SciDok

Eingang zum Volltext in SciDok

Lizenz

Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-44761
URL: http://scidok.sulb.uni-saarland.de/volltexte/2012/4476/


The new maximal measures for stochastic processes

König, Heinz

pdf-Format:
Dokument 1.pdf (230 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Bandnummer: 117
Sprache: Englisch
Erstellungsjahr: 2004
Publikationsdatum: 16.01.2012
Kurzfassung auf Englisch: In recent work the author proposed a reformed notion of stochastic processes, which in particular removes notorious problems with uncountable time domains. In case of a Polish state space the new stochastic processes are in one-to-one correspondence with the traditional ones. This implies for a stochastic process that the traditional canonical measure on the path space receives a certain distinguished maximal measure extension which has an immense domain. In the present paper we prove, under a certain local compactness condition on the Polish state space and for the time domain [0,∞[, that the maximal domain in question has, for all stochastic processes, three distinguished members: the set of all continuous paths, the set of all paths with one-sided limits, and its subset of those paths which at each time are either left or right continuous. In all these cases the maximal measure of the set is equal to its outer canonical measure. However, the situation will be seen to be different for the set of the cadlag paths, for example in the Poisson process.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English