SciDok

Eingang zum Volltext in SciDok

Lizenz

Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-44360
URL: http://scidok.sulb.uni-saarland.de/volltexte/2012/4436/


Arithmetic and equidistribution of measures on the sphere

Böcherer, Siegfried ; Sarnak, Peter ; Schulze-Pillot, Rainer

pdf-Format:
Dokument 1.pdf (361 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Bandnummer: 90
Sprache: Englisch
Erstellungsjahr: 2003
Publikationsdatum: 04.01.2012
Kurzfassung auf Englisch: Motivated by problems of mathematical physics (quantum chaos) questions of equidistribution of eigenfunctions of the Laplace operator on a Riemannian manifold have been studied by several authors. We consider here, in analogy with arithmetic hyperbolic surfaces, orthonormal bases of eigenfunctions of the Laplace operator on the two dimensional unit sphere which are also eigenfunction of an algebra of Hecke operators which act on these spherical harmonics. We formulate an analogue of the equidistribution of mass conjecture for these eigenfunctions as well as of the conjecture that their moments tend to moments of the Gaussian as the eigenvalue increases. For such orthonormal bases we show that these conjectures are related to the analytic properties of degree eight arithmetic L-functions associated to triples of eigenfunctions. Moreover we establish the conjecture for the third moments and give a conditional (on standard analytic conjectures about these arithmetic L-functions) proof of the equdistribution of mass conjecture.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English