 so that the effect of the
quench is more important than that of the photon recoil.

63 ANALYSIS OF QUENCHES FOR THERMAL STATES

In this section we analyse the Ramsey interferometer visibility for
quenches of an ion Coulomb crystal in a state-dependent potential
with the initial motional state of the crystal being a thermal state. The
results of Section 6.1 are all integrated into the MATLAB algorithm
to enable the calculation of the visibility for thermal states. In this
section, we are interested in the effect of the initial thermal occupation
of the motional state on the visibility of the Ramsey interferometer,
thus we shall restrict ourselves to the case of no photon recoil here.
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LINEAR REGIME In Figure 6.3 the visibility is shown for three 9Be™
ions and for various values for the dipole and the trapping strength in
the linear regime. In each of the different subplots we compare the
visibility for several different initial temperatures. First, we realize
that the visibility drops much lower for higher temperatures than for
T = 0K; at 10 pK the minimum of the visibility decreases down to
about 0.5 or less for most of the chosen parameters. The visibility no
longer shows the quasi-periodicity of an oscillation-like behaviour that
it had for 0K, but a quasi-periodicity in the form of decay and revivals
with a much longer period time. The second observation is that these
periodically occurring revivals are absent at zero temperature. An
ultra-cold temperature of 5 uK already leads to a significant decrease
of the minimum value of the visibility. Even for 100 uK these revivals
are significantly above zero.

The revival time decreases for increasing dipole strength A while
keeping the trapping strength fixed, and it increases for increasing
trapping strength ¢ while keeping the dipole strength fixed. The drop
in the visibility shows not much dependence on the dipole strength A,
as the minimum value of the visibility at 10 pK is roughly the same
in Figures 6.3b, 6.3d and 6.3f. The minimum value of the visibility
does depend on the trapping strength, however; see the signal at
10 pK in Figures 6.3f, 6.3h and 6.3j, where this minimum increases for
increasing trapping strength g.

In addition, the height of the revival peaks changes from peak to
peak for temperatures higher than 10 uK; first the height decreases
with a minimum attained at around several ten to hundred ps, after
which the height of the revival peaks increases again. This change is
not visible for 10 uK and lower temperatures.

ZIGZAG REGIME  The zigzag regime for the same ion Coulomb crystal
is shown in Figure 6.4, again comparing the results for different
parameters in the various subfigures and for different temperatures
within each subplot. For most of the time the visibility for non-zero
temperatures is well below the visibility for 0K. Yet, the difference
between the visibility for 0 K and the visibility for 5 pK is hardly visible
on any of the plots. Also for 10 pK the visibility shows only a small
decrease compared to the 0K visibility.

For 50 puK, however, the visibility drops to a value below 0.1 for most
of the parameters considered here. This drop is generally stronger for
higher values of the dipole strength A and for lower (more negative)
values of the trapping strength g. Yet, from time to time there are
occasional revivals higher than 0.1. For lower values of the dipole
potential considered here, Figure 6.4b and 6.4d, it appears as if the
peak height also follows a quite regular behaviour. The peak height
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is changing smoothly from peak to peak and it exhibits a maximum
with a revival of the visibility of about 0.4 at around 80 us for both
and around 40 ps for A = 0.020. For the other values considered here,
such a local peak in the revival height is either not as significant as in
the cases before, as in Figure 6.4f where the spike in the peak height
is rather abrupt, or it is not visible at all.

For 100 pK the peaks of the visibility remain close to 0 and they
rarely reach a height significantly above 0 which would allow us to
distinguish them from statistical noise in a measurement. For the
lowest value of the dipole strength A and for 100 uK these peaks
increase before 80 us and decline afterwards with a maximum peak
height of about 0.1, see Figure 6.4b. It is worth emphasizing that
each of these maxima in the peak height for 50 pK and 100 pK in
Figure 6.4b coincides with a minimum of the peak height for lower
temperatures. Thus, for higher temperatures the visibility does not
decrease homogeneously over the time domain, but rather it exhibits
certain time intervals during which it does not diminish as strong as
in other intervals. This corresponds to the thermal revivals we have
observed in the linear regime in Figure 6.3.

REGIME CLOSE TO THE TRANSITION The visibility close to the linear—
zigzag instability shows a similar behaviour for finite temperatures to
the zigzag case. In Figure 6.5 the peak height decreases for increasing
temperatures just as before; however, now the decrease for 5 uK and
10 pK is much stronger than in the zigzag case. In particular, for the
case when the quench is across the transition, see Figures 6.5h and
6.5j, the visibility for 5 pK already shows a significant drop compared
to the one for 0 K.

Furthermore, we can look at the behaviour of the multiple peaks
that are appearing close to the transition. The side peaks do not
decrease proportionally to the decrease of the major peak, but rather
all peaks attain about the same level in height, as one can see in the
plots for 50 K.

Interpretation of the Results

The occurrence of thermal revivals may be explained in the following
way: At higher temperatures the wavefunction experiences an addi-
tional thermal dephasing that is absent at T = 0K. This dephasing
depends on the energy difference between the two parts of the super-
position. To be more specific, the initial state can be rewritten in a
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diagonal form in the energy eigenstate basis of the quantum harmonic
oscillator for each of the normal modes:

o0
0= L syl mandy(m eyl (663)
711,...,713]\]:0
We first turn to a simplified discussion for a single mode, which
allows us to write the initial density matrix as

o0

00 = ) culn)(n]. (6.64)
n=0
The time evolution operator for the state-dependent potential in the
ground state leads to time-dependent phase factors that cancel out
each other:

(e [0,]

A N —inwt inwt (6.64)
U, (1)poUl (1) = Y cne™ ™ n) (n]e T = Y~ cyln) (n] "=" pg
n=0 n=0
(6.65)

Here we need to keep in mind that the second equality sign has
the meaning of an equivalence relation modulo the global phases of
the eigenstates |n) ¢
exhibit these phases that cannot be measured directly, while the same
state written as a density matrix does not attain these phases. As
we have seen, the density matrix does not keep track of these phases
originating from the time evolution. This is probably the origin of
the widespread but wrong claim that a thermal state does not have a
phase.

A pure state written as a state vector would

The calculation for the multi-mode case shows a similar result, the
only difference being that 3N pairs of exponentials cancelling each

other now:
B Nt
0, (Dol (1)
_ - finlwit fin3Nwl t
- Z Cﬂ1,...,1’l3Ne 17...e 3N" X
nl,...,n3N:0
. 1 . 1
X ‘7’11, . ,H3N>¢<Tl1, cee ,Tl3N| e+1n1a}1t B e+m3Nw3NtL
0
(6.63)
=) calm)y{n] =" po. (6.66)
n=0

The visibility of the Ramsey interferometer as discussed in Chapter 4
does in fact measure the interference between two different time
evolutions of the same initial state. The corresponding term in the
result for the visibility in Section 4.4 is the absolute value of the overlap
given by Eq. (4.60), which contains the term

175



176

QUANTUM QUENCHES OF THERMALLY EXCITED ION COULOMB CRYSTALS

where we dropped the photon recoil operators.

Evaluating this term, starting with the single-mode case, we need to
first change the basis of the state vector onto which the unitary UT(t)
is applied on,

n)y = Y Sum|m), (6.67)
m=0

where the factors Sy, can be calculated by the procedure outlined in
Section 3.3.2. The initial state may be rewritten as

00=Y_ Y cnSum|m)ti(n|. (6.68)

n=0m=0

For the term relevant for the visibility we get

~ N o o . T . \L
UT(t)POUI(t) =Y ). cuSume " Hm)ry(n|e T, (6.69)

n=0m=0

we find that there is no cancellation of phases in general, and that

the expression ﬂT(t)pOﬁI(t) is not the same as pg. The difference

is in the phase factors exp{i(nw — mw!)t} for the term containing
|m)+ | (n|, which would need to be all equal to 1 at the same time.
These exponentials are equal to 1 for the times

gihermal — oo (et — mw) ™1 for all m,n = 0,1,2, ... (6.70)
Now, for all possible pairs (m, n) these times are generally incom-
mensurable, yet for certain values it is possible to identify common
times for which a group of terms equals 1 at the same time. Take
for instance the two cases 27t(wt — w1)~1 and 22wt — 2wT)~1. The
second term is just half the first one, so every second revival of the
second term coincides with a revival of the first term. A similar reas-
oning holds for higher values of m = n, so all such factors have a
revival at the same time, given by 27t(wt — w)~1. However, this does
not hold for terms with m # n in general. If those terms are important
or not depends on the form of the factor Sy, in particular whether
the off-diagonal parts of Sy, are comparable to the diagonal ones or
not. In the case of quenches between two similar states, the diagonal
terms have much bigger absolute values than the off-diagonal, so we
can expect to observe a revival of the visibility at the time given by
2m(wt — wt) =L,

In the multimode case, we need to extend these considerations to all
the normal modes, so that we obtain revival times for all normal mode
frequencies, 27’[(&]% — wI)_l, . .,27t(w§N — ng)_l. For quenching
an ion Coulomb crystal in the particular setting considered in this
thesis, the differences between the normal mode frequencies are all
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Figure 6.7 Semilog plot of the logarithmic spectra of the visibility for thermal states for a
dipole strength of A = 0.025. These are evaluated in (a) the linear regime for ¢ = 0.020,
(b) the zigzag regime for g = —0.100, and (c) for g = —0.050 for the regime close to the
transition. The insets show a zoom of the low frequency domain. The vertical green
dashed lines mark the frequency of the zigzag eigenmode (or double the frequency for the
linear case), and the orange dashed line gives the beating frequency. (Figures taken from
Baltrusch, Cormick and Morigi (2013) © held by American Physical Society)
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orange dashed line marks the revival time caused by the beating between the zigzag
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frequencies. (c) and (d) show the corresponding logarithmic spectra with the beating
frequencies highlighted by the vertical dashed lines. (Figures taken from Baltrusch,
Cormick and Morigi (2013) © held by American Physical Society)
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quite small with the exception of the difference of the zigzag mode
frequencies. Additionally the ground states before and after the
quench in the linear regime are different from each other only in two
normal modes, the zigzag mode and the COM-mode in y-direction.
Therefore, we expect the visibility to exhibit partial revivals at about
the times 27'((w%z — wgz)*l, with a slower modulation of the revival
height at the times ZW(wéOM’y — “JEOM, y)*l.

The appearance of these thermal revivals can also be analysed in
the frequency domain. The frequency differences or beat frequencies
should turn up as certain peaks in the spectrum of the visibility or the
spectra of the logarithmic visibility, whichever is more suitable, see
the discussion in Chapter 5.

In Figure 6.7 the spectra for the logarithmic visibility are plotted
for different temperatures. The spectra at T = 0K have a few peaks,
but as the temperature rises more and more peaks become visible.
These additional peaks are integer multiples of the beat frequency
Wheatzz = w%z - a)gz, which is highlighted by the orange dashed
verical line. At 50 pK and 100 uK these peaks are well distributed over
a wide frequency range.

In Figure 6.8 the thermal revivals show an additional dependence
on longer times. To analyse this dependence we take the case of a
very weak dipole potential by choosing A = 0.005, and examine the
visibility for 100 pK for a longer time, here Ty = 1ms in Figure 6.8. We
observe in Figure 6.8a that the peak height of the thermal revivals first
decreases to something around 0.4 but then increases again to a value
very close to 1 at around 800 ps. This maximum peak height is close
to the revival time of the COM-mode in y-direction, 2ﬂ(wéOM,y -

ngOM, ); however, it does not coincide exactly. When comparing the
heights of the observed revival peaks and drawing an envelope to
them, it looks as if this revival time were at the centre of this envelope.

For the signal in the zigzag case, shown in Figure 6.4, the visibility
first seems to be decaying, with thermal revivals very close to zero.
However, it is not a complete loss of coherence as the minimum
visibility is rising from time to time (and falling again shortly after).
Still one might ask if this decay is irreversible. The coherence of the
Ramsey interferometer has become deteriorated due to the dephasing
of the eigenmodes with incommensurable eigenfrequencies, so a full
revival is not possible. But revivals close to a full revival are possible.
Here, at around 700 ps, there is a partial revival of about 0.35. Again,
the revival time associated with the beat frequency of the transverse
COM modes is located close by. The reason for the revival not being
as strong as in the linear case might stem from the fact that for the
zigzag quench there are many more modes involved. Thus, for a full
revival the revival times of the beat frequencies of all these modes
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should be integer multiples of each other, which will eventually be
the case at some, much later, point in time.



DISCUSSION AND CONCLUSIONS

In this thesis, we discussed the visibility of a Ramsey interferometer
kind of experiment with a small trapped ion Coulomb crystal that is
subjected to a state-dependent potential. In the first part, we examined
the properties of ion Coulomb crystals in state-dependent potentials,
while in the second part we analysed the scheme of Ramsey inter-
ferometry to extract information about the motional state of an ion
Coulomb crystal in a state-dependent potential.

After reviewing the physics of trapped ion Coulomb crystals in
Chapter 1, we have shown in Chapter 2 that one possible way to
realize such a state-dependent potential is to combine a dipole trap
with the ion trap apparatus such that a meta-stable excited state of
an ion experiences a position-dependent ac-Stark shift. The excitation
of a single ion into this meta-stable state by a coherent laser pulse
changes the spectrum of the normal modes, and given a suitable
choice of the involved parameters, even the equilibrium positions of
all ions of a small ion crystal can be changed. When the ion Coulomb
crystal is close to the structural transition between a linear chain
and a zigzag chain configuration, the state-dependent potential can
also induce this transition even though only the electronic state of a
single ion is excited. We have characterized the possible structural
configurations for a three-ion crystal as well as the transition between
these configurations in dependence on the dipole trap and ion trap
parameters.

For each of the different state-dependent structures the motional
state can be equivalently described by eigenstates of a harmonic os-
cillator in a second-order approximation of the potential around the
corresponding equilibrium positions. In Chapter 3, we derived the
transformation between these different harmonic oscillator bases; the
obtained formulae are applicable in the region of parameter space
where the quadratic approximation is feasible for both basis expan-
sions simultaneously. On the basis of this transformation, we were
then able to analytically calculate the dynamics of the motional states
following a local rapid change of the potential energy which can be in-
duced by an excitation of the electronic state of an ion that is exposed
to a state-dependent potential.

In Chapter 4 we reviewed the scheme of a Ramsey interferometer
type of experiment with the aim of analysing the dynamics by an
experimental technique. There, two branches of the total wavefunction
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evolve via state-dependent dynamics after the central ion is put into
a quantum superposition state. After interfering the two differently
evolved branches again, the probabilities for measuring the central
ion in one or the other electronic state vary in dependence on an
experimentally controllable phase shift introduced for one evolution
path only. The amount by which these probabilities can depart from
the indeterministic result of 1/2 for varied phase shifts is characterized
by the visibility of the interferometer, which depends on the distin-
guishability of the motional states of the two branches. Therefore,
the time-dependence of the visibility of a state-measurement repeated
with varied phases between the two evolution paths yields an indir-
ect probe of the motional state dynamics that we examined in the
following chapters.

In Chapter 5 we analysed the properties of the visibility in depend-
ence on the dynamics induced by the first Ramsey pulse, leading
to a dynamical evolution that can be regarded as a local quantum
quench. After this quench the motional state of the crystal is in a
superposition of two branches with different motional states; that
superposition may even evolve around different equilibrium positions.
For this, we calculated an analytical expression for the visibility of a
Ramsey interferometer setup as a function of the time between the
two Ramsey pulses. We then investigated the dependence on the trap
anisotropy, on the strength of the dipole potential, and in Chapter 6,
on the strength of the photon recoil of the Ramsey pulses and on the
temperature.

The theoretically calculated visibility curves yielded the following
observations: The visibility shows a fundamentally different behaviour
depending on whether the ion Coulomb crystal is initially prepared in
the linear or the zigzag configuration. Starting from the zigzag regime,
the visibility shows a series of regularly occurring revivals whose
appearance is completely dominated by the zigzag normal mode, the
mode that is excited the most by the quench. We have analysed the
properties of the revival peaks like height, width, and separation as
a function of the parameters. Variations in the height of the revivals
are rooted in coincidences (or the absence thereof) of full periods with
other modes. In the linear regime, the visibility stays almost close to
unity with small oscillations, which again are mainly caused by the
dynamics of the zigzag mode. We further compared the visibility for
different ion masses and trapping frequencies to identify the ideal
specifications for an experimental realization.

The effect of the photon recoil on the visibility is mainly detrimental,
and larger in the linear regime for the considered parameters than
in the zigzag regime, where the oscillation induced by the quench
dominates the behaviour of the visibility. Allowing for an initially



thermally excited motional state of the crystal, we observed a large
drop of the visibility even for fractions of a mK. We discovered a new
time scale totally absent in the T = 0K case that is induced by an
interplay of the dynamical phases of the thermal state. This interplay
can lead to thermal revivals, which are more pronounced in the linear
regime.

Probably the most significant finding of this thesis is that, even with
a three-ion crystal and at temperatures as low as 100 uK, coherence
between the electronic states of the central ion is remarkably reduced,
as is evident in the drop in visibility at these temperature. This is even
true for a quench where the equilibrium positions do not change at all,
as is the case for local quenches in the linear regime. We would like to
emphasize that the model analysed here only takes into consideration
harmonic oscillator dynamics without anharmonic corrections; it re-
gards the ion Coulomb crystal as a closed system without interaction
with the environment and without any perturbation by external noise.
The cause of the reduction in visibility is a dephasing process that is
solely induced by the dynamical phases of the initial thermal state.
It is therefore necessary to further investigate the importance of this
drop in visibility in relation to other decoherence and noise sources;
it might well turn out that the dephasing at such low temperatures
of fractions of mK, which are in the range of temperatures that are
achieved regularly in experiments with trapped ions, may reduce the
coherence properties of quantum systems to a greater extent than
previously considered.

Another important finding is the possibility of obtaining the mo-
tional frequency spectrum from the Fourier transform of the visibility.
This provides an independent way of measuring the eigenfrequen-
cies of the normal modes, complementing the established method of
resolved-sideband spectroscopy (Kaufmann et al. 2012) even outside
the Lamb-Dicke regime. The method involving Ramsey interferometry
can be calibrated by local quenches with specific chosen symmetries
that excite only certain normal modes of the ion Coulomb crystal,
and it can then be applied to measuring the normal modes of an
arbitrary motional state. Moreover, calculating the visibility for an
initial motional state of the ion Coulomb crystal prepared in coherent
states or energy eigenstates in the normal modes could provide an
independent tool to verify the creation of certain quantum states in an
experiment.

Since ultrafast Ramsey pulses (Campbell et al. 2010; Mizrahi, Senko
et al. 2013), as required for the setup discussed here, can be created
with a much shorter duration than a micromotion period, one possible
application could involve a direct measurement of the micromotion
by the Ramsey interferometer scheme suggested here — provided the
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phase of the micromotion drive is synchronized with the timing of the
Ramsey pulses (otherwise one would get an averaged measurement
over the different phases of the micromotion). In fact, any modi-
fications of the overlap originating from the micromotion should be
directly observable in the visibility as a modulation with the frequency
of the rf-field. An extension of the calculations presented here, using
the approach of Landa et al. (2012b,a) for linearising the micromotion,
should be feasible.

A further extension to the presented work would be to allow for
slow Ramsey pulses as currently employed in the majority of trapped
ion experiments. The sudden approximation would then, of course,
no longer hold and we would need to calculate the state-dependent
evolution of the total wavefunction during the Ramsey pulses. If a
full calculation should prove infeasible, an approximative solution
might be found by replacing the 7/2-pulses with two 7/4 pulses in the
sudden approximation; those again with two 7/8-pulses, and so on,
taking the limit to infinite pulses — similarly to the approach discussed
by Ramsey (1980). One possible application would be the simulation
of Franck-Condon transitions just as discussed by Hu et al. (2011).

A further possible application might be found in measuring the
nonlinearities in the potential energy by comparing the measurement
of the visibility with the calculated results presented here for quenches
exploring the excluded regimes in Figure 5.3. Additionally, one could
extend the calculation presented in Section 5.2 by adding nonlinear
terms to the unitary evolution operator and applying time-dependent
perturbation theory for the evaluation of the matrix elements in the
calculation of the overlap.

In this context, it is interesting to consider to what kind of states
the ion Coulomb crystal evolves in the long-time limit after the local
quantum quench. Without nonlinear corrections, the initial state of
the evolving branch is a Gaussian state and remains so for all times;
any initial excitation in one normal mode can never be transferred
to another normal mode by the Hamiltonian of the free evolution
alone. So by including the nonlinear terms in the interaction energy,
the system might be able to exhibit a kind of equilibration to some
quasi-stationary state such that the system remains close to this state
nearly all the time.

Observing the long-time behaviour of the visibility after weaker
quenches as per Figure 6.8, we have found that the visibility is able to
exhibit strong (in the linear regime almost perfect) revivals at longer
time scales; analysing ion Coulomb crystals with more ions would
just shift these revivals to much longer times (necessarily larger than
the inverse of the smallest gap in the frequency spectrum), thereby
only mimicking an equilibration that does not actually takes place.



Therefore, it seems more promising to analyse the effect of a nonlinear
interaction on the constructive interference at the revival times for
a rather small ion Coulomb crystal instead. The nonlinearities can
become important even for weak quenches that are close to the linear—
zigzag transition. However, as the zigzag mode frequency changes
dramatically when close to the transition and therefore dominates the
behaviour of the visibility, one could consider restricting the proposed
scheme to quenches that are not exciting the zigzag mode; one possible
realization would be aligning the dipole trap axis perpendicularly to
the trap axis, which would then excite mainly the Egyptian mode
instead.

Other approaches applied the Loschmidt echo or quantum fidelity
approach to the equilibration after quantum quenches (Campos Venuti
and Zanardi 2010a,b; Campos Venuti, Jacobson et al. 2011; Jacobson et
al. 2011). In particular, there the values of the Loschmidt echo (which
closely corresponds to the visibility in our work) were analysed as if
they were random variables; the behaviour of the distribution function
of the values so obtained showed a double-peaked behaviour close
to a critical point of the model considered, while the distribution
approached a Gaussian normal distribution for regular parameters.
This was interpreted as a probabilistic approach to an equilibrium
state justified by the universal behaviour of the functional dependence
of the distribution. For quenches with ion Coulomb crystals, a prelim-
inary analysis of the long-time captured visibility in various regimes
confirms the observation of the two regimes, with the Gaussian far
away and the double-peak close to the linear—zigzag transition. What
is still missing, however, is the confirmation that the equilibration is
independent on the choice of the initial state, which could be obtained
by analysing e. g. the long-time behaviour of the visibility for coherent
states with different phases and amplitudes. However, further analysis
is necessary to put this preliminary numerical observation onto a firm
theoretical basis like in the publications cited above, for instance by
establishing a better understanding of the relation of the visibility to
various correlation functions.

Other theoretical approaches managed to find relations that connect
the visibility of such a Ramsey interferometer scheme to the work
distribution for non-equilibrium quenches (Dorner et al. 2013; Mazzola
et al. 2013; Batalhdo et al. 2014), and for a non-Markovianity measure
of open quantum systems (Haikka et al. 2012; Borrelli et al. 2013)."

Some of the publications cited here reported results in the regime extremly close to
the linear—zigzag transition, so that their model departs from a faithful description
of an ion Coulomb crystal since they are neglecting the restrictions imposed by the
harmonic approximation.
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Figure 1: Sketch of a possible setup for measuring the superposition of crystalline struc-
tures via a free fall expansion, where the spatial positions of the ions are recorded on an
MCP. For the verification of the superposition of different crystalline structures one needs
to ensure that the wavepackets of the two branches overlap at the position of impact on
the MCP.

A legitimate objection is whether the setup analysed in this thesis is
feasible in an experiment, and whether one can expect an implementa-
tion in the near future. The Ramsey interferometry scheme has already
been implemented for interferometry with a single trapped ion in the
experiment of Mizrahi, Senko et al. (2013), using ultrafast Ramsey
pulses that have the additional merit of also enabling entangling oper-
ations on much faster time scales than the currently predominantly
employed slower manipulation techniques for quantum computation.

Trapping of ions in a dipole trap has been successfully demonstrated
by Schneider, Enderlein et al. (2010), although with the restriction of a
high excitation probability to the upper state of the dipole trapping
owing to technical reasons resulting from the isotope involved. Yet
this is likely not a lasting problem for the implementation of a state-
dependent potential with low excitation probability via an optical
dipole trap, as these are presumably useful for many interesting
applications, in particular for quantum simulation.

Basically, all the requirements for the experimental actualization
of the scheme presented in this thesis have been successfully demon-
strated, and we expect the required techniques to spread further,
making an actual implementation in the next years quite probable.

A more speculative potential expansion is the independent meas-
urement of the superposition of the different crystal structures. Here,
we might draw on a similar technique as applied for BECs, namely
the time-of-flight measurement. In our case, outlined in Figure 1,
we would also switch off the trapping potential and let the ions fall
onto a multi-channel plate (MCP) (or use an electric field to accelerate
them toward the plate) where their spatial positions are registered —
just as in the experiment of Schellekens et al. (2005), where an MCP
was used to measure two-body correlation functions of a BEC. For
spatial regions where the wavepackets overlap we should see a spatial



interference pattern when we record their impact coordinates on the
MCP indiscriminately of the electronic state they are in. There are
two technical difficulties that need to be overcome: First, to ensure
that the wavepackets of the two branches of the total ion Coulomb
crystal wavefunction overlap with each other at the MCP; and second,
that the wavepackets expand wide enough for the interference fringes
to become resolvable on the MCP. This, of course, requires that the
COM-position of the ions for the two wavepackets depart from each
other slower than their spreads widen during the expansion. Here,
it could also be advantageous to employ the ion implantation tech-
nique of Schnitzler et al. (2009) and draw on the various established
techniques for focussing used in charged-particle beams (Pierce 1954).
Of course, at this stage the theoretical and experimental feasibility of
such a setup is still highly speculative.
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CALCULATION OF THE NORMAL MODES

A.1 TAYLOR EXPANSION OF THE POTENTIAL ENERGY

The potential energy given by Egs. (1.13), (1.22b) and (1.22c) can be
rewritten as

1
V= Z[xn + any? + 5nzn] +Y - nl|d—l , (A.1)

n,l n

where the shorthand

dyr = |[tn — 1| = \/(xn —x)2+ (yn —y)? + (zn —21)?, (A2)

is the distance between ions n and /, respectively. The expression
Yon1 |1 — 0y is a shorthand to replace the restricted sum Y, 1.+,

facilitating the following calculations of the derivatives.

A.1.1  First order

The first derivatives are given by

oV —x
Fr 1- , A.
oxy Z | nl| dil (A.3a)
oV
3y, AnYn— Z|1—5nl!y , (A.3b)
In nl
1% —z
zn A.
9zy, Bnzn — Z 11— nl| df;),ll (A.30)
A.1.2  Second order
The second derivatives read
92V
0X,,0X] N [1 _;’1 ”k‘ } + 11— nl| nl ’ (A.4a)
92V y
aymay; M ["‘"‘;’1—%\5” | +11—8ul8%, (A.4b)
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We introduced here the shorthands

I — 43 5 ’
" dnl dnl
g _ 1 o (yn —y)?
nl d3 d5 ’
nl nl
1 (zn — 21)2
5% — — —3
nl 3 5 4
dnl dnl
xy (xn — x1)(Yn — Y1)
Snl =3 d5 ’
nl
(xn — x1)(zn — 21)
5% = 3 . ,
nl
vz _ o (yn—y1)(zn —21)
Snl =3 dSI
n

A.1.3  Third order

The third order derivatives are given in the following from,

9 9 9
Oxn OV Am

- ’1 - 6nl|(6nm - 5lm)R§;}€

7z
nl~’

V' = 8,10nm E \1 - 5nk|R§Z§ - 5nl|1 - 5nm|R§}1}1€
k

(A.40)

(A4d)

(A.4e)

(A.4f)

(A.5a)

(A.5b)

(A.5¢)

(A.5d)

(A.5€)

(A.5f)

. (A.6)

where x,v,{ € {x,y,z} and the following shorthands have been intro-

duced:
3
xXxx Xn — X] (xn xl)
nl nl
3
R g¥n Y1 _ 15Wn —7y1) ,
d
nl nl
Rfﬁz _ 9Zn ;Zl _15 (zn _721)3 )
d d
nl nl

(A.7a)

(A.7b)

(A.7¢0)
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Rxxy_3yn_yl_l5(xn_xl) (yﬂ_yl)
nl 4° 47
nl nl
x;CZ = 3Zn ; 2] —15 (xn — xl)i(zn - Zl)
n
dnl dnl
RV _ g% =X o (X0 = x1)(Yn — 1)
nl 4 47
nl nl
RXZZ _ 3xﬂ — X 15 (xn — x1)(zn — Zl)z
nl 45 47
nl nl
RWE _gZn =2 (U~ y1)*(zn — 21)
nl d5 d7
nl nl
RVZE _a¥n =Y 1o (n —y1)(zn — z))?
nl 5 d7
nl nl

nl

Rz _ 1500 = x1) (yn — y1)(

7
dnl

7

(A.7d)

(A.7e)

(A.7f)

(A.78)

(A.7h)

(A.71)

(A.7))
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EQUILIBRIUM CONFIGURATIONS FOR THREE IONS

B.1 NOTATIONS

In this thesis we use a different convention for the anisotropy para-
meter « than in Baltrusch, Cormick, De Chiara et al. (2011). There, the
anisotropy parameter is defined as the ratio

1%
— Y
=4, B.

while here we have defined it in Eq. (1.23) as

2
a = (Z) =aZ. (B.2)

Similarly, we have defined the effect of the dipole potential in a differ-
ent way. There, we introduced it as a shift of the angular frequency of
the harmonic potential,

1 vy + Svy)? 1 o
vten) = g+ R = La s o]

2 2 2
(B.3)
that is denoted by da. In Section 2.3 we expressed the effect of the

dipole potential by

2

2
1 vy V4 1
Ve(ry) = Emvg% [x% + (1/1‘{)' + v;p)y%} = Emvg [x% + (zxz —|—(50€2)y%:| .
X X

(B.4)

Here, we provide the formulae for interchanging the two notations.
The starting point, obviously, is then to set the two expressions in
the potential equal. However, care has to be taken for the sign of the
expression; as we see in the following, we also need to take the case
into account for which the total potential becomes anti-trapping

(@+6x)%> = a+da fora+dn>0, (B.5a)
(@+60)> = —a—da  fora+on <0, (B.5b)
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from which we obtain

o = Va+da—+/a fora+da >0, (B.6a)

o =iva+da—/u fora+da <0, (B.6b)
and the inverse formulae

S = ST H2WOR for a +déa >0, (B.7a)

Sa = —0a>—2mw—27> for a +da < 0. (B.7b)

B.2 EQUILIBRIUM POSITIONS

Here, we summarize and extend the discussion of the equilibrium
positions made in Sections 2.1.4 and 2.3. Additionally, we provide
details for other solutions not discussed within the scope of this thesis.

x-LINEAR The equilibrium positions for the linear chain aligned along
the x-axis are given by Eq. (2.29),

Xy = —v5/4, Y; =0, (B.8a)
X, = 0, Y, =0, (B.8b)
X;= +/5/4, Ys=0. (B.8¢)

x-z1IGzAG The equilibrium positions for the zigzag chain aligned
along the x-axis are given by Eq. (2.30),

Xl = —)_(, Yl = —Y, (B9a)
X2 = 0, Yz = ZY, (ng)
X;= X, Y; = Y, (B.9c)
where

_ -1/3

X = [4 1- g)} , (B.10a)
_ 1 3\2/3 52 1/2

Y= igK&) —X} . (B.10b)

y-LINEAR The equilibrium positions for a linear chain aligned along
the y-direction now depend on the anisotropy parameter. They are
given by
X1 =0, Y] = —{/5/(4a), (B.11a)
X2 =0, Yz = 0, (B.Ilb)

{5/ (4a). (B.11¢)

X5 =0, Ys
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Figure B.1: Structural diagram for three ions, where the excited ion is located at the
symmetry axis of the configuration. The red dotted line marks the transition between the x-
linear and the x-zigzag configuration. The violet dotted vertical line located at /5/12 marks
the transition between the y-linear and the y-zigzag configuration. The dash-dotted line
marks the stability boundary for the crystal where it coincides with the stability boundary
for a single ion (red). The brown dash-dotted line marks the stability boundary for the
crystal where it extends below the stability boundary for a single ion. The hatched area
labels the parameter domain where meta-stable trapping is possible due to the Coulomb
forces of the outer ions. The red dashed line refers to x-zigzag structures where the
zigzag forms an equilateral triangle. Between the x-zigzag and the y-zigzag, and between
the x-linear and the y-zigzag regions of coexisting configurations are possible. In the
white area bordered by the x-zigzag, the y-zigzag, and the single-ion stability boundary,
no symmetric structure is stable; there, only asymmetric configurations are stable, see
Figure B.2.
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Figure B.2: Structural diagram for three ions where the excited ion is not located at the
symmetry axis of the configuration. The data points in this figure have been obtained by
numerical calculations with limited ability to distinguish sharply between the different
configurations (hence the frayed boundaries and scattered stray points). The dash-dotted
red line marks the stability boundary for the crystal where it coincides with the stability
boundary for a single ion. No meta-stable configuration below the single-ion stability
boundary exist.



B3 STRUCTURAL DIAGRAM

This is actually the dependence on the transverse trapping angular
frequency, just as the x-linear depends on the axial trapping angular
frequency, which is one in our units.

The normal mode frequencies are

wp =1, (B.12a)
wy) =+V1—u, (B.12b)
w3 =vV1—-12a/5, (B.12¢)
Wy = V3a, (B.12d)
ws = \/17uc/5—|—(5zx/2—170, (B.12¢)
we = \/17a/5 + da /2 + 119, (B.12f)
where
o = V6a2/4+ 4ada /5 + 14402 /25 . (B.13)

y-z1GzaG  For the zigzag aligned along the y-direction we find the
following equilibrium positions,

X1 =—%, Yl = —Y, (B14a)
X2 = ZY, Y2 = 0, (B14b)
X3 =-X, Y3= Y, (B.14¢)
where

_ _~11/2

X = ié [32/ 3 _ YZ} , (B.15a)
_ 1\7-1/3

Y = 4(1x — 5)} . (B.15b)

B.3 STRUCTURAL DIAGRAM

The x-linear and the y-zigzag are separated by the curves given by

8
leip/C — <5(X—4 - 1>DC (B.16a)
or!
0. = < 8 —1>zx (B.16b)
‘ 502 — 4 ' '

1 These formulae resemble each other to a large degree, but each can be obtained from
the other by Egs. (B.6) and (B.7).
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The line delimiting the x-linear structure has a pole for « = 4/5 or
rather @ = vy /vy = v/4/5. When lowering the anisotropy parameter
for da > 7, the mode with frequency /1 — « becomes unstable for
« = 1 before reaching the boundary given by Eq. (B.16). In any case,
below the value of &« = 1 the x-linear chain is unstable, no matter how
strong the dipole potential.

y-LINEAR We obtain the following stability boundary for the linear
chain aligned along the y-axis,

Xerit = 5/12, (B.17)

which is independent of the dipole potential. A second stability
boundary, determined by the roots of the normal mode frequencies, is
given by

29«
Obterit = 13 (B.18a)
or
_ N
Shegis = (—1 - m)oc. (B.18b)

Thus the regime for the y-linear reaches below the boundary for stable

trapping of a single ion, given by da = —a. Yet, quite remarkably,
there is a metastable configuration possible, where the middle ion in
the chain is trapped by the Coulomb potential of the two outer ions.



THE DISENTANGLING THEOREM

C.1 INTRODUCTION

One of the difficulties that arise regularly in theoretical quantum op-
tics is to have an exponential operator with a sum of non-commuting
operators in the exponent. If in a sum of two operators the operators
by themselves are commuting both with their mutual commutator, the
well-known Baker-Campbell-Hausdorff identity (BCH)-identity (Man-
del and Wolf 1995, pp. 519-520) can be applied to obtain a product of
exponentials containing the summand operators and a factor stem-
ming from their commutator.

However, if this condition is not fulfilled, it becomes much more
difficult to transform a sum of operators in the exponential into a
product of exponentials containing only simpler expressions. In fact,
the nested commutation relations may not vanish after the first order
and might even continue infinitely. Yet, when the operators involved
form a closed algebra, a closed solution is feasible. We are going to
illustrate this for the case of the spin algebra in the next section.

But first, we will review the general considerations of the disen-
tangling theorem. Feynman (1951) introduced a method for disen-
tangling exponentials of sums of two operators into the product of the
expontentials of the individual operators without making assumptions
on the commutator between the operators. However, since he used a
somewhat unusual notation, we will not discuss his approach here.
We rather follow the path of Bogoliubov and Shirkov (1982). Other
treatments are presented e. g. in Arecchi et al. (1972) and Collett (1988).

The idea is as follows: Let us consider the operator exp(A + B)
with [A,B] # 0 in general. This operator may be written generally in
the form eAFeB, where F is dependent on A and B and their nested
commutators in all orders. Introducing a continuous real auxiliary
parameter A, we write eMA+B) — eAAF(/\; A,B,[A,B],... )e/\B, and
differentiate this equation with respect to A,

(A +B)eMATB) — ANAFAB | NP 1A A(ALB)

+ e/\‘&‘l-”]gl-”_le_)‘A e/\(A+B). (C.1)
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Multiplying the result by e~ MA+B) from the right, we obtain:

(A+B)=A+ Mo M | AAppp-1o-AA (C.2)

After reordering and multiplying by e~ from the left and e* from
the right, we obtain a differential equation for F ,

F' = e MBer _pap1, (C.3)

which we need to solve.

In the case of A and B being elements of a closed algebra, the
nested commutators can be grouped in terms that are proportional
to elements of the algebra, but not to products of elements of the
operator algebra. In that case, the ansatz for the function F can be
simplified.

C.2 A PARADIGMATIC EXAMPLE — THE SPIN ALGEBRA

As an illustration we shall now apply the approach of Bogoliubov and
Shirkov (1982) for disentangling the operator exp (04 + 0—), where
the operators 0 and 0_ are given by

oy = %(frx +i0y ), o = %(&x —idy ). (C.4)

Here, 0y, 0y, and 07 are the common Pauli spin matrices. The com-
mutator of & with ¢_ is given by

(04,0 ] =0z, (C52)

and the commutators of 0 and ¢— with ¢, (their mutual commutator)
are given by

[62,64] =20, , 02,6 ] = —20 . (C.5b)

Hence, the operators {¢,0—,0,} form a closed algebra called spin
algebra. Although the nested mutual commutators of &y and & never
vanish at any order, they always yield terms that are proportional to
any operator in the algebra.

Recapitulating the approach of Bogoliubov and Shirkov (1982), we
thus take the following ansatz:*

MOt0-) — of ML E(A; 0y, 6, 0) SN0 (C.6)

where f(A),g(A) are continous functions in A with boundary values
f(0) =0and g(0) =0, and F(A;04,0—,07) is a functional of all the

1 This ansatz is well defined, as we always have the trivial solution for f(A) = 0 and
g(A) =0, and F = exp{A (04 +02)}.



C.2 A PARADIGMATIC EXAMPLE — THE SPIN ALGEBRA

operators and a function in A with boundary value F(A = 0) = 1.
Inverting Eq. (C.6) yields
F(A;6,0_,05) = e NI+ MO +0-) o =8(A)0— (C.7)

Taking the derivative with respect to A, we obtain the following first-
order differential equation for F (where F' = 0F /oA etc.):

F = {—f’af+ t e fOr(oy +o_)ef0+

_ g/e—fm MO +0-) 5 (Ao +0-) of O }F. (C.8)

In order to evaluate this expression we use the following identities,

e foro_of =6 — fo, — fPoy (C.9a)
MOt )5 o MOto) — 5 cosh?(A) — oy sinh?(A)

+ 0% sinh(A) cosh(A) (C.gb)

e f0ro,ef0 =0, +2f5,, (C.90)

and insert them into Eq. (C.8). We arrive at the following differential
equation:

F = {m [1 — f — f2 4+ cosh?(A)g' f? + sinh?(A)g’
— 2sinh(A) cosh()\)g’f} +0o_ [1 - coshz()t)g'}
+ 0 [—f + cosh?(A)g’ f — sinh(A) cosh(/\)g'} } . (C.10)

In order to disentangle the operators, we want F(A;04,0—,07%) to
be neither a function of & nor of 6. We try to choose appropriate
functions f(A) and g(A) such that the first two squared brackets in the
equation above are identical to zero for all values of A chosen. This
ansatz leads to the following two equations:

[1 - COShZ(/\)g/} =0 (C.11a)
1—f - f2 + coshz()\)g’f2 + sinhz(/\)g/
—2sinh(A) cosh())g’ f} ~0. (C.11b)
From the first one, we find that
1
"A) = ———, d A) = tanh(A). C.12
g'(A) coshZ (1) an g(A) = tanh(A) (C.12)

Inserting this result in the second equation reduces it to

f'(A) 4 2tanh(A)f(A) — tanh?(A) —1 =0, (C.13)
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which we can integrate. The general solution is given by
f(A) = exp{—2In(cosh(A)) }

[/ (tanh?(A) 4 1) exp{Zln(cosh(/\)) }dA +Cs

J cosh(2A)dA + Cy Cr
= > = tanh(A) + ——5—. (C.14)
cosh”(A) cosh”(A)
We require that f = 0 for A = 0, which is the case for C; = 0, and
thus
f(A) =tanh(A). (C.15)

Inserting the result in the differential equation (C.8), we obtain finally

F'(A) = —6ztanh(A)F(A), (C.16)
which gives the general solution
F(A)=C exp{ —In (cosh()\))?rz} , (C.17)

with C a constant coming from the integration. For A = 0, we find
that Cexp(0) = 1, thus C = 1 and we obtain for

F()\) _ e—ffz ln(cosh()\)) ) (C.18)

Inserting the result into Eq. (C.6), the disentangling formula reads
(Collett 1988; Carmichael 1998)

AMoy+0_) 04 tanh(A) ,—0% In[cosh(A)]

e =e e ef-tanh(2) (C.19)

C.3 THE SINGLE-MODE HARMONIC OSCILLATOR ALGEBRA

We want now to use the same approach in order to disentangle the
so-called squeezing operator, which is given by

. A
S(A) = exp{2 (é+2 - éz> } . (C.20)
For this, we first determine the commutators between the operators:

a2,a™?] =4ata+2, (C.21a)
2 a2,4a'a +2] = 8a?, (C.21b)
a2, 4a%at 4 2] = —8af?, (C.21¢)
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The commutators yield therefore only operators that are multiples
of 4,47 and a%a. This can be easily turned into a closed algebra by
multiplying the operators by an appropriate numerical factor. In fact,
the set {%a , %aﬂ ata + 1} has the same commutation relations as
the spin operators in Eq. (C.5b), so that we can identify the operators
as follows:

1 1 1
-I-é‘f’i ~ 0y, —da~0y, Eé-l- ~0_, (C.ZZ)

a
Since only the properties of the commutators are used in the pre-
vious section — and not other special properties of the spin operators
like e.g. &2 = 1 — we can immediately apply the previously obtained
result to these operators:

) — ™A™ o~ (a"a+]) Injeosh A] o — a2 (C.23)

C.4 THE MULTI-MODE HARMONIC OSCILLATOR ALGEBRA

The multimode squeezing operator is given by
_ exp{ Z(j]k (A; ké]ék) } , (C.24)

where the matrix ¢ can always be chosen to be complex symmetric
since [4 i al = [é\}L a,t] = 0. Commutators between operators of the
same mode have the form of the spin algebra in Eq. (C.5b). However,
as ¢ is not diagonal in general, the commutators between operators
of different modes span over the different sets such that the closed
algebra involves all possible combinations.

We could try to bring the multimode squeezing operator into a
diagonal form by introducing new collective operators, which we then
can try to solve for each of these new modes independently. As ¢ is
complex symmetric, we can apply Takagi’s factorization (Horn and
Johnson 1985, Theorem 4.4.4, pp. 204£.), i.e.

&= AxAT, (C.25)

where the matrix x = diag({x1, x2,...}) is diagonal with x; > 0 real
and non-negative entries, and the transformation matrix A is unitary.
This allows us to define new creation and annihilation operators

Such a factorization exists for any complex symmetric matrix, whereas not every
complex symmetric matrix can be diagonalized by a similarity transformation. But if
it is possible to diagonalize a complex symmetric matrix, it will be diagonalized by
a complex orthogonal matrix and have complex eigenvalues in general (Horn and
Johnson 1985, Theorem 4.4.13, pp. 211f.).
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{B}L,B j}’ which are connected to our initial ones by the following
Bogoliubov transformation:

These new operators obey the same bosonic commutator relations,
as follows directly from the general properties of Bogoliubov trans-
formations. It can also be checked easily, [b j'Bk] = [B;,BZ] =0, and
[B ]-,BZ] =Yy AlkAfj = 5jk/ since A is a unitary matrix. With these new
operators, the squeezing operator (C.24) is written in diagonal form,

Szexp{ Z:X](UL2 b )} Hexp{ (b’L2 A])}.(C.27)

The different modes factorize as their mutual commutators are zero.
For each mode the set of operators {%B ].2, 1‘6}2,5}“6 j + %} is a closed
algebra as in the previous section. Thus we can generalize the result
from the single mode case to obtain the following disentangled form:

nexp{ (52 -67)

_ 1—[ o2 1 tanh( (xj) }2 e—(B]TBj—k%) In(cosh x;) e—% tanh(xj)sz . (C28)

The exponentials for different modes commute such that we can
rearrange the exponentials in such a way that a product of exponentials
containing only creation operators is put to the left, the ones containing
number operators is in the middle and the ones containing only
annihilation operators is on the right side,

g — H e% tanh()(j)f)}z H e—(B}Bj—F%) In(cosh ;) 1—[ e—% ’canh()(j)f)j2
] ] j
In the exponents, we transform the products into sums again and

apply the inverse transformation of Eq. (C.26), obtaining the final
result

A iy Agafat —y.Biata 1y, ciaa
S:Zezzjk jk i %k e Z]k ik j ke 22]}{ ]k]k, (C29)

where the factors are given by

Ajk = Etanh()(l)/\jl/\kl , (C.29a)
l
B = Zln(cosh)(l)/\jl/\;{kl , (C.29b)

Z = exp{ - Z % In(cosh x;) } : (C.29d)
)
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In this appendix, we proof the multidimensional Gaussian integral for
a quadratic form in several real variables, but described by a complex
symmetric matrix as applied in Chapters 5 and 6. For completeness’
sake, we also discuss the theorems for the one-dimensional case and
the real multi-dimensional case, but omit the proofs as they can be
found in the literature.

The one-dimensional Gaussian integral along the real axis with the
complex prefactor a € C,Rea > 0 is given by

+o0 2
/ dxe ™ =

—00

(D.1)

213

This has the following immediate generalizations,

/+OO dx e (0 = \/j (D.1a)

for arbitrary x € C, and

/+oo dx e~ +bx _ \/E eb?/4a (D.1b)
— 00 a

for arbritrary b € C.

The first is shown by shifting the integration variable, x — x +
¢, and taking the complex contour integral along a parallelogram
composed of the shifted integration path, the real axis, and the two
connection lines located at +-co. The identity in Eq. (D.1b) is obtained
by completing the square in the exponent by adding and subtracting
b?/4a, such that the integral then is reduced to Eq. (D.1a) with ¢ =
—b/2a.

The multi-dimensional real Gaussian integral of a quadratic form
involving a real symmetric matrix A is given by

d'x efxTAx _ s
R” det A

(D.2)

The proof of Eq. (D.2) proceeds via diagonalization of A by real ortho-
gonal matrices, which induce a coordinate change in the integration
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variables; this can be executed easily as the Jacobian of the orthogonal
transformation is just unity. In the new variables, each integral can
be evaluated completely independently of all the others by Eq. (D.1),
where in each integration an eigenvalue of A is taking the role of the
parameter a, here real-valued. So we get for each variable a factor of
/7 divided by the square root of product of all the eigenvalues, i.e.
the square root of the determinant of A.

Despite the fact that a quadratic form can in general be described
by an arbitrary, not necessarily symmetric matrix, this identity applies
only to symmetric matrices. This becomes clear when one considers
a quadratic form described by an upper (or lower) triagonal matrix
U. The same quadratic form is described by the symmetrized version,
obtained by A = (U + UT)/2 with the same diagonal entries as U;
however, as is readily apparent when considering the case of a two-
dimensional quadratic form, the determinants of U and A are unequal
in general.

We can now state the main theorem, which is applied in Chapters 5
and 6 in the calculation of the visibility of the Ramsey signal.

THEOREM 1. Let A = AT be a complex symmetric matrix, ajx € C, with
positive definite Hermitian part. Then the n-dimensional complex Gaussian
integral is evaluated with the following value:

T T
dx e X AY \/ .
R det A

We have the following Corollaries:

COROLLARY 1. Let A = AT bea complex symmetric matrix, ajx € C, with
positive definite Hermitian part, and r € C" an arbitrary vector. Then the
n-dimensional complex Gaussian integral is evaluated with the following
value:

d"x e—(x+c)TA(x+c) _ "

R" detA”

COROLLARY 2. Let A = AT bea complex symmetric matrix, aj € C, with
positive definite Hermitian part, and b € C" an arbitrary vector. Then the
n-dimensional complex Gaussian integral is evaluated with the following
value:

q'y e~ ¥ AXHTx _ dﬁnA oA
R" et
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Remark. The proof of Theorem 1 presented here does not rely on any
coordinate transformation in the same way as the proof of the cor-
responding statement for real symmetric matrices proceeds. Despite
an extensive search of the relevant literature, I have not found any
references carrying out the proof without relying on a coordinate
transformation. It is not clear — at least to me — if the coordinate
transformation rule used in the real version of the proof actually
applies to the complex case. In Altland and Simons (2010, Ch. 3.2,
pp- 104f.), a corresponding theorem is given for complex matrices
with real Hermitian part, where the authors merely sketch the proof
by the hint that any matrix can be decomposed into a Hermitian and
a skew-Hermitian part. The Hermitian case is traced back to the
real case via a unitary transformation, thereby relying on the correct
use of the Jacobian for the transformation, but without showing this
explicitly. For the skew-Hermitian part they claim the proof to be
“more elaborate, if unedifying” and they “refer to the literature for
details” (Altland and Simons 2010, p. 105), unfortunately without
giving any actual reference.

Therefore, we will here carry out another, quite intricate version
of the proof without making use of a coordinate transformation. But
before we come to the proof on p. 212, we need to show some prepar-
atory lemmas and propositions. We start with the following definition.

DEFINITION 1. A complex symmetric matrix A is said to be positive
definite if
Re(xTAx) >0 V xeC":x#0.

Remark. Not all of the properties of positive definiteness for Hermitian
matrices carry over to this extended definition for complex symmetric
matrices. However, we find the following lemmas useful in the proof
of Theorem 1. These proofs are oriented along the proofs for the
properties of Hermitian positive definite matrices as described in
Horn and Johnson (1985, Ch. 7, pp. 396—404).

LEMMA 1. A complex symmetric n X n matrix A is positive definite if and
only if its Hermitian part, %(A + AY), is positive definite.

Proof. The matrix A can be decomposed as A = J(A+ A") — (A — A").
The first expression is Hermitian and real, while the second expression is
skew-Hermitian, thus 2 (A — A") is Hermitian and real. As A" = A*, we
can write A = 1(A + A*) +iJ (A — A*). Hermitian quadratic forms are
real-valued, so that we can identify Re{x"Ax} = x"1(A + A")x for arbitrary
x € C", from which the equivalence of the two statements follows. O

LEMMA 2. A complex symmetric matrix A € M(n) is positive definite if
and only if all eigenvalues of A have positive real parts.
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Remark. Please note that this does not imply that Re{det A} > 0, since
the product of two (or more) complex numbers with positive real parts
does not necessarily need to have a positive real part! If this were the
case, the proof of Theorem 1 would be much easier.

Before we prove Lemma 2, we first demonstrate the following propos-
ition:

PROPOSITION 1. The quadratic form x* Ax for an arbitrary vector x € C"
and a complex symmetric matrix A can be rewritten as x* Ax = yT Ay with
y= (Rex+Imx) € R™

Proof. Let u = 1(x +x*) and v = £ (x — x*) be the real and imaginary parts

of x. Then the quadratic form can be written as

xTAx = (u+iv) A(u +iv) = (u+0)TA(u +0) +i(u’Av — T Au).
The term in the second bracket is

n n
uTAv — 0T Au = ( 2 u]-ajkvk> — ( Z v]-ajkuk) .
jk=1 jk=1

Interchanging the summation indices in the second sum and using the
symmetry of A, ax; = aj, the imaginary part vanishes. O

Proof of Lemma 2. Let A be complex symmetric and positive definite. Further
let A be an eigenvalue of the A, and x the corresponding eigenvector. Then

Ax = Ax & xtAx = Ax'x,
and, as xTx > 0V x € C", x # 0 (this is just the squared norm of x),

A Re{xtA
& P = Re/\:7e{x xh >
xtx xtx

0,

since A is positive definite.

For the converse direction, assume all eigenvalues of A have positive real
parts. Because of Proposition 1, it suffices to restrict the proof to vectors
x € R". The complex symmetric matrix A (non-singular since no eigenvalue
is zero) is diagonalized by a complex orthogonal matrix Q (Horn and Johnson
1985, Theorem 4.4.13, pp. 211—212), A = QAQT, where A = diag(As, ..., Au)
is diagonal with the eigenvalues {A;} as entries. Thus we have for any vector
x e R"

xTAx = xTQAQTx = y" Ay,

with y = QTx € C". Further y'y = xTQQTx = xTx > 0, as Q is orthogonal.
For arbitrary x € R", x # 0, we choose ¥ = Q(0,...,y;,...,0) fory = QTx.
so that y7 = "% > 0. Then

Re{x"Ax} = Re{y"Ay} = Re{}_ Ajjy; } = Y Re{Aj}y? > 0.
= =1
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LEMMA 3. Let A € M(n) be complex symmetric and positive definite. Then
any principal submatrix of A is positive definite.

Proof. LetS C {1,...,n}, and let x € C" be equal to zero for all x; with j & S

and arbitrary otherwise. Then Re{x"Ax} > 0, since A is positive definite.

Let A(S) be the matrix A where all rows and columns that are not contained
in S are deleted; A(S) is complex symmetric again. Let likewise be x(S)
the vector x where all (zero-valued) entries that are not contained in S are
deleted. Then x(S)*A(S)x(S) = xtAx. Since Re{x"Ax} > 0 it follows that
Re{x(S)'A(S)x(S)} > 0. But as x(S) is arbitrary, it follows that A(S) is
positive definite. O

COROLLARY 3. Let A € M(n) be complex symmetric and positive definite.
Then all diagonal entries have positive real parts.

PROPOSITION 2. Let x11,x1p and xpp € R and x11 > 0. Further let
X11Xpp — x%z > 0. Then

X11 + x22

0 d
Xpp > an 5

> |x1p].

Proof. The left property follows simply from the second inequality and
x11 > 0, so that xpp > xp — x%z/xn > 0.

For the right property, we demonstrate x11 + x5, — 2|x3,| > 0, for which
we check the different cases. The case x11 < |x12] and x2 < |x12| is excluded
due to the second inequality in the assumptions, and the case x11 > |x12|
and x > |xqp| is trivial. The case in which x11 > |x12| and x2 < |x12] (or
equivalently x1; < |x12| and x2, > |x12]) can be treated as follows:

X171 + X22 —2|x12|2 = (x11 - \x12|) + (Xzz — \x12|)
2

x
> (w11 — |x2|) + (12 — |x12|) ,
X11

where we used x» > x3,/x11,

X1o| — x
= (11 — |x12]) + |x12] <|12L11)

11

= (o — al) — 22 s — )

= (X11 — ‘X12|> (1 - |J;12|> >0,

11

since each of the brackets is bigger than zero by itself. The remaining case
follows from x,, > x%z/xu < X11 > x%z/)Qz. O

PROPOSITION 3. Let the 2 X 2 matrix A be complex symmetric with positive
definite Hermitian part. Then the real part of the determinant of A divided
by the element aqq is positive.
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Proof. Let X = 3(A+A"), Y = (A + A"), so that A = X+iY. Since X is
positive definite, we have x1; > 0 and x11x2 — x%z > 0. From Proposition 2
follows x > 0.

The real part of the determinant of A divided by a;; is

Re{a% a*
Re{ay —a%y/an} = xp — {#211}
a1
_ Re{(x12 + iy12)? (x11 — iy11)*}
= X2 — 5 ,
|an|

which gives, after multiplying out and keeping only the real part,

B x11(x2, — y3,) + 2X12y12Y11

= X22
jan |

_ |a11| Xy — x11(x3, — y3,) — 2X12y12Y11

|an|?

2
2 2 422 2
(x11® +y11) 22 — X711 72 + ¥y, — 2%02y1201

7

|an|?

which can be reordered as

2

xin® (X2 — 52) + [eyf, + Xa2yh — 2xn2y12yn]

|an | ?

We have already showed that the first part of this expression is greater than
zero. The first part of the term in the bracket, x11y3, + x2¥?,, is greater than
zero. The remaining expression is greater than zero in the cases for which
x12 < 0 and y11, y12 have the same sign, and for which x1, > 0 and y11, y12
have different sign.
Thus we have to analyse the full bracket for the remaining cases. First
assume that x1» > 0. Then, by Proposition 2
2 2 2 2 X11 + X2
X11Y12 + XY — 2X12Y12Y11 > X11Y12 + X0V — Z#ylzyn
= (v — yuyn)xz + (Vi — yuynr)rm
> (yh — ynyre) min(xn, x22) + (¥, — yyiz) min(xn, x22)

> min(xu,xzz)(y%l + y%z — 2y11y12) = min(x11, X22) (Y11 — y12)2 >0.

The remaining case can be proved in the same way by tracing it back to this
result by the inequality —2x1,y11y12 > —2|x12| [y11] [y12] - O

Now we have all the necessary ingredients for the proof of Theorem 1.

Proof of Theorem 1. The proof uses complete induction and Chid’s pivotal con-
densation process (Eves 1980, pp. 129-133), a special case of Sylvester’s iden-
tity (Horn and Johnson 1985, p. 22).

Induction start. We start with n = 2, as for n = 1 the determinant is just
a trivial factor. From Lemma 3 it follows that the entry a;; regarded as a
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principal submatrix of A is positive definite, i.e. Rea;; > 0. Thus a1; # 0,
such that we can complete the square in xq,

/]Rz dx; dx, exp{—anx% — azzx% — 2a12x1x2}

2
anxa\2  (a12x2)
= / dx; dx, exp —azzxg —an (X1 + ) + ( p
R2 an a1

and pull the part that depends not on x; out of the integral,
e a%)\ 2
= |: . dx; exp{— (tlzz - a)xz}
oo 12X\ 2
. dx; exp{—an (x1 + . ) H .

Since Reaj; > 0, the second integral can be evaluated using Eq. (D.1a), with
the result being independent of x,,

2
[t [te° a

= —_— dXZGXp{—(ﬂzz—u)x%}.
a1 J—oo a11

The complex factor in the parentheses in front of x, has a positive real part,
see Proposition 3, so that we can evaluate this integral with the help of
Eq. (D.1a) again. The result can be rewritten using det A = ay1ax — a3,,

[ i 72 [ 2
P— — pr— p— ’
an \ axp —a3,/an A1y — a3, det A

so that the statement is true for n = 2.

Induction statement. We assume the following identity to be true for n —1,
4" 1 xTAx -l
“xe =1/ —), D.
/Rn—l det A D3)

where A is a complex symmetric (1 — 1) x (n — 1) matrix, AT = A, aj € C
with positive definite Hermitian part.

Induction step. Again, we start by separating the terms dependent on x1,

n
T
d'xe ¥ A = /}Rn d”xexp{— Z xja]-kxk}

]RY!

jk=1
n
— dnfl - Z .
= - xexp x]a]kxk
/R k=2
—+oco

dxy exp{—unx% -2 Z A1k XEX1 }} . (D.4g)
o0 k=2

Since a1 # 0, the integral in x; can be split as

“+oo n
dx1 EXP{—HHX% -2 2 alkxkxl}
o k=2

+oo 1 X 2 1 n
= dx; exp{ —an (x1 + — Z alkxk) + — (
o0 a1 = a1\

2
alkxk> .
2

(D.5)
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The last term is not dependent on x;, so it can be pulled out of the integral in
x1 and merged into the exponent in the integral in x, in Eq. (D.4). The integral
in x7 can be evaluated by Eq. (D.1a), as Reaj; > 0 because of Lemma 3,

_:o dxq exp{—all (x1 + ai i alkxk)z} = \/Z. (D.6)

11 j=2

Inserting the term pulled out and the result of this integral into Eq. (D.4), we
obtain

n 1 n 2
d'x e ¥ AY = 1/i/d”*lxex — ) xjapxe 4+ —( ) aux) ¢ (D
/ o P{ j,kzzz et (1; 1k k) } (D.7)
Multiplying out the squared sum in the exponent yields

n 2
2.2
(E ﬂlkxk) =a1p X5 + A12423X2X3 + - - - + A1281, X1 X + - -
k=2

2 .2
s a1pAXpXo + 0 -+ A1 n—1XnXn—1 + a7, X5,

(D.8a)
which can be rewritten as a quadratic form,
a2,  apa arna
12 12413 ... 1241n
2
ai12a13 a ... A1341n
T 13
= X<1) . . . . X(l) , (D8b)
2
apay, ai3diy ... a1y,

where x(1) denotes the n — 1-dimensional vector obtained from x by deleting
the first element x;. Thus, Eq. (D.7) can be written compactly using a
quadratic form with the (n — 1) x (n — 1) matrix B, given by

2
Ay —aj,/an A —apdiz/an ... A — G121,/ 411
2
ax —apaiz/an  a; —ap/ann ... a3 — a4 /an
B= . (D.9)
2
Aoy — Q1201 /A1 A2 — A1301,/ 011 ... Apn — 111,,/1111

Equation (D.7) reads then
4 TA T 1 "
/d”xe TAx ,/—/d“ xexp{— ) ijjkxk}, (D.10)
a k=2
where the bj; are the entries of B, given by
bix = aj1 1511 — a1j4101%41/ 011 - (D.11)

Since aj; = ai;j, the matrix B is complex symmetric, obviously, but in order to
be able to apply the induction statement, we also need to account for positive
definiteness. To this end, we rewrite the quadratic form xT Ax as

x'Ax = (x1 x<T1>) <a11 “ ) <x1> , (D.12)

a1 Ay
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where A(j)(1) denotes the (1 — 1) x (n — 1) submatrix of A obtained after
deleting the first row and column, and a; is the first column of A. By
multiplying out the quadratic form blockwise, we obtain

xTAx = x1a11%1 + x(Tl)alxl + xlalTx(D + x(Tl)A(l)(Ux(l) . (D.13a)

Then, we complete the square by inserting the appropriate term,

xha alx xhiay)(afx
=an <x1x1 + W 1x1 + x1 O + ( W 1)2( ! (1))
an ai a7
(xfyyar) (afx))
- mTll + X{l)A(U(l)xu) (D13b)

T
=an (xl + ﬂ1Tx(1)/0111) (X1 + a{xu)/an)
+ x(Tl) (A(1>(1) - amlT/an)x(l) : (D.13¢)

By introducing the n-dimensional vector y = (y1 x{;))", where y1 = x; +
alx@1y/an € C is now complex, the quadratic form can be put into the
following form:

x"Ax =yTAy = y" (a(l)l ]2) y. (D.13d)

The positive definiteness of B now follows from the positive definiteness of
A by choosing the element x; to be equal to x; = —a] x(1)/a11 for xq) € R",
x(1) # 0 arbitrary, such that y; = 0 and y € R". Then, Re{x"Ax} > 0 implies
Re{y"Ay} > 0, so by Lemma 3 we conclude Re{x{;;Bx(1)} > 0 for any vector
xXa) € R with x(1) # 0.

Thus for the remaining integral in Eq. (D.10), all requirements for applying
the induction statement, Eq. (D.3), are fulfilled. We obtain

i - B N _ mn—1
1/all /d xexp{ Z x]b]kxk} =\ detB’ (D.14)

jk=2

which gives for the integral

T Tt =1
d'xe ¥ A=,/ — . D.
/ xe a1 V detB (D.15)

It remains to show that a1; det B = det A. Since we can write the elements

of the matrix B as

b 1 ( ) 1
ik = —A1dj+1k+1 — A1 j+101k+1) = ——
/ a11 / ! a11

ai a1j+1 (D.16)

Mk+1  Aj+1k+1
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we can calculate the determinant of B by pulling out the n — 1 factors ay; in
each row, resulting in

a1 a4 a1 413 a1 ain
a ax a a3 a1 Aap
a1 a4 a1 413 a1 Ain
Bl = —— ||as1 axn| |an a3 az; Az, (D.17)
ay
a4 ain a3 a1 A
an1  An2 an1  An3 anl  Aun

We can compare this determinant with the one obtained in Chid’s pivotal
condensation process (Eves 1980, p. 129) applied to the matrix A. The core
of Chio’s pivotal condensation process is a theorem which states that the
determinant of any #n x n matrix A with a1; # 0 is given by

an  ane ain M3 a1 Ain
ax1 A4 ax1  az3 a1 Azn
an  ane ain M3 a1 Ain
Al = n—z |l431 a3 az  4as3 az  dzp (D.18)
a
11
a1 a2 a1 ai3 a1 Ain
an1  An2 anl an3 anl  Aun

Thus, a11 det B just yields the form of determinant of A obtained in the first
step of Chio’s condensation process. O

The proof of Corollary 1 follows directly from the separate applica-
tion of Eq. (D.1a) for each variable, while the corresponding integration
is carried out during the proof. Corollary 2 follows from completing
the square and from rewriting the quadratic form in terms of a new
coordinate vector given by (x + A~'b/2), which than can be handled
via Eq. (D.1b) separately for each variable.



DERIVATION OF THE VISIBILITY FOR THERMAL
STATES

Here we present a detailed derivation of the visibility for an ion
Coulomb crystal initially prepared in a thermal state, the result of
Eq. (6.46).

The starting point is Eq. (6.39),

doN )+ 72 el (gt 1.TH-1
O(t :/ 3N Py )\i)\/deﬁeG (0)eG(0) g5 Qs (E )

where the Glauber-Sudarshan-P distribution for the thermal state,
Eq. (6.44),

1
(A7)

Po(A}) =

A’
] ] ) (E.2)

o - (@)

is inserted. The mode occupation (ni

]> is given by Eq. (6.45) for a
thermal state,

e—hw].i /kgT

ahy— pitphy = & 1 E
(A7) = (b;"b7) kT (E.3)

where kg is the Boltzmann constant and (n}) is the mean vibrational
number of mode j.

In order to calculate the integral in /W, we rephrase all of the above
defined quantities, making their dependence on AV apparent. We will

do this in the following by looking at each term of the integrand.
E1 THE TERM s QO ls

We first express all quantities in terms of A}’s, by defining the total
displacements (;’s,

G =xj+ Bl f=xj+pl. (E-4)
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si[6] = C5(2) +;ijAi+Zl:R]-k/\i*, (E.5a)

N A
S;[0'] = C]S(C’)+§ije lwkt}\i—i-;]{jke—i—lwkt/\i*,

(E.5b)
where

¢@=§¢@—g (E.6)

Cﬁmz;&&—ﬁ, (E.6b)

Py = ;A]’kvlk —ujj, (E.60)

Rj = ;Ajkulk =0, (E.6d)

where the last equation, R]-k = 0 for all values of j and k, follows from
Eq. (3.51). With Egs. (E.5) simplified and taking the complex conjugate
of the second one,

Sl = C5(0) + Y PAy (E.7a)
k
* * i b *
Si10) = C7 (@) + Y Pe AL, (E.7b)
k

we can define

—iwbt
SE =Sl +S7[0e I =CF + ;ij)\,{ + ;Piﬁ* (E.8)

j Kk

with
CF = Co(x) £ CP*()e I, (E.9a)
P = +Pye )t (E.gb)

Let us denote U = Q~L. Since Q is symmetric, U is symmetric as
well. By taking the blockwise inverse of (), we can calculate the blocks

of O.
-1
_ (U Ut 01— A —il
ot U —ir =
Al - A-lre-IrA-1 iA-lre-!
= , (E.10)
iO-1ra-1 o1
where

©=(E+TA'D) (E.11)
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is called the Schur complement of A.
We have to evaluate

T-1e _ +i3ttot _ictiyt—o—
sTO s_Zk;[sj Oitsd —is UL,
]
. — 7Jr + p— - _—
—iS; U S -80S | (Ba2)

The sums in j and k can be evaluated as

;s;‘zs;‘,fsf — C*P 4 ; (& 2 +1Pa7)
]

with

e =y crsifct, (E14)
jk

and the vectors

gf =¥ (Poifcl + cruifmg) (E.150)
jk
nef = Zk ( pﬁu;?‘fcf T c;‘U;‘kﬁ Pfl) . (E.15b)
]
«p

The 2-by-2 matrices I',’* are given by

Im

B B
™y Py 0 (Ui Uy (P km 0 ) , (E.16)
" w\o p Gj‘kﬁ U;",f o prb

Summing over «, 8, we obtain

sT071s = g2+ Y (KA + KA
l
A T gll ng A
L) g g2) ) ®E
Im A;k glm glm A;k”
where

go=yc¥, kl=YeP, K=Y KP,  (E8
op op

ap
and
gll ng ap
glm:< b Zlm ) =T (E.19)
Oim 9t/ &
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Changing to real and imaginary parts of )\} = xj +1y;, we have

sTO s =g+ Y. (lClxxl + ilC;/yO
)
T <y
+ Z H G G | (Fom (E.20)
gyx gyy !
Im \Yi Im Im Ym

Kf = /c} + /c]? (E.21a)
,C]y = IC} — K2 (E.21b)

<gfn;; g;;‘j) _ <1 1) (g},}i Q},ﬁ) (1 i) (E.22
i Gim i —i) \Gf, 9f/ \1 i

E.2 THE TERMS G(6),G*(6')

with

and

G(0) is given by Eq. (6.34), repeated here as

A 16,2
_ jk J

G(6) _Z 2 Q;GZ_Z 2 (E.23)

jk j
Introducing the quantities

S = X (g autt) — 2 L1GI (E:24)

T2 \&jAkek) T e 2
] ]

and

1
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jk j

17" = Z”l]'Ajkglt - %Z (“lj?j + Ulef) : (E.25b)
jk j
and

; ZAijmk — Ui, (E.26a)
k

1
=5 (E.260)

( )

Y}2 = > Zvl](; Ajth i — vm]-> =0, (E.26b)
( )
( )

=0. (E.26d)
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where only Yl1 7}1 is non-trivial, and the other relations follow from Eq. (3.51),
explicitly given by

Y uixAr —0j =0, (E.27)
k

respectively by the derived relation Aj =} (u=h) j1V1k- We can write
the constant G(0) as

G Al ! YiL Y2\ (A
G) =C (C*)+Z<A*> (le'? Ylg) (A)
Im m

+ Z <Il A+ (C*)/\z*> (E.28)
Yll 0 A
g () (%))
+ E <11 )M+ (C*)Az*> : (E.29)

Correspondingly for G*(¢’),

A ' Yioyizy ()
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Im \A] Yo Yim/ \Am
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/

with
Yil = e7iw fY22 —iwit — ), (E.310)
712 = o) tY21 Hwpt _ _%e*i(wzl*w#)f, (E.31b)
Y2l = e Hir Y]2 e ~iwnt — 0, (E.310)
¥2 = o} Yl it (E.31d)

and the other quantities given above.
Summing both terms up, we have

G(0) + G(9') = QG+Z<11/\ +IZ/\)
MY (Vi yﬁ%) (M) .
+Z<A*> <ylm y2) 1) (E.32)

G& =cC(r") +co(7), (E.33)

with
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and
it
7= 1M + (e (E:342)
-
+iwyt
= R+ 1), (E.34b)
and
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Changing to real and imaginary parts of A}L = xj +1y;, we have

G(6) +G(¢') = QG+Z<IN€1+Z "n)

) OF 8 ()
n m . (E.36)
Z(]/z) (y YY) \ym ’

with
¥ = I} + If, (E.372)
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E.3 THE TERM e'?

We have
ip) = Zﬁf?\f - Zﬁ]”]i* (E.39a)
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where we defined

JE (k) = X (0 (g + 0kg) + B] (g = vg) ) (E.41)
J

Summing up, we have

ip =i+ ; (Frg+ a2 (E42)
with

p=tm[ 16| ~Im{Lrf] (E43
and

F=pia-e e L (W= e ), B
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Changing to real and imaginary parts again, we have

ip=ig+ ; (jkxxk +ig! yk) , (E.45)
with
E.4 THE TERM P;(\)

Finally, the thermal state with mean values (fi;) is written as

AFA
P;(A) = L y ol l]. (E.46)
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The exponent is written as a quadratic form,

* 51711 (x12+y12)
D U Wt L/ S i WL R (E.47)
» A, DTS 7

That is, the exponent is
T
Im \Y1 0 Tim Ym

Tim = <ﬁl>71 O1m - (E.49)
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E.5 SUMMING UP THE TERMS

Summing up, we have a prefactor

1

7

(Agn)

and are left with a phase and constant terms
o1
z¢%—ZQQ—%QG,
linear terms
Ll +ichy)
J
with
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Yy _ 7Y Y Y
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Finally, the quadratic terms read
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ACRONYMS

ac Alternating current

bcc Body-centered cubic

BCH Baker-Campbell-Hausdorff identity
BEC  Bose-Einstein-condensate
CCD Charge-coupled device

COM Centre of mass

dc Direct current

FFT  Fast Fourier transform

MCP  Multi-channel plate

MRI  Magnetic resonance imaging
NMR Nuclear magnetic resonance
rf Radio-frequency

RWA Rotating-wave approximation
SI International system of units
uv Ultra-violet

WKB  Wentzel-Kramers-Brillouin approximation
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