SciDok

Eingang zum Volltext in SciDok

Lizenz

Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-43814
URL: http://scidok.sulb.uni-saarland.de/volltexte/2011/4381/


Twodimensional variational problems with linear growth

Bildhauer, Michael

pdf-Format:
Dokument 1.pdf (258 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universit├Ąt des Saarlandes
Bandnummer: 56
Sprache: Englisch
Erstellungsjahr: 2002
Publikationsdatum: 01.12.2011
Kurzfassung auf Englisch: Suppose that f:\mathbb{R}^{nN}\rightarrow\mathbb{R} is a strictly convex energy density of linear growth, f(Z)=g(\left|Z\right|^{2}) if N>1. If f satisfies an ellipticity condition of the form
D^{2}f(Z)(Y,Y)\geq c(1+\left|Z\right|^{2})^{-\frac{\mu}{2}}\left|Y\right|^{2},\;1<\mu\leq3,
then, following [Bi3], there exists a unique (up to a constant) solution of the variational problem
\int_{\Omega}f(\nabla w)dx+\int_{\partial\Omega}f_{\infty}((u_{0}-w)\otimes v)d\mathcal{H}^{n-1}\rightarrow\mbox{min in }W_{1}^{1}(\Omega;\mathbb{R}^{N}),
provided that the given boundary data u_{0}\in W_{1}^{1}(\Omega;\mathbb{R}^{N}) are additionally assumed to be of class L^{\infty}(\Omega;\mathbb{R}^{N}).Moreover, if \mu<3, then the boundedness of u_{0} yields local C^{1,\alpha}-regularity (and uniqueness up to a constant) of generalized minimizers of the problem
\int_{\Omega}f(\nabla w)dx\rightarrow\mbox{min in }u_{0}+W_{1}^{1}(\Omega;\mathbb{R}^{N}).
In our paper we show that the restriction u_{0}\in L^{\infty}(\Omega;\mathbb{R}^{N}) is superfluous in the twodimensional case n=2, hence we may prescribe boundary values from the energy class W_{1}^{1}(\Omega;\mathbb{R}^{N}) and still obtain the above results.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English