Synthese und Charakterisierung von Metallkomplexen für Bildgebende Diagnostik

Dissertation

zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes

von

Silvia Lauria

Saarbrücken

2013

Tag des Kolloquiums:	23.08.2013
Dekan:	Prof. Dr. Volkhard Helms
Vorsitzender:	Prof. Dr. Guido Kickelbick
Berichterstatter:	Prof. Dr. Kaspar Hegetschweiler
	Prof. Dr. Andreas Speicher
Akad. Beisitzer:	Dr. Harald Natter

besonders Prof. Dr. Kaspar Hegetschweiler für die interessante Themenstellung, die freundliche und hervorragende Betreuung während meiner Arbeit und für seine aufmunternden Worte diese Arbeit zeitnah fertig zu stellen.

herzlich Dr. Christian Neis für die ständige Unterstützung und Betreuung, für die zahlreichen Diskussionen und hilfreichen Tipps, sowie für den gemeinsamen Projektaufenthalt in Berlin.

dem ganzen Bayer HealthCare-Team für eine tolle Zusammenarbeit und für die tatkräftige Unterstützung mittels zahlreicher UPLC-MS-Messungen, sowie für die Erfahrungen, die ich in Berlin sammeln konnte.

dem Leopoldina-Krankenhaus der Stadt Schweinfurt GmbH für die zur Verfügung gestellten CT-Aufnahmen und der Abbildung eines CT-Scanners.

Dr. Bernd Morgenstern für die anregenden Diskussionen über fachliche und private Themen.

Dr. Volker Huch für das Messen der Kristalle und Dr. Christian Neis für das Lösen der Strukturen.

Anton Zaschka für das Messen der CHN-Analysen, für das Bereitstellen des Liganden taci und die zahlreichen Tipps und Hilfen in allen Lebenslagen.

Roland Beckedahl und Nicolai Dennemärker für die tatkräftige Unterstützung im Rahmen ihrer Bachelor- bzw. Staatsexamensarbeit.

Dr. Christian Neis und Angela Klein für die kritische Durchsicht des Manuskripts.

Angela Klein, Anna Goldammer, Anton Zaschka, Beate Tiefenbrunnner, Dr. Bernd Morgenstern, Dr. Christian Neis, Martin Becker, Sarah Kadau, Philipp Euchen, Dr. Mandy Wild, Matthias Basters, Philipp Altenhofer, Dr. Sabine Wilbrand, Sergej Gisbrecht, Aljosha Jochem, Günter Mertens und Dr. Nadine Koch für das angenehme Arbeitsklima.

all meinen Freunden, die mir mit einer abwechslungsreichen Freizeitgestaltung eine willkommene Ablenkung zur Promotion boten.

meiner ganzen Familie, besonders meiner Schwester, die mir während meiner gesamten Promotion Mut machte und immer Verständnis dafür hatte, dass ich oft nicht genug Zeit für sie aufbringen konnte.

zutiefst meinem Ehemann Giuseppe Lauria, dass er mir in meinem Leben stets eine Stütze war und immer sein wird, dass er mir während meiner Promotion helfend zur Seite stand und für seinen Rückhalt ohne den ich dies nicht hätte erreichen können.

Inhaltsverzeichnis

Zusammenfassung	1
Abstract	2
1. Einleitung	3
1.1 Bildgebende Verfahren	3
1.2 Röntgendiagnostik	3
1.3 Computertomographie (CT)	4
1.4 Röntgenkontrastmittel	5
1.5 Lanthanoide	10
1.5.1 Allgemein	10
1.5.2 Lanthanoide im Einsatz als Kontrastmittel	12
1.6 Ligandsysteme	13
1.7 Zielsetzung	16
2. Syntheserouten und Eigenschaften der freien Liganden	17
2.1 Synthese neuer Liganden durch Derivatisierung von taci	17
2.2 Der Ligand tacitpn	17
2.2.1 Kristallstruktur von tacitpn	19
2.3 Der Ligand tacitp	21
2.3.1 Derivatisierung von tacitp	23
2.4 Der Ligand macitp	
2.5 Der Ligand tacitatm	29
2.6 Der Ligand tacitptm	31
3. Komplexchemie der Liganden tacitp und macitp	
3.1 Metallkomplexe mit Lu(III)	
3.1.1 Der Na ₃ [Lu ₃ (H ₋₃ tacitp) ₂]-Komplex	
3.1.1.1 Stabilitätsuntersuchungen	
3.1.1.2 Bestimmung der Stabilitätskonstanten von Lu ³⁺ mit tacitp	
3.1.2 Der Na ₃ [Lu ₃ (H ₋₃ macitp) ₂]-Komplex	
3.1.2.1 Kristallstruktur von $K_3[Lu_3(H_3macitp)_2] \cdot 11 H_2O$	45
3.1.2.2 Stabilitätsuntersuchungen	

3.1.3 Bestimmung der Stabilitätskonstanten von Lu ³⁺ mit macitp	49
3.2 Metallkomplexe mit Eu(III)	53
3.2.1 Der KNa ₂ [Eu ₃ (H ₋₃ tacitp) ₂]-Komplex	53
3.2.1.1 Kristallstruktur von KNa ₂ [Eu ₃ (H ₋₃ tacitp) ₂] · 21 H ₂ O	53
3.2.1.2 Bestimmung der Stabilitätskonstanten von Eu ³⁺ mit tacitp	55
3.2.2.Der Na ₃ [Eu ₃ (H ₋₃ macitp) ₂]-Komplex	59
3.2.2.1 Kristallstruktur von $K_3[Eu_3(H_3macitp)_2] \cdot 17 H_2O$	59
3.2.2.2 Bestimmung der Stabilitätskonstanten von Eu ³⁺ mit macitp	61
3.3 Metallkomplexe mit Bismut(III)	66
3.3.1 Der K ₃ [Bi ₃ (H ₋₃ tacitp) ₂]-Komplex	66
3.3.1.1 Kristallstruktur von KNa ₂ [Bi ₃ (H ₋₃ tacitp) ₂] · 20 H ₂ O	66
3.4 Metallkomplexe mit ausgewählten Seltenerdmetallen	69
3.4.1 Der $Na_3[Er_3(H_3tacitp)_2]$ -, $Na_3[Gd_3(H_3tacitp)_2]$ -, $Na_3[Ho_3(H_3tacitp)_2]$ -	und
$Na_3[Yb_3(H_3tacitp)_2]$ -Komplex	69
3.4.1.1 Kristallstruktur von $K_3[Ho_3(H_{\cdot 3}tacitp)_2] \cdot 14.5 H_2O$	69
3.4.1.2 Kristallstruktur von K_3 [Gd ₃ (H ₋₃ tacitp) ₂] · 18 H ₂ O	70
3.4.2 Der $Na_3[Er_3(H_3macitp)_2]$ -, $Na_3[Ho_3(H_3macitp)_2]$ -, $Na_3[Yb_3(H_3macitp)_2]$ -, $Na_3[Yb_3(H_3macitp)_3]$ -, $Na_3[Yb_3(H_3macit$	p) ₂]-,
Na ₃ [Gd ₃ (H ₋₃ macitp) ₂]- und Na ₃ [Nd ₃ (H ₋₃ macitp) ₂]-Komplex	71
3.4.2.1 Kristallstruktur von $K_3[Er_3(H_3macitp)_2] \cdot 6.5 H_2O$	71
3.4.2.2 Kristallstruktur von K ₃ [Nd ₃ (H ₋₃ macitp) ₂] \cdot 13.5 H ₂ O	72
3.5 Metallkomplexe mit Hafnium(IV)	73
3.5.1 Der [Hf ₃ (H ₋₃ tacitp) ₂]-Komplex	73
3.5.1.1 Kristallstruktur von $[Hf_3(H_3 tacitp)_2] \cdot 9 H_2O$	75
3.5.1.2 Erhöhung der Wasserlöslichkeit des $[Hf_3(H_3 tacitp)_2]$ -Komplexes	76
3.5.2 Der [Hf ₃ (H ₋₃ macitp) ₂]-Komplex	77
3.6 Zusammenfassung der $[M_3L_2]$ -Kristallstrukturen	80
3.7 Stabilität gegen DTPA	81
3.8 Metallkomplexe mit Wolfram(VI) und Tantal(V)	83
3.9 Metallkomplexe mit Ni(II), Co(III) und Li(I)	84
3.9.1 Kristallstruktur von K[Ni(tacitp)] · 4 H ₂ O	84
3.9.2 Kristallstruktur von [KCo₂(tacitp)₂]Cl	86
3.9.3 Kristallstruktur von Li ₆ [Li(H _{-1.5} tacitp) ₂]Cl ₄ · 14 H ₂ O	88
3.10 Metallkomplexe mit Cu(II)	89
3.10.1 Bestimmung der Stabilitätskonstanten von Cu ²⁺ mit tacitp	90
3.10.2 Kristallstruktur von [Cu ₂ (tacitp)]Cl \cdot 6.5 H ₂ O	94
3.10.3 Bestimmung der Stabilitätskonstanten von Cu ²⁺ mit macitp	95

3.11 Metallkomplexe mit Zn(II)
3.11.1 Bestimmung der Stabilitätskonstanten von Zn ²⁺ mit tacitp
3.11.2 Bestimmung der Stabilitätskonstanten von Zn ²⁺ mit macitp
3.11.3 Kristallisationsversuche von Zn ²⁺ mit tacitp und macitp
3.12 Vergleich von pM-Werten verschiedener Systeme
3.13 Zusammenfassende Diskussion der komplexbildenden Eigenschaften der
Seltenerdmetalle(III), des Hf(IV) sowie des Bi(III) mit den Liganden tacitp und macitp 108
3.14 Zusammenfassende Diskussion der komplexbildenden Eigenschaften der
Übergangsmetalle Cu(II), Co(III) und Zn(II) mit den Liganden tacitp und macitp
4. Experimenteller Teil112
4.1 Chemikalien
4.2 Analvtik
4.3 Konditionierung der Austauscherharze
4.3.1 Allgemeine Arbeitsvorschrift 1 (AAV1)
4.3.2 Allgemeine Arbeitsvorschrift 2 (AAV2)
4.3.3 Allgemeine Arbeitsvorschrift 3 (AAV3)
4.4 Ligandsynthesen
4.4.1 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy- <i>cis</i> -inosit-N,N',N''-tripropionitri
(tacitpn)
4.4.2 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy-cis-inosit-N,N',N"-tripropionsäure-
trihydrochlorid (H₃tacitpCl₃)118
4.4.3 Synthese von 1,3,5-Tridesoxy-1,3,5-tris(methylamino)- <i>cis</i> -inosit-N,N',N''-
tripropionsäure-trihydrochlorid (H $_6$ macitpCl $_3$)119
4.4.4 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy-cis-inosit-N,N',N''-trimethylpropionat
(tacitptm)
4.4.5 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy- <i>cis</i> -inosit-N,N',N''-trimethylacetat-
trihydrochlorid (HatacitatmCla)
4.5 Metallkomplexsynthesen
4.5 Metallkomplexsynthesen
4.5 Metallkomplexsynthesen
4.5 Metallkomplexsynthesen
4.5 Metallkomplexsynthesen 121 4.5.1 Synthese von Na ₃ [Lu ₃ (H ₋₃ tacitp) ₂] 121 4.5.2 Synthese von Na ₃ [Ho ₃ (H ₋₃ tacitp) ₂] 122 4.5.3 Synthese von Na ₃ [Er ₃ (H ₋₃ tacitp) ₂] 123 4.5.4 Synthese von Na ₃ [Yb ₃ (H ₋₃ tacitp) ₂] 124
4.5 Metallkomplexsynthesen 121 4.5.1 Synthese von Na ₃ [Lu ₃ (H ₋₃ tacitp) ₂] 121 4.5.2 Synthese von Na ₃ [Ho ₃ (H ₋₃ tacitp) ₂] 122 4.5.3 Synthese von Na ₃ [Er ₃ (H ₋₃ tacitp) ₂] 123 4.5.4 Synthese von Na ₃ [Yb ₃ (H ₋₃ tacitp) ₂] 124 4.5.5 Synthese von [Hf ₃ (H ₋₃ tacitp) ₂] 124
4.5 Metallkomplexsynthesen 121 4.5.1 Synthese von Na ₃ [Lu ₃ (H ₋₃ tacitp) ₂] 121 4.5.2 Synthese von Na ₃ [Ho ₃ (H ₋₃ tacitp) ₂] 122 4.5.3 Synthese von Na ₃ [Er ₃ (H ₋₃ tacitp) ₂] 123 4.5.4 Synthese von Na ₃ [Yb ₃ (H ₋₃ tacitp) ₂] 124 4.5.5 Synthese von [Hf ₃ (H ₋₃ tacitp) ₂] 124 4.5.6 Synthese von K ₃ [Bi ₃ (H ₋₃ tacitp) ₂] 125

4.5.8 Synthese von Na ₂ K[Eu ₃ (H ₋₃ tacitp)] ₂ · 21 H ₂ O	127
4.5.9 Synthese von K[Ni(tacitp)] · 4 H ₂ O	127
4.5.10 Synthese von [KCo ₂ (tacitp) ₂]Cl	128
4.5.11 Synthese von [Cu ₂ (tacitp)]Cl · 5 H ₂ O · EtOH	128
4.5.12 Synthese von $[Li_7(H_{.1.5}tacitp)_2]CI_4 \cdot 14 H_2O$	129
4.5.13 Synthese von Na ₃ [Lu ₃ (H ₋₃ macitp) ₂] · 2.5 H ₂ O · 0.5 EtOH	129
4.5.14 Synthese von Na ₃ [Gd ₃ (H ₋₃ macitp) ₂] \cdot 11 H ₂ O	130
4.5.15 Synthese von Na ₃ [Ho ₃ (H ₋₃ macitp) ₂] \cdot 13 H ₂ O	131
4.5.16 Synthese von Na ₃ [Er ₃ (H _{.3} macitp) ₂] · 13.5 H ₂ O	131
4.5.17 Synthese von Na ₃ [Eu ₃ (H ₋₃ macitp) ₂] \cdot 17 H ₂ O	132
4.5.18 Synthese von Na ₃ [Yb ₃ (H ₋₃ macitp) ₂] \cdot 11 H ₂ O	133
4.5.19 Synthese von Na ₃ [Nd ₃ (H ₋₃ macitp) ₂] \cdot 13.5 H ₂ O	133
Kristallographischer Anbang	124
	134
tacitpn	134
$[Cu_2(tacitp)]CI \cdot 6.5 H_2O \dots$	136
$[Hf_3(H_3tacitp)_2] \cdot 9 H_2O$	138
[KCo ₂ (tacitp) ₂]Cl	140
K[Ni(tacitp)] · 4 H ₂ O	142
$K_3[Er_3(H_3macitp)_2] \cdot 6.5 H_2O$	144
$K_3[Eu_3(H_3macitp)_2] \cdot 17 H_2O$	146
$K_3[Gd_3(H_{\cdot 3}tacitp)]_2 \cdot 18 H_2O$	148
K ₃ [Ho ₃ (H ₋₃ tacitp) ₂] · 14.5 H ₂ O	150
$K_3[Lu_3(H_3macitp)_2] \cdot 11 H_2O$	154
$K_3[Nd_3(H_{-3}macitp)_2] \cdot 13.5 H_2O$	156
KNa ₂ [Bi ₃ (H ₋₃ tacitp)] ₂ · 20 H ₂ O	159
$KNa_2[Eu_3(H_3tacitp)]_2 \cdot 21 H_2O$	161
$Li_6[Li(H_{1.5}tacitp)_2]Cl_4 \cdot 14 H_2O$	163
Literaturverzeichnis	166

Abkürzungsverzeichnis

ах	axial
COSY	Correlated Spectroscopy
CSD	Cambridge Structural Database
СТ	Computertomographie
δ	chemische Verschiebung [ppm]
eq	äquatorial bzw. Äquivalent
HU	Hounsfield Unit
HV	Hochvakuum
ICP	Inductively Coupled Plasma
KZ	Koordinationszahl
L	Ligand
Ln	Lanthanoid
Μ	Metall oder Molar (mol/l)
MRT	Magnetresonanztomographie
NMWL	Nominal Molecular Weight Limit
ORTEP	Oakridge Thermal Ellipsoid Plot
OZ	Oxidationszahl
PET	Positronenemissionstomographie
SPECT	Single-photon emission computed tomography
TMSP	Natrium-3-(trimethylsilyl)-propionat
[] _t	Totalkonzentration
UPLC	Ultra Performance Liquid Chromatography
Z	Ordnungszahl

Ligandbezeichnungen

<i>cis</i> -Inosit	all- <i>cis</i> -1,2,3,4,5,6-Cyclohexanhexol
dota	1,4,7,10-Tetraazacyclododecan-1,4,7,10-tetraessigsäure
dtpa	Diethylentriaminpentaessigsäure
macitp	1,3,5-Tridesoxy-1,3,5-tris(methylamino)- <i>cis</i> -inosit-N,N',N''-tripropionsäure
taci	1,3,5-Triamino-1,3,5-tridesoxy- <i>ci</i> s-inosit
tacita	1,3,5-Triamino-1,3,5-tridesoxy- <i>ci</i> s-inosit-N,N',N''-triessigsäure
tacitatm	1,3,5-Triamino-1,3,5-tridesoxy- <i>ci</i> s-inosit-N,N',N"-trimethylacetat
tacitp	1,3,5-Triamino-1,3,5-tridesoxy- <i>ci</i> s-inosit-N,N',N"-tripropionsäure
tacitpn	1,3,5-Triamino-1,3,5-tridesoxy- <i>ci</i> s-inosit-N,N',N"-tripropionitril
tacitptb	1,3,5-Triamino-1,3,5-tridesoxy- <i>ci</i> s-inosit-N,N',N"-tri- <i>tert-</i> butylpropionat
tacitptm	1,3,5-Triamino-1,3,5-tridesoxy- <i>cis</i> -inosit-N,N',N''-trimethylpropionat

Kurzzusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Herstellung von neuen, mehrkernigen Metallkomplexen, die als Kontrastmittel der Röntgendiagnostik Verwendung finden sollen. Ausgehend von 1,3,5-Triamino-1,3,5-tridesoxy-cis-inosit (taci) wurden durch selektive Alkylierung die Liganden 1,3,5-Triamino-1,3,5-tridesoxy-cis-inosit-N,N',N''-tripropionsäure 1,3,5-Tridesoxy-1,3,5-tris(methylamino)-cis-inosit-N,N',N''-tripropionsäure (tacitp) und (macitp) hergestellt. In potentiometrischen Titrationen der Derivate tacitp und macitp wurden die Stabilitätskonstanten mit den Metallen Cu²⁺, Zn²⁺, Lu³⁺ und Eu³⁺ bestimmt. Desweiteren wurden mehrkernige pulverförmige Komplexe der Zusammensetzung $[M_3(H_3L)_2]^{3-/0}$ der Metalle Gd³⁺, Ho³⁺, Er³⁺, Yb³⁺, Lu³⁺, Hf⁴⁺ und Bi³⁺ hergestellt und charakterisiert. Darüber hinaus konnten Einkristalle von $K_3[M_3(H_3tacitp)_2] \cdot x H_2O$ (mit M = Gd^{3+} und Ho^{3+}), $KNa_2[M_3(H_3tacitp)_2] \cdot x H_2O$ (mit M = Eu^{3+} und Bi^{3+}), $[Hf_3(H_3tacitp)_2] \cdot 9 H_2O$ und $K_3[M_3(H_{-3}macitp)_2] \cdot x H_2O$ (mit M = Nd³⁺, Eu³⁺, Er³⁺ und Lu³⁺) erhalten werden. Schlussfolgernd ist der Komplex [Hf₃(H₋₃tacitp)₂] aufgrund seiner hohen Stabilität, geringen Osmolarität und guten Löslichkeit der erfolgversprechendste Kandidat für den Einsatz als Röntgenkonstrastmittel.

Abstract

In the present work new, polynuclear metal complexes were prepared to be used as contrast agent for X-ray diagnostics. The new ligands 1,3,5-triamino-1,3,5-trideoxy-*cis*-inositol-tri-N,N',N"-propionic acid (**tacitp**) and 1,3,5-trideoxy-1,3,5-tris(methylamino)-*cis*-inositol-tri-N,N',N"-propionic acid (**macitp**) were, used for the metal complex syntheses and have been synthesized by selective alkylation of 1,3,5-triamino-1,3,5-trideoxy-*cis*-inositol (**taci**). The stability constants of the ligands tacitp and macitp with metals (Cu²⁺, Zn²⁺, Lu³⁺ and Eu³⁺) were determined by means of potentiometric titrations. Furthermore, polynuclear complexes of the composition [M₃(H_{.3}L₂]^{3-/0} with M = Gd³⁺, Ho³⁺, Er³⁺, Yb³⁺, Lu³⁺, Hf⁴⁺ and Bi³⁺ were prepared and characterized. In addition, crystal structures of the composition K₃[M₃(H. ₃tacitp)₂] · x H₂O (M = Gd³⁺ and Ho³⁺), KNa₂[M₃(H.₃tacitp)₂] · x H₂O (M = Eu³⁺ and Bi³⁺), [Hf₃(H. ₃tacitp)₂] · 9 H₂O and K₃[M₃(H.₃macitp)₂] · x H₂O (for M = Nd³⁺, Eu³⁺, Er³⁺ and Lu³⁺) confirmed the trinuclear coordination. It turned out that due to its high stability, low osmolarity and high solubility the complex [Hf₃(H.₃tacitp)₂] is the best candidate as contrast agent for the X-ray diagnostic.

Zusammenfassung

In der vorliegenden Arbeit wurden Metallkomplexe hergestellt, die als neue Kontrastmittel der Röntgendiagnostik eingesetzt werden sollen. Für die Metallkomplexsynthesen wurden die Liganden 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit-N,N',N''-tripropionsäure (**tacitp**) und 1,3,5-Tridesoxy-1,3,5-tris(methylamino)-*cis*-inosit-N,N',N''-tripropionsäure (**macitp**), welche ausgehend von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit (**taci**) durch selektive Alkylierung hergestellt wurden, verwendet.

In potentiometrischen Titrationen der Derivate tacitp [p K_{s1} = 2.64(9), p K_{s2} = 3.03(2), p K_{s3} = 3.68(7), $pK_{s4} = 6.15(6)$, $pK_{s5} = 7.73(3)$, $pK_{s6} = 9.32(3)$ für 0.1 M KCl, 25 °C] und macitp [$pK_{s1} =$ 2.40(2), $pK_{s2} = 2.88(1)$, $pK_{s3} = 3.52(1)$, $pK_{s4} = 5.89(1)$, $pK_{s5} = 7.76(1)$, $pK_{s6} = 9.72(2)$ für 0.1 M KCl, 25 °C] wurden die Stabilitätskonstanten mit den Metallen Cu²⁺, Zn²⁺, Lu³⁺ und Eu³⁺ bestimmt. Hieraus konnten folgende pM-Werte erhalten werden: Lu³⁺/tacitp: 15.84, Lu³⁺/macitp: 14.63, Eu³⁺/tacitp: 11.12, Eu³⁺/macitp: 13.04, Cu²⁺/tacitp: 11.44, Cu²⁺/macitp: 9.90, Zn²⁺/tacitp: 6.45 und Zn²⁺/macitp: 6.00. Auch wurden mehrkernige pulverförmige Komplexe der Zusammensetzung [M₃(H₋₃L)₂]^{3-/0} der Metalle Gd³⁺, Ho³⁺, Er³⁺, Yb³⁺, Lu³⁺, Hf⁴⁺ und Bi³⁺ hergestellt und charakterisiert. Die Strukturaufklärung erfolgte mittels NMR-, CHN-, IRund ESI-MS-Untersuchungen. Zudem konnten Einkristalle von $K_{3}[M_{3}(H_{-3}tacitp)_{2}] \cdot x H_{2}O$ (mit M = Gd³⁺ und Ho³⁺), $KNa_{2}[M_{3}(H_{-3}tacitp)_{2}] \cdot x H_{2}O$ (mit M = Eu³⁺ und Bi^{3+}), $[Hf_3(H_3(acitp)_2] \cdot 9 H_2O und K_3[M_3(H_3(acitp)_2] \cdot x H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2] \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Er^{3+} und K_3(acitp)_2) \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Eu^{3+} und K_3(acitp)_2) \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Eu^{3+} und K_3(acitp)_2) \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+}, Eu^{3+} und K_3(acitp)_2) \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+} und K_3(acitp)_2) \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+} und K_3(acitp)_2) \cdot y H_2O (mit M = Nd^{3+}, Eu^{3+} und K_3(acitp)_2) \cdot y H_2O (mit M = Nd^{3+} und K_3(acitp)$ Lu³⁺) erhalten werden. In den pulverförmigen Verbindungen wurde jeweils ein Gemisch eines D_3 - und C_2 - symmetrischen Isomers gefunden. Die Einkristalle hingegen wiesen in den Komplexen mit dem Liganden tacitp eine D_3 und mit dem Liganden macitp eine C_2 Symmetrie auf. Im Hinblick auf die Eigenschaften, die ein Kontrastmittel erfüllen muss, wurden zudem die Stabilität und die Löslichkeit der Verbindungen untersucht. Schlussfolgernd ist im Einsatz als Röntgenkontrastmittel der Komplex [Hf₃(H₋₃tacitp)₂] aufgrund seiner hohen Stabilität, geringen Osmolarität und guten Löslichkeit der erfolgversprechendste Kandidat.

Abstract

Metal complexes were prepared to be used as contrast agents for X-ray diagnosis. A new class of polynuclear metal complexes have been developed. By selective alkylation of 1,3,5-triamino-1,3,5-trideoxy-*cis*-inositol (**taci**), the ligands 1,3,5-triamino-1,3,5-trideoxy-*cis*-inositol-tri-N,N',N''-propionic acid (**tacitp**) and 1,3,5-trideoxy-1,3,5-tris(methylamino)-*cis*-inositol-tri-N,N',N''-propionic acid (**macitp**) have been synthesized.

The stability constants of the ligands tacitp $[pK_{s1} = 2.64(9), pK_{s2} = 3.03(2), pK_{s3} = 3.68(7), pK_{s4} = 6.15(6), pK_{s5} = 7.73(3), pK_{s6} = 9.32(3); 0.1 M KCl, 25 °C] and macitp <math>[pK_{s1} = 2.40(2), pK_{s2} = 2.88(1), pK_{s3} = 3.52(1), pK_{s4} = 5.89(1), pK_{s5} = 7.76(1), pK_{s6} = 9.72(2); 0.1 M KCl, 25 °C]$ with different metals $(Cu^{2+}, Zn^{2+}, Lu^{3+} \text{ and } Eu^{3+})$ were determined by means of potentiometric titrations. The following pM-values were obtained: Lu^{3+}/tacitp : 15.84, Lu^{3+}/macitp : 14.63, Eu^{3+}/tacitp : 11.12, Eu^{3+}/macitp : 13.04, Cu^{2+}/tacitp : 11.44, Cu^{2+}/macitp : 9.90, Zn^{2+}/tacitp : 6.45 and Zn^{2+}/macitp : 6.00. Furthermore, polynuclear complexes of the composition $[M_3(H_{-3}L_2)_2]^{3/0}$ with M = Gd³⁺, Ho³⁺, Er³⁺, Yb³⁺, Lu^{3+} , Hf⁴⁺ and Bi³⁺ were prepared and characterized. The composition was determined by NMR-, CHN-, IR- and ESI-MS-analysis. In addition, single crystals of the composition $K_3[M_3(H_{-3}\text{tacitp})_2] \cdot x H_2O$ (for M = Eu^{3+} and Bi^{3+}), $[Hf_3(H_{-3}\text{tacitp})_2] \cdot 9 H_2O$ and $K_3[M_3(H_{-3}\text{macitp})_2] \cdot x H_2O$ (for M = Nd^{3+} , Er^{3+} , Er^{3+} , Er^{3+} , Er^{3+} and Eu^{3+} , Er^{3+} and Eu^{3+}) could be obtained that confirm the trinuclear coordination. Powder samples of the complexes consist of a mixture of a D_3 - and a C_2 - symmetric isomer. However, single crystal analyses reveiled for the complexes with the ligand tacitp D_3 and with the ligand macitp C_2 symmetry.

It turned out that due to its high stability, low osmolarity and high solubility the complex $[Hf_3(H_3tacitp)_2]$ is the best candidate as contrast medium for the X-ray diagnostic.

1. Einleitung

1.1 Bildgebende Verfahren

Allgemein werden bildgebende Verfahren als Oberbegriff für verschiedene Diagnostikmethoden bezeichnet, die durch Aufnahmen einen Blick ins Körperinnere ermöglichen. Heute gibt es eine Vielzahl an Verfahren, die zu Abbildungen vom Inneren des Körpers verhelfen. Zu den verschiedenen Methoden zählen beispielsweise die Computertomographie (CT), nuklearmedizinische Verfahren (SPECT. PET), die Magnetresonanztomographie (MRT), die Sonographie (Ultraschall) und viele mehr.^[1, 2] Bei der Computertomographie (CT) wird beispielsweise die Absorption von Röntgenstrahlen vermessen. Die nuklearmedizinische Diagnostik bedient sich hingegen des Tracerprinzips, bei dem radioaktive Isotope an Stoffe gebunden werden, die sich an bestimmten Organen im Körper anreichern. Die Magnetresonanztomographie (MRT) beruht auf der Darstellung von NMR-Signalen, die in einem starken Magnetfeld von Wasserprotonen entstehen und entsprechend ihrer Lokalisation zu zweidimensionalen Bildern rekonstruiert werden. Bei der Sonographie macht man sich die Streuung von Ultraschallwellen im Gewebe zu Nutze.^[3, 4]

1.2 Röntgendiagnostik

Die Röntgendiagnostik stellt ein Fachgebiet der Radiologie dar. Heute existieren mehrere Methoden der Röntgendiagnostik, die in der Praxis durchgeführt werden. Diese werden anhand der Techniken klassifiziert, in welcher Art und Weise die Informationen der Röntgenstrahlung transformiert und aufgezeichnet werden. Dazu zählen die konventionelle Röntgendiagnostik (photographischer Film, Röntgendurchleuchtung), die Computertomographie (CT) und Angiographie. Je mehr Röntgenstrahlung von einem Objekt bei Bestrahlung absorbiert wird, desto heller erscheint diese Region auf dem Bild. Aufgrund einer höheren Absorption von Röntgenstrahlung an Knochen, im Vergleich zu Luft und Weichteilgewebe, wird an deren Stelle ein weißes Röntgenbild (positiver Kontrast) erzeugt (Abbildung 1). Da Weichteilgewebe und Luft mehr Röntgenstrahlen passieren lassen, erscheinen diese Bereiche dementsprechend schwarz oder grau (negativer Kontrast). Das Resultat einer Röntgenuntersuchung ist eine digitale oder analoge Abbildung (Röntgenbild).^[5]

Abbildung 1: Beispiel-CT-Aufnahme des Gehirns mit Normalbefund.^[6]

1.3 Computertomographie (CT)

Die Computertomographie (CT) ist ein röntgenographisches Verfahren, welches zur Anfertigung tomographischer Bilder (Schichtaufnahmen) des menschlichen Körpers dient. Dabei rotiert eine Röntgenröhre um den Patienten, welche einen schmalen, fächerförmigen Röntgenstrahl aussendet, der von einem Blendensystem moduliert wird. Dem gegenüber erfasst ein Detektorsystem nach dem Durchdringen des Gewebes die Intensität der Röntgenstrahlung und wandelt diese in elektronische Signale um, aus welchen dann Bilder rekonstruiert werden. Es wird eine überlagerungsfreie, dreidimensionale Darstellung von Geweben und Organen ermöglicht. Oftmals werden zusätzlich Kontrastmittel injiziert, um im Bild bestimmte Strukturen besser erkennen zu lassen. Die Absorption der Röntgenstrahlen, die durch das Gewebe verursacht wird, wird auf der Hounsfield-Skala als ein Maß der Dichte Hounsfield-Einheit (Hounsfield-Unit: HU) wiedergegeben. Die ist ein relativer Schwächungskoeffizient, der sich auf Wasser (0 HU) und Luft (-1000 HU) als Referenzgrößen bezieht.^[3] Abbildung 2 zeigt einen CT-Scanner mit Patiententisch. Der Gantry (kreisförmiger Aufbau) enthält die Röntgenröhre, welche die Röntgenstrahlung aussendet. Die gegenüber der Röntgenquelle angebrachten Detektoren bewegen sich parallel zueinander und sind mit einem Datenerfassungssystem verbunden.

Abbildung 2: CT-Scanner mit Patiententisch und Gantry.^[6]

1.4 Röntgenkontrastmittel

Unter den gängigen CT-Röntgenkontrastmitteln gibt es zwei unterschiedliche Strukturtypen. Es wird unterschieden in ionische und nicht ionische Strukturen. Diese werden wiederrum in Monomere, welche ein tri-iodierten Benzol-Ring und Dimere, welche zwei tri-iodierte Benzol-Ringe enthalten, unterteilt.

Das erste Derivat der ionischen Monomerenstrukturen war das Natrium-Salz von 3-Acetylamino-2,4,6-tri-iodbenzoesäure (Abbildung 3). Es wurde 1951 von Wallingford herstellt und als gängiges Kontrastmittel der Angiographie unter dem Namen Urokon verwendet.^[7]

Abbildung 3: 3-Acetylamino-2,4,6-tri-iodbenzoesäure.^[7]

Der tri-iodierte Benzolring stellt heute noch in der Medizin die Basis gängiger CT-Kontrastmittel dar. Es fanden lediglich Derivatisierungen am tri-iodierten Benzolring statt. In Abbildung 4 sind drei Beispiele für Röntgenkontrastmittel aufgeführt, die heute noch zum Einsatz kommen. Dabei handelt es sich um Ultravist 300^[8] (Iopromid, Fa. Bayer Schering Pharma), Isovist 300^[9] (Iotrolan, Fa. Bayer Schering Pharma) sowie Solutrast 300 (Iopramidol, Fa. Byk Gulden).^[10] Es ist jedoch zu beachten, dass bei einigen dieser Präparate vermehrt Überempfindlichkeiten beobachtet worden sind. ^[9, 11]

Neue Kontrastmittel für die Röntgendiagnostik sind heute in der Medizin von besonderem Interesse. Ein wichtiger Gesichtspunkt bei der Wahl der in Kontrastmitteln enthaltenen Elemente ist dabei die Reduzierung der hochenergetischen Röntgenstrahlung. Hierzu werden neue Kontrastmittel gesucht, die mit einem Bruchteil der Röntgenstrahlung herkömmlicher Kontrastmittel einen gleich guten, wenn nicht gar besseren Bildkontrast erreichen sollen.

Bei medizinischen Bildgebungsverfahren muss bei der Höhe der Röntgenstrahlungsenergie ein Kompromiss zwischen optimaler Bildgualität und Patientenbestrahlungsdosis gefunden werden. Niedrige Röntgenstrahlungsenergie verursacht im Gewebe eine hohe Absorption und liefert einen guten Bildkontrast, aber damit verbunden eine hohe Strahlungsbelastung, da alle Strahlung absorbiert wird. Im Gegensatz dazu durchdringt eine hohe Röntgenstrahlungsenergie den Körper besser, wird jedoch weniger absorbiert und sorgt somit für einen schlechten Bildkontrast. Dies bedeutet wiederrum eine geringere Strahlungsbelastung für den Patienten. Meist ist für den klinischen Gebrauch der Kontrast zwischen Knochen Gewebe niedrigen mittleren und anderem bei und Röntgenstrahlungsenergiebereichen ausreichend groß. Als Röntgenstrahlguelle wird oftmals eine Wolframröhre mit Filter benutzt. Dabei reicht der Kontrast zwischen Fettmasse und Muskel (zwei Vertreter weichen Gewebes) für klinische Zwecke jedoch nicht aus. Um solche Gewebe besser voneinander abgrenzen zu können, werden kontrastverbessernde Mittel benötigt, die sich im zu untersuchenden Gewebe anreichern und es von der Umgebung abheben (Abbildung 5).

Abbildung 5: CT-Gehirnaufnahme mit Metastase ohne Kontrastmittel (rechts) und CT-Gehirnaufnahme mit Metastase mit Kontrastmittel (links).^[6]

Um eine Kontraststeigerung zu erreichen^[12], werden Elemente mit hohen Ordnungszahlen verwendet, die aufgrund höherer Atommassen, zum Beispiel lod mit Z = 53 und Barium mit Z = 56, die Röntgenstrahlung absorbieren können. Auch Metalle wie Gadolinium, Wolfram und

Blei kommen aufgrund stärkerer Abschwächung der Röntgenstrahlung, bedingt durch die hohe Röntgendichte, in Frage. Die Abschwächung der Röntgenstrahlung beruht auf drei verschiedenen Wechselwirklungen zwischen der Strahlung und der Materie, welche die Strahlung durchdringt. Hervorzuheben ist hierbei der photoelektrische Effekt (τ). Dieser beruht auf der Wechselwirkung der Photonen mit den Elektronen der inneren Schale. Trifft das Photon mit einer Energie größer als die Bindungsenergie des Elektrons auf, wird dieses herausgeschlagen, und das Photon wird absorbiert. Am wahrscheinlichsten kommt es zur Absorption, wenn die Energie des Photons nur geringfügig höher ist als die des Elektrons. Dies führt dazu, dass eine niedrige Röntgenstahlungsenergie zu einer hohen Absorption und somit zum besseren Bildkontrast führt. Der photoelektrische Effekt und die Photonenenergie E zeigen folgenden Zusammenhang

$$\tau \propto \frac{1}{E^3}$$
.

Weiterhin haben die Elektronen der K-Schale von Elementen mit hohem Z hohe Bindungsenergien und können leichter in den photoelektrischen Effekt involviert werden.

Somit ergibt sich für τ :

$$\tau \propto Z^3$$
.

Dieser Zusammenhang führt bei Einsatz von Elementen mit hohem Z zu einem verbesserten Bildkonstrast und somit zu einer Eignung als Kontrastmittel.^[5]

Damit sich ein Kontrastmittel auf Metallbasis für den alltäglichen Gebrauch in der Röntgendiagnostik, speziell für die Computertomographie, eignet und gegenüber den heute gängigen jodierten, wasserlöslichen Kontrastmitteln, wettbewerbsfähig sein kann, muss es folgende Eigenschaften aufweisen:

- hohe Wasserlöslichkeit (mindestens 300 mg Metall / ml)^[7]
- hohe Stabilität unter physiologischen Bedingungen
- ein möglichst hoher Metallgehalt im Komplex, um einen hohen Bildkontrast zu gewährleisten
- sein pharmakokinetisches Profil muss dem eines gängigen jodierten Kontrastmittel gleichen
- vollständige Ausscheidung aus dem Körper
- keine Toxizität^[13] und gute Verträglichkeit (die Sicherheitsbewertung muss ebenfalls potentielle immunogene, carzinogene, mutagene und teratogene Faktoren berücksichtigen)
- eine leichte Injizierbarkeit; d. h. sowohl eine geringe Osmolarität als auch eine geringe Viskosität, die es ermöglichen, eine konzentrierte Lösung des Mittels einfach

in den menschlichen Körper zu injizieren^[14, 15]

• geringe Rohstoff- und Herstellungskosten, um als potentielles Kontrastmittel gegenüber auf dem Markt befindlichen Kontrastmitteln konkurrenzfähig zu bleiben

Es ist eher unwahrscheinlich, dass einfache Schwermetallsalze als intravaskuläre Röntgenkontrastmittel genutzt werden können, schlicht wegen ihrer akuten und auch langfristigen Toxizität und der Unfähigkeit des menschlichen Körpers, diese vollständig wieder auszuscheiden. Schwermetallkomplexe^[16-18] haben allerdings das Potential, sich als Röntgenkontrastmittel für den menschlichen Gebrauch zu entwickeln.

Barium, welches als Bariumsulfat eingesetzt wird, findet bereits Verwendung bei Untersuchungen des Magen-Darm-Traktes.

Beispiele von auf Schwermetallen basierenden Komplexe, welche bereits von Yu et al.^[5] untersucht wurden, sind Komplexe der Liganden (Abbildung 6) EOB-DTPA mit Dysprosium, Do3A-butrol mit Gadolinium^[5], sowie der Metallkomplex von DTPA mit Ytterbium. Diese wiesen jedoch zu geringe Metallgehalte im Komplex auf, als dass sie für den Gebrauch in der Medizin hätten Verwendung finden können.

Abbildung 6: H₅EOB-DTPA (links) und H₃DO3A-butrol (rechts).^[19]

Da es sich bei den von Yu et al.^[5] untersuchten Komplexen nur um einkernige Metallkomplexe handelte, führten diese zu keinem Durchbruch für die Anwendung im diagnostischen Bereich. Um einen hohen Metallgehalt im Komplex zu gewährleisten, ist es wichtig mehrkernige Metallkomplexe zu entwickeln. Speziell die Synthese neuer, mehrkerniger Metallkomplexe schwerer Haupt- und Nebengruppenelementen stellt eine große Herausforderung dar.

Neueste Ergebnisse auf diesem Gebiet zeigen, dass auf Jod basierende Kontrastmittel bei Verwendung gängiger Röntgenenergie (80 – 150 keV) nicht den optimalen Röntgenkontrast aufweisen.^[5] In der Tat sind Schwermetalle wie Gadolinium, Wolfram und Blei durch eine höhere Abschwächung der Röntgenstrahlung besser geeignet. In der Arbeit von Mullan et al.^[20] wurden Cluster einiger Übergangsmetalle untersucht. Die Ergebnisse bestätigen die

Eignung von frühen Übergangsmetall-Cluster-Verbindungen als Röntgenkontrastmittel im Hinblick auf die Abschwächung der Röntgenstrahlung. Bei höheren Röntgenenergien zeigen Clusterverbindungen relativ zu jodierten Kontrastmittel höhere Abschwächungen der Röntgenstrahlung. Die Gruppe von Noey et al.^[12] hat sich auf die Suche nach drei- und sechskernigen Clustern mit Rhenium, Rhodium, Tantal und Wolfram gemacht. Sie synthetisierten unter anderem einen dreikernigen Wolfram(IV)-Cluster der Zusammensetzung Na[$W_3(\mu-O)_2(CH_3COO)_9]$. Da Wolfram(IV)-Verbindungen jedoch im Allgemeinen eine hohe Oxidationsempfindlichkeit aufweisen, besaßen die Wolfram(IV)-Cluster keine genügend hohe Stabilität, um chancenreich Anwendung in der Röntgendiagnostik zu finden.

1.5 Lanthanoide

1.5.1 Allgemein

Als Lanthanoide (Ln) werden die Elemente Lanthan (Ordnungszahl 57) bis Lutetium (Ordnungszahl 71) bezeichnet. Typisch für die Lanthanoide ist die Auffüllung der 4f-Unterschale. Da es sich hierbei um die drittäußerste Schale im Rumpf handelt, welche aufgefüllt wird, und diese kaum Einfluss auf die chemischen Eigenschaften hat, ändert ein neu hinzukommendes Elektron die Eigenschaften nur wenig. Aus diesem Grund sind die Lanthanoide untereinander sehr ähnlich. In Tabelle 1 sind die Lanthanoide mit ihrer Elektronenkonfiguration in ihrer neutralen Form und in der Oxidationsstufe +3 dargestellt. Dabei ist die Bevorzugung der halbgefüllten (4f⁷) und vollständig aufgefüllten (4f¹⁴) 4f-Unterschale zu beachten. Das Element Promethium ist als einziges unter den Lanthanoiden radioaktiv. Charakteristisch für Lanthanoide ist die "Lanthanoidkontraktion". Man beobachtet im Verlauf der Periode eine Abnahme der Ionenradien von 1.300 Å^[22] (La³⁺, KZ VIII) bis 1.114 Å^[22] (Lu³⁺, KZ VIII). Dies kann durch die Zunahme der positiven Kernladung und die dadurch bedingte festere Bindung der Elektronenschalen an den Kern erklärt werden. Die Lanthanoidkontraktion ist dafür verantwortlich, dass die Atomradien der Elementhomologen, zwischen denen die Lanthanoide stehen, sehr ähnlich sind, insbesondere bei Zr/Hf, Nb/Ta, Mo/W. Die zu erwartende Radienzunahme in einer Gruppe wird durch die Lanthanoidkontraktion ausgeglichen. Lanthanoide haben eine große Neigung zur Bildung dreiwertiger Kationen.^[23]

Ordnungszahl	Name	Symbol	Elektronenkonfiguration	
Z			Atom	Ln ³⁺
57	Lanthan	La	[Xe] 5d ¹ 6s ²	[Xe]
58	Cer	Ce	[Xe] 4f ² 6s ²	[Xe] 4f ¹
59	Praseodym	Pr	[Xe] 4f ³ 6s ²	[Xe] 4f ²
60	Neodym	Nd	[Xe] 4f ⁴ 6s ²	[Xe] 4f ³
61	Promethium*	Pm	[Xe] 4f ⁵ 6s ²	[Xe] 4f ⁴
62	Samarium	Sm	[Xe] 4f ⁶ 6s ²	[Xe] 4f ⁵
63	Europium	Eu	[Xe] 4f ⁷ 6s ²	[Xe] 4f ⁶
64	Gadolinium	Gd	[Xe] 4f ⁷ 5d ¹ 6s ²	[Xe] 4f ⁷
65	Terbium	Tb	[Xe] 4f ⁹ 6s ²	[Xe] 4f ⁸
66	Dysprosium	Dy	[Xe] 4f ¹⁰ 6s ²	[Xe] 4f ⁹
67	Holmium	Ho	[Xe] 4f ¹¹ 6s ²	[Xe] 4f ¹⁰
68	Erbium	Er	[Xe] 4f ¹² 6s ²	[Xe] 4f ¹¹
69	Thulium	Tm	[Xe] 4f ¹³ 6s ²	[Xe] 4f ¹²
70	Ytterbium	Yb	[Xe] 4f ¹⁴ 6s ²	[Xe] 4f ¹³
71	Lutetium	Lu	[Xe] 4f ¹⁴ 5d ¹ 6s ²	[Xe] 4f ¹⁴

 Tabelle 1: Elektronenkonfigurationen der Lanthanoide im Atom und Ln³⁺.

Ein weiteres Merkmal von Lanthanoiden ist das große Spektrum an Koordinationszahlen. Dabei nehmen sie in der Regel Koordinationszahlen von sechs bis zwölf an. Es sind aber auch KZ von zwei, drei oder vier bekannt. Da die 4f-Schale in den Ln³⁺-Ionen nicht direkt an der Bindung beteiligt ist, wird diese durch die 5s² und 5p⁶ Ortbitale gut abgeschirmt. Aus diesem Grund sind ihre spektroskopischen und magnetischen Eigenschaften weitgehend vom Metall unbeeinflusst und werden hauptsächlich durch den Liganden bestimmt. Außerdem bevorzugen sie anionische Liganden mit Donoratomen, die eine hohe Elektronegativität aufweisen wie z. B. O-Atome. Ebenso bilden sie bei Abwesenheit von Komplexbildnern, bereits bei neutralem pH-Wert, schwerlösliche Hydroxide.^[21]

1.5.2 Lanthanoide im Einsatz als Kontrastmittel

Die Gruppe von H. Pietsch et al.^[24] schlug die Elemente der Lanthanoide als gut absorbierende Spezies für den Einsatz als Röntgenkontrastmittel vor. Das Besondere an Lanthanoiden und an Schwermetallen allgemein ist der hohe Eigenkontrast aufgrund erhöhter Röntgendichte.^[12] Der höhere Bildkontrast beim Einsatz solcher Kontrastmittel würde zwei große Vorteile mit sich bringen: Zum einen könnte die Strahlendosis, welcher der Patient ausgesetzt ist, minimiert werden und andererseits könnte die Menge, die einem Patienten an Kontrastmittel injiziert wird, gesenkt werden.^[5]

Im Experiment konnte die Gruppe von Pietsch et al. zeigen, dass Lanthanoide eine um bis zu 50% höhere Abschwächung der Röntgenstrahlung im Vergleich zu Jod zeigten. Die größte Abschwächung der Röntgenstrahlung wurde bei den Elementen Holmium und Erbium beobachtet. Dabei erhielten sie für Jod einen Wert von 271 HU. Die Abschwächungen der Röntgenstrahlung der Lanthanoide lagen für Holmium bei 417 HU und Erbium bei 421 HU. Weitere Vergleichswerte verschiedener Lanthanoide sind in Abbildung 7 dargestellt.

Abbildung 7: Abschwächung der Röntgenstrahlung aller Lanthanoide im Vergleich zu lod bei 120 kV und 10 mg Ln/ml in Hounsfield.^[24]

Um die Stabilität von Lanthanoid-Komplexen zu erhöhen, werden bevorzugt Chelatkomplexe verwendet. Besonders stabil sind hierbei Chelat-5- und Chelat-6-Ringe.^[23] Stabilitätsuntersuchungen von Chelatoren der Seltenerden wurden bereits von Moeller et al. ^[25] durchgeführt.

Speziell bei der Magnetresonanztomographie finden Komplexe der Lanthanoide, z. B. von Gadolinium, bereits Verwendung als Kontrastmittel, besonders in Komplexen mit den Liganden DOTA und DTPA (Abbildung 8) und deren Derivaten.^[5]

Abbildung 8: Die Liganden DOTA (links) und DTPA (rechts).

Mittlerweile gibt es einige Arbeiten, welche sich mit der Herstellung und Untersuchung von Seltenerdmetallkomplexen für den Einsatz als Kontrastmittel befassen.^[26-35]

1.6 Ligandsysteme

Ein vielseitiges Ligandsystem mit dem Potential stabile Lanthanoid-Komplexe zu bilden stellen die Polyaminopolyalkohole (papas) dar. Diese enthalten sowohl Sauerstoffdonoren, als auch Stickstoffdonoren. Ihre Koordination kann je nach Ligand und Metallatom über reine Polyamine, reine Polyalkohole oder über einen gemischten N-O-Donorsatz erfolgen. Die in dieser Arbeit dargestellten und untersuchten Verbindungen leiten sich von einem Vertreter dieser Verbindungsklasse, dem Liganden taci (1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit, Abbildung 9), ab.^[36] Die Wahl der Donoratome beeinflusst maßgeblich die komplexbildenden Eigenschaften der Liganden. Nach dem HSAB-Konzept (Hard and Soft Acids and Bases) gehören sowohl Sauerstoff- als auch Stickstoffatome zur Klasse der harten Lewis-Basen. Im direkten Vergleich ist jedoch die Aminofunktion etwas weicher als die Hydroxygruppe, sodass weichere Metallkationen bevorzugt an die Stickstoffdonoren koordinieren. Das Vorhandensein beider funktioneller Gruppen kann dazu führen, dass die Aminogruppe, sofern diese nicht koordiniert, im Komplex als interne Base fungiert und bei triaxialer Anordnung der Hydroxygruppe deren Deprotonierung begünstigt.

$R_2N-R'-OH \longrightarrow R_2N(H)^+-R'-O^-$

Die Deprotonierung und somit die Bildung des Zwitterions erfolgt, aufgrund einer höheren Acidität der Hydroxygruppe, erst im Komplex und wird durch ein hochgeladenes, hartes Metallkation verursacht. Dadurch kommt es zu einer erheblichen Steigerung der Stabilität im Vergleich zu Komplexen reiner Alkoholliganden.^[37]

Aufgrund der Eigenschaften der Donoratome und der Stellung der funktionellen Gruppen im Ringsystem stellt taci ein vielseitiges, mehrzähniges Ligandsystem dar und ist somit in der Lage, mit vielen Metallen, abhängig von der individuellen Affinität des jeweiligen Metallatoms zu den O- und N-Atomen, Komplexe zu bilden.^[38-41]

Abbildung 9: taci (=1,3,5-Triamino-1,3,5-tridesoxy-cis-inosit)

Aufgrund zweier unterschiedlicher Sesselkonformationen werden für taci insgesamt vier Koordinationsmodi erhalten (Abbildung 10).^[42]

Die adamantan-ähnlichen Strukturen in Modi (1) und (2) repräsentieren die Koordinationsmodi des Liganden über das reine Polyamin bzw. den reinen Polyalkohol. Dabei koordiniert der Ligand triaxial. Koordinationsmodi (3) und (4) entsprechen den side-on-Koordinationen mit einem gemischten NO-Donorsatz. Die vier Bindungsmodi sind auf eine faciale Koordination an ein Metallzentrum beschränkt.^[43, 44] Hierbei kann mittels Molecular-Modeling-Berechnungen gezeigt werden, dass Kationen mit einem Ionenradius kleiner 0.8 Å bevorzugt den triaxialen Koordinationsmodus (1) und (2) einnehmen.^[45-47] Im Gegensatz dazu ist bekannt, dass große Kationen, aufgrund geringerer sterischer Spannungen, den side-on-Koordinationsmodus bevorzugen, bei denen bis zu drei Metallzentren die O_{ax} -N_{eq}- O_{ax} -Nischen (Koordinationsmodus (4)) besetzen können.^[48-50]

Abbildung 10: (1) Nax, Nax, Nax-, (2) Oax, Oax, Oax-, (3) Nax, Oeq, Nax- und (4) Oax, Neq, Oax-Koordinationsmodi des taci. Nicht nur die Größe des Metallions, sondern auch das nach dem HSAB-Prinzip definierte Verhalten spielt eine entscheidende Rolle für die Koordination des Metalls an den Liganden taci. Die Koordinationschemie des Liganden taci wurde von K. Hegetschweiler et al. [37, 51] eingehend untersucht. Mittlerweile sind mehr als 30 Kristallstrukturen bekannt, bei denen der Ligand taci in allen Koordinationsmodi (1-4) vorzufinden ist. Taci geht mit Metallkationen der 1. und 2. Gruppe des PSE mit d⁰ Konfiguration ($z \le 2$, mit z = Gruppennummer des PSE) einkernige bis-Komplexe über Koordinationsmodus (2) ein. Kleine Metallkationen mit d⁰ und d^{10} Konfiguration und $z \ge 3$ bilden über O-Donoren ebenso einkernige bis-Komplexe der Zusammensetzung [M(taci)₂]^{z+}. Beispiele hierfür sind: [Al(taci)₂]³⁺, [Ti(taci)₂]⁴⁺, [Ge(taci)₂]⁴⁺ und [Sn(taci)₂]⁴⁺. Außerdem neigen Metalle der Nebengruppen, meist zweiwertige d¹⁰-Metall-Kationen, Übergangsund zur Bildung von bis-Komplexen des Koordinationsmodus (1). Hierbei erfolgt die Koordination ausschließlich über die Amine. Bekannte Vertreter hierfür sind die Metalle Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺ und Cd²⁺.^[37] Von besonderem Interesse für diese Arbeit sind mehrkernige Metallkomplexe. Im Hinblick auf eine hohe Röntgendichte, was zu einer erhöhten Absorption der Röntgenstrahlung führt und somit ein gutes Röntgenkontrastmittel ausmacht, werden bevorzugt dreikernige Komplexe des taci betrachtet. Bekannte mehrkernige Komplexverbindungen von taci, die koordinieren, sind beispielsweise $[Oln_6(H_{-3}taci)_4]^{4+[42]}$ über den side-on-Modus $[Bi_{3}(H_{-3}taci)_{2}]^{3+[49, 50]}$, und die Seltenerdmetallkomplexe $[Eu_{3}(H_{-3}taci)_{2}]^{3+[48]}$, $[Gd_{3}(H_{-3}taci)_{2}]^{3+}$ (Abbildung 11) und [La₃(H₋₃taci)₂)]^{3+ [48]}

Abbildung 11: Beispiel-Molekülstruktur von [Gd₃(H₋₃taci)₂(H₂O)₆]³⁺

1.7 Zielsetzung

Ziel dieser Arbeit war die Synthese mehrkerniger Metallkomplexe schwerer Haupt- und Nebengruppenelemente sowie deren Untersuchungen zur Eignung als Kontrastmittel für die Röntgendiagnostik (CT). Im Hinblick auf die in Kapitel 1.4 erwähnten Voraussetzungen, die ein Kontrastmittel erfüllen muss, kamen folgende Metalle in Betracht: Hafnium, Tantal, Wolfram, Bismut sowie Vertreter der Lanthanoide.

Neben der Wahl des Metallzentrums bestand in der Variation der verwendeten Liganden eine weitere Möglichkeit die komplexchemischen Eigenschaften zu steuern. Die Derivatisierung des Liganden taci, im Hinblick zur Erhöhung der Wasserlöslichkeit im Komplex, sollte dabei von Faktoren wie Zähnigkeit, Art und Anzahl der im Komplex gebildeten Chelatringe und der Art und Anzahl der am Liganden gebundenen funktionellen Gruppen beeinflusst werden.

Dazu wurden die komplexchemischen Eigenschaften im Festkörper über Röntgenstrukturanalyse an Einkristallen und in Lösung durch potentiometrische Methoden untersucht. Außerdem sollten für diese anhand Untersuchungen Arbeit der Wasserlöslichkeit, Osmolaritätsuntersuchungen Stabilitätsuntersuchungen und im Autoklaven die Eignung pulverförmiger Proben der Verbindungen als Kontrastmittel verifiziert werden. Zudem wurden die Strukturen mittels NMR-, IR- und massenspektrometrischen, Untersuchungen aufgeklärt.

2. Syntheserouten und Eigenschaften der freien Liganden

2.1 Synthese neuer Liganden durch Derivatisierung von taci

Auf Basis des Grundgerüstes 1,3,5-Triamino-1,3,5-tridesoxy-cis-inosit wurden mit dem Ziel Herstellung der neuer Derivate mit zusätzlichen Sauerstoff-Donoren Derivatisierungsversuche durchaeführt. Die Derivatisierung taci soll die von Wasserlöslichkeit, sowie durch die Erhöhung der Zähnigkeit die Stabilität von Metallkomplexen verbessern. Somit sollte die Derivatisierung Auswirkungen auf die Eigenschaften des Liganden und damit verbunden auf die Komplexierungseigenschaften haben. Die Einführung von Substituenten findet an der N-Position statt und kann an der Anzahl der eingeführten Reste (mit R = eins bis sechs, Abbildung 12) variieren. Es besteht die Möglichkeit Derivate mit einem gemischten Satz an Substituenten zu synthetisieren.

Abbildung 12: Derivatisierungsversuche am taci.

2.2 Der Ligand tacitpn

Unter Verwendung von Acrylnitril konnte eine einfache Alkylierung jedes N-Atoms am Liganden taci durchgeführt werden. Somit konnten drei Reste am Liganden eingeführt werden. Die in dieser Arbeit angewendete Synthese erfolgte in Anlehnung an Whitmore et al.^[52] Dabei wird der deprotonierte Ligand taci in Methanol gelöst und mit 10 Äquivalenten des Alkylierungsreagenz Acrylnitril 24 Stunden gerührt. Im Anschluss wird der Ligand mit Diethylether und Hexan gewaschen. Der Ligand konnte in guten Ausbeuten erhalten werden. Die Alkylierung erfolgt nach einer 1,4-Michael-Addition.^[53] Dabei greift der nukleophile Stickstoff am β -C-Atom des α , β -ungesättigten Nitrils an. Abbildung 13 zeigt das Syntheseschema:

Abbildung 13: Syntheseschema zur Darstellung von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit-N,N',N''tripropionitril (tacitpn).

Wie anhand des ¹H-NMR-Spektrums der drei beobachteten Signale zu entnehmen ist, weist der Ligand in Lösung C_{3v} -Symmetrie auf. Abbildung 14 zeigt das ¹H-NMR-Spektrum der Verbindung in D₂O. Dabei ist zu erkennen, dass sich bei 2.7 ppm zwei Signale überlagern. Die Integration sowie die Strukturaufklärung mittels zweidimensionaler NMR-Spektren haben gezeigt, dass es sich hierbei sowohl um die Protonen (H4) der CH₂-Gruppe, die benachbart zur CN-Gruppe liegen, als auch um die Protonen (H1) der C-Atome am N-Atom des taci handelt. Ein Triplett bei 3.0 ppm wird den Protonen (H3) der CH₂-Gruppe, die benachbart zum N-Atom des taci-Ringes liegen, zugeordnet. Somit kann der Peak bei 4.2 ppm den Protonen (H2) des C-Atoms am taci-Ring, welche zu den OH-Gruppen benachbart sind, zugeordnet werden. Die Integration bestätigt eine Monoalkylierung der primären konnte durch Variation der Reaktionsparameter (Temperatur, Aminogruppen. Es Lösungsmittel, Äquivalente Reaktionsdauer. an Alkylierungsreagenz) keine Mehrfachalkylierung erreicht werden.

Abbildung 14: ¹H-NMR Spektrum von tacitpn in D₂O.

2.2.1 Kristallstruktur von tacitpn

Während der Synthese von tacitpn konnten beim Entfernen des Lösungsmittels (Methanol) am Rotationsverdampfer (nach R. Beckedahl^[54]) Einkristalle erhalten werden, die einer Röntgenstrukturanalyse zugeführt wurden.

Abbildung 15: ORTEP-Darstellung von tacitpn. Die Schwingungsellipsoide entsprechen 30 % der Aufenthaltswahrscheinlichkeit. Der Radius der H-Atome wurde willkürlich gewählt. Nur eine Orientierung des fehlgeordneten Propionitrilrestes (C31A – N34A) ist dargestellt.

Der Ligand tacitpn kristallisiert in der triklinen Raumgruppe P $\overline{1}$ (R₁= 5.19%, wR₂= 13.94%). Die Verbindung liegt in der Sesselkonformation mit triaxialen Sauerstoffatomen sowie äquatorial orientierten Aminogruppen vor. Aufgrund der Position der Propionitrilreste dieser Struktur kann hier nicht mehr von einer C_{3V} -Symmetrie gesprochen werden. Es liegt ein C_1 -symmetrisches Molekül vor. Die Verbindung weist eine Fehlordnung auf: Dabei ist der Propionitrilrest am N-Atom N24 auf 2 Positionen verteilt. In der Abbildung ist nur eine Position abgebildet.

Tabelle 2 zeigt einen Überblick ähnlicher Verbindungen mit ihren C=N-Bindungslängen.

o o o	MeCO N	Et_(CH ₂) ₃	
1.127 Å ^[55]	1.139 Å ^[56]	1.128 Å ^[57]	1.145 Å ^[58]

Tabelle 2: Beispielverbindungen mit ihren C≡N-Bindungslängen [Å].

Im tacitpn ergeben sich folgende CN-Bindungslängen: N224-C223: 1.144(5) Å, N264-C263: 1.136(6) Å, N34A-C33A: 1.121(1) Å(70%) und N34B-C33B: 1.126(2) Å(30%) (Zuordnung der N-Atome und C-Atome siehe Abbildung 15). Die Fehlordnung des Propionitrilrestes an N24 wurde aufgrund der Übersichtlichkeit nicht dargestellt. Es ergibt sich aus diesen vier Werten eine durchschnittliche CN-Bindungslänge von 1.129 Å. Verglichen mit den in Tabelle 2 abgebildeten Beispielverbindungen liegt die Bindungslänge von 1.129 Å des tacitpn im erwarteten Bereich.

Desweiteren wurde eine Mehrfachalkylierung der NH-Gruppen des Liganden taci angestrebt. In Bezug auf das Alkylierungsreagenz Acrylnitril wurden verschiedene Synthesen angewendet, die jedoch nicht zum Erfolg führten. Dabei wurde das Alkylierungsreagenz stöchiometrisch, sowie im Überschuss eingesetzt. Selbst in Anwesenheit eines Überschusses an Acrylnitril reagierte taci ausschließlich zu dem dreifach alkylierten Produkt tacitpn. Ebenfalls wurden das Lösungsmittel,^[59] die Temperatur (RT, 50°C, 60°C, 100°C) und die Reaktionsdauer (ein bis sechs Tage) variiert. In Anlehnung an Corse et al.^[60] wurden Reaktionen in Gegenwart katalytischer Mengen Triton der Base В (Benzyltrimethylammoniumhydroxid) durchgeführt. Mit dem Ziel der sechsfachen Alkylierung wurde der Ligand tacitpn mit Bromethanol,^[61] sowie erneut mit Acrylnitril^[62, 63] und Acrylnitril in Gegenwart von Lewis-Säuren (FeCl₃ · 6 $H_2O^{[64]}$, Cu(OAc)₂ · $H_2O^{[65]}$, ZrCl₄^[66]) umgesetzt. Auch hier führten die Synthesen nicht zum Erfolg.

2.3 Der Ligand tacitp

Die Synthese des Liganden tacitp (Abbildung 16) erfolgte durch Hydrolyse des dreifach Nalkylierten tacitpn. Dabei wurde sowohl eine saure als auch eine alkalische Hydrolyse der Nitrilgruppe durchgeführt. Die Hydrolyseversuche im Sauren führten jedoch aufgrund einer Retro-Michael-Addition zur Abspaltung der Propionitrilgruppen. Es wurde eine saure Hydrolyse mit H₂SO₄^[67] und mit HCl unter Rückfluss durchgeführt. Die alkalische Hydrolyse mittels KOH^[68, 69] führte ebenfalls zur Abspaltung der Reste des tacitpn. Der Ligand tacitpn konnte mit 25%-NaOH-Lösung erfolgreich verseift werden. Dabei erfolgte die Umsetzung der Nitrilgruppen zum Carboxylat in Gegenwart von sechs Äguivalenten einer 25%-NaOH-Lösung innerhalb von vier Stunden unter Rückfluss. Die Aufreinigung wurde mittels Kationenaustauscherchromatographie durchgeführt. Ligand Der wurde in der Hydrochloridform (H_6 tacitp Cl_3) erhalten.

Die Synthese von tacitp war bereits in ähnlicher Form bekannt und wurde erstmals vom Laboratorium Hausmann, St. Gallen, CH (Patent DE 40 28 139 A1, 1992) beschrieben, wobei hier eine Hydrolyse in Gegenwart von HCl durchgeführt wird.

Abbildung 16: Reaktionsschema der Hydrolyse von tacitpn zur Darstellung von 1,3,5-Triamino-1,3,5tridesoxy-*cis*-inosit-N,N',N''-tripropionsäure-trihydroclorid (H₆tacitpCl₃).

Die Bestimmung von individuellen Deprotonierungskonstanten des tacitp erfolgte mittels kontinuierlicher potentiometrischer Titration. Tacitp liegt nach der Aufarbeitung vollständig protoniert als H_6 tacitpCl₃ vor. Dabei konnten mittels potentiometrischer Messungen alle sechs erwarteten p K_s -Werte bestimmt werden.

In Tabelle 3 sind die Ergebnisse der potentiometrischen Titrationen von H₆tacitp³⁺ aufgeführt.

Methode	Potentiometrie
Titrationstyp	kontinuierlich
lonenstärke	0.1 M KCI
c(Ligand) [mmol/l]	1.00
c(H⁺) [mmol/l]	6.58
Titrationsmittel	0.1 M KOH
Anzahl der Messpunkte	100
Gesamtvolumenzugabe [ml]	3.5
pH-Bereich	2.81 – 10.46
Anzahl der Messungen n	8
Teilchen	p <i>K</i> s-Werte
H ₆ tacitp ³⁺	p <i>K</i> _{s1} = 2.64(9)
H₅tacitp ²⁺	p <i>K</i> _{s2} = 3.03(2)
H₄tacitp⁺	p <i>K</i> _{s3} = 3.68(7)
H₃tacitp	p <i>K</i> _{s4} = 6.15(6)
H ₂ tacitp ⁻	p <i>K</i> _{s5} = 7.73(3)
Htacitp ²⁻	$pK_{s6} = 9.32(3)$

Tabelle 3: Titrationsparameter und pKs (= $-\log K_s$)^[a] - Werte der potentiometrischen Titration von H₆tacitpCl₃ (T = 25 °C).

^[a] für den Liganden H_xL gilt: K_{s,i} = $[LH_{x+1}] \cdot [H] \cdot [LH_{(x+1)+1}]^{-1}$. Die in Klammern angegebenen Standardabweichungen wurden berechnet nach $\sigma = [(\sum (x_i - \bar{x})^2/(n - 1))^{1/2}]^{-1}$. Dabei entspricht \bar{x} dem Mittelwert aus n Messungen.

Die folgende Abbildung zeigt die Teilchenverteilung des Liganden tacitp in wässriger Lösung Medium (0.1 M KCl, T = 25 °C). Unter physiologischen Bedingungen (bei pH 7.4) liegen hauptsächlich die Spezies $[LH_2]^-$ und $[LH]^{2-}$ vor. Damit liegt der Ligand bei einem pH von 7.4 einfach und zweifach protoniert vor.

Abbildung 17: Mit HYSS 2006 ermittelte Teilchenverteilung des Liganden tacitp mit $[L]_t = 1$ mM.

2.3.1 Derivatisierung von tacitp

Desweiteren wurden am Liganden tacitp, dessen Esterverbindungen und tacitpn einige Derivatisierungsversuche, mit dem Ziel einer Erhöhung der Wasserlöslichkeit am Liganden, unternommen. Dabei wurden die Alkylierungsreagenzien so gewählt, dass die Einführung bestimmter funktioneller Gruppen die Wasserlöslichkeit auffallend steigern sollte. Abbildung 18 zeigt eine Übersicht ausgehender Liganden mit der Zielverbindung.

Abbildung 18: Übersicht verschiedener Synthesemöglichkeiten der Zielverbindung (5).

Dabei erfolgten die Derivatisierungsversuche ausgehend von tacitpn (1), protoniertem tacitp (2), Metyhlester des tacitp (3), sowie dem *tert*-Butylester (4) des tacitp unter verschiedenen Reaktionsbedingungen. Neben den Edukten wurden Alkylierungsreagenzien, Temperatur, Hydrierungsreagenzien, sowie der Einsatz an Säure und Base variiert (Tabelle 4).

Mit den Liganden tacitpn (1), tacitp (2), und tacitptb (4) konnten jeweils nur Produktgemische erhalten werden. Trennungsversuche mittels HPLC führten zu keiner erfolgreichen Auftrennung des Produktgemisches. Das gewünschte sechsfach alkylierte Produkt (5) konnte jedoch in reiner Form ausgehend von tacitptm (3) erhalten werden. Der methylierte Ligand tacitptm (3) konnte durch eine Michael-Addition aus taci und Acrylsäuremethylester hergestellt werden. Die reduktive Aminierung wurde in Gegenwart von Glycerinaldehyd und verschiedener Hydrierungsreagenzien durchgeführt. Hierbei wurden 2-Methylpyridinboran, 5-Ethyl-2-methylpyridinboran, NaBH₄ sowie H₂ (Pd/C) getestet. In Gegenwart des 5-Ethyl-2-methylpyridinborans konnte die gewünschte dreifach umgesetzte Zielverbindung (siehe Abbildung 18) synthetisiert werden. Das UPLC-MS-Ergebnis zeigte die gesuchte Masse von 683 m/z (657 m/z + B₂H₆). Bedingt durch eine Retro-Michael-Addition wurde jedoch die Abspaltung einiger Reste, während der Aufarbeitung des Liganden, beobachtet. Nach Einengen am Rotationsverdampfer, sowie bei Zugabe von Wasser wurden Propionat-Esterreste abgespalten.

Ligand	Alkylierungs- reagenz	Bedingung	Hydrierungs- reagenz	Temp.	Ergebnis
tacitpn (1)	R-(+)-Glycidol ^[70-72]	Base		50°C	Gemisch der vier- bis sechsfach alkylierten Derivate
	DL-Glycerinaldehyd	Eisessig	2-Methylpyridin boran	MW: 100°C/ 100W	Gemisch der vier- bis sechsfach alkylierten Derivate + Reduktion der Nitrilgruppe
	R-(+)-Glycidol[70- 72]	Base(pH~10)		60°C	Produktgemische, Hauptspezies sechsfach alkyliertes Produkt
tacitp	Methyl(2S)-glycidat	Base(pH~10)			vier- bis sechsfach alkyliertes Produktgemisch
(2)	DL-Glycerinaldehyd	Trifluoressig- säure	Pd/C, H ₂	RT	keine Reaktion
		Eisessig(pH~2)	5-Ethyl-2- methylpyridin boran[73]		nur teilweise Umsetzung, zwitterionische Formen fallen während der Reaktion aus
tacitptm (3)	DL-Glycerinaldehyd	Eisessig	2-Methylpyridin boran	MW: 100°C/ 100W	keine Reaktion
			5-Ethyl-2- methylpyridin boran ^[73]	RT	Einheitliches sechsfach alkyliertes Produkt, nach Zugabe von Wasser oder nach Einengen am Rotationsverdampfer Retro- Michael: Abspaltung der Propionat-Ester
			Pd/C, H ₂	RT	keine Reaktion
			NaBH ₄	60°C	
tacitptb (4)	DL-Glycerinaldehyd	Eisessig	2-Methyl-pyridin boran	60°C	Produktgemische
	Ethylenoxid (nukl. Epoxidöffnung)	H ₂ O:Eisessig (60 : 40)		RT	Produktgemische + Überalkylierung

Tabelle 4: Ausschnitt ausgewählter	Synthesebedingungen	verschiedener De	erivatisierungsversuche.
0	, , , , , , , , , , , , , , , , , , , ,		0

Schlussfolgernd kann gesagt werden, dass der Ligand tacitp und seine Derivate als Edukt für weitere Alkylierungsversuche ungeeignet sind, da durch die Retro-Michael-Addition eine Abspaltung der Propionatreste beobachtet wird.
2.4 Der Ligand macitp

Die Arbeit von K. Hegetschweiler et al.^[74] zeigte, dass eine Methylierung am N-Atom des underivatisierten taci-Grundkörpers aufgrund entropischer Effekte sowohl eine erhebliche Erhöhung der Komplexstabilitäten als auch eine Verbesserung der Wasserlöslichkeit zur Folge hat. Aus diesem Grund wurde das dreifach alkylierte Produkt tacitp im Autoklaven am N-Atom methyliert. Dabei entsteht 1,3,5-Tridesoxy-1,3,5-tris(methylamino)-*cis*-inosit-N,N',N''-tripropionsäure (macitp).

Die Umsetzung erfolgte im Autoklaven bei einem H₂-Druck von 50 bar in saurem Medium (pH = 1) in Gegenwart von Formaldehyd. Als Katalysator wurde Pd (10 %) / C verwendet. Das Produkt wurde mittels Kationenaustauscherchromatographie gereinigt. Dabei ist darauf geachtet worden, dass das Entfernen des Lösemittels vom Produkt unter milden Bedingungen (unterhalb 40°C) stattfand. Das Erhöhen der Temperatur könnte aufgrund der möglichen Retro-Michael-Addition zur Abspaltung der Propionsäure-Reste führen. Abbildung 19 zeigt das Syntheseschema zur Darstellung von macitp.

Abbildung 19: Syntheseschema zur Darstellung von 1,3,5-Tridesoxy-1,3,5-tris(methylamino)-*cis*-inosit-N,N',N''-tripropionsäure-trihydrochlorid (H₆macitpCl₃).

Die Bestimmung der individuellen Deprotonierungskonstanten von macitp erfolgte mittels kontinuierlicher potentiometrischer Titration. Macitp liegt vollständig protoniert als H_6 macitpCl₃ vor. Es konnten mittels potentiometrischer Messungen alle sechs erwarteten pK_s -Werte bestimmt werden (Tabelle 5).

Methode	Potentiometrie
Titrationstyp	kontinuierlich
lonenstärke	0.1 M KCI
c(Ligand) [mmol/l]	1.00
c(H⁺) [mmol/l]	6.68
Titrationsmittel	0.1 M KOH
Anzahl der Messpunkte	100
Gesamtvolumenzugabe [ml]	3.5
pH-Bereich	2.81 – 10.46
Anzahl der Messungen n	8
Teilchen	p <i>K</i> s-Werte
H ₆ macitp ³⁺	$pK_{s1} = 2.40(2)$
H₅macitp ²⁺	$pK_{s2} = 2.88(1)$
H₄macitp ⁺	p <i>K</i> _{s3} = 3.52(1)
H ₃ macitp	$pK_{s4} = 5.89(1)$
H ₂ macitp ⁻	$pK_{s5} = 7.76(1)$
Hmacitp ²⁻	p <i>K</i> _{s6} = 9.72(2)

Tabelle 5: Titrationsparameter und pKs (= - $\log Ks$)^[a] - Werte der potentiometrischen Titration von H₆macitpCl₃ (T = 25 °C).

^[a] für den Liganden H_xL gilt: K_{s,i} = $[LH_{x+1}] \cdot [H] \cdot [LH_{(x+1)+j}]^{-1}$. Die in Klammern angegebenen Standardabweichungen wurden berechnet nach $\sigma = [(\sum (x_i - \bar{x})^2/(n - 1)]^{1/2}$. Dabei entspricht \bar{x} dem Mittelwert aus n Messungen.

In Tabelle 6 sind die Ergebnisse der potentiometrischen Titrationen von taci, tacitp sowie macitp aufgeführt. Die Teilchenverteilung von macitp ist in Abbildung 20 dargestellt.

taci	tacitp	macitp
	p <i>K</i> _{s1} = 2.64(9)	p <i>K</i> _{s1} = 2.40(2)
	p <i>K</i> _{s2} = 3.03(2)	p <i>K</i> _{s2} = 2.88(1)
	p <i>K</i> _{s3} = 3.68(7)	$pK_{s3} = 3.52(1)$
$pK_{s1} = 5.96$	p <i>K</i> _{s4} = 6.15(6)	p <i>K</i> _{s4} = 5.89(1)
$pK_{s2} = 7.42$	p <i>K</i> _{s5} = 7.73(3)	p <i>K</i> _{s5} = 7.76(1)
р <i>К</i> _{s3} = 8.91	$pK_{s6} = 9.32(3)$	$pK_{s6} = 9.72(2)$

Tabelle 6: Vergleich der individuellen Deprotonierungskonstanten (p K_s (= - log K_s)^[a] – Werte) von taci,^[48] tacitp sowie macitp mit I = 0.1 M KCl und T = 25 °C.

^[a] für den Liganden H_xL gilt: K_{s,i} = $[LH_{x-1}] \cdot [H] \cdot [LH_{(x+1)+j}]^{-1}$. Die in Klammern angegebenen Standardabweichungen wurden berechnet nach $\sigma = [(\sum (x_i - \bar{x})^2/(n-1)]^{1/2}$. Dabei entspricht \bar{x} dem Mittelwert aus n Messungen.

Abbildung 20: Mit HYSS 2006 berechnete Teilchenverteilung des Liganden macitp mit [L]_t = 1 mM.

Die ersten drei pK_s -Werte (pK_{s1} - pK_{s3}) sind aufgrund ihrer Acidität den Deprotonierungskonstanten der Carbonsäuren zuzuordnen, die pK_s -Werte (pK_{s4} - pK_{s6}) denen der Aminfunktionen.

Werden die Deprotonierungskonstanten von taci mit tacitp und macitp verglichen, lässt sich folgendes feststellen: Die Einführung der Propionsäuregruppen führt tendenziell zu einer Begünstigung der Protonierung. Es findet eine Erhöhung der p K_s -Werte der sekundären Amine statt (Ausnahme: p K_{s4} von macitp). Vergleicht man die Deprotonierungskonstanten des tacitp (sekundäres Amin) mit denen des methylierten macitp (tertiäres Amin), zeigt sich, dass die ersten vier p K_s -Werte des macitp abnehmen, wohingegen bei den restlichen p K_s -Werten (p K_{s5} - p K_{s6}) eine Zunahme zu beobachten ist.

2.5 Der Ligand tacitatm

Da sich herausstellte, dass der Ligand tacitp zur Alkylierung am N-Atom aufgrund der Abspaltung der Propionsäuregruppen nicht geeignet erschien, wurde versucht den Liganden tacitatm aus tacita, welcher erstmals von G. Welti^[75] hergestellt und charakterisiert wurde, am N-Atom zu alkylieren. Da die Synthese des Liganden tacita nicht einem Michael-Addition-Mechanismus unterliegt, kann es hierbei während der Synthese nicht zu einer erneuten Retro-Michael-Reaktion kommen.

Abbildung 21: Reaktionsschema zur Darstellung von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit- N,N',N"trimethylacetat-trihydrochlorid (H₃tacitatmCl₃).

Bei dieser Umsetzung wurde Thionylchlorid in Methanol im Eisbad vorgelegt. Im Anschluss wurde tacita hinzugegeben und 72 Stunden bei Raumtemperatur gerührt. In einer intramolekularen nukleophilen Substitutionsreaktion reagiert die Carbonsäure mit Thionylchlorid unter Abspaltung von HCl und SO₂. Es entsteht das Carbonsäurechlorid. Dieses reagiert in einer Addition-Eliminierungs-Reaktion zu dem gewünschten Carbonsäuremethylester. Das Produkt wurde in der Trihydrochlorid-Form isoliert.

Analog zur erfolgreichen reduktiven Aminierung von tacitptm wurde tacitatm mit Glycerinaldehyd in Gegenwart des Borans 5-Ethyl-2-methylpyridin umgesetzt. Die reduktiven Aminierungsversuche, die mit H₃tacitatm³⁺ durchgeführt wurden, führten alle zu Produktgemischen. Hierbei wurde Glycerinaldehyd in Gegenwart des Borans 5-Ethyl-2-methyl-pyridin-Boran-Komplex^[73] eingesetzt. Die Reaktionsversuche wurden sowohl mit Eisessig als auch ohne Eisessig durchgeführt. Die Reaktion verläuft säurekatalysiert,^[73] da aber die protonierte Form des Liganden H₃tacitatm³⁺ eingesetzt wurde, sind dadurch bereits Protononen in der Lösung enthalten. Es wurde kein Unterschied zwischen den beiden Reaktionsbedingungen festgestellt. Die Reaktionen wurden über drei Tage bei RT durchgeführt. Alle Versuche führten zu Produktgemischen, die nicht voneinander getrennt werden konnten, unter welchen auch das gewünschte 3-fach umgesetzte Produkt beobachtet wurde. Es stellte sich somit heraus, dass die protonierte Form H₃tacitatm³⁺ zur reduktiven Aminierung ungeeignet erscheint.

Daher wurden Deprotonierungsversuche des H_3 tacitatm³⁺ an einem schwach basischen Anionenaustauscher unternommen. Während der Ligand sich auf der Anionenaustauschersäule befand, wurde offensichtlich der Ester zur Carbonsäure verseift und Methanol abgespalten. Der Ligand konnte mittels H_2O nicht von der Austauschersäule eluiert werden, und erst nach Elution mit HCI konnte der Ligand tacita entfernt werden.

Weiterhin wurde das Alkylierungsreagenz variiert. Es wurden Reaktionen mit Benzyloxyacetaldehyd und Glykolaldehyd durchgeführt. Abbildung 22 zeigt die zur reduktiven Aminierung verwendeten Aldehyde.

Abbildung 22: Glycerinaldehyd (links), Benzyloxyacetaldehyd (Mitte) und Glykolaldehyd (rechts).

Durch den sterischen Anspruch des Benzyloxyacetaldehyds wurde ein einheitliches einfach alkyliertes Produkt erwartet. Es wurden jedoch auch hier Produktgemische erhalten. Die Reaktion konnte soweit gesteuert werden, dass das Produktgemisch aus fünf- und sechsfach umgesetztem Ligand bestand. Letztendlich wurde aufgrund des geringen sterischen Anspruches des Glykolaldehyds eine vollständige Alkylierung erhofft. Da sich der Ligand in der Hydrochlorid-Form befand konnte kein einheitliches durchalkyliertes Produkt erhalten werden. Es wurden Produktgemische erhalten, die nicht aufgetrennt werden konnten.

2.6 Der Ligand tacitptm

Zur Synthese des Liganden tacitptm standen zwei Synthesewege zur Wahl, um den Methylester des tacitp herzustellen. Es bestand zum einen die Möglichkeit tacitptm über die Umsetzung von tacitp mit Thionylchlorid oder aus der Umsetzung von taci mit Methylacrylat. Die Umsetzung von tacitp mit Thionylchlorid in Methanol und anschließender Reaktion des Carbonsäurechlorides zum Methylester führte nicht zum erwünschten Produkt. Die Ergebnisse wiesen Produktgemische auf. Unter anderem waren darunter reiner Ligand sowie eine zweifach methylierte Spezies zu erkennen. Die Synthese über das Methylacrylat wurde analog zu der des tacitpn, ausgehend von deprotoniertem taci in Gegenwart von Acrylsäuremethylester, durchgeführt. Die Reaktion wurde mit 10 eq Methylacrylat in Methanol drei Tage bei RT erreicht. Im Anschluss wurde das Lösungsmittel entfernt, das Produkt mit Diethylether und Hexan gewaschen und im Hochvakuum getrocknet. Abbildung 23 zeigt das Syntheseschema zur Darstellung von tacitptm.

Der Ligand wurde für anschließende Derivatisierungsversuche verwendet (siehe Tabelle 4).

Abbildung 23: Reaktionsschema zur Darstellung von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit- N,N',N"trimethylpropionat (tacitptm)

3. Komplexchemie der Liganden tacitp und macitp

3.1 Metallkomplexe mit Lu(III)

Im Hinblick auf die Kenntnisse, die bereits mit dem Liganden taci und mehrkernigen Lanthanoidkomplexen gesammelt wurden,^[48] erschien Lu³⁺ ein aussichtsreicher Vertreter für die Herstellung eines neuen Kontrastmittel zu sein. Der Ligand taci wies mit dem Metall Lu³⁺ keine genügend hohe Stabilität auf, jedoch ist seine [M₃L₂]-Koordination vielversprechend. Es kann vermutet werden, dass aufgrund der zusätzlich koordinierenden Reste des tacitp eine höhere Stabilität im Komplex zu beobachten ist. R. Hedinger et al.^[48] zeigte, dass mit abnehmendem Radius des Lanthanoids die Stabilität dieser Komplexe steigt. Hierzu wurden Komplexe mit dem Liganden taci potentiometrisch untersucht, und es konnte beim Übergang von Eu³⁺ zum Lu³⁺ eine Zunahme der Stabilität um mehr als 7 logarithmische Einheiten beobachtet werden (siehe Abbildung 24).

Abbildung 24: Die log β_{32-6} -Werte^[48] (mit $\beta_{32-6} = [M_3(H_{\cdot3}L)_2] \cdot [M]^{\cdot 3} \cdot [L]^{\cdot 2} \cdot [H]^6$, L = taci) für verschiedene Lanthanoid-Kationen im Bezug zum Ionenradius [Å]. Die Ionenradien wurden aus R.D. Shannon^[22] entnommen.

Dabei wurde mittels potentiometrischer Titrationen festgestellt, dass die Hauptspezies folgende Zusammensetzung aufweist: $[M_3(H_{-3}L)_2]^{3+}$ (mit M = Lu³⁺, Dy³⁺, Y³⁺, Gd³⁺ und Eu³⁺

sowie L = 1,3,5- Triamino-1,3,5-tridesoxy-*cis*-inosit). Es wurde für das $[Lu_3(H_3L)_2]$ -Teilchen eine Stabilitätskonstante von - 11.3 sowie für die Minorspezies ($[M_3(H_3L)(OH)]^{5+}$) eine Stabilitätskonstante von - 8.7 bestimmt. Weitere Untersuchungen mehrkerniger Lutetiumkomplexe zeigen die Arbeiten von D. Chapon et al. Ebenfalls konnte hier mit Hilfe potentiometrischer Titrationen für das [Lu₃(H₋₃L)₂]-Teilchen eine Stabilitätskonstante von werden. Zusätzlich wurde Festkörper -12.5 ermittelt die Struktur im mittels röntgenstrukturanalytischer Untersuchungen bestätigt. [76, 77]

3.1.1 Der Na₃[Lu₃(H₋₃tacitp)₂]-Komplex

Im Hinblick auf die Erkenntnis, dass der Ligand taci M₃L₂-Komplexe mit Seltenerdmetallen eingeht, war es von besonderem Interesse herauszufinden, welche Komplexe Lutetium mit dem Liganden tacitp eingeht.

Hierzu wurde 1 eq des Liganden tacitp in etwas Wasser gelöst und mittels 1 M NaOH-Lösung ein pH-Wert von 8 eingestellt. Anschließend wurden 1,6 eq LuCl₃ hinzugefügt. Der pH-Wert wurde erneut kontrolliert und auf etwa pH ~ 8 eingestellt. Die Suspension wurde eine Stunde bei 80 °C erhitzt und im Anschluss abfiltriert. Das Filtrat wurde mittels einer Ultrafiltrationszelle entsalzt.

Zur Strukturaufklärung in Lösung wurden NMR-Spektren zu Hilfe genommen. Mit der Annahme, dass tacitp analog zu taci ebenfalls M_3L_2 -Komplexe bildet, lässt sich aus den ¹Hsowie ¹³C-NMR-Spektren erkennen, dass der Komplex als Diastereomerengemisch einer C_2 - D_3 -symmetrischen Spezies vorliegen muss (siehe schematische und einer Polyederdarstellung in Abbildung 28). Weiterhin ist es naheliegend, dass Lu³⁺ und tacito M₃L₂-Komplexe bilden, da diese auch wie im Folgenden noch zu sehen z. B. von Eu³⁺ und tacitp sowie von Lu³⁺ und macitp mittels erhaltenen Kristallstrukturen bestätigt werden konnte. Bei Betrachtung des ¹H-NMR-Spektrums (Abbildung 25) ist folgendes zu erkennen: Aus dem Integrationsverhältnis der Signale ergibt sich ein Verhältnis der beiden Diastereomere von 2:3 zu Gunsten des C2-symmetrischen Komplexes. Aufgrund des Gemisches an C_2 - und D_3 - Spezies werden für das ¹H-NMR-Spektrum 24 Signale erwartet: Sechs Signale werden für die D₃-symmetrische Verbindung (1 x H_{eq}, 1 x H_{ax}, 4 x CH₂) und insgesamt 18 Signale für die C2-Spezies (3 x Heq, 3 x Hax, 12 x CH2) erwartet. Aufgrund der überlagerten Signale, die im ¹H-NMR-Spektrum zu sehen sind, lassen sich diese nicht exakt zuordnen. Mittels zweidimensionaler NMR-Spektren und mit Hilfe der Integration dieser Signale konnten die überlagerten Signale den H-Atomen zugeordnet werden. Erwartungsgemäß lassen sich die Protonen zu 36 integrieren. Man erwartet sechs HegProtonen, sechs H_{ax}-Protonen und sechs mal vier Protonen der CH₂-Gruppen. Die Signale mit einer chemischen Verschiebung von 2.36 – 2.51 ppm und einer Integration von zwölf werden den Protonen der CH₂-Gruppen benachbart zur COOH-Gruppe zugeordnet. Die axialen Protonen des taci-Ringes liegen im Bereich von 2.72 – 2.79 ppm und werden zu sechs integriert. Diese Signale werden von Protonen der CH₂-Gruppe, benachbart zum N-Atom, überlagert. Die Signale dieser Protonen werden auf zwei Signalbereiche aufgespalten: 2.72 – 2.79 ppm und 2.97 – 3.08 ppm mit einer Integration von insgesamt zwölf.

Abbildung 25: ¹H-NMR-Spektrum des D_3 sowie C_2 symmetrischen Na₃[Lu₃(H₋₃tacitp)₂]-Komplexes bei pH = 12 in D₂O.

Im ¹³C-NMR-Spektrum werden 20 Signale erwartet. Dabei stammen fünf Signale aus der D_3 symmetrischen und 15 Signale aus der C_2 -symmetrischen Spezies. Durch Überlagerung der Signale sind nur 13 Signale sichtbar (Abbildung 26). Exemplarisch sind die Signale der CH₂-Gruppe (benachbart zum N-Atom) sowie einer CH-Gruppe vergrößert. Diese zeigen, dass pro Kohlenstoffatom vier Signale zu sehen sind. Dabei stammen drei aus der C_2 und eins aus dem D_3 - symmetrischen Komplex.

Der Komplex liegt als dreikerniger [M₃L₂]-Komplex vor. Dabei stehen die Sauerstoffatome des Cyclohexanrings axial und die Stickstoffatome äquatorial. Das Metall liegt in den side-on Nischen (ONO) und wird über Chelat-5- sowie Chelat-6-Ringe stabilisiert. Zusätzlich koordinieren Sauerstoffatome der Carboxylatgruppen an das Metall. Diese, und die Sauerstoffatome des Cyclohexanringes, liegen in ihrer deprotonierten Form vor. Für den Komplex ergibt sich eine Gesamtladung von - 3. Abbildung 27 zeigt einen Strukturvorschlag des Komplexes.

Abbildung 27: Strukturvorschlag des Komplexanions [Lu₃(H₋₃tacitp)₂]³⁻.

Anhand von Koordinationspolyedern werden die beiden unterschiedlich symmetrischen Spezies schematisch erläutert. Betrachtet man die Darstellungen in Abbildung 28 lässt sich die Anordnung der Propionatreste besser erkennen. In der linken Abbildung ist die D_3 -symmetrische Spezies abgebildet, im rechten Bild ist die C_2 -symmetrische Verbindung abgebildet.

Abbildung 28:Polyederdarstellung der *D*₃-symmetrischen (links) und *C*₂-symmetrischen (rechts) Spezies mit eingezeichneten Drehachsen.

Die orangen Kanten zeigen die Orientierung der Propionatärmchen. In der D_3 -symmetrischen Darstellung ist die C_3 -Achse von oben zu erkennen. Durch die systematische Anordnung der Propionatreste, können diese durch eine Drehung um 120° an der vertikalen Achse zur Abbildung ineinander überführt werden. Die C_2 -symmetrische Abbildung weist diese Eigenschaft nicht auf. Hier fehlt die dreizählige Achse. Desweiteren kann man das Molekül um eine 180° Drehung entlang der C_2 -Achse ineinander überführen.

3.1.1.1 Stabilitätsuntersuchungen

Um eine Abschätzung sowohl über die die thermodynamische als auch über die kinetische Stabilität machen zu können, wurden NMR-Untersuchungen des $[Lu_3(H_{-3}tacitp)_2]^{3}$ -Komplex durchgeführt. Es wurden ¹H-NMR-Spektren in D₂O im pH^{*}-Bereich von 4.85 – 1.10 aufgenommen. In der folgenden Abbildung ist zu erkennen, dass der Komplex bereits bei einem pH^{*} von vier fast vollständig zerfallen ist. Ab diesem pH-Wert ist im NMR-Spektrum nur noch der freie Ligand tacitp zu sehen und nicht mehr wie zuvor bei pH^{*} = 4.85 der Komplex. Somit kann geschlussfolgert werden, dass der [Lu₃(H₋₃tacitp)₂]³⁻-Komplex nur bis

zu einem pH-Wert von ungefähr fünf stabil ist. Da wir uns unter physiologischen Bedingungen bei einem pH-Wert von 7.4 befinden, ist der Komplex für medizinische Anwendungen auf den ersten Blick gut geeignet.

Abbildung 29: ¹H-NMR-Spektren des Na₃[Lu₃(H_{.3}tacitp)₂]-Komplexes in D₂O bei verschiedenen pH^{*}-Werten.

Im Hinblick auf die kinetische Stabilität wurden sowohl die Zersetzungskinetik als auch die Bildungskinetik anhand von ¹H-NMR-Spektren untersucht.

Da aus den Untersuchungen des [Lu₃(H₋₃tacitp)₂]³⁻-Komplexes bekannt ist, dass dieser ab einem pH-Wert von vier der Komplex nicht mehr existent ist, wurde nun pH*-Wert von 3.5 eingestellt. Nach circa 15 min wurde erneut ein ¹H-NMR-Spektrum aufgenommen und festgestellt, dass der Komplex bereits nach 15 min zerfallen ist und nur noch freier Ligand vorlag.

Abbildung 30: Zersetzungskinetik des Na₃[Lu₃(H₋₃tacitp)₂]-Komplexes.

Zur Bestimmung der Bildungskinetik des $[Lu_3(H_3tacitp)_2]^{3-}$ -Komplexes, wurde erneut ein pH^{*}-Wert größer 5 eingestellt (pH^{*}-Wert = 5.3), da aus der Untersuchung der thermodynamischen Stabilität bekannt ist, dass der $[Lu_3(H_3tacitp)_2]^{3-}$ -Komplex bei einem pH-Wert von 5 stabil ist. Nach 15, 30, 45, 60 und 180 min wurden ¹H-NMR-Spektren aufgenommen (Abbildung 31).

Abbildung 31: Bildungskinetik des Na₃[Lu₃(H₋₃tacitp)₂]-Komplexes.

Hierbei kann man erkennen, dass der Komplex bereits nach 15 min gebildet wird. Jedoch liegt zu diesem Zeitpunkt neben dem Komplex noch freier Ligand vor. Dieser ist auch nach 120 Minuten vorhanden, was entweder durch einen Ligandenüberschuss zu erklären ist oder durch eine schnelle aber nicht vollständige Rückbildung des Komplexes. Dabei liegt die Vermutung nahe, dass sich bereits bei einem pH von 5.2 Lutetiumhydroxid bildet, was dazu führt, dass nicht mehr genügend freies Metall vorhanden ist, um den Liganden vollständig zu komplexieren.

3.1.1.2 Bestimmung der Stabilitätskonstanten von Lu³⁺ mit tacitp

Die Stabilitätskonstanten der Lu₃(H.₃tacitp)₂-Komplexe konnten im 0.1 M KCI Medium durch alkalimetrische Titration mit 0.1 M KOH bei T = 25 °C bestimmt werden. Aufgrund einer langsamen Kinetik dieses Komplexes musste auf eine diskontinuierliche potentiometrische Durchführung (Batch-Titration) zurückgegriffen werden. Mit einer Dreipunkt-kalibrierten Glaselektrode wurde das Gleichgewicht über mehrere Tage kontrolliert und es wurde festgestellt, dass das System nach vier Tagen im Gleichgewicht war. Die Titrationen von tacitp mit LuCl₃ wurden im Metall-Ligand-Verhältnis von 3:2 durchgeführt. In Abbildung 32 sind zwei Titrationskurven für das System Lu³⁺ mit tacitp im Verhältnis 3:2 dargestellt. Dabei ist zu erkennen, dass im Bereich des pH-Sprungs (roter Pfeil) der berechnete Fit der linken Darstellung (erste Auswertung) nicht vollständig mit den gemessenen Werten der Titrationskurve übereinstimmt (Modell 1, verworfen). Aus diesem Grund wurde das Teilchenmodell hierzu nochmals berechnet und es konnte eine Titrationskurve erhalten werden, die im pH-Wert-Bereich von 4.5 bis 7 besser mit dem Fit aus HYPERQUAD 2008 übereinstimmt (Modell 2, endgültig).

Abbildung 32: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) von Lu³⁺:tacitp im Verhältnis 3:2 mit [L]_t = 1 mM, Modell 1 (links, verworfen) und Modell 2 (rechts, endgültig).

Die Ergebnisse der diskontinuierlichen Titrationen beider Modelle zur Bestimmung der Komplexbildungskonstanten beider Titrationskurven sind in Tabelle 7 zusammengefasst.

Tabelle 7:	Titrationsparameter	und Stabilitäts	konstanten (I	logß _{xyz} ^[a]) der	ootentiometrischen
Titrationen	von Lu ³⁺ mit tacitp	bei T = 25 °C.	Modell 2 ist	das endgültig	e, zur Auswertung
herangezog	gene Modell.				

Methode	Potentiometri	e
Titrationstyp	diskontinuierlio	ch
Verhältnis M : L	3:2	
lonenstärke	0.1 M KCI	
[L] _t , mM	1	
Mischzeit [d]	4	
Titrationsmittel	0.1 M KOH	
Anzahl der Messpunkte	40	
Gesamtvolumenzugabe [ml]	1.5	
pH-Bereich	2.80 – 11.38	
Anzahl Messungen n	2	
Modell	1	2
logß ₁₁₂		23.2(4) ^[b]
logß ₁₁₃		27.2(4) ^[b]
logß ₃₂₋₆	4.5(3) ^[b]	7.9(8) ^[b]
logß ₃₂₋₇	-5.6(6) ^[b]	
logß ₃₂₋₈		-3(1) ^[b]
logß ₃₂₋₉		-13(1) ^[b]
logß ₃₁₋₇		-10.1(5) ^[b]
σ	2.80	2.24
pM-Wert	13.47	15.84

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [H]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Durch eine gemeinsame Auswertung zweier Titrationskurven wurde ein einheitliches Teilchenmodell zur Titrationskurve von Modell 2 gefunden. Die Teilchenverteilung dazu ist in Abbildung 34 dargestellt. Das erste verworfene Modell (Abbildung 33) wies eine $[Lu_3L_2H_{-6}]$ und eine [Lu₃L₂H.₇] Spezies auf. Das 32-6-Teilchen war über einen pH-Bereich von etwa 4.5 – 10 vorzufinden. Ab einen pH-Wert von 7.5 wurde die Spezies [Lu₃L₂H.₇] gebildet. Da jedoch die Titrationskurve im pH-Wert-Bereich zwischen 4.5 und etwa 7 eine zu starke Abweichung aufweist, ist dies, trotz eines guten σ -Wertes von HYPERQUAD2008, ein Hinweis dafür, dass das Teilchenmodell fehlerhaft sein muss. Dies lässt darauf schließen, dass weitere Teilchen vorhanden sein könnten, die noch nicht einberechnet wurden.

Abbildung 33: <u>Modell 1, verworfen:</u> mit HYSS2006 berechnete Teilchenverteilung des Lu³⁺ : tacitp – Systems im Verhältnis 3:2 mit [L]t = 1 mM.

Aufgrund der starken Abweichung der Titrationskurve wurde das Modell überarbeitet. Somit konnte ein Teilchenmodell mit einer besseren Übereinstimmung der gemessenen und gefitteten Graphen der Titrationskure erhalten werden. Ferner wurde ein besserer σ -Wert erhalten. Es ist jedoch zu beobachten, dass die einzelnen Teilchen mit einem großen Fehler behaftet sind (Tabelle 7). Dies könnte ein Hinweis darauf sein, dass das Modell bisweilen nicht vollständig gelöst wurde und möglichenfalls weitere Komplexspezies vorhanden sind, die nicht ermittelt werden konnten.

Neben dreikerniger Komplexspezies der Zusammensetzung $M_3L_2H_x$ (x = 6, 8, 9) und M_3LH_x (x = 7) liegen außerdem einkernige Komplexe der Zusammensetzung MLH_x (x = 2, 3) vor. Die Spezies $[Lu_3L_2H_6]$ im pH-Bereich von vier bis sieben scheint der in Abbildung 27 sechsfach deprotonierten Spezies zu entsprechen. Desweiteren kann angenommen werden, dass die $[Lu_3L_2H_6]$ und $[Lu_3L_2H_9]$ -Teilchen einer Spezies entsprechen, die durch die Deprotonierung eines Wasser-Moleküls entstehen, welches am Metall Lutetium sitzt. Es scheint, als würden koordinierende Propionatreste nicht mehr an das Metall binden und sich an deren Stelle am Metall Wassermoleküle anlagern, welche daraufhin deprotoniert werden. Im vorderen pH-Bereich liegen die einkernigen Teilchen 112 sowie 113 vor. Ab einen pH-Wert von circa vier beginnt die Bildung dreikerniger Spezies. Es bildet sich zunächst das 31-7-Teilchen und direkt im Anschluss das 32-6-Teilchen. Über einen pH-Bereich von etwa fünf bis elf liegt das 32-8-Teilchen vor und ab einem pH-Wert von acht bildet sich zusätzlich die 32-9-Spezies.

Abbildung 34: <u>Modell 2, endgültig</u>: mit HYSS2006 berechnete Teilchenverteilung des Lu³⁺ : tacitp -Systems im Verhältnis 3:2 mit [L]_t = 1 mM.

Um Aufschlüsse über die Geometrie der Komplexe zu erhalten, wurden zusätzlich NMR-Spektren über einen weiten pH-Bereich aufgezeichnet. Abbildung 35 stellt die pH*-Abhängigkeit der ¹H-NMR-Resonanzen des $[Lu_3(H_{.3}tacitp)_2]_3$ -Komplexes im Bezug zur chemischen Verschiebung δ (pH*-Bereich: 4.27 - 12.25) dar. Für die NMR-Titration wurden 300 mg tacitp (1 eq) in seiner vollständig protonierten Form in 6.3 ml D₂O gelöst und mit 362.8 mg LuCl₃ * 6 H₂O (1.7 eq) versetzt. Um eine vollständige Komplexbildung zu gewährleisten wurde im leichten Metallüberschuss gearbeitet. Als Referenz wurde TMSP hinzugefügt. Es wurden 15 Proben in einem pH*-Wert-Bereich von circa 4 - 12 mittels NaOD bzw. KOD eingestellt. Die Stabilitätsuntersuchungen des $[Lu_3(H_{.3}tacitp)_2]^3$ -Komplex haben gezeigt, dass dieser in einem pH*-Wert-Bereich kleiner 4 nicht mehr stabil ist. Aus diesem

Grund wurde nur bis zu einem pH*-Wert von 4.3 gearbeitet. Mit Hilfe einer pH-Elektrode, welche zuvor kalibriert wurde, wurde der pH*-Wert bestimmt. Die Zuordnung der Resonanzen in den ¹H-NMR-Spektren konnte unter Zuhilfenahme zweidimensionaler NMR-Spektren (C-H-Cosy) getroffen werden.

Abbildung 35 : pH*-Abhängigkeit der ¹H-NMR-Resonanzen des [Lu₃(H₋₃tacitp)₂]₃-Komplexes im Bezug zur chemischen Verschiebung δ (pH*-Bereich: 4.27 - 12.25).

In Abbildung 35 ist zu beobachten, dass mit zunehmendem pH-Wert eine leichte chemische Verschiebung der Signale erfolgt. Aufgrund der Verbreiterung der Signale ist keine eindeutige Zuordnung der Geometrie möglich. Jedoch weist die chemische Verschiebung darauf hin, dass eine Veränderung der Geometrie stattgefunden haben könnte. Hinter der Signalverbreiterung könnte sich ein Symmetriewechsel von einkernigen zu dreikernigen Komplexen verbergen. Es wäre möglich, dass es sich um einen einkernigen Komplex handelt, bei dem das Metall in den side-on Nischen (O,N,O) des Liganden liegt. Im weiteren Verlauf der Titration erhöht sich der Metallgehalt im Komplex und es bildet sich eine Spezies mit drei Anteilen Metall zu einem Anteil Ligand. Im Anschluss wird der [M₃L₂]-Komplex durch einen weiteren Liganden tacitp vervollständigt.

Um die Aussagekraft der angegebenen Brutto-Stabilitätskonstanten unter physiologischen Bedingungen besser zu verstehen, wurde der pM-Wert (= $-\log[M]_{free}$) dieses System berechnet. Unter den Bedingungen [M]_{total} = 10^{-6} mol/l, [L]_{total} = 10^{-5} mol/l und einem pH-Wert von 7.4 wurde eine pM-Wert von 15.84 bestimmt.

3.1.2 Der Na₃[Lu₃(H₋₃macitp)₂]-Komplex

Die Methylierung des underivatisierten taci-Grundkörpers führt unter anderem zu entropischen Effekten, der sowohl zu einer erheblichen Erhöhung der Komplexstabilitäten als auch zur Verbesserung der Wasserlöslichkeit (z. Bsp. durch Bildung von H-Brückenbindungen) beiträgt.^[74] Mit aus diesem Grund wurde ausgehend von dem methylierten Ligand macitp in Gegenwart von LuCl₃ der Komplex Na₃[Lu₃(H₋₃macitp)₂] hergestellt.

Die Synthese des Na₃[Lu₃(H₋₃macitp)₂]-Komplexes wurde analog zu der des Na₃[Lu₃(H₋₃tacitp)₂]-Komplex durchgeführt. Eine Abtrennung des Salzes durch Fällung des Komplexes aus Ethanol, iso-Propanol sowie n-Propanol schlug fehl. Die Trübung, die dabei entstand, konnte nicht abfiltriert werden. Die Isolierung des Komplexes konnte jedoch durch heiße Extraktion in Ethanol durchgeführt werden.

Der Komplex liegt als mehrkerniger $[M_3L_2]$ -Komplex vor (siehe Abbildung 36). Die Stickstoffatome sind dabei äquatorial und die Sauerstoffatome des Cyclohexanrings axial angeordnet. Dabei sitzt das Metall in den side-on Nischen (ONO) des Liganden. Die Sauerstoffatome der Carboxylatgruppen koordinieren ebenfalls an das Metall. Das Integrationsverhältnis des ¹H-NMR-Spektrums und die Anzahl der Signale des ¹³C-NMR-Spektrums der Verbindung weisen auf die Existenz eines C_2 - und eines D_3 -symmetrischen Gemisches hin. Wie erwartet weist das ¹³C-NMR-Spektrum 24 Signale auf. Dabei stammen sechs Signale aus der D_3 -symmetrischen und 18 Signale aus der C_2 -symmetrischen Spezies.

Abbildung 36: Struktur des Komplexanions [Lu₃(H.₃macitp)₂]³⁻.

3.1.2.1 Kristallstruktur von K₃[Lu₃(H₋₃macitp)₂] · 11 H₂O

Die Struktur $K_3[Lu_3(H_{\cdot 3}macitp)_2] \cdot 11 H_2O$ konnte im Festkörper mit Hilfe der Einkristallstrukturanalyse bestätigt werden. Es wurden farblose, prismenförmige Kristalle enthalten, die aus einer Lösung von H₆macitpCl₃ (2 eq) und LuCl₃ · 6 H₂O (1 eq), unter langsamem Eindampfen der Lösung entstanden sind. Der pH-Wert wurde mittels 1 M KOH auf etwa 9 eingestellt. Es wurde das *C*₂-symmetrische Diastereomer K₃[Lu₃(H₋₃macitp)₂] · 11 H₂O auskristallisiert.

Abbildung 37 zeigt die Koordination des mehrkernigen [M₃L₂]-Komplexes. Hierbei sitzt jeweils ein Lutetium(III)-Ion in den side-on Nischen (ONO). Die Struktur gleicht einer Art "Sandwich"-Komplex. Der Ligand bildet jeweils vier Chelat-5-Ringe und vier Chelat-6-Ringe aus. Die Koordinationszahl der Metallzentren beträgt acht.

Abbildung 37: ORTEP-Darstellung des Komplexes C₂-K₃[Lu₃(H_{.3}macitp)₂] · 11 H₂O . Die Schwingungsellipsoide entsprechen 30 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome, die Kaliumatome sowie eine Position der Fehlordnung des Propionatrestes weggelassen.

Der Komplex K₃[Lu₃(H₋₃macitp)₂] kristallisiert in der orthorhombischen Raumgruppe *Pnma*. Bei der Berechnung der Struktur gab es in Bezug auf die Lösungsmittelmoleküle eine starke Fehlordnung (R₁ = 5.67 %, wR₂ = 16.56 %). Dabei konnten 3 H₂O lokalisiert und verfeinert werden. Mit Hilfe der im Programm Platon^[78, 79] implementierten SQUEEZE-Option konnten anhand der restlichen Elektronen-Dichte acht weitere H₂O einberechnet werden. Es wurden folgende R-Werte: $R_1 = 5.43$ %, $wR_2 = 15.97$ % ermittelt. Die Fehlordnung des Propionatrestes findet sich am C-Atom C14` sowie C17`. Die Position dieser C-Atome sind mit jeweils 50% entweder mit einer Methylgruppe oder einem Propionatrest besetzt. Die restlichen C-Atome der Propionatgruppen (C23`, C25`, C26` sowie C27`) finden sich nur zu 50% auf der in der Abbildung dargestellten Position.

$Lu(1) - O^{a}(1)$	2.275(5)	O(1) – Lu(1) – N(1)	68.4(2)
$Lu(1) - O^{a}(2)$	2.285(6)	O(2) - Lu(1) - N(1)	69.5(2)
$Lu(1) - O^{a}(3)$	2.266(5)	O(3) – Lu(1) – N(3)	69.2(2)
$Lu(1) - O^{a}(4)$	2.285(6)	O(4) – Lu(1) – N(3)	68.3(2)
$Lu(1) - O^{b}(5)$	2.248(6)	O(5) – Lu(1) – N(3)	76.8(3)
$Lu(1) - O^{b}(10)$	2.263(6)	O(5) - Lu(1) - N(1)	78.6(2)
$Lu(2) - O^{a}(2)$	2.277(6)	O(2) - Lu(2) - N(2)	69.3(3)
$Lu(2) - O^{a}(4)$	2.275(6)	O(4) - Lu(2) - N(4)	69.4(2)
$Lu(2) - O^{b}(9)$	2.265(7)	O(10) – Lu(1) – N(3)	79.3(3)
Lu(1) – N(1)	2.575(8)	O(10) – Lu(1) – N(1)	77.0(2)
Lu(1) – N(3)	2.559(7)	O(9) – Lu(2) – N(2)	77.0(3)
Lu(2) – N(2)	2.573(12)	O(9) – Lu(2) – N(4)	77.5(2)
Lu(2) – N(4)	2.564(10)	O(1) – Lu(1) – O(3)	65.5(2)
Lu(1) – Lu(2)	3.606(5)	O(2) - Lu(1) - O(4)	65.3(2)
Lu(1) – Lu(1)	3.602(7)	O(2) – Lu(2) – O(4)	65.6(2)

Tabelle 8: Ausgewählte Bindungslängen [Å] und Bindungswinkel [°] des C_2 -K₃[Lu₃(H₋₃macitp)₂] · 11 H₂O Komplexes.

O^a: O-taci-Ring, O^b: O-Carboyxylatgruppe

Die Sauerstoffatome des Liganden am taci-Ring O1 bis O4 liegen deprotoniert vor. Diese koordinieren mit einer mittleren Bindungslänge (Mittelwerte über alle Bindungslängen, auch der symmetrischen Atome) von 2.277 Å an die Lutetium(III)-Ionen. Die restlichen Koordinationsstellen am Lutetium werden durch Stickstoffatome und Sauerstoffatome der Carboxylatgruppen besetzt. Der mittlere Bindungsabstand zwischen dem Metall und den Sauerstoffatomen der Carboxylate beträgt 2.259 Å. Werden diese beiden Metall-O-Abstände verglichen, sind die Bindungslängen der Carboxylat-O-Atome um 0.018 Å kürzer. Die Lu-N-

Bindungslängen liegen mit durchschnittlich 2.568 Å im erwarteten Bereich.^[80] Die Abstände der Lutetium(III)-Ionen untereinander liegen mit einem Mittelwert von 3.605 Å ebenfalls im erwarteten Bereich.^[76] Tabelle 8 gibt einen Überblick ausgewählter Bindungslängen und Bindungswinkel.

3.1.2.2 Stabilitätsuntersuchungen

Um die Stabilität der Lutetium(III)-Komplexe vergleichen zu können, wurden ebenfalls ¹H-NMR-Spektren in D₂O bei verschiedenen pH^{*}-Werten aufgenommen (Abbildung 38). Wie aus den Messungen des [Lu₃(H₋₃tacitp₂)]³⁻-Komplexes hervorgeht, ist dieser nur bis zu einem pH-Wert von 4.85 stabil. Werden dagegen die ¹H-NMR-Spektren des [Lu₃(H₋₃macitp₂)]³⁻-Komplexes betrachtet, ist zu erkennen, dass dieser Komplex bis zu einem pH-Wert von etwa 4 existent ist.

pH-Werten.

Auch wurden Untersuchungen zur Bestimmung der Zersetzungs- sowie der Bildungskinetik durchgeführt. Bei den Untersuchungen der Zersetzungskinetik wurde ein pH*-Wert von 2.5 eingestellt, aufgrund der Tatsache, dass der [Lu₃(H₋₃macitp₂)]³⁻-Komplex bei diesem pH-Wert bereits nicht mehr stabil ist. In 15 min Abständen wurden ¹H-NMR-Spektren aufgenommen. Abbildung 39 zeigt, dass der Komplex, wie bereits auch schon bei dem [Lu₃(H₋₃tacitp₂)]³⁻-

Komplex beobachtet wurde, innerhalb von 15 min zerfallen ist und nur noch freier Ligand vorliegt.

Nicht nur die Zersetzungskinetik auch die Bildungskinetik des Komplexes ist von Interesse. Dabei wurde die Probe, der eben erwähnten Untersuchung verwendet. Es wurde ein pH*-

Wert von 5.0 eingestellt. Bereits nach 15 min war die vollständige Bildung des $[Lu_3(H_{-3}macitp_2)]^{3-}$ -Komplexes zu sehen. Genau das gleiche Verhalten wurde auch bei dem Komplex $[Lu_3(H_{-3}tacitp_2)]^{3-}$ beobachtet.

3.1.3 Bestimmung der Stabilitätskonstanten von Lu³⁺ mit macitp

Die Stabilitätskonstanten der Komplexe von Lu(III) mit macitp konnten im 0.1 M KCI Medium durch alkalimetrische Titration mit 0.1 M KOH bei T = 25 °C bestimmt werden. Bedingt durch eine langsame Kinetik des Systems wurde auf eine diskontinuierliche potentiometrische Titration (Batch-Titration) zurückgegriffen. In Abbildung 41 sind zwei Titrationskurven für das System Lu³⁺ mit macitp im Verhältnis 3:2 dargestellt. Wie bereits bei dem System Lu³⁺/tacitp wurde auch hier aufgrund einer Abweichung der gemessenen zur gefitteten Titrationskurve ein neues Teilchenmodell erstellt. Dabei ist zu erkennen, dass im Bereich des pH-Sprungs (roter Pfeil) der berechnete Fit der linken Darstellung (erste Auswertung) nicht vollständig mit den gemessenen Werten der Titrationskurve übereinstimmt (Modell 1, verworfen). Aus diesem Grund wurde das Teilchenmodell hierzu nochmals berechnet und es konnte eine Titrationskurve erhalten werden, die im pH-Wert-Bereich von 4.5 bis 7 besser mit dem Fit aus HYPERQUAD 2008 übereinstimmt (Modell 2, endgültig).

Abbildung 41: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) von Lu³⁺:macitp im Verhältnis 3:2 mit [L]t = 1 mM, Modell 1 (links, verworfen) und Modell 2 (rechts, endgültig).

Mit einer Dreipunkt-kalibrierten Glaselektrode wurde das Gleichgewicht über mehrere Tage kontrolliert und es wurde festgestellt, dass das System nach vier Tagen im Gleichgewicht war. Die potentiometrische Titration von macitp mit Lutetium(III)-chlorid wurde im Metall-Ligand-Verhältnis von 3:2 durchgeführt Das Ergebnis der diskontinuierlichen Titration zur Bestimmung der Komplexbildungskonstanten ist in Tabelle 9 zusammengefasst.

Methode	Potentiomet	rie
Titrationstyp	diskontinuierl	ich
Verhältnis M : L	3:2	
lonenstärke	0.1 M KCI	
[L] _t , mM	1	
Mischzeit [d]	4	
Titrationsmittel	0.1 M KOH	
Anzahl der Messpunkte	40	
Gesamtvolumenzugabe [ml]	1.5	
pH-Bereich	2.63 – 11.31	
Anzahl Messungen n	1	
Modell	1	2
logß ₁₁₂		22.9(3) ^[b]
logß ₁₁₃		27.0(3) ^[b]
logß ₃₂₋₆	4.4(4) ^[b]	
logß ₃₂₋₇	-5.4(9) ^[b]	1.4(7) ^[b]
logß ₃₂₋₈		-8(1) ^[b]
logß ₃₂₋₉		-19.0(9) ^[b]
logß ₃₁₋₇		-10.6(3) ^[b]
σ	2.85	1.42
pM-Wert	13.17	14.63

Tabelle 9: Titrationsparameter und Stabilitätskonstanten ($\log \beta_{xyz}^{[a]}$) der potentiometrischen Titration von Lu^{3+} mit macitp bei T = 25 °C. Modell 2 ist das endgültige, zur Auswertung herangezogene Modell.

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [H]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Durch eine gemeinsame Auswertung zweier Titrationskurven wurde ein einheitliches Teilchenmodell zur Titrationskurve von Modell 2 gefunden. Die Teilchenverteilung dazu ist in Abbildung 43 dargestellt. Wie schon bei dem System des Lutetium mit tacitp beobachtet, wies das erste verworfene Modell (Abbildung 42) ausschließlich dreikernige Komplexspezies der Zusammensetzung $M_3L_2H_{-x}$ (x = 6, 7) vor. Die Ausbildung dieser Metallkomplexe beginnt erst ab pH > 4.5. Auch hier dominiert das [Lu₃L₂H₋₆]-Teilchen über einen weiten pH-Wert-Bereich (4.5 bis etwa 10). Darüber hinaus bildet sich im Alkalischen ab pH 8 die Spezies [Lu₃L₂H₋₇]. Da jedoch die Titrationskurve im pH-Wert-Bereich zwischen 4.5 und etwa 7 eine zu starke Abweichung aufweist, ist dies, trotz eines guten σ -Wertes von HYPERQUAD2008, ein Hinweis dafür, dass das Teilchenmodell fehlerhaft sein muss. Dies lässt darauf schließen, dass weitere Teilchen vorhanden sein könnten, die noch nicht einberechnet wurden.

Abbildung 42: <u>Modell 1, verworfen</u>: mit HYSS2006 berechnete Teilchenverteilung des Lu³⁺ : macitp -Systems im Verhältnis 3:2 mit [L]t = 1 mM (Modell 1, verworfen).

Aufgrund der starken Abweichung der Titrationskurve wurde das Modell überarbeitet. Somit konnte ein Teilchenmodell mit einer besseren Übereinstimmung der gemessenen und gefitteten Graphen der Titrationskure erhalten werden. Ferner wurde ein besserer σ -Wert erhalten. Das Teilchenmodell ähnelt, wie bereits zuvor bei Modell 1, stark dem Teilchenmodell von Lu³⁺ und tacitp. Es ist jedoch zu beobachten, dass das 32-8-Teilchen mit einem großen Fehler behaftet ist (Tabelle 9). Neben dreikerniger Komplexspezies der Zusammensetzung M₃L₂H_{-x} (x = 7, 8, 9) und M₃LH_{-x} (x = 7) liegen außerdem einkernige Komplexe der Zusammensetzung MLH_x (x = 2, 3) vor. Die Spezies [Lu₃L₂H₋₆] wird in diesem Modell nicht gebildet. Nach der Bildung des 31-7-Teilchens wird das 32-7-Teilchen gebildet, das im pH-Bereich von circa fünf bis elf vorliegt. Ab einem pH-Wert von acht bzw. neun

werden die 32-8- und 32-9-Teilchen gebildet. Desweiteren kann angenommen werden, dass die $[Lu_3L_2H_{-7}]$ -, $[Lu_3L_2H_{-8}]$ - und $[Lu_3L_2H_{-9}]$ -Teilchen einer Spezies entsprechen, die durch die Deprotonierung eines Wasser-Moleküls entstehen, welches am Metall Lutetium sitzt. Es scheint, als würden koordinierende Propionatreste nicht mehr an das Metall binden und sich an deren Stelle am Metall Wassermoleküle anlagern, welche daraufhin deprotoniert werden. Im vorderen pH-Bereich liegen die einkernigen Teilchen 112 sowie 113 vor.

Abbildung 43: <u>Modell 2, endgültig</u>: mit HYSS2006 berechnete Teilchenverteilung (Modell 2, endgültig) des Lu³⁺ : macitp - Systems im Verhältnis 3:2 mit [L]t = 1 mM.

Da hierbei keine NMR-Untersuchungen durchgeführt wurden, das System jedoch stark an das System von Lu³⁺ und tacitp angelehnt ist, kann vermutet werden, dass es ebenso möglich ist, dass es sich bei den einkernigen Komplexen um Teilchen handelt, bei denen die Metalle in den side-on Nischen (O,N,O) des Liganden liegen. Im weiteren Verlauf der Titration erhöht sich auch hierbei der Metallgehalt im Komplex und es bildet sich eine Spezies mit drei Anteilen Metall zu einem Anteil Ligand. Im Anschluss wird der [M₃L₂]-Komplex durch einen weiteren Liganden macitp vervollständigt.

Der pM-Wert ([M]_{total} = 10^{-6} mol/l, [L]_{total} = 10^{-5} mol/l, pH = 7.4) des Lu³⁺/macitp-Systems liegt mit einem pM-Wert von 14.64 etwas unter dem des Lu³⁺/tacitp-Systems (pM-Wert = 15.84).

3.2 Metallkomplexe mit Eu(III)

Wie Lutetium war auch das Lanthanoid Europium(III) als potentielles Metall für Röntgenkontrastmittel von Interesse. In Hinblick auf die Abschwächung der Röntgenstrahlung liegt Europium mit 397 HU, und mit einer fast 50 % höheren Abschwächung im Vergleich zum Iod, im oberen Bereich der Skala. Die prinzipielle Eignung von Eu³⁺-Komplexen setzt eine ausreichend hohe Stabilität dieser Verbindungen voraus. Diesbezüglich wurden Stabilitätsversuche mit dem Konkurrenzliganden DTPA durchgeführt und mittels potentiometrischer Titrationen Stabilitätskontanten bestimmt.

Von dem Liganden taci und Eu³⁺-Ionen sind unterdessen mehrkernige 3:2-Komplexe bekannt.^[48]

3.2.1 Der KNa₂[Eu₃(H₋₃tacitp)₂]-Komplex

3.2.1.1 Kristallstruktur von KNa₂[Eu₃(H.₃tacitp)₂] · 21 H₂O

Bei der Synthese von KNa₂[Eu₃(H₋₃tacitp)₂] · 21 H₂O wurde der Ligand H₆tacitpCl₃ in Wasser gelöst und durch Zugabe von 9 eq KOH deprotoniert. Zu dieser Lösung wurden 2 eq Eu(NO₃)₃ · 6 H₂O hinzugegeben. Unter langsamem Eindampfen des Lösungsmittels konnten Einkristalle erhalten werden. Es kristallisierte der höher-symmetrische D₃-KNa₂[Eu₃(H. ₃tacitp)₂] · 21 H₂O Komplex in prismatischer Form und hellbrauner Farbe aus. Abbildung 44 zeigt eine ORTEP-Darstellung des Komplexes. Aus der Kristallstruktur ist zu erkennen, dass die Konnektivität zwischen Metall und Ligand die Gleiche ist wie bei K₃[Lu₃(H₋₃macitp)₂]. Während der Komplex im Falle des Lutetiums mit dem Liganden macitp in der C_2 symmetrischen Anordnung auskristallisiert, wird für den Liganden tacitp mit Eu³⁺ die D_3 symmetrische Verbindung erhalten. Die Verbindung liegt enantiomerenrein als SS/SS/SS-Isomer (bezogen auf die stereogenen N-Zentren) vor. Die Verbindung KNa₂[Eu₃(H₋₃tacitp)₂] · 21 H₂O kristallisiert in der tetragonalen Raumgruppe P4₁22 (R₁ = 3.67 %, wR₂ = 10.35 %). Mit Hilfe der im Programm Platon^[78, 79] implementierten SQUEEZE-Option konnten anhand der restlichen Elektronen-Dichte insgesamt 21 H₂O ermittelt werden. Um die Ladungsbilanz gewährleisten zu können, wurden als Gegenionen neben dem lokalisierten K⁺ zwei Na⁺ angenommen, die jedoch nicht vollständig zugeordnet werden konnten. Es ergeben sich somit neue R-Werte mit $R_1 = 3.79$ % und $wR_2 = 10.21$ %.

Abbildung 44: ORTEP-Darstellung des D₃-symmetrischen KNa₂[Eu₃(H_{.3}tacitp)₂] · 21 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 30 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome und die Gegenionen weggelassen sowie nur die koordinierenden Atome an das Metall und die Metallatome beschriftet.

Tabelle 10 gibt einen Überblick ausgewählter Bindungslängen und Bindungswinkel der Verbindung KNa₂[Eu₃(H_{.3}tacitp)₂] · 21 H₂O. Die Eu-O-Bindungslängen des Komplexes von Eu³⁺ mit tacitp liegen mit einer mittleren Bindungslänge von 2.376 Å im erwarteten Bereich. Dabei kann festgestellt werden, dass die Bindungslängen zwischen Eu³⁺ und dem Carboxylat-O-Atom etwas länger sind als die zu dem O-Atom am Cyclohexanring. Ein Vergleich zwischen den Bindungslängen koordinierender Atome des Europium- und des Lutetium-Komplexes bestätigt, dass der Ionenradius in der Periode, speziell hier der Lanthanoide, abnimmt.

$Eu(1) - O^{a}(1)$	2.382(3)	O(1) – Eu(1) – O(5)	79.43(11)
$Eu(1) - O^{a}(5)$	2.334(3)	O(1) – Eu(1) – N(6)	67.21(12)
Eu(1) – N(6)	2.589(4)	O(5) – Eu(1) – N(6)	66.55(12)
$Eu(1) - O^{b}(65)$	2.416(4)	O(65) – Eu(1) – O(65)	84.65(18)
$Eu(2) - O^{a}(1)$	2.324(3)	O(65) – Eu(1) – N(6)	84.02(13)
Eu(2) – O ^a (3)	2.377(3)	O(1) – Eu(2) – O(3)	78.74(12)
Eu(2) – O ^a (3)	2.327(3)	O(3) – Eu(2) – O(5)	78.22(12)
Eu(2) – O ^a (5)	2.375(3)	O(1) – Eu(2) – N(2)	67.65(12)
Eu(2) – N(2)	2.574(4)	O(5) – Eu(2) – N(4)	67.06(12)
Eu(2) – N(4)	2.592(4)	O(25) – Eu(2) – O(45)	79.73(14)
$Eu(2) - O^{b}(25)$	2.380(4)	N(2) – Eu(2) – O(25)	76.51(14)
$Eu(2) - O^{b}(45)$	2.470(3)	N(4) – Eu(2) – O(45)	74.96(12)
Eu(1) – Eu(2)	3.728(4)		
Eu(2) – Eu(2)	3.748(4)		

Tabelle 10: Ausgewählte Bindungslängen [Å] und Bindungswinkel [°] von KNa₂[Eu₃(H.₃tacitp)₂] · 21 H₂O.

O^a: O-taci-Ring, O^b: O-Carboyxylatgruppe

Desweiteren wurde ein Eu-EDTA-Komplex^[81] zum Vergleich der Bindungslängen herangezogen. Eu³⁺ besitzt in der Eu-EDTA-Struktur eine Koordinationszahl von neun, im KNa₂[Eu₃(H₋₃tacitp)₂]-Komplex jedoch acht. Zusätzlich koordinieren im Eu-EDTA-Komplex^[81] drei H₂O an das Metall. Dabei liegen die Eu-N-Abstände im Bereich von 2.68 Å, die Eu-OR-Abstände (R = Acetatgruppen) haben eine mittleren Bindungslänge von 2.42 Å und der Eu-Abstand zum O-Atom des Wasser beträgt 2.48 Å.

3.2.1.2 Bestimmung der Stabilitätskonstanten von Eu³⁺ mit tacitp

Mittels potentiometrischer Titrationen wurden die Stabilitätskonstanten der Eu³⁺/tacitp-Komplexe in wässriger Lösung bestimmt. Die Stabilitätskonstanten konnten im 0.1 M KCI Medium durch alkalimetrische Titration mit 0.1 M KOH bei T = 25 °C ermittelt werden. Dabei konnte durch eine gemeinsame Auswertung von vier Titrationskurven ein einheitliches Teilchenmodell errechnet werden. Die Titrationen wurden mit den Metall-Ligand-Verhältnissen von 1:1 (rote Kurve) und 3:2 (türkise Kurve) durchgeführt. Wie bereits bei der potentiometrischen Auswertung des Metalls Lu³⁺ mit den Liganden tacitp und macitp, wurde das Teilchenmodell aufgrund einer Abweichung der Titrationskurve neu berechnet. Wie in Abbildung 45 in Modell 1 (ursprüngliches Modell) zu sehen ist, stimmt ab einem pH-Wert von circa 5.5 der berechnete Fit der Titrationskurve nicht mit den gemessenen Werten überein. Aus diesem Grund konnte diese Auswertung nur bis zu einem pH-Wert von ~ 6 erfolgen. Das neu ermittelte Teilchenmodell (Modell 2) weist eine deutlich bessere Übereinstimmung der gemessenen zu gefitteten Werte auf und konnte bis zum End-pH-Wert der Titration ausgewertet werden.

Abbildung 45: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) von Eu³⁺: tacitp im Verhältnis 1:1 (rot) und 3:2 (türkis) mit [L]t = 1 mM, Modell 1 (links, verworfen) und Modell 2 (rechts, endgültig).

Die Ergebnisse der kontinuierlichen potentiometrischen Titrationen zur Bestimmung der Komplexbildungskonstanten sind in Tabelle 11 zusammengefasst.

Durch eine gemeinsame Auswertung von vier Titrationskurven zweier verschiedener Metall-Ligand-Verhältnissen wurde ein einheitliches Teilchenmodell zur Titrationskurve von Modell 2 gefunden. Die Teilchenverteilung dazu ist in Abbildung 46 dargestellt.

Methode	Potentiometrie	
Titrationstyp	kontinuierlich	
Verhältnis M:L	1:1	3:2
lonenstärke	0.1 M KCI	0.1 M KCI
[L] _t , mM	1	1
Mischzeit [s]	650	650
Titrationsmittel	0.1 M KOH	0.1 M KOH
Anzahl der Messpunkte	100	100
Gesamtvolumenzugabe [ml]	5	5
Anzahl Messungen n	2	2
Modell	1	2
pH-Bereich	2.78 – 5.61	2.78 – 11.0
logß ₁₁₋₂	-0.75(8) ^[b]	-2.2(2) ^[b]
logß ₁₁₁		15.0(2) ^[b]
logß ₃₂₋₃	10.8(1) ^[b]	
logß ₃₂₋₆	-6.6(3) ^[b]	-5.12(7) ^[b]
logß ₃₂₋₇		-13.1(2) ^[b]
logß ₃₁₋₅		-10.1(1) ^[b]
logß ₃₁₋₆		-15.8(2) ^[b]
logß ₃₁₋₇		-23.0(3) ^[b]
σ	3.69	2.34
pM-Wert	12.57	11.12

Tabelle 11: Titrationsparameter und Stabilitätskonstanten ($\log \beta_{xyz}^{[a]}$) der potentiometrischen Titrationen von Eu³⁺ mit tacitp bei T = 25 °C. Modell 2 ist das endgültige, zur Auswertung herangezogene Modell.

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [H]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Das erste verworfene Modell (Abbildung 33) wies drei Teilchen auf, eine [MLH.₂], eine $[M_3L_2H_{-3}]$ und eine $[M_3L_2H_{-6}]$ Spezies. Abbildung 46 zeigt die Teilchenverteilung (Modell 2, endgültig) des Eu³⁺/tacitp-Systems im Verhältnis 1:1 (links) und 3:2 (rechts). Die Auswertung konnte über den gesamt titrierten pH-Bereich erfolgen. Es werden zwei einkernige Teilchen

der Zusammensetzung MLH_x (x = -2, 1) und fünf dreikernige Komplexe der Zusammensetzung M₃L₂H_{-x} (x = 6, 7) und M₃LH_{-x} (x = 5, 6, 7) gebildet. Die Komplexbildung der dreikernigen Spezies beginnt ab etwa einem pH-Wert von fünf. Desweiteren kann angenommen werden, dass das [Lu₃L₂H₋₇]-Teilchen einer Spezies entspricht, die durch die Deprotonierung eines Wasser-Moleküls entsteht, welches am Metall Europium sitzt. Da das Teilchenmodell mit großer Schwierigkeit lösbar war, wurde L, im Hinblick darauf, dass das Modell jedoch mit den Teilchenmodellen des Lu³⁺ mit tacitp bzw. macitp und Eu³⁺ mit macitp (folgt in Kapitel 3.2.2.2) gut übereinstimmt, bei der Auswertung freigegeben. Der neu ermittelte Wert an L wurde bei der Berechnung in HYPERQUAD2008 verringert. Dies könnte beispielsweise durch einen Einwaagefehler bedingt sein.

Abbildung 46: <u>Modell 2, endgültig</u>: mit HYSS2006 berechnete Teilchenverteilung der Eu³⁺ : tacitp -Systeme im Verhältnis 1:1 (links) und 3:2 (rechts) mit [L]t = 1 mM.

Was die Geometrie der Komplexe angeht, wäre es möglich, dass es sich bei dem einkernigen Komplex, um eine Spezies handelt, bei dem ein Metall in den side-on Nischen (O,N,O) des Liganden sitzt. Denkbar wäre jedoch auch eine [ML] Spezies, bei dem das Metall triaxial entweder über die N- oder die O-Atome gebunden ist. Da sich jedoch der Metallgehalt im Komplex im weiteren Verlauf der Titration erhöht und eine Spezies mit drei Anteilen Metall zu einem Anteil Ligand gebildet wird, wäre die Theorie des einkernigen Komplexes über die side-on Koordination wahrscheinlicher. Im Anschluss an die Bildung des [M₃L]-Komplex wird der [M₃L₂]-Komplex durch einen weiteren Liganden tacitp vervollständigt. Um einen Vergleich der Stabilität der Komplexe unter physiologischen Bedingungen ziehen zu können, wurde auch hier der pM-Wert des Eu³⁺-tacitp-Systems berechnet. Der pM-Wert ([M]_{total} = 10⁻⁶ mol/l, [L]_{total} = 10⁻⁵ mol/l, pH = 7.4) des Eu(III)/tacitp-Systems weist einen Wert

von 11.12 auf. Der Vergleich der erhaltenen pM-Werte verschiedener Komplexe wird im Kapitel 3.12 gezogen.

3.2.2.Der Na₃[Eu₃(H₋₃macitp)₂]-Komplex

Auch der Europium(III)-Komplex des N-methylierten Liganden macitp wurde zur Eignung als Kontrastmittel geprüft. Dabei wurden unter anderem mittels potentiometrischer diskontinuierlicher Titration Stabilitätskontanten und pM-Werte bestimmt.

3.2.2.1 Kristallstruktur von K₃[Eu₃(H₋₃macitp)₂] · 17 H₂O

Als Edukte wurden H₆macitpCl₃ (1 eq) und EuCl₃ · H₂O (1.5 eq) verwendet. Der Ligand wurde zuvor mittels 1M KOH deprotoniert. Mittels Röntgenstrukturanalyse der Einkristalle konnte auch hier die [M₃L₂]-Struktur des Metallkomplexes im Festkörper bestätigt werden. Hierbei kristallisierte der *C*₂-symmetrische K₃[Eu₃(H₋₃macitp)₂] · 17 H₂O Komplex aus. Die Koordination dieses Komplexes ist analog zu dem des Lu³⁺ mit dem Liganden macitp. Der K₃[Eu₃(H₋₃macitp)₂] · 17 H₂O Komplex kristallisiert in der orthorhombischen Raumgruppe Pnma.

Abbildung 47: ORTEP-Darstellung des *C*₂-K₃[Eu₃(H₋₃macitp)₂] · 17 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 30 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome, die Gegenionen sowie die fehlgeordneten Propionatreste nicht mit abgebildet. Beschriftet wurden nur die koordinierenden Atome an das Metall, die Metallatome sowie die C-Atome, an denen die Fehlordnung zu finden ist. Der trinukleare Komplex bildet auch in diesem Fall eine Art "Sandwich". Der K₃[Eu₃(H. $_3$ macitp)₂]-Komplex kristallisiert mit einer Fehlordnung zweier Propionatreste. Bei der Berechnung der Struktur gab es in Bezug auf die Lösungsmittelmoleküle eine Fehlordnung (R₁ = 6.70 %, wR₂ = 20.99 %). Dabei konnten nur 10.33 H₂O lokalisiert und verfeinert werden. Mit Hilfe der im Programm Platon^[78, 79] implementierten SQUEEZE-Option konnten anhand der restlichen Elektronen-Dichte weitere 17 H₂O einberechnet werden. Es wurden folgende R-Werte erhalten: R₁ = 5.45 % und wR₂ = 14.58 %. Die Fehlanordnung des Propionatrestes (jeweils zu 50 % Aufenthaltswahrscheinlichkeit) befindet sich an den Atomen C25`, C27`, C23` sowie C26`. Die Atome C1, O1, O3, und C8 befinden sich auf spezieller Lage (Spiegelebene).

Tabelle 12: Ausgewählte Bindungslängen [Å] und Bindungswinkel [°] des $K_3[Eu_3(H_3macitp)_2] \cdot 17 H_2O$ Komplexes.

$Eu(1) - O^{a}(1)$	2.358(3)	O(1) – Eu(1) – O(2)	78.22(16)
$Eu(1) - O^{a}(2)$	2.371(4)	O(3) – Eu(1) – O(4)	78.61(16)
$Eu(1) - O^{a}(3)$	2.345(3)	O(2) – Eu(1) – N(1)	67.96(15)
$Eu(1) - O^{a}(4)$	2.315(4)	O(5) – Eu(1) – O(10)	88.22(17)
Eu(1) – N(3)	2.632(5)	O(10) – Eu(1) – N(1)	76.05(16)
Eu(1) – N(4)	2.632(5)	O(5) – Eu(1) – N(3)	76.92(16)
$Eu(1) - O^{b}(5)$	2.353(4)	O(3) – Eu(1) – N(3)	68.15(16)
$Eu(1) - O^{b}(10)$	2.356(4)	O(2) – Eu(2) – O(2)	78.32(19)
$Eu(2) - O^{a}(2)$	2.350(4)	O(4) - Eu(2) - O(4)	78.8(2)
$Eu(2) - O^{a}(4)$	2.363(4)	O(2) – Eu(2) – N(2)	76.62(15)
Eu(2) – N(2)	2.637(7)	O(9) – Eu(2) – O(9)	86.4(3)
Eu(2) – N(4)	2.617(7)	O(4) – Eu(2) – O(9)	88.31(16)
$Eu(2) - O^{b}(9)$	3.361(5)		
Eu(1) – Eu(1)	3.731(5)		
Eu(1) – Eu(2)	3.742(5)		

O^a: O-taci-Ring, O^b: O-Carboyxylatgruppe

Bindungslängen [Å]	KNa ₂ [Eu ₃ (H ₋₃ tacitp) ₂]	K ₃ [Eu ₃ (H ₋₃ macitp) ₂]
Eu – O ^a	2.356	2.357
Eu – O ^b	2.422	2.356
Eu – N	2.585	2.630
Eu – Eu	3.735	3.739

Tabelle 13: Mittlere Bindungslängen verschiedener koordinierender Atome an das Metallzentrum von KNa₂[Eu₃(H₋₃tacitp)₂] und K₃[Eu₃(H₋₃macitp)₂].

O^a: O-taci-Ring, O^b: O-Carboyxylatgruppe

Werden die mittleren Bindungslängen koordinierender Atome der $KNa_2[Eu_3(H_{.3}tacitp)_2]$ - und $K_3[Eu_3(H_{.3}macitp)_2]$ -Komplexverbindungen (Tabelle 12) verglichen, sind keine Auffälligkeiten zu erkennen. Die Eu(III)-O- bzw. Eu(III)-N- Bindungslängen befinden sich alle im gleichen Bereich. Auch gibt es im Bezug auf die Eu(III)-Eu(III)-Abstände keine Abweichungen.

3.2.2.2 Bestimmung der Stabilitätskonstanten von Eu³⁺ mit macitp

Analog der Untersuchungen, die bei dem Eu³⁺/tacitp-System durchgeführt wurden, sind auch in diesem Fall die Stabilitätskonstanten des Systems Eu³⁺ mit dem Liganden macitp in wässriger Lösung mittels potentiometrischer Titrationen bestimmt worden. Die Stabilitätskonstanten konnten im 0.1 M KCI Medium durch alkalimetrische Titration mit 0.1 M KOH bei T = 25 °C ermittelt werden. Aufgrund einer langsamen Kinetik dieses Systems wurde auf eine diskontinuierliche Titration (Batch-Verfahren) zurückgegriffen. Es wurde mit einem Metall zu Ligand-Verhältnis von 3:2 titriert. In Abbildung 48 sind zwei Titrationskurven für das System Eu³⁺ mit macitp im Verhältnis 3:2 dargestellt. Dabei ist zu erkennen, dass ab einem pH-Wert von 6 der berechnete Fit der linken Darstellung (erste Auswertung) nicht vollständig mit den gemessenen Werten der Titrationskurve übereinstimmt (Modell 1, verworfen). Aus diesem Grund wurde das Teilchenmodell hierzu nochmals überarbeitet und es konnte eine Titrationskurve erhalten werden, die im kompletten pH-Bereich der Titration besser mit dem Fit aus HYPERQUAD2008 übereinstimmt (Modell 2, endgültig).

Abbildung 48: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) von Eu³⁺:macitp im Verhältnis 3:2 mit [L]t = 1 mM, Modell 1 (obere Abbildung, verworfen) und Modell 2 (untere Abbildung, endgültig).

Die Ergebnisse der diskontinuierlichen potentiometrischen Titrationen zur Bestimmung der Komplexbildungskonstanten sind in Tabelle 14 zusammengefasst.

Methode	Potentiometri	Potentiometrie		
Titrationstyp	diskontinuierlich			
Verhältnis M : L	3:2			
lonenstärke	0.1 M KCI			
[L] _t , mM	1			
Mischzeit [d]	4			
Titrationsmittel	0.1 M KOH			
Anzahl der Messpunkte	40			
Gesamtvolumenzugabe [ml]	1.5			
Anzahl Messungen n	1			
Modell	1	2		
pH-Bereich	2.63 – 5.49	2.63 – 11.26		
logß ₁₁₂		22.8(3) ^[b]		
logß ₁₁₃		27.0(3) ^[b]		
logß ₃₂₋₆	-2.6(4) ^[b]	0.7(7) ^[b]		
logß ₃₂₋₈		-10.8(9) ^[b]		
logß ₃₂₋₉		-21(1) ^[b]		
logß ₃₁₋₇		-16.6(5) ^[b]		
σ	3.59	1.32		
pM-Wert	10.83	13.04		

Tabelle 14: Titrationsparameter und Stabilitätskonstanten ($logB_{xyz}^{[a]}$) der potentiometrischen Titrationen von Eu³⁺ mit macitp bei T = 25 °C. Modell 2 ist das endgültige, zur Auswertung herangezogene Modell.

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [M]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Sowohl an der Teilchenverteilung in Abbildung 49 als auch aus vorangehender Tabelle ist zu erkennen, das bei dem ersten, bereits verworfenem Modell im pH-Bereich von 2.63 bis 5.49 nur eine dreikernige Spezies der Zusammensetzung $[M_3L_2H_{-6}]$ gebildet wurde. Diese stellt das erwartete deprotonierte 32-6-Teilchen dar, welches zuvor mittels Kristallstruktur nachgewiesen werden konnte (siehe Abbildung 47). Es besitzt eine Stabilitätskonstante von

-2.6(4). Der pH-Bereich > 5.49 konnte aufgrund starker Abweichung des berechneten Fits in HYPERQUAD2008 nicht mit zur Auswertung herangezogen werden.

Abbildung 49: <u>Modell 1, verworfen</u>: mit HYSS2006 berechnete Teilchenverteilung des Eu³⁺ : macitp -Systems im Verhältnis 3:2 mit [L]t = 1 mM (Modell 1, verworfen).

Da das Modell neu überarbeitet wurde (Abbildung 50), konnte eine bessere Übereinstimmung der gemessenen zu gefitteten Werte der Titrationskurve erhalten werden. Im neuen Teilchenmodell werden zwei einkernige Teilchen der Zusammensetzung MLH_x (x = 2, 3) und vier dreikernige Komplexe der Zusammensetzung M₃L₂H_{-x} (x = 6, 8, 9) und M₃LH_{-x} (x = 7) gebildet. Die Komplexbildung der dreikernigen Spezies beginnt ab etwa einem pH-Wert von fünf. Auch die, im ersten verworfenen Modell, sechsfach deprotonierte M₃L₂H₋₆ Spezies wird ebenso gebildet. Diese ist in einem pH-Bereich von fünf bis sieben vertreten. Zu Beachten ist jedoch der hohe Fehler des M₃L₂H₋₉-Teilchens. Da dessen ungeachtet das Gesamt- σ aus HYPERQUAD2008 gering ist, ist der Fehler des einzelnen Teilchens annehmbar.

Abbildung 50: <u>Modell 2, endgültig</u>: mit HYSS2006 berechnete Teilchenverteilung (Modell 2, endgültig) des Eu³⁺ : macitp - Systems im Verhältnis 3:2 mit [L]t = 1 mM.

Betrachtet man den Aufbau der Komplexe, wäre es möglich, dass es sich bei dem einkernigen Komplex, um eine Spezies handelt, bei dem ein Metall in den side-on Nischen (O,N,O) des Liganden sitzt. Denkbar wäre jedoch auch eine [ML] Spezies, bei dem das Metall triaxial gebunden ist. Da sich jedoch der Metallgehalt im Komplex im weiteren Verlauf der Titration erhöht und eine Spezies mit drei Anteilen Metall zu einem Anteil Ligand gebildet wird, wäre die Theorie des einkernigen Komplexes über die side-on Koordination wahrscheinlicher. Im Anschluss an die Bildung des [M₃L]-Komplex wird der [M₃L₂]-Komplex durch einen weiteren Liganden tacitp vervollständigt. Das M₃L₂H₋₆-Teilchen könnte dem aus der Kristallstruktur in Abbildung 47 entsprechen.

Auch hier wurde der pM-Wert des Systems $Eu^{3+}/macitp$ bestimmt. Mit einem pM-Wert ([M]_{total} = 10^{-6} mol/I, [L]_{total} = 10^{-5} mol/I, pH = 7.4) von 13.04 liegt dieser über dem des Eutacitp-Systems.

65

3.3 Metallkomplexe mit Bismut(III)

3.3.1 Der K₃[Bi₃(H₋₃tacitp)₂]-Komplex

Bismut ist ein radioaktives Element des Periodensystems. In Abbildung 7 in Kapitel 1.5.2 wurde beschrieben, dass die Abschwächung der Röntgenstrahlung mit steigender Ordnungszahl tendenziell zunimmt. Lutetium (Ordnungszahl 71) als letztes abgebildetes Element zeigt eine Abschwächung von 280 HU. Somit ist zu erwarten, dass Bismut mit der Ordnungszahl von 83 eine größere Abschwächung der Röntgenstrahlung im Vergleich zu den abgebildeten Lanthanoiden aufweist. Was bei der Betrachtung der Synthese von tacitp und Bi³⁺ so interessant erscheint, ist die Tatsache, dass es bereits bekannte Strukturen des Liganden taci mit Bi³⁺ gibt. Kristallstrukturen des Metalls Bismut(III) mit dem Liganden taci zeigen, dass auch hier analog zu den anderen Lanthanoiden mehrkernige [M₃L₂]-Komplexe entstehen.^[74, 82, 83]

Zur Synthese des pulverförmigen Bismutkomplexes wurde deprotoniertes tacitp mit BiCl₃ in Methanol im Verhältnis 3:2 umgesetzt. Das Produkt wurde mittels NMR-Spektroskopie, CHN-Analyse und IR-Spektroskopie charakterisiert. Die Auswertung der Massenspektren konnte nicht zur Aufklärung des Komplexes beitragen. Das MS-ESI-Spektrum weist keine charakteristischen Signale auf, sondern nur eine Vielzahl an Signalen niedriger Intensität, die nicht zugeordnet werden können. Es ist zu vermuten, dass es sich hierbei entweder um Zersetzungsprodukte des dreikernigen Komplexes oder um kinetische Produkte handelt. Das ¹H-NMR-Spektrum des Bismut-Komplexes wurde bei pH* = 5.9 gemessen und weist im Vergleich zu dem Spektrum des reinen Liganden eine Signalverbreiterung auf, die womöglich durch dynamische Effekte verursacht wird. Die NMR-Spektren, die IR-Daten sowie die Ergebnisse der Elementaranalyse sind vereinbar mit einem [M₃L₂]-Komplex aus Bi³⁺ und tacitp. Da nur vier Signale im ¹H-NMR-Spektrum sichtbar sind, deutet dies entweder auf den D_3 -symmetrischen Komplex aus Bi³⁺ und tacitp hin oder aufgrund der Dynamik des Systems auf eine Umwandlung der beiden Spezies und der daraus gemittelten Signale. Dies würde auch die Verbreiterung der Signale erklären.

3.3.1.1 Kristallstruktur von KNa₂[Bi₃(H.₃tacitp)₂] · 20 H₂O

Von KNa₂[Bi₃(H₋₃tacitp)₂] konnten Einkristalle erhalten werden, die röntgenstrukturanalytisch untersucht werden konnten. Dabei wurde deprotoniertes tacitp mit BiCl₃ in Methanol umgesetzt. Die Lösung wurde eine Stunde unter Rückfluss erhitzt und anschließend im

Kühlschrank auskristallisiert. Es bildeten sich farblose, prismenförmige Kristalle. Dabei wurde das D_3 -symmetrische Isomer auskristallisiert. Abbildung 51 zeigt die Koordination des mehrkernigen [M₃L₂]-Komplexes in einer ORTEP-Darstellung. Die D₃-symmetrische Struktur des Komplexes ist der des K₃[Eu₃(H₋₃tacitp)₂] sehr ähnlich. Das Metall sitzt in den side-on Nischen (N, O, O) und ist über vier Chelat-5-Ringe und vier Chelat-6-Ringe an die axial Sauerstoffatome, stehenden an die äquatorial stehenden Stickstoffatome des Cyclohexanringes und an die Sauerstoffatome der Carboxylatgruppen koordiniert. Der Komplex kristallisiert in der tetragonalen Raumgruppe P4322. Bei der Berechnung der Kristallstruktur konnte nur ein Kaliumatom (von drei Kaliumatome) und ein Wassermolekül zugeordnet werden. Die erste Verfeinerung ergab folgende R-Werte: $R_1 = 3.40$ %, $wR_2 =$ 10.29 %. Mit Hilfe der im Programm Platon^[78, 79] implementierten SQUEEZE-Option wurden weitere 19 H₂O-Moleküle lokalisiert. Somit wird eine Gesamtanzahl von 20 H₂O-Molekülen erhalten ($R_1 = 2.65 \%$, $wR_2 = 6.37 \%$).

Bismut(III)-Ionen haben in vielen Verbindungen eine Koordinationszahl von acht oder neun. Literaturrecherchen in der CSD-Datenbank ergaben, dass das Bismut-Aqua-Ion eine Koordinationszahl von neun aufweist.^[84, 85] Arbeiten von G. J. Reiß et al.^[86] zeigen Bismut-Ionen in einer Komplexstruktur ebenfalls mit einer Koordinationszahl von neun. In bekannten Metallkomplexen mit Bismut, in denen das Bismut quadratisch antiprismatisch aufgebaut ist, wie z. B. K₃[Bi(H₋₃NTA)₂] \cdot 2 H₂O besitzt es somit eine Koordinationszahl von acht.^[87] Auch im Komplex mit taci besitzt das Bismut(III)-Ion eine Koordinationszahl von acht.^[74, 82, 83]

Abbildung 51: ORTEP-Darstellung des *D*₃- KNa₂[Bi₃(H_{.3}tacitp)₂] · 20 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome sowie die Gegenionen nicht mit abgebildet. Beschriftet wurden nur die koordinierenden Atome an das Metall.

Die Bindungslängen koordinierender Atome zum Metall hin liegen im erwarteten Bereich.

Tabelle 15 zeigt ausgewählte Bindungslängen des $KNa_2[Bi_3(H_{.3}tacitp)_2] \cdot 20 H_2O$ zum ebenfalls dreikernigen $[Bi_3(H_{.3}taci)_2]CI_3 \cdot 6 H_2O$ im Vergleich.

Hierbei kann festgestellt werden, dass es kaum Unterschiede bezüglich der Bindungslängen gibt. Weder die Bi-Bi noch die Bi-N und die Bi-O^[a] Bindungsabstände weisen Auffälligkeiten auf. Nur die Bi-O-Bindungslängen des KNa₂[Bi₃(H₋₃tacitp)₂] · 20 H₂O zeigen, dass die Bi-O^[b] Bindungslängen um circa 0.3 Å länger sind als die Bi-O^[a] Bindungslängen (O^a: O-taci-Ring, O^b: O-Carboyxylatgruppe).

Mittelwerte ausgewählter Bindungslängen [Å]				
$[Bi_{3}(H_{.3}taci)_{2}]Cl_{3} \cdot 6 H_{2}O \qquad KNa_{2}[Bi_{3}(H_{.3}tacitp)_{2}] \cdot 20$				
Bi-O ^[a]	2.330(2)	2.345(5)		
Bi-O ^[b]	-	2.629(5)		
Bi-N	2.636(3)	2.612(5)		
Bi-Bi	3.7808(4)	3.7561(3)		

Tabelle 15: Vergleich der Bindungslängen [Å] der Komplexe $[Bi_3(H_3taci)_2]Cl_3 \cdot 6 H_2O^{[83]}$ und des $KNa_2[Bi_3(H_3tacitp)_2] \cdot 20 H_2O$.

O^a: O-taci-Ring, O^b: O-Carboyxylatgruppe

Ein entscheidender Faktor bei der Beurteilung, ob ein Metallkomplex sich als Kontrastmittel eignet oder nicht, ist unter anderem die Löslichkeit des Komplexes. Aus diesem Grund wurde die Wasserlöslichkeit des K₃[Bi₃(H₋₃tacitp)₂]-Komplexes untersucht. Es ergab sich bei RT eine quantitative Löslichkeit in Wasser von etwa 70 mg Komplex/ml.

Da die Löslichkeitsgrenze eines Kontrastmittels bei circa 300 mg/ml^[7] liegt, scheidet der Bismutkomplex mit einer Wasserlöslichkeit von etwa 70 mg Komplex/ml als Kandidat zur Anwendung als Röntgenkontrastmittel aus.

3.4 Metallkomplexe mit ausgewählten Seltenerdmetallen

3.4.1 Der Na₃[Er₃(H₋₃tacitp)₂]-, Na₃[Gd₃(H₋₃tacitp)₂]-, Na₃[Ho₃(H₋₃tacitp)₂]- und Na₃[Yb₃(H₋₃tacitp)₂]-Komplex

Wie Lutetium und Europium war auch das Seltenerdmetall Erbium als potentielles Röntgenkontrastmittel aufgrund hoher Röntgendichte von Interesse. Parallel dazu wurden ebenfalls Metallkomplexe der Metalle Holmium und Ytterbium mit dem Liganden tacitp synthetisiert.

Die Synthese der Na₃[M₃(H₋₃tacitp)₂]-Komplexe [M = Er^{3+} , Ho³⁺, Yb³⁺] wurde analog zu der Synthese von Na₃[Lu₃(H₋₃tacitp)₂] durchgeführt. Die Aufreinigung des Na₃[Er₃(H₋₃tacitp)₂]-Komplexes und des Na₃[Yb₃(H₋₃tacitp)₂]-Komplexes fand über heiße Extraktion aus Ethanol statt. Der Holmiumkomplex wurde über Ultrafiltration aufgereinigt (im Retentat, Filtergröße: 500 NMWL). Die Charakterisierung der Proben erfolgte mittels Elementaranalyse und über Massenspektrometrie.

3.4.1.1 Kristallstruktur von K₃[Ho₃(H_{.3}tacitp)₂] · 14.5 H₂O

Von K₃[Ho₃(H₋₃tacitp)₂] · 14.5 H₂O konnten Einkristalle durch langsames Eindampfen erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Hierbei wurden 2 eq des Liganden in etwas Wasser gelöst. Mittels 1 M KOH wurde ein pH-Wert von 9 eingestellt. Im Anschluss wurden 3 eq HoCl₃· 6 H₂O hinzugefügt.

Die Verbindung kristallisiert in der monoklinen Raumgruppe P 2₁/c. Es kristallisierte das D_3 symmetrische Isomer aus. Die Holmium(III)-Ionen weisen eine Koordinationszahl von 8 auf. Es bildeten sich zart rosa, prismenförmige Kristalle. Bei der Verfeinerung der Kristallstruktur konnten nicht alle H-Atome der Wassermoleküle lokalisiert werden. Es wurden folgende R-Werte ermittelt: R-Werte: R₁ = 2.48 %, wR₂ = 5.61 %. Abbildung 52 zeigt die ORTEP-Darstellung von D_3 -K₃[Ho₃(H₋₃tacitp)₂] · 14.5 H₂O. O26A und O26B weisen eine Fehlordnung auf und sind auf ihren Positionen zu je 50% besetzt.

Abbildung 52: ORTEP-Darstellung des *D*₃-K₃[Ho₃(H₋₃tacitp)₂] · 14.5 H₂O-Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome sowie die Gegenionen und die Wassermoleküle nicht abgebildet.

3.4.1.2 Kristallstruktur von K₃[Gd₃(H_{.3}tacitp)₂] · 18 H₂O

Auch mit Gadolinium(III) und tacitp gelang es Einkristalle herzustellen. Hierzu wurde 1 eq des Liganden in etwas Methanol gelöst und mit 9 eq 1 M KOH versetzt. Danach wurd 1 eq $Gd(NO_3)_3 \cdot 6 H_2O$ hinzugegeben. Im Anschluss wurde die Lösung eine Stunde bei 80 °C erhitzt. Unter langsamem Eindampfen bildeten sich farblose, prismenförmige Kristalle.

Mit Gadolinium(III) ist bereits eine Kristallstruktur mit dem Liganden taci bekannt^[37]. Dabei ist die Koordination dieses $[M_3L_2]$ -Komplexes ähnlich dem des $K_3[Gd_3(H_3tacitp)_2] \cdot 18 H_2O$ Komplexes.

Der K₃[Gd₃(H₋₃tacitp)₂] · 18 H₂O Komplex kristallisiert in der tetragonalen Raumgruppe P4₃22. Der Komplex ist isostrukturell zu dem Komplex von Bi³⁺ und dem Liganden tacitp. Bei der Berechnung der Kristallstruktur konnte ein H₂O verfeinert werden (R1 = 5.23 %, wR2 = 13.79 %). Mit Hilfe der im Programm Platon^[78, 79] implementierten SQUEEZE-Option konnten anhand der restlichen Elektronen-Dichte insgesamt 17 H₂O ermittelt werden. Somit erhält man insgesamt 18 H₂O-Moleküle. Nach der Anwendung der SQUEEZE-Option wurden folgende R-Werte erhalten: R₁ = 2.85 %, wR₂ = 7.08 %. Abbildung 53 zeigt die ORTEP-Darstellung des K₃[Gd₃(H₋₃tacitp)₂] · 18 H₂O Komplexes.

Abbildung 53: ORTEP-Darstellung des *D*₃-K₃[Gd₃(H.₃tacitp)₂] · 18 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome sowie die Gegenionen und die Wassermoleküle nicht abgebildet.

3.4.2 Der Na₃[Er₃(H₋₃macitp)₂]-, Na₃[Ho₃(H₋₃macitp)₂]-, Na₃[Yb₃(H₋₃macitp)₂]-, Na₃[Gd₃(H₋₃macitp)₂]- und Na₃[Nd₃(H₋₃macitp)₂]-Komplex

Die Synthese der Na₃[M₃(H₋₃macitp)₂]-Komplexe [M = Er³⁺, Ho³⁺, Yb³⁺, Gd³⁺] wurde analog der Synthese von Na₃[Lu₃(H₋₃tacitp)₂] durchgeführt. Hierbei wurde der Ligand macitp in etwas Wasser gelöst und mittels 1 M NaOH ein pH-Wert von 8 eingestellt. Anschließend wurden 1.6 eq des Metallchlorides hinzugegeben und der pH-Wert erneut auf pH = 8 justiert. Die Suspension wurde eine Stunde bei 80 °C erhitzt. Die Aufreinigung erfolgte via heißer Extraktion in Ethanol.

3.4.2.1 Kristallstruktur von K₃[Er₃(H₋₃macitp)₂] · 6.5 H₂O

Von $K_3[Er_3(H_{-3}macitp)_2] \cdot 6.5 H_2O$ konnten durch langsames Eindampfen zart rosa, prismenförmige Einkristalle erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Hierbei wurden 2 eq des Liganden in etwas Wasser gelöst und mit 18 eq 1 M KOH versetzt. Im Anschluss wurde 1 eq ErCl₃ · 6 H₂O hinzugefügt und eine Stunde bei 80 °C erhitzt.

Der K₃[Er₃(H₋₃macitp)₂] · 6.5 H₂O Komplex kristallisiert in der orthorhombischen Raumgruppe Pnma. Es kristallisierte das C_2 -symmetrische Isomer aus. Bei der Berechnung der Kristallstruktur konnten 6.5 Wasser lokalisiert werden (R₁ = 6.78 %, wR₂ = 18.26 %). Die Struktur weist eine Fehlordnung bezüglich eines Propionatrestes auf. C23, C25 sowie die restlichen C-Atome und O-Atome dieser Gruppen finden sich nur zu jeweils 50% auf der in Abbildung 54 dargestellten Anordnung wieder. Die Positionen der C-Atome C14 und C17 sind jeweils zu 50% mit entweder einer Methylgruppe oder einem Propionatrest besetzt. Auch hier liegt ein "sandwichartiger" mehrkerniger [M₃L₂]-Verbindung vor. Die Atome N2, Er2 und N4 befinden sich auf spezieller Lage (Spiegelebene).

Abbildung 54: ORTEP-Darstellung des C₂-K₃[Er₃(H.₃macitp)₂] · 6.5 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 30 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome sowie die Gegenionen und Wassermoleküle nicht abgebildet.

3.4.2.2 Kristallstruktur von K₃[Nd₃(H₋₃macitp)₂] · 13.5 H₂O

Von $K_3[Nd_3(H_{-3}macitp)_2] \cdot 13.5 H_2O$ konnten schwach violette, prismenförmige Einkristalle erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Hierzu wurden 2 eq des Liganden in etwas Wasser gelöst und mit 18 eq 1 M KOH versetzt. Im Anschluss wurden 3 eq Nd(NO_3)_3 hinzugegeben und eine Stunde bei 80 °C erhitzt.

Dabei kristallisiert der K₃[Nd₃(H₋₃macitp)₂] · 13.5 H₂O Komplex in der monoklinen Raumgruppe P2₁. Es kristallisierte das C₂-symmetrische Isomer aus. Bei der Berechnung der Kristallstruktur konnten 13.5 Wasser zugeordnet werden, bei denen die Position der H-Atome nicht berechnet werden konnten (R₁ = 6.28 %, wR₂ = 15.82 %). Der Komplex liegt trinuklear vor, wobei drei Neodym(III)-Ionen in den asymmetrischen O, O, N-Nischen der beiden macitp Moleküle sitzen. Ein Neodym(III)-Ion bildet jeweils vier Chelat-5-Ringe und vier Chelat-6-Ringe aus. Die Koordinationszahl beträgt bei allen Metallzentren acht.

Abbildung 55: ORTEP-Darstellung des C₂-K₃[Nd₃(H₋₃macitp)₂] · 13.5 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome sowie die Gegenionen und Wassermoleküle nicht abgebildet.

3.5 Metallkomplexe mit Hafnium(IV)

3.5.1 Der [Hf₃(H₋₃tacitp)₂]-Komplex

Aufgrund der Ladungserhöhung und damit verbunden der Abnahme des Ionenradius beim Übergang des Lu³⁺ (1.117 Å, KZ = 8) hin zum Hf⁴⁺ (0.97 Å, KZ = 8)^[22] kann eine Zunahme der kinetischen sowie der thermodynamischen Stabilität entsprechender Komplexe erwartet werden. Die Kationengröße liegt dennoch in einem Bereich, in dem eine side-on-Koordination (O,O,N) begünstigt sein sollte und die Ausbildung des [M₃L₂]-Komplexes gewährleistet ist. Erwartungsgemäß wurde die [M₃L₂]-Koordination des Metallkomplexes mit Hilfe der NMR-Spektren und der Kristallstruktur bestätigt Desweiteren sind, bedingt durch hohe Absorptionseigenschaften, Komplexe des Metalls Hafnium interessante Kandidaten für ein Kontrastmittel der Röntgendiagnostik. Außerdem ermöglicht die höhere Ladung des Metalls (+4 anstatt +3 wie bei Lutetium) die Bildung eines ungeladenen Komplexes, welcher im Hinblick auf die Osmolarität besonders wichtig für einen möglichen Einsatz als Röntgenkontrastmittel ist. Eine hohe Osmolarität einer Kontrastmittellösung führt zu Problemen bei der Injektion. In der Folge muss die Anzahl der Teilchen pro Liter Lösung minimiert werden.

Die Synthese der [Hf₃(H₃tacitp)₂]-Verbindung erfolgte in wässriger Lösung Medium. Es wurden 1 eg des Liganden in Wasser gelöst und mit 9 eg einer NaOH-Lösung (1 M) versetzt. Danach wurden 1,5 eg Hafniumchlorid hinzugegeben. Im Anschluss wurde der pH-Wert überprüft und erneut auf circa 3 eingestellt. Die Synthese erfolgte drei Tage unter Rückfluss. Aufreinigungversuche erfolgten mittels Ultrafiltrationszelle sowie durch Kochen in Ethanol. Diese führten jedoch nicht zur erfolgreichen Entsalzung der Verbindung. Aufgrund fehlender Ladung dieses **Komplexes** wurde auch eine Aufreinigung über eine Kationenaustauschersäule versucht. Da jedoch der Komplex nicht wie gewünscht neutral sondern sauer von der Kationenaustauschersäule eluiert wurde, wurde auf eine Mischbettionenaustauschersäule zurückgegriffen, was schließlich zum Erfolg führte. Somit konnte der erhaltene [Hf₃(H₋₃tacitp)₂]-Komplex durch Mischbettionenaustauscherchromatographie von den anfallenden Salzen befreit werden. Mittels ¹H-NMRsowie ¹³C-NMR-Spektroskopie konnte die Struktur des Komplexes in Lösung aufgeklärt werden. Dabei liegt der $[Hf_3(H_3tacitp)_2]$ -Komplex, wie die anderen Komplexe, in der erwarteten [M₃L₂]-Koordination vor. Die Anzahl der Signale im ¹H-NMR-Spektrum lässt darauf schließen, dass der Komplex als Gemisch eines C_2 - und D_3 -symmetrischen Diastereomers vorliegt. Die Zuordnung der Signale ist in Abbildung 56 dargestellt.

Abbildung 56: ¹H-NMR-Spektrum des D_3 sowie C_2 symmetrischen [Hf₃(H₋₃tacitp)₂]-Komplexes bei pH = 7 in D_2O .

Wie schon am Na₃[Lu₃(H₋₃tacitp)₂]-Komplex erklärt, wurden für das ¹³C-NMR-Spektrum 20 Signale erwartet. Fünf stammen aus dem D_3 -symmetrischen Isomer und 15 aus dem C_2 -symmetrischen Isomer. Abbildung 57 zeigt das ¹³C-NMR-Spektrum mit vergrößerten Ausschnitten. Hier ist zu erkennen, dass pro Signalgruppe vier Peaks vorliegen, die die Existenz des C_2 - und D_3 -symmetrischen Moleküls bestätigen.

Abbildung 57: ¹³C-NMR-Spektrum des D_3 sowie C_2 symmetrischen [Hf₃(H₋₃tacitp)₂]-Komplexes bei pH = 7 in D₂O.

3.5.1.1 Kristallstruktur von [Hf₃(H.₃tacitp)₂] · 9 H₂O

Die Struktur konnte mittels einer Röntgenkristallstrukturanalyse bestätigt werden. Dabei wurde der pulverförmige und entsalzte Komplex in etwas Wasser gelöst und mit Ethanol überschichtet. Durch langsames Eindampfen der Lösung konnten Einkristalle erhalten werden. Abbildung 58 zeigt die ORTEP-Darstellung des D_3 -[Hf₃(H₋₃tacitp)₂] · 9 H₂O Komplexes. Die Verbindung kristallisiert in der monoklinen Raumgruppe C2/c. Der Komplex ist trinuklear und koordiniert wie auch die anderen [M₃L₂]-Komplexe über die O,O,N-Nischen. Die ermittelten R-Werte betragen: R₁ = 2.41 %, wR₂ = 4.90 %. Eine Fehlordnung findet sich am Carbonyl-O-Atom O65A. Dieses ist zu 72 % auf der Position O65A und zu 28 % auf der Position O65B (nicht abgebildet) anzutreffen. Das Atom Hf2 befindet sich auf spezieller Lage (C_2 -Achse).

Abbildung 58: ORTEP-Darstellung des D_3 -[Hf₃(H_{.3}tacitp)₂] · 9 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome sowie die Gegenionen und Wassermoleküle nicht abgebildet. Es wurde nur eine Orientierung der Fehlerordnung abgebildet.

3.5.1.2 Erhöhung der Wasserlöslichkeit des [Hf₃(H₋₃tacitp)₂]-Komplexes

Da eine experimentell bestimmte Löslichkeit von etwa 130 mg Hf/ml nicht den gewünschten Anforderungen von circa 300 mg Hf/ml^[7] entspricht, wurden, um diese zu erhöhen, Templatsynthesen direkt am Hafniumkomplex durchgeführt. Dabei wurden zwei Strategien verfolgt. Zum einen die Umsetzung des Komplexes mit Epoxiden und zum anderen eine N-Methylierung am Komplex.

Die Einführung von wasserlöslichen Gruppen, besonders von funktionellen Gruppen, die Hydroxygruppen beinhalten, stellte sich über die Schiene der Epoxide als schwierig heraus. Ein Syntheseschema der Templatsynthesen mit Glycidol als Alkylierungsreagenz ist in Abbildung 59 dargestellt.

Abbildung 59: Syntheseschema der Templatsynthese mit R-(+)-Glycidol.

Als Epoxid wurde das R-(+)-Glycidol verwendet. Mittels dieses Epoxides könnten pro eingeführten Rest zwei Hydroxygruppen hinzugewonnen werden. Insgesamt würde dies, wenn die Umsetzung an jedem Amin im Komplex stattfinden würde, zu der Einführung von insgesamt zwölf Hydroxygruppen führen. Im Zuge der einzelnen Synthesen wurden die eingesetzte Base, die Temperatur und das Lösungsmittel variiert. Als Base wurde Triethylamin oder NaH verwendet. Die Reaktionen wurden bei RT, bei 60 °C, 70 °C, 80 °C und 90 °C durchgeführt. Als Lösungsmittel wurde hauptsächlich DMF verwendet; DMSO wurde jedoch auch getestet. Eine Reaktionskontrolle wurde mittels UPLC-MS durchgeführt. Die Umsetzungen wurden mehrfach, auch im Überschuss an Glycidol, ausgeführt. Schlussfolgernd kann gesagt werden, dass die zahlreichen Syntheseversuche zu keinem positiven Ergebnis führten. Die Alkylierung am Komplex fand unter den oben aufgeführten Bedingungen nicht statt.

3.5.2 Der [Hf₃(H₋₃macitp)₂]-Komplex

Eine weitere Zunahme der Löslichkeit kann durch die Verwendung des N-methylierten Liganden macitp erwartet werden. Es wurden zwei verschiedene Synthesevarianten verfolgt. Zum einen eine Methylierung des bereits bekannten [Hf₃(H₋₃tacitp)₂]-Komplexes oder die Synthese aus dem Liganden macitp und Hf(IV).

Die Methylierungsversuche am Komplex wurden in Gegenwart von CH₃I durchgeführt. Abbildung 60 zeigt das Syntheseschema dazu.

Abbildung 60: Syntheseschema der Methylierung mit Methyliodid.

Die Umsetzung erfolgte in DMF und einem 10-fachen Überschuss an CH₃I. Als Base wurde hauptsächlich NaH verwendet. Alternativ dazu wurden Synthesen in Gegenwart von KH sowie LiH durchgeführt. Die Synthesen wurden bei RT oder auch bei 35 °C durchgeführt. Ebenfalls wurde die Reaktionsdauer variiert und die Reaktion mehrfach hintereinander ausgeführt. Die Charakterisierung erfolgte in den meisten Fällen mittels UPLC-MS (Berlin). Die Ergebnisse zeigen, dass bei Raumtemperatur sowie bei 35 °C (Begrenzung der Temperatur aufgrund des Siedepunktes des CH₃I: Siedepunkt: 41 – 43 °C^[88]) die gewünschte Spezies von m/z = 1394 entsteht, aber parallel dazu auch noch viele Spezies, die nicht eindeutig zu identifizieren sind. Dies lässt vielleicht auf eine Zersetzung der zuvor bei Raumtemperatur entstandenen Verbindungen schließen, wobei der gewünschte Komplex von m/z = 1394 noch existent ist. Es wurde versucht den Komplex über Kationenaustauscherchromatographie sowie Mischbettionenaustauscherchromatographie zu isolieren. Auch eine Extraktion in Ethanol schlug hierbei fehl. Nach weiteren Optimierungsversuchen dieser Synthese konnte durch 2-faches Umsetzen in absolutem DMF ausschließlich die Hauptspezies mit einer Masse von 1394 in einem kleinen Ansatz von 50 mg des eingesetzten [Hf₃(H₋₃tacitp)₂].Komplexes synthetisiert werden. Das Upscalen dieser Verbindung auf einen Größenmaßstab von circa 2 g war nicht erfolgreich. Die UPLC-MS-Ergebnisse wiesen neben der gewünschten Hauptspezies Produktgemische sowie freien Liganden auf.

Die Synthese des [Hf₃(H₋₃macitp)₂]-Komplexes aus dem Liganden macitp und dem Metall Hf⁴⁺ bereitete ebenfalls Schwierigkeiten. Diese wurde analog zur Synthese des [Hf₃(H₋₃tacitp)₂]-Komplexes in wässriger Lösung bei einem pH- Wert von 3 durchgeführt. Der deprotonierte Ligand macitp wurde mit 1,6 eq HfCl₄ versetzt. Die Suspension wurde drei Tage bei 120°C erhitzt. Die Aufreinigung erfolgte mittels Mischbettionen-

austauscherchromatographie. Es zeigt sich jedoch, dass während der Synthese der Ligand macitp in einer Retro-Michael-Addition zu einer Abspaltung der Propionatsäuregruppen neigt. Es konnte kein einheitliches Produkt isoliert werden.

Die anfänglich bestimmte Löslichkeit von 600 mg Hf/ml (Bayer, Berlin) rührte aus einem Gemisch vieler Produkte. Wie festgestellt wurde, ist die Hauptspezies der oben beschriebenen Synthese ein [Hf₃(H₋₃macitp)₂]-Derivat, an dem eine Propionatgruppe abgespalten wurde. Die Position am Metall, an die zuvor das O-Atom der Carboxylatgruppe koordinierte, wurde durch eine OH-Gruppe ersetzt. Die Löslichkeit dieser Verbindung liegt bei circa 400 mg Hf / ml und liegt demnach über der gewünschten Grenze von 300 mg Hf / ml. Mit dieser Erkenntnis wäre es nun wünschenswert, diese Spezies entweder zu isolieren oder gezielt herzustellen.

Aufgrund der Retro-Michael-Addition wurden auch Synthesen in wässriger Lösung unter milderen Bedingungen durchgeführt. Dabei wurden pH-Wert, die Temperatur und die Synthesedauer variiert. Die Ergebnisse mittels UPLC-MS zeigen jedoch, dass die Synthesen nicht erfolgreich waren.

Alternativ dazu wurden Synthesen im nicht-wässrigen Medium durchgeführt. Als Ligand wurde deprotoniertes macitp eingesetzt. Die Ausgangversbindung des Hafniums wurde dabei variiert. Die unterschiedlichen verwendeten Hafnium-Ausgangsverbindungen sind in Abbildung 61 dargestellt.

Abbildung 61: Hf(acac)₄, Hf(O₃SCF₃)₄, Hf(O(CH₃)₃)₄ und Hf(N(CH₃)₂)₄ (von links nach rechts).

Es wurden Synthesen mit Hf(acac)₄ in absolutem Methanol durchgeführt. Mittels Natriummethanolat wurde ein pH-Wert von circa 9 eingestellt. Die Synthese wurde 24 Stunden bei RT gerührt. Nachdem keine Umsetzung erfolgte wurde weitere 24 Stunden bei 50°C erhitzt. Dabei zeigen die UPLC-MS, dass nur freier Ligand vorliegt. Um die Synthese besser verfolgen zu können, wurden NMR-Untersuchungen durchgeführt. Dabei wurden parallel drei Ansätze mit drei unterschiedlichen Äquivalenten an Hafniumacetylacetonat durchgeführt. Die allgemeine Vorgehensweise war folgende: der Ligand macitp wurde in deuteriertem Lösungsmittel CD₃OD gelöst, mit NaH deprotoniert und mit je 0.5 eq, 1.0 eq und 3.0 eq Hf(acac)₄ versetzt. Dabei war hauptsächlich in den ¹H-NMR-spektrometrischen Untersuchungen freier Ligand zu sehen. Die UPLC-MS-Ergebnisse wiesen zusätzlich eine

Masse mit 1260 m/z auf, was auf eine $[M_2L_2]$ - oder $[M_3L]$ -Spezies hindeuten könnte. Es wurden jedoch keine $[M_3L_2]$ -Spezies gefunden. Auch wurden Synthesen in Gegenwart der reaktiven Hafniumverbindungen Hf(O(CH₃)₃)₄, Hf(O₃SCF₃)₄ und Hf(N(CH₃)₂)₄ durchgeführt. Diese Synthesen führten ebenso nicht zum gewünschten Produkt, es konnte hauptsächlich freier Ligand nachgewiesen werden.

3.6 Zusammenfassung der [M₃L₂]-Kristallstrukturen

Werden die Kristallstrukturen der [M₃L₂]-Komplexverbindungen im Überblick betrachtet lassen sich einige Gemeinsamkeiten erkennen. Die Komplexe zeigen durchgehend die gleiche Koordination. Die Molekülgeometrie wurde bereits ausführlich, unter anderem am Beispiel des Komplexes von Lu³⁺ mit macitp diskutiert und findet sich in all diesen [M₃L₂]-Kristallstrukturen wieder. Ebenfalls besitzt jedes Metall die Koordinationszahl acht. Tabelle 16 zeigt eine Übersicht der Komplexe mit dazugehöriger Raumgruppe, Molekülsymmetrie sowie ausgewählten Bindungslängen (Mittelwerte).

3:2	Raum-	Komplex-	M-M [Å]	M-N [Å]	M-O ^a [Å]	M-O ^b [Å]
Komplex	gruppe	symmetrie				
Nd - macitp	P2 ₁	C ₂	3.809	2.665	2.394	2.416
Eu - macitp	Pnma	C ₂	3.739	2.630	2.356	2.357
Eu - tacitp	P4 ₁ 22	D ₃	3.735	2.585	2.356	2.422
Gd - tacitp	P4 ₃ 22	D ₃	3.716	2.568	2.347	2.403
Ho - tacitp	P2 ₁ /c	D ₃	3.660	2.533	2.309	2.347
Er - macitp	Pnma	C ₂	3.655	2.611	2.308	2.298
Lu - macitp	Pnma	C ₂	3.605	2.568	2.277	2.259
Hf - tacitp	C2/c	D ₃	3.505	2.367	2.173	2.110
Bi - tacitp	P4 ₃ 22	D ₃	3.756	2.612	2.345	2.629

Tabelle 16: Übersicht der [M₃L₂]-Kristallstrukturen mit Raumgruppe, Molekülsymmetrie und ausgewählten mittleren Bindungsabständen und Bindungslängen [Å].

O^a: O-taci-Ring, O^b: O-Carboyxylatgruppe

Was Besonders auffällt ist, dass jeder $[M_3(H_{.3}tacitp)_2]^2$ -Einkristall $[M = Eu^{3+}, Gd^{3+}, Ho^{3+}, Hf^{4+}$ und Bi³⁺] eine angenäherte **D**₃-Symmetrie und jeder $[M_3(H_{.3}macitp)_2]^2$ -Einkristall $[M = Nd^{3+}, Eu^{3+}, Er^{3+}, Lu^{3+}]$ eine angenäherte **C**₂-Symmetrie aufweist. Werden die Bindungsabstände der einzelnen Metalle betrachtet und die Bindungslängen kann folgendes festgestellt werden: In der Reihe der Lanthanoide bis hin zum Hafnium nehmen sowohl die Metall-Metall-Abstände als auch die M-O Bindungslängen tendenziell ab. Die Abnahme der Bindungslängen bzw. der Metall-Metall-Abstände und damit verbunden der Ionenradien der Metalle entspricht dem erwartetem Verhalten. Im Periodensystem nehmen die Ionenradien von links nach rechts ab.^[89] Die Kontraktion der Radien der Lanthanoide von links nach rechts ist durch die Auffüllung der f-Orbitale bedingt. Diese liegen nah am Kern und werden somit mehr von der positiven Ladung des Kernes angezogen.

Vom Lutetium zum Hafnium hin nehmen der Metall-Metall-Abstand und die mittleren Bindungslängen ab. Durch die vierfach positive Ladung des Hafniums und die dreifach positive Ladung des Lutetiums haben Lutetium und Hafnium die gleiche Elektronenkonfiguration. Diese entspricht: [Xe]4f¹⁴. ^[72, 89]

Die Elektronenkonfiguration des Bi³⁺-Ion ist [Xe]4f¹⁴5d¹⁰6s². Nach Shannon^[22] liegt ein Radius des Bismuts mit einer Oxidationszahl von +3 und einer KZ von acht bei 1.31 Å: Der mittleren Radius in der Bismut-tacitp-Struktur weist 1.279 Å auf und liegt somit im erwarteten Bereich (Bindungsabstände [Å] nach Shannon^[22]: N-Atom (mit OZ-3 und KZ 3) 1.32 Å , O-Atom (OZ-2, KZ3) 1.22 Å und O-Atom (OZ-2, KZ 2) 1.21 Å).

3.7 Stabilität gegen DTPA

Da die Stabilität der hergestellten Komplexe für den medizinischen Gebrauch von sehr hoher Bedeutung ist, wurden Stabilitätstest im Autoklaven gegen DTPA in Berlin von Bayer HealthCare durchgeführt. Da die Komplexe bei Zerfall toxisch für den Menschen wären, müssen sie den menschlichen Körper nach einer Injektion wieder vollständig verlassen. Um nun beurteilen zu können, wie stabil die Komplexe sind, gab der Stabilitätstest gegen DTPA einen qualitativen Hinweis darauf, wie bereitwillig die neuen Komplexe ihr Metall an einen starken Kompetitor abgeben.

Dabei wurden die Komplexe in Gegenwart von DTPA autoklaviert. Die untersuchte Substanz (ca. 5 mM) wurde in Gegenwart eines Puffers (ca. 50 mM MOPS) bei pH 7.4 mit 16 mM CaNa₃-DTPA-Lösung versetzt. Diese Lösung wurde 15 Minuten bei 121°C autoklaviert (45 Minuten incl. Aufheiz- und Abkühlphase). Die Proben wurden nach einmaligem und nach

weiteren fünfmaligen Autoklavieren untersucht.^[90] Abbildung 62 stellt die Menge an Ln-DTPA-Komplex und Hf-DTPA-Komplex [%] verschiedener Verbindungen nach dem Autoklavieren dar.

Abbildung 62: Bildung von Ln-DTPA und Hf-DTPA nach Autoklavieren^[90].

Es wurde eine Probe jeder Verbindung in Gegenwart von DTPA vor dem Autoklavieren entnommen und vermessen. Dabei ist zu sehen, dass z. Bsp. Ho³⁺/tacitp-System teilweise sein Metall gegen DTPA ausgetauscht hat. Folgende Werte für die Menge an DTPA-Komplex wurden für die aufgeführten Komplexe erhalten: Lu³⁺/tacitp: 1.7 %, Ho³⁺/tacitp: 12.5 %, Hf⁴⁺/tacitp: 0 %, Lu³⁺/macitp: 9.6 %, Ho³⁺/macitp: 8 %, Er³⁺/macitp: 0 %, Gd³⁺/macitp: 0 % und Yb³⁺/macitp: 4.5 %.

Nach einmaligem Autoklavieren ist die größte Freisetzung an Metall bei Ho³⁺/tacitp und Lu³⁺/macitp zu beobachten. Dabei sind bereits bei Ho³⁺/tacitp 12.5 % des Metalls an DTPA übergegangen und bei Lu³⁺/macitp 9.6 %. Ebenfalls wird die größte Instabilität nach sechsmaligem Autoklavieren bei Ho³⁺/tacitp mit 24.6 % und Lu³⁺/macitp mit 19 % beobachtet. Dicht gefolgt sind diese Werte von Lu³⁺/tacitp mit 18.7 % nach sechsmaligem Autoklavieren. Die hohe Metallfreisetzung bei Ho³⁺/tacitp, könnte dadurch erklärt werden, dass bereits zu Beginn 12.5 % an freiem Holmium, ohne die Verbindung vorher zu

Autoklavieren, vorlagen. ESI-MS Messungen zeigten, dass die Substanz Signale aufweist, die auf eine teilweise Zersetzung des Liganden hindeutet, in der bereits Propionsäurereste abgespalten wurden. Diese Zersetzung war ebenso bei Ho³⁺/macitp zu beobachten.

Die mit Abstand stabilste Verbindung, ob vor dem Autoklavieren, nach einmaligem oder sechsmaligen Autoklavieren ist der Hf⁴⁺/tacitp-Komplex. Diese Verbindung bestätigt sich als Stabilste und gibt 0 % seines Metalls an DTPA ab.

Schlussfolgernd kann gesagt werden, dass die Hf⁴⁺/tacitp-Verbindung im Hinblick auf thermische Stabilität am Geeignetsten erscheint. Bei der Beurteilung, ob eine Verbindung als Kontrastmittels geeignet ist, spielen weitere Eigenschaften, die bereits in Kapitel 1.5.2 erwähnt worden sind, wie beispielsweise Löslichkeit und Osmolarität eine Rolle.

3.8 Metallkomplexe mit Wolfram(VI) und Tantal(V)

Die Metalle Wolfram und Tantal sind zwei weitere Vertreter deren Komplexe aufgrund einer erwarteten höheren Röntgendichte der Metalle als potentielle Kontrastmittel der Röntgendiagnostik interessant erscheinen.

Bereits in der Vergangenheit bewies Tantal die Fähigkeit durch Hydrolyse von Tantal(V) in Gegenwart von KOH mit dem Liganden *cis*-Inosit siebenkernige Komplexe^[91] zu bilden. Durch den hohen Metallgehalt im Komplex tritt eine noch größere Abschwächung der Röntgenstrahlung auf.

Problematisch bei den Synthesen war die schlechte Löslichkeit der eingesetzten Wolframund Tantalverbindungen. Aus diesem Grund wurden Hydrothermalsynthesen durchgeführt. Die Synthesen fanden im Trockenschrank unter hohen Temperaturen statt. Die Proben wurden eine Woche bei einer Temperatur von 160 °C aufbewahrt und im Anschluss langsam abgekühlt. Als Ligand wurde protoniertes H₆tacitp³⁺ eingesetzt. Hinzu kamen 9 eq KOH. Als Lösungsmittel wurden entweder Ethanol oder iso-Propanol verwendet. Als Edukte wurden Ta(OMe)₅ oder W(CO)₆ eingesetzt. Es konnte jedoch keine Umsetzung beobachtet werden.

Zudem wurden parallel Kristallansätze mit W^{6+} und Ta⁵⁺ durchgeführt. Hierbei wurde zunächst TaCl₅ in Methanol aufgenommen. Parallel dazu wurde der Ligand H₆tacitp³⁺ in Wasser gelöst und mit 9 eq KOH versetzt. Es wurden Ansätze in den Metall:Ligand-Verhältnissen 1:1, 1:2 sowie 3:2 durchgeführt. Im Anschluss wurden die Suspensionen auf 80 °C erhitzt. Aufgrund von Löslichkeitsproblemen des TaCl₅ konnten keine Einkristalle erhalten werden. Die gleiche Vorgehensweise wurde für Wolfram gewählt. Als Edukt wurde WCl₆ eingesetzt. Auch hier konnten keine Einkristalle aufgrund von Löslichkeitsproblemen erhalten werden, die zur Strukturaufklärung hätten beitragen können.

Zusammenfassend kann gesagt werden, dass die pulverisierten Produkte als auch die Kristallansätze aufgrund von Löslichkeitsproblemen der Wolfram- und Tantal-Verbindungen nicht zum gewünschten Ziel führten.

3.9 Metallkomplexe mit Ni(II), Co(III) und Li(I)

3.9.1 Kristallstruktur von K[Ni(tacitp)] · 4 H₂O

Bei der Synthese von K[Ni(tacitp)] · 4 H₂O wurde der Ligand in Wasser gelöst und mit NiCl₂ im Metall:Ligand-Verhältnis 3:2 angesetzt. Im Anschluss wurde mittels KOH ein pH-Wert von 11 eingestellt. Nach langsamem Eindampfen konnten violette, prismenförmige Einkristalle erhalten werden. Von Nickel(II) ist unter anderem eine Kristallstruktur mit dem Liganden tacita bekannt.^[36, 38, 75] Nickel(II) koordiniert in der Struktur mit dem Liganden tacita und dem Liganden tacitp jeweils oktaedrisch. In der Kristallstruktur mit tacita herrscht die gleiche Koordination vor wie beim Liganden tacitp. Es handelt sich in beiden um eine 1:1-Verbindung, dabei besitzt Nickel(II) eine Koordinationszahl von sechs. Nickel(II) wird, wie erwartet über die drei Aminogruppen und die drei Carboxylatgruppen koordiniert. Der K[Ni(tacitp)] · 4 H₂O Komplex kristallisiert in der monoklinen Raumgruppe P2₁/c (R₁ = 3.74 %, wR₂ = 9.29 %) und ist in einer ORTEP-Darstellung in Abbildung 63 dargestellt. Das Metallzentrum ist triaxial von drei Amingruppen sowie von drei OR-Gruppen (R = Carbonylgruppe) umgeben. Der Komplex ist angenähert *C*₃-symmetrisch.

Da Nickel(II) paramagnetisch ist, können keine NMR-Spektren des Komplexes aufgenommen werden. Die Verbindung wurde mittels IR-Spektren und Elementaranalyse charakterisiert.

Abbildung 63: ORTEP-Darstellung des K[Ni(tacitp)] · 4 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden das Gegenion und die Wassermoleküle nicht abgebildet. Der Radius der H-Atome wurde fest vorgegeben.

In der nachfolgenden Tabelle sind ausgewählte Bindungslängen und Bindungswinkel aufgeführt. Diese liegen im erwarteten Bereich.^[92]

	Bindungslängen [Å]
Ni(1) – O(24)	2.0919(18)
Ni(1) – O(44)	2.1235(17)
Ni(1) – O(64)	2.1002(17)
Ni(1) – N(2)	2.089(2)
Ni(1) – N(4)	2.097(2)
Ni(1) – N(6)	2.099(2)

Tabelle 17: Ausgewählte Bindungslängen [Å] des K[Ni(tacitp)] · 4 H₂O Komplexes.

Um die Koordinationszahl des Kalium(I) zu bestimmen, wurden die K-O-Bindungslängen vermessen. Dabei liegen die K-O-Bindungslängen (Abbildung 64) im K[Ni(tacitp)] Komplex

zwischen K1 und O25 beträgt 3.34 A und wurde nicht als "echte" Bindung interpretiert.

zwischen 2.67 und 2.94 Å und somit im erwarteten Bereich.^[93-96] Der K-O-Bindungsabstand zwischen K1 und O25 beträgt 3.34 Å und wurde nicht als "echte" Bindung interpretiert.

3.9.2 Kristallstruktur von [KCo2(tacitp)2]Cl

Von [KCo₂(tacitp)₂]Cl konnten pinkfarbene, prismenförmige Kristalle erhalten werden. Diese wurden aus einer dunkelroten Lösung von 1 eq H₆tacitpCl₃ · 3 H₂O und 1 eq CoCl₂ · 6 H₂O sowie 9 eq 1 M KOH durch langsames Eindampfen in Wasser erhalten. In Abbildung 65 ist die Kristallstruktur des [KCo₂(tacitp)₂]Cl-Komplexes in einer ORTEP-Darstellung abgebildet. Co(III) bildet mit dem Liganden tacitp eine oktaedrische N,N,N,O,O,O-Koordination. Hierbei ist das Cobalt(III) über die triaxialen Amingruppen sowie die O-Atome der Propionatgruppen des tacitp gebunden. Die Verbindung kristallisiert in der trigonalen Raumgruppe R $\overline{3}$ (R₁ = 4.80 %, wR₂ = 10.56 %). Das Co1-Atom liegt auf spezieller Lage (*C*₃ Symmetrie). Kalium, welches zwei Moleküle verbrückt, besitzt in dieser Kristallstruktur die Koordinationszahl sechs. Die Verbindung konnte ebenfalls mittels NMR-Spektroskopie, IR-Spektroskopie sowie einer Elementaranalyse charakterisiert werden.

Abbildung 64: ORTEP-Darstellung des K[Ni(tacitp)] · 4 H₂O Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Der Radius der H-Atome wurde fest vorgegeben.

Abbildung 65: ORTEP-Darstellung des [KCo₂(tacitp)₂]Cl-Komplexes. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurde die Protonen an den C-Atomen sowie den N-Atomen nicht abgebildet. Der Radius der H-Atome wurde fest vorgegeben.

Auch ist vom Liganden taci und dem Metall Cobalt eine Kristallstruktur der Zusammensetzung $[Co(taci)_2](NO_3)_2 \cdot 2 H_2O$ bekannt. Werden ausgewählte Bindungslängen und Bindungswinkel des Komplexes von Co(III) mit dem Liganden taci mit dem des $[KCo_2(tacitp)_2]CI$ -Komplexes verglichen, erkennt man, dass es geringe Unterschiede gibt. Die Co-N-Bindungslängen liegen beim Co-taci-Komplex bei etwa 2.00 Å und beim und Co-tacitp-Komplex bei 1.95 Å. Für den Liganden tacitp liegen die M-O-Bindungslängen der koordinierenden O-Atome der Carboxylatgruppen etwas unter denen der Co-N-Bindungen.

Tabel	le 18:	Au	sgewählte	Bindungslängen	und	Bindungswinke	des	[Co(taci) ₂](NO ₃) ₂	2	H ₂ O ^[36] -	sowie
[KCo ₂	(tacit	p)₂]C	I-Komplex	les.							
			1								

	Bindungslängen	[Å]	Bindungswinkel [°]		
	Co(III)-taci	Co(III)-tacitp	Co(III)-taci	Co(III)-tacitp	
(N-)Co-N	N11: 1.999(6)	N2: 1.951(2)	90.0(2) ¹	93.52(10)	
	N13: 1.991(4)				
	N15: 2.009				
(O-)Co-O	-	O25: 1.922(2)	-	87.18(9)	

1: Mittelwert über 6 Bindungswinke (O-Co-O)^[36] mit $\frac{1}{n} \sum_{i=0}^{n} x_i = \frac{x_{1+x_{2}+\cdots+x_{n}}}{n}$.

3.9.3 Kristallstruktur von Li₆[Li(H.1.5tacitp)2]Cl₄ · 14 H₂O

Von Li₆[Li(H_{1.5}tacitp)₂]Cl₄ · 14 H₂O konnten prismenförmige, farblose Kristalle erhalten werden. Diese kristallisieren in der triklinen Raumgruppe PĪ mit R₁ = 6.12 % und wR₂ = 11.94 %. Die Einkristalle wurden aus einer Synthese erhalten bei dem ein Zinkkomplex die Zielverbindung werden sollte. Hierbei wurden 2 eq tacitp in Wasser gelöst. Mittels 1 M LiOH-Lösung wurde ein pH-Wert von 9 eingestellt. Im Anschluss wurden 3 eq ZnCl₂ hinzugefügt. Unter langsamem Eindampfen wurden Kristalle des tacitp mit Lithium(I) erhalten. Der Komplex ist als [M₇L₂]⁺-Verbindung auskristallisiert. Dabei koordiniert das Lithium auf zwei verschiedene Arten an den Liganden und besitzt zwei verschiedene Koordination zahlen. Da Lithium(I) ein hartes Metall ist, wird nach dem HSAB-Prinzip eine Koordination an einen harten Ligandpartner erwartet, was in dieser Struktur bestätigt wird. In Abbildung 66 ist zu erkennen, dass die Koordination nur über die O-Atome des Liganden stattfindet.

Abbildung 66: ORTEP-Darstellung von Li₆[Li(H_{-1.5}tacitp)₂]Cl₄ · 14 H₂O. Die Schwingungsellipsoide entsprechen 50 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die Chlorid-Ionen (außer Cl(2)) nicht abgebildet. Der Radius der restlichen H-Atome wurde fest vorgegeben. Es wurden nicht alle H-Atome abgebildet.

Über eine oktaedrische Koordination ist das Lithium-Ion (Li1) triaxial an die O-Atome des Cyclohexanringes (O1, O3, O5) gebunden. Die Lithium-Atome, die an die O-Atome der

Carboxylatgruppen koordinieren, besitzen eine Koordinationszahl mit einer tetraedrische Anordnung. Ausgewählte Li-O-Bindungslängen sind in

 Tabelle 19 aufgelistet. Dabei sind die triaxial oktaedrisch koordinierten Li-O-Abstände etwas

 größer als die restlichen Li-O-Bindungslängen.

KZ6	
Li(1) - O(1)	2.066(2)
Li(1) - O(3)	2.108(2)
Li(1) - O(5)	2.020(2)
KZ4	
Li(2) - O(65)	1.879(6)
Li(2) - O(6)W	1.962(6)
Li(2) - O(8)W	1.935(6)
Li(2) - O(9)W	1.940(6)
Li(3) - O(24)	1.902(6)
Li(3) - O(44)	1.906(6)
Li(3) - O(4)W	1.991(6)
Li(3) - O(7)WA	1.954(6)
Li(4) - O(64)	1.969(6)
Li(4) - O(25)	1.862(6)
Li(4) - O(5)W	1.945(6)
Li(4) - Cl(2)	2.346(5)

Tabelle 19: Ausgewählte Li-O-Bindungslängen von Li₆[Li(H_{-1.5}tacitp)₂]Cl₄ · 14 H₂O.

3.10 Metallkomplexe mit Cu(II)

Kupfer(II)-Ionen haben die Tendenz bevorzugt quadratisch-planare, Jahn-Teller verzerrte oktaedrische Strukturen oder Strukturen mit Koordinationszahl 5^[97] auszubilden. Von dem Liganden taci ist bekannt, dass dieser in Lösung einen 1:1-Komplex sowie einen 1:2-Komplex mit Cu(II)-Ionen bildet. Dabei sitzt das Metall triaxial und ist über eine N6-

Koordination (Abbildung 67) an den Liganden gebunden. Folgenden Stabilitätskonstanten konnten von Hegetschweiler et al. ermittelt werden: $\log \beta_{110} = 12.09$ und $\log \beta_{120} = 18.78$.^[38]

Abbildung 67: Bekannte Cu(II)-Komplexe von dem Liganden taci.

Dabei war es interessant herauszufinden, wie die in dieser Arbeit hergestellten Liganden tacitp und macitp im Vergleich zu taci an das Kupfer binden.

3.10.1 Bestimmung der Stabilitätskonstanten von Cu²⁺ mit tacitp

Die potentiometrischen Titrationen von tacitp mit Kupfer(II)-chlorid wurden in drei verschiedenen Verhältnissen titriert (1:1, 2:1, 3:1).

Abbildung 68 zeigt die Titrationskurven des System Cu²⁺ mit tacitp und des reinen Liganden.

Abbildung 68: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) des Systems Cu²⁺ und tacitp in verschiedenen Verhältnissen (1:1 (rot), 2:1 (pink) und 3:1 (türkis)) im Vergleich zum reinen Liganden.

Während des Titrationsverlaufes entstanden hellblaue Lösungen, die bereits einen Hinweis auf eine Komplexbildung lieferten. Die Ergebnisse der kontinuierlichen potentiometrischen Titrationen zur Bestimmung der Komplexbildungskonstanten sind in Tabelle 20 zusammengefasst.

Methode	Potentiometrie					
Titrationstyp	kontinuierlich					
Verhältnis M : L	1:1 2:1 3:1					
lonenstärke	0.1 M KCI	0.1 M KCI 0.1 M KCI 0.1 M KCI				
[L] _t , mM	1	1	1			
Mischzeit [s]	450	450	450			
Titrationsmittel	0.1 М КОН 0.1 М КОН 0.1 М КОН					
Anzahl der Messpunkte	100	100	100			
Gesamtvolumenzugabe [ml]	5	5	5			
pH-Bereich	2.86 – 11.15	2.81 – 10.91	2.77 – 10.20			
Anzahl Messungen n	2 2 2					
logß ₁₁₀	12.92(6) ^[b]					
logß ₂₁₋₂	6.1(2) ^[b]					
logß ₂₁₋₁		13.7(2) ^[b]				
logß ₂₁₀		20.22(5) ^[b]				
logß ₂₁₁		23.3(2) ^[b]				
logß ₃₁₋₄		-1.3(3) ^[b]				
logß ₃₁₋₃	8.1(2) ^[b]					
logß ₃₁₋₂	14.2(1) ^[b]					
logß ₃₁₀	23.2(2) ^[b]					
σ	4.16					
рМ	11.44					

Tabelle 20: Titrationsparameter und Stabilitätskonstanten ($\log \beta_{xyz}^{[a]}$) der potentiometrischen Titrationen von Cu²⁺ mit tacitp bei T = 25 °C.

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [H]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Für die drei vermessenen Verhältnisse (1:1, 2:1 und 3:1) konnte ein gemeinsames Teilchenmodell gefunden werden. Die Teilchenverteilungen der drei Verhältnisse sind in Abbildung 69 dargestellt. Wie zu erkennen ist, findet bereits zu Beginn der Titration eine Komplexbildung statt. Zu Beginn liegen bei allen drei Verhältnissen neben dem freien Metall auch ein 210-, 211- sowie ein 310-Teilchen vor. Aufgrund der Vielzahl an existenten Teilchen wurden aus Gründen einer besseren Übersichtlichkeit nur die Teilchen, die einen Größenanteil über 10 % aufweisen (außer Teilchen, die zu Beginn der Titration vorliegen), abgebildet. Bei dem 1:1-System sind die dominierenden Spezies die Teilchen 210 sowie 110. Das 210-Teilchen liegt schon zu Beginn ab pH 2.9 bis etwa pH 7.5 vor. Die 110-Spezies bildet sich etwa ab pH 4.5 und ist bis pH 11.15 gegenwärtig. Im basischen Bereich bilden sich auch das 21-2- sowie das 31-4-Teilchen. Mit Erhöhung des Metallgehaltes in den einzelnen Titrationen erhöht sich auch der Anteil mehrkerniger Komplexe. Wie erwartet dominieren in der 3:1-Titration die dreikernen Spezies der Zusammensetzung M_3LH_x mit x = 2, 3, 4. In der 2:1-Titration nimmt der Anteil an 1:1-Teilchen ab und der Anteil an zwei- sowie dreikernigen Spezies zu. Vermutlich handelt es sich hierbei um eine side-on-Koordination. Der Ligand koordiniert anscheinend nicht triaxial über die NH-Gruppen sondern über die N, O, O-Atome. Dies würde den Metallzuwachs während dem Titrationsverlauf erklären. Ebenso ist im Kapitel 3.10.2 die Kristallstruktur von Cu²⁺ mit tacitp dargestellt. Diese lässt den mehrkernigen Aufbau der Komplexe erahnen und zeigt eine side-on Koordination. Hierbei sind aus einer sauren Lösung (pH = 3) und einem 1:1-Ansatz Einkristalle im Verhältnis 2:1 des Cu(II) mit tacitp erhalten worden. Dieses Ergebnis stimmt mit den eben diskutierten Teilchenverteilungen überein.

Für dieses System wurde ein pM-Wert ($[M]_{total} = 10^{-6} \text{ mol/I}, [L]_{total} = 10^{-5} \text{ mol/I}, pH = 7.4$) von 11.44 bestimmt. Ein Vergleich der erhalten pM-Werte verschiedener Komplexe wird im Kapitel 3.12 gezogen.

Abbildung 69: Mit HYSS2006 berechnete Teilchenverteilungen der Cu²⁺:tacitp - Systeme im Verhältnis 1:1 (links oben), 2:1 (rechts oben) und 3:1 (unten) mit [L]_t = 1 mM, Teilchen unter 10% wurden aus Gründen der Übersichtlichkeit nicht abgebildet.

3.10.2 Kristallstruktur von [Cu₂(tacitp)]Cl · 6.5 H₂O

Mit Cu(II) und dem Liganden tacitp konnten Einkristalle erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Unter langsamem Eindampfen einer Lösung von tacitp und CuCl₂ · 2 H₂O (1:1) in H₂O (pH = 3) konnten blaue, prismenförmige Kristalle erhalten werden. Diese kristallisieren in der monoklinen Raumgruppe C2/c. Aufgrund einer starken Fehlordnung der H-Atome des Lösungsmittel (nicht alle H-Atome der Wassermoleküle konnten gefunden werden) und des Gegenions konnten mit Hilfe der im Programm Platon^[78, 79] implementierten SQUEEZE-Option folgende R-Werte erhalten werden: R₁ = 3.71 %, wR₂ = 10.30 %. Abbildung 70 zeigt die ORTEP-Darstellung eines Ausschnittes der Polymerstruktur von [Cu₂(tacitp)]Cl · 6.5. Hierbei sitzen die beiden Kupfer(II)-Ionen in je einer side-on-Nische (O,O,N). Die Cu(II)-Atome werden zusätzlich von Carboxylatgruppen verbrückt. Die axial stehenden O-Atome (O1, O5) am taci-Ring (bis auf Atom O3) liegen protoniert vor.

Abbildung 70: ORTEP-Darstellung von zwei [Cu₂(tacitp)]CI · 6.5 H₂O Molekülen. Die Schwingungsellipsoide entsprechen 30 % der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit wurden die H-Atome an den C-Atomen und das Gegenion nicht abgebildet. Der Radius der H-Atome wurde fest vorgegeben.

N6 liegt in seiner einfach protonierten Form vor und trägt somit eine positive Ladung. Der Ladungsausgleich wird durch ein Chlorid-Ion, welches mittels Elementaranalyse bestätigt werden konnte, jedoch in der Röntgenkristallstruktur nicht mit verfeinert werden konnte, da es wohl fehlgeordnet vorliegt und in der Lösungsmittelumgebung versteckt ist, erreicht. Der Komplex liegt somit als [Cu₂(tacitp)]Cl \cdot 6.5 H₂O vor.

Cu(II) besitzt die Koordinationszahl fünf. Die Bindungslänge zwischen Cu(1) – O(1) und zwischen Cu(2) – O(5) beträgt jeweils > 2.7 Å und wurde somit nicht als "echte" Bindung interpretiert. Die restlichen Bindungslängen von Cu(II) liegen zwischen 1.90 und 2.35 Å. Ausgewählte Bindungslängen und Bindungswinkel sind aus Tabelle 21 zu entnehmen.

Es gibt einige literaturbekannte Beispiele für Kuper mit der Koordinationszahl fünf, bei denen die Zuordnung der Koordinationszahl nicht ganz eindeutig ist.^[98]

Tabelle 21: Ausgewählte Bindungslängen[Å] und Bindungswinkel[°] des $[Cu_2(tacitp)]Cl \cdot 6.5 H_2O-Komplexes.$

Cu(1) – O(20)	1.9550(19)	Cu(2) – O(3)	1.909(2)
Cu(1) – N(2)	1.981(2)	Cu(2) – N(4)	1.985(2)
Cu(1) – O(3)	1.9051(18)	Cu(2) – O(21)	1.972(2)
Cu(1) – O(16)	1.9337(18)	Cu(2) – O(11)	1.939(2)
Cu(1) – O(4)W	2.347(2)	Cu(2) – O(3)W	2.393(3)
O(1) - Cu(1) - O(4)W	164.000(68)	O(15) – Cu(2) – O(3)W	149.68(7)

3.10.3 Bestimmung der Stabilitätskonstanten von Cu²⁺ mit macitp

Weiterhin wurden potentiometrische Titrationen von macitp mit Kupfer(II)-chlorid in drei verschiedenen Verhältnissen durchgeführt. (1:1, 2:1, 3:1). Während des Titrationsverlaufes entstanden ebenfalls hellblaue Lösungen, die bereits einen Hinweis auf eine Komplexbildung gaben.

Abbildung 71: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) des Systems Cu²⁺ und macitp im Verhältnis (1:1, rot) im Vergleich zum reinen Liganden (blau) mit [L]_t = 1 mM.

Abbildung 72: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) des Systems Cu^{2+} und macitp in verschiedenen Verhältnissen (2:1 (pink) und 3:1 (türkis)) mit [L]_t = 0.5 mM.

Die Ergebnisse der kontinuierlichen potentiometrischen Titrationen zur Bestimmung der Komplexbildungskonstanten sind in Tabelle 22 zusammengefasst. Es konnte mittels gemeinsamer Auswertung aller sechs Titrationen der verschiedenen Verhältnisse (1:1, 2:1 und 3:1) ein einheitliches Teilchenmodell gefunden werden.

Methode	Potentiometrie					
Titrationstyp	kontinuierlich	kontinuierlich				
Verhältnis M : L	1:1 2:1 3:1					
lonenstärke	0.1 M KCI	0.1 M KCI 0.1 M KCI 0.1 M KCI				
[L] _t , mM	1	0.5	0.5			
Mischzeit [s]	450	450	450			
Titrationsmittel	0.1 M KOH	0.1 M KOH	0.1 M KOH			
Anzahl der Messpunkte	80 / 100	80 / 100	80 / 105			
Gesamtvolumenzugabe [ml]	4.56 / 4.50	4.56 / 5.7	4.30 / 4.31			
pH-Bereich	2.73 – 10.76	2.93 – 11.54	2.94 – 11.27			
Anzahl Messungen n	2	2 2				
logß ₁₁₀		11.2(4) ^[b]				
logß ₁₁₁		18.6(2) ^[b]				
logß ₂₁₋₂		5.68(8) ^[b]				
logß ₂₁₋₁		13.4(1) ^[b]				
logß ₂₁₀		19.98(2) ^[b]				
logß ₂₁₁		22.8(1) ^[b]				
logß ₃₁₋₅		-12.14(8) ^[b]				
logß ₃₁₋₄	-1.51(8) ^[b]					
logß ₃₁₋₃	7.55(6) ^[b]					
logß ₃₁₋₂	13.53(6) ^[b]					
σ	2.19					
рМ	9.90					

Tabelle 22: Titrationsparameter und Stabilitätskonstanten ($\log \beta_{xyz}^{[a]}$) der potentiometrischen Titrationen von Cu²⁺ mit macitp bei T = 25 °C.

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [H]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Die Teilchenverteilungen der drei unterschiedlichen Verhältnisse sind in Abbildung 73 dargestellt. Wie zu erkennen ist, findet auch hier bereits zu Beginn der Titration Komplexbildung statt. Zu Beginn liegen bei allen drei Verhältnisse neben dem freien Metall
auch ein 210- und ein 211-Teilchen vor. Aufgrund der Vielzahl an existenten Teilchen wurden aus Gründen der Übersichtlichkeit nur die Teilchen, die einen Anteil über 10 % aufweisen (außer Teilchen, die zu Beginn der Titration vorliegen), abgebildet. Bei dem 1:1-System ist über einen pH Bereich von 2.7 bis etwa 8 das 210-Teilchen die dominierende Spezies. Ab etwa pH 8 liegen ausschließlich zwei- sowie dreikernige Komplexe vor. Wie erwartet nimmt der Anteil an mehrkernigen Spezies bei Erhöhung des Metallgehaltes zu. So findet man den 11-Komplex bei der 2:1- und der 3:2-Titration nur noch zu geringen Anteilen wieder. Da dieser Anteil unter 10% liegt, wurde diese Spezies nicht mehr abgebildet. Wird die Teilchenverteilung der 3:1-Titration betrachtet, ist zu sehen, dass ab einem pH-Wert von etwa 6.5 nur noch dreikernige Komplexe folgender Zusammensetzung gebildet werden: M_3LH_{-x} mit x = 2, 3, 4, 5. Sehr wahrscheinlich handelt es sich auch hierbei um side-on-Koordinationen über die N, O, O-Atome wie bei dem Liganden tacitp.

 Abbildung 73: Mit HYSS2006 berechnete Teilchenverteilungen des Cu²⁺:macitp - Systems im Verhältnis 1:1 (links oben), 2:1 (rechts oben) und 3:1 (unten) mit [L]_t = 1 mM (1:1) und [L]_t = 0.5 mM (2:1, 3:1), Teilchen unter 10% wurden aus Gründen der Übersichtlichkeit nicht abgebildet (außer Teilchen, die zu Beginn der Titration vorliegen).

Um die Komplexstabilität unter physiologischem Aspekt beurteilen zu können, wurde auch hier der pM-Wert des Systems Cu(II)/macitp bestimmt. Es wurde ein pM-Wert ($[M]_{total} = 10^{-6}$ mol/I, $[L]_{total} = 10^{-5}$ mol/I, pH = 7.4) von 9.90 bestimmt. Der Vergleich der erhaltenen pM-Werte verschiedener Komplexe wird im Kapitel 3.12 gezogen.

3.11 Metallkomplexe mit Zn(II)

Zink(II)-Ionen bilden tetraedrische und oktaedrische Strukturen oder auch Strukturen mit Koordinationszahl 5 aus. Untersuchungen der Komplexe von taci mit Zink(II) wurden von Hegetschweiler et al.^[38] durchgeführt. Dabei bildet der Ligand taci in Lösung mit Zink einen 1:1- sowie einen 1:2-Komplex aus. Das Metall sitzt triaxial und ist über die N6-Koordination (Abbildung 67) an den Liganden gebunden. Folgende Stabilitätskonstanten konnten von Hegetschweiler et al. ermittelt werden: logß₁₁₀ = 8.10 und logß₁₂₀ = 13.56.^[38]

Abbildung 74: Bekannte Zn(II)-Komplexe von taci.

3.11.1 Bestimmung der Stabilitätskonstanten von Zn²⁺ mit tacitp

Die potentiometrischen Titrationen von tacitp mit Zink(II)-chlorid wurden in drei verschiedenen Verhältnissen durchgeführt. (1:1, 2:1, 3:2).

Abbildung 75 zeigt die Titrationskurven von Zn²⁺ und tacitp in verschiedenen Verhältnissen.

Abbildung 75: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) des Systems Zn^{2+} und tacitp in verschiedenen Verhältnissen (1:1 (rot), 3:2 (türkis), 2:1 (pink)) mit [L]_t = 1 mM.

Die Ergebnisse der kontinuierlichen potentiometrischen Titrationen zur Bestimmung der Komplexbildungskonstanten sind in Tabelle 23 zusammengefasst.

Methode	Potentiometrie				
Titrationstyp	kontinuierlich	kontinuierlich			
Verhältnis M : L	1:1	2:1	3:2		
lonenstärke	0.1 M KCI	0.1 M KCI	0.1 M KCI		
[L] _t , mM	1	1	1		
Mischzeit [s]	250	250	250		
Titrationsmittel	0.1 М КОН	0.1 M KOH	0.1 M KOH		
Anzahl der Messpunkte	100	100	100		
Gesamtvolumenzugabe [ml]	5	5	5		
pH-Bereich	2.88 – 11.09	2.86 – 10.63	2.87 – 10.90		
Anzahl Messungen n	2	2	2		
logß ₁₁₀		7.73(2) ^[b]			
logß ₂₁₋₄		-25.6(1) ^[b]			
logß ₂₁₋₃		-14.05(4) ^[b]			
logß ₂₁₋₂	-4.36(7) ^[b]				
logß ₂₁₀	10.33(9) ^[b]				
logß ₃₁₋₃	-7.95(7) ^[b]				
σ	3.288				
pM-Wert		6.45			

Tabelle 2	23:	Titrationspar	rameter und	l Stabilitätskonsta	nten (logß _{xy}	yz ^[a]) de	r potentiometrischen	Titrationen
von Zn ²⁺	mit	tacitp bei T	= 25 °C.					

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [H]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Durch gemeinsame Auswertung aller 6 Titrationen verschiedener Verhältnisse (1:1, 2:1, 3:2) konnte ein gemeinsames Teilchenmodell gefunden werden. Die Teilchenverteilungen der drei unterschiedlichen Verhältnisse sind in Abbildung 76 dargestellt.

Abbildung 76: Mit HYSS2006 berechnete Teilchenverteilungen der Zn²⁺:L - Systeme im Verhältnis 1:1 (links oben), 2:1 (rechts oben) und 3:2 (unten) mit [L]_t = 1 mM.

Bei allen drei Titrationsverhältnissen beginnt die Komplexbildung erst ab einem pH-Wert von circa 5.5. Im 1:1 Verhältnis ist die dominierende Spezies das 110-Teilchen. Dieses ist bis zu einem pH-Wert-Bereich von 11.0 zu finden. Desweiteren liegen 210-, 21-2-, 21-3, 21-4-Teilchen sowie die Minorspezies 313 vor. Bei Erhöhung der Metallkonzentration nimmt der Anteil an 11-Spezies ab und es ist ein Zuwachs an mehrkernigen Spezies zu erkennen. Hierbei liegen Teilchen folgender Zusammensetzung vor: M_nLH_{-x} mit n = 2, 3 und x = 2, 3, 4. Verglichen mit dem Liganden taci, entsteht in der Titration mit Zink und tacitp oder macitp keine 1:2-Spezies (Metall:Ligand). Die Propionatreste führen vermutlich durch ihre zusätzliche Koordination an das Metall dazu, dass keine Koordination über zwei Liganden möglich ist.

Für das System tacitp mit Zn²⁺ wurde ein pM-Wert von 6.45 ermittelt. Erwartungsgemäß nimmt die Stabilität der Komplexe von Kupfer nach Zink hin ab. Nach H. Irving und R. Williams^[99] erhält man bei Komplexen mit gleichem Liganden jedoch mit unterschiedlichen

Metallen eine Zunahme der Stabilität dieser Komplexe mit zweiwertigen Ionen von Übergangsmetallen der vierten Periode (Mangan über Eisen, Cobalt und Nickel bis zum Kupfer). Weiter zum Zink wird ein Abfall sichtbar, der in erster Linie durch eine fehlende Ligandenfeldstabilisierungsenergie, im Vergleich zum Kupfer, zu beobachten ist. Dieses Verhalten ist auch als Irving-Williams-Reihe bekannt. Im direkten Vergleich der Cu(II)- und Zn(II)-Komplexe dieser Arbeit, ist zu erkennen, dass mit Kupfer stabilere Komplexe als mit Zink gebildet werden. Dies wird auch anhand der ermittelten pM-Werte deutlich erkennbar.

3.11.2 Bestimmung der Stabilitätskonstanten von Zn²⁺ mit macitp

Die potentiometrischen Titrationen des Liganden macitp mit dem zweiwertigen Metall Zink wurden, wie bereits beim tacitp, in drei verschiedenen Verhältnissen (1:1, 2:1, 3:2) durchgeführt.

Abbildung 77 zeigt die Titrationskurven von Zn²⁺ und macitp in den verschiedenen Verhältnissen.

Abbildung 77: Titrationskurven (gemessene Werte als Punkte, berechneter Fit als Linie) des Systems Zn²⁺ und macitp in verschiedenen Verhältnissen (1:1 (rot), 3:2 (türkis), 2:1 (pink)) mit [L]_t = 1 mM.

Die Ergebnisse der kontinuierlichen potentiometrischen Titrationen zur Bestimmung der Komplexbildungskonstanten sind in Tabelle 24 zusammengefasst.

Methode	Potentiometrie			
Titrationstyp	kontinuierlich			
Verhältnis M : L	1:1	2:1	3:2	
lonenstärke	0.1 M KCI	0.1 M KCI	0.1 M KCI	
[L] _t , mM	1	1	1	
Mischzeit[s]	250	250	250	
Titrationsmittel	0.1 M KOH	0.1 М КОН	0.1 M KOH	
Anzahl der Messpunkte	80	80	80	
Gesamtvolumenzugabe [ml]	5	5	5	
pH-Bereich	2.74 – 10.75	2.73 –9.33	2.73 – 10.26	
Anzahl Messungen n	1	2	2	
logß ₂₁₋₁		3.87(2) ^[b]		
logß ₂₁₀		10.66(2) ^[b]		
logß ₃₁₋₅	-26.25(5) ^[b]			
logß ₃₁₋₄	-16.14(3) ^[b]			
logß ₃₁₋₃	-8.3(1) ^[b]			
σ	1.74			
pM-Wert		6.00		

Tabelle 24: Titrationsparameter und Stabilitätskonstanter	ا (logß _{xyz} ^[a]) ا	der potentior	netrischen	Titrationen
von Zn ²⁺ mit macitp bei T = 25 °C.				

^[a] $\beta_{xyz} = [M_xL_yH_z] \cdot [M]^{-x} \cdot [L]^{-y} \cdot [H]^{-z}$. ^[b] Der angegebene Fehler entspricht dem dreifachen Wert der mit HYPERQUAD2008 ermittelten Standardabweichung.

Durch gemeinsame Auswertung der Titrationen verschiedener Verhältnisse (1:1, 2:1, 3:2) konnte ein gemeinsames Teilchenmodell gefunden werden. Die Teilchenverteilungen der drei unterschiedlichen Verhältnisse sind in Abbildung 78 dargestellt. Auf den ersten Blick ist zu erkennen, dass anders als bei den Titrationen von Zn(II) mit tacitp, keine einkernigen Teilchen vorhanden sind. Selbst während der 1:1-Titration kommt kein 1:1-Teilchen vor. In allen drei Verhältnissen sind ausschließlich zwei- und dreikernige Spezies zu finden. Eine Komplexbildung findet ab einem pH-Wert von circa 5.5 statt. Die gebildeten Teilchen weisen folgende Zusammensetzung auf: $[M_2LH_x]$ mit x = 0, -1 und $[M_3LH_x]$ mit x = -3, -4, -5. Die Verteilung der einzelnen Teilchen im pH-Wert-Bereich von 2.5 bis etwa 10.5 kann aus

Abbildung 78 entnommen werden. Dabei werden bei allen drei Titrationsverhältnissen zuerst die 21-Teilchen und erst im Anschluss die 31-Teilchen gebildet. Dies lässt darauf deuten, dass hier Komplexe entstehen, bei welchen das Metall in den side-on Nischen sitzt. Nachdem ein Komplex gebildet wurde, in welchem sich zwei Metalle in die side-on Nischen befinden, kommt ein weiteres Metall hinzu, welche ebenso über die N,O,O-Atome gebunden wird. Einkernige Verbindungen konnten nicht ermittelt werden.

Abbildung 78: Mit HYSS2006 berechnete Teilchenverteilung der Zn²⁺:macitp - Systeme im Verhältnis 1:1 (links oben), 2:1 (rechts oben) und 3:2 (unten) mit [L]_t = 1 mM.

Für das System Zn²⁺ und dem Liganden macitp wurde ein pM-Wert von 6.00 ermittelt. Ein Vergleich der pM-Werte findet im Kapitel 3.12 statt.

3.11.3 Kristallisationsversuche von Zn²⁺ mit tacitp und macitp

Mit dem Metall Zn(II) und den Liganden tacitp und macitp wurden zahlreiche Kristallisationsversuche durchgeführt, die jedoch nicht zum Erfolg führten. Dabei wurde das Edukt variiert. Es wurden Versuche mit ZnCl₂, ZnBr₂ und Zn(ClO₄)₂ durchgeführt. Desweiteren wurde der pH-Wert variiert. Es wurden Kristallisationsversuche bei pH 6, 9 und 11 durchgeführt. Ebenfalls wurden Ansätze bei unterschiedlichen stöchiometrischen Verhältnissen (1:1, 1:2, 3:2, 3:1) gemacht. Zuletzt wurde das Gegenion durch Einsatz verschiedener Basen variiert. Als Basen wurden LiOH, NaOH, KOH sowie CsOH verwendet. Trotz all dieser Variationsmöglichkeiten blieben die Kristallisationsversuche erfolglos.

3.12 Vergleich von pM-Werten verschiedener Systeme

Unter Zuhilfenahme des pM-Wertes kann die Stabilität verschiedener Systeme unter physiologischen Bedingungen beurteilt werden.

Der pM-Wert ist definiert als der negative, dekadische Logarithmus der freien Metallkonzentration bei $[M]_{total} = 10^{-6} \text{ mol/I}$, $[L]_{total} = 10^{-5} \text{ mol/I}$ und einem pH-Wert von 7.4. Im Vergleich der in

Tabelle **25** aufgeführten pM-Werte ist zu erkennen, dass die Tendenz der pM-Werte oftmals dem erwarteten Verhalten widerspricht. Aufgrund der Annahme, dass eine N-Methylierung am taci einen Stabilitätszuwachs liefert,^[74] wurde ein Stabilitätszuwachs für die Komplexe des Liganden macitp im Vergleich zu tacitp erwartet. Die ermittelten pM-Werten zeigen jedoch ein gegenläufiges Ergebnis (Ausnahme Eu³⁺). Die Methylierung des Liganden führt dazu, dass der pM-Wert der untersuchten Metallen Lu³⁺, Cu²⁺ sowie Zn²⁺ für die Komplexe des macitp geringer ist. Werden die Metalle untereinander verglichen, ist ein deutlicher Zuwachs an Stabilität zu erkennen. Somit weist das Zink(II)-System mit dem Liganden tacitp als auch mit dem Liganden macitp den kleinsten Wert auf. Den stabilsten Komplex unter physiologischen Bedingungen, abgesehen von Hf⁴⁺, hat demnach das System mit dem Metall Lutetium(III). Der größte pM-Wert weist das Lu³⁺/tacitp-System mit einem Wert von 15.84 auf. Im Vergleich der Liganden tacitp und macitp mit dem Liganden taci lässt sich hier aufgrund höherer Zähnigkeit ein deutlicher Anstieg erkennen. Das System Eu³⁺/taci weist

einen pM-Wert von $6.3^{[48]}$ auf. Im Vergleich dazu besitzt das Eu³⁺/tacitp-System einen Wert von 11.12 und Eu³⁺/macitp-System 13.04.

Dabei ist wichtig zu erwähnen, dass die Stabilität durch die Eigenschaften wie Sterik, Donorstärke und die Einführung der CH₃-Gruppe an die Amingruppen stark beeinflusst wird.

	Lu ³⁺	Eu ³⁺	Cu ²⁺	Zn ²⁺
tacitp	15.84	11.12	11.44	6.45
macitp	14.63	13.04	9.90	6.00

Tabelle 25: Ermittelte pM-Werte bei $[M]_{total} = 10^{-6} \text{ mol/l}, [L]_{total} = 10^{-5} \text{ mol/l} \text{ und } pH = 7.4.$

Werden die in dieser Arbeit untersuchten Metallkomplexe bezüglich ihrer Stabilität mit gängigen MRT-Kontrastmitteln wie Gd-DTPA oder Gd-DOTA verglichen, lässt sich erkennen, dass Gd-DTPA mit einem pM-Wert von 19.11^[13] deutlich über dem des Lu³⁺/tacitp-Systems liegt. Somit ist das zurzeit gängige Kontrastmittel Gd-DTPA unter physiologischer Bedingung das deutlich stabilere System. Im Gegensatz dazu weist Gd-DOTA mit einem pM-Wert von 16.8^[100] einen etwas geringeren Wert auf.

Nichts desto trotz sind die in Tabelle 25 aufgeführten Systeme zu gering für in-vivo Anwendungen.

3.13 Zusammenfassende Diskussion der komplexbildenden Eigenschaften der Seltenerdmetalle(III), des Hf(IV) sowie des Bi(III) mit den Liganden tacitp und macitp

Die durchgeführten Untersuchungen an Seltenerdmetallen haben gezeigt, dass tacitp und macitp gut zur Bildung mehrkerniger Komplexe, insbesondere zur Bildung von [M₃L₂]-Einheiten mit großen, 3-fach positiv geladenen Seltenerdmetallen und vierfach positiv geladenem Hafnium geeignet sind. Dabei weisen [M₃L₂]-Komplexe den gleichen Strukturaufbau auf wie die Komplexe des taci mit Gd³⁺ sowie Bi³⁺. Die untersuchten Metalle besitzen ausnahmslos die Koordinationszahl 8 und sitzen in den side-on Nischen (ONO) der Liganden. Desweiteren koordinieren die Propionatgruppen der Liganden an das Metall. Unter Ausbildung von Chelat-5- sowie Chelat-6-Ringen bildet der Komplex eine Art "Sandwich". Dabei werden zwei verschiedene Diastereomere, zum einen ein C2-symmetrisches zum anderen ein D_3 -symmetrisches Isomer, gebildet. Die hergestellten Komplexe wurden mittels CHN-, IR-, ESI-MS-Untersuchungen und mittels Röntgenstrukturanalvsen, sowie teilweise mittels NMR-Untersuchungen charakterisiert. Folgende pulverförmige Komplexe wurden hergestellt: $[M_3(H_{-3}tacitp)_2]^{3-/0}$ (mit M = Ho³⁺, Er³⁺, Yb³⁺, Lu³⁺, Hf⁴⁺ und Bi³⁺) und $[M_3(H_3macitp)_2]^{3-}$ (mit M = Gd³⁺, Ho³⁺, Er³⁺, Yb³⁺, Lu³⁺). Röntgenstrukturanalytische Untersuchungen konnten von folgenden hergestellten Kristallen durchgeführt werden: $K_{3}[M_{3}(H_{3$ und Bi³⁺), [Hf₃(H_{.3}tacitp)₂] · 9 H₂O und K₃[M₃(H_{.3}macitp)₃] · x H₂O (mit M = Nd³⁺, Eu³⁺, Er³⁺) und Lu³⁺). Komplexe, die mit dem Liganden tacitp gebildet werden, kristallisieren als D_3 symmetrisches und Komplexe, die mit dem Liganden macitp gebildet werden, als C_2 symmetrisches Isomer aus.

Um zu beurteilen, ob die hergestellten mehrkernigen Komplexe als Kontrastmittel geeignet erscheinen, müssen sie bestimmte Voraussetzungen und Eigenschaften besitzen. Die zwei wichtigsten Eigenschaften, die von einem Kontrastmittel erfüllt werden müssen, sind dabei eine hohe Stabilität, damit der Komplex im Körper nicht zerfällt, sowie eine hohe Löslichkeit, damit dem Patienten ein hochkonzentriertes Präparat injiziert werden kann.

Laut Hedinger et al.^[48] nimmt mit abnehmendem Ionenradius bei Lanthanoiden die Komplexstabilität zu. Diese Annahme konnte unter anderem anhand potentiometrischer Untersuchungen bestätigt werden. Werden die Stabilitätskonstanten der Zusammensetzung $[M_3(H_{.3}L)_2]^{3+}$ verglichen, sind die Werte des Lu³⁺/tacitp-Systems (Lu³⁺/tacitp-System: log β_{32-6} = 7.9(8)) deutlich höher als die der Eu³⁺/tacitp- sowie Eu³⁺/macitp-Systeme (Eu³⁺/tacitpSystem: $\log\beta_{32-6} = -5.12(7)$, Eu³⁺/macitp-System: $\log\beta_{32-6} = 0.7(7)$). Untersuchungen haben bewiesen, dass dieses Verhalten auch unter physiologischen Bedingungen gegeben ist. Werden hierzu die pM-Werte verglichen, ist zu erkennen, dass die des Lutetium-System für tacitp und macitp (Lu³⁺/tacitp-System: pM-Wert = 15.84, Lu³⁺/macitp-System: pM-Wert = 14.63) größer sind als die der Europium-Systeme der gleichen Liganden (Eu³⁺/tacitp-System: pM-Wert = 11.12, Eu³⁺/macitp-System: pM-Wert = 13.04). Besonders wird dies beim Vergleich mit Eu³⁺/tacitp deutlich. Hierbei ist der Wert um vier Größenordnungen kleiner als der des Lu³⁺/tacitps. Diese Beobachtung wurde bei Untersuchungen gemacht, die bei RT stattfanden. Werden Stabilitätsuntersuchungen betrachtet, die bei pH-Wert = 7.4 und einer Temperatur von 120°C in Gegenwart des Liganden DTPA durchgeführt wurden, lassen die Ergebnisse Folgendes erkennen: die Systeme des Gd³⁺/macitp, Er-macitp sowie Hf⁴⁺/tacitp zeichnen sich als die stabilsten der untersuchten Komplexe aus und geben am wenigsten Metall an den Kompetitor DTPA ab (mit Gd³⁺/macitp: nach 1x autoklavieren: 2.5 %, 6x autoklavieren: 7.7 %; Er³⁺/macitp: nach 1x autoklavieren: 4.2 %, 6x autoklavieren: 5.2 %; Hf⁴⁺/tacitp: nach 1x autoklavieren: 0 %, 6 x autoklavieren: 0 %). Die Komplexe des Holmium(III) erweisen sich als die instabilsten der untersuchten Komplexe, dicht gefolgt von den Komplexen mit Lutetium(III). Bedenklich ist jedoch, dass bei den neu ermittelten Teilchenmodellen der Metalle Lu³⁺ und Eu³⁺ in dem pH-Wert-Bereich von etwa 7 nicht mehr ausschließlich, wie zuvor angenommen, die [Lu₃L₂H₋₆] Spezies, sondern auch die [Lu₃L₂H₋₇] oder [Lu₃L₂H₋₈] Spezies vorzufinden sind. Es scheint, als würden koordinierende Propionatreste nicht mehr an das Metall binden sondern sich an deren Stelle am Metall Wassermoleküle anlagern, welche daraufhin deprotoniert werden.

Anhand von Löslichkeitsuntersuchungen wurde festgestellt, dass alle untersuchten Komplexe recht ähnliche Werte aufweisen. Dabei konnten folgende Werte gemessen werden: Gd³⁺/macitp, Lu³⁺/macitp und Hf⁴⁺/tacitp weisen eine Löslichkeit von etwa 130 mg Ln/ml auf, die Verbindungen Er³⁺/macitp und Ho³⁺/macitp um die 190 mg Ln/ml, Yb³⁺/macitp circa 160 mg Ln/ml und Ho³⁺/tacitp 275 mg Ln/ml. Das Ziel liegt etwa bei 300 mg Ln/ml.

Da beide Aspekte, d.h. die Stabilität und die Löslichkeit, und zudem noch die Osmolarität wichtige Faktoren bei der Wahl der Kontrastmittel sind, kommt aufgrund seiner sehr hohen Stabilität und seiner geringen Osmolarität der [Hf₃(H₋₃tacitp)₂]-Komplex als aussichtsreicher Vertreter der untersuchten Komplexe für die Röntgendiagnostik in Betracht. Verbesserungsbedürftig ist hierbei jedoch seine Wasserlöslichkeit. Mit nur 130 mg Hf/ml wird das gesteckte Ziel von 300 mg Ln/ml^[7] weit verfehlt. Um die Löslichkeit zu verbessern wurden Derivatisierungsversuche, unter anderem Templatsynthesen mit CH₃I und Glycidol durchgeführt. Mit der Erkenntnis, dass Hafnium stabile mehrkernige Komplexe eingeht,

wurden mit Hafnium(IV) und Liganden tacitp, tacitptm und tacitatm Syntheseversuche durchgeführt. Diese Untersuchungen, sowie die durchgeführten Derivatisierungsversuche am Komplex, führten zu zahlreichen Produktgemischen, die nicht voneinander getrennt werden konnten. Bei dem Versuch der Herstellung des [Hf₃(H₋₃macitp)₂]-Komplexes in wässriger Lösung aus Hafnium(IV) und dem Liganden macitp zeigte sich, dass bei der Synthese nicht die gewünschte Verbindung entstanden ist. Es hat sich herausgestellt, dass während der Synthese des Komplexes [Hf₃(H₋₃macitp)₂] ein Propionatrest abgespalten wurde, und dies eine enorme Steigerung der Wasserlöslichkeit zur Folge hatte. Dieser Komplex wies daraufhin eine Wasserlöslichkeit von 400 mg Hf/ml auf. Die ESI-MS-Messungen führen zu dem Schluss, dass an der Stelle am Metall, an der sich vorher der Propionatrest befunden hatte, nun eine Hydroxogruppe zu finden ist. Aus diesem Grund wäre es nun interessant den Komplex [Hf₃(H₋₃tacitp)₂] mit nur fünf Propionsäureresten gezielt zu synthetisieren. Es wäre möglich, dass diese Verbindung die gewünschte Wasserlöslichkeit, Stabilität und auf jeden Fall eine niedrige Osmolarität aufweist.

3.14 Zusammenfassende Diskussion der komplexbildenden Eigenschaften der Übergangsmetalle Cu(II), Co(III) und Zn(II) mit den Liganden tacitp und macitp

Die hergestellten Liganden tacitp und macitp besitzen einen gemischten Satz an Donoratomen (N,O). Diese Donoren zählen nach dem HSAB-Prinzip zu den härteren Basen, wobei dem N-Atom ein etwas weicherer Charakter zugeschrieben wird als dem O-Atom. Daher könnte mit den frühen Vertretern der Übergangreihe (d⁰-d⁵) eher eine O-Koordination erwarten werden und mit den Metallen d⁵-d¹⁰ eher eine N-Koordination. Die in dieser Arbeit verwendeten Übergangsmetalle (Co³⁺, Ni²⁺ Cu²⁺) zeigen jeweils in den Kristallstrukturen mit dem Liganden tacitp eine triaxiale N-Koordination. Im Gegensatz dazu weist Li⁺ als Hauptgruppenelement und hartes Metall im Komplex mit tacitp, wie erwartet, nur eine Koordination über die O-Atome auf.

Mit den Metallen Kupfer(II) und Zink(II) wurden potentiometrische Messungen durchgeführt. Die Titrationen von tacitp und macitp mit Kupfer(II) wurden in drei verschiedenen Verhältnissen titriert. (1:1, 2:1, 3:1). Die Titrationen von tacitp und macitp mit Zink(II) wurden in den Verhältnissen 1:1, 2:1 und 3:2 durchgeführt. Kupfer(II) mit einer d⁹-Konfiguration und Zink(II) mit einer d¹⁰-Elektronenkonfiguration zählen nach dem HSAB-Prinzip zu den weicheren Metallen. Es wird somit nach dem HSAB-Prinzip eine Koordination über die etwas weicheren N-Atome erwartet. Die potentiometrischen Untersuchungen konnten jedoch zeigen, dass die gebildeten mehrkernigen Komplexe bei den Systemen: Cu²⁺/tacitp, Cu²⁺/macitp, Zn²⁺/tacitp und Zn²⁺/macitp zum größten Teil eine side-on-Koordination und somit eine Koordination über einen gemischten N,O-Donorsatz besitzen. Die gebildeten Teilchen besitzen folgende Zusammensetzung: [M_yL_nH_x] mit y = 2, 3; n = 1 und x = -5 bis 1. Die side-on-Koordination konnte anhand der Kristallstruktur von Cu(II) mit tacitp bestätigt werden. Dabei konnten unter langsamen Eindampfen bläuliche, prismenförmige Kristalle mit der Zusammensetzung [Cu₂(tacitp)]Cl · 6.5 H₂O erhalten werden. Das Cu(II) besitzt eine Koordinationszahl von fünf.

Mit dem Metall Zn²⁺ konnten trotz zahlreicher Kristallansätze keine Einkristalle gebildet werden. Mit den Metallen Co³⁺ und Ni²⁺, welche nach dem HSAB-Prinzip (mit Co³⁺ d⁶- und Ni²⁺ d⁸- Elektronenkonfiguration) eher als weichere Metalle gelten, konnten hingegen Einkristalle erhalten werden, welche eine triaxiale N3-Koordination mit dem Liganden tacitp eingehen. Es entstehen in beiden Fällen 1:1 - Komplexe. Zusätzlich koordinieren die Propionsäurereste des tacitp an das Metall und beide Metalle werden oktaedrisch koordiniert.

4. Experimenteller Teil

4.1 Chemikalien

Meist wurden handelsübliche Chemikalien der Firmen Fluka, Merck, Sigma Aldrich und Alfa Aesar verwendet und ohne weitere Reinigung eingesetzt. Die wasserfreien Lösungsmittel über Molsieb stammten von den Firmen Acros Organics sowie Sigma Aldrich. Deuterierte Lösungsmittel und NMR-Referenzsubstanzen wurden von den Firmen Euriso-Top, Sigma-Aldrich, ABCR GmbH & Co KG, Deutero GmbH sowie ARMAR AG verwendet. Der Ligand taci, der nicht im Handel erhältlich ist, wurde nach Vorschrift von der Firma EMS Dottikon unter der Leitung von Prof. K. Hegetschweiler hergestellt und von Herrn Anton Zaschka sowie Herrn Dr. Christian Neis an der Universität des Saarlandes über einen [Ni(taci)₂]²⁺-Komplex gereinigt. Als Ionenaustauscherharze wurden DOWEX 50WX2 der Firma Acros Organics (Kationenaustauscher, 100-200 mesh, H⁺-Form), DOWEX 1X2 der Firma Sigma-Aldrich (Anionenaustauscher, 50-100 mesh, Cl⁻Form) sowie Amberlite MB-6113 der Firma Merck (Mischbettionenaustauscher mit Farbindikator, H⁺-Form und OH⁻-Form) eingesetzt. Zur säulenchromatographischen Trennung wurde SP-Sephadex C25 der Firma Sigma-Aldrich verwendet.

4.2 Analytik

NMR-Spektren wurden an einem Avance Ultrashield 400 der Firma Bruker aufgenommen (Resonanzfrequenzen 400.13 MHz für ¹H- bzw. 100.6 MHz für ¹³C-Kern). Alle NMR-Messungen wurden bei 294 K durchgeführt. Die chemischen Verschiebungen δ sind relativ zu Natrium(trimethylsilyl)propionat-d4 (TMSP) für D₂O angegeben. Die Signalmultiplizitäten werden folgendermaßen abgekürzt: s = Singulett, d = Dublett, m = Multiplett, t = Triplett. Die Kopplungskonstanten sind in Hz angegeben. Die NMR-Spektren wurden mit dem Programm ACDLabs10.0 ausgewertet. Bei Spektren in Abhängigkeit vom pH* wurde dieser unter Zugabe von DCI oder KOD in D₂O eingestellt. Die Messung erfolgte mit einer in wässriger Lösung Medium kalibrierten Glaselektrode (Dreipunktkalibrierung mit Standardpuffern pH 2.0, pH 7.0 und pH 10.0 der Firma Fluka AG). Die ¹H-NMR-Titrationen wurden mit einer Spintrode vermessen und mit dem Programm NMR-Tit^[101] ausgewertet.

Elementaranalysen (C, H, N) wurden von Frau Susanne Harling mit dem CHN 900 Analysegerät der Firma Leco am Institut für Anorganische Chemie unter der Leitung von Prof. Dr. Guido Kickelbick durchgeführt. Ebenso wurden Analysen von Herrn Anton Zaschka im Arbeitskreis von Prof. Dr. Dietrich Volmer an einem vario EL Elementaranalysator der Firma Elementar Analysesysteme GmbH durchgeführt.

IR-Spektren wurden an einem Spektrometer Vector 22 MIR mit einer ATR-Einheit der Firma Bruker aufgenommen. Ausgewertet wurden die Spektren mit der Software OPUS NT 3.1. Die Signallagen sind in cm⁻¹ angegeben.

Die **Potentiometrischen Titrationen** wurden kontinuierlich beziehungsweise diskontinuierlich (Batch-Verfahren) in thermostatisierten Glasgefäßen bei 25 °C durchgeführt. Hierzu wurde ein Metrohm 713 oder 780 pH/mV-Meter und eine loLine Elektrode (ISO 9001) mit einer internen lod/lodid Referenz von SCHOTT Instruments verwendet. Das Standardpotential wurde durch eine Kalibrierung vor und nach jeder Messung mit 2 mM HCI-Lösung (Inertelektrolyt 0.1 M KCI) bestimmt. Mit Hilfe des Computerprogramms Titkurve^[102] wurden das Standardpotential (E°) und der p K_W -Wert errechnet. Da die untersuchten Liganden hygroskopisch waren, wurden zur Titration Stammlösungen der Liganden verwendet. Zum Ansetzen der Titrationslösungen wurden ferner Metallsalzstammlösungen benutzt.

Bei den kontinuierlichen Messungen wurden 50 ml der jeweiligen Lösung mit 0.1 M KOH (Merck) unter Verwendung einer vollautomatisierten Kolbenbürette Methrom 665 oder 765 unter Stickstoffatmosphäre titriert. Die Steuerung der Titration erfolgt mit Hilfe des Programms Messlabor.^[103] Die Ionenstärke der Lösungen wurde durch Zugabe von 0.1 M KCI eingestellt.

Bei den diskontinuierlichen Titrationen (Batch-Verfahren) wurde jeder Messpunkt einzeln in einer Messzelle angesetzt. Dabei wurden 10 ml der zu titrierenden Lösung (Inertelektrolyt: 0.1 M KCI) mit einer 0.1 M KOH Maßlösung (Merck) versetzt. Die Überprüfung der Gleichgewichtseinstellung sowie die pH-Wertmessungen erfolgten mit einer dreipunktkalibrierten Glaselektrode (ISO 9001, SCHOTT Instruments).

Die Gleichgewichtskonstanten (Konzentrationskonstanten) wurden mit Hilfe des Programms HYPERQUAD 2006/2008^[104, 105] ermittelt. Dabei wurde der pH-Wert als $-\log[H^+]$ und die Autoprotolyse des Wassers als p K_W = 13.78 (I = 0.1 M, 25 °C) definiert. Die Totalkonzentrationen an Metall, Ligand und Protonen wurden als feste Werte eingesetzt. In seltenen Fällen wurden die Protonenkonzentrationen verfeinert. Das zuvor aus den Kalibriertitrationen ermittelte Standardpotential wurde ebenfalls als fester Wert eingetragen. Mit Hilfe des Programmes HYSS2006^[106] wurden die Teilchenverteilungen mit den ermittelten Gleichgewichtskonstanten berechnet.

Die **Kristallstrukturanalysen** wurden von Dr. Volker Huch auf einem Stoe IPDS oder einem Bruker X8 Apex durchgeführt. Von Dr. Christian Neis wurden die Programme SHELXS97^[107] zur Strukturlösung und SHELXL97^[108] zur Verfeinerung verwendet. Mit Hilfe des Programms Diamond 3.0 wurden die Kristallstrukturen visualisiert.

ESI-Massenspektren wurden von Dr. Mathias Großer (Firma Magrochem) und von Devid Hero (Arbeitskreis Organische Makromolekulare Chemie unter der Leitung von Prof. Dr. Gerhard Wenz) auf einer Water-LC/MS-Anlange bestehend aus einem ZQ4000-ESI-Massenspektrometer (Single-Quadrupol), binärer Water 1525-HPLC-Pumpe, Water2487-UV/VIS-Detektor, PAL-CTC Autosampler und Waters In-Line Degasser AF aufgenommen. Als Eluenten wurden folgende HPLC-Lösungsmittel eingesetzt: Ameisensäure 0.1 % in Acetonitril (Chromanorm von VWR) und Ameisensäure 0.1 % in Wasser (Millipore). Die Massen wurden mit Hilfe der Flow-Injection-Methode unter folgenden Bedingungen durchgeführt: 100 µl injiziertes Probenvolumen, Konusspannung: 10 V, 20 V, 40 V, 60 V, Kapillarspannung: 3.00 kV, Extratorspannung: 5 V, RF-Lenz: Flussrate: 0.1 ml/min. Die Massenspektren wurden mit Hilfe des Programmes MassLynx 4.0 SP1 von Waters ausgewertet.

Die ESI-Massenspektren der Komplexe, die von Dr. Thomas Frenzel in Berlin (Bayer HealthCare) aufgezeichnet worden sind. wurden einem ΖQ 4000-ESIan Massenspektrometer (Single-Quadrupol, Fa. Waters) durchgeführt. Die angesetzten Lösungen waren ca. 0.6 mM, in MeOH / Wasser (50 : 50) gelöst und wurden mit einer Flussrate von 30 µl/min injiziert. Die Spektren wurden über 60 – 120 s hinweg akkumuliert. Der Massenbereich betrug 150 – 2000 m/z, die Scangeschwindigkeit 1 scan/s und die Cone Spannung 50-100 V. Es wurden sowohl positive wie auch negative lonen analysiert. HPLC: Waters Alliance 2695 mit PDA-Detektor 996. Da die Substanzen nur geringe UV-Absorption aufwiesen, wurde die HPLC sowohl an das ESI-MS, als auch an ein ICP-MS zur elementspezifischen Detektion der Peaks gekoppelt. ICP-MS: Agilent 7500a, ausgestattet mit einer speziellen Torch zur Einleitung von organischen Lösungsmitteln und Zumischung von Ar/O₂ zum Aerosol zur Verhinderung von Kohlenstoffabscheidungen im MS. Der Ausfluss des PDA-Detektors der HPLC wurde direkt mit dem Zerstäuber des ICP verbunden. Die der HPLC 1 ml/min. Zur Vermeidung Flussrate betrug von starken Intensitätsschwankungen bei der Gradientenelution, wurde dem HPLC-Eluat direkt vor dem ICP über eine Schlauchpumpe und ein T-Stück 90% MeOH mit ca. 0.5 ml/min zugemischt. Das ICP-MS registriert die Intensitäten der ausgewählten Elemente (Isotope) mit einer zeitlichen Auflösung von 0.1 s/Isotop.

Die **Bestimmung des Metallgehaltes** erfolgte zum Teil in Saarbrücken, zum Teil in Berlin (Bayer HealthCare). Es wurden drei Methoden (ICP-OES, Schnelltests mit Xylenolorange und Schnelltest mir Arsenazo III) verwendet. Beim Arsenazo III-Schnelltest wurde von Dr. Thomas Frenzel eine 1 mM Lösung des Arsenazo III in Gegenwart eines 10 mM Bis-Tris Puffers bei pH 7 angesetzt. Im Anschluss wurden 200 μ I einer Prüflösung in dem gleichen Puffer mit 10 μ I der Farbstofflösung gemischt. Dabei kann die Prüflösung 10 – 50 μ M freies Ln³⁺ (2 – 10 nmol Ln³⁺) enthalten. Es wurden Farbvergleichslösungen mit 0, 1, 2, 5, 10 sowie 20 nmol an Lu³⁺ hergestellt.

Der Schnelltest mit Xylenolorange konnte nicht bei allen Subtanzen angewendet werden, da er bei einen pH-Wert von ≤ 5 durchgeführt wurde und einige Proben bei diesem pH-Wert bereits zerfallen sind. Bei diesem Test wurde eine 30 mM Lösung der Substanz angesetzt und erneut mit zuvor angesetzten Farblösungen verglichen.

Die **Löslichkeit** nach Methode KM A27 der Metallkomplexe wurde von Dr. Thomas Frenzel (Bayer HealthCare) in Berlin bestimmt. Die Messungen wurden meist bei Raumtemperatur in Gegenwart des Puffers Tris-HCI in Wasser und pH 7.4 durchgeführt. Dabei wurde eine bekannte Menge der Komplexe in einem definiertem Volumen gelöst und der Metallgehalt im Überstand bestimmt.

Die **Stabilitäten der Komplexe** gegenüber DTPA wurden in Berlin von Dr. Thomas Frenzel (Bayer HealthCare) durchgeführt. Dabei wurden die Substanzen (5 mM) in Gegenwart des Puffers MOPS (50 mM) bei pH 7.4 angesetzt. Ein Teil der Lösung enthielt 5 mM CaNa₃-DTPA. Im Versuch wurden die Lösungen 15 min bei 120 °C autoklaviert. Die Aufheiz- sowie Abkühlphase dauerte dabei je 45 min. Nachdem ein Aliquot zur Analyse entnommen wurde, wurden die Lösungen zunächst einmal und dann im Anschluss noch fünf weitere Male autoklaviert.

4.3 Konditionierung der Austauscherharze

4.3.1 Allgemeine Arbeitsvorschrift 1 (AAV1)

Das Kationenaustauscherharz DOWEX 50WX2 wurde vor Benutzung 24 Stunden in Wasser quellen gelassen und im Anschluss in eine Chromatographiesäule gefüllt. Danach wurde mit 1 I Wasser und 1 I 6 M Salzsäure eluiert. Anschließend wurde die Säule bis zur Neutralisation mit Wasser gespült. Nach Verwendung der Säule wurde diese jedes Mal mit 1 I 6 M Salzsäure eluiert und anschließend mit Wasser erneut gespült. In seltenen Fällen wurde die Säule bei starker Verunreinigung mit 12 M Salzsäure gespült.

4.3.2 Allgemeine Arbeitsvorschrift 2 (AAV2)

Das Anionenaustauscherharz DOWEX 1X2 wurde nach dem Quellen in Wasser über Nacht in eine Chromatographiesäule gefüllt. Danach wurde diese mit 1 I Wasser sowie 2 I 1 M Natronlauge eluiert und im Anschluss erneut bis zur neutralen Reaktion des Eluats mit Wasser gespült. Nach Verwendung der Säule wurde diese mit 2 I 1 M Salzsäure gespült und erneut mit Wasser gewaschen. In diesem Zustand konnte die Säule über längere Zeit gelagert werden. Vor dem nächsten Gebrauch musste die Säule wieder mit 2 I 1 M Natronlauge gespült und mit Wasser bis zur Neutralisation eluiert werden.

4.3.3 Allgemeine Arbeitsvorschrift 3 (AAV3)

Der Mischbettionentauscher Amberlite MB-6113 wurde in Wasser suspendiert und in eine Chromatographiesäule gefüllt. Ohne jegliche Konditionierung war dieser sofort einsatzbereit. Die aufzureinigenden Komplexe wurden mit Wasser eluiert. Der Mischbettionentauscher mit Farbindikator zeigt mittels einer Farbänderung die Kapazität des Ionentauschers an.

4.4 Ligandsynthesen

4.4.1 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit-N,N',N''- tripropionitril (tacitpn)

2.0 g (11.3 mmol) taci wurden in 100 ml Methanol gelöst und mit 7.4 ml (0.11 mol) Acrylnitril versetzt. Die Lösung wurde 24 h bei RT gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt, das Produkt mit Diethylether und Hexan gewaschen und 24 h im Hochvakuum getrocknet.

Ausbeute: 3.9 g (10.96 mmol, 97%).

Beim Einengen des Lösungsmittels am Rotationsverdampfer wurden farblose Einkristalle erhalten, die röntgenstrukturanalytisch untersucht wurden.

Charakterisierung

¹H-NMR (D₂O, δ in ppm): 2.72 (m, 9H), 3.03 (t, J = 7 Hz, 6H), 4.23 (t, J = 3 Hz, 3H) ¹³C-NMR (D₂O, δ in ppm): 20.5, 43.4, 60.1, 72.0, 123.2

Elementaranalyse: $C_{15}H_{24}N_6O_3 \cdot 0.5 H_2O$, M = 345.40 g/mol

	С	н	Ν
berechnet [%]	52.16	7.29	24.33
gemessen [%]	52.23	7.23	23.40

IR: 602, 754, 843, 902, 1072, 1113, 1252, 1352, 1425, 1987, 2067, 2248, 2924, 3103, 3268 cm⁻¹.

MS: MS (ES+): m/z (%): 337.5 (100) {tacitpn+H}⁺. MS (ES-): m/z (%): 335.6 (100) {tacitpn-H}⁻.

4.4.2 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit-N,N',N''- tripropionsäure-trihydrochlorid (H₃tacitpCl₃)

3.8 g (10.7 mmol) tacitpn wurden mit 10.3 g (64.4 mmol) 25%-NaOH-Lösung versetzt und 4 h unter Rückfluss gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt, der resultierende Rückstand wurde in ca. 5 ml HCl (1 M) gelöst und auf einen Kationentauscher DOWEX 50 aufgetragen. Es wurde mit je 1 I H₂O, 0.25 M HCl, 1 M HCl und 3 M HCl eluiert. Die 3 M Fraktion wurde

am Rotationsverdampfer zur Trockne eingeengt und 24 h im Hochvakuum getrocknet. Ausbeute: 5.1 g (9.10 mmol, 85%).

Charakterisierung

¹H-NMR (D₂O, δ in ppm): 2.43 (t, J = 7 Hz, 6H), 2.61 (m, 3H), 2.89 (t, J = 7 Hz, 6H), 4.26 (m, 3H) ¹³C-NMR (D₂O, δ in ppm): 40.3, 44.7, 60.5, 71.8, 184.2

Elementaranalyse: $C_{15}H_{27}N_3O_9 \cdot 3 H_2O \cdot 3 HCI$, M = 556.82 g/mol

	С	н	Ν
berechnet [%]	32.36	6.52	7.55
gemessen [%]	32.56	6.31	7.64

IR: 1073, 1111, 1308, 1409, 1458, 1571, 2903 cm⁻¹.

MS: MS (ES⁺): m/z (%): 441.4 (100) {H₃tacitp+Na}⁺, 394.2 (75) {H₃tacitp+H}⁺. MS (ES⁻): m/z (%): 392.3 (100) {H₃tacitp-H}⁻.

4.4.3 Synthese von 1,3,5-Tridesoxy-1,3,5-tris(methylamino)-*cis*-inosit-N,N',N''- tripropionsäure-trihydrochlorid (H_6 macitpCl₃)

400 mg (0.7 mmol) tacitp \cdot 3 HCl \cdot 3 H₂O wurden in 25 ml (334 mmol) 37%-Formaldehyd-Lösung (pH = 1) gelöst und mit einer Spatelspitze Pd (10%) / C versetzt. Die Hydrierung erfolgte 4 d im Autoklaven bei RT und einem Wasserstoffdruck von 50 bar. Die Reaktionslösung wurde abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Der resultierende Rückstand wurde in

Wasser und Ameisensäure aufgenommen. Gebildetes Paraformaldehyd wurde abfiltriert und das Filtrat erneut am Rotationsverdampfer vom Lösungsmittel befreit. Die Reinigung erfolgte mittels Kationentauscher. Dazu wurde der Rückstand in circa 5 ml HCI (3 M) gelöst und auf einen Kationentaucher DOWEX 50 aufgetragen. Es wurde mit je 1 I 0.5 M HCI, 1 M HCI und 3 M HCI eluiert. Die 3 M Fraktion wurde am Rotationsverdampfer zur Trockne eingeengt und 24 h im HV getrocknet.

Ausbeute: 313 mg (0.50 mmol, 71%).

Charakterisierung

¹H NMR (D₂O, δ in ppm): 3.04 (t, J = 7 Hz, 6H), 3.15 (s, 9H), 3.67 (m, 3H), 3.78 (t, J = 7Hz, 6H), 5.04 (m, 3H) ¹³C NMR (D₂O, δ in ppm): 23.6, 34.3, 45.5, 57.9, 58.6, 169.9

Elementaranalyse: $C_{18}H_{33}N_3O_9 \cdot 3.5$ HCl \cdot 2 H₂O, M = 599.11 g/mol (3.5 HCl wurden mittels potentiometrischer Titration verifiziert.)

	С	н	Ν
berechnet [%]	36.09	6.81	7.01
gemessen [%]	35.80	6.64	7.03

IR: 647, 798, 988, 1099, 1138, 1188, 1401, 1714, 1943, 2008, 2115, 2165, 2189, 2927 cm⁻¹.

4.4.4 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit-N,N',N''trimethylpropionat (tacitptm)

200 mg (1.13 mmol) deprotoniertes taci wurden in Methanol gelöst und mit 1.02 ml (11.3 mmol, 973 mg) Methylacrylat (10 eq) versetzt. Die Lösung wurde 3 d bei RT gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt, das Produkt mit Diethylether und Hexan gewaschen und 24 h im

Hochvakuum getrocknet.

Ausbeute: 436 mg (0.80 mmol, 71%)

Charakterisierung

¹H-NMR (D₂O, δ in ppm): 2.96 (m, 6H), 3.53 (m, 6H), 3.67 (m, 3H), 3.76 (s, 9H), 4.70 (t, J = 2.9 Hz, 3H) ¹³C-NMR (D₂O, δ in ppm): 27.9, 38.3, 50.5, 54.7, 61.2, 170.6

Elementaranalyse: $C_{18}H_{33}N_3O_9 \cdot 0.2 C_4H_{10}O$, M = 450.29 g/mol

	С	Н	Ν
berechnet [%]	50.15	7.84	9.33
gemessen [%]	50.16	7.57	9.26

IR: 761, 796, 911, 995, 1115, 1201, 1333, 1436, 1575, 1717, 2710, 2956 cm⁻¹.

4.4.5 Synthese von 1,3,5-Triamino-1,3,5-tridesoxy-*cis*-inosit-N,N',N''- trimethylacetat-trihydrochlorid (H₃tacitatmCl₃)

100 ml Methanol wurden im Eisbad vorgelegt und innerhalb von 15 min mit 5 ml (70 mmol) Thionylchlorid versetzt. Im Anschluss wurden 500 mg (1.16 mmol) H_3 tacita · 4.5 H_2O , welches von Dr. Christian Neis hergestellt wurde, hinzugegeben. Die Suspension wurde 3 d bei RT gerührt. Die am Ende

der Reaktion klare Lösung wurde am Rotationsverdampfer vom Lösungsmittel befreit und im Hochvakuum getrocknet.

Ausbeute: 630 mg (1.14 mmol, 99%).

Charakterisierung

¹H-NMR (D₂O, δ in ppm): 3.75 (m, 3H), 3.86 (s, 9H), 4.21 (m, 6H), 4.71 (m, 3H) ¹³C-NMR (D₂O, δ in ppm): 47.6, 56.6, 59.6, 66.4, 170.4

Elementaranalyse: $C_{15}H_{27}N_3O_9$ · 3 HCl · 2 H₂O, M = 538.80 g/mol

	С	н	Ν
berechnet [%]	33.43	6.36	7.79
gemessen [%]	33.24	5.88	7.41

IR: 647, 798, 988, 1099, 1138, 1188, 1401, 1714, 1943, 2008, 2115, 2165, 2189, 2927 cm⁻¹.

4.5 Metallkomplexsynthesen

4.5.1 Synthese von Na₃[Lu₃(H₋₃tacitp)₂]

100 mg (0.2 mmol) tacitp \cdot 3 HCl \cdot 3 H₂O wurden in Wasser gelöst. Mittels 1 M NaOH wurde ein pH-Wert von 8 eingestellt. Anschließend wurden 1.6 eq in Wasser gelöstes LuCl₃ \cdot 6 H₂O (118 mg, 0.3 mmol) hinzugegeben. Der pH-Wert wurde erneut kontrolliert und auf pH ~ 8 eingestellt. Die

Suspension wurde 1 h bei 80 °C erhitzt und im Anschluss der verbleibende Feststoff abfiltriert. Das Filtrat wurde mittels einer Ultrafiltrationszelle entsalzt (Membran: Celluloseacetat, NMWL 500 g/mol, Millipore). Das Retentat der UF wurde vom Lösungsmittel befreit und im Hochvakuum 24 h getrocknet.

Ausbeute: 70 mg (0,024 mmol, 48 %).

Charakterisierung

Gemisch aus C₂- und D₃-symmetrischer Komplexspezies

¹H-NMR des C_2 - und D_3 -symmetrischen Komplexes (1:1, D_2O , δ in ppm):

2.37 - 2.51 ($[C_2+D_3]$ -CH₂COO, 12H), 2.73 - 2.80 ($[C_2+D_3]$ -CH₂aN + $[C_2+D_3]$ -CH_{ax}, 12H), 2.97 - 3.08 ($[C_2+D_3]$ -CH₂bN, 6H), 4.19 (m, $[C_2]$ -CH_{eq}, 1H), 4.35 (m, $[1xC_2+D_3]$ -CH_{eq}, 4H), 4.56 ($[C_2]$ -CH_{eq}, 1H)

¹³C-NMR des C_2 - und D_3 -symmetrischen Komplexes (1:1, D_2O , δ in ppm):

37.8, 37.9, 43.37, 43.41, 43.5, 43.6, 63.8, 63.9 (x 2), 69.2, 72.9, 73.0, 76.3, 171.2, 185.7

$\label{eq:constant} \textbf{Elementaranalyse:} \ C_{30}H_{42}N_6O_{18}Na_3Lu_3 \ \cdot$	5.5 H ₂ O, M = 1467.64 g/mol
--	---

	С	н	Ν
berechnet [%]	24.55	3.64	5.73
gemessen [%]	24.86	4.02	5.22

$$\begin{split} & \text{IR: } 629, 867, 954, 1005, 1138, 1370, 1570, 2024, 2070, 2187, 3217, 3411, 3668 \ \text{cm}^{-1}. \\ & \text{MS: } \text{MS (ES^+): } \text{m/z (\%): } 1391.3 \ (100) \ \{[Lu_3(H_{.3}\text{tacitp})_2] + 4Na\}^+, \ 707.3 \ (73) \\ & \{[Lu_3(H_{.3}\text{tacitp})_2] + 5Na\}^{2^+}, \ 1369.3 \ (10) \ \{[Lu_3(H_{.3}\text{tacitp})_2] + 3Na + H\}^+. \ \text{MS (ES^-): } \text{m/z (\%): } 661.4 \\ & (100) \ \{[Lu_3(H_{.3}\text{tacitp})_2] + Na\}^{2^-}, \ 433.4 \ (50) \ \{[Lu_3(H_{.3}\text{tacitp})_2]\}^{3^-}, \ 650.3 \ (45) \ \{[Lu_3(H_{.3}\text{tacitp})_2] + H\}^{2^-}, \\ & 1345.5 \ (40) \ \{[Lu_3(H_{.3}\text{tacitp})_2] + 2Na\}^-, \ 1323.5 \ (12) \ \{[Lu_3(H_{.3}\text{tacitp})_2] + Na + H\}^-. \end{split}$$

4.5.2 Synthese von Na₃[Ho₃(H₋₃tacitp)₂]

Die Synthese wurde analog der Synthese von Na₃[Lu₃(H₋₃tacitp)₂] durchgeführt. Hierbei wurden 100 mg (0.2 mmol) tacitp \cdot 3 HCl \cdot 3 H₂O sowie 1.6 eq HoCl₃ \cdot 6 H₂O (109 mg, 0.3 mmol) als Edukte verwendet. Ausbeute: 66 mg (0.049 mmol, 49%).

Charakterisierung

Elementaranalyse: $C_{30}H_{42}N_6O_{18}Na_3Ho_3 \cdot 8 H_2O$, M = 1482.57 g/mol

	С	н	Ν
berechnet [%]	24.30	3.94	5.67
gemessen [%]	24.10	3.70	5.94

IR: 611, 870, 951, 1002, 1103, 1134, 1394, 1556, 3252 cm⁻¹.

MS: MS (ES⁺): m/z (%): 1361.7 (100) { $[Ho_3(H_{-3}tacitp)_2]+4Na$ }⁺, 1339.7 (32) { $[Ho_3(H_{-3}tacitp)_2]+3Na+H$ }⁺. MS (ES-): m/z (%): 1271.7 (100) { $[Ho_3(H_{-3}tacitp)_2]+2H$ }⁻, 1293.7 (79) { $[Ho_3(H_{-3}tacitp)_2+Na+H]$ }⁻, 1315.7 (58) { $[Ho_3(H_{-3}tacitp)_2]+2Na$ }⁻.

Von C_2 -K₃[Ho₃(H₋₃tacitp)₂] · 14.5 H₂O konnten Einkristalle durch langsames Eindampfen einer wässrigen Lösung erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Hierbei wurden 50 mg des Liganden (0.087 mmol, 2 eq) in Wasser gelöst und mittels 1 M KOH wurde ein pH-Wert von 9 eingestellt. Danach wurden 36 mg HoCl₃ · 6 H₂O (0.131 mmol, 3 eq) hinzugefügt.

4.5.3 Synthese von Na₃[Er₃(H₋₃tacitp)₂]

100 mg (0.2 mmol) tacitp \cdot 3 HCl \cdot 3 H₂O wurden in etwas Wasser gelöst. Mittels 1 M NaOH wurde ein pH-Wert von 8 eingestellt. Anschließend wurden 1.6 eq ErCl₃ \cdot 6 H₂O (110 mg, 0.3 mmol) hinzugegeben. Der pH-Wert wurde erneut kontrolliert und auf pH = 8 eingestellt. Die Suspension wurde 1 h bei

80 °C erhitzt und im Anschluss der ausgefallene Feststoff abfiltriert. Das Filtrat wurde am Rotationsverdampfer vom Lösungsmittel befreit. Nach Entfernen des Lösungsmittels wurde der Rückstand in 50 ml Ethanol aufgenommen und kurz bei 100 °C erhitzt und filtriert. Das Filtrat wurde erneut vom Lösungsmittel befreit und im Hochvakuum 24 h getrocknet. Ausbeute: 65 mg (0.04 mmol, 40%).

Charakterisierung

Elementaranalyse: $C_{30}H_{42}N_6O_{18}Na_3Er_3 \cdot 15 H_2O$, M =1615.66 g/

	С	Н	Ν
berechnet [%]	22.30	4.49	5.20
gemessen [%]	22.18	4.07	5.24

IR: 606, 626, 655, 875, 952, 1003, 1135, 1397, 1556, 2031, 3431, 3486 cm⁻¹.

4.5.4 Synthese von Na₃[Yb₃(H₋₃tacitp)₂]

Die Synthese wurde analog der Synthese von Na₃[Er₃(H₋₃tacitp)₂] durchgeführt. Hierbei wurden 100 mg (0.2 mmol) tacitp \cdot 3 HCl \cdot 3 H₂O und 1.6 eq YbCl₃·6H₂O (112 mg, 0.3 mmol) als Edukte verwendet.

Ausbeute: 88 mg (0.054 mmol, 54%).

Charakterisierung

Elementaranalyse: $C_{30}H_{42}N_6O_{18}Na_3Yb_3 \cdot 15 H_2O$, M = 1633.04 g/mol

	С	н	Ν
berechnet [%]	22.06	4.44	5.15
gemessen [%]	21.95	4.20	5.09

IR: 619, 789, 871, 953, 1002, 1070, 1102, 1135, 1274, 1396, 1557, 2850, 3260 cm⁻¹.

4.5.5 Synthese von [Hf₃(H₋₃tacitp)₂]

500 mg (0.9 mmol) tacitp \cdot 3 HCl \cdot 3 H₂O wurden in etwas Wasser gelöst und mit 8.1 ml 1 M NaOH-Lösung (8.1 mmol, 9 eq) versetzt. Im Anschluss wurden 489 mg HfCl₄ (1.5 mmol, in Wasser gelöst) hinzugegeben. Es entstand ein weißer Niederschlag. Mittels 1 M HCl wurde ein pH-Wert von 3 eingestellt. Die Suspension wurde 3 d unter

Rückfluss erhitzt. Nach Abfiltrieren des Rückstandes wird das Filtrat auf einen Mischbettionenaustauscher Amberlite MB 6113 aufgetragen. Es wurde mit 500 ml Wasser eluiert. Das Eluat wurde mittels Lyophilisation vom Lösungsmittel befreit. Ausbeute: 320 mg (0.211 mmol, 47%).

Charakterisierung

Gemisch aus C_2 - und D_3 -symmetrischer Komplexspezies

¹H-NMR des C_2 - und D_3 -symmetrischen Komplexes (1:1, D_2O , δ in ppm, pH ~ 7):

2.51 - 2.65 ([C_2+D_3]-CH₂COO, 12H), 3.15 - 3.18 ([C_2+D_3]-CH₂aN, 6H), 3.24 - 3.32 [C_2+D_3]-CH₂bN, 6H),3.46 (m, [C_2]-CH_{ax}, 1H), 3.50 (m, [C_2]-CH_{ax}, 1H), 3.53 (m, [D_3]-CH_{ax}, 3H), 3.57 (m, [C_2]-CH_{ax}, 1H), 4.75 (m, [C_2]-CH_{eq}, 1H), 4.90 - 5.00 ([C_2+D_3]-NH, 6H), 5.03 ([$1xC_2+D_3$]-CH_{eq}, 4H), 5.30 (m, [C_2]-CH_{eq}, 1H)

¹³C-NMR des C₂- und D₃-symmetrischen Komplexes (1:1, D₂O, δ in ppm, pH ~ 7):
36.13, 36.19, 36.22, 36.32, 44.78 (x 2), 44.85, 44.87, 62.10, 62.15, 62.24, 62.29, 74.7, 76.62,
76.65, 78.4, 182.6 (x 2), 182.7 (x 2)

	С	н	Ν
berechnet [%]	23.75	4.32	5.54
gemessen [%]	23.69	3.93	5.32

IR: 614, 817, 884, 1010, 1360, 1624, 1984, 2059, 2144, 2167, 3207, 3264, 3424, 3465, 3483, 3729, 3865 cm⁻¹.

MS: MS (ES⁻): m/z (%): 1355.2 (100) {[Hf₃(H₋₃tacitp)₂]+HCOO}⁻, 1309.2 (15) {[Hf₃(H₋₃tacitp)₂]-H}⁻.

Von D_3 -[Hf₃(H₋₃tacitp)₂] · 9 H₂O konnten Einkristalle durch Lösen von 50 mg des Komplexes in einem Wasser-Ethanol-Gemisch und durch langsames Eindampfen erhalten werden, die röntgenstrukturanalytisch untersucht wurden.

4.5.6 Synthese von K₃[Bi₃(H.₃tacitp)₂]

50 mg (0.087 mmol, 2 eq) tacitp \cdot 3 HCl \cdot 3.5 H₂O wurden in 10 ml MeOH gelöst und mit 0.52 ml 1 M KOH-Lösung (0.52 mmol, 12 eq) versetzt. Zu dieser Lösung wurden 41.1 mg BiCl₃ (0.130 mmol, 3 eq) gelöst in 10 ml MeOH hinzugegeben. Es entstand ein weißer Niederschlag. Die Suspension wurde 1 h unter Rückfluss erhitzt und im Anschluss 2 d im Kühlschrank aufbewahrt. Der Niederschlag wurde abfiltriert und 4 d im Hochvakuum getrocknet.

Charakterisierung

¹H-NMR des *D*₃- symmetrischen Komplexes (D₂O, δ in ppm, pH* = 5.9): 2.64 – 2.73 (m, 12H), 3.38 - 3.45 (m, 6H), 3.62 - 3.67 (m, 6H), 4.66 – 4.72 (m, 6H) ¹³C-NMR des *D*₃-symmetrischen Komplexes (D₂O, δ in ppm, pH* = 5.9): 35.03, 44.90, 59.27, 66.66, 181.19

Elementaranalyse: $C_{30}H_{42}Bi_{3}K_{3}N_{6}O_{18} \cdot 7 H_{2}O \cdot 4 MeOH, M = 1773.33 g/mol$

	С	н	Ν
berechnet [%]	23.03	4.09	4.74
gemessen [%]	23.04	3.95	4.55

IR: 1116, 1391, 1558, 2160, 2932 cm⁻¹.

Von D_3 -K₃[Bi₃(H₋₃tacitp)]₂ konnten Einkristalle erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Dabei wurden 100 mg (0.178 mmol) H₃tacitpCl₃ · 3 H₂O in circa 10 ml Methanol gelöst und mit 0.521 ml 1 M KOH (in MeOH) versetzt. Parallel wurden 27 mg (0.086 mmol) BiCl₃ in Methanol gelöst. Zu der Lösung des Liganden wurde die Metallsalzlösung hinzugegeben. Die Lösung wurde 1 h unter Rückfluss erhitzt. Nachdem die Lösung auf RT abgekühlt ist, wurde diese in den Kühlschrank gestellt. Es kristallisierte K₃[Bi₃(H₋₃tacitp)₂] · 20 H₂O.

4.5.7 Synthese von $K_3[Gd_3(H_3tacitp)]_2 \cdot 19 H_2O$

50 mg (0.089 mmol) H_3 tacitp $CI_3 \cdot 3 H_2O$ wurden in Methanol gelöst und mit 0.801 ml 1 M KOH (in Methanol) versetzt. Im Anschluss wurden 40.5 mg (0.089 mmol) $Gd(NO_3)_3 \cdot 6 H_2O$ hinzugegeben. Die Lösung wurde 1 h bei 80 °C erhitzt. Unter langsamem Eindampfen wurde das

Methanol entfernt. Im Anschluss wurde der Ansatz wieder in H₂O aufgenommen. Nach erneutem Abdampfen wurden Einkristalle nach einigen Wochen erhalten.

Die Charakterisierung erfolgte mittels Kristallstrukturanalyse.

200 mg (0.371 mmol) H_3 tacitp $CI_3 \cdot 2 H_2O$ wurden in Wasser gelöst und mit 1.11 ml 1 M KOH (6 eq) sowie 2.23 ml 1 M NaOH (12 eq) versetzt. Im Anschluss wurden 248 mg (0.557 mmol, 3 eq) Eu(NO₃)₃ · 6 H₂O hinzugegeben. Die Lösung wurde 1 h bei

80 °C erhitzt. Unter langsamem Eindampfen wurden Einkristalle nach einigen Wochen erhalten.

Die Charakterisierung erfolgte mittels Kristallstrukturanalyse.

4.5.9 Synthese von K[Ni(tacitp)] · 4 H₂O

Hierbei wurden 50 mg (0.087 mmol, 2 eq) tacitp \cdot 3 HCl \cdot 3 H₂O in Wasser gelöst und mit 31 mg (0.131 mmol, 3 eq) NiCl₂ \cdot 6 H₂O, welches zuvor ebenfalls in wenig Wasser gelöst wurde, versetzt. Im Anschluss wurde mittels 1 M KOH ein pH-Wert von 11 eingestellt. Unter langsamem Eindampfen konnten aus der Lösung violette Einkristalle der Zusammensetzung K[Ni(tacitp)] \cdot 4 H₂O

gewonnen werden. Charakterisierung

Elementaranalyse: $C_{15}H_{24}NiKN_3O_9 \cdot 3 H_2O$, M = 542.20 g/mol

	С	Н	Ν
berechnet [%]	33.23	5.58	7.75
gemessen [%]	33.15	5.66	7.55

IR: 503, 522, 534, 565, 583, 635, 653, 719, 819, 910, 942, 1019, 1067, 1090, 1114, 1167, 1303, 1348, 1506, 1633 cm⁻¹.

4.5.10 Synthese von [KCo₂(tacitp)₂]Cl

50 mg (0.087 mmol, 1 eq) tacitp \cdot 3 HCl \cdot 3 H₂O wurden in Methanol gelöst und mit 0.78 ml (0.78 mmol, 9 eq) 1 M KOH versetzt. Im Anschluss wurden 21 mg (0.087 mmol, 1 eq) CoCl₂ \cdot 6 H₂O hinzugefügt und auf 80 °C erhitzt. Nachdem Methanol teilweise abgedampft war, wurde die Lösung mit Wasser versetzt. Unter langsamem Eindampfen konnten aus der Lösung nach einigen Tagen pinkfarbene Einkristalle der Zusammensetzung [KCo₂(tacitp)₂]Cl gewonnen werden.

Charakterisierung

¹H-NMR (D₂O, δ in ppm, pH* = 7.6):

2.33 – 2.37 (m, 6H), 2.67 – 2.70 (m, 3H), 2.91 – 2.99 (m, 3H), 3.73 – 3.80 (m, 3H), 4.30 – 4.32 (t, 3H) ¹³C-NMR (D₂O, δ in ppm, pH* = 7.6):

36.45, 51.54, 61.59, 69.23, 192,04

Elementaranalyse:	$C_{30}H_{48}CO_2KN_6O_{18}CI$	$3 H_2O, M = 1$	1027.20 g/moi
		l u	N

	С	Н	Ν
berechnet [%]	35.08	5.30	8.18
gemessen [%]	34.91	4.91	8.28

IR: 512, 527, 556, 599, 610, 633, 686, 769, 887, 899, 939, 970, 1000, 1038, 1063, 1091, 1138, 1218, 1249, 1373, 1469, 1600, 2167, 3195, 3591 cm⁻¹.

4.5.11 Synthese von [Cu₂(tacitp)]Cl · 5 H₂O · EtOH

50 mg (0.083 mmol) tacitp \cdot 3 HCl \cdot 3 H₂O wurden in Wasser gelöst und mit 14 mg CuCl₂ \cdot 2 H₂O (0.083 mmol, 1 eq), ebenfalls in Wasser gelöst, hinzugegeben. Unter langsamem Eindampfen konnten aus der Lösung (pH ~ 3) Einkristalle von [Cu₂(tacitp)]Cl \cdot 4 H₂O \cdot EtOH gewonnen werden, welche im Hochvakuum getrocknet wurden.

Charakterisierung

Elementaranalyse: $C_{15}H_{19}Cu_2N_3O_9CI \cdot 4 H_2O \cdot EtOH$, M = 668.02 g/mol

	С	Н	Ν
berechnet [%]	30.56	5.28	6.29
gemessen [%]	30.20	4.67	7.02

IR: 660, 667, 677, 700, 989, 1115, 1201, 1418, 1558, 1569, 1700 cm⁻¹.

4.5.12 Synthese von [Li₇(H_{-1.5}tacitp)₂]Cl₄ · 14 H₂O

50 mg (0.087 mmol, 2 eq) tacitp \cdot 3 HCI \cdot 3 H₂O wurden in etwas Wasser gelöst und mit 0.78 ml (0.78 mmol, 18 eq) 1 M LiOH versetzt. Im Anschluss wurden 18 mg (0.13 mmol, 3 eq) ZnCl₂ hinzugefügt und kurze Zeit gerührt. Unter langsamem Eindampfen konnten aus der Lösung Einkristalle von [Li₇(H_{-1.5}tacitp)₂]Cl₄ \cdot 14 H₂O gewonnen werden.

Die Charakterisierung erfolgte mittels Kristallstrukturanalyse.

4.5.13 Synthese von Na₃[Lu₃(H₋₃macitp)₂] · 2.5 H₂O · 0.5 EtOH

Die Synthese wurde analog der Synthese von Na₃[Er₃(H₋₃tacitp)₂] durchgeführt. Hierbei wurden 100 mg (0.2 mmol) macitp \cdot 3.5 HCl \cdot 4.5 H₂O und 112 mg LuCl₃ \cdot 6 H₂O (0.3 mmol) eingesetzt.

Ausbeute: 85 mg (0.056 mmol, 56%).

Charakterisierung

Gemisch aus C_2 - und D_3 -symmetrischer Komplexspezies

¹H-NMR des C_2 - und D_3 -symmetrischen Komplexes (D_2O , δ in ppm):

2.07 - 2.08 ([C_2+D_3]-CH_{ax} + [C_2+D_3]-CH₂aN, 12H), 2.32 - 2.36 ([C_2+D_3]-CH₂aCOO, 6H), 2.49 - 2.50 ([C_2+D_3]-CH₃, 18H), 2.73 - 2.80 ([C_2+D_3]-CH₂bCOO, 6H), 3.52 - 3.60 ([C_2+D_3]-CH₂bN, 6H), 4.72 - 4.83 ([C_2+D_3] CH_{eq}, 6H)

¹³C-NMR des C_2 - und D_3 -symmetrischen Komplexes (D_2O , δ in ppm):

34.98, 35.01, 35.03, 35.06, 42.59, 42.61, 42.63, 42.66, 51.81, 51.84 (x 2), 51.89, 67.2, 68.3 (x 2), 69.5, 72.34 (x 2), 72.37, 72.42, 185.16, 185.22, 185.24, 185.33

Elementaranalyse: $C_{36}H_{54}Lu_3N_6Na_3O_{18} \cdot 2.5 H_2O \cdot 0.5 EtOH$, M = 1520.79 g/mol

	С	Н	Ν
berechnet [%]	29.22	4.11	5.53
gemessen [%]	29.05	4.15	5.14

IR: 614, 666, 910, 945, 992, 1116, 1147, 1226, 1285, 1325, 1395, 1556, 2025, 2162, 2198, 2816, 3312 cm⁻¹.

MS: MS (ES⁺): m/z (%): 1475.6 (100) {[Lu₃(H₋₃macitp)₂]+4Na}⁺, 1453.6 (35) {[Lu₃(H₋₃macitp)₂]+3Na+H}⁺, 1431.6 (20) {[Lu₃(H₋₃macitp)₂]+2Na+2H}⁺. MS (ES-): m/z (%): 703.5 (100) {[Lu₃(H₋₃macitp)₂]+Na}²⁻, 1429.8 (40) {[Lu₃(H₋₃macitp)₂]+2Na}⁻, 692 (13) {[Lu₃(H₋₃macitp)₂]+H}²⁻, 1407 (13) {[Lu₃(H₋₃macitp)₂]+Na+H}⁻.

Von C_2 -K₃[Lu₃(H₋₃macitp)₂] · 11 H₂O konnten Einkristalle durch langsames Eindampfen erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Hierbei wurden 47 mg (0.078 mg, 2 eq) H₃macitp · 2 H₂O in Wasser gelöst und mit 18 eq 1 M KOH versetzt. Im Anschluss wurden 15 mg (0.039 mmol, 1eq) LuCl₃ · 6 H₂O hinzugegeben und 1 h bei 80 °C erhitzt. Zur Lösung wurden noch einige ml Aceton hinzugegeben. Unter langsamem Eindampfen konnten aus der Lösung Einkristalle C_2 -K₃[Lu₃(H₋₃macitp)₂] · 11 H₂O gewonnen werden.

4.5.14 Synthese von Na₃[Gd₃(H₋₃macitp)₂] · 11 H₂O

Die Synthese wurde analog der Synthese von Na₃[Er₃(H₋₃tacitp)₂] durchgeführt. Hierbei wurden 100 mg (0.2 mmol) macitp \cdot 3.5 HCl \cdot 4.5 H₂O und 95 mg GdCl₃ \cdot 6 H₂O (0.3 mmol) eingesetzt.

Ausbeute: 85 mg (0.053 mmol, 53%).

Charakterisierung

Elementaranalyse: $C_{36}H_{54}Gd_3N_6Na_3O_{18} \cdot 11 H_2O$, M = 1597.73 g/mol

	С	н	Ν
berechnet [%]	27.06	4.80	5.26
gemessen [%]	27.03	4.95	5.28

IR: 600, 806, 856, 903, 942, 971, 992, 1024, 1114, 1146, 1285, 1324, 1394, 1474, 1567, 2808, 3323 cm⁻¹.

MS: MS (ES⁺): m/z (%): 1423.3 (100) {[Gd₃(H_{.3}macitp)₂]+4Na}⁺.

4.5.15 Synthese von Na₃[Ho₃(H₋₃macitp)₂] \cdot 13 H₂O

Die Synthese wurde analog der Synthese von Na₃[Er₃(H₋₃tacitp)₂] durchgeführt. Hierbei wurden 100 mg (0.2 mmol) macitp \cdot 3.5 HCl \cdot 4.5 H₂O und 97 mg HoCl₃ \cdot 6 H₂O (0.3 mmol) als Ausgangsmaterialien verwendet. Ausbeute: 72 mg (0.044 mmol, 54%).

Charakterisierung

Elementaranalyse: $C_{36}H_{54}Ho_3N_6Na_3O_{18} \cdot 13 H_2O$, M = 1656.80 g/mol

	С	Н	Ν
berechnet [%]	26.10	4.87	5.07
gemessen [%]	26.05	4.72	5.01

IR: 613, 857, 906, 944, 992, 1026, 1114, 1147, 1285, 1325, 1396, 1568, 2809, 3338 cm⁻¹.

MS: MS (ES⁺): m/z (%): 1445.9 (100) {[Ho₃(H₋₃macitp)₂]+4Na}⁺. MS (ES⁻): m/z (%): 1377.9 (100) {[Ho₃(H₋₃macitp)₂]+Na+H}⁻, 1399.7 (90) {[Ho₃(H₋₃macitp)₂]+2Na}⁻, 1355.9 (77) {[Ho₃(H₋₃macitp)₂]+2H}⁻.

4.5.16 Synthese von $Na_3[Er_3(H_3macitp)_2] \cdot 13.5 H_2O$

Die Synthese wurde analog der Synthese von Na₃[Er₃(H_{.3}tacitp)₂] durchgeführt. Hierbei wurden 100 mg (0.2 mmol) macitp \cdot 3.5 HCl \cdot 4.5 H₂O und ErCl₃ \cdot 6 H₂O (98 mg, 0.3 mmol) als Ausgangsmaterialien verwendet. Ausbeute: 99 mg (0,059 mmol, 59%).

Elementaranalyse: $C_{36}H_{54}Er_{3}N_{6}Na_{3}O_{18} \cdot 13.5 H_{2}O$, M = 1672.80 g/mol				
	С	н	Ν	
berechnet [%]	25.85	4.88	5.02	
gemessen [%]	25.87	5.26	5.17	
IR: 613, 857, 907, 944, 992, 1114, 1324, 1394, 1575, 3258 cm ⁻¹ .				

MS: MS (ES⁺): m/z (%): 1452.3 (100) {[Er₃(H₋₃macitp)₂]+4Na}⁺.

Von C_2 -K₃[Er₃(H₋₃macitp)₂] · 6.5 H₂O konnten Einkristalle durch langsames Eindampfen nach einigen Wochen erhalten werden, die röntgenstrukturanalytisch untersucht wurden. Hierbei wurde 47 mg (0.078 mmol, 2 eq) des H₆macitpCl₃ · 2 H₂O in Wasser gelöst und mit 18 eq 1 M KOH versetzt. Im Anschluss wurden 15 mg ErCl₃ · 6 H₂O (0.039 mmol, 1 eq) hinzugefügt. Die Lösung wurde 1 h bei 80 °C erhitzt, abgekühlt und eingedampft.

Die Charakterisierung erfolgte mittels Kristallstrukturanalyse.

4.5.17 Synthese von Na₃[Eu₃(H₋₃macitp)₂] \cdot 17 H₂O

47 mg (0.078 mmol, 2 eq) H_6 macitp $CI_3 \cdot 2$ H₂O wurden in Wasser gelöst und mit 18 eq 1 M KOH versetzt. Im Anschluss wurden 52 mg (0.177 mmol, 3 eq) Eu(NO₃)₃ hinzugegeben und 1 h bei 80 °C erhitzt. Unter langsamem Eindampfen konnten Einkristalle von K₃[Eu₃(H₋₃macitp)₂] · 17 H₂O

erhalten werden.

Charakterisierung

Die Charakterisierung erfolgte mittels Kristallstrukturanalyse.

4.5.18 Synthese von Na₃[Yb₃(H₋₃macitp)₂] · 11 H₂O

Die Synthese wurde analog der Synthese von Na₃[Er₃(H₋₃tacitp)₂] durchgeführt. Hierbei wurden 100 mg (0.2 mmol) macitp \cdot 3.5 HCl \cdot 4.5 H₂O und YbCl₃ \cdot 6 H₂O (99 mg, 0.3 mmol) als Ausgangsmaterialien verwendet. Ausbeute: 118 mg (0.072 mmol, 72%).

Charakterisierung

Elementaranalyse: $C_{36}H_{54}N_6Na_3O_{18}Yb_3 \cdot 11 H_2O$, M = 1645.14 g/mol

	С	н	Ν
berechnet [%]	26.28	4.66	5.11
gemessen [%]	26.37	4.64	4.97

IR: 615, 859, 908, 945, 1115, 1324, 1394, 1568, 3296 cm⁻¹.

MS: MS (ES⁺): m/z (%): 1496.3 (100) {[Yb₃(H₋₃macitp)₂]+4Na}.

4.5.19 Synthese von Na₃[Nd₃(H₋₃macitp)₂] · 13.5 H₂O

47 mg (0.078, 2 eq) H_6 macitp $CI_3 \cdot 2 H_2O$ wurden in Wasser gelöst und mit 18 eq 1 M KOH versetzt. Im Anschluss wurden 51 mg (0.078 mmol, 3 eq) Nd(NO₃)₃ hinzugegeben und im 1 h bei 80 °C erhitzt. Unter langsamem Eindampfen konnten Einkristalle von K₃[Nd₃(H₋₃macitp)₂] · 13.5 H₂O erhalten

werden.

Die Charakterisierung erfolgte mittels Kristallstrukturanalyse.
Kristallographischer Anhang

tacitpn

Diffraktometer	Stoe IPDS		
Identifikationscode	sh3021		
Summenformel	$C_{15} \; H_{24} \; N_6 \; O_3$		
Molmasse	336.40 g/mol		
Temperatur	200(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Triklin		
Raumgruppe	P-1		
Zellkonstanten	a = 10.770(5) Å	$\alpha = 85.09(6)^{\circ}$.	
	b = 11.415(5) Å	$\beta = 75.09(5)^{\circ}$.	
	c = 16.154(8) Å	γ = 67.84(5)°.	
Zellvolumen	1777.2(14) Å ³		
Z	4		
Dichte (berechnet)	1.257 Mg/m ³		
Absorptionkoeffizient	0.091 mm ⁻¹		
F(000)	720		
Kristallgröße	0.31 x 0.23 x 0.20 mm ³	0.31 x 0.23 x 0.20 mm ³	
Theta-Bereich	2.61 bis 27.00°.	2.61 bis 27.00°.	
hkl-Bereich	-13 ≤ h ≤ 13, -14 ≤ k≤14	-13 ≤ h ≤ 13, -14 ≤ k≤14, -20 ≤ l ≤ 20	
Gemessene Reflexe	16347		
Unabhängige Reflexe	7215 [R(int) = 0.0628]		
Vollständigkeit bis theta = 27.00°	92.9 %		
Absorptionkorrektur	keine		
Verfeinerungsmethode	Full-matrix least-square	s gegen F ²	
Daten / Restraints / Parameter	7215 / 0 / 509		
Goodness-of-fit gegen F ²	0.897		
R-Werte [I>2sigma(I)]	$R_1 = 0.0519, wR_2 = 0.12$	216	
R-Werte (alle Daten)	$R_1 = 0.0960, wR_2 = 0.13$	394	
Restelektronendichte/größte Lücke	0.334 und -0.418 eÅ ⁻³	0.334 und -0.418 eÅ ⁻³	

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3021. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	x	У	Z	U(eq)
C(11)	3359(2)	3184(2)	1732(1)	23(1)
O(11)	4007(2)	3560(2)	2285(1)	29(1)
C(12)	1773(2)	3724(2)	2027(1)	23(1)
N(12)	1225(2)	3328(2)	2894(1)	24(1)
C(121)	1442(2)	1976(2)	2956(1)	31(1)
C(122)	323(3)	1725(2)	2660(2)	47(1)
C(123)	636(4)	380(3)	2565(2)	57(1)
N(124)	927(4)	-689(3)	2483(2)	86(1)
C(13)	1200(2)	5172(2)	1992(1)	24(1)
O(13)	1647(2)	5698(1)	2582(1)	29(1)
C(14)	1653(2)	5634(2)	1082(1)	26(1)
N(14)	1254(2)	7014(2)	1040(1)	36(1)
C(41A)	-214(3)	7749(3)	1119(2)	56(1)
C(42A)	-593(4)	7802(4)	308(3)	53(1)
C(43A)	234(7)	8260(7)	-403(4)	72(2)
N(43A)	809(8)	8883(6)	-890(4)	73(2)
C(41B)	-214(3)	7749(3)	1119(2)	56(1)
C(42B)	-659(10)	8858(9)	666(6)	53(1)
C(43B)	208(18)	8819(17)	-224(9)	72(2)
N(43B)	1160(20)	8188(16)	-1001(12)	93(6)
C(15)	3210(2)	5015(2)	687(1)	24(1)
O(15)	3980(2)	5572(1)	1015(1)	27(1)
C(16)	3791(2)	3578(2)	800(1)	24(1)
N(16)	5305(2)	3107(2)	445(1)	28(1)
C(161)	6009(2)	1739(2)	294(1)	31(1)
C(162)	5955(3)	1410(2)	-588(2)	41(1)
C(163)	6585(3)	40(2)	-737(2)	41(1)
N(164)	7074(3)	-1039(2)	-811(2)	55(1)
C(21)	7874(2)	6013(2)	3738(1)	27(1)
O(21)	8595(2)	4762(1)	3999(1)	32(1)
C(22)	6314(2)	6269(2)	3908(1)	32(1)
N(22)	6084(2)	5233(2)	3564(1)	38(1)
C(221)	5483(3)	5518(3)	2802(2)	54(1)
C(222)	6204(3)	6019(3)	2012(2)	59(1)
C(223)	7599(4)	5174(3)	1628(2)	58(1)

N(224)	8719(4)	4549(4)	1328(2)	97(1)
C(23)	5548(2)	6523(2)	4860(1)	33(1)
O(23)	6020(2)	5403(2)	5349(1)	36(1)
C(24)	5770(2)	7615(2)	5211(1)	35(1)
N(24)	5069(3)	7957(2)	6101(1)	59(1)
C(31A)	3652(4)	8511(4)	6378(2)	42(1)
C(32A)	3174(5)	8988(4)	7308(3)	43(1)
C(33A)	3564(6)	10061(5)	7426(4)	51(1)
N(34A)	3828(7)	10891(6)	7526(4)	90(2)
C(31B)	4701(8)	8952(7)	6394(4)	42(1)
C(32B)	3699(10)	9255(11)	7273(6)	43(1)
C(33B)	3707(14)	10306(15)	7711(7)	51(1)
N(34B)	3752(13)	11139(10)	8011(7)	90(2)
C(25)	7322(2)	7305(2)	5098(1)	29(1)
O(25)	7911(2)	6257(2)	5620(1)	32(1)
C(26)	8133(2)	7034(2)	4161(1)	27(1)
N(26)	9636(2)	6680(2)	4068(1)	27(1)
C(261)	9966(3)	7720(2)	4318(2)	38(1)
C(262)	11514(3)	7365(2)	4163(2)	42(1)
C(263)	11862(3)	8395(3)	4401(2)	52(1)
N(264)	12123(3)	9199(3)	4583(2)	85(1)

[Cu₂(tacitp)]Cl · 6.5 H₂O

Diffraktometer	Bruker X8 APEX-II, Nonius Kappa CCD	
Identifikationscode	sh3201	
Summenformel	$C_{15} \; H_{37} \; Cl \; Cu_2 \; N_3 \; O_{15.50}$	
Molmasse	634.56 g/mol	
Temperatur	123(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem	Monoklin	
Raumgruppe	C2/c	
Zellkonstanten	a = 25.1930(13) Å	α = 90°.
	b = 10.4804(4) Å	$\beta = 114.330(3)^{\circ}.$
	c = 23.1531(11) Å	γ = 90°.
Zellvolumen	5570.2(4) Å ³	

Z	8
Dichte (berechnet)	1.513 Mg/m ³
Absorptionkoeffizient	1.597 mm ⁻¹
F(000)	2640
Kristallgröße	0.30 x 0.19 x 0.06 mm ³
Theta-Bereich	1.77 bis 27.00°.
hkl-Bereich	$-31 \le h \le 32$, $-13 \le k \le 13$, $-29 \le l \le 28$
Gemessene Reflexe	42056
Unabhängige Reflexe	6077 [R(int) = 0.0385]
Vollständigkeit bis theta = 27.00°	99.9 %
Absorptionkorrektur	Multi-Scan
Max. und min. Transmission	0.9103 und 0.6459
Verfeinerungsmethode	Full-matrix least-squares gegen F ²
Daten / Restraints / Parameter	6077 / 15 / 364
Goodness-of-fit gegen F ²	1.102
R-Werte [I>2sigma(I)]	$R_1 = 0.0371, wR_2 = 0.0975$
R-Werte (alle Daten)	$R_1 = 0.0488, wR_2 = 0.1030$
Restelektronendichte/größte Lücke	1.017 und -0.481 eÅ ⁻³

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3201. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	Х	у	Z	U(eq)
 Cu(1)	6781(1)	6364(1)	2994(1)	19(1)
O(1)	6837(1)	8251(2)	2169(1)	20(1)
C(19)	7088(1)	12078(3)	956(1)	20(1)
C(1)	6250(1)	8692(2)	1953(1)	19(1)
Cu(2)	7016(1)	8906(1)	4057(1)	20(1)
N(2)	6002(1)	6606(2)	2293(1)	18(1)
O(21)	7227(1)	13068(2)	739(1)	25(1)
O(20)	7424(1)	11309(2)	1349(1)	21(1)
C(3)	6054(1)	8420(2)	2936(1)	20(1)
O(3)	6612(1)	7920(2)	3310(1)	21(1)
C(4)	6073(1)	9863(2)	3028(1)	19(1)
N(4)	6324(1)	10041(2)	3729(1)	20(1)
C(5)	6448(1)	10539(2)	2738(1)	19(1)

O(5)	7043(1)	10220(2)	3061(1)	21(1)
C(6)	6224(1)	10127(2)	2043(1)	20(1)
N(6)	6565(1)	10790(2)	1737(1)	19(1)
C(7)	6439(1)	11375(2)	3957(1)	23(1)
C(8)	6655(1)	11416(3)	4673(1)	23(1)
C(9)	7249(1)	10831(3)	5042(1)	22(1)
O(10)	7548(1)	11264(2)	5584(1)	25(1)
O(11)	7431(1)	9925(2)	4808(1)	28(1)
C(12)	5927(1)	5952(2)	1696(1)	22(1)
C(13)	6069(1)	4538(3)	1824(1)	23(1)
C(14)	6709(1)	4231(2)	2195(1)	21(1)
O(16)	7040(1)	5019(2)	2599(1)	24(1)
C(17)	6311(1)	10639(3)	1028(1)	23(1)
C(18)	6449(1)	11788(3)	716(1)	23(1)
O(4W)	6501(1)	5098(2)	3657(1)	31(1)
O(5W)	5000	5715(3)	2500	44(1)
O(6W)	7734(1)	12202(2)	3640(1)	24(1)
O(7W)	8511(1)	10310(3)	4373(1)	47(1)
O(3W)	6607(1)	7246(2)	4455(1)	44(1)
O(2W)	5452(1)	4284(3)	3623(1)	54(1)
O(1W)	9622(1)	10674(3)	5201(1)	62(1)
O(15)	6898(1)	3191(2)	2089(1)	26(1)
C(2)	5895(1)	8009(2)	2252(1)	19(1)

[Hf₃(H₋₃tacitp)₂] · 9 H₂O

Diffraktometer	SADABS BrukerAXS 2010		
Identifikationscode	sh3129		
Summenformel	$C_{30} \; H_{60} \; Hf_3 \; N_6 \; O_{27}$		
Molmasse	1472.31 g/mol		
Temperatur	123(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Monoklin		
Raumgruppe	C2/c		
Zellkonstanten	a = 19.3300(16) Å	α = 90°.	
	b = 18.2638(16) Å	$\beta = 99.968(6)^{\circ}.$	

	c = 12.0345(10) Å	γ = 90°.
Zellvolumen	4184.5(6) Å ³	
Z	4	
Dichte (berechnet)	2.337 Mg/m ³	
Absorptionkoeffizient	7.530 mm ⁻¹	
F(000)	2856	
Kristallgröße	0.25 x 0.18 x 0.04 mm ³	
Theta-Bereich	1.55 bis 33.36°.	
hkl-Bereich	-29 ≤ h ≤ 28, -28 ≤ k ≤ 28,	, -16 ≤ I ≤ 18
Gemessene Reflexe	56887	
Unabhängige Reflexe	8089 [R(int) = 0.0401]	
Vollständigkeit bis theta = 33.36°	99.6 %	
Absorptionkorrektur	Multi-Scan	
Max. und min. Transmission	0.7527 und 0.2547	
Verfeinerungsmethode	Full-matrix least-squares	gegen F ²
Daten / Restraints / Parameter	8089 / 9 / 339	
Goodness-of-fit gegen F ²	1.017	
R-Werte [I>2sigma(I)]	$R_1 = 0.0241, wR_2 = 0.046$	3
R-Werte (alle Daten)	$R_1 = 0.0341, wR_2 = 0.049$	0
Restelektronendichte/größte Lücke	2.344 und -1.813 eÅ ⁻³	

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3129. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	х	У	Z	U(eq)
Hf(1)	764(1)	6918(1)	1894(1)	11(1)
Hf(2)	0	8576(1)	2500	9(1)
C(1)	1322(1)	7847(1)	4042(2)	12(1)
O(1)	945(1)	7885(1)	2908(1)	11(1)
C(2)	908(1)	8273(1)	4795(2)	12(1)
N(2)	693(1)	8975(1)	4204(2)	12(1)
C(21)	1292(1)	9477(1)	4165(2)	16(1)
C(22)	1048(1)	10172(1)	3534(2)	16(1)
C(23)	787(1)	10070(1)	2282(2)	15(1)
O(24)	-614(1)	9408(1)	3061(1)	13(1)
O(25)	738(1)	9408(1)	6637(2)	24(1)

C(3)	219(1)	7899(1)	4913(2)	12(1)
O(3)	-255(1)	7919(1)	3854(1)	11(1)
C(4)	-318(1)	7100(1)	-262(2)	14(1)
N(4)	387(1)	6753(1)	-75(2)	15(1)
C(41)	858(2)	7004(2)	-850(2)	19(1)
C(42)	1562(2)	6612(2)	-601(2)	21(1)
C(43)	2009(2)	6839(1)	505(2)	18(1)
O(44)	1684(1)	7140(1)	1239(2)	17(1)
O(45)	2650(1)	6733(1)	672(2)	23(1)
C(5)	-735(1)	6681(1)	494(2)	13(1)
O(5)	-325(1)	6614(1)	1595(2)	13(1)
C(6)	1426(1)	7047(1)	4380(2)	15(1)
N(6)	1679(1)	6675(1)	3427(2)	15(1)
C(61)	1909(2)	5913(2)	3704(2)	21(1)
C(62)	2107(2)	5524(2)	2691(2)	22(1)
C(63)	1478(2)	5343(2)	1801(3)	29(1)
O(64)	961(1)	5797(1)	1632(2)	20(1)
O(65A)	3494(3)	9826(3)	3871(6)	41(2)
O(65B)	3671(8)	9681(8)	3470(13)	41(2)
O(1W)	2679(1)	8632(1)	3091(2)	23(1)
O(2W)	1865(1)	9023(1)	1067(2)	23(1)
O(3W)	3093(1)	7212(1)	2952(2)	29(1)
O(4W)	0	8233(2)	7500	51(1)
O(5W)	314(4)	5215(3)	-848(6)	44(1)
O(6W)	-157(4)	4671(4)	1497(6)	49(2)

[KCo₂(tacitp)₂]Cl

Diffraktometer	Bruker X8 Apex, Nonius Kappa CCD
Identifikationscode	sh2991
Summenformel	$C_{30} \; H_{48} Cl \; Co_2 \; K \; N_6 \; O_{18}$
Molmasse	973.15 g/mol
Temperatur	100(2) K
Wellenlänge	0.71073 Å
Kristallsystem	Trigonal

Raumgruppe	R-3	
Zellkonstanten	a = 11.7651(7) Å	α = 90°.
	b = 11.7651(7) Å	$\beta = 90^{\circ}$.
	c = 21.9335(9) Å	γ = 120°.
Zellvolumen	2629.2(2) Å ³	
Z	3	
Dichte (berechnet)	1.844 Mg/m ³	
Absorptionkoeffizient	1.235 mm ⁻¹	
F(000)	1512	
Kristallgröße	0.24 x 0.21 x 0.15 mm ³	
Theta-Bereich	2.20 bis 26.99°.	
hkl-Bereich	-15 ≤ h ≤ 14, -14 ≤ k ≤ 14, -27 ≤ l ≤ 27	
Gemessene Reflexe	10085	
Unabhängige Reflexe	1276 [R(int) = 0.1076]	
Vollständigkeit bis theta = 26.99°	99.8 %	
Absorptionkorrektur	Multi-Scan	
Max. und min. Transmission	0.8364 und 0.7559	
Verfeinerungsmethode	Full-matrix least-squares geger	ו F ²
Daten / Restraints / Parameter	1276 / 0 / 89	
Goodness-of-fit gegen F ²	1.198	
R-Werte [I>2sigma(I)]	$R_1 = 0.0480, wR_2 = 0.0981$	
R-Werte (alle Daten)	$R_1 = 0.0696, wR_2 = 0.1056$	
Restelektronendichte/größte Lücke	0.443 und -0.547 eÅ ⁻³	

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh2991. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	х	У	Z	U(eq)
Co(1)	6667	3333	268(1)	10(1)
K(1)	6667	3333	-1667	21(1)
O(1)	6365(2)	5532(2)	1429(1)	19(1)
O(24)	4281(2)	1701(2)	-1072(1)	26(1)
O(25)	5485(2)	1940(2)	-262(1)	17(1)
N(2)	5234(2)	3254(2)	749(1)	12(1)
C(1)	6512(3)	4475(3)	1638(1)	15(1)
C(2)	5346(3)	3170(3)	1426(1)	14(1)

C(21)	3882(3)	2318(3)	527(1)	15(1)
C(22)	3720(3)	2399(3)	-155(1)	17(1)
C(23)	4537(3)	2001(3)	-528(1)	17(1)
CI(1)	0	0	0	26(1)

K[Ni(tacitp)] · 4 H₂O

Diffraktometer	Stoe IPDS		
Identifikationscode	sh2980		
Summenformel	C ₁₅ H ₃₂ K N ₃ Ni O ₁₃		
Molmasse	560.25 g/mol		
Temperatur	213(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Monoklin		
Raumgruppe	P21/c		
Zellkonstanten	a = 8.8113(18) Å	α = 90°.	
	b = 27.346(6) Å	$\beta = 100.42(3)^{\circ}.$	
	c = 9.5307(19) Å	γ = 90°.	
Zellvolumen	2258.5(8) Å ³		
Z	4		
Dichte (berechnet)	1.648 Mg/m ³		
Absorptionkoeffizient	1.115 mm ⁻¹		
F(000)	1176		
Kristallgröße	0.27 x 0.27 x 0.11 mm ³		
Theta-Bereich	2.63 bis 26.00°.		
hkl-Bereich	-10 ≤ h ≤ 10, -33 ≤ k ≤ 33, -11 ≤ l ≤ 11		
Gemessene Reflexe	16209		
Unabhängige Reflexe	4422 [R(int) = 0.0749]		
Vollständigkeit bis theta = 26.00°	99.7 %		
Absorptionkorrektur	keine		
Verfeinerungsmethode	Full-matrix least-squares geger	r F ²	
Daten / Restraints / Parameter	4422 / 0 / 346		
Goodness-of-fit gegen F ²	1.045		
R-Werte [I>2sigma(I)]	$R_1 = 0.0374, wR_2 = 0.0846$		
R-Werte (alle Daten)	$R_1 = 0.0542, wR_2 = 0.0929$		
Restelektronendichte/größte Lücke	0.479 und -0.343 eÅ ⁻³		

	x	У	Z	U(eq)
Ni(1)	6344(1)	8792(1)	5271(1)	12(1)
K(2)	9269(1)	9262(1)	3300(1)	25(1)
C(1)	5013(3)	8521(1)	8354(2)	17(1)
O(1)	6396(2)	8639(1)	9336(2)	23(1)
C(2)	4276(3)	8960(1)	7450(2)	17(1)
N(2)	5321(2)	9227(1)	6644(2)	15(1)
C(21)	6341(3)	9581(1)	7569(3)	20(1)
C(22)	7423(3)	9852(1)	6751(3)	21(1)
C(23)	8753(3)	9543(1)	6452(2)	17(1)
O(24)	8502(2)	9101(1)	6064(2)	19(1)
O(25)	10075(2)	9736(1)	6579(2)	27(1)
C(3)	2842(3)	8779(1)	6382(3)	17(1)
O(3)	2132(2)	9172(1)	5502(2)	21(1)
C(4)	3197(3)	8353(1)	5437(2)	16(1)
N(4)	4220(2)	8473(1)	4395(2)	16(1)
C(41)	3357(3)	8720(1)	3083(3)	20(1)
C(42)	4360(3)	8794(1)	1965(3)	20(1)
C(43)	5650(3)	9170(1)	2344(2)	16(1)
O(44)	6025(2)	9326(1)	3625(2)	19(1)
O(45)	6316(2)	9308(1)	1346(2)	25(1)
C(5)	3935(3)	7934(1)	6413(3)	18(1)
O(5)	4248(2)	7520(1)	5589(2)	25(1)
C(6)	5410(3)	8088(1)	7456(2)	17(1)
N(6)	6749(2)	8228(1)	6786(2)	16(1)
C(61)	7585(3)	7797(1)	6355(3)	21(1)
C(62)	9033(3)	7951(1)	5803(3)	20(1)
C(63)	8703(3)	8151(1)	4280(2)	16(1)
O(64)	7494(2)	8403(1)	3877(2)	18(1)
O(65)	9669(2)	8061(1)	3482(2)	24(1)
O(1W)	9355(3)	8319(1)	641(2)	33(1)
O(2W)	1420(3)	7180(1)	4152(2)	31(1)

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh2980. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

O(3W)	12280(3)	9767(1)	9202(3)	40(1)
O(4W)	10413(4)	9309(1)	892(3)	55(1)

K₃[Er₃(H.₃macitp)₂] · 6.5 H₂O

Diffraktometer	Stoe IPDS	Stoe IPDS		
Identifikationscode	sh3047	sh3047		
Summenformel	$C_{36} \; H_{67} \; Er_3 K_3 \; N_6 \; O_{24.50}$	C ₃₆ H ₆₇ Er ₃ K ₃ N ₆ O _{24.50}		
Molmasse	1595.04 g/mol			
Temperatur	200(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem	Orthorhombisch			
Raumgruppe	Pnma			
Zellkonstanten	a = 22.481(7) Å	α = 90°.		
	b = 17.041(6) Å	β = 90°.		
	c = 15.213(4) Å	γ = 90°.		
Zellvolumen	5828(3) Å ³			
Z	4			
Dichte (berechnet)	1.818 Mg/m ³			
Absorptionkoeffizient	4.572 mm ⁻¹			
F(000)	3128	3128		
Kristallgröße	0.49 x 0.29 x 0.08 mm ³	0.49 x 0.29 x 0.08 mm ³		
Theta-Bereich	2.55 bis 28.14°.	2.55 bis 28.14°.		
hkl-Bereich	-29 ≤ h ≤ 29, -22 ≤ k ≤ 2	2, -19 ≤ l ≤ 20		
Gemessene Reflexe	52328			
Unabhängige Reflexe	7222 [R(int) = 0.1223]			
Vollständigkeit bis theta = 28.14°	97.9 %			
Absorptionkorrektur	Multi-Scan			
Max. und min. Transmission	0.7112 und 0.2128			
Verfeinerungsmethode	Full-matrix least-squares	s gegen F ²		
Daten / Restraints / Parameter	7222 / 0 / 379			
Goodness-of-fit gegen F ²	1.064	1.064		
R-Werte [I>2sigma(I)]	$R_1 = 0.0678, wR_2 = 0.16$	$R_1 = 0.0678$, $wR_2 = 0.1676$		
R-Werte (alle Daten)	R ₁ = 0.0999, wR ₂ = 0.18	$R_1 = 0.0999$, $wR_2 = 0.1826$		
Restelektronendichte/größte Lücke	2.319 und -2.617 eÅ ⁻³	2.319 und -2.617 eÅ ⁻³		

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3047. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	x	У	Z	U(eq)
Er(1)	1974(1)	1432(1)	480(1)	41(1)
Er(2)	1252(1)	2500	2276(1)	43(1)
K(1)	1251(2)	323(2)	2322(2)	84(1)
K(2)	2655(2)	2500	-1488(2)	62(1)
N(1)	1102(5)	1053(6)	-576(6)	57(2)
N(2)	116(6)	2500	1844(9)	69(4)
N(3)	3005(4)	1056(6)	1118(5)	54(2)
N(4)	2035(6)	2500	3542(7)	48(3)
O(1)	1634(4)	2500	-296(6)	43(2)
O(2)	1052(3)	1645(5)	1142(4)	50(2)
O(3)	2594(4)	2500	542(6)	40(2)
O(4)	2016(3)	1642(4)	1985(4)	41(1)
C(1)	1046(7)	2500	-634(10)	48(3)
C(2)	712(5)	1750(8)	-359(6)	53(3)
C(3)	548(5)	1742(9)	599(7)	60(3)
C(4)	215(8)	2500	855(10)	70(5)
C(5)	1248(6)	1052(8)	-1532(7)	66(3)
C(6)	807(7)	312(9)	-349(9)	81(4)
C(8)	3085(6)	2500	1130(9)	45(3)
C(9)	3085(5)	1761(7)	1702(7)	52(3)
C(10)	2579(5)	1747(7)	2390(6)	46(2)
C(11)	2585(6)	2500	2973(7)	39(3)
C(12)	3490(6)	1022(10)	441(8)	71(4)
C(13)	3054(7)	343(7)	1668(8)	71(4)
C(14)	2029(6)	1791(8)	4109(7)	62(3)
C(17)	-206(6)	1786(13)	2130(9)	97(6)
C(15)	1651(7)	-487(7)	356(7)	64(3)
C(16)	2908(6)	563(8)	-936(8)	67(3)
O(5)	2505(4)	1054(5)	-734(5)	59(2)
O(8)	2932(6)	212(7)	-1641(6)	95(3)
O(9)	862(4)	1579(6)	3232(5)	71(3)
O(10)	1825(4)	125(5)	748(5)	66(2)

O(11)	379(7)	1316(9)	4435(7)	118(5)
O(12)	1786(6)	-1149(6)	592(7)	100(4)
C(18)	1226(9)	-411(9)	-401(9)	88(5)
C(19)	3383(8)	374(11)	-262(9)	94(5)
C(23)	1413(12)	1793(16)	4617(12)	64(7)
C(26)	884(15)	1509(17)	4075(15)	74(8)
C(25)	-208(12)	1630(30)	3100(20)	108(13)
C(27)	382(14)	1530(19)	3588(15)	78(9)
O(1W)	1695(11)	2500	-3118(14)	153(9)
O(2W)	3866(10)	2500	-1448(14)	179(12)
O(3W)	449(13)	2500	7000(16)	127(11)
O(4W)	-264(11)	2500	5357(15)	112(9)
O(5W)	1110(10)	-2500	393(16)	89(7)
O(6W)	4455(19)	2150(20)	6920(30)	86(12)
O(7W)	2585(7)	1422(7)	-2878(8)	115(5)

K₃[Eu₃(H₋₃macitp)₂] · 17 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Ka	Bruker X8 Apex, Nonius Kappa CCD		
Identifikationscode	sh3049	sh3049		
Summenformel	$C_{36} \; H_{86} \; Eu_3 \; K_3 \; N_6 \; O_{35}$	C ₃₆ H ₈₆ Eu ₃ K ₃ N ₆ O ₃₅		
Molmasse	1736.29 g/mol	1736.29 g/mol		
Temperatur	153(2) K			
Wellenlänge	0.71073 Å			
Kristallsystem	Orthorhombisch			
Raumgruppe	Pnma			
Zellkonstanten	a = 22.7807(6) Å	α = 90°.		
	b = 17.0919(4) Å	$\beta = 90^{\circ}$.		
	c = 15.1359(4) Å	γ = 90°.		
Zellvolumen	5893.4(3) Å ³			
Z	4			
Dichte (berechnet)	1.957 Mg/m ³			
Absorptionkoeffizient	3.466 mm⁻ ¹	3.466 mm ⁻¹		
F(000)	3480	3480		
Kristallgröße	0.44 x 0.26 x 0.11 mm ³	0.44 x 0.26 x 0.11 mm ³		
Theta-Bereich	1.62 bis 30.06°.			

hkl-Bereich	$-19 \leq h \leq 32, \ -24 \leq k \leq 23, \ -21 \leq l \leq 21$
Gemessene Reflexe	37735
Unabhängige Reflexe	8876 [R(int) = 0.0499]
Vollständigkeit bis theta = 30.06°	99.7 %
Absorptionkorrektur	Multi-Scan
Max. und min. Transmission	0.7017 und 0.3108
Verfeinerungsmethode	Full-matrix least-squares gegen F ²
Daten / Restraints / Parameter	8876 / 0 / 318
Goodness-of-fit gegen F ²	1.053
R-Werte [I>2sigma(I)]	$R_1 = 0.0545, wR_2 = 0.1371$
R-Werte (alle Daten)	$R_1 = 0.0767, wR_2 = 0.1458$
Restelektronendichte/größte Lücke	2.392 und -2.176 eÅ ⁻³

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3049. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	х	у	Z	U(eq)
Eu(1)	1965(1)	1408(1)	500(1)	31(1)
Eu(2)	1225(1)	2500	2330(1)	32(1)
N(1)	1095(2)	1060(3)	-574(3)	40(1)
N(2)	111(3)	2500	1855(5)	46(2)
N(3)	2991(2)	1051(3)	1190(3)	44(1)
N(4)	2006(3)	2500	3597(4)	41(2)
O(1)	1624(2)	2500	-303(3)	30(1)
O(2)	1037(2)	1632(2)	1160(3)	34(1)
O(3)	2586(2)	2500	582(3)	32(1)
O(4)	2002(2)	1623(2)	2033(3)	34(1)
C(1)	1047(3)	2500	-641(5)	34(2)
C(2)	715(2)	1763(4)	-368(4)	40(1)
C(3)	544(2)	1755(4)	606(4)	39(1)
C(4)	216(4)	2500	860(6)	43(2)
C(5)	1251(3)	1033(4)	-1509(4)	49(2)
C(6)	788(3)	313(4)	-342(5)	54(2)
C(8)	3056(3)	2500	1199(6)	38(2)
C(9)	3050(2)	1762(4)	1763(4)	42(2)
C(10)	2548(3)	1752(4)	2454(4)	38(1)

C(11)	2542(4)	2500	3035(5)	38(2)
C(12)	3475(3)	1007(5)	525(4)	56(2)
C(13)	3017(3)	334(5)	1740(5)	60(2)
C(14)	1997(3)	1791(5)	4146(5)	57(2)
C(17)	-224(3)	1808(6)	2127(5)	65(2)
C(15)	1613(4)	-517(4)	327(5)	55(2)
C(16)	2945(3)	583(4)	-937(5)	53(2)
O(5)	2524(2)	1041(3)	-739(3)	46(1)
O(8)	3017(3)	282(5)	-1647(4)	111(3)
O(9)	828(2)	1555(3)	3298(3)	57(1)
O(10)	1790(2)	71(3)	766(3)	54(1)
O(11)	344(5)	1336(8)	4533(5)	191(7)
O(12)	1804(3)	-1195(3)	468(4)	80(2)
C(18)	1172(4)	-418(4)	-409(5)	64(2)
C(19)	3378(4)	371(6)	-185(5)	82(3)
C(23)	1394(6)	1792(9)	4722(9)	53(3)
C(26)	889(7)	1484(11)	4201(12)	68(5)
C(25)	-272(6)	1664(13)	3069(11)	78(6)
C(27)	295(7)	1549(11)	3636(11)	67(4)

K₃[Gd₃(H₋₃tacitp)]₂ · 18 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Kappa CCD		
Identifikationscode	sh3051		
Summenformel	$C_{30}H_{78}Gd_3K_3N_6O_{36}$		
Molmasse	1688.03 g/mol		
Temperatur	153(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Tetragonal		
Raumgruppe	P4 ₃ 22		
Zellkonstanten	a = 13.9688(2) Å	$\alpha = 90^{\circ}$.	
	b = 13.9688(2) Å	$\beta = 90^{\circ}$.	
	c = 27.4258(6) Å	γ = 90°.	
Zellvolumen	5351.52(16) Å ³		
Z	4		
Dichte (berechnet)	2.095 Mg/m ³		

Absorptionkoeffizient	4.016 mm ⁻¹
F(000)	3348
Kristallgröße	0.38 x 0.09 x 0.07 mm ³
Theta-Bereich	1.46 bis 29.58°.
hkl-Bereich	-19 ≤ h ≤ 19, -19 ≤ k ≤ 19, -23 ≤ l ≤ 38
Gemessene Reflexe	101195
Unabhängige Reflexe	7524 [R(int) = 0.0453]
Vollständigkeit bis theta = 29.58°	99.8 %
Absorptionkorrektur	Multi-Scan
Max. und min. Transmission	0.7663 und 0.3106
Verfeinerungsmethode	Full-matrix least-squares gegen F ²
Daten / Restraints / Parameter	7524 / 0 / 263
Goodness-of-fit gegen F ²	1.075
R-Werte [I>2sigma(I)]	$R_1 = 0.0285, wR_2 = 0.0697$
R-Werte (alle Daten)	$R_1 = 0.0316$, $wR_2 = 0.0708$
Flack-Parameter	0.063(12)
Restelektronendichte/größte Lücke	1.255 und -0.692 eÅ ⁻³

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3051. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	x	У	Z	U(eq)
Gd(1)	2288(1)	3163(1)	648(1)	23(1)
Gd(3)	1101(1)	1101(1)	1250	22(1)
O(1)	3608(2)	2476(2)	1028(1)	27(1)
O(2)	2692(2)	825(2)	1526(1)	25(1)
O(3)	1962(2)	1507(2)	555(1)	23(1)
O(4)	1556(2)	3401(2)	-153(1)	31(1)
O(5)	1790(3)	4433(3)	-751(1)	44(1)
O(6)	4504(2)	3171(3)	2130(1)	39(1)
O(7)	5789(4)	3562(4)	2530(3)	104(2)
O(8)	654(2)	-250(2)	1737(1)	35(1)
O(9)	-251(3)	-1517(3)	1858(2)	63(1)
N(1)	3441(2)	2345(3)	45(1)	28(1)
N(2)	4598(2)	1239(3)	1616(1)	28(1)

N(3)	1880(3)	-348(2)	834(1)	27(1)
C(1)	3629(3)	1432(3)	310(1)	28(1)
C(2)	4117(3)	1741(3)	786(1)	30(1)
C(3)	4259(3)	886(3)	1126(1)	29(1)
C(4)	3321(3)	319(3)	1220(1)	26(1)
C(5)	2844(3)	27(3)	742(1)	29(1)
C(6)	2702(3)	907(3)	390(1)	28(1)
C(7)	3057(3)	2193(3)	-453(1)	28(1)
C(8)	2892(3)	3154(4)	-697(1)	38(1)
C(9)	2017(3)	3693(3)	-527(1)	29(1)
C(10)	5539(3)	1711(4)	1598(2)	35(1)
C(11)	5845(3)	2073(3)	2103(2)	37(1)
C(12)	5330(4)	3015(4)	2262(2)	42(1)
C(13)	1863(4)	-1265(3)	1088(2)	35(1)
C(14)	860(4)	-1596(3)	1194(2)	36(1)
C(15)	381(3)	-1091(4)	1619(2)	39(1)
O(1W)	0	4616(5)	0	59(1)

K₃[Ho₃(H.₃tacitp)₂] · 14.5 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Kappa CCD		
Identifikationscode	sh3023a		
Summenformel	$C_{30} \; H_{71} \; Ho_3 \; K_3 \; N_6 \; O_{32.50}$		
Molmasse	1648.02 g/mol		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Monoklin		
Raumgruppe	P2 ₁ /c		
Zellkonstanten	a = 16.2094(4) Å	α = 90°.	
	b = 12.5884(3) Å	$\beta = 91.3130(10)^{\circ}$	
	c = 25.2981(7) Å	γ = 90°.	
Zellvolumen	5160.7(2) Å ³		
Z	4		
Dichte (berechnet)	2.121 Mg/m ³		
Absorptionkoeffizient	4.900 mm ⁻¹		
F(000)	3244		

Kristallgröße	0.71 x 0.30 x 0.09 mm ³
Theta-Bereich	1.26 bis 35.00°.
hkl-Bereich	$-26 \le h \le 26, -20 \le k \le 20, -40 \le l \le 40$
Gemessene Reflexe	96864
Unabhängige Reflexe	22709 [R(int) = 0.0378]
Vollständigkeit bis theta = 35.00°	99.9 %
Absorptionkorrektur	Multi-Scan
Max. und min. Transmission	0.6668 und 0.1286
Verfeinerungsmethode	Full-matrix least-squares gegen F^2
Daten / Restraints / Parameter	22709 / 29 / 805
Goodness-of-fit gegen F ²	1.074
R-Werte [I>2sigma(I)]	$R_1 = 0.0248, wR_2 = 0.0537$
R-Werte (alle Daten)	$R_1 = 0.0309, wR_2 = 0.0561$
Restelektronendichte/größte Lücke	1.917 und -1.093 eÅ ⁻³

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3023a. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	х	У	Z	U(eq)
Ho(1)	1424(1)	2675(1)	6704(1)	9(1)
Ho(2)	3077(1)	4658(1)	6681(1)	9(1)
Ho(3)	2492(1)	3212(1)	5475(1)	10(1)
K(1)	1987(1)	4205(1)	7949(1)	16(1)
K(2)	754(1)	1091(1)	5476(1)	19(1)
K(3C)	4297(3)	5141(5)	5438(3)	24(1)
K(3B)	4457(7)	4996(13)	5477(6)	22(2)
K(3A)	3805(1)	6103(1)	5407(1)	26(1)
C(11)	3311(1)	2243(2)	7103(1)	12(1)
O(11)	2722(1)	3065(1)	7053(1)	11(1)
C(12)	4123(1)	2555(2)	6838(1)	13(1)
N(12)	4318(1)	3645(1)	7036(1)	14(1)
C(121)	5153(1)	4024(2)	6914(1)	18(1)
C(122)	5285(1)	5178(2)	7076(1)	21(1)
C(123)	4860(1)	5998(2)	6719(1)	19(1)
O(124)	5193(1)	6894(2)	6674(1)	38(1)
O(125)	4189(1)	5757(1)	6482(1)	17(1)

C(13)	4052(1)	2576(2)	6230(1)	13(1)
O(13)	3588(1)	3470(1)	6053(1)	13(1)
C(14)	3682(1)	1527(2)	6015(1)	13(1)
N(14)	3510(1)	1687(1)	5439(1)	14(1)
C(141)	3181(2)	722(2)	5176(1)	18(1)
C(142)	3038(1)	918(2)	4586(1)	19(1)
C(143)	2315(1)	1634(2)	4445(1)	18(1)
O(144)	2114(1)	1745(2)	3967(1)	29(1)
O(145)	1927(1)	2094(1)	4816(1)	18(1)
C(15)	2874(1)	1210(2)	6271(1)	12(1)
O(15)	2227(1)	1888(1)	6094(1)	12(1)
C(16)	2964(1)	1200(2)	6875(1)	12(1)
N(16)	2121(1)	1035(1)	7081(1)	13(1)
C(161)	2090(1)	843(2)	7655(1)	18(1)
C(162)	1199(1)	819(2)	7844(1)	18(1)
C(163)	786(1)	1901(2)	7888(1)	16(1)
O(164)	250(1)	2023(1)	8231(1)	25(1)
O(165)	991(1)	2633(1)	7573(1)	17(1)
C(21)	1863(1)	5600(2)	5763(1)	11(1)
O(21)	2543(1)	4901(1)	5839(1)	12(1)
C(22)	1557(1)	6038(1)	6291(1)	11(1)
N(22)	2302(1)	6403(1)	6590(1)	13(1)
C(221)	2100(1)	6994(2)	7074(1)	17(1)
C(222)	2873(1)	7309(2)	7390(1)	18(1)
C(223)	3296(1)	6408(2)	7687(1)	16(1)
O(224)	3707(1)	6634(2)	8095(1)	31(1)
O(225)	3214(1)	5459(1)	7516(1)	16(1)
C(23)	1114(1)	5199(2)	6621(1)	12(1)
O(23)	1684(1)	4448(1)	6828(1)	11(1)
C(24)	424(1)	4651(2)	6297(1)	11(1)
N(24)	131(1)	3769(1)	6633(1)	12(1)
C(241)	-634(1)	3245(2)	6446(1)	15(1)
C(242)	-863(1)	2331(2)	6807(1)	17(1)
C(243)	-351(1)	1332(2)	6743(1)	16(1)
O(244)	-661(1)	467(1)	6877(1)	31(1)
O(245)	373(1)	1419(1)	6561(1)	16(1)
C(25)	711(1)	4199(2)	5769(1)	12(1)

O(25)	1210(1)	3290(1)	5846(1)	11(1)
C(26)	1161(1)	5057(2)	5450(1)	13(1)
N(26)	1519(1)	4500(1)	4993(1)	14(1)
C(261)	1791(2)	5221(2)	4574(1)	21(1)
C(262)	2315(2)	4638(2)	4171(1)	23(1)
C(263)	3177(2)	4493(2)	4385(1)	29(1)
O(26A)	3768(2)	5204(3)	4320(2)	26(1)
O(26B)	3691(3)	4860(3)	4069(2)	31(1)
O(265)	3304(1)	3854(1)	4772(1)	21(1)
O(1W)	3469(1)	3189(2)	8343(1)	27(1)
O(2W)	520(1)	3005(2)	4301(1)	28(1)
O(3W)	4421(1)	4981(2)	8593(1)	31(1)
O(4W)	1390(1)	-823(2)	5843(1)	32(1)
O(5W)	-589(1)	3956(2)	8213(1)	37(1)
O(6W)	5208(2)	7170(2)	5498(1)	41(1)
O(7W)	4215(2)	8733(2)	6610(1)	49(1)
O(8W)	-747(2)	-74(2)	5562(1)	37(1)
O(9W)	4871(2)	4429(3)	5471(1)	27(1)
O(10W)	-644(2)	2107(2)	4936(1)	36(1)
O(11W)	2939(1)	-1772(2)	5908(1)	43(1)
O(12W)	4718(2)	5738(3)	9625(1)	54(1)
O(13W)	-1888(2)	1692(2)	5648(1)	57(1)
O(14A)	3214(4)	7061(5)	3924(2)	36(1)
O(14B)	2933(4)	6948(5)	3752(3)	38(1)
O(15A)	3429(4)	7953(4)	4951(2)	42(1)
O(15B)	3752(4)	7587(7)	4939(3)	68(2)

K₃[Lu₃(H₋₃macitp)₂] · 11 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Kappa	CCD	
Identifikationscode	sh3050		
Summenformel	C ₃₆ H ₇₄ K ₃ Lu ₃ N ₆ O ₂₉		
Molmasse	1697.22 g/mol		
Temperatur	153(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Orthorhombisch		
Raumgruppe	Pnma		
Zellkonstanten	a = 21.9991(7) Å	$\alpha = 90^{\circ}$.	
	b = 16.9419(6) Å	$\beta = 90^{\circ}$.	
	c = 15.0754(6) Å	γ = 90°.	
Zellvolumen	5618.7(3) Å ³		
Z	4		
Dichte (berechnet)	2.006 Mg/m ³		
Absorptionkoeffizient	5.544 mm ⁻¹		
F(000)	3336		
Kristallgröße	0.59 x 0.19 x 0.09 mm ³		
Theta-Bereich	1.64 bis 28.37°.		
hkl-Bereich	$-29 \le h \le 17, -22 \le k \le 22, -20 \le l \le 19$		
Gemessene Reflexe	29222		
Unabhängige Reflexe	7232 [R(int) = 0.0358]		
Vollständigkeit bis theta = 28.37°	99.6 %		
Absorptionkorrektur	Multi-Scan		
Max. und min. Transmission	0.6353 und 0.1384		
Verfeinerungsmethode	Full-matrix least-squares gegen F ²		
Daten / Restraints / Parameter	7232 / 0 / 346		
Goodness-of-fit gegen F ²	1.067		
R-Werte [I>2sigma(I)]	$R_1 = 0.0543, wR_2 = 0.1494$		
R-Werte (alle Daten)	raten) $R_1 = 0.0801, wR_2 = 0.1597$		
Restelektronendichte/größte Lücke	estelektronendichte/größte Lücke 1.937 und -1.873 eÅ ⁻³		

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3050. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

 x	У	Z	U(eq)

Lu(1)	1982(1)	1437(1)	439(1)	34(1)
Lu(2)	1276(1)	2500	2237(1)	37(1)
K(1)	1281(2)	348(2)	2273(2)	81(1)
K(2)	2663(2)	2500	-1519(2)	50(1)
N(1)	1103(4)	1063(5)	-608(5)	49(2)
N(2)	133(6)	2500	1876(8)	69(4)
N(3)	3027(4)	1061(5)	1051(5)	45(2)
N(4)	2063(5)	2500	3491(6)	40(2)
O(1)	1639(4)	2500	-336(5)	37(2)
O(2)	1067(3)	1637(4)	1119(4)	42(1)
O(3)	2606(4)	2500	477(5)	34(2)
O(4)	2038(3)	1633(3)	1936(4)	35(1)
C(1)	1038(6)	2500	-666(8)	38(3)
C(2)	696(4)	1755(6)	-389(6)	47(2)
C(3)	538(4)	1745(7)	589(6)	47(2)
C(4)	203(7)	2500	854(10)	58(4)
C(5)	1255(6)	1047(7)	-1561(7)	65(3)
C(6)	789(6)	286(6)	-388(8)	72(4)
C(8)	3104(5)	2500	1074(8)	38(3)
C(9)	3118(4)	1768(5)	1635(6)	40(2)
C(10)	2610(4)	1757(5)	2329(5)	37(2)
C(11)	2616(6)	2500	2920(7)	35(3)
C(12)	3510(5)	1027(7)	354(7)	54(3)
C(13)	3087(5)	329(6)	1574(7)	62(3)
C(14)	2069(5)	1790(7)	4063(6)	52(3)
C(17)	-196(6)	1736(11)	2136(8)	98(5)
C(15)	1662(6)	-494(6)	361(6)	63(3)
C(16)	2894(6)	558(6)	-1000(7)	59(3)
O(5)	2492(3)	1043(4)	-776(4)	49(2)
O(8)	2898(4)	195(5)	-1709(5)	77(2)
O(9)	898(3)	1586(5)	3184(4)	64(2)
O(10)	1836(3)	141(4)	734(4)	54(2)
O(11)	411(5)	1296(7)	4416(6)	95(3)
O(12)	1788(5)	-1158(5)	614(6)	82(3)
C(18)	1219(7)	-409(7)	-451(8)	84(4)
C(19)	3411(6)	376(8)	-353(7)	77(4)

C(23)	1423(11)	1796(12)	4609(12)	56(6)
C(26)	865(13)	1493(12)	4058(13)	60(6)
C(25)	-191(11)	1590(20)	3160(17)	95(10)
C(27)	396(12)	1509(17)	3625(18)	78(8)
O(2W)	3896(8)	2500	-1452(12)	149(8)
O(1W)	2562(5)	1432(5)	-2903(6)	89(3)

K₃[Nd₃(H₋₃macitp)₂] · 13.5 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Kappa CCD		
Identifikationscode	sh3052		
Summenformel	$C_{36} \; H_{81} \; K_3 \; N_6 \; Nd_3 \; O_{30.50}$		
Molmasse	1636.09 g/mol		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Monoclinic		
Raumgruppe	P2 ₁ /n		
Zellkonstanten	a = 14.6183(3) Å	α = 90°.	
	b = 23.6095(6) Å	$\beta = 91.8130(10)^{\circ}.$	
	c = 17.2194(4) Å	γ = 90°.	
Zellvolumen	5940.0(2) Å ³		
Z	4		
Dichte (berechnet)	1.829 Mg/m ³		
Absorptionkoeffizient	2.884 mm ⁻¹		
F(000)	3280		
Kristallgröße	$0.22 \text{ x } 0.13 \text{ x } 0.05 \text{ mm}^3$		
Theta-Bereich	1.64 bis 29.67°.		
hkl-Bereich	-17 ≤ h ≤ 20, -31 ≤ k ≤ 32, -23 ≤	i I ≤ 23	
Gemessene Reflexe	121549		
Unabhängige Reflexe	16721 [R(int) = 0.0645]		
Vollständigkeit bis theta = 29.67°	99.5 %		
Absorptionkorrektur	Multi-Scan		
Max. und min. Transmission	0.8692 und 0.5695		
Verfeinerungsmethode	Full-matrix least-squares gegen F ²		
Daten / Restraints / Parameter	16721 / 0 / 723		
Goodness-of-fit gegen F ²	1.106		

R-Werte [I>2sigma(I)]	$R_1 = 0.0628, wR_2 = 0.1442$
R-Werte (alle Daten)	$R_1 = 0.0903, wR_2 = 0.1582$
Restelektronendichte/größte Lücke	3.314 und -2.144 eÅ ⁻³

Atomkoordinaten (x 10⁴) und äquivaltente isotrope Auslenkungsparameter (Å²x 10³) für sh3052. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	х	У	Z	U(eq)
Nd(1)	3054(1)	1237(1)	1796(1)	26(1)
Nd(2)	1122(1)	1878(1)	2933(1)	26(1)
Nd(3)	1106(1)	2003(1)	722(1)	27(1)
K(1)	-856(1)	2668(1)	1869(1)	44(1)
K(2)	2984(1)	1228(1)	-434(1)	51(1)
K(3)	3019(1)	1029(1)	4005(1)	48(1)
C(1)	3711(5)	2527(3)	1948(5)	32(2)
C(2)	3138(5)	2483(3)	2674(5)	31(2)
C(3)	2428(6)	2956(3)	2688(5)	35(2)
C(4)	1831(5)	3001(3)	1933(5)	32(2)
C(5)	2413(5)	3044(3)	1227(5)	34(2)
C(6)	3135(5)	2568(3)	1189(5)	33(2)
C(7)	4968(6)	1982(4)	2590(5)	40(2)
C(8)	5527(7)	1436(4)	2600(6)	51(2)
C(9)	5008(7)	924(4)	2893(6)	50(2)
C(10)	4907(6)	2079(4)	1187(5)	41(2)
C(11)	1143(6)	3322(4)	3446(6)	48(2)
C(12)	436(7)	3223(4)	4064(6)	53(3)
C(13)	-334(6)	2813(4)	3837(5)	37(2)
C(14)	2392(7)	2849(5)	4093(6)	56(3)
C(15)	1161(6)	3489(4)	454(6)	45(2)
C(16)	433(7)	3440(4)	-189(6)	52(2)
C(17)	-329(6)	3036(4)	-27(5)	44(2)
C(18)	2416(6)	3067(4)	-188(5)	45(2)
C(19)	1525(5)	248(3)	1661(4)	30(2)
C(20)	1236(5)	607(3)	950(5)	30(2)
C(21)	211(5)	763(3)	963(4)	29(2)
C(22)	-60(5)	1044(3)	1718(4)	27(1)

C(23)	236(5)	682(3)	2421(4)	29(2)
C(24)	1263(5)	520(3)	2437(4)	27(1)
C(25)	2833(6)	-116(3)	937(5)	38(2)
C(26)	3878(7)	-180(5)	890(7)	58(3)
C(27)	4453(7)	355(4)	907(6)	49(2)
C(28)	2824(6)	-207(3)	2338(5)	42(2)
C(29)	136(6)	894(4)	-454(5)	42(2)
C(30)	97(6)	1293(5)	-1142(5)	51(2)
C(31)	936(6)	1645(4)	-1246(5)	39(2)
C(32)	-990(6)	1334(4)	322(5)	42(2)
C(33)	226(7)	660(4)	3861(5)	46(2)
C(34)	145(8)	976(5)	4626(5)	59(3)
C(35)	895(8)	1407(5)	4806(6)	58(3)
C(36)	-969(6)	1152(4)	3136(5)	44(2)
N(1)	4342(4)	2026(3)	1888(4)	31(1)
N(2)	1832(5)	2867(3)	3370(4)	37(2)
N(3)	1852(5)	3014(3)	475(4)	37(2)
N(4)	2532(4)	151(3)	1677(4)	30(1)
N(5)	11(5)	997(3)	3153(4)	34(1)
N(6)	-22(4)	1162(3)	304(4)	31(1)
O(1)	2712(3)	2039(2)	1002(3)	30(1)
O(2)	2724(3)	1942(2)	2739(3)	29(1)
O(3)	1190(3)	2552(2)	1887(3)	29(1)
O(7)	4128(4)	860(3)	2755(3)	49(2)
O(8)	5445(6)	545(4)	3261(6)	91(3)
O(9)	-163(4)	2419(2)	3342(3)	36(1)
O(10)	-188(4)	2605(2)	396(3)	40(1)
O(11A)	-1184(17)	3232(11)	-147(11)	54(5)
O(11B)	-1015(17)	3075(11)	-446(11)	54(5)
O(12)	1803(3)	1090(2)	876(3)	28(1)
O(14)	1833(3)	988(2)	2624(3)	26(1)
O(15)	283(3)	1605(2)	1783(3)	25(1)
O(16)	4064(4)	847(3)	840(4)	45(1)
O(17)	5313(5)	323(3)	1022(5)	65(2)
O(18)	1344(4)	1859(3)	-648(3)	49(2)
O(19)	1225(6)	1711(4)	-1900(4)	72(2)
O(20)	1387(4)	1589(3)	4272(3)	45(2)

O(24)	-1074(5)	2880(3)	4115(4)	60(2)
O(1W)	2302(11)	-160(4)	4387(9)	157(6)
O(2W)	6977(10)	817(6)	940(8)	139(5)
O(3W)	2019(8)	202(5)	-1078(7)	114(4)
O(4W)	-625(7)	3844(4)	1966(7)	107(4)
O(5W)	4658(14)	-350(6)	3853(10)	82(5)
O(6W)	2479(10)	851(7)	6379(8)	61(4)
O(7W)	657(14)	1085(9)	6835(9)	83(6)
O(8W)	1051(14)	695(9)	-2612(12)	95(6)
O(9W)	-483(19)	958(10)	6431(14)	121(9)
O(10W)	2772(16)	-270(10)	6076(14)	109(7)
O(11W)	2002(17)	288(11)	-2535(15)	120(8)
O(12W)	3850(20)	4165(12)	1721(17)	127(9)
O(13W)	3025(14)	916(9)	5763(13)	96(6)
O(14W)	1004(9)	1549(5)	5498(5)	113(4)
O(15W)	3877(6)	649(4)	-1631(7)	96(3)
O(16W)	-2490(5)	1852(3)	1616(4)	60(2)
O(17W)	-2407(7)	2855(5)	803(5)	93(3)
O(18W)	-2343(5)	2543(4)	2909(4)	64(2)

KNa₂[Bi₃(H₋₃tacitp)]₂ · 20 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Kappa CCD		
Identifikationscode	sh3056		
Summenformel	$C_{30} \; H_{82} \; \text{Bi}_3 \; \text{K}_3 \; \text{N}_6 \; \text{O}_{38}$		
Molmasse	1879.26 g/mol		
Temperatur	133(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Tetragonal		
Raumgruppe	P4 ₃ 22		
Zellkonstanten	a = 14.0241(3) Å	$\alpha = 90^{\circ}$.	
	b = 14.0241(3) Å	$\beta = 90^{\circ}$.	
	c = 27.6453(7) Å	γ = 90°.	
Zellvolumen	5437.1(2) Å ³		
Z	4		
Dichte (berechnet)	2.296 Mg/m ³		

Absorptionkoeffizient	10.027 mm ⁻¹
F(000)	3656
Kristallgröße	0.31 x 0.05 x 0.03 mm ³
Theta-Bereich	1.45 bis 27.95°.
hkl-Bereich	-18 ≤ h ≤ 18, -18 ≤ k ≤ 18, -36 ≤ l ≤ 36
Gemessene Reflexe	92537
Unabhängige Reflexe	6527 [R(int) = 0.0757]
Vollständigkeit bis theta = 27.95°	99.7 %
Absorptionkorrektur	Multi-Scan
Max. und min. Transmission	0.7530 und 0.1471
Verfeinerungsmethode	Full-matrix least-squares gegen F ²
Daten / Restraints / Parameter	6527 / 0 / 263
Goodness-of-fit gegen F ²	1.043
R-Werte [I>2sigma(I)]	$R_1 = 0.0265, wR_2 = 0.0627$
R-Werte (alle Daten)	$R_1 = 0.0304, wR_2 = 0.0637$
Flack-Parameter	-0.009(8)
Restelektronendichte/größte Lücke	1.029 und -0.853 eÅ ⁻³

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3056. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	Х	У	Z	U(eq)
Bi(1)	2290(1)	3175(1)	651(1)	15(1)
Bi(3)	1090(1)	1090(1)	1250	14(1)
O(1)	3584(3)	2478(3)	1033(1)	16(1)
O(2)	2666(3)	836(3)	1517(1)	18(1)
O(3)	1954(3)	1523(3)	566(1)	16(1)
O(4)	1484(3)	3326(3)	-224(1)	24(1)
O(5)	1830(4)	4416(4)	-777(2)	41(1)
O(6)	4602(3)	3315(3)	2082(2)	39(1)
O(7)	5888(6)	3535(6)	2524(3)	111(3)
O(8)	716(3)	-435(3)	1792(1)	29(1)
O(9)	-299(4)	-1617(4)	1779(3)	75(2)
N(1)	3449(3)	2329(3)	40(2)	18(1)
N(2)	4597(3)	1225(3)	1602(2)	17(1)
N(3)	1894(3)	-377(3)	824(2)	18(1)

C(1)	3623(4)	1448(4)	316(2)	18(1)
C(2)	4101(4)	1748(4)	790(2)	18(1)
C(3)	4245(4)	897(4)	1130(2)	18(1)
C(4)	3310(4)	318(4)	1220(2)	16(1)
C(5)	2858(4)	48(4)	742(2)	20(1)
C(6)	2690(4)	905(4)	398(2)	18(1)
C(7)	3060(4)	2187(4)	-449(2)	20(1)
C(8)	2909(4)	3136(5)	-694(2)	27(1)
C(9)	2012(4)	3666(4)	-560(2)	25(1)
C(10)	5527(4)	1722(5)	1591(2)	27(1)
C(11)	5826(5)	2068(5)	2096(2)	29(1)
C(12)	5381(5)	3047(5)	2243(3)	38(2)
C(13)	1913(5)	-1281(4)	1086(2)	25(1)
C(14)	907(5)	-1626(4)	1174(2)	29(1)
C(15)	404(5)	-1189(5)	1609(3)	37(2)
O(1W)	4549(6)	0	2500	48(2)

KNa₂[Eu₃(H₋₃tacitp)]₂ · 21 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Kappa CCD		
Identifikationscode	sh3028		
Summenformel	C ₃₀ H ₈₄ Eu ₃ K ₃ N ₆ O ₃₉		
Molmasse	1726.21 g/mol		
Temperatur	123(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Tetragonal		
Raumgruppe	P4 ₁ 22		
Zellkonstanten	a = 13.9820(12) Å	$\alpha = 90^{\circ}$.	
	b = 13.9820(12) Å	$\beta = 90^{\circ}$.	
	c = 27.530(3) Å	$\gamma = 90^{\circ}$.	
Zellvolumen	5382.1(9) Å ³		
Z	4		
Dichte (berechnet)	2.130 Mg/m ³		
Absorptionkoeffizient	3.800 mm ⁻¹		
F(000)	3456		

Kristallgröße	0.79 x 0.15 x 0.09 mm ³
Theta-Bereich	1.46 bis 32.69°.
hkl-Bereich	-21 ≤ h ≤ 21, -18 ≤ k ≤ 21, -41 ≤ l ≤ 41
Gemessene Reflexe	141586
Unabhängige Reflexe	9873 [R(int) = 0.0472]
Vollständigkeit bis theta = 32.69°	99.5 %
Absorptionkorrektur	Multi-Scan
Max. und min. Transmission	0.7261 und 0.1532
Verfeinerungsmethode	Full-matrix least-squares gegen F ²
Daten / Restraints / Parameter	9873 / 0 / 258
Goodness-of-fit gegen F ²	1.056
R-Werte [I>2sigma(I)]	$R_1 = 0.0379, wR_2 = 0.1002$
R-Werte (alle Daten)	$R_1 = 0.0414$, $wR_2 = 0.1021$
Flack-Parameter	-0.011(15)
Restelektronendichte/größte Lücke	1.762 und -1.888 eÅ ⁻³

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3028. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	х	У	Z	U(eq)
Eu(1)	8905(1)	8905(1)	8750	15(1)
Eu(2)	6836(1)	7714(1)	8147(1)	17(1)
C(1)	6690(3)	9689(3)	8785(2)	20(1)
O(1)	7315(2)	9185(2)	8474(1)	18(1)
C(2)	5744(3)	9129(4)	8876(2)	23(1)
N(2)	5405(3)	8769(3)	8390(1)	22(1)
C(21)	4462(4)	8292(5)	8406(2)	29(1)
C(22)	4165(4)	7927(4)	7896(2)	29(1)
C(23)	4646(4)	6994(5)	7742(2)	34(1)
O(24)	4156(6)	6440(6)	7483(3)	82(2)
O(25)	5491(3)	6836(3)	7861(2)	31(1)
C(3)	5888(3)	8256(4)	9210(2)	22(1)
O(3)	6394(2)	7522(2)	8975(1)	20(1)
C(4)	6369(3)	8570(4)	9688(2)	22(1)
N(4)	6561(3)	7674(3)	9955(1)	21(1)
C(41)	6941(3)	7821(4)	10456(2)	21(1)

C(42)	7102(4)	6855(4)	10702(2)	27(1)
C(43)	7983(4)	6320(4)	10529(2)	24(1)
O(44)	8202(4)	5566(3)	10755(2)	39(1)
O(45)	8453(3)	6620(3)	10161(1)	25(1)
C(5)	7304(3)	9108(3)	9610(2)	20(1)
O(5)	8038(2)	8494(2)	9444(1)	17(1)
C(6)	7145(4)	9959(4)	9263(2)	23(1)
N(6)	8108(3)	10355(3)	9172(1)	22(1)
C(61)	8128(4)	11270(3)	8914(2)	27(1)
C(62)	9152(4)	11598(4)	8806(2)	29(1)
C(63)	9629(4)	11094(4)	8383(2)	29(1)
O(64)	10259(4)	11536(4)	8151(2)	52(1)
O(65)	9341(3)	10276(3)	8264(1)	25(1)
K(1)	8019(2)	10000	7500	38(1)
O(1W)	5385(5)	10000	7500	43(1)

Li₆[Li(H_{1.5}tacitp)₂]Cl₄ · 14 H₂O

Diffraktometer	Bruker X8 Apex, Nonius Kappa CCD		
Identifikationscode	sh3036		
Summenformel	C ₃₀ H ₇₉ Cl ₄ Li ₇ N ₆ O ₃₂		
Molmasse	1226.37 g/mol		
Temperatur	100(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	Triklin		
Raumgruppe	P-1		
Zellkonstanten	a = 11.4478(4) Å	$\alpha = 105.615(2)^{\circ}.$	
	b = 11.6692(4) Å	$\beta = 96.438(2)^{\circ}.$	
	c = 11.7718(4) Å	$\gamma = 109.431(2)^{\circ}.$	
Zellvolumen	1392.60(8) Å ³		
Z	1		
Dichte (berechnet)	1.462 Mg/m ³		
Absorptionkoeffizient	0.307 mm ⁻¹		
F(000)	646		
Kristallgröße	$0.23 \times 0.10 \times 0.04 \text{ mm}^3$		
Theta-Bereich	1.84 bis 27.00°.		

hkl-Bereich	$-14 \le h \le 14$, $-14 \le k \le 14$, $-15 \le l \le 15$
Gemessene Reflexe	22195
Unabhängige Reflexe	6027 [R(int) = 0.0541]
Vollständigkeit bis theta = 27.00°	99.3 %
Absorptionkorrektur	Multi-Scan
Max. und min. Transmission	0.9878 und 0.9327
Verfeinerungsmethode	Full-matrix least-squares gegen F ²
Daten / Restraints / Parameter	6027 / 1 / 426
Goodness-of-fit gegen F ²	1.164
R-Werte [I>2sigma(I)]	$R_1 = 0.0612, wR_2 = 0.1121$
R-Werte (alle Daten)	$R_1 = 0.0843, wR_2 = 0.1194$
Restelektronendichte/größte Lücke	0.492 und -0.491 eÅ ⁻³

Atomkoordinaten $(x \ 10^4)$ und äquivaltente isotrope Auslenkungsparameter (Å²x 10^3) für sh3036. U(eq) = 1/3 der Spur des orthogonalisierten U^{ij} Tensor.

	x	У	Z	U(eq)
Li(1)	5000	15000	0	14(2)
C(1)	4262(3)	12400(3)	-1987(2)	9(1)
O(1)	5121(2)	13264(2)	-866(2)	10(1)
C(2)	2909(3)	11949(3)	-1794(3)	10(1)
N(2)	2776(3)	11327(2)	-839(2)	11(1)
C(21)	3224(3)	10241(3)	-1057(3)	15(1)
C(22)	2884(3)	9508(3)	-175(3)	15(1)
C(23)	3357(3)	8411(3)	-374(3)	12(1)
O(24)	3195(2)	7791(2)	374(2)	16(1)
O(25)	3873(2)	8166(2)	-1223(2)	25(1)
C(3)	2386(3)	13013(3)	-1499(2)	9(1)
O(3)	3031(2)	13946(2)	-341(2)	10(1)
C(4)	2512(3)	13674(3)	-2469(3)	10(1)
N(4)	2114(2)	14797(2)	-2109(2)	10(1)
C(41)	728(3)	14422(3)	-2106(3)	15(1)
C(42)	391(3)	15584(3)	-1640(3)	14(1)
C(43)	-863(3)	15272(3)	-1232(3)	12(1)
O(43)	-1226(2)	16200(2)	-900(2)	17(1)
O(44)	-1440(2)	14172(2)	-1219(2)	19(1)

C(5)	3857(3)	14150(3)	-2690(3)	9(1)
O(5)	4648(2)	15190(2)	-1646(2)	11(1)
C(6)	4353(3)	13058(3)	-2960(2)	8(1)
N(6)	5671(2)	13455(2)	-3108(2)	10(1)
C(61)	5892(3)	13880(3)	-4169(3)	11(1)
C(62)	7275(3)	14153(3)	-4233(3)	17(1)
C(63)	7622(3)	14580(3)	-5300(3)	12(1)
O(64)	7208(2)	13735(2)	-6352(2)	15(1)
O(65)	8296(2)	15712(2)	-5137(2)	23(1)
O(3W)	217(2)	10202(2)	-1036(2)	18(1)
O(4W)	3502(2)	8495(2)	3118(2)	17(1)
O(5W)	4490(2)	9123(2)	-3536(2)	20(1)
O(6W)	8876(2)	17635(2)	-2342(2)	18(1)
O(7WA)	1098(3)	8560(3)	2032(3)	21(1)
O(7WB)	742(15)	8034(15)	1100(15)	21(1)
O(8W)	9342(3)	18627(3)	-4549(3)	41(1)
O(9W)	11111(2)	17590(3)	-3639(3)	29(1)
CI(1)	12163(1)	19643(1)	-4935(1)	19(1)
CI(2)	6124(1)	7379(1)	-2480(1)	31(1)
Li(2)	9309(5)	17259(5)	-3903(5)	19(1)
Li(3)	2209(5)	7641(5)	1563(5)	18(1)
Li(4)	4283(5)	7835(5)	-2733(5)	17(1)

Literaturverzeichnis

- [1] N. Heißmann, K. Milhahn, Stern, **22.06.2011**, *26. Auflage*.
- [2] O. Dössel, Bildgebende Verfahren , Springer, 2000.
- [3] M. Wetzke, C. Happle, Urban & Fischer, 2009, 2. Auflage.
- [4] M. Möller, Hochschule für Technik und Wirtschaft, Saarbrücken **2008**, 6-7.
- [5] S. B. Yu, A. D. Watson, *Chem. Rev.* **1999**, *99*, 2353-2377.
- [6] Mit freundlicher Genehmigung des Leopoldina-Krankenhaus der Stadt Schweinfurt GmbH, **21.05.2013**.
- [7] P. Dawson, D.O. Cosgrove, R.G. Grainger, Textbook of contrast media, *Isis Medical Media*, **1999**, *15*.
- [8] Bayer Schering Pharma, Ultravist -150, -240, -370, Fachinformation: Zusammenfassung der Merkmale des Arzneimittel, Oktober 1990, 1-7.
- [9] Deutsches Ärzteblatt, Verzögerte Überempfindlichkeitsreaktionen nach Applikationen von dimeren nichtionischen Röntgenkontrastmittel, **22.03.1996**, *Heft 12*, 778.
- [10] G. Weidemüller, *Dissertation* **2005**, Halle-Wittenberg.
- [11] B. Lehnert, *Dissertation* **2002**, Homburg.
- [12] E. Noey, J. C. Curtis, S. Tain, D. M. Pham, E. F. Jones, J. Chem. Educ. 2011, 88, 793-797.
- [13] W. P. Cacheris, S. C. Quay, S. M. Rocklage, *Magn. Reson. Imaging* **1990**, *8*, 467-481.
- [14] T. Almen, Invest. Radiol. 1994, 29, S37-S45.
- [15] E. L. Siegel, J. D. Rosenblum, D. A. Eckard, J. Leef, J. Bergh, M. B. Parsa, M. L. Redick, Acad. Radiol. 1996, 3, S507-S513.
- [16] P. Lumbroso, C. E. Dick, *Med. Phys.* **1987**, *14*, 752-758.
- [17] C. Ruth, P. M. Joseph, *Med. Phys.* **1995**, *22*, 1977-1982.
- [18] M. Sandborg, J. O. Christoffersson, G. A. Carlsson, T. Almen, D. R. Dance, *Phys. Med. Biol.* **1995**, *40*, 1209-1224.
- [19] T. Staks, G. Schuhmanngiampieri, T. Frenzel, H. J. Weinmann, L. Lange, J. Platzek, *Invest. Radiol.* **1994**, *29*, 709-715.
- [20] B. F. Mullan, M. T. Madsen, L. Messerle, V. Kolesnichenko, J. Kruger, *Acad. Radiol.* **2000**, *7*, 254-259.
- [21] S. Cotton, Lanthanide and Actinide Chemistry, J. Wiley & Sons, 2006.
- [22] R.D. Shannon, Acta Crystall. Section A. **1976**, *32*, 751-767.
- [23] J. E. Huheey, Anorganische Chemie: Prinzipien von Strukturen und Reaktivität, *De Gruyter* **1988**.

- [24] H. Pietsch, G. Jost, T. Frenzel, M. Raschke, J. Walter, H. Schirmer, J. Hütter, M. A. Sieber, *Eur. J. Radiol.* 2011, *80*, 349-356.
- [25] T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, W. J. Randall, *Chem. Rev.* **1965**, *65*.
- [26] S. E. Seltzer, M. A. Davis, P. F. Judy, A. Havron, Invest. Radiol. 1979, 14, 400.
- [27] S. E. Seltzer, D. F. Adams, M. A. Davis, S. J. Hessel, A. Hurlburt, A. Havron, N. K. Hollenberg, H. L. Abrams, *Invest. Radiol.* **1979**, *14*, 356-356.
- [28] S. E. Seltzer, D. F. Adams, M. A. Davis, S. J. Hessel, A. Havron, P. F. Judy, A. J. Paskinshurlburt, N. K. Hollenberg, *J. Comput. Assist. Tomogr.* **1981**, *5*, 370-374.
- [29] A. Havron, M. A. Davis, S. E. Seltzer, A. J. Paskinshurlburt, S. J. Hessel, J. Comput. Assist. Tomogr. 1980, 4, 642-648.
- [30] S. Uma, J. D. Corbett, *Inorg. Chem.* **1998**, *37*, 1944-1948.
- [31] H. M. Artelt, T. Schleid, G. Meyer, *Z. Anorg. Allg. Chem.* **1992**, *618*, 18-25.
- [32] H. M. Artelt, G. Meyer, Z. Anorg. Allg. Chem. 1993, 619, 1-6.
- [33] M. Ebihara, J. D. Martin, J. D. Corbett, *Inorg. Chem.* **1994**, 33, 2079-2084.
- [34] R. Llusar, J. D. Corbett, *Inorg. Chem.* **1994**, *33*, 849-853.
- [35] M. Lulei, J. D. Martin, L. M. Hoistad, J. D. Corbett, J. Am. Chem. Soc. 1997, 119, 513-520.
- [36] M. Ghisletta, *Dissertation* **1994**, ETH Zürich.
- [37] K. Hegetschweiler, Chem. Soc. Rev. 1999, 28, 239-249.
- [38] K. Hegetschweiler, V. Gramlich, M. Ghisletta, H. Samaras, *Inorg. Chem.* **1992**, *31*, 2341-2346.
- [39] M. Ghisletta, H. P. Jalett, T. Gerfin, V. Gramlich, K. Hegetschweiler, *Helv. Chim. Acta* 1992, 75, 2233-2242.
- [40] K. Hegetschweiler, M. Ghisletta, T. F. Fassler, R. Nesper, H. W. Schmalle, G. Rihs, Inorg. Chem. 1993, 32, 2032-2041.
- [41] H. W. Schmalle, K. Hegetschweiler, M. Ghisletta, Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1991, 47, 2047-2052.
- [42] K. Hegetschweiler, M. Ghisletta, T. F. Fassler, R. Nesper, *Angew. Chem.-Int. Edit. Engl.* **1993**, *32*, 1426-1428.
- [43] M. Bartholomä, Dissertation 2007, Saarbrücken.
- [44] J. Huppert, *Dissertation* **2006**, Saarbrücken.
- [45] K. Hegetschweiler, M. Wörle, M. D. Meienberger, R. Nesper, H. W. Schmalle, R. D. Hancock, *Inorg. Chim. Acta* 1996, 250, 35-47.
- [46] K. Hegetschweiler, R. D. Hancock, M. Ghisletta, T. Kradolfer, V. Gramlich, H. W.

Schmalle, Inorg. Chem. 1993, 32, 5273-5284.

- [47] P. Comba, T. W. Hambley, *VCH*, Weihnheim **1995**.
- [48] R. Hedinger, M. Ghisletta, K. Hegetschweiler, E. Toth, A. E. Merbach, R. Sessoli, D. Gatteschi, V. Gramlich, *Inorg. Chem.* **1998**, *37*, 6698-6705.
- [49] K. Hegetschweiler, M. Ghisletta, V. Gramlich, Inorg. Chem. 1993, 32, 2699.
- [50] K. Hegetschweiler, S. Stucky, B. Morgenstern, C. Neis, T. Weyhermüller, *Acta Crystallogr. Section C* **2009**, *C65*, m I.
- [51] K. Hegetschweiler, Bol. Soc. Chilena Quim. 1997, 42, 257-279.
- [52] F. C. Whitmore, H. S. Mosher, R. R. Adams, R. B. Taylor, E. C. Chapin, C. Weisel, W. Yanko, *American Chemical Society* **1944**, *66*, 725-731.
- [53] R. Brückner, Reaktionsmechanismen, *Spektrum Akademischer Verlag* **2004**, *3. Auflage*.
- [54] R. Beckedahl, Bachelor-Arbeit 2010, Saarbrücken.
- [55] R. Roques, E. Guy, Acta Cristallogr. Section B **1976**, *32*, 602-604.
- [56] O. B. Flekhter, N. I. Medvedeva, K. Y. Suponitsky, Acta Crystallogr. Sect. E.-Struct Rep. Online 2007, 63, O2289-O2290.
- [57] U. Baumeister, H. Hartung, M. Gdaniec, *Acta Crystallogr. Sect. C-Cryst. Struct. Commun.* **1988**, *44*, 1295-1297.
- [58] D. Zewge, M. H. Malak, H. W. Thompson, R. A. Lalancette, A. P. J. Brunskill, Acta Crystallogr. Sect. E.-Struct Rep. Online 2007, 63, 0479-0481.
- [59] B. C. Ranu, S. Banerjee, *Tetrahedron Lett.* 2007, 48, 141-143.
- [60] J. Corse, J. T. Bryant, H. A. Shonle, J. Am. Chem. Soc. **1946**, 68, 1905-1910.
- [61] K. Hegetschweiler, *Dissertation* **1984**, Zürich.
- [62] L. W. Xu, J. W. Li, S. L. Zhou, C. G. Xia, New J. Chem. 2004, 28, 183-184.
- [63] E. Y. Ladilina, V. V. Semenov, Y. A. Kurskii, S. Y. Khorshev, C. A. Domrachev, *Russ. J. Organ. Chem.* 2004, 40, 1258-1264.
- [64] J. Cabral, P. Laszlo, L. Mahe, M. T. Montaufier, S. L. Randriamahefa, *Tetrahedron Lett.* **1989**, *30*, 3969-3972.
- [65] L. W. Xu, J. W. Li, C. G. Xia, S. L. Zhou, X. X. Hu, Synlett 2003, 2425-2427.
- [66] H. M. Meshram, C. Lakshindra, P. N. Reddy, K. Sadashiv, J. S. Yadav, Synth. Commun. 2006, 36, 795-801.
- [67] L. F. Tietze, T. Eicher, Organisch chemisches Grundpraktikum, **1995**, *2.Auflage*, 172-173.
- [68] L. F. Tietze, T. Eicher, Reaktionen und Synthesen, **1991**, *2.Auflage*, 491(Q-496e*).
- [69 H. G. O. Becker, Organikum, **1986**, *21.Auflage*, *200*, 500.
- [70] N. Azizi, M. R. Saidi, Org. Lett. 2005, 7, 3649-3651.

- [71] I. Katsuhisa, K. Takeshi, United States Patent Application Publication 2006, Pub.No.: US 2006/0233734 A1, 3.
- [72] M. Yoshioka, T. Adachi, K. Uehara, *European Patent Application* 2005, EP 1 584 320 A1, 7.
- [73] E. R. Burkhardt, B. M. Coleridge, *Tetrahedron Lett.* 2008, 49, 5152-5155.
- [74] K. Hegetschweiler, T. Kradolfer, V. Gramlich, R. D. Hancock, *Chem.-Eur. J.* 1995, *1*, 74-88.
- [75] G. Welti, *Dissertation*, Zürich **1998**.
- [76] D. Chapon, J. P. Morel, P. Delangle, C. Gateau, J. Pecaut, *Dalton Trans.* 2003, 2745-2749.
- [77] D. Chapon, C. Husson, P. Delangle, C. Lebrun, P. J. A. Vottero, J. Alloy, *Compd.* 2001, *323*, 128-132.
- [78] A. L. Spek, *Platon*, Utrecht University **2006**.
- [79] P. v. d. Sluis, A. L. Spek, Acta Crystallogr. Section A. **1190**, A46, 194-201.
- [80] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor, *J. Chem. Soc.-Dalton Trans.* **1989**, S1-S83.
- [81] J. Wang, X. D. Zhang, W. G. Jia, Y. Zhang, Z. R. Liu, *Russ. J. Coord. Chem.* 2004, 30, 130-136.
- [82] K. Hegetschweiler, M. Ghisletta, V. Gramlich, Inorg. Chem. 1993, 32, 2699-2704.
- [83] K. Hegetschweiler, S. Stucky, B. Morgenstern, C. Neis, T. Weyhermüller, Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 2009, 65, M1-M3.
- [84] W. Frank, G. J. Reiss, J. Schneider, *Angew. Chem.-Int. Edit. Engl.* 1995, 34, 2416-2417.
- [85] J. Naslund, I. Persson, M. Sandstrom, Inorg. Chem. 2000, 39, 4012-4021.
- [86] G. J. Reiss, W. Frank, J. Schneider, *Main Group Met. Chem.* 1995, 18, 287-294.
- [87] R. L. Davidovich, L. E. Toennessen, S. Z. Hu, S. W. Ng, *Main Group Met. Chem.* **1998**, *21*, 601-603.
- [88] Sigma-Aldrich, CAS Number 74-88-4, aufgerufen am 06.06.2012.
- [89] E. Riedel, Anorganische Chemie, De Gruyter 2004, 6. Auflage.
- [90] T. Frenzel, Bayer HealthCare 2010, 2011 Berlin.
- [91] B. Morgenstern, J. Sander, V. Huch, K. Hegetschweiler, *Inorg. Chem.* 2001, 40, 5307-5310.
- [92] G. Schwarzenbach, H. B. Burgi, W. P. Jensen, G. A. Lawrance, L. Monsted, A. M. Sargeson, *Inorg. Chem.* 1983, 22, 4029-4038.
- [93] W. Klaui, N. Mocigemba, A. Weber-Schuster, R. Bell, W. Frank, D. Mootz, W. Poll, H. Wunderlich, *Chem.-Eur. J.* 2002, *8*, 2335-2340.
- [94] Z. M. Jin, Y. J. Pan, X. F. Li, M. L. Hu, L. Shen, J. Mol. Struct. 2003, 660, 67-72.
- [95] B. Witulski, M. Weber, U. Bergstrasser, J.B. Desvergne, D.M. Bassini, H. Bouas-Laurent, *Org. Lett.* **2001**, 1467.
- [96] Y.P. Cai, C.Y. Su, A.W. Xu, B.S. Kang, Y.X. Tong, H.Q. Liu, S. Jie, *Polyhedron*. 2001, 20, 657.
- [97] E. Riedel, Moderne Anorganische Chemie, De Gruyter 2002, 2. Auflage.
- [98] S. Alvarez, M. Lunell, J. Chem. Soc. 2000, 3288.
- [99] H. Irving, R. J. P. Williams, *Nature* **1948**, *162*, 746-747.
- [100] K. Kumar, M. F. Tweedle, *Inorg. Chem.* **1993**, *32*, 4193-4199.
- [101] A. Ries, *Diplomarbeit*, Saarbrücken 1997.
- [102] K. Hegetschweiler, *TITKURVE Programm Titrationskurven Vers. 1.1* (unveröffentlicht), Zürich **1993**.
- [103] Scien Tech GmbH, *MESSLABOR*, Saarbrücken 2002.
- [104] P. Gans, A. Sabatini, A. Vacca, *Talanta* **1996**, *43*, 1739-1753.
- [105] D. W. Marquardt, SIAM 1963, 11, 431-441.
- [106] L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, A. Vacca, *Coord. Chem. Rev.* 1999, 184, 311-318.
- [107] G. M. Sheldrick, SHELXS-97 (Version 2), Göttingen 1997.
- [108] G. M. Sheldrick, SHELXL-97 (Version 2), Göttingen 1997.