SciDok

Eingang zum Volltext in SciDok

Lizenz

Dissertation zugänglich unter
URN: urn:nbn:de:bsz:291-scidok-62372
URL: http://scidok.sulb.uni-saarland.de/volltexte/2015/6237/


Data-driven approaches for interactive appearance editing

Nguyen, Hoang Chuong

pdf-Format:
Dokument 1.pdf (15.042 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
SWD-Schlagwörter: Computergrafik , Bildverarbeitung , Bilderzeugung
Freie Schlagwörter (Englisch): computer graphics , image processing
CCS - Klassifikation: I.3.7 & I.
Institut: Fachrichtung 6.2 - Informatik
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
DDC-Sachgruppe: Informatik
Dokumentart: Dissertation
Hauptberichter: Seidel, Hans-Peter (Prof. Dr.)
Sprache: Englisch
Tag der mündlichen Prüfung: 22.06.2015
Erstellungsjahr: 2014
Publikationsdatum: 22.09.2015
Kurzfassung auf Englisch: This thesis proposes several techniques for interactive editing of digital content and fast rendering of virtual 3D scenes. Editing of digital content - such as images or 3D scenes - is difficult, requires artistic talent and technical expertise. To alleviate these difficulties, we exploit data-driven approaches that use the easily accessible Internet data (e. g., images, videos, materials) to develop new tools for digital content manipulation. Our proposed techniques allow casual users to achieve high-quality editing by interactively exploring the manipulations without the need to understand the underlying physical models of appearance.
First, the thesis presents a fast algorithm for realistic image synthesis of virtual 3D scenes. This serves as the core framework for a new method that allows artists to fine tune the appearance of a rendered 3D scene. Here, artists directly paint the final appearance and the system automatically solves for the material parameters that best match the desired look. Along this line, an example-based material assignment approach is proposed, where the 3D models of a virtual scene can be "materialized" simply by giving a guidance source (image/video). Next, the thesis proposes shape and color subspaces of an object that are learned from a collection of exemplar images. These subspaces can be used to constrain image manipulations to valid shapes and colors, or provide suggestions for manipulations. Finally, data-driven color manifolds which contain colors of a specific context are proposed. Such color manifolds can be used to improve color picking performance, color stylization, compression or white balancing.
Kurzfassung auf Deutsch: Diese Dissertation stellt Techniken zum interaktiven Editieren von digitalen Inhalten und zum schnellen Rendering von virtuellen 3D Szenen vor. Digitales Editieren - seien es Bilder oder dreidimensionale Szenen - ist kompliziert, benötigt künstlerisches Talent und technische Expertise. Um diese Schwierigkeiten zu relativieren, nutzen wir datengesteuerte Ansätze, die einfach zugängliche Internetdaten, wie Bilder, Videos und Materialeigenschaften, nutzen um neue Werkzeuge zur Manipulation von digitalen Inhalten zu entwickeln. Die von uns vorgestellten Techniken erlauben Gelegenheitsnutzern das Editieren in hoher Qualität, indem Manipulationsmöglichkeiten interaktiv exploriert werden können ohne die zugrundeliegenden physikalischen Modelle der Bildentstehung verstehen zu müssen.
Zunächst stellen wir einen effizienten Algorithmus zur realistischen Bildsynthese von virtuellen 3D Szenen vor. Dieser dient als Kerngerüst einer Methode, die Nutzern die Feinabstimmung des finalen Aussehens einer gerenderten dreidimensionalen Szene erlaubt. Hierbei malt der Künstler direkt das beabsichtigte Aussehen und das System errechnet automatisch die zugrundeliegenden Materialeigenschaften, die den beabsichtigten Eigenschaften am nahesten kommen. Zu diesem Zweck wird ein auf Beispielen basierender Materialzuordnungsansatz vorgestellt, für den das 3D Model einer virtuellen Szene durch das simple Anführen einer Leitquelle (Bild, Video) in Materialien aufgeteilt werden kann. Als Nächstes schlagen wir Form- und Farbunterräume von Objektklassen vor, die aus einer Sammlung von Beispielbildern gelernt werden. Diese Unterräume können genutzt werden um Bildmanipulationen auf valide Formen und Farben einzuschränken oder Manipulationsvorschläge zu liefern. Schließlich werden datenbasierte Farbmannigfaltigkeiten vorgestellt, die Farben eines spezifischen Kontexts enthalten. Diese Mannigfaltigkeiten ermöglichen eine Leistungssteigerung bei Farbauswahl, Farbstilisierung, Komprimierung und Weißabgleich.
Lizenz: Veröffentlichungsvertrag für Dissertationen und Habilitationen

Home | Impressum | Über SciDok | Policy | Kontakt | Datenschutzerklärung | English