SciDok

Eingang zum Volltext in SciDok

Lizenz

Dissertation zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-34254
URL: http://scidok.sulb.uni-saarland.de/volltexte/2010/3425/


Randomized rounding and rumor spreading with stochastic dependencies

Randomisiertes Runden und Gerüchteverbreitung bei stochastischer Abhängigkeit

Huber, Anna

pdf-Format:
Dokument 1.pdf (514 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Randomisierung , Rundung , Randomisierter Algorithmus, Gerücht , Stochastische Abhängigkeit
Freie Schlagwörter (Deutsch): Gerüchteverbreitung
Freie Schlagwörter (Englisch): randomized roundig , randomized algorithm , rumor spreading , stochastic dependency
Institut: Fachrichtung 6.2 - Informatik
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
DDC-Sachgruppe: Informatik
Dokumentart: Dissertation
Hauptberichter: Doerr, Benjamin (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 01.10.2010
Erstellungsjahr: 2010
Publikationsdatum: 15.11.2010
Kurzfassung auf Englisch: Randomness is an important ingredient of modern computer science. The present thesis is concerned with two uses of randomness, viz. randomized roundings and randomized rumor spreading algorithms. The theorem of Beck and Fiala (1981) asserts that for every hypergraph and every set of vertex weights there is a rounding of the vertex weights such that the additive rounding error for all hyperedges is bounded by the maximum degree. In Chapter 2 this theorem will be extended to randomized roundings, that is, to roundings that are efficiently generated at random in such a way that each value is rounded up with probability equal to its fractional part. The larger part of this thesis deals with randomized rumor spreading algorithms. These are protocols for disseminating information on graphs. The classical randomized rumor spreading was introduced and fi rst investigated by Frieze and Grimmett on the complete graph (1985). In Chapter 3 a generalization of their results both in terms of the model used and in terms of the underlying graph will be shown. In Chapter 4 a quasirandom rumor spreading protocol introduced by Doerr, Friedrich, and Sauerwald (2008) will be considered. We present a detailed analysis of its evolution and show that its performance and robustness match performance and robustness of the randomized rumor spreading protocol. The unifying idea is to use dependencies so as to obtain results that are superior or equal to those obtained via independent randomness.
Kurzfassung auf Deutsch: Die Verwendung von Zufallselementen ist ein wichtiger Bestandteil der modernen Informatik. Die vorliegende Arbeit untersucht zwei Bereiche, in denen randomisierte Methoden Verwendung finden, nämlich randomisierte Rundungen und randomisierte Algorithmen zur Gerüchteverbreitung. Der Satz von Beck und Fiala (1981) sagt aus, dass es für jeden Hypergraphen und für jeden Satz von Knotengewichten eine Rundung gibt derart, dass der Rundungsfehler pro Kante vom Maximalgrad beschränkt wird. Im ersten Teil der Arbeit wird dieser Satz auf den Fall randomisierter Rundungen verallgemeinert, das heißt auf zufällige Rundungen, bei denen jede Zahl mit der Wahrscheinlichkeit entsprechend ihren Nachkommastellen aufgerundet wird. Der zweite, größere Teil der Arbeit handelt von randomisierten Algorithmen zur Gerüchteverbreitung. Das klassische "Randomized Rumor Spreading" wurde von Frieze und Grimmett (1985) eingeführt. Ihre Ergebnisse werden in Kapitel 3 sowohl hinsichtlich des Modells als auch hinsichtlich des zugrundegelegten Graphen verallgemeinert. In Kapitel 4 wird ein quasizufälliges Modell zur Gerüchteverbreitung betrachtet und gezeigt, dass es bezüglich Laufzeit und Robustheit dem klassischen Modell gleichwertig ist. Gemeinsam liegt beiden Teilen der Arbeit die Idee zugrunde, stochastische Abhängigkeiten zu nutzen um Ergebnisse zu erzielen, die den unter Verwendung stochastischer Unabhängigkeit erzielten gleichwertig oder überlegen sind.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English