Eingang zum Volltext in SciDok


Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-42863

Cyclotomic function fields with many rational places

Keller, Alice

Dokument 1.pdf (223 KB)

Bookmark bei Connotea Bookmark bei
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachbereich Mathematik, Universit├Ąt des Saarlandes
Bandnummer: 7
Sprache: Englisch
Erstellungsjahr: 2000
Publikationsdatum: 18.11.2011
Kurzfassung auf Englisch: Let A=\mathbb{F}_{q}[T] be the polynomial ring in the variable T and K=\mathbb{F}_{q}(T) the rational function field over \mathbb{F}_{q} (the finite field with q elements), and let K_{\infty} be the completion of K at the place \infty:=\frac{1}{T}. Furthermore let C be the completion of a fixed algebraic closure of K_{\infty}.
We aim to construct extensions K\subset K\text{'}\subset C with many rational places relative to the genus g(K) of K.
As a first step we consider the cyclotomic fields K(n)/K with n\in A, which are generated analogously to the classical cyclotomic fields over \mathbb{Q}. Then we consieder certain decomposition fields and their intersection. Here we know a lower bound for the number of rational places. We get explicit formulas to calculate the genus, but they depend on the relative position of some subgroups of the multiplicative group (A/(n))* of the ring A/(n). So the concrete calculation of examples must be done by computer. With a special program we made a systematical search for q=2 and found for fixed genus three new lower bounds.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English