SciDok

Eingang zum Volltext in SciDok

Lizenz

Dissertation zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-25612
URL: http://scidok.sulb.uni-saarland.de/volltexte/2009/2561/


High quality dynamic reflectance and surface reconstruction from video

Ahmed, Naveed

pdf-Format:
Dokument 1.pdf (5.444 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Computergraphik , Animation , Video , Mensch , Schauspieler , Algorithmus
Freie Schlagwörter (Englisch): computer graphics , animation , video , virtual human actor , algorithm
Institut: Fachrichtung 6.2 - Informatik
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
DDC-Sachgruppe: Informatik
Dokumentart: Dissertation
Hauptberichter: Seidel, Hans-Peter (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 10.07.2009
Erstellungsjahr: 2009
Publikationsdatum: 17.11.2009
Kurzfassung auf Englisch: The creation of high quality animations of real-world human actors has long been a challenging problem in computer graphics. It involves the modeling of the shape of the virtual actors, creating their motion, and the reproduction of very fine dynamic details. In order to render the actor under arbitrary lighting, it is required that reflectance properties are modeled for each point on the surface. These steps, that are usually performed manually by professional modelers, are time consuming and cumbersome.
In this thesis, we show that algorithmic solutions for some of the problems that arise in the creation of high quality animation of real-world people are possible using multi-view video data. First, we present a novel spatio-temporal approach to create a personalized avatar from multi-view video data of a moving person. Thereafter, we propose two enhancements to a method that captures human shape, motion and reflectance properties of amoving human using eightmulti-view video streams. Afterwards we extend this work, and in order to add very fine dynamic details to the geometric models, such as wrinkles and folds in the clothing, we make use of the multi-view video recordings and present a statistical method that can passively capture the fine-grain details of time-varying scene geometry. Finally, in order to reconstruct structured shape and animation of the subject from video, we present a dense 3D correspondence finding method that enables spatiotemporally coherent reconstruction of surface animations directly frommulti-view video data.
These algorithmic solutions can be combined to constitute a complete animation pipeline for acquisition, reconstruction and rendering of high quality virtual actors from multi-view video data. They can also be used individually in a system that require the solution of a specific algorithmic sub-problem. The results demonstrate that using multi-view video data it is possible to find the model description that enables realistic appearance of animated virtual actors under different lighting conditions and exhibits high quality dynamic details in the geometry.
Kurzfassung auf Deutsch: Die Entwicklung hochqualitativer Animationen von menschlichen Schauspielern ist seit langem ein schwieriges Problem in der Computergrafik. Es beinhaltet das Modellieren einer dreidimensionaler Abbildung des Akteurs, seiner Bewegung und die Wiedergabe sehr feiner dynamischer Details. Um den Schauspieler unter einer beliebigen Beleuchtung zu rendern, müssen auch die Reflektionseigenschaften jedes einzelnen Punktes modelliert werden. Diese Schritte, die gewöhnlich manuell von Berufsmodellierern durchgeführt werden, sind zeitaufwendig und beschwerlich.
In dieser These schlagen wir algorithmische Lösungen für einige der Probleme vor, die in der Entwicklung solch hochqualitativen Animationen entstehen. Erstens präsentieren wir einen neuartigen, räumlich-zeitlichen Ansatz um einen Avatar von Mehransicht-Videodaten einer bewegenden Person zu schaffen. Danach beschreiben wir einen videobasierten Modelierungsansatz mit Hilfe einer animierten Schablone eines menschlichen Körpers. Unter Zuhilfenahme einer handvoll synchronisierter Videoaufnahmen berechnen wir die dreidimensionale Abbildung, seine Bewegung und Reflektionseigenschaften der Oberfläche. Um sehr feine dynamische Details, wie Runzeln und Falten in der Kleidung zu den geometrischen Modellen hinzuzufügen, zeigen wir eine statistische Methode, die feinen Details der zeitlich variierenden Szenegeometrie passiv erfassen kann. Und schließlich zeigen wir eine Methode, die dichte 3D Korrespondenzen findet, um die strukturierte Abbildung und die zugehörige Bewegung aus einem Video zu extrahieren. Dies ermöglicht eine räumlich-zeitlich zusammenhängende Rekonstruktion von Oberflächenanimationen direkt aus Mehransicht-Videodaten.
Diese algorithmischen Lösungen können kombiniert eingesetzt werden, um eine Animationspipeline für die Erfassung, die Rekonstruktion und das Rendering von Animationen hoher Qualität aus Mehransicht-Videodaten zu ermöglichen. Sie können auch einzeln in einem System verwendet werden, das nach einer Lösung eines spezifischen algorithmischen Teilproblems verlangt. Das Ergebnis ist eine Modelbeschreibung, das realistisches Erscheinen von animierten virtuellen Schauspielern mit dynamischen Details von hoher Qualität unter verschiedenen Lichtverhältnissen ermöglicht.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English