Die Kristall- und Molekülstruktur von Tetrakis(trimethylsilyl)tetrazen

VON M. VEITH

Institut für Anorganische Chemie der Universität Karlsruhe (TH), D 75 Karlsruhe, Englerstrasse 11, Deutschland (BRD)

(Eingegangen am 26. Juni 1974; angenommen am 2. Oktober 1974)

The crystal structure of tetrakis(trimethylsilyl)tetrazen [(CH₃)₃Si]₂N-N=N-N[Si(CH₃)₃]₂, has been determined from three-dimensional X-ray data collected on a Stoe two-circle diffractometer at -130°C (Mo Ka radiation, 1380 reflexions, R=0.065). The crystals are monoclinic, space group C2/c, with cell dimensions a=19.23 (1), b=9.105 (4), c=12.376 (7) Å, $\beta=90.8$ (1)° and Z=4. The crystal site symmetry of tetrakis(trimethylsilyl)tetrazene has been shown to be $\overline{1}$ (C_1), favouring close packing of the molecules. For several reasons, however, the free molecule is expected to adopt the higher point symmetry 2/m (C_{2h}) with a plane formed by the four silicon and four nitrogen atoms. Remarkable molecular dimensions are the elongated N–N double bond (1.27 Å), the rather short N–N single bond (1.39 Å) and the Si–N bond (1.78 Å), which is the longest found in a planar hexamethyldisilazyl group. The stereochemical activity of the azo-nitrogen lone pair is revealed by analysis of the molecular geometry.

Einleitung

Thermolysiert man Bis(trimethylsilyl)diimin (Wiberg & Uhlenbrock, 1970), so erhält man unter anderem dessen 'Dimeres', Tetrakis(trimethylsilyl)tetrazen, als ersten bekannten Vertreter einer Silylstickstoffverbindung mit viergliedriger Stickstoffkette. Während die Kettenstruktur der Verbindung aus physikalischen und chemischen Daten folgte (Wiberg, 1971), war die genaue Punktsymmetrie der Verbindung unbekannt. Im wesentlichen ergaben sich folgende Fragen: Ist Tetrakis(trimethylsilyl)tetrazen cis- oder trans- in Bezug auf die Azo-Gruppe orientiert und welche Konformation nehmen die Hexamethyldisilazylsubstituenten gegenüber der Azo-Gruppe ein? In welcher Weise wirkt sich die Ausbildung einer viergliedrigen Stickstoffkette auf die Bindungslänge der N-N-Doppelbindung aus? Kann man die stereochemische Aktivität des freien Elektronenpaares am Azostickstoff, ähnlich den Verhältnissen am Bis(trimethylsilyl)diimin (Veith & Bärnighausen, 1974), aus ihrem Einfluss auf die Konformation der Trimethylsilylgruppen ablesen? Zur Klärung dieser Fragen unternahmen wir eine Röntgenstrukturanalyse.

Experimentelles und Kristalldaten

Einkristalle von Tetrakis(trimethylsilyl)tetrazen (Schmelzpunkt: 46°C) erhielten wir nach mehrmaligem Umkristallisieren des Thermolysegemischs von Bis-(trimethylsilyl)diimin, dargestellt nach dem Verfahren von Wiberg & Uhlenbrock (1970), aus Diäthyläther und schliesslich aus Methanol. Die Weissenbergaufnahmen der Kristalle zeigten systematische Auslöschungen, die auf die Raumgruppe Cc bzw. C2/chinwiesen: hkl, h+k=2n+1; h0l, l=2n+1. Die Raumgruppe Cc konnten wir im weiteren Verlauf auf Grund des Pattersondiagramms ausschliessen. Die Gitterkonstanten wurden bei -130 °C mit Hilfe von Weissenbergaufnahmen des Äquators *hk*0 bzw. 0*kl* bestimmt, auf die bei Zimmertemperatur die Reflexe *hk*0 eines Quarzeinkristalls exponiert wurden [λ (Cu $K\alpha_1$) = 1,54051; *a* von Quarz: 4,9126 Å].

Kristalldaten

 $C_{12}H_{36}N_4Si_4$, M.W. 348,8; monoklin. Raumgruppe: C2/c; a=19,23 (1); b=9,105 (4); c=12,376 (7) Å; $\beta=90,8$ (1)°. V=2166,6 Å³; Z=4; $D_x=1,069$ g cm⁻³; μ (Mo K α)=2,7 cm⁻¹.

Zur Messung der Reflexintensitäten benutzten wir ein automatisches Zweikreisdiffraktometer der Firma Stoe, Darmstadt (Weissenberg-Prinzip, Mo Ka-Strahlung, Graphitmonochromator) in Kombination mit der Kühleinrichtung der Firma Nonius, Delft. Wir verwendeten zwei Einkristalle mit den Abmessungen $0.3 \times$ $0,4 \times 0,5$ mm. Die längste Kante entsprach in beiden Fällen der Richtung [001] und wurde als Drehachse (ω -Kreis) gewählt. Wir erhielten bei -130 °C einen Datensatz von 1380 kristallographisch unabhängigen Reflexen aus zwei getrennten Datensätzen der zwei Einkristalle (hk0 bis hk8; hk9 bis hk12), die wir durch Überlappung des Messbereiches aneinander anglichen. Wir registrierten die Reflexe nach der Technik des 'ω-scans' unter Berücksichtigung der individuellen Reflexbreiten. Der jeweils erforderliche Scan-Bereich wurde nach der Formel $\Delta \omega = 1.5 + 0.7 \sin \nu \cos \theta /$ $\sin(Y/2)$ errechnet; hierbei ist v der Äqui-inklinationswinkel, θ der Bragg-Winkel, Y der Zählerwinkel und die Zahlenwerte sind kristallspezifische, empirisch ermittelte Konstanten in Grad. Die gemessenen Intensitäten wurden LP-korrigiert; auf eine Absorptionskorrektur wurde verzichtet. 109 Reflexe, die sich nicht signifikant vom Untergrund abhoben, wurden als 'nicht beobachtet' eingestuft ($F_0 = 0$).

Die Struktur des Tetrakis(trimethylsilyl)tetrazens wurde mit der Schweratommethode gelöst und mit der Methode der kleinsten Fehlerquadrate verfeinert. Sämtliche 18 unabhängigen H-Atome des zentrosymmetrischen Moleküls konnten einer Differenz-Fourier-Synthese entnommen werden. Bei Verwendung anisotroper Temperaturfaktoren für die Atomsorten Si, N

Tabelle 1. Die Ortskoordinaten und der Parameter des Debye-Waller-Faktors für die Atome der asymmetrischen Einheit von Tetrakis(trimethylsilyl)tetrazen

Die bei den Atomen Si, N und C(1) bis C(6) angegebenen B-Werte des Temperaturfaktors der Form exp $(-B \sin^2 \theta / \lambda^2)$ wurden nach Hamilton (1959) aus den Werten β_{ij} von Tabelle 2 berechnet. Die Standardabweichungen in Klammern sind entsprechend ihrer Stellenzahl den letzten Ziffern der Funktionswerte zuzuordnen.

	х	у	Z	$B(Å^2)$	r1.a
Si(1)	0.15523 (6)	0.0581 (1)	0,1612 (1)	2,59 (4)	r_1, b
$\tilde{Si}(2)$	0.12077 (6)	0.3472 (1)	0,0228(1)	2,56 (4)	r_1, c^*
$\tilde{N}(1)$	0.1752(2)	0.2031 (4)	0.0692(3)	2,53 (7)	r_2, a
N(2)	0.2436(2)	0.1990 (4)	0.0333 (3)	2,66 (7)	r_2, b
C	0.2266 (3)	-0.0761(6)	0,1655 (6)	4,2 (1)	r_2, c^*
$\tilde{C}(2)$	0.1428(3)	0.1272 (6)	0,3040 (4)	3,9 (1)	r_3, a
$\tilde{C}(3)$	0.0766 (3)	-0.0418(6)	0,1139 (5)	3,6(1)	r_3, b
C(4)	0,0359 (3)	0,3235 (7)	0,0928 (5)	3,9(1)	r_{3}, c^{*}
C(5)	0,1540 (3)	0,5309 (5)	0,0649 (5)	3,3 (1)	
C(6)	0,1015 (3)	0,3318 (6)	-0,1289(4)	3,3 (1)	
H(1)	0,217 (3)	-0,146(8)	0,221 (6)	3,7 (1,5)	β_{11}
H(2)	0,229 (3)	-0,130(7)	0,103 (6)	3,4 (1,6)	β_{22}
H(3)	0,264 (4)	-0,031 (8)	0,176 (6)	3,9 (1,8)	β_{33}
H(4)	0,116 (3)	0,049 (7)	0,330 (5)	2,2 (1,2)	β_{12}
H(5)	0,181 (3)	0,188 (7)	0,339 (5)	2,6 (1,2)	β_{13}
H(6)	0,108 (3)	0,192 (7)	0,306 (5)	2,1 (1,3)	β_{23}
H(7)	0,076 (3)	-0,132 (7)	0,156 (5)	3,0 (1,3)	r_1 (Å
H(8)	0,030 (3)	0,007 (6)	0,128 (4)	1,1 (9)	r_2 (Å
H(9)	0,067 (3)	-0,043 (6)	0,046 (6)	2,0 (1,3)	r3 (Å)
H(10)	0,013 (3)	0,408 (7)	0,083 (5)	2,0 (1,2)	<i>r</i> ₁ , <i>a</i>
H(11)	0,010 (4)	0,254 (9)	0,055 (7)	5,2 (2,0)	r_1, b
H(12)	0,045 (3)	0,321 (6)	0,170 (6)	2,8 (1,3)	r1, c*
H(13)	0,134 (4)	0,612 (9)	0,026 (6)	4,8 (1,7)	r_2, a
H(14)	0,145 (4)	0,552 (8)	0,130 (7)	4,7 (1,9)	r_2, b
H(15)	0,203 (4)	0,532 (7)	0,064 (5)	3,6 (1,5)	r₂, c*
H(16)	0,076 (3)	0,407 (8)	-0,149 (5)	3,0 (1,4)	r ₃ , a
H(17)	0,154 (4)	0,324 (8)	-0,165 (7)	6,0 (1,9)	r_{3}, b
H(18)	0.073(4)	0.254(8)	-0.153 (6)	4,0 (1,6)	r ₃ , c*

Tabelle 2. Daten zur Anisotropie der thermischen Schwingung für die Atome von Tetrakis(trimethylsilyl)tetrazen mit Ausnahme der H-Atome

Von den Parametern β_{lj} des Temperaturfaktors exp [- $(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)$] sind die 10⁴fachen Werte aufgeführt. Die Werte r_1 , r_2 und r_3 beziehen sich auf die Hauptachsen des Schwingungsellipsoids; ihr Betrag entspricht jeweils der Wurzel aus dem mittleren Amplitudenquadrat. r_i, a, r_i, b und $r_i c^*$ sind die Winkel in Grad zwischen den Hauptachsen und den Achsen eines Orthogonalsystems, das von den Vektoren \mathbf{a}, \mathbf{b} und $\mathbf{c}^* = (1/V) \mathbf{a} \times \mathbf{b}$ aufgespannt wird. Standardabweichungen in Klammern wie bei Tabelle 1.

	Si(1)	Si(2)	N(1)	N(2)	C(1)
Bui	21.9 (4)	20,7 (4)	17 (1)	22 (1)	27 (2)
β,,	53 (2)	57 (2)	58 (4)	54 (4)	77 (7)
β	46 (1)	45 (1)	53 (3)	49 (3)	98 (6)
B12	-2(1)	6 (1)	2 (2)	3 (2)	7 (3)
B13	18,4 (5)	18,5 (4)	20 (1)	19(1)	24 (3)
B23	10 (1)	5 (1)	14 (3)	10 (3)	42 (6)
r_1 (Å)	0,116 (3)	0,120 (3)	0,103 (9)	0,127 (7)	0,141 (10)
r ₂ (Å)	0,158 (2)	0,153 (2)	0,156 (6)	0,150 (6)	0,193 (8)
$r_{3}(A)$	0,245 (2)	0,243 (2)	0,247 (5)	0,250 (5)	0,319 (8)
r_1, a	56 (1)	47 (1)	44 (3)	53 (6)	74 (6)
r_1, b	60 (2)	99 (3)	73 (6)	69 (12)	35 (6)
r_1, c^*	132 (1)	135 (1)	129 (2)	135 (4)	120 (3)
r_2, a	68 (2)	90 (2)	70 (5)	69 (8)	146 (4)
r_2, b	150 (2)	167 (2)	160 (5)	157 (11)	62 (7)
r_{2}, c^{*}	109 (2)	77 (2)	92 (4)	100 (9)	72 (5)
r_3, a	43 (1)	43 (1)	53 (2)	44 (2)	61 (3)
r_3, b	86 (1)	81 (1)	79 (3)	81 (2)	71 (2)
r ₃ , c*	48 (1)	48 (1)	39 (2)	47 (2)	35 (2)
	C(2)	C(3)	C(4)	C(5)	C(6)
B11	C(2) 39 (2)	C(3) 31 (2)	C(4) 25 (2)	C(5) 27 (2)	C(6) 22 (1)
β_{11} β_{22}	C(2) 39 (2) 75 (7)	C(3) 31 (2) 89 (7)	C(4) 25 (2) 112 (8)	C(5) 27 (2) 77 (7)	C(6) 22 (1) 107 (7)
$\beta_{11} \\ \beta_{22} \\ \beta_{33}$	C(2) 39 (2) 75 (7) 58 (4)	C(3) 31 (2) 89 (7) 55 (4)	C(4) 25 (2) 112 (8) 71 (5)	C(5) 27 (2) 77 (7) 55 (4)	C(6) 22 (1) 107 (7) 50 (4)
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \end{array} $	C(2) 39 (2) 75 (7) 58 (4) -11 (4)	C(3) 31 (2) 89 (7) 55 (4) - 8 (3)	C(4) 25 (2) 112 (8) 71 (5) 15 (3)	C(5) 27 (2) 77 (7) 55 (4) 9 (3)	C(6) 22 (1) 107 (7) 50 (4) 4 (3)
$\beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13}$	C(2) 39 (2) 75 (7) 58 (4) -11 (4) 24 (2)	C(3) 31 (2) 89 (7) 55 (4) - 8 (3) 12 (2)	C(4) 25 (2) 112 (8) 71 (5) 15 (3) 23 (2)	C(5) 27 (2) 77 (7) 55 (4) 9 (3) 12 (2)	C(6) 22 (1) 107 (7) 50 (4) 4 (3) 11 (2)
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \end{array} $	C(2) 39 (2) 75 (7) 58 (4) -11 (4) 24 (2) 1 (4)	C(3) 31 (2) 89 (7) 55 (4) -8 (3) 12 (2) 11 (4)	C(4) 25 (2) 112 (8) 71 (5) 15 (3) 23 (2) 15 (5)	C(5) 27 (2) 77 (7) 55 (4) 9 (3) 12 (2) - 8 (4)	$\begin{array}{c} C(6) \\ 22 (1) \\ 107 (7) \\ 50 (4) \\ 4 (3) \\ 11 (2) \\ -8 (4) \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (\text{\AA}) \end{array} $	C(2) 39 (2) 75 (7) 58 (4) -11 (4) 24 (2) 1 (4) 0,149 (9)	C(3) 31 (2) 89 (7) 55 (4) -8 (3) 12 (2) 11 (4) 0,164 (8)	C(4) 25 (2) 112 (8) 71 (5) 15 (3) 23 (2) 15 (5) 0,149 (9)	C(5) 27 (2) 77 (7) 55 (4) 9 (3) 12 (2) -8 (4) 0,153 (8)	$\begin{array}{c} C(6) \\ 22 (1) \\ 107 (7) \\ 50 (4) \\ 4 (3) \\ 11 (2) \\ -8 (4) \\ 0,156 (8) \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \end{array} $	$\begin{array}{c} C(2) \\ 39 (2) \\ 75 (7) \\ 58 (4) \\ -11 (4) \\ 24 (2) \\ 1 (4) \\ 0,149 (9) \\ 0,187 (8) \end{array}$	C(3) 31 (2) 89 (7) 55 (4) -8 (3) 12 (2) 11 (4) 0,164 (8) 0,212 (7)	C(4) 25 (2) 112 (8) 71 (5) 15 (3) 23 (2) 15 (5) 0,149 (9) 0,205 (8)	C(5) 27 (2) 77 (7) 55 (4) 9 (3) 12 (2) -8 (4) 0,153 (8) 0,201 (7)	C(6) 22 (1) 107 (7) 50 (4) 4 (3) 11 (2) -8 (4) 0,156 (8) 0,216 (7)
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_3 (Å) \end{array} $	$\begin{array}{c} C(2) \\ 39 (2) \\ 75 (7) \\ 58 (4) \\ -11 (4) \\ 24 (2) \\ 1 (4) \\ 0,149 (9) \\ 0,187 (8) \\ 0,302 (7) \end{array}$	C(3) 31 (2) 89 (7) 55 (4) - 8 (3) 12 (2) 11 (4) 0,164 (8) 0,212 (7) 0,257 (7)	C(4) 25 (2) 112 (8) 71 (5) 15 (3) 23 (2) 15 (5) 0,149 (9) 0,205 (8) 0,289 (8)	$\begin{array}{c} C(5) \\ 27 (2) \\ 77 (7) \\ 55 (4) \\ 9 (3) \\ 12 (2) \\ -8 (4) \\ 0,153 (8) \\ 0,201 (7) \\ 0,248 (7) \end{array}$	$\begin{array}{c} C(6)\\ 22 (1)\\ 107 (7)\\ 50 (4)\\ 4 (3)\\ 11 (2)\\ -8 (4)\\ 0,156 (8)\\ 0,216 (7)\\ 0,230 (6) \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_3 (Å) \\ r_{1,a} \end{array} $	$\begin{array}{c} C(2)\\ 39 (2)\\ 75 (7)\\ 58 (4)\\ -11 (4)\\ 24 (2)\\ 1 (4)\\ 0,149 (9)\\ 0,187 (8)\\ 0,302 (7)\\ 60 (3) \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4) \end{array}$	C(4) 25 (2) 112 (8) 71 (5) 15 (3) 23 (2) 15 (5) 0,149 (9) 0,205 (8) 0,289 (8) 39 (4)	$\begin{array}{c} C(5)\\ 27 (2)\\ 77 (7)\\ 55 (4)\\ 9 (3)\\ 12 (2)\\ -8 (4)\\ 0,153 (8)\\ 0,201 (7)\\ 0,248 (7)\\ 61 (4) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5) \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_3 (Å) \\ r_{1,a} \\ r_{1,b} \end{array} $	$\begin{array}{c} C(2)\\ 39\ (2)\\ 75\ (7)\\ 58\ (4)\\ -11\ (4)\\ 24\ (2)\\ 1\ (4)\\ 0,149\ (9)\\ 0,187\ (8)\\ 0,302\ (7)\\ 60\ (3)\\ 55\ (9) \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4)\\ 49 (7) \end{array}$	$\begin{array}{c} C(4)\\ 25\ (2)\\ 112\ (8)\\ 71\ (5)\\ 15\ (3)\\ 23\ (2)\\ 15\ (5)\\ 0,149\ (9)\\ 0,205\ (8)\\ 0,289\ (8)\\ 39\ (4)\\ 101\ (6) \end{array}$	$\begin{array}{c} C(5)\\ 27 (2)\\ 77 (7)\\ 55 (4)\\ 9 (3)\\ 12 (2)\\ -8 (4)\\ 0,153 (8)\\ 0,201 (7)\\ 0,248 (7)\\ 61 (4)\\ 135 (8) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5)\\ 107\ (6) \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_3 (Å) \\ r_{1,a} \\ r_{1,b} \\ r_{1,c} * \end{array} $	$\begin{array}{c} C(2)\\ 39\ (2)\\ 75\ (7)\\ 58\ (4)\\ -11\ (4)\\ 0,149\ (9)\\ 0,187\ (8)\\ 0,302\ (7)\\ 60\ (3)\\ 55\ (9)\\ 130\ (7) \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4)\\ 49 (7)\\ 129 (6) \end{array}$	$\begin{array}{c} C(4)\\ 25\ (2)\\ 112\ (8)\\ 71\ (5)\\ 15\ (3)\\ 23\ (2)\\ 15\ (5)\\ 0,149\ (9)\\ 0,205\ (8)\\ 0,289\ (8)\\ 39\ (4)\\ 101\ (6)\\ 126\ (4) \end{array}$	$\begin{array}{c} C(5)\\ 27 (2)\\ 77 (7)\\ 55 (4)\\ 9 (3)\\ 12 (2)\\ -8 (4)\\ 0,153 (8)\\ 0,201 (7)\\ 0,248 (7)\\ 61 (4)\\ 135 (8)\\ 121 (7) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5)\\ 107\ (6)\\ 135\ (5) \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_3 (Å) \\ r_{1,a} \\ r_{1,b} \\ r_{1,c} \\ r_{2,a} \end{array} $	$\begin{array}{c} C(2)\\ 39\ (2)\\ 75\ (7)\\ 58\ (4)\\ -11\ (4)\\ 24\ (2)\\ 1\ (4)\\ 0,149\ (9)\\ 0,187\ (8)\\ 0,302\ (7)\\ 60\ (3)\\ 55\ (9)\\ 130\ (7)\\ 78\ (5) \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4)\\ 49 (7)\\ 129 (6)\\ 76 (8) \end{array}$	$\begin{array}{c} C(4)\\ 25\ (2)\\ 112\ (8)\\ 71\ (5)\\ 15\ (3)\\ 23\ (2)\\ 15\ (5)\\ 0,149\ (9)\\ 0,205\ (8)\\ 0,289\ (8)\\ 39\ (4)\\ 101\ (6)\\ 126\ (4)\\ 85\ (6) \end{array}$	$\begin{array}{c} C(5)\\ 27 (2)\\ 77 (7)\\ 55 (4)\\ 9 (3)\\ 12 (2)\\ -8 (4)\\ 0,153 (8)\\ 0,201 (7)\\ 0,248 (7)\\ 61 (4)\\ 135 (8)\\ 121 (7)\\ 70 (7) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5)\\ 107\ (6)\\ 135\ (5)\\ 104\ (19) \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_3 (Å) \\ r_{1,a} \\ r_{1,b} \\ r_{1,c} \\ r_{2,a} \\ r_{2,b} \end{array} $	$\begin{array}{c} C(2)\\ 39\ (2)\\ 75\ (7)\\ 58\ (4)\\ -11\ (4)\\ 24\ (2)\\ 1\ (4)\\ 0,149\ (9)\\ 0,187\ (8)\\ 0,302\ (7)\\ 60\ (3)\\ 55\ (9)\\ 130\ (7)\\ 78\ (5)\\ 144\ (9) \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4)\\ 49 (7)\\ 129 (6)\\ 76 (8)\\ 138 (7) \end{array}$	$\begin{array}{c} C(4)\\ 25\ (2)\\ 112\ (8)\\ 71\ (5)\\ 15\ (3)\\ 23\ (2)\\ 15\ (5)\\ 0,149\ (9)\\ 0,205\ (8)\\ 0,289\ (8)\\ 39\ (4)\\ 101\ (6)\\ 126\ (4)\\ 85\ (6)\\ 155\ (5)\\ \end{array}$	$\begin{array}{c} C(5)\\ 27 (2)\\ 77 (7)\\ 55 (4)\\ 9 (3)\\ 12 (2)\\ -8 (4)\\ 0,153 (8)\\ 0,201 (7)\\ 0,248 (7)\\ 61 (4)\\ 135 (8)\\ 121 (7)\\ 70 (7)\\ 46 (8) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5)\\ 107\ (6)\\ 135\ (5)\\ 104\ (19)\\ 163\ (8)\\ \end{array}$
$ \begin{array}{c} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 \\ r_2 \\ (Å) \\ r_2 \\ (Å) \\ r_1, a \\ r_1, b \\ r_1, c^* \\ r_2, a \\ r_2, b \\ r_2, c^* \end{array} $	$\begin{array}{c} C(2)\\ 39\ (2)\\ 75\ (7)\\ 58\ (4)\\ -11\ (4)\\ 24\ (2)\\ 1\ (4)\\ 0,149\ (9)\\ 0,187\ (8)\\ 0,302\ (7)\\ 60\ (3)\\ 55\ (9)\\ 130\ (7)\\ 78\ (5)\\ 144\ (9)\\ 124\ (8)\\ \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4)\\ 49 (7)\\ 129 (6)\\ 76 (8)\\ 138 (7)\\ 128 (7) \end{array}$	$\begin{array}{c} C(4)\\ 25\ (2)\\ 112\ (8)\\ 71\ (5)\\ 15\ (3)\\ 23\ (2)\\ 15\ (5)\\ 0,149\ (9)\\ 0,205\ (8)\\ 0,289\ (8)\\ 39\ (4)\\ 101\ (6)\\ 126\ (4)\\ 85\ (6)\\ 155\ (5)\\ 65\ (5)\\ \end{array}$	$\begin{array}{c} C(5)\\ 27 (2)\\ 77 (7)\\ 55 (4)\\ 9 (3)\\ 12 (2)\\ -8 (4)\\ 0,153 (8)\\ 0,201 (7)\\ 0,248 (7)\\ 61 (4)\\ 135 (8)\\ 121 (7)\\ 70 (7)\\ 46 (8)\\ 130 (7) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5)\\ 107\ (6)\\ 135\ (5)\\ 104\ (19)\\ 163\ (8)\\ 81\ (19) \end{array}$
$\beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_1, a \\ r_1, b \\ r_1, c^* \\ r_2, a \\ r_2, b \\ r_2, c^* \\ r_3, a \\ \beta_{23} \\ r_1, c^* \\ r_2, a \\ r_2, c^* \\ r_3, a \\ \beta_{23} \\ r_1, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, a \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_1, c^* \\ r_2, c^* \\ r_3, c^* \\ r_1, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_2, c^* \\ r_1, c^* \\ r_1, c^* \\ r_2, c^* \\ r_$	$\begin{array}{c} C(2)\\ 39\ (2)\\ 75\ (7)\\ 58\ (4)\\ -11\ (4)\\ 24\ (2)\\ 1\ (4)\\ 0,149\ (9)\\ 0,187\ (8)\\ 0,302\ (7)\\ 78\ (5)\\ 130\ (7)\\ 78\ (5)\\ 144\ (9)\\ 124\ (8)\\ 33\ (2) \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4)\\ 49 (7)\\ 129 (6)\\ 76 (8)\\ 138 (7)\\ 128 (7)\\ 29 (6) \end{array}$	$\begin{array}{c} C(4)\\ 25\ (2)\\ 112\ (8)\\ 71\ (5)\\ 15\ (3)\\ 23\ (2)\\ 15\ (5)\\ 0,149\ (9)\\ 0,205\ (8)\\ 39\ (4)\\ 101\ (6)\\ 126\ (4)\\ 85\ (6)\\ 155\ (5)\\ 65\ (5)\\ 52\ (2) \end{array}$	$\begin{array}{c} C(5)\\ 27 \ (2)\\ 77 \ (7)\\ 55 \ (4)\\ 9 \ (3)\\ 12 \ (2)\\ -8 \ (4)\\ 0,153 \ (8)\\ 0,201 \ (7)\\ 0,248 \ (7)\\ 61 \ (4)\\ 135 \ (8)\\ 121 \ (7)\\ 70 \ (7)\\ 46 \ (8)\\ 130 \ (7)\\ 36 \ (5) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5)\\ 107\ (6)\\ 135\ (5)\\ 104\ (19)\\ 163\ (8)\\ 81\ (19)\\ 44\ (10) \end{array}$
$\beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \beta_{12} \\ \beta_{13} \\ \beta_{23} \\ r_1 (Å) \\ r_2 (Å) \\ r_1 (Å) \\ r_1, a \\ r_1, b \\ r_1, c^* \\ r_2, a \\ r_2, b \\ r_2, c^* \\ r_3, a \\ r_3, b $	$\begin{array}{c} C(2)\\ 39\ (2)\\ 75\ (7)\\ 58\ (4)\\ -11\ (4)\\ 24\ (2)\\ 1\ (4)\\ 0,149\ (9)\\ 0,187\ (8)\\ 0,302\ (7)\\ 78\ (5)\\ 130\ (7)\\ 78\ (5)\\ 144\ (9)\\ 124\ (8)\\ 33\ (2)\\ 98\ (3) \end{array}$	$\begin{array}{c} C(3)\\ 31 (2)\\ 89 (7)\\ 55 (4)\\ -8 (3)\\ 12 (2)\\ 11 (4)\\ 0,164 (8)\\ 0,212 (7)\\ 0,257 (7)\\ 65 (4)\\ 49 (7)\\ 129 (6)\\ 76 (8)\\ 138 (7)\\ 129 (6)\\ 97 (6) \end{array}$	$\begin{array}{c} C(4)\\ 25\ (2)\\ 112\ (8)\\ 71\ (5)\\ 15\ (3)\\ 23\ (2)\\ 15\ (5)\\ 0,149\ (9)\\ 0,205\ (8)\\ 0,289\ (8)\\ 39\ (4)\\ 101\ (6)\\ 126\ (4)\\ 85\ (6)\\ 155\ (5)\\ 65\ (5)\\ 52\ (2)\\ 68\ (4) \end{array}$	$\begin{array}{c} C(5)\\ 27 \ (2)\\ 77 \ (7)\\ 55 \ (4)\\ 9 \ (3)\\ 12 \ (2)\\ -8 \ (4)\\ 0,153 \ (8)\\ 0,201 \ (7)\\ 0,248 \ (7)\\ 61 \ (4)\\ 135 \ (8)\\ 121 \ (7)\\ 70 \ (7)\\ 46 \ (8)\\ 130 \ (7)\\ 36 \ (5)\\ 82 \ (5) \end{array}$	$\begin{array}{c} C(6)\\ 22\ (1)\\ 107\ (7)\\ 50\ (4)\\ 4\ (3)\\ 11\ (2)\\ -8\ (4)\\ 0,156\ (8)\\ 0,216\ (7)\\ 0,230\ (6)\\ 50\ (5)\\ 107\ (6)\\ 135\ (5)\\ 104\ (19)\\ 163\ (8)\\ 81\ (19)\\ 44\ (10)\\ 94\ (25)\\ \end{array}$

Fig. 1. Stereoskopische Darstellung eines Tetrakis(trimethylsilyl)tetrazen-Moleküls. Die Blickrichtung verläuft etwa parallel zu $[0\overline{1}\overline{1}].$

und C und isotroper Temperaturfaktoren für die Atomsorte H ergab sich als endgültiger Wert für den Gütefaktor $R = \sum ||F_o| - |F_c|| / \sum |F_o| = 0,065$ (die Reflexe mit $F_o = 0$ wurden bei der Summation ausgeschlossen). Bei der abschliessenden Strukturfaktorberechnung verfeinerten wir $\sum (||F_o| - |F_c|| / \sigma)^2$, wobei wir für die Standardabweichung σ folgendes Schema benutzten: $\sigma =$ 0,67 für $F_o = 0$, $\sigma = 0,5 + 0,0073F_o$ für $F_o \le 120$ und $\sigma =$ 1,58 für $F_o > 120$.

In den Tabellen 1 und 2 sind die Ergebnisse der Strukturbestimmung zusammengestellt; Tabelle 3 enthält den Vergleich zwischen den experimentell bestimmten Strukturfaktoren F_o und den berechneten Werten F_c . Letzteren liegen die Daten von Tabelle 1 und 2 zugrunde sowie die Atomformfaktoren der neutralen Atome Si, N, C und H in der analytischen Darstellung der Gauss-Funktionen mit den Parametern nach Cromer & Mann (1968).

Diskussion

Über van der Waals-Kontakte miteinander in Wechselwirkung stehende Moleküle erleiden im Kristall nach den von Kitajgorodskij (1959) aufgezeigten Prinzipien Deformationen, die ihre Ursache in der Packung dieser

Tabelle 3. Vergleich zwischen den berechneten Strukturfaktoren F_c und den experimentell ermittelten Werten F_o von Tetrakis(trimethylsilyl)tetrazen

In Spalte 1 ist der laufende *h*-Index, in Spalte 2 und 3 sind die zehnfachen Werte von F_o und F_c angegeben. Die mit einem Sternchen markierten Reflexe in der Spalte F_o kennzeichnen Reflexe, die sich nicht signifikant vom Untergrund (Rauschpegel) abhoben.

*****	11 244 244	-10 828 -827	-3 250 -263	5 126 129	-10 121 -90	Nr2+5 =3 653 =667 4 502 =519 H14+6 H12+6 H12+6 H14+7 =1 586 373 6 521 331		
6 1781 -1800 6 336 316 6 912 846 10 940 -841	15 36 66 17 189 211 Hr6.0	-6 276 -286 -6 165 161 -7 553 -567 0 661 -651	1 383 396 3 882 899 5 57 -33 7 858 -845	H10-2 -20 191 -176	-15 050 302 -13 007 -700 -11 200 -275 -0 002 912			
10 123 -136 16 150 -153 16 183 169	0 623 635 2 260 268 6 325 -340	2 1146 1163 6 2085 1975 6 1151 -1096 6 667 -619	9 300 317 11 301 341 15 323 -301 15 105 -162	-16 540 444 -16 100 -41 -12 813 -615	-5 683 -685 -3 605 649 -1 696 518	-10 3/6 -3/77 y 0 0 10 10 220 10 1 - 2 0 20 - 2 1 - 2 0 0 1 - 2 0 0 1 - 2 0 0 1 - 2 0 0 1 - 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Hr1+0	8 322 346 10 264 253 12 411 -390	10 1033 40 12 40 -36 14 523 -697 16 92 97	17 140 143 H-6-1	-6 1533 1670 -6 256 250 -6 846 -670	3 446 -455 5 737 -736 7 00 -2	0 110 210 110 <th 110<="" td="" th<=""><td></td></th>	<td></td>	
5 508 525 7 212 -223 9 653 -612 11 36 -30	16 262 279 H+7-0	20 120 -150 H+3+1	-14 70 04 -12 307 -310 -10 306 293 -8 207 333	6 763 -760 8 205 -306 10 136 183 12 137 201	11 200 -221 13 223 -246 13 129 141 17 115 131			
13 998 829 15 181 -181 17 229 -219 19 85 92	1 542 -594 3 740 781 5 128 130 7 325 -325	-10 201 -201 -17 125 120 -15 93 72 -15 907 -358	-6 684 -724 -8 268 -289 -2 653 648 0 319 -345	14 678 -750 15 436 489 18 66 76 20 230 -265	19 69 -75 H+9+2	10 52 -71 -2 050 637 -1 198 -228 - *3 033 960 18 196 218 0 175 -140 1 718 755 ++5.6 -1 228 -158 -13 366 -588 4 +3.5 9 220 -209 3 09 109 1 627 220 -238 -13 376 -188 ++3.5 9 221 -220 0 0 0 0 0 1 45 0 -72 3 200 288 -1 122 789		
H+2+0 0 157 156	9 72 -61 11 175 175 13 65 -59	-11 245 252 -9 529 505 -7 720 -725 -5 387 -904	2 373 -394 6 712 752 6 43 -35 6 285 -319	H+1+2	-18 240 -189 -18 175 -151 -14 345 306 -18 346 307	-17 233 -221 6 108 -127 -137 -137 -138 -1 21 27 -238 - 7 107 -7 -7 28 -7 107 -7 28 -7 108 -7		
6 440 465 8 285 -259 10 474 -474	0 591 -632 2 230 251 8 9 25	-1 657 -657 1 356 318 3 157 156 5 607 620	12 45 -44 14 04 -18 16 217 234	-15 372 342 -13 159 145 -11 174 -170 -9 286 -281	-6 115 -116 -6 76 60 -9 200 210 -2 130 117			
12 305 303 16 657 638 16 429 -638 18 06 16	6 150 -153 8 62 61 10 261 256 12 309 -316	7 772 -764 9 214 208 11 0* -17 13 0* -22	H+7+1 -13 73 76 -11 100 100	-7 637 -782 -5 598 389 -5 1059 1102 3 1027 1049	0 70 -50 2 544 -533 4 557 551 6 230 245			
H-3-0	H+9,0 3 91 100 5 205 -201	17 233 235 19 177 -177	-7 231 -234 -5 249 -254 -5 177 181 -1 240 248	7 689 -689 9 80 56 11 760 857 13 176 -188	10 56 45 12 348 366 16 31 402 16 164 -225	- 6 483 4246 - 1, 127 - 1081 - 1 427 - 128 - 12 - 12 - 12 - 12 - 12 - 12 - 1		
3 203 165 5 1012 -087 7 196 202 9 437 435	7 58 -57 H+1+1	-18 275 -238 -16 264 234 -18 286 -263	1 353 -398 3 53 e1 5 61 -60 7 00 -1	15 243 -288 17 110 156 19 75 -82	14 04 -13 H-9-2	17 75 -76 0 240 -258 2 163 164 -12 139 -144 0 130 -164 -● 250 287 1 8 15 6 45 47 -10 546 539 2 555 311 -2 163 170 H+4+5 6 258 313 -8 87 83 8 117 -110 0 517 -849 H+8+5 H+8+7 83 -8 17 -110 0 517 -849		
11 236 -211 13 432 -404 15 04 13 17 59 63	-19 171 150 -17 77 39 -15 512 -44 -13 278 276	-12 0* 7 -10 874 882 -8 360 379 -6 1404 -1427	11 39 -35 13 107 -104	-20 237 186 -18 407 -340	-17 245 179 -15 280 -235 -11 341 327 -11 77 -75	-10 154 -101 - 2 270 254 10 125 -202 - 1 127 -7 51 51 50 10 -1 12 10 17 -1 15 10 -1 12 10 17 -1 15 10 -1 12 10		
N:4-0 0 439 -439	-9 966 883 -7 916 -939 -5 466 -949 -3 901 945	-2 638 667 0 165 -179 2 610 -639 9 352 378	-10 204 -102 -5 114 113 -6 180 192	-10 063 607 -12 500 -520 -10 00 -17 -8 203 -215	-7 76 -77 -5 141 152 -3 273 -200 -1 129 110	-16 16 175 -2 (20 − 25) μ.1.1.6 5 -2 (20 − 25) μ.1.1.6 5 -2 (20 − 25) μ.1.1.7.7. -4 157 -153 (20 − 25) 4 165 -450 μ.1.1.7 μ.1.1.7.7 -2 157 150 4 252 -165 -17 220 255 15 72 57 2 160 255 6 516 -22 -15 248 -237 -148 -15 64 48 -9 48 55		
2 115 -109 6 535 547 6 199 180 8 576 -562	3 143 -146 5 186 -169 7 343 -525 9 117 -117	6 44 -27 8 417 -439 10 98 140 12 89 -69	-6 118 -130 -7 310 -326 8 00 -26 7 605 673	-6 353 -326 -8 237 -256 -2 1370 1620 0 935 -925	1 39 27 5 259 -256 5 240 201 7 95 80	2 408 -755 9 177 122 -13 214 -22413 41 -770 -7 122 -130 8 184 182 - 11 559 584 1776 -71 227 -258 -6 1 -52 8 435 750 177		
12 553 532 18 59 59 16 157 -172 18 63 -75	13 212 -215 15 413 -55 17 0+ -8 19 112 -120	14 221 227 18 171 189 Hr511	6 310 -327 9 208 -208 10 227 223	6 525 342 6 525 342 8 526 -550 10 356 357	11 0* 13 13 0* 13 14 78 75 17 0* -28	- 10 - 111 - 221 - 2 - 0 - 0 - 0 - 251 - 251 - 251 - 3 - 17 - 7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		
N+ 5+0 1 231 -253	H+2+1 -20 314 -249	-17 0* 22 -15 582 511 +13 74 -63	H-9-1 -7 171 -193 -5 67 -69	12 505 319 14 103 -128 16 175 -213 15 191 162	K+6+2 -16 93 76			
3 117 118 5 139 145 7 196 -203 9 90 -36	-18 276 -227 -16 320 284 -16 448 409 -12 621 -627	-11 511 -608 -9 159 167 -7 217 261 -5 114 -137	-3 130 150 -1 53 -52 1 114 126 3 142 -140	20 31 -54 H1 3+ 2	-10 030 -345 -12 34 -35 -14 09 1	-11 543 -615 -10 0* 2* 13 113 174 b 5 80 13 01 -114 -2 176 -88 -6 161 -170 -4 605 -17 13 122 110 11 239 233 15 55 -5 6 5 16 -7 1643 165 -5 453 -421 13 80 93 -7 1643 165 -5 429 -880 -5 239 -274 -5 29 -880		
H+B+2 -8 435 412 -6 115 119	7 683 955 9 200 -215 11 170 -183 13 265 292	14 283 315 16 95 87 18 240 -267	8 0* * 10 283 2** H1913	16 151 -190 19 09 12 44 34	-2 327 338 11 405 420 2 771 -756 4 144 -44	нарад 15 04 21 4 540 70 нибич 1 107 -47 ниби13 -10 105 93 ничка 0 177 -176 -4 545 -630 9 246 -2286 -4 102 -286 -14 69 -55 11 56 -44 -5 -5 10 20 257 -28 - 9 26 25		
-2 298 -305 0 731 730 2 36 27 9 819 -628	15 579 405 17 282 -357 19 63 -69	+17 150 117 -17 50 54 -13 60 54	-5 127 -134 -3 261 270 -1 116 117	-17 •87 •87 -15 •0 39 -13 717 -659	h 223 229 h 148 133 10 246 -234 12 14 15	-12 495 -718 -16 395 346 13 46 69 -4 34 37 -0 67 11 -7 00 17 -8 342 347 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13		
6 87 -81 8 310 310 10 137 -165 12 253 -274	-15 95 -90 -16 188 121 -18 363 335	-11 0* 1 -9 569 -571 -7 0* -15 -5 667 072	3 388 -369 5 370 345 HIDIS	-9 259 240 -7 84 -93 -5 162 180 -3 306 279	H-7+4 -13 297 253	• 141 2265 120 (57 -12 275 -224 5 5 0 - 4 - 10 48 -4 5 0* 10 • 146 58 -2 247 -224 - 10 142 148 8 4 1 -24 -4 152 -177 5 5 55 • 58 -57 0 148 -455 -6 0* -200 124 150 150 10 10* -125 10 43 -21 2 12 130 4 10* -130 10* -13		
16 130 138 16 70 82 H+7+2	-12 474	-3 533 -517 -1 931 -928 1 993 992 3 915 387 5 1124 -1063	-18 639 605 -16 659 565 -16 720 -633 -12 212 -192	-1 030 -785 1 032 307 3 722 -720 5 559 -519 7 571 542	-11 161 -161 -9 230 -237 -7 188 190 -5 100 100 -3 106 -134	12 60 50 6 60 60 61 -4 330 -2313 -1 32 -336 -7 60 -7 60 -7 60 16 60 -60 6 635 -221 -7 330 -330 -1 32 -330 -7 130 -7 60 -7 60 16 60 127 6 100 -131 7 601 401 - 6 7 39 -7 80 -7 80 -7 80 -7 80 -0.10		
-13 338 310 -11 400 384 -9 594 -532 -7 232 -242	-2 321 293 0 193 200 2 817 800 9 266 -269	7 0* 18 9 505 990 11 183 -199 13 181 -195	-10 510 485 -4 925 878 -6 582 -548 -6 121 106	• ••5 •08 11 602 -803 13 114 -128 15 537 568	-1 nº -31 1 57 -07 5 0º 3 5 370 329	16 521 524 6 0 176 159 -15 521 524 1 0 0 13 -17 215 -235 10 226 181 7 55 159 -13 246 232 H-5-6 0 315 348 -10 591 754 9 38 -32 -11 449 -448 -488 - 30 -15 188 -27 4 355 -433 H-5-10 9 7 4		
-5 680 673 -3 188 181 -1 850 -671 1 330 330	8 811 -780 8 560 573 10 192 153 12 280 -305	17 82 60 17 74 3 H+6+3	5 0° 10 5 55° 525 10 0° 525	17 122 141 Hittin	7 224 -213 9 399 -346 11 269 255 13 258 273			
5 76 -61 7 0* -37 9 0* -13 11 1*1 -157	16 58 67 18 0+ -2 H+3+3	-14 171 -166 -12 151 151 -10 417 423 -8 640 +637	16 68 98 15 509 55 19 16217	-14 205 186 -12 189 188 -10 306 -292 -8 266 -283	H-8-4 -10 51 -46 -9 214 221	-7 3822 -411 -2 47 -35 -17 391 233 20 132 -468 1 159 -155 1 303 280 5 386 386 1 48 64 -6 33 -281 37 284 17 284 17 284 187 281 5 386 289 3 49 83 -7 386 -313 28 -10 5 8 47 18 7 475 -1964 5 212 -124 -4 114 315 M-117 7 52 53 M-0-12		
13 225 247 NIBIZ	-19 114 103 -17 230 199 -15 309 -285	-6 201 -203 -8 463 486 -2 269 271 0 480 -481	H11+5 -10 91 -65 -17 282 293	-8 272 280 -9 919 913 -2 303 -289 0 932 -398	-6 52 -81 -6 570 -608 -2 266 200 0 352 320	9 363 •266 7 158 130 •3 45 •46 11 375 344 9 111 •112 -1 240 •13 07 •16 H+10 •4 525 •516 13 07 •4 11 123 -108 1 37 2 •11 36 51 •• 24 24 281 13 126 -157 • 12 • 0 2 2 4 281		
-10 62 61 -6 336 -326 -6 126 127 -8 106 106 -2 392 -399	-13 137 -118 -11 687 638 -9 636 -957 -7 525 -521 -5 679 662	2 681 675 6 78 -75 6 311 -301 8 275 252 10 0 -26	-13 333 -317 -13 130 -140 -11 366 339 -9 400 -408 -7 412 -416	2 180 170 4 605 554 6 995 -513 6 189 -156 10 230 253	2 252 -257 4 69 -66 6 403 374 8 184 -170 10 135 -134			
0 04 26 2 407 410 6 435 -437 6 109 110	-3 250 -229 -1 118 112 1 958 502 3 322 -317	12 253 -251 18 289 266 H+7+5	-5 757 760 -3 525 521 3 740 682 5 338 -318	12 105 170 14 162 -164 16 115 -121	-5 390 -522	-10 135 -134 -1 -1 -7 25 -1 -1 -7 25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		
10 70 -94 H+9+2	7 359 342 9 00 16 11 345 -368 13 274 291	-13 139 121 -11 341 339 -9 101 -105 -7 350 -379	11 00 -15 13 171 -187 15 138 142	-15 267 -239 -15 302 286 -11 368 -330	-1 385 588 1 205 -196 3 381 -368 5 169 136	- 2 (16) (16) (17) (17) (17) (17) (17) (17) (17) (17		
-7 138 127 -5 150 157 -3 370 -360 -1 20 11	15 89 98 17 115 -133 19 141 -155	-5 143 145 -3 04 15 -1 104 -111 1 42 49	17 180 -209 19 09 -3 H+2+9	-9 09 15 -7 98 -98 -5 129 123 -3 332 -335	H+ 2+5	6 511 - 455 H17-0 P 133 - 140 - 12 232 245 3 245 4 24 10 155 150 2 200 221 - 10 0 - 1 5 31 186 H-2-12 12 133 133 - 7 156 165 4 186 177 - 8 150 - 187 7 231 - 177 - 234 14 133 - 166 - 5 468 471 6 227 - 226 - 6 77 - 22 6 286 717 - 235 242		
1 005 457 3 100 -170 5 309 -316 7 200 191	-15 636 373 -15 65 70 -16 65 -578	7 37 38 7 344 -358 7 196 195 9 76 63 11 82 -77	-16 53 -59 -16 213 209 -16 361 -355 -12 141 -115	1 236 -261 3 235 213 5 0• 3 7 41 -25	-15 110 -95 -13 160 174 -11 0* 28 -9 169 -307	на и разволи и разв На начали и разволи и На начали и разволи и		
Hr1+3 -10 015 360 -17 05 53	-12 713 637 -10 597 590 -5 897 -899 -6 763 -283	13 113 106 H+8+3	-10 306 287 -8 577 -561 -6 0+ 20 -6 637 664	• 85 96 11 68 58 15 96 -65 15 9• -26	-7 635 -606 -5 125 175 -3 209 206 3 222 236	-11 226 225 7 176 -157 6 6 4 572 -4 50 81 5 69 55 -9 186 203 -9 261 201 8 80 83 -6 155 181 -7 32 39 ин119 -7 69 -55 17 395 215 -8 685 518 145-12 -8 613 -826 1.5 5 18 145-12		
-15 362 -310 -13 122 126 -11 364 378 -9 504 969 -7 891 -868	-0 605 592 -2 575 -556 0 112 01 2 60 75 9 265 -255	-10 260 -252 -8 59 68 -6 103 107 -9 85 66 -7 279 -295	-2 210 -260 0 764 -772 2 902 828 6 174 -185 6 38 8	H-8-5	9 507 240 9 518 -491 11 50 -50 13 294 311			
-5 468 -456 -3 176 -161 3 330 308 5 550 -444	6 236 -222 5 60 380 10 232 -229 12 86 99	0 182 145 2 350 330 4 144 -150 6 335 -307	0 246 279 12 142 -136 14 0* 18	-10 161 133 -4 556 576 -6 153 -161 -6 501 -536	15 119 147 17 248 -292 19 04 15	- 7 207 108 -3 208 102 7 164 51 -3 201 -277 16 10 -4 4 300 224 • 30 -42 -3 105 -33 • 32 - 7 44 -3 271 -3 10 -321 11 22 -40 -1 26 -3 10 -3 10 - 3 10 -3 10 - 13 06 -44 -3 20 -9 -1 10 -3 10 -		

Einzelmoleküle haben. Die Kristallstruktur von Tetrakis(trimethylsilyl)tetrazen wurde daher zunächst auf diese Störungen hin untersucht, um zu Aussagen über die Punktsymmetrie des freien Moleküls zu gelangen.

Molekülsymmetrie und Packung

Im Kristall besitzt das einzelne Tetrakis(trimethylsilyl)tetrazen-Molekül die Punktsymmetrie $T(C_i)$ und ist somit nach Kitajgorodskij (1959) 'dichtest gepackt'. Fig. 1 gibt eine stereoskopische Darstellung des Moleküls wieder: Während sich die trans-Anordnung der Azogruppe Hexamethyldisilazylsubstituenten zur [N(2)-N(2')] allein aus der Punktsymmetrie des Moleküls ergibt, wird die äquiplanare Einstellung der vier Siliziumatome zur durch die Stickstoffatome definierten Ebene durch keine Symmetrieoperation der Raumgruppe veranlasst. Die genaue Lage der Ebene im Kristall lässt sich durch die Gleichung 0,2712 X+0,5959 Y+0,7559 Z = 2,6601 darstellen (X, Y und Z in Å-Einheiten, Koordinatensystem wie in Tabelle 2). Die Abweichungen von dieser 'Molekülebene' betragen für das Atom Si(1) -0,035 Å, Si(2) 0,066 Å, C(1) -0,351 Å und C(4) 0,146 Å. Der Torsionswinkel (Diederwinkel) zwischen der nahezu planaren Hexamethyldisilazylgruppe und der oben definierten Ebene hat den Wert von 1,8°. Das gesamte Molekül lässt sich als eine ebene Anordnung von Atomen beschreiben, die von einem Kranz ineinander verzahnter Trimethylsilylgruppen eingeschlossen wird, und zwar in der Weise, dass immer eine Methylgruppe des einen Siliziumatoms auf die Lücke zweier Methylgruppen des Nachbarsiliziumatoms zu liegen kommt:

Die beobachtete Molekülgestalt legt es nahe, dem freien Molekül die Punktsymmetrie 2/m (C_{2h}) zuzuschreiben und den Symmetrieabbau im Kristall von 2/m nach $\overline{1}$ (bzw. C_{2h} nach C_i), wie wir ihn auch bei der Kristallstruktur des Bis(trimethylsilyl)diimins fanden (Veith & Bärnighausen, 1974), als Ursache der Packung zu deuten.

Fig. 2 gibt die Elementarzelle des Tetrakis(trimethylsilvl)tetrazens wieder, während in Fig. 3 die prinzipielle Anordnung der Moleküle in einer zu (100) parallelen dichtest gepackten Schicht dargestellt ist. Die angesprochenen Schichten liegen in der Höhe X=0,25und X=0,75 etwa nach der Stapelfolge AB, AB, ... relativ locker aufeinander. Diese Tatsache findet ihren Ausdruck in der Verteilung der intermolekularen Abstände (Tabelle 4), in der relativen Schrumpfung der Gitterkonstanten bei Abkühlung des Kristalls von Zimmertemperatur auf -130 °C (Schrumpfung von a: 2%, b: 0.7%, c: 0.5%) und in der Richtung der maximalen Auslenkung der Schwingungsellipsoide (Tabelle 2). Die Ellipsoidachse r₃ verläuft bei allen Atomen im Molekül parallel [304] und somit in einer nach Packungsgesichtspunkten wenig anspruchsvollen Richtung. Die Ursache des Abbaus der 2/m Symmetrie nach $\overline{1}$ wird demnach grösstenteils durch die Stapelung der Moleküle in der in Fig. 3 dargestellten Schicht veranlasst, wobei sich bei genauerer Analyse der Abstände (Tabelle 4 und Fig. 2 und 3) die beobachtete Verdrillung ergibt.

Intramolekulare Bindungsverhältnisse

Eine Auswahl der wichtigsten intramolekularen Bindungslängen und -winkel im Tetrakis(trimethylsilyl)tetrazen ist in Tabelle 5 zusammengestellt. Während die N-N-Doppelbindungslänge der viergliedrigen Stickstoffkette um 0,03 Å über dem Wert organischer Azoverbindungen liegt (Veith & Bärnighausen, 1974, Tabelle 5), ist die Länge der N-N-Einfachbindung um 0,06 Å gegenüber derjenigen im Hydrazin verkürzt (Tabelle 6). Die beobachtete Bindungsverlängerung bzw. -verkürzung ist mit der im 1,4-Bis-(N-äthyl-1,2-dihydrobenzthiazol-2-yliden)tetrazen vergleichbar [N(2)-N(2'): 1,257 (4) Å, N(1)- N(2): 1,400 (4) Å, Allmann, 1967]. Bei letzterem Molekül kann man für die Bin-

Fig. 2. Stereoskopische Darstellung einer Elementarzelle von Tetrakis(trimethylsilyl)tetrazen in Blickrichtung [010].

Tabelle 4. Die kürzesten intermolekularen C-C, C-N und H-H-Abstände (Å) in der Kristallstruktur von Tetrakis(trimethylsilyl)tetrazen

Den hochgestellten Kennziffern für symmetrieäquivalente Atome entsprechen die Transformationen: (i) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) $\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} + z$; (iii) $x, 1 - y, -\frac{1}{2} + z$; (iv) $x, 1 - y, \frac{1}{2} + z$; (v) $-x, y, \frac{1}{2} - z$; (vi) -x, 2 - y, -z; (vii) -x, 1 - y, 1 - z. Die Summe der van der Waals Radien nach Pauling (1968) beträgt für zwei Methylgruppen: 4,00 Å, für zwei Wasserstoffe: 2,40 Å.

$C(1) - C(2^{i})$	3,704	$H(1) - H(5^{1})$	2.59
$C(5) - C(6^{iii})$	4,129	H(2) - H(5')	2,49
$C(2) - C(3^{iv})$	4,133	$H(14) - H(17^{111})$	2.78
$C(1) - C(5^{i})$	4,141	$H(4) - H(9^{iv})$	2,84
$C(3) - C(6^{i1i})$	4,158	$H(3) - H(14^{i})$	3,05
$C(1) - C(6^{iii})$	4,225	$H(7) - H(18^{11})$	2,61
$C(2) - C(4^{v})$	4,094	$H(1) - H(17^{111})$	2,47
$C(3) - C(3^{vi})$	4,119	$H(6) - H(11^{v})$	2,92
$C(4) - C(6^{vii})$	4,131	$H(8) - H(9^{*i})$	2,85
$C(4) - C(4^{v})$	4,146	$H(10) - H(16^{vii})$	2,54
$C(1)-N(1^{11})$	4,268	$H(12) - H(12^{v})$	2,65
$C(1) - N(2^{ii})$	4.285		

dungsverhältnisse die Delokalisation der π -Elektronen $(6\pi, 6 \text{ Elektronensystem})$ über 4 Stickstoff- und 2 Kohlenstoffatome verantwortlich machen. Im Tetrakis-(trimethylsilyl)tetrazen könnte man in ähnlicher Weise wegen der beobachteten Molekülsymmetrie ein 4π , 6 Elektronensystem über die viergliedrige Stickstoffkette formulieren, das durch Überlappung freier d-Orbitale am Silizium stabilisiert wäre. Bei einer SCF-Rechnung unter Verwendungeiner Huzinaga-Gaussfunktionenbasis und der von uns beobachteten Stickstoffkoordinaten fand Ahlrichs (1974) für das Tetrazen H₄N₄ nur einen unbedeutenden Delokalisierungsanteil der π-Elektronen über die vier Stickstoffatome. Wir tendieren daher zur folgenden Interpretation der N-N-Bindungslängen: Die einsamenElektronenpaareamStickstoffN(1)(p-Orbital) und N(2) (sp²-Orbital) – die Orbitalzuordnungergibtsich aus der Molekülsymmetrie - stehen orthogonal zueinander, wodurch die Wechselwirkung zwischen diesen Elektronenpaaren ein Minimum erreicht, die N-N- σ -Bindung aber auf Grund der Überlappung zweier sp²-Orbitale ein Maximum. Auf die Bindungslänge zwischen zwei einfach gebundenen Stickstoffatomen sollte

demnach ausser dem induktiven und mesomeren Effekt der Substituenten auch der Hybridisierungszustand der Stickstoffatome eingehen (Tabelle 6). Die N-N-Doppelbindung andererseits ist im Vergleich zu organischen Azoverbindungen mit einer elektronegativeren Gruppe verknüpft. Als Folge sollte man allein schon aus diesem Grunde eine Verlängerung der Bindung erwarten.

Mit 1,77 Å bzw. 1,79 Å sind die beiden symmetrieunabhängigen Si–N-Bindungsabstände nicht wesentlich geringer als die mit Schomaker & Stevenson-Korrektur berechnete Si–N-Einfachbindungslänge von 1,81 Å (Pauling, 1968). Die oft diskutierte $p\pi \rightarrow d\pi$ -Rückbindung bei Silylstickstoffverbindungen, die gleichzeitig zur Erklärung der Planarität des substituierten Stickstoffs verwendet wird (Glidewell, 1973), drückt

Fig. 3. Vereinfachte Darstellung der Packung von Tetrakis-(trimethylsilyl)tetrazen-Molekülen in Blickrichtung [T00] in einer zu (100) parallelen Schicht.

Fig. 4. Stereoskopische Darstellung der stereochemischen Aktivität des freien Elektronenpaares des Atoms N(2) und N(2') im Tetrakis(trimethylsilyl)tetrazen-Molekül als Kugel um den Ladungsschwerpunkt des Elektronenpaares. Zur Bezeichnung und Orientierung des Moleküls vergleiche Fig. 1.

Tabelle 5. Bindungsabstände (Å) und Bindungswinkel (°) in Tetrakis(trimethylsilyl)tetrazen

Die in Klammern angegebenen Standardabweichungen berücksichtigen ausser der Koordinatenungenauigkeit (Tabelle 1) auch den Fehlereinfluss der Gitterkonstanten.

N(1)-N(2)	1,394 (5)	C(2) - H(5)	1,02 (6)
N(2) - N(2')	1,268 (7)	C(2) - H(6)	0,89 (6)
Si(1) - N(1)	1,789 (3)	C(3) - H(7)	0,97 (7)
Si(1) - C(1)	1,837 (5)	C(3) - H(8)	1,02 (5)
Si(1) - C(2)	1,893 (5)	C(3) - H(9)	0,86 (7)
Si(1) - C(3)	1,853 (6)	C(4) - H(10)	0,89 (6)
Si(2) - N(1)	1,770 (4)	C(4) - H(11)	0,93 (8)
Si(2)-C(4)	1,871 (5)	C(4) - H(12)	0,96 (7)
Si(2) - C(5)	1,862 (5)	C(5) - H(13)	0,96 (8)
Si(2)-C(6)	1,915 (5)	C(5)–H(14)	0,85 (9)
C(1) - H(1)	0,96 (8)	C(5) - H(15)	0,94 (7)
C(1) - H(2)	0,92 (8)	C(6) - H(16)	0,88 (7)
C(1) - H(3)	0,84 (7)	C(6) - H(17)	1,11 (8)
C(2) - H(4)	0,94 (6)	C(6) - H(18)	0,95 (8)
N(1)-N(2)-N(2')	112,4 (4)	Si(2)-N(1)-N(2)	118,2 (2)
C(1) - Si(1) - N(1)	110,0 (2)	Si(1) - N(1) - Si(2)	128,5 (2)
C(2)-Si(1)-N(1)	112,3 (2)	C(4) - Si(2) - N(1)	106,3 (2)
C(3) - Si(1) - N(1)	110,1 (2)	C(5) - Si(2) - N(1)	112,1 (2)
C(1)-Si(1)-C(2)	107,3 (3)	C(6) - Si(2) - N(1)	111,7 (2)
C(2) - Si(1) - C(3)	110,2 (3)	C(4) - Si(2) - C(5)	105,8 (3)
C(3) - Si(1) - C(1)	106,8 (3)	C(5) - Si(2) - C(6)	113,6 (3)
Si(1)-N(1)-N(2)	113,3 (3)	C(6) - Si(2) - C(4)	106,7 (3)

sich in der hier vorliegenden Verbindung nicht in einer signifikanten Verkürzung der Si-N-Bindung aus!

Die Si-C-Bindungslängen unterscheiden sich untereinander um mehr als die dreifache Standardabweichung. Dieser Effekt wurde bei Strukturuntersuchungen an verschiedenartigen Hexamethyldisilazylverbindungen beobachtet (Hess, 1969; Crozat & Watkins, 1972; Domingos & Sheldrick, 1974). Die gemittelte Si-C-Bindungslänge beträgt 1,872 Å und stimmt gut mit dem Mittelwert gesicherter Literaturdaten (1,865 Å, *International Tables for X-ray Crystallography*, 1968) überein.

In Analogie zu organischen Azoverbindungen weicht der N(1)N(2)N(2')-Winkel im Tetrazensystem mit 112,4° merklich vom 120°-Winkel ab (Veith & Bärnighausen, 1974, Tabelle 5). Der Unterschied von $4,9^{\circ}$ in den Winkeln Si(1)N(1)N(2) und Si(2)N(1)N(2) wird durch die Nachbarschaft des Atoms N(2') zum Atom Si(2) bewirkt, während der Winkel Si(1)N(1)Si(2) vergleichbar mit den Winkeln einer Auswahl von Hexamethyldisilazylverbindungen ist (Glidewell, 1973, Tabelle 2).

Konformation und stereochemische Aktivität des freien Elektronenpaares

Wie bereits im Kapitel Molekülsymmetrie und Packung ausgeführt wurde, sind die Methylgruppen der Hexamethyldisilazylreste gestaffelt zueinander angeordnet, während z.B. im Hexakis(trimethylsilyl)-2,4diamino-1,3,2,4-diazaboretidin (Hess, 1969) oder im Bis(dioxan)-kalium-bis(trimethylsilyl)amid (Domingos & Sheldrick, 1974) die Methylgruppen ekliptisch zueinander stehen. Dieser Befund kann mit der besonderen Molekülgestalt von Tetrakis(trimethylsilyl)tetrazen erklärt werden, wobei der stereochemischen Aktivität des freien Elektronenpaares am Atom N(2) besondere Bedeutung zukommt. Das stereochemische Verhalten dieses Elektronenpaares lässt sich auch an dem intramolekularen Abstand Si(2)-N(2) ablesen, der um 0.054 Å länger ist als der vom chemischen Standpunkt gleichwertige Abstand Si(1)-N(2), oder an auffallenden Winkelunterschieden an gleichartigen Baugruppen feststellen (Tabelle 5). Unter Berücksichtigung aller intramolekularen Abstände im Molekül gelingt es, den geometrischen Ort für gleiche Abstände entsprechender Atome in den Trimethylsilylgruppen der Atome Si(1) und Si(2') zu bestimmen und damit das stereochemisch wirksame Zentrum des einsamen Elektronenpaares am Atom N(2) festzulegen. Der so gefundene Ladungsschwerpunkt des einsamen Elektronenpaares ist anderen Vergleichswerten in Tabelle 7 gegenübergestellt. Er befindet sich innerhalb der eingangs definierten Molekülebene auf einer um 12° von der über N(2) verlängerten Winkelhalbierenden des Winkels N(1)-N(2)-N(2') in Richtung Si(1) abweichenden Geraden. Als Beleg unserer Rechnungen haben wir in Fig. 4 um die-

Tabelle 6. Der beobachtete Bereich für N-N-Einfachbindungslängen

Die Zahlen in Klammern sind Standardabweichungen. Die jeweils verwendete Untersuchungsmethode ist durch folgende Kennziffern angegeben: (I) Röntgenbeugung an Einkristallen; (II) Elektronenbeugung am Gas. In der Spalte 'Hybridisierung' ist die aus der Molekülsymmetrie abgeleitete Hybridisierung des an der betrachteten Bindung beteiligten Stickstoffs angegeben.

	Methode	Hybridisierung	N-N (Å)
1.1-Heptasulfandivl-hydrazin-2.2-dicarbonsäurediäthylester (Linke, Skupin, Lex & Engelen	,		
1973)	I	sp^2	1,33 (3)
Tetraformylhydrazin (Hinderer & Hess, 1974)	I	sp^2	1,346 (6)
Diformylhydrazin (Tomie, Koo & Nitta, 1958)	I	sp^2	1,392 (7)
Tetrakis(trimethylsily))tetrazen (vorliegende Arbeit)	I	sp^2	1,394 (5)
1.4-Bis-(N-äthyl-1.2-dihydrobenzthiazol-2-yliden)tetrazen (Allmann, 1967)	Ι	sp^2	1,400 (4)
Tetrakis(trifluoromethyl)hydrazin (Bartell & Higgenbotham, 1965)	II	sp^2	1,40 (2)
Hydrazin (Morino, Jijima & Murata, 1960)	II	sp^3	1,449 (4)
1.1- und 1.2-Dimethylhydrazin (Beamer, 1948)	II	sp^3	1,45 (3)
Tetrasilylhydrazin (Glidewell, Rankin, Robiette & Sheldrick, 1970)	II	sp^2	1,46 (2)
1/-Biaziridyl (Bademacher, 1972)	II	sp^3	1,48 (2)
Tetrafluorohydrazin (Bohn & Bauer, 1967)	п	sp^3	1,53 (3)

sen Schwerpunkt eine Kugel gezeichnet, auf der in guter Näherung sämtliche Nachbaratome zu liegen kommen.

Tabelle 7. Der Abstand des Ladungsschwerpunktes (X) des einsamen Elektronenpaares vom Kern des N-Atoms in einer Reihe von Stickstoffverbindungen

Die Zahlen in Klammern sind Standardabweichungen. Die jeweils verwendete Untersuchungsmethode ist durch folgende Kennziffern angegeben: (I) Quantitative Konformationsanalyse; (II) Quantenmechanische Berechnung, SCF-Näherung.

Methode N-X (Å)

Tetrakis(trimethylsilyl)tetrazen (vorliegende		
Arbeit)	I	0,39 (4)*
Tetrazen (Ahlrichs, 1974)	п	0,392*
Bis(trimethylsilyl)diimin (Veith &		
Bärnighausen, 1974)	I	0,35 (5)
Diimin (Ahlrichs, 1973)	II	0,388
Ammoniak (Robb, Haines & Csizmadia,		
1973)	II	0,368

* Elektronenpaar am Azostickstoff.

Das am Stickstoff N(1) befindliche nichtbindende Elektronenpaar steht, wie bereits angesprochen, senkrecht zum Elektronenpaar des Stickstoffs N(2) und befindet sich demnach in einem *p*-Orbital. Die stereochemische Wirksamkeit dieses zweiten Elektronenpaares ist jedoch auf Grund der Nachbarschaft zum π -Elektronensystem der Azogruppe und des erwarteten kleineren Wirkungsbereiches wesentlich schwieriger nachzuweisen!

Zusammenstellung der verwendeten Rechenprogramme

Sämtliche Berechnungen wurden an der Anlage UNIVAC 1108 des Rechenzentrums der Universität Karlsruhe (TH) durchgeführt unter Verwendung der folgenden Programme: In Algol übersetzte und modifizierte Datenverarbeitungsprogramme zum Zweikreisdiffraktometer der Firma Stoe, Darmstadt; Programm zur Berechnung von Fourier- und Patterson-Synthesen (Zweerus, 1967); ORFLS (Busing, Martin & Levy, 1962); ORFFE (Busing, Martin & Levy, 1964); ORTEP (Johnson, 1965).

Die Deutsche Forschungsgemeinschaft und der Fonds der Chemischen Industrie unterstützten die vorliegende Arbeit durch Sachbeihilfen.

Literatur

- AHLRICHS, R. (1973/74). Privatmitteilung. Institut für Physikalische Chemie und Elektrochemie der Universität Karlsruhe (TH).
- ALLMANN, R. (1967). Acta Cryst. 22, 246-251.
- BARTELL, I. S. & HIGGINBOTHAM, H. K. (1965). Inorg. Chem. 4, 1346–1350.
- BEAMER, W. (1948). J. Amer. Chem. Soc. 70, 2979-2982.
- BOHN, R. K. & BAUER, S. H. (1967). Inorg. Chem. 6, 304-309.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Oak Ridge National Laboratory Report ORNL-TM-306.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- CROZAT, M. M. & WATKINS, S. F. (1972). J. Chem. Soc. Dalton, S.2512-2515.
- DOMINGOS, A. M. & SHELDRICK, G. M. (1974). Acta Cryst. B30, 517-519.
- GLIDEWELL, C. (1973). Inorg. Chim. Acta Rev. 7, 69-81.
- GLIDEWELL, C., RANKIN, D. W. H., ROBIETTE, A. G. & SHELDRICK, G. M. (1970). J. Chem. Soc. (A), S. 318-320.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- HESS, H. (1969). Acta Cryst. B25, 2342-2349.
- HINDERER, A. & HESS, H. (1974). Chem. Ber. 107, 492-495.
- International Tables for X-ray Crystallography (1968). Bd.
- III, 2. Aufl., S. 275. Birmingham: Kynoch Press. JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
- KITAJGORODSKIJ, A. J. (1959). Chemical Organic Crystallography, S. 84-105. New York: Consultants Bureau.
- LINKE, K. H., SKUPIN, D., LEX, J. & ENGELEN, B. (1973). Angew. Chem. 85, 143-144.
- MORINO, Y., IIJIMA, T. & MURATA, Y. (1960). Bull. Chem. Soc. Japan, 33, 46–48.
- PAULING, L. (1968). Die Natur der chemischen Bindung, 3. Aufl., S. 220–230. Weinheim/Bergstr.: Verlag Chemie GmbH.
- RADEMACHER, P. (1972). Acta Chem. Scand. 26, 1981-1986.
- ROBB, M. A., HAINES, W. J. & CSIZMADIA, I. G. (1973). J. Amer. Chem. Soc. 95, 42–48.
- TOMIIE, Y., KOO, C. M. & NITTA, I. (1958). Acta Cryst. 11, 774–781.
- VEITH, M. & BÄRNIGHAUSEN, H. (1974). Acta Cryst. B30 1806–1813.
- WIBERG, N. (1971). Angew. Chem. 83, 379-392.
- WIBERG, N. & UHLENBROCK, W. (1970). Angew. Chem. 82, 47.
- ZWEERUS, H. P. (1967). Programm zur Berechnung von Fourier- und Patterson-Synthesen. Laboratorium voor Kristalchemie der Rijksuniv., Utrecht, Niederlande.