SciDok

Eingang zum Volltext in SciDok

Lizenz

Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-44617
URL: http://scidok.sulb.uni-saarland.de/volltexte/2012/4461/


Lavrentiev phenomenon, relaxation and some regularity results for anisotropic functionals

Bildhauer, Michael ; Fuchs, Martin

pdf-Format:
Dokument 1.pdf (386 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universit├Ąt des Saarlandes
Bandnummer: 103
Sprache: Englisch
Erstellungsjahr: 2004
Publikationsdatum: 10.02.2012
Kurzfassung auf Englisch: We study local minimizers of anisotropic variational integrals of the form J[u]=\int_{\Omega}f(\cdot,\nabla u)dx with integrand f satisfying a (p,\bar{q})-growth condition w.r.t. \nabla u and with D_{P}f(x,P) satisfying a Lipschitz condition w.r.t. x\in\Omega. If the Lavrentiev gap functional \mathcal{L} relative to J vanishes for all balls B_{R}\Subset\Omega and if \bar{q}<p(1+1/), then (partial) C^{1,\alpha}-regularity holds. Moreover, the bound on the exponents can be replaced by \bar{q}<p+1 provided we study locally bounded minimizers.
We also investigate the relaxation of global minimization problems and discuss the regularity of the corresponding solutions. The importance of the condition \mathcal{L}\equiv0 was recently discovered by Esposito, Leonetti and Mingione in [ELM], where besides other results the higher integrability of the gradient is proved even under weaker assumptions than used here.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English