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Zusammenfassung 
 

Lysophosphatsäure (LPA) bewirkt einen signifikanten Anstieg der 

intrazellulären Kalziumkonzentration in Humanerythrozyten. Frühere 

Untersuchungen ergaben bereits Hinweise, dass der Kalziumeinstrom eher 

durch Kalziumkanäle als durch ein unspezifisches Kalzium-Leck zustande 

kommt. Die molekulare Identität der Kanäle konnte jedoch noch nicht geklärt 

werden.  In dieser Arbeit wurde der durch LPA hervorgerufene Kalzium-

Einstrom mittels Kalzium-Imaging untersucht. Auf Basis von Einzelzellen 

wurden pharmakologische Experimente zur Identifikation des zugehörigen 

Signalweges durchgeführt. Ich fand, dass der LPA induzierte Kalziumeinstrom 

zwischen individuellen Erythrozyten einer Population stark variiert. Eine 

solche Inhomogenität kann man mit traditionellen Untersuchungsmethoden 

(z.B. Flux Messungen) nicht detektieren. Daher entwickelte ich einen 

Analyseweg, der auf Einzelzellen beruht. Mit dieser Methode bestimmte ich 

die halb-maximale Wirkungskonzentration des LPA bezüglich der 

Kalziumzunahme in Erythrozyten auf  etwa 5 µM. Desweiteren untersuchte 

ich die Beziehung zwischen dem LPA-Signalweg und TRPC6 Kanälen, 

welche in Erythrozyten nachgewiesen wurden. Der LPA induzierte 

Kalziumeinstrom war in TRPC6 "knock-out" Mäusen nicht vollständig 

blockiert, was auf die Koexistenz von wenigstens zwei Signalwegen 

hindeutet. Ich habe einen Satz pharmakologischer Experimente durchgeführt, 

um den LPA Signalweg sowohl in Erythrozyten gesunder Spender als auch in 

Erythrozyten von Sichelzellanämie Patienten zu untersuchen. In humanen 

Sichelzellen war die Expressiion des LPA Rezeptor Subtyp 4 (LPAR4) erhöht, 

aber der LPA induzierte Kalziumeinstrom folgte dem gleichen Signalweg wie 

in gesunden Humanerythrozyten. Diese Untersuchung erlaubte neue 

Einblicke in LPA induziertes Kalziumsignale sowohl in gesunden als auch in 

Sichelzell-Erythrozyten. Der gefundene Signalweg könnte sich im Kontext der 

Erythrozyten-assoziierten Blutgerinnung unter pathophysiologischen 

Bedingungen als bedeutend erweisen.    
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Abstract 
 

Lysophosphatidic acid (LPA) induces a significant increase in the intracellular 

Ca2+ concentration in human red blood cells(RBCs). Previous experiments 

provided evidence that Ca2+ influx is mediated by Ca2+ channels rather than 

by a nonspecific Ca2+ leak. However, the molecular identity of the channels 

has not been resolved. In this thesis, Ca2+ imaging was used to investigate 

the LPA induced Ca2+ influx. Pharmacological experiments on single cells 

were performed to identify the related signal pathway. I found that in RBCs, 

Ca2+ influx induced by LPA varies betweenindividual cells of a population. 

Such an inhomogeneity cannot be revealed from traditional RBCs research 

methods (e.g., flux measurements). Thus, I developed a single cell based 

analysis procedure of RBCs. With this method, I determined the IC50 of LPA 

for Ca2+ increase in RBCs to be approximately 5 µM. Furthermore I probed 

the relationship between LPA induced signaling and TRPC6, which has been 

shown to be present in RBCs. LPA induced Ca2+ influx was not fully inhibited 

in TRPC6 knock out (TRPC6(-/-)) mice, suggesting the coexistence of at least 

two signal pathways. I performed a set of pharmacological experiments to 

identify LPA signaling pathways both in RBCs from healthy donors and sickle 

cell disease patients. In human sickle RBCs, LPA receptor subtype 4 (LPAR4) 

was found to present an increased expression, but LPA-induced Ca2+ influx 

followed the same signal pathway as in human healthy RBCs. This study 

revealed novel insights into LPA induced Ca2+ signaling both in healthy and 

sickle RBCs. The identified signaling pathways might be important in the 

context of RBCs associated blood clotting under pathophysiological 

conditions. 
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1. Introduction 
 

Calcium (Ca2+) is crucial in the physiology and biochemistry of the cell. It 

plays a very important role in signal transduction, because it acts as a second 

messenger. Many enzymes require Ca2+ ions as a cofactor, such as the 

blood-clotting cascade. 

 

In the human body, Ca2+ is taken from food, stored in the bones, and then 

transported as dissolved ions or bound to proteins such as serum albumin. 

Intracellular Ca2+ levels are tightly regulated. Ca2+ stored in intracellular 

organelles, including mitochondria and endoplasmic reticulum, which can 

accumulate and release Ca2+ ions. However, for RBCs, which lack  organelles 

and a nucleus, many questions about Ca2+ related functions are still not fully 

understood. Examples are the role of Ca2+ in blood clot formation, RBCs 

aging and their Ca2+ hemostasis in general. The mechanisms of these 

processes are still not resolved because the involvement of many factors 

generates a complex signaling system. This field is the focus of my research 

work.  

 

Using fluorescent dyes, fluorescence microscopy, flow cytometry and further 

techniques, the main work of this thesis was focused on the relation between 

lysophosphatidic acid (LPA) induced intracellular Ca2+ increase and transient 

receptor potential channels C6 (TRPC6) activation in RBCs. Aspects related 

to RBCs aging and the interactions between Ca2+ and blood clot formation 

have also been included. These experiments clarified the relationship 

between LPA-induced Ca2+ influx and TRPC6 in RBCs. Additionally, LPAR4 

was found to present an increased expression in human sickle RBCs. 

Furthermore, I also found LPA-induced Ca2+ influx in human sickle RBCs 

followed the same signal pathway as in human healthy RBCs. Thus, this 

dissertation comprises three parts: single cell analysis of Ca2+ influx in RBCs, 



 

 

 

2 

the signal pathway of LPA induced Ca2+ influx and LPA signal pathway in 

sickle RBCs. 

 

1.1 Red blood cells (RBCs) 
 

RBCs, also known as red cells, red blood corpuscles (an archaic term), 

haematids or erythrocytes (from Greek erythros for "red" and cyte translated 

as "cell" in modern usage), are the most abundant type of blood cell. Through 

a process named erythropoiesis, human erythroid cells are differentiated from 

stem cells in the bone marrow to become mature RBCs. This process takes 

about 7 days. The lifespan of matured human RBCs in the circulation is about 

100 – 120 days. Furthermore, RBCs are thought to be the vertebrate organism’s 

principal means of delivering oxygen (O2) to the body tissues and transport 

carbon dioxide via the blood flow through the circulation system back to the 

lung. 

 

Due to the lack of organelles and nucleus, RBCs seem to be relative simple 

cells. However, on a closer look they turn out to be much more complicated 

cells. Although RBCs have been intensively studied for many years, many 

questions are still not fully understood. For example, are all RBCs similar in 

structure and function? How do RBCs get mature and become old? What is 

the function of Ca2+ in the ageing process or how does apoptosis-like effects 

develop in RBCs and what is the role of RBCs in blood clot formation? The 

mechanisms of these processes still need to be elucidated - many of the 

involved factors are associated to the cell membrane. 

 

The human RBC membrane shows unique features, which allow RBCs to 

endure great reversible deformations while maintaining structural integrity 

during the 120 days life span in the circulation system. RBCs are highly 

elastic and highly sensitive to fluid stresses [1-3]. These amazing properties are 

based on a composite structure in which a plasma membrane comprises 

cholesterol and phospholipids. A 2-dimensional elastic network is anchored to 
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cytoskeletal proteins through binding sites on cytoplasmic domains of 

transmembrane proteins inserted into the lipid bilayer [4]. Further attachments 

of the cytoskeletal network to the lipid bilayer comprise direct interactions 

between several cytoskeletal proteins and anionic phospholipids [5, 6]. 

 

1.1.1 RBCsmembrane lipids 
 

The human red blood cell membrane contains lipids (41%), proteins (52%), 

and carbohydrates (7%) [7, 8]. Membrane lipids can be divided into three 

classes: neutral lipids (25.2%), phospholipids (62.7%) and glycosphingolipids 

(12.1%) [9].  

 

Here phospholipids consist of sphingomyelin (SM, 26%) and 

glycerophospholipids (74%). Sphingomyelin ismainly distributed in the outer 

leaflet of the membrane [9, 10]. Glycerophospholipids also consist of 3 main 

groups: phosphatidylcholine (PC, 30%), phosphatidylethanolamine (PE, 27%), 

and phosphatidylserine (PS, 13%), and several minor fractions, such as 

phosphatidic acid, lyso PC, mono and disphosphates phosphatidylinositol (PI) 
[11-13]. In brief, these four phospholipidis are asymmetrically distributed, but 

cholesterol is thought to be uniformly disposed in the 2 leaflets. SM and PC 

are found mainly in the outer of the membrane while PS and PE, are located 

predominantly in the inner leaflet [14]. 

 

The asymmetry of lipid distribution was thought to be generated and 

maintained by different types of phospholipid transporter proteins [15, 16]. 

Actually, the distribution is adjusted by (1) “Flippases”, an inward-directed 

pump, specific for PS and PE, also known as aminophospholipid translocase 

(APTL), which moves phospholipids from the outer to the inner leaflet; (2) 

“Floppases”, an outward-directed pump, which performs in the opposite 

direction when compared to flippase; and (3) “scramblases”, which move 

phospholipids bi-directionally down their concentration gradients in an energy 

independent manner, thus promoting unspecific bidirectional redistribution 
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across the bilayer. Several additional membrane proteins have been reported 

to exert these different lipid transport activities in human RBCs. For example, 

in recent studies, specific proteins, such as flotillins, stomatin, G-proteins, and 

β-adrenegic receptors [17, 18] are found to associate to the specific membrane 

areas that are enriched in cholesterol and sphingolipids. 

 

Additionally, emerging evidence suggests that the increase of cytosolic Ca2+ 

may activate scramblase and floppase but inhibit the flippase, which results in 

the lipid asymmetry collapse. In this procedure, PS exposure on the outer 

surface of the cell is the most important change in the lipid distribution [19]. The 

localization of PS and phosphoinositides at the inner leaflet has very 

important functional implications. For example, in the spleen, macrophages 

recognize and phagocytize RBCs according to the PS they present on the 

outer surface [20-22]. Furthermore, the adhesion of normal RBCs to vascular 

endothelial cells could also be activated by PS exposure in sickle cell disease 
[23]. One explanation of the PS regulation function of the lipid bilayer is their 

interactions with the cytoskeletal proteins, spectrin, and protein 4.1R [24, 25]. 

 

According to Manno and co-workers, binding of spectrin to PS increases 

membrane stability [25] and An and co-workers [26] found that PIP2 may 

modulate the linkage of the bilayer to the membrane skeleton through 

enhancing the binding of 4.1R to glycophorin C but decreasing its interaction 

with band 3 protein. 

 

1.1.2 RBCs channels 
 

In the lipid bilayer membrane of RBCs, more than 150 transmembrane 

proteins have been identified by proteomic methods [27]. Table 1 shows the 

molecular characteristics of major membrane proteins in human RBCs [28].  

According to various criteria, they can be divided into different groups. 
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Based on the connection properties, membrane proteins can be divided into 3 

groups: (1) cytoskeletal proteins (containing α and β spectrins, protein 4.1, 

actin), which are located beneath the lipid bilayer; (2) integral membrane 

proteins (including band 3 and glycophorins); and (3) anchoring proteins 

(containing ankyrin and protein 4.2), which connect the cytoskeletal network 

with integral proteins. 

 

Based on their relationship to lipids, membrane proteins can be divided into 2 

groups: (1) peripheral proteins, which are loosely associated only at one side, 

exterior or interior of the membrane, and which can be easily removed by high 

or low salt or high pH extraction; and (2) integral proteins, which are inserted 

tightly into or through the lipid bilayer by hydrophobic domains within their 

amino acid sequences, and can only be extracted by harsh reagents 

(chaotropic solvents or detergents). 

 

Based on the function, membrane proteins can be divided into 3 groups: (1) 

transport proteins, including the Na+-K+-ATPase, Ca2+ ATPase, Na+-K+-2Cl- 

cotransporter, Na+-Cl- cotransporter, Na+-K+ cotransporter, K+-Cl- 

cotransporter, Gardos Channel, band 3 (anion transporter), aquaporin 1 

(water transporter), Glut1 (glucose and L-dehydroascorbic acid transporter), 

Kidd antigen protein (urea transporter) and RhAG (gas transporter, probably 

of carbon dioxide); (2) adhesion proteins involved in interactions with other 

blood cells and endothelial cells, such as ICAM-4 which interacts with 

integrins and Lu, the laminin-binding protein [29-31] and (3) signaling receptors, 

such as LPA receptor [32], and NMDA receptor (in reticulocytes) [29, 31, 33, 34]. 

 

Most transmembrane proteins determine the different blood group antigens 
[22]. Expression of the membrane proteins is under the control of genetic and 

epigenetic modification of their genes, for example gene phosphorylation, 

acetylation and methylation. The functions of these membrane proteins are 

also mainly regulated by the state of phosphorylation, methylation, 
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glycosylation, or lipid modification (myristylation, palmitylation, or 

farnesylation) [28, 35]. 

 

 
Table 1: Molecular characteristic of major membrane proteins in human 
RBCs 

(This table is a reprint from [28] with kind permission from Elsevier ) 
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RBCs exchange molecules and ions with the surrounding environment, 

namely the blood plasma. This continuous transport of molecules and ions, 

such as glucose, Na+ and Ca2+, in and out of the cell requires their passage 

through the plasma membrane. In eukaryotic cells, additionally to the ion and 

molecule exchange through the plasma membrane, there are transport 

processes involving internal stores such asthe endoplasmic reticulum and 

mitochondria. For example, proteins, Ca2+ and ATP are exchanged through 

the plasma membrane in eukaryotic cells. For the exchange of ions, three 

important factors need tobe considered: (1) their relative concentrations, (2) 

their permeability and (3) the membrane potential. Considering aspect (1), 

molecules and ions build up a gradient facilitating diffusion from higher to 

lower concentration. However, active transport mechanisms, which require 

energy (usually in from of ATP), can also pump against concentration 

gradients. In aspect (2), the lipid bilayer is permeable to water and a few other 

small, uncharged molecules, such as oxygen (O2) and carbon dioxide (CO2). 

These diffuse freely into and out of the cell. In summary, lipid bilayers 

themselves are not permeable to: ions such as K+, Na+, Ca2+ (cations), Cl-, 

HCO3
- (anions), small hydrophilic molecules, e.g., glucose and 

macromolecules, e.g., proteins and RNA. 

Ion pumps are transmembrane proteins that use energy in form of ATP, to 

move ions across the plasma membrane against their concentration gradient. 

In contrast, ion channels, which belong to the group of passive transporters, 

only allow the flow of ions down their electrochemical gradient. According to 

different transport modes, ion transporter in the RBCs membrane can be 

subdivided into channels (passive transport), carriers (passive or secondary 

active transport), pumps (active transport), and residual transport (also called 

“leak” transport). The latter one subsumises unknown transport mechanisms 

and in the past the portion of residual transport in RBCs decreased with the 

discovery of novel transport entities [36].  
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Cation channels are transporters, which can modulate the resting membrane 

potential in most cells, induce the action potential in excitable cells and are 

also responsible for the transmembrane transduction of many signaling 

cascades and ion exchange. In RBCs numerous cation channels exist, such 

as (1) the Gardos channel; (2) the voltage activated non-selective cation 

channel; (3) the receptor activated non-selective cation channel; (4) the 

Transient receptor potential channel C6 (TRPC6); and (5) the N-methyl-D-

aspartate (NMDA) channel [37]. Different kinds of techniques are used to 

characterize these transporters including radioactive tracers (flux 

measurements), fluorescent dyes and electrophysiological approaches, such 

as the patch-clamp technique. 

 

1.1.2.1 Voltage activated non-selective cation channel 
 

Voltage activated non-selective cation channels are transmembrane proteins 

that are activated by changes of the electrical potential near the channel. 

They play a crucial role in electrically excitable cells, and also exist in RBCs 
[38-40]. Voltage activated cation channels, such as voltage-gated sodium 

channels and Ca2+ channels, are composed of several subunits, which form a 

central poreto allow ions to travel along their electrochemical gradients. 

Changes of the membrane potential are sensed by specific channel 

subdomains and transduced into conformational changes of the protein 

resulting in altered ion permeability. Such abehavior subsequently generates 

an electrical current [41, 42]. 

 

A property of RBCs now attributed to the voltage-activated non-selective 

cation channel was initially identified by Donlon and Rothstein [43] in their flux 

measurements in 1969. They found a three-phasic increase in the salt efflux 

from RBCs after a continuous decrease of the extracellular NaCl 

concentration. They already considered the contribution of a channel in this 

process. In 1989, Halperin and co-workers provided further evidence for the 

existence of a voltage-activated cation channel in RBCs. Below voltages of 



 

 

 

9 

+40 mV, the cell membrane was permeable for Na+, K+ and Ca2+ and this 

permeability could be inhibited by ruthenium red in flux measurements [44]. 

The membrane potential was adjusted by either changing the K+ 

concentration gradient in the presence of valinomycin or by changing the 

concentration gradient of anion nitrate in the presence of 4,4‘-

diisothiocyanostilbene-2,2‘-disulfonic acid (DIDS). The electrophysiological 

features of the non-selective cation channel were firstly identified by 

Christophersen and Bennekou in 1991 [45]. They reported that the channels 

open probability increased between -30mV and +30mV from 0 to 100%, and 

Bennekou further showed that the channel was acetylcholine sensitive [38]. 

Besides activation with acetylcholine, the voltage-activated non-selective 

cation channel could also be activated by clotrimazole and analogues, and 

inhibited by La3+, ruthenium red, N-ethyl-maleimide, iodoacetamide, 2,4‘-

dibromoacetophenone and bypH values down to 6.0 [39, 46, 47]. The 

electrophysiological characterization of the non-selective cation channel under 

physiological conditions has been investigated by Kaestner and co-workers in 

2000 [48]. Additionally, the hysteretic behavior of the open probability also has 

been investigated by Bennekou and co-workers in 2004 [40]. Furthermore, 

there is also some evidence suggesting the presence of Cav2.1 in RBCs [49]. 

However, there are still open questions about the non-selective cation voltage 

activated channel in RBCs that need to be resolved. 

 

1.1.2.2 Receptor activated non-selective cation channel 
 

In RBCs, receptor activated non-selective cation channels open or close in 

response to binding of a small signaling molecule, the so-called "ligand". 

Some channels response to extracellular ligands, such as NMDA, LPA and 

PGE2, and some to intracellular ligands, such as “second messengers" in 

RBCs, e.g. cyclic AMP (cAMP) and cyclic GMP (cGMP). In both cases, the 

ligand is not the substance that is transported when the channel opens. 
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In RBCs, the presence of receptor activated non-selective cation channels 

was first identified by flux measurements [50]. In the following decades, many 

substances were found to be able to open cation channel in RBCs. For 

example, lysophosphatidic acid (LPA) and prostaglandin E2 (PGE2) have 

been proven to induce Ca2+ influx in RBCs [32, 51]. 

 

There is also some evidence, suggesting that receptor gated channels can be 

activated by osmotic shock and oxidative stress [52, 53]. Ethylisopropylamiloride 

(EPMI) and erythropoietin (EPO) have been shown to inhibit the receptor 

activated nonselective cation channel [54, 55]. 

 

1.1.2.3 Gardos channel 
 

The Gardos channel, the intermediate-conductance Ca2+-activated K+ channel 

(IK1 channel), also known as KCa3.1, was originally characterized by Gardos 

in RBCs [56]. The Gardos channel consists of 6 transmembrane domains, like 

most K+ channels, with the pore region (S5-S6 transmembrane domains) 

containing amino acid sequence GYG responsible for its K+ selectivity [57]. The 

N-terminus contains an endoplasmic retention signal, which is important for 

intracellular packaging and trafficking of the channel. The C-terminus contains 

the calmodulin-binding domain, which is a Ca2+ sensor, and has been 

proposed to be responsible for the sensitivity of KCa3.1 to submicromolar (100-

300 nM) Ca2+ concentrations [57, 58]. However, there are still some 

controversial reports, proposing that the C-terminus is not responsible for 

Ca2+ dependence of the channel [59]. The C-terminus also has a leucine zipper 

motif as well as numerous consensus sites for PKA, PKC, and PKG 

phosphorylation. Interestingly, the C-terminus also contains a consensus 

sequence for tyrosine phosphorylation (RLLQEAWMY), suggesting that 

KCa3.1 could directly be activated by a tyrosine kinase receptor, e.g., growth 

factor receptors [57]. It is noteworthy that KCa3.1 lacks a series of arginine 

residues, which form the voltage sensor for voltage-gated K+ channels, 

consistent with its lack of voltage dependence [57].  



 

 

 

11 

 

George Gardos found the mechanism that intracellular Ca2+ led to potassium 

efflux [56, 60]. Although these measurements in RBCs where not based on 

electrophysiological measurements, the channel causing this effect was 

named after Gardos. After the introduction of the patch-clamp technique, 

inside-out patches, revealed numerous features of the Gardos channel. For 

example, itsselectivity of K+ over Na+ of Gardos channel is measured as 

(17:1), which is also temperature dependent. Its whole cell conductance was 

noninactivating and inward rectifying for K+ [50, 61, 62], inhibited by 

charybdotoxin (IC50=28 nM), clotrimazole (IC50=153 nM), nitrendipine (IC50=27 

nM), Stychodactyla toxin (IC50=291 nM), margatoxin (IC50=459 nM), 

miconazole (IC50=785nM), econazole (IC50=2.4 µM), cetiedil (IC50=79 µM); 

and activated by 1-ethyl-2-benzimidazolinone (EC50=74 µM) [63]. 

 

Within the last 40 years, the role of the Gardos channel in RBCs became 

more and more clear. In normal RBCs, the K+ permeability is 100 times lower 

than the one for Cl- [64, 65]. After full activation of the Gardos channels, the K+ 

permeability is increased and at least 10 times higher than that of Cl- [66]. This 

also induced Cl- flowing out of the cells. The Cl- loss results in a net loss of K+, 

whose rate depends on the Cl- permeability. The loss of KCl leads to an 

osmotic loss of cell water, which caused progressively dehydration of the 

cells. This leads to an increase inthe [Cl-]o/[Cl-]i concentration ratio and drives 

a H+ flux into the cells [67], causing cell acidification [68-70]. Afterwards, 

hemoglobin is also concentrated as the cells dehydrating and forces water to 

stay within the cells, thus limiting the extent of dehydration. The dehydration 

procedure results in the loss of an alkaline. In this condition, the cell is greatly 

dehydrated and the pH inside the cell is highly increased [71]. The whole 

procedure can be accelerated by changing Cl- into more permeant anions, 

such as thiocyanate or nitrate [72] and blocked by specific Gardos channel 

inhibitors (described above).  
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1.1.2.4 Transient receptor potential channel C6 (TRPC6) 
 

The transient receptor potential channel C6 (TRPC6) is expressed in RBCs 

shown by Western blot analysis [73].In human RBCs ghosts, TRPC6 was 

found to contribute to the Ca2+ leak of human RBCs [73]. 

 

Because of the lack of high affinity and selective ligands for activation and 

inhibition of TRPC6, the channel properties could not be comprehensively 

investigated. But in CHO-k1 cells transfected with TRPC6, diacylglycerol 

(DAG) showed direct activation of human TRPC6 channels [74]. Phospholipase 

C may also be involved in the TRPC6 activation signal pathways [75]. More 

detailed information about TRPC6 will be provided in section 1.3.1. 

 

1.1.2.5 N-methyl-D-aspartate (NMDA) channel 
 

In the central nervous system (CNS), the NMDA receptor (NR), a glutamate 

receptor, is a ligand-gated channel that mediates synaptic transmission and 

plasticity and is regulated by tyrosine phosphorylation. Activation of the NR 

opens the channel that is nonselective cations. A unique property of the NR is 

its voltage-dependent activation, a result of ion channel block by extracellular 

Mg2+ ions. This allows the voltage-dependent flow of Na+ and small amounts 

of Ca2+ into and K+ out of the cell [76-79]. 

 

Although NRs are nonselective ligand-gated cation channels, the selectivity of 

NR channels for Ca2+ exceeds that for Na+ 10-fold and thus ligand-mediated 

activation of the receptors typically results in an induction of a transient inward 

Ca2+ current. Thus, both activation and inactivation of NRs are modulated by 

the changes of intracellular Ca2+ levels. Such changes in intracellular Ca2+ 

have been reported to be involved in the proliferation of vascular smooth 

muscle cells and endothelia cells through NR activation [80, 81]. The interaction 

of noncompetitive and competitive NR antagonists, [3H] MK-801 and [3H] 

CGS-19755, has previously been reported [82]. The presence of NRs in RBCs 
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was recently shown by Bogdanova and co-workers [83]. Furthermore, in sickle 

cell patients, the expression of activated NRs is highly increased suggesting 

that NRs play a role in sickle cell disease [83]. In rat RBCs, the NMDA channel 

is mainly present in reticulocytes and young RBCs, suggesting that NMDA 

channels might be involved in the process of erythropoiesis [83]. 

 

1.1.2.6 Aquaporin (water channel) 
 

In 1985, Bengaand co-workers firstly identified water channel protein, now 

called aquaporin 1, in situ in the human RBCs membrane [84]. And in 1988, it 

was re-discovered by Agre and co-workers and they characterized its main 

featurein 1992 [85, 86]. Aquaporins are integral membrane proteins belonging to 

a larger family of major intrinsic proteins that form pores in the membrane of 

biological cells. The three-dimensional structure of aquaporin 1 and the 

pathway by which water is transported through the channel (but not other 

small solutes) were described by Agre and co-workers [85]. Aquaporin is a 

hydrophilic channel formed by transmembrane proteins. Water is able to pass 

through the lipid bilayer of the plasma membrane although it is a polar 

molecule, but aquaporin can greatly accelerate the process. In brief, the 

extracellular vestibule and the intracellular vestibule of aquaporin channel are 

connected by a 20-Å span where water molecules pass through. A single 

water molecule could form hydrogen bonds with the side chains of the 

channel protein. The orientation of the two α-helices of the channel provide 

positive charges and make the water molecule enter but not entirely span the 

bilayer [85]. Of course, even without these, water is still able to pass through 

plasma membranes, but the aquaporin increases membrane permeability to 

water and makes this procedure adjustable. 
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1.1.3 RBCs cytoskeletal proteins 
 

Many studies of RBCs cytoskeleton indicate that it is a network of spectrin 

polymers connected by junctional complexes [87-90]. The 2-dimensional 

spectrin-based membrane cytoskeletal network consists of α- and β-spectrin, 

actin, protein 4.1R, adducin, dematin, tropomyosin, and tropomodulin [91]. In 

RBCs, a large number of triple-helical repeats of 106 amino acids, 20 in α-

spectrin and 16 in β-spectrin forma unique structure of the long filamentous 

spectrin [92]. These triple-helical repeats contain a spectrin super family of 

proteins that includes dystrophin, actinin, and utrophin [93]. Through a strong 

interaction between repeats 19 and 20 near the C-terminus of α-spectrin with 

repeats 1 and 2 near the N terminus of β-spectrin, they form an antiparallel 

heterodimer [94]. The spectrin tetramer is the main structural component of the 

2-dimensional cytoskeletal network [95-97]. The other end of the long spectrin 

dimer is connected with F-actin and protein 4.1R to form a stable junction 

complex [24, 98]. Actually, actin forms only a weak contact with the α-spectrin N-

terminus, but the existence of protein 4.1R greatly enhances this interaction 
[99]. Adducin and tropomodulin cap actin filaments at opposite ends. Their 

function has yet not been fully understood [100-103]. The spectrin dimer-dimer 

interaction and the spectrin-actin-protein 4.1R junction complex form the most 

important structure to maintain the membrane stability and prevent the 

deformation and fragmentation when the cells encounter high shear stress in 

the blood circulation system [104]. 

 

1.1.4 Ca2+ in RBCs: effects of elevated [Ca2+]i 

1.1.4.1 On Red Cell Homeostasis 
 

Mature RBCs lack organelles, which makes its Ca2+ equilibrium appears to be 

deceptively simple. The intracellular Ca2+ ([Ca2+]i) concentration and the 

membrane Ca2+ permeability (PCa) of RBCs are extremely low when 

compared to other cells, but it appears reasonable to assume that the 
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physiological intracellular Ca2+ level in human RBCs to be approximately 

within the range of 30 to 60 nM [105]. The cytosolic [Ca2+]i is the result of the 

balance between Ca2+ influx and Ca2+ extrusion. Ca2+ influx might be 

mediated through ion channels [106]. Active Ca2+ extrusion is mediated by P-

type pumps (PMCA) expressed in isoforms 1 and 4 [107-109]. There have been 

reports that [Ca2+]i may transiently increase in physiological conditions in 

response to shear stress in the microcirculation [110], or terminally, as part of 

the programmed death [111, 112]. Increases in total Ca2+ wereonly reported in 

rather specific pathological conditions: in malaria, sickle cell anemia and 

thalassemia. Many abnormalities of RBCs have been attributed to increased 

[Ca2+]i. Such abnormalities cause large alterations of the cell’s metabolism, 

volume and ion content. The [Ca2+]i increase is associated with the activation 

of the Gardos channels and the PMCA. Depending on the experimental 

conditions, Gardos channel activation has profound effects on the 

homeostasis, while Ca2+ pump activation is affected by the ATP metabolism 

of the cells [56]. The PMCA activity and properties may be modulated by 

dimerization and intracellular factors, such as calmodulin binding or calpain 

activity [109]. Furthermore, the elevated [Ca2+]i will activate Ca2+-sensitive 

proteases [113], cytoskeletal cross-linking [114, 115], thyroid hormones [114], haem 

radicals [116, 117]. Thus, Ca2+-homeostasis is an integrated function and all of 

the components regulating [Ca2+]i, and their interaction need to be considered 

when referring to RBC Ca2+ handling. 

 

1.1.4.2 Ca2+ and Red Cell Survival 
 

In human beings, the circulating RBCs originate from a differentiation process. 

In the bone marrow, stem cells undergo a series of differentiation steps 

stimulated by hormones, such as erythropoietin, to form erythroblasts, 

basophilic, polychromatophilic, orthochromatic normoblasts and reticulocytes. 

In this process, cell size decreases, the nucleus condensates and the 

hemoglobin synthesis rate increases. Finally, the nucleus is extruded, RNA 

production is terminated, and the reticulocyte is released into the blood 
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circulation system. In this erythroid cell maturation procedure, the morphology 

of RBCs greatly changed [118]. In addition to such structure changes, the 

functional properties of the RBC’s membrane are also markedly altered. 

These characteristics include lipid composition and distribution as well as 

altered transport of amino acids, sugars and ions (Ca2+, Na+ and K+) [119]. 

 

Many methods, such as Percoll gradient centrifugation and filtration, which 

are based on the density difference between old and young cells, have been 

applied to separate populations of young and old RBC [120]. There are also 

separation methods using further differences between young and old RBCs 

including changes in geometry [121], reduced activity of the Gardos channel 
[122], enzymatic changes [123] and alterations of vitamin content [124]. Kinases 

such as galactokinase, alter their activity when young RBCs mature [125]. The 

activities of 6 enzymes, including glucose-6-phosphate dehydrogenase (G-6-

PD), 6-phosphogluconate dehydrogenase (6-PGD), hexokinase (Hx), 

glutamate oxaloacetate transminase (GOT), lactate dehydrogenase (LDH) 

and acetylcholinesterase (AChE), were assayed in the RBCs of different 

ages. The results showed that activities of Hx, AChE and GOT were 

considerably increased in younger RBCs compared to older ones. 

Consequently, these enzymes may be used as an indicator of the RBC’s age 
[126]. 

 

Ca2+ is often thought to be involved in RBCs ageing and removal from the 

circulation [112]. Romero and Romero [127] suggested a progressive increase in 

Ca2+ permeability during RBCs ageing, resulting in [Ca2+]i increases 

associated with activation of Gardos channels and proteases. This alters cell 

homeostasis and causes Ca2+ pump proteolysis increasing [Ca2+]i even 

further. This results in erypotosis of old cells and cleavage by macrophages in 

the spleen. The main problem with the above hypothesis is the absence of 

any in vivo evidence. The effect of elevated [Ca2+]i on RBC survival in vivo 

was tested direct on rabbits [112]. Like human RBCs, rabbit RBCs have a 

powerful Ca2+ pump and Ca2+ - sensitive K+ channels capable of dehydrating 
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the cells rapidly when fully activated. In contrast to the above, rabbit RBCs 

showed normal survival in vivo following in vitro Ca2+-loading dehydration and 

ATP depletion. 

 

Commonly, quantitative measurement of intracellular Ca2+ is performed with 

Fura-2. However, a strong spectra interference between hemoglobin and 

Fura-2 prevents Fura-2 measurements in RBCs [128]. Fluo-4 seems to be the 

better indicator for fluorescent measurements because its excitation and 

emission properties are less influenced by hemoglobin and in contrast to UV-

light (Fura-2), the excitation light for Fluo-4 does not induce auto-fluorescence 

in RBCs [128]. 

 

Early studies [111, 120] have shown a two-fold increase in the Ca2+ content of 

the dense fraction (old cells) compared with the light fraction (young cells) of 

human RBCs after centrifugation in Percoll gradients. It is also reported that 

the heaviest (old) cells take up more Ca2+ after being exposed to relatively 

high Ca2+ levels [120]. These results suggest that the Ca2+ in RBCs rises during 

ageing in vivo.  

 

Simultaneously, it is widely accepted that the ATP concentration and several 

enzyme activities decrease while human RBCs age [120]. Because the 

intracellular Ca2+ level is directly related to the activity of the ATP-dependent 

PMCA, it can be expected that the decreased ATP content will augment the 

intracellular Ca2+ increase [129]. However, there are some controversial 

reports. For example, Kirkpatrick and co-workers found that the ATP content 

in old cells decreased compared with young cells in the circulation system, but 

if considering the smaller size of the old cell, the ATP concentration was the 

same between old and young RBCs [130]. Taken all data together, there is no 

coherent picture between the intracellular Ca2+ content in young and old 

RBCs. 
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1.2 Lysophosphatidic acid (LPA) 
 

Lysophosphatidic acid (LPA) is a water-soluble lipid second messenger 

released in copious amounts from activated platelets, fibroblasts, adipocytes, 

and cancer cells [38, 131, 132]. LPA produced by stimulated platelets, recruits 

cells to assist in blood clot formation and wound healing [133]. LPA can also 

activate resting platelets [133], decreases endothelial permeability by narrowing 

of intercellular gaps [134], alter cerebral microcirculation [135], induce 

proliferation of cultured vascular smooth muscle cells and fibroblasts [136, 137], 

modulate the cell surface fibronectin assemble [138] and induce monocytes, 

lymphocyte, and neutrophil mobilization [139-141]. Lu and co-workers discovered 

that LPA can open a Ca2+ channel in human RBCs when compared to 

ionophore-treated cells, only approximately 25% of the RBCs exhibited a Ca2+ 

influx induced by 5 µM LPA, while the remaining population displayed only a 

slight fluorescence increase [32]. [Ca2+]i increase in RBCs can activate the 

scramblase and the Gardos channel, led to cell shrinkage and 

phosphatidylserine exposure. Thus, it is reasonable to consider LPA as an 

important player in RBC’s Ca2+ signaling and possible role in blood clot 

formation. 

 

1.3 TRP channels 

1.3.1 The transient receptor potential channel (TRP) family 
 

The transient receptor potential (TRP) channels family often contribute to 

[Ca2+]i changes in general by providing Ca2+ entry pathways for the Ca2+ entry. 

In many cell types TRP channels might also provide pathways for Ca2+ 

release from intracellular Ca2+ stores, such as the endoplasmic reticulum [142]  

or mitochondria [143]. Because the expression of TRPC6 in RBCs has been 

supported by Western blots [73], it appears appropriate to study and discuss 

their putative role for Ca2+-handling in RBCs. 
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1.3.2 Discovery of the “canonical” TRPCs: the Drosophila transient 
receptor potential channel 

 

TRP channels were firstly discovered in Drosophila in 1969. A Drosophila 

mutant exhibited a transient instead of sustained response to light. These 

channels were named trp (transient receptor potential) channels [144], and the 

gene of the channel was cloned in 1989 [145]. Two additional homologous 

channels, TRP-like (TRPL) and TRPγ, were also found to be involved in 

thesetransient response [146]. Consequently, TRP and TRPL double mutants 

are totally blind, suggesting that TRPγ may function together with TRPL [147].  

 

1.3.3 Properties of TRPC channels 
 

TRPC, the first subgroup in the TRP family, was cloned in 1995 from human 

beings [148] and can be divided into four subfamilies according to their function 

and structure: TRPC1, TRPC2, TRPC3/6/7 and TRPC4/5. These TRPC 

channels have the same sequence in the C terminal named TRP box 

(EWKFAR), and 3–4 NH2-terminal ankyrin repeats. TRPC channels are non-

selective Ca2+ permeable cation channels, although the selectivity between 

Ca2+ and Na+ varies considerably between different family members [149]. The 

TRPC channels are expressed in many cell types, and different members can 

co-exist in one cell type. TRPCs also form homotetrameters and 

heterotetramers. For example, TRPC1 can form heteromers with TRPC4, 

even though TRPC1 and TRPC4 are in a different subgroup; TRPC4 and 

TRPC5 can also form heteromers, but they are in the same subgroup [149].  

Their properties are significantly different from the homotetramers [150, 151]. 

These features greatly increased the research complexity of the TRPC 

channel function and structure. 
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Figure 1: TRPC channels structure. 

TRPC family members and proposed membrane topology. The legends 
represent the putative sites important for the channel regulation and protein–
protein interactions (details in the text). This figure is a reprint from [149] with 
kind permission from Elsevier. 
 

1.3.4 TRPC6 regulation 
 

TRPC channels are activated by stimulation of receptors that activate multiple 

isoforms of PLC, for example, PLCβ following activation of G-protein coupled 

receptors (GPCRs), and PLCγ after activation of receptor tyrosine kinases 

(RTKs) [152]. Generally speaking, TRPC3/6/7 can also be activated by 

diacylglycerol (DAG) [153], indicating that DAG is the PLC-derived product 

mediating their activation. In contrast, TRPC1, 4 and 5, which are also 

stimulated by receptor mediated PLC activation, are totally insensitive to DAG 
[74]. Thus, the mechanism of PLC-mediated TRPC activation is still 

controversial. 

 

Store-operated Ca2+ entry channels (SOCs) are also considered as regulators 

of TRPC channels [152], but there is also evidence that TRPC1, TRPC4/5 and 

TRPC3/6/7 show receptor-operated channel features that are insensitive to 

store depletion [152]. The relationship between stromal interaction molecule 

STIM1 and the store-operated Ca2+ entry suggests a connection of SOCs with 

TRP channels [154]. All TRPCs show binding sites for CaM and the inositol 
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(1,4,5) trisphosphate (IP3) receptor named CIRB [155]. Research on TRPC3 

showed a potential interconnection to the ryanodine receptor (RyR) [156]. 

 

TRPC6 mainly occurs in lung and brain [157], but still has other expression 

patterns [158]. In smooth muscle cells, TRPC6 is an essential part of the 

vascular α1-adrenoreceptor-activated Ca2+- permeable cation channel [159], 

and can be activated by flufenamate and AlF4
− [160]. It also plays an essential 

role in thrombin induced Ca2+ entry in platelets [161]. TRPC6 has a slight 

selectivity for Ca2+ over Na+, and can be activated by DAG [73, 160], eicosanoid 

and 20-hydroxyeicosatetraenoic acid (20-HETE) [162]. Some reports show that 

TRPC6 might be regulated by both intra- and extracellular Ca2+ in a complex 

manner: its activation is potentiation by [Ca2+]e from 0.1 to 1 mM and [Ca2+]i 

from 20 to 200 nM, yet inhibited at higher concentrations [163]. The SRC 

tyrosine kinase Fyn is believed to activate TRPC6 directly [164]. The muscarinic 

receptor and the MxA protein were also shown to be associated with TRPC6 
[165]. Figure 1 summarizes important structural properties and protein–protein 

interaction sites of TRPC channels. 

 

1.4 Aggregation of RBCs 

1.4.1 Active role of RBCs in aggregation 
 

Although RBCs aggregation has been intensively studied for decades [166], 

many questions still remain to be elucidated, for example: What is the 

relationship between the Ca2+ increase and aggregation in RBCs? According 

to the traditional view, coagulation is a result of interplay between endothelial 

cells, platelets, and soluble coagulation factors. In this process, platelets are 

the crucial players and RBCs are considered as innocent bystanders, just 

passively entrapped in a thrombus as they flow through the vasculature. In 

1999 Andrews and Low summarized arguments for a much more active role 

of RBCs in blood clot formation [167]. Duke and co-workers [168] reported that 

an increased hematocrit in thrombocytopenic patients showed improved 
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bleeding frequency after transfusion, even though their platelet counts 

remained very low [169]. It is also reported that thrombocytopenic disease 

related animal models were accompanied with shorter bleeding time after 

RBC transfusion [170]. When studying anemic patients with bleeding 

deficiencies, Hellem and co-workers [171] reported improved bleeding times 

following injection of washed-RBCs. Because of the decreased platelet 

numberin these patients, the RBC was assumed to be the reason of this 

phenomenon.  

 

It was suggested that PS exposure at the outer leaflet of the plasma 

membrane of the platelets might form a catalytic surface for the binding of 

coagulation factors. Therefore, platelets can initiate the coagulation cascade 
[172]. Kaestner and co-workers sproposed a signaling cascade in which RBCs 

actively contribute to clot formation [51]. Under specific circumstances (e.g. 

injury), the platelets will be activated, which led to LPA and PGE2 release to 

the blood. These substances activate the non-selective voltage dependent 

cation (NSVDC) channel. This results in a rapid increase of intracellular Ca2+, 

stimulating the Gardos channel and the scramblase. The activation of the 

Gardos channel induces an efflux of intracellular KCl and then causes cell 

shrinkage (see above). Combined with the activity of the scramblase, the 

consequences of the cascade are cell shrinkage and aggregation. Therefore, 

RBCs may play an active role in clot formation. 
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Figure 2: Schematic cascades proposed for the aggregation of RBCs in 
activated conditions. 

(This figure is kindly provided by Dr. Lars Kaestner; proposed in [51]) 

 

1.4.2 Effects of proteins in the blood plasmafor RBCs aggregation 
 

In blood plasma, human RBCs have a tendency to form rouleaux, which are 

linear aggregates and looks like a stack of coins. The number of RBCs per 

rouleaux varies in different conditions, and branching between two rouleaux 

could occur. Because of the relatively weak force between RBCs in rouleaux, 

it is possible to separate rouleaux into smaller fractions or even into single 

cells by applying sufficient shear forces [173]. Therefore, the rouleaux formation 

of RBCs is thought as a reversible process, while blood coagulation is 

irreversible. Macromolecules in blood plasma, such as fibrinogen, are 

assumed to play the main role in both the coagulation and aggregation 

procedure [174]. For example, suspending RBCs in solutions containing 

dextran (DEX), a neutral macromolecule, can also induce rouleaux formation 
[175]. Furthermore, without the presence of macromolecules, such as RBCs in 

Tyrode or saline solution, aggregation could not be observed.  
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However, different macromolecules play a different role in aggregation. For 

example, the fibrinogen mediated aggregation of RBCs increases with 

fibrinogen concentration [175], whereas the dextran-mediated aggregation of 

RBCs reaches a maximum at a certain dextran concentration. Furthermore, 

the molecular weight of the dextran also influences the aggregation [175].  

 

In summary, until now, the mechanism of RBC aggregation is still not 

completely resolved. Two models were proposed to explain the rouleaux 

formation of RBCs: the bridging model and the depletion model. In the 

bridging model, it is proposed that fibrinogen or dextran molecules 

unspecifically stick to the cell membrane and form a “bridge" to connect cells 
[176]. The aggregation occurs when the bridging forces exceed the 

disaggregation forces such as electrostatic repulsion and shearing stress [177]. 

In the depletion model, when the cells approach each other in solution 

containing macromolecules, the concentration of macromolecules near the 

cell surface is depleted compared to the concentration of the environment, 

resulting in a net “depletion" force. Both of these two theories were supported 

by studies in the past. For example, non-specific binding [178, 179] and specific 

binding mechanism [180] were proposed for the bridging model, whereas 

several studies supporting the depletion model have also been published [181, 

182]. Nevertheless, the aggregation of RBCs is a very complicated process and 

needs to be further investigated in the future. 

 

1.5 Sickle cell disease 
 
Sickle-cell disease (SCD) was first described by James B.Herrick in 1910 [183], 

characterized by RBCs which show an abnormal, rigid, sickle shape. SCD 

results in many types of anemia and crises, such as the vaso-occlusive crisis, 

aplastic crisis, and hemolytic crisis. The vaso-occlusive crisis is caused by the 

sickle RBCs-induced obstruction of capillaries and restriction of blood flow to 

organ, resulting in ischemia, pain, and necrosis [184]. The spleen is also 

frequently affected because of the narrow vessels and its function in clearing 
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defective RBCs, which causes the aplastic crisis [185-187]. Furthermore, these 

sickle-shaped cells are more fragile compared with normal RBCs, which 

trigger chronic hemolysis and the following inflammatory response [188, 189]. 

 

Almost a century after SCD was first described, it has already been proved a 

genetic hemoglobin disorder in RBCs [190]. The mutant sickle hemoglobin (Hb 

S) differed from normal hemoglobin A by a glutamine-to-valine substitution at 

the sixth residue of the β-globin polypeptide [191, 192], which followed by the 

formation of long intracellular polymers upon deoxygenation [193]. The 

abnormal hemoglobin polymers, on one hand, disrupt the RBC cytoskeleton 

and form protrusions, showing the characteristic sickle appearance, decrease 

the cells' flexibility and increase the fragility [194]. On the other hand, the 

polymers can also influence the RBC plasma membrane, resulting in the 

extracellular exposure of proteins and glycolipids that are normally found 

inside the cell, notably of phosphatidylserine (PS) [195]. These changes likely 

explain the increased adherence of sickle RBC to vascular endothelium and 

the higher risks of thrombosis of SCD patients [196, 197]. Most of the adhesion 

pathways was found involved in the interactions between sickle cells and 

endothelial cells, containing integrins [198-200], immunoglobulins [201, 202], 

selectins [203, 204], thrombospondin [205], fibrinogen [206], fibronectin [207] and 

some exposed membrane components such as Band 3 and sulfated 

glycolipids [208, 209]. Therefore, considering the presence of so many target 

proteins, the mechanism of increased sickle cell adhesion was an enormous 

challenge and still needs further investigation. 

 
As described above, LPA can recruit cells to assist in blood clot formation [133]  

and induce Ca2+ influx in RBCs, which followed by PS exposure [210]. 

Meanwhile, sickle RBCs also show an increased PS exposure and adhesion 

potency [195]. Therefore, I investigated the function of LPA and its receptors in 

sickle RBCs in this thesis. 
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2. Materials and methods 

2.1 Materials 

2.1.1 Chemicals and reagents 
 

The used substances and reagents are listed below:  

Name Supplier Stock-solution 

2-APB Sigma-Aldrich 1 mM in methanol 

Ca2+ ionophore A23187 Sigma-Aldrich  1 mM in ethanol  

DMSO  Roth   

Ethanol  Sigma-Aldrich   

Ethylendiamintetraacetat-

Na (EDTA)  

Sigma-Aldrich  

Ethylenglycoltetraacetat-Na 

(EGTA)  

Sigma-Aldrich  

Fibrinogen  Sigma-Aldrich   

Fluo-4, AM  Molecular Probes  1 mM in Pluronic  

Glucose  Sigma-Aldrich  

Gö6983 TOCRIS 1 mM in DMSO 

Gö6976 TOCRIS 1 mM in DMSO 

Heparin  Sigma-Aldrich   

HEPES  Roth   

Inorganic salts (NaCl, 

CaCl2, KCl, FeCl2, FeCl3, 

FeSO4.7H2O…)  

Sigma-Aldrich/ Roth   

Lysophosphatidic acid 

(LPA)  

Sigma-Aldrich  5 mM in PBS 



 

 

 

27 

Methanol  Sigma-Aldrich   

m-3M3FBS Sigma-Aldrich 50 mM in DMSO 

MK-801 Sigma-Aldrich 50 mM in DMSO 

NaOH  Roth   

Neuron growth factor (NGF) Sigma-Aldrich 10 µg/ml in H2O 

New methylene blue (NMB) Sigma-Aldrich  

o-3M3FBS Sigma-Aldrich 50 mM in DMSO 

ω-agatoxin-TK Peptanova 100 µM in H2O 

Pertussis toxin (PTX) Sigma-Aldrich 250 µg/ml in H2O 

PGE2 Sigma-Aldrich 1 mg/ml in H2O 

Pluronic F-127, 20% in 

DMSO  

Molecular Probes   

PKH26 Red Fluorescent 

Cell Linker Mini Kit 

Sigma-Aldrich  

PMA Sigma-Aldrich 1 mM in DMSO 

Poly-L-Lysin Sigma-Aldrich  250 µg/ml in H2O 

Sodium orthovanadate  Sigma-Aldrich  100 mM in H2O, 

pH=10 

Tetramethylethylenediamine 

(TEMED)  

Roth   

Tris (hydroxymethyl) 

aminomethane  

Roth   

U0126 Sigma-Aldrich 10 mM in DMSO 

U73122 Sigma-Aldrich 1 mM in ethanol 

U73343 Sigma-Aldrich 1 mM in ethanol 
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VPC32183  1 mM in PBS with 3% 

BSA 

Wortmannin Sigma-Aldrich 10 mM in DMSO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Main solutions used 
 

Tyrode solution (mM): NaCl 135, KCl 5.4, glucose 10, MgCl2 1, CaCl2 1.8, and 

HEPES 10. The pH was adjusted to 7.35 using NaOH. 

 

PBS buffer (mM): NaCl 140, KCl 3.0, Na2HPO4 7.5, and KH2PO4 1.5. The pH 

was adjusted to 7.4 using NaOH. 

 

2.1.3 Fluo-4/AM 
 

Fluo-4/AM is a fluorescent dye to measure cellular Ca2+ concentrations from 

100 nM to 1 µM, and its Kd (Ca2+) is 345 nM [211]. Fluo-4 is similar in structure 

and spectral properties to it’s precursor, Fluo-3, but due to its greater 

absorption near 488 nm and the emission at 520 nm, Fluo-4 offers much 

brighter fluorescence emission when using a 488 nm laser or other white light 

sources in conjunction with the standard FITC-fluorescence filter sets. The 

structure and fluorescence emission spectra of Fluo-4 and Fluo-3 are shown 

in Figure 3.  
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Figure 3: Molecular structure and fluorescence emission spectra of 
Fluo-4 and Fluo-3. 

Left: molecular structure of Fluo-4. Right: fluorescence emission spectra of 
Fluo-4 and Fluo-3. The blue curves correspond to Fluo-4, the red ones to 
Fluo-3 for depicted Ca2+ concentrations. Fluo-4 and Fluo-3 were 
simultaneously excited at 488 nm, in solutions containing 0–39.8 µM free Ca2+ 

(Cited from the Handbook of fluorescent probes and research chemicals [212]).  
 

2.2 Imaging devices 

2.2.1 Video-imaging Set-up 
 

A video-imaging microscope was used to measure intracellular free Ca2+ and 

kinetics. The set-up was based on an inverted microscope (TE-2000, Nikon, 

Tokyo, Japan), combined with a CCD camera (Imago-QE, TILL Photonics 

GmbH, Gräfelfing, Germany), as illustrated in Figure 4. A monochromator 

(Polychrome IV, TILL Photonics GmbH, Gräfelfing, Germany) was used to 

obtain the desired excitation wavelength (480 nm and 550 nm) that was 

reflected by a dichroic mirror (splitting edge at 505 nm) and focused onto the 

cells with a 60 × oil objective (CFI Plan Fluor, Nikon, Tokyo, Japan). For Fluo-

4 measurements, the emission was collected by the same objective, filtered 

with a 535/40 bandpass filter nm long pass filter and recorded with a CCD 

camera. Both the camera and the monochromator were controlled by the 

Digital Signal Processor (DSP)-driven Imaging Controlling Unit (ICU, TILL 
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Photonics GmbH, Gräfelfing, Germany), which was connected to a computer 

and operated with TILLvisION v4.0 software.  

 
Figure 4: The basic design of Imago-imaging setups. 

The system consists of a Polychrome IV, a Nikon TE-2000 inverted 
microscope and an ICU (central controlling unit).  
 

2.2.2 Leica TSC SP5 confocal microscope 
 
The Leica TCS SP5 II (Leica Microsystems GmbH, Wetzlar, Germany) was 

based on inverted epifluorescence microscope, with build in high-speed laser 

scanning head (8000 lines per second). For excitation of fluorescent 

immunostaining and Fluo-4, the 488 nm line of an Argon gas laser was used. 

The primary dichroic was substituted by an acusto-optical beam splitter 

(AOBS) and detection was achieved with a highly sensitive, two-channel 

prism spectrometer. Control of the experiments as well as the microscope 

was performed with Leica Application Suite software (ver. 2.4). High-

resolution images were acquired using a Plan Apo 63 x oil immersion 
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objective. For image acquisition in Leica, xy (image resolution) depends on 

emission wavelenght, numerical aperture of the objective, immersion medium, 

stability of the system, brightness/contrast-settings and pixel size. Z (optical 

section thickness) depends on pinhole size, coverglass thickness and 

immersion medium. The section thickness (Z) in combination with the xy-pixel 

dimension defined the “voxel” size (volume element size), which is the 

smallest unit of the sampled three-dimensional (3D) volume. In our 

experiment, the physical size of xy-pixel was 100.5 nm, the z-pixel was 750 

nm and the resolution was settled as 1024*768. The volume of RBCs samples 

was defined through setting the z-values for begin & end of the sample. Then 

the distance between two slices (197.6 nm) and number of optical sections 

within the volume (60 slices) were also defined and scanned to obtain z-stack 

images of the sample. Z-stack images were used to obtain two-dimensional 

(2D) images by z-projection. 

 

2.3 Methods 

2.3.1 Red blood cell preparation 
 

Experiments with human RBCs were authorized by the ethics committee of 

the medical association of the Saarland underregistration number 132/08. 

Blood donors provided their written informed consent to participate in this 

study. This consent procedure was approved by the ethics committee of the 

medical association of the Saarland under the above mentioned study 

registration number. For the experiments, we used RBCs from healthy adult 

donors. Blood was drawn from a vein into heparinized syringes. Experiments 

with mice were carried out in strict accordance with the recommendations in 

the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. The protocol was approved by the State Office for Health 

and Consumer Protection (Permit Number: C1–2.4.3.4). All efforts were made 

to minimize suffering. Blood samples were collected from the cheeks of the 

mice by lancet puncture and were collected into heparinized Eppendorf tubes. 
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Mouse blood samples were taken from the cheek of the mouse, located the 

submandibular area, which is behind the jawbone (Figure 5). This area is rich 

of vascular micro-vessels and provided a convenient and consistent source of 

blood. After collecting the blood sample, the injury spot needed to be pressed 

and the mouse will self-groom and be virtually unaffected. The blood harvest 

can be done daily, but for safety and healthy reasons, it can not exceed the 

total volume recommended for that size of animal. 10-15% of total blood 

volume or 1% of body weight was the maximum amount of blood that could 

be collected at one time, and removal of up to 1% of total blood volume daily 

over time was permitted. On average, the total blood volume in the mouse is 

6-8% of its body weight, or 6-8 ml of blood per 100 g of body weight. 

Therefore, I removed not more than 15~20 µl from a typical mouse (25g) per 

day [213]. 
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Figure 5: Blood sample collection from mouse cheek. 

The submandibular area (orange arrow), which is in the back of the jawbone, 
was chosento collect blood samples. After collecting blood sample, the injury 
was pressed and the mouse will self-groom and be unaffected. (Cited from 
http://www.medipoint.com/html/directions_for_use1.html) 
 

Human blood samples were drawn from healthy donors. Heparin was used as 

anticoagulant. The blood bank samples were obtained from the Institute of 

Clinical Hematology and Transfusion Medicine of Saarland University 

Hospital.  

 

Sickle cell anemia blood samples were kindly provided by Prof. Anna Bogdanova 

& Dr. Jeroen Goede (Zürich Center for Integrative Human Physiology, 
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University of Zürich, Zürich, Switzerland). Experiments on SCD blood samples 

were operated within 48 h after withdraw from donor. 

 

Blood was washed with Tyrode by centrifugation at 5,000× g for 3 min at room 

temperature for 3 times. In between the centrifugations supernatant (plasma 

after the initial centrifugation) was removed. Finally, RBCs were re-suspended 

in Tyrode solution to start the experimental procedure.  

 

Before the application of inhibitors and LPA on cells, to exclude the possibility 

of inhibitors-induced Ca2+ influx, I treated cells with only inhibitors. All RBCs 

were loaded with Fluo-4 as described above and the application of blockers 

were also as described in the experiments in this work. In brief, PTX, 

Wortmannin, U0126, ω-agatoxin-TK, Gö6983 and Gö6976 were applied on 

cells at the same concentrations and times as used in the experiments, 

respectively. The fluorescence intensity change during the application time 

(F/F0) was measured to analyze whether these inhibitors themselves could 

induce Ca2+ influx or not. The fluorescence intensity measured in Tyrode was 

still used as control. Figure 6 shows the results of all used inhibitors both in 

human and mouse RBCs. This figure indicates that these inhibitors, 

containing PTX, Wortmannin, U0126, ω-agatoxin-TK, Gö6983 and Gö6976, 

could not change Ca2+ influx both in human (Figure 6A) and mouse (Figure 

6B) RBCs.  
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Figure 6: Only inhibitors could not induce Ca2+ influx both in human and 
mouse RBCs. 

All the inhibitors used in this thesis, containing PTX, Wortmannin, U0126, ω-
agatoxin-TK, Gö6983 and Gö6976, could not induce Ca2+ influx both in 
human (A) and mouse (B) RBCs. Every experiment was repeated at least 
three times. 
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2.3.2 Intracellular Ca2+measurements 
 

Fluo-4/AM was used as the indicator to measure intracellular Ca2+. Live cell 

imaging was performed to monitor intracellular Ca2+ kinetics in individual cells 

when exposed to LPA (Sigma). For this experiment I used RBCs from healthy 

adult donors, sickle cell disease patients, wild type mice and TRPC6 (-/-) mice. 

After the RBCs were prepared as described in chapter 2.3.1, 20,000,000 

RBCs in 1 ml Tyrode were loaded with Fluo-4/AM at a concentration of 5 µM 

for 1 hour at 37°C. Then cells were washed in Tyrode for 3 times at room 

temperature. 1,000,000 cells were plated on a coverslip in Tyrode solution. I 

waited 15 min for the cells to settle down and for dye de-esterification. Images 

were collected every 5 seconds for a total period of 15 minutes. A 505 nm 

long pass dichroic mirror separated the emission light from the excitation light 

and a 535/40-band pass filter was used to further clean up the emission. A 

local perfusion gravity-based system was utilized to quickly exchange 

solutions in the field of view and to apply the desired concentration of 

substances. For the experiments with LPA, PGE2 or other “activation” 

substances, the samples were prepared like described above. For 

experiments with PTX, Wortmannin or other inhibitors, cells were pretreated 

with these substances for a given time before LPA stimulation. For the control, 

the fluorescence intensity of Fluo-4 was measured in Tyrode in the presence 

of 1.8 mM extracellular Ca2+. Every experiment was carried out with at least 

three different blood samples and repeated at least three times. Images were 

processed in ImageJ (Wayne Rasband, National Institute of Mental Health, 

Bethesda, USA) and traces handled by Igor Pro software (WaveMetrics, Inc.). 

 

2.3.3 Induction of reticulocytosis 
 

Populations with a high reticulocyte count were prepared from BALB/c mice 

by repetitive bleeding according the protocol previously described by Joiner 

and co-workers [214] with slight modifications. On day 1, mice were treated with 
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an intraperitoneal injection of 2 ml saline, and then lightly anesthetized with 

Xylazin 17.5 mg/kg body weight (Rompun®) and Ketamin 85 mg/kg body 

weight (Ursotamin®) mixture. 500 µl of blood was then drawn by retro-orbital 

puncture. The procedure was repeated on day 3. During this period, drinking 

water was supplemented with iron (3 mg Fe2+/100 ml) and folate (20 µg/100 

ml) to compensate for iron loss by the haemoglobin in the withdrawn RBCs. 

Reticulocyte counts were determined on smears stained with new methylene 

blue (NMB). On day 5, the ratio of NMB positive cells in pooled blood samples 

reached ~30%. Approximately 0.5 ml of whole reticulocytes-rich blood was 

drawn by retro-orbital puncture for intracellular Ca2+ measurements and 

PKH26 staining. 

 

2.3.4 Flow cytometry to measure intracellular Ca2+ 
 

Flow cytometric measurements were performed as described by Nguyen and 

co-workers [210]. In brief, Fluo-4 loaded RBCs were analyzed using a flow 

cytometer (FACSCalibur, Becton Dickinson Biosciences, San Jose, USA). 

Fluo-4 was excited at 488 nm, and emission was collected at a center 

wavelength of 530 nm. Each experiment was performed in triplicate (3 blood 

samples) and for each measurement 30,000 RBCs were analyzed. The data 

were processed using BD Cell Quest ProSoftware (Becton Dickinson 

Biosciences, San Jose, USA). 

 

2.3.5 PKH26 labeling of RBCs 
 

After induction of reticulocytosis, 500 µl of blood was drawn by retro-orbital 

puncture on day 5, and then stained with PKH26 according to the 

manufacturers protocol: 50 µl of RBCs (prepared for experiments) were mixed 

with 450 µl Diluent C from the PKH26 Cell Linker kit, and then incubated with 

2 µM PKH26 dye for 5 min at room temperature. The staining reaction was 

stopped by addition of 500 µl 1% BSA for 1 min followed by dilution of the 
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BSA with 1 ml saline. Cells were centrifuged at 400 x g for 10 minutes at room 

temperature for 3 times to remove staining solution from cells. The final 

volume of stained cells was adjusted to 300 µl, and injected back to mice 

through tail vein injection. Because PKH26 can also be excited by 480 nm, a 

background correction procedure was utilized in imaging analysis (Figure 7). 

A TRITC filter-set was used to get fluorescence from PKH26 (excitation: 550 

nm). Cells, collected 43 days after the re-injection, were screened by FACS. 

PKH26 positive cells were in the circulation for at least 43 days and therefore 

represented an exclusive fraction of old RBCs. 
 

Because PKH26 could also be excited at 480 nm, a background correction 

procedure was employed before data analysis. Prior to Fluo-4 loading, the 

cells were observed under the microscope and images of PKH+ cells were 

taken at 480 nm and 550 nm excitation. The ratio (R480/550) was calculated 

from the fluorescence at 480 nm before loading (F480b) and the fluorescence 

at 550 nm before loading (F550b). Cells were then loaded with Fluo-4. After 

loading, the real fluorescence (F480R) from Fluo-4 was equal to the 

fluorescence at 480 nm after loading (F480a) subtracted by the fluorescence at 

550 nm after loading (F550a) multiplied by the ratio (R480/550). So the equation 

is: F480R= F480a-F550a*(F480b/ F550b).  
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Figure 7: PKH26 background correction. 

Double staining of mouse RBCs with Fluo-4 and PKH26. A, Fluo-4-loaded 
cells do not show fluorescence bleed-through into the “red” recording channel. 
B, PKH26-stained cell recorded in the “red channel” depicted cross talk of 
15% into the “green channel”. C, Double-stained “raw images” in the green 
and red recording channels. D, Double-stained images [same as in (C)] after 
cross talk correction for the PKH26 crosstalk.  
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2.3.6 Immunoblotting and gel staining 
 

RBCs, HeLa and HEK293 cells were treated with desired stimulation protocol 

for 15 minutes, washed in Tyrode and lysed by EP Extraction Buffer (100 mM 

Tris-HCl, 100 mM NaCl, pH 7.5) supplemented with 0.5% Triton X-100, 20 

mM DTT, Complete Protease Inhibitor cocktail and Phspho Stop (Roche 

Applied Science) on ice for 30 minutes. Then the whole cell lysates were 

centrifuged at 5,000 g for 10 minutes, and the supernant (membrane 

fragment) and precipitant (cytosol fragment) were individually separated on 

12% polyacrylamide gels. For Western blotting, the proteins were transferred 

onto Nitrocellulose Transfer membranes (Protran, Whatman). Blots were 

incubated with goatpolyclonal anti-GAPDH (1:15,000, Santa Cruz 

Biotechnology, Inc., Dallas, Texas, U.S.A), rabbit polyclonal anti-Actin 

(1:10,000, LifeSpan BioScience, Inc., Seattle, WA), anti-LPAR 1 (1:2,000, 

LifeSpan BioScience, Inc., Seattle, WA), anti-LPAR 2 (1:1,000, LifeSpan 

BioScience, Inc., Seattle, WA), anti-LPAR 3 (1:1,000, LifeSpan BioScience, 

Inc., Seattle, WA), anti-LPAR 4 (1:1,000, Aviva Systems Biology, Corp. San 

Diego, CA) or anti-LPAR 5 (1:1,000, Aviva Systems Biology, Corp. San Diego, 

CA). Afterwards, blots were washed with phosphate buffered saline with 0.1% 

tween-20 (PBS-T) and incubated with horseradish peroxidase (HRP)-

conjugated antibodies (1:5,000). Enhanced chemiluminescence (ECL) was 

used for detection of the bands. For gel staining, the gel was directly stained 

by Coomassie Brilliant Blue R250 overnight at room temperature and de-

stained with acetic acid. 

 

2.3.7 Immunostaining 
 

For LPA receptors detection, RBCs were fixed with 2% PFA plus 0.0075% 

glutaraldehyde in Tyrode for 30minutes. Then cells were permeabilized with 

0.3% Triton X-100 in Tyrode for 10 minutes, followed by centrifugationat 3700 



 

 

 

41 

g for 5 minutes. After blocking (5% BSA in Tyrode for 20 minutes), cells were 

incubated with the primary antibody, such as LPAR1-5 (1:50), in blocking 

buffer (5% BSA in Tyrode) for 4h in room temperature. Following 3 × washing 

Tyrode for 3 times, the cells were incubated with Alexa Fluor 488 goat anti-

rabbit IgG (1:400; Molecular Probes, Eugene, OR) in Tyrode for 2h. Images 

were acquired with the Leica TSC SP5 confocal microscope. 

 

For actin staining, human RBCs were treated either with 5 µM LPA for 15 

minutes, or with CytoD at different concentration for 1 hour, and then fixed, 

permeabilized and blocked as described above. Cells were then stained with 

50 nM Phalloidin for 15 minutes. Fluorescence images were acquired with the 

Leica TSC SP5 confocal microscope. 

 

2.4 Data analysis 

2.4.1 Image analysis 
 

All images acquired with TillVision were analyzed with ImageJ (Wayne 

Rasband, NIH, Bethesda, USA) and custom-made macros (included in the 

supplementary CD-ROM). Each cell was marked as an individual “Region of 

Interest” (ROI) of which integrated/mean densities over time were extracted 

and stored. For RBCs and reticulocytes size quantification, each cell was also 

marked as an individual ROI, and the “area” value of each ROI were extracted 

and stored. The background correction of PKH26 images was described in 

chapter 2.3.5 and Figure 7. 

 

2.4.2 Single trace of Ca2+ influx analysis 
 

In this thesis, all Ca2+ signals measured with Fluo-4 were converted into self-

ratios (F/F0) before further analysis. Single fluorescence over time data from 

ROI was extracted in ImageJ. This output was further analyzed in Igor Pro 

(WaveMetrics Inc., Oregon, USA) running on custom-made macros. All 
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macros are included on the supplementary CD-ROM. 

 

2.4.3 Statistical Analysis 
 

All data are mean values of more than 100 cells from at least 3 independent 

experiments and 3 different animals and are presented as mean±SEM if not 

stated otherwise. The comparison between the experimental groups was 

performed using a normality test followed by the two-tailed Student's t-test, 

frequency distribution and one-way ANOVA for paired or unpaired samples 

(GraphPad Prism V5.0b, Inc., La Jolla, CA, USA). The level of statistical 

significance was set at p<0.05 (*), p<0.01 (**) or p<0.001 (***). 
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3. Results 
 

RBCs are among the most intensively studied cells in natural history, 

elucidating numerous principles and groundbreaking knowledge in cell 

biology. Morphologically, RBCs are largely homogeneous, and most of the 

functional studies have been performed on large populations of cells, masking 

putative cellular variations. Therefore, we studied human and mouse RBCs by 

live-cell video imaging, which allowed single cells to be followed over time. 

We analyzed functional responses to hormonal stimulation with 

lysophosphatidic acid with the calcium sensor Fluo-4. Additionally, we 

developed an approach for analyzing the Ca2+ responses of RBCs that 

allowed the quantitative characterization of single-cell signals. Furthermore, 

using this method, we investigated the LPA induced Ca2+ signaling pathway, 

cytoskeleton change in RBCs and Ca2+ mediated aggregation of RBCs. 

 

3.1 Single cell analysis 

3.1.1 LPA induces Ca2+ influx into human RBCs 
 

In blood serum LPA concentrations range from 1 to 10 µM [131, 132, 215, 216] while 

in the clot of RBCs levels as high as 20 µM have been reported [216]. 

 

In FACS experiments, LPA-stimulation of Fluo-4 loaded RBCs induced an 

increase in the intracellular [Ca2+]i concentration (Figure 8A). In addition to the 

increase in the averaged Ca2+ concentration, the fraction of responding cells 

also increased as depicted in the right panel of Figure 8A. In video-imaging 

experiments, stimulation of cells with 1 µM LPA resulted in a slow increase in 

the intracellular [Ca2+]i of individual RBCs (Figure 8B). This response reached 

a maximal plateau 15 minutes after LPA stimulation. To investigate the LPA 

responses further, I challenged RBCs with Tyrode, 1, 5, and 25 µM LPA and 

analyzed their responses. In Tyrode, no change in RBCs Fluo-4 fluorescence 

could be detected, while 5 and 25 µM LPA induce higher Ca2+ response than 
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1 µM LPA. Furthermore, to confirm the Ca2+ was not from Ca2+ pools inside 

the cell but from extracellular environment, I investigated LPA function in Ca2+ 

free condition (Figure 8C). Under this circumstance, LPA can not induce Ca2+ 

increase in RBCs. Taken together, these data demonstrate that LPA 

promotes the influx of extracellular Ca2+ into RBCs in a concentration 

dependent way. 

 

 
 

Figure 8: LPA induced Ca2+ influx in human RBCs. 

A, Flow cytometric analysis of the fraction of RBCs that respond to stimulation 
with LPA in 15 min.  B, Effect of different concentrations of LPA on the 
kinetics of Ca2+ increase in human RBCs. C, Effect of LPA in Ca2+ free 
condition in human RBCs. 
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3.1.2 Ca2+ influx induced by LPA is not homogenous among individual 
RBCs 

 

Theanalysis of Ca2+ influx depicted in Figure 8 only presented the average 

response of all the RBCs in the experiment, but did not allow appreciation of 

single cell responses. In fact, although LPA can induce Ca2+ influx in RBCs 

from different donors (Figure 9A), single RBCs displayed individual responses 

(Figure 9B). Furthermore, even in Tyrode alone, there were few cells (~1%) 

showing Ca2+ influx (Figure 9C). In addition, on the level of individual cells the 

LPA response was not an all-or-none response, instead individual cells 

reacted with different delays, time courses and amplitudes (Figure 9D). 
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Figure 9: LPA induced Ca2+ responses are heterogeneous amongst 
individual RBCs. 

A, LPA induced Ca2+ responses in RBCs from 3 individual healthy donors 
indicating inter-individual variability. B, Original recordings of intracellular Ca2+ 
levels in Fluo4-loaded RBCsin response to 5 µM LPA. Time of incubation with 
LPA is shown. Cells are marked as regions of interest with colored circles. 
Changes in the normalized fluorescent intensity (F/F0) are plotted below in the 
corresponding colors. C, Effect of Tyrode on human RBCs. Very few cells 
(~1%) showed Ca2+ influx signals. D, Single cell responses were very diverse. 
This panel depicts exemplified responses to LPA stimulation, ranging from no 
responses (blue and green traces) over delayed Ca transients with a plateau 
phase (yellow and orange traces) to fast and transient Ca responses (red 
trace). 
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3.1.3 Different parameters to characterize and analyze LPA-induced 
Ca2+ influx 

 

As depicted in Figure 9, LPA induced responses in RBCs show a great 

variability and thus analysis and characterization of such responses ought to 

be analyzed on a cell-to-cell basis. To foster analysis I standardized the 

responses and described their properties by fitting them applying the following 

equation: 

 
From such a formular the following parameters could be deducted: 

-) Amp: described the maximal amplitude of the Ca2+ response 

-) Xhalf: depicted the time point at which half of the amplitude was reached 

-) SH: characterized the steepness of the Ca2+ increase  

In addition to these parameters originating from the fitting process, I also 

deducted the following properties: 

-) Max response: maximal [Ca2+]i increase during the 15 minutes recording 

period 

-) Reaction time: time from start of the stimulation to the onset of the [Ca2+]i 

increase. For this parameter, the “onset” must be defined at first. As shown in 

in Figure 9A and Figure 11A, I calculated the mean value (Mean) and stand 

deviation (SD) for the entire control (Tyrode) trace, and used the value of 

meanplus 3 times SD as threshold. When the “F/F0” value of single cell trace 

exceeds the threshold, this time point was considered asthe “onset” time 

point. 

 

Taken together the collection of variables enumerated above offered a 

sufficient number of parameters to quantitatively describe and compare 

responses from RBCs under various conditions. To illustrate this, the various 

parameters are depicted on top of a typical RBCs response to LPA stimulation 

(Figure 10A). 
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Figure 10: Characterization of single cell response. 

A, Definition of different parameters. B-C, Statistical analysis of the 
parameters defined in A; the color-code for all diagrams is given in the right 
part of the panel. To avoid interindividual differences (see Figure 9A), all 
measurements were performed with freshly prepared samples from a single 
healthy donor. B, Maximal intensity of the cellular response within the period 
of measurement (max response). C, Value of the main plateau or the major 
peak of the Ca2+ response (amplitude). Parameters in B and C are derived 
from the total number of cells. The numbers below the boxes give the cell 
numbers taken from three blood samples. 
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3.1.4 Definition of “Responding cells” and analysis 
 

Because not all cells responded to LPA stimulation, a definition of “responding 

cells” is required. As shown in Figure 11A, I calculated the mean value (Mean) 

and stand deviation (SD) for the entire control (Tyrode) trace, and used the 

maximal value of mean plus 3 times SD as a threshold. If the “Amplitude” of a 

single cell trace exceeds the threshold, this cell was considered as a 

“responding cell” (red line), or otherwise, was considered as “non-responding 

cell” (green line). According to this criterion, the percentage of “responding 

cells” in 1, 5 and 25 µM LPA was 7%, 22% and 33%, respectively (Figure 

11Ba). What needs to be pointed out is, that even in Tyrode, there are some 

cells showing Ca2+ influx (about 1%, Figure 9B). However, the reason is still 

unclear and it needs further investigation. 
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Figure 11: Parameters of responding cells in LPA induced Ca2+ influx. 

A, Definition of responding cells in LPA stimulated RBCs. Responding cells: 
Amplitude of cell >Mean+3SD of Tyrode. B, Average of responding cells. 
According to the definition, there is 1% of cells that fall under “responders” 
even in Tyrode and ~7%, 23%, 33% in 1 µM, 5 µM, 25 µM LPA, respectively. 
C, Max response, Amplitude, SH and Xhalf of responding cells in LPA and 
Tyrode did not show significant differences. 
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3.1.5 Different RBCs cell age led to inhomogeneous Ca2+ influx 
 

I already showed that Ca2+ influx induced by LPA in RBCs was 

inhomogeneous among individual cells, which cannot be extracted from 

traditional RBCs research methods, such as flux measurements. The 

mechanism is still unclear. In humans, RBCs are developing from committed 

stem cells, passed through a process named erythropoiesis, to get mature in 

about 7 days. When matured, these cells live in the blood circulation for about 

100 to 120 days, and are removed from the circulation at the end of their 

lifespan. Therefore, I investigated the possibility that the inhomogeneous Ca2+ 

influx among individual cells might originate from differences in cell age. 

 

To verify this hypothesis, the first step was to obtain RBCs populations of the 

same age. There are 2 principle ways to achieve this: 1) separation of RBCs 

of different age, by Percoll gradient centrifugation; or 2) induction of 

reticulocytosis to create a population of young cells, which can be followed in 

the aging process. 

 

3.1.5.1 Percoll gradient centrifugation to separate young from old RBCs 
 

Percoll is a kind of inert, polyvinyl propylene-coated colloidal silica particle. 

Under centrifugation force, it forms a gradient in which the different dense 

RBCs distribute [217]. Figure 12 showed a typical image of a centrifuge tube 

after centrifugation of RBCs in a Percoll gradient. Fraction 1 and 5 contained 

the youngest and oldest cells, respectively. Other fractions contained cells at 

various ages. The proteins from fractions were isolated from ghost cell 

membranes. According to Lutz and co-workers [120], the ratio of band 

4.1a/4.1b could be used to distinguish the young and old cells. Young cells 

contain more band 4.1a; old cells contain more band 4.1b. On the SDS-

PAGE, human RBC protein 4.1 could be resolved as two polypeptides 4.1a 

and 4.1b with 2 kDa difference in the C-terminal domain [218]. According to 

Inaba and co-workers [218], the molecular weights of band 4.1a and 4.1b are 
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81 and 79 kDa, respectively.  However, some results indicate that percoll may 

activate receptors in RBCs, e.g. NMDA receptor, leading to perturbations in 

the ion equilibrium followed by volume and thus density changes that will 

interfere with the age separation process described above (Prof.Dr.Anna 

Bogdanova, personal communication). Therefore, I focused on the second 

method, induction of reticulocytosis and labeling of old RBCs. 

 
Figure 12: Separation of RBCs by Percoll gradient ultracentrifugation 
and SDS-Page of ghost membrane proteins of the different fractions. 

Fractions (1-5) Left: A typical image of the centrifugation with 5 fractions 
containing cells at different age from 1-5: from the lightest to the heaviest cells 
(supposingthe youngest and the oldest cells). Middle: SDS-PAGE of proteins 
isolated from ghost cell membranes of different fractions. Right: A section of 
SDS-PAGE containing band 4.1a and 4.1b. The red arrow indicates band 
4.1a; the white arrow indicates band 4.1b. Taken from thesis of Dr. Duc Bach 
Nguyen, 2010 with permission. 
 

3.1.5.2 Induction of reticulocytosis by phenylhydrazine injection 
 

The notion behind approach (2) was to use reticulocytosis to generate a 

population of young RBCs and follow the young cells over time. There are 

several options to achieve reticulocytosis: (A) pharmacological manipulation, 

such as erythropoietin injection or phenylhydrazine injection. The 
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erythropoietin can both increase the production of RBCs and promote survival 

of RBCs progenitors and precursors through protecting these cells from 

apoptosis [219-221]. The mechanismof phenylhydrazine is to cause hemolysis in 

mice to induce generation of new RBCs by the hematopoietic system [222-224]. 

(B) Physical interventions, such as repetitive bleeding. 

 

Because erythropoietin itself can cause Ca2+ influx in RBCs [225], I investigated 

phenylhydrazine injection. But I found phenylhydrazine injection will lead to 

abnormal RBCs generation. The generated cells showed extremely 

inhomogeneous shape and size (Figure 13A). Furthermore, these cells were 

very fragile under LPA stimulation (Figure 13Ba, green arrows) and showed 

abnormal Ca2+ influx under control conditions (Figure 13Ba, Tyrode). 
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Figure 13: Phenylhydrazine induced reticulocytosis. 

A, RBCs from phenylhydrazine-treatedmice (a, b) are more fragile in NMB 
stained smear and show abnormal cell shape in Tyrode compared with RBCs 
induced by repetitive bleeding(c, d). B, Mouse RBCs treated with 
phenylhydrazine showed abnormal Ca2+ influx. Cells from mice 4 days after 
phenylhydrazine injection (4th Day) were fragile and easily broke, which led to 
abnormal peaks in the curve (green arrows). These cells also show abnormal 
Ca2+ influx even under control conditions (in Tyrode).  
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3.1.5.3 Retro-orbital repetitive bleeding 
 

Because of the results described above, I used retro-orbital repetitive bleeding 

to induce reticulocytosis. The method is described in detail above (In 

Materials and Methods). Reticulocytes contain a mesh-like reticular network of 

ribosomal RNA, which can be visualized by staining with new methylene blue 

(NMB). Furthermore, reticulocytes are slightly bigger than RBCs (Figure 14A). 

5 days after bleeding, reticulocyte counts were determined on smears stained 

with NMB and revealed a ~32% rate of reticulocyte-positive cells. Blood 

samples from the same mouse before bleeding served as controls. Cell size 

difference between reticulocytes and RBCs are also quantified in Figure 14B. 
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Figure 14: Induction of reticulocytosis and staining of reticulocytes with 
New Methylene Blue. 

A, The images depict typical samples of blood smear stains under control 
conditions (left image) and after induction of a reticulocytosis (right image). 
The cells marked 1-4 (enlargements of the cells marked with arrows in A) 
show the developmental stages fromreticulocytes to adult RBCs. B, The cell 
size difference between reticulocytes and RBCs was also quantified by ImagJ 
software. 
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3.1.5.4 LPA induced Ca2+-signals inreticulocytes from mice with 
reticulocytosis 

 

In blood samples from mice receiving iron and folate supplement, NMB 

staining indicated that around one third (32%) of all blood cells were 

reticulocytes as measured 5 days after the initial bleeding (Figure 14B). 

Figure 15A depicts that LPA induced lower Ca2+ influx in RBCs at the day 3 

after bleeding than at the day 1 (before bleeding). At day 5, RBCs even 

showed a much lower Ca2+ influx compared with day 3 (Figure 15Ba). Both 

the max response and the amplitude showed significance between RBCs 

from day 1, day 3 and day 5 (Figure 15Bb and Bc). In brief, during the 5 days, 

the percentage of reticulocytes in RBCs increased, but the average, max 

response and amplitude value of Ca2+ influx decreased. These results 

suggest that reticulocytes are less sensitive to LPA stimulation.  

 

To verify this, I used NMB to stain RBCs after LPA stimulation to identify 

reticulocytes. In Figure 15C, it can be seen that upon LPA stimulation NMB 

positive RBCs (reticulocytes) showed no Ca2+ influx, but the NMB negative 

RBCs showed high Ca2+ influx. From these data I concluded that reticulocytes 

were apparently less sensitive towards LPA stimulation than more mature 

RBCs. 
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Figure 15A: Reticulocytes shows lower sensitivity to LPA. 

A, (a) shows NMB stained cells in bright field after LPA stimulation. The 
colored regions depict reticulocytes analyzed in (d) and the arrowheads point 
to lysed RBCs. (b) and (c) show the cells before and after the LPA stimulation, 
respectively. In (d), one can see there was no Ca2+ increase by LPA 
stimulation in labeled reticulocytes. 
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Figure 15B-C: Reticulocytes shows lower sensitivity to LPA. 

B, With supplement of Fe2+ and folate, counts of reticulocytes increased to 
32% at day 5 and lead to a decrease of the Ca2+ influx compared with 
samples from day 3 and control (day 1, before reticulocytosis). C, 
Reticulocytes were not sensitive to LPA.  
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3.1.5.5 Ca2+ influx in old RBCs 
 

As described above, separation of old RBCs by centrifugation with percoll 

gradient diaplayed significant disadvantages, thus I introduced an additional 

protocol to obtain old RBCs.  PKH26 is a dye for general cell membrane 

labeling and has been characterized in a number of model systems, such as 

in vitro cell labeling, in vitro proliferation studies and long term, in vivo cell 

tracking [226]. The half-life of PKH26 labeled rabbit RBCs is greater than 100 

days [227]. PKH26 is a red fluorochrome, with an excitation maxium at 551 nm 

and an emission maxium at 567 nm [228]. It could thus be used together with 

Fluo-4. However, PKH26 could also be excited by the 480 nm laser line and 

has crosstalk into the Fluo-4 recording channel. Therefore, a background 

correction was made to remove the crosstalk (in Materials and Methods, 

Figure 7).  

 
To identify old RBCs at the verge of clearance, we drew blood from mice to 

induce reticulocytosis. At day 5, blood was drawn from the reticulocytosis 

mice and RBCs were stained with the plasma membrane stain PKH26 [229]. 

And then these cells were re-injected into the same mouse. Analyzed by flow 

cytometry, at least 67.9% of the cells were stained with PKH26 (Figure 16Ab). 

The fluorescence of the cells was analyzed again after 7 and 43 days (Figure 

16A, lower panels). After 7 days in circulation, 5.7% of cells were PKH26-

stained; after 43 days, this portion was reduced to less than 1%, indicating 

that the rest of the PKH26 positive RBCs were cleared in the mouse body. 

Because the average lifetime of RBCs in BALB/c mice was reported to be 46 

days [230], we waited for 43 days until we isolated PKH26-stained RBCs by 

fluorescence activated cell sorting (region R2 in Figure 16A). Those cells were 

regarded as old cells close to clearance. Ca2+ signals were compared to non-

stained RBCs representing cells of all ages. Figure 17 B-D summarizes the 

results obtained with these two cell populations. PKH26-negative cells 

responded only with a very small but significant increase when stimulated with 

5 µM LPA (green box in Figure 16B). In contrast, the PKH26-positive cells 
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that were manually selected from the original blood sample (purple box in 

Figure 16B) and the PKH26-positive cells enriched by FACS (red box in 

Figure 16B) both displayed a substantially augmented Ca2+ response. 

Nevertheless, neither visually identified PKH+ cells (VIS) nor FACS sorted 

cells showed LPA responses that were uniform. Instead, both populations of 

responders still displayed a substantial heterogeneity, as observed in the 

response histograms in Figure 16C and in the representative traces in Figure 

16D. 

 
In summary, the age of RBCs appeared to be an important factor responsible 

for the heterogeneity of LPA-induced responses. However, our data also 

indicate that the age of RBCs is not the only characteristic responsible for the 

observed variability. 
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Figure 16: Response of old RBCs to LPA stimulation. 

A, Analysis of PKH26 fluorescence of 20,000 RBCs by flow cytometry before 
(a) and 1 hour after staining with PKH26 (b). After the staining procedure, the 
cells were re-injected into the same mice and analyzed 7 days (c) and 43 
days (d) later. The percentage of PKH26 labeled cells (PKH(+), region R2) is 
indicated. B, Control and LPA stimulation experiments were performed on 
PKH26-positive (+) and PKH26-negative (-) RBCs. The maximal response 
under the different conditions is given. We discriminated between PKH(+) 
cells identified directly under the microscope (VIS, low in number) and RBCs 
sorted by FACS. The numbers below the boxes give the cell numbers taken 
from three mice. C, Amplitude histogram of the RBC treated under the 
conditions mentioned in B. D, Representative intensity traces of PKH(+) cells 
stimulated with 5 µM LPA revealing a high heterogeneity also in old RBCs. 
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3.2 The signaling pathway from LPA to Ca2+ in RBCs 
 

In chapter 3.1, we already concluded that LPA could induce Ca2+ influx in 

human RBCs.  The next question is, how LPA induces the Ca2+ influx? For 

this, according to the literature, LPA opens a Ca2+ channel in human RBCs [32], 

while TRPC6 is thought as a Ca2+ permeable non-selective cation channel 
[149]. Furthermore, TRPC6 also contributes to the Ca2+ leak in human RBCs 
[73]. Another clue is that LPA stimulates Ca2+ entry through channels with 

characteristics similar to TRPC3 in B-lymphoblasts [231]. Therefore, TRPC6 

appeared as a good candidate for RBCs cation channel in which the LPA-

induced Ca2+ influx is involved. Because there is no TRPC6 deficiency model 

available in human RBCs, I investigated LPA-induced Ca2+ influx in RBCs 

from TRPC6 knock out mice. 

 

3.2.1 Characterization of TRPC6 knock out mice 
 

TRPC6 knock out mice were kindly provided by Prof. Marc Freichel 

(Ruprecht-Karls University of Heidelberg, Institute for Pharmacology, 

Heidelberg) and Prof. Veit Flockerzi (Saarland University, Institute for 

Pharmacology, Homburg). TRPC6 KO was established from the first 

generation offspring between C57BI6/N and 129Svj mice because these mice 

had a genetic background that could be used as control for the TRPC 

deficient mouse lines available in the laboratory of Prof. Marc Freichel. To 

explore whether TRPC6 channels were expressed in mouse RBCs, Western 

blot was used as the method of choice in knock out (KO) and wild type (WT) 

mice. TRPC6 protein was detected in RBCs from TRPC6(+/+) but not from 

TRPC6(-/-) mice by Western blot using the mTRPC6-specific antibody 861 

(Figure 17, cited from [73] and with kind permission from Karger).  
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Figure 17: TRPC6 expression in mouse RBCs. 

Immunoblotting of the TRPC6 protein in mouse RBCs using anti-TRPC6 
antibody 861. A, shows the western blot of TRPC6 transfected (lane 1) and 
shows untransfected COS 7 cells (lane 2). B, Western blot ofmembrane 
proteins from lung (lane 1), RBCs from wild type mouse (lane 2), and RBCs 
from TRPC6(-/-) mouse (lane 3). Cited from [73] and with kind permission from 
Karger). 
 

3.2.2 TRPC6 contributes to LPA induced Ca2+ influx 
 

Ca2+ imaging and single cell analysis described in chapter 3.1 were selected 

to analyze the role of TRPC6 channels in Ca2+ influx in RBCs. To confirm that, 

the single cell analysis was used in mouse RBCs, concentration gradients of 

LPA were applied to mouse RBCs, and max response values of Ca2+ traces 

under each concentration were analyzed by sigle cell analysis (Figure 18Aa). 

The EC50 of LPA in mouse RBCs was ~3.3 µM, which was similar in human 

RBCs (~5.0 µM, [232]). To investigate the relation between LPA-induced Ca2+ 

influx and the TRPC6 channel, 5 µM LPA wereapplied to RBCs from mice 

lacking functional TRPC6 (TRPC6-/-) and their wild type littermates (WT, 

TRPC6+/+). In Figure 18Ab, the stimulation of Fluo-4 loaded RBCs with 5 µM 

LPA induced Ca2+ increase in RBCs of wild type mice. In TRPC6(-/-) mouse 

RBCs, 5 µM LPA also led to Ca2+ increase compared with control conditions 

in Tyrode, but amplitude and max response of LPA-induced Ca2+  signal in 

these cells showed a significant difference compared with RBCs from wild 

type mice (Figure 18Ab). If I used 5 µM PGE2, it also resulted in a Ca2+ influx 

A B
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in WT mice, but not in TRPC6 (-/-) mice (Figure 18B). To exclude the species 

difference, I also applied LPA and PGE2 in human RBCs. In human RBCs, 

LPA and PGE2-induced Ca2+ influx also showed significance (Figure 18C). 

These results suggested that TRPC6 only partly contributed to LPA-induced 

Ca2+ influx. In contrast, in PGE2-induced Ca2+ influx, TRPC6 was the only 

channel involved in this signal pathway. In summary, these data 

demonstrated that TRPC6 was involved in LPA-induced Ca2+ influx into 

RBCs, but other signal pathway also existed in this procedure. It was different 

from PGE2-induced Ca2+ influx, which TRPC6 was the only channel involved 

in. 
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Figure 18: LPA and PGE2 in wild type and TRPC6(-/-) mice and human 
RBCs. 

A, (a) Dose response of LPA induced Ca2+ influx in mouse RBCs. Mean 
normalized increase (b), max response (c) and amplitude (d) of RBCs in 
TRPC6(-/-) or wild type mice induced by LPA (5 µM) in Fluo-4 fluorescence. B, 
PGE2  (5 µM) induced Ca2+ influx in in TRPC6(-/-) or wild type mice and C, in 
human. 
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3.2.3 Expression of LPA Receptor subtypes in RBCs 
 

It was already shown that LPA-induced Ca2+ influx was channel mediated and 

receptor dependent rather than leak promoted [32]. Therefore, I investigated 

the expression of LPA receptors (LPARs) in RBCs. Because RBCs lack DNA, 

reverse transcription-polymerase chain reaction (RT-PCR) could not be used 

to investigate the existence of LPA receptors. Therefore, I used protein-based 

method like Western blot and immunostaining. LPAR1-5 distribution in human 

RBCs were shown by Western blot (Figure 19A) and immunostaining (Figure 

19B). In Western blot, HeLa cell lysates (Figure 19Aa) and HEK293 cell 

lysates (Figure 19Ab-Af) were used as a positive control of LPAR1-5 antibody. 

After the detection of LPARs, the blot membranes were stripped and re-

incubated with actin antibody, which was used as a control of loading quantity 

of protein sample. Western blot and immunostaining results both revealed that 

the LPAR1 subtype was expressed predominantly (Figure 19Ab and Bb) both 

in RBCs and HEK293 cells. LPAR2 was also found in Western blot (Figure 

19Ac), and immunostaining revealed a“cluster-like” distribution of LPAR2 in 

RBCs (Figure 19Bc). LPAR3 showed very low presence in Western blot 

results (Figure 19Ad), but interestingly, ~3% of RBCs showed positive LPAR3 

immunostaining (Figure 19Bd). Additionally, even in HEK293 cells, LPAR3 

could not be found (Figure 19Bd). Although it was weak, LPAR4 also showed 

positive results both in immunostaining and Western blot (Figure 19Ae and 

Be). LPAR5 was neither detectable in Western blot nor in immunostaing 

(Figure 19Af and Bf). 
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Figure 19: LPA receptors in human RBCs. 

A, Immunoblotting in human RBCs. (a) shows the antibody efficiency in HeLa 
cell lysates.  (b) shows the immunoblotting results to identify the existence of  
LPA receptor 1, 2, 3, 4 and 5 in human RBCs. Black arrows show the 
theoretical position of target proteins. B, Immunostaining in human RBCs. 
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3.2.4 LPA receptor activation is through Gi protein both in human and 
mouse RBCs 

 
The effects of LPA at physiological concentrations were in general mediated 

through five well-described G protein-coupled receptors (LPAR1-LPAR5) and 

perhaps by additional recently proposed or as yet unidentified receptors [233, 

234]. Downstream responses of LPA include elevation of cytosolic free Ca2+ 

concentration ([Ca2+]i), activation of Ras and extracellular signal-regulated 

kinases (ERK), and phosphatidylinositol 3-kinase (PI3-K)/Akt signaling [235]. 

Therefore, I investigated the putative involvement of G protein in LPA induced 

Ca2+ influx in human and mouse RBCs. Human RBCs were stimulated with 

the broad G protein activator AlF4
-, and induced extremely high Ca2+ influx 

when compared with LPA and Tyrode control (Figure 21A). These data 

suggested the possible involvement of G-proteins in the activation of LPA or 

PGE2 evoked Ca2+ influx. 

 

G proteins are trimeric and comprise a Gα and tightly associated Gβ and Gγ 

subunits. There are 7 classes of Gα subunits, such as Gsα (G stimulatory), Giα 

(G inhibitory), Goα (G other), Gq/11α, and G12/13α, which define different G 

proteins. They behave differently in the recognition of the effector, but share a 

similar mechanism of activation. Because I had access to G11α knock out 

(G11
(-/-)) mice, I investigated the putative involvement of G11 proteins in the 

signaling pathway leading to Ca2+ influx in mouse RBCs. For this, I used LPA 

to stimulate RBCs from G11
(-/-) mice. Figure 20B showed that 5 µM LPA lead 

to Ca2+ influx both in wild type and G11
(-/-) mouse RBCs, and there were no 

significant difference between WT and KO mice, which suggests G11α is not 

involved in LPA induced Ca2+ signal in RBCs. 

 

I further examined the effect of pertussis toxin (PTX), a specific inhibitor of Gi 

proteins. RBCs were pre-incubated with PTX (1 µg/ml) or its vehicle (Control) 

at 37°C for 1 h and subsequently treated with LPA (5 µM). The LPA evoked 

Ca2+ rise was abolished in PTX-treated cells when compared to responses 
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seen in non-treated RBCs (Figure 20C). In human RBCs, 5 µg/ml PTX was 

sufficient to fully inhibit Ca2+ influx induced by 5 µM LPA. These data indicated 

the involvement of Gi in LPA induced elevation of [Ca2+]i. 

 

 
Figure 20: LPA receptors activation through Gi protein both in human 
and mouse RBCs. 

A, G protein activation induced Ca2+ influx. B, G11α is not involved in LPA 
induced Ca2+ influx. C, Giα is involved in LPA induced Ca2+ influx both in 
human and mouse RBCs. 
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3.2.5 PI3K is involved in the LPA signal pathway in human and mouse 
RBCs 

 

LPA receptor activation can induce a range of cellular responses, such as cell 

proliferation, cell migration, cytoskeletal changes and apoptosis; cell to cell 

contact through serum-response element activation, Ca2+ mobilization, and 

adenylyl cyclase inhibition; and activation of mitogen-activated protein kinase, 

phospholipase C, Akt, PI3K/Akt signaling [235] and Rho pathways [233, 234]. 

Some evidence suggests that LPA signaling might interact with other 

pathways. For example, LPA mediated signaling was reported to provide 

inhibitory effects on epidermal growth factor (EGF) induced migration and 

invasion of pancreatic cancer cells through the Gα12/13/Rho pathway [236]. 

Downstream responses of LPA include elevation of cytosolic free Ca2+ 

concentration ([Ca2+]i), activation of Ras and extracellular signal-regulated 

kinases (ERK), and phosphatidylinositol 3-kinase (PI3-K)/Akt signaling. 

 

Because I already proved that Gi was involved in LPA-induced Ca2+ influx in 

RBCs, and PI3K/Akt signaling was reported to be downstream responses of Gi 

activation in CHO cells [237], ovarian cancer cells [238] and cervical cancer cells 
[239], it is reasonable to assume that PI3K is the downstream protein of Gi 

activation in RBCs. To investigate whether PI3K might beinvolved in LPA 

induced Ca2+ influx in RBCs, Wortmannin, a widely used inhibitor for PI3Ks, 

was tested against PI3K. Pre-incubation with 5 µM Wortmanninat 37°C for 30 

minutes caused a significantly decreased Ca2+ influx following LPA stimulation 

(Figure 21A). 5µM Wortmannin caused complete inhibition of LPA activity in 

TRPC6(-/-) mice. But in wild type mice, Wortmannin could only partly inhibit 

LPA induced Ca2+ influx (Figure 21B). These data suggests two coexisting 

signal pathways to induced LPA-evoked Ca2+ influx: one is TRPC6 channel 

dependent, but not PI3K involved; another one is PI3K dependent, but does 

not involve TRPC6 channel. 
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Figure 21: PI3K is involved in LPA-induced Ca2+ influx. 

A, Average and max response of all traces showed that Wortmannin inhibited 
Ca2+ influx induced by LPA in human RBCs. B, Average and max response of 
all traces showed the inhibition function of Wortmannin in LPA-induced Ca2+ 
influx in mouse RBCs.  
 

3.2.6 PKCα is involved in the LPA signal pathway in human and mouse 
RBCs 

 

Protein kinase Cα (PKCα) is known to modulate Ca2+ homeostasis in many 

kinds of cells [240]. Furthermore, it is also abundant in human RBCs [241, 242] 

and influences both RBCs morphology and ion transport [243]. For these 

reasons, I considered PKCα as another candidate for regulation of LPA 
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induced Ca2+ influx in RBCs.  

 

To investigate the role of PKCα in LPA induced Ca2+ influx in RBCs, I applied 

the broad PKC inhibitor Gö6983 and the specific PKCα inhibitor Gö6976 in 

RBCs before LPA stimulation. For this purpose, Fluo-4/AM-loaded human and 

mouse RBCs were pre-incubated with 1 µM Gö6983 or Gö6976 at room 

temperature for 15 minutes after which 5 µM LPA was added to the cells. 

These results suggested that PKCα might be involved in LPA evoked Ca2+ 

influx in WT mice (Figure 22A, B) and human RBCs (Figure 22C, D), but 

interestingly not in Ca2+ rise induced in RBCs from TRPC6-KO mice (Figure 

22B). In Figure 22B, one can clearly see that Gö6983 and Gö6976 can 

greatly, but not fully inhibit LPA induced Ca2+ influx in wild type mice, which 

suggests the PKC activity to be partly involved inLPA signal pathway. 

However, in TRPC6(-/-) mice, there was no inhibition by Gö6983 and Gö6976 

on Ca2+ influx, which means a lack of TRPC6 channels leads to a lack of Ca2+ 

signal regulation by PKCα. Taking together, these results support the notion 

of two coexisting signal pathwaysto induce LPA-evoked Ca2+ influx: one does 

not involve PI3K but is TRPC6 channel and PKCα dependent; a second one is 

TRPC6 channel and PKCα independent, but involves PI3K. 
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Figure 22:PKCα is involved in LPA induced Ca2+ influx. 

A, Average of all traces showing Gö6983 and Gö6976 partly inhibits Ca2+ 
influx induced by LPA in human RBCs (left panel). RBCs were incubated with 
1 µM Gö6983 or Gö6976 at room temperature for 15minutes, and then 
stimulated with 5 µM LPA. Max response of all traces showing Gö6983 partly 
inhibits Ca2+ influx induced by LPA in human RBCs (right panel). B, Average 
of all traces showing Gö6983 partly inhibits Ca2+ influx induced by LPA in 
mouse RBCs (left panel). Max response of all traces showing Gö6983 partly 
inhibits Ca2+ influx induced by LPA in mouse RBCs (right panel). 
  

A

B

F
/F

0

F
/F

0

F
/F

0

Time (min)

Gö6983/Gö6976 inhibits LPA induced Ca2+

 influx in human RBCs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.8

1.0

1.2

1.4

1.6

1.8

T
y
ro

d
e

L
P
A

G
ö
6
9
8
3
+
L
P
A

G
ö
6
9
7
6
+
L
P
A

Gö6983/Gö6976 inhibits LPA induced Ca2+

 influx in human RBCs, Max response

Gö6983/Gö6976 inhibits LPA induced Ca2+

 influx in mouse RBCs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.8

1.0

1.2

1.4 Gö6983+LPA in WT mice (547)

Gö6983+LPA in TRPC6(-/-) KO mice (586)

Gö6976+LPA in WT mice (505)

Gö6976+LPA in TRPC6(-/-) KO mice (570)

Time (min)

WT

TRPC6(-/-) KO

F
/F

0

Gö6983/Gö6976 inhibits LPA induced Ca2+

 influx in mouse RBCs, Max response

Tyrode+Gö6983/Gö6976

5 µM LPA+Gö6983/Gö6976

Tyrode+Gö6983/Gö6976

5 µM LPA+Gö6983/Gö6976

276 221 222 181

L
P
A
 i
n
 W

T

L
P
A
 i
n
 K

O

T
y
ro

d
e
 i
n
 W

T

T
y
ro

d
e
 i
n
 K

O

G
ö
6
9
8
3
+
L
P
A
 i
n
 W

T

G
ö
6
9
8
3
+
L
P
A
 i
n
 K

O

G
ö
6
9
7
6
+
L
P
A
 i
n
 W

T

G
ö
6
9
7
6
+
L
P
A
 i
n
 K

O

Tyrode (276)

LPA (221)

Gö6983+LPA (222)

Gö6976+LPA (181)

0.8

1.0

1.2

1.4

1.6 ***
***

ns

***

***

***

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
***

ns

***

*** ns ns
ns

ns
***

ns
***

***

***
***

933 555 928 547 586 505 570843



 

 

 

75 

3.2.7 Wortmannin and Gö6976 in combination can fully inhibit LPA-
evoked Ca2+ influx in human and mouse RBCs 

 

From the results described above, it became apparent that both Gö6976 and 

Wortmannin could partly but not fully inhibit LPA induced Ca2+ influx in wild 

type mouse and human RBCs. However, in TRPC6(-/-) mice, Wortmannin 

could only partly inhibit Ca2+ influx. Thus, I applied Gö6976 and Wortmannin 

together in human and mouse RBCs. Under these circumstances, LPA 

induced Ca2+ influx was fully inhibited both in mouse (Figure 23A) and human 

RBCs (Figure 23B). 
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Figure 23: In combination with Wortmannin and Gö6976 could fully 
inhibit Ca2+ influx induced by LPA in human and mouse RBCs. 

A, Wortmannin (5 µM) plus Gö6976 (1 µM) could fully inhibit LPA induced 
Ca2+ influx in human RBCs. B, Wortmannin plus Gö6976 could fully inhibit 
LPA induced Ca2+ influx in wide type mouse RBCs (closed bar) and TRPC6 (-/-
) mouse RBCs (open bar). 
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3.2.8 MEK is involved in LPA signal pathway in human and mouse 
RBCs 

 

One downstream target of PI3K is MEK, and the pathway is PI3K-PKB-MEK-

ERK1/2 [235]. In [Ca2+]i measurement studies with human and mouse RBCs, 

PI3K inhibitor Wortmannin (5µM) greatly reduced the Ca2+ signal in response 

to LPA (5 µM). Thus, the effect of MEK inhibition on LPA-induced Ca2+ influx 

was investigated further.  

 

As shown in Figure 24A, the MEK inhibitor U0126 (10 µM) had inhibitory 

effect on LPA-induced Ca2+ influx in human RBCs. Interestingly, the average 

of all traces showed an “increase-decrease” feature, which was totally 

different from the results with LPA only (Figure 8). Max response of all traces 

in these cells also showed significance between U0126-treated RBCs and 

U0126-free RBCs. 

 

U0126 shows similar inhibition function also in mouse RBCs (Figure 24B). 

Similar with the results from human RBCs, U0126 pretreatment could also 

change the Ca2+ trace shape in mouse RBCs. From Figure 24C, after 

treatment with U0126, all the Ca2+ traces began to decrease after reaching its 

peak value, both in human (Figure 24Ca), wild type (Figure 24Cb), and knock 

out mice (Figure 24Cc).  
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Figure 24A-B: MEK is involved in the LPA signal pathway in human and 
mouse RBCs. 

A, The MEK specific inhibitor U0126 can partly inhibit LPA induced Ca2+ influx 
in human RBCs. B, U0126 can partly inhibit LPA induced Ca2+ influx in wild 
type mouse RBCs (closed bar) and fully inhibit in TRPC6 (-/-) mouse RBCs 
(open bar).  
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Figure 24C: MEK is involved in the LPA signal pathway in human and 
mouse RBCs. 

C, U0126 pretreatment led to Ca2+ trace change in human (a), wild type mice 
(b) and TRPC6 (-/-) mouse RBCs (c). 
 

3.2.9 Cav2.1 in LPA induced Ca2+ influx 
 
Many pharmacologic evidences suggest that voltage-operated Ca2+ channels 

may operate in the mature RBC membrane [45, 244], and some suggested that 

Cav2.1 Ca2+ channel might function in the RBC membrane. Furthermore, 

PMA also stimulated Ca2+ influx in human RBCs, and PMA-induced Ca2+ 

influx could be inhibited by the P-type Ca2+ channel blocker ω-agatoxin-TK [32, 

49], a toxin from the funnel web spider [245]. Therefore, it is reasonable to 
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Thus, I applied a 20-minutes exposure to 1 µM ω-agatoxin-TK before 

stimulation with 5 µM LPA. From Figure 25, we could see that agatoxin 

strongly reduces Ca2+ influx induced by LPA both in human and mouse RBCs. 

Similar to the MEK inhibitor U0126, ω-agatoxin-TK could only greatly but not 

fully inhibit LPA induced Ca2+ signal both in human and wild type mice, but 

could totally inhibit Ca2+ signal in TRPC6(-/-) mice. These data further 

supported the notion that two signal pathways of LPA coexisted: 1) LPA-Gi-

PI3K-MEK-Cav2.1 and 2) LPA-Gi-PKC-TRPC6 (Figure 36). 
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Figure 25: Cav2.1 is involved in LPA induced Ca2+ influx. 

A, specific Cav2.1 channel inhibitor, ω-agatoxin-TK, can partly inhibit LPA 
induced Ca2+ influx in human RBCs. B, ω-agatoxin-TK can partly inhibit LPA 
induced Ca2+ influx in wild type mice RBCs (closed bar) and fully inhibit it in 
TRPC6 (-/-) mice RBCs (open bar). 
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3.3.1 Ca2+ in human sickle RBCs 
 

In sickle RBCs, I also investigated the LPA-induced Ca2+ signal pathway. 
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Similar to the experiment of healthy RBCs, sickle RBCs were loaded with 5 

µM Fluo-4/AM for 1 hour at 37°C. Then cells were washed in Tyrode and I 

waited 15 min for the cell to settle down and for dye de-esterification. As 

shown in Figure 26, Fluo-4-bound Ca2+ presented different distributions 

compared with healthy RBCs. In sickle cells, the Fluo-4 bound Ca2+ showed a 

spots-like and uneven distribution, while in healthy RBCs the distribution was 

much more homogeneous. The mechanism of this phenomenon was possibly 

because of the involvement of Ca2+-sensitive Gardos channels and Ca2+ 

pump in sickle cell dehydration [246, 247].  

 

 
Figure 26: Ca2+ distribution in sickle cells before stimulation. 

A representative image of Ca2+ distribution in human healthy (control) and 
sickle RBCs after 1 h loading with Fluo-4. The whithe arrowheads depict the 
typical sickle-shaped RBCs. 
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3.3.2 LPA receptors in sickle cells 
 
Until now, it is known that the effects of LPA at physiological concentrations 

are mediated by five LPA receptor isoforms (LPAR1–LPAR5) and perhaps by 

additional recently proposed or as yet unidentified receptors [248, 249]. LPA is 

involved in blood clot formation [133], while sickle RBCs usually induce 

obstruction of capillaries [184], it is reasonable to consider whether LPA 

receptors are involved in sickle cell disease. Therefore, I investigated the 

presence of LPA receptor subtype 1-5 in healthy and sickle RBCs by 

immunostaining and immunoblotting. As shown in Figure 27A, compared with 

healthy RBCs, LPA receptor subtype 4 (LPAR4) shows an increase in sickle 

cells. The figures of control cells have been shown in Figure 19, but for easier 

comparison these figures are repeated in Figure 27. Western blot results 

further confirmed the markedly increased LPAR4 in sickle cells (Figure 27B). 

Furthermore, cell-to-cell differences in LPA receptor compositions both occur 

in healthy and sickle cells (Figure 27A). 

 

Because LPAR4 was highly expressed in sickle cells, I investigated the LPA 

induced Ca2+ influx in sickle RBCs (Figure 27C). Compared with healthy 

RBCs (control), LPA induced much stronger Ca2+ influx in sickle RBCs, both 

in average traces (a) and max response value (b). And both healthy and 

sickle cells did not show Ca2+ influx in LPA-free Tyrode. 

 

 



 

 

 

84 

 
Figure 27A: LPA receptor distributions and LPA induced Ca2+ influx in 
sickle cells. 

A, Immnostaining of healthy RBCs (control) and sickle cells using antibodies 
against LPA receptor subtype 1-5. 
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Figure 27B-C: LPA receptor distributions and LPA induced Ca2+ influx in 
sickle cells. 

B, Western blots of SDS-PAGEs of total cellular protein prepared from healthy 
RBCs (control) and sickle cells probed with the same antibodies in A. Each 
group contains 3 individual blood samples. GAPDH was used as protein 
amount control. Note the markedly increased LPA receptor subtype 4 
(LPAR4) in sickle cells. C, LPA induced Ca2+ influx in healthy RBCs and sickle 
cells. 
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vehicle (Control) in 37°C for 1h and subsequently treated with LPA (5 µM). 

The Ca2+ rise by LPA was fully abolished by PTX both in healthy RBCs and 

sickle cells (Figure 28). This result strongly suggests that the LPA-induced 

Ca2+ influx in sickle cells is also through Gi protein, which is the same as for 

healthy RBCs. 

 

 
Figure 28: PTX inhibited LPA-induced Ca2+ influx in human healthy RBCs 
and sickle RBCs. 

A, Comparison of average Ca2+ increase induced by LPA in PTX pretreated 
healthy RBCs (Control) and sickle RBCs (SCD). All measurements were 
performed with freshly prepared RBCs from 3 healthy donor or patients with 
sickle cell disease. B, Statistical analysis of the max response. 
 

3.3.4 PI3K-MAPK-Cav2.1 branch of LPA-induced signal pathway in 
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another one is LPA-Gi-PKC-TRPC6 (Figure 36). I also found that LPAR4 

receptors are highly expressed in human sickle RBCs (Figure 27), and Gi 
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healthy RBCs (Figure 28). Therefore, I investigated the existence of these two 

sigal pathways in sickle cells.  
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The first branch of the signal pathway is PI3K-MEK-Cav2.1. Wortmannin, the 

PI3K inhibitor, was applied on healthy human RBCs and sickle cells. From the 

average trace (Figure 29Aa) and the max response value (Figure 29Ab), I can 

conclude that Wortmannin only partly inhibits LPA-induced Ca2+ influx in 

healthy RBCs and sickle cells. The MEK inhibitor, U0126, also show limited 

inhibition function in sickle cells (Figure 29B). To further investigate the MEK 

function in sickle cells, I used ELISA to check the activity of phospho-Mitogen-

activated protein kinases (p-MAPK), which is the catalytic product of MEK. In 

Figure 29Bc, one can see that LPA increases the p-MAPK activity in healthy 

RBCs and sickle RBCs. Furthermore, the p-MAPK activity of sickle cells in the 

basal condition, which means in LPA-free Tyrode, is higher than in healthy 

RBCs (blue bar v.s. purple bar). The sickle cells are more sensitive to LPA 

compared with healthy RBCs (red bar v.s. green bar). Concerning the Cav2.1, 

I firstly performed western blots to confirm the existence of Cav2.1 in human 

and mouse RBCs (Figure 29Da). Then the Cav2.1 inhibitor ω-agatoxin-TK 

was applied and showed a partial inhibition of the Ca2+ influx in both healthy 

and sickle RBCs (Figure 29Db and Dc). In summary, these data strongly 

suggest that one of the LPA induced signal pathways in sickle cells is also 

LPA-Gi-PI3K-MEK-Cav2.1 mediated, the same as in healthy RBCs. 

 



 

 

 

88 
 

A

F
/F

0

Time (min)

Wortmannin inhibits LPA-induced Ca2+ influx 

in human RBCs and Sickle cells

F
/F

0

Tyrode

5 µM LPA

Wortmannin inhibits LPA-induced Ca2+ influx 

in human RBCs and Sickle cells, Max response

SCD, Tyrode (694)

SCD, Wortmannin+LPA (503)

Control, Tyrode (276)

Control, Wortmannin+LPA (171)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.0

1.5

2.0

Contro
l, 

Tyro
de

Contro
l, 

Wortm
an

nin+L
PA

SCD, 

Tyro
de

SCD, 

Wortm
an

nin+L
PA

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
***

ns

**

***
***
***

276 171 694 503

B

F
/F

0

Time (min)

U0126 inhibits LPA-induced Ca2+ influx 

in human RBCs and Sickle cells

F
/F

0

Tyrode

5 µM LPA

U0126 inhibits LPA-induced Ca2+ influx 

in human RBCs and Sickle cells, Max response

SCD, Tyrode (694)

SCD, U0126+LPA (593)

Control, Tyrode (276)

Control, U0126+LPA (280)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.0

1.5

2.0

Contro
l, 

Tyro
de

Contro
l, 

U01
26

+L
PA

SCD, 

Tyro
de

SCD, 

U01
26

+L
PA

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

*** ns

***

***
***
***

276 280 694 593

F
/F

0

Time (min)

Agatoxin inhibits LPA-induced Ca2+ influx 

in human RBCs and Sickle cells

F
/F

0

Tyrode

5 µM LPA

Agatoxin inhibits LPA-induced Ca2+ influx 

in human RBCs and Sickle cells, Max response

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.0

1.5

2.0

SCD, Tyrode (694)

SCD, Agatoxin+LPA (276)

Control, Tyrode (276)

Control, Agatoxin+LPA (177)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
***

ns

***

ns

***

***

Contro
l, 

Tyro
de

Contro
l, 

Agato
xin

+L
PA

SCD, 

Tyro
de

SCD, 

Agato
xin

+L
PA

276 177 694 276

b c

a b

a b

0

100

200

300

400

*** ***

***
***

Contro
l, 

Tyro
de

Contro
l, 

LPA SCD, 

Tyro
de

SCD, 

LPA

p
-M

A
P

K
 a

c
ti

v
it

y
 (

%
 c

o
n

tr
o

l)

Phosphorylated MAPK activity 

in human RBCs and sickle cells 

C 

150

37

100

250

75

50

Human Mice

S1 S2 S3 S1 S2 S3

CaV2.1

Human Mice

S1 S2 S3 S1 S2 S3

GAPDH

c
a



 

 

 

89 

Figure 29: PI3K branch in LPA-induced Ca2+ influx in normal RBCs and 
sickle cells. 

A, PI3K is involved in LPA-induced Ca2+ influx in RBCs from healthy human 
donorsand patients of sickle cell disease (SCD). 1 µM Wortmannin, the 
specific PI3K inhibitor, partly inhibits LPA-induced Ca2+ influx, both in the 
average trace (a) and max response (b). B, MAPK is involved in LPA-induced 
Ca2+ influx in human healthy and sickle RBCs. 10 µM U0126, the specific 
MEK inhibitor, partly inhibits LPA-induced Ca2+ influx, both in average trace 
(a) and maxresponse (b). The activity of phospho-MAPK, the product of MEK 
catalysis, was investigated by ELISA (c). C, Cav2.1 is involved in LPA-
induced Ca2+ influx in healthy human RBCs and sickle cells. (a), western blots 
of total cellular protein prepared from human RBCs (control) and mouse 
RBCs probed with antibodies against Cav2.1. 1 µM ω-agatoxin-TK, the 
specific Cav2.1 inhibitor, partly inhibits LPA-induced Ca2+ influx, both in the 
average trace (b) and max response (c). 
 

3.3.5 Gö6976 inhibits LPA-induced Ca2+ influx in healthy RBCs and 
sickle cells 

 

In chapter 3.3.4, we already discussed the PI3K-MEK-Cav2.1 branch of the 

LPA induced signal cascade. I also investigated the PKC-TRPC6 branch. 

Gö6976, the specific PKCα inhibitor, was applied on human healthy and 

sickle RBCs. As shown in Figure 30, Gö6976 only showed partial inhibition 

function both in healthy and sickle RBCs. For TRPC6 in human sickle RBCs, 

because lack of specific inhibitor of TRPC6, the possibility of TRPC6 knockout 

model in sickle cell disease mouse was considered and discussed. 
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Figure 30: Gö6976 inhibits LPA-induced Ca2+ influx in healthy RBCs and 
sickle cells. 

A, Comparison of average Ca2+ increase induced by LPA in Gö6976 
pretreated healthy RBCs (Control) and sickle RBCs (SCD). All measurements 
were performed with freshly prepared RBCs from 3 healthy donor or patients 
with sickle cell disease. B, Statistical analysis of the max response. 
 

3.3.6 Gö6976 in combination with Wortmannin fully inhibit LPA-induced 
Ca2+ influx in healthy RBCs and sickle cells 

 

From the results described above, both Gö6976 and Wortmannin can partly 

but not fully inhibit LPA induced Ca2+ influx into human healthy RBCs and 

sickle RBCs. Thus, I applied Gö6976 and Wortmannin together in healthy and 

sickle RBCs. Under this condition, LPA induced Ca2+ influx was fully inhibited 

by Wortmannin together with Gö6976 both in healthy and sickle RBCs (Figure 

31). 
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Figure 31: Gö6976 in combination with Wortmannin fully inhibited LPA-
induced Ca2+ influx in normal RBCs and sickle cells. 

A, Comparison of average Ca2+ signal induced by LPA in Gö6976 in 
combination with Wortmannin pretreated healthy RBCs (Control) and sickle 
RBCs (SCD). All measurements were performed with freshly prepared RBCs 
from 3 healthy donor or patients with sickle cell disease. B, Statistical analysis 
of the max response.  
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4. Discussion 

 
In this work, I show that although RBCs have a high morphological 

homogeneity, they are functionally heterogeneous (Figure 9). Despite 

extensive past investigations of RBCs (they are among the most studied cells 

in natural history), this heterogeneity was widely ignored because bulk or 

suspension experiments could not reveal such properties. Nevertheless, other 

single-cell experiments, namely the patch-clamp technique, may lead to 

similar conclusions due to discrepancies between different laboratories. For 

example, Kaestner et al. [250] reported contradictions with Christophersen and 

Bennekou [45] in the open probability and conductance of the non-selective 

voltage-activated cation channel in healthy human RBCs. In malaria parasite 

infected RBCs, Sanjay A. Desai et al. reported that the malaria-infected RBCs 

exhibited voltage-dependent, non-saturating currents that were 150-fold 

larger, predominantly carried by anions and abruptly abolished by channel 

blockers compared with healthy RBCs [251], but Stéphane Egée et al. believed 

that the host membrane of malaria-infected RBCs possessed spontaneously 

active anion channel activity, with identical conductances, pharmacology and 

selectivity to the linear conductance channel measured in stimulated 

uninfected RBCs [252]. Stephan M. Huber et al. also supported that the 

malaria-infected RBCs showed identical conductances and hemolysis 

properties compared with non-infected RBCs [253]. However, the inherent 

complexity of the technique combined with relatively small cell numbers 

rendered conclusions difficult. In addition, we provided novel approaches to 

quantitatively analyze RBC responses to processes such as hormonal 

stimulation on the level of individual cells (Figure 10) that are not accessible 

by any other technique. 
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4.1 Single cell analysis discussion 

4.1.1 Fluorescence indicator in RBCs 
 

Although the Ca2+ is important for the RBCs (see introduction), little is known 

for the regulation of the Ca2+ concentration in RBCs. Usually, the basal 

intracellular Ca2+ concentrations of cells under physiological condition was 

measured by fluorescent indicators, such as Fura-2, Indo-1, Fluo-3 and Fluo-

4. Fluo-4 is a single-excitation and single-emission, in other words a non-

ratiometric indicator, which can only be used for qualitative but not 

quantitative investigations. Compared with Fura-2 (dual excitation) and Indo-1 

(dual emission), Fluo-4 fluorescence recording is much easier to be 

influenced by systematic errors occurring in experiment, which led to Fura-2 

and Indo-1 as the better choices. However, Kaestner and co-workers [128] 

found that Fura-2 and Indo-1 for intracellular Ca2+ measurement in RBCs was 

not reasonable because hemoglobin influenced its excitation and emission 

properties. In brief, both Fura-2 and Indo-1 display massively altered spectral 

properties in the presence of hemoglobin that greatly influence fluorescence 

recordings of the Ca2+ concentration and changes, because the interactions 

between hemoglobin and the indicators seems to be wavelength and Ca2+ 

dependent (Figure 32). Another problem is the requirement for UV-excitation 

of Indo-1 and Fura-2. This excitation induces strong transient auto-

fluorescence (Figure 32B). For Fluo-4, hemoglobin only has a low absorption 

at 480 nm and 520 nm, and irradiation at 480 nm did not result in changes of 

the auto fluorescence even for high intensities and longer time.  Taken all 

together, Fluo-4 seems still to be the best candidate for recordings of Ca2+ 

changes in RBCs and is currently without alternatives. 
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Figure 32: Absorption spectrum of hemoglobin and autofluoresence 
excited by UV irradiation. 

A, The arrows point to the typical excitation wavelength and emission maxima 
of the Ca2+ fluorophors Fura-2, Indo-1 and Fluo-4 (Cited from [128] with kind 
permission from Elsevier). B shows fluorescence images of RBCs population 
before, during and after irradiation with UV-A (360 nm). The fluorescence 
images i, ii, iii, iv, v and vi correspond to exposure times of 0, 5, 10, 15, 20 
and 30 min, respectively. The light power out of the objective was 
approximately 35 µW. Warm colors correspond to a high fluorescence 
intensity and cold colors to a weak fluorescence. There is virtually no 
fluorescence before the irradiation (image i). The RBCs population is a 
representative example, and the result was verified with RBCs of three 
different donors. (Cited from [128] with kind permission from Elsevier) 
 

4.1.2 Ca2+ concentrations and changes are not homogenous amongst 
individual RBCs 

 

It was already known that LPA induces Ca2+ influx into human RBCs. There 

are evidences that it is Ca2+ channel mediated rather than a nonspecific Ca2+ 

leak [215, 254-256]. For example, the Ca2+ influx can be inhibited by Ca2+ channel 

blockers [32]; the influx induced by LPA is in a gradient dependent way, higher 

LPA concentrations promotes higher rates of Ca2+ entry; and other 

substances, such as phosphatidic acid and sphingosine-1-phosphate(Sph-1-

P), have no effect on RBCs Ca2+ uptake even at high concentrations [32]. 

 

A
Absorption spectrum of haemoglobin Effects upon UV-A (360 nm) irradiation of 

human red blood cells

B
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So far, the physiological function of Ca2+ influx itself in RBCs is not very well 

understood and links between Ca2+ and RBCs-related diseases still need to 

be investigated. Treatment of RBCs with the ionophore A23187 led to 

intracellular Ca2+ increase, and consecutively to Gardos channel activation, 

which results in K+ efflux (followed by Cl-) and the consequent reduction of the 

RBC volume. It has been reported that the threshold of the Gardos channel 

activation is around 40 nM of free Ca2+ in normal cells [257]. The increase of 

intracellular Ca2+ also induces activation of many other proteins, such as 

scramblase [258, 259] and PKCα [242]. The consequence is thought to be PS 

exposure on the outer leaflet of the cell membrane. The exposure of PS is 

also a key signal for eryptosis, RBCs programmed cell death [260-264]. It is also 

necessary for the recognition and engulfment by macrophages [262, 264-268]. 

 

The accurate value of intracellular Ca2+ concentration is still uncertain, but it 

appears to be reasonable to consider the physiological intracellular Ca2+ level 

in human RBCs to be about 100 nM [105, 269]. From my own observation, I can 

see that even the basal Ca2+ concentration is different from one RBC to 

another. Ca2+ concentration in some cells is 10 times higher than other ones 

before stimulation, and this phenomenon is more common in mouse RBCs. 

To deal with this problem, I use the F/F0 value to record the Ca2+ change 

during the experiment procedure, instead of absolute fluorescence values. 

Another point to discuss in our experiment, with or without Tyrode flow, is 

around 1% of RBCs show Ca2+ influx even without further stimulation (Figure 

9). This phenomenon was also found in FACS analysis. These observations 

suggest that some channels can be activated after washing and dye loading. 

In other words, maybe washing will influence the Ca2+ measurements, 

although it is necessary for the operation and therefore there is no alternative 

and we have to live with this potential artifact.  

 

Another question is why different RBCs show different Ca2+ influx properties 

after LPA stimulation. One possibility is because of different ages of individual 

cells. As we know, human RBCs are produced through a process named 
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erythropoiesis, developing from committed stem cells of mature RBCs in 

about 7 days. After matured, the lifespan of the cells in the circulation is about 

100 – 120 days. At the end of their lifespan, they become senescent, and are 

removed from circulation. Matured RBCs lack organelles and the nucleus, 

while immature RBCs called reticulocytes have mesh-like ribosome RNAs. In 

other words, in its lifespan, the structure of RBCs, such as the nucleus, 

membrane proteins, and cytoskeleton change greatly. However, until now, 

there is no perfect method to separate RBCs according cell age. The most 

widely used method is Percoll gradient centrifugation, but this approval still 

has some problems, such as specific receptor activation (NMDA receptor) 

induced cell shrinkage and subsequently density increase, which greatly 

influence cell distribution in Percoll gradient solution. The old cells are 

considered to contain an increased Ca2+ [129, 270], but this is still controversial 
[271]. So one explanation for the differences of Ca2+ influx is: each individual 

cell has different receptor numbers, different Ca2+ channel numbers and 

different membrane stabilities. 

 

Furthermore, RBCs do not show an immediate response after stimulation but 

a delayed reaction, which suggests there are processes happen before Ca2+ 

influx. In other words, this delay suggests that Ca2+ is not the first messenger 

after stimulation, maybe other ions or substances, such as Na+ and ATP, join 

the signaling cascade before Ca2+. Only when this substance reached some 

kinds of threshold, maybe ATP concentration, then the Ca2+ channels open, 

Ca2+ influx is observed. This hypothesis could explain the time delay of Ca2+ 

influx after stimulation.  

 

4.1.3 Analysis protocols 
 

We already knew Ca2+ concentrations and changes were not homogenous 

amongst individual RBCs (chapter 3.1.2). To solve this problem, Live-cell 

video imaging, which allows for the analysis of individual cells, appeared to be 

the most appropriate method to determine intracellular Ca2+ changes when 
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compared to other techniques (Figure 9). Considering the complexity of 

single-cell responses (Figure 9D), I firstly tested whether a simple averaging 

of all cells might be an adequate approach. To evaluate the best method of 

analysis, I compared Ca2+ signals under control conditions and in the 

presence of 2.5 and 10 µM LPA (Figure 33A,B). Figure 33C shows the 

averaged traces of the cellular responses. The traces appear shallow, small 

and independent of the LPA concentration. However, this finding might be a 

misinterpretation because the onsets of the responses of each single cell 

differed largely (Figure 33A, B). Therefore, we synchronized the responses to 

their onset before averaging. As demonstrated in Figure 33D, the RBCs 

generated steep Ca2+ increases with an amplitude that was dependent on the 

LPA concentration. Thus, postexperimental synchronization might be 

adequate to analyse LPA-induced Ca2+ response in RBCs. It is noteworthy to 

mention that a full characterization of the RBC responses to external 

stimulation might be associated with a long-lasting delay period. Therefore, 

the recording time (limited here to 15 min) should be extended to obtain a 

maximum of responding cells. However, an extension of these experiments is 

limited because RBCs with high intracellular Ca2+ levels tend to have a fragile 

plasma membrane with an increased risk of membrane breakdown. 
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Figure 33: Protocols and handling of LPA-induced Ca2+ influx. 

A, Fluorescence signals of single RBCs treated with 2.5 µM LPA. B, 
Fluorescent signals of single RBCs treated with 10 µM LPA. C, Comparison of 
average Ca2+ signals induced by different concentrations of LPA [same data 
as in (A) and (B)]. D, Average of the Ca2+ signals after their synchronization to 
the onset of the response. 
 

Therefore, we also considered achieving cellular synchronization using a 

three-step protocol (Figure 34). However, this approach required blocking the 

plasma membrane Ca2+-pump with sodium orthovanadate, which complicates 

the interpretation and comparison with other protocols. Such a multi-step 

protocol might be appropriate if the pure LPA mediated the influx capacity but 

not the physiological response of the cells is in question. Furthermore, kinetic 

information on the Ca2+ signals would be lost in such a multi-step protocol. 

Consequently, we focused on the stimulation protocol shown in Figure 33, 

and examined a large number of parameters from individual responses, as 

depicted in Figure 11. Each single cell fluorescence trace was fitted with a Hill 
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equation as outlined in the Materials and Methods section, which allowed us 

to extract numerous types of quantitative information, such as the cellular 

reaction time (time between LPA application and the onset of the Ca2+ signal), 

the time for halfmaximal stimulation (“Xhalf”), the steepness of the upstroke 

(Hill slope or “SH”) and the amplitude of the cellular response (“amplitude”).  

 
 

 
Figure 34: 3-steps protocol and handling of LPA-induced Ca2+ influx. 

A, depicts the attempt to “synchronize” the cells by applying a three steps 
protocol starting with the application of a Ca2+free solution and inhibition of the 
Ca2+pump with sodium orthovanadate (SOV). Then, the RBCs were 
stimulated with LPA for 5 min, and Ca2+(1.8 mM) was added, leading to a 
synchronized cell response. B, Single-cell traces show [same data as in (A)] 
that the cells still respond variably to the Ca2+ readdition. 
 
Such parameters were analysed statistically as depicted in Figure 11B for an 

experimental series in which we tested the effects of varying LPA 

concentrations. We found significant differences in all parameters, indicating 

that the LPA concentration significantly impacted all the parameters. It is 

noteworthy that the distribution of the analysed parameters for responding 

cells (see histograms and their insets in Figure 11B) was characterized by a 

broad scattering rather than a specific distribution. Therefore, we investigated 

the putative reasons underlying the scattered distribution of the cellular 

responses (chapter 3.1.5). 
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4.1.4 Fe2+ and folate deficiency leads to abnormal Ca2+ influx in RBCs 
during repetitive bleeding induced reticulocytosis 

 

As described in chapter 2.3.3, I used repetitive bleeding method to induce 

reticulocytosis. During the period of repetitive retro-orbital puncture, drinking 

water must be supplemented with iron (3 mg Fe2+/100 ml) and folate (20 

µg/100 ml). I found that RBCs from Fe2+-deficiency mice show abnormal Ca2+ 

influx under control conditions (in Tyrode without any stimulation). From 

average valuesdepicted in Figure 35A, RBCs from different days after 

bleeding in Fe2+ deficiency mice show a different spontaneous activity (in 

Tyrode). From 4th day to 7th day after the initial bleeding procedure, RBCs 

show a steadily increasing Ca2+ influx in Tyrode.  

 

I additionally analyzed the parameter “Max response” of the Ca2+ influx 

induced by LPA into RBCs at different days after bleeding in Fe2+ deficient 

mice (Figure 35B). The black stars denote significance compared with control 

conditions (“LPA” compared with “Ctrl (LPA)”, and “Tyrode” compared with 

“Ctrl (Tyrode)”, respectively). Red stars refer to significance of  “LPA” 

compared with “Tyrode” at the same day. In Figure 35B, an abnormal Ca2+ 

influx can be recognised even in Tyrode. From 4th day to 7th day, the 

abnormal Ca2+ influx increases and after the 7th day, the abnormal Ca2+ influx 

begins to decrease. After the ~28th day, it returns to the normal level (Figure 

35B). The mechanism of this abnormal “Ca2+ influx” is not clear, but maybe it 

is an artifact related to hemoglobin synthesis. Hemoglobin synthesis requires 

Fe2+, and one of its absorption wavelength peak is ~540 nm. And Fluo-4 

emission wavelength is ~520 nm, so the concentration of hemoglobin may 

influence the fluorescence intensity of Fluo-4. Nevertheless, this finding 

showed the extreme importance of Fe2+ and folate supplement in repetitive 

bleeding through retro-orbital puncture and the following Ca2+ influx 

investigation. 
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Figure 35: Fe2+ and folate deficiency leads to abnormal Ca2+ increase 

A, The lack of Fe2+ and folate supplement in the food after bleeding will lead 
to abnormal Ca2+ influx, even in Tyrode. B, Max response of Ca2+ influx 
induced by LPA from RBCs at different days after bleeding in Fe2+deficiened 
mice. Black stars indicate significance compared with control conditions 
(“LPA” compared with “Ctrl (LPA)” and “Tyrode” compared with “Ctrl 
(Tyrode)”, respectively). Red stars refer to significance of “LPA” compared 
with “Tyrode” at the same day.  
 

4.1.5 The influence of cell age on LPA-induced Ca2+-influx 
 

Cellular properties change with cell age, which also applies to RBCs [272]. An 

established method to differentiate RBCs by age is a separation using 

Stractan or Percoll density gradients. This approach is based on the 

assumption that RBCs gain density with age. However, recent findings 

indicated that the densification with age reversed in cells approaching the age 

of clearance [273] and that those methods may activate receptors or channels 

in the RBCs´ plasma membranes [274] and unpublished results of the 

Bogdanova lab. This change might lead to a dehydration of young cells and 

their movement to the fraction of dense cells. Although such effects may only 

apply to a subpopulation of the separated fractions, I used a more reliable and 

reproducible approach to compare LPA-induced Ca2+ signals of very young 

RBCs (reticulocytes) and RBCs on the verge of clearance (i.e., very old). 
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Because this approach was not applicable to RBCs of human donors, we 

used the RBCs of BALB/c mice.  

 

I identified reticulocytes following the Ca2+-imaging experiments by new 

methylene blue staining. Because the normal fraction of reticulocytes in the 

blood is very low (approximately 1%), we increased their number by 

reticulocytosis [214]. As depicted in the right panel of Figure 14, the substantial 

increase in the number of reticulocytes was apparent following this 

intervention. We then challenged different cell populations with 5 µM LPA 

(Figure 15) and found that in comparison to the fraction of RBCs (purple box 

in Figure 15Ad), the reticulocytes (green box in Figure 15Ad) did not show any 

response to the LPA stimulation. 

 

To identify very old RBCs at the verge of clearance, I drew blood from mice 

subjected to reticulocytosis and stained RBCs with the plasma membrane 

stain PKH26 [229] (Figure 16, upper panels). At least 67.9% of the cells that 

were re-injected into the same mouse were stained with PKH26. The 

fluorescence of the cells was analyzed again after 7 and 43 days (Figure 16A, 

lower panels). After 7 days in circulation, 5.7% of the cells were PKH26-

stained; after 43 days, this portion was reduced to less than 1%, indicating 

that the rest of the PKH26 positive RBCs were cleared in the mouse body. 

Because the average lifetime of RBCs in BALB/c mice has been determined 

to be 46 days [230], we waited for 43 days until we isolated PKH26-stained 

RBCs by fluorescence activated cell sorting (region R2 in Figure 16A). Those 

cells were regarded as old cells close to clearance. Ca2+ signals were 

compared to non-stained RBCs representing cells of all ages. Figure 16B-D 

summarizes the results obtained with these two cell populations. PKH26-

negative cells responded only with a very small but significant increase when 

stimulated with 5 µM LPA (green box in Figure 16B). In contrast, the PKH26-

positive cells that were manually selected from the original blood sample 

(purple box in Figure 16B) and the PKH26-positive cells enriched by FACS 

(red box in Figure 16B) both displayed a substantially augmented Ca2+ 
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response. Nevertheless, neither visually identified PKH+ cells (VIS) nor FACS 

sorted cells showed LPA responses that were uniform. Instead, both 

populations of responders still displayed a substantial heterogeneity, as 

observed in the response histograms in Figure 16C and in the representative 

traces in Figure 16D. 

 

In summary, the age of RBCs appeared to be an important factor responsible 

for the heterogeneity of LPA-induced responses. However, my data also 

indicate that the age of RBCs is not the only characteristic responsible for the 

observed variability. 

 

In conclusion, I found Ca2+ influx induced by LPA and PGE2 in human RBCs 

is surprisingly dynamic and heterogeneous. This could not be extracted from 

FACS analysis, because FACS can only show a Ca2+ concentration of a 

single cell at a single time point, not in time series. Only parts of RBCs react 

to LPA stimulation, and even in responding cells, each individual cell shows 

different Ca2+ influx properties. The cell age of RBCs is involved in but not the 

only reason of this phenomenon. These unexpected findings need to be taken 

into account in further studies that require approaches for single-cell analysis. 

The identified heterogeneity in the RBC response described in our study is 

important because it not only impacts our basic understanding of RBCs 

signaling but also our understanding of their contribution to numerous 

diseases. Taken together with the emerging knowledge of an active role of 

RBCs in blood clotting, understanding the dynamics of RBC Ca2+ signaling 

might offer new targets for modulating thrombotic activity. Nevertheless, In 

this work we proposed a way to analyze the Ca2+ influx data, which is more 

precise and can get more information of Ca2+ change than simple average 

analysis. It is helpful for better understanding of Ca2+ influx and Ca2+ function 

in human RBCs. 
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4.1.6 Ca2+ balance in RBCs 
 

Ca2+ is a universal signalling molecule involved in regulating cell cycle and 

fate, metabolism and structural integrity, motility and volume. In healthy 

human RBCs, basal free Ca2+ concentration in RBCs under physiological 

conditions is estimated to be in the range of 30 to 60 nM [105]. The RBCs 

membrane had extremely low basal permeability to Ca2+ and maintained 

intracellular free Ca2+ concentration [105]. The main Ca2+ extrusion pathway is 

through the plasma membrane Ca2+ pump (PMCA) [105] while the Ca2+ influx 

pathway mediated by several kinds of cation channels, such as voltage-

activated non-selective cation channels [48, 275-277], Cav2.1 channels [49], 

TRPC6 channels [278], and NMDA channels [37]. Like in other cells, Ca2+ plays 

important role in RBCs biological activities. In the beginning of RBCs lifespan, 

Ca2+-dependent signal induced RBCs to differentiate from precursor cells [279, 

280]. In mature RBCs, Ca2+ activates numerous Ca2+-dependent proteins, such 

as calmodulin [281], PKCα [282] and PI3K [283], to take part in physiological and 

pathophysiological processes. To activate these proteins, phosphorylation is 

the most important and most polular modulations of protein activity in RBCs, 

especially in PKCs [284]. With the activation of these Ca2+ sensors, cytoskeletal 

flexibility was changed, followed by the regulation of RBCs volume [27, 285]. 

Ca2+ uptake could also activate scramblase, a protein responsible for 

bidirectional transmembrane movement of phospholipids [286], leading to the 

break-down of the originally asymmetrical distribution of phospholipids 

between the inner and outer membrane leaflet and PS exposure [287]. Some 

metabolic enzymes including pyruvate kinase were also under regulation of 

Ca2+ in RBCs [288, 289]. Furthermore, the haemoglobin oxygen saturation [290] 

and RBC’s redox state [291, 292] also related to the intracellular Ca2+. In old 

RBCs, Ca2+ concentration is belived to exceed those in reticulocytes and 

young RBCs [293] and involved in cell clearance. In brief, Intracellular Ca2+ 

levels in the human RBCs not only join in biophysical properties regulation 

such as membrane composition, volume and rheological properties, but also 

in physiological properties such as metabolic activity, redox state and cell 
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clearance. Furthermore, besides the physiological function, Ca2+ is also 

associated with a number of pathological states including clotting formation 
[232, 294], sickle cell disease [295-297], thalassemia [298, 299] and 

phosphofructokinase deficiency [300]. 

 

Therefore, the role of Ca2+ in RBCs physiology and pathophysiology need to 

be appreciated and valued. Recently, as a complement of cell population 

measurements, single cell based methods became more and more important 

and was applied to many experiments [301]. This is because of the recent 

finding that heterogeneous distribution of Ca2+ in RBCs cytosol are related to 

the abnormally high Ca2+ levels [302], which are extremely important in patients 

with haematological disorders, such as sickle cell disease. However, the Ca2+ 

binding properties and related proteins within the cells need further attention 

and investigation. Considering the broad variety of Ca2+ involved procedure, 

the following processes could probably be used to indirectly investigate the 

function of abnormally increased intracellular free Ca2+ levels in RBCs: (1) cell 

volume and morphology changes, such as microcytosis, echinocytosis, 

stomatocytosis, high MCHC and increase in cell density; (2) congenital 

haemolytic anaemia associated with stomatocytosis, reticulocytosis, and 

shortened RBC survival; (3) decrease in the intracellular K+ levels, 

pseudohyperkalemia; (4) loss of RBC deformability, changes in osmotic 

resistance, an increase when dehydration has occurred but cytoskeletal 

stability is still maintained, or a decrease when cytoskeleton is partially 

disassembled; (5) appearance of calpain-induced band 3 cleavage fragments; 

(6) oxidative stress or unusually high NO production (nitrosated Hb, met-Hb); 

(7) ATP depletion due to hyperactivation of PMCA; (8) increase in inter-RBC 

aggregability; and (9) increase in PS exposure. 
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4.2 Signal pathway induced by LPA in RBCs 

4.2.1 Scheme showing the involving signal transduction pathway 
 

We demonstrated that LPA can induce Ca2+ influx in human RBCs, and both 

Cav2.1 and TRPC6 channels are involved in this procedure. On one hand, 

these events were confirmed in a TRPC6 (-/-) mouse model, where Ca2+ influx 

induced by LPA was significantly decreased. However, TRPC6 knock out 

could only partly decrease LPA induced Ca2+ influx, while in combination with 

inhibition of the Cav2.1 channel could fully inhibit it. Inhibition of PKCα in 

human RBCs has a similar effect as TRPC6 knock out in mouse RBCs. On 

the other hand, blocking Cav2.1 can also partly inhibit LPA induced Ca2+ 

influx in human RBCs and wild type mouse RBCs, but can fully inhibit it in 

TRPC6 knock out mouse. Taken all together, we proposed the schematic 

diagram for LPA-induced Ca2+ influx in RBCs (Figure 36A). Furthermore, 

these two co-existed signal pathways induce two kinds of different Ca2+ influx. 

Figure 36B-D showed the idealized stereotypical responses. The one through 

Cav2.1 activation is smooth increase (Figure 36B) and the other one, which is 

through PKCα and TRPC6, is faster and more instant (Figure 36C). These 

two signal pathways coexisted in most of RBCs, thus a typical Ca2+ trace 

seems like the trace shown in (Figure 36D). 

 

However, there are still some questions need to be answered. For example, it 

is well known that the activation of PKCα requires Ca2+, but where the Ca2+ 

for PKCα activation is from in LPA induced signal pathway (Figure 36)? One 

explanation is constitutive activation of PKCα by the Ca2+ in the cell. Another 

possibility is the Ca2+ entry through the Cav2.1 channel. If this is true, blocking 

Cav2.1 should fully inhibit LPA induced Ca2+ influx, which is not the case in 

our experiment (Figure 25), but this could be explained by LPA induced 

unspecific activation of other channels. Nevertheless, this question needs to 

be further investigated. 
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Figure 36: Schematic showing the involving signal transduction 
pathway. 

A, I proposed two coexisted signal pathways in LPA induced Ca2+ influx in 
RBCs: 1) LPA--Gi--PI3K--MEK--Cav2.1 and 2) LPA--Gi--PKC--TRPC6. B-D, 
Putative single cell behavior. B, Ca2+ influx through the LPA--Gi--PI3K--MEK--
Cav2.1 branch and C, Ca2+ influx through LPA--Gi--PKC--TRPC6 branch. 
Usually, these two signal pathways coexisted in most of RBCs, thus a typical 
Ca2+ trace is shown in D. 
 

4.2.2 Ca2+ free pretreatment induced Ca2+ influx 
 

Physiological saline buffer and PBS, which are Ca2+ free, are the most widely 

used buffer in RBCs research [32, 278, 303]. Usually, the experiments were 

operated in the way as follow: RBCs were put into saline or PBS, stimulated 

with desired substance and then Ca2+ was added to observe Ca2+ influx [32]. In 

other words, RBCs were in Ca2+ free condition before the desired substance 

application.  

 

Therefore, the influence of Ca2+ free pretreatment on Ca2+ influx was 

investigated. RBCs were put into Ca2+ free Tyrode containing EDTA for 15 
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minutes, and then transferred into normal Tyrode. As shown in Figure 37, 

even though in the absence of LPA or any other stimulation, cells show a 

clear Ca2+ influx (green line). In the existence of LPA, the Ca2+ influx (cyan 

line) was greatly enhanced compared with control condition (red line). The 

max response value of single cells also shows the same trend (right panel). 

Taken together, these results suggest that preincubation of RBCs in Ca2+ free 

condition enhances the following Ca2+ influx when RBCs were put into Ca2+ 

containing condition, therefore the usage of PBS or saline in Ca2+ research in 

RBCs should be reconsidered. 

 

 
Figure 37: Ca2+ free pretreatment induced Ca2+ influx in human RBCs. 

Pretreatment with EDTA (green line, stage 1) and then with Tyrode (stage 2) 
directly induced Ca2+ influx in human RBCs. It also enhanced the LPA-
induced Ca2+ influx (cyan line) compared with normal condition (red line). The 
statistics of max response also shows the same trend (right panel). 
 

4.2.3 ω-agatoxin-TK could not fully inhibit PMA/LPA induced Ca2+ influx 
 

In 2000, Yang and co-workers showed that LPA stimulates a rapid, dose-

dependent Ca2+ influx in RBCs. They found an inhibition by ω-agatoxin-TK, a 

Ca2+ channel blocker specific for Cav2.1, using flow cytometry [32]. However, 

through video imaging, we found that LPA induced Ca2+ influx in RBCs can 
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only partly be inhibited by ω-agatoxin-TK (Figure 25). Furthermore, Andrews 

and co-workers also proposed that PMA shows a similar function as LPA and 

can also be inhibited by ω-agatoxin-TK [49]. Therefore, I also investigated the 

PMA function in RBCs according to the same protocol as this group. 

 

Andrews and co-workers treated RBCs with 1 µM ω-agatoxin-TK or PBS 

(control) for 10 minutes, and then stimulated cells with 3 µM PMA [49]. 3 

minutes after PMA stimulation, cells were analyzed by flow cytometry. The 

result shows that ω-agatoxin-TK pretreatment can fully inhibit PMA induced 

Ca2+ influx. However, in video-imaging experiments, I found that 1 µM ω-

agatoxin-TK can only partly inhibit 3 µM PMA induced Ca2+ influx, even 

though we use exactly the same protocol (Figure 38A). Analysis of the 

amplitude from each cell also showed the same trend, after 3 minutes as well 

as after 14 minutes PMA stimulation (Figure 38B, left panel). Furthermore, the 

distribution of the amplitude also changed with time (Figure 38B, right panel).  

 

Taken together, I proposed that LPA or PMA induced Ca2+ influx could not be 

fully inhibited by ω-agatoxin-TK. One explanation of the conflict between our 

data and others might be the loss (lysis) of cells with high Ca2+ concentration 

in FACS. As it is known, in FACS, a high shear stress is applied to RBCs, 

which may lead to a significant cell break. Furthermore, RBCs with high Ca2+ 

is more fragile than normal RBCs, which means high Ca2+ cells lyse much 

easier than normal cells under the shear stress. Therefore, it is reasonable to 

hypothesize that FACS could not fully reveal the Ca2+ change in RBCs. 

Nevertheless, it is widely accepted that LPA or PMA induces Ca2+ influx in 

RBCs and Cav2.1 is involved in this process, but whether other signal 

pathway exists in this procedure need to be further investigated. 
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Figure 38: 1 µM ω-agatoxin-TK can partly but not fully inhibit 3 µM PMA 
induced Ca2+ influx in human RBCs. 

A, In our video imaging experiments, ω-agatoxin-TK only shows a partly 
inhibition of the PMA-induced Ca2+ influx both in (a) averaged traces and (b) 
statistical analysis of the max response, with the same condition as 
Andrewsand co-workers described [49]. In brief, RBCs pretreated with 1 µM ω-
agatoxin-TK for 10 minutes and then 3 µM PMA was added, and the cells 
were incubated for an additional 3 minutes before analysis. B, Ca2+ content 
analysis 3 minutes and 14 minutes after PMA stimulation. At both time points, 
the average value (left panel) and the distribution (right panel) of F/F0 from 
individual cells show that agatoxin can only partly inhibit PMA induced Ca2+ 
influx. Colored stars represent the significance between the bar below the 
stars compared and the bar with the same color of stars. 
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4.3 Ca2+ homeostasis and LPA in sickle cell disease 
 

In this thesis I additionally focused on the altered Ca2+ homeostasis of sickle 

RBCs. The altered Ca2+ homeostasis is extremely important for the 

understanding of sickle cell disease. In 1973, Eaton [295] and Palek [304]  

independently discovered that the total Ca2+ content of sickle cells was highly 

increased. These findings revealed the possible link between deoxy- HbS 

polymerization and sickle cell dehydration and Ca2+-sensitive IK1 channels 

were believed to be involved in this link. Furthermore, the elevated Ca2+ 

content of sickle cells was found to be unevenly distributed (chapter 3.3.1) 

with more total Ca2+ contained within progressively denser cells [246, 295, 305]. 

However, many questions of the role of Ca2+ in sickle cell disease need to be 

resolved. 

 

The first question was by which mechanism Ca2+ entered the RBCs. The 

relationship between deoxy-HbS polymerization and increased membrane 

permeability had been found by Tosteson et.al [306-308], but he only 

documented the increased permeability of Na+ and K+. The Ca2+ permeability 

increase in SCD was firstly found by Eaton et al. in 1973 [295] and was further 

investigated from heterozygote and homozygotes sickle cell anaemia subjects 

by many other groups [246, 304, 305, 309]. And more recently, Bookchin et al. 

additionally investigated the Ca2+ permeability increase in in different density 

subpopulations of sickle cells [310]. The Mg2+ permeability in sickle cells was 

also investigated by Ortiz et al. in 1990 [311]. In summary, these results 

showed that in sickle cells the Ca2+ permeability of the RBCs membrane 

increased from 50 µmol/(lcells·h) (normal value) to up to ~300 µmol/(lcells·h) 

at physiological [Ca2+]o levels [296]. These results clearly showed that the Ca2+ 

permeability greatly increased in sickle cells, but how the Ca2+ was retained 

within the RBCs membrane remained unclear.  

 

In this thesis I found that LPA receptor subtype 4 (LPAR4) was overexpressed 

in human sickle RBCs (chapter 3.3.2), which might be one explanation of 



 

 

 

112 

stronger LPA-induced Ca2+ influx in sickle RBCs compared with the one in 

healthy RBCs. Despite the overexpression of LPAR4, LPA induced the same 

signal pathway both in sickle and healthy RBCs (chapter 3.3.3-3.3.6). 

Interestingly, the orphan G protein-coupled receptor p2y9/GPR23, was 

recently identified to be LPA4 [312, 313]. P2Y receptors are a family of purinergic 

G protein-coupled receptors and could be activated by nucleotides such as 

ATP [314]. Therefore, the overexpression of LPAR4 in sickle RBCs might be 

related to ATP metabolism. Meanwhile, a recent study [315] suggests that the 

cytoskeleton underneath the RBCs plasma membrane, which consists by a 

cytoskeletal protein named spectrin, might act as a steric barrier restricting 

membrane undulations toward the intracellular cytoskeleton networkand this 

procedure is ATP dependent. Other studies also showed the inhibitory 

function of ATP on spectrin-membrane interaction both in RBCs ghost [316] 

and intact RBCs [317]. In brief, the topology of RBCs membrane is the integrity 

of the underlying spectrin cytoskeleton dependent and ATP-dependent. Thus, 

the LPAR4 overexpression might contribute to the cytoskeleton change and 

sickle shape formation in sickle RBCs. Taken together, the finding of LPAR4 

overexpression in sickle RBCs appears important for better understanding of 

RBC physiology and pathophysiology. 

 

4.4 Summary and perspective 
 

In conclusion, I found Ca2+ signaling in RBCs is surprisingly dynamic and 

diverse. RBC age is just one of the determinants for the diversity. Therefore, a 

single-cell analysis method was developed to analyze heterogeneity in the 

RBC response. Using this method, two coexisted signal pathways of LPA-

induced Ca2+ influx were found in healthy human RBCs: one is LPA-Gi-PI3K-

MEK-Cav2.1 and another one is LPA-Gi-PKC-TRPC6. In sickle human RBCs, 

LPAR4 was found to present an increased expression, but LPA-induced Ca2+ 

influx followed the same signal pathway as in healthy human RBCs.  
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For the future I believe that the diversity of Ca2+ signalling in RBCs need to be 

taken into account in further studies, and the single-cell analysis enables us to 

extract Ca2+ signalling information and is flexible to be used on different 

research purposes, such as LPA-induced Ca2+ signaling in sickle RBCs. The 

identified heterogeneity in the RBC response described in our study is 

important because it not only impacts our basic understanding of RBCs 

signalling but also our understanding of their contribution to numerous RBCs 

diseases. Our findings about LPA in sickle human RBCs also provided a 

better understanding of sickle cell disease. Taken together with the emerging 

knowledge of an active role of RBCs in blood clotting, understanding the 

dynamics of RBC Ca2+ signaling might offer new targets for modulating 

thrombotic activity and better understanding of RBCs diseases. 
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