SciDok

Eingang zum Volltext in SciDok

Lizenz

Dissertation zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-33890
URL: http://scidok.sulb.uni-saarland.de/volltexte/2010/3389/


Subband beamforming with higher order statistics for distant speech recognition

Beamformingmethode mit Higher-Order Statistics zur Spracherkennung auf Entfernung

Kumatani, Kenichi

pdf-Format:
Dokument 1.pdf (3.398 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Automatische Spracherkennung , Sprachsignal , Mikrophon
Freie Schlagwörter (Deutsch): Beamformer
Freie Schlagwörter (Englisch): beamforming, microphone array, speech recognition
CCS - Klassifikation: Signal pro
Institut: Fachrichtung 7.4 - Mechatronik
Fakultät: Fakultät 7 - Naturwissenschaftlich-Technische Fakultät II
DDC-Sachgruppe: Technik
Dokumentart: Dissertation
Hauptberichter: Klakow, Dietrich (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 21.10.2010
Erstellungsjahr: 2010
Publikationsdatum: 27.10.2010
Kurzfassung auf Englisch: This dissertation presents novel beamforming methods for distant speech recognition (DSR). Such techniques can relieve users from the necessity of putting on close talking microphones. DSR systems are useful in many applications such as humanoid robots, voice control systems for automobiles, automatic meeting transcription systems and so on. A main problem in DSR is that recognition performance is seriously degraded when a speaker is far from the microphones. In order to avoid the degradation, noise and reverberation should be removed from signals received with the microphones. Acoustic beamforming techniques have a potential to enhance speech from the far field with little distortion since they can maintain a distortionless constraint for a look direction. In beamforming, multiple signals propagating from a position are captured with multiple microphones. Typical conventional beamformers then adjust their weights so as to minimize the variance of their own outputs subject to a distortionless constraint in a look direction. The variance is the average of the second power (square) of the beamformer's outputs. Accordingly, it is considered that the conventional beamformer uses second orderstatistics (SOS) of the beamformer's outputs. The conventional beamforming techniques can effectively place a null on any source of interference. However, the desired signal is also canceled in reverberant environments, which is known as the signal cancellation problem. To avoid that problem, many algorithms have been developed. However, none of the algorithms can essentially solve the signal cancellation problem in reverberant environments. While many efforts have been made in order to overcome the signal cancellation problem in the field of acoustic beamforming, researchers have addressed another research issue with the microphone array, that is, blind source separation (BSS) [1]. The BSS techniques aim at separating sources from the mixture of signals without information about the geometry of the microphone array and positions of sources. It is achieved by multiplying an un-mixing matrix with input signals. The un-mixing matrix is constructed so that the outputs are stochastically independent. Measuring the stochastic independence of the signals is based on the theory of the independent component analysis (ICA) [1]. The field of ICA is based on the fact that distributions of information-bearing signals are not Gaussian and distributions of sums of various signals are close to Gaussian. There are two popular criteria for measuring the degree of the non-Gaussianity, namely, kurtosis and negentropy. As described in detail in this thesis, both criteria use more than the second moment. Accordingly, it is referred to as higher order statistics (HOS) in contrast to SOS. HOS is not considered in the field of acoustic beamforming well although Arai et al. showed the similarity between acoustic beamforming and BSS [2]. This thesis investigates new beamforming algorithms which take into consideration higher-order statistics (HOS). The new beamforming methods adjust the beamformer's weights based on one of the following criteria:
• minimum mutual information of the two beamformer's outputs,
• maximum negentropy of the beamformer's outputs and
• maximum kurtosis of the beamformer's outputs.
Those algorithms do not suffer from the signal cancellation, which is shown in this thesis. Notice that the new beamforming techniques can keep the distortionless constraint for the direction of interest in contrast to the BSS algorithms. The effectiveness of the new techniques is finally demonstrated through a series of distant automatic speech recognition experiments on real data recorded with real sensors unlike other work where signals artificially convolved with measured impulse responses are considered. Significant improvements are achieved by the beamforming algorithms proposed here.
Kurzfassung auf Deutsch: Diese Dissertation präsentiert neue Methoden zur Spracherkennung auf Entfernung. Mit diesen Methoden ist es möglich auf Nahbesprechungsmikrofone zu verzichten. Spracherkennungssysteme, die auf Nahbesprechungsmikrofone verzichten, sind in vielen Anwendungen nützlich, wie zum Beispiel bei Humanoiden-Robotern, in Voice Control Systemen für Autos oder bei automatischen Transcriptionssystemen von Meetings. Ein Hauptproblem in der Spracherkennung auf Entfernung ist, dass mit zunehmendem Abstand zwischen Sprecher und Mikrofon, die Genauigkeit der Spracherkennung stark abnimmt. Aus diesem Grund ist es elementar die Störungen, nämlich Hintergrundgeräusche, Hall und Echo, aus den Mikrofonsignalen herauszurechnen. Durch den Einsatz von mehreren Mikrofonen ist eine räumliche Trennung des Nutzsignals von den Störungen möglich. Diese Methode wird als akustisches Beamformen bezeichnet. Konventionelle akustische Beamformer passen ihre Gewichte so an, dass die Varianz des Ausgangssignals minimiert wird, wobei das Signal in "Blickrichtung" die Bedingung der Verzerrungsfreiheit erfüllen muss. Die Varianz ist definiert als das quadratische Mittel des Ausgangssignals.Somit werden bei konventionellen Beamformingmethoden Second-Order Statistics (SOS) des Ausgangssignals verwendet. Konventionelle Beamformer können Störquellen effizient unterdrücken, aber leider auch das Nutzsignal. Diese unerwünschte Unterdrückung des Nutzsignals wird im Englischen signal cancellation genannt und es wurden bereits viele Algorithmen entwickelt um dies zu vermeiden. Keiner dieser Algorithmen, jedoch, funktioniert effektiv in verhallter Umgebung. Eine weitere Methode das Nutzsignal von den Störungen zu trennen, diesesmal jedoch ohne die geometrische Information zu nutzen, wird Blind Source Separation (BSS) [1] genannt. Hierbei wird eine Matrixmultiplikation mit dem Eingangssignal durchgeführt. Die Matrix muss so konstruiert werden, dass die Ausgangssignale statistisch unabhängig voneinander sind. Die statistische Unabhängigkeit wird mit der Theorie der Independent Component Analysis (ICA) gemessen [1]. Die ICA nimmt an, dass informationstragende Signale, wie z.B. Sprache, nicht gaußverteilt sind, wohingegen die Summe der Signale, z.B. das Hintergrundrauschen, gaußverteilt sind. Es gibt zwei gängige Arten um den Grad der Nichtgaußverteilung zu bestimmen, Kurtosis und Negentropy. Wie in dieser Arbeit beschrieben, werden hierbei höhere Momente als das zweite verwendet und somit werden diese Methoden als Higher-Order Statistics (HOS) bezeichnet. Obwohl Arai et al. zeigten, dass sich Beamforming und BSS ähnlich sind, werden HOS beim akustischen Beamforming bisher nicht verwendet [2] und beruhen weiterhin auf SOS. In der hier vorliegenden Dissertation werden neue Beamformingalgorithmen entwickelt und evaluiert, die auf HOS basieren. Die neuen Beamformingmethoden passen ihre Gewichte anhand eines der folgenden Kriterien an:
• Minimum Mutual Information zweier Beamformer Ausgangssignale
• Maximum Negentropy der Beamformer Ausgangssignale und
• Maximum Kurtosis der Beamformer Ausgangssignale.
Es wird anhand von Spracherkennerexperimenten (gemessen in Wortfehlerrate) gezeigt, dass die hier entwickelten Beamformingtechniken auch erfolgreich Störquellen in verhallten Umgebungen unterdrücken, was ein klarer Vorteil gegenüber den herkömmlichen Methoden ist.
Lizenz: Veröffentlichungsvertrag für Dissertationen und Habilitationen

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English