Eingang zum Volltext in SciDok


Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-43375

A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth

Bildhauer, Michael

Dokument 1.pdf (380 KB)

Bookmark bei Connotea Bookmark bei
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universit├Ąt des Saarlandes
Bandnummer: 29
Sprache: Englisch
Erstellungsjahr: 2001
Publikationsdatum: 22.11.2011
Kurzfassung auf Englisch: Given an integrand f of linear growth and assuming an ellipticity condition of the form
D^{2}f(Z)(Y,Y)\geq c(1+\left|Z\right|^{2})^{-\frac{\mu}{2}}\left|Y\right|^{2}, 1<\mu\leq3,
we consider the variational problem J[w]=\int_{\Omega}f(\nabla w)dx\rightarrow{\normalcolor min} among mappings w:\mathbb{R}^{n}\supset\Omega\rightarrow\mathbb{R}^{N} with prescribed Dirichlet boundary data. If we impose some boundedness condition, then the existence of a generalized minimizer u* is proved such that \int_{\Omega^{\text{'}}}\left|\nabla u*\right|\log^{2}(1+\left|\nabla u*\right|^{2})dx\leq c(\Omega\text{'}) for any \Omega\Subset\Omega. Here the limit case \mu=3 is included. Moreover, if \mu<3 and if f(Z)=g(\left|Z\right|^{2}) is assumed in the vectorvalued case, then we show local C^{1,\alpha}-regularity and uniqueness up to a constant of generalized minimizers. These results substantially improve earier constributions of [BF3] where only the case of exponents 1<\mu<1+2/n could be considered.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English