Zur Umsetzung von (tert-Butylimino)stannylen mit Chlorwasserstoff

Michael Veith*, Maria Jarczyk und Volker Huch

Anorganische Chemie der Universität des Saarlandes, D-6600 Saarbrücken 11

Eingegangen am 10. August 1987

(tert-Butylimino)stannylen (1) reagiert mit Chlorwasserstoff zu [(BuN(H)-SnCl]1 (2a), 'BuNH1 · SnCl2 (3) und 'BuNHP SnClP (4) Da die Trennung der kristallinen Produkte Schwierigkeiten macht, ist man auf Alternativsynthesen von 2a, 3 und 4 angewiesen. $Me_2Si[N(tBu)H][N(tBu)]SnX$ (6a: X = Cl, 6b: X = Br, 6c: X = I) stellt eine Ausgangsstufe dar, die mit tert-Butylamin zu 2a (X = Cl) und 2b (X = Br) quantitativ umgesetzt werden kann. 3 und 4 entstehen aus 2a u.a. durch HCl-Addition. 6a, b und c zeigen unterschiedliche 'H-NMR-Spektren in Abhängigkeit von der Temperatur, was auf eine intramolekulare Ligandenumordnung hinweist. Die Röntgenstrukturanalysen von 6a (orthorhombisch, Raumgruppe $P2_12_12_1$), 3 (monoklin, $P2_1/c$, und triklin, PI) und 4 (triklin, PI) weisen 6a als Molekül mit einer intramolekularen Donor-Akzeptor-Bindung [Sn - N = 2.347(6)]Å], 3 in beiden Modifikationen als Addukt von SnCl₂ an tBuNH₂ [Sn - N = 2.334(4) Å (monoklin) bzw. 2.338(4) Å (triklin)] und 4als Ionenpaar i BuNH? SnCl? mit H-Cl-Brücken im Kristall aus [Sn-Cl = 2.542 (Mittelwert), C-N = 1.515(6) Å].

Im tetrameren (*tert*-Butylimino)stannylen (1)²⁾ bilden vier Zinn- und vier Stickstoffatome einen verzerrten Würfel³⁾. Jedes Zinnatom ist damit dreifach koordiniert, wobei formal die vierte Koordinationsstelle vom nichtbindenden Elektronenpaar eingenommen wird. Wir haben uns gefragt, inwieweit dieser Polycyclus durch Einwirkung eines kleinen, polaren Moleküls, wie des Chlorwasserstoffs, abgebaut werden kann, und ob dies über isolierbare (nachweisbare) Zwischenstufen erfolgt oder nur das Endprodukt der Reaktionskette erhalten werden kann. In Gleichung (1) sind einige denkbare Verbindungen wiedergegeben.

$$1/4 (tBuNSn)_{4} \xrightarrow{HCl} 1/n (tBu-N-Sn)_{n} \xrightarrow{HCl} 1/n (tBu-N-Sn)_{n} \xrightarrow{HCl} 1 2a$$

$$tBu-\underset{I}{\overset{H}{}} SnCl_{2} \xrightarrow{HCl} tBuNH_{3}^{\textcircled{}} SnCl_{3}^{\textcircled{}} \xrightarrow{\ominus} 4$$

$$(1)$$

Die Formelfolge in (1) erinnert formal an Additionen von HCl an polare Mehrfachbindungen, wie sie z.B. in Bor-Stickstoffverbindungen vorkommen⁴⁾. Neben dem Existenz-

Cyclic Diazastannylenes, XXIV^{11.} - The Reaction of (tert-Butylimino)stannylene with Hydrogen Chloride

(tert-Butylimino)stannylene (1) reacts with hydrogen chloride to form $[tBuN(H)-SnCl]_2$ (2a), $tBuNH_2$ SnCl₂ (3), and tBuNH? SnCl? (4). As separation of the crystalline products is difficult, alternative syntheses for 2a, 3, and 4 are necessary. $Me_2Si[N(tBu)H][N(tBu)]SnX(6a; X = Cl, 6b; X = Br, 6c; X =$ I) is a substrate which may be treated with terr-butylamine to yield 2a (X = Cl) or 2b (X = Br) quantitatively. 3 and 4 are obtained from 2a by addition of HCL 6a, b, and c show temperature dependance in the 'H-NMR spectra which is due to intramolecular ligand rearrangements. X-ray determinations reveal 6a to crystallize in an orthorhombic lattice (space group $P2_12_12_1$), 3 in two different lattices (monoclinic, $P2_1/c$, and triclinic, P1), and 4 again in a triclinic lattice (PI). 6a is a molecule with an intramolecular donor-acceptor bond [Sn-N = 2.347(6) Å], 3 adopts the same structure in the two modifications consistent with an adduct of SnCl₂ and tBuNH₂ [Sn-N = 2.334(4) Å (monoclinic) and 2.338(4) Å (triclinic)], and 4 has to be formulated as an ion pair tBuNH? SnCl? connected by H-Cl bridges in the crystal [Sn-Cl = 2.542 (mean number), C-N = 1.515(6) Å].

nachweis der Verbindungen **2a**, **3** und **4** stand im Vordergrund unserer Untersuchungen auch das Auffinden von zu (1) alternativen Synthesewegen und die strukturelle Charakterisierung der Verbindungen. Zu Vergleichszwecken haben wir bei einigen Derivaten die Chloratome durch Brom- oder Iodsubstituenten ersetzt.

Umsetzung von $(t BuNSn)_4$ (1) mit Chlorwasserstoff

Setzt man (tBuNSn)₄ (1) mit einer gesättigten Lösung von trockenem Chlorwasserstoff in Toluol um, so erhält man je nach vorgegebenem Molverhältnis von 1 zu HCl einen farblosen, kristallinen Niederschlag, der unterschiedliche Mischungsverhältnisse der Produkte **2a**, **3** und **4** enthält. Mit zunehmendem Molverhältnis von HCl:1 (1:1 bis 10:1) findet man ein Ansteigen der Menge von **4** im Vergleich zu **2a** und **3**.

In keinem Fall kann eine völlig reine Substanz isoliert werden. Die Substanzgemische können anhand der Summe ihrer Beugungslinien im Röntgenpulverdiagramm bzw. über charakteristische Verschiebungen im ¹H-NMR-Spektrum in Lösung identifiziert werden. Zu Vergleichszwecken müssen die reinen Substanzen 2a, 3 und 4 über alternative Synthesewege dargestellt werden.

Synthese von $[t BuN(H) - SnCl]_2$ (2a) und $[t BuN(H) - SnBr]_2$ (2b)

Wie in einem Übersichtsartikel⁵⁾ näher ausgeführt, kann man Verbindungen, die nebeneinander ein Lewis-saures und -basisches Zentrum enthalten, konzeptionell als ungesättigt betrachten. Das cyclische Bis(amino)stannylen **5** reagiert entsprechend als ein typischer Vertreter dieser Stoffklasse nach Gleichung (2a) mit Halogenwasserstoffen wie HCl oder HBr unter Addition des polaren Moleküls an die Zinn-Stickstoffbindung und Bildung der Produkte **6a** und **b**.

Dieselben Verbindungen entstehen, wenn man im N,N'-Di-*tert*-butyldimethylsilandiamin (7) zunächst an einem der Stickstoffatome das Wasserstoffatom durch ein Lithiumatom ersetzt (Reaktion mit Butyllithium) und anschließend mit dem Zinndihalogenid umsetzt [Gl. (2b)]. In diesem Fall ist auch die Iodverbindung **6c** zugänglich.

6a, b und c sind durch Kristallisation aus Toluol einfach zu isolieren. Sie stellen weitere Vertreter eines schon länger bekannten Ringsystems dar, das anstatt der Lewis-aciden SnX-Gruppe eine ElX_2 -Gruppe enthält (El = B, Al, Ga, In, Tl; X = Me, Cl⁶⁾. Aus der N-H-Streckschwingung von **6a** bei 3240 cm⁻¹ kann man ablesen, daß SnCl in 6a eine schwächere Bindung zum λ^4 N-Atom ausbildet als z.B. eine GaCl₂-Gruppe [$\tilde{v}(N-H) = 3213 \text{ cm}^{-1}$] oder eine InCl₂-Gruppe $\lceil \tilde{v}(N-H) = 3215 \text{ cm}^{-1} \rceil^{7}$. Verglichen mit Me₂Si- $[N(t Bu)H][N(t Bu)]Sn(C_5H_5) [\tilde{v}(N-H) = 3270 \text{ cm}^{-1}]^{(8)}$ ist die $\lambda^4 N$ Sn-Bindung in **6a** andererseits aber deutlich stärker. Ähnlich wie bei den ElX2-Systemen⁷⁾ erwartet man auch bei 6a-c eine Temperaturabhängigkeit der ¹H-NMR-Spektren. Auf Grund des asymmetrisch koordinierten $\lambda^4 N$ -Atoms und des Zinnatoms findet man bei Raumtemperatur zwei unterschiedliche chemische Verschiebungen für die Methylgruppen am Silicium, was gleichzeitig auch die Ringstruktur in Lösung beweist (zur Struktur im Feststoff siehe weiter unten!). Bei erhöhter Temperatur [6a: 350K, 6b: 374K und **6c**: > 380K (Zers.)] entarten die beiden Signale zu einem Singulett, was auf ein Aufbrechen der $\lambda^4 N - Sn$ -Bindung zurückgeführt werden muß (für eine eingehende Diskussion vgl. Lit.⁷). Die bei den Zinnderivaten (**6a**, **b**) gemessenen Koaleszenztemperaturen T_c liegen deutlich höher als beim $InCl_2$ - und $InBr_2$ -Derivat (295 K bzw. 342 K⁷). Obwohl die Lewis-Acidität von SnCl schwächer ist als von $InCl_2$ (NH-Frequenzen!), ist die Temperatur T_c höher, was offenbar durch unterschiedliche sterische Faktoren bedingt ist. Korrelieren lassen sich jedoch $\tilde{v}(N-H)$ und T_c beim Vergleich der Zinnverbindung 6a mit Me₂Si[N(tBu)H]- $[N(t Bu)]Sn(C_5H_5)$, wobei bei letzterer Verbindung sowohl

die Lewis-Acidität am Zinnatom als auch T_c mit 243 K⁸⁾ niedriger sind.

Die $\lambda^3 N - Sn$ -Bindung in 6a - c ist für den Angriff einer weiteren wasserstoffhaltigen polaren Elementverbindung zugänglich (ausführliche Diskussion vgl. Lit.⁵). Setzt man nun 6a und **b** mit *tert*-Butylamin im Molverhältnis 1:1 um, so erhält man nach (3) die asymmetrisch substituierten Halogen-Amin-Zinnverbindungen **2a** und **b** in hoher Ausbeute.

$$6a,b + tBuNH_2 \rightarrow Me_2Si[N(tBu)H]_2 + 1/2 [tBuNH-SnX]_2 (3)$$

$$7 \qquad 2a: X = Cl$$

$$2b: X = Br$$

Aus dem Lösungsmittel Toluol kristallisieren farbloses 2aund b, während 7 in der Lösung verbleibt. Nach massenspektroskopischen Untersuchungen und Molmassenbestimmungen sind die Verbindungen jeweils dimer. Die Kristalle sind stark verwachsen, so daß nur verzwillingte Einkristalle von 2a erhalten werden konnten. Nach einer vorläufigen Röntgenstrukturbestimmung⁹¹ kann man trotz der Unsicherheit, die durch die Verwachsung bedingt ist, ein Strukturmodell ableiten, das in Formel 8 skizziert ist.

Die Moleküle besitzen einen zentralen Sn_2N_2 -Vierring, der stark gefaltet ist, so daß sich eine zusätzliche $Sn - Cl \cdots Sn$ -Brücke ausbilden kann. Das in Formel 8 dreibindig ausgewiesene Zinnatom erlangt im Kristall durch intermolekulare $Cl \cdots Sn$ -Wechselwirkung ebenso wie das zweite Zinnatom die Koordinationszahl 4. Auf die Lösung übertragen kann man sich vorstellen, daß ein Gleichgewicht zwischen zwei gleichberechtigten Formen existiert, wie in der Skizze verdeutlicht.

Synthesen von $t \operatorname{BuNH}_2 \cdot \operatorname{SnCl}_2(3)$ und $t \operatorname{BuNH}_3^{\oplus}$ SnCl₃^{\ominus} (4)

Läßt man auf eine Aufschlämmung von Zinn(II)-chlorid in Diethylether oder Tetrahydrofuran *tert*-Butylamin einwirken, so kann man weder bei Raumtemperatur noch unter Rückfluß eine Reaktion zwischen der formalen Lewis-Säure SnCl₂ und der Lewis-Base *tert*-Butylamin einleiten. Sehr ein-

Chem. Ber. 121, 347-355 (1988)

fach erhält man jedoch das Addukt dieser Säure und Base durch Umsetzung von 2a mit einem weiteren mol Chlorwasserstoff [Gl. (4a)].

Eine alternative Methode ist in Gl. (4b) angegeben, die 3 in etwas geringerer Ausbeute liefert. Nach Gl. (4b) wird durch HCl sowohl eine Zinn-Stickstoff – als auch eine Silicium-Stickstoff-Bindung gespalten. Folgerichtig resultiert neben 3 in gleichem Molverhältnis das *tert*-Butyl(chlordimethylsilyl)amin (9). Die Reaktionswege (4a) und (4b) sind insofern bemerkenswert, als nach dem ersten Verfahren 3 in einer monoklinen Modifikation entsteht, während im zweiten Verfahren 3 in einer triklinen Phase erhalten wird. Die Kristallstrukturen der beiden Modifikationen sind weiter unten ausführlich diskutiert. Kristalle beider Modifikationen von 3 sind im Unterschied zu 2a in Diethylether oder Benzol bzw. Toluol nur schwer löslich.

Das chlorreichste Abbauprodukt des (*tert*-Butylimino)stannylens (1), das $t \operatorname{BuNH}_{3}^{\oplus} \operatorname{SnCl}_{3}^{\ominus}$ (4), wird in reiner Form nach Gleichung (5a), (5b) und (5c) erhalten.

Die Chlorwasserstoffadditionen an 2a und 3 [Gl. (5a) und (5b)] in jeweils unterschiedlichen Molverhältnissen zeigen, daß die Bildung von 4 aus 1 höchstwahrscheinlich über die Zwischenstufen 2a und 3 abläuft. Die geringe Löslichkeit von 4, verglichen mit 2a und 3, legt nahe, daß Gleichgewichte, die man zwischen den einzelnen Stufen von Gleichung (1) annehmen kann, schließlich bis zum endgültigen Abbauprodukt 4 verschoben werden. Die in Gleichung (5c) wiedergegebene Reaktion spielt sich an Phasengrenzen ab, ist aber nach Auswertung der Pulveraufnahme des Produktes 4 quantitativ. Das in der Formel zum Ausdruck kommende Ionenpaar ist eine angemessene Beschreibung von 4, wie aus der im nächsten Kapitel erläuterten Strukturanalyse hervorgeht.

Die Molekül- und Kristallstrukturen von 6a, 4 und der beiden Modifikationen von 3

In Tab. 1 sind die wichtigsten Kenngrößen der Kristall- und Strukturbestimmungen von **6a**, 3 (monoklin und triklin) und **4** wiedergegeben. Die Pulverlinien von **2a** sind orthorhombisch *C*-indizierbar und die resultierenden Gitterkonstanten sind ebenso aufgeführt, da wir sie zur Identifizierung der Substanzgemische benutzt haben. Zu den Strukturfaktorrechnungen wurden die Atomformfaktoren des SHELX-Systems¹⁰ verwendet. Die F_0/F_c -Vergleiche sowie anisotrope und isotrope Temperaturfaktoren sind hinterlegt¹¹, die Atomkoordinaten sind tabellarisch (Tab. 6) im experimentellen Teil enthalten. Wichtige Bindungslängen und Winkel sind für die verschiedenen Strukturen in Tab. 2–5 aufgenommen.

Abb. 1. Das Molekül 6a nach Röntgenstrukturanalyse

In der Kristallstruktur von 6a sind Moleküle über Wasserstoffbrücken eindimensional "locker" verbunden, wobei der Cl...H-Abstand 2.82(2) Å beträgt. Die Moleküle 6a besitzen einen leicht geknickten SnN2Si-Vierring mit einem Wasserstoffatom am N(2) und einem Cl-Atom am Sn, die in die gleiche Richtung weisen, also "cis"-konfiguriert sind (Abb. 1). Diese beiden Atome, Cl und H, scheinen auch intramolekular miteinander wechselzuwirken, wobei der Abstand Cl...H mit 2.86 Å sich nur unwesentlich vom intermolekularen unterscheidet. Im Einklang hierzu findet man einen spitzeren Cl-Sn-N(2)-Winkel im Vergleich zu Cl - Sn - N(1) (Tab. 2). Überraschenderweise ist, verglichen mit dem freien Bis(amino)stannylen 5¹²⁾, durch Addition des HCl-Moleküls an den Vierring nicht nur die Sn-N(2)-Bindung erwartungsgemäß um 0.256 Å aufgeweitet, sondern gleichzeitig die Sn - N(1)-Bindung um 0.145 Å verkürzt. Die Sn - N(1)-Bindungslänge von 1.946(5) Å ist unseres Wissens der kleinste jemals beobachtete Wert für eine $\lambda^3 Sn - \lambda^3 N$ -Bindung bzw. für eine Sn-N-Bindung überhaupt¹³⁾. Erklären läßt sich dieser Minimalwert eventuell damit, daß die Elektronendichte, die das vierfach koordinierte Stickstoffatom N(2) mit der formal positiven Ladung "kompensiert", im wesentlichen zwischen dem sp^2 -hybridisierten N(1) und Sn lokalisiert ist. Die Sn-Cl-Bindung ist, wie ein Vergleich zu 3 lehrt, im erwarteten Bereich. Die HCl-Addition an 5, die zu 6a führt, ist von großen sterischen Zwängen begleitet. Der tert-Butyl-Ligand an N(2) mit C(1) als Zentralatom "drückt" auf die Dimethylsilyl-Gruppe: C(2) und C(6) weichen durch eine gleichsinnige Bewegung aus [die Winkel N(1,2) - Si - C(2) sind systematisch größer als N(1,2) - Si - C(6) (Tab. 2)]. Gleichzeitig findet man einen ungewöhnlich kurzen Si-C(2)-Abstand. Die Si-N-Bindungslängen in 6a stimmen mit den entsprechenden in 5 annähernd überein. N(2) und Sn stellen Chiralitätszentren dar, da sie vier verschiedene Liganden besitzen (bei Sn zählt als 4. Ligand das nichtbindende Elektronenpaar). Das in Abb. 1 dargestellte Molekül verbindet ein S-konfiguriertes Sn mit einem S-konfigurierten N(2); auch alle anderen Moleküle im Kristall besitzen diese Konformation. Der Kristall enthält damit nur ein Enantiomeres. Es müssen demnach auch Kristalle existieren, die nur das Konformere mit R,R-Konfiguration in der Elementarzelle besitzen. Moleküle mit

Tab. 1. Kristalldaten und Daten zur Strukturbestimmung für die Verbindungen 6a, 3 (monoklin), 3 (triklin), 4 und 2a

	6a	3 (monoklin)	3 (triklin)	4	2a
Kristallsystem	orthorhombisch	monoklin	triklin	triklin	orthorhombisch ^{a)}
Raumgruppe	P 2,2,2	$P2_1/c$	ΡĪ	РĪ	C-zentriert
a [Å]	8.419(5)	9.126(6)	6.421(7)	6.28(2)	11.167(7)
b [Å]	8.845(5)	7.779(3)	7.765(8)	7.35(2)	13.055(8)
c [Å]	20.12(1)	13.022(9)	9.60(1)	12.58(4)	10.561(7)
α [Grad]	90	90	108.7(1)	74.9(3)	90
β [Grad]	90	98.78(5)	90.8(1)	76.8(2)	90
γ [Grad]	90	90	97.15(8)	74.9(3)	90
V [A ³]	1497.7	913.6	449.1	533.3	1539.6
	4	4	2	2	4
$D_x [g/cm^2]$	0.950	1.150	1.170	1.122	1.176
[mm ³]	$0.5 \times 0.13 \times 0.2$	$0.38 \times 0.16 \times 0.1$	$0.41 \times 0.19 \times 0.2$	$0.7 \times 0.23 \times 0.15$	_
Diffraktometer	·	Siemen	s AED 2		<u></u>
Mo-K _a , LP-Korr.	ja	ia	ia	ia	
Verfeinerung der		$ 20^{\circ} > 2\Theta > 30^{\circ}$)° mit 20 Reflexen —		
Gitterkonstanten					
Scan	ω/Θ	ω/Θ	ω/Θ	ω/Θ	
Strukturlösung		— Patterson mit Sc	hweratommethode –		
Reflexe/Parameter	10.04	14.80	12.76	12.76	
Anisotrope Tem-	Sn, Cl, N	Sn, Cl, N, C	Sn, Cl, N, C	Sn, Cl, N, C	-
peraturfaktoren	Si, C(1,3)				
Isotrope Tempe-	übrige C, H	Н	Н	н	
raturiaktoren	1 00	1.00	4.00	0.400	
Gewichis- k_1	1.00	1.00	1.00	2.193	
$R_{\rm Wort}$	0.0040	0.0038	0.0037	0.000996	-
N-WEIL	0.034	0.055	0.031	0.035	_

^{a)} Evtl. verzwillingt. $- {}^{b)} k_1 (\sigma_F{}^2 + k_2 \cdot F{}^2)^{-1}$.

Tab.	2.	Die	wichtigsten	Abstände	(Å)	und	Winkel	(°)
			im N	/Iolekül 6a				

Sn-Cl 2.458(2) N(1)-Sn-Cl 5	3.1(2)
Sn-N(1) 1.946(5) N(2)-Sn-C1 8	34.8(2)
Sn-N(2) 2.347(6) $N(2)-Sn-N(1)$ 7	2.3(2)
Si-N(1) 1.705(6) N(2)-Si-N(1) 9	6.8(3)
Si-N(2) 1.708(6) C(2)-Si-N(1) 11	6.7(4)
Si-C(2) 1.732(8) C(2)-Si-N(2) 11	0.9(4)
Si-C(6) 1.859(8) C(6)-Si-N(1) 11	6.2(4)
N(1)-C(3) 1.436(9) $C(6)-Si-N(2)$ 10	9.6(3)
N(2)-H 0.80(9) C(6)-Si-C(2) 10	(6.3(4))
N(2)-C(1) 1.50(1) Si-N(1)-Sn 10	1.9(3)
C(1)-C(4) 1.40(1) $C(3)-N(1)-Sn$ 12	2.7(5)
C(1)-C(5) 1.52(1) $C(3)-N(1)-Si$ 13	2.5(5)
C(1)-C(7) 1.49(1) Si-N(2)-Sn 8	7.4(3)
C(3)-C(8) = 1.52(1) H-N(2)-Sn	104(7)
C(3)-C(9) 1.44(1) H-N(2)-Si	93(7)
C(3)-C(10) 1.47(1) $C(1)-N(2)-Sn$ 11	4.4(5)
C(1)-N(2)-Si 13	1.7(5)
C(1)-N(2)-H	120(7)
C(4)-C(1)-N(2) 108.5(7) $C(8)-C(3)-N(1)$ 10	9.2(6)
C(5)-C(1)-N(2) 111.3(7) $C(9)-C(3)-N(1)$ 10	8.4(7)
C(5)-C(1)-C(4) 107.1(8) $C(9)-C(3)-C(8)$ 10	8.9(7)
C(7)-C(1)-N(2) 109.2(7) $C(10)-C(3)-N(1)$ 11	6.2(6)
C(7)-C(1)-C(4) 106.5(8) $C(10)-C(3)-C(8)$ 10	7.2(7)
C(7)-C(1)-C(5) 114.0(8) $C(10)-C(3)-C(9)$ 10	6.8(7)

Tab. 3. Bindungslängen (Å) und -winkel (°) in 3 (monokline Modifikation)

Sn-Cl(1)	2.472(1)	Sn-C1(2)	2.538(1)
Sn-N	2.334(4)	N-H(1)	0.88(6)
N-H(2)	0.96(6)	N-C(1)	1.498(6)
C(1)-C(2)	1.509(7)	C(1)-C(3)	1.517(7)
C(1)-C(4)	1.526(7)		
C1(2)-Sn-C1(1)	89.4(1)	N-Sn-Cl(1)	82.8(1)
N-Sn-C1(2)	90.1(1)	H(1)~N-Sn	96(4)
H(2)-N-Sn	103(3)	H(2)-N-H(1)	109(5)
C(1)-N-Sn	120.2(3)	C(1)-N-H(1)	122(4)
C(1)-N-H(2)	106(3)	C(2)-C(1)-N	108.5(4)
C(3)-C(1)-N	106.7(4)	C(3) - C(1) - C(2)	113.2(5)
C(4)-C(1)-N	106.4(4)	C(4) - C(1) - C(2)	110.9(5)
C(4) - C(1) - C(3)	110.9(5)		

Tab. 4. Bindungslängen (Å) und -winkel (°) in 3 (trikline Modifikation)

Sn-Cl(1)	2.488(1)	Sn-C1(2)	2.448(1)
Sn-N	2.338(4)	N-H(1)	0.89(12)
N-H(2)	0.93(5)	N-C(1)	1.523(6)
C(1)-C(2)	1.531(7)	C(1)-C(3)	1.512(8)
C(4)-C(1)	1.511(7)		
C1(2)-Sn-C1(1)	93.4(1)	N-Sn-C1(1)	85.6(1)
N-Sn-Cl(2)	84.2(1)	H(1)-N-Sn	124(6)
H(2)-N-Sn	117(3)	H(2)-N-H(1)	101(7)
C(1)-N-Sn	118.1(3)	C(1) - N - H(1)	103(6)
C(1)-N-H(2)	87 (3)	C(2)-C(1)-N	106.9(4)
C(3)-C(1)-N	108.4(4)	C(3) - C(1) - C(2)	110.7(4)
C(4)-C(1)-N	108.1(4)	C(4) - C(1) - C(2)	110.2(5)
C(4) - C(1) - C(3)	112.3(4)		

Tab.	5	. Bin	dungslä	ängen (Å	(i) und	-winkel	(°) im	Katio	on ur	nd Anion
von	4	und	einige	"zwisch	enmol	ekulare"	Abst	ände.	Zur	Bezeich-
			ึกบ	ng der A	Atome	vergleich	ie Abl	o. 5		

Sn-Cl(1)	2.578(1)	Sn-Cl(2)	2.521(1)
Sn-C1(3)	2.527(1)	N-H(1)	1.04(5)
N-H(2)	0.87(5)	N-H(3)	0.71(7)
N-C(1)	1.515(6)	C(1)-C(2)	1.508(7)
C(1)-C(3)	1.519(6)	C(1)-C(4)	1.529(7)
Sn''···Sn'''	3.859(1)	Cl (1''') · · · H(1)	2,29(2)
Sn''Cl(1''')	3.328(1)	$C1(2) \cdots H(3)$	2.85(2)
Sn''···Cl(2')	3.357(1)	C1(3')H(2)	2.42(2)
C1(2) - Sn - C1(1)	89.5(1)	Cl(3) - Sn - Cl(1)	88.2(1)
Cl(3) - Sn - Cl(2)	93.5(1)	H(2) - N - H(1)	112(4)
H(3) - N - H(1)	91(6)	H(3) - N - H(2)	151(7)
C(1) - N - H(1)	98(3)	C(1) - N - H(2)	106(3)
C(1) - N - H(3)	88(6)	C(2) - C(1) - N	106.7(4)
C(3)-C(1)-N	107.6(3)	C(3) - C(1) - C(2)	111.9(4)
C(4)-C(1)-N	107.4(4)	C(4) - C(1) - C(2)	112.2(4)
C(4) - C(1) - C(3)	110.8(4)		

R,S- bzw. *S,R*-Konfigurationen an Sn, N(2) werden nicht beobachtet. Der Grund hierfür dürfte die ungünstige *cis*-Stellung des *tert*-Butyl- und des Chlorsubstituenten in bezug auf die Ringebene von **6a** sein (vgl. auch Lit.⁸⁾), die diese Konfigurationen bedingen würde.

Abb. 2. Ausschnitt aus der Kristallstruktur der monoklinen Phase von 3

Sowohl in der Kristallstruktur der monoklinen Modifikation von 3 als auch in der triklinen sind nahezu identische Einheiten $tBuNH_2 \cdot SnCl_2$ vorhanden, die man als Lewis-Säure-Base-Addukt von tert-Butylamin und Zinn(II)-chlorid ansehen muß. Die beiden Modifikationen unterscheiden sich nur in der dreidimensionalen Verknüpfung, die über Sn…Cl- oder Cl…H-Brücken erfolgt. In der monoklinen Zelle gibt es über Inversionszentren paarweise Wechselwirkungen [Cl(1)...Sn' = 3.226 Å] zwischen zwei Einheiten 3, die über Cl(2) weiterhin zu einem zweidimensionalen Verband zusammenhängen $[Cl(2')\cdots Sn = 3.368 \text{ Å}; einige Was$ serstoff-Chlorbrücken unterstützen diese Koordination]. In Abb. 2 ist ein Ausschnitt dieser Struktur wiedergegeben. Die Zinnatome erreichen durch diese Anordnung eine 3+2-Koordination, die man unter Einschluß des Elektronenpaares am Zinnatom als ψ -oktaedrisch bezeichnen kann. Die trikline Modifikation besitzt, im Unterschied zur monoklinen, nur paarweise auftretende Sn…Cl-Brücken $[Sn \cdots Cl(1') = 3.337 \text{ Å}]$, die wie in der monoklinen Phase zu einem zentrosymmetrischen Sn, Cl(1), Sn', Cl(1')-Vierring führen. Weitere Chlor-Zinnkontakte sind nicht vorhanden, so daß definierte molekulare Dimere vorliegen, wie in Abb. 3 gezeigt. Im Kristall sind diese Dimere über H…Cl-Brükken assoziiert [H(1)···Cl(2") = 2.79 Å], so daß eine Kettenanordnung resultiert. Im Unterschied zur monoklinen Phase besitzen die Zinnatome eine 3 + 1-Koordination, die man als ψ -trigonal-bipyramidal beschreiben kann.

Abb. 3. Ausschnitt aus der Kristallstruktur der triklinen Phase von 3

In den Tab. 3 und 4 sind die wichtigsten Abstände und Winkel für die beiden Modifikationen von 3 zusammengestellt. Die Stickstoffatome sind in beiden Strukturen verzerrt tetraedrisch koordiniert, während an den Zinnatomen (unter Vernachlässigung der intermolekularen Cl...Sn-Kontakte) eine pyramidale Koordinationsfigur mit Winkeln nahe 90° gefunden wird, so wie sie für SnCl₂-Addukte bzw. allgemein für SnX₃-Verbindungen typisch ist¹³. Die Sn-Cl-Bindungslängen variieren in beiden Strukturen mit dem Verknüpfungsgrad der Chloratome zu weiteren Zinnatomen. So ist z.B. der Sn-Cl(2)-Abstand in der triklinen Modifikation der kürzeste, da Cl(2) nur noch eine Bindung zu einem H-Atom eines Nachbarmoleküls betätigt. Andererseits fällt in der monoklinen Struktur die Sn-Cl(2)-Bindungslänge besonders lang aus, da hier das Chloratom zu einem weiteren Zinnatom koordiniert (Abb. 2 und Tab. 3 und 4). Die Sn-Cl(1)-Bindungslängen nehmen eine Mittelstellung ein. wobei die "sekundäre" Cl(1)…Sn'-Bindung senkrecht zur

Bindungsrichtung erfolgt. Die Sn – N-Abstände sind im erwarteten Bereich¹³⁾ und in beiden Modifikationen nahezu gleich lang. Das Addukt von *tert*-Butylamin an 5, das äußerst leicht wieder in die Komponenten zerfällt, besitzt einen Sn – N-Abstand von 2.42(3) Å¹⁴⁾, das Addukt von *tert*-Butylamin an Methylindiumchlorid einen In – N-Abstand von 2.209(5) Å¹⁵⁾. Zieht man nun noch den entsprechenden Abstand in 3 hinzu (Tab. 3 und 4), so folgt aus dieser Zusammenstellung, daß SnCl₂ gerade eine Mittelstellung im Elektronenakzeptorvermögen, und damit in der Lewis-Säure-Stärke, im Vergleich mit Cl₂InMe und Me₂Si(Nt Bu)₂Sn zukommt.

Abb. 4. Die Verknüpfung der SnCl⁹-Anionen untereinander und ihre Wechselwirkung mit den tBuNH⁹/₇-Kationen in der Kristallstruktur von 4

In Abb. 4 ist ein Ausschnitt der Kristallstruktur von 4 abgebildet, in der unschwer die beiden Bestandteile der Struktur, das SnCl^{\odot}-Anion und das *t*BuNH^{\oplus}-Kation, auszumachen sind. Die Anionen bilden eindimensionale Ketten, die durch Chlor-Zinn-Kontakte zwischen den Anionen entstehen $[Cl(1''')\cdots Sn'' = 3.238(1) \text{ Å}; Cl(2')\cdots Sn'' = 3.357(1)$ Å]. Dabei treten immer paarweise Cl...Sn-Brücken auf, mit Inversionszentren in der Mitte der sich bildenden Cl, Sn, Cl', Sn'-Vierecke. Im Unterschied zu den Kristallstrukturen von 3 betätigt jedes Zinnatom zwei solcher Chlorbrücken, so daß die Koordinationsfigur um das Zinnatom U-oktaedrisch ist (Koordinationszahl: 3 + 2). In Abb. 5 ist eine solche Umgebung eines Zinnatoms gesondert herausgezeichnet. Die tert-Butylammonium-Kationen halten die (SnCl₃)_n-Stränge zweidimensional zusammen: ein einzelnes Kation ist über Wasserstoffatome an drei Chloratome von drei unterschiedlichen SnCl₃[⊕]-Einheiten gebunden. Die Wasserstoff-Chlor-Abstände sind außergewöhnlich kurz, was auf eine starke Wechselwirkung zwischen den Anionen und Kationen hinweist (vgl. hierzu Tab. 5). Der kürzeste Abstand wird zwischen Cl(1") und H(1) gefunden, was im

übrigen eine Auswirkung auf die N-H(1)- und die Sn-Cl(1)-Bindung hat. Zur besseren Übersicht der Koordinationssphäre des *tert*-Butylammonium-Ions ist in Abb. 5 eine gesonderte Ansicht gezeichnet.

Abb. 5. Die Koordinationssphären des Zinn- und Stickstoffatoms im Kristall von 4

Die Abmessungen innerhalb der Kationen und Anionen sind von erwarteter Größe¹³⁾. Der längere Sn-Cl(1)-Abstand im Vergleich zu Sn-Cl(2) bzw. Sn-Cl(3) ist auf die stärkere intermolekulare Cl····H-N-Brücke zurückzuführen. Im *tert*-Butylammonium-Kation fällt auf, daß die Bindungswinkel um das Stickstoffatom relativ stark vom Tetraederwinkel abweichen (Tab. 5). Der Grund hierfür dürfte in der intermolekularen "Inanspruchnahme" der Wasserstoffatome für Brückenbindungen zu den Chloratomen liegen. Die Cl···H-N-Winkel sind mehrheitlich nahe an $180 \,^{\circ}$ C [H(1): 175°, H(2): 172°, H(3): 138°].

In bezug auf die Wasserstoffatome H(1) und H(2) ist die *tert*-Butyl-Gruppe in "staggered"-Konformation ausgerichtet. Der C(1)-N-Abstand ist vergleichbar mit dem bei der Verbindung 3 gefundenen (siehe oben).

Vorschlag zum Reaktionsverlauf der Umsetzung von 1 mit HCl

Wie im präparativen Teil ausgeführt, konnten bei der Umsetzung von 1 mit HCl außer 2a, 3 und 4 keine weiteren Produkte in nennenswertem Umfang (>5%) im löslichen (NMR) oder unlöslichen Teil (Röntgenbeugung) des Reaktionsgemisches nachgewiesen werden. Es fällt insbesondere auf, daß keine asymmetrischen Spaltungen des $(t BuNSn)_4$ -Moleküls durch HCl auftreten, was auch aus den Strukturanalysen von **2a**, **3** und **4** hervorgeht. Vor diesem experimentellen Hintergrund läßt sich ein Reaktionsverlauf für die Umsetzung von **1** mit HCl formulieren, der als Quintessenz unserer Untersuchungen in Gleichung (6) zusammengestellt ist.

Die unterbrochenen Linien in Gleichung (6) durchschneiden immer diejenigen Bindungen, die durch die Addition des HCl gespalten werden.

Experimenteller Teil

Alle Reaktionen wurden unter Stickstoff als Schutzgas in Stockschen Vakuumapparaturen durchgeführt.

¹H-NMR-Spektren: Gerät der Firma Bruker (WP80-FT, 80 MHz). – IR-Spektren: Perkin-Elmer, IR-Spektrometer 597. – Massenspektren: Gerät der Firma Finnigan-MAT 90. – Kristallparameter wurden an Weissenberg-, Buerger- und Pulverkameras bestimmt. – C-, H-, N-Analysen führte die Firma Beller, Göttingen, durch. Alle anderen quantitativen Elementbestimmungen erfolgten auf naßchemischem Wege. – Die Berechnungen erfolgten auf einer Micro-VAX mit dem SHELX-Programmsystem¹⁰⁾ und ORTEP¹⁶⁾.

Zinn(II)-(tert-butylamid)chlorid (2a) und Zinn(II)-(tert-butylamid)bromid (2b): Zu 5.43 mmol 6a bzw. 6b in 10 ml Toluol werden vorsichtig 0.57 ml tert-Butylamin zugefügt und anschließend wird bei Raumtemp. gerührt. Beim Abkühlen auf -20° C kristallisiert farbloses 2a bzw. 2b aus der eingeengten Lösung. Nach Umkristallisieren aus Toluol gewinnt man 1.15 g (94%) 2a bzw. 1.25 g (87%) 2b.

2a: Schmp.: Zers. bei 130 °C ohne Schmelzen. – ¹H-NMR (Benzol): $\delta = 1.02$ (s; 9H, CCH₃). – MS (70 eV): Mit berechnetem Isotopenmuster identisch, Peak höchster Intensität dieses Musters: m/z = 452 (C₈H₂₀³⁵Cl₂N₂¹¹⁸Sn¹²⁰Sn, M). Kristalldaten von **2a** siehe Tab. 1.

 $\begin{array}{rl} C_8H_{20}Cl_2N_2Sn_2 \ (452.6) & \mbox{Ber. C} \ 21.23 \ H \ 4.45 \ Cl \ 15.67 \ N \ 6.19 \\ & \mbox{Gef. C} \ 21.80 \ H \ 4.93 \ Cl \ 15.90 \ N \ 6.30 \\ & \mbox{Molmasse} \ 474 \ (kryoskop. \ in \ Benzol) \end{array}$

Verbindung Atom	6a: x	У	z	B (Å2)
Sn Cl Si N(1) N(2) H C(1) C(2) C(3) C(3) C(4) C(5) C(5) C(6) C(7) C(8) C(9) C(10)	0.0877(1) 0.1899(3) 0.3241(2) 0.1229(7) 0.3543(8) 0.406(1) 0.406(1) 0.396(1) 0.397(1) 0.577(1) 0.438(1) 0.292(1) -0.151(1) 0.059(1) -0.025(1)	0.4140(1) 0.1978(3) 0.3270(2) 0.3148(7) 0.4522(7) 0.4522(7) 0.39(1) 0.6150(9) 0.2193(8) 0.670(1) 0.631(1) 0.1507(8) 0.706(1) 0.303(1) 0.185(1) 0.074(1)	$\begin{array}{c} 0.05792(2)\\ -0.0058(1)\\ 0.1510(1)\\ 0.1430(3)\\ 0.0876(3)\\ 0.065(4)\\ 0.2254(4)\\ 0.2254(4)\\ 0.1738(3)\\ 0.0221(5)\\ 0.1095(5)\\ 0.1346(4)\\ 0.1273(5)\\ 0.1775(4)\\ 0.2401(5)\\ 0.1409(5) \end{array}$	3.96(3) 5.5(1) 2.99(7) 3.5(2) 3.3(2) 7(2) 4.5(3) 5.0(2) 5.5(2) 5.5(2) 5.7(2) 6.2(2)
Verbindung Atom	3 (monoklin): x	У	z	B (Å ²)
Sn Cl(1) Cl(2) N H(1) H(2) C(1) C(2) C(3) C(4)	-0.11632(4) 0.1365(1) -0.0598(2) -0.1726(4) -0.104(7) -0.143(5) -0.329(5) -0.3328(9) -0.3852(6) -0.4156(6)	0.50207(3) 0.4227(2) 0.3817(2) 0.2262(5) 0.173(9) 0.231(7) 0.1643(6) -0.0164(7) 0.1764(9) 0.2866(8)	0.33794(2) 0.4209(1) 0.1671(1) 0.363(5) 0.465(4) 0.3744(3) 0.4161(7) 0.2587(4) 0.4351(5)	3.22(3) 4.30(7) 4.63(7) 3.1(2) 5(1) 4(1) 3.3(2) 5.2(4) 5.3(3) 5.2(3)
Verbindung Atom	3 (triklin): x	У	z	B (A ²)
Sn Cl(1) Cl(2) N H(1) H(2) C(1) C(1) C(2) C(3) C(4)	0.25365(5) 0.6446(2) 0.2201(2) 0.2758(8) 0.39(2) 0.164(9) 0.2283(7) -0.0003(8) 0.2571(9) 0.3743(9)	0.11380(4) 0.1698(3) 0.3387(2) 0.3682(6) 0.46(2) 0.435(8) 0.3348(7) 0.2438(9) 0.5177(8) 0.2068(9)	0.39839(3) 0.4194(2) 0.6402(2) 0.3167(4) 0.34(1) 0.335(5) 0.1536(5) 0.1536(5) 0.1271(7) 0.0671(7)	$\begin{array}{c} 3.86(4) \\ 5.1(1) \\ 5.0(1) \\ 3.8(3) \\ 15(3) \\ 4(1) \\ 3.0(3) \\ 4.8(4) \\ 4.2(4) \\ 4.5(4) \end{array}$
Verbindung Atom	4: ×	У	z	В (А²)
Sn Cl(1) Cl(2) Cl(3) N H(1) H(2) H(3) C(1) C(2) C(3) C(4)	0.82817(5) 0.9360(2) 0.4564(2) 0.6867(3) 0.27(1) 0.49(1) 0.49(1) 0.3522(8) 0.204(1) 0.560(1) 0.226(1)	0.80146(4) 0.4432(2) 0.7495(2) 0.8774(2) 0.3310(8) 0.373(9) 0.211(9) 0.43(1) 0.3355(8) 0.1961(9) 0.287(1) 0.546(1)	0.55243(3) 0.6485(1) 0.7365(1) 0.7442(1) 0.707(4) 0.707(5) 0.729(5) 0.729(5) 0.8529(4) 0.9026(6) 0.9065(5) 0.8579(6)	3.16(4) 3.43(9) 3.9(1) 5.3(1) 3.2(3) 5(1) 4(1) 5(2) 3.4(4) 4.8(5) 4.8(5) 5.1(5)

2b: Schmp.: Zers. bei 125 °C ohne Schmelzen. – ¹H-NMR (Benzol): $\delta = 1.04$ (s; 9H, CCH₃). – MS (70 eV): Mit berechnetem Isotopenmuster identisch, Peak höchster Intensität dieses Musters: m/z = 542 (C₈H₂₀⁷⁹Br⁸¹BrN₂¹¹⁸Sn¹²⁰Sn, M).

 $\begin{array}{rrrrr} C_8 H_{20} Br_2 N_2 Sn_2 \ (541.5) & \mbox{Ber. C } 17.75 \ \ H \ 3.72 \ \ N \ 5.17 \\ & \mbox{Gef. C } 18.14 \ \ H \ 3.82 \ \ N \ 5.10 \end{array}$

tert-Butylamin-Zinn(II)-chlorid-Addukt (3). – a) Monokline Modifikation: Zu 0.5 g (1.1 mmol) 2a in 25 ml Toluol wird unter Rühren eine gesättigte Lösung von HCl (2.2 mmol) in Toluol getropft (die HCl-Lösung ist direkt vor der Zugabe auf ihren Gehalt zu titrieren!). Beim Abkondensieren des Lösungsmittels kristallisieren 0.515 g (89%) nadelförmiger, farbloser Kristalle von 3, die sich in heißem Toluol wieder auflösen.

b) Trikline Modifikation: 1.78 g (5.0 mmol) **6a** in 15 ml Toluol werden mit einer Lösung von 9.5 mmol HCl in Toluol zügig versetzt. Aus der auf 10 ml eingeengten Lösung fällt **3** als farbloser

Feststoff aus. Nach Auflösen in heißem Toluol kristallisiert beim Abkühlen 1.01 g (60%) 3. In der Lösung verbleibt als Hauptprodukt *tert*-Butyl(chlordimethylsilyl)amin (9), was anhand des ¹H-NNR-Spektrums erkannt wird (Darstellung siehe weiter unten).

3: Schmp. (monoklin): $105 \,^{\circ}$ C. – ¹H-NMR (Toluol): $\delta = 0.73$ (s; 9H, CCH₃). Die Kristalldaten der monoklinen und triklinen Modifikation von 3 sind in Tab. 1 enthalten.

tert-Butylammonium-trichlorostannat(II) (4). – a) 1.0 g (2.2 mmol) 2a werden mit einer Toluollösung versetzt, die 8.8 mmol HCl enthält. Es wird kurz zum Sieden des Lösungsmittels erhitzt und danach vom ausgefallenen Niederschlag abfiltriert. Umkristallisieren aus Acetonitril liefert 1.07 g (81%) nadelförmiger, farbloser Kristalle von 4.

b) 0.8 g (3.0 mmol) 3 werden mit einer äquimolaren Menge HCl in Toluol umgesetzt. Es wird analog wie unter a) verfahren und aufgearbeitet. Ausb. 0.78 g (87%) 4.

c) Zu 25 ml Toluol, das pro ml 0.36 mmol HCl enthält, wird unter Rühren 1 ml *tert*-Butylamin getropft. Die entstehende Lösung wird anschließend auf eine Lösung von 1.64 g (8.6 mmol) Zinn(II)chlorid in 20 ml Acetonitril gegeben und mehrere Stunden bei Raumtemp. gerührt, bis alles Zinn(II)-chlorid aufgelöst ist. Beim Einengen des Lösungsmittelgemisches erhält man 2.42 g (94%) **4**.

4: Schmp. 134°C. Schwer löslich in Benzol, Toluol, THF, Chlorbenzol. – ¹H-NMR (Acetonitril): $\delta = 1.33$; (Toluol): $\delta = 1.33$. Kristalldaten sind in Tab. 1 enthalten.

 $\begin{array}{c} C_4 H_{12} Cl_3 NSn \ (299.2) \\ Ber. \ C \ 16.06 \ H \ 4.04 \ Cl \ 35.55 \ N \ 4.68 \ Sn \ 39.67 \\ Gef. \ C \ 16.15 \ H \ 3.89 \ Cl \ 35.97 \ N \ 4.76 \ Sn \ 40.44 \end{array}$

1,3-Di-tert-butyl-2,2-dimethyl-4-chlor- (**6a**), -4-brom- (**6b**) und -4iod-1-aza-3-azonia-2-sila- $4\lambda^3$ -stannatacyclobutan (**6c**). — a) 1.6 g (5.5 mmol) 1,3-Di-tert-butyl-2,2-dimethyl-1,3-diaza-2-sila- $4\lambda^2$ -stannetidin (**5**)¹⁷⁾ in 10 ml Toluol werden mit einer Lösung von 5.3 mmol Halogenwasserstoff (HCl oder HBr) in Toluol tropfenweise versetzt. Es entsteht ein Reaktionsgemisch, das nach ¹H-NMR 36.3% **6a** bzw. 66.5% **6b** enthält. Nach Einengen zur Trockene und Auflösen in Benzol kristallisieren 0.60 g (31%) **6a** bzw. 1.30 g (59%) **6b**.

b) Zu einer Aufschlämmung von 0.16 mol des Zinn(II)-halogenids (SnCl₂, SnBr₂, SnI₂) in 100 ml Diethylether tropft man eine Lösung, die man durch Reaktion von 32.06 g (0.16 mol) 7^{18} mit 0.16 mol Butyllithium in Hexan/Diethylether erhalten hat. Es wird 4 h gerührt, vom entstandenen Lithiumhalogenid abfiltriert und Lösungsmittel und flüchtige Produkte abdestilliert bzw. abkondensiert (beim Iodderivat). Der verbleibende feste bis ölige Rückstand wird in Benzol aufgenommen, woraus 55.19 g (97%) **6a**, 43.20 g (68%) **6b** bzw. 48.86 g (68%) **6c** in Form farbloser (**6a**) bzw. schwach gelber (**6b**, **c**) Kristalle auskristallisieren.

6a: Schmp. 50 °C. - ¹H-NMR (Toluol, 303 K): δ = 0.27 (s; 3 H, SiCH₃), 0.39 (s; 3 H, SiCH₃), 0.99 (s; 9 H, CCH₃), 1.20 (s; 9 H, CCH₃); (Benzol, 303 K): δ = 0.22 (s; 3 H, SiCH₃), 0.38 (s; 3 H, SiCH₃), 0.87 (s; 9 H, CCH₃), 1.20 (s; 9 H, CCH₃); (Toluol, 350 K, Koaleszenztemp.): δ = 0.34 (s; 6 H, SiCH₃), 1.01 (s; 9 H, CCH₃), 1.20 (s; 9 H, CCH₃). - IR: $\tilde{v}(N-H) = 3240$ cm⁻¹. - Kristalldaten in Tab. 1. C₁₀H₂₅ClN₂SiSn (355.6) Ber. C 33.78 H 7.09 Cl 9.97 N 7.88 Gef. C 33.87 H 7.16 Cl 9.86 N 7.95 Molmasse 348 (kryoskop. in Benzol)

6b: Schmp. 25 °C, Zers. 120 °C. - ¹H-NMR (Toluol, 303 K): $\delta = 0.26$ (s; 3H, SiCH₃), 0.38 (s; 3H, SiCH₃), 0.99 (s; 9H, CCH₃), 1.18 (s;

9H, CCH₃); (Toluol, 374 K, Koaleszenztemp.): $\delta = 0.30$ (s; 6H, SiCH₃), 0.98 (s; 9H, CCH₃), 1.19 (s; 9H, CCH₃).

$$\begin{array}{cccccc} C_{10}H_{25}BrN_2SiSn~(400.0) & Ber.~C~30.03 & H~6.30 & N~7.00 \\ & & Gef.~C~30.21 & H~6.25 & N~6.95 \end{array}$$

6c: Schmp. ≈20°C, Zers. 40°C. – ¹H-NMR (Toluol, 303 K): δ = 0.19 (s; 3H, SiCH₃), 0.36 (s; 3H, SiCH₃), 0.89 (s; 9H, CCH₃), 1.16 (s; 9H, CCH₃); (Benzol, 303 K): 0.14 (s; 3H, SiCH₃), 0.36 (s; 3H, SiCH₃), 0.81 (s; 9H, CCH₃), 1.15 (s; 9H, CCH₃); (Toluol, 380 K): δ = 0.26 (s; 3H, SiCH₃), 0.34 (s; 3H, SiCH₃), 0.98 (s; 9H, CCH₃), 1.21 (s; 9H, CCH₃). Oberhalb 380 K Zersetzung der Substanz in Lösung.

(Die schlechten Analysenwerte, besonders bei N, sind auf die extrem hohe Zersetzlichkeit der Substanz zurückzuführen.)

tert-Butyl(chlordimethylsilyl)amin (9): Zu 3.04 g (15.0 mmol) 7 wird eine gesättigte Lösung einer äquimolaren Menge HCl in Toluol gegeben. Bei der fraktionierenden Destillation erhält man bei $52^{\circ}C/20$ Torr 1.52 g (61%) der farblosen Flüssigkeit 9. – ¹H-NMR (Toluol): $\delta = 0.31$ (s; 6H, SiCH₃), 1.11 (s; 9H, CCH₃).

Umsetzungen von (tert-Butylimino)stannylen (1) mit Chlorwasserstoff: Zu 2.0 g (2.6 mmol) 1^{21} in 10 ml Toluol tropft man eine gesättigte Lösung von HCl in Toluol, deren Gehalt man vorher titrimetrisch überprüft. Als Molverhältnisse wählten wir 1: HCl = 1:1, 1: HCl = 1:4 und 1: HCl = 1:10. Die Lösung wird nach Zugabe jeweils eingeengt und vom kristallinen Niederschlag abgetrennt. Während der Gehalt der Lösung über ¹H-NMR-Spektroskopie überprüft wird, wird vom Niederschlag eine Debeye-Scherrer-Aufnahme angefertigt. Röntgenaufnahmen der nach unabhängigen Methoden dargestellten Verbindungen 2a, 3 und 4 dienen zu Eich- und Vergleichszwecken. Wegen der nicht ganz einfachen Materialaufarbeitung haben wir auf eine quantitative Auswertung verzichtet und machen nur qualitative Angaben:

- 1) Molverhältnis: 1: HCl = 1:1. Produkte: **2a**, Spuren **3** und **4**.
- 2) Molverhältnis: 1: HCl = 1:4. Produkte: 2a, 3, 4.
- 3) Molverhältnis: 1: HCl = 1: 10. Produkte: 4, Spuren von 2a und 3.

CAS-Registry-Nummern

1: 71390-34-6 / **2a**: 110935-80-3 / **2b**: 110935-81-4 / **3**: 110935-84-7 / **4**: 110935-85-8 / **5**: 54724-62-8 / **6a**: 110935-82-5 / **6b**: 110935-83-6 / **6c**: 110935-86-9 / **7**: 17940-08-8 / **9**: 60556-33-4 / SnCl₂: 7772-99-8 / SnBr₂: 10031-24-0 / SnI₂: 10294-70-9

- ¹⁾ XXIII. Mitteilung: M. Veith, V. Huch, J. Organomet. Chem. **308** (1986) 263.
- ²⁾ M. Veith, M.-L. Sommer, D. Jäger, Chem. Ber. 112 (1979) 2581.
 ³⁾ M. Veith, O. Recktenwald, Z. Naturforsch., Teil B, 38 (1983) 1054
- ⁴⁾ A. Meller, Fortschr. Chem. Forsch. 26 (1972) 37.
- ⁵⁾ M. Veith, Angew. Chem. **99** (1987) 1; Angew. Chem. Int. Ed. Engl. **26** (1987) 1.
- ⁶⁾ M. Veith, H. Lange, A. Belo, O. Recktenwald, Chem. Ber. 118 (1985) 1600.
- ⁷⁾ M. Veith, A. Belo, Z. Naturforsch., Teil B, 42 (1987) 525.
- ⁸⁾ M. Veith, F. Töllner, J. Organomet. Chem. 246 (1983) 219.
- ⁹⁾ P. Hobein, Dissertation, Univ. Saarbrücken, 1987.
- ¹⁰⁾ G. M. Sheldrick, Program for Crystal Structure Determination, Version 1976 und 1986.

- ¹¹⁾ Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum Energie, Physik, Mathe-matik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52668, der Autoren und des Zeit-

- ¹² M. Veith, Z. Naturforsch., Teil B, 33 (1978) 7.
 ¹³ M. Veith, O. Recktenwald, Top. Curr. Chem. 104 (1982) 1.
 ¹⁴ M. Veith, G. Schlemmer, M.-L. Sommer, Z. Anorg. Allg. Chem. 497 (1983) 157.
- ¹⁵⁾ M. Veith, O. Recktenwald, J. Organomet. Chem. 264 (1984) 19.
- ¹⁶ C. K. Johnson, ORTEP, Oak Ridge Nation. Lab., ORNL-3794, USA, 1965.
 ¹⁷ M. Veith, Angew. Chem. 87 (1975) 287; Angew. Chem. Int. Ed. Engl. 14 (1975) 263.
 ¹⁸ W. Fish, Ush, Chim. Asta 47 (1964) 408.
- ¹⁸⁾ W. Fink, *Helv. Chim. Acta* **47** (1964) 498. ¹⁹⁾ W. C. Hamilton, *Acta Crystallogr.* **12** (1959) 609.

.

[222/87]