SciDok

Eingang zum Volltext in SciDok

Lizenz

Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-44317
URL: http://scidok.sulb.uni-saarland.de/volltexte/2012/4431/


Moritz Cantor und die krumme Linie des Archytas von Tarent

Hischer, Horst

pdf-Format:
Dokument 1.pdf (2.406 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Bandnummer: 86
Sprache: Deutsch
Erstellungsjahr: 2003
Publikationsdatum: 04.01.2012
Kurzfassung auf Deutsch: Das Problem der Verdoppelung eines Würfels (bzw.: das Delische Problem) gehört neben denen der Quadratur des Kreises und der Winkeldreiteilung zu den knapp 2500 Jahre alten sog. "drei berühmten klassischen Problemen der Antike". Diese Probleme wurden erst im 19. Jh. gelöst, und zwar sämtlich negativ. Befreit man sich von der Einschränkung, eine Lösung mittels Zirkel und Lineal suchen zu wollen, so findet man für alle drei Probleme geeignete Hilfsmittel, die jeweils zu Lösungen führen. Die Geschichte der Mathematik bietet hierfür eine Fülle reizvoller, verschiedenartiger Lösungsversuche bzw. Lösungen, und zwar bereits in der griechischen Antike. Dieses wird im vorliegenden Beitrag exemplarisch für das Delische Problem erläutert, wobei der Weg gewählt wird, einen historischen Sekundärtext zu analysieren, nämlich Auszüge aus dem ersten Band der "Vorlesungen über Geschichte der Mathematik" von Moritz Cantor. Zugleich soll an der Auswahl dieser Textstellen exemplarisch deutlich werden, dass solche Quellentexte Grundlage für eine entsprechende eigentätige Analyse durch Schülerinnen und Schüler im Mathematikunterricht der gymnasialen Oberstufe sein können.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English