SciDok

Eingang zum Volltext in SciDok

Lizenz

Dissertation zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-20366
URL: http://scidok.sulb.uni-saarland.de/volltexte/2009/2036/


Linguistic-based computational treatment of textual entailment recognition

Linguistik-basierter komputationeller Ansatz zur Erkennung textueller Inferenz

Amoia, Marilisa

pdf-Format:
Dokument 1.pdf (1.018 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Semasiologie , Sprachverarbeitung
Freie Schlagwörter (Deutsch): Lexikalische Semantik , Textuelle Inferenz , Entailment
Freie Schlagwörter (Englisch): lexical semantics , natural language processing , entailment
Institut: Fachrichtung 4.7 - Allgemeine Linguistik
Fakultät: Fakultät 4 - Philosophische Fakultät II
DDC-Sachgruppe: Sprachwissenschaft, Linguistik
Dokumentart: Dissertation
Hauptberichter: Pinkal, Manfred (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 07.11.2008
Erstellungsjahr: 2009
Publikationsdatum: 08.01.2009
Kurzfassung auf Englisch: In this thesis, I investigate how lexical resources based on the organisation of lexical knowledge in classes which share common (syntactic, semantic, etc.) features support natural language processing and in particular symbolic recognition of textual entailment. First, I present a robust and wide coverage approach to lexico-structural verb paraphrase recognition based on Levin's (1993) classification of English verbs. Then, I show that by extending Levin's framework to general inference patterns, a classification of English adjectives can be obtained that compared with previous approaches, provides a more fine grained semantic characterisation of their inferential properties. Further, I develop a compositional semantic framework to assign a semantic representation to adjectives based on an ontologically promiscuous approach (Hobbs, 1985) and thereby supporting first order inference for all types of adjectives including extensional ones. Finally, I present a test suite for adjectival inference I developed as a resource for the evaluation of computational systems handling natural language inference.
Kurzfassung auf Deutsch: In der vorliegenden Dissertation habe ich untersucht, wie lexikalische Ressourcen, die auf der Gliederung lexikalischen Wissens in Klassen mit gemeinsamen Eigenschaften (lexikalische, semantische etc,) basieren, die computergestützte Verarbeitung natürlicher Sprache und insbesondere die symbolische Erkennung von Entailment unterstützen. Basierend auf Levins (1993) Klassifikation englischer Verben, wurde zuerst ein robuster, für die Verarbeitung beliebiger Texte geeigneter Ansatz zur Paraphrasenerkennung vorgestellt. Dann habe ich aufgezeigt, dass man durch eine Erweiterung von Levins Systematik zur Behandlung allgemeiner Inferenzmuster, eine Klassifikation von englischen Adjektiven erhält, die verglichen mit früheren Ansätzen, eine feinkörnige semantische Charakterisierung ihrer inferentiellen Eigenschaften gestattet und so die Basis für die computergestützte Behandlung von Inferenz bei Adjektiven bildet. Ein anderes beachtliches Ergebnis der vorliegenden Arbeit ist die Test Suite, die ich entwickelt habe und die als Ressource für NPL Anwendungen, die Inferenzen (insbesondere Inferenzen bei Adjektiven) behandeln, genutzt werden kann. Durch die Konstruktion dieser Test Suite beabsichtige ich, den Weg für die Schaffung von Ressourcen zu ebnen, die einen tieferen Einblick in die für Inferenz verantwortlichen Phänomene ermöglichen.
Lizenz: Veröffentlichungsvertrag für Dissertationen und Habilitationen

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English