Cyclische Diazastannylene. XXVIII [1]

Anorganische Polycyclen aus der Reaktion eines Bis(amino)stannylens bzw. eines Iminostannylens mit SnCl₂, SnBr₂ und tert-Butoxizinn(II)-chlorid bzw. -bromid

M. VEITH*, V. HUCH, R. LISOWSKY und P. HOBEIN

Saarbrücken, Institut für Anorganische Chemie der Universität des Saarlandes

Inhaltsübersicht. Das cyclische Bis(amino)stannylen 1 reagiert mit tert-Butoxizinn(II)chlorid oder -bromid zu einem Lewis-Säure-Base-Addukt 4 bzw. 5, in dem die beiden Moleküle über $N \rightarrow Sn - (233,8(3) \text{ pm})$ und $O \rightarrow Sn - (215,1(2) \text{ pm})$ Bindungen zusammengehalten werden, was zur Bildung zweier anellierter Vierringe führt (Röntgenstrukturanalyse von 4). Setzt man 1 hingegen mit SnCl₂ oder SnBr₂ um, so entstehen die "Salze" Me₂Si(N^tBu)₂Sn₂Cl+SnCl₃⁻ (6) und Me₂Si(N^tBu)₂Sn₂Br+Sn₂Br₅⁻ (7). Gemäß Strukturanalysen sind die Kationen in 6 und 7 strukturell nahe verwandt: SnCl+ bzw. SnBr+ werden von dem "Trihaptoliganden" 1 so koordiniert, daß eine polycyclische SiN₂Sn₂X-Einheit mit einem N₂Sn₂-Tetraeder und kantenüberbrückenden Si und Halogen (X) entsteht (Mittelwerte: N-Sn = 232(2) (6), 230(2) (7), Sn-Cl = 265(1), Sn-Br = 275(1) pm). (^tBuNSn)₂, eine kurzlebige Zwischenstufe, addiert sich an SnCl₂ unter Bildung eines kristallinen Polymers (^tBuN)₂Sn₃Cl₂ (8). Der Festkörper besteht nach Röntgenstrukturanalyse aus einer unendlichen Kette von (^tBuN)₂Sn₃Cl₃-Polycyclen, die sich mit benachbarten Einheiten jeweils zwei Chloratome teilen. (^tBuN)₂Sn₃Cl₃ bildet ein gleichseitiges Dreieck aus Chloratomen, auf dessen Kantenmitten ein zweites gleichseitiges Dreieck aus Zinnatomen hineingestellt ist. Diese sind ihrerseits durch (N^tBu)-Gruppen trigonal bipyramidal verknüpft. Die verbrückenden Chloratome besitzen eine ungewöhnliche planare, fast quadratische Koordination (Sn-Cl(Mittel) = 308(5) pm). Der mittlere Sn₃N₂-Polycyclus der Figur kann als nahezu perfekte trigonale Bipyramide beschrieben werden (Sn-N = 222,7(3) pm). Die tert-Butylgruppen an den Stickstoffatomen schirmen den anorganischen Teil der Struktur so ab, daß eine Schichtstruktur entsteht.

Cyclic Diazastannylenes. XXVIII. Inorganic Polycyclic Compounds from the Reaction of Bis(amino)stannylene or Iminostannylene with SnCl₂, SnBr₂, and tert-Butoxitin(II) Chloride or Bromide

Abstract. The cyclic bis(amino)stannylene 1 may react with tert-butoxitin(11) chloride or bromide yielding a Lewis acid-base adduct 4 resp. 5, in which the two molecules are held together via $N \rightarrow Sn$ (233.8(3) pm) and $O \rightarrow Sn$ (215.1(2) pm) bonds. The resulting adduct 4 contains therefore two four membered rings sharing one common edge as found by X-ray structure determination. If 1 is allowed to react with $SnCl_2$ or $SnBr_2$, the salts $Me_2Si(N^tBu)_2Sn_2Cl^+SnCl_3^-$ (6) and $Me_2Si(N^tBu)_2Sn_2Br^+Sn_2Br_5^-$ (7) are formed. Structure analysis reveals the cations in 6 and 7 to be very similar: $SnCl^+$ and $SnBr^+$ are coordinated by the "trihapto ligand" 1 in a way resulting a polycyclic SiN_2Sn_2X -arrangement. To a central Sn_2N_2 tetrahedron Si and halogen X are added occupying and bridging two opposite edges (mean values: N-Sn = 232(5) (6), N-Sn = 230(2) (7), Sn-Cl = 265(1), Sn-Br = 275(1) pm). The reaction intermediate $(SnN^{t}Bu)_{2}$ adds to $SnCl_{2}$ to form the crystalline polymer $({}^{t}BuN)_{2}Sn_{3}Cl_{2}$ (8). X-ray structure determination reveals the solid to be built up by one-dimensional chains of polycyclic $Sn_{3}(N^{t}Bu)_{2}Cl_{3}$ sharing two chlorine atoms with neighbouring units. The unit $Sn_{3}(N^{t}Bu)_{2}Cl_{3}$ can be visualized as an equilateral triangle of chlorine atoms, on which a smaller triangle of tin atoms is superimposed; the corners of the smaller triangle being located in the middle of the larger triangle's edges. The tin atoms are bipyramidally coordinated by two $N-{}^{t}Bu$ -groups thus forming a nearly perfect $Sn_{3}N_{2}$ trigonal bipyramide (Sn-N = 222.7(3) pm). Two chlorine atoms of the triangle are connected to neighbouring units, the chlorine atoms thus attain an unusual nearly square-planar coordination sphere (Sn-Cl(mean) = 308(5) pm). The tertbutyl groups at the nitrogen atoms "screen" the inorganic part of the structure leading to a layer structure.

Einleitung

Die Bildung von "twistanartig" [2] aufgebauten Polycyclen der allgemeinen Formel $Me_2Si(N^tBu)_2Sn_2X$ (X = O oder N-^tBu) ist in der Vergangenheit von uns damit erklärt worden, daß ungesättigte Zwischenstufen des Typs {SnX} sich durch Anlagerung an den "Trihaptoliganden" 1 stabilisieren können [3, 4]. Das Bis(amino)stannylen 1 verfügt nämlich über zwei Lewis-basische Zentren (Stickstoffatome) und ein Lewis-saures Zentrum (Zinnatom), die gemeinsam gegenüber einem System umgekehrter Polarität als Elektronendonoren und Elektronenakzeptor wirken können [3]. Von den drei möglichen mesomeren Formen von {SnX}, A, B und C, besitzt letztere die formal richtige Elektronenverteilung, um in diesem Sinne einen Gegenpart zu 1 übernehmen zu können (Gl. (1)).

Es interessierte uns, welche Anforderungen im allgemeinen an das Atom bzw. die Atomgruppierung X gestellt werden muß. Es lassen sich den formal ungeladenen Zwischenstufen $\{SnN^{t}Bu\}$ und $\{SnO\}$ im isoelektronischen Sinne Kationen zur Seite stellen, die eine identische äußere Elektronenverteilung aufweisen:

$$\{:Sn - N - t Bu\}$$
 $\{:Sn - 0 - t Bu\}$

Wir berichten im folgenden über Reaktionen, bei denen uns ein Abfangen dieser kationischen Zwischenstufen mit 1 gelungen ist, bzw. über solche, bei denen wir es versucht haben. Des weiteren haben wir Zinn(II)-chlorid als Lewis-Säure-Base-System gegenüber dem instabilen $(SnN^tBu)_2$ (in Analogie zu 1) verwendet.

Zur Umsetzung von 1 mit tert-Butoxizinn(II)chlorid bzw. -bromid und Zinn(II)chlorid bzw. -bromid

tert-Butoxizinnchlorid (2) und -bromid (3), die als Dimere vorliegen und nach einem eleganten Verfahren aus 1 dargestellt werden können [5], setzen sich in Benzol mit äquimolaren Mengen von 1 quantitativ zu den Addukten 4 und 5 um (Gl. (2)).

4 und 5 kristallisieren beim Einengen der Lösungen aus und können so problemlos isoliert werden. Bei beiden Verbindungen fallen überraschenderweise im ¹H-NMR-Spektrum die Resonanzsignale der O-tert-Butyl und der N-tert-Butylgruppen zusammen und führen wie bei den beiden Methylgruppen am Silicium zu einem Singulett. Bei Temperaturerhöhung bzw. -erniedrigung erfolgt eine starke Verschiebung der Signale gegenüber Tetramethylsilan, wobei bei 310 K (5) die entarteten Signale der tert-Butylgruppen aufspalten (exp. Teil). Im ¹³C-NMR-Spektrum erscheinen übrigens die Signale für die tert-Butylgruppen am Sauerstoff und Stickstoff getrennt voneinander. Wie die Röntgenstrukturanalyse an 4 belegt (siehe weiter unten), ist 2 an 1 asymmetrisch koordiniert. Intramolekulare sowie intermolekulare Austauschreaktionen (erkenntlich am Auftreten der Farbe des freien Stannylens 1 beim Auflösen von farblosem 4 bzw. 5) zwischen Lewissauren und -basischen Zentren, die schneller ablaufen als die Meßfrequenz erfassen kann, könnten die gefundenen Spektren erklären. Im Gegensatz zu 4 und 5 sind die Verbindungen, die aus der Reaktion von 1 mit $SnCl_2$ oder $SnBr_2$ entstehen, schwer löslich. Die Reaktion erfolgt zwischen dem in Benzol gelösten Diazastannylen 1 und $SnCl_2$ bzw. $SnBr_2$ beim Erhitzen der Komponenten bis zum Siedepunkt des Benzols, wobei jeweils das als Bodensatz vorliegende Zinn(II)-halogenid in Lösung geht. Beim Abkühlen fallen dann die Produkte 6 bzw. 7 kristallin aus (Gl. (3)).

Diese Schwerlöslichkeit in unpolaren Lösungsmitteln wie Hexan, Benzol oder Toluol bedeutet einen ersten Hinweis auf den salzartigen Aufbau der Substanzen. Der endgültige Beweis über Konstitution und Strukturen von 6 und 7 kann allerdings erst über Röntgenstrukturanalysen (siehe nächstes Kapitel) geführt werden.

Läßt man das Bis(amino)stannylen 1 mit tert-Butylamin reagieren, so entsteht, bei Überschuß von 1, die twistanartige Verbindung Me₂Si(N^tBu)₂Sn₂(N^tBu) [6] (vgl. auch Einleitung). Wir haben nun die Reaktion insofern abgewandelt, als wir, in der Absicht durch das Zinn(II)halogenid {^tBuNSn} oder Oligomere desselben abzufangen, der Reaktionsmischung zusätzlich SnCl₂ in

Wie aus Gl. (4) zu ersehen, setzen sich die Reaktionskomponenten im gewünschten Sinne um. Neben dem erwarteten Bis(amino)silan 9 erhält man die kristalline Verbindung 8 in hervorragenden Ausbeuten. Entsprechend der Elementaranalyse sind in 8 zwei Teilchen $\{SnN^tBu\}$ pro Zinn(II)-chlorid enthalten. Über eine Röntgenstrukturanalyse wird 8 strukurell charakterisiert.

Die Kristall- und Molekülstrukturen von 4, 6, 7 und 8

Form des THF-Adduktes zufügten.

Experimentelles, Kristalldaten und Strukturbestimmungen

In Tab. 1 sind die wichtigsten Daten zu den Kristallen und den Strukturbestimmungen von 4, 6, 7 und 8 enthalten. Die Ortsparameter der Atome sind im

	4	6	7	8
Kristallsystem	triklin	orthorhombisch	monoklin	orthorhombisch
Raumgruppe	РĨ	Fdd2	$P2_1/c$	Pnma
a [pm]	836,0(7)	3139,0(4)	888,9(6)	1120,6(4)
b [pm]	1050,9(7)	3079,6(3)	1361,1(9)	1107, 4(5)
e [pm]	1341(1)	927,6(2)	2195(1)	1314,8(3)
α [Grad]	102,25(6)	90	90	90
β [Grad]	102,15(6)	90	91,27(5)	90
γ [Grad]	101,34(6)	90	90	90
V [10 ³ · pm ³]	1088,7	8966,5	2654,4	1631,6
Z	2	16	4	4
D _x (g/cm ³)	1,67	2,07	2,89	2,33
Diffraktometer	Siemens AED 2	Stoe, 4-Kreis	Siemens AED 2	Stoe, 4-Kreis
MoKa, LP-Korr.	ja	ja	ja	ja
Scan	ω/Θ	$\omega/2\Theta$	ω/Θ	$\omega/2\Theta$
Gemessener 20-Bereich		, 3° <	$3^\circ < 2\Theta < 45^\circ$	
Strukturlösung	Patterson	Patterson	Direkte	Patterson
			Methoden	
Gemessene Reflexe	2811	2100	3367	1521
Verwendete Refl.	$2607(2\sigma)$	$2065(\sigma)$	$2499(2\sigma)$	1 480(σ)
$(\sigma$ -Grenze)				
Parameterzahl	224	191	173	76
Anisotrope Tempf.	alle Atome	alle Atome	Sn, Br, Si	alle Atome
Isotrope Tempf.			N, C	_
Gewichts-				
schema ^a) k _l	1,5158	0,1354	1,0	(w = 1, 0)
$\mathbf{k_2}$	0,001096	0,05548	0,05395	
R-Wert	0,0263	0,068	0,104	0,046

Tabelle 1 Kristalldaten und Daten zur Strukturbestimmung für die Verbindungen 4, 6, 7 und 8

^a) $w = k_1 \cdot (\sigma_F^2 + k_2 \cdot F^2)^{-1}$

experimentellen Teil tabellarisch aufgeführt. Die anisotropen und isotropen Temperaturfaktoren sind in den Dissertationen von HOBEIN [5], HUCH [7] und LIsowsky [8] ebenso enthalten wie der Vergleich zwischen den berechneten (F_c) und gefundenen (F_o) Formfaktoren

Diskussion der Strukturen

In Abb. 1 ist als Ergebnis der Strukturbestimmung von 4 das Molekül dargestellt, während Abstände und Bindungswinkel in Tab. 2 zusammengefaßt sind. Das augenfälligste Strukturelement sind zwei Vierringe, die nahezu senkrecht zueinander stehen (93°) und eine gemeinsame Kante besitzen. Im Sinne einer doppelten Lewis-Säure-Base-Reaktion (vgl. auch [4]) kann man sich den Bicyclus aus der Addition des Sauerstoffatoms an das Zinnatom von 1 und der Addition des Stickstoffatoms N(1) an das Zinnatom von 2 entstanden denken. Beide Zinnatome Sn(1) und Sn(2) erreichen dadurch formal eine 8-Elektronen-

Ungenauigkeiten	in den Ortsparame	etern und beziehen sich auf die	e letzten Stellen der Za	hlenwe
Sn2Sn1	327,1(0)	Sn2Si	289,7(2)	
Cl-Sn1	252,2(1)	01-0	145,3(5)	
0-Sn1	212,5(3)	C2-N1	151,1(5)	
N1-Sn1	233,8(3)	C3-N2	147,2(5)	
		C11-C1	152,0(7)	
O-Sn2	215,1(2)	C12-C1	151,4(6)	
N1-Sn2	224,6(3)	C13-C1	151,4(7)	
N2-Sn2	214,0(3)	C21-C2	153,8(6)	
		C22 - C2	154,0(6)	
N1-Si	179,2(3)	C23-C2	151,3(6)	
N2-Si	172,3(3)	C31-C3	150,8(7)	
C4—Si	188,2(5)	C32 - C3	153,9(7)	
C5-Si	188,3(5)	C33-C3	149,3(7)	
SiSn2Sn1	60,5(0)	Si-N2-Sn2	96,6(1)	
		C3-N2-Sn2	124,7(3)	
0-Sn1-Cl	94,2(1)	C3-N2-Si	130,9(3)	
N1-Sn1-Cl	104,4(1)			
N1-Sn1-O	79,5(1)	C11-C1-O	109,1(3)	
		C12 - C1 - O	108,2(4)	
N1-Sn2-O	81,0(1)	C13 - C1 - O	108,3(4)	
N2-Sn2-O	89,1(1)	C12 - C1 - C11	109,1(4)	
N2-Sn2-N1	68,4(1)	C13 - C1 - C11	110,4(4)	
		C13 - C1 - C12	111,8(4)	
N2-Si-N1	89,1(1)			
C4-Si-N1	117,3(2)	C21 - C2 - N1	110,8(4)	
C4-Si-N2	114,1(2)	C22-C2-N1	109,0(3)	
C5-Si-N1	113,9(2)	C23 - C2 - N1	109,1(3)	
C5-Si-N2	118,4(2)	C22 - C2 - C21	108,7(4)	
C5-Si-C4	104,4(3)	C23 - C2 - C21	108,3(4)	
		C23 - C2 - C22	111,0(4)	
n2-0-n1	99,8(1)			
C1-0-Sn1	133,2(2)	C31 - C3 - N2	109,1(3)	
C1-O-Sn2	127,0(2)	C32 - C3 - N2	109,6(4)	
		C33 - C3 - N2	111,3(4)	
$n^2-n^2-n^2$	91,1(1)	C32 - C3 - C31	107,4(5)	
Si-N1-Sn1	97,5(1)	C33 - C3 - C31	111,5(5)	
Si-N1-Sn2	91,0(1)	C33 - C3 - C32	108,0(4)	
C2-N1-Sn1	121,1(2)			
C2-N1-Sn2	120,1(3)			
C2-N1-Si	127,1(3)			

Tabelle 2 Bindungsabstände [pm] und Bindungswinkel [°] (nichtbindende Abstände punktiert) im Molekül Me₂Si(N^tBu)₂Sn₂(O^tBu)Cl (4). Die Standardabweichungen in Klammern berücksichtigen Ungenauigkeiten in den Ortsparametern und beziehen sich auf die letzten Stellen der Zahlenwerte

konfiguration und sind trigonal pyramidal koordiniert mit den für Zinn(II)-Atome der KZ = 3 typischen Bindungswinkeln (Tab. 2). Der Elektronenabzug von N(1)und O wirkt sich in verlängerten Bindungsabständen um diese Atome aus (vgl. z. B. Abstände ausgehend von N(1) mit entsprechenden von N(2) in Tab. 2).

Abb. 1 Zeichnerische Darstellung des Ergebnisses der Röntgenstrukturanalyse von $Me_{2}Si(N^{t}Bu)_{2}Sn_{2}(O^{t}Bu)Cl$ (4) mit Atombezeichnungen.

Während die Winkelsumme um den Sauerstoff genau 360° beträgt, was mit einer sp²-Hybridisierung des Atoms in Einklang steht, beträgt die Winkelsumme um N(2) 352,2°. N(2) befindet sich also in der Spitze einer äußerst flachen Pyramide. Weiterhin fällt auf, daß beide Vierringe keineswegs eben, sondern leicht gefaltet sind. Die Ursache für die von der Planarität abweichende Koordinationsfigur von N(2) und die Faltung der Ringe ist in einem Kontakt N(2)...Sn(1) = 295,9(3) pm zu finden, der den Beginn einer Wechselwirkung zwischen beiden Atomen darstellt (van-der-Waals-Abstand $Sn \cdots N = 375 \text{ pm}$ [9], Bindungsabstand $\text{Sn} - \text{N} \approx 205 - 240 \text{ pm} [10]$). Der Winkel Cl $- \text{Sn}(1) \cdots \text{N}(2)$ beträgt 154,6 (1)°, was für eine trigonal-bipyramidale Koordination um das Zinnatom Sn(1) nicht ungünstig wäre. Es liegt nahe, durch "Ablösung" von Cl- aus 4 eine Verbindung aufzubauen, bei der die Elektrophilie am Atom Sn(1) erhöht ist und damit eine festere Bindung Sn(1) - N(2) entsteht. Man würde dadurch zum Kation Me₂Si(N^tBu)₂Sn₂(O^tBu)⁺ gelangen, das zu Me₂Si(N^tBu)₂Sn₂(N^tBu) [6] isoelektronisch und isostrukturell ist. Alle bisherigen Versuche in dieser Richtung (Umsetzung von 4 mit Lewis-Säuren wie AlCl₃, GaCl₃ und SnCl₂) sind jedoch bisher gescheitert.

In der Kristallstruktur von 4 bestehen zwischen den Molekülen ausschließlich van-der-Waals-Kräfte. Intermolekulare Koordinationen des Chloratoms zu anderen Zinnatomen in derselben oder in benachbarten Elementarzellen werden nicht gefunden (kürzester Sn…Cl-Abstand 619 pm). 5 bildet ein Kristallgitter, das sich in den Abmessungen von 4 kaum unterscheidet (exp. Teil); ebenso sind die Raumgruppen beider Verbindungen gleich. Es liegt daher die Annahme nahe, daß beiden Molekülen auch eine ähnliche Struktur zukommt.

Abb. 2 Zeichnerische Wiedergabe des Kations $Me_2Si(N^tBu)_2Sn_2Cl^+$ zusammen mit dem $SnCl_3^-$ -Gegenion (6).

Abb. 3 Das Kation Me₂Si(N^tBu)₂Sn₂Br⁺ als Ausschnitt der Kristallstruktur von 7.

Sn1-Cl1	251,8(5)	Si1-C01	192(2)
Sn1Cl2	254,4(5)	Si1-C02	191(2)
Sn1-Cl3	248,5(5)	N1-C1	149(2)
Sn2-Cl4	263,2(4)	N2-C2	154(2)
Sn2-N1	234(1)		
Sn2-N2	239(1)	C1-C11	149(2)
Sn3-Cl4	266,8(4)	C1-C12	153(3)
Sn3-N1	231(1)	C1 - C13	141(4)
Sn3-N2	227(1)	C2 - C21	156(2)
Si1-N1	182(1)	C2 - C22	153(2)
si1-N2	181(1)	C2-C23	157(2)
Cl2-Sn1-Cl1	93,2(2)	N2-Si1-N1	85,3(5)
Cl3-Sn1-Cl1	94,3(2)	C01-Si1-N1	116(1)
Cl3-Sn1-Cl2	92,6(3)	C01-Si1-N2	114,4(7)
N1-Sn2-Cl4	87,3(3)	C02-Si1-N1	114(1)
N2-Sn2-Cl4	83,9(3)	C02 - Si1 - N2	117,2(8)
N2-Sn2-N1	62,7(4)	C02-Si1-C01	109(1)
N1-Sn3-Cl4	87,1(3)	Sn3-N1-Sn2	90,0(4)
N2-Sn3-Cl4	85,4(3)	Si1-N1-Sn2	88,5(5)
N2-Sn3-N1	65,1(4)	Si1-N1-Sn3	89,6(6)
Sn3-Cl4-Sn2	76,7(1)	C1-N1-Sn2	122,0(9)
C1-N1-Sn3	126,5(9)	C12C1C11	107(2)
C1-N1-Si1	128,5(9)	C13 - C1 - N1	105(1)
Sn3-N2-Sn2	89,9(4)	C13 - C1 - C11	105(3)
Si1-N2-Sn2	87,5(4)	C13 - C1 - C12	118(3)
Si1-N2-Sn3	91,2(4)	C21 - C2 - N2	108(1)
C2-N2-Sn2	121,0(8)	C22 - C2 - N2	107(1)
C2-N2-Sn3	126,9(8)	C22 - C2 - C21	111(2)
C2-N2-Si1	128,4(9)	C23 - C2 - N2	109(1)
C11-C1-N1	108(1)	C23 - C2 - C21	109(2)
C12 - C1 - N1	114(2)	C23 - C2 - C22	113(2)

Tabelle 3 Bindungslängen [pm] und Winkel [°] in der Verbindung 6 mit den Standardabweichungen der letzten Stelle in Klammern

Weitere Abstände in der Koordinationssphäre von Sn1, Sn2 und Sn3:

Sn1011'	355.1(5)
0.1 (10/	994 0(4)
Sn1012	əə4,9(4)
Sn1Cl3′	486,2(5)
Sn2Cl1	372,6(5)
Sn1Cl3	315,4(3)
Sn2Cl2	412,6(4)
Sn3Cl1	395,7(5)

Die Molekülstrukturen der beiden Salze 6 und 7 sind in Abb. 2 und 3 wiedergegeben, während Abstände und Winkel in Tab. 3 und 4 enthalten sind. Wie aus den Figuren zu ersehen, ähneln sich die Kationen von 6 und 7 sehr: in einen verzerrten Tetraeder aus Zinn- und Stickstoffatomen sind an zwei gegenüberliegenden Kanten eine SiMe₂-Gruppe bzw. ein Halogenatom "eingeschoben", so daß jeweils ein-

357(1)

Sn4...Br22

Br11-Sn1	271,8(4)	Br12-Sn1	264,2(4)
Br13-Sn1	279,2(3)	Br22-Sn2	267,3(3)
Br21-Sn2	267,2(3)	Br34-Sn3	273,5(4)
N1-Sn3	230(2)	N2-Sn3	227(2)
N1-Sn4	234(2)	Br34-Sn4	277(4)
N2-Sn4	227(2)	C2-N1	150(3)
Si-N1	178(2)	C11C1	151(4)
C12-C1	148(4)	C13 - C1	163(4)
N2-C1	149(3)	Si-N2	182(2)
C21 - C2	137(7)	C22 - C2	158(6)
C23 - C2	147(6)	C3-Si	188(3)
C4-Si	177(3)		
D-11 0-1 D-10	00.0/1	D-11 C-1 D-19	09 1/1)
Br11 - Sn1 - Br12 D - 12 - S - 1 - D - 12	88,9(1)	Br11 - Sn1 - Br13 $D_{-01} - G_{-0} - D_{-00}$	92,1(1)
Br13 - Sn1 - Br12	94,2(1)	Br21 - Sn2 - Br22	93,5(1)
N1-Sn5-Br54		N2 - Sn3 - N1	04,4(7)
N2 - Sn3 - Br34	88,0(9) 85,0(5)	N2 - 8n4 - N1	00,0(7)
N1-Sn4-Br34	80,9(0)	N2-Sn4-Br34	87,2(9)
Sn4-Br34-Sn3	72,6(1)		
C2-N1-Sn3	127(2)	n_{3-N1-n_{4}	89,5(8)
Si-N1-Sn3	89(1)	Si-N1-Sn4	88,1(9)
Si-N1-C2	129(2)	C2-N1-Sn4	122(2)
C13-C1-C11	109/2)	013-01-019	106(9)
$N_{2} - C_{1} - C_{11}$	115(2)	$N_2 - C_1 - C_{12}$	107(2)
N2 - C1 - C13	107(2)	012 - 01 - 012	113(3)
12-01-015	101(2)	012 -01 -011	110(0)
C1-N2-Sn3	127(2)	C1-N2-Sn4	120(2)
Si-N2-Sn3	89,1(8)	Si-N2-Sn4	89,4(8)
Si-N2-C1	128(2)	n4-n2-n3	91,9(6)
C22-C2-N1	115(3)	C22 - C2 - C21	112(5)
$C^{23} - C^{2} - N^{1}$	108(3)	C23 - C2 - C21	106(5)
C23 - C2 - C22	108(4)	C21 - C2 - N1	108(4)
N2-Si-N1	85(1)	C4-Si-N1	116(1)
C3-Si-N2	113(1)	C3-Si-N1	114(1)
C4-Si-N2	114(1)	C4-Si-C3	112(1)
Einige Abstände i	n den Koordinationssphären	der Zinnatome:	
Sn1Br11'	335,7(4)	Sn2Br12	350,0(4)
Sn1Br22	352,7(4)	Sn4Br12	352(1)

306,5(4)

Sn2...Br13'

Tabelle 4 Bindungsabstände [pm] und Bindungswinkel [°] im Ionenpaar $Me_2Si(N^tBu)_2Sn_2Br+Sn_2Br_5^-$ (7). Standardabweichungen wie in Tab. 2

atomige Brücken entstehen. Im Unterschied zu $Me_2Si(N^tBu)_2Sn_2O$, das einen vergleichbaren SiN_2Sn_2X -Polycyclus enthält, sind die vier Sn - N-Abstände nicht gleich groß. Sowohl bei 6 wie auch bei 7 tritt eine "Asymmetrie" in den Sn - N-Abständen auf (vgl. Tab. 3 und 4), die auf intermolekulare Kontakte der Sn-Atome zurückzuführen ist. Wie ein Vergleich der Tab. 3 und 4 jedoch lehrt, lassen sich die Abstände in den Molekülen sehr gut miteinander vergleichen. Erwartungsgemäß führt das größere Bromatom in 7 zu längeren Abständen zu den

Abb. 4 Ein größerer Ausschnitt aus der Kristallstruktur von 6 mit längsgestreiften Chloratomen und quergestreiften Zinnatomen. Die $SnCl_3$ -Anionen (herausgehoben durch die ausgefüllten Bindungsabstände) bilden eine Kette, an die die Kationen "lose" (vgl. Abstände in der Koordinationssphäre der Zinnatome von Tab. 3) angebunden sind.

Zinnatomen als das kleinere Chloratom in 8, was sich auch in unterschiedlichen Winkeln auswirkt (Tab. 3 und 4). Die Sn - X - Sn-Brücken sind in beiden Fällen weitgehend symmetrisch.

Während in 6 als Gegenion zum Kation ein $SnCl_3$ -Anion fungiert (vgl. auch Lit. [11]), besteht dasjenige von 7 aus einem $SnBr_3$ -Anion, an das zusätzlich eine $SnBr_2$ -Einheit koordiniert ist (Tab. 3 und 4). Die Sn-Br-Sn-Brücke der Einheit $Br_2Sn-Br-SnBr_2$ ist also nicht symmetrisch wie in anderen Strukturen [12, 13], sondern stark asymmetrisch. In Abb. 4 und 5 sind die Verknüpfungen

Abb. 5 Ein größerer Ausschnitt aus der Kristallstruktur von 7. (Schraffur der Atome: längs Brom, quer Zinn). SnBr_3 -Anionen (siehe ausgefüllte Bindungen) bilden zusammen mit den SnBr_2 -Einheiten (ausgefüllte Bindungen) ein Doppelband, das durch die Mitte der Darstellung verläuft. Jeweils an die SnBr_2 -Einheiten sind die Kationen von Abb. 3 koordiniert.

dieser Anionen untereinander und zu den oben diskutierten Kationen nochmals gesondert gezeichnet. Bei 6 ist die strukturbestimmende Anordnung ein unendliches Band aus $SnCl_3$ -Pyramiden, an die über Chlorbrücken die Kationenkäfige koordiniert sind. 7 ist ganz ähnlich aufgebaut, jedoch mit dem Unterschied, daß sich im Band $SnBr_3^-$ - und $SnBr_2$ -Einheiten abwechseln.

Das Ergebnis der Strukturbestimmung an 8 ist in Abb. 6 dargestellt; die Abstände und Winkel sind in Tab. 5 zusammengefaßt. Die Verbindung $(SnN^tBu)_2SnCl_2$ bildet ein Koordinationspolymeres, dessen strukturelle Basiseinheit aus 3 Zinn- 2 N^tBu-Gruppen und 3 Chloratomen besteht. In ein Dreieck aus drei Chloratomen (Cl(1), Cl(2) und Cl(1')) ist ein nahezu gleichseitiges Dreieck aus drei Zinnatomen derart hineingestellt, daß die Kantenmitten des ersten Dreieckes die Eckpunkte des zweiten Dreiecks bilden. Alle sechs Atome liegen in einer Ebene, die eine Spiegelebene der Raumgruppe darstellt.

Pyramidal oberhalb und unterhalb des zweiten Dreiecks aus Zinnatomen befinden sich zwei Stickstoffatome, die ihrerseits als Substituenten tert-Butylgruppen besitzen. Man kann die Figur auch alternativ als N_2Sn_3 -Bipyramide beschreiben, bei der in der Äquatorebene zwischen den Eckpunkten 3 weitere Atome eingeschoben sind. Das Atom Cl(1) bzw. Cl(1') gehört jeweils zwei $Sn_3(N^tBu)_2Cl_3$ -Basiseinheiten an, stellt also eine Brücke dar. Es entsteht ein unendliches Band

Abb. 6 Ausschnitt aus der Kristallstruktur von $\operatorname{Sn}_3(N^tBu)_2\operatorname{Cl}_2(8)$ mit Atombezeichnungen. Cl1' ist mit aufgenommen (nicht ausgefüllte Bindungen), um das $\operatorname{Sn}_3(N^tBu)_2\operatorname{Cl}_3$ -Polyeder in seiner Gesamtheit darstellen zu können.

Sn1-Cl2	268,9(4)	C1-C2	159(2)	
n1-N	223,0(8)	C1-C3	154(2)	
Sn2Cl1	284,8(4)	C1-C4	157(2)	
n^2-N	222,2(8)	Sn3Cl1	307, 1(5)	
Sn3-Cl2	280,8(5)	Sn2-Cl1'	309,4(4)	
Sn3-N	223,0(8)	Sn1Cl1'	329,0(3)	
N-C1	149(1)			
N-Sn1-Cl2	88,3(2)	C1-N-Sn2	123,4(7)	
N-Sn2-Cl1	90,0(2)	C1-N-Sn3	124,5(6)	
N-Sn3-Cl2	85,4(2)	C2-C1-N	107,7(9)	
Sn3-Cl2-Sn1	70,4(1)	C3-C1-N	109,0(9)	
Sn2-N-Sn1	93,0(3)	C3-C1-C2	110(1)	
Sn3-N-Sn1	90,5(3)	C4-C1-N	108(1)	
Sn3-N-Sn2	92,7(3)	C4 - C1 - C2	111(1)	
C1-N-Sn1	123,4(7)	C4-C1-C3	112(1)	
Sn1-Cl1-Sn2	60,4(2)	Cl1-Sn1-Cl2	173,6(1)	
Sn2-Cl1-Sn3	65,8(1)	Cl1-Sn2-Cl1'	178,1(2)	
Sn2-Cl1-Sn3'	152,9(2)	Cl2-Sn3-Cl1	167,5(2)	
Sn2-Cl1-Sn1'	80,4(2)		· • ·	

Tabelle 5 Bindungslängen [pm] und Bindungswinkel [°] in der Verbindung 8 (Standardabweichungen wie Tab. 2)

Nichtbindende Atomabstände und Winkel innerhalb der Sn3-Einheit:

Sn1Sn2	323,1(1)	Sn3Sn1Sn2	60,4(1)	
Sn3Sn1	316,8(1)	Sn3Sn2Sn1	58,8(1)	
Sn2Sn3	322,2(1)	$n_2n_3n_1$	60,7(1)	

solcher eckenverknüpfter Dreiecke, die nebeneinander in einer Schicht in der Kristallstruktur verlaufen. Betrachtet man die Anordnung der Polymere aus Richtung der ^tBu – N-Achse (Abb. 7), so erkennt man, daß die Ausrichtung der Sn₃Cl₃-Dreiecke innerhalb des Bandes direkt mit der Anordnung der tert-Butylgruppen zusammenhängt. Letztere versuchen, sich in einer dichtesten Schichtenpackung von Kugelsphären anzuordnen, wodurch die Sn₃Cl₃-Dreiecke gegeneinander "gedreht" werden. Die Chlorbrücken Cl(1) betätigen sich hierbei sozusagen als "Scharniere". Die Kristallstruktur von 8 ist als typische Schichtstruktur zu charakterisieren, wobei die Schichten nur durch van-der-Waals-Kräfte zwischen den tert-Butylgruppen zusammengehalten werden.

Während alle Zinnatome in 8 eine vierfache Koordination besitzen (ψ -trigonale Bipyramide), was sich mit der stereochemischen Aktivität des einsamen Elektronenpaares am Zinn vereinbaren ließe, sind die beiden Chloratome unterschiedlich gebunden. Cl(1) hat vier Zinnatome als nächste Nachbarn, die alle in einer Ebene sind, und besitzt dadurch eine für dieses Element ungewöhnliche, verzerrt planar quadratische Umgebung (vgl. auch [14]). Das Chloratom Cl(2) hat

Abb. 7 Blick auf die Spiegelebene der Kristallstruktur von 8. Die $Cl_3Sn_3^+$ -Doppel-Dreiecke sind jeweils über die Cl1-Atome miteinander verbunden und sind so ineinander verzahnt (linkes Bild), daß die tert-Butylgruppen eine dichteste Packung bilden können (rechtes Bild).

dagegen nur zwei Zinnatome in einem "bindenden Abstand" (vgl. Tab. 5), ist damit zweifach koordiniert und bildet eine Brücke zwischen den Atomen Sn(1) und Sn(3) mit einem Sn—Cl—Sn-Winkel von 70,4(1)° (vgl. auch Struktur von 6). Die drei Sn—N-Abstände sind innerhalb der Standardabweichungen gleich und stehen in guter Übereinstimmung mit Sn—N-Abständen im Sn₄(N^tBu)₄ [15]; die N₂Sn₃-Einheit hat demnach nahezu eine lokale 3 m Symmetrie.

Diskussion der Ergebnisse

Während sich das cyclische Bis(amino)stannylen 1 mit den gemischten Alkoholaten (^tBuO)SnX (X = Cl, Br) nur zum neutralen Lewis-Säure-Base-Addukt 4 bzw. 5 umsetzt, führt die Reaktion von 1 mit den Dihalogeniden SnCl₂ bzw. SnBr₂ zu einem Salz 6 bzw. 7. Im Falle von 4 bzw. 5 wirkt das Bis(amino)stannylen gegenüber der zweiten Komponente als "Dihapto"-, im Falle von 6 und 7 jeweils als "Trihapto"-Ligand (vgl. auch Lit. [4]). Bei 4 und 5 ist die Reaktionskomponente von 1 nicht befähigt, ein Cl⁻ bzw. Br⁻ als komplexes Anion zu stabilisieren. Anders ist die Situation bei 6 oder 7. Hier vermag überschüssiges SnCl₂ bzw. SnBr₂ Cl⁻ bzw. Br⁻ in Form der komplexen Ionen SnCl₃⁻ und SnBr₃ · SnBr₂⁻ abzufangen. Eine Abtrennung von Chlorid oder Bromid durch Zusatz von SnCl₂ bzw. SnBr₂ aus 4 und 5 ist uns bisher noch nicht gelungen.

Die Verbindung 8, $(SnN^tBu)_2[SnCl_2]$, ist formal ähnlich zusammengesetzt wie $(SnN^tBu)_2[Sn(NH^tBu)_2]$ [4] und $(SnN^tBu)_2[Sn(O^tBu)_2]$ [4]. Während letztere jedoch Moleküle darstellen, ist 8 ein Koordinationspolymer, das offenbar nur im Festkörper beständig ist. Für diesen Eigenschaftsunterschied sind die fehlenden Liganden an den Chloratomen in 8 verantwortlich.

Experimenteller Teil

Alle Umsetzungen wurden unter N₂-Schutzgas in abgeschlossenen Glasapparaturen ausgeführt. Die ¹H-NMR-Spektren (δ -Werte, ppm) erhielten wir auf einem Bruker WP 80 (80 MHz), die Massenspektren auf einem Varian MAT 311 bei 70 eV. Zu Röntgenbeugungsaufnahmen benutzten wir Weißenbergkameras der Fa. Stoe, Darmstadt, Buerger-Präzessions-Kameras der Fa. Huber, Rimsting und Debye-Scherrer-Kameras der Firma Philipps. Die C-, H-, N-Analysen wurden vom mikroanalytischen Laboratorium Beller, Göttingen, durchgeführt.

Umsetzung von 1 mit tert-Butoxi-zinn(II)-chlorid (2) und -bromid (3)): 1,3,5-Tri-tertbutyl-2,2-dimethyl-6-chlorid-1-azonia-2-sila-3-aza- $4\lambda^2$, $6\lambda^2$ -distannata-5-oxoniabicyclo-

[2.2.0] hexan (4) und 6-bromid-1-azonia-2-sila-3-aza- $4\lambda^2$, $6\lambda^2$ -distannata-5-oxonia-bicyclo-[2.2.0] hexan (5). Zu einer Lösung aus 482 mg (2,12 mmol) 2 [5] bzw. 575 mg (2,12 mmol) 3 [5] in jeweils 10 ml Toluol werden 0,55 ml (676 mg; 2,12 mmol) 1 [16] bei -50° C zugegeben. 4 und 5 kristallisieren aus diesen Lösungen farblos aus und fallen in Ausbeuten von 0,97 g (84%) (4) bzw. 1,16 g (93%) (5) an.

 $\begin{array}{l} C_{14}H_{33}\text{ClN}_2\text{OSiSn}_2 \ (546,35) \ (4). \ \text{Farblose Kristalle mit Schmelzpunkt: 97 °C.} \\ ^1\text{H-NMR} \ (\text{Benzol}): \ \delta = 0,25 \ (2,0,\ s;\ \text{Si}-\text{CH}_3), \ 1,38 \ (9,0,\ s;\ \text{O}-\text{C}-\text{CH}_3 \ \text{und} \ \text{N}-\text{C}-\text{CH}_3) \ \text{pm.} \\ \text{Ber. C } 30,78 \ (\text{gef. 31,33}), \ \text{H} \ 6,09 \ (6,13), \ \text{Cl} \ 6,49 \ (6,62), \ \text{N} \ 5,13 \ (5,12), \ \text{Sn} \ 43,45 \ (43,0)\%. \\ C_{14}H_{33}\text{BrN}_2\text{OSiSn}_2 \ (590,80) \ (5). \ \text{Farblose Kristalle mit Schmelzpunkt: 118 °C (Zers.).} \end{array}$

¹H-NMR (Benzol): 240 K: $\delta = 0,18$ (2,0, s; Si-CH₃), 1,41 (9,0, s; O-C-CH₃ und N-C-CH₃) ppm.

310 K: $\delta = 0,24$ (2,0, s; Si-CH₃), 1,36 (3,0, s; O-C-CH₃), 1,38 (6,0, s; N-C-CH₃) ppm.

350 K: $\delta = 0,31$ (2,0, s; Si-CH₃), 1,32 (9,0, s; O-C-CH₃ und N-C-CH₃) ppm

¹³C-NMR (Benzol-d₆): $\delta = 10,7$ (Si-CH₃), 32,2 (OC(CH₃)₃), 35,7 (NC(CH₃)₃), 56,7 (NC(CH₃)₃), 78,2 (OC(CH₃)₃) ppm.

Röntgenographische Kristallbestimmung: triklin (wahrscheinliche Raumgruppe $P\hat{1}$ (isotyp zu 6)).

a = 835(1), b = 1041(1), c = 1357(2) pm, $\alpha = 102,6(1), \beta = 102,08(9), \gamma = 101,0(1)^{\circ}, V = 1091,58 \cdot 10^{6} \text{ pm}^{3}, Z = 2.$

Ber. C 28,46 (gef. 28,67), H 5,63 (5,60), Br 13,53 (13,5), N 4,74 (4,75), S 40,18 (40,5)%.

Umsetzung von 1 mit Zinn(II)-chlorid bzw.-bromid: 1,5-Di-tert-butyl-6,6-dimethyl-1,5-diazonia- $2\lambda^2$, $4\lambda^2$ -distannato-3-chloronia-6-silatricyclo[2.2.0.0^{2,5}]hexantrichlorostannat (6) und -3-bromonia-6-silatricyclo[2.2.0.0^{2,5}]hexanpentabromodistannat (7). 1,1 ml (4,66 mmol) 1 [10] werden zusammen mit 9,32 mmol wasserfreiem Zinn(II)-chlorid bzw. Zinn(II)-bromid und 300 ml Benzol in einem Kolben vereinigt. Unter ständigem Rühren wird bis zum Siedepunkt des Benzols erwärmt. Dabei geht der größte Teil des Zinnhalogenids in Lösung. Die noch heiße Lösung wird von ungelösten Bestandteilen getrennt; beim Abkühlen wachsen aus der Lösung nadelförmige Kristalle von 6 (1,48 g (45%)) und von 7 (0,36 g (10%)).

C₁₀H₂₄Cl₄N₂SiSn₃ (698,34) (6). Farblose Kristalle mit Schmelzpunkt: 123°C (Zers.).

Massenspektrum: kein Molekülion. Fragmente: m/z = 341, ber. für

 $(C_{10}H_{24}ClN_2Si^{118}Sn^{120}Sn^{-118}Sn^{-}CH_3 + H)^+$; m/z = 320, ber. für

¹H-NMR (Toluol): $\delta = 0.79$ (1,0, s; Si-CH₃), 1,62 (3,0, s; C-CH₃) ppm.

Ber. C 17,20 (gef. C 16,41), H 3,46 (3,24), Cl 20,31 (19,74), N 4,01 (3,96)%.

 $C_{10}H_{24}Br_sN_2SiSn_4$ (1154,60) (7). Gelbe Kristalle, schwerlöslich in Benzol, Hexan, Toluol. Außer Röntgenstrukturbestimmung keine weitere Charakterisierung.

Umsetzung von 1 mit tert-Butylamin in Anwesenheit von Zinn(II)-chlorid: Addukt von Zinn(II)-chlorid an 1,3-Di-tert-butyl-1,3-diaza- $2\lambda^2$, $4\lambda^2$ -distannetidin (8). In einen 50 ml Kolben werden 30 ml Toluol, 1,2 ml (4,66 mmol) 1 und 0,44 g (2,33 mmol) Zinn(II)-chlorid gegeben und noch 3-4 ml Tetrahydrofuran zugefügt, bis das SnCl₂ gerade gelöst ist. Danach versetzt man mit 0,58 ml (4,66 mmol) tert-Butylamin und erwärmt das Reaktionsgemisch auf 80°C. Beim Stehenlassen bei RT wachsen innerhalb von 48 h 1,12 g (86%) farbloser Kristalle von 8.

C₈H₁₈Cl₂N₂Sn₃ (569,28) (8). Farblose Kristallnadeln mit Schmelzpunkt 178°C.

Massenspektrum: m/z = 570, ber. f. $M^+(C_8H_{18}^{35}Cl_2N_2^{120}Sn_2^{118}Sn)$; m/z = 555, ber. f. $(M-CH_3)^+$. m/z = 535.

Tabelle 6 Die Ortskoordinaten und der Parameter des Debye-Waller-Faktors für die Atome der asymmetrischen Einheit der Verbindungen 4, 6, 7 und 8. Die Standardabweichungen in Klammern beziehen sich auf die letzte Stelle der Zahlenwerte. Die angegebenen B-Werte des Temperaturfaktors $\exp(-B \cdot \sin^2 \Theta/\lambda^2)$ wurden nach HAMILTON [17] soweit nötig aus den u_i i-Werten der Atome [5, 7, 8] berechnet

Atom	x	У	Z	B [104 pm2]
Verbindung	4			
Sn1	0,05187(3)	0,06522(3)	0,18935(2)	2,99(2)
Sn2	0,42507(3)	0,26513(3)	0,31538(2)	2,64(2)
Si	0,1350(2)	0,3775(1)	0,27815(9)	2,80(7)
Cl	-0,0406(2)	-0,1340(1)	0,2593(1)	5,2(1)
0	0,3103(3)	0,0605(3)	0,2237(2)	2,9(2)
N1	0,1651(4)	0,2460(3)	0,3405(3)	2,8(2)
N2	0,2652(4)	0,3311(3)	0,2008(2)	2,6(2)
C1	0,3957(6)	-0,0455(4)	0,1996(3)	3,2(3)
C11	0,5550(7)	0,0112(5)	0,1694(5)	5,1(4)
C12	0,2781(8)	-0,1559(5)	0,1065(5)	5,4(4)
C13	0,4401(8)	-0,0958(6)	0,2971(4)	5,5(4)
C2	0,1359(6)	0,2345(4)	0,4461(3)	3,3(3)
C21	0,2103(8)	0,3704(6)	0,5300(4)	5,1(4)
C22	-0,0557(6)	0,1917(5)	0,4342(4)	4.3(4)
C23	0,2229(7)	0,1327(5)	0,4824(4)	4,4(4)
C3	0,3183(6)	0,3849(4)	0,1167(3)	3,3(3)
C31	0,373(1)	0,2789(6)	0,0463(5)	6,5(5)
C32	0,4725(8)	0,5065(6)	0,1663(5)	5,9(5)
C33	0,1806(8)	0,4308(7)	0,0551(5)	6,0(5)
C4	0,2130(9)	0,5556(5)	0,3640(5)	5,3(4)
C5	0,0924(6)	0,3620(6)	0,2111(5)	5,0(4)
Verbindung	6			
Sn1	0,75443(4)	0,49814(4)	0,2969(0)	3,56(7)
Sn2	0,66261(3)	0,42165(3)	0,0330(2)	3,35(6)
Sn3	0,58891(3)	0,34594(3)	0,0120(2)	3,28(7)
Cit	0,7773(2)	0,4438(2)	0,1097(7)	5,6(4)
Cl2	0,7866(3)	0,4544(3)	0,5033(8)	4,5(7)
C13	0,6833(2)	0,4648(4)	0,3337(8)	9,0(9)
C14	0,5887(1)	0,4188(2)	0,1668(6)	4,3(3)
Sil	0,6678(1)	0,3459(1)	-0,1571(6)	3,3(3)
N1	0,6617(4)	0,3460(4)	0,037(2)	3,1(8)

Tabelle 6	(Fortsetzung)
Labene o	(TO DECEMBLY)

Atom	x	у	Z	B [10 ⁴ pm ²]
Verbindung	6			
N2	0,6251(3)	0,3851(4)	-0,155(1)	2,6(6)
C01	0,7206(5)	0.3683(7)	-0.227(4)	7(1)
C02	0.6557(9)	0.2920(7)	0.248(5)	5(2)
C1	0.6864(6)	0.3208(5)	0.146(2)	3-6(9)
C2	0.6063(6)	0.4110(6)	-0.282(2)	3.2(9)
C21	0.6334(8)	0.4515(7)		5(1)
C22	0.5592(7)	0.4220(8)	-0.239(3)	6(1)
C23	0.6075(9)	0.3818(7)	-0.419(2)	5(2)
C11	0.678(1)	0.2737(7)	0.121(5)	8(2)
C12	0.7350(9)	0.327(1)	0.131(6)	9(3)
C13	0,665(1)	0,330(1)	0,287(5)	9(2)
Verbindung	7			
Sn1	0,4255(2)	0,3869(1)	0,56624(9)	2,0(1)
Sn2	-0,0762(3)	0,3867(1)	0,55493(9)	2,3(1)
Sn3	0,1071(2)	0,6026(1)	0,86238(8)	1,40(9)
Sn4	0,0950(2)	0,4399(1)	0,75342(8)	1,67(9)
Br11	-0,3091(3)	0,5579(2)	0,5441(1)	2,4(1)
Br12	0,5982(3)	0,2589(2)	0,5102(2)	3,2(2)
Br13	0,1929(3)	0,2528(2)	0,5841(2)	3,5(2)
Br21	-0,2075(3)	0,3555(2)	0,6616(1)	2,2(1)
Br22	0,1044(3)	0,5270(2)	0,6004(1)	2,6(1)
Br34	-0,0666(3)	0,6137(2)	0,7582(2)	3,0(1)
Si	0,2715(8)	0,4199(5)	0,8650(3)	1,6(3)
N1	0,073(2)	0,436(2)	0,859(1)	1,6(4)
N2	0,278(2)	0,517(2)	0,808(1)	1,2(4)
C1	0,413(3)	0,557(2)	0,777(1)	2,3(5)
C11	0,514(4)	0,481(3)	0,750(2)	3,9(7)
C12	0,357(3)	0,631(2)	0,733(2)	3,1(6)
C13	0,510(4)	0,618(3)	0,829(2)	4,4(7)
C2	0,049(3)	0,378(2)	0,889(1)	1,5(5)
C21	0,009(8)	0,340(6)	0,942(3)	162(2)
C22	-0,128(7)	0,298(5)	0,848(4)	12(2)
C23	0,166(8)	0,449(5)	0,908(3)	14(2)
C3	0,357(3)	0,457(2)	0,941(1)	2,5(6)
C4	0,343(3)	0,306(2)	0,840(2)	3,2(6)
Verbindung	8			
Sn1	0,5872(1)	0,2500(0)	0,4219(1)	2,72(6)
Sn2	0,8001(1)	0,2500(0)	0,2564(1)	2,17(5)
Sn3	0,8560(1)	0,2500(0)	0,4970(1)	2,83(6)
Cl1	1,0407(3)	0,2500(0)	0,3248(3)	3,1(2)
C12	0,6504(5)	0,2500(0)	0,6190(3)	4,6(4)
N	0,7500(7)	0,3621(7)	0,3877(6)	2,1(4)
Ci	0,746(1)	0,497(1)	0,3867(9)	3,2(6)
C2	0,875(1)	0,545(1)	0,353(2)	5(1)
C3	0,653(1)	0,543(1)	0,314(1)	5(1)
C4	0,719(2)	0,550(1)	0,496(1)	6(2)

Ber. f. $(M-Cl)^+$; m/z = 380, ber. f. $(M^{-120}SnCl_2)^+$; m/z = 365, ber. f. $(M^{-120}SnCl_2-CH_3)^+$; m/z = 252, ber. f. $(M-SnCl_2-N^tBu-{}^tBu)^+$; m/z = 192, ber. f. $(M-SnCl_2-SnN^tBu+H)^+$; m/z = 176, ber. f. $(M-SnCl_2-SnN^tBu-CH_3)^+$; m/z = 155, ber. f. $(SnMe)^+$; m/z = 120, ber. f. $(1^{20}Sn)^+$. ¹H-NMR (Benzol): $\delta = 1,10$ ppm.

Ber. C 16,88 (gef. 18,09), H 3,19 (3,44), Cl 12,46 (11,84), N 4,92 (5,14)%.

Rechnungen. Die Strukturrechnungen wurden teilweise am Rechenzentrum der TU Braunschweig, teilweise an einem institutseigenen Rechner mit Hilfe des SHELX-Systems [18] und des ORTEP-Programms [19] und des Programms SCHAKAL [20] durchgeführt.

Dem Fonds der Chemischen Industrie danken wir für die erteilten Hilfen im Zusammenhang mit diesem Vorhaben.

Literatur

- [1] XXVII. Mitteilung: VEITH, M.; LISOWSKY, R.: Angew. Chem. 100 (1988) 1124; Angew. Chem. Int. Ed. Engl. 27 (1988) 1087.
- [2] VEITH, M.: Chem. Ber. 111 (1978) 2536.
- [3] VEITH, M.: Comments Inorg. Chem. 4 (1985) 179.
- [4] VEITH, M.: Angew. Chem. 99 (1987) 1; Angew. Chem. Int. Ed. Engl. 26 (1987) 1.
- [5] HOBEIN, P.: Dissertation, Universität des Saarlandes, Saarbrücken 1987; VEITH, M.; HOBEIN,
 P.: Z. Naturforsch., Veröffentlichung über Verbindungen des Typs XSnY, in Vorbereitung.
- [6] VEITH, M.; SOMMER, M.-L.; JÄGER, D.: Chem. Ber. 112 (1979) 2581.
- [7] HUCH, V.: Dissertation, Technische Universität Braunschweig, Braunschweig 1984.
- [8] LISOWSKY, R.: Dissertation, Universität des Saarlandes 1988.
- [9] HUHEEY, J. E.: Anorganische Chemie, Prinzipien von Struktur und Reaktivität; Berlin: Walter de Gruyter, 1988.
- [10] VEITH, M.; RECKTENWALD, O.: Top. Curr. Chem. 104 (1982) 1.
- [11] POULSEN, F. R.; RASMUSSEN, S. E.: Acta Chem. Scand. 24 (1970) 150.
- [12] BECK, H. P.; GLICQUE, G.; NAU, H.: Z. anorg. allg. Chem. 536 (1986) 35.
- [13] BECK, H. P. : Z. anorg. allg. Chem. 53 b (1986) 45.
- [14] WELLS, A. F.: Structural Inorganic Chemistry, 4. Ed.; Oxford: Clarendon, 1975, S. 326 u. f.
- [15] VEITH, M.; RECKTENWALD, O.: Z. Naturforsch. 38 b (1983) 1054.
- [16] VEITH, M.: Angew. Chem. 87 (1975) 287; Angew. Chem. Int. Ed. Engl. 14 (1975) 263.
- [17] HAMILTON, W. C.: Acta Crystallogr. 12 (1959) 609.
- [18] SHELDRICK, G.: Program for Crystal Structure Determination, Version SHELX-76 and SHELX-86.
- [19] JOHNSON, C. K.: ORTEP, ORNL-3794, Oak Ridge National Laboratory, 1965.
- [20] KELLEB, E.: SCHAKAL 86, Kristall. Inst. der Universität Freiburg.

Bei der Redaktion eingegangen am 15. Juli 1988.

Anschr. d. Verf.: Prof. Dr. M. VEITH, Dr. V. HUCH, Dr. R. LISOWSKY, Dr. P. HOBEIN, Inst. f. Anorg. Chemie d. Univ. des Saarlandes, D-6600 Saarbrücken