Eingang zum Volltext in SciDok


Preprint (Vorabdruck) zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-46268

Time splitting error in DSMC schemes for the inelastic Boltzmann equation

Rjasanow, Sergej ; Wagner, Wolfgang

Dokument 1.pdf (196 KB)

Bookmark bei Connotea Bookmark bei
Freie Schlagwörter (Englisch): granular matter , Boltzmann equation , stochastic numerics
Institut: Fachrichtung 6.1 - Mathematik
DDC-Sachgruppe: Mathematik
Dokumentart: Preprint (Vorabdruck)
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universit├Ąt des Saarlandes
Bandnummer: 158
Sprache: Englisch
Erstellungsjahr: 2005
Publikationsdatum: 29.02.2012
Kurzfassung auf Englisch: The paper is concerned with the numerical treatment of the uniformly heated inelastic Boltzmann equation by the direct simulation Monte Carlo (DSMC) method. This technique is presently the most widely used numerical method in kinetic theory. We consider three modifications of the DSMC method and study them with respect to their efficiency and convergence properties. Convergence is investigated both with respect to the number of particles and to the time step. The main issue of interest is the time step discretization error due to various splitting strategies. A scheme based on the Strang-splitting strategy is shown to be of second order with respect to time step, while there is only first order for the commonly used Euler-splitting scheme. On the other hand, a no-splitting scheme based on appropriate Markov jump processes does not produce any time step error. It is established in numerical examples that the no-splitting scheme is about two orders of magnitude more efficient than the Euler-splitting scheme. The Strang-splitting scheme reaches almost the same level of efficiency compared to the no-splitting scheme, since the deterministic time step error vanishes sufficiently fast.
Lizenz: Standard-Veröffentlichungsvertrag

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English