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Summary 
 
Photoreceptor ribbon synapses are continuously active synapses with large active 

zones that contain synaptic ribbons. Synaptic ribbons are anchored to the active 

zones and are associated with large numbers of synaptic vesicles. The base of the 

ribbon that is located close to L-type voltage-gated Ca2+-channels is a hotspot of 

exocytosis. The continuous exocytosis at the ribbon synapse needs to be balanced 

by compensatory endocytosis. Recent analyses indicated that vesicle recycling at the 

synaptic ribbon is an important determinant of synaptic signaling at the photoreceptor 

synapse. To get insights into mechanisms of vesicle recycling at the photoreceptor 

ribbon synapse, I localized major endocytic proteins in photoreceptor synapses of the 

mouse retina. 

Endocytosis requires the coordinated assembly of a large number of proteins at the 

plasma membrane. Dynamin is a mechanoenzyme important for most forms of 

endocytosis. Clathrin is an important coat protein, needed for many but not all forms 

of endocytosis. Other dynamin/clathrin-associated proteins mediate different 

functions in the endocytic cycle.  

Therefore, in the present study, I analyzed the localization of dynamin, amphiphysin, 

endophilin, synaptojanin, syndapin, clathrin and calcineurin in the mouse retina. For 

this purpose, I used conventional epifluorescence microscopy, super-resolution 

structured illumination microscopy (SR-SIM) and immunogold electron microscopy.  

I found that major endocytic proteins (i.e. dynamin, syndapin, amphiphysin, and 

calcineurin) are indeed highly enriched around the active zone and the synaptic 

ribbon, in a peri-active zone localization. Other endocytic proteins, i.e. endophillin 

and synaptojanin, are diffusely distributed throughout the entire presynaptic terminal. 

The specifity of the presented immunolabellings were carefully controlled by various 

control experiments. Furthermore, I presented evidence for two clathrin heavy chain 

variants being present in photoreceptor terminals. One variant is enriched around the 

synaptic ribbon in a peri-active zone localization, whereas the other is localized in the 

entry region of the terminal probably at an endosomal compartment.  

In agreement with the focal enrichment of major endocytic proteins at the synaptic 

ribbon, I observed a preferential uptake of sulforhodamine (SR101), a fluid phase
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endocytosis marker, and FM1-43 dye in close vicinity to the synaptic ribbon in mouse 

photoreceptor terminals. This endocytic activity depends on dynamin, because 

SR101 uptake was completely blocked by dynasore, a specific inhibitor of dynamin 

activity.  

These data proposes that the presynaptic peri-active zone surrounding the synaptic 

ribbon complex is not only a hotspot of exocytosis, it is also a hot spot of endocytosis   

in photoreceptor ribbon synapses. This endocytotic activity depends on dynamin. 
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Zusammenfassung 

 

Photorezeptor Ribbonsynapsen sind kontinuierlich aktive Synapsen mit großen 

aktiven Zonen, die synaptische Ribbons enthalten. Synaptische Ribbons sind in der 

aktiven Zone verankert und mit einer großen Anzahl synaptischer Vesikel assoziiert. 

Die Basis des Ribbons ist in der aktiven Zone unmittelbar neben den 

spannungsgesteuerten Ca2+ - Kanälen vom L-Typ immobilisiert. Dort findet die 

Exozytose synaptischer Vesikel besonders intensiv statt. Die kontinuierliche 

Exozytose an den Ribbonsynapsen muss durch Endozytose kompensiert werden. 

Jüngste Untersuchungen haben gezeigt, dass das Zur-Verfügung-Stellen von 

synaptischen Vesikeln am synaptischen Ribbon ebenfalls eine wichtige Determinante 

für die synaptische Signalübertragung in den Photorezeptorsynapsen ist. Um einen 

Einblick in den endozytotischen Membranverkehr in den  Photorezeptor-

Ribbonsynapsen zu erhalten, habe ich wichtige, an der Endozytose beteiligte, 

Proteine in Photorezeptorsynapsen in der Retina von Mäusen lokalisiert. 

Endozytose benötigt die koordinierte Aktivität einer großen Anzahl von Proteinen. 

Dynamin ist ein Mechano-Enzym, das für die meisten Formen der Endozytose 

wichtig ist. Clathrin ist ein wichtiges Mantel-Protein, das für viele, aber nicht für alle 

Formen der Endozytose benötigt wird. Andere Dynamin- bzw. Clathrin- assozierte 

Proteine vermitteln verschiedene Schritte im endozytotischen Weg. 

Daher habe ich in der vorliegenden Studie die Lokalisation von Dynamin, 

Amphiphysin, Endophilin, Synaptojanin, Syndapin, Clathrin und Calcineurin in der 

Retina von Mäusen untersucht.  Zu diesem Zweck  habe ich konventionelle 

Epifluoreszenzmikroskopie, Höchstauflösende Mikroskopie mit strukturierter 

Belichtung (SR-SIM) und Immunogold-Elektronenmikroskopie angewendet. 

Dabei fand ich heraus, dass wesentliche endozytotische Proteine (d.h. Dynamin, 

Synadapin, Amphiphysin und Calcineurin) in der Tat stark um die aktive Zone und 

den synaptischen  Ribbon angereichert sind. Andere endozytotische Proteine, d.h. 

Endophilin und Synaptojanin, sind dagegen diffus in der präsynaptischen Terminale 

verteilt. Die Spezifität der gezeigten Immunfärbungen wurde sorgfälltig durch 

verschiedene Kontollexperimente überprüft. Desweiteren habe ich Beweise für die 

Existenz zweier Varianten der schweren Clathrin-Ketten in den 

Photorezeptorterminalen aufgezeigt. 
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Eine Clathrin-Variante ist um den synaptischen Ribbon konzentriert und in der peri-

aktiven Zone lokalisiert, während die andere in der Eingangsregion der synaptischen 

Terminale, wahrscheinlich in einem endosomalen Kompartiment, gelegen ist. In 

Übereinstimmung mit der fokalen Anreicherung von wichtigen endozytotischen 

Proteinen um den synaptischen Ribbon herum, habe ich eine präferentielle 

Aufnahme von Sulforhodamin (SR101), einem Marker für Flüssigphase-Endocytose, 

und FM1-43 Farbstoff in unmittelbarer Nähe zum synaptischen Ribbon in 

Photorezeptor-Terminalen von Mäusen beobachten können. Diese endozytotische 

Aktivität ist funktionell abhängig von Dynamin, da die Aufnahme von SR101 durch 

die Anwesendheit von Dynasore, einem spezifischen Inhibitor der Dynamin-Aktivität, 

komplett blockiert werden konnte. 

Diese Ergebnisse lassen darauf schließen, dass die präsynaptische peri-aktive Zone, 

welche den synaptischen Ribbonkomplex umgibt, nicht nur ein Schwerpunkt 

exozytotischer Aktivität, sondern auch ein Schwerpunkt endozytotischer Aktivität in 

Photorezeptor-Ribbonsynapsen ist Diese endozytotische Aktivität ist abhängig von 

Dynamin.     
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1. Introduction 

 

The visual system is extraordinary in the quantity and quality of information it 

supplies about the world. It is a complex sytems that involves several stages and 

several steps of parellel information processing in various areas of the central 

nervous system (tom Dieck and Brandstätter, 2006). In generell it consists of the eye, 

the optical nerve, the tractus opticus, the corpus geniculatum laterale and different 

brain areas. The inital stage of this system is the eye, a sophisticated sensory organ.             

It can even detect a single photon and transmits the signal to the higher brain center. 

To be able to perform these demanding tasks sensory neurons in the eye contain 

specialized synapses called ribbon synapses (Schmitz, 2009). 

 

 

1.1. The mammalian eye 

The eye is a fluid-filled sphere enclosed by three layers of tissue (Figure 1). 

The outer layer is composed of the sclera and the transparent light-permeant cornea. 

The middle tissue layer contains the iris, the ciliary body and the choroid. The 

innermost layer of the eye, the retina, contains neurons that are sensitive to light and 

capable of transmitting visual signals to higher brain center via the optic nerve (for 

review, see Purves et al., 2001). 
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Figure 1 (A) Section through the adult human eye (http://webvision.med.utah.edu). (B) 
Schematic representation of main retinal neurons. Abbreviations: OS, outer segment; IS, 
inner segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear 
layer; IPL, inner plexiform layer; GCL, ganglion cell layer; PR, photoreceptor; A, amacrine 
cells; H, horizontal cells; RB, rod bipolar cells; CB, cone bipolar cells; The arrow indicates 
light pathway in the retina. 
 
 

During the embryonic development, the retina is formed as part of the 

neuroectoderm, a specialised part of the ectoderm, which also develops into the 

central nervous system (CNS). The retina, unlike the central nervous system, 

comprises only of few classes of neurons. It is a highly organised structure and easily 

accessible and it serves as a model system to study CNS functions. The mature 

mammalian retina consists of two distinct parts, i.e. neural retina and the single 

layered retinal pigment epithelium. 

The neural retina is an intricate network of sensory and higher order neurons that 

processes in paraellel many different aspects of visual signals, e.g. birghtness, 

darkness, contrast, colour and motion (Wässle, 2004).  There are five main types of 

neurons in the retina: photoreceptors, bipolar cells, ganglion cells, horizontal cells, 

and amacrine cells.  

Their somata are located in the three nuclear layers of the retina, which are 

separated by the two synaptic layers (Figure 2). 
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Figure 2 Schematic overview of the mammalian retina. 
A) Toluidine blue-stained vertical cryostat section of retina showing the various retinal layers 
(OS/IS contains the outer and inner segments of the rod and cone photoreceptors; outer 
nuclear layer (ONL) containing the somata of the photoreceptors, outer plexiform layer (OPL) 
or first synaptic region, inner nuclear layer (INL) containing the somata of the second order 
neurons, i.e. horizontal, bipolar and amacrine cells, inner plexiform layer (IPL) or second 
synaptic region, ganglion cell layer (GCL) containing the somata of the ganglion cells and of 
displaced amacrine cells) (Tom Dieck et al., 2006).  
B) Vertical section through a mammalian retina. (Obtained from MPI for Brain research, 
Frankfurt) The following cell types are shown: retinal pigment epithelium (PE, 1), Müller cells 
(2), photoreceptors (5), rods (3), and cones (4), horizontal cells (6), bipolar cells (9): rod -(7) 
and cone bipolar cells (8), amacrine cells (10), ganglion cells (11). The arrows show the 
direction of the light falling into the eye (and through the layer of the retina). Abbreviations. 
OS, outer segment; IS, inner segment. Scale: 20µm. 
 

  

The photoreceptor layer contains the outer segments (OS) and inner segments (IS) 

of rod and cone photoreceptors. The axons of these photoreceptors as well as the 

dendrites of horizontal and bipolare cells are located in the outer nuclear layer (ONL) 

and the outer plexiform layer (OPL). In the inner nuclear layer (INL), the cell bodies of 

horizontal, bipolar, amacrine, Müller glia and interplexiform cells are found. The inner 

plexiform layer (IPL) contains the axons of bipolar cells, amacrine cells as well as the 

dendrites of ganglion cells. The ganglion cell layer (GCL) consists of the cell bodies 

of ganglion cells and displaced amacrine cells and astrocytes in the area around the 

oprtical nerv. The axons of the ganglion cells form the nerve fiber layer. They 

traverse the retina, collect in a bundle at the optic disc, and leave the eye to form the 

optic nerve. 
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The major route of information flow through the retina is processed through a three-

neuron chain. Light is detected by the photoreceptors (1st neuron) and transformed 

into a neuronal signal that is transmitted to the bipolar cells (2nd neuron). They are 

carrying the signal from the OPL to the IPL, where the signal is passed to the 

dendrites of the ganglion cells (3nd neuron).  Their axons run in the fiber layer of the 

retina and collect at the optic disk to form the optic nerve, which carries all visual 

information from the eye to the higher visual brain areas. 

This chain requires a number of synapses with different properties in signal 

transmisson. Indeed, various types of structurally and functionally distinct synapses 

are present in the retina: the faster electrical synapses, the phasically transmitting 

conventional chemical synapses and the ribbon synapses that transmit their signals 

tonically and in a graded fashion (Heidelberger et al., 2005).  

 

 

1.2.     Ribbon synapse of retina 

Graded synaptic output requires the release of several hundreds to several 

thousands of synaptic vesicles per second (Parson and Sterling, 2003; Sterling and 

Matthews, 2005; Heidelberger et al., 2005). To accomplish this level of performance, 

the sensory neurons of the eye and the cochlea maintain large pool of fast releasable 

vesicles and are equipped with a special type of chemical synapses, the ribbon 

synapses (Dowling et al., 1987; Fuchs et al., 2003). These are unique chemical 

synapses characterized by presynaptic specialisation, the synaptic ribbon.  

The synaptic ribbon is a large presynaptic sheet-like structure with a lamellar 

organization and associated with the active zone (Sterling et al., 1998; Schmitz, 

2009). Synaptic ribbons are surrounded and physically in touch with a large amount 

of synaptic vesicles which are postioned by the ribbon in close proximity to the active 

zone. In electron micrographs the ribbons appear mostly bar shapped (Sjöstrand et 

al., 1953) (Figure 3). This appearance was also revealed by three-dimensional 

reconstructions, which provides the synaptic ribbon with a huge surface area. This 

surface area is around 0.77µm big in mammalian rods (Sterling and Matthews, 2005) 

(Figure 3). The rod mammalion photoreceptor ribbon is approximately 35nm thick 

and juts up to 1µm in deep into the presynaptic cytoplasma. 
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Figure 3 Schematic diagramme of photoreceptor ribbon synapses. The bar-shaped 
ribbon (left panel) is actually a cross-section of a plate-like structure that is bended along the 
invaginated photoreceptor presynaptic plasma membrane in a crescent, -shaped manner 
(right panel). The postsynaptic dendritic profiles of horizontal and bipolar cells are depicted in 
a simplified manner (Schmitz, 2009). 
  

 

The photoreceptor ribbon is not directly connected with the active zone. It is 

anchored via the arciform density, which is located within a small evagination of the 

presynaptic plasma membran, the synaptic ridge. The ridge contains clusters of 

presynaptic L-type voltage-gated calcium-channels. Due to an overall invagination of 

the presynaptic plasma membrane, the arciform density has a curved shape. The 

synaptic ribbon adopts this shape and becomes a horseshoe shaped appearance 

(Figure 4). 

 

 
Figure 4 Ultrastructure model for assembly of synaptic ribbon. EM picture of a 
photoreceptor ribbon synapse, Abbreviation: sr-synaptic ribbon, sv-synaptic vesicle, hc-
horizontal cell, bc-bipolar cell (Schmitz, 2009).  
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The shape of the ribbon and the number of tethered vesicles varies between the 

different types of photoreceptors and bipolar cells in the retina. 

The small terminals of the rod photoreceptors usually contain a single large synaptic 

ribbon, which is several 100nm in height, 1µm in depth and shows horseshoe shaped 

structure, which is clearly visible at the light microscopical level. Around 770 synaptic 

vesicles usually bind to a rod synaptic ribbon (Sterling and Matthews, 2005). 

130 of the 770 total vesicles are found in a basal row at the membran-anchored end 

of the synaptic ribbon and are considered as ’’docked ’’ vesicles for immediated 

release. The other remaining synaptic vesicles, the ’’tethered ’’ vesicles, are 

associated to the ribbon in a more distal row.  

The terminals of the cone photoreceptors are larger than the rod terminals and 

contain several ribbons (10-12 ribbons per terminal) with shorter active zones 

contacted by invaginating postsynaptic elements. By light microscopy, the ribbons in 

a cone terminal appear like a chain of dots. The individual ribbons are slightly shorter 

(~ 1µm long; 0.2µm high) if you compare them with the one of the rods (~2µm long; 

0.4µm high.) The total ribbon surface and the number of ribbon-tethered vesicles is 

much larger in the cones than in the rods (Sterling and Matthews, 2005; Jackman et 

al., 2009; Heidelberger et al., 2005). 

The terminals of the rod and cone bipolar cells in the IPL contain several small 

ribbons that are opposed by two non-invaginating postsynaptic processes of 

amacrine and ganglion cells. Bipolar cell ribbons, like cone photoreceptor ribbons, 

have a dot-like appearance by light microscopy due to their relative small size (tom 

Dieck et al., 2006). Ribbon synapses of goldfish bipolar cells for expamle contain 45 

to 65 small ribbons. Each of them binds around 110 vesicles from which 22 are 

docked. In total, they bind approximately 1200 docked vesicles (von Gersdorff, 

2001). 

 

 

1.3 .  RIBEYE is the major component of synaptic ribbon 

   RIBEYE is the only known protein component specific for synaptic ribbons. Its 

identification shed breakthrough information on the molecular structure of synaptic 

ribbons (Schmitz et al., 2000).  

RIBEYE consists of a unique aminoterminal, proline rich A-domain (563aa) to which, 

as published until now, no homologous proteins exists, while the caboxyterminal B-
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domain (425aa) is largely identical to the nuclear co-repressor protein CtBP2  

(Schmitz et al., 2000) (Figure 5). CtBP2 and RIBEYE are splice variants of the CtBP2 

gene (Schmitz et al., 2000; Corda et al., 2006).  

 

 
Figure 5 RIBEYE is the main structural element of synaptic ribbons. Schematic 
depiction of the domain structure of RIBEYE, (A, B) RIBEYE consists of a unique 
aminoterminal A-domain and a carboxyterminal B-domain which is identical to CtBP2 except 
for the first 20 N-terminal amino acids. RIBEYE (B)-domain/CtBP2 is related to CtBP1 and 
binds NAD(H). RIBEYE (B)/CtBP2 and CtBP1 evolutionarily developed from a family of D-
isomer–specific 2-hydroxy acid dehydrogenases (2-HA-DH). (C) Multiple RIBEYE-RIBEYE 
interaction sites are present in the A- and B-domains of RIBEYE. In the A-domain, 3 RIBEYE 
docking sites are present, denoted as “A1,” “A2,” and “A3.”The B-domain contains 2 RIBEYE 
interaction sites, “B1” and “B2.” These interaction sites allow multiple RIBEYE-RIBEYE 
interactions as indicated by the arrows. Heterotypic RIBEYE(A)-RIBEYE(B) interactions are 
inhibited by NAD(H). (D) Highly simplified schematic working hypothesis on how the synaptic 
ribbon could be built from RIBEYE subunits. A RIBEYE-containing scaffold is suggested to 
be glued together via RIBEYE-RIBEYE interactions. At the base of the synaptic ribbon, L-
type voltage-gated Ca2+ channels are clustered. The poreforming unit of these channels in 
rod synapses (Cav1.4) is schematically depicted. The arciform density is not shown. (A-D). 
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CtBP2 and CtBP1 constitute together a family of transcriptional co-repressors. 

CtBP1 was found to be a C-terminal binding protein for the adenovirus E1A-protein 

(Schaeper et al., 1995) and CtBP2 was subsequently observed as a close structural 

and functional homolog of CtBP1 (Katasanis et al., 1998). The structure of RIBEYE 

and its gene lead to the suggestion that RIBEYE is a fusion protein of a preexisting 

protein (CtBP2) and a novel N-terminal domain (Schmitz et al., 2000).  

Several studies indicated that RIBEYE is the major component of synaptic ribbons 

(Schmitz et al., 2000; Zensek et al., 2002; Wan et al. 2005; Magupalli et al., 2008). 

This suggests that it has also a major influence on the function of synaptic ribbons.  

 

     

 1.4.  The functional role of RIBEYE in ribbon synapses 

  Knockdown experiments in zebrafish using morpholino-based silencing 

techniques show that the knockdown of RIBEYE leads to disappearance of synaptic 

ribbons exept for a small stump (Wan et al., 2005). 

The RIBEYE (A)-domain appears to have a predominantly structural role, whereas 

the B-domain probably points to the cytoplasmic face of the synaptic ribbon where it 

binds NADH (Magupalli et al., 2008; Alpadi et al., 2008). RIBEYE can polymerize via 

interactions between its A- and B- domains to form vesicle-associated structures, 

similar to spherical synaptic ribbons. NADH may promote the assembly of synaptic 

ribbons by favoring homotypic and inhibiting heterotypic interaction between the 

RIBEYE(A)- and RIBEYE(B)-domains (Magupalli et al., 2008). Heterologous 

expression of full-length RIBEYE generated electron-dense spherical structures that 

resembled spherical synaptic ribbons of inner hair synaptic ribbons (Magupalli et al., 

2008). The modular assembly hypothesis of synaptic ribbons from individual RIBEYE 

subunits provides also an explanation for the assembly of synaptic ribbons from 

smaller RIBEYE subunits. The assembly of synaptic ribbons from RIBEYE subunits 

likely is a multistep process, which also includes the synaptic spheres, spherical 

synaptic ribbon-like structures (Schmitz, 2009).  
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1.5.       Synaptic vesicle cycle at ribbon synapses 

 

1.5.1.     Exocytosis 

              Ribbon synapses transmit graded changes of membrane potential into 

modulations of continuous, tonic exocytosis of synaptic vesicles (Jackman et al., 

2009; for review, see Heidelberger et al., 2005; Schmitz, 2009; Mercer and 

Thoreson, 2011).   

TIRF analyses have shown that the basal end of the synaptic ribbon is a hotspot of 

exocytosis (Zenisek et al., 2000). The presynaptic release sites are localized within 

an invagination of the presynaptic plasma membrane where they contact the 

dendritic tips of secondary neurons (for review see Schmitz, 2009). Most amanzingly, 

ribbon synapses are equipped with a roughly similar set of synaptic proteins as 

conventional synapses, although the physiological properties of ribbon synapses are 

quite distinct (Heidelberger et al., 2005; Thoreson 2007; Zanazzi and Matthews 

2009).  

The membran fusion in ribbon synapses is also driven by the formation of trans-

SNARE complexes consisting of v- and t-SNAREs (Südhof and Rothman, 2009). The 

specific composition of SNARE complexes differs to some extent between different 

types of ribbon synapses and in comparison to conventional synapses (Heidelberger 

et al., 2005; Thoreson 2007; Zanazzi and Matthews 2009). For expample, syntaxin 

3b replaces syntaxin 1 as Q-SNARE in retinal ribbon synapses while in hair cells and 

pinealocytes syntaxin 1 appears to be present (Zanazzi and Matthews, 2009). 

In ribbon synapses, the Ca2+ sensitivity of exocytosis appears to be unusually high. 

Tonic release is induced by intracellular Ca2+ at around 1µM in photoreceptor 

synapses. In ribbon synapses release can already be elicited at submicromolar 

intracellular Ca2+ concentrations. Furthermore there is a linear relationship between 

exocytosis and intracellular Ca2+ concentrations (Thoreson et al., 2004; Heidelberger 

et al. 2005; Thoreson 2007). The Ca2+ dependance and kinectics of exocytosis vary 

considerably between different types of ribbon synapses and also within one type of 

ribbon synapses (Johnson et al., 2008). 

Also, if you compare rod and cone terminals with each other, the intraterminal Ca2+ 

concentration is different and their release kinetics too. Cones show faster release 

kinetics than rods. This correlates with a higher Ca2+ concentration in cones in 

comparison to rods (Rabl et al. 2005; Sheng et al., 2007; Thoreson et al., 2007).  
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The entry of Ca2+ through voltage-gated Ca2+ channels drives the fusion of synaptic 

vesicles at the presynaptic plasma membrane of ribbon synapses. These are 

predominantly L-type Ca2+ channels that do not (or very slowly) inactivate and stay 

open even during prolonged depolarization. This property is important to maintain 

continuous neurotransmitter release. The Ca2+ channels are located close to the 

plasma membrane-anchored end of the synaptic ribbon (Zanazzi and Matthews, 

2009).     

The continuous exocytosis at the ribbon synapse needs to be balanced by 

compensatory endocytosis to avoid synaptic depression and replenish vesicle pools 

(Schweizer and Ryan, 2006; Wu et al., 2007; Smith et al. 2008). 

 

 

1.5.2. Endocytosis 

           In general, different modes of endocytosis exist. In retinal bipolar cells at least 

two are known from elektrophysiological analyses, a fast retrieval mechanism and a 

slow one (Smith et al. 2008). The fast one (τ ~ 1-2 seconds) is clathrin independent, 

regulated by preynaptic Ca2+ and is selectively inhibited by high intracellular chloride.  

A link between exocytosis and fast endocytic membran retrieval could be the influx of 

presynaptic Ca2+ (Wu et al., 2007). Although the clathrin-independent kiss and run 

mode has been proposed as a potential mechanism for the fast retrieval in ribbon 

synapses, there is until now no evidence for this (LoGiudice and Matthews, 2007). 

The molecular mechanisms for fast endocytosis at synaptic ribbons are unclear. 

Slow endocytosis (τ ~ 10-30 seconds) in bipolar cells on the other hand is clathrin- 

and dynamin-dependent but Ca2+ independent (Jokusch et al., 2005). 

Several studies indicate that synaptic ribbons are involved in endocytotic membrane 

traffic. Electron microscopic tracer analyses showed that ribbons are associated with 

tubular invaginations of the presynaptic plasma membranes and other membrane 

compartments of endosomal origin (Lenzi et al., 1999, 2002; Paillart et al., 2003).  

Endocytotic mutant fish with a defect in synaptojanin, a polyphosphoinositide 

phosphatase important for endocytosis and for the organization of the actin 

cytoskeleton, show unanchored ribbons and strongly disturbed membrane trafficking 

(van Epps et al., 2004). These findings indicate that normal endocytic activity is 

important for ribbon anchoring.  
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1.5.2.1. Clathrin-mediated endocytosis 

                 Clathrin-mediated endocytosis is the uptake of material into the cell from 

the surface using clathrin-coated vesicles. Endocytosis requires the coordinated 

assembly of a large number of proteins at the plasma membrane, the timing and 

composition of which are very regular (Kaksonen et al., 2005; Taylor et al., 2011). 

The pathway itself is versatile, as different cargoes can be packaged using a range of 

accessory adaptor proteins. Clathrin-mediated endocytosis is used by all known 

eukaryotic cells (McMahon and Boucrot, 2011).  

In general clathrin coated vesicle formation has been subdivided into 5 different 

steps: initiation/nucleation, cargo selection, coat assembly, scission and uncoating 

(Figure 6). 

 

 
Figure 6 The clathrin-coated vesicle cycle. A. The proposed five steps of clathrin-coated 
vesicle formation. Nucleation: FCH domain only (FCHO) proteins bind 
phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-rich zones of the plasma membrane 
and recruit EPS15–EPS15R (EGFR pathway substrate 15–EPS15-related) and intersectins 
to initiate clathrin-coated pit formation by recruiting adaptor protein 2 (AP2). Cargo selection: 
AP2 recruits several classes of receptors directly through its µ-subunit and σ-subunit. Cargo-
specific adaptors (for example, stonin, HRB and Numb) bind to AP2 appendage domains and 
recruit specific receptors to the AP2 hub. Coat assembly: clathrin triskelia are recruited by 
the AP2 hub and polymerize in hexagons and pentagons to form the clathrin coat around the 
nascent pit. Scission: the GTPase dynamin is recruited at the neck of the forming vesicle by 
BAR domain-containing proteins, where it self-polymerizes and, upon GTP hydrolysis, 
induces membrane scission. The actin machinery module can be added at this stage for 
actin polymerization at the neck of the pit, which can aid in vesicle production (not shown). 
Uncoating: auxilin or cyclin G-associated kinase (GAK) recruit the ATPase heat shock 
cognate 70 (HSC70) to disassemble the clathrin coat and produce an endocytic vesicle 
containing the cargo molecules. Synaptojanin probably facilitates this by releasing adaptor 
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proteins from the vesicle membrane through its PtdIns lipid phosphatase activity. The 
components of the clathrin machinery are then freed and become available for another round 
of clathrin-coated vesicle formation. B. The clathrin network. The protein–protein 
interactions underlying the different stages of vesicle progression are shown. Major hubs are 
obvious because of their central location in the network and the large number of interacting 
molecules. They are essential for pathway progression and are denoted by the central 
coloured circles. Possible pathways of progression between hubs are shown with thicker 
lines. (McMahon and Boucrot, 2011) 
 
 

Many endocytosis-related proteins are recruited to form complexes on the retrieved 

pits at each step including clathrin, AP2, AP180, dynamin, amphiphysin, endophilin, 

synaptojanin, intersectin, syndapin, auxilin, HSC70 ATPase and so on (Cousin and 

Robinson, 2001).  In this work I focussed on clathrin, dynamin1, amphiphysin, 

endophilin, synaptojanin, syndapin and calcineurin.    

Clathrin is a self-assembling protein that is recruited to membranes from the 

cytoplasm of eukaryotic cells to form a protein coat. The function of this coat is to sort 

proteins in the membran and to contribute to membrane deformation. The clatrin coat 

is composed of two layers: an inner layer of adaptors and an outer clathrin layer.   

The clathrin protein is composed of three trimerized heavy chain subunits that can 

self-assemble into a polyhedral, clathrate (latticed) array on membranes, inspiring its 

name (Pearse 1976; for review see Brodsky 2012). The most well characterized form 

of clathrin has bound light chain subunits (ClCs). Clathrin heavy chains (CHCs) are 

present in all analyzed eukaryotes (Wakeham et al., 2005). With the emergence of 

vertebrates, separate gene duplications gave rise to two CHCs and two CLCs. The 

two CHCs, now named for their encoding human chromosomes (17 and 22), form the 

basis of two distinct clathrins, both of which contribute to protein sorting into coated 

membrane vesicles or domains at different intracellular locations. The well-

characterized isoform CHC17 clathrin is involved in many intracellular membrane 

traffic pathways including receptor-mediated endocytosis, lysosome biogenesis, and 

endosomal sorting. CHC17 is expressed ubiquitously in all tissues. Human CHC22 

clathrin, in contrast, mediates a much more defined step in retrograde transport from 

endosomes to the trans-Golgi network (TGN). In muscle, in which its expression is 

highest, CHC22 controls transport pathways that influence targeting of the GLUT4 

glucose transporter. The same role applies in fat tissue (Vassilopoulos et al., 2009). 

The low level of CHC22 in other tissues also contributes to intracellular retrograde 

transport (Esk et al., 2010). While CHC22 clathrin fills a special, species restricted 
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niche in humans, it is a pseudogene in mice, lost in both laboratory and wild mouse 

strains (Wakeman et al., 2005).     

The two vertebrate genes encoding CLCs produce CLCa and CLCb (formerly called 

LCa and LCb in the literature), both are characterized by neuronal splicing variants. 

In cells, CLCa and CLCb associate exclusively with CHC17 and are involved in its 

function and stability, and they do not bind CHC22 clathrin (Liu et al., 2001).  

The two CHCs are 85% indentical in their protein sequence and comprise two 

structural elements that have been suggested as shared features of membrane 

associated proteins in eukaryotic cells: a long α-solenoid region and a single β-

propeller domain. Other coat proteins and some nuclear pore complex proteins 

comprise different combinations of these two structural domains (Field et al., 2011). 

The CHC17 α-solenoid region consists of eight repeats of a structural motif of 10 

helices of 10–12 residues connected by loops (Ybe et al., 1999). The motif is 

designated as a clathrin heavy chain repeat (CHCR) and a recent alignment of 

CHCRs in bovine clathrin heavy chain is available in the online supplement to Wilbur 

et al. (2010). The CHCRs form the ankle, distal leg, and proximal leg segments, and 

the C-terminal end of CHCR7 contributes to trimerization (Ybe et al., 2007). 

The trimerization domain also comprises a helical tripod that extends from CHCR7 

below the triskelion vertex toward the cell membrane (Fotin et al., 2004). The vertex 

itself is puckered, which gives the CHC17 triskelion a characteristic orientation. The 

terminal domain (TD) of CHC17 is a seven-bladed β-propeller, connected to CHCR0 

of the ankle, by a linker region (Figure 7). Recently, Lemmon & Traub (2012) 

comprehensively reviewed the interactions between the TD and clathrin-binding 

proteins, including descriptions of structural details and binding motifs. The main 

partners for the TD are adaptors and accessory proteins, which interact with four 

different sites on the TD. 

Clathrin (CHC 17) is able to form several types of structures, at the plasma 

membrane it builds classic coated pits and budded coated vesicles with diameters of 

80–200 nm as well as flat lattices (sometimes called “plaques”). The latter are 

observed on the basal surface of an attached cell (Saffarian et al., 2009) at sites of 

integrin-substrate interaction (De Deyne et al., 1998), and can be induced by 

immobilization of ligands for receptors that are normally internalized in clathrin coated 

vesicles (Takemura et al. 1986). Clathrin itself is unable to bind directly to the 

membrane or to cargo receptors and thus relies on adaptor proteins and complexes 
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(for example adaptor protein 2 (AP2)) and acessory proteins (for example AP180 and 

epsin) to be recruited to the plasma membrane during the initiation/nucleation and 

cargo selection process. The adaptor proteins determine the location of clathrin 

assembly and the type of cargo that is accumulated in the clathrin-coated structures 

formed. The formation of endocytic coated vesicles relies on the membrane 

recruitment of AP2 and its interaction with PtdIns(4,5)P2, which induces a 

conformational change in AP2 to promote cargo binding (Antonescu et al., 2011; 

Cocucci et al., 2012; Kelly & Owen, 2011). Single-molecule imaging suggests this 

interaction has to be accompanied by clathrin recruitment, such that successful coat 

formation is a cooperative process (Cocucci et al., 2012). A sucessful clathrin coat 

forms by cooperation between adaptors and clathrin at the outset, enhanced by 

cargo (for review see Brodsky et al., 2012).  

 

 

Figure 7 Structural features of clathrin heavy chains. The domain structures and amino 
acid boundaries are indicated for functional domains of CHC17. The structures reproduced 
are from PyMol (triskelion-accession number 3IYV; trimerization domain-accession number 
3LVH; terminal domain-accession number 2XZG; proximal leg-accession number 1B89) and 
are based on Fotin et al. (2004b), ter Haar et al. (1998), and Ybe et al. (1999). The four 
numbered sites on the terminal domain structure represent binding sites for interacting 
proteins based on Lemmon & Traub (2012). At the bottom, the predicted domain structure of 
CHC22 is aligned with CHC17, and the amino acid boundaries of the eight clathrin heavy 
chain repeats (CHCR 0–7) in CHC17 are delineated. The red marks highlight conserved 
differences between the CHC17 and CHC22 protein families determined by DIVERGE 
analysis, adapted from Wakeham et al. (2005). 
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The vesicle scission depends on the mechanochemical enzyme dynamin. It is 

recruited by BAR domain-containing proteins, which have a preference for the 

curvature of the vesicle neck and are likely to help form the neck in the initiation step 

(Wigge et al., 1995; Ferguson et al., 2009; Sundborger et al., 2011).  

Mammalian genomes contain 3 dynamin genes. The proteins encoded by these 

genes share the same domain organization and an overall 80% homology, but have 

distinct expression patterns. Dynamin 1 is selectively expressed at high levels in 

neurons and is generally not present in non-neuronal tissues, although it can be 

detected in many cultured cell lines. Dynamin 2 is expressed ubiquitously. Dynamin 3 

is found predominantly in the brain (at much lower levels than dynamin 1) and testis, 

and at lower levels in some tissues such as the lung. Dynamin diversity is 

compounded by the existence of multiple splice variants for each of the three 

dynamins (for review see Ferguson and Camilli, 2012).  

Dynamin 1 has been typically described as comprising: an N-terminal GTPase or G 

domain; a ‘middle’ or ‘stalk’ region; a pleckstrin homology (PH) domain; a GED 

domain, so called because its interactions with the GTPase domain had suggested a 

function as a GTPase effector domain; and a prolinerich C-terminal region, typically 

referred to as the proline-rich domain (PRD, Figure 8a).    
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Figure 8 Structure of dynamin and putative mechanism of dynamin-mediated 
membrane fission. 
A. Top: Linear representation of the domain organization of dynamin based on its 3D 
structure as revealed by crystallographic studies (numbers indicate amino acid position 
within the primary sequence of human dynamin 1, xa splice variant). Regions that belong to 
the same folded module are shown in the same color. Bottom: crystal structure of a dynamin 
dimer (color coded to match the linear representation). Molecular graphics were created with 
Pymol, PDB code 3SNH 42). B. Schematic representation of dynamin dimers and of helical 
dynamin polymers around a tubular template in two different orientations (90 degrees 
rotation). The colour-coding of the domains matches the colors of panel (a). The approximate 
location of the bound nucleotide is highlighted in yellow. Dynamin polymerization occurs as a 
result of interactions between the stalks of dynamin monomers (interface 2) and between 
stalk dimers (interfaces 1 and 3). The GTP-dependent dimerization of G domains between 
adjacent rungs of the dynamin helix (highlighted in yellow stars, longitudinal view of the 
helix), is thought to promote assembly-stimulated GTPase activity, resulting in membrane 
constriction and ultimately fission. D. Proposed GTP hydrolysis-dependent lever-like 
movement of dynamin's neck (BSE) relative to the Gdomain. (e) Schematic view of the key 
steps leading to dynamin-mediated membrane fission. E. Cryo-EM image showing a helical 
polymer of purified dynamin that has driven the formation of a tubule from a liposome. Image 
kindly provided by Adam Frost andVincenz Unger (University of Utah and Northwestern 
University respectively).Ferguson and De Camilli, 2012  
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The PRD contains an array of PxxP amino acid motifs that interact with many SH3 

domain containing proteins to localize dynamin at endocytic sites and coordinate 

dynamin's function with these other factors during endocytosis (Grabs et al., 1997; 

Lundmark and Carlson, 2004; Shpetner, Herskovitis and Vallee, 1996). The PRDSH3 

interactions are typically of moderate affinity but the presence of multiple SH3-

binding motifs in the PRD and multiple SH3-domain-containing proteins at endocytic 

sites, and the polymeric state of these proteins results in a significant avidity effect 

that enhances the ability of such interactions to concentrate dynamin. At least some 

interactions of the dynamin PRD are regulated by phosphorylation (Grabs et al., 

1997). Purified dynamin spontaneously polymerizes into rings and helices when 

incubated in low ionic strength solutions (Hinshaw and Schmid, 1995) or in the 

presence of narrow negatively charged tubular templates (such as membrane 

tubules, microtubules or actin bundles) (Mooren et al., 2009; Roux et al., 2010). 

During the synaptic vesicle scission Dynamin assembles at the neck of a budded 

endocytic clathrin-coated-vesicle and the hydolysis of GTP induces a conformational 

change who leads to a constriction or stretching to promote vesicle scission (Figure 

8b). 

One of the dynamin recruiting BAR-domain containing proteins is amphiphysin I.  It is 

an acidic, hydrophilic protein that is abundant in the nervous system and 

concentrated in presynaptic terminals. Until now amphiphysin I is known to have 6 

splice variants, one brain amphiphysin I (695aa), one neuronal amphiphysin I (653aa 

with a deletion of amino acids 425-466) (Floyd et al., 1998), and 4 retina-specific 

amphiphysin Irs (Terada et al., 2002). Amphiphysin Ir is specifically expressed in the 

retina and it has been shown to be specifically expressed in rat ribbon synapses 

(Hosoya et al., 2004). 

Amphiphysin I is a modular protein with a α-helix, a BAR domain, a proline-rich 

domain (PRD), a CLAP domain (clathrin, AP2-binding domain), and a C-terminal 

SH3 domain (Figure 9). 
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Figure 9 Interactions between amphiphysin I and other endocytic components during 
clathrin mediated SVE. Amphiphysin I is a multilinker protein. It interacts with amphiphysin 
II (amphi. II), lipid membrane (PI(4, 5)P2), cdk5p35 complex, and PLD (phospholipase D) at 
the N-terminus concluding BAR domain, with endophilin (endophi.) at the PRD domain, with 
clathrin (clath.) and AP2 at the CLAP domain, and with dynamin 1 (dyn. I), synaptojanin 1 
(synj. I), and cain at the C-terminal SH3 domain. There is a positive feedback between PLD 
and PIP2:PLD will increase PIP2 production by hydrolyzing PC to PA. PA activates PI(4)P5K 
activity, then PIP2 will be produced from PI(4)P by PI(4)P5K activity, while at the same time 
PIP2 activates PLD. Amphiphysin I (1-373aa) has been reported to bind PLD and to inhibit 
PLD activity. The interaction between amphiphysin I and PLD will regulate PIP2 production, 
at the same time AP180 and synj. I also have an inhibiting effect at PLD activity and thus 
regulate PIP2 dependent clathrin complex formation. On the other hand, amphiphysin I can 
regulate CME by recruiting cain (calcineurin inhibitor). Calcineurin binds dynamin and is 
recruited to the endocytic zone by amphiphysin I to execute its dephosphorylation effect on 
endocytic proteins, which is essential for CME induction. But its activity will be downregulated 
by its inhibitor, cain. This may promote cdk5 dependent rephosphorylation and dissociation 
of endocytic protein. Besides the association with amphiphysin I, the schematic figure also 
shows the interactions among other endocytic proteins (thin line). 
        

 

Amphiphysin I interacts with a lot of other endocytic components during synaptic 

vesicle endocytosis including interactions with PIP2 of the plasma membrane, PLD, 

the cdk5/p35 complex and amphiphysin II at its N-terminal region; interactions with 

endophilin by the PRD domain; interactions with AP2 and clathrin by the CLAP 

domain; and interactions with dynamin I, synaptojanin and cain by the C-terminal 

SH3 domain (Figure 9; for review see Wu et al., 2009). 

Amphiphysin I is suggested to be colocalized with dynamin I on the collar of the 

retrieved pits (Wigge et al., 1998). It senses and facilitates membrane curvature (Mc 

Mahon et al., 1997) and stimulates the GTPase activity of dynamin in presence of 

lipid membrane (Yoshida et al., 2009), and thus is involved in the invagination and 

fission steps of clathrin mediated synaptic vesiscle endocytosis.   

Another BAR domain containing proteins which interacts with dynamin is syndapin 
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(also known as Pacsin). It occurs as three genes, producing three primary protein 

isoforms in mammalians. All the three isoforms show high conservation of their 

domain structure and sequence homology, exept for the variable region (Kessel and 

Qualmann, 2004) (Figure 10). 

 

 

Figure 10 Domain organization and structure of syndapin isoforms. Schematic 
representation of the domain structure of the three syndapin isoforms and splice variants. 
Syndapin II splice variants Aa (l) long variant; Ab; Ba; and Bb (s) short variant have the 
indicated dotted labelled regions spliced from the Aa (l) variant. Syndapin I is expressed 
mainly in neurones, whereas syndapin II is ubiquitously expressed in all tissues, and 
syndapin III is expressed mainly in skeletal muscle and the heart. All three isoforms contain 
an N-terminal F-BAR domain and a C-terminal SH3 domain. The two domains are connected 
by a long variable linker region, which includes multiple Asn-Pro-Phe (NPF) sequence motifs 
for only syndapin I and II. Syndapin I is autoinhibited, whereby the SH3 domain associates 
with the F-BAR domain, reducing its membrane tubulating activity. 
 

 

Syndapin I is the neuronal-specific isoform (Paulsson et al., 1998; Qualmann et al., 

1999), syndapin II is ubiquitously expressed in all examined tissues (Ritter et al., 

1999) and syndapin III is expressed mainly in skeletal muscles and heart (Modregger 

et al., 2000; Sumoy et al., 2001). 

All three isoforms are members of the F-BAR domain subfamily (Paulsson et al., 

1998; Qualmann et al., 1999) and the protein sequences for their N-terminal F-BAR 

domains are highly conserved. They all contain a C-terminal Src-homology 3 (SH3) 
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domain for autoinhibition and to mediate protein–protein interactions. The primary 

proteins that interact at this SH3 domain are common to the three forms and include 

dynamin, synaptojanin, synapsin and neural Wiskott–Aldrich syndrome protein (N-

WASP) (Qualmann et al., 1999; Modregger et al., 2000; Qualmann and Kelly, 2000). 

The two major domains in the three syndapins are connected by a long variable 

linker region. In this regard, syndapin I and II differ from syndapin III by the presence 

in the linker of multiple asparagineproline-phenylalanine (NPF) amino acid sequence 

motifs. Such motifs are known to bind Eps15 homology-domain (EHD)-containing 

proteins such as EHD1, which are typically involved in vesicle recycling (Braun et al., 

2005) (Figure 10). Syndapin I has a role in activity-dependent bulk endocytosis 

(ADBE) in neurones; syndapin II in clathrin-mediated endocytosis, caveolae 

formation, Golgi traffic and endosome recycling; and syndapin II in glucose 

transporter trafficking. Both, syndapin I and II, interact with serval endocytic key 

proteins such as dynamin, synaptojanin and synapsin. 

The syndapin I – dynamin I interaction is the best understood interaction in central 

nerve terminals. Its binding is inhibited by dynamin I phosphorylation at the two main 

phosphosites Ser774 and Ser778; thus it preferentially interacts with the 

dephosphorylated form of dynamin (Anggono et al., 2006). Their interaction is 

necessary for SVE, as well as for secretory fusion and pore formation in chromaffin 

cells (Anggono et al., 2006; Samasilp et al., 2012). Syndapin binding to dynamin 

involves not only dephosphorylation at Ser774 and Ser778, but also requires two 

sequence elements in the region 772-RRSPTSSPTPQRRAPAVPPARPGSR-796 of 

the dynamin I proline-rich domain (PRD). First, it utilizes a single PxxP core motif 

common to almost all SH3 domain interactions. Second, it requires an adjacent non-

PxxP N-terminally anchored extension that bridges the phosphobox (a region 

encompassing residues 772–781 of the dynamin I PRD). The latter is an unusual 

feature not known to be involved in most other SH3 domain interactions and may 

contribute to binding specificity and high affinity (Anggono and Robinson, 2007).  

Also essential for the clathrin-mediated endocytosis is the BAR-domain containing 

protein endophillin. Two subfamillies of endophillin are reported endophillins A (Chen 

and Antonarakis, 1997; Micheva et al., 1997) and endophillins B (Huttner and 

Schmidt, 2000).  

All endophilins consist of an N-terminal BAR domain, a variable middle region and a 

C-terminal SH3 domain. BAR domains are dimerization domains that are able to 
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induce and stabilize membrane curvature and to ‘‘sense’’ (i.e., bind selectively to) 

already curved membrane. The endophilin BAR domain (henceforth the endoBAR) 

forms a crescent-shaped dimer, with each monomer made up of three kinked, 

antiparallel alphahelices (Gallop et al., 2006; Massuda et al., 2006; Weissenhorn et 

al., 2005). The endoBAR belongs to the N-BAR class, implying that an amphipathic 

helix, Helix 0 (H0), is apposed to the N-terminus of the actual BAR domain. The 

endoBAR also has an insert in Helix 1, the most N-terminal of the three alpha 

helices. The Helix 1 insert (H1I, residues 60 to 88 in mammalian endophilin A1) 

protrudes from the concave endoBAR surface and establishes a second amphipathic 

helix in addition to Helix 0. This helix is also named the central amphipathic helix. 

The higher-order structure of the central variable region is unknown. However, it is 

known that the variable region is important in determining whether endophilin 

promotes or inhibits receptor-mediated endocytosis (Sugiura et al., 2004). It contains 

several phosphoresidues, implying that it has a role in the post-translational 

regulation of endophilin activity. It also harbors a calcium channel binding site (Chen 

et al., 2004) H3 domains are common protein-recognition modules (for rewiev see 

Kaneko, Li and Li, 2008). The structure of the rat endophilin A2 SH3 domain has 

been solved by X-ray crystallography (Loll et al., 2004). It adopts the b-barrel core 

typical of SH3 domains, with a hydrophobic groove that accommodates proline-rich 

peptide sequences present in binding partners. It is highly similar to the NMR 

structure of the human endophilin A1 and A3 SH3 (Gao et al., 2004). Despite this 

high degree of structural similarity, the SH3 domains of the three paralogs can exhibit 

specificity in their interaction with binding partners (see, for example Yam et al., 

2004).  
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Figure 11 The domain structure of the endophilin protein family. Schematic 
representation of human Endophilin A and B proteins, all endophilins are composed of an N-
terminal N-BAR domain and a C-terminal SH3 domain. The helix 0 (HO) and helix 1 insertion 
(H1l) regions located in the N-BAR domain are well conserved between the endophilin A and 
B families (Takahashi, Meyerkord and Wang, 2014). 
 

 

Endophilin A is reported to be linked to synaptic vesicle endocytosis and to bind 

synaptojanin and dynamin1 (Ringstad, Nemoto and De Camilli, 1997).  Endophilin A 

is concentrated in presynaptic nerve terminals, and strongly overlaps in distribution 

with dynamin I, synaptojanin and amphiphysin I (Ringstad, Nemoto and De Camilli, 

1997). It is thought to coordinate curvature acquisition with both fission and uncoating 

of clathrin-coated vesicles via the interaction of its carboxy-terminal SH3 domain with 

dynamin and the PI(4,5)P2 phosphatase synaptojanin (Ringstad et al. 2001). 

Endophilin was proposed to start acting at early stages of clathrin-mediated budding, 

based on antibody-microinjection experiments in giant lamprey axons (Ringstad et al. 

1999). However, more recent imaging studies (Perera et al. 2006; Ferguson et al. 

2009; Taylor et al. 2011) and genetic studies in Drosophila, C. elegans, and mice, 

favor late actions (Schuske et al. 2003; Verstreken et al. 2003; Dickman et al. 2005; 

Milosevic et al. 2011), primarily in uncoating via endophilin’s property to recruit 

synaptojanin. 

Synaptojanin is a PI(4,5)P2 phosphatase that can dephosphorylate both the 4- and 

5-position of inositol rings. Its proline-rich C-terminus interacts with the SH3-domain 
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of endophilin and other BAR proteins (McPherson et al., 1996; Guo et al., 1999; 

Ringstad et al., 2001) (Figure 12). Therefore synaptojanin is primarily recruited by 

endophilin at the necks of clathrin-coated pits just before fission and one of its main 

functions is to couple the fission reaction of endocytosis to the shedding of the 

adaptors during uncoating (Cremona and De Camilli, 2001; Milosevic et al., 2011).  It 

has also been proposed that the PI(4,5)P2 phosphatase activity of synaptojanin may 

have a direct action in fission by creating a lipid-phase-boundary, and thus an 

interfacial force, between a PI(4,5)P2-depleted bud and the PI(4,5)P2-rich plasma 

membrane (Liu et al., 2009), or by promoting the dissociation of dynamin after 

constriction of the dynamin collar (Chang-Ileto et al., 2010). However, genetic studies 

in mice support a primary uncoating function of synaptojanin, although they do not 

rule out other roles (Cremona et al., 1999; Hayashi et al., 2008; Milosevic et al., 

2011). The zebrafish nrc mutant is characterized by a defect in the synaptojanin (van 

Epps and others 2004; Mani and others 2007). In this mutant, synaptic ribbons are 

unanchored, and membrane trafficking is strongly disturbed as judged by the 

ultrastructural appearance of abnormal membrane profiles and reduced number of 

synaptic vesicles. The disturbance in synaptic transmission between photoreceptors 

(cones) and bipolar cells can lead to blindness. 

 

 
Figure 12 Schematic domain structure of synaptojanin: Synaptojanin contains two 
domains that dephosphorylate phosphatidylinositol polyphosphates (PtdInsPs): Sac and Ins 
5-PPase. It has a PRD that binds many SH3 domain-containing proteins and an alternatively 
spliced isoform (170 kDa) that has three C-terminal NPF repeats that bind clathrin, eps15 
and AP2. 
 
 

The structure of synaptojanin shows in generell an N-terminal Sac-domain (Figure 

12), homologous to the yeast protein Sac1, which has been genetically implicated in 

the regulation of phospholipid metabolism (De Camilli et al., 1996). Its central region 

represents its 5-phosphatase activity directed towards a variety of soluble inositol 

polyphosphates and inositol phospholipids (McPherson et al., 1996; Woscholski et 
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al., 1997; Chung et al., 1997; Sakisaka et al., 1997). Phosphoinositides function in 

regulating a number of important proteins involved in synaptic vesicle endocytosis 

including the clathrin adaptors AP2 and AP180 (Gaidarov et al. 1996; Hao et al., 

1997), dynamin (Zheng et al., 1996; Salim et al., 1996; Lin and Gillmann, 1996) and 

synaptotagmin (Fukuda et al. 1995). The C-terminus of synaptojanin, which is 

proline-rich, contains several SH3-domain consensus-binding sites and in fact, 

amphiphysin I and II interact in vitro with synaptojanin through distinct SH3 binding 

sequences (Micheva et al., 1997) (Figure 12), as well as endophilin. Furthermore 

synaptojanin has three NPF repeats at its C-Terminus through which clathrin, eps 15 

and AP2 bind to synaptojanin. 

Also important for the clathrin coated vesicle cycle is the Ca2+-dependent 

phosphatase calcineurin. Clathrin-mediated endocytosis is regulated by the 

phosphorylation and dephosphorylation of endocytic proteins. When nerve terminals 

in the brain are stimulated, a group of phosphoproteins (called dephosphins, 

including dynamin I, amphiphysin I and II, synaptojanin, epsin, eps15 and AP180) are 

coordinately dephosphorylated by calcineurin (Cousin and Robinson, 2001; Figure 

13). The switching from the phosphorylated state of endocytic proteins to the 

dephosphorylated state after nerve terminal depolarization is essential for triggering 

calthrin mediated endocytosis.  
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Figure 13 The phosphorylation cycle of the dephosphins regulates protein–protein 
interactions and protein–lipid interactions. In a resting nerve terminal a pool of the 
dephosphins (pink) are phosphorylated and predominantly in the cytosol. On stimulation, 
Ca2+ influx activates calcineurin (CaN), which dephosphorylates the dephosphins. This 
stimulates interactions between the dephosphins and other endocytosis proteins (green), 
which form essential endocytic protein complexes at different stages of the pathway (based 
on dynamin, amphiphysin, adaptin and epsin or eps15). For the sake of clarity, most other 
interactions not related to phosphorylation are omitted. Dephosphorylation also stimulates 
interactions between the different complexes, which links the different stages of endocytosis. 
The blue arrows indicate essential protein interactions and the broken red bars indicate the 
interactions known to be inhibited by protein phosphorylation. Essential interactions of the 
dephosphins with membrane lipids are indicated by the broken black lines and arrows. Many 
of the cytosolic dephosphins are recruited to the plasma membrane via interactions with 
membrane lipids, which provides a mechanism of recruitment to sites of endocytosis. At least 
one dephosphin in each protein complex associates with membrane lipids. For dynamin 1, 
dephosphorylation stimulates interaction with membranes. Abbreviations: Amph, 
amphiphysin; CaN, calcineurin; Dyn1, dynamin 1; Endoph, endophilin; PI3K, 
phosphatidylinositol 3 kinase; POB1, partner of Ral-binding protein 1; SynaptoJ, synaptojanin 
(Cousin and Robinson, 2001; Trends in Neurosiences) 
 

 

Clathrin-mediated endocytosis has a range of different functions, including regulating 

the surface expression of proteins, sampling the cell’s environment for growth and 
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guidance cues, bringing nutrients into cells, controlling the activation of signalling 

pathways, retrieving proteins deposited after vesicle fusion and turning over 

membrane components by sending these components for degradation in lysosomes. 

In neuronal synapses clathrin-mediated endocytosis is coupled to the exocytic 

activity and is essential for the synaptic vesicle recyling to maintain the pool of 

synaptic vesicles. It has also an integral role in regulating the size (Nonet et al., 

1999) and composition of synaptic vesicles (Takamori et al., 2006).       

 

 

1.5.2.2.Clathrin-independent endocytosis 

 Clathrin-independent endocytosis is the uptake of material into the cell from 

the surface without any coating and seems to have no mechanism for selection of 

cargo proteins. Cells can have several forms of clathrin-independent endocytic 

mechanisms and they can be responsible for the major fraction of membrane and 

fluid taken into the cell. The vesicular uptake can be associated with for instance 

RhoA, Rac, Cdc42, Arf6, caveolae and macropinocytosis. Importantly, lipid 

modification, BAR-proteins and insertion of proteins into the plasma membrane help 

to create invaginations that facilitate vesicle formation, in some cases even without 

dynamin (Roberts-Galbraith et al. 2010; Graham et al., 2010; for review see Sandvig 

et al., 2011). Important players in vescile formation are actin and actin-associated 

proteins (Rohn et al., 2010), as well as a member of the sorting nexin family, nexin 9 

(van Weering et al. 2010). 

Several clathrin-independent endocytic mechanisms are found in all cells studied so 

far, but their location, their capacity, properties and functions can be cell-type and 

context dependent. As already discribed under 1.5.2 the molecular mechanisms for 

clathrin-independent endocytosis at synaptic ribbons are unclear. 

 

 

1.6. Working hypothesis 

    The continuous exocytosis at the ribbon synapse needs to be balanced by 

compensatory endocytosis to replenish vesicle pools. The rate of vesicle 

replenishment is an important factor in the signalling at photoreceptor ribbon 

synapses (Jackman et al., 2009; Babai et al., 2010). Recent analyses indicated that 

synaptic ribbons have an important role in the resupply of release-ready synaptic 
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vesicles (Spassova et al., 2004; Griesinger et al., 2005; Jackman et al., 2009; Frank 

et al., 2010; Babai et al., 2010; Schnee et al., 2011; Snellman et al., 2011; Tian et al., 

2012). How vesicle replenishment is organized and accomplished in the ribbon 

synapse is still largely unclear. In this work I applied super-resolution structured 

illumination microscopy (SR-SIM) and immunogold electron microscopy to localize 

key proteins of the recycling endocytic machinery in photoreceptor ribbon synapses. I 

found a local endocytic machinery highly enriched at the peri-active zone in close 

vicinity to the synaptic ribbon complex. This local endocytic machinery is ideally 

suited to “reload” empty vesicle sites at the active zone and/or the synaptic ribbon 

and therfore to contribute to signalling at the ribbon synapse. 
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2. Material and Methods 

 

2.1. Materials 

 

2.1.1. Antibodies 

Primary antibodies: 

Anti-RIBEYE(B)-domain/CtBP2 (U2656; Schmitz et al., 2000) polyclonal rabbit 

antiserum against RIBEYE(B)-domain. It was used for immunofluorescence labelling 

in a 1:2,000 dilution and for western blotting in a 1:10,000 dilution (if not denoted 

otherwise). 

Anti-CtBP2 (BD Transduction Laboratories, #612044) mouse monoclonal 

antibody raised against the carboxyterminal amino acids (aa) 361-445 of CtBP2. This 

antibody detects RIBEYE (i.e. RIBEYE(B)-domain/CtBP2) in western blotting 

analyses and labels synaptic ribbons in immunofluorescence labelling analyses (e.g. 

Schwarz et al., 2011). This antibody was used for immunofluorescence labelling at a 

1:500 dilution. 

Anti-dynamin (hudy-1, upstate/Millipore [order number #05-319]). For the 

detection of dynamin, we used a well characterized protein G-purified monoclonal 

mouse antibody generated against a peptide (aa822-aa838, 

SPDPFGPPPQVPSRPNR) in the proline-rich, carboxy-terminal region of dynamin-1 

(Warnock et al., 1995; Takei et al., 1995; Hinshaw and Schmid, 1995). Dynamin-1 is 

the predominant neuron-specific form of dynamin expressed in brain (e.g. Raimondi 

et al., 2011; for review, see Ferguson and de Camilli, 2012). The amino acid 

sequence of this peptide used for immunization is highly conserved between species 

in dynamin-1 (e.g. 100% amino acid (aa) identity in man, mouse, pig, cow and 

horse). The amino acid sequence of this peptide stretch is also conserved in 

dynamin-2, the ubiquitous, non-neuronal form of dynamin (70% aa identity) and also 

in dynamin-3 (77% aa identity). Dynamin-3 is also preferentially expressed in brain 

(as dynamin-1) but at much lower levels (Raimondi et al., 2011; for review, see 

Ferguson and De Camilli, 2012). The hudy-1 monoclonal antibody was denoted as 

“anti-dynamin” antibody in the result section. The corresponding blocking peptide 

was synthesized by Dr. Martin Jung (Saarland University; Dept. of Biochemistry and 

Molecular Biology) and used for pre-absorption control experiments. The hudy-1 

monoclonal antibody was applied for western blotting and immunogold electron 
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microscopy in a 1:1,000 dilution and for immunostaining in a 1:500 dilution (if not 

denoted otherwise). 

Anti-syndapin/pacsin (Synaptic Systems, Göttingen, Germany, product 

number 196002) polyclonal antiserum against syndapin-1/pacsin-1. The antiserum 

was used for immunofluorescence microscopy at a 1:250 dilution, for western blotting 

in a 1:1,000 dilution. The syndapin peptide was purchased from Synaptic Systems 

(196-0P) for pre-absorption control experiments. 

Anti-amphiphysin (Synaptic Systems, Göttingen, Germany, product number 

120002) was raised against a synthetic peptide (aa2-aa15; ADIKTGIFAKNVQK) of 

amphiphysin 1. The antiserum was used for western blotting in a 1:1,000 dilution and 

for immunostaining in a 1:250 dilution. The blocking peptide was purchased from 

Synaptic Systems (120-OP) for pre-absorption control experiments. 

Anti-endophilin1 (Synaptic Systems, Göttingen, Germany, product number 

159002) is a polyclonal antiserum raised against a synthetic peptide coding for 

aa256-aa276 of mouse endophilin 1 (QPKPRMSLEFATGDSTQ). For 

immunostaining the antiserum was diluted 1:250 and for western-blotting 1:1,000. 

The endophilin peptide was also obtained from Synaptic Systems (Synaptic Systems, 

159-OP) for pre-absorption (blocking) control experiments. 

Anti-pan-calcineurin A antibody is an affinity-purified rabbit polyclonal antibody 

raised against a carboxyterminal peptide of calcineurin A (antibody from Cell 

Signaling [via NEB, New England Biolabs]; order number #2614). The antibody is 

purified by both protein A- and peptide-affinity chromatography. It was used for 

immunofluorescence microscopy in a 1:100 dilution and for western blotting in a 

1:1,000 dilution. 

Anti-clathrin heavy chain (abcam; ab21679), a polyclonal rabbit antibody 

raised against a peptide in the carboxyterminus of human clathrin heavy chain. The 

blocking peptide (for pre-absorption control experiments) was also obtained from 

abcam (ab23440). This antibody detects clathrin heavy chain, variant 1 (CHC-V1) 

(see text) and was used for immunofluorescence microscopy and western blotting in 

a 1:1,000 dilution; for postembedding immunogold electron microscopy it was diluted 

1:250. 

Anti-clathrin heavy chain (Cell Signaling/NEB; order number: P1663), an 

affinity-purified rabbit antibody against a carboxyterminal peptide of human clathrin 

heavy chain. This antibody detects clathrin heavy chain, variant 1 (CHC-V1) (see 



- Material and Methods - 

 

  40 

 

40 

text) and was used at a 1:250 dilution for immunofluorescence microscopy. The 

immunolabelling data on CHC-V1 presented were obtained by immunolabelling with 

the above mentioned antibody from abcam (abcam21679) against CHC-V1; but 

qualitatively identical immunolabelling results were obtained also with the anti-CHC-

V1 antibody from Cell Signaling (P1663) (data not shown). 

Anti-clathrin heavy chain (Abcam/ab59710) is a polyclonal rabbit antiserum 

which was raised against aa619-638 (KAGLLQRALEHFTDLYDIKR) of rat clathrin 

heavy chain (100% identical with mouse, highly conserved). For western blotting, the 

antibody was diluted 1:1,000 and for immunofluorescence labelling 1:500. This 

antibody detects clathrin heavy chain, variant 2 (CHC-V2) (see text). 

Anti-clathrin heavy chain (X22 mouse monoclonal antibody raised against 

clathrin heavy chain; obtained from Abcam). This antibody was raised against 

clathrin heavy chain purified from human brain (Brodsky, 1985). The antibody was 

used for immunofluorescence microscopy in a 1:100 dilution. This antibody detects 

clathrin heavy chain, variant 2 (CHC-V2) (see text). 

Anti-panSV2, a monoclonal antibody against the synaptic vesicle protein SV2 

(panSV2 monoclonal antibody, raised against all SV2 variants (Buckley and Kelly, 

1985) was used to label the synaptic vesicle-containing presynaptic terminals. The 

supernatant was collected from cultured hybridoma cells (obtained from the 

Developmental Studies Hybridoma Bank (DSHB), University of Iowa) and used at a 

1:20 dilution. 

Anti-VGLUT1 (NeuroMAB, UC Davis; clone N28/9), a mouse monoclonal 

antibody, raised against fusion protein encoding aa493-560 of the rat vesicular 

glutamate transporter 1 (VGLUT1). The antibody was used for immunofluorescence 

microscopy in a 1:500 dilution. VGLUT1 is a marker protein of glutamatergic synaptic 

vesicles (Wojcik et al., 2004). 

Anti-VGLUT1 (Synaptic Systems, Göttingen; order number: 135302). This 

rabbit polyclonal antibody was raised against aa456-560 of rat vesicular glutamate 

transporter 1 (vglut1) and used for immunofluorescence microscopy at a 1:500 

dilution.  

Anti-PSD-95 (NeuroMAB, UC Davis; clone K28/43), a mouse monoclonal 

antibody raised against fusion protein encoding aa77-299 of human PSD-95. This 

antibody was used at a 1:500 dilution for immunofluorescence microscopy. 

Anti-PSD-95 (L667), a rabbit polylclonal antibody against rat PSD-95 (Irie et 
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al., 1997). This antibody was a kind gift of Prof. Dr. Thomas C. Südhof (Stanford 

University) and used at a 1:1,000 dilution for immunofluorescence microscopy.  

Anti-Basssoon (Stressgen, VAM-PS003), a mouse monoclonal antibody 

raised against fusion protein encoding aa738-103 of rat bassoon. This antibody was 

used at a 1:100 dilution for immunofluorescence microscopy.  

Anti-Bassoon (Synaptic Systems, Göttingen; order number: 141002) is a 

polyclonal rabbit antibody raised against a fusion protein encoding the 

carboxyterminal 330 amino acids of rat bassoon.  The antibody was used for 

immunofluorescence in a 1:100 dilution.  

 

 

2.1.2. Secondary antibodies  

 The following secondary antibodies were used: chicken anti-mouse-Alexa488; 

donkey anti-rabbit-Alexa568; goat anti-mouse Cy5; goat anti-mouse-Alexa488. All 

fluorophore-conjugated secondary antibodies were purchased from Molecular 

Probes/Invitrogen and used at a 1:1,000 dilution for 1hr at room temperature (RT) for 

immunlabelling experiments.  

For western blot analysis two antibodies, conjugated with horseradish peroxidase, 

from Sigma Aldrich were used: one anti mouse (IgG) and one anti rabbit (IgG) 

antibody, both raised in goat.  

For immogold labellings a goat anti-mouse or a goat anti-rabbit secondary antibody 

conjugated to 10nm gold particles (Sigma) were used. 

 

 

2.1.3. Animal tissue 

 For all experiments done with mouse retinas adult mice of either sex were 

used. Mice were sacrificed in the early afternoon. Eyes were collected at 

environmental daylight conditions (luminance of ≈2 cd/m2). Similar data as shown for 

the mouse retina were also obtained with the bovine retina (of either sexes; data not 

shown). Bovine retina was isloated out of bovine eyes, received from 

slaughterhouse. 
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2.1.4.Buffers and Media 

 

ECL-solution ECL-I: 

Tris 1M, pH 8.5, 10 ml 

Luminol stock 1 ml 

Para-hydroxy Coumarin Acid (PCA)   

440 µl.  

Make up to 100 ml with dd H2O 

ECL-II : 

Tris 1M, pH 8.5, 10 ml 

H2O2  64µl  

Make up to 100 ml with dd H2O 

5x PBS  40g NaCl 

1g KCl 

7.2g Na2HPO4 

1.2g KH2PO4  

Make up to 1 liter with dd H2O 

Ponceau S-stain 30g Trichloroaceticacid  

5g Ponceau S 

Make up to 1 liter with dd H2O 

SDS-PAGE-Electrophoresis 

buffer 

3.03g Tris 

14.4g Glycine 

1.0g SDS 

Make up to 1 liter with dd H20 

SDS-loading buffer 4 x 1,6g SDS 

4ml β-Mercaptoethanol 

2ml Glycerol 

2ml 1M Tris pH 7 

4mg Bromo phenol blue 

2ml of ddH2O 
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Transfer Buffer (Western Blot) Tris 15.125g  

Glycine 72.05g 

Methanol 1 liter 

Make up to 5 liters with dd H2O 

 

 

 

2.2, Methods 

2.2.1. Immunofluorescence microscopy 

 

2.2.1.1. Immunolabeling of cryo-sections 

 Freshly isolated, chemically unfixed mouse retina was flash-frozen in liquid 

nitrogen–cooled isopentane. From these samples, 10 µm cryostat sections were cut 

with a Leica cryostate and heatfixed for 15 min at 60° Celsius. After heat-fixation 

sections were washed with PBS for 5min. Afterwards sections were incubated with 

the respective primary and secondary antibodies as described (Schmitz et al., 2000; 

Alpadi et al., 2008),  

 

 

2.2.1.2. Immunolabelling of 0.5µm-thin resin sections: 

Embedding procedure 

 The preparation procedure for sample embedding into epon resin is a 

modification from the procedure described by Drenckhahn and Franz (1986). In brief, 

tissue was flash-frozen in liquid nitrogen-cooled isopentane. Then, as a modification 

of the original procedure, lyophilization of the tissue was performed while the tissue 

was continuously cooled by liquid nitrogen. Lyophilization of the samples was 

typically performed at a vacuum of ≈10-7 mbar (10-5 Pa) using a TCP270 

turbomolecular pump (Arthur-Pfeiffer-Vacuumtechnik, Wetzlar/Aßlar, Germany) 

controlled by a PKG020 Pirani-gold cathode gauge control unit and an oil diffusion 

pump as pre-pumping unit (type DUO 004B; Arthur-Pfeiffer-Vacuumtechnik, 

Wetzlar/Aßlar, Germany). Samples were lyophilized in liquid nitrogen for ≈24hrs. 

Afterwards, samples were equilibrated to room temperature, infiltrated with Epon 

resin and degassed for 24hrs to ensure complete penetration with Epon. Curing of 



- Material and Methods - 

 

  44 

 

44 

the resin-embedded samples was done at 60oC for ≈24hrs. 

 

 

2.2.1.3. Immunolabelling procedure for use with 0.5µm-thin resin sections 

 Immunofluorescence labelling experiments were performed with semithin 

sections (thickness of approx. 0.5µm) to obtain optimal resolution. The usefulness of 

semithin sections to obtain images with nanoscale resolution has been previously 

demonstrated by Punge et al. (2008). From the tissue blocks, 0.5µm -thin sections 

were cut with a Reichert ultramicrotome. Epon was removed by the procedure of 

Major et al (1961) with slight modifications. In brief, Epon was removed by incubating 

the sections in the following solutions: sodium methanolate (30% solution in 

methanol; MERCK) (10min); 1:1 mixture of xylol/methanol (10min); acetone 

(2x10min), H2O (10min), PBS (10min). Afterwards sections were incubated with the 

respective primary and secondary antibodies as described (Schmitz et al., 2000; 

Alpadi et al., 2008),  

 

 

2.2.1.4. Control incubations  

 Control incubations for immunolabelling experiments were done by omitting 

the primary antibody followed incubating with secondary antibody only. No 

immunofluorescent signal was observed in photoreceptor synapses in these control 

incubations. In further control experiments, primary antibodies were pre-absobed with 

the respective antigen as described below and processed for immunolabelling. 

 

 

2.2.1.5. Direct-Labelling of primary antibodies (mouse anti-CtBP2) with 

fluorophores (DyLight 488/DyLight650) 

 For triple immunolabelling experiments, purified anti-CtBP2 mouse monoclonal 

antibody was conjugated with DyLight488 (or DyLight650) amine-reactive dye with 

the Thermo Scientific DyLight 488 Amine Reactive Dye Kit (Thermo Scientific 

#5302)/Thermo Scientific DyLight650 Microscale Antibody Labeling Kit (Thermo 

Scientific #84536) according to the manufacturer’s instructions. 25µg of purified 

antibody (in a volume of 100µl) were dialized against a large volume of PBS in a 

Slide-A-Lyzer Mini Dialysis Units Plus Float kit (Thermo Scientific #66576). 
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Afterwards, the antibody was coupled with the NHS-activated DyLight488/DyLight650 

compound exactly according to the manufacturer’s instructions. DyLight488-

conjugated primary antibody against CtBP2 was used in a 1:20 dilution for 

immunolabelling. DyLight650-conjugated primary antibody against CtBP2 was used 

in a 1:30 dilution for immunolabelling. 

 

 

2.2.1.6. Triple immunolabelling for super-resolution structured illumination 

microscopy (SR-SIM) 

 For triple-immunolabelling, we used a directly labelled mouse monoclonal 

antibody (CtBP2 antibody conjugated with either DyLight488 or DyLight650, as 

indicated in the respective experiments) and two other primary antibodies (one from 

mouse, the second from rabbit [as indicated in the respective experiments], which 

were not directly fluorophore-labelled. First, sections were incubated with the two 

unlabelled primary antibodies at the same time overnight (at the dilutions given 

above). On the next day, sections were washed 3 times with PBS and afterwards 

incubated with the respective secondary antibodies (goat anti-mouse-Cy5; and 

donkey anti-rabbit-Alexa568 or donkey anti-rabbit Alexa568 and chicken anti-mouse 

Alexa488). After 1hr incubation, sections were washed again 3 times with PBS and 

finally incubated with the directly DyLight488/ DyLight650-labelled CtBP2 primary 

antibody (in the dilutions summarized above) overnight at 4oC. After overnight 

incubation, sections were washed 3 times with PBS and embedded with anti-fade 

solution containing n-propyl gallate (NPG) as previously described (Schmitz et al., 

2000). 

 

 

2.2.1.7. Blocking of antibodies: Preabsorption experiments 

For preabsorption blocking experiments, antisera were diluted to their indicated 

respective working concentrations. To these antibody working dilutions either the 

specific blocking peptide (20µg) or an unrelated peptide (same amount) were added. 

These mixtures were incubated overnight on a turning wheel at 4°C and used on the 

other day for immunolabelling experiments as described below. 
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2.2.1.8. Super-resolution structured illumination microscopy (SR-SIM)  

 In order to further improve the spatial resolution of our immunolabelling data 

we applied multicolour super-resolution (SR) 3D-SIM analyses (Schermelleh et al., 

2008). The resolution of normal microscopy is limited to approximately 200 nm in 

lateral (XY) and 500nm in axial (Z) direction. Super-resolution microscopy gives the 

possibilty to exceed this diffraction limit. SR-SIM increases the normal lateral 

resolution by factor two and 3D- super-resolution structured illumination microscopy 

(3D-SIM) provides the same increase in axial direction. Another advantage of the 

SR-SIM is the possibilty to use standard dyes and staining protocols (for review, see 

Schermelleh et al., 2010). For structured illumination microscopy, the ELYRA PS1 

setup (as well as a precursor prototype) from Zeiss was used. Images were taken 

with a 63x Plan-Apochromat (NA=1.4) with exitation light of 488, 561 and 635 nm 

wavelengths and then processed for structured illumination microscopy to obtain 

higher resulutions (Gustafsson et al., 2008; for review, see Schermelleh et al., 2010). 

Z stacks with an interval of 150nm were used to scan the whole retina section for 3D-

super-resolution structural illumination microscopy (3D-SIM) (Schermelleh et al., 

2008; for review, see Schermelleh et al., 2010). For aquisition and processing as well 

as for 3-D reconstruction and maximum projection the Zen2010 software (ZEISS) 

was used. For imaging analysis, sections were oversampled to exclude signal loss; 

for 3D-reconstruction only relevant image planes were used. For the 3-D 

reconstruction the transparent mode was applied.  

In general, there is a potential risk of projection artefacts using SR-SIM e.g. due to 

chromatic aberration (Schermelleh et al., 2008). The employed ZEISS setup is 

corrected for chromatic aberration in X-/Y- and Z-direction using multicolour beads 

and all taken images were examined considering this problem. Identical imaging 

results were obtained if different fluorophores were used for imaging. 

 

 

2.2.2. Postembedding immunogold electron microscopy: 

Tissue embedding and immunogold labelling procedure 

 Tissue embedding and immunogold labelling was done as previously 

described (Schmitz et al., 2000) with some modifications. In brief, freshly isolated 

mouse retinas were fixed in 0.05% glutaraldehyde, 2% freshly depolymerized 

paraformaldehyde in PBS, pH 7.4, for 2hrs at 4oC. After several washes with PBS, 
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followed by H2O, samples were treated with tannic acid (0.1% (w/v) in H2O) for 1hr at 

4oC. Samples were washed with H2O and incubated for 2hrs in 1% uranyl acetate (in 

H2O). Subsequently, probes were dehydrated in an ascending concentration of 

ethanol. At 30% ethanol, samples were transferred from 4oC to –20oC to minimize 

extraction of lipids and were kept at –20oC during the entire embedding procedure. 

Dehydration was performed in steps of 30%, 50%, 70%, 80% 90% and 98% ethanol 

(each for ≈30 mins). Afterwards, samples were infiltrated with London Resin (LR)-

Gold (Electron Microscopic Sciences, EMS) to which 2% of H2O (v/v) had been 

added. LR-Gold solution was changed thrice and finally replaced by LR-Gold/2% H2O 

resin solution that contained 0.1% benzil as polymerization catalyst. Polymerization 

was performed at –20oC with UV light (for ≈24hrs). For immunolabelling, ultrathin 

sections (50-80nm in thickness) were first treated with 0.5% bovine serum albumine 

(BSA) in PBS for 45 mins at RT to block non-specific protein binding sites. Then, 

primary antibodies (dynamin [hudy-1] or clathrin [clhc-V1; ab21679] were applied 

overnight at a 1:250 dilution in 0.5% BSA/PBS. After several washes with PBS, 

binding of the primary antibody was detected with goat anti-mouse/goat anti-rabbit 

secondary antibody conjugated to 10nm gold particles (Sigma). Afterwards, immune 

complexes were fixed with 2.5% glutaraldehyde in PBS for 15mins at RT. Sections 

were contrasted with 2% uranylacetate in H2O and analyzed with a Tecnai Biotwin 

digital transmission electron microscope. As negative controls, either primary 

antibodies were omitted and/or unrelated antibodies were used.  

 

 

2.2.3. SDS-PAGE  

 SDS PAGE was done as described by Maniatis et al, 2005. One dimensional 

gel electrophoresis separates proteins according to their molecular size in the 

presence of 0.1% SDS. The polyacrylamide gel is casted as a separating gel topped 

by a stacking gel. Sample proteins were solubilised by boiling in 4X SDS loading 

buffer. 

 

 

2.2.4. Western blots 

 Western blot analyses were performed as previously described (Schmitz et al., 

2000) using the indicated antibodies at the indicated dilutions. Binding of the primary 
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antibodies were detected with secondary antibodies conjugated with horseradish 

peroxidase and enhanced chemiluminescence (ECL). ECL signals of the antibody-

incubated western blots were scanned and documented with a BioRad gelDoc 

Chemiluminescence detection system. As molecular weight standards for sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), we used a 

prestained protein ladder (Thermo; order number 26616), the Roti-Mark Standard 

molecular weight markers (Roth, Germany; T851); and erythrocyte ghost membranes 

(Bennett, 1983). 

 

2.2.5. Isolation of photoreceptors from the mature mouse retina  

(Done by Rashmi Katiyar) 

 Photoreceptor cells from the mature retina were isolated by gentle enzymatic 

digestion with papain largely as previously described (Townes-Anderson et al., 1985, 

1988; Rebrik and Korenbrot, 2004). In brief, retinas were isolated from adult mice 

within 5mins post mortem (in ambient light). The enucleated eyes were bisected at 

the equatorial plane and the posterior eye cup transferred into ice-cold low Ca2+-

containing saline solution (abbreviated as LCS solution; containing 132mM NaCl, 

3mM KCl, 1mM MgCl2x6H2O, 0.5mM CaCl2, 10mM sodium pyruvate, 10mM glucose, 

10mM HEPES, pH 7.4, [≈300mOsm/L]). LCS was saturated with 5% CO2/95% O2 

prior to use. From the posterior eyecup, the neural retina was gently peeled off from 

the pigment epithelium and incubated in 1ml of cysteine-activated papain solution 

(containing 9U/ml of papain [Sigma, #76220-25G], 2.7mM L-cysteine [Roth, #1693.1] 

in LCS) for 20 min (at 25oC). After removing the papain solution, the retina was gently 

washed three times with 1mL of LCS solution containing 2% FCS and 0.01mg/ml 

DNase (Sigma, #DN25-110MG). To dissociate photoreceptor cells, papain-treated 

retina was gently triturated (3-4 times) with a wide-bore plastic pasteur pipette. The 

resulting cell suspension was plated on concanavalin A (Sigma, #C7275-250mg)-

coated coverslips. For coating of 25mm round coverslips, ≈200µl of 1mg/ml 

concanavalin A (in LCS solution) were added for 1hr at RT. Unbound concanavalin A 

was removed by several washes with LCS prior to the experiments. Cells were 

allowed to settle on the coverslips for 30mins at 37oC for tight attachment.  

For immunocytochemistry, cells were washed once with LCS and fixed with 4% 

paraformaldehyde in PBS for 15mins at RT. Fixed cells were washed 3 times with 

PBS and then permeabilized with 0.1% saponin (S4521-10G, Sigma) in PBS for 
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15min at RT. After permeabilization, cells were treated with 1% BSA in PBS for 

45mins and were incubated with primary antibodies, i.e. hudy-1 (1:250) and U2656 

(1:1,000) for overnight at 4oC. After 3 times washing with PBS, the cells were 

incubated for 1hr at RT with secondary antibodies, goat anti-mouse-Alexa488 and 

goat anti-rabbit-Alexa 568. After three washes with PBS, coverslips were mounted on 

glass cover slides with anti-fade solution and sealed with nail polish.  

 

 

2.2.6. Analysis of synaptic ribbon-associated endocytic activity in synaptic 

terminals of isolated mouse photoreceptors   

(Done by Rashmi Katiyar) 

 Isolated mouse photoreceptors, prepared as described above, were incubated 

for 2 min at room temperature with 1µM of Texas Red-hydrazide (Molecular Probes; 

T6256), a paraformaldehyde (PFA)-fixable analog of sulforhodamine 101 (SR101) 

(Nimmerjahn et al., 2004; Euler et al., 2009). Texas Red-hydrazide/SR101 was 

dissolved in LCS to which 2mM Ca2+ were added. Texas Red-hydrazide- and SR101-

loading experiments resulted in very similar labelling patterns in isolated mouse 

photoreceptors (Fig. 20 and data not shown). After labelling, photoreceptors were 

rinsed 3 times with LCS. To test for the importance of dynamin in ribbon-associated 

endocytosis, photoreceptors were incubated for 30 min at 37oC with 100µM 

dynasore, a specific blocker of dynamin activity (Macia et al., 2006; Kirchhausen et 

al., 2008; van Hook and Thoreson, 2012), before incubation with 

sulforhodamine/Texas Red-hadrazide.  After labelling and three short washes with 

LCS, photoreceptors were fixed with 4%PFA for 15 min at RT and processed as 

described above. 
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3. Results  

 

3.1. Testing of antibodies 

 In order to localize key proteins of the recycling endocytic machinery in 

photoreceptor ribbon synapses, I used different antibodies against known key 

proteins of synaptic vesicle endocytosis. First the different antibodies were tested for 

their specificity on mouse retina lysate. For this purpose, I performed western blot 

analysis of the indicated antibodies using crude retina lysate (Figure 14).  

 

 

Figure 14 Expression of endocytic proteins in the mouse retina. (A-G) Expression of 
endocytic proteins in extracts of the mouse retina as judged by western blot analyses. All 
antibodies detect their respective antigen at the expected running position (indicated by 
arrowheads). In (A-E), proteins were separated by 10% acrylamide SDS-PAGE; in (F-G) by 
8% acrylamide SDS-PAGE. Arrowheads indicate predicted running position of respective 
proteins. 
 
 

All tested antibodies detected their respective antigen at the expected running 

position (Figure 14). 

 

3.2.  Localisation of dynamin 

 After that, I first focused on dynamin, a mechano-enzyme that is essential for 

many forms of endocytosis (Praefcke and McMahon, 2004; Ferguson et al., 2007; 

Heymann and Hinshaw, 2009; Schmid and Frolov, 2011; Ferguson and de Camilli, 

2012). Dynamin has well defined functional domains, including an aminoterminal 
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GTPase-domain (G-domain), a central lipid-binding PH-domain, a bipartite stalk 

region, a GTPase effector domain and a proline-rich carboxyterminal region to which 

SH3-containing proteins can dock in a differential manner (for review, see Clayton 

and Cousin, 2009; Ferguson and de Camilli, 2012; Yamashita, 2012). For 

immunolabelling of dynamin, I used a well characterized mouse monoclonal antibody 

against dynamin (Warnock et al., 1995; Takei et al., 1995; Hinshaw and Schmid, 

1995) on conventional cyrostat sections of mouse eyes (Figure 15 A-C) and 0.5 µm-

thin resin sections for immunolabelling analyses to obtain better resolution (Figure 15 

D-E). Using the described immunolabelling techniques, I found dynamin highly 

enriched in both synaptic layers of the retina, the outer and inner plexiform layer 

(OPL and IPL, respectively; Figure 15).  

In comparison to conventional cryostat sections (Figure 15 A-C), 0.5 µm-thin resin 

sections (Figure 15 D, E) show less beackground and a much better resolution.  

Therefore, I proceeded from this point on with immunolabelling of 0.5 µm resin 

sections to obtain optimal resolution of the immunolocalized proteins. 

 

Figure 15 

 

(legend see next page) 
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Figure 15 Comparisons of low-magnification micrographs of cryostat (A-C) and 
semithin sections (D-E) of the mouse retina double-immunolabelled with polyclonal 
antibodies against RIBEYE (U2656) and monoclonal against dynamin (hudy-1). 
Dynamin is highly enriched in the synaptic layers of the retina, the OPL and IPL, in a 
punctate manner. Synaptic ribbons were immunolabelelled with polyclonal antibodies against 
RIBEYE and showed a close association with the dynamin immunolabel in the OPL. In 
comparison to croystat sections (A-C) semithin sections (D-E) show a clearer signal with 
higher resolution and less backround. Abbreviations: ONL, outer nuclear layer; OPL, outer 
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bars: 35 µm (A,B, 
D), 10µm (C,E). 
 
 
 
The outer plexiform layer, that contains the photoreceptor ribbon synapses, showed 

a particularly strong dynamin immunosignal (Figure 15, 16). High 

magnification/resolution analyses demonstrated that this dynamin immunosignal in 

photoreceptor synapses is present in a discrete manner and highly enriched around 

the synaptic ribbon that was immunolabelled with antibodies against RIBEYE (Figure 

16 A, B). Furthermore, dynamin was found in close proximity to the active zone 

protein bassoon (Figure 16 C). 

Bassoon is localized at the base of the synaptic ribbon (tom Dieck et al., 2005). 

Super-resolution structured-illumination microscopy (SR-SIM) showed a ring of 

dynamin immunoreactivity surrounding the synaptic ribbon in close proximity, i.e. less 

than 250nm (Figure 16 E, F). The optical resolution obtained by SR-SIM analyses 

clearly exceeded the resolution that could be obtained by conventional imaging as 
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judged by a comparative imaging analysis of the same incubations either by 

conventional (D) or SR-SIM imaging (E) at identical magnifications.  

 

 

Figure 16 

 

(legend see next page) 
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Figure 16 Distribution of dynamin in photoreceptor ribbon synapses at high resolution 
(immunolabelling of 0.5µm-thin sections). (A-B) Conventional imaging of 0.5 µm-thin 
sections of the mouse retina double-immunolabelled with polyclonal antibodies against 
RIBEYE (U2656) and mouse monoclonal antibodies against dynamin (hudy-1). (C) 
Conventional imaging of 0.5µm-thin sections of the mouse retina double-immunolabelled with 
polyclonal antibodies against bassoon and mouse monoclonal antibodies against dynamin 
(hudy-1). (D) shows at the same magnifation as in (E-F) - but without SR-SIM imaging- 
mouse- retina double-immunolabelled with polyclonal antibodies against RIBEYE (U2656) 
and mouse monoclonal antibodies against dynamin (hudy-1). (E-F) 2D-super-resolution 
structured illumination microscopy (2D SR-SIM) pictures of 0.5µm-thin sections from the 
mouse retina double-immunolabelled with rabbit polyclonal antibodies against RIBEYE 
(U2656) and mouse monoclonal antibodies against dynamin (hudy-1). The dynamin 
immunosignal is highly enriched around the synaptic ribbon (arrow). Abbreviations: OPL, 
outer plexiform layer. Scale bars: 1µm (A-E).  
 
 

The observation of dynamin being located in close vicinity to the synaptic ribbon was 

further corroborated with triple immunolabelling experiments. With these triple 

immunolabelling experiments, I correlated the localization of dynamin to other 

proteins of the presynaptic photoreceptor terminal (Figure 17). I used antibodies 

against PSD-95 to label the presynaptic plasma membrane of photoreceptor 

terminals (Koulen et al., 1998; Aartsen et al., 2009). In contrast to other synapses, 

PSD-95 is located presynaptically in photoreceptor ribbon synapses and antibodies 
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against PSD-95 nicely demarcate the outline of the presynaptic terminal (Figure 17 

A-C). Antibodies against the vesicular transporter 1 (VGLUT1) were used to label the 

glutamatergic synaptic vesicles in the photoreceptor presynaptic terminals (Wojcik et 

al., 2004) (Figure 17 D, E). Similar to the previously described immunolabelling data, 

I observed RIBEYE and dynamin located close to each other at the distal portion of 

the presynaptic terminal that faces the INL (Figure 17 A-E). Quantitative distance 

measurements of nearest distance indicated that dynamin puncta are located in 

about ≈125nm (+/- ≈50nm s.d.; 100 synapses analyzed) away from RIBEYE-puncta 

and ≈120nm (+/-40nm s.d.; 100 synapses analyzed) away from the bassoon puncta 

in retinal sections.  

 

 

Figure 17 

 

(legend see next page) 
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Figure 17 Localization of dynamin in relation to other synaptic proteins of the 
presynaptic photoreceptor terminal. 0.5µm-thin sections from mouse retina were triple-
immunolabelled with rabbit polyclonal antibodies against PSD-95 (L667) (A-C)/ or VGLUT1 
(D-E), mouse monoclonal antibodies against dynamin (hudy-1) (A-E) and DyLight650-direct 
labelled primary antibodies against RIBEYE(B)/CtBP2 (A-E). In (A-C), the PSD-95 
immunosignals label the presynaptic plasma membrane of the presynaptic terminals (Koulen 
et al., 1998; Aartsen et al., 2009) thus demarcating the extension of a single presynaptic 
terminal (arrowheads in (B-C)). RIBEYE and dynamin are located close to each other at the 
distal end of the photoreceptor terminal that is facing the INL (A-C). In (D-E), presynaptic 
terminals were immunolabelled with antibodies against the vesicular transporter VGLUT1, a 
marker protein of glutamatergic synaptic vesicles. Single photoreceptor presynaptic terminals 
are indicated by the white, dashed circles in (D-E). Similar as in (A-C), RIBEYE and dynamin 
are located close to each other at the distal border of the the immunolabeled glutamatergic 
vesicles of the presynaptic terminal that face the INL. Abbreviations: OPL, outer plexiform 
layer; ONL, outer nuclear layer; INL, inner nuclear layer; sr, synaptic ribbon. Scale bars: 1µm 
(A-E). 
 

 

Also isolated mouse photoreceptors, that display the typical ultrastructural 

morphology of photoreceptor synaptic terminals (Figure 18 E), showed a similar 

immunolabelling pattern. Similar to the observations in the intact retina, a focal 

enrichment of dynamin was observed in close vicinity to the synaptic ribbon in 

isolated photoreceptors (Figure 18 A-D).  
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Figure 18 Dynamin is highly enriched at the synaptic ribbons in presynaptic terminals 
of isolated photoreceptors from the mouse retina. Isolated photoreceptors from the 
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mouse retina were double-immunolabelled with mouse monoclonal antibodies against 
dynamin and rabbit polyclonal antibodies against RIBEYE (A-D). Dynamin is highly enriched 
in close vicinity to the synaptic ribbon. (E) shows the ultrastructural morphology of a synaptic 
terminal from isolated mouse photoreceptors. The typical large presynaptic terminal with 
large numbers of synaptic vesicles together with a synaptic ribbon anchored to the active 
zone are visible. In (E), the center of the presynaptic terminals contains the postsynaptic 
cavity (cav) with tips of the postsynaptic dendrites from horizontal and bipolar cells. These 
are separated from the soma of the postsynaptic cells during the isolation procedure. 
Abbreviations: s, soma of an isolated photoreceptor cell; cc, connecting cilum; n, nucleus of 
an isolated photoreceptor cell; cav, synaptic invagination of the photoreceptor synaptic 
complex that contains the tips of the postsynaptic dendrites from bipolar and horizontal cells. 
Scale bars: 1µm (A-D); 500nm (E). [experiment was done by Rashmi Katiyar] 
 
 
Finally, I performed postembedding electron microscopy with antibodies against 

dynamin to determine at the ultrastructural level where exactly dynamin is located in 

the distal portion of the presynaptic terminal. Postembedding immunogold electron 

microscopy demonstrated that dynamin is strongly enriched at the presynaptic 

plasma membrane in close vicinity to the synaptic ribbon (Figure 19). This area is 

denoted as peri-active zone in the text because it is located directly lateral to the 

active zone of exocytosis where the synaptic ribbons are anchored and where 

exocytosis occurs (for review, see Mercer and Thoreson, 2011; Schmitz et al., 2012). 

These ultrastructural immunolocalization data support the described light 

microscopical immunolabelling data which demonstrated that dynamin is located 

about 120nm distant from the synaptic ribbon. Dynamin was found predominantly, 

though not exclusively, at the presynaptic plasma membrane in close vicinity to the 

synaptic ribbon (less than 200nm distance from the base of the synaptic ribbon). 

Some dynamin immunolabel was also present at the presynaptic plasma membrane 

in some distance from the ribbon (more than 200nm distance from the ribbon). There 

was very little, if any, dynamin at the extrasynaptic plasma membrane outside of the 

synaptic cavity (Figure 19). 
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Figure 19 Postembedding immunogold labelling of photoreceptor synapses of the 
mouse retina with dynamin antibodies. (A-E) Ultrathin sections immunolabelled with 
mouse monoclonal antibodies against dynamin (hudy-1). Binding of the primary antibodies 
was detected with goat anti-mouse antibodies conjugated to 10nm gold particles. The 
dynamin immunogoldlabel is highly enriched around the synaptic ribbon (arrowheads). The 
dynamin immunogold label was found at the presynaptic membrane in close vicinity to the 
synaptic ribbon. (F) is a control incubation where only secondary antibody (but no primary 
antibody) were used. No immunosignal was observed under these incubation conditions 
further stressing the specificity of the immunolabelling results. Please note that a 
postembedding protocol was used. In postembedding protocols no osmium tetroxide can be 
used. Therefore, lipid-rich membrane compartments i.e. synaptic vesicles, remain invisible 
with that method. Abbreviations: pr, presynaptic terminal; po, postsynaptic dendrite; sr, 
synaptic ribbon; pm, extrasynaptic plasma membrane (outside of the presynaptic plasma 
membrane invagination); pm1, pm2, extrasynaptic plasma membrane of two neighboring 
synapses; nu, nucleus. Black arrowheads point to dynamin immunogold particles close to the 
synaptic ribbons. Scale bars: 400nm (A), 300nm (B, F); 250nm (C, D); 200nm (E).  
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3.3. Localization of Dynamin interacting-proteins 

 It was already shown that dynamin is typically recruited to membranes via SH3 

domain-containing proteins such as syndapin/pacsin and amphiphysin (Di Paolo et 

al., 2002; Yoshida et al., 2004; Wu et al., 2009a; Koch et al., 2011). I localized these 

proteins in the retina and in photoreceptor ribbon synapses to determine their 

localization in comparison to localization of dynamin and the synaptic ribbon.  

I found that the dynamin-interacting proteins syndapin and amphiphysin showed a 

very similar distribution as dynamin (Figs. 20, 21). Both syndapin and ampiphysin 

were highly enriched in the synaptic layers of the retina, particularly in the OPL, and 

showed a highly discrete, punctate distribution pattern at these sites (Figure 20, 21). 

Syndapin and amphiphysin were particularly enriched in close proximity to the 

synaptic ribbon that was visualized with antibodies against RIBEYE (Figure 20, 21). 

Amphiphysin and syndapin were highly clustered around the synaptic ribbon as 

judged by SR-SIM immunolabelling analyses of semithin retinal sections using 

double-immunolabelling experiments with antibodies against RIBEYE and 

amphiphysin or syndapin (Figures 20 C, 21 C, next page).  
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Figure 20 Distribution of amphiphysin in photoreceptor ribbon synapses at high 
resolution. 0.5µm-thin sections of the mouse retina double-immunolabelled with polyclonal 
antibodies against amphiphysin and mouse monoclonal antibodies against RIBEYE (B)-
domain/CtBP2. Arrows point to immunolabelled synaptic ribbons. (A, B) represent 
micrographs obtained by conventional imaging; (C) is a super-resolution 2D-SIM micrograph 
(maximum projection of z-stacks). Abbreviations: OPL, outer plexiform layer. Scale bars: 1 
µm (A-C). Arrowheads point to amphiphysin in the vicinity of synaptic ribbons. 
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Figure 21 Distribution of syndapin in photoreceptor ribbon synapses. (A,B) low 
magnification micrographs of 0.5µm-thin sections of the mouse retina double-immunolabelled 
with rabbit polyclonal antibodies against syndapin and mouse monoclonal antibodies against 
RIBEYE(B)-domain/CtBP2. (C,D) high magnification micrographs, either obtained by 
conventional imaging (C) or by super-resolution 2D-SIM-imaging (D). (D) is a maximum 
projection of the respective z-stacks. Abbreviations: ONL, outer nuclear layer; OPL, outer 
plexiform layer. Arrows point to anti-RIBEYE-imunolabelled synaptic ribbons. Scale bars: 
20µm (A), 10µm (B), 1µm (C,D) 
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Endophilin is another SH3-containing protein that can interact with dynamin (Mizuno 

et al., 2010; Llobet et al., 2011; Milosevic et al., 2011).  In contrast to syndapin and 

amphiphysin (Figure 20, 21), endophilin was neither enriched around the synaptic 

ribbon (Figure 22A, B) nor restricted to the dynamin immunosignal around the 

synaptic ribbon (Figure 22 C) but was diffusely distributed throughout the entire 

presynaptic terminal (Figure 22 A-F). In these experiments the extension of the 

presynaptic terminal was immunolabelled with antibodies against the synaptic vesicle 

protein 2 (panSV2; Figure 22 D-E) or with antibodies against the vesicular glutamate 

transporter 1 (VGLUT1) both with identical results (Figure 22 D-F).  

 

 

 

Figure 22 

 

(legend see next page) 
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Figure 22 Localization of endophilin in photoreceptor synapses of the mouse retina. 
(A-B) 0.5µm-thin sections of the mouse retina double- immunolabelled with rabbit polyclonal 
antibodies against endophilin and mouse monoclonal antibodies against RIBEYE (B)-
domain/CtBP2. (C) 0.5µm-thin sections of the mouse retina double- immunolabelled with 
rabbit polyclonal antibodies against endophilin and mouse monoclonal antibodies against 
dynamin.  (D,E) 0.5µm-thin sections of the mouse retina double- immunolabelled with rabbit 
polyclonal antibodies against endophilin and mouse monoclonal antibodies against the 
synaptic vesicle protein 2 (SV2; detecting all SV2 isoforms). (F) 0.5µm-thin sections of the 
mouse retina double- immunolabelled with rabbit polyclonal antibodies against endophilin 
and mouse monoclonal antibodies against VGLUT1. Dashed circles in (C, E, F) denote 
single presynaptic photoreceptor terminals. Endophilin is diffusely distributed throughout the 
presynaptic terminal and is not particularly enriched at the synaptic ribbon. All micrographs 
were obtained by conventional imaging. Abbreviations: INL, inner nuclear layer; OPL, outer 
plexiform layer; ONL, outer nuclear layer. Scale bars: 10µm (A), 5µm (B, C), 12µm (D), 2µm 
(E).  
 
 
3.4. Proof of specifity 

 To test wether the received immunosignals are real or not, I performed 

blocking experiments (see material and methods) with the respective antigens and 

an unreleated control antigen.  The blocking experiments show that all the described 

immunolabelling experiments could be specifically blocked with the respective 

antigens used for immunization (Figure 23) but not with irrelevant peptides 

demonstrating the specificity of the immunolabelling analyses.  
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Figure 23 

 
(legend see next page) 
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Figure 23 Pre-absorption control experiments for the immunolabelling analyses. 
Double-immunolabelling of 0.5nm-thin mouse retinal sections with the indicated antibodies 
pre-absorbed with either their specific peptide used for immunization (B,D,F,H) or with an 
unrelated control peptide (A,C,E,G). To visualize ribbon synapses, sections were co-
immunolabelled with either rabbit polyclonal antibodies against RIBEYE (U2656 in A,B) or 
mouse monoclonal antibodies against RIBEYE(B)-domain/CtBP2. The specific peptides 
completely blocked the respective immunosignals at the synaptic ribbon (B,D,F,H) whereas 
the control peptide had no influence of the immunosignals (A,C,E,G) showing the specificity 
of the immunolabelling signals. Abbreviations: OPL, outer plexiform layer. Scale bars: 35µm.  
 
 
 
3.5. Hight resolution analysis 

 The antibodies against amphiphysin/syndapin did not work for postembedding 

immunogold labelling in my hands. Therefore, I applied SR-SIM (as triple-labelling) to 

define their position in the presynaptic terminal as precise as possible at the light 

microscopic level. I performed triple immunolabelling experiments to further 

characterize the spatial relation of syndapin/amphiphysin to synaptic ribbons and 

dynamin. Using two-dimensional (2D)-super-resolution structured illumination 

microscopy (2D-SR-SIM), I found that both amphiphysin as well as syndapin are 

typically localized and strongly enriched around the synaptic ribbon (Figure 24). The 

impression was confirmed using 3D-super-resolution structured illumination 

microscopy (3D-SR-SIM; Figure 25). Both 2D- and 3D-SR-SIM results showed a 

tubulo-/vesicular-like distribution pattern of syndapin and amphiphysin around the 

synaptic ribbon (Figures 24, 25). 
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Figure 24 Multicolor, high resolution 2D-super-resolution SIM images. 2D super-
resolution SIM analyses of thin sections of the mouse retina triple-immunolabelled with 
directly labelled mouse monoclonal antibody against RIBEYE(B)-domain/CtBP2, rabbit 
polyclonal antibody against amphiphysin (A-C) or syndapin (D-E) and mouse monoclonal 
antibody against dynamin. The rabbit primary antibody was detected with donkey anti-rabbit 
secondary antibody conjugated to Alexa568; binding of the mouse monoclonal antibody was 
detected with donkey anti-mouse antibodies conjugated to Alexa648. Arrows denote 
immunolabelled synaptic ribbon; arrowheads to tubulovesicular-like labelling pattern of 
syndapin-/amphiphysin- immunoreactivity around the synaptic ribbon. Scale bars: 1µm 
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Figure 25 Multicolor, high-resolution 3D-super-resolution SIM analyses of RIBEYE, 
dynamin and syndapin/amphiphysin in the active zone of a single photoreceptor 
synapse. In (A) triple immunolabellings were performed with antibodies against RIBEYE, 
dynamin and amphiphysin; in (B) with antibodies against RIBEYE, dynamin and syndapin. 
(A1-A4 and B1-B4, respectively) denote different views of the same immunolabelled synaptic 
ribbons in a photoreceptor synapse as analyzed by super-resolution 3D-structured 
illumination microscopy (SR-3D-SIM). Arrows denote immunolabelled synaptic ribbon. Scale 
bars: 1µm (A, B). 
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3.6. Localisation of other endocytic proteins 

 Interestingly, calcineurin, a Ca2+-sensing phosphatase involved in coupling 

Ca2+-dependent activity and endocytosis (for review, see Clayton and Cousin, 2009), 

is also highly enriched at the synaptic ribbon complex (Figure 26). Thus, influx of 

Ca2+ through voltage-gated calcium channels could mediate activity-dependent 

endocytosis at the synaptic ribbon through such a mechanism (see discussion).  

 

 

Figure 26 The Ca2+-binding phosphatase calcineurin, a Ca2+-sensor of endocytosis, is 
enriched at the synaptic ribbon. 0.5µm-thin section of the mouse retina double-
immunolabelled with affinity-purified rabbit polyclonal antibodies against calcineurin and 
mouse monoclonal antibodies against RIBEYE (B)domain/CtBP2 (conventional imaging). 
Calcineurin is highly enriched at the synaptic ribbons (arrowheads). Abbreviations: ONL, 
outer nuclear layer; OPL, outer plexiform layer. Scale bars: 10µm 
 
 
Finally, I analyzed the distribution pattern of clathrin. Clathrin is instrumental for 

many, though not all, forms of synaptic vesicle endocytosis (for review, see Murthy 

and de Camilli, 2003; Wilbur et al., 2005; Brodsky, 2012). To analyze the distribution 

of clathrin in photoreceptor presynaptic terminals, I used four different antibodies 

against different epitopes of clathrin heavy chain. In humans, two clathrin heavy 

chain genes (CHC17 and CHC22) are present (for review, see Brodsky, 2012). In the 
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mouse genome, there is only one active clathrin heavy gene that corresponds to 

human CHC17. A second clathrin gene in the mouse genome is a non-active 

pseudogene (Wakeham et al., 2005; for review, see Brodsky, 2012). 

Using two different antibodies raised against the carboxyterminus of clathrin heavy 

chain (abcam; ab21679, Cell Signaling; P1663) I observed a strong clathrin signal in 

close vicinity of the RIBEYE-immunolabelled synaptic ribbon (Figures 27-29). The 

clathrin immunosignal was surrounding the synaptic ribbon (Figure 27A, B) that was 

immunolabelled with antibodies against RIBEYE (Figure 27A, B). The signal is similar 

to the synaptic ribbon- localized in the distal portion of the synaptic terminal that 

faces the inner nuclear layer (INL) (Figure 27). The borders of the presynaptic 

terminal were either marked with antibodies against-PSD-95 that labels the 

presynaptic plasma membrane of photoreceptor terminals (Figure 27 A-C) or with 

antibodies against the vesicular glutamate transporter 1 (VGLUT1) (Figure 27 D-E), a 

component of the presynaptic glutamatergic vesicles. The clathrin variant, detected 

by these antibodies, is denoted as clathrin heavy chain-variant 1 (CHC-V1) in the 

following text. CHC-V1 runs at the expected molecular weight of clathrin heavy chain 

in western blotting analyses (Figure 14F, Figure 31A, lane 1) and the immunosignals 

could be blocked with the respective immunization peptides (Figure 31 B,D) but not 

with control peptides (Figure 31C, E) demonstrating the specificity of the 

immunolabelling data. Clathrin heavy chain variant 1 (CHC-V1) is located and 

enriched in close vicinity to RIBEYE and bassoon as judged by high resolution 

immunofluorescence microscopy (Figure 28A, B). The CHC-V1-immunosignal 

overlapped to a large extent with the dynamin immunosignal (Figure 28C).  
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Figure 27 Localization of clathrin heavy chain (variant 1) in the presynaptic 
photoreceptor terminal. 0.5µm-thin sections from mouse retina were triple-immunolabelled 
with mouse monoclonal antibodies against PSD-95 (A-C)/ or VGLUT1 (D-E), rabbit 
polyclonal antibodies against clathrin heavy chain (variant-1, abcam) (A-E) and DyLight650-
direct labelled primary antibodies against RIBEYE(B)/CtBP2 (A-E). The PSD-95 
immunosignals in (A-C) demarcate the plasma membrane of the presynaptic terminals in the 
OPL (arrowheads in C). In (D-E), presynaptic terminals were immunolabelled with antibodies 
against the vesicular transporter VGLUT1, a marker protein of glutamatergic synaptic 
vesicles. Dashed circles in (D, E) denote single presynaptic photoreceptor terminals. 
RIBEYE and dynamin are located close to each other at the distal end of the photoreceptor 
terminal that is facing the INL (A-C). Abbreviations: OPL, outer plexiform layer; ONL, outer 
nuclear layer; INL, inner nuclear layer. Scale bars: 1µm (A-E). 
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Figure 28 High magnification analyses of clathrin heavy chain (variant 1) in relation to 
bassoon, RIBEYE and dynamin in single photoreceptor synapses. 0.5µm-thin section of 
the mouse retina double-immunolabelled with rabbit polyclonal antibodies against clathrin 
heavy chain (variant 1) and mouse monoclonal antibodies against bassoon in (A); In (B) 
sections were double-immunolabelled with rabbit polyclonal antibodies against clathrin heavy 
chain (variant 1) and mouse monoclonal antibodies against RIBEYE(B)-domain/CtBP2; In 
(C) sections were double-immunolabelled with rabbit polyclonal antibodies against clathrin 
heavy chain (variant 1) and mouse monoclonal antibodies against dynamin. Clathrin heavy 
chain (variant 1) is located very close to both RIBEYE and bassoon but does not overlap with 
the respective immunosignals in double immunolabelling experiments. In contrast, the 
clathrin heavy chain (variant 1) immunosignals overlaps with the dynamin immunosignal at 
the active zone of photoreceptor ribbon synapses to a large extent. All images were obtained 
by conventional imaging. Abbreviations: OPL, outer plexiform layer. Scale bars: 1µm (A-C). 
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Figure 29 shows super-resolution structured-illumination microscopy of thin-

sectioned mouse photoreceptor synapses, double-immunolabelled with antibodies 

against RIBEYE and CHC-V1 further demonstrating a close spatial correlation of 

these proteins at the synaptic ribbon complex. As shown also before, the CHC-V1 

immunosignal surrounded the RIBEYE-labelled synaptic ribbon typically in a distance 

less than 250nm as judged by SR-SIM analyses. 

 

 

Figure 29 Multicolor, high resolution 2D-super-resolution SIM analyses of clathrin 
heavy chain (variant 1) in relation to synaptic ribbons (maximum projections). 2D 
super-resolution SIM analyses of thin sections of mouse retina double-immunolabelled with 
mouse monoclonal antibody against RIBEYE(B)-domain/CtBP2 and rabbit polyclonal 
antibody against clathrin heavy chain, variant 1 (CHC-V1) (A-C). Clathrin heavy chain 
(variant 1) is located in close proximity to the RIBEYE-labelled synaptic ribbon. 
Abbreviations: OPL, outer plexiform layer. Scale bars: 1µm (A-C).  
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Finally, postembedding immunogold electron microscopy with antibodies against 

CHC-V1 demonstrated that the strongest CHC-V1 immunosignal was found actually 

at the presynaptic plasma membrane in close proximity (less than 200nm) of the 

synaptic ribbons (Figure 30). These ultrastructural data completely confirm and 

extend the light microscopic CHC-V1 immunlabelling data and show the localization 

of CHC-V1 in the peri-active zone (Figure 30) similar as shown above for dynamin 

(Figure 19).  

 

Figure 30 Postembedding immunogold labelling of photoreceptor synapses from the 
mouse retina with antibodies against clathrin heavy chain (variant 1). (A-E) Ultrathin 
sections immunolabelled with mouse monoclonal antibodies against clathrin heavy chain 
(clhc-V1; abcam). Binding of the primary antibodies was detected with goat anti-rabbit 
antibodies conjugated to 10nm gold particles. A strong clathrin-hc-V1 immunogold label 
could be observed at the plasma membrane in close proximity to the synaptic ribbon (sr). 
The immunogold labelling experiments confirm the previously shown immunfluorescence 
labelling data and demonstrate the enrichment of clathrin heavy chain variant 1 (clhc-V1) in 
the peri-active zone of the photoreceptor ribbon synapse. (F) is a negative control in which 
the primary antibody was omitted. Abbreviations: pr, presynaptic photoreceptor terminal; po, 
postsynaptic dendrites of the photoreceptor synaptic complex; sr, synaptic ribbon. Scale 
bars: 250nm (A-F). 
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Furthermore, I found evidence for a second clathrin-containing compartment that is 

not spatially related to the synaptic ribbon. This clathrin-containing compartment was 

labelled by two different antibodies directed against epitopes in the central region of 

clathrin heavy chain (Abcam/ab59710; X22/Abcam). This clathrin heavy chain variant 

detected by these latter antibodies is denoted as clathrin heavy chain variant 2 

(CHC-V2) in the following text. CHC-V2 migrates slightly slower than CHC-V1 at a 

slightly higher molecular weight position (Figure 31A). This becomes obvious if low 

percentage (5%) acrylamide SDS-PAGE gels (Figure 31A) were used (instead of 8% 

acrylamide running gels; Figure 14G). 

 

 

 

 

Figure 31 (A) Western blot analyses of clathrin heavy chain, variant 1 and variant 2 
(after separation in 5% acrylamide running gels). The running position of the 
immunoreactive bands detected by the different antibodies against the clathrin heavy chain 
variant 1 (lane 1) and antibodies against clathrin heavy chain variant 2 (lane 2) differ slightly. 
Clathrin heavy chain variant 1 shows a slightly lower running position than variant 2. 
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Figure 31 (B-E) Pre-absorption control experiments for the antibodies against clathrin 
heavy chain variants 1 and 2 (immunolabelling analyses). Double-immunolabelling of 
0.5µm-thin mouse retinal sections with the indicated antibodies pre-absorbed with either their 
specific peptide used for immunization (C, E) or with an unrelated control peptide (B, D). In 
parallel, sections were incubated with monoclonal anti-dynamin antibodies (B, C) or RIBEYE 
(D, E) as labelling positive controls. The specific peptides completely blocked the respective 
clathrin heavy chain immunosignals (C, E) whereas the control peptide had no influence of 
the clathrin heavy chain immunosignals (B, D) showing the specificity of the immunolabelling 
signals. Abbreviations: OPL, outer plexiform layer; ONL, outer nuclear layer. Scale bars: 5µm 
(B-E).  
 

In immunolabelling analyses, CHC-V2 is located in a large distance from both 

RIBEYE and the active zone protein bassoon as judged by high resolution double-

immunolabelling analyses (Figure 32). The mean distance of CHC-V2 from RIBEYE- 

and bassoon puncta (nearest, mean distance) is ≈580nm (+/-210nm s.d., 100 
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synapses analyzed) for CHC-V2-RIBEYE and ≈750nm (+/-≈200nm s.d.; 100 

synapses analyzed).   

 

 

 

Figure 32 

 

(legend see next page) 
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Figure 32 Two different clathrin heavy chain variants are found in photoreceptor 
terminals at different locations (immunolabelling analyses). 0.5µm-thin section of the 
mouse retina double-immunolabelled with rabbit polyclonal antibodies against clathrin heavy 
chain (variant 1; A-B) and mouse monoclonal antibodies against clathrin heavy chain (variant 
2; A-D). The immunosignals for the two variants of clathrin heavy chain do not overlap and 
are located in a large distance from each other. In (C-D), sections were double-
immunolabeled with antibodies against bassoon and RIBEYE to relate the localization of 
clathrin heavy chain, variant 2, to the localization of these proteins in the presynaptic 
terminal. Also bassoon and RIBEYE are localized in a large distance from immunolabelled 
clathrin heavy chain, variant 2. For further localization data of clathrin heavy chain, variant 2, 
in relation to other proteins of the presynaptic terminal, see also Fig. 19. Abbreviations: OPL, 
outer plexiform layer; ONL, outer nuclear layer. Scale bars: 1µm (A-D). 
 
 
Despite the large distance of CHC-V2 from the synaptic ribbon, CHC-V2 is still 

located in the presynaptic terminal as judged by triple-immunolabelling experiments 

with antibodies against PSD-95/ VGLUT1, RIBEYE and anti-CHC-V2 (Figure 33). 

But, in contrast to CHC-V1, CHC-V2 is located in the proximal portion of the 

presynaptic terminal, which is separated from the synaptic ribbon by the bulk of 

glutamatergic synaptic vesicles (Figure 33 C, D).  The antibodies against CHC-V2 did 

not work in postembedding immunogold electron microscopy in my hands. But since 

this clathrin variant is clearly not associated with the synaptic ribbon complex the 

identification of the underlying organelle, though principally important, is of minor 

relevance for the present study which is concerned with vesicle retrieval in the peri-

active zone surrounding the synaptic ribbon complex (see also discussion).  
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Figure 33 Two clathrin heavy chain variants are differentially localized in 
photoreceptor presynaptic terminals (further immunolabelling analyses). In (A,C) 
0.5µm-thin section of the mouse retina triple-immunolabelled with rabbit polyclonal antibodies 
against clathrin heavy chain (variant 2; A-B) and mouse monoclonal antibodies against either 
PSD-95 (A) or VGLUT1 (C). The synaptic ribbon was visualized with a DyLight650-labelled 
primary antibody against RIBEYE(B)-domain/CtBP2. The PSD-95 immunolabel demarcates 
the plasma membrane of the entire photoreceptor presynaptic terminal (small arrows). The 
clathrin variant 2 antibody labelled a spot-like structure (big arrows) in the presynaptic 
terminal that, in contrast to clathrin heavy chain variant 1, was localized in a large distance 
from the synaptic ribbon. A virtually identical immunolabelling pattern was obtained if the 
sections were triple-immunolabelled with a monoclonal antibody against clathrin heavy chain, 
variant 2, a rabbit polyclonal antibody against PSD-95 and the DyLight650 directly-labelled 
antibody against RIBEYE(B)-domain/CtBP2 (B). In (D), presynaptic vesicles were 
immunolabelled with antibodies against VGLUT1. Similarly to the previously shown data, the 
clathrin heavy chain variant 2 was located at the entry of the presynaptic terminal separated 
from the synaptic ribbon by the bulk of glutamatergic synaptic vesicles. This distribution of 
clathrin heavy chain variant 2 is in contrast to the distribution of clathrin heavy chain, variant 
2 which is located at the synaptic ribbon at the same end of the presynaptic terminal 
(compare Fig. 13D, E). Dashed circles in (D, E) denote single presynaptic photoreceptor 
terminals. Abbreviations: OPL, outer plexiform layer. Scale bars: 1 µm (A-D). 
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Finally, toghether with Rashmi Katiyar, I demonstrate that also functionally the 

synaptic ribbon complex is a hotspot of endocytic activity. If isolated mouse 

photoreceptors were loaded with a short pulse of the fluid-phase marker 

sulforhodamine (SR101), SR101 was predominantly taken up in immediate vicinity to 

the synaptic ribbon (Figure 34). The synaptic ribbon was immunolabelled by 

antibodies against RIBEYE in these experiments. The uptake of SR101 was 

dependent upon dynamin activity because SR101 uptake was completely blocked in 

the presence of dynasore, a specific inhibitor of dynamin activity (Figure 34 E-F). We 

obtained the same result using the FM1-43 Dye (data not shown). 

 

Figure 34 

 

(legend see next page) 
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Figure 34 Imaging of synaptic ribbon-associated endocytosis in isolated mouse 
photoreceptors. Isolated mouse photoreceptors were incubated for 2min with 
sulforhodamine (SR101), which is taken up by fluid phase endocytosis. SR101-loaded 
photoreceptors were fixed and immnunolabelled with antibodies against RIBEYE(B)-
domain/CtBP2. A hot-spot of SR101 uptake is found in close association to the synaptic 
ribbon (A-E). (A, B) were obtained by conventional imaging; (C, D) by maximum projections 
of z-stacks from confocal images. In (E, F), isolated photoreceptors were pre-incubated with 
dynasore, a specific inhibitor of dynamin: Pre-treatment with dynasore (100mM) completely 
inhibits the synaptic ribbon-associated uptake of SR101. Scale bars: 1µm (A-F). [experiment 
was done together with Rashmi Katiyar]  
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4. Discussion 

 

In the present study, I analyzed the endocytic machinery of photoreceptor synapses 

with high-resolution immunolabelling techniques and found a strong enrichment of 

major endocytic proteins in the area surrounding the active zone and the synaptic 

ribbon (for working hypothesis see Figure 35). In agreement with the focal 

enrichment of endocytic proteins, I observed a preferential uptake of sulforhodamine 

(SR101), a fluid phase endocytosis marker, in close vicinity to the synaptic ribbon in 

mouse photoreceptor terminals (same results were obtained with FM1-43/ data not 

shown). Thus, the local enrichment of endocytic proteins around the synaptic ribbon 

correlates also with the respective functional endocytic activity at that site. These 

data suggest that the peri-active zone region surrounding of the synaptic ribbon in 

photoreceptor synapses is a hotspot of endocytic vesicle retrieval. Dynamin plays an 

essential role to peri-active zone endocytosis around the synaptic ribbon because 

dynasore, a specific inhibitor of dynamin activity, completely inhibited ribbon 

complex-associated uptake of SR101. Visualization of peri-active zone endocytosis 

in photoreceptor terminals was achieved by short loading pulses with sulforhodamine 

(SR101). Longer tracer loading times generate a more diffuse labelling pattern of the 

presynaptic terminal (data not shown) similar to HRP-uptake experiments in previous 

EM studies (Ripps et al., 1976; Schacher et al., 1976; Schaeffer and Raviola, 1978; 

Cooper and McLaughlin, 1983).  

The peri-active zone vesicle retrieval at the synaptic ribbon could promote rapid and 

efficient retrieval of synaptic vesicle components, which is particularly important for 

the tonically active ribbon synapses. The proposal of ribbon-associated vesicle 

retrieval is in line with recent findings that supported a major role of synaptic ribbons 

for replenishment of release-ready synaptic vesicles (Jackman et al., 2009; Babai et 

al., 2010). Focal, peri-active zone endocytosis around the photoreceptor active zone 

appears conceptionally similar to peri-active zone endocytosis previously found also 

in other synapses with different properties, e.g. in lamprey neurons, neuromuscular 

junction and hippocampal synapses (for review, see Shupliakov, 2009; Haucke et al., 

2011; Yamashita, 2012; Saheki and DeCamilli, 2012). Consequently, tuning and 

regulation of peri-active zone endocytosis can be expected to differ strongly in these 

different types of tonic and non-tonic synapses. 
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In general, different forms of endocytosis involve different sets of proteins (for review, 

see Wu et al., 2007; Doherty and McMahon, 2009; Dittman and Ryan, 2009; 

Donaldson et al., 2009; Scita and Di Fiori, 2010; Sandvig et al., 2011; Saheki and De 

Camilli, 2012). I found dynamin as well as the dynamin-associated proteins 

syndapin/pacsin and amphiphysin highly enriched in close vicinity to the synaptic 

ribbons. In agreement with the light microscopic immunolabelling data, dynamin was 

found preferentially localized to the presynaptic plasma membrane next to the 

synaptic ribbon, as judged by postembedding immunogold electron microscopy. 

These ultrastructural data further support the concept of peri-active zone endocytosis 

in ribbon synapses. Endophilin was also found at the synaptic ribbon but 

predominantly diffusely throughout the entire presynaptic terminal. In conventional 

synapses, endophilin is also distributed diffusely in the entire synaptic vesicle pool 

although endophilin acts at the plasma membrane (Bai et al., 2010). Also, the peri-

active zone component intersectin is known to cycle between different locations in 

the synapse (for review, see Shupliakov, 2009; Pechstein et al., 2010; Haucke et al., 

2011). Remarkably, I detected two immunologically distinct forms of clathrin heavy 

chain in the presynaptic photoreceptor terminal, CHC-V1 and CHC-V2. CHC-V1 was 

associated with the synaptic ribbon complex, as judged by immmunolabelling with 

two different antibodies against CHC-V1, whereas CHC-V2 was not localized at 

synaptic ribbons. The identity and function of this CHC-V2-containing organelle 

needs to be analyzed in detail by future investigations. In contrast, clathrin heavy 

chain-variant 1 is present at the synaptic ribbon complex, where it overlaps with 

dynamin immunoreactivity. In support of these light microscopic data, I showed by 

postembedding immunogold electron microscopy that CHC-V1 is preferentially 

localized at the presynaptic plasma membrane in close vicinity to the active zone and 

synaptic ribbon. The antibodies against CHC-V2 did not work for postembedding 

immunogold electron microscopy in my hands. But the CHC-V2 immunosignals were 

clearly localized in a large distance (≈580nm) from the bassoon-labelled active zone 

in the proximal part of the presynaptic terminal.  

The reason for these two completly different located clathrin immunosignals might be 

the effect of different splice variants of the clathrin gene. It was already shown that 

due to gene duplication two different CHCs, CHC 17 and CHC22, exist. Both CHCs 

are 85% identical in their protein sequence, but the remaining 25% could perhaps 

lead to a different localisation. Lemmon and Traub (2012) reviewed recently the 
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interaction between the terminal domain of clathrin and clathrin-binding proteins. In 

this domain also a difference between CHC17 and CHC22 (see Figure 7) was 

shown. This could be the explaination why CHC-V2 is not located close to the typical 

,,neighbor’’ proteins like Dynamin1. On the other hand I focused on mouse retinal 

tissue in this work, in mice CHC22 is only a pseudogene (Wakeman et al.), therefore 

it should not be expressed. Another explanation could be that CHC-V2 is another 

structural form of CHC17. As Brodsky (2012) reviewed, CHC17 can form several 

types of structures such as budded coated vesicles. The identity of this CHC-V2-

containing compartment in the photoreceptor terminal needs to be revealed by future 

investigations. 

My proposal of peri-active zone endocytosis in photoreceptor synapses is in 

agreement with electron microscopic data that demonstrated coated buds and -

vesicles at the presynaptic plasma membrane lateral to the synaptic ribbon (e.g. 

Gray and Pease, 1971). These coated membranes were located in pouches of the 

presynaptic terminals located lateral to the synaptic ribbon and opposite to the 

dendritic tips of horizontal cells. These are exactly the sites where I found enrichment 

of dynamin and a clathrin (CHC-V1) using postembedding immunogold electron 

microscopy.  

Previous analyses, mostly obtained from electrophysiological analyses of retinal 

bipolar cells and inner ear hair cells, revealed at least two distinct modes of 

endocytosis in ribbon synapses: a fast phase and a slow phase of endocytosis (with 

time constants of about ≈1s and of ≈15-30s; e.g. Neves and Lagnado, 1999; Moser 

and Beutner, 2000; Beutner and Moser, 2001; for review, LoGiudice and Matthews, 

2007; Wu et al., 2007; Smith et al., 2008; Schmitz, 2009; Royle and Lagnado, 2010). 

In terms of its localization close to the active zone, the ribbon complex–associated 

endocytic machinery would be ideally suited to serve fast endocytosis in 

photoreceptors. On the other hand, in retinal bipolar cells fast endocytosis was found 

to be clathrin-independent though (Jokusch et al., 2005).   

The local peri-active zone endocytic machinery in photoreceptor synapses will be 

exposed to fluctuations of presynaptic [Ca2+]i that results from Ca2+-influx through 

voltage-gated Ca2+-channels at the active zone. The role of Ca2+ for various forms of 

endocytosis is not yet completely understood (for review, see Smith et al., 2008; 

Shupliakov, 2009; Yamashita, 2012). But many recent studies demonstrated that 

increases of [Ca2+]i can promote and activate endocytosis (Neves and Lagnado, 



- Discussion - 

 

  85 

 

85 

1999; Neves et al., 2001; Beutner et al., 2001; Wu et al., 2005, 2007, 2009b; Hosoi et 

al., 2009; Kim and von Gersdorff, 2009; Babai et al., 2010; Schnee et al., 2011). 

Recent analyses of vesicle retrieval suggested that vesicle replenishment at the 

photoreceptor ribbon synapse occurs close to presynaptic voltage-gated Ca2+-

channels and could be stimulated by increases of presynaptic Ca2+ (Babai et al., 

2010).  

I found calcineurin, a Ca2+-activated, calmodulin-dependent phosphatase localized in 

close vicinity to the synaptic ribbon. In conventional synapses, calcineurin is a Ca2+-

dependent regulator of endocytosis that adjusts activity-dependent endocytosis by 

dephosphorylating endocytic proteins, e.g. dynamin. By this way, calcineurin can 

control functionally important protein-protein interactions and endocytic networks (for 

review, see Cousin and Robinson, 2001, Clayton and Cousin, 2009; Yamashita, 

2012). Thus, calcineurin is a potential Ca2+-sensor that could adjust local, ribbon-

associated endocytosis to different levels of synaptic activity also in photoreceptor 

ribbon synapses. Calcineurin specifically binds to the dynamin-1Xb splice isoform of 

dynamin-1 (Xue et al., 2011; Bodmer et al., 2011) predicting that this dynamin splice 

variant is present at synaptic ribbons of photoreceptor synapses. Clearly, also other 

possibilities could apply. In conventional synapses various mechanisms are known to 

be installed that regulate endocytosis (for review, see Südhof, 2004, 2012; 

Shupliakov, 2009; Koch and Holt, 2012, Yao et al., 2012; Yamashita, 2012).  

Recently, it was demonstrated that CtBP proteins perform an important role in 

mediating certain aspects of endocytosis (Bonazzi et al., 2005; Amstutz et al., 2008; 

Liberali et al., 2008; for review, see Hansen and Nichols, 2009). RIBEYE is also a 

member of the CtBP protein family and could possibly fulfill a similar role in the 

ribbon synapse. Recently, RIBEYE(B)-domain was demonstrated to be an LPA-

acyltransferase that generates phosphatidic acid (PA) at the synaptic ribbon 

(Schwarz et al., 2011). Phosphatidic acid (PA) is a phospholipid with a highly 

negative curvature and can favor vesicle budding and fission (Jenkins and Frohman, 

2005; Yang et al., 2008; Roth, 2008). Bioactive lipids, such as PA, cholesterol and 

sphingolipids, have been proposed to play a role in distinct forms of endocytotic 

membrane retrieval (Donaldson, 2009; Fine et al., 2011; Campelo and Malhotra, 

2011, 2012; Lariccia et al., 2011). PA also favors binding of dynamin to membranes 

(Burger et al., 2000; Andresen et al., 2002; Roth, 2008). 
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Currently, I can only speculate how the endocytic machinery is anchored at the 

synaptic ribbon complex of photoreceptor synapses. The protein Munc119 is 

recruited to synaptic ribbon via interaction with RIBEYE (Alpadi et al., 2008). 

Interestingly, in T-lymphocytes, Munc119 was found in a protein complex with 

dynamin and shown to regulate dynamin function (Karim et al., 2010). Therefore, 

Munc119 might perform a similar role in photoreceptor ribbon synapses by anchoring 

the endocytic machinery to synaptic ribbons and/or regulating its activity. β-subunits 

of voltage-gated Ca2+-channels also bind dynamin (Gonzalez-Gutierrez et al., 2007; 

Miranda-Laferte et al., 2011; Xue et al., 2011; Neely A and Hidalgo P, 2014). Thus, 

presynaptic the Ca2+-channels of the active zone could also be involved in recruiting 

the endocytotic machinery. It needs to be kept in mind that endocytic retrieval might 

differ in different types of ribbon synapses. For example, bulk membrane retrieval 

(Cousin, 2009) is an important mechanism of membrane retrieval in retinal bipolar 

cells (Holt et al., 2003; Paillart et al., 2003) but absent in photoreceptor ribbon 

terminals (Rea et al., 2004). Furthermore, multiple modes of endocytosis could co-

exist in a single synapse (Holt et al., 2003; Paillart et al., 2003; LoGiudice et al., 

2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- Discussion - 

 

  87 

 

87 

 

 

Figure 35 Simplified, schematic summary of the immunolocalization data presented in 
this thesis. Key players of endocytic membrane traffic, including dynamin, dynamin-binding 
proteins, and CHC-V1, are enriched in a peri-active zone of photoreceptor synapses. 
Besides CHC-V1, CHC-V2 is also present in the presynaptic photoreceptor terminal. In 
contrast to CHC-V1, CHC-V2 is located a large distance from the peri-active zone, possibly 
on an endosomal compartment in the proximal region of the presynaptic terminal. 
Endosomal-like membrane compartments have been previously observed by transmission 
electron microscopy in this part of the photoreceptor terminal (Ripps et al., 1976; Schacher et 
al., 1976; Schaeffer and Raviola, 1978; Cooper and McLaughlin, 1983). The drawing of the 
photoreceptor terminal is modified based on a drawing of Gray and Pease (1971). sr, 
Synaptic ribbon;sv, synaptic vesicles; clathrinHC-V1, clathrin heavy chain variant 1, CHC-V1; 
clathrinHC-V2, CHC-V2; CaV, voltage-gated calcium channels of the photoreceptor active 
zone; h, postsynaptic dendritic tip of a horizontal cell; b, postsynaptic dendritic tip of an 
invaginating bipolar cell; bsn, bassoon. 
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5. Further projects 
 
All the data presented in this thesis is already published in Wahl et al.,, A local peri-

active zone endocytic machinery at photoreceptor synapses in close vicinity to 

synaptic ribbons’’ at the Journal of Neuroscience (J. of Neuroscience, June 2013, 19; 

33(25):10278-300). In my second project I worked on the localisation of the tubby like 

1 protein (Tulp1), which is is implicated in the genetic origin of human Retinitis 

pigmentosa 14 (RP-14), a heterogeneous group of inherited retinal diseases in which 

the rod and cone photoreceptor cells degenerate, leading to blindness (Hagstrom et 

al., 1998).  I found Tulp1 located in the peri-active zone of the synaptic ribbon 

complex co-located with the plasma membran protein PIP2.  By investigation of 

Tulp1 knock-out mice, I found strong evidences for an involement of Tulp1 in the 

endocytic cycle at the synaptic ribbon (Wahl, Magupalli et al.; manuscript in 

preparation).  
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1st     First 

2nd     Second 

µg                                        microgram 

µl                                            microlitre 

µM     micromolar 

A     Amacrine cell 

Aa     Amino acid 

Ab     Antibody 

AP     Adaptor protein 

BC     Bipolar cell 

BD                                        Binding Domain 

bp                                           base pair 

BAR-domain    Bin–Amphiphysin–Rvs domain 

BSA     Bovine serum albumin 

°C                                          Celsius 

Ca2+     Calcium-ion 

CHC     Clathrin heavy chain 

CLC     Clathrin light chain 

CHC-V1    Clathrin heavy chains variant 1 

CHC-V2    Clathrin heavy chains variant 2 

CLAP domain   Clathrin AP2-binding domain 

C-terminal    Carboxy-terminal 

CB     cone bipolar cell 

CME     clathrin mediated endocytosis 

CNS     Central nervous sytem 

CtBP1                                  C-terminal Binding Protein 1 

Cy5     Cyanine5  

E1A-protein    Adenovirus early region 1A protein 

Eps     Epsin 

ECL                                      Enhanced chemoluminiscence 

EM                                        Electron microscopy 

FM1-43    N-(3-Triethylammoniumpropyl)-4-(4-(Dibutylamino)            
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     Styryl) Pyridinium Dibromide) 

GTP     guanosine triphosphate  

GCL       Ganglion cell layer 

GTPase    Family of hydrolase enzymes that bind and  

                                                      hydrolyze guanosine triphosphate (GTP)  

G-domain    GTPase-domain 

GED-domain    GTPase-effector domain 

H     Horizontal cell 

HC     Horizontal cell 

hrs     hours 

INL                                       Inner nuclear layer 

IPL                                        Inner plexiform layer 

IS                                         Inner segments 

kb                                         Kilobases 

kDa                                       kilo Dalton 

LCS     low Ca2+ -containing saline solution 

LR-Gold    London Resin Gold 

mbar     millibar 

mg     milligramm 

min     minute 

ml                                          milliliter 

mono     monoclonal 

MW                                      Molecular weight 

NADH     reduced Nicotinamide adenine dinucleotide 

ng                                          nanogram 

nm                                         nanometer 

NPG     N-propyl gallate 

NPF-repeats    Asparagine, proline, phenylalanin repeats 

N-terminal    Amino-terminal 

ONL                                     Outer nuclear layer 

OPL                                      Outer plexiform layer 

OS                                        Outer segments 

Pa     Pascal 

PA     Phosphatidic acid 
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PBS                                      Phosphate Buffered Saline 

PFA                                      Paraformaldehyde 

PE     Retinal pigment epithelium 

PH-domain    Pleckstrin homology domain 

PIP2     Phosphatidylinositol 4,5-bisphosphate or  

     PtdIns(4,5)P2 

PLD     Phospholipase D 

poly     polyclonal 

PR     Photoreceptor 

pr     Presynaptic terminal 

po     postsynaptic dendrite 

pm     extrasynaptic plasma membrane     

PRD     Proline-rich domain 

PSD-95    Postsynaptic density protein-95 

RB     Rod bipolar cell 

RT                                         Room temperature  

SDS                                      Sodiumdodecylsulfate 

SDS-PAGE                          SDS Polyacrylamide gel electrophoresis 

SH3-domain    SRC Homology 3-Domain 

SR     Synaptic ribbon 

SR101    sulforhodamine  

SR-SIM    Super-resolution structured illumination microscopy 

SV     Synaptic vesicle 

SV2     Synaptic vesicle protein 2 

TD     Terminal domain 

TIRF     Total Internal Reflection Fluorescence Microscopy 

TNG     Trans-Golgi network 

VGLUT1    vesicular glutamate transporter 1 
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Cellular/Molecular

A Local, Periactive Zone Endocytic Machinery at
Photoreceptor Synapses in Close Vicinity to Synaptic
Ribbons

Silke Wahl, Rashmi Katiyar, and Frank Schmitz
Saarland University, Institute of Anatomy and Cell Biology, Department Neuroanatomy, 66421 Homburg, Saar, Germany

Photoreceptor ribbon synapses are continuously active synapses with large active zones that contain synaptic ribbons. Synaptic ribbons

are anchored to the active zones and are associated with large numbers of synaptic vesicles. The base of the ribbon that is located close to

L-type voltage-gated Ca 2� channels is a hotspot of exocytosis. The continuous exocytosis at the ribbon synapse needs to be balanced by

compensatory endocytosis. Recent analyses indicated that vesicle recycling at the synaptic ribbon is also an important determinant of

synaptic signaling at the photoreceptor synapse. To get insights into mechanisms of vesicle recycling at the photoreceptor ribbon

synapse, we performed super-resolution structured illumination microscopy and immunogold electron microscopy to localize major

components of the endocytotic membrane retrieval machinery in the photoreceptor synapse of the mouse retina. We found dynamin,

syndapin, amphiphysin, and calcineurin, a regulator of activity-dependent endocytosis, to be highly enriched around the active zone and

the synaptic ribbon. We present evidence for two clathrin heavy chain variants in the photoreceptor terminal; one is enriched around the

synaptic ribbon, whereas the other is localized in the entry region of the terminal. The focal enrichment of endocytic proteins around the

synaptic ribbon is consistent with a focal uptake of endocytic markers at that site. This endocytic activity functionally depends on

dynamin. These data propose that the presynaptic periactive zone surrounding the synaptic ribbon complex is a hotspot of endocytosis

in photoreceptor ribbon synapses.

Introduction
Ribbon synapses are continuously active chemical synapses that
are found, for example, in retinal photoreceptors and bipolar
cells as well as in hair cells of the inner ear (for review, see Moser
et al., 2006; Schmitz, 2009; Mercer and Thoreson, 2011). They
differ from “conventional” synapses in several aspects. Ribbon
synapses transmit graded changes of membrane potential into
modulations of continuous, tonic exocytosis of synaptic vesicles
(for review, see Heidelberger et al., 2005; Jackman et al., 2009;
Mercer and Thoreson, 2011). To maintain synaptic transmission,
ribbon synapses possess structural and functional specializations.
The most prominent structural specialization is the synaptic rib-
bon, a large electron-dense presynaptic structure associated with
large numbers of synaptic vesicles. In cross sections, ribbons usu-
ally appear bar shaped; three-dimensional representations reveal
the plate-like, horseshoe-shaped structure of synaptic ribbons.
RIBEYE is the only known protein specific to synaptic ribbons

and most likely is a major component of these structures
(Schmitz et al., 2000, 2012). It belongs to the CtBP protein family.
RIBEYE consists of a large unique N-terminal domain, the A
domain, and a smaller C-terminal domain, the B domain, which
is identical to CtBP2 (C-terminal binding-protein 2) except for
the first 20 aa (Schmitz et al., 2000; for review, see Schmitz, 2009).

Photoreceptor synapses are located in the outer plexiform
layer (OPL) of the retina. Rod photoreceptors contain single,
large active zones with a single synaptic ribbon; cone synapses
contain multiple active zones with multiple synaptic ribbons. The
basal end of the synaptic ribbon is anchored to the active zone
where synaptic vesicle exocytosis occurs (Zenisek et al., 2000).
The active zone includes an electron-dense structure, the arci-
form density, which contains the active zone protein bassoon,
as well as presynaptic L-type voltage-gated calcium channels
(Schoch and Gundelfinger, 2006; for review, see tom Dieck and
Brandstätter, 2006). Lateral to the presynaptic release sites, the
periactive zone forms membrane pouches generated by invagina-
tions of the dendritic tips of postsynaptic horizontal cells (for
review, see Gray and Pease, 1971; Schmitz et al., 2012).

The continuous exocytosis at the ribbon synapse needs to be
balanced by compensatory endocytosis to replenish vesicle pools.
The rate of vesicle recycling is an important factor in the signaling
at photoreceptor ribbon synapses (Jackman et al., 2009; Babai et
al., 2010). Recent analyses indicated that synaptic ribbons have an
important role in the resupply of release-ready synaptic vesicles
(Spassova et al., 2004; Griesinger et al., 2005; Jackman et al., 2009;
Babai et al., 2010; Frank et al., 2010; Schnee et al., 2011; Snellman
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et al., 2011; Tian et al., 2012). How vesicle recycling is organized
and accomplished in the ribbon synapse is still largely unclear.
We applied super-resolution structured illumination microscopy
(SR-SIM) and immunogold electron microscopy to localize key
proteins of the recycling endocytic machinery in photoreceptor
ribbon synapses. We found a local endocytic machinery highly
enriched at the periactive zone in close vicinity to the synaptic
ribbon. This periactive zone endocytic machinery is ideally
placed to replenish the exocytotic machinery of the continuously
active photoreceptor ribbon synapse.

Materials and Methods
Antibodies
Primary antibodies
Anti-RIBEYE(B)-domain/CtBP2 (U 2656) (Schmitz et al., 2000) poly-
clonal rabbit antiserum against RIBEYE(B)-domain was used for immu-
nofluorescence staining in a 1:2000 dilution and for Western blotting in
a 1:10,000 dilution (if not denoted otherwise).

Anti-CtBP2 (catalog #612044, BD Transduction Laboratories) mouse
monoclonal antibody raised against the C-terminal amino acids 361– 445
of CtBP2. This antibody detects RIBEYE [i.e., RIBEYE(B)-domain/
CtBP2] in Western blotting analyses and labels synaptic ribbons in im-
munofluorescence labeling analyses (Schwarz et al., 2011). This antibody
was used for immunofluorescence labeling in a 1:500 dilution.

For the detection of dynamin, we used a well characterized protein
G-purified monoclonal mouse antibody, anti-dynamin (hudy-1; Upstate
antibodies, order #05-319, Millipore) generated against a peptide
(amino acids 822– 838, SPDPFGPPPQVPSRPNR) in the proline-rich,
C-terminal region of dynamin-1 (Hinshaw and Schmid, 1995; Takei et
al., 1995; Warnock et al., 1995). Dynamin-1 is the predominant neuron-
specific form of dynamin expressed in brain (Raimondi et al., 2011; for
review, see Ferguson and De Camilli, 2012). The amino acid sequence of
this peptide used for immunization is highly conserved between species
in dynamin-1 (e.g., 100% amino acid identity in man, mouse, pig, cow,
and horse). The amino acid sequence of this peptide stretch is also con-
served in dynamin-2, the ubiquitous, non-neuronal form of dynamin
(70% amino acid identity) and also in dynamin-3 (77% amino acid
identity). Dynamin-3 is also preferentially expressed in brain (as
dynamin-1) but at much lower levels (Raimondi et al., 2011; for review,

see Ferguson and De Camilli, 2012). The hudy-1 monoclonal antibody
was denoted as an “anti-dynamin” antibody in Results. The correspond-
ing blocking peptide was synthesized by Dr. Martin Jung (Department of
Biochemistry and Molecular Biology, Saarland University, Homburg,
Germany) and used for pre-absorption control experiments. The hudy-1
monoclonal antibody was applied for Western blotting and immunogold
electron microscopy in a 1:1000 dilution and for immunostaining in a
1:500 dilution (if not denoted otherwise).

Anti-syndapin/pacsin (product #196002, Synaptic Systems) poly-
clonal antiserum against syndapin-1/pacsin-1 was used for immunoflu-
orescence microscopy in a 1:250 dilution, and for Western blotting in a
1:1000 dilution. The syndapin peptide was purchased from Synaptic Sys-
tems (196-0P) for pre-absorption control experiments.

Anti-amphiphysin (product #120002, Synaptic Systems) was raised
against a synthetic peptide (amino acids 2–15; ADIKTGIFAKNVQK) of
amphiphysin-1. The antiserum was used for Western blotting in a 1:1000
dilution, and for immunostaining in a 1:250 dilution. The blocking pep-
tide was purchased from Synaptic Systems (120-OP) for pre-absorption
control experiments.

Anti-endophilin (product #159002, Synaptic Systems) is a polyclonal
antiserum raised against a synthetic peptide coding for amino acids 256 –
276 of mouse endophilin-1 (QPKPRMSLEFATGDSTQ). For immuno-
staining, the antiserum was diluted 1:250, and for Western blotting,
1:1000. The endophilin peptide was also obtained from Synaptic Systems
(159-0P) for pre-absorption (blocking) control experiments.

Anti-pan-calcineurin A antibody is an affinity-purified rabbit poly-
clonal antibody raised against a C-terminal peptide of calcineurin A (or-
der number #2614, Cell Signaling Technology via New England Biolabs).
The antibody is purified by both protein A- and peptide-affinity chro-
matography. It was used for immunofluorescence microscopy in a 1:100
dilution, and for Western blotting in a 1:1000 dilution.

Anti-clathrin heavy chain (ab21679, abcam) is a polyclonal rabbit anti-
body raised against a peptide in the C terminus of human clathrin heavy
chain. The blocking peptide (for pre-absorption control experiments) was
also obtained from abcam (ab23440). This antibody detects clathrin heavy
chain-variant 1 (CHC-V1) (see Results section) and was used for immuno-
fluorescence microscopy and Western blotting in a 1:1000 dilution; for
postembedding immunogold electron microscopy, it was diluted 1:250.

Anti-clathrin heavy chain (order #P1663, Cell Signaling Technology
via New England Biolabs), an affinity-purified rabbit antibody against a

Figure 1. Expression of endocytic proteins in the mouse retina. A–G, Expression of endocytic proteins in extracts of the mouse retina as judged by Western blot analyses. All antibodies detect their

respective antigen at the expected running position (indicated by arrowheads). In A–E, proteins were separated by 10% acrylamide SDS-PAGE; in F–G, by 8% acrylamide SDS-PAGE.
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C-terminal peptide of human clathrin heavy
chain, detects CHC-V1 (see Results section)
and was used in a 1:250 dilution for immuno-
fluorescence microscopy. The immunolabel-
ing data on CHC-V1 presented were obtained
by immunolabeling with the above-mentioned
antibody from abcam (abcam21679) against
CHC-V1; but qualitatively identical immuno-
labeling results were obtained also with the
anti-CHC-V1 antibody from Cell Signaling
Technology (P1663) (data not shown).

Anti-clathrin heavy chain (ab59710, abcam) is a
polyclonal rabbit antiserum that was raised against
amino acids 619–638 (KAGLLQRALEHFTDLY-
DIKR) of rat clathrin heavy chain (100%
identical with mouse, highly conserved). For
Western blotting, the antibody was diluted
1:1000, and for immunofluorescence label-
ing, 1:500. This antibody detects CHC-V2
(see Results section).

Anti-clathrin heavy chain (X22 mouse
monoclonal antibody raised against clathrin
heavy chain; Abcam) was raised against clath-
rin heavy chain purified from human brain
(Brodsky, 1985). The antibody was used for
immunofluorescence microscopy in a 1:100 di-
lution. This antibody detects CHC-V2 (see Re-
sults section).

Anti-panSV2, a monoclonal antibody
against the synaptic vesicle protein SV2
(panSV2 monoclonal antibody, raised
against all SV2 variants; Buckley and Kelly,
1985) was used to label the synaptic vesicle-
containing presynaptic terminals. The su-
pernatant was collected from cultured
hybridoma cells (obtained from the Devel-
opmental Studies Hybridoma Bank, Univer-
sity of Iowa) and used in a 1:20 dilution.

Anti-vesicular glutamate transporter 1
(VGLUT1; NeuroMAB, University of Cali-
fornia, Davis, Davis, CA; clone N28/9), a
mouse monoclonal antibody, raised against
fusion protein encoding amino acids 493–
560 of the rat (VGLUT1). The antibody was
used for immunofluorescence microscopy in
a 1:500 dilution. VGLUT1 is a marker protein of glutamatergic syn-
aptic vesicles (Wojcik et al., 2004).

Anti-VGLUT1 (order #135302, Synaptic Systems). This rabbit poly-
clonal antibody was raised against amino acids 456 –560 of rat VGLUT1
and was used for immunofluorescence microscopy in a 1:500 dilution.

Anti-PSD-95 (NeuroMAB, University of California, Davis, Davis, CA;
clone K28/43), a mouse monoclonal antibody raised against fusion protein
encoding amino acids 77–299 of human PSD-95, was used in a 1:500 dilu-
tion for immunofluorescence microscopy.

Anti-PSD-95 (L667) is a rabbit polyclonal antibody raised against rat
PSD-95 (Irie et al., 1997). This antibody was a gift from Dr. Thomas C.
Südhof (Stanford University, Palo Alto, CA) and used in a 1:1000 dilu-
tion for immunofluorescence microscopy.

Anti-Bassoon (VAM-PS003, Stressgen), a mouse monoclonal antibody
raised against fusion protein encoding amino acids 738–103 of rat bassoon,
was used in a 1:100 dilution for immunofluorescence microscopy.

Anti-Bassoon (order #141002, Synaptic Systems) is a polyclonal rabbit
antibody raised against a fusion protein encoding the C-terminal 330 aa of
rat bassoon. The antibody was used for immunofluorescence microscopy
in a 1:100 dilution.

Secondary antibodies (for immunofluorescence labeling)
The following secondary antibodies were used: chicken anti-mouse-
Alexa Fluor 488; donkey anti-rabbit-Alexa Fluor 568; goat anti-mouse

Cy5; and goat anti-mouse-Alexa Fluor 488. All fluorophore-conjugated
secondary antibodies were purchased from Invitrogen and were used in a
1:1000 dilution for 1 h at room temperature (RT) for immunolabeling
experiments.

Direct labeling of primary antibodies (mouse anti-CtBP2)
with fluorophores (DyLight 488/DyLight 650)
For triple-immunolabeling experiments, purified anti-CtBP2 mouse
monoclonal antibody was conjugated with DyLight 488 (or DyLight 650)
amine-reactive dye with the DyLight 488 Amine Reactive Dye Kit
(catalog #5302, Thermo Scientific)/DyLight 650 Microscale Antibody
Labeling Kit (catalog #84536, Thermo Scientific) according to the
manufacturer’s instructions. Twenty-five micrograms of purified anti-
body (in a volume of 100 �l) was dialyzed against a large volume of PBS
in a Slide-A-Lyzer Mini Dialysis Units Plus Float kit (catalog #66576,
Thermo Scientific). Afterward, the antibody was coupled with the
N-hydroxysuccinimide-activated DyLight 488/DyLight 650 compound
exactly according to the manufacturer’s instructions. DyLight 488-
conjugated primary antibody against CtBP2 was used in a 1:20 dilution
for immunolabeling. DyLight 650-conjugated primary antibody against
CtBP2 was used in a 1:30 dilution for immunolabeling.

Triple immunolabeling for SR-SIM
For triple immunolabeling, we used a directly labeled mouse monoclonal
antibody (CtBP2 antibody conjugated with either DyLight 488 or Dy-

Figure 2. Distribution of dynamin in photoreceptor ribbon synapses at high resolution (immunolabeling of 0.5 �m thin

sections). A, 0.5 �m thin sections of the mouse retina were double immunolabeled with polyclonal antibodies against RIBEYE

(U2656) and mouse monoclonal antibodies against dynamin (hudy-1). Dashed circles in A denote single immunolabeled presyn-

aptic photoreceptor terminals. Images shown in A were obtained by conventional imaging. B, C, 2D-SR-SIM images of 0.5 �m thin

sections from the mouse retina that were double immunolabeled with rabbit polyclonal antibodies against RIBEYE (U2656) and

mouse monoclonal antibodies against dynamin (hudy-1). The dynamin immunosignal is highly enriched around the synaptic

ribbon (arrow). OPL, Outer plexiform layer. Scale bars, 1 �m.
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Light 650, as indicated in the respective experiments) and two other

primary antibodies (one from mouse, the second from rabbit, as indi-

cated in the respective experiments), which were not directly fluorophore

labeled. First, sections were incubated with the two unlabeled primary

antibodies at the same time overnight (at the dilutions given above). On

the next day, sections were washed three times with PBS and afterward

were incubated with the respective secondary antibodies (goat anti-

mouse-Cy5; and donkey anti-rabbit-Alexa Fluor 568 or donkey anti-

rabbit Alexa Fluor 568 and chicken anti-mouse Alexa Fluor 488). After

1 h incubation, sections were washed again three times with PBS and

finally incubated with the directly DyLight 488/DyLight 650-labeled

CtBP2 primary antibody (in the dilutions summarized above) overnight

at 4°C. After overnight incubation, sections were washed three times with

PBS and embedded with antifade solution containing n-propyl gallate, as

previously described (Schmitz et al., 2000).

Blocking of antibodies: preabsorption experiments
For pre-absorption blocking experiments, antisera were diluted to their

indicated respective working concentrations. To these antibody dilutions

either the specific blocking peptide (20 �g) or an unrelated peptide (same

amount) was added. These mixtures were incubated overnight on a turn-

ing wheel and were used on the other day for immunolabeling experi-

ments, as described below.

All experiments were performed with mouse retinas of either sexes.

Mice were killed in the early afternoon. Eyes were collected at environ-

mental daylight conditions (luminance of �2 cd/m 2). Data similar to

those shown for the mouse retina were also obtained with the bovine

retina (of either sexes; data not shown).

Immunofluorescence microscopy
Immunolabeling of 0.5 �m thin resin sections
Embedding procedure. The preparation procedure for sample embedding

into EPON resin is a modification from the procedure described by

Drenckhahn and Franz (1986). In brief, tissue was flash frozen in liquid

nitrogen-cooled isopentane. Then, as a modification of the original pro-

cedure, lyophilization of the tissue was performed while the tissue was

continuously cooled by liquid nitrogen. Lyophilization of the samples

was typically performed in a vacuum of �10 �7 mbar (10 �5 Pa) using a

TCP270 turbomolecular pump (Arthur-Pfeiffer-Vacuumtechnik) con-

trolled by a PKG020 Pirani-gold cathode gauge control unit and an oil

diffusion pump as a pre-pumping unit (type DUO 004B, Arthur-

Pfeiffer-Vacuumtechnik). Samples were lyophilized in liquid nitrogen

for �24 h. Afterward, samples were equilibrated to room temperature,

infiltrated with EPON resin and degassed for 24 h to ensure complete

penetration with EPON. Curing of the resin-embedded samples was per-

formed at 60°C for �24 h.

Immunolabeling procedure for use with 0.5 �m thin resin sections.

Immunofluorescence labeling experiments were performed with

semithin sections (thickness, �0.5 �m) to obtain optimal resolution.

The usefulness of semithin sections to obtain images with nanoscale

resolution has been previously demonstrated by Punge et al. (2008).

From the tissue blocks, 0.5 �m thin sections were cut with a Reichert

ultramicrotome. EPON resin was removed by the procedure of Mayor

et al. (1961) with slight modifications. In brief, EPON resin was re-

moved by incubating the sections in the following solutions: sodium

methanolate [30% solution in methanol (MERCK) for 10 min]; 1:1

mixture of xylol/methanol (10 min); acetone (2� 10 min); H2O (10

min); and PBS (10 min). Afterward, sections were incubated with the

Figure 3. Localization of dynamin in relation to other synaptic proteins of the presynaptic photoreceptor terminal. A, B, The 0.5 �m thin sections from mouse retina were triple immunolabeled

with rabbit polyclonal antibodies against PSD-95 (L667) (A)/ or VGLUT1 (B), mouse monoclonal antibodies against dynamin (hudy-1) (A, B), and DyLight 650-direct labeled primary antibodies

against RIBEYE(B)/CtBP2 (A, B). In A, the PSD-95 immunosignals label the presynaptic plasma membrane of the presynaptic terminals (Koulen et al., 1998; Aartsen et al., 2009), thus demarcating

the extension of a single presynaptic terminal (arrowheads in A). RIBEYE and dynamin are located close to each other at the distal end of the photoreceptor terminal that is facing the INL (A). In B,

presynaptic terminals were immunolabeled with antibodies against VGLUT1, a marker protein of glutamatergic synaptic vesicles. Single-photoreceptor presynaptic terminals are indicated by the

white dashed circles in B. Similar as in A, RIBEYE and dynamin are located close to each other at the distal border of the immunolabeled glutamatergic vesicles of the presynaptic terminal that faces

the INL. ONL, Outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; sr, synaptic ribbon. Arrows next to INL and ONL point into the direction of the respective layer. Scale bars, 1 �m.
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Figure 4. Postembedding immunogold labeling of photoreceptor synapses of the mouse retina with dynamin antibodies. A–H, Ultrathin sections immunolabeled with mouse monoclonal

antibodies against dynamin (hudy-1). Binding of the primary antibodies was detected with goat anti-mouse antibodies conjugated to 10 nm gold particles. The dynamin immunogold label is highly

enriched at the presynaptic plasma membrane surrounding the synaptic ribbon (arrowheads in A–H ). This dynamin immunogold label at the periactive zone was particularly strong at the lateral

presynaptic plasma membrane pouches opposite to dendritic tips of postsynaptic horizontal cells (ho). I, A control incubation in which only secondary antibody (but no primary antibody) was

applied. No immunosignal was observed under these incubations, further stressing the specificity of the immunolabeling results. A quantitative minor portion of (Figure legend continues.)
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respective primary and secondary antibodies as described above
(Schmitz et al., 2000; Alpadi et al., 2008).

Control incubations. Control incubations for immunolabeling experi-
ments were performed by omitting the primary antibody and only
incubating with the secondary antibody. No immunofluorescent sig-
nal was observed in photoreceptor synapses in these control incuba-
tions. In further control experiments, antibodies were preabsorbed
with the respective antigen as described below and processed for
immunolabeling.

Super-resolution structured illumination microscopy. To further im-
prove the spatial resolution of our immunolabeling data, we applied
multicolor 3D-SR-SIM analyses (Schermelleh et al., 2008). The resolu-
tion of normal microscopy is limited to �200 nm in lateral (x, y) and
�500 nm in axial (z) direction. Super-resolution structured illumination
microscopy or SR-SIM gives the possibility of exceeding this diffraction
limit. SR-SIM increases the normal lateral resolution by a factor of two,
and 3D-SR-SIM provides the same increase in axial direction. Another
advantage of the SR-SIM is the possibility of using standard dyes and
staining protocols (for review, see Schermelleh et al., 2010). For struc-
tured illumination microscopy, the ELYRA PS1 setup, as well as a pre-
cursor prototype, from Zeiss were used. Images were taken with a 63�

Plan-Apochromat (numerical aperture, 1.4) with excitation light wave-
lengths of 488, 561, and 635 nm, and then processed for structured illumi-
nation microscopy to obtain higher resolutions (Gustafsson et al., 2008; for
review, see Schermelleh et al., 2010). Z-stacks with an interval of 150 nm were
used to scan the whole retina section for 3D-SR-SIM (Schermelleh et al.,
2008; for review, see Schermelleh et al., 2010). For acquisition and processing
as well as for 3D reconstruction and maximum projection, the Zen2010
software (Zeiss) was used. For imaging analysis, sections were oversampled
to exclude signal loss; for 3D reconstruction, only relevant image planes were
used. For the 3D reconstruction, the transparent mode was applied.

In general, there is a potential risk of projection artifacts using SR-SIM
due to chromatic aberration (Schermelleh et al., 2008). The Zeiss setup
that was used was corrected for chromatic aberration in x-, y-, and
z-directions using multicolor beads, and all obtained images were exam-
ined considering this problem. Identical imaging results were obtained if
different fluorophores were used for imaging.

Postembedding immunogold electron microscopy
Tissue embedding and immunogold labeling procedure. Tissue embedding
and immunogold labeling was performed as previously described
(Schmitz et al., 2000) with some modifications. In brief, freshly isolated
mouse retinas were fixed in 0.05% glutaraldehyde, 2% freshly depo-
lymerized paraformaldehyde in PBS, pH 7.4, for 2 h at 4°C. After several
washes with PBS, followed by H2O, samples were treated with tannic acid
(0.1%, w/v, in H2O) for 1 h at 4°C. Samples were washed with H2O and
incubated for 2 h in 1% uranyl acetate (in H2O). Subsequently, probes
were dehydrated in an ascending concentration of ethanol. At 30% eth-
anol, samples were transferred from 4°C to �20°C to minimize extrac-
tion of lipids and were kept at �20°C during the entire embedding
procedure. Dehydration was performed in steps of 30%, 50%, 70%, 80%,
90%, and 98% ethanol (each for �30 min). Afterward, samples were
infiltrated with London Resin (LR)-Gold (Electron Microscopic Sci-
ences) to which 2% of H2O (v/v) had been added. LR-gold solution was
changed thrice and finally replaced by LR-gold/2% H2O resin solution
that contained 0.1% benzil as a polymerization catalyst. Polymerization

was performed at �20°C with UV light (for �24 h). For immunolabel-
ing, ultrathin sections (50 – 80 nm in thickness) were first treated with
0.5% bovine serum albumin (BSA) in PBS for 45 min at RT to block
nonspecific protein binding sites. Then, primary antibodies [dynamin
(hudy-1), clathrin (CHC-V1; ab21679)] were applied overnight in a
1:250 dilution in 0.5% BSA/PBS. After several washes with PBS, binding
of the primary antibody was detected with goat anti-mouse/goat anti-
rabbit secondary antibody conjugated to 10 nm gold particles (Sigma).
Afterward, immune complexes were fixed with 2.5% glutaraldehyde in
PBS for 15 min at RT. Sections were contrasted with 2% uranylacetate in
H2O and analyzed with a Tecnai Biotwin digital transmission electron
microscope (FEI). As negative controls, either primary antibodies were
omitted and/or unrelated antibodies were used. Please note that a
postembedding protocol was used. In postembedding protocols, no os-
mium tetroxide can be used to enhance membrane contrast. Lipid-rich
membrane compartments (i.e., synaptic vesicles) remain largely invisible
with that method.

Isolation of photoreceptors from the mature mouse retina. Photore-
ceptor cells from the mature retina were isolated by gentle enzymatic
digestion with papain, largely as previously described (Townes-
Anderson et al., 1985, 1988; Rebrik and Korenbrot, 2004) with some
modifications. In brief, retinas were isolated from adult mice within 5
min postmortem (in ambient light). The enucleated eyes were bi-
sected at the equatorial plane, and the posterior eye cup transferred
into ice-cold low-Ca 2�-containing saline solution (abbreviated as
“LCS” solution) containing the following: 132 mM NaCl, 3 mM KCl, 1
mM MgCl2� 6H2O, 0.5 mM CaCl2, 10 mM sodium pyruvate, 10 mM

glucose, 10 mM HEPES, pH 7.4 (�300 mOsm/L). LCS was saturated
with 5% CO2/95% O2 before use. From the posterior eyecup, the
neural retina was gently peeled off from the pigment epithelium and
incubated in 1 ml of cysteine-activated papain solution [containing 9
U/ml papain (catalog #76220 –25G, Sigma); 2.7 mM L-cysteine (cata-
log #1693.1, Roth) in LCS] for 20 min at 25°C. Activation of papain (9
U/ml) was done by preincubation with L-cysteine (2.7 mM in LCS) at
37°C for 20 min. After removing the papain solution, the retina was
gently washed three times with 1 ml of LCS solution containing 2%
FCS and 0.01 mg/ml DNase (catalog #DN25–110MG, Sigma). To
dissociate photoreceptor cells, papain-treated retina was gently trit-
urated (three to four times) with a wide-bore plastic Pasteur pipette.
The resulting cell suspension was plated on concanavalin A (250 mg;
catalog #C7275, Sigma)-coated coverslips. For the coating of 25 mm
round coverslips, �200 �l of 1 mg/ml concanavalin A (in LCS solu-
tion) was added for 1 h at RT. Unbound concanavalin A was removed
by three washes with LCS before the experiments. Cells were allowed
to settle on the coverslips for 30 min at 37°C for tight attachment.

For immunocytochemistry, cells were washed once with LCS and fixed
with 4% paraformaldehyde in PBS for 15 min at RT. Fixed cells were
washed three times with PBS and then permeabilized with 0.1% saponin
(S4521–10G, Sigma) in PBS for 15 min at RT. After permeabilization,
cells were treated with 1% BSA/0.1% saponin in PBS for 45 min and were
incubated with primary antibodies (i.e., hudy-1, 1:250; and U2656,
1:1000) overnight at 4°C. After three washes with PBS, cells were simul-
taneously incubated for 1 h at RT with secondary antibodies, chicken
anti-mouse-Alexa Fluor 488 and donkey anti-rabbit-Alexa Fluor 568.
After washing with PBS, coverslips were mounted on glass cover slides
with antifade solution and sealed with nail polish.

For conventional transmission electron microscopy, mouse photore-
ceptor cells isolated as described above, were processed and embedded
exactly as previously described (Schoch et al., 2006). Ultrathin sections
were analyzed with a Tecnai Biotwin 12 transmission electron micro-
scope (FEI).

Analysis of synaptic ribbon-associated endocytic activity in
synaptic terminals of isolated mouse photoreceptors
Endocytic activity of isolated photoreceptors was visualized with sul-
forhodamine 101 (SR101) (S7635, Sigma), a fluid-phase endocytic
marker (Lichtman et al., 1985; Keifer et al., 1992; Teng et al., 1999; Taka-
hashi et al., 2002; Euler et al., 2009) or with the fixable SR101 analog
Texas Red-hydrazide (T6256, Invitrogen) (Nimmerjahn et al., 2004).

4

(Figure legend continued.) dynamin immunolabel was found in a cytosolic localization within

the presynaptic terminal (dashed circles in C and E). This minor portion could result from either

labeling of endomembranes or tangential views of dynamin on periactive zone of lateral

pouches above the section plane. Please note that a postembedding protocol was used for

immunolabeling. In postembedding protocols, no osmium tetroxide can be used. Therefore,

lipid-rich membrane compartments (i.e., synaptic vesicles) remain invisible with postembed-

ding methods. pr, Presynaptic terminal; sr, synaptic ribbon; pm, extrasynaptic plasma mem-

brane (outside of the presynaptic plasma membrane invagination with no contact to the

postsynaptic cavity; see also Fig. 17); nu, nucleus. Black arrowheads point to dynamin immu-

nogold particles close to the synaptic ribbons. Scale bars: A–E, G, I, 500 nm; F, H, 200 nm.
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Figure 5. A, B, Distribution of amphiphysin and syndapin in photoreceptor ribbon synapses at high resolution (conventional imaging). A, B, The 0.5 �m thin sections of the mouse

retina were double immunolabeled with polyclonal antibodies against amphiphysin and mouse monoclonal antibodies against RIBEYE(B)-domain/CtBP2 (in A), and polyclonal antibod-

ies against syndapin and mouse monoclonal antibodies against RIBEYE(B)-domain/CtBP2 (in B). Arrows point to immunolabeled synaptic ribbons. Dashed circles in A and B denote

single-immunolabeled presynaptic terminals/synaptic ribbon complexes of rod photoreceptors. C, D, Multicolor, 2D-SR-SIM analyses of the distribution of amphiphysin and syndapin in

photoreceptor synapses. In C and D, 0.5 �m thin sections of the mouse retina were triple immunolabeled with Alexa Fluor 488 directly labeled mouse monoclonal antibody against

RIBEYE(B)-domain/CtBP2, rabbit polyclonal antibody against amphiphysin (C) or syndapin (D) and mouse monoclonal antibody against dynamin (C, D). Arrows point to immunolabeled

synaptic ribbons. OPL, Outer plexiform layer. Scale bars, 1 �m.
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Figure 6. Multicolor3D-SR-SIMofRIBEYE,dynamin,andsyndapin/amphiphysinintheactivezoneofsinglerodphotoreceptorsynapses.InA,triple-immunolabeling3D-SR-SIManalyseswereperformedwithantibodies

againstRIBEYE,dynamin,andamphiphysin; in B, triple-immunolabeling3D-SR-SIManalyseswereperformedwithantibodiesagainstRIBEYE,dynamin,andsyndapin(A1–A4 and B1–B4, respectively),denotingdifferent

lateralviewsofthesamesingle-immunolabeledsynapticribbonofarodphotoreceptorsynapse.Arrowsdenotetheimmunolabeledsynapticribbon.OPL,Outerplexiformlayer.Scalebars,1�m.
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Isolated mouse photoreceptors, prepared as described above, were incu-
bated for 2 min at room temperature with 1 �M SR101/Texas Red-
hydrazide. SR101/Texas Red-hydrazide was dissolved in LCS
containing 2 mM Ca 2�. SR101/Texas Red-hydrazide-loading experi-
ments resulted in virtually identical labeling results in isolated mouse
photoreceptors (see Fig. 16) (data not shown). The immunolabeling
results shown in Figure 16 were obtained after loading with fixable
SR101 (Texas Red-hydrazide). After labeling, photoreceptors were
rinsed three times with LCS. To analyze the importance of dynamin in
ribbon-associated endocytosis, photoreceptors were incubated for 30
min at 37°C with 100 �M dynasore, a specific blocker of dynamin
activity (Macia et al., 2006; Kirchhausen et al., 2008; Van Hook and
Thoreson, 2012), before incubation with sulforhodamine/Texas Red-

hydrazide. After labeling and three short washes with LCS, photore-
ceptors were fixed with 4% PFA for 15 min at RT and processed for
immunolabeling as described above.

Western blots
Western blot analyses were performed as previously described (Schmitz
et al., 2000) using the indicated antibodies at the indicated dilutions.
Binding of the primary antibodies was detected with secondary antibod-
ies conjugated with horseradish peroxidase and enhanced chemolumi-
nescence (ECL). ECL signals of the antibody-incubated Western blots
were scanned and documented with a Bio-Rad gelDoc Chemolumines-
cence detection system. As molecular weight standards for SDS PAGE,
we used a prestained protein ladder (order #26616, Thermo Scientific),

Figure 7. Localization of endophilin in photoreceptor synapses of the mouse retina. A, The 0.5 �m thin sections of the mouse retina were double immunolabeled with rabbit polyclonal antibodies

against endophilin and mouse monoclonal antibodies against RIBEYE(B)-domain/CtBP2. B, The 0.5 �m thin sections of the mouse retina were double immunolabeled with rabbit polyclonal

antibodies against endophilin and mouse monoclonal antibodies against dynamin. C, D, The 0.5 �m thin sections of the mouse retina were double immunolabeled with rabbit polyclonal antibodies

against endophilin and mouse monoclonal antibodies against the synaptic vesicle protein 2 (panSV2; detecting all SV2 isoforms). E, The 0.5 �m thin sections of the mouse retina were double

immunolabeled with rabbit polyclonal antibodies against endophilin and mouse monoclonal antibodies against VGLUT1. Dashed circles in B, D, and E denote single presynaptic photoreceptor

terminals. Endophilin is diffusely distributed throughout the presynaptic terminal and is not particularly enriched around the synaptic ribbon. All micrographs were obtained by conventional

imaging. ONL, Outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer. Scale bars: A, 10 �m; B, 5 �m; C, 12 �m; D, E, 1 �m.
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Figure 8. Pre-absorption control experiments for the immunolabeling analyses. A–H, Double immunolabeling of 0.5�m thin mouse retinal sections with the indicated antibodies preabsorbed with either

their specific peptide used for immunization (B, D, F, H) or with an unrelated control peptide (A, C, E, G). To visualize ribbon synapses, sections were coimmunolabeled with either rabbit polyclonal antibodies

against RIBEYE (U2656 in A and B) or mouse monoclonal antibodies against RIBEYE(B)-domain/CtBP2. Preabsorption with the specific peptide completely blocked the (Figure legend continues.)
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the Roti-Mark Standard molecular weight markers (T851, Roth), and
erythrocyte ghost membranes (Bennett, 1983).

Results
We first focused on dynamin, a mechano-enzyme that is essential
for many forms of endocytosis (Praefcke and McMahon, 2004;
Ferguson et al., 2007; Heymann and Hinshaw, 2009; Schmid and
Frolov, 2011; Ferguson and De Camilli, 2012). Dynamin has well
defined functional domains, including an N-terminal GTPase
domain, a central lipid-binding pleckstrin homology domain, a
bipartite stalk region, a GTPase effector domain, and a proline-
rich C-terminal region to which Src homology 3 (SH3)-
containing proteins can dock in a differential manner (for review,
see Clayton and Cousin, 2009; Ferguson and De Camilli, 2012;
Yamashita, 2012). For immunolabeling, we used a well charac-
terized mouse monoclonal antibody against dynamin (Hinshaw
and Schmid, 1995; Takei et al., 1995; Warnock et al., 1995) and
0.5 �m thin resin sections to obtain optimal resolution. All anti-
bodies used in the present study for immunolabeling analyses
detected their respective antigen at the expected running position
in Western blot analyses (Fig. 1A–G).

Dynamin is enriched in the periactive zone of photoreceptor
ribbon synapses
Using the described immunolabeling techniques with 0.5 �m
thin sections, we found dynamin highly enriched in both synaptic
layers of the retina, the OPL and inner plexiform layer (Figs. 2, 3;
data not shown). The outer plexiform layer, which contains the
photoreceptor ribbon synapses, showed a particularly strong
dynamin immunosignal (Figs. 2, 3). High-magnification/
high-resolution analyses demonstrated that this dynamin immu-
nosignal in photoreceptor synapses is present in a discrete
manner and is highly enriched around the synaptic ribbon that

was immunolabeled with antibodies against RIBEYE (Fig. 2A).
Similarly, dynamin was found in close proximity to the active
zone protein bassoon (data not shown). Bassoon is localized at
the base of the synaptic ribbon (tom Dieck et al., 2005). SR-SIM
showed a ring of dynamin immunoreactivity closely surrounding
the synaptic ribbon (i.e., within �250 nm) (Fig. 2B,C) (data not
shown). The optical resolution obtained by SR-SIM analyses ex-
ceeded the resolution that could be obtained by conventional
imaging as judged by a comparative imaging analysis of the same
incubations either by conventional or SR-SIM imaging at identi-
cal magnifications (data not shown). The observation of dy-
namin being located in close vicinity to the synaptic ribbon was
further corroborated with triple-immunolabeling experiments
(Fig. 3A,B). With these triple-immunolabeling experiments, we
correlated the localization of dynamin to other proteins of the
presynaptic photoreceptor terminal (Fig. 3A,B). We used anti-
bodies against PSD-95 to label the presynaptic plasma membrane
of photoreceptor terminals (Koulen et al., 1998; Aartsen et al.,
2009). In contrast to other synapses, PSD-95 is located presynap-
tically in photoreceptor ribbon synapses, and antibodies against
PSD-95 nicely demarcate the outline of the presynaptic terminal
(Fig. 3A). Antibodies against VGLUT1 were used to label the
glutamatergic synaptic vesicles in the photoreceptor presynaptic
terminals (Wojcik et al., 2004) (Fig. 3B). Similar to the previously
described immunolabeling data, we observed RIBEYE and dy-
namin located close to each other at the distal portion of the
presynaptic terminal that faces the inner nuclear layer (INL) (Fig.
3A,B). Quantitative analyses of nearest distance measurements
indicated that dynamin puncta are located �125 � 50 nm
(mean � SD; 100 synapses analyzed) away from RIBEYE puncta
and �120 � 40 nm (100 synapses analyzed) away from the bas-
soon puncta in retinal sections. Also, isolated mouse photorecep-
tors, which display the typical ultrastructural morphology of
photoreceptor synaptic terminals (data not shown), showed a
similar immunolabeling pattern of dynamin. Similar to the ob-
servations in the intact retina, a focal enrichment of dynamin was
observed in close vicinity to the synaptic ribbon in isolated pho-
toreceptors (data not shown).

4

(Figure legend continued.) respective immunosignals at the synaptic ribbon (B, D, F, and H),

whereas the control peptide had no influence on the immunosignals (A, C, E, and G), showing

the specificity of the immunolabeling results. ONL, Outer nuclear layer; OPL, outer plexiform

layer; INL, inner nuclear layer. Scale bars, 10 �m.

Figure 9. The Ca 2�-binding phosphatase calcineurin, a Ca 2� sensor of endocytosis, is enriched at the synaptic ribbon. A, The 0.5 �m thin sections of the mouse retina were double

immunolabeled with affinity-purified rabbit polyclonal antibodies against calcineurin and mouse monoclonal antibodies against RIBEYE(B)domain/CtBP2 (conventional imaging). Calcineurin is

highly enriched at the synaptic ribbons (arrowheads in A). B, The insets show a single-immunolabeled synaptic ribbon. ONL, Outer nuclear layer; OPL, outer plexiform layer. Scale bars, 10 �m.
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Figure 10. High-magnification analyses of CHC-V1 in relation to bassoon, RIBEYE, and dynamin in single-photoreceptor synapses. A, The 0.5 �m thin sections of the mouse retina were double

immunolabeled with rabbit polyclonal antibodies against CHC-V1 and mouse monoclonal antibodies against bassoon. In B and C, sections were double immunolabeled (Figure legend continues.)
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Finally, we performed postembedding electron microscopy
with antibodies against dynamin to determine at the ultrastruc-
tural level where exactly dynamin is located in the distal portion
of the presynaptic terminal. Postembedding immunogold elec-
tron microscopy demonstrated that dynamin is strongly enriched
at the presynaptic plasma membrane in close vicinity to the syn-
aptic ribbon (Fig. 4). This area is denoted as the periactive zone in
the text because it is located directly lateral to the active zone of
exocytosis, where the synaptic ribbons are anchored and exocy-
tosis occurs (for review, see Mercer and Thoreson, 2011; Schmitz
et al., 2012). These ultrastructural immunolocalization data sup-
port the described light microscopy immunolabeling data, which
demonstrated that dynamin is located �120 nm distant from the
synaptic ribbon. Dynamin was found predominantly, though not
exclusively, at the presynaptic plasma membrane in close vicinity
to the synaptic ribbon (within �250 nm distance from the base of
the synaptic ribbon). Some dynamin immunolabeling was also
present at the presynaptic plasma membrane, some distance
from the ribbon (�250 nm away from the base of the ribbon).
There was very little, if any, dynamin at the extrasynaptic outer
plasma membrane of the photoreceptor presynaptic terminal,

which is not in contact with the tips of postsynaptic horizontal
and bipolar cells (Fig. 4) (data not shown). The photoreceptor
presynaptic terminal has a bell-shaped appearance, which is gen-
erated by the invagination of the entire postsynaptic dendritic
complex into the photoreceptor presynaptic terminal (for review,
see Gray and Pease, 1971; Schmitz, 2009). The outer extrasynap-
tic plasma membrane of this bell-shaped presynaptic terminal,
which is not in contact with the dendritic complex, did not con-
tain any dynamin immunoreactivity (Fig. 4) (data not shown).
Only the inner, presynaptic plasma membrane was immunola-
beled by the dynamin antibody with a strong enrichment of the
dynamin immunogold label in the periactive zones lateral to the
synaptic ribbons (Fig. 4A–H) (data not shown).

Major SH3 domain-containing dynamin-binding proteins are
also enriched at the periactive zone in photoreceptor synapses
Dynamin is typically recruited to membranes via SH3 domain-
containing proteins such as syndapin/pacsin and amphiphysin
(Di Paolo et al., 2002; Yoshida et al., 2004; Wu et al., 2009b; Koch
et al., 2011). We localized these proteins in the retina and in
photoreceptor ribbon synapses to determine their localization,
also compared with localization of dynamin and the synaptic
ribbon. We found that the dynamin-interacting proteins am-
phiphysin and syndapin showed a very similar distribution as
dynamin (Fig. 5). Both amphiphysin and syndapin were highly
enriched in the synaptic layers of the retina, particularly in the
OPL, and showed a highly discrete, punctate distribution pattern
at these sites (Fig. 5). Amphiphysin and syndapin were particu-
larly enriched in close proximity to the synaptic ribbon that was
visualized with antibodies against RIBEYE (Fig. 5A,B).

Amphiphysin and syndapin were also highly clustered around
the synaptic ribbon in these double-immunolabeling experi-

4

(Figure legend continued.) with rabbit polyclonal antibodies against CHC-V1 and mouse

monoclonal antibodies against RIBEYE(B)-domain/CtBP2. In D, sections were double immuno-

labeled with rabbit polyclonal antibodies against CHC-V1 and mouse monoclonal antibodies

against dynamin. CHC-V1 is located very close to both RIBEYE and bassoon but does not overlap.

In contrast, the CHC-V1 immunosignals overlap with the dynamin immunosignal at the active

zone of photoreceptor ribbon synapses to a large extent (D). A, B, and D were obtained by

conventional imaging at high magnification; C is a maximum projection of a z-stack obtained by

2D-SR-SIM. Dashed circles in A–D denote single presynaptic photoreceptor terminals;

clathrinHC-V1, CHC-V1; OPL, outer plexiform layer. Scale bars, 1 �m.

Figure 11. Localization of CHC-V1 in the presynaptic rod photoreceptor terminal in relation to PSD-95 and VGLUT1. A, B, The 0.5 �m thin sections from mouse retina were triple immunolabeled

with mouse monoclonal antibodies against PSD-95 (A) or VGLUT1 (B), rabbit polyclonal antibodies against CHC-V1 (abcam) (A, B) and DyLight 650 direct labeled primary antibodies against

RIBEYE(B)/CtBP2 (A, B). The PSD-95 immunosignals in A demarcate the plasma membrane of photoreceptor presynaptic terminals in the OPL (A, arrowheads). In B, presynaptic terminals were

immunolabeled with antibodies against the vesicular transporter VGLUT1, a marker protein of glutamatergic synaptic vesicles. The dashed circle in B denotes a single-immunolabeled presynaptic

photoreceptor terminal. RIBEYE and CHC-V1 are located close to each other at the distal end of the photoreceptor terminal that is facing the INL (A, B). ONL, Outer nuclear layer; clathrinHC-V1,

CHC-V1; OPL, outer plexiform layer; INL, inner plexiform layer. Scale bars, 1 �m.
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Figure 12. Postembedding immunogold labeling of photoreceptor synapses from the mouse retina with antibodies against CHC-V1. A–E, Ultrathin sections of the mouse retina were immuno-

labeled with mouse monoclonal antibodies against CHC-V1 (catalog #21679, abcam). Binding of the primary antibodies was detected with goat anti-rabbit antibodies conjugated to 10 nm gold

particles. A strong CHC-V1 immunogold label (arrowheads) was observed at the plasma membrane in close proximity to the synaptic ribbon (sr). The immunogold labeling (Figure legend continues.)
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ments in 2D-SR-SIM analyses (data not shown). The antibodies
against amphiphysin/syndapin did not work for postembedding
immunogold labeling in our hands. Therefore, we applied triple
immunolabeling SR-SIM analyses to define the localization of
these proteins in the presynaptic terminal as precise as possible at
the light microscopic level. Using 2D-SR-SIM, we found that
both amphiphysin as well as syndapin are typically localized and
strongly enriched around the synaptic ribbon in these triple-
immunolabeling analyses (Fig. 5C,D). The impression was con-
firmed by using 3D-SR-SIM of these triple-immunolabeling
experiments (Fig. 6A,B). Both 2D-SR-SIM and 3D-SR-SIM re-
sults showed a tubulo-/vesicular-like distribution pattern of syn-
dapin and amphiphysin around the synaptic ribbon (Figs. 5C,D,
6A,B).

Endophilin is another SH3-containing protein that can inter-
act with dynamin (Mizuno et al., 2010; Llobet et al., 2011; Milos-
evic et al., 2011). In contrast to amphiphysin and syndapin (Figs.
5, 6), endophilin was neither enriched around the synaptic rib-
bon (Fig. 7A) nor restricted to the dynamin immunosignal
around the synaptic ribbon (Fig. 7B). Endophilin was diffusely
distributed throughout the entire presynaptic terminal (Fig. 7A–
E). In these experiments, the extension of the presynaptic termi-
nal was immunolabeled with panSV2 (Fig. 7C,D) or with
antibodies against the VGLUT1 (Fig. 7E), both with identical
results. All the described immunolabeling experiments could be
specifically blocked with the respective antigen used for immuni-
zation (Fig. 8) (data not shown) but not with irrelevant peptides
demonstrating the specificity of the immunolabeling analyses.

Localization of calcineurin, a putative Ca 2� sensor of
endocytosis, in photoreceptor ribbon synapses
Interestingly, calcineurin, a Ca 2�-sensing phosphatase involved
in coupling Ca 2�-dependent activity and endocytosis (for re-
view, see Clayton and Cousin, 2009), is highly enriched at the
synaptic ribbon complex (Fig. 9). Thus, the influx of Ca 2�

through voltage-gated calcium channels could mediate activity-
dependent endocytosis at the synaptic ribbon through such a
mechanism (see Discussion).

Evidence for two distinct clathrin heavy chain variants
(CHC-V1 and CHC-V2) in the presynaptic photoreceptor
terminal at distinct localizations
Finally, we analyzed for the distribution of clathrin. Clathrin is
instrumental for many, though not all, forms of synaptic vesicle
endocytosis (for review, see Murthy and de Camilli, 2003; Wilbur
et al., 2005; Doherty and McMahon, 2009; Brodsky, 2012). To
analyze the distribution of clathrin in photoreceptor presynaptic
terminals, we used four different antibodies against different
epitopes of clathrin heavy chain. In humans, two clathrin heavy
chain genes (CHC17 and CHC22) are present (for review, see
Brodsky, 2012). In the mouse genome, there is only one active
clathrin heavy gene that corresponds to human CHC17. A second
clathrin gene is a nonactive pseudogene in the mouse genome
(Wakeham et al., 2005; for review, see Brodsky, 2012).

We used two different antibodies raised against the C termi-
nus of clathrin heavy chain (ab21679, abcam; P1663, Cell Signal-
ing Technology) for the immunolocalization analyses. The
clathrin variant, detected by these antibodies, is denoted as
CHC-V1 in the following text. Using these antibodies against
CHC-V1, we observed a strong clathrin signal in close vicinity to
the RIBEYE-immunolabeled synaptic ribbon (Figs. 10, 11) (data
not shown). The clathrin immunosignal was surrounding both
the bassoon-labeled active zone (Fig. 10A) and the RIBEYE-
immunolabeled synaptic ribbon (Fig. 10B). Also, SR-SIM analy-
ses of thin-sectioned mouse photoreceptor synapses that were
double immunolabeled with antibodies against RIBEYE and
CHC-V1 demonstrated a close spatial correlation of these pro-
teins. The CHC-V1 immunosignal closely surrounded the
RIBEYE-labeled synaptic ribbon in these SR-SIM analyses (Fig.
10C). The CHC-V1 immunosignal overlapped to a large extent
with the dynamin immunosignal (Fig. 10D).

The CHC-V1 immunosignal is, similar to the synaptic ribbon,
localized in the distal portion of the synaptic terminal that faces
the INL (Fig. 11). The borders of the presynaptic terminal were
marked either with antibodies against PSD-95, which labels the
presynaptic plasma membrane of photoreceptor terminals (Fig.
11A), or with antibodies against VGLUT1 (Fig. 11B), a compo-
nent of the presynaptic glutamatergic vesicles. In Western blot-
ting analyses, CHC-V1 migrated at the expected molecular
weight position of clathrin heavy chain (Fig. 1F; see also Fig. 13A,
lane 1). The CHC-V1 immunofluorescence signals could be
blocked by preabsorption with the respective peptide used for
immunization (see Fig. 13C) but not by preabsorption with con-
trol peptides (see Fig. 13B), demonstrating the specificity of the
immunolabeling data.

Finally, postembedding immunogold electron microscopy
with antibodies against CHC-V1 demonstrated that a strong
CHC-V1 immunosignal was actually found at the presynaptic
plasma membrane in close proximity (within �250 nm) from the
synaptic ribbon (Fig. 12). These ultrastructural data completely
confirm and extend the light microscopic CHC-V1 immunola-
beling data and show the localization of CHC-V1 in the periactive
zone (Fig. 12) in a very similar position as that shown above for
dynamin (Fig. 4).

We found evidence for a second clathrin-containing com-
partment that is not spatially related to the synaptic ribbon
(see Figs. 14, 15). This clathrin-containing compartment was
labeled by two different antibodies directed against epitopes in
the central region of clathrin heavy chain (ab59710, Abcam;
X22, abcam). This clathrin heavy chain variant detected by
these latter antibodies is denoted as CHC-V2 in the following
text. CHC-V2 migrates slightly slower than CHC-V1 at a
slightly higher molecular weight position (Fig. 13A). This be-
comes obvious if low percentage (5%) acrylamide SDS-PAGE
gels (Fig. 13A) were used (instead of 8% acrylamide running
gels; Fig. 1G). In immunolabeling analyses, CHC-V2 is located
a large distance from both RIBEYE and the active zone protein
bassoon as well as CHC-V1 as judged by high-resolution
double-immunolabeling analyses (Fig. 14A–C). The mean dis-
tance of CHC-V2 from RIBEYE and bassoon puncta (nearest,
mean distance) is �580 � 210 nm (100 synapses analyzed) for
CHC-V2-RIBEYE and �750 � 200 nm (100 synapses ana-
lyzed) for CHC-V2-bassoon. These are two large distances
particularly if one considers that the diameter of a single rod
photoreceptor terminal, measured as distance of the lateral
PSD-95 immunosignals of a single synaptic terminal, is
�1280 � 330 nm (100 synapses analyzed). Despite the large

4

(Figure legend continued.) experiments confirm the previously shown immunofluorescence

labeling data and demonstrate the enrichment of CHC-V1 in the periactive zone of the photo-

receptor ribbon synapse. Arrowheads indicate the CHC-V1 enrichment in the periactive zone.

Only a very minor fraction of CHC-V1 was found in the presynaptic cytosol (dashed circle). F is a

negative control in which the primary antibody was omitted. clathrinHC-V1, CHC-V1; pr, pre-

synaptic photoreceptor terminal; ho, dendritic tips of postsynaptic horizontal cells; pm, plasma

membrane. Scale bars: A–F, 250 nm.
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Figure 13. A, Western blot analyses of two different clathrin heavy chains, variant 1 and variant 2 (after separation in 5% acrylamide SDS-PAGE running gels). The running position of the

immunoreactive bands detected by the different antibodies against the CHC-V1 (lane 1) and antibodies against clathrin heavy chain variant 2 (lane 2) differ slightly. CHC-V1 is slightly smaller than

CHC-V2 in Western blot analyses (after separation in 5% acrylamide SDS-PAGE running gels). B–E, Pre-absorption control experiments for the antibodies against CHC-V1 (Figure legend continues.)
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distance of CHC-V2 from the synaptic
ribbon, CHC-V2 is still located in the
presynaptic terminal as judged by triple-
immunolabeling experiments with anti-
bodies against PSD-95/VGLUT1, RIBEYE,
and anti-CHC-V2 (Fig. 15A,B). But, in
contrast to CHC-V1, CHC-V2 is located in
the proximal portion of the presynaptic ter-
minal, which is separated from the synaptic
ribbon by the bulk of glutamatergic synaptic
vesicles (Fig. 15B). The antibodies against
CHC-V2 did not work in postembedding
immunogold electron microscopy. But
since this clathrin variant is clearly not asso-
ciated with the synaptic ribbon complex the
identification of the underlying organelle,
though principally important, is of minor
relevance for the present study, which is
concerned with vesicle retrieval in the peri-
active zone surrounding the synaptic ribbon
complex (see also Discussion).

The periactive zone of photoreceptor
ribbon synapses is a hotspot of
endocytic activity
Finally, we also presented functional evi-
dence that the synaptic ribbon complex is
a hotspot of endocytic activity. If isolated
mouse photoreceptors (Fig. 16A) were
loaded with a short pulse of the fluid-phase
marker SR101, SR101 was predominantly
taken up in immediate vicinity to the synap-
tic ribbon (Fig. 16B–D) (data not shown).
The synaptic ribbon was visualized by
immunolabeling with antibodies against
RIBEYE in these experiments. The uptake of
SR101 was dependent upon dynamin activ-
ity because SR101 uptake was completely
blocked in the presence of dynasore, a spe-
cific inhibitor of dynamin activity (Fig. 16E)
(data not shown). Our data are schemati-
cally summarized in Figure 17.

Discussion
In the present study, we analyzed the distri-
bution of major proteins of the endocytic
machinery in photoreceptor synapses with immunolabeling and
high-resolution imaging. We found a strong enrichment of these
proteins in the periactive zone (i.e., the area that surrounds the active
zone and the synaptic ribbon). In agreement with the periactive zone
enrichment, we observed a preferential uptake of sulforhod-
amine (SR101), a fluid-phase endocytosis marker, around synaptic

ribbons in mouse photoreceptors. These data suggest that the peri-

active zone region in photoreceptor synapses is a hotspot of en-

docytic vesicle retrieval. Dynamin is likely to play an essential role in

periactive zone endocytosis because dynasore, a specific inhibitor of

dynamin activity, completely inhibited ribbon complex-associated

uptake of SR101. Visualization of periactive zone endocytosis in

photoreceptor terminals was achieved by short loading pulses with

sulforhodamine (SR101) as an uptake marker for endocytosis. Lon-

ger tracer loading times generate a diffuse presynaptic labeling pat-

tern (data not shown) similar to HRP uptake experiments in

previous EM studies (Ripps et al., 1976; Schacher et al., 1976; Schaef-

fer and Raviola, 1978; Cooper and McLaughlin, 1983).

The periactive zone vesicle retrieval could promote rapid syn-

aptic vesicle recycling, which is particularly important for the

tonically active ribbon synapses. The suggested vesicle retrieval at

the periactive zone close to the synaptic ribbon is in line with

recent findings that supported a major role of synaptic ribbons

Figure 14. Two different clathrin heavy chain variants are found in photoreceptor terminals at different locations (immuno-

fluorescence analyses). A, The 0.5 �m thin sections of the mouse retina were double immunolabeled with rabbit polyclonal

antibodies against CHC-V1 and mouse monoclonal antibodies against CHC-V2. The immunosignals for the two variants of clathrin

heavy chain do not overlap and are located a large distance from each other (A). In B and C, sections were double immunolabeled

with polyclonal antibodies against bassoon (B) and RIBEYE (C) to relate the localization of CHC-V2 to the localization of these

proteins in the presynaptic photoreceptor terminal. Bassoon and RIBEYE are localized in a large distance from immunolabeled

CHC-V2. For further localization data of CHC-V2 in relation to other proteins of the presynaptic terminal, see also Figure 15. ONL,

Outer nuclear layer; OPL, outer plexiform layer; clathrinHC-V1, CHC-V1; clathrinHC-V2, CHC-V2. Scale bars, 1 �m.

4

(Figure legend continued.) and CHC-V2 (immunolabeling analyses). Double immunolabeling

of 0.5 �m thin mouse retinal sections with the indicated antibodies preabsorbed with either

their specific peptide used for immunization (C, E) or with an unrelated control peptide (B, D). In

parallel, sections were incubated with monoclonal anti-dynamin antibodies (B, C) or RIBEYE (D,

E) as labeling positive controls. The specific peptides completely blocked the respective clathrin

heavy chain immunosignals (C, E), whereas the control peptide had no influence of the clathrin

heavy chain immunosignals (B, D) showing the specificity of the immunolabeling signals. ONL,

Outer nuclear layer; OPL, outer plexiform layer; clathrinHC-V1, CHC-V1; clathrinHC-V2, CHC-V2.

Scale bars: B–E, 5 �m.
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for recycling of release-ready synaptic vesicles (Jackman et al.,
2009; Babai et al., 2010). This proposal is conceptionally similar
to periactive zone endocytosis found also in other synapses (e.g.,
in lamprey neurons, neuromuscular junction and hippocampal
synapses) (Teng et al., 1999; for review, see Shupliakov, 2009;
Haucke et al., 2011; Hua et al., 2011; Saheki and De Camilli, 2012;
Yamashita, 2012). It will be interesting to see how regulation of
periactive zone endocytosis is accomplished in these physiologi-
cally different types of synapses.

In general, different forms of endocytosis involve different
sets of proteins (for review, see Wu et al., 2007; Dittman and
Ryan, 2009; Doherty and McMahon, 2009; Donaldson et al.,
2009; Scita and Di Fiori, 2010; Sandvig et al., 2011; Saheki and De
Camilli, 2012). We found dynamin as well as the dynamin-
associated proteins syndapin/pacsin and amphiphysin highly en-
riched in close vicinity to the synaptic ribbons. In agreement with
the light microscopic immunolabeling data, dynamin was found
preferentially localized at the presynaptic plasma membrane next
to the synaptic ribbon, as judged by postembedding immunogold
electron microscopy. These ultrastructural data further support
the concept of periactive zone endocytosis in ribbon synapses.
Dynamin immunoreactivity at the plasma membrane outside
of the periactive zone could support retrieval of vesicles that
have been fused outside of the ribbon-associated active zone
(Midorikawa et al., 2007; Zenisek, 2008). Endophilin was also
found at the synaptic ribbon but predominantly diffusely distrib-
uted throughout the entire presynaptic terminal. In conventional
synapses, endophilin is also distributed diffusely in the entire

synaptic vesicle pool, although endophilin acts at the plasma
membrane (Bai et al., 2010). Similarly, intersectin, a periactive
zone component in conventional synapses, cycles between differ-
ent locations in the presynaptic terminal (for review, see Shuplia-
kov, 2009; Pechstein et al., 2010; Haucke et al., 2011).

Remarkably, we detected two immunologically distinct forms
of clathrin heavy chain in the presynaptic photoreceptor termi-
nal, CHC-V1 and CHC-V2. CHC-V1 was associated with the
synaptic ribbon complex, whereas CHC-V2 was not localized at
synaptic ribbons. CHC-V1 immunosignals at the synaptic ribbon
complex largely overlapped with the dynamin immunoreactivity
at that site. In support of these light microscopic data, we showed
by immunogold electron microscopy that CHC-V1 is preferen-
tially localized at the presynaptic plasma membrane in close vi-
cinity to the active zone and synaptic ribbon. The antibodies
against CHC-V2 did not work for postembedding immunogold
electron microscopy. But the CHC-V2 immunosignals were
clearly localized a large distance (�580 nm) from the bassoon-
labeled active zone in the proximal part of the presynaptic termi-
nal and thus cannot contribute to periactive zone endocytosis.
The identity and function of this CHC-V2-containing compart-
ment needs to be elucidated in detail by future investigations. The
molecular difference between CHC-V1 and CHC-V2 is un-
known, but could involve differential splicing and/or differential
post-translational modifications.

Our proposal of periactive zone endocytosis in photoreceptor
synapses is in agreement with electron microscopic data that
demonstrated coated buds and coated vesicles at the presynaptic

Figure 15. Localization of CHC-V2 (clathrinHC-V2) in the presynaptic photoreceptor terminal in relation to PSD-95 and VGLUT1. In A and B, 0.5 �m thin sections of the mouse retina were triple

immunolabeled with rabbit polyclonal antibodies against CHC-V2 and mouse monoclonal antibodies against either PSD-95 (A) or VGLUT1 (B). The synaptic ribbon was visualized with a DyLight

650-labeled primary antibody against RIBEYE(B)-domain/CtBP2. The PSD-95 immunosignals demarcate the plasma membrane of the entire photoreceptor presynaptic terminal (arrowheads). The

CHC-V2 antibody labeled a spot-like structure in the presynaptic terminal (arrows) that—in contrast to CHC-V1—was localized in a large distance from the synaptic ribbon. A virtually identical

immunolabeling pattern was obtained if the sections were triple immunolabeled with a monoclonal antibody (X22, abcam) against CHC-V2, a rabbit polyclonal antibody against PSD-95, and the

DyLight 650 directly labeled antibody against RIBEYE(B)-domain/CtBP2 (data not shown). Identical results were obtained if presynaptic vesicles were immunolabeled with rabbit polyclonal

antibodies against VGLUT1 and if CHC-V2 was immunolabeled with the monoclonal clathrin heavy chain antibody X22 (abcam) (data not shown). Similarly, as in A and B, the localization of the

synaptic ribbon was determined by DyLight 650-labeled primary antibody against RIBEYE(B)-domain/CtBP2 in these incubations (data not shown). B, The CHC-V2 was located in a spot-like manner

(arrow in B2) at the entry of the presynaptic terminal. CHC-V2 was separated from the synaptic ribbon by the bulk of glutamatergic synaptic vesicles that were immunolabeled by VGLUT1 antibodies

(B). This distribution of CHC-V2 is in contrast to the distribution of CHC-V1 (see Figs. 10, 11). In contrast to CHC-V2, CHC-V1 is highly enriched around the synaptic ribbon (compare with Fig. 11A,B).

Dashed circles in B denote a single presynaptic photoreceptor terminal in the outer plexiform layer (OPL). clathrinHC-V2, CHC-V2; clathrinHC-V1, CHC-V1. Scale bars, 1 �m.
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Figure 16. Imaging of synaptic ribbon-associated endocytosis in isolated mouse photoreceptors. Isolated mouse photoreceptors (shown in A) were incubated for 2 min with sulforhodamine (SR101), which

is taken up by fluid-phase endocytosis. Afterward, SR101-loaded photoreceptors were fixed and immnunolabeled with antibodies against RIBEYE(B)-domain/CtBP2. A hotspot of SR101 uptake is found in close

association with the synaptic ribbon (B–D; and data not shown). B was obtained by conventional imaging; C and D are maximum projections of z-stacks from confocal imaging. Pretreatment with dynasore, a

specific inhibitor of dynamin (100 �M), completely inhibited the synaptic ribbon-associated uptake of SR101 (red channel) (E and data not shown). Scale bars, 1 �m.
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plasma membrane lateral to the synaptic ribbon (Gray and Pease,
1971). These coated membranes were located in pouches of the
presynaptic terminals located lateral to the synaptic ribbon and
opposite to the dendritic tips of horizontal cells. These are
exactly the sites where we found a strong enrichment of dy-
namin and a clathrin heavy chain variant (CHC-V1) using
immunogold electron microscopy.

Previous analyses, mostly obtained from electrophysiological
analyses of retinal bipolar cells and inner ear hair cells, revealed at
least two distinct modes of endocytosis in ribbon synapses: a fast
phase and a slow phase of endocytosis (Neves and Lagnado, 1999;
Moser and Beutner, 2000; Beutner et al., 2001; Wu et al., 2007; for
review, see LoGiudice and Matthews, 2007; Smith et al., 2008;
Royle and Lagnado, 2010), with time constants of �1 and
�15–30 s. Future analyses need to show to which mode periactive
endocytosis will contribute. In terms of its localization, it would
be ideally suited to serve fast endocytosis in photoreceptors. In
retinal bipolar cells, fast endocytosis was found to be clathrin
independent however (Jockusch et al., 2005).

The local periactive zone endocytic
machinery in photoreceptor synapses will
be exposed to fluctuations of presynaptic
[Ca 2�]i that result from Ca 2� influx
through voltage-gated Ca 2� channels at
the active zone. The role of Ca 2� in endo-
cytosis is not completely understood (for
review, see Smith et al., 2008; Shupliakov,
2009; Yamashita, 2012). But many recent
studies have demonstrated that increases
of [Ca 2�]i can promote and activate en-
docytosis (Neves and Lagnado, 1999;
Beutner et al., 2001; Neves et al., 2001; Wu
et al., 2005, 2007, 2009a; Hosoi et al., 2009;
Babai et al., 2010; Schnee et al., 2011).
Recent analyses suggested that vesicle
recycling occurs close to presynaptic
voltage-gated Ca 2� channels in photore-
ceptor ribbon synapses and could be stim-
ulated by increases of presynaptic Ca 2�

(Babai et al., 2010).

We found calcineurin, a Ca 2�-
activated calmodulin-dependent phos-
phatase, localized in close vicinity to the
synaptic ribbon. In conventional syn-
apses, calcineurin is a Ca 2�-dependent
regulator of endocytosis that adjusts
activity-dependent endocytosis by de-
phosphorylating endocytic proteins (e.g.,
dynamin). By this way, it controls func-
tionally important protein–protein inter-
actions in endocytic networks (for review,
see Cousin and Robinson, 2001; Clayton
and Cousin, 2009; Yamashita, 2012).
Thus, calcineurin is a potential Ca 2� sen-
sor that could adjust local, ribbon-
associated endocytosis to different levels
of synaptic activity also in photoreceptor
ribbon synapses. Calcineurin specifically
binds to the dynamin-1Xb splice isoform
of dynamin-1 (Bodmer et al., 2011; Xue et
al., 2011), predicting that this dynamin
splice variant is present at synaptic rib-

bons of photoreceptor synapses. Clearly,

further possibilities could also apply. In conventional synapses,

various mechanisms are known to be installed that regulate en-

docytosis (for review, see Südhof, 2004, 2012; Shupliakov, 2009;

Koch and Holt, 2012; Yamashita, 2012; Yao et al., 2012).

Recently, it was demonstrated that CtBP proteins perform

an important role in mediating certain aspects of endocytosis

(Bonazzi et al., 2005; Amstutz et al., 2008; Liberali et al., 2008;

for review, see Hansen and Nichols, 2009). RIBEYE is also a

member of the CtBP protein family and could possibly fulfill a

similar role in the ribbon synapse. Recently, the RIBEYE(B)

domain was demonstrated to be a lysophosphatidic acid-

acyltransferase that generates phosphatidic acid (PA) at the

synaptic ribbon (Schwarz et al., 2011). PA promotes negative

membrane curvature that favors vesicle budding and fission

(Jenkins and Frohman, 2005; Roth, 2008; Yang et al., 2008).

PA stimulates binding of dynamin to membranes (Burger et

al., 2000; Andresen et al., 2002; Roth, 2008) and thus might

play a role in distinct aspects of endocytotic membrane traf-

Figure 17. Simplified, schematic summary of the immunolocalization data presented in the manuscript. Key players of endo-

cytic membrane traffic, including dynamin, dynamin-binding proteins, and CHC-V1, are enriched in a periactive zone of photore-

ceptor synapses. Besides CHC-V1, CHC-V2 is also present in the presynaptic photoreceptor terminal. In contrast to CHC-V1, CHC-V2

is located a large distance from the periactive zone, possibly on an endosomal compartment in the proximal region of the presyn-

aptic terminal. Endosomal-like membrane compartments have been previously observed by transmission electron microscopy in

this part of the photoreceptor terminal (Ripps et al., 1976; Schacher et al., 1976; Schaeffer and Raviola, 1978; Cooper and McLaugh-

lin, 1983). The drawing of the photoreceptor terminal is modified based on a drawing of Gray and Pease (1971) . sr, Synaptic ribbon;

sv, synaptic vesicles; clathrinHC-V1, clathrin heavy chain variant 1, CHC-V1; clathrinHC-V2, CHC-V2; CaV, voltage-gated calcium

channels of the photoreceptor active zone; h, postsynaptic dendritic tip of a horizontal cell; b, postsynaptic dendritic tip of an

invaginating bipolar cell; bsn, bassoon.
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ficking (Donaldson, 2009; Fine et al., 2011; Lariccia et al.,
2011; Malhotra and Campelo, 2011; Campelo and Malhotra,
2012).

Currently, we can only speculate how the endocytic machin-
ery is anchored at the synaptic ribbon complex of photoreceptor
synapses. The protein Munc119 is recruited to synaptic ribbons
via interaction with RIBEYE (Alpadi et al., 2008). Interestingly,
Munc119 was found in a protein complex with dynamin in T
lymphocytes and shown to regulate dynamin function (Karim et
al., 2010). Therefore, Munc119 might perform a similar role in
photoreceptor ribbon synapses by anchoring the endocytic ma-
chinery to synaptic ribbons and/or regulating its activity.
�-subunits of voltage-gated Ca 2� channels also bind dynamin
(Gonzalez-Gutierrez et al., 2007; Miranda-Laferte et al., 2011;
Xue et al., 2011) and thus could be also involved in recruiting the
endocytotic machinery. One needs to keep in mind that endo-
cytic retrieval might differ in different types of ribbon synapses.
For example, bulk membrane retrieval (Cousin, 2009) is an im-
portant mechanism of membrane retrieval in retinal bipolar cells
(Holt et al., 2003; Paillart et al., 2003) but is absent in photore-
ceptor terminals (Rea et al., 2004). Furthermore, multiple modes
of endocytosis could coexist in a single synapse (Holt et al., 2003;
Paillart et al., 2003; LoGiudice et al., 2009).
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ArfGAP3 Is a Component of the Photoreceptor Synaptic
Ribbon Complex and Forms an NAD(H)-Regulated, Redox-
Sensitive Complex with RIBEYE That Is Important for
Endocytosis

Mayur Dembla, Silke Wahl,* Rashmi Katiyar,* and Frank Schmitz
Saarland University, Medical School, Department of Neuroanatomy, 66421 Homburg/Saar, Germany

Ribbon synapses are tonically active synapses in the retina and inner ear with intense vesicle traffic. How this traffic is organized and

regulated is still unknown. Synaptic ribbons, large presynaptic structures associated with numerous synaptic vesicles, appear to be

essential for this process. The base of the synaptic ribbon is anchored at the active zone and is a hotspot of exocytosis. The synaptic ribbon

complex is also important for vesicle replenishment. RIBEYE is a unique and major component of synaptic ribbons. It consists of a unique

A-domain and an NAD(H)-binding, C-terminal B-domain. In the present study, we show that the Arf-GTPase activating protein-3

(ArfGAP3), a well characterized regulator of vesicle formation at the Golgi apparatus, is also a component of the synaptic ribbon complex

in photoreceptor synapses of the mouse retina and interacts with RIBEYE as shown by multiple, independent approaches. ArfGAP3 binds

to RIBEYE(B)-domain in an NAD(H)-dependent manner. The interaction is redox sensitive because NADH is more efficient than the

oxidized NAD � in promoting ArfGAP3-RIBEYE interaction. RIBEYE competes with the GTP-binding protein Arf1 for binding to Arf-

GAP3. Thus, binding of RIBEYE(B) to ArfGAP3 could prevent inactivation of Arf1 by ArfGAP3 and provides the synaptic ribbon with the

possibility to control Arf1 function. The interaction is relevant for endocytic vesicle trafficking because overexpression of ArfGAP3 in

photoreceptors strongly inhibited endocytotic uptake of FM1– 43.

Key words: ArfGAP3; endocytosis; photoreceptor synapse; ribbon synapse; RIBEYE; synaptic ribbon

Introduction
Ribbon synapses, e.g., retinal photoreceptor synapses, are contin-
uously active synapses with a high vesicle turnover. How this
vesicle traffic is organized and regulated is still largely unknown.
Synaptic ribbons, large presynaptic structures associated with
numerous synaptic vesicles, appear to play a central role in this
process. The basal end of the synaptic ribbon is anchored at the
active zone where L-type voltage-gated channels are clustered.
This site is a hotspot of exocytosis (Zenisek et al., 2000; Frank et
al., 2010; Chen et al., 2013). The synaptic ribbon complex is also

relevant for vesicle recycling (Spassova et al., 2004; Griesinger et
al., 2005; Jackman et al., 2009; Babai et al., 2010; Frank et al., 2010;
Schnee et al., 2011; Snellman et al., 2011; Tian et al., 2012; Wahl et
al., 2013). In photoreceptor synapses, synaptic vesicle retrieval
occurs in the periactive zone, in close proximity to the synaptic
ribbon (Wahl et al., 2013). RIBEYE is a major and unique com-
ponent of synaptic ribbons (Schmitz et al., 2000; for review, see
Schmitz, 2009). It consists of an N-terminal A-domain and a
C-terminal B-domain. The B-domain is largely identical with the
protein CtBP2 and binds NAD(H) (for review, see Schmitz, 2009;
Schmitz et al., 2012).

Small GTP-binding proteins of the Arf family are important
regulators of intracellular membrane traffic (for review, see
Gillingham and Munro, 2007). Arf proteins switch between a
GTP-bound, active form and a GDP-bound, inactive form.
Which nucleotide is bound is regulated by the activity of two
classes of proteins, the ArfGEFs (Arf GTP-exchange factors) and
the ArfGAPs (Arf-GTPase-activating proteins; for review, see In-
oue and Randazzo, 2007; Kahn et al., 2008; Spang et al., 2010).
ArfGAPs enhance the low intrinsic GTPase activity of Arfs. A
large number of ArfGAPs have been identified in higher organ-
isms. Conserved hallmark of ArfGAPs is an �136 aa long, cata-
lytically active GAP-domain (AGD) with a central Zn-finger
motif that stimulates GTPase activity of the attached Arf (Cuki-
erman et al., 1995; Goldberg, 1999). The regions outside of the
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AGD are divergent in different ArfGAPs.
The prototypical yeast ArfGAPs gcs1p and
glo3p possess mammalian orthologs in
ArfGAP1 (for gcs1p) and ArfGAP2/Arf-
GAP3 (for glo3p). In these ArfGAPs, the
conserved AGD is located at the N termi-
nus. Both classes of ArfGAPs possess dis-
tinct motifs in their C terminus, which
mediate membrane binding (Bigay et al.,
2005; Kliouchnikov et al., 2009) as well as
other functions (for review, see Spang et
al., 2010).

In the present study, we identified
ArfGAP3 as a new component of the syn-
aptic ribbon complex in photoreceptor
synapses of the mammalian retina. Arf-
GAP3 is a well known component of the
Golgi apparatus where it regulates retro-
grade trafficking from the Golgi to the
endoplasmic reticulum (for review, see
Spang et al., 2010). We provide evidence
that ArfGAP3 is important for controlling
Arf1 activity at the synaptic ribbon com-
plex and for regulating endocytic mem-
brane traffic.

Materials and Methods
Plasmids
Bacterial expression constructs. These include

ArfGAP3(AGD)-pGEX-KG, which encodes

the ArfGAP-domain (AGD) (amino acids 1–136) of bovine ArfGAP3.

The insert was excised from GAP-dom(ArfGAP3)pACT2 with EcoRI

and XhoI and cloned into the EcoRI/XhoI sites of pGEX-KG.

ArfGAP3(AGD)-pMal-C2, encoding the ArfGAP-domain of bovine Ar-

fGAP3. The insert was amplified from bovine ArfGAP3 cDNA

(BC118087) using the following forward primer AAAAGAATTCA

TGGGGGACCCCAG and reverse primer AAAAGTCGACGCTAT-

CAAGCCAGAG and cloned into the EcoRI/SalI sites of pMal-C2. Also

included is ArfGAP3(AGD-extended)-pMal-C2, which encodes the ex-

tended ArfGAP-domain (AGD extended, amino acids 1–225 of bovine

ArfGAP3). The insert was amplified from bovine ArfGAP3 cDNA

(BC118087) using forward primer AAAAGAATTCATG GGGGAC-

CCCAG reverse primer AAACTCGAGAAGTCCT CTTTTAGC and

cloned into the EcoRI/SalI sites of pMal-C2. ArfGAP3(AGD extended)-

pSNAPtagT7 encodes the extended ArfGAP-domain. The insert was am-

plified from bovine ArfGAP3 cDNA (BC118087) using forward primer

AAAAGGATCCATGGGGGACCCCA and reverse primer AAACTC-

GAGAAGTCC TCTTTTAGC and cloned into the BamHI/XhoI sites of

pSNAPtagT7 (NEB). ArfGAP3Cterm2-pGEX-KG encodes amino acids

226 –335 of bovine ArfGAP3. The insert was amplified from bovine Ar-

fGAP3 cDNA using forward primer AAAGAATTCGGGCCAAAAAAG

GAAGT and reverse primer AAACTCGAGCGTGA TTGGTGTTTC and

cloned into the EcoRI/XhoI sites of pGEX-KG. ArfGAP3Cterm3-

pGEX-KG encodes amino acids 332– 460 of bovine ArfGAP3. The insert

was amplified from bovine ArfGAP3 cDNA using forward primer AAA-

GAATTCAAACACCAATCACG GCG and reverse primer AAACTC-

GAG AGCTGAGCTGATGGA and cloned into the EcoRI/XhoI sites of

pGEX-KG. RIBEYE(B)-MBP (Magupalli et al., 2008). The plasmid

pMal-C2 corresponds to the commercially available pMal-C2 vector

(NEB) to which multiple STOP codons have been added in all reading

frames at the end of the multiple cloning site using standard methods.

Figure 1. RIBEYE(B) and RIBEYE(AB) interact with ArfGAP3 in the YTH system. Summary plates of YTH analyses obtained with the indicated bait and prey plasmids. For convenience, experimental

bait–prey pairs are underlayered in color (green in case of interacting bait–prey pairs; control matings are noncolored). RIBEYE(B) and also full-length RIBEYE [RIBEYE(AB)] interact with ArfGAP3 in

the YTH system (matings 1 and 2). Mating 11 denotes an unrelated positive control (Magupalli et al., 2008). pSE1111 is an irrelevant prey vector and pSE1112 is an irrelevant bait vector (Tai et al.,

1999; Magupalli et al., 2008). Negative control matings of the ArfGAP3 prey clone with empty bait clones (mating 7) or irrelevant bait clones (mating 8) demonstrate that the ArfGAP3 clone is not

auto activating. The other matings represent negative control matings for the RIBEYE bait clones (matings 3– 6) or RIBEYE prey clones (matings 9 and 10), demonstrating that these constructs are

also not auto activating in the YTH system. RE(AB), full-length RIBEYE, containing both RIBEYE(A)- and RIBEYE(B)-domain; RE(A), RIBEYE(A)-domain; RE(B), RIBEYE(B)-domain; AGD, ArfGAP-domain

of ArfGAP3.

Figure 2. Summary tables of YTH matings. A, RIBEYE interacts with the ArfGAP-domain (AGD) of ArfGAP3. RIBEYE(B) and also

full-length RIBEYE [RIBEYE(AB)] interact with the ArfGAP-domain (AGD) of ArfGAP3 in the YTH system (matings 1 and 2). Mating

9 denotes an unrelated positive control (Magupalli et al., 2008). The other matings are auto-activation controls. None of the yeast

constructs is auto activating. B, The NAD(H)-binding subdomain of RIBEYE(B) interacts with ArfGAP3. The NAD(H)-binding sub-

domain of RIBEYE(B), the NBD, interacts with ArfGAP3 (mating 1), but not the substrate-binding subdomain of RIBEYE(B), the SBD

(mating 5). Matings 2– 4 are positive control matings–(Bassoon for SBD-RE(B); tom Dieck et al., 2005), Munc119 for NBD-RE(B)

(Alpadi et al., 2008), RE(A) for RE(B) (Magupalli et al., 2008)–and matings 6 –11 are negative controls (auto-activation controls).

C, Schematic domain structures of ArfGAP3. D, An NAD(H)-binding-deficient mutant of RIBEYE(B), RE(B)G730A, does not interact

with ArfGAP3 (mating 1), while wild-type RIBEYE does (mating 6). Mating 7 is a positive control mating for RE(B)G730A. E, Arf1

interacts with ArfGAP3 (mating 1). All constructs are non-auto activating as demonstrated by the negative control matings (2–5);

mating 6 is a positive control mating. RE(A), RIBEYE(A)-domain; RE(B), RIBEYE(B)-domain; RE(B)G730A, RIBEYE(B)G730A; GAP-

dom, GAP-domain (AGD) of ArfGAP3; NBD, NAD(H)-binding subdomain of RIBEYE(B); SBD, substrate-binding subdomain of

RIBEYE(B).
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RE(B)pGEX-KG (Schmitz et al., 2000). RE(B)G730ApGEX-KG (Alpadi et
al., 2008; Venkatesan et al., 2010). Arf1-pGEX-KG. The insert (�0.55 kb)
was amplified from a bovine cDNA library using forward primer
AAAACCATGGCGAATATCTTTGCAAAC and reverse primer
AAAACTCGAGTCATTT CTGGTTC and cloned into the NcoI/XhoI
sites of pGEX-KG. Plasmid constructs were verified by sequencing.

Eukaryotic expression constructs. ArfGAP3-mCherry encodes amino
acids 1–517 of bovine ArfGAP3. Full-length ArfGAP3 was amplified
by PCR using forward primer AAACTCGAGGCCACCATGGGGGA
CCCCAGCAAG, reverse primer AAAGAATTCCGGAACCGTAG
CGATC, and ArfGAP3 cDNA as template. The �1.5 kb PCR product
was cloned into the XhoI/EcoRI sites of pCherry-N1 (Alpadi et al.,
2008). RE(B)-EGFP (Schmitz et al., 2000).

Yeast vectors
ArfGAP3-pACT2 encoding full-length bovine ArfGAP3 was obtained
by yeast two-hybrid (YTH) screening with RIBEYE as bait construct.
ArfGAP3cDNA-pACT2, encoding amino acids1–517 of bovine Arf-
GAP3, was amplified from the full-length ArfGAP3 IMAGE clone
#8081904 (BC118087) using forward primer AAAGAATTCTGA
TCATGGGGAC and reverse primer AAACTCGAGTTAGGAAC CG-
TAGCG and cloned into the EcoRI/XhoI sites of pACT2.
ArfGAP3(AGD)pACT2 encodes the ArfGAP-domain of ArfGAP3. The
insert was amplified by PCR using forward primer AAAGAATTCTGAT-
CATGGGGAC, reverse primer AAACTCGAGTTAGCTATC AAGCCA,
and bovine ArfGAP3 cDNA (BC118087) as a template. The PCR product
was cloned into the EcoRI/XhoI sites of pACT2. CtermArfGAP3pACT2,
encoding amino acids 127–517 of bovine ArfGAP3, was amplified from
bovine ArfGAP3 cDNA (BC118087) using forward primer AAA-

GAATTCAGCACGGGCACTGAC and reverse
primer AAACTCGAGTTAGGAACCGTAGC
G and cloned into the EcoRI/XhoI sites of
pACT2. The insert of Arf1-pGBKT7 (�0.55
kb) was amplified from a bovine cDNA library
(Alpadi et al., 2008) using forward primer
AAAACCATGGCGAATATCTTTGCAAAC
and reverse primer AAAACTCGAGTCATT
TCTGGTTC and cloned into the NcoI/SalI
sites of pGBKT7. RE(AB)pGBK-T7 (Magu-
palli et al., 2008). RE(B)pGBK-T7 (Magupalli
et al., 2008). RE(B)NBD-pGBK-T7 (Alpadi et
al., 2008). RE(B)SBD-pGBK-T7 (Alpadi et
al., 2008). RE(B)G730A-pGBK-T7 (Alpadi
et al., 2008). RE(A)pACT2 (Magupalli et al.,
2008). pGBK-T7 (empty bait plasmid) (Tai et
al., 1999; Magupalli et al., 2008). pSE1112
(control bait plasmid) (Tai et al., 1999;
Magupalli et al., 2008). pACT2 (empty prey
plasmid) (Magupalli et al., 2008). pSE1111
(control prey plasmid) (Tai et al., 1999;
Magupalli et al., 2008). Munc119pACT2 (Al-
padi et al., 2008). Munc119 is known to in-
teract with RIBEYE(B)-domain and was used
as a positive control for yeast matings. Bas-
soon pGAD-T7 (encoding amino acids1638 –
2081 of rat bassoon, NP062019.2) was cloned
by reverse-transcriptase -PCR using cDNA
isolated from rat R28 cells (Alpadi et al.,
2008), forward primer TTTTCATATGTGC-
CGGATCTCCTCTGTCCCT, and reverse
primer TTTTGAATTCC TGGGCCAGGCTG-
GCCTCCTG and cloned into the NdeI/EcoRI
sites of pGADT7. Bassoon pGAD-T7 was used as
a positive control mating for RIBEYE(B) (tom
Dieck et al., 2005). Plasmid constructs were veri-
fied by sequencing.

Antibodies
Primary antibodies. The following primary an-

tibodies were used in the present study: mouse

monoclonal anti-GST (Sigma; Alpadi et al., 2008) used at 1:10,000 dilu-

tion for Western blotting; mouse monoclonal anti-MBP (NEB; Alpadi et

al., 2008) used at 1:10,000 dilution for Western blotting; rabbit poly-

clonal anti-RIBEYE(B)-domain (U2656; Schmitz et al., 2000) used at

1:10,000 for Western blotting for immunofluorescence microscopy at a

1:1000 dilution; mouse monoclonal antibodies against RIBEYE(B)-do-

main/CtBP2 (BD Transduction Laboratories; Alpadi et al., 2008;

Schwarz et al., 2011; Wahl et al., 2013) used at a 1:1000 dilution; mouse

monoclonal anti-Bassoon (Stressgen, VAM-PS003) used at a 1:100 dilu-

tion for immunofluorescence microscopy (Wahl et al., 2013); mouse

monoclonal antibody against Arf1 (ARFS 1A9/5; Santa Cruz Biotechnol-

ogy, sc-53168) used at a 1:500 dilution; and anti-dynamin (hudy-1; Mil-

lipore) used at a 1:50 dilution. The DyLight 650 directly labeled mouse

monoclonal antibody against RIBEYE(B)/CtBP2 was diluted 1:2.

We generated two different polyclonal antisera against two different

regions in the C terminus of ArfGAP3 (Cterm2 and Cterm3; see Fig. 7A).

ArfGAP3Cterm2-pGEX and ArfGAP3Cterm3-pGEX were electropo-

rated into Bl21(DE3) and fusion proteins were expressed and purified as

previously described (Schmitz et al., 2000). For antibody production, the

purified fusion proteins were injected into rabbits multiple times.

Immune sera were screened for reactivity against the fusion protein

and the endogenous protein. Pre-immune serum was used as control

serum. Both ArfGAP3 antibodies (named ArfGAP3Cterm2- and

ArfGAP3Cterm3-antisera) were used for Western blotting in a 1:3000

dilution for immunofluorescence microscopy in a dilution of 1:20.

Affinity-purified ArfGAP3 antibodies were used at a concentration of

10 �g/ml for immunofluorescence microscopy. ArfGAP3Cterm2 and

ArfGAP3Cterm3 antibodies worked well for Western blotting and

Figure 3. RIBEYE(B) specifically interacts with ArfGAP3 in fusion protein pull-down assays (SDS-PAGE analyses). Pull-down

analyses of RIBEYE(B)/ArfGAP3 complexes were analyzed by Coomassie blue-stained polyacrylamide gel after SDS-PAGE. Lanes

1– 4 show the indicated purified fusion proteins (input fractions). All input lanes represent 30% of the input fraction. Input proteins

were loaded in separate lanes to demonstrate that the input fusion proteins display only a single, main protein band. In lanes 5– 8,

100% of the pull-down reactions were loaded. MBP-tagged fusion proteins were used as immobilized bait proteins and GST-

tagged proteins as soluble prey proteins. Only ArfGAP3-MBP pulled down RE(B)-GST (lane 5, arrowhead) but not MBP alone (lane

7). Neither MBP alone nor ArfGAP3-MBP pulled down GST alone (lanes 6 and 8). SDS-PAGE demonstrated that ArfGAP3-MBP

specifically pulled down RIBEYE(B)-GST, demonstrating interaction of the two proteins in this assay system.
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immunofluorescence microscopy. Unfortu-
nately, they did not work at the electron
microscopic level, both in pre-embedding
and postembedding procedures with immu-
nogold- and immunoperoxidase-based tech-
niques with the procedures available in our
laboratory. Also the following commercially
available antibodies did not work in postem-
bedding immunogold electron microscopy:
rabbit and goat polyclonal anti-ArfGAP3 anti-
bodies (AAS68618C and ASA34060; Antibody
Verify), rabbit polyclonal anti-ArfGAP3 (NBP1-
18921; Novus Biologicals), rabbit polyclonal
anti-ArfGAP3 (HPA000638; Sigma), and rab-
bit polyclonal anti-ArfGAP3 (A302-032A;
Biomol).

Secondary antibodies (for immunofluores-
cence labeling). The following secondary anti-
bodies were used: chicken anti-mouse Alexa
488, donkey anti-rabbit Alexa 568, goat anti-
mouse Alexa 488. All fluorophore-conjugated
secondary antibodies were purchased from In-
vitrogen and used at a 1:1000 dilution for 1 h at
room temperature (RT) for immunolabeling
experiments.

Methods
YTH analyses. YTH assays were performed
largely as previously described (Alpadi et al.,
2008; Magupalli et al., 2008). The Gal4-based
Matchmaker Yeast Two-Hybrid System (Clon-
tech) was used according to manufacturer’s in-
structions. For the YTH screening we used a
bovine retinal YTH cDNA library from the
retina (Tai et al., 1999; Alpadi et al., 2008; Ven-
katesan et al., 2010). The cDNA of the respec-
tive bait proteins were cloned in frame with the
Gal4-DNA-binding domain of pGBKT7. The
cDNA of the indicated prey proteins were
cloned in frame with the Gal4-activation do-
main of pACT2 or pGADT7. The bait and prey
plasmids confer tryptophan (W) and leucine
(L) prototrophy to the respective auxotro-
phic yeast strains. Two yeast strains, Y187 and
Y2HGold (Clontech), were used that contain
distinct auxotrophic marker genes.
(1) Y2HGold (Clontech): MATa, trp1-901,
leu2-3, 112, ura3-52, his3-200, gal4, gal80,
LYS2::GAL1UAS–Gal1TATA–His3,GAL2UAS–
Gal2TATA–Ade2,URA3::MEL1UAS–Mel1TATA,
AU R1-C, MEL1. This strain contains distinct
ADE2, HIS3, MEL1, and AUR1-C reporter

constructs that are only expressed in the pres-

ence of GAL4-based protein interactions

(Clontech). (2) Y187: MAT�, ura3-52, his3-200, ade2-101, trp1-901,

leu2-3,112, gal4, met, gal80, URA3::GAL1UASGAL1TATA-lacZ (Clon-

tech) (Harper et al., 1993). Bait plasmids were electroporated into

Y2HGold yeast and prey plasmids into Y187 yeast (Clontech). Prepara-

tion of electrocompetent yeasts and electroporation of yeasts were done

as described previously (Magupalli et al., 2008). For identifying transfor-

mants, yeasts were plated on the respective selective plates to identify the

resulting convertents to the respective prototrophy (dropout media;

Clontech/ICN). For interaction analyses, Y2HGold yeasts containing the

respective bait plasmid were mated with Y187 yeasts containing the re-

spective prey plasmid. Mating was performed for 5 h at 30°C in 1 ml of

YPD medium with heavy vortexing in a thermoshaker. For assessing

mating efficiency, half of the mated sample was streaked on –LW plates,

the other half was plated on –ALWH selective plates with 10 mM amino-

triazole (3-amino 1,2,4-triazole) and 60 ng/ml aureobasidin. Growth of

mated yeasts on –LW selective medium demonstrates presence of both

bait and prey plasmids; growth on –ALWH selective medium [and ex-

pression of �-galactosidase (�-gal) activity] indicates interaction of bait

and prey proteins taking place. For the matings, pSE1111 and pSE1112

that encode irrelevant proteins (Magupalli et al., 2008) as well as the

empty bait and prey vectors were used as negative controls (auto-

activation controls). Expression of �-gal marker gene activity was quali-

tatively analyzed by filter assays as described previously (Magupalli et al.,

2008).

Fusion protein pull-down assay. For fusion protein pull-down experi-

ments, either GST-tagged or maltose-binding protein (MBP)-tagged fu-

sion proteins were used as immobilized bait proteins. If GST-tagged

proteins were used as immobilized bait protein, the MBP-tagged protein

was used as solubilized prey protein and vice versa. Bait and prey proteins

were used in equimolar amounts [0.3 �M in incubation buffer containing

100 mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, 0.25% (w/v) Triton

Figure 4. RIBEYE(B) specifically interacts with ArfGAP3 in fusion protein pull-down assays (Western blot analyses). To exclude

that the tag has an importance for the pull-down results and to further exclude that any prey protein is unspecifically pulled down

by bait-GST, we also analyzed the results of the pull-down assays by Western blotting with anti-MBP and anti-GST antibodies. The

reaction buffer used for these experiments contained 1 mM �ME. GST-tagged fusion proteins were used as immobilized bait

proteins and eluted MBP-tagged proteins as soluble prey proteins. Similar to the experiments described in Figure 3, only

RIBEYE(B)-MBP (lane 5) and not MBP alone (lane 6) is pulled down by the ArfGAP3(AGD)-GST. GST alone (lane 7) and MBP alone

(lane 8) do not pull down RIBEYE(B)-MBP, as shown by Western blotting with antibodies against MBP (Fig. 4A), demonstrating the

specificity of the interaction. The Western blot data fully confirm the results shown in Figure 3 that were obtained by SDS-PAGE

analyses. In Figure 4B, the same blot as analyzed in Figure 4A was reprobed (after stripping of the blot) with antibodies against GST

to show equal loading of the bait proteins. RE(B)-MBP, RIBEYE(B)-MBP; ArfGAP3(AGD)-MBP, MBP-tagged ArfGAP-domain (AGD)

of ArfGAP3.
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X-100 (Tx-100), and 1 mM �-mercaptoethanol (�ME) if not denoted
otherwise]. GST and MBP alone served as control proteins. Protein con-
centrations were determined using the Bradford method (Bradford,
1976). For pull-down experiments, fusion protein eluates were pre-
cleared with 10 �l of empty Sepharose beads (per 1 ml of eluate) for 1 h at
4°C. Incubations were typically done in a volume of 500 �l. After over-
night incubation at 4°C, immobilized beads were allowed to settle (20
min, at 4°C). Samples were washed by repeated centrifugation of the
beads (3000 rpm, 2 min, 4°C) and subsequent resuspension with binding
buffer. This procedure was repeated three times. Afterward, the final
pellets were boiled with SDS-sample buffer (96°C, 10 min) and subjected
to SDS-PAGE and/or Western blotting.

Pre-absorption experiments. Pre-absorption experiments were per-
formed exactly as previously described (Wahl et al., 2013) using 50 �g of
the respective GST-fusion protein. Pre-absorbed ArfGAP3Cterm2 and
ArfGAP3Cterm3 immunosera were used at a 1:20 dilution for immuno-
fluorescence microscopy and at a 1:3000 dilution for Western blotting.

Affinity purification of antibodies. Antibodies were affinity purified by
the method of Olmsted (1981). In brief, �50 �g of fusion protein was
loaded on a 10% SDS-PAGE and transferred to nitrocellulose. The
ArfGAP3Cterm-GST/ArfGAP3Cterm2 fusion protein bands at �35 kDa
were cut out with a scalpel blade. These fusion protein-loaded nitrocel-
lulose strips were used for affinity purification of the antisera and treated
with 5% skim milk powder in PBS (for �30 min at RT). Next, nitrocel-
lulose strips were incubated with the respective antisera (diluted 1:10 in
5% skim milk dissolved in PBS) and incubated overnight at 4°C. The
nitrocellulose strips were washed several times with PBS. Bound antibod-
ies were eluted from the nitrocellulose strips with a minimal volume
(typically 200 �l) of 0.2 M glycine, pH 2.7, for 3– 4 min (at 4°C). The
antibody eluate was neutralized by the addition of 50 �l of 1 M Tris, pH
8.5. Antibody was diluted to a concentration of 0.1 mg/ml and comple-
mented with BSA (0.1 mg/ml) for stabilization.

Direct labeling of primary antibodies (mouse anti-RIBEYE(B)-domain/
CtBP2) with fluorophores (DyLight 650). Direct labeling of mouse mono-
clonal antibodies against RIBEYE(B)/CtBP2 (BD) was performed exactly
as previously described (Wahl et al., 2013) using the Thermo Scientific
DyLight 650 Microscale Antibody Labeling Kit (Thermo Scientific
#84536) according to the manufacturer’s instructions.

Heterologous protein expression in eukaryotic cell lines. For heterologous
expression, COS7 cells were used that were transfected with lipofection,
as previously described (Magupalli et al., 2008; Schwarz et al., 2011).
Transfected cells were typically analyzed 24 h after transfection.

Coimmunoprecipitation from bovine retina. For each immunoprecipi-
tation, a single isolated bovine retina was incubated in 1 ml lysis buffer,
containing 100 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, and
1%Tx-100 for 45 min on vertical rotator at 4°C. The samples were me-
chanically cracked by forcefully ejecting the retinal lysates through a 20
gauge needle (20�). The samples were sonicated (Bandelin; Sonoplus) at
1% output for 20 half-second pulse ON/OFF cycles on ice. Afterward, the
extracts were centrifuged at 13,000 rpm for 30 min at 4°C. The superna-
tants were transferred into new Eppendorf tubes. The centrifugation step
was repeated one time to remove all cell debris. The resulting lysate was
precleared by the addition of 15 �l of pre-immune serum and 20 �l of
washed protein A-Sepharose beads (2 h incubation at 4°C with an over-
head rotator). Next, samples were centrifuged at 13,000 rpm for 30 min at
4°C (Biofuge Fresco; Heraeus; ##3328 rotor). The supernatant was split
in two equal volumes–for the control and experimental assays. For neg-
ative control immunoprecipitation, 15 �l of ArfGAP3-Cterm3 pre-
immune serum was added; for the experimental immunoprecipitation,
15 �l of ArfGAP3-Cterm3 immune serum was added. Samples were
incubated overnight at 4°C using an overhead rotator. Afterward, beads
were allowed to settle (for 20 min, on ice). The supernatants were re-
moved and saved; the bead pellets were resuspended in 1.0 ml of lysis
buffer and washed thrice by repeated centrifugation (3000 rpm, 1 min,
4°C). The final pellet was boiled in 10 �l of SDS sample buffer, subjected
to SDS-PAGE, and analyzed by Western blotting with the indicated
antibodies.

Immunofluorescence microscopy of transfected COS cells. Conventional
fluorescence microscopy of transfected cells was done as previously de-
scribed using a Zeiss Axiovert 200M equipped with the respective filter
blocks (Schmitz et al., 2000; Magupalli et al., 2008; Wahl et al., 2013).

Immunolabeling of 0.5-�m-thick retinal resin sections. Epon-embedded
samples of mouse and bovine retinas were prepared as previously
described (Wahl et al., 2013). From the tissue blocks, 0.5-�m-thick
sections were cut with a Reichert ultramicrotome. Epon was removed
as described previously (Wahl et al., 2013). Afterward, sections were

Figure 5. RIBEYE(B) is recruited by ArfGAP3 into a Golgi-like distribution in transfected COS cells. COS7 cells were transfected with the indicated mcherry-tagged ArfGAP3 or EGFP-tagged

RIBEYE(B) constructs. Transfected cells were analyzed for the intracellular distribution of the respective proteins via direct epifluorescence microscopy. Cells transfected with ArfGAP3-mcherry alone

show the typical enrichment at the Golgi apparatus in a perinuclear localization (A, B), as already previously shown (Dogic et al., 1999; Eugster et al., 2000; Lewis et al., 2004; Watson et al., 2004;

Frigerio et al., 2007; Kartberg et al., 2010; Yu et al., 2012). In contrast, RIBEYE(B) is diffusely distributed in single-transfected cells (C; Schmitz et al., 2000). If RIBEYE(B)-EGFP is cotransfected with

ArfGAP3-mcherry, RIBEYE(B) virtually completely redistributed from a diffuse distribution into the Golgi-like, perinuclear localization indicating interaction between RIBEYE(B) and ArfGAP3 (D). n,

nucleus. The arrow in D points to the Golgi-like localization to which the RIBEYE(B)-EGFP signal is translocated in ArfGAP3-mcherry-transfected cells. Scale bars: A–D, 10 �m.
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incubated with the respective primary and
secondary antibodies as described previously
(Schmitz et al., 2000; Alpadi et al., 2008; Wahl
et al., 2013). Immunolabeled sections were ei-
ther analyzed by conventional epifluorescence
microscopy or by super-resolution structured
illumination microscopy (SR-SIM) as indi-
cated. The immunofluorescence data shown in
Figures 9 –13 were obtained from incubations
of mouse retinal sections. Qualitatively similar
images were obtained from incubations of thin
sections of the bovine retina (data not shown).

SR-SIM. To further improve the spatial res-
olution of our immunolabeling analyses, we
applied multicolor SR-SIM analyses (Scher-
melleh et al., 2008, 2010; Wahl et al., 2013).
SR-SIM was performed exactly as previously
described using the Elyra PS1 setup (Wahl et
al., 2013). Images were taken with a 63� Plan-
Apochromat objective (NA 1.4) with excita-
tion light wavelengths of 488, 561, and 650 nm,
and then processed for SR-SIM to obtain
higher resolutions (Gustafsson et al., 2008; for
review, see Schermelleh et al., 2008, 2010), as
previously described (Wahl et al., 2013). The
Zeiss setup used for SR-SIM was checked for
chromatic aberration in X-,Y-, and Z-direction
using multicolor beads. For acquisition and
processing, the Zen2010 software (Zeiss) was
used.

Triple immunolabeling of thin retinal sec-
tions. Triple immunolabeling experiments
were performed as previously described (Wahl
et al., 2013). We used a directly labeled mouse
monoclonal antibody against RIBEYE(B)-do-
main/CtBP2 (BD) conjugated with DyLight
650, and two other primary antibodies (one
from mouse, the second from rabbit [as indi-
cated in the respective experiments]), which
were not directly fluorophore labeled. First,
sections were incubated with the two unlabeled
primary antibodies at the same time overnight
(at the dilutions given above). On the next day,
sections were washed three times with PBS and
afterward incubated with the respective sec-
ondary antibodies (donkey anti-rabbit Alexa 568 and chicken anti-
mouse Alexa 488). After 1 h incubation, sections were washed again three
times with PBS and finally incubated with the directly DyLight 650-
labeled CtBP2 primary antibody (in the dilutions summarized above)
overnight at 4°C. After overnight incubation, sections were washed three
times with PBS and embedded with anti-fade solution containing
n-propyl gallate (NPG) as previously described (Schmitz et al., 2000).

Control incubation. Control incubations for immunolabeling experi-
ments were done by omitting the primary antibody and only incubating
with secondary antibody. No immunofluorescent signal was observed in
photoreceptor synapses in these control incubations. In further control
experiments, antibodies were pre-absorbed with the respective antigen as
described below and processed for immunolabeling.

All experiments were done with mouse and bovine retinas of either
sexes. Mice were killed in the early afternoon. Mouse eyes were collected
at environmental daylight conditions (luminance of �2 cd/m 2). Bovine
eyes were obtained from a local slaughterhouse. Similar data as shown for
the mouse retina were also obtained with the bovine retina (of either
sexes; data not shown).

Preparation of retinas from the adult mouse for electroporation. Retinas
were isolated from adult mice within 5 min postmortem (in dim ambient
light). The enucleated eyes were bisected at the equatorial plane and the
posterior eye cup was transferred into ice-cold artificial CSF (ACSF)
containing the following (in mM): 119 NaCl, 2.5 KCL, 2.5 CaCl2, 1.3

MgCl2, 1 NaH2PO4, 20 glucose, and 11 HEPES, pH 7.4, osmolarity �300

mOsm/L. ACSF was saturated with 5% CO2/95% O2 (carbogen) before

use. From the posterior eyecup, the retina was gently peeled off from the

pigment epithelium. Isolated retinas were transferred to black-gridded

nitrocellulose filter membranes (Millipore, #HABG01300) with the gan-

glion cell side facing the nitrocellulose membrane. Thus, photoreceptors

were facing the free surface and were in direct contact with the DNA

plasmid solutions added to them in the electroporation experiments (see

below). The filters with the attached retinas were transferred to sterile

Petri dishes (3 cm diameter) containing �1.0 ml of AMES’ medium, pH

7.4 (A1420, Sigma-Aldrich) pre-incubated at 37°C.

Electroporation of isolated mouse retinas and retinal explant culture.

Electroporation of adult mouse retinas was performed largely as previ-

ously described (Donovan and Dyer, 2006; Briggman and Euler, 2011;

Vergara et al., 2013). Electroporation was performed with a square wave

pulse electroporator (ECM 830; BTX) and a tweezertrode electropora-

tion device (BTX; #45-0118, #45-0204). Both electrodes of tweezertrode

were dipped in ACSF buffer to obtain a good electrical connection. Ex-

cess of ACSF was removed with filter paper to avoid dilution of the DNA.

Before electroporation, DNA was column purified. For each electropo-

ration, 50 �g of purified DNA was used. Immediately after isolation, the

retina was placed in between the tweezertrode. The retina attached to the

nitrocellulose was facing the positive electrode with the ganglion cell side

Figure 6. The binding between RIBEYE(B)-domain and the ArfGAP-domain (AGD) of ArfGAP3 is stimulated by NAD(H) in a

redox-sensitive manner. A, B, Pull-down experiments were performed as in Figure 3 both in the absence (lanes 3—10; A, B) or

presence (lane 11; A, B) of 1 mM �ME. RIBEYE binds to the ArfGAP-domain (AGD) of ArfGAP3 only in the presence of 1 mM �ME (lane

11; A, B) but not in the absence of 1 mM �ME (lane 3; A, B). Lanes 1 and 2 show the respective input fractions (30% input). We

tested whether addition of NADH (A) or NAD � (B) could substitute for the presence of 1 mM �ME in promoting ArfGAP3/RIBEYE(B)

interaction. As a matter of fact, increasing concentrations of both NADH (A) as well as NAD � (B) could promote binding of

RIBEYE(B)-GST to the AGD of ArfGAP3 even in the absence of 1 mM �ME (lanes 4 —10; A, B). The reduced form of the dinucleotide,

NADH (A), was more effective than the oxidized form, NAD � (B), to promote RIBEYE(B)/ArfGAP3 interaction. Semiquantitative

evaluation of the binding experiments (n � 4) demonstrated that �450 nM NADH and �700 nM NAD � are promoting half-

maximal binding of ArfGAP3 to RIBEYE(B) in the pull-down assays.
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while the plasmid DNA solution was added to the photoreceptor side at
the negative electrode in hanging drop manner. The distance between the
two electrodes was optimized to �3– 4 mm. Electroporation was done at
20 V, 950 ms OFF, 20 ms ON (10 pulses). Electroporated retinas were
transferred back to Petri dishes containing 1.0 ml of AMES’ medium, pH
7.4. Retinas were transferred to open Petri dishes that were placed in an
incubation chamber, as previously described (Morgan et al., 2011; Wil-
liams et al., 2013). Temperature was continuously maintained at 32°C
using a feedback temperature controller (TC324B; Warner Instruments)
and a transparent ITO heater attached to the incubation chamber (HI-
25Dp; MicroControls). The incubation chamber was filled with distilled
H2O to the lower edge of stage where the Petri dish with the retina was
placed and continuously gassed with carbogen (5% CO2/95% O2). Reti-
nas were incubated inside the light-protected incubation chamber typi-
cally for 18 –24 h.

Loading of photoreceptors with FM1– 43. Isolated, electroporated reti-
nas were incubated for 15 min in LCS containing 20 �M FM1– 43 (fixable
FM1– 43: FM1– 43FX; Invitrogen, #F35355) at 37°C in the dark, similar
to the procedure described by Rea et al. (2004). We used this method,
because it favors specific FM1– 43 uptake in photoreceptor synaptic ter-
minals (Rea et al., 2004). After labeling, the retinas were rinsed thrice
with LCS and processed for the isolation of photoreceptor cells (see
below).

Dissociation of electroporated retinas and isolation of photoreceptors.
Twenty-four hours after electroporation, photoreceptors were iso-
lated from the retina with a papain digestion procedure, largely as
previously described (Wahl et al., 2013). The papain solution con-
taining 6 U/ml papain (Sigma, #76220-25G) in low Ca 2�-containing
saline solution (LCS solution; containing 132 mM NaCl, 3 mM KCl, 1
mM MgCl2 � 6H2O, 0.5 mM CaCl2, 10 mM sodium pyruvate, 10 mM

glucose, and 10 mM HEPES, pH 7.4, �300 mOsm/L) was activated
with 2.7 mM L-cysteine at 37°C for 20 min before the experiments.

Isolated retinas were incubated in 1 ml of the cysteine-activated pa-
pain solution (containing 6 U papain/ml LCS) for 10 min at 25°C.
LCS was saturated with 5% CO2/95% O2 before use. After removal of
the papain solution, the retina was gently washed three times with 1ml
of LCS solution containing 2% FCS and 0.01 mg/ml DNase (Sigma,
#DN25-110MG). To dissociate photoreceptor cells, papain-treated
retinas were very gently triturated (1–2 times) with a wide-bore plas-
tic Pasteur pipette. The resulting cell suspension was plated on Con-
canavalin A (Sigma, #C7275-250 mg)-coated coverslips. For coating
of a 25 mm round coverslip, �200 �l of 1 mg/ml Concanavalin A (in
LCS solution) was added for 1 h at RT. Unbound Concanavalin A was
removed by three washes with LCS before the addition of the disso-
ciated cells. Cells were allowed to settle on the coverslips for 30 min at
37°C for tight attachment. Unbound retinal cells were removed by
gentle washes with LCS. Photoreceptors were identified based on
their typical morphology. Photoreceptors were fixed with 4% PFA in
PBS for 15 min at RT. After several washes with PBS, cells were
mounted with NPG antifade as previously described (Wahl et al.,
2013).

Miscellaneous procedures. SDS-PAGE and Western blotting were per-
formed as previously described (Schmitz et al., 2000). Fusion proteins
were expressed in BL21(DE3) bacteria for pGEX and pMal-C2 constructs
as previously described (Schmitz et al., 2000). For expression of SNAP-
tagged fusion proteins, Escherichia coli T7 Express bacteria (NEB;
#C2566) were used. Expression and purification of SNAP-tagged fusion
proteins were performed according to the manufacturer’s instructions
(NEB). SNAP-tagged fusion proteins were visualized SNAP-Vista Green
(NEB; #S9147S) and covalently immobilized with SNAP-capture pull-
down resin according to the manufacturer’s instructions. Conventional
immunofluorescence microscopy was performed as previously described
(Schmitz et al., 2000) using a Zeiss Axiovert 200M equipped with the
respective filter blocks.

Figure 7. Western blot analyses of two antibodies that were generated against the C terminus of ArfGAP3. A, Schematic drawing denotes the areas against which the two polyclonal ArfGAP3

antibodies (Cterm2 and Cterm3) were generated. B–D, In Western blot analyses, both antibodies (Cterm2 and Cterm3) detected a single band at the expected running position of ArfGAP3 at �55

kDa. This ArfGAP3 Western blot band could be blocked by pre-absorption of the antibody with the respective ArfGAP3-GST fusion protein (lane 2; C; data not shown) but not by pre-incubation with

GST alone (C, lane 3; data not shown). Cb, Loading control (immunoblotting of the same blot as shown in Ca) after stripping of the blot and reprobing with an antibody against GCAP2 (Venkatesan

et al., 2010), demonstrating equal protein loading.
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Results
ArfGAP3 binds to RIBEYE(B)-domain in the YTH system
Using RIBEYE(B) as bait, we obtained full-length ArfGAP3 as a
RIBEYE-interacting YTH prey clone. The original ArfGAP3 prey
clone contained a deletion of 8 aa in the Zn-finger motif of the
ArfGAP-domain (data not shown). To exclude an artificial inter-
action of these proteins in the YTH system, we recloned full-
length ArfGAP3 cDNA from an IMAGE clone (IMAGE
#8081904, BC118087; encoding full-length bovine ArfGAP3 with
no deletion in the Zn-finger) into the pACT2 prey vector. Then,
we retested whether this entirely full-length ArfGAP3 prey inter-
acts with RIBEYE(B) in the YTH system. Similar as observed for
the original ArfGAP3 prey clone, we obtained a strong interac-
tion between RIBEYE(B) and the recloned full-length ArfGAP3,
as judged by growth on –ALWH selective medium and expres-
sion of �-gal activity (Fig. 1, matings 1 and 2) indicating that the
interaction between ArfGAP3 and RIBEYE(B) is real in the YTH
system. Negative control matings (Fig. 1, matings 3–10) demon-
strated that ArfGAP3/RIBEYE interaction is not due to auto
activation.

Mapping of RIBEYE-ArfGAP3 interaction in the YTH system:

the NAD(H)-binding subdomain RIBEYE(B) binds to the

AGD-domain of ArfGAP3

Next, we tested with the YTH system which part of ArfGAP3

mediates the interaction with RIBEYE(B). We found that the

AGD encoding amino acids 1–136 of ArfGAP3 is responsible

for the interaction with RIBEYE(B) (Fig. 2A, matings 1 and 2).

The C terminus of ArfGAP3 did not interact with RIBEYE(B)

(data not shown). RIBEYE(B) consists of an NADH-binding

subdomain (NBD) and a substrate-binding subdomain (SBD;

Kumar et al., 2002; Nardini et al., 2003; for review, see

Schmitz, 2009; Schmitz et al., 2012). Further YTH analyses

demonstrated that the NBD of RIBEYE(B) interacts with Arf-

GAP3 (Fig. 2B, mating 1). The SBD did not promote ArfGAP3/

RIBEYE(B) interaction in the YTH system (Fig. 2B, mating 5).

Negative control matings (Fig. 2A, matings 3– 8, 10, and 11; B,

matings 6 –11) demonstrated that bait and prey clones were

not auto activating.

RIBEYE(B) interacts with ArfGAP3 in fusion protein

pull-down assays

We used various independent approaches to verify the interac-

tion between RIBEYE(B)-domain and the ArfGAP-domain

(AGD) of ArfGAP3. First, we performed pull-down experiments

using bacterially expressed and purified fusion protein (Fig. 3).

We used MBP-tagged fusion proteins (ArfGAP3(AGD)-MBP

and MBP alone) as immobilized bait proteins and GST-tagged

proteins (RIBEYE(B)-GST and GST alone) as soluble prey pro-

teins. For the pull-down experiments demonstrated in Figures 3

and 4, the buffer contained 1 mM �ME (see Materials and Meth-

ods). ArfGAP3(AGD)-MBP (lane 5; but not MBP alone, lane 7)

interacted with RIBEYE(B)-GST (but not with GST alone, lanes 6

and 8) as judged by protein pull-down analyses in SDS-PAGE

(Fig. 3). Specificity of interaction was consistently shown both by

SDS-PAGE (Fig. 3) and by Western blot analyses (Fig. 4; and data

not shown). Identical results were obtained when tags were

switched. In Figure 4, RIBEYE(B) was tagged with MBP and

ArfGAP3(AGD) with GST. Also with these switched tags, a strong

interaction was observed between RIBEYE(B) and ArfGAP3.

Typically, ��30% of the input fraction of the RIBEYE(B) prey

protein was bound to the immobilized ArfGAP3 bait fusion

protein.

ArfGAP3 interacts with RIBEYE(B) in transfected COS cells

Next, we tested whether RIBEYE(B) and ArfGAP3 would in-

teract with each other in transfected COS cells (Fig. 5). Arf-

GAP3 and RIBEYE(B) were tagged with different fluorescent

proteins, i.e., ArfGAP3 with mCherry and RIBEYE(B) with

EGFP. When ArfGAP3 was transfected alone, ArfGAP3 was

enriched at a perinuclear region that represents the Golgi ap-

paratus (Fig. 5A,B) similarly as previously described (Dogic et

al., 1999; Eugster et al., 2000; Lewis et al., 2004; Watson et al.,

2004; Frigerio et al., 2007; Kliouchnikov et al., 2009). When

RIBEYE(B)-EGFP was transfected alone (Fig. 5C), it was largely

diffusely distributed throughout the entire cell (as previously de-

scribed; Schmitz et al., 2000). In contrast, when RIBEYE(B) was

cotransfected with ArfGAP3, RIBEYE(B) was nearly completely

recruited to the ArfGAP3-typical Golgi-like perinuclear localiza-

tion (Fig. 5D) indicating interaction of RIBEYE(B) and ArfGAP3

in cotransfected COS cells.

Figure 8. Coimmunoprecipitation of RIBEYE and ArfGAP3 from the bovine retina (Western

blot analyses). A, ArfGAP3 immune serum (lane 3) and ArfGAP3 pre-immune serum (lane 2)

were tested for their capability to coimmunoprecipitate RIBEYE from the bovine retina. Lane 1

shows the input fraction (1% of total input). RIBEYE is coimmunoprecipitated by ArfGAP3 im-

mune serum (Cterm3 antiserum; lane 3) but not by ArfGAP3 pre-immune serum (lane 2). B,

Shows the same blot as in A but reprobed with anti-ArfGAP3 antibodies (after stripping of the

blot). This blot shows that ArfGAP3 was successfully immunoprecipitated by the immune serum

(lane 3) but not by the control pre-immune serum (lane 2). HC and LC indicate the Ig heavy and

light chains, respectively.

5252 • J. Neurosci., April 9, 2014 • 34(15):5245–5260 Dembla et al. • ArfGAP3 at Photoreceptor Synaptic Ribbons



Interaction between ArfGAP3(AGD) and RIBEYE(B) is
regulated by NAD(H) in a redox-sensitive manner
The fusion protein pull-down binding experiments shown above
in Figures 3 and 4 were done with buffer that contained 1 mM

�ME. If �ME was omitted, there was no binding between Arf-
GAP3 and RIBEYE(B) (Fig. 6A,B, compare lane 3 with lane 11).
Previously, it has been shown that 1 mM �ME promotes a con-
formation of RIBEYE(B) that can be also induced by the addition
of NAD(H) (Venkatesan et al., 2010). Furthermore, we demon-
strated that the NAD(H)-binding subdomain of RIBEYE(B), the
NBD, is responsible for the interaction with ArfGAP3 (see above).
Therefore, we tested whether the addition of NAD(H) could replace
�ME in promoting ArfGAP3/RIBEYE(B) interaction. Indeed,
NAD(H) was very efficient in promoting RIBEYE(B)/ArfGAP3 in-
teraction (Fig. 6A). The reduced form, NADH, was more efficient in
promoting RIBEYE(B)/ArfGAP3 interaction in the absence of �ME
than its oxidized form, NAD� (Fig. 6A,B; Kd �450 nM for NADH;
Kd �700 nM for NAD�). From these experiments we concluded that
NAD(H), particularly the reduced NADH, promotes RIBEYE(B)/
ArfGAP3 interaction. In line with this proposal is our finding that an
NAD(H)-binding-deficient RIBEYE(B) point mutant, RIBEYE(B)
G730A (Alpadi et al., 2008; Schwarz et al., 2011), did not interact
with ArfGAP3(AGD) in the YTH system (Fig. 2D, mating 1).

ArfGAP3 can be coimmunoprecipitated with RIBEYE from
the bovine retina
We generated two different polyclonal antibodies against Arf-
GAP3 to analyze the relation between RIBEYE and ArfGAP3 in
situ. The two different antibodies against ArfGAP3 were directed
against two different portions in the divergent C terminus of
ArfGAP3 (ArfGAP Cterm2 and ArfGAP Cterm3; see Fig. 7A).
Both antibodies immunodetected a typical single, major band at

�55 kDa in crude bovine retinal homogenates in Western blot
analyses (Fig. 7; data not shown) that was absent in the pre-
immune serum and that could be specifically blocked by the re-
spective ArfGAP3-GST fusion protein but not by GST alone (Fig.
7C; data not shown).

Next, we tested whether antibodies against ArfGAP3 coim-
munoprecipitated endogenous retinal RIBEYE. ArfGAP3
(Cterm3) immune serum (lane 3, but not ArfGAP3 pre-immune
serum, lane 2) coimmunoprecipitated RIBEYE (Fig. 8A) together
with ArfGAP3 (Fig. 8B), showing interaction of these proteins
also in the retina in situ (Fig. 8). Both RIBEYE and ArfGAP3 were
strongly enriched in the experimental (Fig. 8, lane 3) but not in
the control (Fig. 8, lane 2) immunoprecipitates. Since RIBEYE is
exclusively present at synaptic ribbons in the mature retina
(Schmitz et al., 2000), the coimmunoprecipitation experiments
suggested that ArfGAP3 is a component of the synaptic ribbon
complex in situ.

ArfGAP3 is present at the photoreceptor synaptic
ribbon complex
To get further insights about the in situ localization of ArfGAP3
in the retina, we performed immunolabeling analyses with both
ArfGAP3 antibodies (ArfGAP3 Cterm3 and ArfGAP Cterm2; Fig.
9). Both ArfGAP3 antibodies strongly labeled the outer plexiform
layer (OPL) where photoreceptor ribbon synapses are localized
(Fig. 9; data not shown). Identical results were obtained indepen-
dent of whether crude antisera or affinity-purified antibodies
were used (compare Figs. 9, 11, 12). To define the relation be-
tween ArfGAP3 and synaptic ribbons, we performed double
immunolabelings with rabbit polyclonal antibodies against Arf-
GAP3 and mouse monoclonal antibodies against RIBEYE(B)-
domain/CtBP2 (Fig. 9). The ArfGAP3 immunosignals largely

Figure 9. ArfGAP3 is strongly enriched at synaptic ribbons of photoreceptor synapses in situ (conventional imaging). ArfGAP3 colocalizes with synaptic ribbons. The 0.5-�m-thick retinal sections

are double immunolabeled with antibodies against ArfGAP3 and monoclonal antibodies against RIBEYE(B)/CtBP2 (A, B). ArfGAP3 Cterm3-antibody was used in A, and ArfGAP3 Cterm2 was used for

immunolabeling of ArfGAP3 in B. Strong ArfGAP3 immunosignals were found in an identical manner with both ArfGAP3 antibodies at the RIBEYE-immunolabeled synaptic ribbons and in close

vicinity to synaptic ribbons. The dashed circles denote single immunolabeled photoreceptor presynaptic terminals. Arrows in B and C point to single immunolabeled synaptic ribbons. No

immunosignals were observed in the presynaptic terminals if pre-immune serum was used (data not shown). A and B were obtained by conventional imaging. OPL, Outer plexiform layer. Scale bars:

A, 1 �m; B, 5 �m.
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overlapped at the photoreceptor ribbon synapse with the RIBEYE
immunosignals indicating that ArfGAP3 is strongly enriched at
the synaptic ribbon complex (Fig. 9A,B). Identical immunola-
beling results were obtained with both ArfGAP3 antibodies (Fig.
9), further demonstrating that the immunoreactivity at the
RIBEYE-immunolabeled synaptic ribbon is due to ArfGAP3
and not due to an unrelated protein. The described ArfGAP3
immunosignals obtained with both ArfGAP3 antibodies could
be specifically blocked by pre-absorption with the respective
ArfGAP3-GST fusion protein but not by GST alone, demon-
strating the specificity of the immunolabeling results (Fig. 10). To
further corroborate these findings, we performed SR-SIM of thin
retinal sections double immunolabeled with affinity-purified

rabbit polyclonal antibodies against ArfGAP3 and mouse mono-
clonal antibodies against RIBEYE(B)/CtBP2 (Fig. 11). Also, SR-
SIM analyses demonstrated a strong enrichment of the ArfGAP3
immunosignals at the synaptic ribbons (Fig. 11). In the SR-SIM
analyses, the ArfGAP3 immunosignal was slightly shifted toward
the inner nuclear layer (INL) compared with the RIBEYE immu-
nosignal, which could indicate a localization of ArfGAP3 more
toward the base of the synaptic ribbon (Fig. 11A; see also discus-
sion). The ArfGAP3 immunosignals also showed a strong colo-
calization with the active zone protein bassoon (Fig. 11B). In the
SR-SIM analyses, the ArfGAP3 immunosignal was slightly shifted
toward the ONL compared with the bassoon immunosignal, also
indicating an ArfGAP3 localization in the basal portions at the

Figure 10. A, B, Pre-absorption control experiments for the immunolabeling analyses shown in Figure 9A. Double immunolabeling of 0.5-�m-thick mouse retinal sections with ArfGAP3

(Cterm3) antibody pre-absorbed either with ArfGAP3-GST-fusion protein (B) or with GST alone (A). To visualize ribbon synapses, sections were coimmunolabeled with mouse monoclonal antibodies

against RIBEYE(B)-domain/CtBP2. Pre-absorption with ArfGAP3Cterm3-GST fusion protein completely blocked the ArfGAP3 immunosignals at the synaptic ribbon (B), whereas GST alone had no

influence on the ArfGAP3 immunosignals (A), demonstrating the specificity of the previous immunolabeling results. C, D, Pre-absorption control experiments for the immunolabeling analyses

shown in Figure 9B. Double immunolabeling of 0.5-�m-thick mouse retinal sections with ArfGAP3 (Cterm2) antibody pre-absorbed with either ArfGAP3Cterm2-GST-fusion protein (D) or with GST

alone (C). Synaptic ribbons were coimmunolabeled with mouse monoclonal antibodies against RIBEYE(B)-domain/CtBP2. Pre-absorption with the specific fusion protein completely blocked the

ArfGAP3 immunosignals at the synaptic ribbon (D), whereas GST alone had no influence on the ArfGAP3 immunosignals (C), demonstrating the specificity of the previous immunolabeling results.

A–D were obtained by conventional imaging. OPL, Outer plexiform layer; INL, inner nuclear layer. Scale bars: A–D, 5 �m.
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synaptic ribbon (Fig. 11B; see also discussion). Bassoon is local-
ized to the arciform density and anchors the base of the synaptic
ribbon (tom Dieck et al., 2005).

Previously, we have shown that dynamin is highly enriched at
the presynaptic plasma membrane in close vicinity to the synaptic
ribbon (Wahl et al., 2013). The dynamin immunosignal sur-
rounds the synaptic ribbon in a ring-like manner in a very short
distance (Wahl et al., 2013). Immunogold electron microscopy
previously demonstrated that this ring of dynamin-1 immunore-

activity corresponded to the plasma membrane of the periactive
zone (Wahl et al., 2013). We used dynamin as a landmark protein
to further define the localization of ArfGAP3 at the synaptic rib-
bon complex using high-resolution fluorescence microscopy. We
performed triple immunolabeling analyses with rabbit polyclonal
antibodies against ArfGAP3, mouse monoclonal antibodies
against dynamin (hudy-1), and Alexa 650 directly labeled pri-
mary mouse monoclonal antibodies against RIBEYE(B)-do-
main/CtBP2 (Fig. 12). In these triple immunolabeling analyses,

Figure 11. ArfGAP3 is strongly enriched at the synaptic ribbon of photoreceptor synapses in situ (SR-SIM imaging with ArfGAP3 Cterm3 antibody). A, 0.5-�m-thick retinal sections double

immunolabeled with affinity-purified rabbit antibodies against ArfGAP3 (ArfGAP3 Cterm3 antibody) and mouse monoclonal antibodies against RIBEYE(B)/CtBP2. B, Shows 0.5-�m-thick retinal

sections double immunolabeled with affinity-purified rabbit antibodies against ArfGAP3 (Cterm3 antibody) and mouse monoclonal antibodies against the active zone protein bassoon. Arrows in A

and B point to single immunolabeled synaptic ribbons. Arrowheads denote ArfGAP3 immunoreactivity at the synaptic ribbon. A and B were obtained by SR-SIM imaging. ONL, Outer nuclear layer;

OPL, outer plexiform layer; INL, inner nuclear layer. Scale bars: A, B, 1 �m.

Figure 12. Localization of ArfGAP3 in the presynaptic photoreceptor terminal in relation to other presynaptic proteins. The 0.5-�m-thick retinal sections were triple immunolabeled with

affinity-purified rabbit polyclonal antibodies against ArfGAP3 (Cterm3), mouse monoclonal antibodies against dynamin (hudy-1), and DyLight 650 directly labeled primary antibodies against

RIBEYE(B)/CtBP2. ArfGAP3 and RIBEYE are located very close to each other (A, B). The ArfGAP3 immunosignal is located within the ring-like dynamin immunosignal that demarcates the presynaptic

plasma membrane of the periactive zone that surrounds the synaptic ribbon (Wahl et al., 2013). A was obtained by conventional imaging; B is a micrograph obtained by SR-SIM imaging. Arrows in

A and B point to immunolabeled single synaptic ribbons. Arrowheads indicate ArfGAP3 immunoreactivity at the synaptic ribbon. OPL, Outer plexiform layer. Scale bars: A, B, 1 �m.

Dembla et al. • ArfGAP3 at Photoreceptor Synaptic Ribbons J. Neurosci., April 9, 2014 • 34(15):5245–5260 • 5255



the ArfGAP3 immunosignals were located very close to the
RIBEYE-labeled synaptic ribbon and within the ring-like dy-
namin immunosignals that surrounded the synaptic ribbon (Fig.
12). Unfortunately, all the ArfGAP3 antibodies that we generated
as well as various commercially available antibodies did not work
at the ultrastructural level, so the ultrastructural localization re-
mains to be elucidated by future examinations. ArfGAP3 is only
weakly expressed in the inner plexiform layer (IPL) of the retina,
which is probably due to the smaller size of the synaptic ribbons
in bipolar cell terminals (data not shown).

RIBEYE(B) competes with Arf1 for binding to ArfGAP3
To get functional insights into the importance of the ArfGAP3/
RIBEYE interaction we determined which Arf protein is interact-
ing with ArfGAP3. In agreement with previous reports (Liu et al.,
2001; Kartberg et al., 2010), we found that ArfGAP3 interacts
with Arf1 (but not with Arf6; Fig. 2E, mating 1; data not shown).
Western blot analyses demonstrated that Arf1 is strongly ex-
pressed in the retina and immunofluorescence microscopy doc-
umented enrichment of Arf1 in close vicinity to the synaptic
ribbon complex (Fig. 13A–C).

Similar to RIBEYE(B), Arf1 also binds to the ArfGAP-domain
of ArfGAP3 (data not shown). Therefore, we tested whether Arf1
and RIBEYE(B) can bind simultaneously to ArfGAP3 or whether
they compete with each other in binding to ArfGAP3 (Fig. 14). To
address this question, we used fusion protein pull-down experi-
ments. We tested whether increasing concentrations of Arf1 (Fig.
14A) added to a fixed concentration of immobilized ArfGAP3
(0.15 �M) would inhibit binding of RIBEYE(B) to ArfGAP3.
RIBEYE(B) was kept at a constant concentration in these exper-
iments (0.15 �M). Similarly, we also tested whether increasing
concentrations of RIBEYE(B) (Fig. 14B) added to a fixed concen-
tration of immobilized ArfGAP3 (0.15 �M) would inhibit bind-
ing of Arf1 to ArfGAP3. Arf1 was kept at a constant concentration
in these latter experiments (0.15 �M). In both sets of experi-
ments, we observed a competitive behavior between Arf1 and
RIBEYE(B) in binding to ArfGAP3: if Arf1 was increased, binding
of RIBEYE(B) to ArfGAP3 was diminished and, vice versa, in-
creasing concentrations of RIBEYE(B) inhibit binding of Arf1 to

ArfGAP3. These data demonstrate that RIBEYE(B) competes
with Arf1 for binding to a common binding site on ArfGAP3,
indicating that binding of RIBEYE(B) and Arf1 to ArfGAP3 is
mutually exclusive.

ArfGAP3 is involved in endocytic vesicle retrieval at the
photoreceptor synapse
Next, we wanted to find out for which synaptic process ArfGAP3
is relevant at the synaptic ribbon. The synaptic ribbon is a site of
intense membrane retrieval (Jackman et al., 2009; Snellman et al.,
2011; Chen et al., 2013, Wahl et al., 2013). Therefore, we tested
whether ArfGAP3 is involved in this process (Fig. 15). We added
FM1– 43 to the extracellular medium to compare endocytic up-
take in photoreceptors that were either electroporated with
ArfGAP3-mcherry or mcherry alone. In mcherry-electroporated
photoreceptors, there was an intense uptake of FM1– 43 (Fig.
15A,B). The uptake of FM1– 43 in mcherry-transfected photore-
ceptors was similar to the FM1– 43 uptake in nontransfected pho-
toreceptors (data not shown). In contrast to mcherry-transfected
photoreceptors, ArfGAP3-overexpressing transfected photore-
ceptors showed a very strong inhibition of FM1– 43 uptake (Fig.
15C,D) indicating that ArfGAP3 is essentially involved in endo-
cytosis at the photoreceptor synapse (see discussion).

Discussion
In the present study, we demonstrated that the Arf-GTPase-
activating protein-3, ArfGAP3, is a novel component of the pho-
toreceptor synaptic ribbon complex using various independent
assays. Conventional immunofluorescence microscopy as well as
SR-SIM on thin retinal resin sections demonstrated that Arf-
GAP3 is highly enriched at the photoreceptor synaptic ribbon
complex in situ. ArfGAP3 is more weakly expressed in the IPL
than in photoreceptor synapses of the OPL (data not shown).
This is most likely because synaptic ribbons in the IPL are smaller
than in photoreceptor synapses of the OPL and because the IPL is
dominated by conventional, nonribbon-containing synapses.

ArfGAP3 has been previously characterized as a component of
the Golgi apparatus (for review, see Spang et al., 2010). At the
Golgi apparatus, ArfGAP3 regulates vesicle trafficking in an Arf1-

Figure 13. The ArfGAP3 effector Arf1 is enriched at the synaptic ribbon complex of photoreceptor synapses. A, B, Double immunolabeling experiments of 0.5-�m-thick retinal sections with

mouse monoclonal antibodies against Arf1 and rabbit polyclonal antibodies against RIBEYE (U2656) demonstrated a close enrichment of Arf1 around the synaptic ribbon complex. ONL, Outer nuclear

layer; OPL, outer plexiform layer. Scale bars: A, B, 1 �m. (C) Western blot analyses demonstrated that Arf1 is strongly expressed in the mouse retina.
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dependent manner (Dogic et al., 1999; Eugster et al., 2000; Lewis
et al., 2004; Watson et al., 2004; Frigerio et al., 2007; Saitoh et al.,
2009; Kartberg et al., 2010; Spang et al., 2010; Yu et al., 2012). The
localization of ArfGAP3 at the synaptic ribbon complex in situ
was confirmed by two different antibodies directed against dif-
ferent regions of the ArfGAP3 C terminus. Both antibodies
showed the same enrichment of ArfGAP3 at the photoreceptor
synaptic ribbon complex. In agreement with these morphological
data, ArfGAP3 and RIBEYE were coimmunoprecipitated from
the bovine retina, further demonstrating enrichment of ArfGAP3
at the photoreceptor synaptic ribbon complex.

We propose that the interaction with RIBEYE recruits Arf-
GAP3 to the synaptic ribbons where ArfGAP3 subsequently ex-
erts its activity. YTH data demonstrated that the catalytically
active, highly conserved ArfGAP-domain of ArfGAP3 is respon-
sible for the binding to RIBEYE. The recruitment of ArfGAP3 to
RIBEYE(B) is unlikely to require a functional catalytic activity of
the AGD-domain because the initial ArfGAP3 prey clone ob-

tained from our YTH screen that strongly interacted with
RIBEYE(B) displayed a deletion in the central Zn-finger motif of
the AGD-domain (Goldberg, 1999; for review, see Gillingham
and Munro, 2007; Kahn et al., 2008; Donaldson and Jackson,
2011). This finding does not exclude that ArfGAP3 exerts a cata-
lytic activity at the synaptic ribbon. More likely, the ArfGAP3-
RIBEYE complex is part of a larger catalytically active
multiprotein complex that functions at the synaptic ribbon. In
support of this proposal, the Arf GTP/GDP exchange factor IQ-
ArfGEF BRAG1, which catalyzes exchange of GDP by GTP, has
been shown to be associated with synaptic ribbons (Katsumata et
al., 2009).

Interestingly, the interaction between RIBEYE(B) and Arf-
GAP3 is stimulated by NAD(H) in a redox-sensitive manner.
NADH is more efficient than the oxidized NAD� in promoting
RIBEYE(B)/ArfGAP3 interaction. Such a metabolism-dependent
interaction is also known for the nuclear corepressor CtBP, which
regulates transcription in a redox-sensitive manner (Zhang et al.,

Figure 14. RIBEYE(B) and Arf1 compete with each other for binding to ArfGAP3. We tested in fusion protein pull-down experiments whether Arf1 and RIBEYE(B) can bind simultaneously to

ArfGAP3 or whether they compete with each other for ArfGAP3-binding. A, B, Show representative Westerns blots incubated with the indicated antibodies to test for the binding of the respective

fusion proteins. After detection of the GST-tagged protein (A1, B1), blots were stripped and re-incubated with antibodies against MBP (A2, B2). A3, B3, SNAP-tagged immobilized ArfGAP3 bait

protein was visualized with SNAP-Vista Green (NEB). A, We tested whether increasing concentrations of Arf1 added to a fixed concentration of immobilized ArfGAP3 would inhibit binding of

RIBEYE(B) to ArfGAP3. RIBEYE(B) was kept at a constant concentration in these experiments. B, We tested whether increasing concentrations of RIBEYE(B) added to a fixed concentration of

immobilized ArfGAP3 would inhibit binding of Arf1 to ArfGAP3. Arf1 was kept at a constant concentration in these latter experiments. In both sets of experiments, we observed a competitive behavior

between Arf1 and RIBEYE(B) in binding to ArfGAP3. These data demonstrate that RIBEYE(B) competes with Arf1 for binding to ArfGAP3. indicating that binding of RIBEYE(B) and Arf1 to ArfGAP3 is

mutually exclusive. Abbreviations: AGD*, extended ArfGAP-domain of ArfGAP3.
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Figure 15. Overexpression of ArfGAP3 in mouse photoreceptors inhibits endocytic uptake of FM1– 43. FM1– 43 was used to compare endocytic uptake in photoreceptors that were either

electroporated with mcherry alone (A, B) or ArfGAP3-mcherry (C, D). In mcherry-electroporated photoreceptors, there was an intense uptake of FM1– 43 in the synaptic terminals (A, B). The uptake

of FM1– 43 in mcherry-transfected photoreceptors was similar to the FM1– 43 uptake in nontransfected photoreceptors (data not shown). In contrast to mcherry-transfected photoreceptors,

ArfGAP3-mcherry-overexpressing photoreceptors showed a strong inhibition of FM1– 43 uptake in the synaptic terminals (C, D), indicating that ArfGAP3 is essential involved in endocytosis at the

photoreceptor synapse. OS, Outer segment; IS, inner segment; Scale bars: A–C, 1 �m; D, 0.75 �m.
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2002, 2006; Fjeld et al., 2003). A main function of this redox-
sensitive interaction in ribbon synapses appears to be controlling
Arf1 function. The small GTP-binding protein Arf1, an ArfGAP3
effector, is enriched at the synaptic ribbon. Arf1 is an important
regulator of vesicle traffic at various intracellular compartments,
including the Golgi apparatus and endosomal compartments
(Gillingham and Munro, 2007; Kahn et al., 2008; Donaldson and
Jackson, 2011) and might perform a similar role at the photore-
ceptor synaptic ribbon complex. We demonstrated that Arf1 and
RIBEYE cannot bind at the same time. When RIBEYE is bound,
e.g., at high levels of NADH, Arf1 can no longer bind to ArfGAP3.
As a consequence, its GTPase activity will remain low and Arf1
will stay in its active, GTP-bound form.

Unfortunately, the antibodies against ArfGAP3 were not suit-
able for ultrastructural analyses. Super-resolution immunofluo-
rescent microscopy indicated a particularly high enrichment of
ArfGAP3 at the base of synaptic ribbon complex. Similarly, Arf-
GAP3 was also found close to bassoon, which is located at the
base of the ribbon, and within the ring-like dynamin signal that
surrounds the synaptic ribbon in the periactive zone. Dynamin
was previously shown to be enriched at the presynaptic plasma
membrane at the periactive zone (Wahl et al., 2013). Therefore,
ArfGAP3 probably exerts its function at the base of the ribbon
and in close proximity to the plasma membrane of the periactive
zone. Clearly, future electron microscopic analyses need to dem-
onstrate whether ArfGAP3 and Arf1 function directly at the pre-
synaptic plasma membrane or on an endosomal compartment
close to the plasma membrane.

Overexpression of ArfGAP3 in electroporated photoreceptors
resulted in a strong inhibition of endocytic membrane retrieval as
judged by an inhibition of uptake of FM1– 43. Therefore, we
propose that the RIBEYE/ArfGAP3 complex is involved in endo-
cytic membrane retrieval at the synaptic ribbon. Recent studies
demonstrated that the synaptic ribbon complex is important for
endocytic membrane traffic in the tonically active ribbon synapse
(Spassova et al., 2004; Griesinger et al., 2005; Khimich et al., 2005;
Jackman et al., 2009; Babai et al., 2010; Frank et al., 2010; Schnee
et al., 2011; Snellman et al., 2011; Tian et al., 2012; Chen et al.,
2013; Wahl et al., 2013). Still, the molecular details and mecha-
nisms used to accomplish this remain to be elucidated.

CtBP1/BARS, a close relative of RIBEYE(B)-domain/CtBP2
and component of the Golgi complex, is also localized to the
synaptic ribbon complex (tom Dieck et al., 2005; for a review, see
Corda et al., 2006). At the Golgi apparatus, CtBP1/BARS interacts
with ArfGAP1 (Yang et al., 2005). This interaction has been pro-
posed to be essential for vesicle formation and vesicle scission at
the Golgi complex (Yang et al., 2002, 2005, 2006; Corda et al.,
2006). The function of CtBP1/BARS at the synaptic ribbon is still
unclear (Vaithianathan et al., 2013). There is a remarkable differ-
ence between the CtBP1/ArfGAP1 interaction compared with the
RIBEYE/ArfGAP3 interaction. Interaction between CtBP1
and ArfGAP1 at the Golgi apparatus is mediated by the SBD of
CtBP1, while the interaction between RIBEYE(B)domain and
ArfGAP3 at the synaptic ribbons is mediated by the NBD of
RIBEYE(B)-domain.

The recruitment of ArfGAP3 to the synaptic ribbon via an
inducible, redox-dependent manner provides the synaptic rib-
bon with the possibility to regulate endocytic vesicle trafficking.
The catalytically active ArfGAP-domain could control Arf1 activ-
ity in a redox-switchable manner by a competitive interaction
with RIBEYE. The C terminus of ArfGAP3 could be involved in
different tasks, e.g., the cargo sorting. The C terminus of Arf-
GAP3 has been shown to be involved in membrane-binding and

cargo-binding/coat protein-binding at the Golgi apparatus (Rein
et al., 2002; for review, see Nie and Randazzo, 2006; Schindler and
Spang, 2007; Kliouchnikov et al., 2009; Schindler et al., 2009;
Spang et al., 2010). A similar function might also apply in the
ribbon synapse and would provide the RIBEYE-ArfGAP3 com-
plex a central position in the vesicle recycling machinery.

References
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Photoreceptors, the light-sensitive receptor neurons of the retina, receive and transmit

a plethora of visual informations from the surrounding world. Photoreceptors capture

light and convert this energy into electrical signals that are conveyed to the inner
retina. For synaptic communication with the inner retina, photoreceptors make large

active zones that are marked by synaptic ribbons. These unique synapses support

continuous vesicle exocytosis that is modulated by light-induced, graded changes of
membrane potential. Synaptic transmission can be adjusted in an activity-dependent

manner, and at the synaptic ribbons, Ca2+- and cGMP-dependent processes
appear to play a central role. EF-hand-containing proteins mediate many of these

Ca2+- and cGMP-dependent functions. Since continuous signaling of photoreceptors

appears to be prone to malfunction, disturbances of Ca2+- and cGMP-mediated signaling
in photoreceptors can lead to visual defects, retinal degeneration (rd), and even blindness.

This review summarizes aspects of signal transmission at the photoreceptor presynaptic

terminals that involve EF-hand-containing Ca2 -binding proteins.+

Keywords: photoreceptor, ribbon synapse, synaptic ribbon, GCAP, RIBEYE, CaBP4, CaV1.4 calcium channel,

EF-hands

INTRODUCTION

Vision belongs to the most important senses of the human body.

The light-sensitive retina within our eyes screens the optical world

around us and transmits this information to the brain. At the

beginning of the complex task of visual perception, photorecep-

tors physically detect light energy and transmit the information to

the inner retina where further processing takes place. The retina

employs two different classes of photoreceptors, rod and cones, to

begin sorting out different components of light. Rod photorecep-

tors are specialized to operate at the lowest level of light, single

Abbreviations: NCS, neuronal Ca2+-sensor proteins; ROS-GC rod outer seg-

ment guanylate cyclase; GC, guanylate cyclase; OS, outer segments; IS, inner

segments; OPL, outer plexiform layer (containing photoreceptor ribbon synapses);

PDE6, cGMP phosphodiesterase 6; CNG, cyclic nucleotide-gated; CNG channel,
cyclic nucleotide-gated channel; HCN channel, hyperpolarization-activated, cyclic

nucleotide-gated channel; LTCC, L-type calcium channels; VGCC, voltage-gated

calcium channels; CSNB, congenital stationary night blindness; GCAP, guany-
late cyclase-activating protein; [Ca2+]i cytoplasmic concentration of free Ca2+;

ER, endoplasmic reticulum; CDI, calcium-dependent inactivation; VDI, voltage-

dependent inactivation; KHD, kinase homology domain; CTR, carboxy-terminal

region; LCA, Leber congenital amaurosis; CORD, cone-rod dystrophy; ON-bipolar
cells, bipolar cells that depolarize in response to illumination; OFF-bipolar cells,

bipolar cells that hyperpolarize in response to illumination; ERG, electroretino-

gram; KO, knockout; SIM, structured illumination microscopy.

photon detection, and are thus saturated in daylight (Pahlberg

and Sampath, 2011). Cone photoreceptors mediate color vision

and operate at higher light intensities. In primates, e.g., humans,

three different types of cones with long (L)-, medium (M)-, and

short (S)- wavelength sensitivities provide color vision; simpler,

non-primate mammals, e.g., mice, are dichromatic and possess

only two types of cones (L-S-cones, for review, see Abramov and

Gordon, 1994).

Mammalian photoreceptors in general are slender, highly

polarized neurons with a bipolar morphology (Figure 1). The

outer segment (OS) is the distal process that contacts the pigment

epithelium and this is where phototransduction takes place. At

the molecular level, phototransduction principally occurs via a

light-induced transduction cascade that finally leads to closure of

cGMP-gated cation channels (CNG-channels; cyclic nucleotide-

gated (CNG) channels) which causes the cell to hyperpolarize

from about −35 mV to −40 mV in the dark to about −70 mV

in very bright light (for review, see Burns and Baylor, 2001;

Chen, 2005). At the “opposite” (vitread) end of the photore-

ceptor, the presynaptic terminal transmits the light information

to dendrites of secondary neurons, bipolar, and horizontal cells

(Figures 1A,B). The vast array of light information detected by

the photoreceptor OS must be transmitted at the first synapse
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FIGURE 1 | (A) Schematic, simplified drawing of rod (R) and cone (C)

photoreceptors. Outer segments (OS) in which phototransduction occurs are

depicted as well as the presynaptic terminal where light information is

passed from photoreceptors to the secondary neurons, bipolar, and

horizontal cells (depicted in yellow and dark green colors in Figure 1B).

Subcellular details of photoreceptors including the inner segments were

omitted for sake of clarity. (B) Schematic, simplified drawing of rod and cone

photoreceptor presynaptic terminals. Rod synapses possess only a single,

large active zone with a single synaptic ribbon (sr) whereas cones possess

multiple active zones (20–50). Only invaginating ribbon synapses are

depicted. Non-invaginating, non-ribbon type synapses (Regus-Leidig and

Brandstätter, 2011) are not shown. (C–E, G–H) Electron micrographs of

photoreceptor terminals. (C) Shows a cross-sectioned ribbon (sr) with its

typical bar-shaped appearance in a rod terminal. The synaptic ribbon is

associated with large numbers of synaptic vesicles (sv) (D). The rod

photoreceptor in (D) is largely sectioned parallel to the plate-like synaptic

ribbon. In the left part, the section passes through the synaptic ribbon (sr);

more to the right, the plane of section is parallel, but close to the plate-like

synaptic ribbon. Many docked synaptic vesicles can be observed at the base

of the synaptic ribbon (small white arrows). The dashed circle indicates the

site where the postsynaptic dendrites enter the postsynaptic cavity formed

by the invagination of the presynaptic photoreceptor terminal. (E) Also shows

a tangential view of the synaptic ribbon. The plate-like character of the ribbon

is visible. White arrows denote the ribbon plate which is bended along the

presynaptic plasma membrane in a horseshoe-like manner. The

horseshoe-shaped appearance of the synaptic ribbon can be also visualized

by immunolabeling with anti-RIBEYE antibodies and super-resolution,

structured illumination microscopy (SIM) (white arrows in F). White

arrowheads in (F) show spherical synaptic spheres (ss), intermediate

structures in the assembly and disassembly of plate-shaped synaptic ribbons

[see also below; in (H); for review, see Schmitz (2009)]. Figure (G)

demonstrates many docked synaptic vesicles at the base of the synaptic

ribbon (white arrows) which are probably readily releasable. (H) Electron

micrograph of an immature, developing terminal from the early, postnatal

mouse retina (postnatal day 6). The ribbon complex is not yet fully

assembled. Besides bar-shaped ribbons (sr), spherical precursors of synaptic

ribbons, the synaptic spheres (ss), are also present in the presynaptic

terminal. Abbreviations: C, cone photoreceptor; R, rod photoreceptor; sr,

synaptic ribbon; ss, synaptic spheres; sv, synaptic vesicle; pr, presynaptic

terminal; po, postsynaptic dendrite; h, horizontal cell postsynaptic dendrite;

b, bipolar cell postsynaptic dendrite. Scale bars: 400 nm (C); 800 nm

(D); 320 nm (E); 1 µm (F), 400 nm (G), 500 nm (H).
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of the visual system, the photoreceptor synapse (for review, see

Wässle, 2004; Heidelberger et al., 2005; Schmitz, 2009; Matthews

and Fuchs, 2010; Regus-Leidig and Brandstätter, 2011).

STRUCTURAL AND FUNCTIONAL SPECIALIZATIONS OF

PHOTORECEPTOR RIBBON SYNAPSES: A SYNAPSE

TUNED FOR PHASIC AND CONTINUOUS RELEASE

Both types of photoreceptors, rods, and cones, form ribbon

synapses to communicate with their secondary neurons, i.e.,

bipolar and horizontal cells in the outer plexiform layer of the

retina. In mammals, ribbon synapses are also made by reti-

nal bipolar cells, photoreceptor-like neurons in the pineal gland

as well as auditory and vestibular hair cells (Schmitz, 2009;

Matthews and Fuchs, 2010; Regus-Leidig and Brandstätter, 2011).

Ribbon synapses are characterized by large, electron-dense struc-

tures, the synaptic ribbons (Figure 1; for review, see Schmitz,

2009). Synaptic ribbons in photoreceptor synapses are plate-like

structures which appear bar-shaped in electron micrographs if

cross-sectioned (Figure 1; Schmitz, 2009). In rod synapses, typ-

ically one synaptic ribbon is contained at a single active zone;

in cone synapses 20–50 active zones are present with each usu-

ally containing one synaptic ribbon (Wässle, 2004; Regus-Leidig

and Brandstätter, 2011). In hair cell ribbon synapses, most synap-

tic ribbons are spherical in shape (for review, see Matthews and

Fuchs, 2010). The synaptic ribbon is associated along its entire

surface area with a large number of synaptic vesicles that are

filled with the neurotransmitter glutamate. It is anchored at the

active zone of the presynaptic plasma membrane; in photore-

ceptors via the electron-dense arciform density (for review, see

Schmitz, 2009; Matthews and Fuchs, 2010; Regus-Leidig and

Brandstätter, 2011). RIBEYE is the major component of synap-

tic ribbons (Schmitz et al., 2000; Magupalli et al., 2008; Schmitz,

2009; Uthaiah and Hudspeth, 2010). It consists of a large and

unique aminoterminal A-domain, and a carboxyterminal B-

domain which is largely identical with the nuclear co-repressor

C-terminal-binding protein 2 (CtBP2). The B-domain/CtBP2

and a related protein, CtBP1, have developed from a family of

dehydrogenases and both specifically bind NAD(H) (for review,

see Schmitz, 2009).

Typically, ribbon synapses do not respond to bursts of action

potentials but are specialized to transmit a large bandwidth

of stimulus intensities via fine, graded changes in membrane

potential. To report even small changes of receptor potential in

response to differing light stimuli, ribbon synapses modulate

the rate of tonic vesicle exocytosis (for review, see Heidelberger

et al., 2005; Matthews and Fuchs, 2010; Wan and Heidelberger,

2011). Photoreceptor terminals may contain up to several hun-

dred thousands of highly motile synaptic vesicles depending upon

the species and type of synapse (for review, see Schmitz, 2009;

Matthews and Fuchs, 2010), which support the high basal synap-

tic vesicle turnover driven by the synaptic ribbon (Figure 1).

Various studies, mostly done with fish retinal bipolar cells, indi-

cated that ribbon-associated vesicles are primed and readily-

releasable (for review, see Heidelberger et al., 2005; Matthews

and Fuchs, 2010; Wan and Heidelberger, 2011). Synaptic rib-

bons were proposed to capture and prime synaptic vesicles for

immediate release. By this way of thinking, the synaptic ribbons

would provide a battery of ready-to-go vesicles that could sup-

port continuous release for extended periods of time (Jackman

et al., 2009). Synaptic ribbons are hot spots of exocytosis as visu-

alized with TIRF-microscopy (Zenisek et al., 2000), and more

recently by the analyses of terminals with photodamaged synap-

tic ribbons that showed strongly depressed release (Snellman

et al., 2011). At the base of the synaptic ribbons, voltage-gated

L-type calcium channels are highly enriched (tom Dieck et al.,

2005). These channels allow voltage-dependent Ca2+-influx at

the ribbon synapse which triggers synaptic vesicle release (for

review, see Heidelberger et al., 2005; Schmitz, 2009; Striessnig

et al., 2010). L-type calcium channels are considered ideally suited

to serve the continuously active ribbon synapses (see below).

Submicromolar (average) concentrations of Ca2+ are capable

of supporting tonic exocytosis in photoreceptors (for review,

see Heidelberger et al., 2005). Specific signaling properties of

ribbon synapses could require higher Ca2+-concentrations that

might be achieved at the base of the synaptic ribbons (Beutner

et al., 2001; Choi et al., 2008; Jackman et al., 2009; Jarsky et al.,

2010; Graydon et al., 2011). A recent study predicted concen-

trations up to 100 µM around the presynaptic Ca2+-channels

(Graydon et al., 2011), which could support coordinated mul-

tivesicular release (Singer et al., 2004; Khimich et al., 2005;

Jarsky et al., 2010; Graydon et al., 2011). RIBEYE is involved in

the clustering of Ca2+-channels in inner ear hair cells (Sheets

et al., 2011), and in agreement with this, several studies found

a correlation between the ribbon size and the dimension of

Ca2+-microdomains (Johnson et al., 2008; Frank et al., 2009,

2010).

The size and number of synaptic ribbons can vary considerably

(Hull et al., 2006; Johnson et al., 2008; Frank et al., 2009, 2010;

Regus-Leidig et al., 2010; Liberman et al., 2011; for review, see

Vollrath and Spiwoks-Becker, 1996; Schmitz, 2009; Regus-Leidig

and Brandstätter, 2011). The plate-shaped synaptic ribbons in

photoreceptors appear to assemble and disassemble via spheri-

cal intermediates, the synaptic spheres (for review, see Schmitz,

2009; Mercer and Thoreson, 2011b). In the mouse retina, struc-

tural changes of synaptic ribbons are activity- (illumination-)

dependent; structural changes of fish synaptic ribbons are also

strongly influenced by circadian signals (Emran et al., 2010;

for review, see Vollrath and Spiwoks-Becker, 1996; Regus-Leidig

and Brandstätter, 2011). The activity-dependent plasticity of the

synaptic ribbon complex is related to the performance of the

visual system also at the systems level (Balkema et al., 2001). At

photoreceptor ribbon synapses, postsynaptic dendrites of bipo-

lar and horizontal cells contact the presynaptic release sites in

an invagination of the presynaptic terminal (Figure 1). At this

site, the released glutamate is detected by the metabotropic glu-

tamate receptor 6 (mGluR6) on the tips of ON-bipolar cells;

horizontal cells as well as OFF-bipolar cells employ ionotropic

glutamate receptors (Wässle, 2004; DeVries et al., 2006; Morgans

et al., 2010).

Recent data revealed that EF-hand-containing proteins play an

important role in the activity-dependent adaptational processes

at the photoreceptor synapse. These findings suggest that the pho-

toreceptor synaptic apparatus is adjusted during changes in illu-

mination, thus allowing synaptic communication to continue in a
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senseful manner if background illumination changes over a broad

range. The processes in the presynaptic photoreceptor terminals

that involve EF-hand-containing proteins, including distinct neu-

ronal Ca2+-sensor (NCS) - proteins and Ca2+-binding proteins

(CaBPs), will be summarized in the present review. Postsynaptic

activity-dependent signaling is covered by other recent reviews

(Burgoyne, 2007; Koike et al., 2010; Morgans et al., 2010).

Ca2+-IONS AND EF-HAND-CONTAINING Ca2+-BINDING

PROTEINS: OUTLINE

Ca2+-ions are crucial intracellular messengers that have central

roles in synaptic transmission ranging from triggering of synap-

tic vesicle exocytosis, vesicle recruitment, and recovery as well

as different aspects of synaptic plasticity (for review, Neher and

Sakaba, 2008). Ca2+-binding EF-hand-containing proteins are

perfect candidates for participating in photoreceptor signaling.

These proteins are characterized by high-affinity Ca2+-binding

motifs and consist of a helix-loop-helix motif (Burgoyne, 2007).

The loop region, typically 12 residues long, is rich in acidic

amino acids that chelate the Ca2+ (as well as Mg2+). The

founder molecule is calmodulin, and related to calmodulin are

two classes of EF-hand-containing proteins (Figures 2 and 3):

(1) the family of neuronal calcium sensor (NCS) proteins that

include the guanylate cyclase activating proteins (GCAPs) and

(2) the family of calcium-binding proteins (CaBPs) that include

calcium-binding protein 4 (CaBP4) (for review, see Haeseleer

et al., 2002; Burgoyne, 2007). Furthermore, individual proteins

contain EF-hand motifs as important functional parts of their

primary structure, e.g., the α1-subunit of L-type voltage-gated

Ca2+-channels (VGCCs).

[Ca2+]i IN PRESYNAPTIC PHOTORECEPTOR TERMINALS

EF-hand-containing proteins typically bind Ca2+ in the submi-

cromolar range and are regulated by [Ca2+]i. In photoreceptor

terminals, presynaptic [Ca2+]i is controlled by various mecha-

nisms. These include [Ca2+]i- influx through calcium-permeable

channels in the presynaptic plasma membrane (VGCCs, probably

also CNG- and hyperpolarization-activated, cyclic nucleotide-

gated (HCN)-channels), Ca2+-buffering systems in the presy-

naptic terminals, Ca2+-release from the ER (e.g., Ca2+-induced

Ca2+-release) as well as extrusion from the cytosol into the

ER and the extracellular space (e.g., via plasma membrane

Ca2+-ATPase; Na+/Ca2+, K+-exchanger) (Rieke and Schwartz,

1994; Savchenko et al., 1997; Krizaj and Copenhagen, 2002;

Suryanarayanan and Slaughter, 2006; Johnson et al., 2007; Knop

et al., 2008; Szikra et al., 2008, 2009; Babai et al., 2010; Seeliger

et al., 2011). Importantly, Ca2+-concentrations in the presynap-

tic terminals of photoreceptors have been imaged in-situ using

two-photon-microscopy (Choi et al., 2008; Jackman et al., 2009).

In the anole lizard (Anolis segrei), 360–600 nm global (average)

Ca2+ were measured in cone terminals of dark-adapted retinas;

190–250 nm of global average Ca2+ after bright illumination at

physiological extracellular Ca2+-concentrations. At the base of

the synaptic ribbon, [Ca2+]i could be much higher than these

average values (>4 µM) (Choi et al., 2008; Jackman et al., 2009).

These [Ca2+]i values in the presynaptic terminal differ from

[Ca2+]i values in the OS. In the OS of mouse retinas, dark values

of 250 nm were measured; down to 23 nm [Ca2+]i were measured

in the OS of mice at saturating illumination (Olshevskaya et al.,

2002; Woodruff et al., 2002; Koch, 2006; Baehr and Palczewski,

2009). Species-dependent differences in OS [Ca2+]i values have

been observed: dark values of ≈700 nm [Ca2+]i were measured

in salamander rod OS; many species have dark [Ca2+]i values

of ≈500 nm (Olshevskaya et al., 2002; Woodruff et al., 2002;

Koch, 2006; Karan et al., 2010). Differences of [Ca2+]i between

presynaptic terminals and outer/inner segments could result

from the elongated, slender shape of photoreceptors and vari-

ous Ca2+-extrusion mechanisms between OSs and presynaptic

terminals (Krizaj and Copenhagen, 2002). Additionally, signals

in the presynaptic terminals are shaped by feedback responses

from secondary neurons (Jackman et al., 2010; Regus-Leidig and

Brandstätter, 2011).

L-TYPE VOLTAGE-GATED CALCIUM CHANNELS IN

PHOTORECEPTOR PRESYNAPTIC TERMINALS

The rate of synaptic vesicle exocytosis at ribbon synapses is highly

dependent on changes in membrane potential, and the role of

voltage-gated calcium channels in this process has been inten-

sively investigated. Synaptic vesicle exocytosis in rod and cone

photoreceptor synapses is triggered via Ca2+-influx through L-

type voltage-gated calcium channels (LTCCs) at the active zones

(for review, see Morgans et al., 2005; Striessnig et al., 2010;

Catterall, 2011). The α1-subunit is the largest subunit of LTCCs.

CaV1.4 (often also denoted as α1F-subunit (Cacna1f); Catterall

et al., 2005) is believed to represent the main pore forming

α1-subunit of LTCCs involved in neurotransmitter release at

photoreceptor synapses. This assumption is based on several

findings: (1) immunocytochemical analyses (Nachman-Clewner

et al., 1999; Morgans, 2001; for review, see Morgans et al.,

2005); (2) analyses of spontaneous and engineered CaV1.4 mouse

knockouts (for review, see Doering et al., 2007; Striessnig et al.,

2010). (3) human patients suffering from congenital station-

ary night blindness (CSNB) show mutations in the CaV1.4 gene

(for review, see Doering et al., 2007; Striessnig et al., 2010).

Some studies also observed expression of CaV1.3 (also denoted

as α1D-subunit (Cacna1d); Catterall et al., 2005) in photorecep-

tor synapses (Xiao et al., 2007; Kersten et al., 2010). Inner ear

hair cell ribbon synapses employ CaV1.3 as pore-forming Ca2+-

channel α1-subunit (for review, see Striessnig et al., 2010). But

while hearing is severely impaired, vision appears to be normal in

CaV1.3 knockout mice (for review, see Striessnig et al., 2010).

CaV1.4 (α1F) is ≈2000 amino acids long and organized into

four homologous domains (domain I–IV) (Catterall et al., 2005;

Catterall, 2011). Both N- and C-terminus reside in the cyto-

plasm (Figure 2). The C-terminus (CTR) of CaV1.4 possesses

important regulatory functions and consists of a Ca2+-binding

EF-hand domain, a pre-IQ and IQ-domain as well as an impor-

tant regulatory region at the very carboxyterminus, the so-called

CTM (C-terminal modulator) or ICDI (inhibitor of CDI) (Singh

et al., 2006; Wahl-Schott et al., 2006; Striessnig et al., 2010). The

CTM performs functionally important intramolecular interac-

tions with the carboxyterminus of CaV1.4 (see below). The α1-

subunit associates with cytoplasmic β-subunits, predominantly at

the loop region between domain I and II of CaV1.4 (Dolphin,
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FIGURE 2 | (A) Schematic representation of L-type Ca2+-channel

composition of rod photoreceptor synapses [drawn modified based on

Lacinova (2005)]. The channels are immobilized at the active zone close to the

base of the synaptic ribbon. The α1F-subunit is considered the pore-forming

subunit that supports voltage-dependent entry of Ca2+. Ca2+ ions are

depicted as pink spheres. The cytoplasmic C-terminus of CaV1.4 α 1-subunit

contains an EF-hand, Pre-IQ-, and IQ-domain. In other CaV1 channels, e.g.,

CaV1.2, these carboxyterminal domains mediate Ca2+ -dependent

inactivation [for review, see Striessnig et al. (2010)]. In CaV1.4, CDI is

prevented by the additional CTM region that forms an intramolecular

interaction with the above mentioned domains [Singh et al. (2006);

Wahl-Schott et al. (2006)]. The β2-subunit interacts with the α1-subunit at the

cytoplasmic loop connecting domain I with domain II [Catterall (2011)]. The

alpha2-delta4 (α2δ4)-subunit, linked to each other with disulfide-bridges (not

shown), complements the channel composition [Wycisk et al. (2006); Mercer

et al. (2011a)]. The δ-subunit possesses a single transmembrane segment

which is post-translationally cleaved off and replaced by a GPI anchor [Davies

et al. (2010)] (B,C) Schematic depiction of the synaptic ribbon. Protein-protein

interaction cascades are shown that could link RIBEYE to presynaptic calcium

channels. Although all individual interactions (e.g., RIBEYE-Munc119;

Munc119-CaBP4; CaBP4-CaV1.4) have been demonstrated [Alpadi et al.

(2008); Haeseleer et al. (2004, 2008)], it is not clear whether all shown

interactions can occur at the same time. Other interactions that might link

the ribbons to presynaptic calcium channels, e.g., via association with

RIM-proteins are not shown. Domain structures of the interacting proteins

are only schematically depicted. CaBP4 contains 4 EF-hands from which EF2

(depicted in red) is non-functional. EF1, EF3, and EF4 are functional EF-hands

(depicted in yellow). Abbreviations: CaM, calmodulin; PrBP/δ, prenyl-binding

protein delta homology domain; PRD, proline-rich domain; IQ, IQ-domain;

NAD(H), nicotine amide dinucleotide; CTM, C-terminal modulator.
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2003; Buraei and Yang, 2010). The β2-protein appears to be the

main β-channel subunit in photoreceptor LTCCs (Ball et al., 2002,

2011). β-subunits are important for the trafficking of the α1-

subunit and for the kinetics of channel opening (Dolphin, 2003;

Buraei and Yang, 2010). The CaV1.4 channel is complemented

by an α 2δ-subunit, which is the α 2δ 4 protein in photoreceptor

synapses (Wycisk et al., 2006; Mercer et al., 2011a).

The properties of CaV1.4 and CaV1.3 can be modulated over a

wide range (for review, see Striessnig et al., 2010). In some con-

texts, CaV1.4 and CaV1.3 open at relatively negative membrane

potentials (below –40 mV) which is an important requirement

for photoreceptors that vary their membrane potential between

–35 and –40 mV (in the dark) to less than –55 mV in the light

(see above). Furthermore, for the tonically active photorecep-

tor synapses it is important that a sufficient Ca2+-concentration

is maintained that allows sustained, continuous exocytosis. This

could be well accomplished by a calcium channel that does not

inactivate or inactivates only very slowly. CaV1.4 shows no Ca2+-

dependent inactivation (CDI) and very slow voltage-dependent

inactivation (VDI) (Singh et al., 2006; Wahl-Schott et al., 2006;

Striessnig et al., 2010). This low degree or lack of inactiva-

tion could very well support continuous Ca2+-influx and sub-

sequently tonic exocytosis. Further supplies of Ca2+ that may

help maintain sustained release could come from Ca2+-induced

Ca2+ release or store-operated Ca2+-entry (Suryanarayanan and

Slaughter, 2006; Szikra et al., 2008, 2009; Babai et al., 2010).

The biological purpose of CDI (and VDI), in general, is to

provide neurons with a negative feedback mechanism that can

protect from Ca2+-overflow and subsequent cell death. CDI

is mediated by the EF-hand, the pre-IQ-domain, and the IQ-

domain in the CTR of CaV1.4 to which Ca2+/calmodulin can

bind (for review, see Doering et al., 2007; Striessnig et al., 2010).

In CaV1.4, CDI is absent because of a modulatory domain in

the CTR of CaV1.4 that prevents binding of Ca2+-calmodulin to

the pre-IQ/IQ-domain. CDI would probably not be compatible

with the need of continuous, tonic exocytosis at photoreceptor

synapses that also requires tonic Ca2+-influx to drive exocytosis.

Mutations in the CaV1.4 gene are associated with incomplete sta-

tionary night blindness (CSNB2) (for review, see Striessnig et al.,

2010). Inhibition of CDI in inner ear hair cells is mediated by the

binding of CaBP4 to the CTR of CaV1.3 (Yang et al., 2006). CaBP4

is an EF-hand-containing protein of the CaBP-family (Haeseleer

et al., 2004; Haeseleer, 2008).

In photoreceptor synapses, CaBP4 could have an additional

function. Binding of CaBP4 to the IQ-domain of CaV1.4 shifts the

activation curve of the channel to more negative values (Haeseleer

et al., 2004), thereby extending the operational range of the

channel. At –40 mV, the membrane potential in the dark, the

depolarized condition, the channel is at the very beginning of its

activation curve (for review, see Striessnig et al., 2010). At –50 mV,

a membrane potential which is easily achieved during illumi-

nation, the CaV1.4 channel would be closed. A CaBP4-induced

hyperpolarizing shift of the CaV1.4 activation curve (shift of

approximate 10–15 mV) would allow the channel to operate at

more negative membrane potentials. It should be kept in mind

that many of the biophysical characterizations were obtained

from powerful, but simplified, model systems, e.g., transfected

HEK cells. Channel regulation in the synapse could be more

complex.

Mutations in the CaBP4 gene lead to autosomal recessive

CSNB and Leber’s congenital amaurosis (LCA)-like phenotype

in humans (Zeitz et al., 2006; Aldahmesh et al., 2010); CaBP4

knockout mice have severe disturbances in synaptic transmis-

sion emphasizing the physiological importance of this protein.

Interestingly, RIBEYE, the main component of synaptic rib-

bons binds to Munc119 (Alpadi et al., 2008), a protein which

has been linked with a cone-rod dystrophy (CORD) (Kobayashi

et al., 2000). Munc119, on the other hand, interacts with CaBP4

(Haeseleer, 2008; Alpadi and Schmitz, unpublished data). This

multicomponent molecular connection could influence the gating

of Ca2+-channels at the active zone of photoreceptors (Figure 2).

The β-subunit of LTCC—together with other channel subunits

(i.e., α2δ4; Figure 2) and further channel-associated proteins—

plays an important role in the regulation of the kinetics of

Ca2+-channel opening, intracellular channel trafficking, and den-

sity at the plasma membrane (Dolphin, 2003; Davies et al., 2007;

Buraei and Yang, 2010; Striessnig et al., 2010). Deletion of β2-

subunit cause similar phenotypes as in CSNB2 patients with

CaV1.4 mutations (Ball et al., 2002). β-subunit might be involved

in the positional priming of calcium channels and the exocy-

totic machinery. β-subunits of LTCC bind to the RIM family of

active zone proteins (Kiyonaka et al., 2007; Miki et al., 2007;

Gebhart et al., 2010) via a carboxyterminal region that includes

the C2B-domain of RIMs. RIM proteins are important for vesi-

cle exocytosis, various steps of presynaptic plasticitiy and for

the immobilization of Ca2+-channels as shown mostly for con-

ventional synapses (Han et al., 2011; Kaeser et al., 2011). RIMs

are also components of the active zone complex of photore-

ceptors including the synaptic ribbons (Wang et al., 1997). Via

the proline-rich region, RIM proteins bind to the RIM-binding

proteins (RBPs) which associate with the β-subunit of L-type

Ca2+-channels (Hibino et al., 2002). Most interestingly, RIM

knockouts lead to loss of Ca2+-channel immobilization in con-

ventional synapses (Han et al., 2011; Kaeser et al., 2011, for review,

see Kaeser, 2011). RIM proteins are also important in modulating

voltage-gated Ca2+-channels as judged by a mutation in the C2A-

domain of RIM1 that causes cone-rod dystrophy (CORD7) (Miki

et al., 2007).

In conclusion, modulation of L-type Ca2+-channel properties

appears to have a powerful influence on synaptic transmission

at the photoreceptor synapse (Striessnig et al., 2010). The plas-

ticity is mediated by the EF-hand/Pre-IQ/IQ-domain-containing

carboxyterminal region of the α-channel subunits. Tuning of the

Ca2+-channels could be involved in the adjustment of synap-

tic transmission during different levels of illumination and/or

for slower, adaptation of the exocytotic machinery for overall

changes of light- and dark-adaptation during day- and night time.

Interestingly, L-type calcium channel expression in photorecep-

tors is likely under circadian control (Ko et al., 2007).

EF-HAND PROTEINS AND Ca2+-/cGMP-DEPENDENT

PLASTICITY AT THE SYNAPTIC RIBBON

As described above, EF-hand motif-containing proteins

are important Ca2+-dependent modulators of presynaptic
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voltage-gated Ca2+-channel functions. Also the synaptic ribbons

are subject to Ca2+-dependent dynamic changes which in

turn could feedback on presynaptic Ca2+-levels. Presynaptic

Ca2+-channels are anchored at the active zone of photoreceptor

synapses by the synaptic ribbons. RIBEYE appears to have a

central role in the clustering of Ca2+-channels in inner ear hair

cells (Sheets et al., 2011). Ribbon-associated proteins, e.g., the

above mentioned RIM proteins or the protein bassoon, could

potentially also play an important role (Wang et al., 1997; tom

Dieck et al., 2005; Frank et al., 2010; Han et al., 2011; Kaeser

et al., 2011). The ribbon-associated protein bassoon anchors

synaptic ribbons to the active zone probably via its interaction

with RIBEYE (tom Dieck et al., 2005). Bassoon is important for

ribbon synapse development and maintaining the stability of

the synaptic ribbon complex (Dick et al., 2003; tom Dieck et al.,

2005; Regus-Leidig et al., 2010).

Recent studies suggested that activity-dependent structural

changes of photoreceptor synaptic ribbons, i.e., assembly and dis-

assembly of synaptic ribbons, are mediated by GCAP2, the guany-

late cyclase-activating protein 2 (Venkatesan et al., 2010). GCAP2

belongs to a family of small Ca2+-regulated, EF-hand-containing

proteins of the NCS protein family (Koch, 2006; Burgoyne, 2007;

Koch et al., 2010; Sharma, 2010). GCAPs are well known to reg-

ulate guanylate cyclase (GC) activity in photoreceptor OSs in a

Ca2+-dependent manner. How GCAPs could work in the presy-

naptic photoreceptor terminals to regulate synaptic plasticity is

unclear. Current knowledge and ideas about GCAP/GC/cGMP-

mediated signaling events in the presynaptic terminals will be

summarized in the present review. To elucidate possible simi-

larities between regulatory mechanisms in the OS and synaptic

terminals, some key events of OS phototransduction will be also

included.

GUANYLATE CYCLASE-ACTIVATING PROTEINS (GCAPs) IN

PHOTORECEPTORS

Guanalyte cyclase-activating proteins (GCAPs) are small, EF-

hand-containing Ca2+-binding proteins of ≈24 kDa (Figure 3).

GCAPs belong to the subfamily of NCS proteins (Koch, 2006;

Burgoyne, 2007). They contain four EF-hands, and the first EF-

hand in GCAPs is non-functional due to exchanges of critical

amino acids in the Ca2+-binding loop (Figure 3). Instead, EF1

provides a binding interface for the membrane-bound photore-

ceptor guanylate cyclases (ROS-GCs; Ermilov et al., 2001; see

below). EF2–4 are functionally active and bind Ca2+ (as well

as Mg2+). In the OSs, the free intracellular Mg2+-concentration

is largely constant (at ≈1 mM) and not affected by changes in

illumination (Chen, 2005; Peshenko et al., 2011a). In contrast,

free intracellular Ca2+ levels change strongly upon illumina-

tion as described above. If Ca2+ (and cGMP) is high (in the

dark), Ca2+ will replace the bound Mg2+ at the EF-hands of

GCAPs (Stephen et al., 2008; Dizhoor et al., 2010; Peshenko

et al., 2011a). The replacement of Mg2+ by Ca2+ at the EF-

hands of GCAPs is functionally important because this changes

the character of interaction with important effector proteins, the

guanylate cyclases (GC, see below). GCAP proteins are myristoy-

lated at their N-terminus (for review, see Palczewski et al., 2004;

Koch, 2006; Baehr and Palczewski, 2007, 2009). In contrast to

the recoverin-like NCS proteins, GCAPs do not perform a Ca2+-

dependent myristoyl-switch (Stephen et al., 2007; Ames and Lim,

2011). Irrespective whether Ca2+ is bound or not, the myristoyl

chain remains buried inside the molecule and is not involved in

Ca2+-dependent membrane anchoring (Figure 3). Instead, the

myristoyl residue has been suggested to stabilize the conformation

of the protein (Stephen et al., 2007).

Three GCAP isoforms (GCAP1, GCAP2, and GCAP3) are

expressed in mammalian retinas with species-dependent differ-

ences (Palczewski et al., 2004; Koch, 2006; Baehr and Palczewski,

2007, 2009; Dizhoor et al., 2010). In rod photoreceptors of mouse

retinas, both GCAP1 and GCAP2 are expressed. GCAP1 appears

to be the predominant isoform in cones (Palczewski et al., 2004;

Koch, 2006; Baehr and Palczewski, 2007, 2009). Consistently,

mutations of the GCAP1 gene lead to cone-dominated dystro-

phies in the human retina as well as in the respective mouse

models (Jiang et al., 2005; Buch et al., 2011). GCAP3 expres-

sion is restricted to cone photoreceptors in the human retina; in

the mouse retina GCAP3 is not expressed arguing that GCAP3

is probably dispensable for vision in mice (for review, see Baehr

and Palczewski, 2007, 2009). Despite strong sequence similarities,

biophysical and biochemical properties of GCAP proteins differ

(e.g., Ca2+-affinities, dimerization properties, and activation of

GCs; Ermilov et al., 2001; Olshevskaya et al., 2002; Koch et al.,

2010). In photoreceptor outer segments (OS), GCAPs constitu-

tively associate with membranes via interaction with ROS-GCs

(Olshevskaya et al., 2002; Stephen et al., 2007; Ames and Lim,

2011). Mice with a deletion of GCAP1 and GCAP2 genes showed

increased amplitudes of single photon responses and a delayed

recovery phase (for review, see Palczewski et al., 2004; Baehr and

Palczewski, 2007, 2009).

GCAP EFFECTOR PROTEINS IN PHOTORECEPTOR OUTER SEGMENTS

In photoreceptor OSs, GCAP effector proteins have been exten-

sively characterized (Karan et al., 2010; Hunt et al., 2010; Koch

et al., 2010). Main effectors of GCAP proteins are the ≈115 kDa

membrane-bound rod outer segment-guanylate cyclases (ROS-

GCs). Two ROS-GCs are found in mammalian photoreceptors:

ROS-GC1 (retGC1, GC-E) and ROS-GC2 (retGC2, GCF) (for

review, see Olshevskaya et al., 2002; Potter, 2011). ROS-GCs

are large, type 1 transmembrane proteins (≈1100 aa; Figure 4)

with an extracellular domain, a transmembrane domain, and

a cytoplasmic domain that consists of a short juxtamembrane

domain (JMD), a kinase homology domain (KHD), a dimer-

ization domain (DD), a catalytic domain (CCD) that converts

GTP into cGMP and C-terminal extension (CTE). Both ROS-

GC1 and ROS-GC2 are expressed in rods; ROS-GC2 appears to

be absent from mouse cone photoreceptors (Haire et al., 2006;

Karan et al., 2010). ROS-GCs play a crucial role in photore-

ceptor OS phototransduction. A light-induced conformational

change of rhodopsin leads to a transducin-mediated activation

of phosphodiesterase 6 (PDE6) and subsequently reduced lev-

els of cGMP (Burns and Baylor, 2001). Thus, light generates a

drop in cGMP levels in the OSs and subsequent closure of cGMP-

gated CNG-channels (Biel and Michalakis, 2009). As a result of

light-induced closure of CNG channels intracellular Ca2+ levels

drop in the OS from about 250nM (dark) to less than <50 nM
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FIGURE 3 | (A) Sequence alignment of GCAP1 and GCAP2 from the

indicated species (mGCAP1: NP032215, GI: 40254633; mGCAP2:

NP_666191, GI: 22122571; bGCAP2: NP_777211, GI: 27807519). Amino acid

residues identical in all three indicated GCAP proteins are highlighted in

green. Underlined below the aligned amino acid sequences is the

Ca2+-/Mg2+ -chelating loop region located between the E- and F- helices of

the respective EF-hands. It is flanked on both sides by an α-helix (underlined

in amber). The amino acid sequences of the EF-hands of GCAP1 and GCAP2

are highly homologous. Amino acids identical in mGCAP1, mGCAP2, and

bGCAP2 are highlighted in green. EF-hands are highly conserved; the

C-terminus of GCAP1 of GCAP2 is divergent. The CTR of GCAP2, but not of

GCAP1, binds to the NADH-binding sub-domain of RIBEYE(B)

[Venkatesan et al. (2010)]. Amino acids in GCAP2 highlighted in red appear to

be involved in the interaction with ROS-GCs [Ames et al. (1999)]. Residues in

the loop region of EF1 that are incompatible with Ca2+-chelation and also

involved in ROS-GC target interaction are shown in orange [Ames et al.

(1999); Hwang et al. (2004)]. Abbreviations: mGCAP1, mouse GCAP1;

mGCAP2, mouse GCAP2, bGCAP2, bovine GCAP2. (B) Structure of

unmyristoylated GCAP2 (a) [Ames et al. (1999); pdb-file: 1jba] and

myristoylated GCAP1 (b) [Stephen et al. (2007); pdb-file: 2R2I]. The structure

is shown from the front (left) with the Ca2+-chelating loops on top as well as

from the back (right) to document the location of the CTR region that binds to

RIBEYE(B) in the case of GCAP2 [Venkatesan et al. (2010)]. Ca2+ ions are

schematically depicted as yellow spheres.
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FIGURE 4 | Schematic representation of ROS-GC1 and

ROS-GC1-interaction partners in photoreceptors. ROS-GC1 contains an

aminoterminal extracellular domain, transmembrane domain (TM), kinase

homology domain (KHD), dimerization domain (DD), and the catalytic domain

that converts GTP into cGMP. The aminoterminal portion of the KHD is also

referred to as juxtamembrane domain (JMD) [Lange et al. (1999)]. The

borders of the respective domains are schematically depicted in the amino

acid sequence of human ROS-GC1 (NP_000171, GI: 4504217). Numbers

indicated correspond to the mature ROS-GC1 protein (without leader

sequence). The borders of the individual domains were determined by the

analyses of various ROS-GC1 constructs; the precise structure of

photoreceptor ROS-GC1 (e.g., X-ray-structure) is not yet available. At the

intracellular domains of ROS-GC1, different NCS proteins bind at different

locations. GCAP1 binds to the JMD, the aminoterminal portion of the

kinase homology domain of ROS-GC1 probably via its aminoterminal

EF1 hand. In contrast, S100β and GCAP2 bind close to each other to the

catalytic domain. The binding of GCAPs appears to compete with the

binding of the retinal degeneration protein 3 (RD3). While GCAPs inhibit

mostly ROS-GC1 activity at high Ca2+ -concentrations, S100β stimulates

ROS-GC1 activity at high Ca2+. The Ca2+-concentrations needed by

S100β to stimulate ROS-GC1 activity is high but could be achieved at the

active zone of photoreceptors close to presynaptic Ca2+-channels. The

numbers below the schematic depiction of ROS-GC1 domains depict the

respective borders in human ROS-GC1 sequence. Most of the mapping of

the ROS-GC1 interacting proteins has been done with bovine

ROS-GC1 reviewed in Sharma (2010). For some interactions (e.g., GCAP1),

multiple interaction sites were reported. GCAP1 was also reported to bind to

the catalytic domain though with lower affinity than at the KHD [for review,

Sharma (2002, 2010)]. The respective amino acid regions of bovine ROS-GC1

involved in the interaction with the indicated proteins are indicated in square

brackets. Non-photoreceptor-interacting proteins of ROS-GC1 [Sharma,

(2010)] are not depicted. Abbreviations: TM, transmembrane domain;

JMD, juxtamembrane domain; DD, dimerization domain; CTE,

carboxyterminal extension; RD3, retinal degeneration 3. Proteins

and protein domains are only schematically depicted and not drawn

in scale.

(light) in the mouse retina. Light-induced decreased levels of

cGMP need to be replenished in order to be able to detect the

next flash of light. Recovery of cGMP levels is accomplished

by a Ca2+-dependent feedback mechanism mediated by GCAP

proteins. After illumination (at low Ca2+), GCAPs are in the

Mg2+-bound state and stimulate GC activity. In contrast, in the

Ca2+-bound state (at high Ca2+ in the dark) GCAPs inhibit GC

activity (Koch, 2006; Sharma, 2010; Sakurai et al., 2011). Thus,

GCAPs work as bimodal regulators of GCs: as an inhibitor of GC

activity function (if Ca2+ is bound) and as an activator of GC

function (and cGMP synthesis) if Mg2+ is bound. At low Ca2+

levels (light), GCAPs activate GCs and thus raise cGMP levels to

restore pre-flash cGMP levels. These fundamental properties of

GCAP proteins are crucial for the Ca2+-dependent feedback of

the phototransduction cascade. This is necessary to make the OS

responsive to new flashes of light and to reset the sensitivity of

the phototransduction cascade to different levels of illumination.

Particularly EF-hand 3 (EF3) emerged as key region that deter-

mines whether GCAPs act as an activator or inhibitor of GCs

(Olshevskaya et al., 2002; Baehr and Palczewski, 2007, 2009).

GCAP1 binds to the juxtamembrane KHD of ROS-GCs (for

review, see Koch et al., 2010). GCAP2 binds directly to the cat-

alytic domain of ROS-GCs. Despite high sequence similarities,

GCAPs are not functionally equivalent; many regulatory proper-

ties differ (for review, see Koch, 2006; Dizhoor et al., 2010; Koch

et al., 2010). GCAP2 has a higher affinity for Ca2+ than GCAP1

(for review, see Koch, 2006; Dizhoor et al., 2010). Different

Ca2+-affinities of GCAPs could enhance the operational range of

Ca2+-regulation of GCs and give rise to the Ca2+-relay model of

GC activation/inhibition in the OS (for review, see Koch, 2006;

Burgoyne, 2007). At intermediate levels, Ca2+ is still bound to

GCAP2 whereas GCAP1 is already Ca2+-free (Mg2+-bound ver-

sion). As a consequence, GCAP1 would stimulate GC activity at

these intermediate concentrations, whereas GCAP2 would still be

inhibitory. Recently, it was found that the RD3 protein, which is

associated with LCA, also binds to the carboxyterminal of ROS-

GC and inhibits GC activity by an allosteric mechanism (Azadi

et al., 2010; Peshenko et al., 2011b). RD3 binding to ROS-GCs

promotes dissociation of GCAPs from the ROS-GC complex.

GCAPS IN PHOTORECEPTOR PRESYNAPTIC TERMINALS

AND THEIR INVOLVEMENT IN ACTIVITY-DEPENDENT

CHANGES OF SYNAPTIC RIBBONS

Various studies demonstrated the presence of GCAP proteins

in photoreceptor presynaptic terminals (Otto-Bruc et al., 1997;

Kachi et al., 1999; Cuenca et al., 1998; Pennesi et al., 2003; Makino

et al., 2008; Venkatesan et al., 2010). But the significance of GCAP

proteins in the presynaptic terminals is not well understood.

One function of GCAP-mediated signaling appears to medi-

ate the Ca2+-dependent regulation of synaptic ribbon plasticity

(Venkatesan et al., 2010). Synaptic ribbons are dynamic struc-

tures (for review, see Vollrath and Spiwoks-Becker, 1996; Schmitz,

2009). The synaptic ribbon undergoes activity- (illumination-)

dependent changes. Illumination leads to smaller and less numer-

able synaptic ribbons in the mouse retina (Spiwoks-Becker et al.,

2004). The dynamics of these structures is known to be depen-

dent upon Ca2+ and cGMP (Vollrath and Spiwoks-Becker, 1996).

Chelating intracellular Ca2+ leads to a disassembly of synaptic
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ribbons at the electron microscopic level (Spiwoks-Becker et al.,

2004; Regus-Leidig et al., 2010). Immunocytochemical analyses

of these effects revealed a sequential process (Regus-Leidig et al.,

2010). First, synaptic ribbon components, such as RIBEYE, pic-

colo and RIM1, were removed, in parallel to the disassembly of

synaptic ribbons at the ultrastructural level. In a second step,

bassoon, an important mediator of synaptic ribbon stability and

organizer of the active zone (Dick et al., 2003; for review, see

Joselevitch and Zenisek, 2010; Regus-Leidig and Brandstätter,

2011), is removed from the active zone (Regus-Leidig et al., 2010).

Venkatesan et al. (2010) demonstrated that RIBEYE, the main

component of synaptic ribbons, binds to the carboxyterminal

region of GCAP2 in a NAD(H)-dependent manner (Figure 5).

Overexpression of GCAP2 in the presynaptic terminals of pho-

toreceptors leads to disassembly of synaptic ribbons and a reduc-

tion in their number (Venkatesan et al., 2010). Therefore, one

function of GCAP2 could be to regulate the assembly and disas-

sembly of synaptic ribbons. The molecular mechanisms, how this

could be achieved are currently unknown.

Which GCAP effectors in the synapse might execute its synap-

tic functions? ROS-GC1, the GCAP effector in the OS, has been

localized to the photoreceptor synapses by immunoperoxidase

methods and other sensitive techniques (Liu et al., 1994; Cooper

et al., 1995; Duda et al., 2002). Conventional immunofluores-

cence microscopic analyses using mouse retina failed to detect

ROS-GC1 in photoreceptor synapses (Azadi et al., 2010; Karan

et al., 2010). This might be attributed to the lower sensitivity of

immunofluorescence microscopy in comparison to immunoper-

oxidase techniques. Possibly, ROS-GC1 might be masked in the

presynaptic matrix, not accessible to antibodies or the amount

is close to the detection limits. Different antibodies with differ-

ent affinities or species differences might also contribute to the

different levels of immunoreactivities of ROS-GC1 in synaptic

terminals. In the bovine retina, a strong ROS-GC1 was observed

in photoreceptor terminals (Venkataraman et al., 2003). GC activ-

ity was demonstrated also histochemically in photoreceptor ter-

minals (Rambotti et al., 2002). Biochemical data supported the

presence of ROS-GC1 in photoreceptor synapses (Duda et al.,

2002; Venkataraman et al., 2003). In contrast to the photoreceptor

OS, ROS-GC1 in photoreceptor synaptic terminals is stimulated,

not inhibited, by the presence of high concentrations of intra-

cellular Ca2+ (Duda et al., 2002; Venkataraman et al., 2003;

for review, see Sharma, 2002, 2010; Koch, 2006). The Ca2+-

stimulated ROS-GC1 activity is mediated by the EF-hand protein

S100β (previously also called CD-GCAP) that has been local-

ized to the presynaptic photoreceptor terminal (Duda et al., 2002;

FIGURE 5 | (A) Hypothetical model for the assembly of the synaptic ribbon:

the scaffold of the synaptic ribbon is built by RIBEYE proteins, the major, and

unique component of synaptic ribbons via multiple RIBEYE-RIBEYE

interactions [Magupalli et al. (2008); Schmitz (2009)]. In this model, the

A-domain is located in the center of the ribbon to build the core of the

synaptic ribbon. The B-domain faces the cytoplasmic side of the synaptic

ribbon where it interacts with various proteins, e.g., Munc119 (see also

Figure 2) and with the GCAP2. Interaction with GCAP2 could regulate

assembly and disassembly of synaptic ribbons which is known to be

Ca2+-dependent [Vollrath and Spiwoks-Becker (1996); Schmitz (2009)].

Overexpression of GCAP2 leads to ribbon disassembly. The recruitment of

GCAP2 by RIBEYE could influence Ca2+-buffering at the synaptic ribbon thus

also influencing synaptic signaling. The differently colored portions in

RIBEYE(A)-domain represent RIBEYE-RIBEYE interaction sites [Magupalli

et al. (2008)]. How GCAP2 regulates ribbon assembly and disassembly is

unknown but could involve GCAP effectors, e.g., ROS-GCs (Figure 4) which

were reported to be present in the presynaptic terminals. (B) Molecular

dissection of RIBEYE-GCAP2 interaction: the carboxyterminal region (CTR) of

GCAP2 interacts with the hinge 2 region of RIBEYE(B) [Venkatesan et al.

(2010)].
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Venkataraman et al., 2003; Sharma, 2010). S100β binds to the cat-

alytic domain of ROS-GC and subsequently enhances ROS-GC1

activity at high Ca2+-concentrations. These Ca2+-concentrations

could be achieved close to the synaptic ribbon (Choi et al., 2008;

Jackman et al., 2009; Graydon et al., 2011). Thus, S100β binds

to ROS-GC1 at the catalytic domain, similar to GCAP2 (Duda

et al., 2002, 2005; Sharma, 2002, 2010). It is possible that S100β

competes with GCAP2 for binding to ROS-GC1.

The regulation of cGMP levels could be the key in the reg-

ulation of activity-dependent synaptic ribbon plasticity. cGMP

was reported to stabilize synaptic ribbons in the pineal gland

(Seidel et al., 1990; Spessert et al., 1992). cGMP-dependent pro-

tein kinases could be effectors that might mediate the stabilizing

effect of cGMP on synaptic ribbons. cGMP-dependent kinases

have been localized to photoreceptor synapses (Feil et al., 2005).

But the involvement of these kinases in ribbon dynamics has not

yet been elucidated. Interestingly, the RD3 protein, which blocks

binding of GCAP2 to ROS-GC1, is present in the presynaptic

terminals (Azadi et al., 2010; Peshenko et al., 2011b). Thus, a

complex interplay of several proteins that compete for binding

to ROS-GCs modulates cGMP-dependent signaling in the pho-

toreceptor synapse in a complex manner. The recruitment of

GCAP2 to synaptic ribbons and the subsequent disassembly of

synaptic ribbons could be due to changes in cGMP levels that

induce further downstream effects or due to increased GCAP2-

mediated Ca2+-buffering. Future investigations have to discrim-

inate between these possibilities. The importance of cGMP and

cGMP-dependent protein kinases for synaptic ribbon dynamics

is supported by a recent study that showed a synaptic ribbon-

protective effect of cGMP in an inner ear trauma model (Jaumann

et al., 2012). In this study, the authors demonstrated that inhibi-

tion of cGMP-hydrolyzing PDE5 leads to stabilization of synaptic

ribbons in a cGMP-regulated protein kinase 1-dependent man-

ner in inner hair cells. Analyses of GCAP1/2 double knockout

mice also pointed to a synaptic function of GCAPs proteins at the

photoreceptor synapse (Okawa et al., 2010). GCAP1/2 knockout

mice show disturbed signal processing at the synapse: although

the single-photon-responses in OS of GCAP knockout mice were

much larger than in wildtype mice, the synaptic processing of this

information, as measured by recordings from postsynaptic bipo-

lar cells, was more inefficient. A main synaptic function of GCAPs

appears to improve the signal-to-noise ratio of synaptic transmis-

sion (Okawa et al., 2010). The underlying molecular mechanisms

are still unknown but could involve structural changes of the

synapse.

cGMP IS AN IMPORTANT MODULATOR OF SYNAPTIC

PLASTICITY IN PHOTORECEPTOR TERMINALS

Various other aspects of plasticity in photoreceptor presynap-

tic terminals are mediated by cGMP (Rieke and Schwartz,

1994; Vollrath and Spiwoks-Becker, 1996; Savchenko et al.,

1997; Zhang and Townes-Anderson, 2002; Zhang et al., 2005).

The group of Townes-Anderson showed that outgrowth of

neurites in rods and cones photoreceptor depends upon

influx of Ca2+ (for review, see Townes-Anderson and Zhang,

2006). In cones, Ca2+ enters the presynaptic terminal through

cGMP-gated Ca2+-channels to mediate this type of synaptic

plasticity. Hyperpolarization-activated, cyclic nucleotide-gated

(HCN) channels could be further effectors of presynaptic cGMP.

HCN1 channels have been demonstrated in presynaptic photore-

ceptor terminals (Müller et al., 2003; Knop et al., 2008; Seeliger

et al., 2011; Tanimoto et al., 2012). cGMP-regulated channels

could extend the range of synaptic transmission e.g., at very

negative membrane potentials at which L-type calcium channels

might already be closed (Rieke and Schwartz, 1994; Savchenko

et al., 1997). Soluble GCs could also contribute to the genera-

tion of cGMP. Several studies suggest that this source of cGMP

production could play a role in neurotransmitter release and

structural plasticity in photoreceptor terminals (Savchenko et al.,

1997; Kourennyi et al., 2004; Zhang et al., 2005; Blom et al., 2009;

Sato et al., 2011).

IMBALANCE OF cGMP AND Ca2+-HOMEOSTASIS IN

PHOTORECEPTORS LEADS TO DISEASE

As described above, cGMP and Ca2+ homeostasis are intimately

related and possess a central role for phototransduction and light-

adaptation. Tight control of cGMP and Ca2+-levels are of central

importance for the survival of photoreceptors (Hunt et al., 2010).

Various severe neurodegenerative diseases of the retina are asso-

ciated with disturbances of the cGMP/Ca2+-homeostasis (Fain,

2006; Barabas et al., 2010; Paquet-Durand et al., 2011). These

include Retinitis pigmentosa (RP), LCA, and distinct forms of

cone and rod dystrophies (Baehr and Palczewski, 2009; Jiang

and Baehr, 2010; Paquet-Durand et al., 2011). Mutations in the

ROS-GC1 gene can lead to LCA, a devastating degeneration lead-

ing to childhood blindness, or a cone-rod-dystrophy (CORD

6) (for review, see Hunt et al., 2010). Diseases associated with

ROS-GC2 are not known. The gene for GCAP1 has been asso-

ciated with a form of cone-rod dystrophy, CORD3 (for review,

see Jiang and Baehr, 2010). Missense mutations in GCAP1 cause

loss of photoreceptors, particularly cones. Many of the disease-

causing mutations are located in EF3 and EF4 or indirectly affect

the structure of these EF-hands. The disease mutants lead to a

decrease in Ca2+-sensitivity thus making these mutants to con-

stitutive, Ca2+-insensitive activators of GCs. As a result, cGMP

and Ca2+ levels are pathologically increased leading to photore-

ceptor cell death (Baehr and Palczewski, 2009; Jiang and Baehr,

2010; Paquet-Durand et al., 2011). The retinal degeneration 1

(rd1) mouse is characterized by a loss-of-function mutation in

the gene encoding for the β-subunit of the photoreceptor-specific

PDE6 (for a recent review, see Barabas et al., 2010). Consequently,

rd1 mice have low PDE6 activity and high levels of cGMP which

lead to photoreceptor cell death, predominantly in rods. Also

the proteins discussed above, i.e., CaV1.4, Munc119, RIM, and

CaBP4, have high clinical relevance; mutations in the respective

genes cause various severe degenerative diseases of the retina, as

described above.

OPEN QUESTIONS/PERSPECTIVES

Activity-dependent, adaptative signaling in photoreceptor presy-

naptic terminals is just at the beginning of being understood.

Currently, knowledge about these processes in the synapse lags

behind to what is known about dynamic processes in the

OS. Ca2+, cGMP, and EF-hand-containing proteins likely play
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numerous roles in signaling at the photoreceptor synapse and

activity-dependent synaptic changes. Dynamics of synaptic rib-

bons at a molecular level may involve control of RIBEYE-RIBEYE

interactions. How these interactions are controlled at a molecular

level is currently not known. The involved effector molecules and

molecular pathways need to be elucidated. Differences between

rod and cone dynamic signaling need to be worked out since the

purpose of synaptic transmission at these two different types of

photoreceptor synapses is different (although related). Are there

differences in adaptative signaling in cone and rod synapses and

eventually also between the different active zones present in cone

synapses? Recent Ca2+-imaging analyses strongly argue that this

is the case (Johnson et al., 2007; Sheng et al., 2007). Most of

our current knowledge about the physiology of retinal ribbon

synapses was obtained from goldfish bipolar cells and salamander

photoreceptors. The mouse retina with its powerful genetic pos-

sibilities just entered the stage. Mouse knockout models as well

as the possibility of manipulating the mouse retina with recom-

binant viruses can be expected to provide further important

insights into signal processing at the photoreceptor synapse.
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