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Summary

Model order redution methods provide a powerful means for the broadband simulation

of passive mirowave devies. In partiular projetion-based moment mathing methods

are well-suited for the redution of sparse �nite element systems. However, for real-world

problems, where high-dimensional systems of linear equations are assembled and a large

number of exitations is onsidered in the right-hand side, the projetion matrix may �ll the

main memory and render the proess ine�ient. In this thesis, tehniques were developed

whih, as a result of redued memory requirements, make model order redution appliable

to a large set of real-world problem simulations.

A new adaptive multi-point redution method is introdued whose ore is an inre-

mental error measure. For the proposed single-point method, whih is based on the well-

onditioned asymptoti waveform evaluation, memory requirements are redued by means

of a blok algorithm, whose moment mathing properties are proven in this thesis. Mem-

ory swapping mehanisms for both approahes keep the main memory requirements for the

projetion matrix at a onstant low level during the omputations.

This thesis also inludes an adaptive multi-point method for the broadband �nite ele-

ment simulation of waveguide problems and a broadband sensitivity analysis tehnique.
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Kurzfassung

Verfahren der Modellordnungsreduktion stellen einen leistungsfähigen Ansatz für die breit-

bandige Simulation passiver Mikrowellenkomponenten dar. Insbesondere projektionsba-

sierte, momentenabgleihende Methoden eignen sih für die Reduktion der shwah be-

setzten Finite-Elemente Systeme. In praxisrelevanten Problemstellungen hingegen, bei

denen hohdimensionale Gleihungssysteme assembliert werden und eine groÿe Anzahl

Anregungen in der rehten Seite berüksihtigt werden, kann die Projektionsmatrix den

Arbeitsspeiher füllen und der Prozess ine�zient werden. In dieser Dissertation werden

Algorithmen entwikelt, die aufgrund des reduzierten Speiherbedarfs Reduktionsverfahren

auf eine groÿe Auswahl praxisrelevanter Simulationen anwendbar mahen.

Ein neues Mehrpunktverfahren wird eingeführt, dessen Kern ein inkrementelles Fehler-

maÿ ist. Für das entwikelte Einpunktverfahren, welhes auf der Well-Conditioned Asymp-

toti Waveform Evaluation basiert, wurde der Speiheraufwand mit Hilfe eines Blokalgo-

rithmus reduziert, dessen momentenabgleihenden Eigenshaften in dieser Dissertation be-

wiesen werden. Datenauslagerungsmehanismen für beide Ansätze halten den Arbeits-

speiherbedarf für die Projektionsmatrix während der Berehnung konstant niedrig.

Diese Arbeit beinhaltet des Weiteren ein adaptives Mehrpunktverfahren für die breit-

bandige Finite-Elemente-Simulation vonWellenleiterproblemen und ein Verfahren zur breit-

bandigen Sensitivitätsanalyse.
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Chapter 1

Introdution

1.1 Preliminary Words

Numerial simulation and omputer-aided design proesses enjoy an ever inreasing area of

appliation. This trend is driven by the more and more omplex design of eletroni devies.

Hene, higher frequenies and oupling issues make the design proess more hallenging

and the usage of eletromagneti �eld simulation demanding. Numerial �eld simulation

tehniques provide reliable solutions for eletromagneti problems, even for very omplex

strutures. Ciruit simulators are often employed in a subsequent proess and may utilize

extrated parameters from numerial �eld simulations.

Although the numerial omputations in eletromagnetis do exhibit high memory re-

quirements as well as high omputational osts, progress in hardware development allows

�eld simulations to be run on a standard personal omputer. However, for extended ap-

pliations, e.g. parameter studies or optimization proesses, the simulation methods often

struggle with limited system resoures. At the same time, the simulation of more and

more omplex eletromagneti devies is requested. The numerial simulation of om-

plete strutures suh as printed iruit boards, integrated iruit pakages or full mahine

wirings is the hallenge of today's tehniques. To ful�ll these requirements, signi�ant

e�ort is devoted to both hardware development and improvement of numerial methods.

1



2

1.2 Numerial Simulation

The Finite Element Method

Among numerial simulation tehniques for eletromagneti problems, the �nite element

(FE) method has beome popular due to its �exibility in modeling geometry and material

properties. FE simulation provides a numerial solution for eletromagneti boundary value

problems, whih may be derived from eletromagneti �eld theory. The fous of this thesis

is on the simulation of passive mirowave strutures, where partiularly driven problems [1℄,

[2℄, [3℄ and waveguide problems [4℄, [5℄ are onsidered. The numerial simulation proess

using the FE method typially results in a large-sale sparse system of equations or an

algebrai eigenvalue problem, respetively. The system of linear equations is assembled and

solved for a �xed on�guration. To simulate the frequeny harateristis of a mirowave

omponent, e.g. a mirowave �lter, the solution proess needs to be performed for a large

number of evaluation points. This broadband simulation, however, may result in a time-

onsuming proess. Parameterizing the frequeny in the system of linear equation results

in a problem well-suited for model order redution (MORe) approahes.

Model Order Redution

The main goal of MORe is to �nd a redued order model (ROM), whih approximates the

large-sale system in a ertain parameter range. The most ommon MORe approahes,

whih arise from the �eld of iruit simulation and ontrol theory, may be ategorized into

singular value deomposition-based methods [6℄ and moment mathing methods as the

Asymptoti Waveform Evaluation (AWE) [7℄. The fous of this thesis is on the moment

mathing approahes, whih are more onvenient for the onsidered large-sale FE systems.

While early methods, as the AWE tehnique, su�ered from a de�it in numerial stability,

the later projetion-based methods [8℄ resolved this numerial shortoming. A numerially

stable proess for polynomial parameterized systems is provided by the Well-Conditioned

Asymptoti Waveform Evaluation (WCAWE) [9℄. Multi-point methods, whih were origi-

nally developed to overome the numerial instabilities of early single-point methods [10℄,

are very general approahes and enjoy popularity due to their �exibility, see e.g. [11℄. The

generality of multi-point methods also supports MORe for polynomially parameterized

system.
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1.3 Problem De�nition and Sienti� Contribution

Problem De�nition

The FE simulation of very omplex strutures, in whih a system matrix of very large di-

mension is assembled, �nds its limitation in the available system resoures. This situation

beomes worse if MORe tehniques are employed for broadband simulations. While the

FE system matrix as well as the right-hand side vetors are sparse, the omputed proje-

tion matrix for the MORe proess is a dense matrix, whih may �ll the main memory.

Partiularly for simulations in whih a large number of moments need to be mathed,

the projetion matrix memory requirements may beome a limiting fator. Furthermore,

devies with a large number of exitations result in systems with many right-hand sides,

whih also let the projetion matrix dimension inrease.

The Aim of This Thesis

The purpose of this thesis is to �nd MORe tehniques suitable for the broadband FE

simulation of omplex real-world strutures. Spei�ally, this means making projetion-

based MORe methods, whih are atually very suitable for the FE simulation, aessible

to high-dimensional systems with a large number of right-hand sides.

Sienti� Contribution

An inremental error measure is introdued in Setion 3.3, whih o�ers a very e�ient and

reliable alternative to residual omputations or error-bound evaluations [12℄. This error

measure is used in the bisetion method-based adaptive multi-point algorithm developed

in Setion 3.5. Furthermore, the error measure is used as a termination riterion in an

iterative WCAWE proess, see Setion 3.4. Numerial results indiate that the proposed

adaptive multi-point algorithm requires fewer iterations to reah a given error limit than

the single-point method, even if the WCAWE proess is started at the optimum expansion

frequeny. Hene, the projetion matrix in the multi-point MORe proess is smaller and

requires less memory.

To redue the main memory requirements of the MORe proess, out-of-ore redution

algorithms are developed in Chapter 4. While in-ore algorithms �ll the system require-

ments in eah iteration with the inreasing projetion matrix, the proposed algorithms

keep the main memory requirements for the projetion matrix onstant on the level of the

�rst iteration. Partiularly for highly resonant strutures, where the MORe proess runs

a large number of iterations, this tehnique is bene�ial. In this framework of out-of-ore

tehniques, this thesis gives a detailed proof that the extension of the WCAWE method to

a blok algorithm, provided in [13℄, does math moments.

An additional result of this thesis is a bisetion-based adaptive multi-point MORe

algorithm for waveguide problems in Chapter 5. Furthermore, in Chapter 6 a broadband

sensitivity analysis theory is proposed and disussed in detail on omputed numerial

experiments.
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Available Infrastruture and Implementation Work

For this thesis, a omplete ++ FE ode was available. Furthermore, an extensive mathe-

matial library, inluding linkage to the Intel Math Kernel Library, was used.

During this thesis, a omprehensive framework for MORe was implemented, whih in-

ludes single-point as well as multi-point methods. In partiular, the adaptive methods in

ombination with the error measures as a termination riterion were implemented. Fur-

thermore, a binary data-swapping proess was oded for the out-of-ore approahes. The

ode also inludes an automati parameterization for the FE system.



Chapter 2

Simulation of Eletromagneti

Strutures

The purpose of this seond hapter is to provide an overview of the physial and math-

ematial tools for the FE simulation of passive mirowave omponents. This hapter

begins with a introdution to basi eletromagnetis, whih allows us to de�ne a suitable

boundary value problem for the onsidered �eld analysis. Applying the FE method to the

eletromagneti boundary value problem results in a system of linear equations. The FE

disretization allows us to assemble the system matries parameterized in the frequeny,

whih provides the basis for the later introdued MORe tehniques.

2.1 Maxwell's Equations

Eletri and magneti marosopi phenomena in lassial eletromagnetis are desribed

by the Maxwell equations

∇× E = −∂B
∂t
, (2.1)

∇×H = J +
∂D
∂t
, (2.2)

∇ · D = ̺, (2.3)

∇ · B = 0, (2.4)

whih are Faraday's law of indution, Ampère's iruit law, Gauss's law and Gauss's law

for magnetism, respetively. The onstitutive equations

D = ε0εrE = εE , (2.5)

B = µ0µrH = µH, (2.6)

J = σE , (2.7)

whih de�ne material properties, omplete the physial desription for the eletromagneti

�elds. The material properties in this thesis are onsidered to be symmetri, linear and

time invariant. Table 2.1 gives the de�nition of used physial quantities inluding their

units.

5
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Table 2.1: Symbols of eletromagneti quantities.

Symbol De�nition Unit

E Eletri �eld intensity V/m
D Eletri displaement �eld C/m2

H Magneti �eld intensity A/m
B Magneti �ux density T = V s/m2

J Eletri urrent density A/m2

ρ Eletri harge density C/m3

ε0 Free spae permittivity As/(V m)
εr Relative permittivity −
µ0 Free spae permeability V s/(Am)
µr Relative permeability −
σ Eletri ondutivity A/(V m)
t Time s
ω Angular frequeny rad/s

However, for the investigation of time harmoni settings, Maxwell's equations may be

written in the frequeny domain

∇× ~E = −jω ~B, (2.8)

∇× ~H = ~J + jω ~D, (2.9)

∇ · ~D = ρ, (2.10)

∇ · ~B = 0, (2.11)

where the time dependent physial quantities beome the phasors

~E, ~D,

~H,

~B, ~J and

ρ. As the purpose of this thesis is to employ MORe tehniques for the evaluation of fast

frequeny sweeps, the fous is on the frequeny domain.

The introdued physial quantities �t into a mathematial framework of funtional

spaes. The spae of square integrable salar �elds on the domain Ω ⊂ R
3
is de�ned as

L2(Ω) := {u(x)| ‖u(x)‖L2 <∞} , (2.12)

where the norm ‖·‖L2 is indued by the inner produt

(u,v)L2 =

∫

Ω
uH(x)v(x)dΩ, u,v ∈ C

n. (2.13)

Furthermore, the funtional spaes

H1(Ω) :=
{
u ∈ L2(Ω)|∇u ∈ [L2(Ω)]3

}
, (2.14)

H(curl; Ω) :=
{
u ∈ [L2(Ω)]3|∇ × u ∈ [L2(Ω)]3

}
, (2.15)

H(div; Ω) :=
{
u ∈ [L2(Ω)]3|∇ · u ∈ L2(Ω)

}
, (2.16)

are introdued, whih together with the assoiated salar produts

(u, v)1 = (∇u, ∇v)L2 + (u, v)L2 , (2.17)

(u,v)curl = (∇× u, ∇× v)L2 + (u,v)L2 , (2.18)

(u,v)div = (∇ · u, ∇ · v)L2 + (u,v)L2 , (2.19)
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are Hilbert spaes. Sine we have the inlusions

∇H1(Ω) ⊂ H(curl; Ω), (2.20)

∇×H(curl; Ω) ⊂ H(div; Ω), (2.21)

∇×H(div; Ω) ⊂ L2(Ω), (2.22)

the introdued Hilbert spaes form the sequene

H1(Ω)
∇−→ H(curl; Ω)

∇×−−−→ H(div; Ω)
∇·−−→ L2(Ω). (2.23)

The sequene is alled exat, if

∇×H(curl; Ω) = ker(div) := {u ∈ H(div; Ω)|∇ · u = 0} , (2.24)

∇H1(Ω) = ker(curl) := {u ∈ H(curl; Ω)|∇ × u = 0} , (2.25)

as we have for the Eulidean spae E
3
. However, the exatness property is lost for domains

of non-trivial topology, whih is explained in detail in textbooks as [14℄ and [15℄.

Maxwell's equations naturally �t in this framework of funtional spaes. The eletri

�eld intensity

~E and the magneti �eld intensity

~H belong to the spae H(curl; Ω)

~E, ~H ∈H(curl; Ω). (2.26)

The spae H(div; Ω) is assoiated with the magneti �ux density

~B, the displaement �eld

~D and the urrent density

~J

~B, ~D, ~J ∈ H(div; Ω). (2.27)

Thus, the following diagram shows how Maxwell's equations, with the help of onstitutive

equations, �t into the framework of funtional spaes:

ϕe
∇−→ ~E

∇×−−−→ ~B
∇·−−→ 0

ε l σ µ l
ρ

∇·←−− ~D, ~J
∇×←−−− ~H

∇←− ϕm

. (2.28)

In the diagram above, the eletri salar potential ϕe and the magneti salar potential

ϕm are added into the framework.
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2.2 Boundary Value Problem De�nition

The boundary value problem is based on an eletri �eld formulation. Therefore, the

magneti �eld intensity

~H in Maxwell's equations is eliminated, whih results in the vetor

Helmholtz equation

∇× µ−1∇× ~E − ω2ε ~E = −jω ~J. (2.29)

Furthermore, assuming the soure free domain Ω, with the non-overlapping boundaries

Γ = ΓE ∪ ΓH ∪ ΓΘ ∪ ΓZ , the boundary value problem yields

∇× µ−1∇× ~E − ω2ε ~E = 0 in Ω, (2.30a)

ên × ~E = 0 on ΓE, (2.30b)

ên × ~H = 0 on ΓH , (2.30)

~H × ên = ~HTΘ × ên on ΓΘ, (2.30d)

~H × ên =
1

Zs
ên × ( ~E × ên) on ΓZ , (2.30e)

where ên denotes the outward direted normal unit vetor on the boundary. ΓE and ΓH
represent the eletri walls and magneti walls, respetively. ΓZ is the impedane boundary

with the impedane parameter Zs and ~HTΘ stands for the impressed tangential magneti

�eld strength on the wave port region ΓΘ.

The weak form of the boundary value problem above is obtained by weighting (2.30a)

with ~wi and integrating over the domain Ω
∫

Ω
~wi · ∇ × µ−1∇× ~EdΩ− ω2

∫

Ω
~wi · ε ~EdΩ = 0, (2.31)

where

~wi ∈ H(curl; Ω,ΓE) :=
{
~u ∈ [L2(Ω)]3|~u×∇ ∈ [L2(Ω)]3 and ên × ~u = 0 on ΓE

}
.

(2.32)

Employing Gauss' theorem and the vetor identity

∇ · (~v × ~u) = ~u · (∇× ~v)− ~v · (∇× ~u), (2.33)

we an write

∫

Ω
∇× ~wi · µ−1∇× ~EdΩ− ω2

∫

Ω
~wi · ε ~EdΩ−

∮

Γ
(~wi × µ−1∇× ~E) · êndΓ = 0.

(2.34)

Plugging Faraday's law of indution into the boundary integral results in

∫

Ω
∇× ~wi · µ−1∇× ~EdΩ− ω2

∫

Ω
~wi · ε ~EdΩ+ jω

∮

Γ
(~wi × ~H) · êndΓ = 0. (2.35)

We rewrite the boundary integral as

jω

∮

Γ
. . . dΓ = jω

∫

ΓE

. . . dΓ + jω

∫

ΓH

. . . dΓ + jω

∫

ΓΘ

. . . dΓ + jω

∫

ΓZ

. . . dΓ, (2.36)
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and look on eah boundary separated. On ΓE, we have

jω

∫

ΓE

(~wi × ~H) · êndΓ = jω

∫

ΓE

~H · (ên × ~wi)dΓ = 0, (2.37a)

as ~wi ∈ H(curl; Ω,ΓE). On the boundary ΓH we have by de�nition

jω

∫

ΓH

(~wi × ~H) · êndΓ = −jω
∫

ΓH

~wi · (ên × ~H)dΓ = 0. (2.37b)

The integral on ΓΘ results in

jω

∫

ΓΘ

(~wi × ~H) · êndΓ =jω

∫

ΓΘ

~wi · ( ~H × ên)dΓ

=jω

∫

ΓΘ

~wi · ( ~HTΘ × ên)dΓ, (2.37)

and will be moved to the right-hand side. On the boundary ΓZ the integral yields

jω

∫

ΓZ

(~wi × ~H) · êndΓ =jω

∫

ΓZ

~wi · ( ~H × ên)dΓ

=jω

∫

ΓZ

~wi ·
1

Zs
ên × ( ~E × ên)dΓ

=jω

∫

ΓZ

(ên × ~wi) · (
1

Zs
ên × ~E)dΓ. (2.37d)

Thus, the weak form of the boundary value problem reads

∫

Ω
∇× ~wi · µ−1∇× ~EdΩ+ jω

∫

ΓZ

(ên × ~wi) · (
1

Zs
ên × ~E)dΓ

− ω2

∫

Ω
~wi · ε ~EdΩ = jω

∫

ΓΘ

~wi · (ên × ~HTΘ)dΓ, ∀~wi ∈ H(curl; Ω,ΓE). (2.38)

2.2.1 Impedane Boundary Condition

In some eletromagneti on�gurations, solids with highly ondutive material properties,

lumped network elements or unbounded domains need to be onsidered. To model these

physial e�ets, the impedane boundary ondition (2.30e) may be used.

First we turn to the modeling of solids with highly ondutive material properties, as

for instane metals exhibit. Due to the skin e�et, alternating urrents have the tendeny

to �ow mostly near the surfae of ondutors. The skin depth

δ =

√
2

ωµσ
, (2.39)

de�nes the depth under the surfae where the �eld omponents have dropped by a fator e.
Hene, in ase of large geometrial dimensions of the ondutive solid, ompared to the

skin depth, the solid may be removed and modeled with impedane boundary onditions

on its surfaes. The impedane parameter is then set to

Zs = (1 + j)

√
ωµ

2σ
, (2.40)
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as evaluated in [16℄.

In the free spae, the eletromagneti �eld omponents of a plane wave satisfy

ê× ~E =

√
µ0
ε0
~H, (2.41)

where ê denotes the propagation diretion. This property is used to model in�nite om-

putational domains with absorbing boundary onditions [17℄. Thus, the parameter Zs in
the impedane boundary ondition is set to

Zs =

√
µ0
ε0
. (2.42)

Unlike the impedane boundaries above, sheets assoiated with lumped elements are

allowed to be de�ned in the interior of the omputational domain. The tangential ompo-

nents of the magneti �eld intensity in (2.30e) are therefore rather

~H× ên = ( ~H2− ~H1)× ên,
the di�erene of the �elds on both sides of the sheet. Ampère's iruit law allows us to

write

∮

∂ΓZ

( ~H2 − ~H1)× ênd~s = Kb, (2.43)

where K and b are the surfae urrent density and the width of the sheet, respetively.

Furthermore, we have an eletri voltage along the sheet of length l. With these results,

we an derive the impedane parameter in (2.30e) from Ohm's law as

Zs = Z
b

l
, (2.44)

where Z is the impedane of the lumped element.

2.2.2 Exitation on the Wave Port Region

Waveguide Modes

For the �eld analysis on the boundary ΓΘ, the surfae is subdivided into

ΓΘ =

Nϑ⋃

ϑ=1

Γϑ, (2.45)

where eah Γϑ is de�ned to be the transverse plane of an axially uniform waveguide, whih

is onneted to the devie. For eah waveguide a loal oordinate system is de�ned, where

the z-axis is set as the uniform axis of the waveguide and the transverse plane Γϑ is at

z = 0. Hene, the normal vetor ên on Γϑ in the global oordinates is equivalent to the

loal unit vetor êz of eah waveguide.

Eah supported modal waveform (~eξ,~hξ) in a waveguide may be separated into transver-

sal and axial �eld omponents

~eξ = ~eTξ + êzξ, (2.46)

~hξ = ~hTξ + ĥzξ, (2.47)
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where the subsripts T and z denote the transversal and normal omponents, respetively.

The transversal modal �eld patterns ~eTξ and ~hTξ are normalized beyond their waveform

ut-o� frequeny suh that

∫

Γϑ

(~eTξ × ~hTξ) · êzdΓ = 1. (2.48)

For the superposition of forward and bakward traveling transverse �eld omponents

~ETξ
and

~HTξ in the waveguide, we write

~ETξ(z) = ufξ~eTξ e
−γξz +ubξ~eTξ e

+γξz, (2.49)

~HTξ(z) = ufξ
~hTξ e

−γξz −ubξ~hTξ e+γξz, (2.50)

where γξ, u
f
ξ and u

b
ξ stand for the propagation onstant, and the omplex amplitude of the

forward and bakward traveling waves, respetively. Furthermore, the transversal �elds of

two di�erent waveforms (~eξ,~hξ) and (~eζ ,~hζ) satisfy the orthogonality ondition [18℄

∫

Γϑ

(~eTξ × ~hTζ) · êzdΓ = 0. (2.51)

Hene, de�ning the equivalent modal voltage Vξ and equivalent modal urrent Iξ

Vξ = ubξ + ufξ , (2.52)

Iξ = ubξ − ufξ , (2.53)

the eletromagneti �eld ( ~ET , ~HT ) on Γϑ, i.e. the transverse �eld at z = 0 in the loal

waveguide oordinates, may be written as the expansion

~ET =

Nξ∑

ξ=1

~ETξ =

Nξ∑

ξ=1

Vξ~eTξ, with Nξ →∞, (2.54)

~HT =

Nξ∑

ξ=1

~HTξ =

Nξ∑

ξ=1

Iξ~hTξ, with Nξ →∞. (2.55)

Network Parameter Evaluation

The introdution of omplex modal amplitudes of traveling waves and equivalent voltages

Vζ and urrents Iξ, allows us to determine network parameters for the modeled mirowave

devie [19℄. The generalized impedane Zζξ is de�ned to be the quotient of Vζ and Iξ

Zζξ =
Vζ
Iξ

∣
∣
∣
∣
Iν=0, ∀ ν 6=ξ

, (2.56)

where only one single non-zero urrent is set as exitation. Thus, we have
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where Z denotes the generalized impedane matrix. Therefore, for the boundary value

problem only the transverse magneti �eld

~hTξ of one single modal waveform is employed

as exitation on ΓΘ

~HTΘ = ~hTξ, (2.58)

whih means to plug

~hTξ into (2.38). Hene, the boundary value problem solution, i.e. the

eletri �eld, is denoted as

~E(~hTξ) and in partiular, the eletri �eld on the boundary ΓΘ

is denoted as

~ET (~hTξ). Plugging ~ET (~hTξ) into the orthogonality relation (2.51) and using

the expansion (2.54), we have

∫

ΓΘ

( ~ET (~hTξ)× ~hTζ) · êndΓ =

∫

Γϑ

( ~ET (~hTξ)× ~hTζ) · êndΓ (2.59a)

=

∫

Γϑ









Nξ∑

ν=1

~ETν(~hTξ)



× ~hTζ



 · êndΓ (2.59b)

=

Nξ∑

ν=1

(∫

Γϑ

(

~ETν(~hTξ)× ~hTζ
)

· êndΓ
)

(2.59)

=

∫

Γϑ

( ~ETζ(~hTξ)× ~hTζ) · êndΓ. (2.59d)

Rewriting the transverse �eld with its amplitude, i.e.

~ETζ(~hTξ) = Vζ(~hTξ)~eTζ , we have due
to linearity

VTζ(~hTξ) = VTζ(
1

Iξ
~HTξ) =

1

Iξ
VTζ( ~HTξ). (2.60)

This linearity property together with (2.48), allows us to evaluate the generalized impedane

∫

Γϑ

( ~ETζ(~hTξ)× ~hTζ) · ~endΓ =

∫

Γϑ

(Vζ(~hTξ)~eTζ × ~hTζ) · êndΓ (2.61a)

= Vζ(~hTξ)

∫

Γϑ

(~eTζ × ~hTζ) · êndΓ (2.61b)

=
Vζ( ~HTξ)

Iξ

∫

Γϑ

(~eTζ × ~hTζ) · êndΓ (2.61)

=
Vζ( ~HTξ)

Iξ
(2.61d)

= Zζξ, (2.61e)

where the de�nition (2.56) is used.

An alternative way to desribe mirowave devies, whih is probably even more om-

mon, are generalized sattering parameters, de�ned as

Sζξ =
ufζ

ubξ

∣
∣
∣
∣
∣
ubν=0, ∀ ν 6=ξ

. (2.62)
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Thus, we have
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︸ ︷︷ ︸
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, (2.63)

where S denotes the generalized sattering matrix. One the generalized impedane matrix

is available, the generalized sattering matrix is obtained by

uf + ub = Z(ub − uf ), (2.64a)

(Z− I)ub = (Z+ I)uf , (2.64b)

uf = (Z+ I)−1(Z− I)ub, (2.64)

S = (Z+ I)−1(Z− I). (2.64d)
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2.3 Finite Element Simulation

The purpose of the FE method is to approximate the solution of the boundary value

problem (2.38), i.e. the eletri �eld

~E, in a �nite-dimensional subspae of H(curl; Ω,ΓE).
For the disretization of the domain Ω, a triangulation Th(Ω) into elements of polyhedral

geometry is employed, where Ω is assumed to be a bounded domain. The eletri �eld is

thus disretized in the global FE spae

W(Th(Ω)) ⊂ H(curl; Ω,ΓE). (2.65)

The FE shape funtions in the FE spae are denoted as

~wj ∈ W(Th(Ω)), (2.66)

where for all numerial alulations in this thesis the hierarhial basis funtions of [20℄ are

used and a triangulation into elements of tetrahedral geometry is employed. In the global

FE spae, basis funtions whih belong to the wave port are separated for further work

W(Th(Ω)) =WT ⊕WΘ, (2.67)

where

WT := {~w ∈ W(Th(Ω)) | ên × ~w = 0 on ΓΘ}, (2.68a)

WΘ := {~w ∈ W(Th(Ω)) | ên × ~w 6= 0 on ΓΘ}. (2.68b)

Thus, the eletri �eld intensity

~E is disretized in the expansion

~E = ~EI + ~EΘ, (2.69)

with

~EI =

NI∑

j=1

uj ~wj, ~wj ∈ WT , (2.70a)

~EΘ =

NΘ∑

j=1

uj ~wj, ~wj ∈ WΘ, (2.70b)

where uj are the oe�ients of the basis funtions. NI andNΘ denote the number of degrees

of freedom assoiated with WT andWΘ, respetively. Plugging the eletri �eld expansion

(2.69) into the weak form of the boundary value problem (2.38), the FE disretization

results in the system of linear equations

(A0 + jη0k0A1 − k20A2)x = −jη0k0b, (2.71)

where k0 = ω
√
ε0µ0 is the wavenumber in the free spae and η0 =

√
µ0
ε0
. The strutures of

the matries in the system of linear equations appear as

A0 =

[
Aν
TT Aν

TΘ

Aν
ΘT Aν

ΘΘ

]

∈ C
Nf×Nf , AT

0 = A0, (2.72a)

A1 =

[
Az 0

0 0

]

∈ C
Nf×Nf , AT

1 = A1, (2.72b)

A2 =

[
Aε
TT Aε

TΘ

Aε
ΘT Aε

ΘΘ

]

∈ C
Nf×Nf , AT

2 = A2, (2.72)
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where Nf = NI +NΘ, and the matrix entries are de�ned with the bilinear forms

[AνTT ]ij =

∫

Ω
∇× ~wi · µ−1

r ∇× ~wjdΩ, ∀ ~wi, ~wj ∈ WT , (2.73a)

[AνTΘ]ij =

∫

Ω
∇× ~wi · µ−1

r ∇× ~wjdΩ, ∀ ~wi ∈ WT , ~wj ∈ WΘ, (2.73b)

[AνΘΘ]ij =

∫

ΓΘ

∇× ~wi · µ−1
r ∇× ~wjdΓ, ∀ ~wi, ~wj ∈ WΘ, (2.73)

[Az]ij =

∫

ΓZ

1

Zs
(ên × ~wi) · (ên × ~wj)dΓ, ∀ ~wi, ~wj ∈ WT , (2.73d)

[AεTT ]ij =

∫

Ω
~wi · εr ~wjdΩ, ∀ ~wi, ~wj ∈ WT , (2.73e)

[AεTΘ]ij =

∫

Ω
~wi · εr ~wjdΩ, ∀ ~wi ∈ WT , ~wj ∈ WΘ, (2.73f)

[AεΘΘ]ij =

∫

ΓΘ

~wi · εr ~wjdΓ, ∀ ~wi, ~wj ∈ WΘ. (2.73g)

For the right-hand side vetor b we have

b =

[
bT
bΘ

]

∈ C
Nf , (2.74)

with

[bT ]i = 0, ∀ ~wi ∈ WT , (2.75a)

[bΘ]i =

∫

ΓΘ

(~wi × ~HTΘ) · êndΓ, ∀ ~wi ∈ WΘ. (2.75b)

Setting the oe�ients uj = mξj , for j = 1, . . . , NΘ, suh that the eletri �eld ex-

pansion on the wave port area in (2.70b) form the transverse eletri �eld of the modal

waveform (~eξ,~hξ), we have

~eTξ =

NΘ∑

j=1

mξj ~wj , (2.76)

and de�ne the oe�ient vetor

mT
ξ = [mξ1,mξ2, . . . , mξNΘ

]. (2.77)

Furthermore, we de�ne the matrix

M = [m1, m2, . . . , mNξ
] ∈ C

NΘ×Nξ , (2.78)

where eah olumn is assoiated with a modal waveform. In an approah similar to the

trans�nite element method [2℄, the degrees of freedom on ΓΘ in the system (2.71) are

redued, whih results in

(AM0 + jk0AM1 − k20AM2)xM = −jk0η0bM , (2.79)
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where

AM0 =

[
Aν
TT Aν

TΘM

MTAν
ΘT MTAν

ΘΘM

]

∈ C
Nr×Nr , (2.80a)

AM1 =

[
Aν
ZZ 0

0 0

]

∈ C
Nr×Nr , (2.80b)

AM2 =

[
Aε
TT Aε

TΘM

MTAε
ΘT MTAε

ΘΘM

]

∈ C
Nr×Nr , (2.80)

bM =

[
bT

MTbΘ

]

∈ C
Nr ,bT = 0, (2.80d)

and Nr = NI +Nξ.

For the network parameter evaluation only one single mode is exited on ΓΘ, whih

means to set

~HTΘ = ~hTξ in (2.38). Hene, in (2.75b) we set

[bξ]i =

∫

ΓΘ

(~wi × ~hTξ) · êndΓ, ∀ ~wi ∈ WΘ. (2.81)

and denote the right-hand side exitation with

bMξ =

[
bT

MTbξ

]

∈ C
Nr ,bT = 0. (2.82)

The oe�ient vetor xM (~hTξ) denotes the solution of an exitation with the modal wave-

form (~eξ,~hξ). The generalized impedane parameter evaluation is done by the output

funtional

Zζξ := Zζ(xM (~hTξ)) = bTMζxM (~hTξ). (2.83)

This an be veri�ed by writing

bTMζxM (~hTξ) = bTζ MxM (~hTξ) (2.84a)

=

Nξ∑

ν=1

bTζ mνVν(~hTξ) (2.84b)

=

Nξ∑

ν=1

Vν(~hTξ)

(
NΘ∑

i=1

mνi

∫

ΓΘ

~wi × ~hTζ · êndΓ
)

(2.84)

=

Nξ∑

ν=1

Vν(~hTξ)

∫

ΓΘ

(
NΘ∑

i=1

mνi ~wi

)

× ~hTζ · êndΓ (2.84d)

=

Nξ∑

ν=1

Vν(~hTξ)

∫

ΓΘ

~eTν × ~hTζ · êndΓ (2.84e)

=

Nξ∑

ν=1

(∫

ΓΘ

~ETν(~hTξ)× ~hTζ · êndΓ
)

, (2.84f)

where the last line an be plugged into (2.59).
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2.4 System Parameterization

For the MORe proess in this thesis the frequeny is hosen as parameter, atually the

wavenumber k0, whih allows us to evaluate fast frequeny sweeps. The parameterization

of the linear system of equations is dependent on the onsidered struture. To disuss this,

the FE system together with its exitations and output funtionals is denoted as

(
a∑

i=0

siAi)X(s) = stBu(s), Ai ∈ C
Nr×Nr , (2.85a)

Y(s) = BTX(s), B ∈ C
Nr×Nξ , (2.85b)

where we use s as parameter, a for the polynomial degree and t is the parameter exponent

of the right-hand side. A devie whih is modeled without any impedane boundary ΓZ has

only a linear parameter dependeny, a = 1, where the parameter is the substituted square

of the wavenumber, s = k20 . An absorbing boundary ondition auses a linear wavenumber

dependeny, thus we have s = k0 and a = 2. However, in ase of modeled surfae losses,

we need to use the square root of the wavenumber as parameter, i.e. s =
√
k0, and the

polynomial degree rises to a = 4.
In the FE simulation of passive mirowave strutures, impedane as well as sattering

formulations are ommonly used. While the introdued approah is based on an impedane

formulation, the above ited original trans�nite element formulation [2℄ was introdued in a

sattering formulation. This means, that the amplitudes ubξ are used in the exitation and

ufξ �ll the solution vetor, whih diretly makes the sattering parameters available. How-

ever, these approahes result in di�erent parameterizations, whih is expliitly disussed

in [21℄, also in ontext with MORe tehniques.

Another issue is the modal exitation on the boundary ΓΘ. While the exiting �eld on a

�xed frequeny may be evaluated, analytially or numerially, the frequeny dependenies

on the boundaries need to be onsidered for a system parameterization. As long as exita-

tions with non-varying modal �eld patterns are employed, i.e. TE-, TM- or TEM-Modes,

saling approahes as [22℄ are suitable. If however the modal �eld patterns are frequeny

dependent, the exiting �elds need to be found on eah evaluation point.



18



Chapter 3

Adaptive Model Order Redution

Methods

3.1 Preliminary Words on Model Order Redution

The FE method is a well-established tehnique for solving driven time-harmoni �eld prob-

lems. Sine FE matries are sparse, the resulting systems of linear equations, though large

in size, an be solved very e�iently by diret or iterative methods. However, FE matries

depend on the working frequeny, and hene omputing the system response over a wide

frequeny range turns out to be very expensive, beause it involves FE solutions at a large

number of frequeny points.

To overome this di�ulty, whih arises also in large-sale iruit simulations, methods

of MORe have been developed [7℄. Amongst the tehniques available, projetion-based

MORe methods as [8℄, [23℄, [24℄ are partiularly attrative, beause they are well-suited

for large-sale systems and onstitute Petrov-Galerkin methods, as the FE method itself.

The underlying idea is to restrit the FE solution to a arefully hosen subspae and apply

a (Petrov)-Galerkin method to redue the original problem to a ROM of low dimension.

Single-point methods, suh as [25℄, [9℄, onstrut the projetion matrix or matries from a

Krylov expansion about one frequeny point. For smaller problems, single-point methods

are very attrative, beause the FE matrix needs to be fatorized only one: all Krylov

vetors required are generated by forward-bak substitutions. However, the quality of the

ROM depends strongly on the expansion frequeny, the optimal loation of whih is a

priori unknown. Moreover, for large-sale problems, matrix fatorizations are prohibitively

expensive. Then, (semi)-iterative solvers [26℄ must be employed, and the ost of omputing

one Krylov vetor beomes omparable to that of a full FE run. In this situation, multi-

point methods [27℄, [28℄, whih utilize FE solutions at multiple frequenies to build the

projetion matrix, beome very attrative, beause they o�er �exibility in hoosing the

expansion frequenies and great numerial robustness.

In this hapter, the mathematial bakground knowledge for MORe is presented. Fur-

thermore, adaptive MORe algorithms, for both single-point and multi-point tehniques are

introdued. Numerial experiments, employing some error measures, ompare the adaptive

multi-point tehnique to single-point methods and show the following: The dimension of a

ROM to reah a given error limit, is signi�antly smaller, if the adaptive multi-point algo-

rithm is employed, even if the expansion frequeny for the single-point method is hosen

at its optimum. Hene, the adaptive multi-point method is superior to the best possible

19
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single-point method with regard to memory requirements for generating the ROM.

Another argument for employing multi-point methods is the lower dimension of the

resulting ROM. There are appliations that require very large numbers of ROM evaluations,

suh as repetitive alls to time-domain reovery algorithms in iruit simulators, utilizing

ROMs as library elements, or stohasti optimization methods employing multi-variate

ROMs [29℄ for omputing ost funtions. For suh purposes, it is very desirable to minimize

the size of the ROM beause, in ontrast to the original FE matries, ROM matries are

full, and matrix fatorization osts grow proportionally to the third power of the ROM

dimension.
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3.2 Introdution to Moment Mathing

Single-point methods employ one expansion point, whih means that the solution of the

large-sale system is only needed at one single frequeny point for the MORe proess.

These methods are based on the moment mathing priniple, whih is losely related to

Krylov subspae methods. In this setion, expliit moment mathing [7℄ as well as the

projetion-based impliit moment mathing [8℄, [23℄ priniple is introdued. Furthermore,

MORe tehniques for �rst-order systems will be shown and extended in the end of the

setion to higher-order systems.

3.2.1 Expliit Moment Mathing

For the introdution of the moment mathing priniple, the single-input single-output

system of �rst-order

(A0 + sA1)x(s) = bu(s), A0,A1 ∈ C
N×N , (3.1a)

y(s) = cTx(s), b, c,x ∈ C
N , (3.1b)

is onsidered, where s is the employed parameter. The transfer funtion of this system

takes the form

H(s) = cT (A0 + sA1)
−1b. (3.2)

By employing a Taylor expansion, at expansion point s0, we have

H(s) =
∞∑

i=0

1

i!

d

iH(s)

dsi

∣
∣
∣
s=s0

(s− s0)i, (3.3)

whih allows us to de�ne the ith moment as

µi =
1

i!

d

iH(s)

dsi

∣
∣
∣
s=s0

. (3.4)

In the following, the expansion point s0 = 0 is employed for simpliity. However, for all

following tehniques an expansion point s0 6= 0 an be hosen, whih auses only a simple

substitution.

Assuming the matrix A0 in the system (3.1) non-singular, we an write

H(s) = cT
(
A0(I+ sA−1

0 A1)
)−1

b = cT (I+ sA−1
0 A1)

−1A−1
0 b. (3.5)

A basi approah to make the moments µi expliitly available is to employ a Neumann

series expansion

(I− (−sA−1
0 A1))

−1 =

∞∑

n=0

(−sA−1
0 A1)

n. (3.6)

Hene, we write the transfer funtion as

H(s) =

∞∑

i=0

µis
i, (3.7)
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where the moments µi yield

µi = cT (−A−1
0 A1)

iA−1
0 b. (3.8)

Thus, the transfer funtion H(s) an be approximated by the transfer funtion Hk(s),
whih mathes in the �rst k moments

H(s) ≈ Hk(s) =
k−1∑

i=0

µis
i. (3.9)

One of the main goals of this �rst expliit approah is to �nd a rational funtion Hk(s),
whih mathes the �rst k moments of the transfer funtion H(s). Therefore, a Padé

approximation is employed to math the �rst k = 2n moments of the funtion

H2n(s) =
an−1s

n−1 + an−2s
n−2 + · · ·+ a1s+ a0

bnsn + bn−1sn−1 + · · ·+ b1s+ 1
, (3.10)

with the moments µi of the transfer funtion H(s). expliitly available. This is nothing

more than writing

2n−1∑

i=0

µis
i =

an−1s
n−1 + an−2s

n−2 + · · ·+ a1s+ a0
bnsn + bn−1sn−1 + · · ·+ b1s+ 1

, (3.11)

and hoose the oe�ients in (3.10) suh that they math the �rst 2nmoments. Comparing

the oe�ients for the resulting polynomials in s, the oe�ients bi an be evaluated

through solving the system of linear equations








µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
.

.

.

.

.

.

.

.

.

.

.

.

µn−1 µn . . . µ2n−2















bn
bn−1
.

.

.

b1







=








µn
µn+1
.

.

.

µ2n−1







, (3.12)

and the oe�ients ai follow from the reursion

a0 = µ0

a1 = µ1 + b1µ0
.

.

.

an−1 = µn−1 +

n−1∑

i=1

biµn−i−1. (3.13)

This expliit moment mathing tehnique was introdued in [7℄ as Asymptoti Waveform

Evaluation (AWE) and employed for iruit system timing analysis. Unfortunately, the

pratial appliation of the AWE is limited due to a numerial de�it. The reursive

omputation of (A−1
0 A1)

iA−1
0 b onverges to that eigenvetor of the matrix A−1

0 A1, whih

orresponds to the eigenvalue with largest absolute value. The limited preision of �oating

point numbers in numerial omputation leads to a loss of information during this reursive

omputation, whih auses the wrong onvergene. Hene, only a small number of moments

are properly mathed and therefore, the redued transfer funtion is only aurate in a small

bandwidth around the expansion point. Extending this single-point approah to a multi-

point AWE tehnique was employed in [30℄ to overome this di�ulty. A �nal remark

is that the AWE tehnique an also be employed for polynomial parameterized system

matries and right-hand sides [31℄.
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3.2.2 Impliit Moment Mathing

Krylov Subspae Methods

The expliit moment representation in (3.8) may be written as

µi = cTvi, (3.14)

where vi are the Krylov vetors de�ned as

vi = Piu, (3.15)

with P = −A−1
0 A1 and u = A−1

0 b. This property motivates us to employ Krylov subspae

methods to generate numerially stable moments for the MORe proess.

One of the �rst approahes is the Padé via Lanzos proess [8℄, where a Lanzos

algorithm-based method was introdued to improve moment mathing. As the name of

the algorithm already laims, the algorithm generates a Padé approximation by employing

the Lanzos algorithm, whih omputes the moments numerially stable. The resulting

transfer funtion mathes the �rst 2q moments, as the AWE proess introdued in the

setion above.

Another Krylov subspae-based MORe tehnique was introdued in [23℄, where instead

of the Lanzos iteration an Arnoldi algorithm, Alg. 1, was employed. As a result of the

single sided-proess, only the �rst q moments of the resulting transfer funtion are mathed

in this proess.

Algorithm 1 Arnoldi algorithm

1: v1 = x/‖x‖2
2: for n = 1 to q − 1 do
3: v = Avn

// Modi�ed Gram-Shmidt proess

4: for j = 1 to n− 1 do
5: hj,n = vHj v

6: v = v− hj,nvj
7: end for

8: hn+1,n = ‖v‖2
9: vn+1 = v/hn+1,n

10: end for

The Krylov vetors {v0, . . . ,vq−1} span the qth Krylov subspae, de�ned as

Kq(P,u) = span{u,Pu,P2u, . . . ,Pq−1u}. (3.16)

This spae an be omputed in a numerially stable way by the above introdued Arnoldi

algorithm. Projeting the original system (3.1) to the Krylov subspae Kq(P,u), with
q ≪ N , results in a ROM, whih impliitly mathes moments. In partiular, building the

projetion matrix V ∈ C
N×q

, whih spans the qth Krylov subspae

span(V) = Kq(P,u), (3.17)

allows us to ompute the low-dimensional system

(Ã0 + sÃ1)x̃(s) = b̃u(s), Ã0, Ã1 ∈ C
q×q

(3.18a)

y(s) = c̃T x̃(s), b̃, c̃, x̃ ∈ C
q

(3.18b)
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with

Ã0 = VTA0V, Ã1 = VTA1V, b̃ = VTb and c̃ = VT c.

As the redued system (3.18) takes the same struture as the original system (3.1), the

transfer funtion yields

H̃(s) = c̃T (Ã0 + sÃ1)
−1b̃, (3.19)

and its Taylor expansion is derived equivalently as

H̃(s) =

∞∑

i=0

µ̃is
i, (3.20)

where the moments µi in the series are

µ̃i = c̃T (−Ã−1
0 Ã1)

iÃ−1
0 b̃. (3.21)

The �rst q moments of the original system (3.1) and the ROM (3.18) math

µ̃i = µi, ∀ 0 ≤ i < q. (3.22)

Proof for Moment Mathing

The representation above allows us to proof moment mathing by indution [32℄. For i = 0
we know

∃ r0 ∈ C
q : A−1

0 b = Vr0, (3.23)

and thus

µ̃0 = cTV
(
VTA0V

)−1
VTb (3.24)

= cTV
(
VTA0V

)−1
VT (A0A

−1
0 )b (3.25)

= cTV
(
VTA0V

)−1
VTA0Vr0 (3.26)

= cTVr0 = cTA−1
0 b = µ0. (3.27)

For i = 1 we have

∃ r1 ∈ C
q : −A−1

0 A1A
−1
0 b = Vr1, (3.28)

but we know

r0 =
(
VTA0V

)−1
VTb. (3.29)

Thus,

µ̃1 = c̃T (−Ã−1
0 Ã1)Ã

−1
0 b̃ (3.30)

= −cTV
(
VTA0V

)−1 (
VTA1V

) (
VTA0V

)−1
VTb (3.31)

= −cTV
(
VTA0V

)−1
VTA1Vr0 (3.32)

= −cTV
(
VTA0V

)−1
VT (A0A

−1
0 )A1A

−1
0 b (3.33)

= cTV
(
VTA0V

)−1
VTA0Vr1 (3.34)

= cTVr1 = cT (−A−1
0 A1)A

−1
0 b = µ1. (3.35)
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Note that

r1 = −
(
VTA0V

)−1 (
VTA1V

) (
VTA0V

)−1
VTb. (3.36)

For 2 ≤ i ≤ q − 1 we have

∃ ri ∈ C
q : (−A−1

0 A1)
iA−1

0 b = Vri. (3.37)

Thus, with the hypothesis

ri−1 =
(

−
(
VTA0V

)−1 (
VTA1V

))i−1 (
VTA0V

)−1
VTb, (3.38)

the moments 2 ≤ i ≤ q − 1 of the redued model math to the original system

µ̃i = c̃T (−Ã−1
0 Ã1)

iÃ−1
0 b̃ (3.39)

= cTV
(

−
(
VTA0V

)−1 (
VTA1V

))i (
VTA0V

)−1
VTb (3.40)

= −cTV
(
VTA0V

)−1
VTA1Vri−1 (3.41)

= −cTV
(
VTA0V

)−1
VT (A0A

−1
0 )A1(−A−1

0 A1)
i−1A−1

0 b (3.42)

= cTV
(
VTA0V

)−1
VTA0Vri (3.43)

= cTVri = cT (−A−1
0 A1)

−1A−1
0 b = µi, (3.44)

with

ri =
(

−
(
VTA0V

)−1 (
VTA1V

))i (
VTA0V

)−1
VTb. (3.45)

3.2.3 Systems with Polynomial Parameterized System Matrix

Higher-Order Systems

In literature, systems with a polynomial parameterized system matrix are often referred

to higher-order systems [13℄, [33℄. Seond-order systems are disussed more frequently, as

damping terms appear in modeling many lasses of physial systems [34℄, [35℄. However,

in this setion, the fous is on general higher-order single-input single-output systems with

a polynomially parameterized system matrix

(
a∑

i=0

Ais
i)x(s) = bu(s), (3.46a)

y(s) = cTx(s), (3.46b)

where a is an arbitrary �nite integer. The transfer funtion for this system yields

H(s) = cT (
a∑

i=0

Ais
i)−1b, (3.47)

whih an be written as

H(s) = cT (I−
a∑

i=1

Dis
i)−1u, (3.48)
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with Di = −A−1
0 Ai and u = A−1

0 b.

Similar to the Neumann series, the matrix inversion an be expanded around s = 0 as

(I−
a∑

i=1

Dis
i)−1 =

∞∑

i=0

Pis
i, (3.49)

where

P0 = I (3.50)

Pk =

min(k,a)
∑

i=1

Pk−iDi. (3.51)

This is proved in [33℄ and an be veri�ed by expliitly writing the expansion. Thus, as in

the �rst-order system, the transfer funtion an be expressed by a Taylor expansion

H(s) =
∞∑

i=0

cTPius
i =

∞∑

i=0

µis
i, (3.52)

where the ith moment is given as

µi = cTPiu. (3.53)

Higher-Order Krylov Subspaes

For the sequene of matries {Di}ai=1, Di ∈ C
N×N

, and the non-zero vetor u ∈ C
N
, the

qth Krylov subspae of ath-order is de�ned as

Kaq ({Di}ai=1;u) = span{w0,w1, . . . ,wq−1}, (3.54)

where the reursive de�nition of the vetors wl yield

w0 = u, (3.55)

wl =

min(l,a)
∑

i=1

Diwl−i. (3.56)

This de�nition is from [33℄, but is in aordane with de�nitions for seond-order Krylov

subspaes introdued in [34℄, [35℄. Furthermore, employing the de�nitions above for Pi

allows an alternative reursive desription for the higher-order Krylov vetors

wi = Piu. (3.57)

This approah is also in aordane with the properties introdued for higher-order systems.

Hene, the moments an now be written as

µi = cTwi, (3.58)

with the Krylov vetors wi.

Another interesting approah to higher-order Krylov subspaes is to employ the AWE

tehnique [29℄, [31℄. Here, the solution vetor is expanded in a Taylor series

x =

∞∑

i=0

w̃is
i

(3.59)
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and plugged into the system (3.46b). Then, by equating the oe�ients, the vetors w̃i

yield

w̃0 = A−1
0 b, (3.60)

w̃1 = −A−1
0 A1w̃0, (3.61)

w̃2 = A−1
0 (−A1w̃1 −A2w̃0), (3.62)

.

.

. (3.63)

w̃i = A−1
0 (−

min(a,i)
∑

m=1

Amw̃i−m). (3.64)

It is straightforward to see that wi = w̃i for Di = −A−1
0 Ai and u = A−1

0 b, as de�ned

above.

A �nal approah to higher-order Krylov subspaes is by rewriting the higher-order

system as an equivalent �rst-order system. This allows us to show the onnetion of the

resulting �rst-order Krylov subspae of the linearized system and the higher-order subspae

[24℄, [36℄.

Reduing the Higher-Order System

Employing for the redution of the system (3.46) the projetion matrix V ∈ C
N×q

, whih

spans the qth Krylov subspae of ath-order

span(V) = Kaq ({Di}ai=1;u), (3.65)

the low-dimensional system yields

(
a∑

i=0

Ãis
i)x̃(s) = b̃u(s), (3.66a)

ỹ(s) = c̃T x̃(s), (3.66b)

where

Ãi = VTAiV, b̃ = VTb, c̃ = VT c. (3.67)

The transfer funtion for the ROM results in

H̃(s) = c̃T (

a∑

i=0

Ãis
i)−1b̃, (3.68)

whih is

H̃(s) = c̃T (I−
a∑

i=1

D̃is
i)−1ũ, (3.69)

with D̃i = −Ã−1
0 Ãi and ũ = Ã−1

0 b̃. Again the property (3.49) is employed to write

(I−
a∑

i=1

D̃is
i)−1 =

∞∑

i=0

P̃is
i, (3.70)
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where

P̃0 = I, (3.71)

P̃k =

min(k,a)
∑

i=1

P̃k−iD̃i. (3.72)

Thus, the transfer funtion expressed with moments yields

H̃(s) =

∞∑

i=0

c̃T P̃iũs
i =

∞∑

i=0

µ̃is
i, (3.73)

where

µ̃i = c̃T P̃iũ. (3.74)

The �rst q moments of the original system (3.46) and the ROM (3.66) math

µ̃i = µi, ∀ 0 ≤ i < q. (3.75)

Proof for Moment Mathing

The proof is for a �xed integer a > 1. The moment mathing for µ̃0 = µ0 and µ̃1 = µ1 is
idential to Setion 3.2.2, respetively, beause P0 = I and P1 = D1 = −A−1

0 A1.

For i = 2 we have

∃ r2 ∈ C
q : P2u = ((−A−1

0 A1)
2 −A−1

0 A2)A
−1
0 b = Vr2, (3.76)

Thus,

µ̃2 = c̃T
(

Ã−1
0 Ã1Ã

−1
0 Ã1 − Ã−1

0 Ã2

)

Ã−1
0 b̃ (3.77)

= cTV
(

−
(
VTA0V

)−1 (
VTA1V

)
r1 −

(
VTA0V

)−1 (
VTA2V

)
r0

)

(3.78)

= cTV
(
VTA0V

)−1 (
VTA1A

−1
0 A1A

−1
0 b−VTA2A

−1
0 b

)
(3.79)

= cTV
(
VTA0V

)−1
VTA0A

−1
0

(
A1A

−1
0 A1A

−1
0 b−A2A

−1
0 b

)
(3.80)

= cTV
(
VTA0V

)−1
VTA0

(
A−1

0 A1A
−1
0 A1A

−1
0 b−A−1

0 A2A
−1
0 b

)
(3.81)

= cTV
(
VTA0V

)−1
VTA0P2u (3.82)

= cTV
(
VTA0V

)−1
VTA0Vr2 (3.83)

= cTVr2 = cTP2u = µ2 (3.84)

Note that

r2 = P̃2ũ. (3.85)

For 2 < i < q we know

∃ ri ∈ C
q : Piu = Vri. (3.86)
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With the hypothesis

ri−k = P̃i−kũ, ∀ 0 < k < min(i, a) (3.87)

we have

µ̃i = c̃T P̃iũ (3.88)

= c̃T





min(i,a)
∑

k=1

P̃i−kD̃k



 ũ (3.89)

= c̃T





min(i,a)
∑

k=1

D̃kP̃i−k



 ũ (3.90)

= c̃T





min(i,a)
∑

k=1

D̃kri−k




(3.91)

= cTV





min(i,a)
∑

k=1

−
(
VTA0V

)−1 (
VTAkV

)
ri−k




(3.92)

= cTV
(
VTA0V

)−1
VT





min(i,a)
∑

k=1

−AkVri−k




(3.93)

= cTV
(
VTA0V

)−1
VTA0





min(i,a)
∑

k=1

−A−1
0 AkVri−k




(3.94)

= cTV
(
VTA0V

)−1
VTA0





min(i,a)
∑

k=1

−A−1
0 AkPi−k



u (3.95)

= cTV
(
VTA0V

)−1
VTA0Piu (3.96)

= cTV
(
VTA0V

)−1
VTA0Vri (3.97)

= cTVri = cTPiu = µi, (3.98)

and thus

ri = P̃iũ. (3.99)

Well-Conditioned AWE

Although the AWE was shown to generate higher-order Krylov vetors, and thus span

higher-order Krylov subspaes, the tehnique exhibits similar numerial de�its as ex-

plained for �rst-order systems. This limits the numerially preise mathed moments in

the redution proess to a low number. However, the WCAWE proess, introdued in [24℄,

provides a means to span higher-order Krylov subspaes in a numerially stable way. The

iterative proess is given in Alg. 2 and refers to a polynomial parameterized system of

linear equations of the form

(

a∑

i=0

Ais
i)x(s) =

a1∑

i=0

bis
i. (3.100)
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The WCAWE algorithm needs the following additional de�nitions. The olumns of the

matrix Ṽq are the iteratively omputed vetors

Ṽq = [ṽ1, ṽ2, . . . , ṽq]. (3.101)

The matrix U is a non-singular upper triangular matrix whih relates the matries Ṽq and

Vq by

ṼqU
−1 = Vq, U ∈ C

q×q, (3.102)

where

Vq = [v1,v2, . . . ,vq]. (3.103)

In the algorithm, the orretion matrix PUw(n,m), is omputed as

PUw(n,m) =

m∏

t=w

U−1
[t:n−m+t−1,t:n−m+t−1], PUw(n,m) ∈ C

n−m×n−m. (3.104)

The vetors ei are de�ned as unity vetors with the ith entry set to one and all others

equal to zero. The lengths of ei onforms on the matrix that operates on it.

The oe�ients in the matrix U, i.e. the relation of Ṽq and Vq , is an important part of

the method. Employing the modi�ed Gram-Shmidt proess to evaluate (3.102) is laimed

to result in high auray [9℄, where the resulting olumns of Vq are orthonormal. The

properties of other hoies for (3.102) an be found in the referred paper.

The proof for the WCAWE algorithm in [24℄ shows, that eah new omputed vetor vq
is a superposition of the higher-order Krylov vetors

vq =

q−1
∑

i=0

wixi, (3.105)

where the oe�ients xi result from the algorithm.

Algorithm 2 Well-onditioned AWE

1: ṽ1 = A−1
0 b0

2: ṽ2 = A−1
0 (b1e

T
1 PU1(2, 1)e1 −A1v1)

3: ṽ3 = A−1
0 (b1e

T
1 PU1(3, 1)e2 + b2e

T
1 PU1(3, 2)e1 −A1v2 −A2V1PU2(3, 2)e1)

.

.

.

4: ṽq = A−1
0 (

min(a1,q−1)
∑

m=1

bme
T
1 PU1(q,m)eq−m −A1vq−1 −

min(a,q−1)
∑

m=2

AmVq−mPU2(q,m)eq−m)
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3.3 Adaptivity and Error Measures

Projetion-Based Model Order Redution

To keep the basi idea of the introdued method as general as possible, the onsidered

system takes the form

(

a0∑

i=0

siAi)X(s) =

a1∑

i=0

siBi, Ai ∈ C
N×N , (3.106a)

Y = (

a2∑

i=0

siCi)
TX(s), Bi ∈ C

N×b,Ci ∈ C
N×c, (3.106b)

where N , b and c denote the number of unknowns, the number of input vetors and

output vetors, respetively. The numbers a0, a1 and a2 give the polynomial degrees of

the parameterization. The parameter s stands for the wavenumber k, or a substitution as

explained in Setion 2.4.

The projetion-based MORe methods onsidered in this thesis have in ommon that

they seek an approximation QX̃ to the full solution X in the range of a low-dimensional

unitary matrix Q ∈ C
N×u

with u ≪ N . Furthermore, they employ a Bubnov-Galerkin

proess to redue the original system (3.106) to the ROM of the form

(

a0∑

i=0

siÃi)X̃(s) =

a1∑

i=0

siB̃i, (3.107a)

Ỹ = (

a2∑

i=0

siC̃i)
T X̃(s), (3.107b)

where

Ãi = QTAiQ ∈ C
u×u, (3.108)

B̃i = QTBi ∈ C
u×b, (3.109)

C̃i = QTCi ∈ C
u×c, (3.110)

whih an be solved at very low ost.

Adaptive Proess

In the following, we fous on the iterative enlargement of the projetion matrix, as well

as on the orresponding enlargement of the ROM. The proesses will be employed in

the adaptive algorithms introdued later. Hene, assume that the matrix Q = Qn−1

is employed to ompute the ROM of the form (3.107). In the next iteration, a matrix

Vnew ∈ C
N×b

is generated by the MORe tehnique, to enlarge the subspae in whih the

ROM is solved. Note that the olumns of Vnew probably neither provide an orthonormal

basis nor do they have to be orthonormal to Qn. Therefore, the modi�ed Gram-Shmidt

orthonormalization proess is employed for

[Qn−1,Qnew]U = [Vn−1,Vnew], (3.111)
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where the olumns of matrix Vn−1 are the previously onstruted vetors from the MORe

tehnique. Only the new added vetors need to be orthonormalized. However, the proje-

tion matrix will be enlarged by

Qn = [Qn−1,Qnew]. (3.112)

The subspae projetion an be an expensive proess in the adaptive algorithm. Thus, to

improve the performane, the ROM from the previous iteration is enlarged in eah adaption

step

Ãi ←
[

Ãi QT
n−1AiQnew

QT
newAiQn−1 QT

newAiQnew

]

, (3.113)

B̃i ←
[

B̃i

QT
newBi

]

, (3.114)

C̃i ←
[

C̃i

QT
newCi

]

. (3.115)

This results in a ROM of the form (3.107) of higher-dimension. Employing the proposed

ROM enlargement proedure above redues the MORe proess runtime by not projeting

the olumns Qn−1 of the ROM, whih are already available from the previous iterations.

Error Measure

The performane of the redution methods as well as the auray of the generated ROMs

is an important issue in this thesis. Therefore, error measures are introdued to make the

quality of the redued systems omparable, but are also employed in the later introdued

adaptive MORe tehniques.

We de�ne the set of L equidistant evaluation points B = {s1, s2, . . . , sL}, within the

bounds s1 = smin and sL = smax. For this set B, a sequene of matries

{M}B = {M(s1),M(s2), . . . ,M(sL)} is de�ned. Hene, for two sequenes {M}B and

{N}B, the error measure is de�ned as

E2({M}B, {N}B) =

√
√
√
√

1

NfN
2
t

L∑

n=1

Nt∑

i=1

Nt∑

j=1

|Mij(sn)−Nij(sn)|2. (3.116)

In this thesis, we hose the sattering matrix at the evaluation point si as matrixM(si).
Thus, the true error E2({S}B, {S̃n}B), where {S}B are the sattering parameters omputed

by the full FE system and {S̃n}B denotes the sweep of the ROM, allows us to evaluate the

auray of the ROM. The subsript n stands for the number of iterations with whih the

adaptive MORe proess was run. The error measure E2({S̃n}B, {S̃n−1}B) therefore gives
the di�erenes of ROMs of nth and (n − 1)th iteration. This de�nition is employed as

termination riterion in the later provided adaptive MORe algorithms. Furthermore, the

error measure E2({S̃n}Bq
, {S̃n−1}Bq

) allows us to de�ne an error measure on the subinterval

Bq ⊆ B, whih is used to �nd the next expansion point in the adaptive multi-point method.

The e�ieny and reliability of the introdued error measure are shown in [28℄ and [37℄,

where numerial experiments in the later referene also ompare the new error measure to

alternative approahes.
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For some numerial experiments, additional error measures are de�ned as

E1({M}B, {N}B) =
1

NfN
2
t

L∑

n=1

Nt∑

i=1

Nt∑

j=1

|Mij(sn)−Nij(sn)| , (3.117a)

E∞({M}B, {N}B) = max
i,j,n
|Mij(sn)−Nij(sn)| . (3.117b)
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3.4 A Basi Adaptive Single-Point Method

3.4.1 Broadband FE Simulation of Eletromagneti Strutures

Several approahes exist, where MORe methods are employed for the broadband FE sim-

ulation of eletromagneti strutures, based on expliit moment mathing [31℄, [38℄, [39℄

or impliit moment mathing [25℄, [9℄. In this setion, an adaptive fast frequeny sweep

tehnique for the simulation of passive mirowave strutures is provided. Therefore, the

FE system (2.85) is rewritten as

(

a∑

i=0

siAi)X(s) = stB, Ai ∈ C
N×N ,Ai = AT

i (3.118a)

Y = BTX(s), B ∈ C
N×b,B = [b1,b2, . . . ,bb], (3.118b)

where N and b denote the number of unknowns and the number of input/output vetors,

respetively. A main property of the system (3.118) is its symmetry. Employing the

projetion matrix Q ∈ C
N×q

, the redued system takes the form

(
a∑

i=0

siÃi)X̃(s) = stB̃, (3.119a)

Ỹ = B̃T X̃(s), (3.119b)

where

Ãi = QTMiQ, (3.120)

B̃ = QTB. (3.121)

As the system is driven by b exitations, whih are the olumns b1, b2, . . . , bb, the Krylov
subspae assoiated to eah exitation has to be omputed and plugged into the projetion

matrix Q. Hene, the subspae spanned by Q is

span(Q) = Kaq ({Di}ai=1;u
1) ∪Kaq ({Di}ai=1;u

2) ∪ . . . ∪ Kaq ({Di}ai=1;u
b), (3.122)

where uj = A−1
0 bj and again Di = −A−1

0 Ai.

Due to the symmetry of the system, it is straightforward to prove that the redued

model (3.119) mathes in the �rst 2q moments to the full system (3.118), although only a

single-sided projetion is employed [40℄.

3.4.2 A First Adaptive Approah

Alg. 3 gives a basi adaptive single-point MORe method for the broadband FE simulation

of eletromagneti strutures. For the sake of simpliity, the system matries Ai, for

i = 0, . . . , a , represent the shifted matries in the expansion point š. The method employs

the WCAWE proess, ombined with a modi�ed Gram-Shmidt orthonormalization. The

omputed WCAWE vetors for eah right-hand side have to be orthonormalized against

eah other in Alg. 3, Line 5. Later in the adaptive loop, the vetors are also orthonormalized

against the olumns of the previous projetion matrix in Alg. 3, Line 13. This results in

the updated projetion matrix Qq whih spans the subspae (3.122).

The right-hand side in the system has a purely linear wavenumber dependeny, whih

only auses an index shift in the WCAWE proess. This simpli�es the WCAWE proess,
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and only the orretion matries for the polynomial parametrized system matries are

required in Alg. 3, Line 10.

In eah adaptive iteration, the projetion matrix as well as the ROM are enlarged in Alg.

3, Line 13 and 14, respetively, as desribed in Setion 3.3. The proess stops as onverged,

if the error indiator in Alg. 3, Line 16 E2({S̃q}B, {S̃q−1}B) is below the threshold value

E2,tol. Otherwise, if q = qmax, the algorithm aborts with status 'not onverged'.
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Algorithm 3 Self-Adaptive Single-Point Model Order Redution

1: for β = 1 to b do

2: Initial WCAWE: ṽ
β
1 = Ṽ

β
1 = A−1

0 bβ,

3: Normalize: v
β
1 = V

β
1 = Ṽ

β
1 /|Ṽ

β
1 |, Uβ = |Ṽβ

1 |
4: end for

5: Modi�ed Gram-Shmidt: Q1U = [V1
1, . . . ,V

b
1]

6: Initial subspae projetion: Ãi = QT
1 AiQ1, B̃ = QT

1B

7: Solve frequeny sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃1}B

8: for q = 2 to qmax do
9: for β = 1 to b do

10: WCAWE proess:

ṽβq = A−1
0 (−A1v

β
q−1 −

min(a,q−1)
∑

m=2

AmV
β
q−mP

β
U2

(q,m)eq−m)

11: Modi�ed Gram-Shmidt: [Vβ
q−1,v

β
q ]Uβ = [Ṽβ

q−1, ṽ
β
q ]

12: end for

13: Apply modi�ed Gram-Shmidt only to new generated vetors:

[Qq−1,Qnew]U = [V1
q−1, . . . ,V

b
q−1,v

1
q , . . . ,v

b
q] , Qq = [Qq−1,Qnew]

14: Enlarge ROM:

Ãi ←
[

Ãi QT
q−1AiQnew

QT
newAiQq−1 QT

newAiQnew

]

, B̃←
[

B̃

QT
newB

]

.

15: Solve frequeny sweep:

(
a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃q}B

16: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

17: return(onverged)

18: end if

19: end for
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3.5 An Adaptive Multi-Point Method

3.5.1 Projetion-Based Model Order Redution

In ontrast to single-point approahes, multi-point methods employ system solutions at a

set of expansion points {š1, . . . , šM} to onstrut the projetion matrix Q. Multi-point

methods o�er �exibility in hoosing the expansion points and enjoy great numerial ro-

bustness. While it is possible to inlude higher-order Krylov vetors at eah expansion

point, as in [30℄ and [41℄, the algorithm proposed in the following only employs the system

solutions themselves. This tehnique is alled a rational Krylov method of lowest-order

[42℄. Eah solution X(šm) of the onsidered FE system of the form

(

a∑

i=0

siAi)X(s) = stB, Ai ∈ C
N×N ,Ai = AT

i (3.123a)

Y = BTX(s), Bi ∈ C
N×b, (3.123b)

spans the ath Krylov subspae of �rst-order. Thus, employing X(šm) as projetion matrix

for the symmetri system above generates a ROM whih mathes in the �rst and seond

moment. In this thesis, an orthonormal projetion matrix Q, with

span (Q) = span(X(š1),X(š2), . . . ,X(šM )), (3.124)

is employed for the subspae projetion, whih results in the ROM

(

a∑

i=0

siÃi)X̃(s) = stB̃, (3.125a)

Ỹ = B̃T X̃(s), (3.125b)

where

Ãi = QTAiQ, (3.126)

B̃i = QTBi. (3.127)

The employed projetion matrix spans the �rst Krylov subspae at eah of theM expansion

points šm. Thus, the �rst and seond moment of the ROM and the original system math

at eah expansion point šm.

3.5.2 Proposed Adaptive Algorithm

This thesis provides an adaptive multi-point algorithm, whih employs the projetion-based

approah above and is listed in Alg. 4. The general strategy of the algorithm is to divide

the bandwidth of interest, i.e. the set of evaluation points B within the bandwidth, into

subintervals Bq ⊆ B. At eah adaptive step, the interval of largest error Bě is identi�ed
with the help of the error indiator E2({S̃q}Bi

, {S̃q−1}Bi
) in Line 18, whih evaluates the

di�erenes between the sattering parameters obtained from the urrent and the previous

ROM. The next adaptive expansion point šp is hosen at the enter of Bě, Line 9, and the

interval is separated into two new subintervals in Line 10. This proedure is repeated until

the error indiator E2({S̃q}B, {S̃q−1}B), is below the hosen threshold value E2,tol.
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Algorithm 4 Self-Adaptive Multi-Point Model Order Redution

1: Solve system at š1 = min(B):

(

a∑

i=1

Aiš
i
1)X(š1) = št1B, ⇒ X(š1)

2: Solve system at š2 = max(B):

(

a∑

i=1

Aiš
i
2)X(š2) = št2B, ⇒ X(š2)

3: Initial modi�ed Gram-Shmidt: Q2U = [X(š1),X(š2)]
4: Initial subspae projetion: Ãi = QT

2 AiQ2, B̃ = Q2
TB

5: Solve frequeny sweep for s ∈ B:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃2}B

6: Set interval of worst error: ě = 1
7: Initialize �rst interval: Bě = B
8: for q = 3 to qmax do
9: Find next expansion point: šq = argmin

s∈B

∣
∣s− minBě+maxBě

2

∣
∣

10: Split interval: Bq−1 = [šq,max(Bě)], Bě ← [min(Bě), šq]
11: Solve system at šq:

(

a∑

i=1

Aiš
i
q)X(šq) = štqB, ⇒ X(šq)

12: Apply modi�ed Gram-Shmidt only to new generated vetors:

[Qq−1,Qnew]U = [X(š1), . . . ,X(šq−1),X(šq)],
Qq = [Qq−1,Qnew]

13: Enlarge ROM:

Ãi ←
[

Ãi QT
q−1AiQnew

QT
newAiQq−1 QT

newAiQnew

]

, B̃←
[

B̃

QT
newB

]

.

14: Solve frequeny sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃q}B

15: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

16: return(onverged)

17: end if

18: Find interval of worst error: ě = arg max
i=1,...,q−1

E2({S̃q}Bi
, {S̃q−1}Bi

)

19: end for
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3.6 Single-Point Methods and Multi-Point Methods in Com-

parison

As a pratial example for the omparison of the MORe approahes of this hapter, the

bandpass �lter in Fig. 3.1 is onsidered, whih is taken from [43℄. To obtain referene

results for the frequeny response of the �lter at high spetral resolution, individual FE

solutions were omputed at N = 2001 equidistant frequeny points in the range from 4 to

12 GHz. This set of evaluation frequenies is denoted by B. The FE model is based on

basis funtions of seond-order, and the matrix dimension is N = 103848. Fig. 3.2 gives the
magnitudes of the re�etion and transmission oe�ients s11 and s12 versus frequeny. As
a �rst numerial experiment, the true error of the adaptive multi-point method for ROMs

up to iteration q = 50 is evaluated for the norms E1({S̃q}B, {S}B), E2({S̃q}B, {S}B) and
E∞({S̃q}B, {S}B). Fig. 3.3 shows a steep desent around the iteration q = 35 for all norms

employed. At q = 37, the ROM exhibits errors lower than 10−8
in all norms, whih shows

the high auray of the sattering parameters on the evaluation points in B, ompared to

the large-sale FE model.

Next it is shown that the proposed adaptive multi-point tehnique needs lower di-

mension for high auray than single-point methods, even if the expansion point for the

moment mathing proess is hosen at its optimum. To �nd the best available expansion

frequeny, whih is a priori not known, ROMs with expansion frequenies in the range from

9 to 11 GHz are generated and the true error is evaluated in the same frequeny range.

The results of this proess are presented in Fig. 3.4 and Fig. 3.5, respetively, whih show

the errors E2({S̃q}B, {S}B) and E∞({S̃q}B, {S}B) for ROMs, build at iterations q = 39 to

q = 51.
It an be seen that, even when the optimum expansion frequeny f̌ = 10.15 GHz is

hosen for the single-point method, a ROM build at iteration q = 51 is required to yield

results of similar error as the adaptive multi-point approah. Spei�ally, the single-point

errors at q = 51 are E∞({S̃n}B, {S}B) ≈ 6 · 10−6
and E2({S̃q}B, {S}B) ≈ 5 · 10−9

; still

worse than for the adaptive multi-point method with q = 37. When the iteration numbers

of the single-point and adaptive multi-point models are both taken to be q = 37, the
single-point method is learly inferior, as an be seen from the errors e11 = |s̃11−s11| and
e12 = |s̃12−s12|, whih are plotted versus frequeny in Fig. 3.6. In addition, Fig. 3.6 shows
the loations of the expansion frequenies for the adaptive multi-point method, indiated

by the symbol H. Fig. 3.7 presents di�erent norms of the single-point error for q = 37
and 401 di�erent loations of the expansion frequeny. This on�rms that no single-point

method an produe a ROM of similar auray as the adaptive multi-point model of same

order.

Table 3.1 gives omputer runtimes for ROM generation and evaluation. When ROMs

of similar quality i.e., adaptive multi-point models with q = 37 and single-point models

with q = 51, are ompared, adaptive multi-point evaluation times are 39% shorter. On the

other hand, for original system dimensions where the matrix fatorizations are e�iently

evaluated, model generation is faster with single-point methods, even for a ROM generated

at q = 51.
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Table 3.1: Bandpass �lter [43℄: Computational data.

Generation Evaluation

MOR Number of LU fatorization L=2001

method iterations q N = 103 848

Single-point 37 67 s 1.1 s

Single-point 51 101 s 1.8 s

Multi-point 37 694 s 1.1 s

Figure 3.1: Bandpass �lter [43℄: Geometri dimensions in mm.
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Chapter 4

Out-of-Core Model Order Redution

Methods

4.1 Systems with a Large Number of Right-Hand Sides

4.1.1 Problem Statement

Tehnologial advanes in omputer hardware allow the FE simulations of more and more

omplex eletromagneti strutures. Today's simulations inlude omplete printed iruits

boards, whole integrated iruit pakages, but also interonnetors with large numbers

of pins. With the inreasing omplexity of the simulated strutures, also the number of

onsidered exitations beame larger. This means for the numerial simulation of suh

omplex strutures that, on one hand the systems of linear equations may result in higher

dimensions, on the other hand the systems may need to be solved for a larger number of

right-hand sides.

Linear equation systems with a large number of right-hand sides is an area of extensive

researh, whih also inludes Krylov subspae methods for multiple starting vetors [44℄,

[45℄. This researh is losely related to the Krylov subspae methods applied for MORe

tehniques whih onsider multiple input and output vetors, e.g. [46℄.

The fous of this hapter is on MORe tehniques for high-dimensional systems with

a large number of right-hand sides, where the system matries are polynomially parame-

terized in the frequeny. These are the properties of a system of linear equations, whih

results from the FE disretization of the onsidered omplex eletromagneti strutures.

The adaptive MORe tehniques need to inrease the projetions matrix in eah itera-

tion, whih requires more and more memory apaity. Although the omputer operating

system may start a swapping proess to store Random Aess Memory (RAM) data on the

hard disk, the omplete MORe proess beomes ine�ient and the ROM generation may

beome very slow. However, if the MORe proess needs to be aborted, the projetion ma-

trix does not span a su�ient subspae and the generated ROM is not aurate within the

onsidered bandwidth. To overome this limitation, this thesis provides algorithms that

swap arefully hosen omputation data to the hard disk. These out-of-ore approahes

keep the RAM requirements for the projetion matrix data on a onstant low level. For

both single-point and multi-point tehniques out-of-ore algorithms are presented. While

the memory swapping an be aomplished easily in the multi-point algorithm, the single-

point approah needs major strutural hanges to remain e�ient.

The operation system as well as the ompiler provide highly optimized data bu�ering

45
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tehniques. Thus, the hard disk aess time for the data swapping is not transparent for

high level language programming. However, thanks to this intelligent bu�ering system,

the resulting data aess turned out to be very fast and does not ut down the e�ieny

of the MORe tehniques.

As a �nal remark it should be added, that the omplete swapping proess uses binary

data. This redues the data amount, whih redues aess times and requires less hard

disk spae.

4.1.2 Memory Considerations

Finite Element System

To explain the need for data swapping in the broadband FE simulation of eletromagneti

strutures, we onsider the system (3.118). Looking bak to the theory of Setion 2.3,

eah olumn bi of the blok right-hand side B ontains one entry and thus is extremely

sparse. The sparsity of the system matries Ai depends on the FE formulation, the basis

funtions, the FE mesh of the onsidered struture as well as on the imposed boundary

onditions. Furthermore, it is worth mentioning here, that for systems onsidered in single-

point methods the sparsity pattern may hange and the matries may have more entries,

if the expansion point is not hosen at frequeny zero.

The FE simulation of omplex strutures, whih results in systems with high-dimensional

matries, may struggle on the memory limitations, as the requirements for the solu-

tion/fatorization of the system may need a lot of memory. Software pakages as [47℄

therefore provide out-of-ore tehniques to make the fatorization of larger systems avail-

able.

The memory for the system and its solution is one major part of the used memory, but

is not subjet of this thesis and is not further disussed. Nevertheless, memory requirement

for system matries and their fatorization for the simulated strutures will be provided in

the numerial results.

In ontrary to the full FE system, the low-dimensional ROM is irrelevant for the mem-

ory onsiderations. As for the redued model itself, the memory requirements for the

solution of the ROM are negligible.
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Multi-Point Methods

The adaptive multi-point method, see Alg. 4, represents the more simple tehnique, also

from the memory handling point of view. For eah expansion point, one blok of b olumns

and N rows is added, whih is the matrix Qnew. This is the dimension of the blok right-

hand side vetor B. In ontrast to the blok right-hand side, the matrix Qnew is dense.

Therefore, the algorithm enlarges the projetion matrix in eah iteration, and the full

projetion matrix Qq of dimension N × bq �lls more and more the RAM, see Fig. 4.1(a).

To improve the memory performane of the adaptive multi-point algorithm, only the

matrix Qnew is kept in the memory, whih is the orthonormalized solution blok vetor

X(ǩq) of the urrent iteration. The omplete projetion matrix Qq−1 of the previous

iterations is swapped to the hard disk. The olumns of Qq−1 are loaded one after another

from the hard disk to the RAM for the orthonormalization proess of the new omputed

blok X(ǩq) as well as for the subspae projetion, see Fig. 4.1(b). Through this proess,

the required RAM apaity for the projetion matrix is onstant and does not inrease

with newly added expansion points. A generalization of the proposed approah is to allow

only a prede�ned number of olumns of Qnew to be kept in the memory. This number

ould even be automatially adapted to available memory.
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RAM

Q1 Q2 Qq−1 Qnew ← X(ǩq)

(a) Multi-point method memory requirements.

RAM RAM

Q1 Q2 Qq−1 Qnew ← X(ǩq)

(b) Out-of-ore multi-point method memory requirements.

Figure 4.1: Multi-point method memory requirements.



Chapter 4. Out-of-Core Model Order Redution Methods 49

Single-Point Methods

The situation in the ase of single-point methods is rather di�ult. The major drawbak

of the introdued adaptive single-point approah in Alg. 3 is that, for eah right-hand side,

the projetion data needs to be kept twie in the memory. The WCAWE proess of eah

right-hand side performs its own orthonormalization proess. This data has to be kept in

the memory additional to the projetion matrix Qq, see Fig. 4.2.

Therefore, a bloked WCAWE approah will be employed, whih operates only on the

projetion matrix itself. Hene, the memory requirements are redued as Fig. 4.3(a) shows.

The bloked proess generates in eah iteration a non-orthonormalized blok WCAWE

vetor Ṽq = [ṽ1
q , ṽ

2
q , . . . , ṽ

b
q]. This blok vetor is orthonormalized to the projetion matrix

and within its olumns. The orthonormalized blok Vq is �nally added to the projetion

matrix. Thus, this approah will provide the same memory usage situation as the multi-

point approah in Alg. 4.

The blok algorithm is also the basis for the development of an out-of-ore single-point

method. The goal is again to swap as muh projetion matrix data as possible to the hard

disk. This thesis provides a tehnique that keeps only two bloks of the dimension of B

in the RAM, see Fig. 4.3(b). One blok is the newly generated blok vetor, on whih

the algorithm operates. The seond blok is used as a data bu�er and is needed to keep

the bloked WCAWE proess e�ient. Additionally one projetion matrix olumn after

another is loaded from the hard disk to the RAM for the redution proess operations.

Hene, the memory requirements for the projetion matrix in the RAM is on a onstant

low level and does not inrease in the iterative proess. However, the single-point out-

of-ore tehnique needs more RAM apaity to stay e�ient ompared to the multi-point

approah.
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Qq

RAM

V1
q V2

q Vb−1
q Vb

q

v1
q v2

q

vb−1
q

vbq

Figure 4.2: Single-point method memory requirements.
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RAM

V1 V2 Vq−1 Vq ← Ṽq

(a) Blok single-point method memory requirement.

RAM RAM RAM

V1 V2 Vq−1 Vq ← Ṽq

(b) Out-of-ore single-point memory requirement.

Figure 4.3: New single-point method approahes memory requirements.
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4.2 Blok Algorithm for Higher-Order Systems

This setion is dediated to single-point methods, in partiular, to redue their memory

usage by means of a blok algorithm. This thesis provides a proof, that the simple blok

vetor extension of the WCAWE, provided in [13℄, does math moments. Therefore, the

introdued Krylov subspae theory is extended and important properties for bloking the

WCAWE tehniques are disussed.

4.2.1 Blok Krylov Subspaes

De�nition and Veri�ation of Higher-Order Blok Krylov Subspaes

In this setion, the system of the form (3.118) is onsidered, as the bloked algorithm is

sought for the same problem as in the previous hapter. Using the de�nition of the previous

hapter Di = −A−1
0 Ai and extending u = A−1

0 b to the blok notation U = A−1
0 B, allows

us to introdue blok Krylov subspaes.

For the sequene of matries {Di}ai=1, Di ∈ C
N×N

, and the blok vetor U ∈ C
N×b

,

the qth blok Krylov subspae of ath-order is de�ned as

Kaq ({Di}ai=1;U) = colspan{W0,W1, . . . ,Wq−1}, (4.1)

where the reursive de�nition of the blok Krylov vetors Wl yield

W0 = U, (4.2)

Wl =

min(l,a)
∑

i=1

DiWl−i. (4.3)

This de�nition is a generalization of the higher-order Krylov subspae de�nition of Se-

tion 3.2.3. Plugging the Taylor expansion

X(s) =

∞∑

i=0

Wis
i, (4.4)

into the system (3.118), allows us to write the blok AWE vetors

W̃0 = A−1
0 B, (4.5)

W̃1 = A−1
0 (−A1W̃0), (4.6)

W̃2 = A−1
0 (−A1W̃1 −A2W̃0), (4.7)

.

.

. (4.8)

W̃n = A−1
0 (−

min(a,n)
∑

m=1

AmW̃n−m). (4.9)

With the de�nition given above, we have W̃i = Wi and thus, the vetors from the AWE

expansion span the Krylov subspae Kaq ({Di}ai=1;U).

On eah olumn of a blok AWE vetor Wi, where as exitation the orresponding

right-hand side olumn of B is employed, the same operations as for the non-bloked
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algorithm are performed. Hene, the Krylov subspae Kaq ({Di}ai=1;U) spans the same

subspae as the projetion matrix employed in (3.122) and thus satisfy

Kaq ({Di}ai=1;U) =Kaq ({Di}ai=1;u1) ∪Kaq ({Di}ai=1;u2) ∪ . . . ∪ Kaq ({Di}ai=1;ub).

(4.10)

Extending the theory for higher-order systems to a blok right-hand side exitation,

the transfer funtion an be written as

H(s) =
∞∑

i=0

CTPiUs
i =

∞∑

i=0

µis
i, (4.11)

with the matrix of moments

µi = CTPiU, (4.12)

and a de�nition for Pi as in the previous hapter

P0 = I, (4.13)

Pk =

min(k,a)
∑

i=1

Pk−iDi. (4.14)

This de�nition allows us, similar to the non-bloked ase, to write the blok Krylov vetors

as

Wi = PiU. (4.15)

In the literature, e.g. [35℄, de�nitions for the �rst-order blok Krylov subspae

Kq(D1,U) = colspan{U,D1
1U,D

2
1U,D

3
1U, . . . ,D

q−1
1 U}, (4.16)

and the seond-order blok Krylov subspae

Kq(D1,D2,U) = colspan{G0,G1, . . . ,Gq−1}, (4.17)

where







G0 = U,

G1 = D1G0,

Gi = D1Gi−1 +D2Gi−2,

(4.18)

an be found. These de�nitions are in aordane with the de�nition in this thesis for

a = 1 and a = 2, respetively.

Moment Mathing

For the redution proess (3.119), the projetion matrix Q, whih spans the blok Krylov

subspae

span(Q) = Kaq ({Di}ai=1;U), (4.19)

is employed. The proof for moment mathing is a simple extension of the previous proof

for non-bloked right-hand side and is not repeated. Furthermore, also the onnetions

of Krylov subspaes obtained from linearized higher-order systems to �rst-order systems

in [27℄ and [33℄, an be extended in a straightforward way to the blok right-hand side

exitations.
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De�ation

In the literature, [45℄, [48℄, the de�nition for the N × qb blok Krylov matrix of the form

K =
[
U D1U D2U D3U . . . Dq−1U

]
(4.20)

an be found. The rank of this matrix may be less than qb, if a olumn DjU[i] is

linear dependent on lower-order olumns, whih implies that all olumns DkU[i], with

j < k ≤ q − 1 are also linear dependent. This property is alled de�ation and allows us to

additionally de�ne the de�ated Krylov matrix

Kdl = [U0 D1U1 D2U2 D3U3 . . . Dq−1Uq−1], (4.21)

where

U0 = U, U0 ∈ C
N×b0 , b0 = b, (4.22a)

Uj = Uj−1Ej , 0 < j < q Uj ∈ C
N×bj , bj ≤ bj−1 (4.22b)

with the de�ated identity matrix Ek ∈ C
bj−1×bj

, whih deletes the linearly dependent

olumns [48℄. For higher-order blok Krylov subspaes, similar de�nitions are available,

e.g. [49℄.

In the blok WCAWE algorithm of this thesis, de�ation is not onsidered. Instead, the

orthonormalization proess exludes numerial de�its, i.e. linear dependent olumns, in

the resulting projetion matrix. However, the algorithm may beome more powerful by

employing de�ation tehniques and probably would redue the projetion matrix dimension

and thus redue the resulting ROM size.

4.2.2 Blok Well-Conditioned Asymptoti Waveform Evaluation

Notation

The blok WCAWE algorithm is a simple extension of the WCAWE algorithm, where

salar values are replaed by a blok matrix of the dimension b× b. Some notations need

to be introdued for the algorithm and the proof for moment mathing.

The blok vetors Vn, Ṽn ∈ C
N×b

, whih are generated in the blok algorithm, are

gathered in the matries V , Ṽ , with the notation

V [1:i] =
[
V1 V2 . . .Vi

]
∈ C

N×bi, (4.23)

Ṽ [1:i] =
[

Ṽ1 Ṽ2 . . . Ṽi

]
∈ C

N×bi. (4.24)

The blok AWE vetors are olleted in W as

W [1:i] =
[
W0 W1 . . .Wi−1

]
∈ C

N×bi. (4.25)

Note the index shift Wi = W [i+1], whih is performed to onform with the original

WCAWE literature [24℄.

The matrix U is the upper triangle blok matrix

U =








U1,1 U1,2 . . . U1,i

0 U2,2 . . . U2,i
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Ui,i







∈ C

bi×bi, (4.26)
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with the submatries

Uj,k ∈ C
b×b. (4.27)

All submatries Uj,j on the diagonal need to be upper triangular matries and all Uj,k

with k < j need to be null matries to make U upper triangular. The subsripts brakets

denote the blok

U [i:k,i:k] =








Ui,i Ui,i+1 . . . Ui,k

0 Ui+1,i+1 . . . Ui+1,k
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Uk,k







. (4.28)

The matrix Ek ∈ R
M×b

is de�ned as the blok identity matrix

Ek =





0

I

0





} (k − 1)b rows
} b rows
} (q − k)b rows

, (4.29)

where k denotes the position of the identity matrix I ∈ R
b×b

. The number q is de�ned to

be always the number of bloks on whih Ek operates on. Thus, we have M = qb.

Blok Algorithm

The WCAWE blok algorithm provides a means to ompute blok Krylov subspaes of

higher-order for the system (3.118) in a numerially stable way. The WCAWE blok

vetors are reursively de�ned as

Ṽ1 = A−1
0 B, (4.30)

Ṽ2 = A−1
0 (−A1V1), (4.31)

Ṽ3 = A−1
0 (−A1V2 −A2V1PU2(3, 2)E1), (4.32)

.

.

. (4.33)

Ṽq = A−1
0 (−A1Vq−1 −

min(a,q−1)
∑

m=2

AmV [1:q−m]PU2(q,m)Eq−m), (4.34)

where in eah iteration the matrix equation

Ṽ [1:q] = V [1:q]U , (4.35)

is updated with the non-singular upper triangle matrix U ∈ C
qb×qb

. The orretion matrix

PUw(n,m), whih is employed for the omputation of the next blok WCAWE vetor, is

de�ned as

PUw(n,m) =

m∏

t=w

U
−1
[t:n−m+t−1,t:n−m+t−1], PUw(n,m) ∈ C

(n−m)b×(n−m)b, (4.36)

where w ≤ m < n < q. In this thesis, a modi�ed Gram-Shmidt proess is hosen to

update the relation (4.35) in eah iteration. The proess orthonormalizes the olumns of

the matrix Ṽ [1:q], whih results in the matrix V [1:q]. Hene, the orthonormalization of

eah blok vetor Ṽq, let eah blok Uq,q beome an upper triangular matrix. Thus, the

proess generates an upper triangular matrix U and the olumns of V [1:n] provide a highly

aurate basis for the Krylov subspae Kan({Di}ai=1;U).
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4.2.3 Proof for Moment Mathing

Properties and Interpretations

This setion gives a list of properties that helps us to understand better the algorithm

and its de�nitions. The properties are used in partiular for the moment mathing proof.

Detailed proofs for this properties are not given, as they either an be found in stan-

dard mathematial literature, e.g. [50℄, or are simple algebrai onsiderations. However,

mainly for properties whih are essential for the proof, some interpretations are provided.

Note that some of the properties provided simplify the original proof for the non-bloked

WCAWE [24℄, for the onstellation onsidered in this thesis.

Property 1: The inverse of the upper triangular matrix U, i.e. U−1
, is also a upper

triangular matrix.

Property 2: The produt U = U1U2 of two upper triangular matries results in an

upper triangular matrix.

Property 3: For the upper triangular matrix U ∈ C
n×n

, the equality

U−1
[j1:j2,j1:j2]

= (U[j1:j2,j1:j2])
−1

holds for any integers j1 and j2 suh that 1 ≤ j1 ≤ j2 ≤ n.

Property 4: We have: span(Ṽ [1:n]) = span(V [1:n]) .

The matrix U , whih onnets the matries above by (4.35), is de�ned to be non-

singular.

Property 5: The orretion matrix PUw(n,m) is an upper triangular matrix.

The orretion matrix PUw(n,m) is a produt of upper triangular submatries of U ,

see Fig. 4.4(a). Hene, beause of Property 2, the resulting orretion matrix is upper

triangular itself.

Property 6: The equality U
−1
[1:n−m,1:n−m]PU2(n,m) = PU1(n,m) holds.

This is the simple multipliation of PU2(n,m) with the �rst upper triangular matrix.

The examples PU1(n,m) and PU2(n,m) in Fig. 4.4(b) and 4.4(), respetively, show this

Property.

Property 7: Assume the integers α, ᾱ and γ satisfy 1 ≤ γ < min(α, ᾱ). Then for all

integers j1 and j2 whih satisfy 1 ≤ j1, j2 ≤ min(α, ᾱ)− γ, the equality
ET
j1
PU1(α, γ)Ej2 = ET

j1
PU1(ᾱ, γ)Ej2 holds.

Through modifying the value α to ᾱ, the dimension of the shifted matrix is hanged,

whereas the number of shifts γ is onstant, see Fig. 4.4(d). As only upper triangular

matries are in the produts of PU1(α, γ) and PU1(ᾱ, γ), the resulting orretion matrix

is the same, as long as the blok unit vetors Ej1 and Ej2 selet a blok within the smaller

dimension.
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Property 8: Let U ∈ C
qb×qb

be a non-singular upper triangular matrix, and let β, m and

n be integers 1 ≤ m < n ≤ q and 1 ≤ β ≤ n− 1. Then for all integers j1 and j2 suh that

β ≤ j1, j2 ≤ n −m, the equality ET
j1
PU1(n,m)Ej2 = ET

j1−β+1PUβ
(n,m + β − 1)Ej2−β+1

holds.

This Property is similar to the Property 7 above. PUβ
(n,m+ β − 1) is the produt of

upper triangular matries whih are shifted with β−1 ompared to PU1(n,m), where also
the dimension of the multiplied matries is β − 1 smaller. This results in the same matrix

produt as PU1(n,m), as long as the blok unit vetors Ej1 and Ej2 selet a blok within

the smaller dimension. The Property is shown in Fig. 4.4(e).

Property 9: Let U ∈ C
qb×qb

be a non-singular upper triangular matrix, and let n, m and

β be integers suh that 1 ≤ m < n ≤ q . Then for 1 < β ≤ n−m the equality

PU1(n−m,β − 1)PUβ
(n,m+ β − 1) = PU1(n,m+ β − 1) holds.

This Property an be interpreted in Fig. 4.4(a). PU1(n−m,β−1) is the multipliation
of the �rst β−1 shifted triangular matries. The seond matrix is the produt of the shifted

triangular matries from β to m+β−1. Thus, the result is the produt of all β to m+β−1
shifted matries, whih is PU1(n,m+ β − 1).
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U
−1

U
−1

U
−1

U
−1

U
−1
[1:5,1:5] U

−1
[2:6,2:6] U

−1
[3:7,3:7] U

−1
[m:n−1,m:n−1]

(a) Upper triangular matries in orretion matrix PUw (n,m) for n−m = 5.

PU1(n,m) =

(b) Corretion matrix PU1
(n,m) for n−m = 5.

PU2(n,m) =

() Corretion matrix PU2
(n,m) for n−m = 5.

U
−1
[1:3,1:3] U

−1
[2:4,2:4] U

−1
[3:5,3:5] U

−1
[γ:ᾱ−1,γ:ᾱ−1]

U
−1
[1:5,1:5] U

−1
[2:6,2:6] U

−1
[3:7,3:7] U

−1
[γ:α−1,γ:α−1]

(d) Submatries for PU1
(α, γ) and PU1

(ᾱ, γ) omputation, α− γ = 5, ᾱ− γ = 3.

U
−1
[1:5,1:5] U

−1
[2:6,2:6] U

−1
[3:7,3:7] U

−1
[m:n−1,m:n−1]

U
−1
[3:5,3:5] U

−1
[4:6,4:6] U

−1
[5:7,5:7] U

−1
[m+2:n−1,m+2:n−1]

(e) Submatries for PU1
(n,m) and PUβ

(n,m+ β − 1) omputation, n−m = 5, β = 3.

Figure 4.4: Properties of the orretion matrix PUw(n,m), with U ∈ C
(n−1)b×(n−1)b

.
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Proof

We de�ne the blok matrix

X [1:q,1:q] =










X1,1 X1,2 . . . X1,q−1 X1,q

0 X2,2 . . . X2,q−1 X1,q

0 0 X1,q
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 0 Xq,q










∈ C
bq×bq, (4.37)

where eah blok Xj1,j2 ∈ C
b×b

is de�ned as

Xj1,j2 =







ET
1PU1(j2, j1 − 1)Ej2−j1+1 for 2 ≤ j1 ≤ j2 ≤ q

I for j1 = j2 = 1

0 otherwise

. (4.38)

Note that X is an upper triangular non-singular matrix. All diagonal values are 1.

The indutive proof shows that

Ṽ [1:q] = W [1:q]X [1:q,1:q]. (4.39)

and thus V spans the required spae for moment mathing. For the indution basis we

have q = 1

Ṽ1 = W [1]X1,1 (4.40)

and for q = 2

Ṽ2 = A−1
0 (−A1V1) = A−1

0 (−Ṽ1U
−1
1,1) = A−1

0 (−A1W [1]U
−1
1,1) (4.41)

= W [2]U
−1
1,1 = W [2]E

T
1 PU1(2, 1)E1 = W [2]X2,2. (4.42)

Note that X1,2 = 0. Therefore,

span(Ṽ [1:2]) = span(W [1:2]). (4.43)

The indution hypothesis states

Ṽ [1:q−1] = W [1:q−1]X[1:q−1,1:q−1], (4.44)

span(Ṽ [1:q−1]) = span(W [1:q−1]). (4.45)

By indution we will see

Ṽ [1:q] = W [1:q]X[1:q,1:q], (4.46)

span(Ṽ [1:q]) = span(W [1:q]). (4.47)

For n ≥ 2 the algorithm is de�ned as

Ṽq = A−1
0 (−A1Vq−1 −

min(a,q−1)
∑

m=2

AmV [1:q−m]PU2(q,m)Eq−m). (4.48)
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We use (4.35) to write

Ṽq = A−1
0 (−A1Ṽq−1U

−1
[1:q−1,1:q−1]Eq−1

−
min(a,q−1)
∑

m=2

AmṼ [1:q−m]U
−1
[1:q−m,1:q−m]PU2(q,m)Eq−m), (4.49)

and plug in the indution hypothesis (4.44)

Ṽq = A−1
0 (−A1W [1:q−1]X [1:q−1,1:q−1]U

−1
[1:q−1,1:q−1]Eq−1

−
min(a,q−1)
∑

m=2

AmW [1:q−m]X [1:q−m,1:q−m]U
−1
[1:q−m,1:q−m]PU2(q,m)Eq−m). (4.50)

Use Property 6 to write

Ṽq = A−1
0 (−A1W [1:q−1]X [1:q−1,1:q−1]U

−1
[1:q−1,1:q−1]Eq−1

−
min(a,q−1)
∑

m=2

AmW [1:q−m]X [1:q−m,1:q−m]PU1(q,m)Eq−m). (4.51)

Now, we use U
−1
[1:n−1,1:n−1] = PU1(n, 1)

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

AmW [1:q−m]X [1:q−m,1:q−m]PU1(q,m)Eq−m). (4.52)

Now use W [1:n−m] =

n−m∑

β=1

W [β]E
T
β

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(

q−m
∑

β=1

W [β]E
T
β )X [1:q−m,1:q−m]PU1(q,m)Eq−m). (4.53)

Contrat now ET
βX [1:n−m,1:n−m] = X [β,1:n−m] to have

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(

q−m
∑

β=1

W [β]X [β,1:q−m])PU1(q,m)Eq−m). (4.54)

Writing X [β,1:q−m]PU1(q,m)Eq−m as a sum and using the property Xβ,r = 0 ∀ r < β, we
have

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am

q−m
∑

β=1

W [β]

q−m
∑

r=β

Xβ,rE
T
r PU1(q,m)Eq−m). (4.55)

From the de�nition of X in (4.38) we an write now

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]

q−m
∑

r=β

ET
1PU1(r, β − 1)Er−β+1E

T
r PU1(q,m)Eq−m)), (4.56)
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where we use X1,1 = I and X1,r = 0 for 1 < r < q. Now use Property 7, with α = r,
ᾱ = q −m, γ = β − 1, j1 = 1 and j2 = r − β + 1 to obtain

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]

q−m
∑

r=β

ET
1 PU1(q −m,β − 1)Er−β+1E

T
r PU1(q,m)Eq−m)). (4.57)

Now, use Property 8 with j1 = r and j2 = q −m

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]

q−m
∑

r=β

ET
1 PU1(q −m,β − 1)Er−β+1E

T
r−β+1PUβ

(q,m+ β − 1)Eq−m−β+1)).

(4.58)

Now, only the produt Er−β+1E
T
r−β+1 depends on r and the sum results in the identity

matrix. Thus,

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]E
T
1 PU1(q −m,β − 1)PUβ

(q,m+ β − 1)Eq−m−β+1)). (4.59)

The next step is to employ Property 9

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]E
T
1 PU1(q,m+ β − 1)Eq−m−β+1)). (4.60)

Contrating the sum results in

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am

q−m
∑

β=1

W [β]E
T
1PU1(q,m+ β − 1)Eq−m−β+1). (4.61)

In this expression, we insert the de�nition of Xj1,j2 with j1 = m+ β and j2 = q, therefore

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am

q−m
∑

β=1

W [β]Xm+β,q). (4.62)

This is

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

AmW [1:q−m]X [m+1:q,q]). (4.63)
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After all these algebrai modi�ations, the following part of the proof helps us to un-

derstand why the WCAWE algorithm mathes moments. The equation (4.63) allows to

write

Ṽq = (

min(a,q−1)
∑

m=1

−A−1
0 AmW [1:q−m]X [m+1:q,q]) (4.64)

=

q
∑

n=2

(−
min(a,n−1)
∑

m=1

A−1
0 AmW [n−m]Xn,q) (4.65)

=

q
∑

n=2

(−
min(a,n−1)
∑

m=1

A−1
0 AmW [n−m])

︸ ︷︷ ︸

W [n]

Xn,q (4.66)

=

q
∑

n=2

W [n]Xn,q. (4.67)

Therefore, we have

Ṽ [1:n] = W [1:n]X[1:n,1:n], (4.68)

span(Ṽ [1:n]) = span(W [1:n]). (4.69)

and thus the indution hypothesis holds.
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4.3 Adaptive Algorithms

4.3.1 Bloking the Single-Point Algorithm

Employing the bloked WCAWE proess allows us to introdue the more e�ient bloked

adaptive single-point method in Alg. 5. Algorithm 5, Line 1 and Line 6, with the follow-

ing modi�ed Gram-Shmidt orthonormalization, provide a very e�ient way to ompute a

stable basis for the sought Krylov subspae for a blok right-hand side exitation. Com-

pared to the non-bloked Alg. 3, the bloked approah does not need separated WCAWE

proesses for eah exitation anymore. Furthermore, the additional orthonormalization

proess to generate the projetion matrix from the separated WCAWE proesses is thus

dispensable.

This algorithm provides a solid basis for e�iently swapping the projetion matrix to

the hard disk by some modi�ations in the WCAWE proess, whih will be explained in

the following.
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Algorithm 5 Self-Adaptive Blok Single-Point Model Order Redution

1: Initial WCAWE: Ṽ1 = A−1
0 B

2: Initial modi�ed Gram-Shmidt: Ṽ1 = V1U

3: Initial subspae projetion: Ãi = VT
1 AiV1, B̃ = VT

1 B

4: Solve frequeny sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃1}B

5: for q = 2 to qmax do
6: Bloked WCAWE proess:

Ṽq = A−1
0 (−A1Vq−1 −

min(a,q−1)
∑

m=2

AmV [1:q−m]PU2(q,m)Eq−m)

7: Apply Modi�ed Gram-Shmidt to new generated blok vetor:

[V [1:q−1],Vq]U = [Ṽ [1:q−1], Ṽq]
8: Enlarge ROM:

Ãi ←
[

Ãi V
T
[1:q−1]AiVq

VT
q AiV [1:q−1] VT

q AiVq

]

, B̃←
[

B̃

VT
q B

]

.

9: Solve frequeny sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃q}B

10: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

11: return(onverged)

12: end if

13: end for
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4.3.2 Adaptive Out-of-Core Algorithm for Single-Point Method

Algorithm 6 presents the adaptive out-of-ore MORe single-point method. For the memory

management, additional operations need to be introdued. The operator SWAP(Vi) stands
for saving the blok matrix Vi to hard disk and free the main memory. LOAD(Vi) means

to load the previously saved blok Vi from the hard disk to the RAM and CLEAR(Vi)
is written for free the memory used for the blok Vi. For a better algorithm illustration,

matries whih are swapped to the hard disk are olored in gray.

The operations in Alg. 5 where the projetion matrix V [1:q−1] appears are of speial

interested for the memory management. These are Alg. 5, Lines 6, 7 and 8. The out-of-ore

operations for these lines are disussed in the following. However, to keep the WCAWE

proess in the out-of-ore tehnique e�ient, two blok vetors of size Vq ∈ C
N×b

are

needed to operate on. Otherwise a large number of read/write proesses would dramatially

slow down the algorithm.

Furthermore, it is worth ommenting on the WCAWE blok vetor generation in the

out-of-ore algorithm, Alg. 6, Lines 8 to 15. In the algorithm development proess, the

matrix read/write proesses were expeted to be very time-onsuming. Thus, the �rst

approah to generate the WCAWE blok vetor was to perform all operations on a loaded

blok:

1: Initialize: LOAD(Vq−1) ; Ṽq = −A1Vq−1 ; CLEAR(Vq−1) ;
2: for p = 1 to q − 2 do
3: LOAD(Vp)
4: for m = 2 to min(a, q − p) do
5: Ṽq = Ṽq −AmVpEpPU2(q,m)Eq−m)
6: end for

7: CLEAR(Vp)
8: end for

9: Ṽq = A−1
0 Ṽq

However, it turned out that for inreasing q the additionally performed matrix-vetor

multipliations in Line 5 are more time-onsuming than the hosen operations in Alg. 6.

Thanks to the highly optimized reading operation, provided by the ompiler and operating

system, the time overhead of the swapping mehanism is very low as numerial results will

show.

Alg. 6, Lines 17 to 22 introdue an approah for the orthonormalization proess of the

projetion matrix with low memory requirements. The modi�ed Gram-Shmidt algorithm

is rearranged suh that eah olumn of the new blok vetor Vq is orthonormalized against

eah olumn of a single loaded blok vetor Vp. Thus, in the loop for k = 1 . . . q − 1,
eah blok vetor needs to be loaded only one. After this loop, the olumns of the

blok vetor Vq are orthonormalized against eah other in Line 22, whih ompletes the

orthonormalization proess.

Finally, for the projetion proess the projetion matrix data must be read again from

the hard disk. This is performed by loading eah blok vetor Vp one and evaluate the

redued bloks for the ROM enlargement. This is shown in Alg. 6, Lines 23 to 27.
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Algorithm 6 Self-Adaptive Out-of-Core Single-Point Model Order Redution

1: Initial WCAWE: Ṽ1 = A−1
0 B

2: Initial modi�ed Gram-Shmidt: Ṽ1 = V1U

3: Initial subspae projetion: Ãi = VT
1 AiV1, B̃ = VT

1 B

4: Free memory: SWAP(V1),
5: Solve frequeny sweep:

(
a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃1}B

6: for q = 2 to qmax do
7: Initialize: LOAD(Vq−1) ; Ṽq = −A1Vq−1 ; CLEAR(Vq−1) ;
8: for m = 2 to min(a, q − 1) do
9: for p = 1 to q − 1 do
10: LOAD(Vp)
11: Ṽq = Ṽq −AmVpEpPU2(q,m)Eq−m)
12: CLEAR(Vp)
13: end for

14: end for

15: Ṽq = A−1
0 Ṽq

16: Modi�ed Gram-Shmidt in out-of-ore tehnique:

17: for p = 1 to q − 1 do
18: LOAD(Vp)
19: Orthonormalize only against loaded blok vetor:

[V [1:p−1],Vp,V [p:q−1]]U = [. . . , Ṽq]
20: CLEAR(Vp)
21: end for

22: Orthonormalize olumns of urrent blok vetor: [V [1:q−1],Vq]U = [. . . , Ṽq]
23: Enlarge ROM in out-of-ore tehnique:

24: for p = 1 to q − 1 do
25: LOAD(Vp) ; M̃p,i = VT

pAiVq ; CLEAR(Vp);
26: end for

27: Ãi ←









Ãi






M̃1,i
.

.

.

M̃q−1,i






[

M̃T
1,i . . . M̃T

q−1,i

]

VT
q AiVq









, B̃←
[

B̃

VT
q B

]

.

28: Free memory: SWAP(Vq),
29: Solve frequeny sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃q}B

30: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

31: return(onverged)

32: end if

33: end for



Chapter 4. Out-of-Core Model Order Redution Methods 67

4.3.3 Adaptive Out-of-Core Algorithm for Multi-Point Method

Compared to the e�orts for single-point methods, swapping the projetion matrix to the

hard disk is a rather simple task in the multi-point approah. Algorithm 7 shows the pro-

posed modi�ations, where again the notation SWAP(Vi), LOAD(Vi) and CLEAR(Vi)
are used for the swapping operations. In ontrast to the single-point method above, the

multi-point algorithm keeps only the urrently generated blok vetor and one single ol-

umn of the projetion matrix in the RAM.

The out-of-ore extension in the multi-point ase is partiularly simple, beause no

data of previous expansion points are required to evaluate the blok X(šq). However, the
orthonormalization proess as well as the redution of the projetion matrix is performed

in exatly the same manner as for the single-point method.
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Algorithm 7 Self-Adaptive Out-of-Core Multi-Point Model Order Redution

1: Solve system at š1 = min(B):

(
a∑

i=1

Aiš
i
1)X(š1) = št1B, ⇒ X(š1)

2: Solve system at š2 = max(B):

(
a∑

i=0

Aiš
i
2)X(š2) = št2B, ⇒ X(š2)

3: Initial modi�ed Gram-Shmidt: [X(š1),X(š2)] = Q[1:2]U

4: Initial subspae projetion: Ãi = QT
[1:2]AiQ[1:2], B̃ = QT

[1:2]B

5: SWAP(Q[1:2])
6: Solve frequeny sweep for s ∈ B:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃2}B

7: Set interval of worst error: ě = 1
8: Initialize �rst interval: Bě = B
9: for q = 3 to qmax do
10: Find next expansion point: šq = argmin

s∈B

∣
∣s− minBě+maxBě

2

∣
∣

11: Split interval: Bq−1 = [šq,max(Bě)], Bě ← [min(Bě), šq]
12: Solve system at šq:

(
a∑

i=0

A0š
i
q)X(šq) = štqB, ⇒ X(šq)

13: Modi�ed Gram-Shmidt in out-of-ore tehnique:

14: for p = 1 to q − 1 do
15: LOAD(Qp)
16: Orthonormalize only against loaded blok vetor:

[Q[1:p−1],Qp,Q[p:q−1]]U = [. . . ,X(p̌q)]
17: CLEAR(Qp)
18: end for

19: Orthonormalize olumns of urrent blok vetor: [Q[p:q−1],Qq]U = [. . . , Q̃q]
20: Enlarge ROM in out-of-ore tehnique:

21: for p = 1 to q − 1 do
22: LOAD(Qp) ; M̃p,i = QT

pAiQq ; CLEAR(Qp)
23: end for

24: Ãi ←









Ãi






M̃1,i
.

.

.

M̃q−1,i






[

M̃T
1,i . . . M̃T

q−1,i

]

QT
q AiQq









, B̃i ←
[

B̃

QT
q B

]

.

25: Free memory: SWAP(Qq),
26: Solve frequeny sweep:

(

a∑

i=1

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequene {S̃q}B

27: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

28: return(onverged)

29: end if

30: Find interval of worst error: ě = arg max
i=1,...,q−1

E2({S̃q}Bi
, {S̃q−1}Bi

)

31: end for
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4.4 Numerial Results

The numerial experiments demonstrate the omputational improvements as well as the

need for the MORe approahes introdued in this thesis. Single-point methods, multi-

point methods and full FE simulation sweeps are ompared in the broadband analysis of

eletromagneti strutures. Furthermore, an expliit disussion of the memory usage shows

the importane of out-of-ore tehniques in MORe proesses.

All omputational work in this setion is performed on a single ore of an Intel Xeon

2.33 GHz quad-ore proessor. The omputer runs on an openSUSE 11.1 operating system

with a RAM size of 16 GByte. The operating system swapping partition size is set to

38.5 GBytes. The introdued broadband simulation framework is implemented in a ++

program, whih is linked to the PARDISO [47℄ solver projet for the fatorization and

solution of the FE systems.

4.4.1 Superiority of Bloking the WCAWE Proess

Although the bloked WCAWE proess spans the same Krylov subspaes as the non-

bloked in theory, di�erent operations are performed in the algorithms. Slight di�erenes

in the numerial omputations of the Krylov subspaes result in a signi�antly improved

MORe proess, using the bloked approah. ROMs whih are generated from the bloked

approah have turned out to be highly aurate on a set of evaluation points B, i.e. with
a low true error E2({S}B, {S̃q}B), with lower dimensions than ROMs generated from the

non-bloked method. During this thesis, no further investigations on this e�et beyond

this numerial experiments were done.

Struture De�nition

The onsidered test struture onsists of a set of 8 lumped ports whih, together with

perfet eletri ondutor (PEC) sheets and lumped elements, form a kind of hain, see

Fig. 4.5(a). The hain is surrounded by free spae and a box bounds the omputational

domain. On both ends of the box surfae impedane boundary onditions are imposed,

whih an be seen in Fig. 4.5(b), where σ = 5.8 · 105A/(V m) and µ = µ0. All other

surfaes of the box are de�ned as PEC. Detailed geometri dimensions of the struture

are given in Fig. 4.6. Lumped element sheets have the values R = 10kΩ, L = 1mH and

C = 1pF . Note that de�ning surfae impedanes and lumped elements results in a system

parameterization where the frequeny polynomial is of degree a = 4.

Numerial Experiments

For the test struture simulation, the set B is de�ned as the 1001 equidistant evaluation

points in the bandwidth from 20 GHz to 40 GHz. The simulation employs �rst-order FE

basis funtion and results in a system matrix dimension of N = 39229.

The most time-onsuming proess in the disrete sweep evaluation is the fatorization,

whose average omputation time is about 3.9s. Thus, with 1001 evaluation points, the

omplete time is extrapolated to 3904s. As the dimension of the sattering matrix of this

model is 8 × 8, whih makes 64 sattering parameters, the frequeny sweep in Fig. 4.7

shows only the eight sattering parameters S41 to S48 as representative seletion.

The MORe proesses are applied to the FE disretization of the full FE run above,

with the same number of degrees of freedom. The frequeny of 20 GHz is hosen as the
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expansion point. This is not the optimal hoie and will inrease the iteration number,

but shows in this numerial experiment the di�erenes between bloked and non-bloked

algorithms better.

The error indiator E2({S̃q−1}B, {S̃q}B), whih is evaluated during the adaptive MORe

proess, is ompared for the two approahes in Fig. 4.8(a). Until the error indiator

falls under the threshold value of Eabort = 10−5
, the non-bloked approah runs q = 38

iterations, while the blok proess stops at q = 25 iterations. More interesting for the

onvergene, however, is the true error E2({S}B, {S̃q}B), whih is shown for the two runs in

Fig. 4.8(b). To get a true error with E2({S}B , {S̃q}B) < 10−5
, we need q = 38 for the non-

bloked and q = 24 for the bloked WCAWE. In addition to the lower iteration number for

the bloked WCAWE, the more smoothly falling error is partiularly notieable in the plots,

whih may be interpreted as an indiator for improved numerial robustness. Moreover,

the error sweeps for both approahes at q = 25 in Fig. 4.9, where eij(f) = |Sij(f)− S̃ij(f)|,
on�rm the better onvergene for the bloked WCAWE. Note that only for visualization

reasons not all sattering parameters are shown in this plot again. Unsurprisingly, the

bloked approah with a lower number of iterations results in lower omputation times,

see Table 4.1.

In this numerial experiment the bloked WCAWE approah generated a ROM with

lower dimension to reah the same auray as the non-bloked approah. Thus, the

bloked approah is not only superior in memory requirements, but also the dimension of

the resulting ROM is smaller. The author guesses that the orthogonalization proess in

the bloked approah is more stable and therefore the projetion matrix spans the Krylov

subspae more properly.

Table 4.1: Port hain: Computational data.

Number of ROM generation ROM evaluation Sweep

iterations q time (s) time (s) time (s)

Full FE run - - - 3904

Non-bloked WCAWE 38 420 16 436

Bloked WCAWE 25 211 6 217
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(a) Sheets: Lumped ports (blue), lumped elements (yellow) and PEC (red).

(b) Impedane boundary (purple).

Figure 4.5: Port hain: View of the struture.



72

Figure 4.6: Port hain: Geometri dimensions in mm.
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Figure 4.7: Port hain: Sattering parameter versus frequeny.
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Figure 4.8: Port hain: Error indiator and true error versus iteration number.
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(a) Bloked WCAWE proess.
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(b) Non-bloked WCAWE proess.

Figure 4.9: Port hain: Error in sattering parameters versus frequeny for q = 25.
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4.4.2 Out-of-Core Tehnique Results

The seond part of this setion is dediated to the out-of-ore tehniques. To give mean-

ingful data and results for the introdued tehniques, the hosen test struture needs to

satisfy a ouple of requirements. The system of linear equations, whih results from the FE

simulation of the struture, needs to be of large dimension, with many right-hand sides.

The frequeny parameterization should be polynomial, otherwise the WCAWE proess will

redue to an Arnoldi iteration. To inrease the number of adaptive iterations in the MORe

proesses, the test struture for this numerial experiment should exhibit some resonant

behavior in the evaluated bandwidth.

Test Struture De�nition with Absorbing Boundaries

The onsidered struture is the uboid in Fig. 4.10. The struture ontains 8 port hains,

eah with 8 lumped ports, in total 64 lumped ports. The ports are onneted by PEC sheets

and lumped elements, whih have resistane, indutane and apaitane of R = 10kΩ,
L = 1mH and 1pF , respetively. On the top surfae of the uboid an absorbing boundary

ondition is de�ned, all other surfae are PEC. The hains are surrounded by a vauum.

Fig. 4.11 de�nes the detailed geometri dimension of the struture.

Disrete Sweep Data

The set of evaluation points B in the simulation is de�ned as 2001 equidistant points in the

bandwidth from 20 GHz to 30 GHz. The full FE simulation, whih is used as referene,

employs seond-order FE shape funtions and results in a sparse system of linear equations

with 827666 degrees of freedom. The assembled system matrix ounts 16119523 non-

zeros, whih auses a memory requirement of 257.9 MBytes, if 8 Bytes double preision

�oating point numbers are taken and all non-zero values are assumed to be omplex (thus

16 Bytes per entry). The memory requirement for the blok right-hand side, with 64
extremely sparse exitation vetors, may be negleted. However, the fatorization of the

system matrix ounts 236161487 non-zeros, whih requires 3.8 GBytes. Note that the peak
memory requirement of the fatorization is not onsidered in this analysis.

The typial fatorization time for a solution of the system is 186.2s. The additional

time for eah right-hand side solution is typially 4.3s, whih is not negligible in this ase

of 64 right-hand sides. As a numerial result, Fig. 4.12 shows the sattering parameters

S20 17 to S20 24 for the evaluation points in B as a hosen seletion.

Broadband Simulation Tehniques

In the next numerial experiment, the sattering parameter sweep on B is performed using

the proposed MORe tehniques, i.e. adaptive single-point and multi-point as in-ore as

well as out-of-ore methods. The MORe is applied to the original FE system above, where

in this onstellation the system is parameterized in the frequeny to the order a = 2.
Single-point methods use the arbitrarily hosen expansion frequeny 25 GHz.

The plot of the employed error indiator E2({S̃q−1}B, {S̃q}B) in Fig. 4.13(a) shows, that
the adaptive single-point method needs to run to the iteration q = 9, where the multi-point
proess needs only q = 8, to satisfy the threshold value E2({S̃q−1}B, {S̃q}B) < 10−5

. The

plot for the true error E2({S}B, {S̃q}B) on�rms this faster onvergene, see Fig. 4.13(b).

For a true error below 10−5
, the multi-point method needs q = 7 and the single-point

method q = 8.



Chapter 4. Out-of-Core Model Order Redution Methods 77

MORe Memory Analysis

A �rst performane analysis is done on the plots in Fig. 4.14, whih show the memory

usage versus time for the onsidered approahes. In the single-point memory plot, see

Fig. 4.14(a), it an be seen that the memory requirements inrease at eah iteration for the

in-ore algorithm, whih results from the projetion matrix enlargement. Eah enlargement

of a full blok right-hand side is 64 olumns, eah with 827666 degrees of freedom and

omplex double preision �oating point numbers (16 Bytes) per degree of freedom, whih

is a memory size of 848 MByte. However, the out-of-ore approah does not inrease the

projetion matrix data for higher iterations. Note that, for eah iteration, an additional

full right-hand side blok is required in the out-of-ore blok WCAWE proess for a short

time, as explained in Setion 4.3.2. These are the eye-athing jumps in the memory plot

in eah iteration.

Turning to the multi-point urves in Fig. 4.14(b), a similar behavior an be observed.

In eah iteration the memory blok of 848 MByte is alloated for the new projetion matrix

olumns. While the out-of-ore proess swaps data from previous iterations to the hard

disk and the memory requirements remain on a low level, the memory requirements in the

in-ore approah inrease at eah iteration with the size of this blok. In eah iteration,

the fatorization memory alloation and dealloation an be notied, the size of whih was

evaluated above to be 3.8 GBytes.

In the next experiment, a projetion matrix data size is fored that exeeds the available

system main memory. For this purpose, all adaptive MORe approahes are run for q = 18
iterations. The resulting in-ore omputations an be seen in 4.15(a), where the memory

requirements run into the limit of 16 GBytes and the operating system swapping proess

starts to work. This makes the proess extremely ine�ient. While the single-point ap-

proah got stuk at the iteration q = 11, the multi-point approah at least works at the last

iterative step, when the experiment was manually aborted after running 1.6·105s. The out-
of-ore approah, however, runs without any remarkable additional memory requirements,

see Fig. 4.15(b).

Runtime Disussion

The runtime disussion for the onsidered MORe tehniques starts with Table 4.2. Keep-

ing in mind that the multi-point approah needs one fewer adaptive iteration than the

single-point method, i.e. q = 8, to generate a ROM whih is onsidered onverged, the

omputational osts are lower, as an be expeted. Anyhow, the listed results in the Ta-

ble 4.2 show learly that the out-of-ore proess swapping mehanism is not the limiting

operation in the performed experiments. It should also be mentioned that all MORe teh-

niques are far superior to the disrete FE sweep, whih is the main purpose of MORe. The

full FE omputation time only inludes the fatorization time and the solution of the 64
right-hand sides at eah evaluation frequeny.

We start the detailed timing analysis by looking at the memory plots in Fig. 4.14(a).

Partiularly the last iteration of the in-ore tehnique is investigated. This iteration starts

before the memory rises the last time (at 10206s) and ends just before the memory is

released (at 12748s), whih is a time interval of 2542s. The time for this adaptive step

results from 941s for the blok WCAWE proess, 1333s for the subspae projetion and

268s for the error measure evaluation. Detailed investigation showed that the urrent

implementation works on non-optimized matrix-vetor produt and vetor-vetor produt

operations. This makes the omputation times for the blok WCAWE proess as well as
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for the subspae projetion rather high ompared to the highly optimized operations in

the PARDISO solver [47℄. This explains also why the multi-point approah is faster than

the single-point method in Table 4.2, if both omputations run 9 adaptive iterations.

Table 4.2: Port uboid: Computational data.

Number of ROM generation ROM evaluation Sweep omputation

iterations q time (s) time (s) time (s)

Single-point:

In-ore 9 12746 267 13013
Out-of-ore 9 12864 268 13132

Multi-point:

In-ore 8 9337 201 9538
Out-of-ore 8 9554 201 9755
In-ore 9 11451 268 11719
Out-of-ore 9 11656 268 11924

Full FE run: - - - 923261
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(a) Full uboid.

(b) Sheets: Lumped ports (blue), lumped elements (yellow) and

PEC (red).

Figure 4.10: Port uboid: View of the struture.
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Figure 4.11: Port uboid: Geometri dimensions in mm.
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Figure 4.12: Port uboid: Sattering parameters versus frequeny.
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Figure 4.13: Port uboid: Error indiator and true error versus iteration number.
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(a) Single-point method, q = 9.
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(b) Multi-point method, q = 8.

Figure 4.14: Port uboid: Memory plots for adaptive MORe tehniques.
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(a) In-ore approahes with �lled main memory.
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Figure 4.15: Port uboid: Memory plots with fored iteration number q = 18.
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Test Struture with Surfae Impedane

For the last numerial experiment in this setion the absorbing boundary ondition in

the struture above is replaed by a surfae impedane boundary with a ondutivity of

σ = 5.8 · 105 A/(V m) and a permeability of µ = µ0. Thus, the system matrix

is parameterized now to the order a = 4 in the frequeny. In both onstellations the

FE simulation employs the same mesh. Therefore, the time and memory requirements in

the full FE run do not exhibit any remarkable di�erenes to the run above. However, this

modi�ation results in a less smooth behavior in the frequeny response of the port uboid,

as an be seen in Fig. 4.16. Both adaptive proesses, single-point and multi-point methods,

run one adaptive iteration more and onverge more slowly as the plots in Fig. 4.17 show.

In partiular, the multi-point method runs q = 9 iterations and the single-point method

needs q = 10 iterative steps.

The runtime omparison for the multi-point MORe with q = 9 in Table 4.3 and Ta-

ble 4.2 shows that the model modi�ation slowed down the MORe proess. The longer

omputation times an be explained by the higher polynomial degree in the frequeny pa-

rameterization of the system matries, whih results from the surfae impedane boundary

ondition.

This e�et is muh more obvious for the single-point method, omparing the memory

plots Fig. 4.18(a) and Fig. 4.14(a). The origin for the massive slow down is the same as for

the multi-point method, the higher polynomial degree in the system parameterization. The

e�et, however, is muh more pronouned as a result of the expansion point shift, whih is

performed only in single-point methods. The shift auses that all 5 system matries have

non-zero entries, where some of them may have a muh higher density as the non-shifted,

whih more slows down some operations ompared to the multi-point approah. For a

detailed timing analysis we hoose again the 9th iteration of the in-ore tehnique, whih

is the same iteration as used in the absorbing boundary ondition runtime analysis above.

Note that this is not the last adaptive iteration in this run. The interval starts at 14831s
and ends at 18712s and onsists of 1372s for the blok WCAWE, 2226s for the subspae
projetion and 283s for the error evaluation. Thus it is the subspae projetion, whih

runs almost 15 min longer, that espeially slows down the omputation.

Table 4.3: Port uboid with surfae impedane: Computational data.

Number of ROM generation ROM evaluation Sweep omputation

iterations q time (s) time (s) time (s)

Single-point:

In-ore 10 23112 381 23112
Out-of-ore 10 23196 381 23196

Multi-point:

In-ore 9 12731 268 12999
Out-of-ore 9 12966 269 13235

Full FE run: - - - 923261
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Figure 4.16: Port uboid with surfae impedane: Sattering parameters versus frequeny.
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(b) Multi-point method.

Figure 4.18: Port uboid with surfae impedane: Memory plots for adaptive MORe teh-

niques.
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4.5 Conlusion

The provided adaptive MORe approahes in ombination with the hosen error measure

show reliable results and work very e�iently. The memory swapping mehanisms only

slightly inrease the omputation times and therefore do not relevantly redue the e�ieny

of the MORe tehniques. However, the employed out-of-ore approahes may ause an

important performane improvement, if the projetion matrix memory requirements exeed

the available main memory, as may happen in real-world problem broadband simulations.

Memory plots show the redution of the main memory requirement due to the projetion

matrix data swapping. A high number of adaptive iterations an be performed using the

out-of-ore approah, without �lling the main memory.

To show the pratial importane of the introdued numerial tehniques in this thesis,

numerial omputations run on the limit of the system apaity. This showed some un-

expeted results, whih are mainly aused by non-optimized numerial operations in the

urrent implementation. Timing analysis showed that non-optimized matrix-vetor and

vetor-vetor produts mainly slow down the single-point methods. Although we have this

shortoming in the implemented framework, whih a�ets single-point as well as multi-

point methods, all MORe runs are far superior to disrete FE sweeps.
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Chapter 5

Broadband Finite Element

Simulation for Waveguide Problems

5.1 Model Order Redution for Waveguide Problems

The FE method is also a very powerful tehnique for the modal analysis of eletromagneti

waveguides. Sine it is just the waveguide ross-setions that need to be disretized, single

solutions are omputationally inexpensive. In many appliations, however, the harater-

istis of waveguide modes are to be determined over wide frequeny bands. Sine modal

�eld patterns may be frequeny-dependent and the orresponding propagation oe�ients

highly dispersive, and beause dispersion urves may feature bifurations, ross-over points,

or oupled-mode setions, the broadband analysis of eletromagneti waveguides typially

requires a large number of FE omputations, at di�erent frequeny points. In suh ases,

omputer runtime is still a limiting fator.

MORe tehniques suh as [51℄, [52℄ and [53℄, provide a means to speed up the solu-

tion times of frequeny sweeps very signi�antly, at little additional error. This hapter

introdues a multi-point MORe method employing an adaptive point-plaement sheme

for ontrolling the error. An inremental error indiator for the propagation oe�ient is

provided to guide the adaptive proess.

The onsidered waveguides are assumed to be bounded by eletri and magneti walls,

and to possess material properties that are salar-valued and uniform along the waveguide

axis z but non-uniform in the transverse plane t. In onsequene, the axial behavior of the

modal �elds is given by exp (−γz), wherein γ denotes the propagation oe�ient.

91
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5.2 Finite-Element Formulation

For stability reasons, the hosen formulation is based on a magneti vetor potential

~A
and a saled eletri salar potential φ, as introdued in [54℄, [4℄. Spei�ally, we employ

the gauge Az = 0 and deompose

~At into omponents of non-vanishing irulation

~Act plus
the transverse gradient ∇t of a salar �eld ψ. Hene we have

~A = e−γz( ~Act(x, y) +∇tψ(x, y)), (5.1)

φ = e−γzV (x, y), (5.2)

and the eletromagneti �elds are represented by

~B = e−γz[∇t × ~Act − êz × γ( ~Act +∇tψ)], (5.3)

~E = −jc0e−γz[γêz(jV )−∇t(jV ) + k( ~Act +∇tψ)]. (5.4)

By plugging (5.1) and (5.2) into the time-harmoni Maxwell equations, we arrive at the

eigenvalue problem

∇t × µ−1
r ∇t × ~Act − kεr∇t(kψ − jV )− k2εr ~Act =
−γ2

[

êz × µ−1
r êz × ~Act + êz × µ−1

r êz ×∇tψ
]

, (5.5a)

∇t · ǫr[k ~Act +∇t(kψ − jV )] = γ2ǫrjV. (5.5b)

FE disretization results in the algebrai EVP

(S0 + kS1 + k2S2)xm = γ2mTxm with xm =





xA
xψ
xV





m

, (5.6)

wherein xA, xψ, and xV denote the omponent vetors for

~Act , ψ, and (jV ), respetively,
and S0, S1, S2, and T are sparse symmetri matries, whose struture an be found in

[4℄. Note that (5.5) is satis�ed not only by physial waveguide modes but also by a set of

null-�eld solutions, i.e. non-trivial solutions with

~E = 0 and

~B = 0:

γ = 0, (5.7)

~Act = 0, (5.8)

jV = kψ, (5.9)

with arbitrary ψ. In the FE ontext (5.6), the null-�eld solutions n read

γ = 0, (5.10)

n = Nxψ, (5.11)

N(k) =





0

I

kI



 , (5.12)

with arbitrary xψ. Eq. (5.6) implies the generalized orthogonality equation

xTmTxn = 0 for m 6= n. (5.13)
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Hene any superposition of physial modes p(k) satis�es

N(k)TTp(k) = 0, (5.14)

whih enables us to reonstrut p from given omponents pA and pψ. The resulting

equation takes the form

p(k) = (P0 + kP1)

[
pA
pψ

]

. (5.15)

The struture of the matries P0 and P1 an be found in [4℄.
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5.3 Multi-Point Model Order Redution

The main idea behind the waveguide MORe approah is to restrit the trial and test spaes

in the FE system (5.6) to suitable subspaes whose dimension q is muh smaller than that

of the original system, p. For this purpose, we onstrut projetion matries V(k),W(k)
and apply a two-sided projetion proess to (5.6). The resulting redued-order eigenvalue

problem is of the form

(S̃0 + kS̃1 + k2S̃2)x̃m = γ̃2mT̃x̃m (5.16)

with

S̃i(k) = W(k)HSiV(k) i ∈ {0, 1, 2}, (5.17a)

T̃(k) = W(k)HTV(k), (5.17b)

and the orresponding approximations x′
m to the eigenvetors of (5.6) are given by

x′
m(k) = V(k)x̃m(k). (5.18)

The matries V(k) and W(k) are onstruted as follows: we �rst ompute the dominant

M eigenpairs of (5.6) at N expansion wavenumbers kn and assemble their omponents in

~Act and ψ to a matrix Ξ:

Ξ =

[[
x1
A

x1
ψ

]

k1

, · · · ,
[
xMA
xMψ

]

k1

, · · · · · · ,
[
xMA
xMψ

]

kN

]

. (5.19)

To provide a stable basis, we next ompute the QR fatorization of Ξ. In view of (5.14),

we then onstrut V(k) by

V(k) = (P0 + kP1)Q. (5.20a)

Hene the trial spae of the ROM, colspV(k), ontains superpositions of physial modes

only. Aording to (5.18), the approximate eigenvetors x′
m satisfy (5.14), whih assures

that the ROM will not lead to null-spae solutions.

Following an idea from [55℄, W(k) is taken to be

W(k) =





I 0 0

0 I 0

0 0 −I



V(k). (5.20b)

By plugging (5.20) and (5.17) into (5.16) and olleting terms of equal power in k, we
arrive at the �nal form of the ROM:

(S̃S0 + kS̃S1 + k2S̃S2 + k3S̃S3 + k4S̃S4)x̂m = γ̃2m(T̃T0 + kT̃T1 + k2T̃T2)x̂m. (5.21)

Eq. (5.21) features expliit k dependene, and all matries are in C
q×q

. Sine q ≪ p, the
eigenvalue problem (5.21) an be solved muh more e�iently than the underlying FE

system (5.6).
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5.3.1 Homogeneous Material Properties

Waveguides with homogeneous material properties are known to support transverse eletri

(TE), transverse magneti (TM), and possibly transverse eletromagneti (TEM) modes.

They all have in ommon that the transverse �eld patterns are independent of frequeny.

Eq. (5.3) implies that the modal patterns in terms of

~Act and ψ must be frequeny-

independent, too. Sine the orresponding omponents in V , whih do depend on fre-

queny, are reonstruted via (5.15) and (5.20a), respetively, we onlude that a single

expansion point su�es in the present MORe method to fully haraterize any TE, TM,

or TEM mode over an arbitrary frequeny range.
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5.4 Self-Adaptive Point Plaement Strategy

For pratial reasons, the following algorithm is formulated in terms of the operating

frequeny f rather than the wavenumber. The goal is to ompute the dispersion hara-

teristis ofM dominant modes on a set B0 of L equidistant evaluation frequenies fl within
user-de�ned bounds fmin and fmax.

The MORe method of Setion 5.3 provides two degrees of freedom to ontrol the error:

the number of expansion points and their respetive loations; see (5.19). The adaptive

strategy we propose is based on suessive bisetion. It plaes a new expansion point in the

middle of that sub-interval Bn̂, for whih the error indiator E∞ is worst. The proedure

is repeated until the error indiator on the whole of B0 falls below a user-de�ned threshold

Etol∞ .

Our error indiator is in terms of γ̃2. It is of inremental type and overs all modes

and evaluation points. Spei�ally, we set

E∞(B) =
max
fl∈B

max
m=1...M

∣
∣γ̃2m+(fl)− γ̃2m−(fl)

∣
∣

max
m=1...M

|γ2m(fmax)|
, (5.22)

wherein the indies + and - denote the present and preeding iteration.

Algorithm 8 gives the details of the proposed tehnique. Line 2 and Line 8 show that the

�rst two expansion points are always plaed at the boundaries of the frequeny range. The

main loop starts at Line 10. Note that the dimension of the redued-order EVP at Line 15

is larger than the number of sought modes, M . Hene there are two lasses of eigenpairs:

lose approximations to the dominant modes and higher-order solutions without any merit.

The for-loop starting at Line 16 provides a simple �lter for the propagation onstants of

the dominant modes. At Line 26 and Line 27, we detet the interval of worst error indiator

B
k̂
and set the new expansion point f̂ at the evaluation frequeny losest to its middle.
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Algorithm 8 Waveguide MORe with adaptive point plaement

PARAMETERS: frequeny range [fmin, fmax],
number of evaluation frequenies L,
max. number of expansion points jmax,

error threshold value Etol∞ .

1: Compute P0, P1, B0(fmin, fmax, L)
2: Solve (

∑

i f
i
maxSi)X = TXdiag γ2m

3: Q← updateQR(Q = 0,X)
4: [S̃Si, T̃T i]← updateROM(Q;P0,P1)
5: for l = 1 to L do

6: Solve (
∑

i f
i
l S̃Si)X̃ = (

∑

i f
i
l T̃T i)X̃diag γ̃2m−(fl)

7: end for

8: f̂ = fmin {Next expansion point}

9: B1 = B0 {First interval}
10: for j = 2 to jmax do
11: Solve (

∑

i f̂
iSi)X = TXdiag γ2m

12: Q← updateQR(Q,X)
13: [S̃Si, T̃T i]← updateROM(Q;P0,P1)
14: for l = 1 to L do

15: Solve (
∑

i f
i
l S̃Si)X̃ = (

∑

i f
i
l T̃T i)X̃ diag γ̃2

16: for m = 1 to M do

17: γ̃2m+(fl) = argmin
γ̃2

(|γ̃2 − γ̃2m−(fl)|)
18: end for

19: end for

20: for k = 0 to j − 1 do
21: ComputeE∞(Bk)
22: end for

23: if E∞(B0) < Etol∞ then

24: return onverged

25: end if

26: k̂ = arg max
k=1...j

E∞(Bk) {Interval of worst error}

27: f̂ = arg min
f∈B

k̂

∣
∣
∣f − minB

k̂
+maxB

k̂

2

∣
∣
∣ {Expansion point}

28: B
k̂
← [minB

k̂
, f̂ ]

29: Bj = [f̂ ,maxB
k̂
]

30: for all m, l do
31: γ̃2m−(fl)← γ2m+(fl)
32: end for

33: end for
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5.5 Numerial Examples

In the following, errors in propagation onstant are omputed with respet to full FE so-

lutions, using the same disretization as the MORe method. The termination riterion for

the adaptive proess is set to Etol∞ = 10−6
. An overview of all omputational parameters

and results is given in Table 5.1. Note that the number of modes omputed in the under-

lying FE model has hosen to be somewhat larger than that displayed in the frequeny

sweep, to aount for the fat that the preonditioned Arnoldi method used for solving the

FE system may sometimes produe higher-order modes �rst [56℄.

5.5.1 Shielded Mirostrip Line

Fig. 5.1(a) shows a shielded mirostrip line [52℄. The FE model represents one half of the

struture and uses a magneti wall for the middle plane. In our �rst test, the dieletri

substrate is replaed by free spae, so that the resulting waveguide has homogeneous ma-

terial properties. Fig. 5.2 presents the results based on a single expansion point at 25 GHz.

(Note that the atual Algorithm 8 will always result in a minimum of two points.) As

predited in Subsetion 5.3.1, both the dominant TEM mode as well as the higher-order

TE and TM modes are perfetly represented everywhere in the range 0-25 GHz.

Dispersion urves and error plots for the �rst 10 modes of the inhomogeneous waveguide

an be seen in Fig. 5.3. Note the ourrene of bifurations and omplex modes. The

adaptive loop �nishes after 5 expansion points. Again, the MORe solutions are in exellent

agreement with referene results from FE omputations. However, Table 5.1 shows that

the MORe sheme is 53 times faster.

5.5.2 Dieletri Loaded Waveguide

Our seond example is the dieletri loaded waveguide [57℄ of Fig. 5.1(b). We onsider

the dominant 19 modes in the range 0-30 GHz. In this ase, the method terminates

after 7 iterations. Fig. 5.4 presents dispersion urves and error plots for the propagation

oe�ients. Note the highly non-uniform distribution of the expansion points. It an be

seen that the MORe solutions are in exellent agreement with referene results from FE

omputations. This time, MORe is 12 times faster than onventional FE analysis.
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Table 5.1: Waveguide strutures: Computational data

1

Model A (ε1 = 1) A (ε1 = 8.875) B

Sweep

Frequeny (GHz) 0 to 25 0 to 25 0 to 30

Evaluation points 1001 1001 1001

Number of modes 10 10 19

Results Fig. 5.2 Fig. 5.3 Fig. 5.4

FE model

Degrees of freedom 25553 25553 12612

Order of FE basis 2 2 2

Number of modes 11 12 23

Total runtime

2
(s) 4721 5045 4827

ROM

Expansion points 1 5 7

Error threshold Etol∞ � 10−6 10−6

ROM dimension 11 60 161

Total runtime

3
(s) 11 95 402

1
For a single ore of the Intel Core 2 Extreme 3 GHz proessor.

2
Inluding all evaluation points.

3
Inluding adaptivity and all evaluation points.

(a) Shielded mirostrip line

(b) Dieletri loaded waveguide

Figure 5.1: Waveguide strutures. All dimensions are in mm.
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error plot.
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5.6 Conlusion

In this hapter, a multi-point MORe tehnique with a self-adaptive point plaement strat-

egy for the broadband FE analysis of eletromagneti waveguides has been introdued. The

underlying MORe method employs two-sided projetions with null-�eld orthogonalization,

and the adaptive sheme is based on suessive bisetion, guided by an inremental error

indiator for the propagation onstant.

The numerial tests of Setion 5.5 on�rm that the number of expansion points required

by the adaptive sheme remains very small, even for very wide broadband appliations.

In onsequene, the proposed method is signi�antly faster than traditional FE analysis.

At the same time, errors in propagation oe�ient are negligible over the whole frequeny

band.
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Chapter 6

Broadband Sensitivity Analysis

6.1 Introdution

The design proess of a mirowave devie is a omplex task and depends on many pa-

rameters. Frequeny responses for di�erent parameter on�gurations may be evaluated

by means of numerial methods. However, the impat of a variation in the design pa-

rameters an be used to systematially improve the performane of a mirowave devie.

Sensitivity analysis provides a powerful means for analyzing small modi�ations in the

design parameters.

Based on 2D-FE methods, [58℄, [59℄ introdued automati mirowave devie shape

optimizations in an iterative proess, where optimization algorithms are applied. The in-

trodued tehniques de�ne ost funtions and employ design sensitivity analysis to evaluate

the impat of a design variation. An optimization proess founded on a 3D-FE tehnique,

where sensitivity analysis is employed as well, was presented in [60℄. It is shown in [61℄ that

the design sensitivities an be evaluated from the solution used for the sattering matrix

evaluation and no additional system matrix solutions are required. An AWE tehnique is

employed to ompute the sensitivity on a frequeny range in [62℄, whih is used in [63℄ to

optimize mirowave devies with respet to their frequeny response.

This thesis provides broadband sensitivity analysis tehniques, whih are based on

the previously introdued projetion-based MORe methods. Partiularly the adaptive

MORe shemes, developed in the previous hapters, are attrative to employ, as fully

automati analysis runs may be performed. However, the employed WCAWE tehnique as

well as the multi-point approah allows us to perform the sensitivity analysis on a larger

frequeny range as the AWE proess applied in [62℄. Hene, the provided methods allow

us to perform a reliable optimization proess over a large bandwidth. Although the new

tehnique is applied only to material parameters in this thesis, other design parameters,

suh as geometry variations, as performed in [58℄, may also be employed.

105
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6.2 Theory

6.2.1 System Design Sensitivity

The FE simulation of a passive mirowave struture results in a system of linear equations

and an output funtional for the network parameter evaluation. For the sensitivity analysis,

a design parameter p is de�ned on whih a perturbation is applied to. As the modal

�eld patterns on wave ports result from a separated analysis, design parameters must not

a�et the wave port areas, whih is a limitation in the urrent implementation. Assuming

polynomial dependeny in the design parameter p and the wavenumber k, we denote the
resulting FE system as

M∑

m=0

N∑

n=0

(Amnp
mkn)x(k, p) = kb, (6.1a)

y(k, p) = cTx(k, p) + d, (6.1b)

where M and N designate the highest polynomial dependenies in the parameters. The

input vetor b, the output funtional cT and the feed through oe�ient d are assumed

to be onstant

b = const, (6.2a)

cT = const, (6.2b)

d = const . (6.2)

For the sensitivity analysis, the �rst derivative of the output with respet to p, at the

expansion point p = 0 is hosen. Hene, deriving both sides of the system (6.1) and setting

the parameter p = 0, the sensitivity system yields

(
N∑

n=0

A1nk
n

)

x(k, p = 0) = −
(

N∑

n=0

A0nk
n

)

∂x(k, p)

∂p

∣
∣
∣
p=0

, (6.3a)

∂y(k, p)

∂p

∣
∣
∣
p=0

= cT
∂x(k, p)

∂p

∣
∣
∣
p=0

. (6.3b)

The derivative of the system output at the expansion point p = 0 is denoted as

δp(k) =
∂y(k, p)

∂p

∣
∣
∣
p=0

. (6.4)

Solving (6.3) for the derivative results in

δp(k) = −cT
(

N∑

n=0

A0nk
n

)−1( N∑

n=0

A1nk
n

)

x(k, p = 0) (6.5)

(6.1)

= −cT
(

N∑

n=0

A0nk
n

)−1( N∑

n=0

A1nk
n

)(
N∑

n=0

A0nk
n

)−1

kb. (6.6)

The impat of a perturbation in the design parameter p is evaluated from

dy(k, p = 0) = y(k, p = 0) + δp(k)∆p, (6.7)
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where a sweep for di�erent wavenumbers may be evaluated. It is remarkable that for a �xed

wavenumber, the system matrix at p = 0 needs to be fatorized only one to evaluate the

system sensitivity [61℄. Furthermore, the whole proess may be performed for a parameter

vetor p instead of a single design parameter, where only one system fatorization is

required for the sensitivity evaluation for all parameters. The analysis proess (6.7) an

be performed for any ombination of parameters.

6.2.2 Broadband Design Sensitivity Tehnique

Employing the projetion-based MORe tehniques that were introdued in the previous

hapters, the original system (6.1) is redued to the polynomial parameterized ROM

M∑

m=0

N∑

n=0

(

Ãmnp
mkn

)

x̃(k, p) = kb̃, (6.8a)

ỹ(k, p) = c̃T x̃(k, p) + d, (6.8b)

where the the projetion matrix V is employed for the redution

Ã = VTAV, (6.9a)

b̃ = VTb, (6.9b)

c̃ = VT c. (6.9)

As the redued system (6.8) has the same struture as the original model (6.1), the

same proedure as in the large-sale sensitivity analysis is performed. Thus, equivalent to

(6.5) to (6.7), the derivative of the system output at p = 0 an be written as

δ̃p(k) =
∂ỹ(k, p)

∂p

∣
∣
∣
p=0

= −c̃T
(

N∑

n=0

Ã0nk
n

)−1( N∑

n=0

Ã1nk
n

)(
N∑

n=0

Ã0nk
n

)−1

kb̃,

(6.10)

and the perturbation evaluation is performed through

dỹ(k, p = 0) = ỹ(k, p = 0) + δ̃p(k)∆p. (6.11)

The omputational osts for a sensitivity sweep in the redued ase are very low om-

pared to the large-sale system, as the system matrix solutions are very heap. However,

the extension to a parameter sweep with a sensitivity parameter vetor is, as in the full

system sensitivity analysis, straightforward. Note that this approah is appliable in the-

ory to sattering as well as impedane formulation modeling. These two formulations are

explained in detail in [21℄.
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6.3 Numerial Experiments

The e�ieny of the introdued broadband design sensitivity tehnique is presented by

means of some numerial examples. However, this setion also disusses the drawbak

of impedane formulations in ombination with the sensitivity analysis. In the analyzed

eletromagneti strutures, pε is hosen as design parameter, whih is de�ned through

ε = (εr + pε)ε0. (6.12)

All numerial sensitivity omputations in this setion are based on FE simulations and the

developed MORe tehniques of this thesis.

6.3.1 Parallel Plate Waveguide

The �rst onsidered struture is the parallel plate waveguide of Fig. 6.1(a), whih has only

one wave port. The gray part in the waveguide represents a material with properties εr
and µr, whereas the white setion is modeled as vauum. The waveguide is bounded on

top and bottom by PEC and side walls are perfet magneti ondutors (PMC).

At the end of the parallel plate waveguide a PEC is attahed to impose a short iruit.

In the following, the permittivity of the material in the dark olored setion is hosen as

design parameter and is designated with εr. The perturbation of this design parameter is

written as pε.

Transmission Line Model

As the propagating waves in the hosen struture are of TEM type, a transmission line

model an be obtained for the waveguide and an be analytially evaluated. In the model

of Fig. 6.1(b), the transmission line L1 represents the vauum part, the transmission line

L2 the gray olored setion and the sort-iruit at the end of the line is the PEC boundary

at the end of the waveguide. The following formulas for parallel plate waveguides and

(a) Geometri dimensions in mm.

(b) Transmission line model.

Figure 6.1: Parallel plate waveguide: Struture geometry and transmission line model.
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transmission line models an be found in many books on mirowave theory, e.g. [19℄. The

harateristi impedane of the transmission line iruit model an be found as

Z0 = η
d

w
=

√
µ

ε

d

w
, (6.13)

whih only depends on material oe�ients and geometry of the waveguide. The phase

veloity in the material medium is given by

vp =
ω

β
=

1√
µε
, (6.14)

and only depends on the material. The input impedane Zin of a transmission line with

load ZL an be evaluated from

Zin = Z0
ZL + jZ0 tan(βl)

Z0 + jZL tan(βl)
, (6.15)

where l de�nes the length of the transmission line. Alternatively, the re�etion oe�ient

Γ an be used to perform the line transformation. At the end of the line, the re�etion

oe�ient is given through

Γ(0) =
ZL − Z0

ZL + Z0
, (6.16)

and an be transformed by

Γ(l) = Γ(0)e−2jβl, (6.17)

to the position l in the transmission line, whih of ourse an be hosen as the input of the

line.

Sattering Formulation

In this setion, the proposed numerial broadband sensitivity tehnique is ompared to

the analyti solution. For the FE simulation and thus for the broadband sensitivity a

sattering formulation is employed. The analyti solution is obtained by evaluating the

re�etion oe�ient Γin2 and performing the line transformation in L1 through (6.17)

Zin2 = jZ2 tan(β2l2), (6.18)

Γin2 =
Zin2 − Z1

Zin2 + Z1
, (6.19)

Ŝ11 = Γin1 = Γin2e
−2jβ1l1 . (6.20)

Thus, the analyti solution for the derivative of the design parameter and the perturbed

sattering parameter are

δ̂ε(k) =
∂Ŝ11(k, pε)

∂pε

∣
∣
∣
pε=0

, (6.21)

dŜ11(k, pε) = Ŝ11(k, pε = 0) + δ̂p(k)pε. (6.22)

The numerial simulation data is given in Table 6.1. The ROM generation time in-

ludes the time for the FE matries assembling, the projetion matrix generation, and the
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subspae projetion proess. The evaluation time represents the time of the evaluation

for one sweep, either sattering parameters or the derivatives, as no signi�ant di�erenes

are measurable. These de�nitions are valid for all following simulation data tables in this

hapter.

Fig. 6.2 shows the evaluated sattering parameters, their derivatives as well as error

plots. The absolute value of S11 is onstant in the omputed bandwidth, while its derivative

δε is inreasing with higher frequeny. Additionally, the phases between parameter and

derivative exhibit a shift. Note that the graphs of analyti solution and ROM evaluation

are lying upon eah other as a result of the low error. The errors eS11 and eδε are de�ned
as

eS11 = |Ŝ11 − S̃11|, (6.23)

eδε = |δ̂ε − δ̃ε|. (6.24)

The inreasing errors with higher frequeny originate from the FE simulation. It is a result

of shorter wavelengths in the �elds on a onstant mesh.

The omputed sweeps allow us to perform evaluations for a disturbed material param-

eter εr, by applying (6.11) and (6.22). Sweeps for the perturbed analyti solution dŜ11(pε)
and the perturbed numerial evaluation dS̃11(pε) are solved. The results are shown for

a perturbation of pε = 0.004 in Fig. 6.3 and for a perturbation of pε = 0.04 in Fig. 6.4.

Additionally, the analyti sweeps are solved for ε = εrε0 and ε = (εr + pε)ε0 as referenes.
While the phase shift for the small perturbation an be only notied in the upper end of

the omputed bandwidth in Fig. 6.3, the perturbation of pε = 0.04 auses a remarkable

phase shift on a broadband in the upper end of the sweep in Fig. 6.4. The absolute value

of S11 inreases with frequeny into non-physial results. This e�et, whih beomes more

signi�ant with higher perturbation values, results from the sensitivity analysis and is not

aused through the numerial broadband approah.

In the error plots, the di�erene of the analyti solutions at εr + pε to analyti pertur-

bation and to the broadband sensitivity analysis is reorded. The error between perturbed

analyti solution and perturbed ROM is evaluated as well as ePR. In partiular these errors
are de�ned as

eAP (k) = |Ŝ11(k, εr + pε)− dŜ11(k, pε)|, (6.25)

eAR(k) = |Ŝ11(k, εr + pε)− dS̃11(k, pε)|, (6.26)

ePR(k) = |dS̃11(k, pε)− dŜ11(k, pε)|. (6.27)

For the very small perturbation of pε = 0.004, the error from perturbation to analytial

formulas, i.e. eAP and eAR, is very small, see Fig. 6.3. Although the error originating from

numerial simulation is dominant at higher frequenies, it is important to notie that the

perturbation error is rising with higher frequenies. This e�et beomes more pronouned

for a higher perturbation, as an be seen in Fig. 6.4, where the error due to perturbation

is dominant over the omplete evaluated bandwidth (eAP and eAR are lying upon eah

other).
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Spei�ations: Simulation data:

Lowest frequeny in Hz 1e7 Original dimension 149787

Highest frequeny in Hz 2e9 Number of iterations q 9

Evaluation points, equidistant 501 ROM generation time in s 15.3

FE basis funtion order 2 Evaluation time in s 0.01

Multi-point method -

Table 6.1: Parallel plate waveguide: Sattering formulation simulation data.
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Figure 6.2: Parallel plate waveguide: S11 and δε versus frequeny using sattering formu-

lation.
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dŜ11(pε)

dS̃11(pε)

Ŝ11(εr + pε)

eAP

eAR

eP R

Figure 6.4: Parallel plate waveguide: Material perturbation pε = 0.04 versus frequeny
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Impedane Formulation

As for the sattering formulation, a set of analytially formulas for the impedane formu-

lation is provided. Instead of transforming the line L1 by (6.17), the transformation is

performed by (6.15) and thus we have

Zin2 = jZ2 tan(β2l2), (6.28)

Zin1 = Z1
Zin2 + jZ1 tan(β1l1)

Z1 + jZin2 tan(β1l1)
, (6.29)

Ẑ11 =
Zin1
Z1

, (6.30)

δ̂ε =
∂Ẑ11

∂pε

∣
∣
∣
pε=0

. (6.31)

As for the analytial solution, an impedane formulation is hosen for the numerial solution

as well. The omputational data for the simulation an be found in Table 6.2.

Fig. 6.5 shows a sweep for the impedane parameter Z11 and its derivative δε. The

analyzed waveguide struture exhibits inner resonanes whih result in a set of singularities

in the impedane parameter sweep, in the numerial simulation as well as in the evaluated

analytial formulation. The inner resonanes ause the same set of singularities in the

derivatives of the impedane parameters. The omputed errors are de�ned as

eZ11 = |Ẑ11 − Z̃11|, (6.32)

eδε = |δ̂ε − δ̃ε|. (6.33)

The set of error peaks in Fig. 6.5 is a result of the singularities in the impedane parameters

and their derivatives.

In equivalene to (6.16), sweeps for the re�etion oe�ient S11 and the perturbed

sattering parameter dS11 an be evaluated from the expressions

Ŝ11(k) =
Ẑ11(k)− 1

Ẑ11(k) + 1
, (6.34)

dŜ11(k, pε) =
Ẑ11(k) + δ̂ε(k)pε − 1

Ẑ11(k) + δ̂ε(k)pε + 1
. (6.35)

Thus, the solutions in impedane formulation allow us to perform the perturbation anal-

ysis in the sattering formulation and to evaluate sattering parameters. As in the sat-

tering formulation setion, the perturbed sweeps are ompared to the analyti solutions at

ε = εrε0 and ε = (εr + pε)ε0. Again, the perturbations are set to pε = 0.004, in Fig. 6.6,

and pε = 0.04, in Fig. 6.7. The errors are de�ned as above, i.e. (6.25) to (6.27).

Although non-physial resonanes may our in the impedane formulation, as reported

for onstruted on�gurations in [21℄, the evaluated sattering parameters in this simulation

do not exhibit unwanted singularities. However, at the frequenies of the inner resonanes,

whih an be seen in Fig. 6.5, the errors eAP and eAR rise to high values in Fig. 6.6, already

for a perturbation of pε = 0.004. For a perturbation of pε = 0.04, shown in Fig. 6.7, the

non-physial resonanes ause serious disontinuities in the phase for higher perturbations.

It is very important to notie that the analytial perturbation analysis exhibits exatly

the same behavior as the numerial evaluation. Therefore, this e�et is a result of the

formulation and is not an outome of the numerial simulation.
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Spei�ations: Simulation data:

Lowest frequeny in Hz 1e7 Original dimension 149787

Highest frequeny in Hz 2e9 Number of iterations q 9

Evaluation points 501 ROM generation time in s 8.9

FE basis funtion order 2 Evaluation time in s 0.01

Multi-point method -

Table 6.2: Parallel plate waveguide: Impedane formulation simulation data.
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Figure 6.5: Parallel plate waveguide: Z11 and δε versus frequeny using impedane formu-

lation.
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6.3.2 Dieletri Pole Struture

Struture De�nition

The seond onsidered struture is the parallel plate waveguide in Fig. 6.8, where three

dieletri poles with εr = 50 are inserted. For suh kinds of strutures it is rather di�ult

to �gure out an analytial solution and even more di�ult to �nd the derivative for the

sensitivity analysis. Therefore, for the struture simulation and the sensitivity analysis

only numerial methods are employed, i.e. MOR tehniques applied to FE simulations

and the above introdued broadband sensitivity analysis. As sensitivity parameter, the

perturbation pε of the permittivity εr of the three dieletri poles is hosen.

Simulation and Sensitivity Analysis

In a �rst numerial experiment, the sattering parameter evaluation and the sensitivity

analysis for the three pole struture is performed in sattering formulation. The simulation

data is given in Table 6.3, while a frequeny sweep is plotted in Fig. 6.9. Beause resonanes

are very interesting from the sensitivity analysis point of view, the fous is on the resonane

lose to 190 MHz and the set of resonanes around 1 GHz. The perturbations for the

analysis are set to pε = 0.2 and pε = 1.0.
Figure 6.10 shows the frequeny shift resulting from the material perturbations in the

resonane at 190 MHz. In addition to the perturbed numeri evaluation, the sattering

parameters are omputed as referene solution at the shifted material parameters εr = 50.2
and εr = 51.0. While for pε = 0.2 the perturbed sattering parameter dS̃11 is in good

aordane with the shifted material parameter solution, the perturbation pε = 1.0 auses

a severe di�erene. This is also notieable in the evaluated error in Fig. 6.10, whih shows

the di�erenes between sensitivity analysis and shifted material parameter solution

epε = |S̃11(εr + pε)− dS̃11(εr, pε)|. (6.36)

For the resonanes at 1 GHz, already the smaller hosen perturbation of pε = 0.2 leads
to di�erenes ompared to the solution with shifted parameter S̃11(εr = 50.2), see Fig. 6.11.
These di�erenes an be notied partiularly in the phases of the sattering parameters.

The errors are also higher, ompared to the perturbation at 190 MHz. For a perturbation

of pε = 1.0, the errors at 1 GHz resonanes are rather high and the sattering parameters

evaluated from the sensitivity analysis do not represent the resonanes properly. This is a

result of setting the perturbation too high, but not a limitation of the provided broadband

sensitivity analysis.

Figure 6.8: Three pole struture: Geometri dimensions in mm.
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Spei�ations: Simulation data:

Lowest frequeny in Hz 1e7 Original dimension 306768

Highest frequeny in Hz 1.2e9 Number of iterations q 8

Evaluation points 10000 ROM generation time in s 907

FE basis funtion order 2 Evaluation time in s 0.3

Multi-point method -

Table 6.3: Three pole struture: Simulation data using sattering formulation.
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Impedane Formulation

In this setion, results of the simulation and the broadband sensitivity analysis in the

impedane formulation are shown. As seen in the parallel plate waveguide, inner resonanes

auses high errors in the sensitivity analysis. The same e�et an be seen for the dieletri

three pole struture, where already for a small perturbation of pε = 0.2 the singularities

ause high errors. This an be seen in Fig. 6.12, whih shows a broadband sensitivity

analysis in impedane formulation. The simulation data an be found in Table 6.4. In

ontrast to the parallel plate waveguide, the disontinuities here an even be found in the

absolute values, and not only in the phase. These disontinuities an already be seen at

low frequenies, as the extration of the sweep in Fig. 6.13 shows.

Spei�ations: Simulation data:

Lowest frequeny in Hz 1e7 Original dimension 306768

Highest frequeny in Hz 1.2e9 Number of iterations q 8

Evaluation points 10000 ROM generation time in s 297

FE basis funtion order 2 Evaluation time in s 0.3

Multi-point method -

Table 6.4: Three pole struture: Simulation data using impedane formulation.
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6.4 Conlusion

This hapter has proposed a powerful tool for analyzing the e�et of perturbations in design

parameters over a large frequeny range. The broadband sensitivity tehnique is based on

the adaptive MORe methods provided in the previous hapters. Thus, the redution, as

well as the sensitivity analysis proess runs automatially using the introdued MORe

error measures. This tehnique an be applied to a large set of design parameters and

evaluated in arbitrary ombinations. Numerial results show the e�ieny and reliability

of the theory if a sattering formulation is employed.

However, the sensitivity analysis using an impedane formulation exhibits large errors

and fails to deliver reliable results. This e�et is aused by the inner resonanes of the

impedane formulation, whih is explained by means of analytial formulas in this hapter.

Although the sattering parameters derived from the impedane formulation do not exhibit

this non-physial behavior, the sensitivity analysis su�ers from these singularities.



Chapter 7

Closing Words

This thesis provides adaptive MORe methods for the broadband FE simulation of a large

set of real-world problems. In partiular, an adaptive multi-point method is proposed and

a proof for a bloked WCAWE method is given. Moreover, memory swapping algorithms

are presented that allow us to maintain the system memory requirements for the projetion

matrix at a onstant low level. Numerial results show the e�ieny and reliability of these

tehniques. A memory analysis of the simulation runs demonstrates the importane of the

swapping mehanisms.

The proposed adaptive multi-point method for broadband waveguide simulations, to-

gether with its inremental error measure, is shown to work reliably and e�iently. Addi-

tionally, some broadband sensitivity analysis tehniques are developed whih are based on

the introdued MORe methods.

This thesis also provides a basis for future work. The out-of-ore onept probably is

very attrative for multivariate MORe, where the projetion matrix size may beome an

even more limiting fator. Furthermore, there are some interesting issues onerning the

bloked WCAWE algorithm. De�ation and alternative orthogonalization proesses in the

blok algorithm should be investigated, whih may redue the omputational e�orts. Fi-

nally, extending the WCAWE bloking proess to more than one parameter would probably

improve the e�ieny of multivariate single-point methods [40℄.
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