SciDok

Eingang zum Volltext in SciDok

Lizenz

Dissertation zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-49719
URL: http://scidok.sulb.uni-saarland.de/volltexte/2012/4971/


Numerical solutions of BSDEs : a-posteriori estimates and enhanced least-squares Monte Carlo

Numerische Lösungen für BSDEs : A-posteriori Kriterium und verbessertes Kleinste-Quadrate-Monte-Carlo-Verfahren

Steiner, Jessica

pdf-Format:
Dokument 1.pdf (897 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Monte-Carlo-Simulation , Numerische Mathematik , Stochastische Differentialgleichung
Freie Schlagwörter (Englisch): stochastic differential equations
MSC - Klassifikation: 65C30 , 65C05 , 91G20 , 91G60
Institut: Fachrichtung 6.1 - Mathematik
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
DDC-Sachgruppe: Mathematik
Dokumentart: Dissertation
Hauptberichter: Bender, Christian (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 11.09.2012
Erstellungsjahr: 2012
Publikationsdatum: 04.12.2012
Kurzfassung auf Englisch: Backward stochastic differential equations (BSDEs) are a powerful tool in financial mathematics. Important examples are option pricing or portfolio selection problems. In non-linear cases BSDEs are usually not solvable in closed form and approximation becomes then inevitable. Several proposals for solving BSDEs numerically have been published in recent years, including an analysis of the related approximation error. The first part of this theses is devoted to the problem that a direct a-posteriori evaluation of the L^2-error between the true solution and some numerical solution is usually impossible. Therefore, we present an a-posteriori criterion on the approximation error, which is computable in terms of the numerical solution only and allows us to judge the numerical solution. Secondly, we pick up the idea of Gobet, Lemor and Warin (Ann. Appl. Probab., 15, 2172 - 2202 (2005)) to generate numerical solutions by least-squares Monte Carlo. We suggest to use function bases that form a system of martingales. A complete analysis of the approximation error shows, that in contrast to original least-squares Monte Carlo, the convergence behaviour can be significantly enhanced by the martingale property of the bases.
Kurzfassung auf Deutsch: Rückwärtsgerichtete stochastische Differentialgleichungen (BSDEs) sind ein vielseitiges Instrument in der Finanzmathematik. Optionsbepreisung oder Portfolio-Auswahlprobleme sind wichtige Beispiele dafür. In nichtlinearen Fällen sind BSDEs in der Regel jedoch nicht geschlossen lösbar, weshalb in den vergangenen Jahren zahlreiche numerische Ansätze zusammen mit einer theoretischen Analyse ihres Approximationsfehlers vorgestellt worden sind. Der erste Teil dieser Arbeit beschäftigt sich mit dem Problem, dass eine direkte a-posteriori Berechnung des L^2-Fehlers zwischen der unbekannten echten und der numerischen Lösung oftmals unmöglich ist. Deshalb präsentieren wir ein a-posteriori Kriterium, das nur von der numerischen Lösung abhängt und eine Beurteilung dieser erlaubt. Der zweite Teil baut auf der Idee von Gobet, Lemor und Warin (Ann. Appl. Probab., 15, 2172 – 2202 (2005)) auf, numerische Lösungen mit Hilfe eines Kleinste-Quadrate-Monte-Carlo-Verfahrens zu erzeugen. Wir schlagen Funktionenbasen vor, die ein System von Martingalen bilden. Eine vollständige Analyse des Approximationsfehlers zeigt, dass das Konvergenzverhalten durch die Martingaleigenschaft erheblich verbessert wird im Vergleich zum ursprünglichen Verfahren.
Lizenz: Veröffentlichungsvertrag für Dissertationen und Habilitationen

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English