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ATR
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CT
DNA-PK
DSB
HR
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1. Summary

Purpose:

Double-strand breaks (DSBs) are the most deleterioom of DNA damage after ionizing
radiation, and deficiencies in repairing DSBs léagironounced radiosensitivity. Organs and
tissues show substantially varying levels of sensitduring radiotherapy but only little is
known about how DSBs are repaired differentially various normal tissues. H2AX
phosphorylation is an early step in the respongaNé damage and it has been demonstrated
that enumerating-H2AX foci (the phosphorylated histone) can be usedneasure the
induction and repair of radiation-induced DIBwitro. In the present study thyeH2AX foci
approach was established in normal tissues of taathlung of DSB repair-proficient and
repair-deficient mice to evaluate if this appro#&ch precise index for the DSB repairvivo
and if there are differences in the DSB repair tiasebetween the different tissues which may

account for their considerably varying intrinsidi@sensitivities.

Methods:

For the DSB induction, brain and lung tissue of B&bB mice was analyzed at 10 min after
whole body irradiation with 0.1 Gy, 0.5 Gy and &9. For the DSB repair kinetics, brain and
lung tissue of repair-proficient (C57BL/6 mice) argpair-deficient mouse strains (BALBI/c,
A-T and SCID mice) were analyzed at 0.5 h, 2.5 i, 24 h and 48 h after whole body
irradiation with 2Gy. Brain and lung tissue of shamdiated mice of each strain served as
controls.y-H2AX immunohistochemistry andH2AX immunofluorescence analysis was used
to measure DSBs formation and repair in the brait lang tissue of the different mouse

strains.

Results:

For the DSB induction, identicgtH2AX foci levels with a clear linear dose corredatand
very low backgrounds in the brain and lung tisseeenobserved. Scoring the lossgydfi2AX
foci allowed us to verify the different, genetigalletermined DSB repair deficiencies,
including the minor impairment of BALB/c mice. Reépproficient C57BL/6 mice exhibited
the fastest decrease in foci number with time,displayed only low levels of residual damage
at 24 h and 48 h postirradiation.



In contrast, SCID mice showed highly increagdd2AX foci levels at all repair times (0.5 h
to 48 h) while A-T mice exhibited a lesser defettich was most significant at later repair
times & 5 h). Radiosensitive BALB/c mice exhibited slightllevated foci numbers compared
with C57BL/6 mice at 5 h and 24 h but not at 48dstpradiation. The DSB repair kinetics
measured in brain and lung tissue were nearly icEn&lthough these organs reveal clearly

different clinical radiosensitivities.

Conclusion:

The results provide evidence that quantifyipidH2AX foci in various normal tissues
represents a sensitive tool for the detection dfiation and repair of radiation-induced DSBs
at clinically relevant dosas vivo. y-H2AX foci kinetics measured in the brain and lunere
similar to kinetics in peripheral blood lymphocytésmeasured in previous experiments)
demonstrating that data obtained in blood samp@sbe utilized to screen for DSB repair
deficiencies as predictor for clinical radiosenstiyi Strikingly, the various analyzed tissues
exhibited similar kinetics foy-H2AX foci loss despite their clearly differentmital radiation
responses. Hence, the distinct radiosensitivity pafenchymal cells does not rely on
tissue-specific differences in DSB repair. Ratliers suggested that differing down-stream

events determine the characteristic radiation nesg® of different tissues.



2. Introduction

2.1. DNA double-strand breaks

DNA double-strand breaks (DSBs) are considereti@siost biologically lethal of all DNA
lesions, which if unrepaired severely threatensonbt the integrity of the genome but also the
survival of the organism. DSBs can be produced Xxggenous agents such as ionizing
radiation and certain chemotherapeutic drugs lad atise endogenously during replication,
V(D)J recombination, and meiosis (HOEIJMAKERS et, &#001; VAN et al., 2001).
Appropriate cellular signaling responses to DNA dgm and the ability to repair damaged
DNA are fundamental processes that are requiredrfganismic survival.

As shown in figure 1, cells respond to DSBs throtighaction systems that detect the DNA
lesion and then trigger various downstream evéittéeast in some cases, these systems can
be viewed as classical signal-transduction cascadeghich a ‘signal’ (DNA damage) is
detected by a ‘sensor’ (DNA-damage binding protéingt then triggers the activation of a
‘transducer’ system (protein kinase cascade), whitiplifies and diversifies the signal by
targeting a series of downstream ‘effectors’ of Bii¢A-damage response.

The DSB signaling systems need to be exquisitahgitee and selective, as they must be
triggered rapidly and efficiently by low numbers ahd maybe just one DSB, and must remain
inactive under other conditions. If DSBs left uragpd, they can result in permanent cell cycle
arrest, apoptosis or mitotic cell death (OLIVE let 8998), and if repaired incorrectly, can lead
to carcinogenesis through directly induced or dataychromosomal rearrangements
(MORGAN et al., 1998).



exogenous agents \ / endogenous agents

- IR N\ AliX 1) é N ( iy - oxidative d ¢
« chemotherapeutics Ar‘l}'f{!lD\ DSB \‘{:’Iyﬂ{h{!’l/\ . ?:[;Iiialt\:gn e

+ chemicals + programmed rearrangements
‘ Sensors - meiotic DSBs

l' transducers

‘,f ; # effector; x\

cell cycle arrest DNA repair apoptosis

Fig.1 Signaling of DSBs. DSBs are recognized by differsgnisor proteins, which transmit the signal to a
series of downstream effector molecules throughrstiuction cascade, to activate signaling mecinanisr
cell-cycle arrest and induction of repair, or adlath if the damagis irreparable. Figure was taken fr
Khanna et al., 2001.

2.2. DNA double-strand break repair pathways

There are at least two mechanisms for DSBs repain:homologous end-joining (NHEJ)
and homologous recombination (HR). HR and NHEJaeehanistically distinct DSBs repair
pathways function to maintain the integrity of DNJAEBER et al., 2003; WEST et al., 2003;
O'DRISCOLL et al., 2006). Each pathway consistsaotlistinct array of different repair
enzymes and associated factors (Fig. 2). Both matbwnay be activated cooperatively repair
DNA lesions (GOEDECKE et al., 1999; PIERCE et a001; ROTHKAMM et al., 2003).
Compared with HR, NHEJ is the predominant mechanismammalian cells and repairs
broken ends with little or no requirement for sateee homology and involves the
DNA-dependent protein kinase (DNA-PK) holoenzymd gre XRCC4-LIG4 complex.
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The DNA-PK consists of the DNA end-binding heterodr Ku70-Ku80 and the catalytic
subunit DNA-PKcs (JEGGO et al., 1998; SMITH et 4D99; KARRAN et al., 2000). HR is
dependent upon homologous sequences flanking #ekdite, the nonhomologous ends are
removed and aligned with regions of homology in ¢benplimentary strand. DNA synthesis
and ligation complete the process.

The choice of repair pathway that becomes activestdohked to the cell cycle, with HR
being available in S and G2 phases. During HRd#meaged chromosome enters into synapsis
with, and retrieves genetic information from an améged DNA molecule with which it
shares extensive sequence homology. Simple eulksrgoich as the yeasts S.cerevisiae and
S.pombe rely mainly on HR to repair radiation-ineddDNA DSBs while NHEJ is more
important in mammals. In mammals the NHEJ pathwag@minates in many stages of the
cell cycle-particularly in GO and G1. Both pathwagee highly conserved throughout

eukaryotic evolution but their relative importartdiffers from one organism to another.



2.2.1. Homologous recombination (HR)

A major difference between HR and NHEJ repair meigmas is the degree of fidelity of
DNA repair. HR is an error-free mechanism dependimga homologous sequence as
templates from a sister chromatids (WEST et aD320HACKER et al., 2004). Hence, HR is
limited to the late S to M phase of the cell cywleen sister chromatids are available. HR is the
predominant DNA DSB repair pathway during early eyobic development when cells are
rapidly dividing and error free/high fidelity repas required (ORIl et al., 2006). Figure 3
shows the process of HR. At damaged DNA terminigd-processing (unwinding and
nucleolytic processing) generates a single stratidan3’ overhang upon which a recombinase
complex is loaded. This pre-synapsis complex inesla group of proteins associated with
Rad51 recombinase function, including a group ofDBA paralogs (RAD51B, RAD51C,
RAD51D, XRCC2 and XRCC3), RAD52 and RAD54. BRCAZ2aiso essential for HR, and
participates in RAD51 function (PELLEGRINI et &002; WEST et al., 2003). Upon loading
of RAD51 and its accessory proteins, the DNA strenvdides the sister chromatid using the
recombination-proficient DNA end to synapse withhamologous template. The final
post-synapsis resolution of the four DNA strandstid two DNA duplexes (the Holiday
junction) that ultimately result in repaired DNAvimives RAD54 and RAD51C (LIU et al.,
2004; WYMAN et al., 2004). However, the detailsloé resolution of the repair intermediates
are unclear, and additional protein such as Mus@&E and the RecQ helicases are also
involved (WEST et al., 2003; WYMAN et al., 2004).
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In addition to these factors known to be directiydlved in HR, there are a number of
molecules required for triggering DNA damage stressponses that act as ‘sensors’ for
damage that are also important in cell cycle raguiaand perhaps in the repair process itself.
These sensors include ATM and ATR (ABRAHAM et 2D01; DUROCHER et al., 2001).

Altogether, HR is critical for maintaining genonmntegrity, because of its role in DSB repair.
While the majority of DSBs are rejoined by NHEJ tlole of HR is enhanced in embryonic
cells and late S/G2 phase cells. In some situgtisnsh as during DNA replication, HR
improves DSB repair fidelity and, as a result, @ases cell survival following ionizing
irradiation. Thus, HR may be required for efficiemd accurate repair of a specific subset of
DSBs that are refractory to NHEJ alone.



2.2.2.Non-homologous end-joining (NHEJ)

Despite the controversy over the relative importasicHR and NHEJ in mammalian cells, it
is generally accepted that at least in the G1/G@hthe great majority of DSBs are rejoined
by NHEJ (LEE et al.,, 1997; TAKATA et al., 1998). dththe cell uses this somewhat
error-prone process rather than HR is presumably tduthe difficulty of matching the
damaged sequence to its intact copy on the homotogbromosome (which is typically at a
distant site in the nucleus) and bringing the twitw iclose proximity. Figure 4 shows the
process of NHEJ. NHEJ modifies the two DNA ends @SB so that they are compatible for
direct ligation (LEE et al., 2003; LIEBER et alQ@3; O'DRISCOLL et al., 2006). NHEJ
involves, among other proteins, KU, DNA-PKcs, DNgdse 1V, its cofactor XRCC4 (CHU et
al., 1997; CALSOU et al., 1999; KARRAN et al., 2Q@HEN et al., 2001), and probably
DNA polymerasen (MAHAJAN et al., 2002) and/or polynucleotide kie#shosphatase
(PNKP) (CHAPPELL et al., 2002). Additional candidatfor participation in NHEJ include
Artemis (MA et al., 2002), the MRE11-RAD50-NBS1 (MRcomplex (HUANG et al., 2002),
BRCAL1 (ZHONG et al., 2002), tyrosyl-DNA phosphodasse (TDP1) (INAMDAR et al.,
2002) and APE1 (DEMPLE et al., 1994; SUH et al97)9

One of the first proteins that localize to DNA eratsa DSB is the KU heterodimer. The
Ku70/80 heterodimer recognizes and binds the fild& Bnds, which forms an open ring-type
that can be threaded onto a DNA end. One sideeofitiy forms a cradle that protects one
surface of the DNA double helix, whereas the oside is much more open, presumably to
allow other NHEJ factors to access the DSB. DNA-®iscrecruited and activated by the Ku
complex to form the DNA-PK holoenzyme (SMITH et,al999) and to act through
phosphorylation events. They together protect brdBBIA ends and facilitate recruitment of
other end joining proteins.
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DNA-PKcs is an 465 kDa polypeptide, the C-termirggion of which has homology to the
catalytic domains of proteins of the phosphatidysitol 3-kinase-likeprotein kinases (PIKKS),
and its activity is stimulated by double-strandddends (ROUSE et al.,

Figure. 4 Proposed model for accurate
NHEJ of radiation-induced DSBs.
Following initial binding of the DNA
end by KU, KU recruits DNAPKcs,
which blocks further processing and
promotes uxtapositioning of the two
DNA ends. DNAPKcs phosphorylate
itself and possibly other proteins in the
complex, resulting in the release of
DNA-PKcs from the extreme end of
DNA, and possibly from the complex as
a whole. A complex of KU, XRCC4,
DNA ligase IV and a DNA polymera:
then forms at the end-to-end junction and
catalyzes alignment-based gap filling
and ligation completing the repair
process and restoring the original
sequencekigure was taken from Valer

et al., 2003.

family the PI 3-kinase related kinases (PIKK) whicftludes ATM, ATR and TRRAP.

DNA-PKcs itself has affinity for DNA ends and itstevation appears to be triggered by its

interaction with a single-stranded DNA region dedrom a DSB (HAMMARSTEN et al.,

2000; MARTENSSON et al., 2002). As a consequendbisfand the DNA binding properties

of Ku, DNA-PK is activated by DNA DSB#m vitro, and presumably this is also the case

ViVO.

2002; SHILOH et
al., 2003). More specifically, DNA-PKcs is mostatdd to a sub-group of proteins in this



Once bound to DNA DSBs, DNA-PK displays proteim/$Br kinase activity with preference
for the consensus sequence Ser/Thr-GIn. KU staBilNA-PKcs and this complex probably
recruits and activates via its kinase activity piog involved in DNA end processing and DNA
ligation.

KU also recruits the LIG4/XRCC4 complex to brokeN® ends where this complex is
required for ligation of the two DNA ends (NICK eil., 2000). These ends require
modification to leave 5’-phosphate and 3’-OH terinpinor to DNA ligation. There are several
enzymes potentially involved in end-processing (BEd al., 2003).

Werner syndrome protein (WRN), Artemis and MRE14 @t nucleases with putative roles
in end-joining. The WRN is a RecQ like helicasejchircan be stimulated by KU but inhibited
by DNA-PKcs (YANNONE et al.,, 2001). WRN can disppa®NA-PKcs from DNA-PK
holoenzyme bound to a DNA end (LI et al, 2002).

Finally, there may be a requirement for the MREWBERO-NBS1 complex in NHEJ. This
complex, comprising the nuclease MRE11, the strattnaintenance of chromosomes protein
RAD50 and the protein NBS1, is rapidly recruited®B sites, where it tethers and processes
the broken ends (STRACKER et al., 2004; MORENO-HERR et al., 2005). It has become
apparent that, in addition to its DNA processingviees, the MRN complex controls the early
steps in transduction of the DNA-damage signal.i#halual factors as the sensor of the DSB
response are recruited to the damaged sites, ineyecreate rapidly expanding nuclear foci
and take part in signaling damage to the transducer

MREL11 is a nuclease with exonuclytic activity andyntherefore process the complex DNA
ends before ligation. It has also been shown terant with Ku70 following DNA damage.
Although NBS1 defective cells show a radiosensififienotype attributable to defective DSB
repair (GIRARD et al., 2000), they are, howeveagfigient in their ability to undergo V(D)J
recombination (YEO et al.,, 2000). Thus, the exame rthat the MRE11-RAD50-NBS1
complex plays in NHEJ is still unclear, althoughsitundoubtedly an important factor in the
repair of DNA DSBs, both through the initial serggand through functional interactions with
both NHEJ and HR factors (CARSON et al., 2003; UZ#E al., 2003; HOREJSI et al., 2004,
KOBAYASHI et al., 2004; LEE et al., 2004).

10



2.2.3. HR and NHEJ interactions

It should be noted that NHEJ and HR are not necgssadependent, since the coordinated
action of both pathways is invoked by the cell ey to repair a DSB with minimal error
(RICHARDSON et al., 2000; SAINTIGNY et al.,, 200Ihus both HR and NHEJ repair
pathways are required to maintain genomic integrtyen in the absence of a specific
genotoxic insult. Several studies in hamster delse suggested that when NHEJ is impaired,
HR seems to increase and vice versa (RICHARDSON)O2®ALLEN et al., 2002).
Furthermore, cells obtained from DNA-PKcs-defici&@ID mice that are impaired in NHEJ
and V(D)J recombinatioshow more efficient levels of HR (PLUTH et al., 20)0There is a
reported interaction between ATM and DNA breakstha site of V(D)J recombination
(PERKINS et al, 2002), suggesting that ATM alscaysl a role in NHEJ and
V(D)Jrecombination. Altogether, different types@$B repair are intricately linked together
in a dynamic fashion with cell cycle regulation,t lwith sufficient flexibility to allow for

redundancy and backups should one factor or typepair fail.

11



2.3. DNA-damage response

The rapid DSB signal transduction response is @edcribed, and involves a series of
post-translational modifications such as phosplabiyh that facilitate signal transduction via

protein-protein interactions (Fig. 5).
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2.3.1. ATM protein kinase

A crucial component of the DNA DSB signaling case@and mammalian cells is the protein
kinase, ATM, a protein kinase which DNA damage t®hl phosphorylation of various
substrates involved in cell cycle regulation orm@nance of genomic stability (SHILOH et al.,
2003; KASTAN et al., 2004; LAVIN et al., 2005). ATM most renowned for its regulation of
DSB-induced cell cycle checkpoint arrest that idelsi G1/S, intra S and G2/M checkpoint
(SHILOH et al., 2001; KURZ et al., 2004). ATM alsontributes to the regulation of apoptosis
in response to DSBs. ATM deficiency leads to themé cancer predisposition and
neurodegenerative syndrome ataxia-telangiectasif) (At cellular level, ATM deficiency is
manifested by increased sensitivity to ionizingiaiidn and other agents that yield DSBs but
little or no hypersensitivity to other forms of DNdamage. Inactive ATM exists as a dimer
that undergoes autophosphorylation on serine 198&sponse to DSBs to become an active
monomer (BAKKENIST et al.,, 2003). Recent data ssgghat ATM is recruited to and
activated at sites of DSBs (ANDEGEKO et al., 20@I)M activation is also intimately linked
to other factors, principal among these is the M&nplex (D’AMOURS et al., 2002;
PETRINI et al., 2003; VAN et al., 2003). Cells ihiwh the MRN complex is compromised
can affect ATM localization to DNA damage-inducextifor show decreased ATM activity
and reduced phosphorylation of ATM substrates (CARSt al., 2003; UZIEL et al., 2003;
KITAGAWA et al., 2004; LEE et al., 2004; DIFILIPPANDNIO et al., 2005). While the exact
details of ATM activation by the MRN complex hawet to be fully elucidated, the structure of
MRN that facilitates its role as a sensor of DNA&dis provides important insights. Critical for
the function of this complex is a zinc-hook struetpresent in the flexible coiled-coil region
of RAD50 (HOPFNER et al., 2002; WILTZIUS et al.,08). The binding of MRN to DNA
induces a conformational change leading to an -caenplex tether via RAD50 between
distinct MRN complexes bound to opposing DNA sta(MdORENO-HERRERO et al., 2005;
WILLIAMS et al., 2005). The ability of the MRN cortgx to tether broken DNA ends
provides a physical basis for recruitment of caitisignaling kinases such as ATM. The
association of ATM with the MRN complex involvegaraction of ATM with FXF/Y motifs
in the NBS1 carboxyl terminal region (FALCK et &005; FERNANDES et al., 2005; YOU
et al., 2005), and this interaction facilitates ATdtalization to damaged DNA. Methylation
of the MRN complex is also likely to influence itsnction. MRE11 can be methylated by

protein arginine methyltransferase 1 after DNA dgepa modification that can influence the

13



checkpoint function of the MRN complex (BOISVERTadt, 2005).

Activated ATM phosphorylates numerous substrateswiidtream substrates for ATM
include P53, MDM2, CHK1, CHK2, BRCA1 and NBS1, SM@thich are involved in cell
cycle progression, DNA repair or apoptosis (SHILORQ03; KASTAN et al., 2004).
Collectively, these proteins function as key retpris of the DNA damage response, and a
clear interdependency exists among them as inaictivaf any renders cells hypersensitive to
DSBs (PETRINI et al., 2003; SEDELNIKOVA et al.,@) SHILOH et al., 2003; VAN et al.,
2003; KITAGAWA et al., 2004).

It has been proved that ATM is absolutely requicgdrepairing a subset of DSBs usually
repaired slowly over 24 RR(BALLO et al., 2004. Their results suggested that the majority of
DSB rejoining in G1 cells is rapid, is LIG4 depentéut has a less stringent requirement for
DNA-PKcs. A distinct component of DSB rejoining fapximately 10%) occurs over a
prolonged time and requires ATM, Artemis, and DNKeB representing an
“ATM-dependent” component of end-joininRIBALLO et al., 2004.

2.3.2.y-H2AX

The other one of the very early events followingB3Ss the phosphorylation of histone
H2AX (within minutes) to create-H2AX which functions to recruit DNA damage respens
factors to sites of DNA damage (SEDELNIKOVA et &003; FERNANDEZ-CAPETILLO
et al., 2004). Using a fluorescent antibody speddi they-H2AX, discrete nuclear foci can be
visualized at sites of DSBs.

In eucaryotes, DNA is packaged into nucleosomesciwhre in turn arranged in various
higher order structures to form chromatin (PRUSS&.etL995). The crystallographic structure
of nucleosome has been elucidated (LUGER et @.719'wo copies of each histone protein,
H2A, H2B, H3 and H4, are assembled into an octaimar has 145-147 base pairs (bp) of
DNA wrapped around it to form a nucleosome corer@ditive molecular mass 206K). In
mammals, each histone family is encoded by mulig@ees, which with few exceptions are
expressed in concert with replication (HEINTZ et &4B91). The various members of the H4,
H3, and H2B families differ in few if any amino dciesidues. In contrast, the H2A family
includes three subfamilies whose members contanackeristic sequence elements that have

been conserved independently throughout eucaryeticlution (WEST et al.,, 1980;

14



THATCHER et al., 1994).The three H2A subfamilies tre H2A1-H2A2, the H2AZ, and the
H2AX. Histone H2AX (REDON et al., 2002; SEDELNIKOV#t al., 2003), a minor histone
H2A variant, encodes a conserved Ser-GIn-Glu (S@&)f in the carboxyl-terminal tailAn
early event in the DNA damage response after ingiziradiation is the phosphorylation of
serine 139 of H2ZAXROGAKOU et al., 1998; SEDELNIKOVA et al., 2002).

The phosphorylation is mediated by ATM (ROGAKOUaét 1998; BURMA et al., 2001;
SEDELNIKOVA et al., 2002), ATR (FURUTA et al., 2003nd/or DNA-dependent protein
kinase (DNA-PK) (PARK et al., 2003), and occursgidomain of about one megabase) at the
breaksites of DSB or single strand break (ROGAKQWile 1999). For many years, the
analysis of DSBs repair relied on pulsed-field glectrophoresis (PFGE), which regired high
irradiation doses (50Gy). Recently, theH2AX foci have been used as an extraordinarily
sensitive technique to detect DSB formation andirepven after very low dose irradiation
(ROTHKAMM et al., 2003). DNA repair- and checkpoagsociated proteins such as RAD50,
RAD51 and BRCAL, as well as the 53BP1, colocalidd wH2AX (FURUTA et al., 2003;
HUYEN et al., 2004).

y-H2AX extends to megabase regions of DNA aroundébmns and can be visualized by
using immunofluororescence microscopy as discratdear foci at the site of DSBs, either
induced by exogenous agents such as radiation (BAIRRDO1) or generated endogenously
during programmed DNA rearrangements (CHEN et 2000; PETERSEN et al., 2001;
MAHADEVAIAH et al., 2001).

Recent studies found thATM and DNA-PK function redundantly to phosphorgadi2AX
in response to DSBs. This overlapping functionbsesved in human, mouse, and vertebrate
cells. ATM and DNA-PK both contribute to H2AX phdapylation in response to DSBs
(STIFF et al., 2004)The precise biological function of the foci is Istinclear but H2AX
phosphorylation is required for the retention ofesal damage response proteins at the break
site (BASSING et al., 2002; CELESTE et al., 200ELESTE et al., 2003). Initial studies
observed a close correlation between the numbiecoénd the number of DSBs produced by
decay of** incorporated into cellular DNA (SEDELNIKOVA et.al2002), suggesting that
each focus may represent an individual DSB anddheh break may form a focus. A recent
study found that the correlation is close to aratio, strongly suggesting that the number of
foci formed after ionizing radiation at low dosessimilar to the predicted number of DSBs
induction (ROTHKAMM et al., 2003).
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While the phosphorylation of H2AX occurs rapidlyditional recruitment and retention of
v-H2AX at the site of DNA DSB is dependent on anotb®&A damage-response protein:
mediator of DNA damage checkpoint protein one (MDQRTUCKI et al., 2004). The
C-terminal tandem BRCT domain of MDC1 binds thee@rinus ofy-H2AX, and without
MDC1 the kinetics of formation and removal wH2AX is altered (STUCKI et al., 2005;
LOU et al., 2006). Thug,-H2AX serves as a recruitment factor for the assgrmbmultiple
factors that collectively act to enhance the efficiy of DNA repair.

2.3.3. DNA-dependent protein kinase

The DNA-dependent protein kinase (DNA-PK) is corspd of a regulatory subunit,
containing the Ku70/80 subunits, and a 470 kDalgatasubunit, DNA-PKcs. Mammalian
cells that lack either component of the DNA-PK cdempare defective in repairing DNA
DSBs and hence are sensitive to the effects of xpato ionizing radiation (SMITH et al.,
1999).

DNA-PKcs, ATM, and ATR are members of the phosphgdinositol kinase family. These
proteins exhibit serine—threonine protein kinadévilg, and are involved in the regulation of
transcription, cell cycle progression, and genostability (DASIKA et al., 1999). One of the
roles of DNA-PKcs is to protect and align brokerderof DNA alone or as part of a
multi-protein complex (DEFAZIO et al., 2002). DNAPEs is autophosphorylated after
cellular irradiation exposure (CHAN et al., 2002)DGLAS et al., 2002), which modifies its
binding with Ku and has been implicated in the gihasylation of a wide range of DNA
damage/checkpoint proteins. This auto-phosphooyiagvent is critical for correct NHEJ
activity within the cell (CHAN et al., 2002). Afté&dSBs, in the initial step Ku binds the DNA
ends, aligns them and thus prepares for ligatiohpaatects from degradation. Ku also recruits
DNA-PKcs to the DSBs, activating its kinase funaotié\though the exact target proteins of
DNA-PKcs remain to be established, it has been qgeeg that DNA-PKcs can: (i)
phosphorylate XRCC4 and remove or relocate thesdidse/XRCC4 complex from Ku-bound
DNA ends and thus allow necessary processing $tepscur, (i) regulate accessibility of
DNA ends to processing by its inactivatiera autophosphorylation and/or by allowing
translocation of Ku away from the DSB, and (iii)gsiphorylate both Ku70 and Ku80 with as
yet unknown consequences yet (CALSOU et al.,, 199€K et al., 2000). DNA-PKcs
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phosphorylates Artemis, which changes the funatifofsirtemis, but there is no evidence far
vivo phosphorylation or a direct role in NHEJ (MA et 2002). There are also many reports of
proteins that can regulate DNA-PK activity (caspds€hkl, HSF1, MDC1, and so on).
Thus, signaling after DSBs involves a coordinatedes of events that occur rapidly, and
serve to activate key cellular effectors that dffeall-cycle arrest to allow repair via HR or

NHEJ, or alternatively activate an apoptotic regson

2.4. DSB repair-proficient and -deficient mouse stins

In the present studyH2AX foci analysis was employed to investigate itéyeair of DSBs in
SCID (severe combined immunodeficiency), BALB/c #ad (Ataxia Telangiectasia) mice in
comparison to control C57BL/6 mice. The highly aginsitive SCID mice have a DSBs
repair deficiency caused by a spontaneous mutatitme gene encoding the catalytic subunit
of the DNA-dependent protein kinase (DNA-PKcs). DIRKcs is a core protein of
non-homologous DNA end joining (NHEJ). In contrestSCID mice, imbred BALB/c mice
possess two naturally occurring single-nucleotidigmorphisms in the DNA-PKcs gene, that
reduce, but do not eliminate DNA-PKcs activity (OKASU et al., 2000). BALB/c mice have
been consistently found to be unusually sensitivethe lethal effects of radiation and to the
development of various types of spontaneous asasathdiation-induced tumours. A-T mice,
defective for the Ataxia telangiectasia mutated NATprotein, are characterized by an
increased radiosensitivity and a predispositiooatacer. ATM is the central component of the
signal induction pathway responding to DSBO®BRICH et al., 2005). Recent findings show
that ATM-defective cell lines display not only celcle checkpoint defects responsible for
their pronounced radiosensivity, but also a sigaift DSB repair defect (KUHNE et al.,
2004).
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2.5. Diseases with DSB repair deficiencies

Human diseases can occur when components of the DSB pathway are dysfunctional.
Deficiencies in repairing DSBs lead particularlypimnounced clinical radiosensitivity. Most
of these diseases show similarvitro cellular phenotypes, such as sensitivity to iomgzi
radiation and other DSB-inducing chemicals, cetlleyxcheckpoint defects or a high frequency

of chromosomal breaks and rearrangement.

2.5.1. Ataxia telangiectasia

Ataxia telangiectasia (A-T), a rare autosomal reieessyndrome resulting from mutations in
the ATM kinase is a prime example of the consegegio an inappropriate response to DNA
DSBs (CHUN et al., 2004; MCKINNON, 2004). A-T isnaultisystem disorder that includes
telangiectasia (dilated blood vessels, usually agulimmunodeficiency and proneness to
malignancies particularly lymphoma and leukemiaweeer, the most prominent clinical
manifestation of A-T is the progressive ataxia ebtarized by the loss of Purkinje and
granular cells in the cerebellum, confining A-Tipats to the wheelchair generally by age of
10 years or younger. At cellular level, ATM defieay is manifested by increased sensitivity
to ionizing radiation and other agents that yieADDSBs but little or no hypersensitivity to

other forms of DNA damage.

2.5.2. Ataxia telangiectasia-like disorder

Ataxia telangiectasia-like disorder (ATLD) showmasar features to those of A-T including
neurodegeneration (TAYLOR et al., 2004). ATLD reésurom hypomorphic mutations of
MREL11 that lead to attenuated levels of all thre@ponents of the MRN complex. Although
an increased incidence of tumors is not reportedThD, the small number of individuals
with this syndrome leaves this an open question.EMR is a member of the
MRE11-RAD50-NBS1 (MRN) protein complex. MRN and itsdividual components are
involved in responses to cellular damage inducedobyzing radiation and radiomimetic
chemicals, including complexing with chromatin amndh other damage response proteins,
formation of radiation-induced foci, and the indantof different cell cycle checkpoints.
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2.5.3. Nijmegen breakage syndrome

Nijmegen breakage syndrome (NBS) is a rare autosmuessive disorder characterized by
microcephaly, immunodeficiency, and an increasedlence of hematopoietic malignancies.
NBS results from hypomorphic mutation of another MBomponent, NBS1 (DIGWEED et
al., 2004). NBS1 is located on human chromosomel &g codes for a protein product
termed nibrin, NBS1 or P95. Over 90% of patientslamozygous for a founder mutation: a
deletion of five base pairs which leads to a frash#t and protein truncation. The protein
NBSL1 is suspected to be involved in the cellulapomse to DNA damage caused by ionizing
irradiation, thus accounting for the radiosendiyidf NBS.

The phosphorylation of NBS1 by ATM would indicateat ATM acts upstream of the MRN
complex. Consistent with this were the suggestibasATM could be activated in the absence
of fully functional NBS1 protein. In contrast, thegulation of some ATM target proteins, e.g.
Smcl requires the MRN complex as well as ATM. NB&dy, therefore, be both a substrate
for ATM and a mediator of ATM function. Recent sieslthat indicate a requirement of the
MRN complex for proper ATM activation suggest thta relationship between ATM and the
MRN complex in the DNA damage response is yet ttublg determined.

It has been proved that a small increased fraafamrejoined double strand breaks and,
more significantly, increased chromosome breaksiancycling NBS cells at 24 h after
irradiation (GIRARD et al., 2000). One of the NHBels examined (347BR) was atypical in
showing a nearly normal checkpoint response. Intrashto the mild checkpoint defect,
347BR displays markegtray sensitivity similar to that shown by other NBiges. Thus, the
y-ray sensitivity correlates with the repair defeather than impaired checkpoint control.
Taken together, the results provide direct evideiocea repair defect in NBS cells and are
inconsistent with the suggestion that the radiaseitg is attributable only to impaired
checkpoint arrest. 347BR also displays elevatedtspeous damage that cannot be attributed
to impaired G2-M arrest, suggesting a function BfSY in decreasing or limiting the impact of

spontaneously arising double strand breaks.
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2.5.4. LIG 4 Sydrome

Hypomorphic mutations of LIG4 that attenuate LIGdthaty lead to LIG4 syndrome
whereby individuals display similar phenotypes 8\such as unusual facial features, growth
retardation and microcephaly (O’'DRISCOLL et al.02Q LIG4 is important in NHEJ and
V(D)J recombination, and LIG4 syndrome patientspldig immunodeficiency; cells from
these individual are radiosensitive and defective NHEJ repair of DNA DSBs.
Immunodeficiency also occurs in individuals with tations in the XRCC4-binding protein,
XLF/Cernunnos and a similar neuropathology to LI§#hdrome is present (BUCK et al.,
2006).

In a previoudn vitro study, a DNA ligase IV (LIG4)-null human pre-B ktkhe and human
cell lines with hypomorphic mutations in LIG4 haveen shown to be significantly impaired
in the frequency and fidelity of end joining (SMITét al., 2003). Analysis of the null line
demonstrates the existence of an error-prone Dsé IV-independent rejoining mechanism
in mammalian cells. Analysis of lines with hypomieigpmutations demonstrates that residual
DNA ligase IV activity, which is sufficient to proote efficient end joining, nevertheless can
result in decreased fidelity of rejoining. Thus, MNigase IV is an important factor
influencing the fidelity of end joiningn vivo. The LIG4-defective cell lines also showed
impaired end joining in am vitro assay using cell-free extracts. Finally, they dest@te that
the ability of DNA ligase IV £ XRCCA4 to protect DNAnds may contribute to the ability of
DNA ligase IV to promote accurate rejoiningvivo (SMITH et al., 2003).

It has been shown that DNA ligase IV-deficient (B&) cells have a pronounced repair
defect after ionizing radiation doses between 1@ &b Gy by PFGE. At higher doses, the
mutation in 180BR cells leads to a more severeirelgdect, indicating that the mutated DNA
ligase IV protein can handle a small but not areesive number of DSB$he DSB repair of
the LIG4 null pre-B cells N114P2 with targeted dions in both LIG4 alleles is
significantly impaired in comparison with the tingeurse of the DNA ligase IV-deficient
primary fibroblasts. The difference is most pronoeoh for repair times of 8 and 24 h in
N114P2 cells compared with 180BR cells, more thaitg as many unrepaired DSBs
(KUHNE et al., 2004).
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2.5.5. Artemis

Mutations in the Artemis protein in humans resualhypersensitivity to DNA double-strand
break-inducing agents and absence of B- and T-lyreyties (radiosensitive severe combined
immune deficiency [RS-SCID]) (MOSHOUS et al., 200The Artemis nuclease has been
described as an additional NHEJ component (MOSH@L., 2001). Artemis cleaves DNA
hairpin intermediates during V(D)J recombinatiommATM-independent manner (MA et al.,
2002); however, it mediates the repair of a fraci{®0%) of DSBs incurred after ionizing
radiation in an ATM-dependent manner (RIBALLO et2004). Current models suggest that
Artemis functions to process the ends of othenn@ma@igatable DSBs prior to ligation by core
NHEJ factors (OBRICH et al., 2005). The mechanism of Artemis activatiovivo is unclear,
although Artemis is rapidly hyperphosphorylatedmATM-dependent manner after exposure
to DSB-inducing agents (POINSIGNON et al., 2004BRILLO et al., 2004; ZHANG et al.,
2004; CHEN et al., 2005; MA et al., 2005; WANG dt, &2005). ATM and other
phosphatidylinositol 3-kinase like kinases (PIKK#&cluding DNA-PKcs, preferentially
phosphorylate serine or threonine followed by ghitee (S/TQ) motifs. Artemis contains 10
such sites, of which eight are located in the @ieal 200 amino acids. Artemis cDNA
mutated in seven of these sites was able to congplenthe radiosensitivity of
Artemis-deficient cells (POINSIGNON et al., 200Bgspite this, other studies have suggested
that phosphorylation of Artemis by DNA-PKcs leadsendonuclease activation (MA et al.,
2002; 2004; 2005).

In a previous study, the major DNA-PK and ATM phlespylation sites within Artemis
(S503, S516 and S645) was identified under phygic#dly relevant ionic conditions, and
showed that ATM-dependent Artemis phosphorylatio8@45 occursn vivo (GOODARZI et
al., 2006). ATM cannot substitute for DNA-PK to gt Artemis activityin vitro, supporting
thein vivo dependency upon DNA-PKcs.

2.6. Radiation-induced acute and late toxicities aformal tissues

Radiotherapy is an important curative and pall@&tivodality in the treatment of cancer, but
associated acute and late toxicities of neighbguniormal tissues limit the deliverable dose
intensity. Early responses (acute toxicities) uguatise in rapidly renewing tissues where
stem cells divide regularly and provide a steadypsuof daughter cells differentiating into
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functioning cells. The proliferative damage of edin-vulnerable stem cells causes a
transient decrease in the number of specific fonatig cells, but this acute radiation response
heals by proliferation of surviving stem cells. éatormal tissue responses (late toxicities)
usually arise in slowly renewing tissues composetighly differentiated cell populations
performing specialized functions; only certain fioeal cells maintain the capacity of
proliferation. In contrast to transient, clinicaltyanageable acute responses, late normal tissue
injury is often progressive and does not responttdatment. Even though an interplay of
various phenomena accounts for the pathogenesdeohormal tissue damage, the clinically
observed striking heterogeneity between differerdans may depend on the intrinsic
radiosensitivity of their non-dividing functionaklt populations. There is evidence that the
cellular radiosensitivity may to a considerableeextbe determined by the repair capacity of
radiation-induced DSBs (BANATH et al., 2004; OLI\& al., 2004; TANEJA et al., 2004,
KLOKOV et al., 2006). Furthermore, other molecudad cellular mechanisms like cell cycle
progression, growth factor signal transduction, apdptosis may contribute to the intrinsic
radiosensitivity (ROSEN et al., 1999; LOBRICH et 2006).

In the present study, the DSB repair capacity @firband lung tissue representative for
late-responding organs characterized by clearlfjem@int clinical radiation responses and
tolerance doses was analyzed (SCHERER et al., 198&)highly complex organs lung and
brain are composed of many different cell typesl aar limited knowledge of their cellular
population kinetics as well as their intrinsic aldr radiosensitivities is based predominantly
on histopathological alterations observed in irmgetil tissues (SCHERER et al., 1991). In
clinical cancer treatment, the radiosensitive luegresents a critical tissue, with radiation
pneumonitis and lung fibrosis representing two majuften lethal complications after
radiotherapy in the thoracic region. The brain¢camtrast, tolerates larger doses of radiation,
but the functional impairment with neurological idgs developing in a slowly progressive

manner over months to years represents a seveatioacsequelae.
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3. Material and methods

3.1. Animals

12 weeks old C57BL/6 (wild-type, C57BL/6NCrl), BALB (BALB/cAnNNCrl) and SCID
(severe combined immunodeficiency, CB17/lcr-Prkaa/€rl) mice were obtained from
Charles River Laboratories (Sulzfeld, Germany). ldaygous A-T (129S6/SvEvTac-A-T
-tm1Awb-/J, homozygous recessive Afinmice were purchased from Jackson Laboratory

(Bar Harbor, Main, USA). The mice were housed 4€5 page in laminar flow hoods in

pathogen-free rooms to minimize the risk of infent and maintained under identical housing
conditions (temperature 22 £@ 55 + 10% humidity, and light-dark cycle 12:12y the

whole course of the experiments and supplied waindard laboratory diet and water. The

mice were allowed to acclimatize from shipping foweek before use.

mice strain number dose(Gy) time point (hou
C57BL/6 15 2 0.5/2.5/5/24/48
3 0 control
Balb/c 15 2 0.5/2.5/5/24/48
3 0 control
A-T 10 2 0.5/2.5/5/24/48
2 0 control
SCID 15 2 0.5/2.5/5/24/48
3 0 control
C57BL/6 6 0.1/0.5/1.0 0.1
2 0 0.1

Tab.1. Number of mice used for the different expernits.

N

For the DSBs induction, the brain and lung tisSUE®/BL/6 mice was analyzed 10 min after

irradiation with 0.1 Gy, 0.5 Gy and 1.0 Gy compatedunirradiated controls. For the DSB
repair kinetics two (A-T) or three (C57BL/6, BALB/E8CID) different mice per strain were
analyzed at 0.5 h, 2.5 h, 5 h, 24 h and 48 h aftay irradiation. Sham-irradiated mice served

as controls.



3.2. Radiation schedule

Before irradiation, the isodose distributions of thihole body irradiation were evaluated by
ADAC Pinnacle three-dimensional treatment planrsggtem (Fig 6). The dose distribution
revealed that the 95% isodose enclosed the whalg bbeach individual mouse (Fig 7). A
special plastic cylinder was used to restrain tieenthe cylinder’'s diameter was 20 cm and
height was 5 cm. By the use of tissue-equivaleast material (thickness 1.5 cm), an
acceptable dose uniformity throughout the wholeybodl the mice was achieved. The
irradiation characteristics were as follows: bearergy 6 MV photons; dose-rate: 2.0 Gy/min;
source skin distance (SSD): 99 cm; size of irréofiatsize: 30x30 ch Groups of
sham-irradiated served as experimental controledgh time period without anaesthesia. All
animal studies were performed according to Insti#l Animal Care and Use Guidelines, and
the experimental protocol was approved by the Madcience Animal Care and Use

Committee of the University of Saarland.
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Fig. 6 CT plan of the whole body irradiation.
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Fig. 7 The dose distribution revealed that the 95% isoéostosed the whole body of each individual mouse.

3.3. Tissue sampling

After anaesthesia by an intraperitoneal injectibR@mpun and Ketamine (Rompun 1ml and
Ketamine 0.75 ml, diluted in 8.25 ml 0.9% natriuhiacide solution, 0.1 ml/10 g), the blood
was harvested by left ventricle puncture, and th&erdnt organs (lung, spleen, kidney,
intestine, heart and brain) were quickly harvedisth tissue was fixed in 4% neutral buffered
formaldehyde overnight at room temperature and thennto pieces. In order to analyze the
different regions of brain, before embedding thairs were cut in four parts from rostral to
caudal, the different sections contain the cerebheahispheres, the hippocampus region, the
ventricular system and the cerebellum. After dehtatt with a graded series of ethanol and
xylene, the tissues were embedded in paraffin aitdnto an average thickness ofu4n

sections.

25



3.4.y-H2AX immunofluorescence staining

After deparaffinization and rehydration using tleidwing series of washes: two xylene
washes (10 min each), followed by 100% ethanol, @B&nol, 90% ethanol, 80% ethanol,

70% ethanol rinses (2 min each), the sections washed by HO for 1 min. Antigen retrieval

was performed by heating the sections for 60 mih witrate buffer (DAKO Retrieval puffer,
#S-2031, Glostrup, Denmark pH 6.0) at 96°C for uskiray the antigenic sites. After washing
the sections with PBS for 5 min on a shaker, sasnplere blocked with normal goat serum
(cat. #642921 ICN, Irvine, CA, USA) at room tempgara for 60 min for saturation of
non-specific binding sites. Afterwards the tissaet®ns were incubated with primary mouse
monoclonal antibody againgtH2AX (antiphospho-H2AX [Ser 139]; Upstate Bioteckogy,
Lake Placid) at 1:1600 in PBS in the humidified rolb@r overnight at 4°C, then the sections
were incubated with biotinylated Alexa Fluor 488ipmated goat anti-mouse secondary
antibody IgG (Invitrogen, cat. #A11001) diluted @®in PBS in a humidified chamber for 60
min at room temperature in dark. Finally the sewiovere counterstained with DAPI and
mounted in Entellan (Merck, Darmstadt, Germany%& overnight protected in the dark.
Between each step the sections were washed by &8 (nin).

3.5.y-H2AX immunohistochemical staining

The formalin-fixed and paraffin-embedded tissudisas were dewaxed in xylene for 2 x 10
min and rehydrated in graded ethanols (100%, 96%%, B0%, 70% for 2 min each). Then
antigen retrieval was performed by heating theisestfor 60 min with citrate buffer (DAKO
Retrieval puffer #5-2031, Glostrup, Denmark, pH) @&096°C. After washing slides with PBS
for 5 min on a shaker, endogenous peroxidase gctwas blocked with 3% hydrogen
peroxide for 30 min. The sections were blocked wlith normal rabbit serum (cat. #642921
ICN, Irvine, CA, USA) at room temperature for 60mfior saturation of non-specific binding
sites after rinse water washing 2 min. The prinar-y-H2AX antibody (antiphospho-H2AX
[Ser 139]; Upstate Biotechnology, Lake Placid) with 1:800 in PBS was applied to each
section and incubated overnight in the humidifibdrober overnight at 4°C. After washing
with PBS 3 x 10min, the sections were incubatedh wibtinylated goat-anti-rabbit antibody
(Invitrogen, cat. #A11001) diluted 1:200 in PBSaitnumidified chamber for 60 min at room
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temperature, then incubated with avidin-biotin-p&tase complex (ABC complex, Dako,
Glostrup, Denmark) for 30 mins at room temperatafter washing with PBS 2 x 10 min, the
sections were added with diaminobenzidine (DAB &y and then put into PBS to stop the
reaction as soon as brown colour appeared. Firtly,sections were counterstained with
hematoxylin for 45 seconds. After rinsing for 2 minder floating water, the sections were

dehydrated with ascending alcohols and mountedhtellan (Merck, Darmstadt, Germany).

3.6. Quantification ofy-H2AX foci

Fluorescence images were captured by using Nikof0Eépifluorescent microscope
equipped with charge-coupled device camera andisitqn software (Nikon, Disseldorf,
Germany). For quantitative analysigH2AX foci were counted by eye using objective
magnification of x60 and x100. For each data pdi,brain and lung tissue of two (A-T) or
three (C57BL/6, SCID, BALB/c) different mice werenayzed. Cell/foci counting was
performed until at least 40 cells and 40 foci (bldymphocytes) or 80 cells and 40 foci (tissue)
were registered, the error bars represent the S&M the number of cells analyzed, for data

points obtained after background substraction.
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4. Results

4.1.y-H2AX immunohistochemistry and y-H2AX immunofluorescence

To examine DSB repair kinetics in complex orgapsi2AX immunohistochemistry and
v-H2AX immunofluorescence detection was establishelorain and lung tissue. Combining
these two staining techniques permits both therateudentification of cells in the complex
tissue morphology and the precise quantificatiopd2AX foci numbers per cell.

Figure 8 shows the immunohistochemical staining-dRAX in the brain and lung tissue of
animals analysed at 0.5 h and 5 h post 2 Gy iriadiacompared to unirradiated controls.
While unirradiated tissues were almost completedgative fory-H2AX, the degree of
v-H2AX staining clearly increased with irradiatioos# and decreased with post-irradiation
repair time. After testing different antigen retaés and optimising staining procedures that
nearly 100% of the cells in the brain, and lungnstd positively was achieved forH2AX at
0.5 h after irradiation with 2 Gy (Fig. 8). Fig@eshows representative exampleg-¢12AX
immunofluorescence staining in the different tissae0.5 h and 5 h after irradiation with 2 Gy
compared to unirradiated controls. While unirragliahormal tissues were predominantly
negative fory-H2AX, a homogeneous pattern of discrete nuclddRAX foci was observed at
0.5 h post irradiation. Additionally, a reductianfoci number was apparent between 0.5 h and
5 h in all analyzed tissues (Fig. 9) suggesting tHd2AX immunofluorescence analysis can
be used to quantify DSB$:H2AX immunohistochemistry, in contrast, does nobvide a
quantitative assessment of DSBs but can assisteintifying the different cell types of the
tissues.

In the brain countingy-H2AX foci in various regions composed of differecell types
revealed identical repair kinetics (data not shovaonsistent with results of Nowadt al
(NOWAK et al., 2006). As a consequence, the enutioeraf y-H2AX foci was confined to
the cerebral cortex of the midbrain, consistinduoictional neuronal cells and supporting glial
cells (Fig. 9). In the respiratory parenchyma & thng, the alveoli are lined by very thin,
membrane-like type | pneumocytes and endothelié.c&s their small, often overlapping
cells impede the visual discrimination of differeniclei, the enumeration gfH2AX foci was
confined to the bronchiolar epithelium where largeore clearly separated nuclei allowed a

reliable quantitative analysis (Fig. 9).
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Fig. 8 Immunohistochemical staining ¢fH2AX in brain and lung tissue at 0.5 h and 5 leiftradiation with
2 Gy compared to unirradiated controls. While wadiated normal tissues were almost completely negat
for y-H2AX, an intense granular staining of nearly allclkei was apparent after irradiation. Original

magnification x600.
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Fig. 9 Immunofluorescence staining ¢fH2AX in brain and lung tissue at 0.5 h and 5hraftole body
irradiation with 2Gy compared to uradiated control. While unirradiated normal tissuweere predominant!
negative fory-H2AX, a homogenous pattern of discrete nucleai2AX foci was observed at 0.5 h
postirradiation. The reduction in foci number wapapent between 0.5 h and 5 h in all analysed tissue

suggesting that-H2AX immunofluorescence analysis can be used anmtiy DSBs.
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4.2.DSB induction in brain and lung tissue

For quantifying the DSB inductiop-H2AX foci were enumerated in the brain and lung
tissues at 10 min following whole body irradiati@C57BL/6 mice. 10 min was the minimum
time necessary to harvest the mice and retrievetteans. Figure 10 shows the quantitative
relationship between the number wH2AX foci per cell of the brain and lung and the
irradiation dose. For brain and lung tissue theeshnear dose correlation from 0.1 Gy@.8
foci/cell) to 1 Gy € 8 foci/cell) and very low background levels withpaoximately 0.04 foci
per cell were observed. The mean foci numbersarbthin were 0.93 + 0.10, 4.20 + 0.13 and
8.13 £ 0.09 respectively, and the correspondingesin lung were 0.90 £ 0.06, 4.23 + 0.30
and 8.10 = 0.15 after 0.1 Gy, 0.5 Gy, 1.0 Gy irasidn.

—e— Brain

—&— Lung
Fig. 10 DSB induction

guantified by  enumerating
v-H2AX foci in brain and lung
tissue at 10 min following whole
body irradiation of C57BL/6

mice. Brain and lung tissue

Foci per cell
N w BN (@) (o)) ~ oo ©

reveal the same linear dose
correlation from 0.1 Gy to 1 Gy.

Error bars represent the SEMs of

three experiments.

Dose (Gy)
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4.3. DSB repair in different mouse strains

The DSB repair kinetics of the different mouseisgare shown in figure 11, evaluated by
countingy-H2AX foci in the brain and lung tissue at defingohe points (0.5 h - 48 h)
postirradiation. Significantly, brain and lung tissrevealed nearly identical kinetics for
v-H2AX foci loss which were similar to the kinetiobtained in peripheral blood lymphocytes
(measured in previous experiments). Wild-type C5BBhice exhibited the fastest decrease in
foci number with time, and displayed only low levaf residual damage at 24 h and 48 h
postirradiation. In contrast, SCID mice showed highcreasedy-H2AX foci levels at all
repair times (0.5 h to 48 h) while A-T mice exhdlita lesser defect which was most significant
at later repair times>(5 h). Interestingly, the magnitude of the A-T repdefectin vivo is
similar to the ~10-15% repair defect previouslyaméd within vitro studies (estimated from
~2-3 additional foci at 24 h and 48 h, and ~2Qahfbci at 5-10 min post 2 Gy) (KUHNE et al.,
2004; RIBALLO et al., 2004). Similar to our lymphde data (Fig. 12), radiosensitive
BALB/c mice exhibited slightly elevated foci numberompared with C57BL/6 mice at 5 h
and 24 h but not at 48 h postirradiation.

In summary, the DSB repair kinetics of the diffarerouse strains measured in the brain and
lung tissue were qualitatively and quantitativelynitar to the kinetics obtained from
peripheral blood lymphocytes. Therefore, data oleiin lymphocytes can be utilized to
predict the DSB repair capacity of complex solgsties of different organs. Unexpectedly, the
analyzed tissue specimens of the brain and lungated nearly identical DSB repair kinetics,
even though these organs are characterized byyctbierent clinical radiation responses (Fig
13).
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Fig. 11 DSB repair kinetics of the different mouse stragmaluated by countingH2AX foci in the brain an

lung at defined timgoints after whole body irradiation with 2Gy. Siarilto the kinetics obtained in blc
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strains can be demonstrated in the various tissuaknost the same manner. Strikingly, the analysesiie
exhibited similar kinetics of-H2AX foci loss, despite their clearly differentritial radiation responses. Ei
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5. Discussion

Efforts to measure the induction and rejoining o683 in vivo by PFGE or similar
techniques have been discouraged so far by thedugés required, generally in excess of 50
Gy. The ability to detect DSBs by measuripfi2AX foci provides, for the first time, an
opportunity to assess the induction and repair MARlamagen vivo after relevant radiation

doses.

5.1.y-H2AX analysis as a predictive assay for radiosertsiity

Here, different DSB repair-proficient and -defidiemouse strains were used to test if
v-H2AX foci analysis can serve as a sensitive apgrda assess DSB8 vivo, in normal
tissues of various organsnportantly, it is demonstrated that the differegpiair capacities can
be detected by-H2AX foci analysis after whole body irradiationtvi2 Gy. This includes the
repair defect of SCID and A-T mice as well as tlghs DSB repair impairment of BALB/c
mice which is caused by a natural genetic variaitiothe NHEJ pathway (OKAYASU et al.,
2000; MORI et al., 2001Reripheral blood lymphocytes (as measured in pusvexperiments
(KUHNE et al., 2007)) and various normal tissuesvsimearly identical kinetics for-H2AX
foci loss. This suggests thaH2AX foci analysis of peripheral blood lymphocyiessuitable

to screen for various DSB repair deficiencies imeottissues.

5.2. Validation ofy-H2AX foci analysis in vivo

It has been shown that radiation-induced DSBs eamdnitored in various normal tissuas
vivo, directly by visualisingy-H2AX foci in formalin-fixed, paraffin-embedded sise
specimens. In contrast to previous studies quangfyrelative amounts ofy-H2AX
(QVARNSTROM et al., 2004; OLIVE et al., 2004), thdésolute number of-H2AX foci
formed per cell was counted. Thus, variations aingtg intensity as well as background
staining influence the quantification only to a onirdegree. As expected, defined radiation
doses induced identical numbers of DSBs per celhéndifferent tissues regardless of their
intrinsic radiosensitivity. A clear linear dose @ation between 0 and 1 Gy in all analyzed
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tissues was observed which underlines the precwidhis approach. However, theH2AX

foci numbers counted in murine lymphocytes (meakimeprevious experiments: e.g. ~11.4
foci/cell/Gy after 5 min) and normal tissuesvivo were consistently lower compared to those
observed in human lymphocytes (17.9 foci/cell/Ggmé min (LOBRICH et al., 2005). For
the most part, this difference can be attributedhi® higher DNA content of human cells
compared to murine cells (max. 3.2 Gb compared &#hGb [International Human Genome
Sequencing Consortium 2001; Mouse Genome Seque@angortium 2002]). The remaining
discrepancy can be explained through a slight rackgl staining in the murine lymphocytes
and the fact that partially truncated cells intissue sections were analyzed, which will lead to
a slight underestimation of the real foci numbers.

In contrast to testis specimens whefel2AX is involved in meiotic recombination and
accumulates in sex bodies resulting in high stgimmensities (data not shown) (HAMER et
al., 2003; MAHADEVAIAH et al., 2001), the backgraditevel ofy-H2AX foci in the normal
tissues was very low, regardless of the prolifeeatiapacity or the differentiation status. The
low background foci level is remarkable and perrthits accurate measurement of even very
low radiation doses. It contrasts, however, to issditilizing genomically unstable tumour
cells which typically exhibit higher spontaneou$i2AX foci numbers (WARTERS et al.,
2005; MAHRHOFER et al., 2006; YU et al., 2006).

Previous studies by us and others have establigtag-H2AX foci analysis represents a
highly useful tool to monitoin vitro DSB induction and repair after low radiation doses
(ROTHKAMM et al.,, 2003). Although regions of singééranded DNA cause H2AX
phosphorylation by ATR activation, these lesioresrast generated by ionizing radiation to any
significant extent. Moreover, ATR-dependent H2AXopphorylation is typically observed
after UV irradiation or replication stress and donesform discrete foci. Finally, the analysis of
different mouse strains with defined mutations BEXxepair factors allowed us to correlate the
rate at whichy-H2AX foci are lost with the DSB repair capacitiesthe different strains.
Importantly, the kinetics foy-H2AX foci loss reflect the different DSB repair paities
providing indirect evidence thatH2AX foci represent DSBs. Although it is possililet
y-H2AX foci analysis could overestimate DSBs remagnif repair is completed prior to the
loss of visible foci, the time difference is unlikéo be greater than a few hours and would not

affect our conclusions.
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5.3. Similar DSB repair in tissues of differing radosensitivity

This study was aimed to investigate tissue-spedifierences in DSB repair and to ask if
they correlate with the clinical radiation respangke clinical radiation response of normal
tissues varies widely and likely depends both enttinn over times of the cell populations and
the intrinsic radiosensitivity of the parenchymaells. In cooperation with the working group
of Prof. Loébrich, Institute of Biophysics, the DSEpair capacity of various organs
representative for both early- and late-respondisgues were analyzed, characterized by
clearly different clinical radiation responses (KNH et al., 2007). The rapidly proliferating
tissue of the small intestine is a radiosensiteag|y-responding tissue. The cells in the crypts
divide rapidly and provide a continuous supply afughter cells that move up the villi,
differentiate and mature into functioning cells eTHadiation insult stops the mitotic activity in
the stem compartement of the crypts, and theredfiexts the cell renewal of the mucosal
parenchyma. The brain, lung and heart by contrast, late-responding tissues. The
myocardium of the heart, for example, is composadedy of mature, highly differentiated
cells, which have lost the ability to divide. THilsed postmitotic cell population of myocytes
is rather resistant to radiation. On the other h#melhighly complex organs lung and brain are
composed of many different cell types, and ourtlehiknowledge of their cellular population
kinetics as well as their intrinsic cellular radkasitivities is based predominantly on
histopathological alterations observed in irradiatesues (SCHERER et al., 1991). In clinical
cancer treatment, the radiosensitive lung represeatitical tissue, with radiation pneumonitis
and lung fibrosis representing two major, oftemdticomplications after radiotherapy in the
thoracic region. The brain, in contrast, tolerdteger doses of radiation, but the functional
impairment with neurological deficits developingarslowly progressive manner over months
to years represents a severe radiation sequelae.

Strikingly, it was observed nearly identical DSPa& kinetics regardless of the proliferative
capacity, the differentiation status or the clihi@aliation responses of the analysed tissues. In
addition to differences in proliferation, parenchainctells are characterized by varying
intrinsic radiosensitivities which may be relateddifferent DSB repair capacities. However,
this has never been shown vivo, in individual cells remaining in their complexsdue
environment. Although we have been able to det@mbrngenetically determined, DSB repair
impairments (as shown for the BALB/c mice), we dimt observe a significant difference in

DSB repair kinetics between the various analyzesuis characterized by clearly different
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clinical radiation responses. These findings arsighificant radiobiological interest because
they challenge the widely held view that tissueetfie differences in radiosensitivity are
related to differences in DSB repair. Thus, we taohe that the distinct radiosensitivity of
parenchymal cells does not rely on tissue-spedifferences in DSB repair and suggest that
down-stream events determine their characteristlalar response. Nevertheless, our analysis
of different tissues exhibiting identical repain&tics emphasizes the fundamental role of DSB
repair to maintain genomic integrity, thereby cimiting to cellular viability and tissue

homeostasis.
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