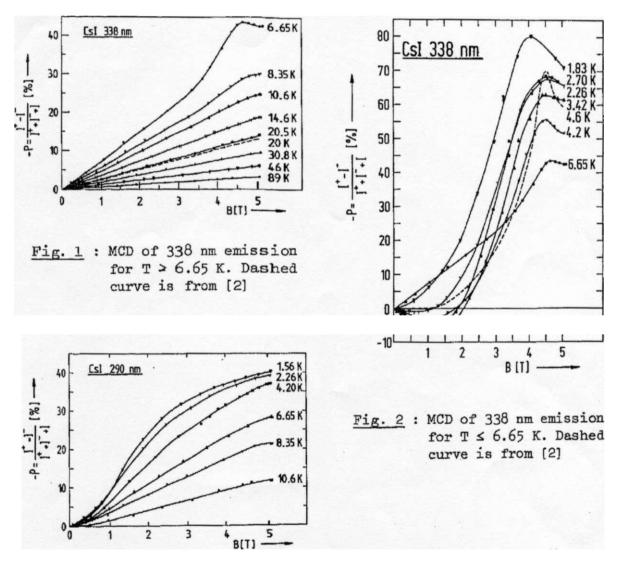
MAGNETO-OPTICS STUDIES OF SELF-TRAPPED EXCITON LUMINESCENCE IN Csl

L. Falco, J.P. von der Weid* and M,A. Aegerter Institut de Physique, Université de Neuchâtel CH 2000 NEUCHATEL, Switzerland

Self-trapped exciton (STE) luminescence in Csl occurs at 290 nm and 338 nm. We showed that the occurence of the 2 emission bands can be understood in the framework of a phenomenological theory [1], the lowest levels of both types of STE being composed of a partially allowed triplet state below a singlet state.

The validity of the model has been further tested by studying both emissions under strong magnetic field (0 < B < 5-5 T) down to T = 1.5 K (B //<100>). Each triplet states split under magnetic field and both emissions detected along it should exhibit a magnetic circular dichroism (MCD}. Experimental results confirm this point of vue. Figs. 1 and 2 show results for the 338 nm emission. The temperature and field behaviour of the MCD is more complicated than was previously shown by Kabler et al. [2]. The maximum P value foreseen by the model is -0.5. The peak observed near B = h.5 T for T < 6 K has been attributed to the crossing of the | ; $T^{>}$ and ; levels fl] [2] [3] . But neither its maximum value nor the particular behaviour of the MCD at low field can yet be fully explained. Fig. 3 shows results for the 290 nm emission. The maximum P value predicted is also -0.5. No change in the bands shape has been observed. We found that for the 338 nm emission the I + I" + I values (normalized to 1 at B = 0) slightly increase with the field for T > 10 K but are strongly reduced for T < 10 K. The opposite behaviour is found for the 290 nm emission for which a slight increase is found for all temperatures.


We also measured the emissions perpendicular to the field axis. Both of them exhibit a partial horizontal polarization (//%); the ($l_{h} - I_{v}$) / (Ik + I_{v}) values are function of temperature and field and are typically ^0.18 for both bands at B = 5 T and T • 1.6 K. Despite these important intensity variations the total light intensity emitted by the crystal in all directions remains constant at all temperatures for a given magnetic field, but seems to increase slightly as a function of it ($^{>}k\%$). These observations confirm the model of the transfer from the STE states to ones [1] and indicate that it is magnetic field dependent.

Decay time measurements and model calculation are underway in order to clarify these processes.

Research supported by the Swiss National Science Foundation.

References

- * On leave of absence from Department of Physics of the Pontificia Universi&a&e Catolica, Rio de Janeiro, Brazil.
- [1] See also abstract by J.P. Fellaux, T. Iida and M.A. Aegerter
- [2] M.U. Kabler, M.J. Marrone and W.B. Fowler, in Luminescence of Crystals, Molecules and Solutions, Ed. F. Williams (1973)
- [3] W.B. Fowler, M.J. Marrone and M.N. Kabler, Phys. Rev. B, 8, 5909 (1973)•

<u>Fift. 3</u> : MCD of 290 nm emission