
Deutsches
Forschungszentrum
tür Künstliche
Intelligenz GmbH

Document
0-92-13

An Investigation of the Applicability of
Terminological Reasoning to

Application-Independent Software-Analysis

Holger Peine

June 1992

Deutsches Forsqhungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern
Tel. : (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken 11
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies , or by other industrial contracts .

The DFKI conducts application-oriented basic research in the fjeld of artificial intelligence and
other related subfields of computer science . The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the föllowing research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community . There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a statt of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

This work has been supported by a grant fram The Federal Ministry for
Research and Technology (FKZ 11W-8903 0).

© Deutsches Forschungszentrum lür Künstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part lor any commercial purpose. Permission to
copy in whole or in part without payment 01 lee is granted lor nonprolit educational and research purposes
provided that all such whole or partial copies include the 10Jlowing: a notice that such copying is by
permission 01 Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions 01 this copyright notice. Copying, reproducing, or republishing lor any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum lür Künstliche Intelligenz.

An Investigation of the Applicability of Terminological
Reasoning to Application-Independent Software-Analysis

Holger Peine

DFKI-D-92-13

Abstract

Tbis work is a first investigation of an observation noted as possibly promising:

The problem of application-independent recognition of given elements from the
architecture of an unknown software system to be analyzed can be conceived
as a special case of the classification problem in a terminological reasoning
system if supplied with a suitably defined taxonomy for software-elements.

This problem, however, has been solved in certain terminological reasoning systems
(TRSs).

To the end of investigating this idea, the availability of a TRS was necessary (pro
vided at DFKI by viltlle of the KRIS-system) as weH as stating clearly the envisaged
application-independent software-elements, foHowed by a concept taxonomy expressible
in KRIS and deli vering the desired results. Furthermore, a tool had to be developed
to analyze software (i.e ., the source code) and generate the input information for the
taxonomy frOlli that.

Stating applicatiou-independent complete and correct conditions for the role of an
element within a software system turned out to be feasible for only a few basic concepts,
because software employs at least up to now too few standardized concepts. The trans
lation of the feasible concepts to KRIS resulted in problems of the expressive power of
TRSs that were recognized as fundamental. The root of this problem spawned a new
language construction for KRIS.

Under the asslimption of this new construction, a taxonomy of software-elements was
formulated. However, as the incorporation of this construct, while recognized as feasible,
would exceed the scope of this work and is therefore still to come, it has not been possible
so far to test the formulated taxonomy.

Hoping this will become possible in the future, the tool for input generation was
developed nonetheless. The chosen programming language to be processed is C, as there
was an initial tool al ready available for it.

Thus the cOllcluding judgment of this investigation is still to come.

1

Contents

1 The Field

1.1 Reverse Engineering

1.2 Terminological Reasoning Systems.

2 The Idea

2.1 A Central Need of Reverse Engineering

2.2 The Vision .

2.3 The Plan.

3 The Starting Equipment

3.1 The RE-Tool Arch/xpass .

3.2 The Knowledge Representation System KRIS.

3.3 The Coupling

4 The Process

4.1 Concept Formulation

4.2 Translation to KRIS.

5 The Results

5.1 TBox ..

5.2 ABox-generator

6 The Insights

A Source Code of the TBox

B Example Program with its ABox

2

4

4

6

10

10

11

13

13

13

15

19

20

20
22

28

28
32

36

40

44

Acknowledgement

This work was hosted within the German Research Center for Artificial Intelligence
(DFKI) as apart of the AKA-WINO project. It was initiated by an informal cooperation
with Siemens AG, Munich, Germany, dpt. ZFE 1S SOF 13.

The author thanks the concerned members of both groups for their support, particu
larly Bernhard Hollunder for numerous advice and Dan Nesmith for corrections concerning
the English language.

What the reader may expect

The present work is a first step in a process whose very viability it investigates. Further,
the investigation does not conclude unequivocally, because it shows the task to demand
much deeper work and also stronger tools than were possible here. Specifically, the inves
tigation is incomplete in that its main concrete result cannot yet be verified, as it proved
to require a new tool which is described but has not yet been implemented. Clearly it
does not offer here a programming system or a formalism proved as useful here.

Therefore the reader be warned that he will find on the following pages ideas, ex
periences and insights, but no directly usable results and also less pleasing results than
sobering ones.

In the text, an understandable and thus in places redundant development of the inves
tigation was emphasized in contrast to a concise description in the style of a deduction.

At last, it is remarked he re that the gender-sensitive pronouns "he", "she" etc. are
used alternatingly by section .

3

1 The Field

This section gives an overview of the two fields whose possible connection is investigated
in this paper. The reader familiar with one or both may skip the respective subsection(s).

1.1 Reverse Engineering

This section gives an overview of Reverse Engineering with regard to the need for it and
to its basic conception.

1.1.1 Need

The not ion of "cost for software" immediately brings to mind the cost for software de
velopment. Upon a little reflection one remembers the expense for software maintenance.
This expense, however, constitutes the bulk of software expense in reality [GLKT90], as
increasing software complexity elongates the time of use (and thus of maintenance) for
economical reasons and the sheer amount of human expertise bottled-up there,as does the
desire for continuous upward compatibility rat her than installing something completely
new. Furthermore, the rapidly increasing costs and risks of a new development suggest
the extension of old software rat her than designing something from scratch.

But there is also a corresponding shift within the activities of maintenance: Whereas
the adaplatioIl of lhe given software to increasing requirements was once the main task
and understanding the current software was merely a less crucial preparation, today this
understanding of the software to be maintained has come to consume about half of the
maintainer's time [Hru90][GMN+S7], and because of the growing complexity of software
this fraction can be expected to increase even further.

What does it mean to understand a program one is assigned to maintain, one which
was written by other people? This is a complicated effort and hard to verbalize at all, and
will therefore probably never be completely automated, as it involves getting a "picture"
of another person's mind and its way of conceiving and solving programming problems
which have no uniform solutions. Nonetheless, there is a consensus that a fundamental
part of this task is acquiring (from whatever sources available) a conception of the overall
structure of the program, i.e., its main building blocks, their purpose and their intercon
nections, the policies of control and data flow and of all the "customs" followed there -
in short, of the program 's architecture. Understanding the concrete algorithms employed
there is easier, as they are usually the best known and best documented pieces - and
after all , we all recognize a polling loop and the like when we see them. The difficulty
of this architecture acquisition however is the core reason for the expense consumed by
understanding.

Why should it be so difficult to recapture a program's architecture? In fact, it need
not necessarily be so, but in practice it is, and this is caused by the typical handling of the
software life-cycle: The life-cycle ought to be completely reiterated from the requirements
specification through design to the implementation and documentation, every time a new
requirement is incorporated. But instead of that, reality looks about like this:

The original design of the software system was likely still dear and perhaps even
amenable to maintenance - there was a "good" architecture. Unfortunately, there is still
no general method (at least no generally agreed one) of representing and recording an ar-

4

chitecture (short of naturallanguage), let alone the sad reality that no information at all
was recorded in a form applicable to maintenance. Thus the architecture representation
consists in an essential part of "folklore", i.e., things you are told or, even worse, demon
strated. Inevitably, information communicated in this way erodes over time: In the course
of a software project (decades when including maintenance) programmers come and go,
and the once-clear conception of the system's architecture fades a bit more with each
new programmer, not completely informed about the system architecture and conducting
extensions and supposed "improvements" (changes improving the system only locally) in
a way which makes the software more and more complicated and entangled, although
of course usually preserving its functionality. In short: An architecture that is hard to
acquire will be increasingly eroded. The incomplete architecture conception in the main
tainer's mind will lead her to modifications which violate the original architecture. Worse
still, as the changes are conducted oilly locally, i.e., at the code level, and not at the design
level, design and implementation so on diverge, thus invalidating any documentation. In
the end, the code is the only reliable information about the system. The software life-cycle
is interrupted, it ends at the code in a blind alley. Future maintenance is referred to the
Sisyphean task of understanding other people's ill-documented code.

1.1.2 Aim and Concept

Of course the best remedy to an evil is always prevention, and thus the most efficient and
elegant solution for making software systems easier to understand lies in better software
development, including for example a rigorous conduct of the life-cycle with actual recy
cling of the formally represented documents of every stage, which would, however, first
require developing such representation formalisms for life-cycle documents and probably
much more - but all this, even if it were ever to become reality, would pertain only to
new software. So what about the mass of existing software? It must be maintained, it
is maintained by whatever means, and there is an urgent need for tools to assist this
task. As stated above, the central difficulty is architecture acquisition. This _should be
achieved on a path that is most suggestively described as the reversal of the software
engineering process from the existing system back to the roots of its original design .
Reverse Engineering(RE) aims at the development of tools for this process. It is thus
a subfield of software engineering.

The principle of RE can be summed up as folIows: Software development results are
identifiable and traceable, as the development process follows certain rules, i.e., the map:
architecture -+ existing_system is invertible to some extent. This immediately raises
two questions:

• How much can be inverted ("reversed")? How much of the implicit architecture can
be recaptured?

• How can the possible reversion be performed?

Both quest ions are recent areas of research. Theoretically, the term "existing system"
embraces not only the source code, but also any kind of documentation and available
information in general about the system. But since source code is the only universally
formalized forlllal of such information, all attempts of RE-tools have so far been based
on a (possibly human assisted) source code processing (tools for utilizing natural lan-

5

guage documentation are still ahead of conception). Therefore, in the following, RE is
understood only in this context of source code analysis.

Contributing to the first question, itis not too much of a gamble to predict that the
vision of a fully automated RE-machine which is fed with the source code of a system and
then prints its architecture (in some formalism yet to be defined) is not realistic, because
the implementation of a software embodies not only software development knowledge,
but also application-specific knowledge that cannot be reconstructed from the source:
just imagine understanding the source of a compiler without knowing about grammars!
All knowledge of this kind would have to be available to this RE-machine. Since such
knowledge is far from being formalized, we cannot reasonably expect fully automated RE.

But this observation of the need for application-specific, but program-independent
knowledge gives a hint to the second question, to a "divide and conquer"-approach to
RE: After all, there is a place where this knowledge is present, and this is the human user,
the "reverse engineer". She knows about the program's domain, but needs assistance in
structuring the sheer mass of source code, and this in turn is where the RE-tool could
come to assistance. Thus the operating mode of an RE-system should be interactive (as
opposed to single tools which can of course be fully automated, e.g. a cross reference
generator). To be of novel help in analyzing the source code, the system must however
possess some knowledge of the mentioned "rules" of software development, specifically of
software architecture.

The task of RE in the described context can thus be rephrased as making the rules of
software architecture explicit and casting them into tools.

1.2 Terminological Reasoning Systems

This section outlines TRSs in general. A concrete example is given in Section 3.2.

1.2.1 Origin and Purpose

No long after the euphoric beginning of artificial intelligence (AI) in the late 1950s, se
rious problems were encountered which were soon recognized as instances of a general
phenomenon: As soon as a program which nicely solved the problems its designers had
in mind durillg coIlstruction was confronted with a slight variation of the problem, it
failed with sometimes ridiculous results. This happened because the program "did not
know what it was doing", i.e., it did not possess knowledge of the context of its task
within a whole world of things - the whole world, in the extreme case. The vagueness
of this knowledge requirement gives a glimpse of its tremendous difficulty - neverthe
less, programs deserving the badge of intelligence need such knowledge, and thus one of
the fundamental areas of research in AI has since then been finding means of expressing
knowledge, or, more accurately, formalisms for knowledge representation.

In the 1970s, the research in natural language understanding isolated a special kind
of knowledge Ileeded to recognize the entities occurring in a sentence. This is neces
sary, e.g., to disambiguate words. To understand the different meanings of "arm" in the
two otherwise virtually identical sentences "the girl's arm moved" and "the clock's arm
moved", knowledge is necessary about what a thing is, e.g. what a girl and a dock are,
or technically, by what concepts (i.e., abstractions) they are subsumed - in our example,
say, HUMAN and DEVICE. The same kind of knowledge is needed to infer general prop-

6

erties 0/ things, properties which may be crucial for understanding but are not explicitly
mentioned in the sentence because they are we1l known to any human, e.g., that girls
are children , clocks tell the time, children may not know how to read a dock, etc. Once
again, such knowledge is a property of the involved coricept and can be inferred if it is
dear what concept subsurnes the given entity. Such knowledge of concepts and their re
lationships is today ca1led conceptual knowledge or terminological knowledge. The latter
term is preferred in this paper.

Furthermore, it was observed that concepts are prominently related by the subconcept
superconcept-relationship (e .g. RUMANs are ANIMALs), thus forming a hierarchy of
subsumption. This suggested an efficient implementation of concept properties by inher
itance (see next subsection) and since the applicability of the concept idea in language
processing was immediate, it initiated much programming with many concept definition
methods coming under a confusing variety of names like semantic nets, frames, scripts,
conceptual dependency graphs, units, or schemata (most of these embraced more than
what is today meant by terminologicallogics, but were so ill-defined with respect to se
mantics that it is justified to list them here in the context of conceptual reasoning). More
and more new features were added to the basic idea of conceptual entities, again con
fusing and intersecting to a large extent, while the expressive power of a1l these features
remained as vague as their use. But a1l this had been just a way of programming, not
a formalism for knowledge representation, because these methods did not offer what is
demanded from a true formalism: uniformity, darity, and generality. This was because
they lacked formal semantics, their meaning being defined only in terms of their behaviour
in their applications . Things asked for darification now.

1.2.2 Terminological Languages

The need for uniformity and generality in terminological knowledge representation was
soon realized, and in response more systematic methods were developed. The most promi
nent among them was the idea of KL-ONE[BS85], which can be called the father of to
day's terminological reasoning systems, together with its numerous modifications [NvL88],
[Neb90], [BBMR89], [PS84], [Vi185], [BPGL85], [MB87], [KBR86], [Kob89].

KL-ONE offers concepts and roles (relationships between concepts). Beginning with a
small set of primitive concepts, e.g. Procedure, Variable, and roles, e.g. uses, the language
offers operators to form recursively more complex concepts and roles. Concepts can be
combined, among others, by Boolean operators; however, the familiar notation with 1\ and
V is not used here, as these should be reserved for combining assertions whose interpreta
tion is a truth value, whereas the interpretation of a concept or a role will be explained as
something different . Therefore square symbols like n or U are used here. Until the formal
definition of their semantics, the reader is encouraged to rely on her intuition concerning
the meaning of these symbols.

Examples of operators are conjunction,
GlobalProcedure := Procedure n GlobalConstruct,

or quantifying restrictions on some, all or a certain number of the partners by a roIe,
CleanProcedure := Procedure n Vuses_construct: OwnConstruct,

meaning a procedure using only its own (local) constructs, or finally demanding condi
tions between partners by two different roles,

7

LocalVariable := Variable n (definedBy = usedBy).
(This demands equality between the definedBy-partner and the usedBy-partner.) Proper
ties ofconcepts are expressed in KL-ONE by the presence of roles like Variable:= ... n
:Jhas_type.
Roles can be formed by composition, conjunction or disjunction of other roles, also by
in version of another role like used By : = uses- 1

,

or by restricting the allowed partners of another role, calls := uses.Procedure, making calls
me an uses with the restriction that the used thing be a Procedure1

.

The definitions of the concepts imply subsumption relationships between them, e.g.
a GlobalProcedure is a Procedure, so that all these concepts can then be ordered in a
subsumption hierarchy by an algorithm in a process called classification. (Note that this
hierarchy is generally not a tree, as a concept may possess several superconcepts, a Glob
alProcedure is also a GlobaIConstruct). The system is then ready to answer questions or,
more generally, infer implicit knowledge about the represented domain, like subsumption
relationships and concept properties. The intention behind these capabilities is not so
much an interactive system questioned directly by a human user, but an inference com
ponent within a larger system solving a problem in the domain, such as understanding a
sentence.

In order to also deal with concrete individuals as weIl as abstract concepts, in KL-ONE

a distinction between aT-Box ("terminological box") and an A-Box ("assertional box")
is made. A TBox is a collection of concept and role definitions (like those of Procedure
and Variable above), whereas an ABox contains assertions about concrete individuals
and concrete role-relationships between them (e.g. that iniLControlier is a Procedure,
iniLControlier calls check...5tate, iniLController is a GlobalConstruct etc.). These actual
individuals are called instances of those concepts whose definitions they fulfill, and so
iniLControlier is an instance of GlobalProcedure (you had to look around shortly why this
is so, hadn't you? - This gave you a glimpse of what classification is!). The services
were consistently expanded to incorporate the ABox, offering classification and queries
concerning individuals, too. The technical term for classifying an individual ("finding
out what it is") is realization. The system could now infer information about individuals
like iniLController which is not explicitly present in the ABox, but may be stored with a
concept like Procedure - say, that check...5tate is a Procedure, too: this may be the result
of classifying checLState or of exploiting the calls role, perhaps because is annotated with
the restriction that anything called must be a Procedure. The subsumption hierarchy of
concepts is also called a taxonomy, a term sometimes also applied to the TBox.

The logically next step to make KL-ONE a true knowledge representation formalism
was the addition of formal semantics. Until then, it was impossible to define a not ion of
soundness and completeness for the employed algorithms for classification and the like.
However, the analogy between the concept and role operators and the operators of first
order predicate logics suggested that KL-ONE was indeed some restricted kind of first
order logics and thus could be given formal semantics in the same spirit. Actually this
was done in [BL84], giving a model-theoretic semanties, i.e., a set-theoretic interpretation
over the doma.in of discourse as the basic set. A concept is interpreted as a subset of
the domain, 01', from a logical point of view, a unary predicate (namely the set of all

IThis notation will be used through this paper. Note the difference between the dot and the colon
and that concept names are capitalized, while role names are not.

8

individuals subsumed by the concept), e.g., Procedure is interpreted as { iniLController,
checLState, . .. }. A role is interpreted as a binary relation over the domain (logically
a binary predicate), e.g. calls as { (iniLController, checLState), ... }. An individual
symbol is of course interpreted as an individual element of the domain. Set-theoretic
interpretations of the operators as mappings between subsets and relations completed the
KL-ONE-semantics, interpreting e.g. a conjunction as the interseetion of the interpretations
of its conjuncts. This semantics makes it possible to call such an interpretation a model
for an ABox w.r.t to a TBox if and only if it satisfies all of their axioms.

This model-theoretic semantics forms the basis of terminological reasoning today,
which is now clearly recognized as a subset of first order predicate logics, thus earn
ing its term language (terms formed with the above operators) the name terminological
logics. The calculi completing the terminologicallanguages (TLs) with an ABox, the nec
essary algori thms and the service interface will be called terminological reasoning systems
(TRSs) in the following.

1.2.3 Today's Services and Performance

In the last decade, a number of KL-ONE-like knowledge representation systems have been
developed (cited above), their primary difference being the characteristic selections of
operators offered for concept and role construction. Of course they come with widely
differing user interfaces and have been applied in different domains, but their algorithmic
capabilities (not regarding efficiency!) relative to the set of operators are very similar,
mostly classification and related services interfaced to the user by various retrieval func
tions.

The operator selection is thus the characteristic feature of a TRS - it implies the
possible expressive power and also the achievable complexity bounds. All full-size TRSs
include concept conjunction, restrietions on role partners ("value restriction", sometimes
existential, sometimes universal, sometimes both), and restrictions on the upper and lower
bounds of the number of role partners ("number restriction"). The inclusion of concept
disjunction is controversial, as with negation which is sometimes limited in application to
especially simple concepts. An especially controversial issue is the inclusion of the men
tioned demands imposed on partners by two different roles ("role-value map"). Regarding
the chosen role operators, again conj unction is not debated, as is role restrietion, while
the other operators like disjunction, inversion or composition are controversial.

What are then the criteria for deciding on an operator selection? Why not implement
all feasible operators? An assessment of the descriptive power of a concrete selection from
these is a difficult logical, and even linguistic, task. Concerning, in contrast, an assessment
of the computational complexity of certain selections, it is observed that subsumption is
the terminological analog to logical implication and subsumption decision may thus be
viewed as a kind of theorem proving. This explains a computational behaviour that
should not be a surprise to any logician: The complexity of classification as the central
algorithm, which is basically subsumption decision, usually rapidly increases by adding
operators. This ranges from a polynomial complexity when deciding in a language offering
only concept conjunction, number restriction, and universal value restriction, to full un
decidability, which is entailed by adding role-value maps or by allowing the composition of
general roles. This monotonie function between expressive power and complexity demands
an economic choice of operators and also accounts partly for the variety of languages, as

9

their developers had various preferences in this trade-off.

The complexity of c1assification should not be overweighted, however, as the subsump
tion hierarchy is precomputed when reading the concept definitions in the TBox. These
do not usually change during operation, so that query answers can be rapidly retrieved
from the precomputed hierarchy. In most applications, the system actually employs such
a fixed set of concepts - however, it is conceivable to dynamically refine so me concepts
(say, because a new property has emerged that some instances of the concept possess and
others do not). This would be done by differentiation of the existing concept to two new
subconcepts, which are then c1assified into their proper place in the hierarchy. If this
happens, the consistency of the new concept definitions with the old hierarchy must be
checked, using an algorithm whose complexity is comparable to that of classification.

Terminological reasoning is actuall~· still in its adolescence - now that the theoretical
basis has been cleared, it must be integrated into real problem solving systems. This
integration will show the direction for thoughtful enhancements of operators and im
provements of the algorithms. The idea investigated in this paper is one such attempt
at applying terminological reasoning to real world problems. Not surprisingly, it actually
required a new operator to be introduced.

A concrete example for the state of the art in TRSs is the K'RIS-system described
in section 3.2

2 The Idea

This section motivates the investigation and lays out the plan.

2.1 A Central N eed of Reverse Engineering

In the section introducing RE, its aim was described as recapturing the obscured architec
ture of an existing software system. This was concisely cast to the formulation of inversion
of the maping: architecture ~ existing_system. The image space of the inverse mapping
will thus be the architecture, in other words, certain source code entities, e.g. a procedure,
must be mapped to certain architectural elements, e.g. an accessor to an abstract data
type. This poses a major question: How is this space of architecture structured? What
are the architectur~l elements used in software design?

Obviously, the first step of a general approach to RE must therefore be laying down the
form of its desired results - you have to be sure of what exactly you want to build before
you start an engineering process. This trivial requirement is a major hurdle in RE, how
ever, since it would require an "architectural" language specifying software architecture
as universally and unambigously as a programming language specifies an algorithm. Re
garding the difficulties of software engineering in managing architectures, such a language
is, if possible at all, far ahead - remember that we are talking here about application
independent software architectures. But this comparison of architectures and programs
is not completely discouraging: The way elementary concepts in programming languages
like subroutines, loops, arrays, or pointers evolved piecewise in the very first days of ma
chine language programming, years before they were abstracted and unified in the first
high level programming language, this very way is analogously covered today as we try
to isolate useful elements of software architectures - the concept of a module is a good

10

example for that .

We search for concepts of software elements then. And since the concrete aim of RE is
to provide machine support in extracting these software elements from the existing system,
the desired concepts must be formally defined in order to be algorithmically recognizable.
Assuming a set of such concept definitions available, the task of recognizing these defined
architecture elements could then be transferred from the human reverse engineer to the
supporting machine. A central need 0/ RE can thus be expressed like this: A set 0/
definitions 0/ software architecture concepts is needed which allow architecture recognition
/rom the source code. Software elements should be recognized and classified under these
concepts according to their role in the design. To automate this recognition, the concept
definitions, while required to tower to a certain complexity and abstraction towards the
architecture level, must be grounded on simple syntactic entities and relationships which
can be easily extracted from the source code.

2.2 The Vision

Certainly we cannot expect to find definitions of the required kind for all such software
concepts (Section 4.1 gives so me reasons for this), therefore this work should be seen
as an exploration 0/ how much is /easible. Anyway, the process of recognition outlined
above indeed appears as a process of classification, being a typical inference problem in
TRSs: The basic idea to model the recognition is to extract source code i tems (which
are considered as ABox-entities) and to classify them as instances of more and more ab
stract TBox-concepts (which denote architecture elements). Therefore it is an interesting
approach to express the needed concepts as a TBox: the classification would be for free
then.

As an example, consider the concept of a module-Iocal variable being defined as such
a variable that all procedures it is used by are defined in the same module as the variable.
Then the inference might work like this:

Given the ABox

Variable v
Module m
v definedBy m
Procedure p
p definedBy m
v usedBy p

and the TBox

ModuleLocalVariable .-
Variable n V usedBy: a procedure 0/ the same module

(if you think this a bit vague, then fee!
assented and wait for Section 4.2 !)

and the fact (somehow derived) that p is the only Procedure that v is usedBy,

then v is recognized (classified) as a ModuleLocalVariable, which in turn might be later
classified for example as the physical storage of an abstract data object, and so on, climb
ing the abstraction hierarchy of software architecture.

11

Thus the following vision appears:

A TRS equipped with knowledge of software architecture in the form of its
TBox and with the data of a particular target program in its ABox can form
the basis of an interactive RE-tool, performing classification and answering
queries about properties of the particular concept instances.

Such a system might even allow the user to store his growing insight into the system by
incrementally adding new differentiations of concepts in the form of subconcepts which
are not completely ABox-derivable any more but involve domain-specific concepts and
roles whose instances are supplied by the user.

2.2.1 A Piece of Evidence

How realistic is this vision?

Actually it is not a completely new idea, so that there is some evidence available. The
"LaSSIE" system [DBSB90] was developed at AT&T for reverse engineering their tele
phone switching software Definity /75™, which contains about one million non-comment
lines of source code. LaSSIE uses the TRS KANDOR [PS84] for classification. LaSSIE's
TBox models processes and functional units interacting in a switching system, such as
calls, connnections and the like. It contains concept definitions like

ConnecLAction = Network-.Action n VperformedBy: BusController
The ABox is populated with individuals from the Definity system. In this application
domain, a large amount of knowledge could be expressed in KANDOR's TBox-concepts
(about 200 concepts), and the idea is that these are used and slowly added to dur
ing further development of the software. The Definity programmers are encouraged to
specify their work using the concepts, and even define new concepts if necessary. This
standardized description of functional units in Definity makes it possible to compile a
catalog of such units and provide a catalog browser accepting queries at different levels
of abstraction (corresponding to concepts of different specificity). This facilitates soft
ware reuse. Because of its large and tailored knowledge base and because additionally
LaSSIE is equipped with a natural language query interface, it is appreciated as a valu
able tool by the reverse engineers. However, although there is also apart of the TBox
describing programming conventions independent of the particular Definity software, like
what kinds of files there are and what their interconnections are, and although even
application-independent information like cross reference data is included, LaSSIE's aim is
not to recover software architecture in general, but to provide a most detailed record of
Definity's structure. LaSSIE is thus not a general, i.e., application-independent approach
to software analysis, as its domain is not the space of software elements, but the world of
switching programming.

While this system is therefore only partly comparable, it does give some evidence for
the conjecture that TRSs are useful tools to draw valuable inferences in software analysis.
However, software architecture is a less understood domain than switching, and therefore
the working example of LaSSIE must be appreciated with caution with respect to our
alm.

12

2.3 The Plan

The investigation of the described idea was planned to proceed as follows:

1. Formulating application-independent definitions of software-elements which

• deli ver useful information to the reverse engineer which otherwise he would
indeed collect manually,

• are mathematically unambigous,

• correspond to the concepts used by the reverse engineer when thinking about
software.

2. Translating them to a K,RIS- TBox such that

• the semantics is preserved when mapping to the restricted TBox-language,

• aU the primitive concepts are easily extracted from the source code

3. Developing an ABox-generator which fiUs the primitive concepts with individuals
from the analyzed source code

Section 4 describes the problems and results in realizing this plan.

3 The Starting Equipment

In both fields of this investigation, there exists software which was built upon here. This
section gives overviews of the two applied systems. They mayaiso serve as an example
for the state of the art in the two fields.

3.1 The RE-Tool Archjxpass

Arch ("Architecture Assistant") is an RE-tool for restructuring the modularity of exist
ing software. lt was developed at Siemens Corporate Research (SCR), Princeton, USA
[Sch90]. Arch examines the grouping of procedures into modules, discovers potential mod
ularization errors in the form of misplaced procedures, heuristicaUy regroups procedures
and indicates procedures violating the principle of information hiding [Par72].

As Arch groups procedures, it must have a guideline of what should be grouped to
gether; a sort of similarity measure for procedures. As the primary relationship in the
focus of Arch is design dependency, the employed procedure similarity measure is a de
sign simila7'ity meaSU7'e, as opposed to a control flow or d~ta flow dependency measure. A
control flow dependency measure presumes that the flow of control is the backbone of soft
ware structure and therefore groups together procedures calling each other. Analogously,
a data flow dependency measure groups procedures passing data among one another.

While these two dependencies, especially control flow, used to be (and often still are)
the chief guidelines for modularizing software, software engineers nowadays agree that
it is more fruitful to group together procedures sharing design assumptions, i.e., relying
on common assumptions about certain structures in their outside world. This greatly
facilitates maintenance, as it is easier to change a design decision when all procedures

13

relying on it can be found together, ideally in Dne module. As an example contrasting
this approach to control fiow dependency, a look at how to modularize a compiler is useful:
contral flow. dependency would (as was numerously .done) group together the procedures
conducting the individual phases of the compiler, with lexical analysis in the first module
and its procedures writing into a symbol table, which is then read and further written by
the syntactic analysis in the second module, and so on. Note however that procedures
from several modules use the symbol table and thus rely on its data structure. If the table
structure were changed, all these modules would have to be examined to track down the
required changes there. In contrast to this, design dependency would group all procedures
depending on the symbol table structure in one module, all those dealing with the parse
tree in another, and so on. Note the difference to data flow, too: Two procedures both
writing but not reading the table are not data flow dependent, but they are certainly design
dependent. Design dependency is not limited to shared data, as commonly used types
or constants establish design links as weIl: Once again, the dependency is established
by assumptions in whatever form about the procedure's outside world. This notion of
dependency comes eloser to the principle of information hiding, which is agreed to be
essential for good software structure.

What is needed then is a measure of shared information. The above mentioned idea of
collecting procedures' external assumptions leads to the basic principle of Arch: External
assumptions are collected in sets which are then compared to define similarity by the
amount of shared information in terms of common assumptions.

The external assumptions are called features in Arch, and a feature of some procedure
is any non-local name (a name whose scope ineludes more than one procedure) appearing
in the head or body of that procedure. Each feature is given a name which is unique
throughout the whole program. Examples of features are calling a non-local procedure,
deelaring a local variable of non-Iocal type, or using a non-Iocal variable. The features
"calls p", "uses t" and "uses v" would then be attached to the procedure. Each feature
is associated a weight.

The similarity between two procedures is then basically defined as a ratio of the
weighted numbers of shared and distinctive features.
Let P and Q be the (finite) feature sets of procedures p and q. Then

sim(p, q)

where weight(X)

weight(P n Q)
weight(P n Q) + Wdistinct(weight(P \ Q) + weight(Q \ P))

L W x for W x > 0
xEX

Such a function is used (with so me modifications introducing control parameters and
corrective terms) by Arch to measure the design similarity of two procedures. The weights
W x of the individual features are of course intended to mirror the importance of a feature.
Features can be given default weights based on their number of occurrences (a rare feature
shared by two procedures hints at a elose coupling between them), or can be automatically
adjusted to agree with a start-up modularization taken from the old software structure
or from the programmer, or can be hand-tuned in delicate cases. If the similarity of two
procedures is intended, but cannot be inferred by any common feature, the user can add
an artificial feature common exact1y to them in order to enforce similarity.

Equipped with this distance measure, Arch provides two principal services: Cluster
ing and maverick analysis. Clustering is the grouping of procedures into modules of high

14

internal similarity. This can be done in batchmode or interactively by asking for con
firmation of proposed placements of procedures and proposed introduction or merging
of modules. The process thus results in a new modularization of the examined system.
A maverick is a procedure that appears to be in the wrang module because it is more
similar to members of other modules than to those of its own module. Arch offers such a
maverick along with its present and proposed module for inspection of their common and
distinctive features . The user can then agree to Arch's replacement proposal or adjust
the weights of some feature(s) to justify the presence of the alleged maverick in its present
module.

All these services are embedded in a window environment, and dependencies are shown
as pictures of design graphs, call graphs etc.

In its input, Arch needs all the features of all procedures. These features, basically
declarations and uses, must be extracted from the source code in the fashion of a cross
reference listing. This is performed by a supporting tool called xpass, which is an inde
pendent source code analyzer delivering a feature listing in the format expected by Arch.
Xpass is thus the programming language dependent part of the Arch system. SCR orig
inally developed such a tool for the C programming language, corresponding tools for
CHILL and Intel-80x86-Assembler followed, FORTRAN is being considered.

Extensive experiments at SCR have shown Arch to be a valuable tool in restructuring
software modularization.

3.2 The Knowledge Representation System KRIS

This subsection is based on [BH90J.

3.2.1 Rationale

As explained in the end of the paragraph on history of TRSs (Section 1.2), the field
received its formal grounding with the introduction of the model-theoretic semantics for
concept and role terms. All TRSs developed so far could now be assessed on a uniform
basis, the descriptive power of the various operators could be measured and investigations
of soundness and completeness of the used algorithms were now possible.

The development of a new TRS offering a large set of operators with sound and
complete algorithms, was the goal of the AKA-WINO project at DFKl. This project
resulted in the TRS KRIS ("Knowledge Representation and Inference System").

An initial examination of the existing TRSs delivered the insight that all of them
use sound but incomplete algorithms2

, which was not just poor programming, but often
inevitable, if subsumption turned out to be undecidable for the respective operator sets.
Sound and complete algorithms were only known for rather trivial TRSs until the de
velopment of KRIS. The analysis of the exact reasons for undecidability revealed that
composition and role-value maps on general roles causes undecidability, but there is a
special kind of role which preserves decidability. Some roles are actually not full relations
(i.e., n:m-relationships), but partial functions (n:1-relationships). These special roles are
called features or attributes, and their computational behaviour is, as would be expected,

2 A sort of exception is [PS84], who ensures completeness not by adjusting the algorithms to the logics
but vice versa by using a four-valued semantics providing also for "unknown" -results of algorithms.

15

more tractable than that of fult roles, namely when it comes to chaining them and im
posing role-value maps upon them: This is decidable for features, but not for general
roles.

Combining these insights, the AKA-WINO project then developed the KRIS-system,
which rests on sound and complete algorithms and yet offers a relatively rich choice
of operators. Roughly, its rationale can be described as a TRS striving for a uniform
approximation of a maximally expressive decidable termininologicallanguage. According
to this policy, subsumption in KRIS is decidable, but highly intractable (P-space-hard).
This was willingly accepted, because this deterrent worst-case-complexity does not give
convincing evidence about the complexity of average TBoxes and ABoxes. Thus it was
also one of the project goals to explore the average complexity.

Today, KRIS is a working system used as a testbed for various questions in ter
minological reasoning, offering tailored optimized algorithms for different subsets of the
TBox-language. It is intended for a human user and therefore equipped with a graphical
interface. Its query language has not yet been fully scaled up with its inference capabil
ities, as the work has so far focussed on logical and algorithmical questions. The query
interface will be extended, however, also offering interfacing to an embedding system.

KRIS was implemented in Common-Lisp on a Symbolics machine and is being ported
to Macintosh.

3.2.2 TBox and ABox

The KRIS-TBox offers the following concept-forming operators (for short examples see
Section l.2), which are given in KRIS-syntax here:

(and CI .. . Ck)

(or Cl ... Ck)

(not C)
(all r C) (all f C)

conjunction
disjunction
negation

(some r C) (some f C)
(atleast n r) (atmost n r)

(equal I1 h)

value restriction
existential restriction
number restriction
equality role-value map (features only!),
usually called "agreement"

(not-equal 11 h) the same for unequality ("disagreement")

The available role-forming operators are

(and rl ... rk)
(restr r C)

conjunction
restriction

The feature-forming operators are

(and I1 ... Ik)
(compose 11 . . . Ik)

conjunction
com posi tion

All the above operators may be arbitrarily nested with one another if the resulting term
is still well-formed in that it contains only concept (role; feature) terms in concept (role;
feature) positions. There is, however one exception: The role argument of an atmost or
atleast must not be a restr .

16

The following statements introduce terms (i.e., concepts, roles and features) by giving
them a name, which is called a terminological axiom (as it involves only concepts, no
individuals) :

• Introduction of unrestrictedly interpretable primitive terms:
(defprimconcept C) (defprimrole r) (defprimattribute f)

• Introduction of fully defined terms by their definition:
(defconcept A A') (defrole r r') (defattribute a a')
where the quoted terms denote term expressions formed with the listed term oper
ators. This establishes a logical equivalence between t and t'.

• Introduction of partially defined (and thus still primitive) terms by necessary, but
not sufficient conditions:
(defprimconcept C C') (defprimrole r r') (defprimattribute f f')
with the quoted terms as above. This establishes only a logical implication t =::} t',
but not vice versa.

A KRIS-TBox is a finite sequence of such terminological axioms with the second argu
ment (the defining term) constructed, if present, from the term-forming operators above.
These definitions must not contain a cycle 3.

A KRIS-ABox is a finite sequence of assertiona/ axioms (making assertions about
individuals) of the form

(assert-in d a C) (assert-ind a b r) (assert-i nd a b f)
meaning that the individual denoted by a is an instance of concept C, (a name which is
defined in the TBox), a is r-related to b, and that the f of a is b.

3.2.3 Semantics of KRIS

As mentioned in the section on TRSs in general (sec. 1.2), their semantics is a model
theoretic one, interpreting concept and role terms as sets over the domain of discourse.
A concept is interpreted as a subset of the domain, a role as a binary relation over the
domain, and a feature as a partial function over the domain.

What conditions must hold then for these sets? The interpretation of unrestricted
primitive terms is left open (being an instance of such a term must be explicitly stated
in the ABox and cannot be inferred in any way). The interpretation of partially defined
terms, however , is restricted by a superset (remember that only a necessary condition is
given as a "definition" for these - the restricting superset is then the set of all individuals
satisfying this condition). Thus an interpretation J for such a term must grant the
condition

for every (defprimconcept A C) in the TBox: AI ~ Cl.
(Analogously with roles and features). Finally, the interpretation of fully defined complex
terms is recursively fixed by the interpretations of their constituent subterms, combined
in a well-defined way depending on the operators as shown below. Any interpretation for
these terms must grant

for every (defconcept A C) in the TBox: AI = Cl.

3 For a discussion of terminological cycles see [Baa90b] [Neb88]

17

Examples for operator semantics are as follows, with I denoting the interpretation
function and ß denoting the domain:

(and Cl . " ck)l
(not C)l
(all r C)I
(some r C)I
(atleast n r)I
(equal f g)I

-

(restr r C)I :
(compose f1 ... fk)I :=

ci n ... n cl
ß \ Cl
{a E ß I Vb: (a, b) E RI

=} bE CI}
{a E ß I :Jb: (a, b) E RI A b E CI}
{aEßlcard({bEßI(a,b)Er}) ~ n}
{a E dom(JI) n dom(gI) I fI(a) = gI(a)}
{(a,b) E r I I bE Cl}
J10 ... 0J{

Two remarks are in order concerning tne interpretation of the ABox by K,RrS. Each
individual constant symbol is assumed to denote a unique individual of the domain, which
is weil known from data bases as the "unique names assumption". In contrast to data
bases, however, K,RrS does not assurne a closed-world semantics for the ABox ("there
are no other relations than explicitly listed here"), but an open-world semantics to be able
to model incomplete knowledge: An ABox containing nothing but the axiom (assert-ind a
b r) does thus not exclude a being also s-related to c or whatever you like. Accordingly,
K,RrS does not infer that b is the only r-related individual of a. Thus "V" -statements
and "....," -statements cannot be derived by simply checking all concerned ABox-individuals.
Section 4.2 reports how this feature of K,RrS can be a nuisance for some applications,
and how it can be mended.

3.2.4 Reasoning Capabilities

As introduced in Section 1.2, the central algorithm of a TRS is classification: the ordering
of a concept into its proper place in the subsumption hierarchy, and the recognition of
an individual as an instance of so me concept(s). While classification gives an intuitive
picture of what the system delivers, it is useful to separate and examine more closely what
services are actually performed. This analysis also leads the way to how the services are
implemented in K,RrS. The following six problems are solved by K,RrS and constitute
the user's options (by a knowledge base we mean an ABox and a TBox):

• Is the knowledge base consistent?
Obviously this requirement is essential prior to any inferences. This check is not
trivial for large knowledge bases - indeed, the subsequent four services will turn
out to be based upon it. The checking algorithm works by incrementally building a
model, iterating over all the axioms.

• Does the concept C subsume the concept D?
This is the central question. A positive ans wer allows one to infer for D all knowl
edge valid for C. The question can be rephrased by the simple observation from
propositional logics that it is equivalent to the concept term and D not C)) being
inconsistent, i.e., having no model - so this question turns out to be decidable by
the above consistency check, too.

• What does the subsumption hierarchy look like?
This is built up by placing each concept introduced by a terminological aXIOm

18

through repeated subsumption decision, in order to classify it more and more accu
rately until its proper place in the hierarchy is found.

• Is the assertional axiom Q implied by the knowledge base KB?
This is a quest ion about an individual. If e.g. Q = (assert-ind a C), then the user
asks whether or not a is an instance of C. Since
K B F= C(a) {:} [(B f-- C(a) {:} ([(B => C(a)) valid {:} [(B 1\ -'C(a) inconsistent
(by soundness and completeness and the deduction' theorem),
this can on ce again be decided by the consistency check.
lf Q is one of the other two ABox-axioms, the argument is the same.

• What are the most special concepts subsuming the individual a?
This is our old task of finding out what ais, the classification of a (or better and
technically correct, realization of a).

• What are the individuals subsumed by the concept C?
This is the inverse service to the above.

Thus a KRIS-session looks like this in principle: The user loads the TBox for the domain,
which someone has carefully devised so me time ago, and then feeds the ABox with the
concrete data she wants to examine in the present session. The system is now ready to
perform the indicated services (an initial universal consistency check might be the first
action).

The reader familiar with data base queries will have noticed that limiting queries to
assertional axioms is a strong restriction, as they can neither contain variables needed to
form queries like "What x are r-related to a", nor can the result be further processed
by demanding additional conditions etc., as can be done in relational algebra. KRIS is
presently being extended to offer such services, too.

3.3 The Coupling

Arch generates information about the attribution of individual procedures to individual
modules (which appear as ABox-items)j it does not generate new software concepts like for
instance a special kind of module or anything of this kind. It is thus a tool at the instance
level, not at the concept level, so that there can be no dynamic connection to the planned
TBox, whose concepts are consequently fixed in advance to Arch and independent of the
data from the particular program under analysis. The concept taxonomy can of course
still be incrementally refined by the human user, but not by Arch: The information from
Arch to KRIS will fiow through the ABox.

As the planned TBox receives the primitive relationships through the ABox, all issues
like what procedure belongs to what module must have been decided at the time of reading
the ABox. Running Arch beforehand to improve modularity is therefore optional and not
required by the TBox - it just takes modularity "as is", i.e., as found in the ABox.

What is required, however, is an ABox containing the primitive syntactic relationships
between the individuals. Arch needs quite similar information in the form of its feature
data and uses the xpass tool to generate this. As a transformation of the feature data
to ABox-items is a less laborious task than extracting the ABox data directly from the
source code, this paper takes the way of building the required ABox-generator on top of
xpass in the form of a such transformer from xpass's output to ABox-assertions.

19

Xpass, however, has its deficiencies and also bugs (described in Section 5.2), but they
are limited to the submodular level and therefore judged acceptable with respect to the
goal of the TBox, focussing on modules rather than procedures.

The coupling will thus look like this: The program's source code is fed to xpass, which
outputs a feature list, which is then transformed to a KRIS-ABox and finally evaluated
with respect to the TBox.

4 The Process

This section reports the experiences in concept formulation and translation to KRIS.

4.1 Concept Formulation

As our plan is to automate software element recognition by concept classification deriving
from source code information, the first step is concept formulation: Laying down what
elements are to be recognized, and how (i.e., by what exact definitions) they are to be
recognized from the source.

Regarding the considerable literature on software engineering, there appears to be
plenty of advice on how to proceed in developing software (the waterfall-model and the
like), but remarkably less so on what general elements to build it from. Still, an experi
enced programmer has his own ways of thinking about software structure, his vocabulary
of software entities. This was used, then, as the target of concept formulation. Now the
idea might be tempting at the first glance that no more were needed than "just writing
i t down cleanly" (wi th more or less effort) to cast this vocabulary into a workable set of
concepts. This optimism was detected to have been implicit in the original idea initiating
this investigation, too.

However, when it comes to tying them down, descriptions (the term "definitions"
cannot reasonably be applied here) of most software concepts will evade any attempt to
exactly catch theü· nature in terms of syntax. This has at least three reasons:

• The majority of software concepts do not operate on the syntactic level, but on
a level of purpose: Their distinctive characteristic is their dynamic effect on and
use for the other system components at run time, and not their syntactic relations
to them at compile time. Examples for these concepts are security check, contro!
ftow dispatcher, return code, exception handler, utility function, mailbox structure,
computing function, ftag variable, blackboard variable, demon, ... - certainly syn
tactic descriptions for these are conceivable, but no such definitions, as experience
has shown that there is always some exceptional case not covered there.

Since the characteristic of these concepts is their meaning as opposed to their form, it
appears justified to call them semantic concepts here, as opposed to the source-code
definable syntactic concepts. Not surprisingly, especially the most fruitful concepts
for architecture fall under this category of semantic concepts - just think of the
concept of a dispatcher procedure calling the next action procedure, which cannot
easily be distinguished from that of a generic computation procedure just calling
the appropriate specialized procedure to fulfill its task.

20

• Many characterizing properties of software features (and not only of them) refuse to
fit into the strict truth not ion of logics: They are inherently vague, i.e., their truth
must be measured by degrees (of unclear nature), rather than by a strict value of
either true or false. The description of an "important procedure" as being "often
called" would require a strict distinction of "often" of the kind that being called n
times is not often, but n + 1 times is - obviously not an adequate representation of
"often" .

This problem is not new to AI and has been combatted with heuristic definitions
(i.e., approximations where an occasional error is accepted) or with an extension of
logical truth values from two distinct values to a continuum, as fuzzy logics tries to
do. However, representing vague knowledge is still an area of current research, in
particular "vague logics".

Defaults are another kind of non-standard logics, which can also be useful for our
task, as witnessed by the example "A O/1-result means a Boolean value", which is
usually true in C, but might also mean a numerical result.

Concerning TRSs, there is a plan at DFKI to incorporate such and other non
standard logics into KRIS in a forthcoming project .

• Software development as it is today is simply not standardized enough, does not
employ enough standard concepts - astate which is weil expressed by the saying that
software development is still crafting, even craftsmanship, instead of fabrication (as
suggested by the term of software engineering). By the way, practitioners in the field
complain that today's actual practice is even worse, as RE is still more inhibited by
bad crafting of the masses of shallow-educated or autodidactical programmers than
by the general shortcomings of (even good) crafting in comparison to fabrication.

While the efforts for CASE nourish the hope that standardization in software pro
duction will increase, and the trend towards object orientation hopefully brings
about standardization (by reuse) at the level of coding, only little of these two will
percolate to the between layer of software architecture, again and again challenging
the creative human. Still, we must put our ho pe in the development of more powerful
software architecture concepts and the education of better software architects.

As a result of this, fewer concept definitions than initially hoped could be stated satis
factorily. Inherent vagueness of concepts cannot be tackled with a TRS (at least today).
However, most of the wrecked hopes concerning feasible definitions are due to the om
nipresence of semantic concepts: The desired notions are simply too strong to be inferred
from the syntax . But this hints a way for the future, too: As a semantic concept is char
acterized by its dynamic effect on the system, this is what must be observed to recognize
the concept: a run time simulation with data ftow analysis as its central part might bring
about better results.

Still, about twenty core concepts were laid down, mostly procedure and module classi
fications (see section 5.1 for details) with the emphasis on locality and data encapsulation.
The last of the above three obstacles, lack of standard in programming, might set a limit
to the value of even these achieved concepts, as their practical usability obviously depends
on how much they are employed in real software. Unfortunately, it has not yet been pos
sible to test this, as a new and not yet implemented TBox-operator for KRIS turned out
to be essential, as described in the immediately subsequent section.

21

4.2 Translation to KRIS

Of course concept formula.tion wa.s conducted all the time with the target borne in mind
of translating i t to a logical language, and so the definitions were right horn the begin
ning kept mathematically precise and purely syntactic, which precluded right away many
attempts as described above. Still, the TL underlying KRIS is not full predicate calcu
lus, and so some ways of expression, while fulfilling the requirements of being precise and
syntactic, could still not be expressed in KRIS . These were recognized as being not mere
challenges for the ski11 of formulation in KRIS, but as demanding fundamentally more
from the language than it was intended for respectively than is possible in a TRS. One
of these problems could be mended, one be contained to a negligible size - one, however,
demanded the invention of a completely new construction (not an operator anyway) for a
TRS, which was utterly indispensable for the definition of the central concept of locality
in a program. The three problems and their solutions are described in the following three
subsections.

4.2.1 Closed World Semantics

As mentioned in the section on the semantics of KRIS (sec. 3.2), an ABox is interpreted
according to the open world semanties: the ABox information is assumed to be sound,
but not complete - the possibility is taken into account that part of the information is
yet unknown and not present in the ABox, so that the instances of the concepts and
roles explicitly listed there are not presumed to embrace a11 assertions that hold in the
domain. This is a conscious decision in the design of KRIS, the reason being that non
monotonicity was to be avoided: Later additions to the ABox should not be allowed to
invalidate previous conclusions footed on the now incorrect assumption of an exhaustive
ABox. Accordingly, it is logically unsound to derive any such conclusion presuming com
pleteness . Such conclusions are entailed, however, in every concept or role term using a
universal value restriction (relying on all information being known) or a negation (relying
on everything not listed being false). Thus, the following knowledge base would not allow
KRIS to draw certain conclusions:

Given the ABox

Variable v
Variable u
Procedure p
p defines v
v defBy p

and the TBox

LocalVariable := Variable n :3 defBy: Procedure
NonlocalVariable := -,LocalVariable

LeafProcedure := Procedure n V defines: Variable
(a leaf in the procedure definition tree)

(and no other instances of these terms being in the ABox), then KRIS would conclude
neither that u is a NonlocalVariable (as this involves a negation), nor that p is a Leaf
Procedure (this involves a universal restriction) - a11 that would be inferred is ~hat v is
a LocalVariable. Universal and negative information would have to be explicitly given in
the ABox, like u: -,:3defBy: Procedure, if such conclusions like the former two are desired .

Now it is certain that universal restrictions are indispensable for our purpose, as is
easily demonstrated by the LeafProcedure-example above. The same is true for negation,
as the two are well-known to be equivalent, once you have an existential quantifier, by

22

the interchangability of -,:3x : -,p and \:Ix : P. So how can we achieve the validity of
universal conclusions in an open world semantics? Once again, such a semantics allows
only inferences founded on positive information, and not on the absence of information,
and so we must provide some positive axioms in the ABox expressing that the listed
instances are all there will ever be. This is similar to the approach of circumscription
[McC80] to capture such a closedness property. In general, such axioms are not possible
in first order logics, as they make statements about an infinite number of conceivable
assertions which do not hold. However, there are two features of our task and KRIS
allowing the construction of such "ABox-closing" axioms nonetheless. The first is the
observation that the complication of later modifications of the ABox does not happen in
our case: If Procedure p uses Variables VI •.. Vn and no others, this will hold for the time
of the whole analysis, and so will all other relationships. Our knowledge 0/ the examined
program is complete. Additionally, since quantifiers in KRIS are allowed only to quantify
roles, not concepts, we have to add "closing axioms" only for the interpretations of role
terms. This gets us as far as achieving our goal if we were only allowed to state that "the
number of possible instances of each role term in the ABox is exactly the number of its
listed instances". This, however, can be expressed cleanly in KRIS by a corresponding
number restriction.

The problem can thus be mended by counting all instances in the ABox for each
individual and each of its roles and then adding a number restriction axiom for them,
limiting the allowed number of role partners to exactly the counted number and thus
excluding any possible others.4 This effectively makes the ABox a closed world, and the
open world semantics is then equivalent to the closed world one (with respect to the sole
instances) .

4.2.2 Terminological Cycles

An ABox is said to contain a terminological cycle if there is a concept C whose defining
concept term (the second argument of the defconcept-axiom) contains (possi bly through
several nested definitions) a reference to C itself. Obviously this is not a definition in the
sense of explaining C in terms of other things already known, and yet it is a natural way
of expression: A Procedure may call other Procedures (a cycle of length 1), a Procedure
defines a Variable which can again be passed_to a Procedure (a cycle of lenght 2), etc.
The recursive structure of programs accounts for many such cycles in a TBox capturing
them. This observation suggests that terminological cycles in a TBox can actually be
conceived as an instance of the familiar concept of mutually recursive definitions in a
programming language. Analogously to these, terminological cycles introduce difficult
computational problems (see [Neb89], [Baa90b]) into a TBox. 5

. This is why KRIS does
not allow terminological cycles and rejects a TBox containing one.

Since there is no work-around to mimic terminological cycles, the initial TBox had
to be cleaned of them, as it had been allowed cycles like the above examples to find
out how far one could get at all. In order to contain the practical impact of this loss
of precision occurring in some concept defitions, the definitions were rearranged so as
to limit the knowledge expressed by occurrences of terminological cycles to checks of

4See the close...ABox_world-tool in appendix B for the details.
5The knowledge calling for terminological cycles can often be equivalently expressed by transitive

closure of roles (see [Baa90a]).

23

comparatively trivial conditions, which are anyway obliged to by all correct programs, e.g.
that procedures call only procedures (and not modules, say) or that variables are defined
in some place, each variable has exactly one type etc. These remaining occurrences of
cycles were then simply omitted in the TBox. They are not checked anymore, and thus
an incorrect program would no longer result in an inconsistent knowledge base. However,
this is a negligible restriction, since it would not make much sense to analyze a program
that still contained compiler errors.

4.2.3 Reference to Individuals

This is a fundamental problem, rooted in the very principle of terminological reasoning
and therefore questioning in general the applicability of TRSs for our purpose.

Problem:

A TRS owes its name to dealing with terms, i.e., collective abstractions of things in
contrast to the things themselves. It provides means of defining concepts, meaning sets
of things, by certain relationships to other such sets of things. However, it does not allow
relationships containing references to a certain thing, to an individual in the sense used
so far. There are good reasons for this restriction, which is after all basically nothing
other than the distinction between TBox and ABox, which accounts for most of both the
simplicity and elegance of the language and the efficient implementation . Reference to
concepts only is often sufficient, as in

Variable := ... n 3hasType: Type,
where the concrete type of a variable does not matter - just any instance of Type will
do to classify an instance of Variable. There are concept definitions, however, which do
require a relationship not just to some unspecified instance of another concept (appearing
as a reference to this concept in general, like Type), but to a special instance distinguished
by a certain link originating from the individual instance to be classified (referred to as
the "examined instance" in the following, as the classification might fail after aB). This
link restricts the partners in the relationship (which is expressed as a role, of course) to
a single special one. As a first example, think of the concept of a (directly) recursi ve
procedure as "a procedure which calls itself". A first attempt might get as far as

RecurProc := Procedure n 3calls: Procedure
- but this does not express what was desired: a RecurProc does not merely call some other
Procedure, but a very special one, namely itself. The partner in the calls-relationship must
be restricted to this special procedure. In this case, the distinguishing link from the exam
ined individual to the partner instance is identity. So there ought to be so me construction
P in the place of the caBed Procedure, denoting the "right" procedure. With the defini
tion as it is, certainly a procedure p calling p would satisfy the definition, but so would
a procedure q calling p (and no others), too. Now there is no way to "narrow" this def
inition down to this P, to the "right" procedure - for a first attempt at such a P, one
might imagine somehow constraining the interpretation of the second Procedure in the
definition of RecurProc to subsuming exactly one instance6

, or allowing a constant symbol
in its place. This, however, would not work either, because the "right" procedure is not

6The TRS CLASSIC offers a facility to explicitly fix the interpretation of a concept to a literally
enumerated set of individuals, which must, however, not appear in the ABox

24

fixed at the time of concept definition, but depends on the examined instance: When
examining p, the procedure required to be called is p, at other times it is q etc.

The mentioned link from the examined instance to the distinguished partner instance
generally need not be identity, as in the previous example. As a second example, consider
the concept of a (module-) local variable defined as a variable with all procedures using
it being defined in the same module. Assuming a TBox-language allowing the agreement
on features (like KRIS) and a feature moduleOf to designate the defining module of a
variable or a procedure, an attempt gets as far as

LocalVariable := Variable n V(usedBy.Procedure) : (moduleOf = M)
with once again M standing for the "right" module, for the module of the examined in
stance, the instance of Variable just being elassified "on the left hand side of the definition".

Solution: The SELF-construction

These two examples are just a few from quite a number of problems with references
to individuals in definitions, which turned up in the translation of the TBox to KRIS.
How can we specify the "right" role-partners in these definitions? Since the only means in
a KRIS-TBox to get hold of an individual is by a feature (remember they are functions
and thus have only one possible value, i.e., an individual), and since feature values can
be constrained by agreements, it was recognized that the only possible solution to this
problem of constraints linking certain individuals could run as follows:

The link constraint must be formulated as an equality between certain charac
teristics (which are individuals) of the two instances. It can then be expressed
through an agreement between features, with one feature denoting ("point
ing to") the characteristic of the distinguished partner instance (often, this
is the just the partner itself) and the other feature somehow denoting the
characteristic of the examined instance (possi bly i tself).

This solution allowed all problems with individual references to be reduced to a stan
dard structure given below which is quite elose to that of the examples from above.
Following the indicated solution, we use a new feature procedureOf to transcribe the first
example, mapping things in the scope of a procedure to that procedure, in particular
a procedure (quite consequently) to itself. This is the feature pointing to the intended
partner instance (here, the procedure itself). The first example can then be transcribed
to

RecurProc := Procedure n :3calls: (procedureOf = P)
with P standing for the "right" procedure, which is now of the standard structure of
references to individuals in its simplest form (when the link is identity). The procedureOf
feature links the examined instance (the calling procedure) to the distinguished partner
instance (the called procedure). In this case, these two are identical, and this is reflected
by the procedureOf-feature reducing to the identity mapping when applied to procedures.

If the link between the examined instance and its partner is different from simple iden
tity, the solution suggests to try to express it as equality on certain characteristics reached
by one or more intermediate features , which are applied to examined instance and/or its
partner. The second example illustrates this: The link required from the potential in
stance of LocalVariable to its partner instance of Procedure through the usedBy-role is
not identity (how could it be?), but "having the same moduleOf". Accordingly, we use

25

the moduleOf-feature as an intermediate applied to both the partner procedure and the
examined instance and arrive at the final transcription of the second example

LocaIVaria.ble:=Variable n V{usedBy.Procedure): (moduleOf = moduleOf(V))
with V "standing for" the examined instance - quite as the P in the transcription of
the first example. This now suggests the definition of a new concept operator defined as
follows: Let fi , gj be features. Then

C := (f1 0 ... 0 fn = gl 0 ... 0 gk(SELF))
D := (f1 0 ... 0 fn =1= gl 0 ... 0 gk(SELF))

are concepts, with n, k ~ 0 and SELF "standing for" the instance which is currently
examined whether it is an instance of C respectively D. Both C and D are called a SELF
expression. Such an expression is thus i:t generalized agreement concept. It may be used
in a value restriction to express a link constraint, such as

Vr: (f1 0 ... 0 fn = gl 0 ... 0 gk(SELF))
7 This is the mentioned standard form of our problem.

Nearly all individual reference problems occurring in the TBox of software concepts
which was compiled with the help of SELF could be expressed as such standard form
defini tions (wi th both n and k never greater than 1).

Now that we have standardized our individual reference problem to this form, we
must admit that KRIS (as all the other complete TRSs) does presently not offer a
way of expression equivalent to this SELF, the individual just being tried as a potential
candidate of an instance of C. Such a way of expression is, however, indispensable for our
task, as is clearly witnessed by the preceding examples. Therefore,

a new operator applicable within concept definitions named SELF was invented
which always denotes the individual just being classified under the concept.

SELF is allowed only in the lexical context of (dis)agreements matching the standard form
from above. Considering the operators available in KRIS, this is anyway the only way
to utilize an individual in a concept definition.

SELF is a kind of individual variable in concept definitions, not a concept, but not a
constant symbol either, as its interpretation varies depending on the examined instance.
But it is a special kind of individual variable, occuring only in the context of denoting
"the individual just being classified". Concretely, it allows just as few individual variables
as possible to build our TBox.

Individual variables would, if allowed in full generality, imply serious semantic and
computational problems up to utter undecidability. This narrowing of the desire for
individual variables as far down as to the case of the SELF-construction thus conforms to
the principle in KRIS of maximizing expressive power while preserving decidability.

5 ELF is a construction which has not yet been considered in terminological reasoning.
An implementation is considered feasible and will be attempted at DFKI.

7This could also be expressed by an agreement involving full roles and also their inverses:
(r = (fl 0 ... 0 fn)-lo SI 0 ... 0 Sk)

However, such general agreements entail undecidability.

26

Problems with the Solution:

SELF is decidable, but its nature is not obvious . If you were not contented with the
"definition" of SELF as "the instance just being classified", then you are exactly right.
What is this SELF at all? We have observed that it is not a constant, as its interpeta
tion changes depending on what instance is being classified at the moment, and it is not
a feature either, as it would then apply to the concept which is to be restricted in the
agreement, i.e ., the r-partner of the C in the standard form - and this is not what was
intended. SELF might be described as a metalogical constant, as it must be substituted
by an individual during evaluation of the SELF-expression. After this substitution, SELF
has the effect of a constant symbol denoting the substituted individual; but as the sub
stitution happens at the meta-level in the evaluation process, not at the level of logics,
this justifies the description of SELF as a meta-Io~ical constant.

SELF is, unfortunately, not a logical expression at all, as it violates the familiar princi
pIe that the interpretation of a closed expression does not depend on its occurence context,
once you have chosen a model. E.g. in KRIS, the interpretation of a concept is always
the set of individuals subsumed by the concept definition, however deeply nested in an
embedding expression the concept appears. The same is true in first order logics: The
interpretation of a term is always the same individual from the domain, and the truth
value of a formula does not depend on how many other formulae are attached to it by
logicaloperators. SELF, however, is different: As SELF denotes the individual just being
classified under the concept at the left hand side (l.h.s.) of the definition containing the
SELF-expression, this would change if the right hand side (r.h.s .) of the definition were
substituted into a larger embedding definition, since the SELF would now denote the in
stance being classified at the l.h.s. 0/ the embedding concept definition, and no longer the
correct instance from before. An example will show this easily: Assuming the concept
definitions

ProcWithOwnVar := Procedure n 3usesVar: (procedureOf = SELF)
ModWithPWOV := Module n 3defines: ProcWithOwnVar

then the SELF-expression (procedureOf = SELF) has different interpretations according to
i ts lexical context:
All by itself, it denotes

{ x I proced u reOf(x) = a}
if a is examined;
its denotation, however, within the definition 0/ ProcWithOwnVar (as in the example)
when examining p is

{xl procedureOf(x) = p}
(this is what was intended for), whereas its denotation if the r.h.s of ProcWithOwnVar
were lexically substituted within the definition 0/ ModWith PWOV .(this happens when ex
pan ding a TBox) would then (examining m) be

{xl procedureOf(x) = m}
In the last case, SELF duly evaluates to m (after all, the individual being examined now),
disregarding that within the old definition context it evaluated to p. Thus an algorithm
which performs a preliminary bottom-up substitution of all concept occurrences by their
definitions (as KRIS presently does) would never realize m as an instance of ModWithP
WOV, even if m defines p and p is an instance of ProcWithOwnVar. Therefore the concepts
containing SELF-expressions cannot not be substituted as usual, but the algorithm must

27

keep track of their original concept definition cöntext (perhaps by substituting the SELF
by apointer to this concept) to evaluate the SELF correctly.

A problem of different nature is soon encountered when actually writing definitions
containing SELF-expressions: SELF's context dependency tends to result in lengthy con
cept definitions , because splitting the definition would cut off a deeply nested SELF from
i ts context.

All this is admitted to appear still awkward (though precise) in meaning, and "logi
cally impure". Future investigation will further clarify the semanties, possibly the syntax
and also the implementation of SELF-expressions.

Conclusions about SELF:

The expressive range (in the pragmatic aspect) of TRSs in general and also of KRIS
in particular is still under investigation (not the least, in this paper), but it is certain that
reference to individuals in concept definitions is both needed for many applications and
impossible to express in present TLs.

This introduction of individual references into a TRS described in this seetion by
the (at least in KRIS, only possible) "back door" of features constitutes, in a way, a
pollution of the idea of terminological reasoning. It is however, a carefully limited one.
The introduction of full general individual variables into concept definitions would have
turned them into a kind of Prolog-rules (with the ABox constituting the facts), with all
the semantic and computational difficulties well-known from there. This would certainly
not be a wise direction for the further development of TRSs . The proposed enhancement
SELF, however, constitutes a carefully limited variable introduction, powerful enough to
solve considerably more problems than before, but still retaining decidability. It is thus
a proposal worth investigating and incorporating into KRIS. This incorporation will be
conducted at DFKI.

5 The Results

The last seetion reported the difficulties encountered in stating descriptions of software
elements as KRIS-definitions. While these experiences account for reductions in the
scope that was initially hoped to be covered, the plan laid out in Section 2.3 was carried
out and resulted in the KRIS-TBox and the ABox-generator which will be presented in
this section. Their source code can be found in the appendix.

As the SELF-construction still awaits implementation, the TBox could not he tested.
Accordingly, the ABox generator could only be tested by careful inspection of its output
ABox, and not by loading this into KRIS.

5.1 TBox

The mentioned reduction of scope means that the TBox contains fewer concepts than
hoped for . In particular, such concepts as desribed as "semantic" in Section 4.1 could not
be incorporated into the TBox, for the reasons explained there. A number of "syntactic"
concepts, however, could be translated to the TBox almost completely, assuming the
SELF-construction. They will be presented in the following.

28

5.1.1 Basic Structure

What does the TBox look like then? Remember that it was to build concepts at the
architecture level from simpler ones at the source code level. Accordingly, it is founded
on five basic concepts (all primitive, of course) at the source code level,

Module, Procedure, Variable, Type, Constant
which are related by two basic roles at this level:

defines and uses.
All other roles are derived from these two by specialization and inversion.

As the fundamental notion of software architecture is locality (deriving many others like
abstraction, information hiding etc.), the concepts of LocConstruct and (complementarily)
GlobConstruct were defined as the first step towards the architecture level. In programming
languages with adequate scope control facilities in definitions, this might still be source
code extractable and not ask for a defined (in contrast to a primitive) concept at all; but
as the target language of this investigation is C, which offers little scope control (and even
this is usually ignored, concerning module-Iocal items), locality of a source code item (like
a variable) is defined in the TBox not from its definition in the source, but from its use
throughout the program. Corresponding to the program being structured in modules and
these again in procedures, three levels of locality are distinguished:

• GlobConstruct: being accessible within the whole program

• ModLocConstruct: the same within exactly one whole module

• ProcLocConstruct: the same within one procedure only

All three concepts are mutually disjoint. The concept LocConstruct is then the disjunction
of ModLocConstruct and ProcLocConstruct. Their concrete definitions are as folIows, with
usedBy and defBy meaning the inverses of uses and defines:

LocConstruct :- VusedBy: (modOfls = modOfls(SELF))
i.e., anything which is used only from things defined
somewhere within the same module (the modOf1s- '
feature gives the module containing [possibly within
a procedure definition] the definition of an item).

ModLocConstruct:= LocConstruct n :3 defBy: Module
ProcLocConstruct:= LocConstruct n :3 defBy: Procedure

These levels of locality resulted in corresponding localizations of the five basic con
cepts, like ModLocVariable or ProcLoc Type, and of the basic roles like exports := de
fines.GlobConstruct. Wherever reasonable, this was done in full generality, with the 10-
cality concept of a language like Modula-2 in mind, thus in pI aces including language
constructions not possible in C (LocMod, ProcLocProc, ProcLocConst).

The localized concepts were then used to define the actual "goal" concepts of the TBox,
capturing a classification of modules and, less complex, a classification of procedures.

Procedures are classified according to their side effect behaviour (SideEffectGuarded,
SideEffectCausing), their frequency of use (AdHocProc, UtilityProc, DeadProc) as a weak
approximation of the semantic concept of importance, and their calling behaviour (In-

29

terfaceProc, System IOProc, DirectRecurProc). These procedure concepts8 do not require
complex definitions and may thus (with the exception of InterfaceProc) be called archic
ture level concepts with some generosity only. Still, they are very handy in practice and
save looking around in the source code.

lncluding the module concepts presented in the subsequent section, the TBox contains
about 60 concept on the whole, among these about 40 auxiliaries like localizations, and
20 goal concepts defining the procedure and module classification. Seven roles and four
features were used to define them, all of which derive from defines and uses by restriction
and inversion.

5.1.2 Module Classification

The classification of modules constitutes the core content of the TBox; only here the
representation of architecture level concepts succeeded to a satisfactory extent. Some re
sults of software engineering isolating certain kinds of modules ([Nag90J) could be utilized
here. Besides concepts similar to the procedure concepts above, like UtilityMod, AdHoc
Mod, MainMod, four fundamental purposes of modules within an architecture could be
translated to KRIS-definitions with practically sufficient accuracy:

• AbstrData TypeMod: This kind of module realizes the familiar concept of an abstract
data type (ADT), i.e., it exports a type with a hidden internal structure and a col
lection of procedures operating on it such that the type is completely determined by
the behaviour of these procedures and these procedures are the only ones accessing
its internal structure.

Such a module exports the type itself, the accessor procedures, and a constructor
function returning an object of that type. It can thus be seen as a template generat
ing objects of that type. Additionally, in order to prevent the module interface from
being littered with other procedures unrelated to the ADT, all exported procedures
are required to use the abstract type (this makes them true accessor procedures).
This led to the following definition:
AbstrData TypeMod :=

Module n V(exports.Procedure): 3uses:
(GlobType n (modOfls=SELF) n 3isTypeOf:

(GlobProc n (modOfls=SELF)))
Here the two SELF-expressions ensure that the abstract type (the GlobType) and its
constructor function (the GlobProc) really are in this module.

An ADTAccessor is a GlobProc defined in such a module.

Note that this definition is only a sufficiently accurate translation of the ADT no
tion: The definition does not enforce all exported procedures using this same one
type - there might be several Glob Type-instances exported from this module. Re
stricting the number of exported Glob Types to one is not possible because atmost
does not accept a restr as its role argument in the present version of KRIS. Addi
tionally, this definition does not grant that the internal representation of a variable
instance of the Glob Type defined in so me other module is not accessed there (vio
lating the abstraction). To prevent this, there would have to be a specialization of

8 Additionally there are concepts for procedures attached to certain kinds of modules; they are ex
plained with the respective module.

30

uses, call it enters, meaning an such an invasive access to the internal representation,
e.g. through dereferencing (if the ADT is apointer) or component selection (if it
is a structure). Then the Glob Type could be further restricted by adding the conjunct

V(is TypeOfVariable): VenteredBy: (modOfls=SELF).
meaning that invasive accesses are restricted to come from within the own module.
Since xpass does not deliver information as detailed as such an enters, this conjunct
was not added to the definition of AbstrData TypeMod .

• AbstrDataObjMod: Such a module realizes an abstract data object (ADO), which is
quite similar in purpose to an ADT, except that it is not a template for generating
objects, but an object itself. It has thus no constructor function, but only accessors.
Since the physical object, the AbstrDataObjVar (defined as a ModLoeVar used by a
GlobProe of that module), is hidden in the module, it is protected and no problems
with illegal aecesses from other modules arise. Again, only procedures really using
the AbstrDataObjVar are allowed in the export interface, resulting in the definition
AbstrDataObjMod :=

Module n :J defines: AbstrDataObjVar
n V(exports.Proeedure): (:J uses: AbstrDataObjVar)

Again, this definition does not prevent several AbstrDataObjVars from being defined
in this module.

ADOAeessor is defined analogously to the ADT.

An interesting specialization of AbstrDataObjMod is
VirtualDevieeMod := AbstrDataObjMod Il

:Jdefines: (Proeedure n :Jealls: System IOCall).
This defines a virtual device through some of its proeedures performing physical
1/0 (with System IOCall being a primitive coneept). We then have
VirtuallOProe := Proeedure n :JdefBy: VirtualDevieeMod .

• FunetionalMod: This kind of module realizes a collection of proeedures which are
functions in the mathematieal sense, i.e., they depend exclusively on their parame
ters. This is neatly expressed by the coneept of being both SideEffeetGuarded and
not SideEffeetCausing. A common example for this is a module realizing a floating
point library. Often these modules also export constants, so the definition reads
FunetionalMod := Module n Vexports: (Constant u

(SideEffeetGuarded n ...,SideEffeetCausing))
with
SideEffeetGuarded := Proeedure n Vreads: (proeOfls=SELF)
and
SideEffeetCausing := Proeedure n :Jwrites: (proeOfls#SELF)

• DeclarationMod: This is a sort of module that contains only a list of (global) type
and constant definitions and nothing local. Its defini tion is
DeclarationMod := Module n

Vexports: (Type U Constant) n Vdefines: GlobConstruet

31

5.2 ABox-generator

The ABox-generator transforms .theoutput of the source-code analyzer xp.ass (see Seetion
3.2) into assertional axioms ready to be loaded into KRIS. Its precision of source code
information thus depends on how precise xpass's output iso U nfortunately, xpass has
several precision deficiencies due to its original purpose in the Arch system, which does
not care for a procedure's internal structure and therefore discards such information.
Judged relatively to xpass's output, however, the ABox-generator is correct, meaning
that it makes explicit all relationships between source code items implied in the xpass
output. It also utilizes all pieces of information extractable at all from there, and it
provides hooks for future addition of the missing information to the xpass-output which
it will process correctly without any modifications necessary.

Annoyingly, xpass also contains some bugs (listed below), which cannot be corrected
in the ABox-generator.

5.2.1 Way of Processing

The generator consists of six programs for the UNIX string-processing language awk
chained by a pipe, five of which9 are auxiliaries of no more than a few dozen lines, and one,
make...ABox, is a program of about one thousand lines of awk source doing the bulk of the
job. Awk was chosen because of its built-in regular expression scanner, string processing
routines, and hash tables, which were needed to read the various kinds of input lines and
to store all the reference information between them and between program items. These
ready-to-use facilities were expected to outweigh the shortcomings of a line-oriented lan
guage like awk, which provides no procedures, only two (even implicit) types, and no data
structures except arrays and h~h tables. The experience of writing make...ABox, however,
shows that it is not a good idea to implement a task of a size even as managable as
this one in awk. Especially awk's property of reading its input lines strictly sequentially
causes numerous nuisances and temporal storage overhead when the input contains as
many mutual references as in this case, e.g. when reading a v _use-line, it is not yet clear
until a corresponding v _use_wi thin appears whether this use is within a function, and, if
so, w hat function uses i t.

The input lines to make...ABox originally come from xpasS. This tool parses all source
files of the examined program (its command interface is identical to that of the C-compiler
ce) and deli vers its output in the form of a sequence of lines like

v_decl,34,i,process.c,11,EXTDEF
v_decl,112,i,check.c,11,EXTERN
v_use,120,i,check.c,130
f_decl,248,getData,check.c,86,STATIC
v_decl,253,v,check.c,90,AUTO

indicating that a globally visible variable10 i was defined in file process. c at line 11,
that such a variable is imported in file check. c, used in file check. c at line 130, that a

gextract...has_decls. advance...has_decls. unique....names. eliminate..1alse_usesISS.

closeJlBox_world
IOln C praetiee, this does not neeessarily imply that i is intended as a global variable; many C pro

grammers use "statie" only for proeedure loeal permanent variables and not to distinguish module-Ioeal
ones from global ones . This is why the TBox was explained to use not declaration, but use to determine
the level of loeality.

32

function getData was statically (i.e., module-locally) defined at line 86 in file check.c,
and that an automatie variable v (C jargon for a produre local) was defined at line 90
in check. c. The number at the second place is an index sequentially counting all lines
(except those like v_refers . . . which only serve as connectives between other lines). This
permits references like

v_refers, 112 ,34
v_use_within,120,248
v .llas_type, 112,7

to express that i was used by the function getData and that it has the type whose type
definition line has the index 7. This also uniquely identifies the i imported at index
112 as the one defined at index 34 in process. c. Similar lines are given for definitions,
declarations and uses of macros and types.

As awk reads its input lines sequentially, it saves much work to avoid forward references
where this is easily possible. Such a job is done by advance.llas_decls, which first uses
extract.llas_decls to collect lines referencing certain declaration lines from the xpass
output file and then attaches them to the front of the file.

The next pipe stage is performed by unique..names, which reads the whole file to
gather all information about the declaration context of all program items , and then at
taches new lines like

unique..name, 248, check. c..getData
unique..name, 253, check. c..getData_v

connecting declaration indices with unique names constructed by prefixing with the mod
ule name and, if it is a procedure local, with the procedure name, too.

At this point, the data is still in the form of such lines, though enriched as described.
The next step, however, is make-ABox itself printing the KRIS-axioms, which is followed
by the final eliminate..:false_usesISS removing certain axioms which had to be printed
at their time of occurence, but were invalidated by later axioms.

Now make-ABox reads its input line by line, and it has a matching awk-clause for each
kind of possi ble line. ll Program items are stored in various arrays and tables to resolve
references, and finally assertion al axioms are printed12 , e.g.

(assert-ind i Var) ; that i is global must be inferred by KRIS
(assert-ind process. c Mod ule)
(assert-ind process. c i defines)
(assert-ind i process. c defBy)
(assert-ind check. c Module)
(assert-ind process. c..getData ModLocProc)
(assert-ind process . c process. c..getData defines)
(assert-ind process. c..getData process. c defBy)
(assert-ind check. c..getData i uses)
(assert-ind i check. c..getData usedBy)
(assert-ind check. c i useslSS) ; see next subsection for useslSS

Obviously a program produces a large number of such axioms (see Appendix C to get an

llawk-programs consist of a set of clauses, each of them a pair /regexp/ {actions}, where regexp is a
regular expression matched with the input li ne and actions is a sequence of variable manipulations (with
loops and alternatives) is executed on a successful match .

12 Actually, the axioms are printed in the more readable format "process. c defines i" . The
format..ABox-utility can be used to change that into KnZS-format.

33

idea of how large), more than one third of which, however, are due to the explicit listing
of inverse roles, which can regrettably not be expressed by a general terminological axiom
like usedBy := uses- 1

.

The axioms can be further reduced by removing duplicates (note, however, that this
should not be done by the popular UNIX-pipe sortluniq, as this destroys the rough se
quential correspondence of the axioms to the C-source).

The very last operation performed is usually piping the assertional axioms through
closeJ\.BoLworld, which attaches the necessary number restriction axioms (see Section
4.2).

5.2.2 Policies of Source Interpretation

There are several questions concerning the intended meaning of the roles occurring in the
assertional axioms and what axioms are printed at all. Here is a list of how the generator
decides on such questions:

• Every source file defining a variable or a function is considered to be a module.
Other files are appointed modules only when there is no corresponding . c-file with
the same base name (see next item).

• Special care was taken to follow the customs in C programming concerning exported
types and macros: Since the scopes of typedef and #define are restricted to the file
which contains them, types and macros exported from a file t . c are implemented in
C by putting their definitions into a header file like t .h, which is then #included
by all client modules importing the types and macros. According to this, the actual
module of such types is t . c, and not t . h, which is not considered a module at all.

• Whenever a variable or a function is used, an additional axiom indicating the use
of its type is printed along with the use axiom.

• If a funcLion f in module muses an item i imported from a module different from
m, this use is "propagated" to m in the form of an axiom musesiSS i, meaning that
muses i "in one of m's substructures" (e.g. f). This is to keep m's import interface
clean.

• Uses of struct components are printed as uses of the whole struct-variable - after
all , they are apart of it. A distinction of component uses would require a new role
connecting a structure member to its embedding variable, say isPartOf; but, since
structs may be nested, the transitive closure of isPartOf would be needed to find
the embedding variable. Transitive closures of roles, however, are not possible in
KRIS.

• Procedure-Iocal variables defined as "static" are printed as module-Iocals: This is
motivated by the definition of an AbstrDataObjMod (see Section 5.1), because such
a variable realizes an internal memory of a function which might turn it into a sort
of AbstrDataObjMod, which requires a module-local variable to be recognized. This
decision causes no harmful effects elsewhere, but must be kept in mind when reading
the ABox.

34

5.2.3 Deficiencies

As was warned before, xpass neglects certain information, which propagates through
rnake...ABox to the ABox. These are:

• For an external function or variable e imported locally by a function 1, there is
no "f Iv _dec1 e" and "f Iv _decLwi thin e 1" printed, if e was already imported
by the module of 1. This is a neglible deficiency, as the local import was then
unnecessary anyway.

• For parameters of a predefined type (int etc.), no v_dec1/v_decLwithin is printed.

• Variables dedared in a procedure which have a predefined type are ignored com
pletely! This is a dear consequence of xpass's pur~ose for Arch: Such variables are
irrelevant for the external assumptions of a procedure.

• For a function returning a predefined type, no Lhas_type is printed.

• There is no thing as type_deLwi thin printed, although procedure-Iocal types can
be defined in C. Xpass prints them as usual, i.e., as module-Iocals.

• There is no thing as type_uses_type printed, although it would be helpful to know
about type-type-dependencies, as between apointer, array, or struct type and its
base respectively component type.

There is, however, a line v_in_type which is to indicate the component-struct rela
tionship, but unfortunately it is buggy.

• There is no type_uses..JIlacro or macro_useS..JIlacro.

All these mlssmg lines are serviced nonetheless in make...ABox, i.e., the corresponding
clauses are fully implemented there, awaiting future use. It is conceivable to write auxiliary
tools extracting this missing information from the C-source. This would, however, have
exceeded the scope of this work.

5.2.4 Bugs

Additionally to this missing information, there are some plain bugs in xpass, too:

• A use of a procedure-Iocal variable of a predefined type is falsely printed as a use of
a global variable of the same name, if such a gl9bal variable exists.

• The same happens with a procedure-Iocal type.

• #undefs are foolishly understood as macro uses and should be avoided altogether.

• Structure components of the same name from two different struct-types are not
distinguished: no v _dec1 etc. appears for the second set of components, and uses of
them are falsely printed as uses of the first set of components.

• Procedure-Iocal "static" variables are printed as module-Iocals (i.e., no v_decLwi thin
appears for them). But this happens to be just what the TBox expects about statics
(see the last of the policies above) - so this bug is lucky for our purpose here!

• Pointers and array variables are treated as if being variables of the base type only.

35

6 The Insights

This closing section sums up theexperiences gained in thi? investigation, gives a tentative
evaluation of the original idea of applying TRSs to application-independent software anal
ysis, and speculates about its possible future development. Again, all this is handicapped
by the missing experiments with the TBox applied to real software.

The probably most prominent insight can be stated as follows: The architecture of
real present software systems is generally not automatically extractable by source code
analysis. While this goal was never really thought to be completely achievable (see Section
1.1.2), there was hope that this might be possible at least to a large extent. However,
this investigation should be seen as evidence contributing to the conjecture that such an
extraction is presently possible to a very limited extent only.

Still, even this limited extent, as outlined by the TBox, can be of practical help to
reverse engilleers.

What experiences support this sobering general judgement?

80th theory and (even more) practice of software architecture are presently not mature,
let alone unified. Practice may even be called irregular. Real software applies too few
standard concepts even of the small set evolved so far, due to deficiencies in software de
velopment practice and programmer education, other (conflicting) parameters of software
being preferred, lack of adequate development tools and probably many more reasons.
Therefore the practical value even of the modest module classification developed in this
paper must be estimated with caution: Most programmers would probably not commit
themselves to writing only modules whose architectural function is as clear as in this classi
fication, but would rather mix them for ease of expression, efficiency, different preferences
or simply carelessness.

Furtheron, all widely-used programming languages are insufficiently elaborated from
the software architecture point of view (scope control, modularity, different kinds of mod
ules) and thus do not offer enough architecture information in the source code. Fortu
nately, there is strong evidence that this will improve in the course of the general progress
of programming, but also notably so by the spreading of object-oriented languages.

The observation that the meaning of many programming concepts can only be cap
tured in run-time terms like "purpose" rather than in terms of compile-time like "ref
erence" severely limits the static approach of source code analysis. Most concepts of
software architecture belong to the former terms and thus will not be captured by source
code analysis. They might, however, be tackled by the dynamical analysis of a run-time
simulation. Work in this area is, however, only just beginning.

When trying to express such concepts of purpose in terms of syntax nonetheless, the
ability to express vague knowledge or default knowledge becomes essential. This funda
mentally handicaps a logicallanguage like a TL. Leaving aside hypothetical extensions of
logics, heuristic algorithms seem to be a good method to achieve better results here, as is
witnessed by the example of Arch. These cannot be incorporated into any existing TRS,
but there is work beginning in that direction. Another path out of this problem is that
of allowing those concepts which are not source code definable (like vague concepts and
"purpose" concepts) as high-level primitives in a TBox. While they could of course not be
automatically recognized, this would at least provide the reverse engineer with a language
to record his hand-extracted knowledge about such elements of the program in the same

36

format as the automatically generated information. Possibly even more complex concepts
can then be built on top of these high-level primitives, subject to automatie classification
again, once the user has supplied the ABox assertions naming instances of the high-level
primitives.

Putting aside all theoretical difficulties in knowledge, its representation, and imple
mentation, a practical RE-tool will also need the fuH facilities of a relational data base, in
particular concerning the query interface and defining ad-hoc-expressions. Since inference
is of course still the bulk of the job, it may be worthwile to examine how well deductive
data bases instead of TRSs would perform on this job.

lt must be noted that all this pertains directly to application-independent software anal
ysis only, as was the approach of o'lr investigation here. Application-specijic approaches
(Iike [DBSB90]) will achieve a larger codex of knowledge and consequently more infer
ences. However, the difficulties reported in Section 4.1 apply in principle to them as weil.
But the limits can be stretched: the achievable scope of representation of course depends
on how much of the application domain is formally defined. For any application domain
amenable to a computer approach at all , such a formalization is partly possible and de
livers new concept definitions. Application-specific software analysis therefore seems to
have a more promising future. The formally defined fraction of the domain might be con
siderably increased by an addition to the chores of software development: The developer
would define logical descriptions (preferably concept terms for a TRS) of the implemented
concepts in parallel to developing these concepts themselves. This would provide a TRS
for RE with optimal, "first hand" knowledge. The fate of similar suggestions concerning
program proofs, however, probably reduces this suggestion to a naive hope.

So where are we arrived now? What is left of the initial idea, and what have we achieved?

In general, the observation that apart of software analysis is inference, specifically
that architecture acquisition can be supported by automatie concept recognition, this
observation is believed here to have shown correct and worth further work. In particular,
however, the value of this investigation is judged to consist less of formulating a few of
such concept definitions, than of giving a necessary clarification of the vague idea as it
was at the beginning. We now know better how to tackle the task and what can be done
and, perhaps even more useful, what cannot be done with the described means.

The experiences made here with software as a complex structure which is, though
formal in syntax and semanties, most prominently human-created, are just another piece
of evidence for the insight that generally the achievable usefulness of a formal inference
system (not restricted to TRSs) for understanding such human-created complex structures
is less determined by that system's inference and representation capabilities than by our
exact knowledge of how and what for we create these structures at all.

As so often in computer science, our fundamental task here is not to devise better
algorithms (indispensable, but coming second), but first to find better languages of our
own thinking.

37

References

[Baa90a] F. Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. Technical report, German Research Cen
ter for Artificial Intelligence (DFKI), DFKI, Postfach 2080, D-6750 Kaiser
slautern, Germany, 1990.

[Baa90b] F . Baader. Terminological cycles in KL-ONE-based knowledge representation
languages. In Proceedings of the 8th National Conference of the AAA I, pages
621-626, Boston, Mas., 1990.

[BBMR89] A. Borgida, R.J. Brachman, D.L. McGuiness, and A. Resnick. CLASSIC: A
structural data model for objects. In Proceedings of the International Confer
ence on Management of Data, Portland, Oregon, 1989.

[BH90] F. Baader and B. Hollunder. KRIS: Knowledge representation and inference
system - system description. Technical report, German Research Center for
Artificial Intelligence (DFKI), DFKI, Postfach 2080, D-6750 Kaiserslautern,
Germany, November 1990.

[BL84] R.J. Brachman and H.J. Levesque. The tractability of subsumption in frame
based description languages. In Proceedings of the 4th National Conference of
the AAAI, pages 34-37, Austin, Tex., 1984.

[BPG L85] R.J. Brachman, V. Pigman-Gilbert, and H. Levesque. An essential hybrid
reasoning system: Knowledge and symbol level account of krypton. In Pro
ceedings of the 9th IJCAI, pages 532-539, Los Angeles, Cal., 1985.

[BS85] R.J. Brachman and J. Schmolze. An overview of the KL-oNE-knowledge rep
resentation system. Cognitive Seien ce, 9(2):171-216" April 1985.

[DBSB90] P. Devanbu, R.J. Brachman, P.G. Selfridge, and B.W. Ballard. Lassie: a
knowledge- based software information system. In Proceedings of the 12th In
ternational Conference on Software Engineering, Nice, France, April 1990.

[GLKT90] W. Gruber, K. Lebsanft, Th. Keller, and H.G. Tempel. Reverse engineering.
Technical Report BeA002j91, Siemens AG, Dept. ZFE IS SOF13, Munich,
Germany, December 1990.

[GMN+87] W. Gertke, S. Mittrach, G. Normann, G. Schulz, and S. Zorn. Studie zur Situ
ation bei der Wartung und Pflege großer Software-Systeme im Haus. Technical
report, Siemens AG, Dept. ZFE, Munich, Germany, July 1987.

[Hru90] P. Hruschka. Wiederverwendbarkeit in komplexen COBOL-Systemen. In
R. Thurner, editor , Re-Engineering - ein integrales Wartungskonzept zum
Schutz von Software-Investitionen. Strategien - Methoden - Werkzeuge, Hall
bergmoos, Germany, 1990. AlT Angewandte Informationstechnik GmbH.

[KBR86] T.S. Kaczmarek, R. Bates, and G. Robins. Recent developments in NIKL.
In Proceedings of the 5th National Conference of the AAAI, pages 578-587,
Philadelphia, Pa., 1986.

38

[Kob89] A. Kobsa. The SB-ONE knowledge r-epresentation workbench. In Preprints of
the Workshop on Formal Aspects of Semantic Networks, Two Harbors, Cal.,
February 1989.

[MB87] R. McGregor and M. Bates. The LOOM knowledge representation language.
Technical Report ISIjRS-87-188, Univ. of Southern California, Information
Science Institute, Marina dei Rey, Cal., 1987.

[McC80] J. McCarthy. Circumscription - a form of nonmonotonic reasoning. Artificial
Intelligence, 13:27-39, 1980.

[Nag90] M. Nagl. Methodisches Programmieren im Großen. Springer Verlag, 1990.

[Neb88] B. Nebel. Computational complexity of terminological reasoning in BACK.

A rtificial Intelligence, 34(3):371-383, 1988.

[Neb89] B. Nebel. Terminological cycles: Semantics and computational properties. In
Proceedings of the Workshop on Formal Aspects of Semantic Networks, Two
Harbors, Cal., February 1989.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Number
422 in Lecture Notes in AI. Springer, 1990.

[NvL88] B. Nebel and K. von Luck. Hybrid reasoning in BACK. In Methodologies for
Intelligent Systems, pages 260-269. North Holland, 1988.

[Par72] D. 1. Parnas. Information distribution aspects of design methodology. In
Information Processing 71. North Holland, 1972.

[PS84] P. Patel-Schneider. Small can be beautiful in knowledge representation. In
Proceedings of the IEEE-workshop on Principles of [(nowledge-Based Systems,
pages 11-16, Denver, Col., 1984.

[Sch90] R. W. Schwanke. An intelligent tool for re-engineering software modularity.
Technical Report SCR-91-TR-319, Siemens AG, Corporate Research Dept.,
Princeton, USA, 1990.

[ViI85] M.B. Vilain. The restricted language architecture of a hybrid representation
system. In Proceedings of the 9th IJCAI, pages 547-551, Los Angeles, Cal.,
1985.

39

A Source Code of the TBox

This is the T-Box of the recognized software concepts in KRIS-format:

SOME ROLES:

(defprirnrole defines)

(defprimrole uses)

(defprirnrole usedBy)
the inverse of uses

(defprirnrole isTypeOf usedBy)
returns the functions and Variables of a Type

ALL TRE FEATURES:

(defprimattribute defBy)
returns the defining Procedure or Module

(defprimattribute modOfIs)
returns the Module of a Construct
note: modOfIs(m) equals m for all Modules m

(defprimattribute procOfIs)
analogously with Procedures

(defprimattribute typeOfIs)
returns the Type of a Function or Variable
as a matter of fact, this ought to be a subfeature of uses - however, since
uses is a role and typeOf is feature, KRIS does not allow this relationship
to be expressed within the TBox. The ABox-generator has to ensure that uses
is duly annoted with every typeOf.

SOME COHCEPTS:

THESE 5 COHCEPTS FORM TRE BUILDIHG MATERIAL OF TRE T-BOX:

(defconcept Module (equals modOfIs SELF»
the definition part is just a security check - a correct ABox grants this.

(defconcept Procedure (equals prodOfIs SELF»
the definition part is just a security check - a correct ABox grants this.

(defconcept Function (and Procedure (some typeOfIs Type»

(defprimconcept Constant)

(defprimconcept Type)

(defprimconcept Variable)

40

SOME ROLES:

(defprimrole reads (restr uses Variable»

(defprimrole writes (restr uses Variable»

MORE CONCEPTS:

(defconcept ActiveConstruct (or Module Procedure»

(defconcept PassiveConstruct (or Variable Type Constant»

(defconcept SubmoduleConstruct (or PassiveConstruct Procedure»

(defconcept GlobMod (and Module (not (some defBy .top.»»

(defconcept LocMod (and Module (some defBy Module»)

(defprimconcept GlobConstruct
(or (and SubmoduleConstruct (some usedBy (not-equals modOfIs modOfIs(SELF»»

GlobMod»
this is primitive because even a variable that is never used from outside
can be a GlobVar if the programmer defined it as global.

(defconcept LocConstruct (or LocMod (forall usedBy
(equals modOfIs modOfIs(SELF»»)

(defconcept ProcLocConstruct (and LocConstruct (some defBy Procedure»)

(defconcept ModLocConstruct (and LocConstruct (some defBy Module»)

(defconcept Construct (or GlobConstruct LocConstruct»
this is intended to be the root of the concept taxonomy

(defprimconcept Predefined GlobalConstr)

(defconcept PreOefType (and Type Predefined»

(defprimconcept BooleanType PreDefType)

(defconcept GlobProc (and Procedure GlobConstruct»

(defconcept LocProc (and Procedure LocConstruct»

(defconcept ProcLocProc (and Procedure ProcLocConstruct»

(defconcept ModLocProc (and Procedure ModLocConstruct»

(defconcept GlobType (and Type GlobConstruct»

(defconcept LocType (and Type LocConstruct»

41

(defconcept ModLocType (and Type MOdLocConstruct»

(defconcept ProcLocType (and Type ProcLocConstruct»

(defconcept GlobVar (and Variable GlobConstruct»

(defconcept LocVar (and Variable LocConstruct»

(defconcept ProcLocVar (and Variable ProcLocConstruct»

(defconcept ModLocVar (and Variable ModLocConstruct»

(defconcept GlobConst (and Constant GlobConstruct»

(defconcept LocConst (and Constant LocConstruct»

(defconcept ProcLocConst (and Constant ProcLocConstruct»

(defconcept ModLocConst (and Constant ModLocConstruct»

(defconcept AbstrDataObjVar (and ModLocVar (some usedBy InterfaceProc»)
the Var that is encapsulated in an AbstrDataObjMod

(defprimconcept InputParameter ProcLocVar)
we cannot ensure here that this parameter is actually used for input only -
it may also be apointer which is derefenced and then written into!

(defprimconcept Output Parameter ProcLocVar)

(defconcept Parameter (or InputParameter OutputParameter»

(defconcept StackVar (and ProcLocVar (not Parameter»)

SOME ROLES

(defrole definesLocally (restr defines LocConstruct»

(defrole exports (restr defines GlobConstr»

(defprimrole calls (restr uses Procedure»

(defprimrole usesISS (restr uses GlobConstruct»
a Module usesISS ("in substructure") an extern construct iff the use occurs
within a Procedure of the Module and not within the Module's declaration
or statement part (note: there is no Module statement part in C anyway),

(defprimrole usedISSBy)
the inverse of usesISS

THE GOAL CONCEPTS

PROCEDURE CLASSIFICATION:

42

(defconcept InterfaceProc (and GlobProc (forall usedBy
(not-equals modOfIs modOfIs(SELF»»)

(defconcept AdHocProc (and Procedure (atmost 1 usedBy »)

(defconcept UtilityProc (and Procedure (atleast 2 usedBy»)

(defconcept DeadProc (and Proc (atmost 0 usedBy»)

(defconcept SideEffectGuarded (and Procedure (forall reads
(equals procOfIs SELF»»

(defconcept SideEffectCause (and Procedure (some writes
(not-equals procOfIs SELF»»

(defprimconcept SystemIOCall (and Procedure Predefined»

(defconcept SystemIOProc (and Procedure (some calls SystemIOCall»)

(defconcept TestProc (and Procedure (some typeOfIs BooleanType)
(not SideEffectCausing»)

(defconcept DirectRecurProc
(and Procedure (some calls (equals procOfIs SELF»»

MODULE CLASSIFICATIOH:

(defconcept UtilityMod (or (atleast 2 usedBy)
(some defines (atleast 2 usedISSBy»»

(defconcept MainMod (and Module (not (some
(restr defines (or (some usedBy (not-equals modOfIs SELF»

(some usedISSBy
(not-equals modOfIs SELF»»»»

the constructs of in this module are not used from other modules, so it must
be the module containing the top-level procedure.

(defconcept AdHocMod (and Module (atmost 1 usedBy)
(forall defines (atmost 1 usedISSBy»»

(defconcept DeclarationMod (ar.d Module (forall exports (or Type Constant»
(forall defines GlobConstr»)

(defconcept FunctionalMod (and Module
(forall exports (or (and SideEffectGuarded

(not SideEffectCausing»
Constant»»

no GlobTypes allowed to distinguish it from AbstrDataTypeMod

ModLocVars and uses of GlobVars need not be forbidden, as they would not
have any effect anyway: the procedures are all SideEffectGuarded, and

43

there is no other channel for information to flow out of the module
except the procedure parameters.

(defconcept AbstrDataObjMod (and Module

(defconcept AbstrDataTypeMod
(and Module

(some defines AbstrDataObjVar)
(forall (restr exports Procedure)

(some uses AbstrDataObjVar»»

(forall (restr exports Procedure)
(some uses (and GlobType

(equals modOfIs SELF)
(some isTypeOf

(and GlobProc
(equals modOfIs SELF»»»)

(defconcept VirtualDeviceMod (and AbstrDataObjMod (some defines SystemIOProc»)

PROCEDURES ATTACHED TO THESE MODULES:

(defconcept VirtualIOProc (and GlobProc (some defBy VirtualDeviceMod»)

(defconcept ADTAccessor (and GlobProc (some defBy AbstrDataTypeMod»)

(defconcept ADOAccessor (and GlobProc (some defBy AbstrDataObjMod»)

B Example Program with its ABox

Here is the main module client. c, which uses the ADT-module wordcount. c and the
ADO-module wordcountTable. c. The ABox ouput by the generator follows them.

/* F I L E wordcount.h */

#define WORDLEN 32

#define INVALID -1

typedef int Bool;
#define TRUE 1

#define FALSE 0

typedef struct {
char word[WORDLEN] ;
int count;

}

WordCount;

extern WordCount makeWC();

44

extern void
extern void

extern int

/*

deleteWCO;
printWCO;

getWCount(). setWCount();

F I L E ilordcount . c */

/* realizes an abstract data type "WordCount" asscociating a counter ilith
astring */

#include "wordcount.h"

WordCount makeWC(name, initCount)
char *name;
int initCount;

/* initialization ~arameters */

{

WordCount *neilWCp;

newWCp = (WordCount *) malloc(sizeof(WordCount»;
strncpy(newWCp->ilord, name, WORDLEN);
neilWCp->count = initCount;
return *newWCp;

}

void deleteWC(wc)
WordCount wc;

{

free(.hc) ;
}

void printWC(wc)
WordCount wc;

{

printf ("# of 'los' s %d\n". wc.ilord. ilC.count);
}

int getCount(wc)
WordCount ilC;

{

return wC.count;
}

int setCount(wcp, neilCount)
WordCount *wcp;

{

}

int neilCount;

int oldCount;

oldCount = wcp->count;
wcp->count = newCount;
return oldCount;

/* returns the old counter */

45

Bool valid(wc)
WordCount wc;

{

return wc.count != INVALID;
}

Bool fits(wc, name)
WordCount wc;
char *name;

/* compares the word to a search name */

{

return Istrncmp(wc.word, name, WORDLEN);
}

/* F I L E wordcountTable.h

#define MAX_WCTABLE_LEN 100

extern void
extern void
extern int
extern Bool
extern WordCoullt

/*

ini tWCTable() ;
printWCTableO;
lengthWCTable();
putWC();
getWCO;

F I L E wordcountTable.c

*/

*/

/* realizes an abstract data object (the table) as an arry of instances of
the abstract data type "WordCount" */

#include "wordcount.h"
#include "wordcountTable.h"

static int currTableLen;
static WordCount table[MAX_WCTABLE_LEN]; /* the table */

/* As a matter of fact, one would usually cluster these two variables in
one struct variable. This would correspond to their semantics in a bett er
way, and it would also make "wordcountTable.c" an "AbstrDataObjMod"
in the sense i n t end e d by the appropriate TBox-definition
(i. e. there is exactly one "AbstrDataObjVar" referred to by all exported
procedures. However, since xpass's struct-handling is bugged, and since
the TBox-definition (see there!) does not enforce there being exactly one
"AbstrDartaObjVar", we can leave the table in two distinct variables
as it is here, and "wordcountTable.c" will be classified as an
"AbstrDataObjMod" nevertheless! */

static WordCount invalidWC; /* dummy signalling unknown entry */

void initWCTable()
{

}

invalidWC = D1akeWC("". INVALID);
currTableLen = 0;

void printWCTable()
{

/* initialize the dummy */

46

}

int i;

for(i=O; i < currTableLen; i++)
printWC(table[i]);

int lengthWCTable()
{

return currTableLen;
}

WordCount getWC(name) /* returns an invalid WordCount. if name unknown */
char *name;

{

}

int i;

for(i=O; i < currTableLen; i++)
if(fits(table[i]. name»

return table[i];
return invalidWC; /* not found! */

Bool putWC(name. value) /* returns success or failure (due to full table) */

{

}

/*

char *name; /* and makes a new entry if there was none for name */
int value;

int i;

for(i=O; i < currTableLen; i++)
if(fits(table[i], name»

break;
if(i < currTableLen) /* found */

setCount(ktable[i]. value);
else /* not found: make a new entry, unless table full */

if(currTableLen == MAX_WCTABLE_LEN) /* table full */
return FALSE;

else /* make a new entry */
table[currTableLen++] = makeWC(name. value);

return TRUE;

F I L E client.c */

/* uses the abstract data object defined in I wordcountTable" and the
abstract data type "WordCount" */

/* #include "stdio.h" */
#include "wordcount.h"
#include "wordcountTable.h"

main() /* fills an external WordCount-Table with counted occurences */
/* of words from the stdin-stream. and finally prints it. as */
/* soon as the word "stop" appears */

{

char name [WORDLEN] ;

47

WordCount wc;

ini tWCTable 0 ;
scanf("%s". name);
whi1e(strncmp(name. "stop". WORDLEH»
{

/* while name != stop */

if(valid(wc = getWC(name») /* we had this word (name) before */
putWC(name. getCount(wc) + 1); /* increment its counter */

else
putWC(name. 1);

scanf("Xs". name);
/* this is the first occurence of this name */
/* get next word */

}

}

printWCTableO;

HERE COMES THE A-BOX OF THE PROGRAM :

BooleanType int
BooleanType BOOL
BooleanType BOOLEAH
BooleanType Boo1
BooleanType Boolean
PreDefType int
PreDefType char
PreDefType short
PreDefType long
makeWC uses ./wordcount .h_WordCount
makeWC typeOfIs ./wordcount . h_WordCount
. /wordcount . h_WordCount isTypeOf makeWC
putWC uses . /wordcount.h_Bool
putWC typeOfIs ./wordcount.h_Bool
./wordcount.h_Bool isTypeOf putWC.
getWC uses ./wordcount . h_WordCount
getWC typeOfIs ./wordcount . h_WordCount
. /wordcount.h_WordCount isTypeOf getWC
Module client . c
client . c modOfIs client . c
Procedure main
client.c defines main
main modOfIs client . c
main procOfIs main
main defBy client.c
main uses . /wordcount.h_WORDLEH
. /wordcount . h_WORDLEH usedBy main
client.c usesISS ./wordcount.h_WORDLEH
./wordcount.h_WORDLEH usedISSBy c1ient.c
client . c_main_wc typeOfIs ./wordcount.h_WordCount
./wordcount . h_WordCount isTypeOf client . c_main_wc
client . c_main_wc uses . /wordcount . h_WordCount
main uses . /wordcount .h_WordCount
. /wordcount.h_WordCount usedBy main
cl ient . c usesISS ./wordcount . h_WordCount
./wordcount .h_WordCount usedISSBy client . c
StackVar c1ient.c_main_wc
main defines client . c_main_wc
c1ient . c_main_wc procOfIs main
client . c_main_wc defBy main

48

client.c_main_wc modOtIs client.c
main uses initWCTable
initWCTable usedBy main
main uses scanf
scanf usedBy main
main uses strncmp
strncmp usedBy main
main uses ./wordcount.h_WORDLEH
./wordcount.h_WORDLEH usedBy main
client.c usesISS ./wordcount.h_WORDLEH
./wordcount.h_WDRDLEM usedISSBy client.c
main uses valid
valid usedBy main
main uses client.c main wc
client.c_main_wc usedBy main
main uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy main
main uses getWC
getWC usedBy main
main uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy main
main uses putWC
putWC usedBy main
main uses ./wordcount.h_Bool
./wordcount.h_Bool usedBy main
main uses getCount
getCount usedBy main
main uses client.c_main wc
client.c_main_wc usedBy main
main uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy main
main uses putWC
putWC usedBy main
main uses ./wordcount.h_Bool
./wordcount.h_Bool usedBy main
main uses scant
scant usedBy main
main uses printWCTable
printWCTable usedBy main
Module wordcountTable.c
wordcountTable.c modDtIs wordcountTable.c
ModLocVar wordcountTable . c_currTableLen
wordcountTable . c detines wordcountTable . c_currTableLen
wordcountTable.c_currTableLen modDtIs wordcountTable.c
wordcountTable.c_currTableLen detBy wordcountTable . c
ModLocVar wordcountTable.c_table
wordcountTable.c detines wordcountTable.c_table
wordcountTable.c_table modDtIs wordcountTable.c
wordcountTable.c_table detBy wordcountTable.c
wordcountTable.c_table typeDtIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeDf wordcountTable.c_table
wordcountTable.c_table uses ./wordcount.h_WordCount
ModLocVar wordcountTable.c_invalidWC
wordcountTable.c detines wordcountTable.c_invalidWC
wordcountTable.c_invalidWC modDtIs wordcountTable.c
wordcountTable . c_invalidWC detBy wordcountTable.c
wordcountTable . c_invalidWC typeDtIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeDt wordcountTable.c_invalidWC

49

wordcountTable.c_invalidWC uses ./wordcount.h_WordCount
Procedure initWCTable
wordcountTable.c defines initWCTable
initWCTable modOfIs wordcountTable.c
initWCTable procOfIs initWCTable
initWCTable defBy wordcountTable.c
initWCTable uses wordcountTable.c_invalidWC
wordcountTable.c_invalidWC usedBy initWCTable
initWCTable uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy initWCTable
initWCTable uses makeWC
makeWC usedBy initWCTable
initWCTable uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy initWCTable
initWCTable uses ./wordcount.h_INVALIC
./wordcount.h_INVALID usedBy initWCTable
wordcountTable.c usesISS ./wordcount.h_INVALID
./wordcount.h_INVALID usedISSBy wordcountTable.c
initWCTable uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy initWCTable
Procedure printWCTable
wordcountTable.c defines printWCTable
printWCTable modOfIs wordcountTable.c
printWCTable procOfIs printWCTable
printWCTable defBy wordcountTable.c
printWCTable uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy printWCTable
printWCTable uses printWC
printWC usedBy printWCTable
printWCTable uses wordcountTable.c_table
wordcountTable.c_table usedBy printWCTable
printWCTable uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy printWCTable
Procedure lengthWCTable
wordcountTable.c defines lengthWCTable
lengthWCTable modOfIs wordcountTable.c
lengthWCTable procOtIs lengthWCTable
lengthWCTable detBy wordcountTable.c
lengthWCTable uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy lengthWCTable
Procedure getWC
wordcountTable.c defines getWC
getWC modOfIs wordcountTable.c
getWC procOfIs getWC
getWC defBy wordcountTable.c
getWC uses ./wordcount.h_WordCount
getWC typeOfIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeOf getWC
getWC uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy getWC
getWC uses fits
fits usedBy getWC
getWC uses wordcountTable.c_table
wordcountTable.c_table usedBy getWC
getWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy getWC
getWC uses wordcountTable . c_table
wordcountTable.c_table usedBy getWC

50

getWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy getWC
getWC uses wordcountTable.c_invalidWC
wordcountTable.c_invalidWC usedBy getWC
getWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy getWC
Procedure putWC
wordcountTable.c defines putWC
putWC modOfIs wordcountTable.c
putWC procOfIs putWC
putWC defBy wordcountTable.c
putWC uses ./wordcount.h_Bool
putWC typeOfIs ./wordcount.h_Bool
./wordcount.h_Bool isTypeOf putWC
putWC uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy putWC
putWC uses fits
fits usedBy putWC
putWC uses wordcountTable.c_table
wordcountTable.c_table usedBy putWC
putWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy putWC
putWC uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy putWC
putWC uses setCount
setCount usedBy putWC
putWC uses wordcountTable.c_table
wordcountTable.c_table usedBy putWC
putWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy putWC
putWC uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy putWC
putWC uses ./wordcountTable.h_MAX_WCTABLE_LEX
./wordcountTable.h_MAX_WCTABLE_LER usedBy putWC
putWC uses ./wordcount.h_FALSE
./wordcount.h_FALSE usedBy putWC
wordcountTable.c usesISS ./wordcount.h_FALSE
./wordcount.h_FALSE usedISSBy wordcountTable.c
putWC uses wordcountTable.c_table
wordcountTable.c_table usedBy putWC
putWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy putWC
putWC uses wordcountTable.c_currTableLen
wordcountTable.c_currTableLen usedBy putWC
putWC uses makeWC
makeWC usedBy putWC
putWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy putWC
putWC uses ./wordcount.h_TRUE
./wordcount.h_TRUE usedBy putWC
wordcountTable.c usesISS ./wordcount.h_TRUE
./wordcount.h_TRUE usedISSBy wordcountTable.c
Module wordcount.c
wordcount.c modOfIs wordcount.c
Procedure makeWC
wordcount.c defines makeWC
makeWC modOfIs wordcount.c
makeWC procOfIs makeWC

51

makeWC defBy wordcount.c
makeWC uses ./wordcount.h_WordCount
makeWC typeOfIs . /wordcount.h_WordCount
. /wordcount.h_WordCount isTypeOf makeWC
wordcount.c_makeWC_newWCp typeOfIs . /wordcount.h_WordCount
./wordcount.h_WordCount isTypeOf wordcount.c_makeWC_newWCp
wordcount.c_makeWC_newWCp uses . /wordcount.h_WordCount
makeWC uses ./wordcount.h_WordCount
./wordcount . h_WordCount usedBy makeWC
StackVar wordcount.c_makeWC_newWCp
makeWC defines wordcount.c_makeWC_newWCp
wordcount.c_makeWC_newWCp procOfIs makeWC
wordcount.c_makeWC_nevWCp defBy makeWC
wordcount.c_makeWC_newWCp modOfIs wordcount.c
makeWC uses wordcount.c_makeWC_newWCp
wordcount.c_makeWC_newWCp usedBy makeWC
makeWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy makeWC
makeWC uses malloc
malloc usedBy makeWC
makeWC uses strncpy
strncpy usedBy makeWC
makeWC uses wordcount.c_makeWC_newWCp
wordcount.c_makeWC_newWCp usedBy makeWC
makeWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy makeWC
makeWC uses ./wordcount.h_WORDLER
. /wordcount . h_WORDLER usedBy makeWC
makeWC uses wordcount.c_makeWC_newWCp
wordcount.c_makeWC_newWCp usedBy makeWC
makeWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy makeWC
makeWC uses wordcount.c_makeWC_newWCp
wordcount.c_makeWC_nevWCp usedBy makeWC
makeWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy makeWC
Procedure deleteWC
wordcount.c defines deleteWC
deleteWC modOfIs wordcount.c
deleteWC procOfIs deleteWC
deleteWC defBy wordcount.c
wordcount.c_deleteWC_wc typeOfIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeOf wordcount.c_deleteWC_wc
wordcount.c_deleteWC_wc uses . /wordcount.h_WordCount
deleteWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy deleteWC
Parameter wordcount.c_deleteWC_wc
deleteWC defines wordcount . c_deleteWC_wc
wordcount.c_deleteWC_wc procOfIs deleteWC
wordcount.c_deleteWC_wc defBy deleteWC
wordcount.c_deleteWC_wc modOfIs wordcount.c
deleteWC uses free
free usedBy deleteWC
deleteWC uses wordcount.c_deleteWC_wc
wordcount.c_deleteWC_wc usedBy deleteWC
deleteWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy deleteWC
Procedure printWC

52

wordcount.c detines printWC
printWC modOtIs wordcount.c
printWC procOtIs printWC
printWC detBy wordcount.c
wordcount.c_printWC_wc typeOtIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeOt wordcount.c_printWC_wc
wordcount.c_printWC_wc uses . /wordcount.h_WordCount
printWC uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy printWC
Parameter wordcount.c_printWC_wc
printWC detines wordcount.c_printWC_wc
wordcount.c_printWC_wc procOtIs printWC
wordcount.c_printWC_wc detBy printWC
wordcount . c_printWC_wc modOfIs wordcount.c
printWC uses printt
printf usedBy printWC
printWC uses wordcount.c_printWC_wc
wordcount.c_printWC_wc usedBy printWC
printWC uses . /wordcount.h_WordCount
./wordcount.h_WordCount usedBy printWC
printWC uses wordcount . c_printWC_wc
wordcount.c_printWC_wc usedBy printWC
printWC uses ./wordcount.h_WordCount
./wordcount . h_WordCount usedBy printWC
Procedure getCount
wordcount.c detines getCount
getCount modOtIs wordcount.c
getCount procOfIs getCount
getCount defBy wordcount.c
wordcount.c_getCount_wc typeOfIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeOf wordcount.c_getCount_wc
wordcount.c_getCount_wc uses ./wordcount.h_WordCount
getCount uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy getCount
Parameter wordcount.c_getCount_wc
getCount defines wordcount.c_getCount_wc
wordcount.c_getCount_wc procOtIs getCount
wordcount.c_getCount_wc defBy getCount
wordcount.c_getCount_wc modOtIs wordcount.c
getCount uses wordcount.c_getCount_wc
wordcount.c_getCount_wc usedBy getCount
getCount uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy getCount
Procedure setCount
wordcount.c detines setCount
setCount modOtIs wordcount.c
setCount procOfIs setCount
setCount detBy wordcount . c
wordcount.c_setCount_wcp typeOtIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeOf wordcount.c_setCount_wcp
wordcount.c_setCount_wcp uses ./wordcount.h_WordCount
setCount uses ./wordcount.h_WordCount
./wordcount.h_WordCount usedBy setCount
Parameterwordcount.c_setCount_wcp
setCount detines wordcount.c_setCount_wcp
wordcount.c_setCount_wcp procOfIs setCount
wordcount.c_setCount_wcp detBy setCount
wordcount . c_setCount_wcp modOfIs wordcount.c

53

setCount uses wordcount.c_setCount_wcp
wordcount.c_setCount_wcp usedBy setCount
setCount uses ./wordcount . h_WordCount
./wordcount.h_WordCount usedBy setCount
setCount uses wordcount.c_setCount_wcp
wordcount.c_setCount_wcp usedBy setCount
setCount uses . /wordcount.h_WordCount
./wordcount . h_WordCount usedBy setCount
Procedure valid
wordcount.c defines valid
valid modOfIs wordcount . c
valid procOfIs valid
valid defBy wordcount.c
valid uses ./wordcount.h_Bool
valid typeOfIs ./wordcount . h_Bool
./wordcount.h_Bool isTypeOf valid
wordcount.c_valid_wc typeOfIs ./wordcount.h_WordCount
./wordcount.h_WordCount isTypeOf wordcount.c_valid_wc
wordcount.c_valid_wc uses ./wordcount.h_WordCount
valid uses ./wordcount . h_WordCount
./wordcount.h_WordCount usedBy valid
Parameter wordcount.c_valid_wc
valid defines wordcount.c_valid_wc
wordcount.c_valid_wc procOfIs valid
wordcount.c_valid_wc defBy valid
wordcount.c_valid_wc modOfIs wordcount . c
valid uses wordcount.c_valid_wc
wordcount . c_valid_wc usedBy valid
valid uses ./wordcount .h_WordCount
./wordcount.h_WordCount usedBy valid
valid uses ./wordcount.h_IIVALID
./wordcount.h_INVALID usedBy valid
Procedure fits
wordcount.c defines fits
fits modOfIs wordcount . c
fits procOfIs fits
fits defBy wordcount.c
fits uses ./wordcount.h_Bool
fits typeOfIs ./wordcount.h_Bool
./wordcount . h_Bool isTypeOf fits
wordcount . c_fits_wc typeOfIs . /wordcount.h_WordCount
./wordcount.h_WordCount isTypeOf wordcount.c_fits_wc
wordcount.c_fits_wc uses ./wordcount.h_WordCount
fits uses . /wordcount . h_WordCount
. /wordcount.h_WordCount usedBy fits
Parameter wordcount . c_fits_wc
fits defines wordcount.c_fits_wc
wordcount.c_fits_wc procOfIs fits
wordcount . c_fits_wc defBy fits
wordcount.c_fits_wc modOfIs wordcount.c
fits uses strncmp
strncmp usedBy fits
fits uses wordcount.c_fits_wc
wordcount . c_fits_wc usedBy fits
fits uses . /wordcount.h_WordCount
. /wordcount.h_WordCount usedBy fits
fits uses ./wordcount.h_WORDLEN
. /wordcount . h_WORDLEI usedBy fits

54

wordcount.c uses strncmp
strncmp usedBy wordcount.c
wordcount.c uses printf
printf usedBy wordcount.c
wordcount.c uses free
free usedBy wordcount.c
wordcount.c uses strncpy
strncpy usedBy wordcount . c
wordcount.c uses malloc
malloc usedBy wordcount.c
wordcountTable.c uses setCount
setCount usedBy wordcountTable.c
wordcountTable.c uses fits
fits usedBy wordcountTable.c
wordcountTable . c uses ./wordcount.h_Bool
./wordcount.h_Bool usedBy wordcountTable.c
client.c uses getCount
getCount usedBy client.c
client.c uses valid
valid usedBy client.c
client.c uses ./wordcount.h_Bool
./wordcount.h_Bool usedBy client.c
client.c uses strncmp
strncmp usedBy client.c
client . c uses scanf
scanf usedBy client.c
./wordcountTable.h uses getWC
getWC usedBy ./wordcountTable.h
./wordcountTable.h uses ./wordcount . h_WordCount
. /wordcount.h_WordCount usedBy ./wordcountTable.h
./wordcountTable.h uses putWC
putWC usedBy ./wordcountTable.h
. /wordcountTable.h uses ./wordcount.h_Bool
./wordcount . h_Bool usedBy . /wordcountTable.h
./wordcountTable .h uses lengthWCTable
lengthWCTable usedBy ./wordcountTable.h
./wordcountTable .h uses printWCTable
printWCTable usedBy ./wordcountTable.h
. /wordcountTable.h uses initWCTable
initWCTable usedBy ./wordcountTable . h
./wordcount.h uses setWCount
setWCount usedBy ./wordcount.h
./wordcount.h uses getWCount
getWCount usedBy ./wordcount.h
./wordcount.h uses printWC
printWC usedBy ./wordcount.h
./wordcount.h uses deleteWC
deleteWC usedBy ./wordcount.h
. /wordcount.h uses makeWC
makeWC usedBy ./wordcount.h
./wordcount.h uses ./wordcount.h_WordCount
. /wordcount.h_WordCount usedBy ./wordcount.h
./wordcountTable.h uses
usedBy ./wordcountTable.h

./wordcount.h uses
usedBy ./wordcount .h

Type ./wordcount.h_WordCount
wordcount . c defines . /wordcount.h_WordCount

55

. /wordcount .h_WordCount modOfIs wordcount.c

./wordcount . h_WordCount defBy wordcount.c
Type . /wordcount . h_Bool
wordcount.c defines ./wordcount.h_Bool
. /wordcount.h_Bool modOfls wordcount . c
./wordcount.h_Bool defBy wordcount . c
Macro ./wordcountTable.h_MAX_WCTABLE_LEH
wordcountTable.c defines ./wordcountTable.h_MAX_WCTABLE_LEH
./wordcountTable.h_MAX_WCTABLE_LEH modOfls wordcountTable.c
./wordcountTable.h_MAX_WCTABLE_LEH defBy wordcountTable . c
Macro ./wordcount.h_FALSE
wordcount.c defines . /wordcount .h_FALSE
./wordcount . h_FALSE modOfls wordcount . c
./wordcount . h_FALSE defBy wordcount.c
Macro ./wordcount.h_TRUE
wordcount . c defines ./wordcount.h_TRUE
. /wordcount . h_TRUE modOfIs wordcount . c
. /wordcount.h_TRUE defBy wordcount.c
Macro . /wordcount.h_lIVALlD
wordcount.c defines . /wordcount.h_lHVALlD
. /wordcount . h_IBVALlD modOfls wordcount.c
./wordcount.h_IHVALlD defBy wordcount.c
Macro ./wordcount . h_WORDLEH
wordcount . c defines ./wordcount . h_WORDLEH
. /wordcount.h_WORDLEH modOfls wordcount.c
./wordcount . h_WORDLEH defBy wordcount.c

THIS IS THE EMD OF THE EXAMPLE PROGRAM'S A-BOX

56

"~~\:
::;.

j
:;";.

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie die
aktuelle Liste von .allen bisher erschienenen
Publikationen können von der oben angegebenen
Adresse bezogen werden ..
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-91-10
Franz Baader. Philipp Hanschke: AScheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
B ernhard N ehel: Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91-12
I.Mark Gawron. lohn Nerbonne. Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smo/ka: Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer. lürgen Müller: A Two Level
Representation for Spatial Relations, Part I
27 pages

RR-91-15
Bernhard Nebel. Gert Smolka:
Attributive Description Fonnalisms ... and the Rest
ofthe World
20 pages

RR-91-16
Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

DFKI
-Bibliothek
PF 2080
D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-17
Andreas Dengel. Nelson M. Mattos:
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
lohn Nerbonne. Klaus Netter. Abdel Kader Diagne.
Ludwig Dickmann. ludith Klein:
A Diagnostic Tool for Gennan Syntax
20 pages

RR-91-19
Munindar P. Singh: On th(, Commitments and
Precommitments of Limit,;,.d Agents
15 pages

RR-91-20
C hristoph K lauck. Ansgar 3 ernardi. Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21
Klaus Netter: Clause Union and Verb Raising
Phenomena in Gennan
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner: ~quisition und
Repräsentation von technischem Wissen für
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn : A Hybrid Approach for
Modeling Uncertainty in Tenninological Logics
22 pages

RR-91-25
Karin Harbusch, Wolf gang Finkler, Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer, S. Biundo, D. Dengier, M. Hecking,
1. Koehler, G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi, H. Boley, Ph. HanschJce,
K. Hinkelmann, Ch. Klauck, O. Kühn,
R. Legleitner, M. Meyer, M. M. Richter,
F. Schmalhofer, G. Schmidt, W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen, HaraJd Trost, Hans Uszkoreit :
Linking Typed Feature Fonnalisms and
Tenninological Knowledge Represenlation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Infonnation LO Declarative Grammars
17 pages

RR-91-30
Dan Flicldnger, lohn Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-U. Krieger, 1. Nerbonne :
Feature-Based Inheritance Networks for
CompUlational Lexicons
11 pages

RR-91-32
Rolf Backofen, Lutz Euler, Günther Görz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages
RR-91-33
Franz Baader, Klaus Schutz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel, Christer Bäckström:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

RR-91-35
Winfried Graf, Wolf gang Maaß: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-01
Werner Nutt: Unification in Monoidal Theories is
Solving Linear Equations over Semirings
57 pages

RR-92-02
Andreas Dengel. Rainer Bleisinger, Rainer Hoch,
Frank Hönes, Frank Fein , Michael MaJburg:
nODA: The Paper Interface LO ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
lohn Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
15 pages

RR-92-05
Ansgar Bernardi, Christoph Klauck,
Ralf Legleimer. Michael Schulte, Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics of DAI: A Review
38 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches LO Abductive
Reasoning - An Overview -
46 pages

RR-92-09
Winfried Graf, Markus A. Thies:
Perspektiven zur Kombination von automatischem
Animationsdesign und planbasierter Hilfe
15 Seiten

RR-92-11
Susane Biundo, Dietmar Dengier, lana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR-92-13
Markus A. Thies, Frank Berger:
Planbasierte graphische Hilfe in objekLOrientierten
Benutzungsoberflächen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interf~:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle. Markus A . Thies

2. Plan-Based Graphical Help in Object
Oriented User Intelfaces
Markus A. Thies. Frank Berger

22 pages

RR-92-1S
Winfried Graf: Consttaint-Based Graphical Layout
of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn. Daniel Kudenko. Berhard Nebel.
Hans-JÜTgen ProfitIich: An Empirical Analysis of
Terminological Representation Systems
38 pages

RR-92-17
Hassan Ai"t-Kaci. Andreas Podelski. Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John NerboMe: Consttaint-Based Semantics
21 pages

RR-92-19
Ralf Legleimer. Ansgar Bernardi. Christoph Klauek
PIM: Planning In Manufacturing using Skeletal
Plans and Features
17 pages

RR-92-20
John Nerbonne: Representing Grammar. Meaning
and Knowledge
18 pages

RR-92-21
Jörg-Peter Mohren. JÜTgen Müller
Representing Spatial Relations (part 11) -The
Geometrical Approach
25 pages

RR-92-22
Jörg WÜTtZ: Unifying Cycles
24 pages

RR-92-24
Gabriele Schmidt Knowledge Acquisition from
Text in a Complex Domain
20 pages

DFKI Technical Memos

TM-91-09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM-91-10
Bela Busehtmer. Peter Poller. Anne Schauder. Kann
Harbuseh: Tree Adjoining Grammars mit
Unifikation
149 pages

TM-91-11
Peter »'azinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM-91-12
Klaus Beeker. Christoph Klauek. Johannes
Sehwagereit: FEAT-PATR: Eine Erweiterung des
D-PA TR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM -91-13
Knut Hinkelmann :
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger. Rainer Hoch. Andreas Dengel:
ODA-based modeling for docurnent analysis
14 pages

TM-91-1S
Ste/an Bussmann: Prototypical Concept Formation
An Alternative Approach 10 Knowledge
Representation
28 pages

TM-92-01
Lijuan Zhang:
Entwurf und Implementierung eines Compilers zur
Transformation von Werkstückrepräsentationen
34 Seiten

TM-92-02
Aehim Sehupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller. Jörg Müller. Markus Pisehel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

DFKI Documenls

D-91-11
Thilo C. Horstmann:Distributed Truth Maintenance
61 pages

D-9I-I2
Bund Bachmann:
Wer3Con - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 pages

D-9I-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel, Christof Peltason,

Kai von Luck
131 pages

D-9I-I4
Erich Achilles, Bernhard Hollu.nder, Armin Laux,
Jörg-Peter Mohren: 'XIUS : ~wledge
~presenration and hlference system
- Benutzerhandbuch -
28 Seilen

D-91-IS
Harold Boley, Philipp Hanschke, Martin Harm,
Knut Hinkelmann, Thomos Labisch, Man/red
Meyer, Jörg Müller, Thomos Oltzen, Michael
Sintek. Werner Stein. Frank Steinle:
J.lCAD2NC: A Declarative Lathe-Worplanning
Model Transforming CAD-like Geometries into
Abstract NC Programs
100 pages

D-9I-I6
Jörg Thoben, Franz SchmJJlhofer, Thomos Reinartz:
Wiederholungs-, Varianten- und Neuplanung bei der
Fertigung rotationssymmetrischer Drehteile
134 Seiten

D-9I-I7
Andreas Becker:
Analyse der Planungsverfahren der K.I im Hinblick
auf ihre Eignung für die Abeitsplanung
86 Seilen

D-9I-I8
Thomas Reinartz: Definition von Problemklassen
im Maschinenbau als eine Begriffsbildungsaufgabe
107 Seilen

D-9I-I9
Peter Wazinski: Objektlokalisation in graphischen
Darstellungen
110 Seiten

D-92-0I
Stefan Bussmann : Simulation Environment for
Multi-Agent Worlds - Benutzeranleitung
50 Seiten

·D-92-02
Wolf gang Maaß:'Constraint-basierte Plazierung in
multimodalen Dokumenten am Beispiel des Layout
Managers in WIP
111 Seilen

D-92-03
Wolfgan Maaß, Thomas Schiffmann. Dudung
Soetopo, Winfried Graf: LA YLAB: Ein System zur
automatischen Plazierung von Text-Bild
Kombinationen in multimodalen Dokumenten
41 Seilen

D-92-06
Hans Werner Höper: Systematik zur Beschreibung
von Werkstücken in der Terminologie der
Featuresprache
392 Seilen

D-92-07
Susanne Biundo. Franz SchmaJhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08
Jochen Heinsohn, Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proceedings
56 pages

D-92-09
Gernod P. Laufkötter: Implementierungsmöglich
keiten der integrativen Wissensakquisitionsmethode
des ARC-TEC-Projektes
86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser für aUributierte Graph-Grammatiken
87 Seiten

D-92-I3
Ho/ger Peine: An Investigation of the Applicability
of Terminological Reasoning to Application
Independent Software-Analysis
55 pages

D-92-IS
DFKI Wissenschaftlich-Technischer Jahresbericht
1991
130 Seilen

D-92-2I
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

A
n

In
ve

st
ig

at
io

n
 o

f
th

e
A

p
p

li
ca

b
il

it
y

o
f

T
er

m
in

o
lo

g
ic

al
 R

ea
so

n
in

g
 t

o
A

p
p

li
c

a
ti

o
n

-I
n

d
e

p
e

n
d

e
n

t
S

o
ft

w
a

re
-A

n
a

ly
s

is

H
o

lg
e

r
P

e
in

e

0
-9

2
-1

3

D
o

cu
m

e
n

t

	D-92-13-0001
	D-92-13-0002
	D-92-13-0003
	D-92-13-0004
	D-92-13-0005
	D-92-13-0006
	D-92-13-0007
	D-92-13-0008
	D-92-13-0009
	D-92-13-0010
	D-92-13-0011
	D-92-13-0012
	D-92-13-0013
	D-92-13-0014
	D-92-13-0015
	D-92-13-0016
	D-92-13-0017
	D-92-13-0018
	D-92-13-0019
	D-92-13-0020
	D-92-13-0021
	D-92-13-0022
	D-92-13-0023
	D-92-13-0024
	D-92-13-0025
	D-92-13-0026
	D-92-13-0027
	D-92-13-0028
	D-92-13-0029
	D-92-13-0030
	D-92-13-0031
	D-92-13-0032
	D-92-13-0033
	D-92-13-0034
	D-92-13-0035
	D-92-13-0036
	D-92-13-0037
	D-92-13-0038
	D-92-13-0039
	D-92-13-0040
	D-92-13-0041
	D-92-13-0042
	D-92-13-0043
	D-92-13-0044
	D-92-13-0045
	D-92-13-0046
	D-92-13-0047
	D-92-13-0048
	D-92-13-0049
	D-92-13-0050
	D-92-13-0051
	D-92-13-0052
	D-92-13-0053
	D-92-13-0054
	D-92-13-0055
	D-92-13-0056
	D-92-13-0057
	D-92-13-0058
	D-92-13-0059
	D-92-13-0060
	D-92-13-0061
	D-92-13-0062
	D-92-13-0063
	D-92-13-0064
	D-92-13-0065

