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Abstract 

Tbis work is a first investigation of an observation noted as possibly promising: 

The problem of application-independent recognition of given elements from the 
architecture of an unknown software system to be analyzed can be conceived 
as a special case of the classification problem in a terminological reasoning 
system if supplied with a suitably defined taxonomy for software-elements. 

This problem, however, has been solved in certain terminological reasoning systems 
(TRSs). 

To the end of investigating this idea, the availability of a TRS was necessary (pro
vided at DFKI by viltlle of the KRIS-system) as weH as stating clearly the envisaged 
application-independent software-elements, foHowed by a concept taxonomy expressible 
in KRIS and deli vering the desired results. Furthermore, a tool had to be developed 
to analyze software (i.e ., the source code) and generate the input information for the 
taxonomy frOlli that. 

Stating applicatiou-independent complete and correct conditions for the role of an 
element within a software system turned out to be feasible for only a few basic concepts, 
because software employs at least up to now too few standardized concepts. The trans
lation of the feasible concepts to KRIS resulted in problems of the expressive power of 
TRSs that were recognized as fundamental. The root of this problem spawned a new 
language construction for KRIS. 

Under the asslimption of this new construction, a taxonomy of software-elements was 
formulated. However, as the incorporation of this construct, while recognized as feasible, 
would exceed the scope of this work and is therefore still to come, it has not been possible 
so far to test the formulated taxonomy. 

Hoping this will become possible in the future, the tool for input generation was 
developed nonetheless. The chosen programming language to be processed is C, as there 
was an initial tool al ready available for it. 

Thus the cOllcluding judgment of this investigation is still to come. 
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What the reader may expect 

The present work is a first step in a process whose very viability it investigates. Further, 
the investigation does not conclude unequivocally, because it shows the task to demand 
much deeper work and also stronger tools than were possible here. Specifically, the inves
tigation is incomplete in that its main concrete result cannot yet be verified, as it proved 
to require a new tool which is described but has not yet been implemented. Clearly it 
does not offer here a programming system or a formalism proved as useful here. 

Therefore the reader be warned that he will find on the following pages ideas, ex
periences and insights, but no directly usable results and also less pleasing results than 
sobering ones. 

In the text, an understandable and thus in places redundant development of the inves
tigation was emphasized in contrast to a concise description in the style of a deduction. 

At last, it is remarked he re that the gender-sensitive pronouns "he", "she" etc. are 
used alternatingly by section . 
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1 The Field 

This section gives an overview of the two fields whose possible connection is investigated 
in this paper. The reader familiar with one or both may skip the respective subsection(s). 

1.1 Reverse Engineering 

This section gives an overview of Reverse Engineering with regard to the need for it and 
to its basic conception. 

1.1.1 Need 

The not ion of "cost for software" immediately brings to mind the cost for software de
velopment. Upon a little reflection one remembers the expense for software maintenance. 
This expense, however, constitutes the bulk of software expense in reality [GLKT90], as 
increasing software complexity elongates the time of use (and thus of maintenance) for 
economical reasons and the sheer amount of human expertise bottled-up there,as does the 
desire for continuous upward compatibility rat her than installing something completely 
new. Furthermore, the rapidly increasing costs and risks of a new development suggest 
the extension of old software rat her than designing something from scratch. 

But there is also a corresponding shift within the activities of maintenance: Whereas 
the adaplatioIl of lhe given software to increasing requirements was once the main task 
and understanding the current software was merely a less crucial preparation, today this 
understanding of the software to be maintained has come to consume about half of the 
maintainer's time [Hru90][GMN+S7], and because of the growing complexity of software 
this fraction can be expected to increase even further. 

What does it mean to understand a program one is assigned to maintain, one which 
was written by other people? This is a complicated effort and hard to verbalize at all, and 
will therefore probably never be completely automated, as it involves getting a "picture" 
of another person's mind and its way of conceiving and solving programming problems 
which have no uniform solutions. Nonetheless, there is a consensus that a fundamental 
part of this task is acquiring (from whatever sources available) a conception of the overall 
structure of the program, i.e., its main building blocks, their purpose and their intercon
nections, the policies of control and data flow and of all the "customs" followed there -
in short, of the program 's architecture. Understanding the concrete algorithms employed 
there is easier, as they are usually the best known and best documented pieces - and 
after all , we all recognize a polling loop and the like when we see them. The difficulty 
of this architecture acquisition however is the core reason for the expense consumed by 
understanding. 

Why should it be so difficult to recapture a program's architecture? In fact, it need 
not necessarily be so, but in practice it is, and this is caused by the typical handling of the 
software life-cycle: The life-cycle ought to be completely reiterated from the requirements 
specification through design to the implementation and documentation, every time a new 
requirement is incorporated. But instead of that, reality looks about like this: 

The original design of the software system was likely still dear and perhaps even 
amenable to maintenance - there was a "good" architecture. Unfortunately, there is still 
no general method (at least no generally agreed one) of representing and recording an ar-
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chitecture (short of naturallanguage), let alone the sad reality that no information at all 
was recorded in a form applicable to maintenance. Thus the architecture representation 
consists in an essential part of "folklore", i.e., things you are told or, even worse, demon
strated. Inevitably, information communicated in this way erodes over time: In the course 
of a software project (decades when including maintenance) programmers come and go, 
and the once-clear conception of the system's architecture fades a bit more with each 
new programmer, not completely informed about the system architecture and conducting 
extensions and supposed "improvements" (changes improving the system only locally) in 
a way which makes the software more and more complicated and entangled, although 
of course usually preserving its functionality. In short: An architecture that is hard to 
acquire will be increasingly eroded. The incomplete architecture conception in the main
tainer's mind will lead her to modifications which violate the original architecture. Worse 
still, as the changes are conducted oilly locally, i.e., at the code level, and not at the design 
level, design and implementation so on diverge, thus invalidating any documentation. In 
the end, the code is the only reliable information about the system. The software life-cycle 
is interrupted, it ends at the code in a blind alley. Future maintenance is referred to the 
Sisyphean task of understanding other people's ill-documented code. 

1.1.2 Aim and Concept 

Of course the best remedy to an evil is always prevention, and thus the most efficient and 
elegant solution for making software systems easier to understand lies in better software 
development, including for example a rigorous conduct of the life-cycle with actual recy
cling of the formally represented documents of every stage, which would, however, first 
require developing such representation formalisms for life-cycle documents and probably 
much more - but all this, even if it were ever to become reality, would pertain only to 
new software. So what about the mass of existing software? It must be maintained, it 
is maintained by whatever means, and there is an urgent need for tools to assist this 
task. As stated above, the central difficulty is architecture acquisition. This _should be 
achieved on a path that is most suggestively described as the reversal of the software 
engineering process from the existing system back to the roots of its original design . 
Reverse Engineering(RE) aims at the development of tools for this process. It is thus 
a subfield of software engineering. 

The principle of RE can be summed up as folIows: Software development results are 
identifiable and traceable, as the development process follows certain rules, i.e., the map: 
architecture -+ existing_system is invertible to some extent. This immediately raises 
two questions: 

• How much can be inverted ("reversed")? How much of the implicit architecture can 
be recaptured? 

• How can the possible reversion be performed? 

Both quest ions are recent areas of research. Theoretically, the term "existing system" 
embraces not only the source code, but also any kind of documentation and available 
information in general about the system. But since source code is the only universally 
formalized forlllal of such information, all attempts of RE-tools have so far been based 
on a (possibly human assisted) source code processing (tools for utilizing natural lan-
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guage documentation are still ahead of conception). Therefore, in the following, RE is 
understood only in this context of source code analysis. 

Contributing to the first question, itis not too much of a gamble to predict that the 
vision of a fully automated RE-machine which is fed with the source code of a system and 
then prints its architecture (in some formalism yet to be defined) is not realistic, because 
the implementation of a software embodies not only software development knowledge, 
but also application-specific knowledge that cannot be reconstructed from the source: 
just imagine understanding the source of a compiler without knowing about grammars! 
All knowledge of this kind would have to be available to this RE-machine. Since such 
knowledge is far from being formalized, we cannot reasonably expect fully automated RE. 

But this observation of the need for application-specific, but program-independent 
knowledge gives a hint to the second question, to a "divide and conquer"-approach to 
RE: After all, there is a place where this knowledge is present, and this is the human user, 
the "reverse engineer". She knows about the program's domain, but needs assistance in 
structuring the sheer mass of source code, and this in turn is where the RE-tool could 
come to assistance. Thus the operating mode of an RE-system should be interactive (as 
opposed to single tools which can of course be fully automated, e.g. a cross reference 
generator). To be of novel help in analyzing the source code, the system must however 
possess some knowledge of the mentioned "rules" of software development, specifically of 
software architecture. 

The task of RE in the described context can thus be rephrased as making the rules of 
software architecture explicit and casting them into tools. 

1.2 Terminological Reasoning Systems 

This section outlines TRSs in general. A concrete example is given in Section 3.2. 

1.2.1 Origin and Purpose 

No long after the euphoric beginning of artificial intelligence (AI) in the late 1950s, se
rious problems were encountered which were soon recognized as instances of a general 
phenomenon: As soon as a program which nicely solved the problems its designers had 
in mind durillg coIlstruction was confronted with a slight variation of the problem, it 
failed with sometimes ridiculous results. This happened because the program "did not 
know what it was doing", i.e., it did not possess knowledge of the context of its task 
within a whole world of things - the whole world, in the extreme case. The vagueness 
of this knowledge requirement gives a glimpse of its tremendous difficulty - neverthe
less, programs deserving the badge of intelligence need such knowledge, and thus one of 
the fundamental areas of research in AI has since then been finding means of expressing 
knowledge, or, more accurately, formalisms for knowledge representation. 

In the 1970s, the research in natural language understanding isolated a special kind 
of knowledge Ileeded to recognize the entities occurring in a sentence. This is neces
sary, e.g., to disambiguate words. To understand the different meanings of "arm" in the 
two otherwise virtually identical sentences "the girl's arm moved" and "the clock's arm 
moved", knowledge is necessary about what a thing is, e.g. what a girl and a dock are, 
or technically, by what concepts (i.e., abstractions) they are subsumed - in our example, 
say, HUMAN and DEVICE. The same kind of knowledge is needed to infer general prop-
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erties 0/ things, properties which may be crucial for understanding but are not explicitly 
mentioned in the sentence because they are we1l known to any human, e.g., that girls 
are children , clocks tell the time, children may not know how to read a dock, etc. Once 
again, such knowledge is a property of the involved coricept and can be inferred if it is 
dear what concept subsurnes the given entity. Such knowledge of concepts and their re
lationships is today ca1led conceptual knowledge or terminological knowledge. The latter 
term is preferred in this paper. 

Furthermore, it was observed that concepts are prominently related by the subconcept
superconcept-relationship (e .g. RUMANs are ANIMALs), thus forming a hierarchy of 
subsumption. This suggested an efficient implementation of concept properties by inher
itance (see next subsection) and since the applicability of the concept idea in language 
processing was immediate, it initiated much programming with many concept definition 
methods coming under a confusing variety of names like semantic nets, frames, scripts, 
conceptual dependency graphs, units, or schemata (most of these embraced more than 
what is today meant by terminologicallogics, but were so ill-defined with respect to se
mantics that it is justified to list them here in the context of conceptual reasoning). More 
and more new features were added to the basic idea of conceptual entities, again con
fusing and intersecting to a large extent, while the expressive power of a1l these features 
remained as vague as their use. But a1l this had been just a way of programming, not 
a formalism for knowledge representation, because these methods did not offer what is 
demanded from a true formalism: uniformity, darity, and generality. This was because 
they lacked formal semantics, their meaning being defined only in terms of their behaviour 
in their applications . Things asked for darification now. 

1.2.2 Terminological Languages 

The need for uniformity and generality in terminological knowledge representation was 
soon realized, and in response more systematic methods were developed. The most promi
nent among them was the idea of KL-ONE[BS85], which can be called the father of to
day's terminological reasoning systems, together with its numerous modifications [NvL88], 
[Neb90], [BBMR89], [PS84], [Vi185], [BPGL85], [MB87], [KBR86], [Kob89]. 

KL-ONE offers concepts and roles (relationships between concepts). Beginning with a 
small set of primitive concepts, e.g. Procedure, Variable, and roles, e.g. uses, the language 
offers operators to form recursively more complex concepts and roles. Concepts can be 
combined, among others, by Boolean operators; however, the familiar notation with 1\ and 
V is not used here, as these should be reserved for combining assertions whose interpreta
tion is a truth value, whereas the interpretation of a concept or a role will be explained as 
something different . Therefore square symbols like n or U are used here. Until the formal 
definition of their semantics, the reader is encouraged to rely on her intuition concerning 
the meaning of these symbols. 

Examples of operators are conjunction, 
GlobalProcedure := Procedure n GlobalConstruct, 

or quantifying restrictions on some, all or a certain number of the partners by a roIe, 
CleanProcedure := Procedure n Vuses_construct: OwnConstruct, 

meaning a procedure using only its own (local) constructs, or finally demanding condi
tions between partners by two different roles, 
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LocalVariable := Variable n (definedBy = usedBy). 
(This demands equality between the definedBy-partner and the usedBy-partner.) Proper
ties ofconcepts are expressed in KL-ONE by the presence of roles like Variable:= ... n 
:Jhas_type. 
Roles can be formed by composition, conjunction or disjunction of other roles, also by 
in version of another role like used By : = uses- 1

, 

or by restricting the allowed partners of another role, calls := uses.Procedure, making calls 
me an uses with the restriction that the used thing be a Procedure1

. 

The definitions of the concepts imply subsumption relationships between them, e.g. 
a GlobalProcedure is a Procedure, so that all these concepts can then be ordered in a 
subsumption hierarchy by an algorithm in a process called classification. (Note that this 
hierarchy is generally not a tree, as a concept may possess several superconcepts, a Glob
alProcedure is also a GlobaIConstruct). The system is then ready to answer questions or, 
more generally, infer implicit knowledge about the represented domain, like subsumption 
relationships and concept properties. The intention behind these capabilities is not so 
much an interactive system questioned directly by a human user, but an inference com
ponent within a larger system solving a problem in the domain, such as understanding a 
sentence. 

In order to also deal with concrete individuals as weIl as abstract concepts, in KL-ONE 

a distinction between aT-Box ("terminological box") and an A-Box ("assertional box") 
is made. A TBox is a collection of concept and role definitions (like those of Procedure 
and Variable above), whereas an ABox contains assertions about concrete individuals 
and concrete role-relationships between them (e.g. that iniLControlier is a Procedure, 
iniLControlier calls check...5tate, iniLController is a GlobalConstruct etc.). These actual 
individuals are called instances of those concepts whose definitions they fulfill, and so 
iniLControlier is an instance of GlobalProcedure (you had to look around shortly why this 
is so, hadn't you? - This gave you a glimpse of what classification is!). The services 
were consistently expanded to incorporate the ABox, offering classification and queries 
concerning individuals, too. The technical term for classifying an individual ("finding 
out what it is") is realization. The system could now infer information about individuals 
like iniLController which is not explicitly present in the ABox, but may be stored with a 
concept like Procedure - say, that check...5tate is a Procedure, too: this may be the result 
of classifying checLState or of exploiting the calls role, perhaps because is annotated with 
the restriction that anything called must be a Procedure. The subsumption hierarchy of 
concepts is also called a taxonomy, a term sometimes also applied to the TBox. 

The logically next step to make KL-ONE a true knowledge representation formalism 
was the addition of formal semantics. Until then, it was impossible to define a not ion of 
soundness and completeness for the employed algorithms for classification and the like. 
However, the analogy between the concept and role operators and the operators of first 
order predicate logics suggested that KL-ONE was indeed some restricted kind of first 
order logics and thus could be given formal semantics in the same spirit. Actually this 
was done in [BL84], giving a model-theoretic semanties, i.e., a set-theoretic interpretation 
over the doma.in of discourse as the basic set. A concept is interpreted as a subset of 
the domain, 01', from a logical point of view, a unary predicate (namely the set of all 

IThis notation will be used through this paper. Note the difference between the dot and the colon 
and that concept names are capitalized, while role names are not. 
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individuals subsumed by the concept), e.g., Procedure is interpreted as { iniLController, 
checLState, . .. }. A role is interpreted as a binary relation over the domain (logically 
a binary predicate), e.g. calls as { (iniLController, checLState), ... }. An individual 
symbol is of course interpreted as an individual element of the domain. Set-theoretic 
interpretations of the operators as mappings between subsets and relations completed the 
KL-ONE-semantics, interpreting e.g. a conjunction as the interseetion of the interpretations 
of its conjuncts. This semantics makes it possible to call such an interpretation a model 
for an ABox w.r.t to a TBox if and only if it satisfies all of their axioms. 

This model-theoretic semantics forms the basis of terminological reasoning today, 
which is now clearly recognized as a subset of first order predicate logics, thus earn
ing its term language (terms formed with the above operators) the name terminological 
logics. The calculi completing the terminologicallanguages (TLs) with an ABox, the nec
essary algori thms and the service interface will be called terminological reasoning systems 
(TRSs) in the following. 

1.2.3 Today's Services and Performance 

In the last decade, a number of KL-ONE-like knowledge representation systems have been 
developed (cited above), their primary difference being the characteristic selections of 
operators offered for concept and role construction. Of course they come with widely 
differing user interfaces and have been applied in different domains, but their algorithmic 
capabilities (not regarding efficiency!) relative to the set of operators are very similar, 
mostly classification and related services interfaced to the user by various retrieval func
tions. 

The operator selection is thus the characteristic feature of a TRS - it implies the 
possible expressive power and also the achievable complexity bounds. All full-size TRSs 
include concept conjunction, restrietions on role partners ("value restriction", sometimes 
existential, sometimes universal, sometimes both), and restrictions on the upper and lower 
bounds of the number of role partners ("number restriction"). The inclusion of concept 
disjunction is controversial, as with negation which is sometimes limited in application to 
especially simple concepts. An especially controversial issue is the inclusion of the men
tioned demands imposed on partners by two different roles ("role-value map"). Regarding 
the chosen role operators, again conj unction is not debated, as is role restrietion, while 
the other operators like disjunction, inversion or composition are controversial. 

What are then the criteria for deciding on an operator selection? Why not implement 
all feasible operators? An assessment of the descriptive power of a concrete selection from 
these is a difficult logical, and even linguistic, task. Concerning, in contrast, an assessment 
of the computational complexity of certain selections, it is observed that subsumption is 
the terminological analog to logical implication and subsumption decision may thus be 
viewed as a kind of theorem proving. This explains a computational behaviour that 
should not be a surprise to any logician: The complexity of classification as the central 
algorithm, which is basically subsumption decision, usually rapidly increases by adding 
operators. This ranges from a polynomial complexity when deciding in a language offering 
only concept conjunction, number restriction, and universal value restriction, to full un
decidability, which is entailed by adding role-value maps or by allowing the composition of 
general roles. This monotonie function between expressive power and complexity demands 
an economic choice of operators and also accounts partly for the variety of languages, as 
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their developers had various preferences in this trade-off. 

The complexity of c1assification should not be overweighted, however, as the subsump
tion hierarchy is precomputed when reading the concept definitions in the TBox. These 
do not usually change during operation, so that query answers can be rapidly retrieved 
from the precomputed hierarchy. In most applications, the system actually employs such 
a fixed set of concepts - however, it is conceivable to dynamically refine so me concepts 
(say, because a new property has emerged that some instances of the concept possess and 
others do not). This would be done by differentiation of the existing concept to two new 
subconcepts, which are then c1assified into their proper place in the hierarchy. If this 
happens, the consistency of the new concept definitions with the old hierarchy must be 
checked, using an algorithm whose complexity is comparable to that of classification. 

Terminological reasoning is actuall~· still in its adolescence - now that the theoretical 
basis has been cleared, it must be integrated into real problem solving systems. This 
integration will show the direction for thoughtful enhancements of operators and im
provements of the algorithms. The idea investigated in this paper is one such attempt 
at applying terminological reasoning to real world problems. Not surprisingly, it actually 
required a new operator to be introduced. 

A concrete example for the state of the art in TRSs is the K'RIS-system described 
in section 3.2 

2 The Idea 

This section motivates the investigation and lays out the plan. 

2.1 A Central N eed of Reverse Engineering 

In the section introducing RE, its aim was described as recapturing the obscured architec
ture of an existing software system. This was concisely cast to the formulation of inversion 
of the maping: architecture ~ existing_system. The image space of the inverse mapping 
will thus be the architecture, in other words, certain source code entities, e.g. a procedure, 
must be mapped to certain architectural elements, e.g. an accessor to an abstract data 
type. This poses a major question: How is this space of architecture structured? What 
are the architectur~l elements used in software design? 

Obviously, the first step of a general approach to RE must therefore be laying down the 
form of its desired results - you have to be sure of what exactly you want to build before 
you start an engineering process. This trivial requirement is a major hurdle in RE, how
ever, since it would require an "architectural" language specifying software architecture 
as universally and unambigously as a programming language specifies an algorithm. Re
garding the difficulties of software engineering in managing architectures, such a language 
is, if possible at all, far ahead - remember that we are talking here about application
independent software architectures. But this comparison of architectures and programs 
is not completely discouraging: The way elementary concepts in programming languages 
like subroutines, loops, arrays, or pointers evolved piecewise in the very first days of ma
chine language programming, years before they were abstracted and unified in the first 
high level programming language, this very way is analogously covered today as we try 
to isolate useful elements of software architectures - the concept of a module is a good 
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example for that . 

We search for concepts of software elements then. And since the concrete aim of RE is 
to provide machine support in extracting these software elements from the existing system, 
the desired concepts must be formally defined in order to be algorithmically recognizable. 
Assuming a set of such concept definitions available, the task of recognizing these defined 
architecture elements could then be transferred from the human reverse engineer to the 
supporting machine. A central need 0/ RE can thus be expressed like this: A set 0/ 
definitions 0/ software architecture concepts is needed which allow architecture recognition 
/rom the source code. Software elements should be recognized and classified under these 
concepts according to their role in the design. To automate this recognition, the concept 
definitions, while required to tower to a certain complexity and abstraction towards the 
architecture level, must be grounded on simple syntactic entities and relationships which 
can be easily extracted from the source code. 

2.2 The Vision 

Certainly we cannot expect to find definitions of the required kind for all such software 
concepts (Section 4.1 gives so me reasons for this), therefore this work should be seen 
as an exploration 0/ how much is /easible. Anyway, the process of recognition outlined 
above indeed appears as a process of classification, being a typical inference problem in 
TRSs: The basic idea to model the recognition is to extract source code i tems (which 
are considered as ABox-entities) and to classify them as instances of more and more ab
stract TBox-concepts (which denote architecture elements). Therefore it is an interesting 
approach to express the needed concepts as a TBox: the classification would be for free 
then. 

As an example, consider the concept of a module-Iocal variable being defined as such 
a variable that all procedures it is used by are defined in the same module as the variable. 
Then the inference might work like this: 

Given the ABox 

Variable v 
Module m 
v definedBy m 
Procedure p 
p definedBy m 
v usedBy p 

and the TBox 

ModuleLocalVariable .-
Variable n V usedBy: a procedure 0/ the same module 

(if you think this a bit vague, then fee! 
assented and wait for Section 4.2 !) 

and the fact (somehow derived) that p is the only Procedure that v is usedBy, 

then v is recognized (classified) as a ModuleLocalVariable, which in turn might be later 
classified for example as the physical storage of an abstract data object, and so on, climb
ing the abstraction hierarchy of software architecture. 
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Thus the following vision appears: 

A TRS equipped with knowledge of software architecture in the form of its 
TBox and with the data of a particular target program in its ABox can form 
the basis of an interactive RE-tool, performing classification and answering 
queries about properties of the particular concept instances. 

Such a system might even allow the user to store his growing insight into the system by 
incrementally adding new differentiations of concepts in the form of subconcepts which 
are not completely ABox-derivable any more but involve domain-specific concepts and 
roles whose instances are supplied by the user. 

2.2.1 A Piece of Evidence 

How realistic is this vision? 

Actually it is not a completely new idea, so that there is some evidence available. The 
"LaSSIE" system [DBSB90] was developed at AT&T for reverse engineering their tele
phone switching software Definity /75™, which contains about one million non-comment
lines of source code. LaSSIE uses the TRS KANDOR [PS84] for classification. LaSSIE's 
TBox models processes and functional units interacting in a switching system, such as 
calls, connnections and the like. It contains concept definitions like 

ConnecLAction = Network-.Action n VperformedBy: BusController 
The ABox is populated with individuals from the Definity system. In this application 
domain, a large amount of knowledge could be expressed in KANDOR's TBox-concepts 
(about 200 concepts), and the idea is that these are used and slowly added to dur
ing further development of the software. The Definity programmers are encouraged to 
specify their work using the concepts, and even define new concepts if necessary. This 
standardized description of functional units in Definity makes it possible to compile a 
catalog of such units and provide a catalog browser accepting queries at different levels 
of abstraction (corresponding to concepts of different specificity). This facilitates soft
ware reuse. Because of its large and tailored knowledge base and because additionally 
LaSSIE is equipped with a natural language query interface, it is appreciated as a valu
able tool by the reverse engineers. However, although there is also apart of the TBox 
describing programming conventions independent of the particular Definity software, like 
what kinds of files there are and what their interconnections are, and although even 
application-independent information like cross reference data is included, LaSSIE's aim is 
not to recover software architecture in general, but to provide a most detailed record of 
Definity's structure. LaSSIE is thus not a general, i.e., application-independent approach 
to software analysis, as its domain is not the space of software elements, but the world of 
switching programming. 

While this system is therefore only partly comparable, it does give some evidence for 
the conjecture that TRSs are useful tools to draw valuable inferences in software analysis. 
However, software architecture is a less understood domain than switching, and therefore 
the working example of LaSSIE must be appreciated with caution with respect to our 
alm. 
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2.3 The Plan 

The investigation of the described idea was planned to proceed as follows: 

1. Formulating application-independent definitions of software-elements which 

• deli ver useful information to the reverse engineer which otherwise he would 
indeed collect manually, 

• are mathematically unambigous, 

• correspond to the concepts used by the reverse engineer when thinking about 
software. 

2. Translating them to a K,RIS- TBox such that 

• the semantics is preserved when mapping to the restricted TBox-language, 

• aU the primitive concepts are easily extracted from the source code 

3. Developing an ABox-generator which fiUs the primitive concepts with individuals 
from the analyzed source code 

Section 4 describes the problems and results in realizing this plan. 

3 The Starting Equipment 

In both fields of this investigation, there exists software which was built upon here. This 
section gives overviews of the two applied systems. They mayaiso serve as an example 
for the state of the art in the two fields. 

3.1 The RE-Tool Archjxpass 

Arch ("Architecture Assistant") is an RE-tool for restructuring the modularity of exist
ing software. lt was developed at Siemens Corporate Research (SCR), Princeton, USA 
[Sch90]. Arch examines the grouping of procedures into modules, discovers potential mod
ularization errors in the form of misplaced procedures, heuristicaUy regroups procedures 
and indicates procedures violating the principle of information hiding [Par72]. 

As Arch groups procedures, it must have a guideline of what should be grouped to
gether; a sort of similarity measure for procedures. As the primary relationship in the 
focus of Arch is design dependency, the employed procedure similarity measure is a de
sign simila7'ity meaSU7'e, as opposed to a control flow or d~ta flow dependency measure. A 
control flow dependency measure presumes that the flow of control is the backbone of soft
ware structure and therefore groups together procedures calling each other. Analogously, 
a data flow dependency measure groups procedures passing data among one another. 

While these two dependencies, especially control flow, used to be (and often still are) 
the chief guidelines for modularizing software, software engineers nowadays agree that 
it is more fruitful to group together procedures sharing design assumptions, i.e., relying 
on common assumptions about certain structures in their outside world. This greatly 
facilitates maintenance, as it is easier to change a design decision when all procedures 
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relying on it can be found together, ideally in Dne module. As an example contrasting 
this approach to control fiow dependency, a look at how to modularize a compiler is useful: 
contral flow. dependency would (as was numerously .done) group together the procedures 
conducting the individual phases of the compiler, with lexical analysis in the first module 
and its procedures writing into a symbol table, which is then read and further written by 
the syntactic analysis in the second module, and so on. Note however that procedures 
from several modules use the symbol table and thus rely on its data structure. If the table 
structure were changed, all these modules would have to be examined to track down the 
required changes there. In contrast to this, design dependency would group all procedures 
depending on the symbol table structure in one module, all those dealing with the parse 
tree in another, and so on. Note the difference to data flow, too: Two procedures both 
writing but not reading the table are not data flow dependent, but they are certainly design 
dependent. Design dependency is not limited to shared data, as commonly used types 
or constants establish design links as weIl: Once again, the dependency is established 
by assumptions in whatever form about the procedure's outside world. This notion of 
dependency comes eloser to the principle of information hiding, which is agreed to be 
essential for good software structure. 

What is needed then is a measure of shared information. The above mentioned idea of 
collecting procedures' external assumptions leads to the basic principle of Arch: External 
assumptions are collected in sets which are then compared to define similarity by the 
amount of shared information in terms of common assumptions. 

The external assumptions are called features in Arch, and a feature of some procedure 
is any non-local name (a name whose scope ineludes more than one procedure) appearing 
in the head or body of that procedure. Each feature is given a name which is unique 
throughout the whole program. Examples of features are calling a non-local procedure, 
deelaring a local variable of non-Iocal type, or using a non-Iocal variable. The features 
"calls p", "uses t" and "uses v" would then be attached to the procedure. Each feature 
is associated a weight. 

The similarity between two procedures is then basically defined as a ratio of the 
weighted numbers of shared and distinctive features. 
Let P and Q be the (finite) feature sets of procedures p and q. Then 

sim(p, q) 

where weight(X) 

weight(P n Q) 
weight(P n Q) + Wdistinct(weight(P \ Q) + weight(Q \ P)) 

L W x for W x > 0 
xEX 

Such a function is used (with so me modifications introducing control parameters and 
corrective terms) by Arch to measure the design similarity of two procedures. The weights 
W x of the individual features are of course intended to mirror the importance of a feature. 
Features can be given default weights based on their number of occurrences (a rare feature 
shared by two procedures hints at a elose coupling between them), or can be automatically 
adjusted to agree with a start-up modularization taken from the old software structure 
or from the programmer, or can be hand-tuned in delicate cases. If the similarity of two 
procedures is intended, but cannot be inferred by any common feature, the user can add 
an artificial feature common exact1y to them in order to enforce similarity. 

Equipped with this distance measure, Arch provides two principal services: Cluster
ing and maverick analysis. Clustering is the grouping of procedures into modules of high 
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internal similarity. This can be done in batchmode or interactively by asking for con
firmation of proposed placements of procedures and proposed introduction or merging 
of modules. The process thus results in a new modularization of the examined system. 
A maverick is a procedure that appears to be in the wrang module because it is more 
similar to members of other modules than to those of its own module. Arch offers such a 
maverick along with its present and proposed module for inspection of their common and 
distinctive features . The user can then agree to Arch's replacement proposal or adjust 
the weights of some feature(s) to justify the presence of the alleged maverick in its present 
module. 

All these services are embedded in a window environment, and dependencies are shown 
as pictures of design graphs, call graphs etc. 

In its input, Arch needs all the features of all procedures. These features, basically 
declarations and uses, must be extracted from the source code in the fashion of a cross
reference listing. This is performed by a supporting tool called xpass, which is an inde
pendent source code analyzer delivering a feature listing in the format expected by Arch. 
Xpass is thus the programming language dependent part of the Arch system. SCR orig
inally developed such a tool for the C programming language, corresponding tools for 
CHILL and Intel-80x86-Assembler followed, FORTRAN is being considered. 

Extensive experiments at SCR have shown Arch to be a valuable tool in restructuring 
software modularization. 

3.2 The Knowledge Representation System KRIS 

This subsection is based on [BH90J. 

3.2.1 Rationale 

As explained in the end of the paragraph on history of TRSs (Section 1.2), the field 
received its formal grounding with the introduction of the model-theoretic semantics for 
concept and role terms. All TRSs developed so far could now be assessed on a uniform 
basis, the descriptive power of the various operators could be measured and investigations 
of soundness and completeness of the used algorithms were now possible. 

The development of a new TRS offering a large set of operators with sound and 
complete algorithms, was the goal of the AKA-WINO project at DFKl. This project 
resulted in the TRS KRIS ("Knowledge Representation and Inference System"). 

An initial examination of the existing TRSs delivered the insight that all of them 
use sound but incomplete algorithms2

, which was not just poor programming, but often 
inevitable, if subsumption turned out to be undecidable for the respective operator sets. 
Sound and complete algorithms were only known for rather trivial TRSs until the de
velopment of KRIS. The analysis of the exact reasons for undecidability revealed that 
composition and role-value maps on general roles causes undecidability, but there is a 
special kind of role which preserves decidability. Some roles are actually not full relations 
(i.e., n:m-relationships), but partial functions (n:1-relationships). These special roles are 
called features or attributes, and their computational behaviour is, as would be expected, 

2 A sort of exception is [PS84], who ensures completeness not by adjusting the algorithms to the logics 
but vice versa by using a four-valued semantics providing also for "unknown" -results of algorithms. 
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more tractable than that of fult roles, namely when it comes to chaining them and im
posing role-value maps upon them: This is decidable for features, but not for general 
roles. 

Combining these insights, the AKA-WINO project then developed the KRIS-system, 
which rests on sound and complete algorithms and yet offers a relatively rich choice 
of operators. Roughly, its rationale can be described as a TRS striving for a uniform 
approximation of a maximally expressive decidable termininologicallanguage. According 
to this policy, subsumption in KRIS is decidable, but highly intractable (P-space-hard). 
This was willingly accepted, because this deterrent worst-case-complexity does not give 
convincing evidence about the complexity of average TBoxes and ABoxes. Thus it was 
also one of the project goals to explore the average complexity. 

Today, KRIS is a working system used as a testbed for various questions in ter
minological reasoning, offering tailored optimized algorithms for different subsets of the 
TBox-language. It is intended for a human user and therefore equipped with a graphical 
interface. Its query language has not yet been fully scaled up with its inference capabil
ities, as the work has so far focussed on logical and algorithmical questions. The query 
interface will be extended, however, also offering interfacing to an embedding system. 

KRIS was implemented in Common-Lisp on a Symbolics machine and is being ported 
to Macintosh. 

3.2.2 TBox and ABox 

The KRIS-TBox offers the following concept-forming operators (for short examples see 
Section l.2), which are given in KRIS-syntax here: 

(and CI .. . Ck ) 

(or Cl ... Ck ) 

(not C) 
(all r C) (all f C) 

conjunction 
disjunction 
negation 

(some r C) (some f C) 
(atleast n r) (atmost n r) 

(equal I1 h) 

value restriction 
existential restriction 
number restriction 
equality role-value map (features only!), 
usually called "agreement" 

(not-equal 11 h) the same for unequality ("disagreement" ) 

The available role-forming operators are 

(and rl ... rk) 
(restr r C) 

conjunction 
restriction 

The feature-forming operators are 

(and I1 ... Ik) 
(compose 11 . . . Ik) 

conjunction 
com posi tion 

All the above operators may be arbitrarily nested with one another if the resulting term 
is still well-formed in that it contains only concept (role; feature) terms in concept (role; 
feature) positions. There is, however one exception: The role argument of an atmost or 
atleast must not be a restr . 
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The following statements introduce terms (i.e., concepts, roles and features) by giving 
them a name, which is called a terminological axiom (as it involves only concepts, no 
individuals) : 

• Introduction of unrestrictedly interpretable primitive terms: 
(defprimconcept C) (defprimrole r) (defprimattribute f ) 

• Introduction of fully defined terms by their definition: 
(defconcept A A') (defrole r r') (defattribute a a') 
where the quoted terms denote term expressions formed with the listed term oper
ators. This establishes a logical equivalence between t and t'. 

• Introduction of partially defined (and thus still primitive) terms by necessary, but 
not sufficient conditions: 
(defprimconcept C C') (defprimrole r r') (defprimattribute f f') 
with the quoted terms as above. This establishes only a logical implication t =::} t', 
but not vice versa. 

A KRIS-TBox is a finite sequence of such terminological axioms with the second argu
ment (the defining term) constructed, if present, from the term-forming operators above. 
These definitions must not contain a cycle 3. 

A KRIS-ABox is a finite sequence of assertiona/ axioms (making assertions about 
individuals) of the form 

(assert-in d a C) (assert-ind a b r) (assert-i nd a b f) 
meaning that the individual denoted by a is an instance of concept C, (a name which is 
defined in the TBox), a is r-related to b, and that the f of a is b. 

3.2.3 Semantics of KRIS 

As mentioned in the section on TRSs in general (sec. 1.2), their semantics is a model
theoretic one, interpreting concept and role terms as sets over the domain of discourse. 
A concept is interpreted as a subset of the domain, a role as a binary relation over the 
domain, and a feature as a partial function over the domain. 

What conditions must hold then for these sets? The interpretation of unrestricted 
primitive terms is left open (being an instance of such a term must be explicitly stated 
in the ABox and cannot be inferred in any way). The interpretation of partially defined 
terms, however , is restricted by a superset (remember that only a necessary condition is 
given as a "definition" for these - the restricting superset is then the set of all individuals 
satisfying this condition). Thus an interpretation J for such a term must grant the 
condition 

for every (defprimconcept A C) in the TBox: AI ~ Cl. 
(Analogously with roles and features). Finally, the interpretation of fully defined complex 
terms is recursively fixed by the interpretations of their constituent subterms, combined 
in a well-defined way depending on the operators as shown below. Any interpretation for 
these terms must grant 

for every (defconcept A C) in the TBox: AI = Cl. 

3 For a discussion of terminological cycles see [Baa90b] [Neb88] 
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Examples for operator semantics are as follows, with I denoting the interpretation 
function and ß denoting the domain: 

(and Cl . " ck)l 
(not C)l 
(all r C)I 
(some r C)I 
(atleast n r)I 
(equal f g)I 

-

(restr r C)I :
(compose f1 ... fk)I := 

ci n ... n cl 
ß \ Cl 
{a E ß I Vb: (a, b) E RI 

=} bE CI} 
{a E ß I :Jb: (a, b) E RI A b E CI} 
{aEßlcard({bEßI(a,b)Er}) ~ n} 
{a E dom(JI) n dom(gI) I fI(a) = gI(a)} 
{(a,b) E r I I bE Cl} 
J10 ... 0J{ 

Two remarks are in order concerning tne interpretation of the ABox by K,RrS. Each 
individual constant symbol is assumed to denote a unique individual of the domain, which 
is weil known from data bases as the "unique names assumption". In contrast to data 
bases, however, K,RrS does not assurne a closed-world semantics for the ABox ("there 
are no other relations than explicitly listed here"), but an open-world semantics to be able 
to model incomplete knowledge: An ABox containing nothing but the axiom (assert-ind a 
b r) does thus not exclude a being also s-related to c or whatever you like. Accordingly, 
K,RrS does not infer that b is the only r-related individual of a. Thus "V" -statements 
and "....," -statements cannot be derived by simply checking all concerned ABox-individuals. 
Section 4.2 reports how this feature of K,RrS can be a nuisance for some applications, 
and how it can be mended. 

3.2.4 Reasoning Capabilities 

As introduced in Section 1.2, the central algorithm of a TRS is classification: the ordering 
of a concept into its proper place in the subsumption hierarchy, and the recognition of 
an individual as an instance of so me concept(s). While classification gives an intuitive 
picture of what the system delivers, it is useful to separate and examine more closely what 
services are actually performed. This analysis also leads the way to how the services are 
implemented in K,RrS. The following six problems are solved by K,RrS and constitute 
the user's options (by a knowledge base we mean an ABox and a TBox): 

• Is the knowledge base consistent? 
Obviously this requirement is essential prior to any inferences. This check is not 
trivial for large knowledge bases - indeed, the subsequent four services will turn 
out to be based upon it. The checking algorithm works by incrementally building a 
model, iterating over all the axioms. 

• Does the concept C subsume the concept D? 
This is the central question. A positive ans wer allows one to infer for D all knowl
edge valid for C. The question can be rephrased by the simple observation from 
propositional logics that it is equivalent to the concept term and D not C)) being 
inconsistent, i.e., having no model - so this question turns out to be decidable by 
the above consistency check, too. 

• What does the subsumption hierarchy look like? 
This is built up by placing each concept introduced by a terminological aXIOm 
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through repeated subsumption decision, in order to classify it more and more accu
rately until its proper place in the hierarchy is found. 

• Is the assertional axiom Q implied by the knowledge base KB? 
This is a quest ion about an individual. If e.g. Q = (assert-ind a C), then the user 
asks whether or not a is an instance of C. Since 
K B F= C(a) {:} [( B f-- C(a) {:} ([( B => C(a)) valid {:} [( B 1\ -'C(a) inconsistent 
(by soundness and completeness and the deduction' theorem), 
this can on ce again be decided by the consistency check. 
lf Q is one of the other two ABox-axioms, the argument is the same. 

• What are the most special concepts subsuming the individual a? 
This is our old task of finding out what ais, the classification of a (or better and 
technically correct, realization of a). 

• What are the individuals subsumed by the concept C? 
This is the inverse service to the above. 

Thus a KRIS-session looks like this in principle: The user loads the TBox for the domain, 
which someone has carefully devised so me time ago, and then feeds the ABox with the 
concrete data she wants to examine in the present session. The system is now ready to 
perform the indicated services (an initial universal consistency check might be the first 
action). 

The reader familiar with data base queries will have noticed that limiting queries to 
assertional axioms is a strong restriction, as they can neither contain variables needed to 
form queries like "What x are r-related to a", nor can the result be further processed 
by demanding additional conditions etc., as can be done in relational algebra. KRIS is 
presently being extended to offer such services, too. 

3.3 The Coupling 

Arch generates information about the attribution of individual procedures to individual 
modules (which appear as ABox-items)j it does not generate new software concepts like for 
instance a special kind of module or anything of this kind. It is thus a tool at the instance 
level, not at the concept level, so that there can be no dynamic connection to the planned 
TBox, whose concepts are consequently fixed in advance to Arch and independent of the 
data from the particular program under analysis. The concept taxonomy can of course 
still be incrementally refined by the human user, but not by Arch: The information from 
Arch to KRIS will fiow through the ABox. 

As the planned TBox receives the primitive relationships through the ABox, all issues 
like what procedure belongs to what module must have been decided at the time of reading 
the ABox. Running Arch beforehand to improve modularity is therefore optional and not 
required by the TBox - it just takes modularity "as is", i.e., as found in the ABox. 

What is required, however, is an ABox containing the primitive syntactic relationships 
between the individuals. Arch needs quite similar information in the form of its feature 
data and uses the xpass tool to generate this. As a transformation of the feature data 
to ABox-items is a less laborious task than extracting the ABox data directly from the 
source code, this paper takes the way of building the required ABox-generator on top of 
xpass in the form of a such transformer from xpass's output to ABox-assertions. 
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Xpass, however, has its deficiencies and also bugs (described in Section 5.2), but they 
are limited to the submodular level and therefore judged acceptable with respect to the 
goal of the TBox, focussing on modules rather than procedures. 

The coupling will thus look like this: The program's source code is fed to xpass, which 
outputs a feature list, which is then transformed to a KRIS-ABox and finally evaluated 
with respect to the TBox. 

4 The Process 

This section reports the experiences in concept formulation and translation to KRIS. 

4.1 Concept Formulation 

As our plan is to automate software element recognition by concept classification deriving 
from source code information, the first step is concept formulation: Laying down what 
elements are to be recognized, and how (i.e., by what exact definitions) they are to be 
recognized from the source. 

Regarding the considerable literature on software engineering, there appears to be 
plenty of advice on how to proceed in developing software (the waterfall-model and the 
like), but remarkably less so on what general elements to build it from. Still, an experi
enced programmer has his own ways of thinking about software structure, his vocabulary 
of software entities. This was used, then, as the target of concept formulation. Now the 
idea might be tempting at the first glance that no more were needed than "just writing 
i t down cleanly" (wi th more or less effort) to cast this vocabulary into a workable set of 
concepts. This optimism was detected to have been implicit in the original idea initiating 
this investigation, too. 

However, when it comes to tying them down, descriptions (the term "definitions" 
cannot reasonably be applied here) of most software concepts will evade any attempt to 
exactly catch theü· nature in terms of syntax. This has at least three reasons: 

• The majority of software concepts do not operate on the syntactic level, but on 
a level of purpose: Their distinctive characteristic is their dynamic effect on and 
use for the other system components at run time, and not their syntactic relations 
to them at compile time. Examples for these concepts are security check, contro! 
ftow dispatcher, return code, exception handler, utility function, mailbox structure, 
computing function, ftag variable, blackboard variable, demon, ... - certainly syn
tactic descriptions for these are conceivable, but no such definitions, as experience 
has shown that there is always some exceptional case not covered there. 

Since the characteristic of these concepts is their meaning as opposed to their form, it 
appears justified to call them semantic concepts here, as opposed to the source-code
definable syntactic concepts. Not surprisingly, especially the most fruitful concepts 
for architecture fall under this category of semantic concepts - just think of the 
concept of a dispatcher procedure calling the next action procedure, which cannot 
easily be distinguished from that of a generic computation procedure just calling 
the appropriate specialized procedure to fulfill its task. 
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• Many characterizing properties of software features (and not only of them) refuse to 
fit into the strict truth not ion of logics: They are inherently vague, i.e., their truth 
must be measured by degrees (of unclear nature), rather than by a strict value of 
either true or false. The description of an "important procedure" as being "often 
called" would require a strict distinction of "often" of the kind that being called n 
times is not often, but n + 1 times is - obviously not an adequate representation of 
"often" . 

This problem is not new to AI and has been combatted with heuristic definitions 
(i.e., approximations where an occasional error is accepted) or with an extension of 
logical truth values from two distinct values to a continuum, as fuzzy logics tries to 
do. However, representing vague knowledge is still an area of current research, in 
particular "vague logics". 

Defaults are another kind of non-standard logics, which can also be useful for our 
task, as witnessed by the example "A O/1-result means a Boolean value", which is 
usually true in C, but might also mean a numerical result. 

Concerning TRSs, there is a plan at DFKI to incorporate such and other non
standard logics into KRIS in a forthcoming project . 

• Software development as it is today is simply not standardized enough, does not 
employ enough standard concepts - astate which is weil expressed by the saying that 
software development is still crafting, even craftsmanship, instead of fabrication (as 
suggested by the term of software engineering). By the way, practitioners in the field 
complain that today's actual practice is even worse, as RE is still more inhibited by 
bad crafting of the masses of shallow-educated or autodidactical programmers than 
by the general shortcomings of (even good) crafting in comparison to fabrication. 

While the efforts for CASE nourish the hope that standardization in software pro
duction will increase, and the trend towards object orientation hopefully brings 
about standardization (by reuse) at the level of coding, only little of these two will 
percolate to the between layer of software architecture, again and again challenging 
the creative human. Still, we must put our ho pe in the development of more powerful 
software architecture concepts and the education of better software architects. 

As a result of this, fewer concept definitions than initially hoped could be stated satis
factorily. Inherent vagueness of concepts cannot be tackled with a TRS (at least today). 
However, most of the wrecked hopes concerning feasible definitions are due to the om
nipresence of semantic concepts: The desired notions are simply too strong to be inferred 
from the syntax . But this hints a way for the future, too: As a semantic concept is char
acterized by its dynamic effect on the system, this is what must be observed to recognize 
the concept: a run time simulation with data ftow analysis as its central part might bring 
about better results. 

Still, about twenty core concepts were laid down, mostly procedure and module classi
fications (see section 5.1 for details) with the emphasis on locality and data encapsulation. 
The last of the above three obstacles, lack of standard in programming, might set a limit 
to the value of even these achieved concepts, as their practical usability obviously depends 
on how much they are employed in real software. Unfortunately, it has not yet been pos
sible to test this, as a new and not yet implemented TBox-operator for KRIS turned out 
to be essential, as described in the immediately subsequent section. 
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4.2 Translation to KRIS 

Of course concept formula.tion wa.s conducted all the time with the target borne in mind 
of translating i t to a logical language, and so the definitions were right horn the begin
ning kept mathematically precise and purely syntactic, which precluded right away many 
attempts as described above. Still, the TL underlying KRIS is not full predicate calcu
lus, and so some ways of expression, while fulfilling the requirements of being precise and 
syntactic, could still not be expressed in KRIS . These were recognized as being not mere 
challenges for the ski11 of formulation in KRIS, but as demanding fundamentally more 
from the language than it was intended for respectively than is possible in a TRS. One 
of these problems could be mended, one be contained to a negligible size - one, however, 
demanded the invention of a completely new construction (not an operator anyway) for a 
TRS, which was utterly indispensable for the definition of the central concept of locality 
in a program. The three problems and their solutions are described in the following three 
subsections. 

4.2.1 Closed World Semantics 

As mentioned in the section on the semantics of KRIS (sec. 3.2), an ABox is interpreted 
according to the open world semanties: the ABox information is assumed to be sound, 
but not complete - the possibility is taken into account that part of the information is 
yet unknown and not present in the ABox, so that the instances of the concepts and 
roles explicitly listed there are not presumed to embrace a11 assertions that hold in the 
domain. This is a conscious decision in the design of KRIS, the reason being that non
monotonicity was to be avoided: Later additions to the ABox should not be allowed to 
invalidate previous conclusions footed on the now incorrect assumption of an exhaustive 
ABox. Accordingly, it is logically unsound to derive any such conclusion presuming com
pleteness . Such conclusions are entailed, however, in every concept or role term using a 
universal value restriction (relying on all information being known) or a negation (relying 
on everything not listed being false). Thus, the following knowledge base would not allow 
KRIS to draw certain conclusions: 

Given the ABox 

Variable v 
Variable u 
Procedure p 
p defines v 
v defBy p 

and the TBox 

LocalVariable := Variable n :3 defBy: Procedure 
NonlocalVariable := -,LocalVariable 

LeafProcedure := Procedure n V defines: Variable 
(a leaf in the procedure definition tree) 

(and no other instances of these terms being in the ABox), then KRIS would conclude 
neither that u is a NonlocalVariable (as this involves a negation), nor that p is a Leaf
Procedure (this involves a universal restriction) - a11 that would be inferred is ~hat v is 
a LocalVariable. Universal and negative information would have to be explicitly given in 
the ABox, like u: -,:3defBy: Procedure, if such conclusions like the former two are desired . 

Now it is certain that universal restrictions are indispensable for our purpose, as is 
easily demonstrated by the LeafProcedure-example above. The same is true for negation, 
as the two are well-known to be equivalent, once you have an existential quantifier, by 
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the interchangability of -,:3x : -,p and \:Ix : P. So how can we achieve the validity of 
universal conclusions in an open world semantics? Once again, such a semantics allows 
only inferences founded on positive information, and not on the absence of information, 
and so we must provide some positive axioms in the ABox expressing that the listed 
instances are all there will ever be. This is similar to the approach of circumscription 
[McC80] to capture such a closedness property. In general, such axioms are not possible 
in first order logics, as they make statements about an infinite number of conceivable 
assertions which do not hold. However, there are two features of our task and KRIS 
allowing the construction of such "ABox-closing" axioms nonetheless. The first is the 
observation that the complication of later modifications of the ABox does not happen in 
our case: If Procedure p uses Variables VI •.. Vn and no others, this will hold for the time 
of the whole analysis, and so will all other relationships. Our knowledge 0/ the examined 
program is complete. Additionally, since quantifiers in KRIS are allowed only to quantify 
roles, not concepts, we have to add "closing axioms" only for the interpretations of role 
terms. This gets us as far as achieving our goal if we were only allowed to state that "the 
number of possible instances of each role term in the ABox is exactly the number of its 
listed instances". This, however, can be expressed cleanly in KRIS by a corresponding 
number restriction. 

The problem can thus be mended by counting all instances in the ABox for each 
individual and each of its roles and then adding a number restriction axiom for them, 
limiting the allowed number of role partners to exactly the counted number and thus 
excluding any possible others.4 This effectively makes the ABox a closed world, and the 
open world semantics is then equivalent to the closed world one (with respect to the sole 
instances) . 

4.2.2 Terminological Cycles 

An ABox is said to contain a terminological cycle if there is a concept C whose defining 
concept term (the second argument of the defconcept-axiom) contains (possi bly through 
several nested definitions) a reference to C itself. Obviously this is not a definition in the 
sense of explaining C in terms of other things already known, and yet it is a natural way 
of expression: A Procedure may call other Procedures ( a cycle of length 1), a Procedure 
defines a Variable which can again be passed_to a Procedure (a cycle of lenght 2), etc. 
The recursive structure of programs accounts for many such cycles in a TBox capturing 
them. This observation suggests that terminological cycles in a TBox can actually be 
conceived as an instance of the familiar concept of mutually recursive definitions in a 
programming language. Analogously to these, terminological cycles introduce difficult 
computational problems (see [Neb89], [Baa90b]) into a TBox. 5

. This is why KRIS does 
not allow terminological cycles and rejects a TBox containing one. 

Since there is no work-around to mimic terminological cycles, the initial TBox had 
to be cleaned of them, as it had been allowed cycles like the above examples to find 
out how far one could get at all. In order to contain the practical impact of this loss 
of precision occurring in some concept defitions, the definitions were rearranged so as 
to limit the knowledge expressed by occurrences of terminological cycles to checks of 

4See the close...ABox_world-tool in appendix B for the details. 
5The knowledge calling for terminological cycles can often be equivalently expressed by transitive 

closure of roles (see [Baa90a]). 
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comparatively trivial conditions, which are anyway obliged to by all correct programs, e.g. 
that procedures call only procedures (and not modules, say) or that variables are defined 
in some place, each variable has exactly one type etc. These remaining occurrences of 
cycles were then simply omitted in the TBox. They are not checked anymore, and thus 
an incorrect program would no longer result in an inconsistent knowledge base. However, 
this is a negligible restriction, since it would not make much sense to analyze a program 
that still contained compiler errors. 

4.2.3 Reference to Individuals 

This is a fundamental problem, rooted in the very principle of terminological reasoning 
and therefore questioning in general the applicability of TRSs for our purpose. 

Problem: 

A TRS owes its name to dealing with terms, i.e., collective abstractions of things in 
contrast to the things themselves. It provides means of defining concepts, meaning sets 
of things, by certain relationships to other such sets of things. However, it does not allow 
relationships containing references to a certain thing, to an individual in the sense used 
so far. There are good reasons for this restriction, which is after all basically nothing 
other than the distinction between TBox and ABox, which accounts for most of both the 
simplicity and elegance of the language and the efficient implementation . Reference to 
concepts only is often sufficient, as in 

Variable := ... n 3hasType: Type, 
where the concrete type of a variable does not matter - just any instance of Type will 
do to classify an instance of Variable. There are concept definitions, however, which do 
require a relationship not just to some unspecified instance of another concept (appearing 
as a reference to this concept in general, like Type), but to a special instance distinguished 
by a certain link originating from the individual instance to be classified (referred to as 
the "examined instance" in the following, as the classification might fail after aB). This 
link restricts the partners in the relationship (which is expressed as a role, of course) to 
a single special one. As a first example, think of the concept of a (directly) recursi ve 
procedure as "a procedure which calls itself". A first attempt might get as far as 

RecurProc := Procedure n 3calls: Procedure 
- but this does not express what was desired: a RecurProc does not merely call some other 
Procedure, but a very special one, namely itself. The partner in the calls-relationship must 
be restricted to this special procedure. In this case, the distinguishing link from the exam
ined individual to the partner instance is identity. So there ought to be so me construction 
P in the place of the caBed Procedure, denoting the "right" procedure. With the defini
tion as it is, certainly a procedure p calling p would satisfy the definition, but so would 
a procedure q calling p (and no others), too. Now there is no way to "narrow" this def
inition down to this P, to the "right" procedure - for a first attempt at such a P, one 
might imagine somehow constraining the interpretation of the second Procedure in the 
definition of RecurProc to subsuming exactly one instance6

, or allowing a constant symbol 
in its place. This, however, would not work either, because the "right" procedure is not 

6The TRS CLASSIC offers a facility to explicitly fix the interpretation of a concept to a literally 
enumerated set of individuals, which must, however, not appear in the ABox 
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fixed at the time of concept definition, but depends on the examined instance: When 
examining p, the procedure required to be called is p, at other times it is q etc. 

The mentioned link from the examined instance to the distinguished partner instance 
generally need not be identity, as in the previous example. As a second example, consider 
the concept of a (module-) local variable defined as a variable with all procedures using 
it being defined in the same module. Assuming a TBox-language allowing the agreement 
on features (like KRIS) and a feature moduleOf to designate the defining module of a 
variable or a procedure, an attempt gets as far as 

LocalVariable := Variable n V(usedBy.Procedure) : (moduleOf = M) 
with once again M standing for the "right" module, for the module of the examined in
stance, the instance of Variable just being elassified "on the left hand side of the definition". 

Solution: The SELF-construction 

These two examples are just a few from quite a number of problems with references 
to individuals in definitions, which turned up in the translation of the TBox to KRIS. 
How can we specify the "right" role-partners in these definitions? Since the only means in 
a KRIS-TBox to get hold of an individual is by a feature (remember they are functions 
and thus have only one possible value, i.e., an individual), and since feature values can 
be constrained by agreements, it was recognized that the only possible solution to this 
problem of constraints linking certain individuals could run as follows: 

The link constraint must be formulated as an equality between certain charac
teristics (which are individuals) of the two instances. It can then be expressed 
through an agreement between features, with one feature denoting ("point
ing to") the characteristic of the distinguished partner instance (often, this 
is the just the partner itself) and the other feature somehow denoting the 
characteristic of the examined instance (possi bly i tself). 

This solution allowed all problems with individual references to be reduced to a stan
dard structure given below which is quite elose to that of the examples from above. 
Following the indicated solution, we use a new feature procedureOf to transcribe the first 
example, mapping things in the scope of a procedure to that procedure, in particular 
a procedure (quite consequently) to itself. This is the feature pointing to the intended 
partner instance (here, the procedure itself). The first example can then be transcribed 
to 

RecurProc := Procedure n :3calls: (procedureOf = P) 
with P standing for the "right" procedure, which is now of the standard structure of 
references to individuals in its simplest form (when the link is identity). The procedureOf
feature links the examined instance (the calling procedure) to the distinguished partner 
instance (the called procedure). In this case, these two are identical, and this is reflected 
by the procedureOf-feature reducing to the identity mapping when applied to procedures. 

If the link between the examined instance and its partner is different from simple iden
tity, the solution suggests to try to express it as equality on certain characteristics reached 
by one or more intermediate features , which are applied to examined instance and/or its 
partner. The second example illustrates this: The link required from the potential in
stance of LocalVariable to its partner instance of Procedure through the usedBy-role is 
not identity (how could it be?), but "having the same moduleOf". Accordingly, we use 
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the moduleOf-feature as an intermediate applied to both the partner procedure and the 
examined instance and arrive at the final transcription of the second example 

LocaIVaria.ble:=Variable n V{usedBy.Procedure): (moduleOf = moduleOf( V)) 
with V "standing for" the examined instance - quite as the P in the transcription of 
the first example. This now suggests the definition of a new concept operator defined as 
follows: Let fi , gj be features. Then 

C := ( f1 0 ... 0 fn = gl 0 ... 0 gk(SELF) ) 
D := ( f1 0 ... 0 fn =1= gl 0 ... 0 gk(SELF) ) 

are concepts, with n, k ~ 0 and SELF "standing for" the instance which is currently 
examined whether it is an instance of C respectively D. Both C and D are called a SELF
expression. Such an expression is thus i:t generalized agreement concept. It may be used 
in a value restriction to express a link constraint, such as 

Vr: ( f1 0 ... 0 fn = gl 0 ... 0 gk(SELF) ) 
7 This is the mentioned standard form of our problem. 

Nearly all individual reference problems occurring in the TBox of software concepts 
which was compiled with the help of SELF could be expressed as such standard form 
defini tions (wi th both n and k never greater than 1). 

Now that we have standardized our individual reference problem to this form, we 
must admit that KRIS (as all the other complete TRSs) does presently not offer a 
way of expression equivalent to this SELF, the individual just being tried as a potential 
candidate of an instance of C. Such a way of expression is, however, indispensable for our 
task, as is clearly witnessed by the preceding examples. Therefore, 

a new operator applicable within concept definitions named SELF was invented 
which always denotes the individual just being classified under the concept. 

SELF is allowed only in the lexical context of (dis)agreements matching the standard form 
from above. Considering the operators available in KRIS, this is anyway the only way 
to utilize an individual in a concept definition. 

SELF is a kind of individual variable in concept definitions, not a concept, but not a 
constant symbol either, as its interpretation varies depending on the examined instance. 
But it is a special kind of individual variable, occuring only in the context of denoting 
"the individual just being classified". Concretely, it allows just as few individual variables 
as possible to build our TBox. 

Individual variables would, if allowed in full generality, imply serious semantic and 
computational problems up to utter undecidability. This narrowing of the desire for 
individual variables as far down as to the case of the SELF-construction thus conforms to 
the principle in KRIS of maximizing expressive power while preserving decidability. 

5 ELF is a construction which has not yet been considered in terminological reasoning. 
An implementation is considered feasible and will be attempted at DFKI. 

7This could also be expressed by an agreement involving full roles and also their inverses: 
(r = (fl 0 ... 0 fn)-lo SI 0 ... 0 Sk) 

However, such general agreements entail undecidability. 
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Problems with the Solution: 

SELF is decidable, but its nature is not obvious . If you were not contented with the 
"definition" of SELF as "the instance just being classified", then you are exactly right. 
What is this SELF at all? We have observed that it is not a constant, as its interpeta
tion changes depending on what instance is being classified at the moment, and it is not 
a feature either, as it would then apply to the concept which is to be restricted in the 
agreement, i.e ., the r-partner of the C in the standard form - and this is not what was 
intended. SELF might be described as a metalogical constant, as it must be substituted 
by an individual during evaluation of the SELF-expression. After this substitution, SELF 
has the effect of a constant symbol denoting the substituted individual; but as the sub
stitution happens at the meta-level in the evaluation process, not at the level of logics, 
this justifies the description of SELF as a meta-Io~ical constant. 

SELF is, unfortunately, not a logical expression at all, as it violates the familiar princi
pIe that the interpretation of a closed expression does not depend on its occurence context, 
once you have chosen a model. E.g. in KRIS, the interpretation of a concept is always 
the set of individuals subsumed by the concept definition, however deeply nested in an 
embedding expression the concept appears. The same is true in first order logics: The 
interpretation of a term is always the same individual from the domain, and the truth 
value of a formula does not depend on how many other formulae are attached to it by 
logicaloperators. SELF, however, is different: As SELF denotes the individual just being 
classified under the concept at the left hand side (l.h.s.) of the definition containing the 
SELF-expression, this would change if the right hand side (r.h.s .) of the definition were 
substituted into a larger embedding definition, since the SELF would now denote the in
stance being classified at the l.h.s. 0/ the embedding concept definition, and no longer the 
correct instance from before. An example will show this easily: Assuming the concept 
definitions 

ProcWithOwnVar := Procedure n 3usesVar: (procedureOf = SELF) 
ModWithPWOV := Module n 3defines: ProcWithOwnVar 

then the SELF-expression (procedureOf = SELF) has different interpretations according to 
i ts lexical context: 
All by itself, it denotes 

{ x I proced u reOf( x) = a} 
if a is examined; 
its denotation, however, within the definition 0/ ProcWithOwnVar (as in the example) 
when examining p is 

{xl procedureOf(x) = p} 
(this is what was intended for), whereas its denotation if the r.h.s of ProcWithOwnVar 
were lexically substituted within the definition 0/ ModWith PWOV .( this happens when ex
pan ding a TBox) would then (examining m) be 

{xl procedureOf(x) = m} 
In the last case, SELF duly evaluates to m (after all, the individual being examined now), 
disregarding that within the old definition context it evaluated to p. Thus an algorithm 
which performs a preliminary bottom-up substitution of all concept occurrences by their 
definitions (as KRIS presently does) would never realize m as an instance of ModWithP
WOV, even if m defines p and p is an instance of ProcWithOwnVar. Therefore the concepts 
containing SELF-expressions cannot not be substituted as usual, but the algorithm must 
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keep track of their original concept definition cöntext (perhaps by substituting the SELF 
by apointer to this concept) to evaluate the SELF correctly. 

A problem of different nature is soon encountered when actually writing definitions 
containing SELF-expressions: SELF's context dependency tends to result in lengthy con
cept definitions , because splitting the definition would cut off a deeply nested SELF from 
i ts context. 

All this is admitted to appear still awkward (though precise) in meaning, and "logi
cally impure". Future investigation will further clarify the semanties, possibly the syntax 
and also the implementation of SELF-expressions. 

Conclusions about SELF: 

The expressive range (in the pragmatic aspect) of TRSs in general and also of KRIS 
in particular is still under investigation (not the least, in this paper), but it is certain that 
reference to individuals in concept definitions is both needed for many applications and 
impossible to express in present TLs. 

This introduction of individual references into a TRS described in this seetion by 
the (at least in KRIS, only possible) "back door" of features constitutes, in a way, a 
pollution of the idea of terminological reasoning. It is however, a carefully limited one. 
The introduction of full general individual variables into concept definitions would have 
turned them into a kind of Prolog-rules (with the ABox constituting the facts), with all 
the semantic and computational difficulties well-known from there. This would certainly 
not be a wise direction for the further development of TRSs . The proposed enhancement 
SELF, however, constitutes a carefully limited variable introduction, powerful enough to 
solve considerably more problems than before, but still retaining decidability. It is thus 
a proposal worth investigating and incorporating into KRIS. This incorporation will be 
conducted at DFKI. 

5 The Results 

The last seetion reported the difficulties encountered in stating descriptions of software 
elements as KRIS-definitions. While these experiences account for reductions in the 
scope that was initially hoped to be covered, the plan laid out in Section 2.3 was carried 
out and resulted in the KRIS-TBox and the ABox-generator which will be presented in 
this section. Their source code can be found in the appendix. 

As the SELF-construction still awaits implementation, the TBox could not he tested. 
Accordingly, the ABox generator could only be tested by careful inspection of its output 
ABox, and not by loading this into KRIS. 

5.1 TBox 

The mentioned reduction of scope means that the TBox contains fewer concepts than 
hoped for . In particular, such concepts as desribed as "semantic" in Section 4.1 could not 
be incorporated into the TBox, for the reasons explained there. A number of "syntactic" 
concepts, however, could be translated to the TBox almost completely, assuming the 
SELF-construction. They will be presented in the following. 
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5.1.1 Basic Structure 

What does the TBox look like then? Remember that it was to build concepts at the 
architecture level from simpler ones at the source code level. Accordingly, it is founded 
on five basic concepts (all primitive, of course) at the source code level, 

Module, Procedure, Variable, Type, Constant 
which are related by two basic roles at this level: 

defines and uses. 
All other roles are derived from these two by specialization and inversion. 

As the fundamental notion of software architecture is locality (deriving many others like 
abstraction, information hiding etc.), the concepts of LocConstruct and (complementarily) 
GlobConstruct were defined as the first step towards the architecture level. In programming 
languages with adequate scope control facilities in definitions, this might still be source 
code extractable and not ask for a defined (in contrast to a primitive) concept at all; but 
as the target language of this investigation is C, which offers little scope control (and even 
this is usually ignored, concerning module-Iocal items), locality of a source code item (like 
a variable) is defined in the TBox not from its definition in the source, but from its use 
throughout the program. Corresponding to the program being structured in modules and 
these again in procedures, three levels of locality are distinguished: 

• GlobConstruct: being accessible within the whole program 

• ModLocConstruct: the same within exactly one whole module 

• ProcLocConstruct: the same within one procedure only 

All three concepts are mutually disjoint. The concept LocConstruct is then the disjunction 
of ModLocConstruct and ProcLocConstruct. Their concrete definitions are as folIows, with 
usedBy and defBy meaning the inverses of uses and defines: 

LocConstruct :- VusedBy: (modOfls = modOfls(SELF)) 
i.e., anything which is used only from things defined 
somewhere within the same module (the modOf1s- ' 
feature gives the module containing [possibly within 
a procedure definition] the definition of an item). 

ModLocConstruct:= LocConstruct n :3 defBy: Module 
ProcLocConstruct:= LocConstruct n :3 defBy: Procedure 

These levels of locality resulted in corresponding localizations of the five basic con
cepts, like ModLocVariable or ProcLoc Type, and of the basic roles like exports := de
fines.GlobConstruct. Wherever reasonable, this was done in full generality, with the 10-
cality concept of a language like Modula-2 in mind, thus in pI aces including language 
constructions not possible in C (LocMod, ProcLocProc, ProcLocConst). 

The localized concepts were then used to define the actual "goal" concepts of the TBox, 
capturing a classification of modules and, less complex, a classification of procedures. 

Procedures are classified according to their side effect behaviour (SideEffectGuarded, 
SideEffectCausing), their frequency of use (AdHocProc, UtilityProc, DeadProc) as a weak 
approximation of the semantic concept of importance, and their calling behaviour (In-
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terfaceProc, System IOProc, DirectRecurProc). These procedure concepts8 do not require 
complex definitions and may thus (with the exception of InterfaceProc) be called archic
ture level concepts with some generosity only. Still, they are very handy in practice and 
save looking around in the source code. 

lncluding the module concepts presented in the subsequent section, the TBox contains 
about 60 concept on the whole, among these about 40 auxiliaries like localizations, and 
20 goal concepts defining the procedure and module classification. Seven roles and four 
features were used to define them, all of which derive from defines and uses by restriction 
and inversion. 

5.1.2 Module Classification 

The classification of modules constitutes the core content of the TBox; only here the 
representation of architecture level concepts succeeded to a satisfactory extent. Some re
sults of software engineering isolating certain kinds of modules ([Nag90J) could be utilized 
here. Besides concepts similar to the procedure concepts above, like UtilityMod, AdHoc
Mod, MainMod, four fundamental purposes of modules within an architecture could be 
translated to KRIS-definitions with practically sufficient accuracy: 

• AbstrData TypeMod: This kind of module realizes the familiar concept of an abstract 
data type (ADT), i.e., it exports a type with a hidden internal structure and a col
lection of procedures operating on it such that the type is completely determined by 
the behaviour of these procedures and these procedures are the only ones accessing 
its internal structure. 

Such a module exports the type itself, the accessor procedures, and a constructor 
function returning an object of that type. It can thus be seen as a template generat
ing objects of that type. Additionally, in order to prevent the module interface from 
being littered with other procedures unrelated to the ADT, all exported procedures 
are required to use the abstract type (this makes them true accessor procedures). 
This led to the following definition: 
AbstrData TypeMod := 

Module n V(exports.Procedure): 3uses: 
(GlobType n (modOfls=SELF) n 3isTypeOf: 

(GlobProc n (modOfls=SELF))) 
Here the two SELF-expressions ensure that the abstract type (the GlobType) and its 
constructor function (the GlobProc) really are in this module. 

An ADTAccessor is a GlobProc defined in such a module. 

Note that this definition is only a sufficiently accurate translation of the ADT no
tion: The definition does not enforce all exported procedures using this same one 
type - there might be several Glob Type-instances exported from this module. Re
stricting the number of exported Glob Types to one is not possible because atmost 
does not accept a restr as its role argument in the present version of KRIS. Addi
tionally, this definition does not grant that the internal representation of a variable 
instance of the Glob Type defined in so me other module is not accessed there (vio
lating the abstraction). To prevent this, there would have to be a specialization of 

8 Additionally there are concepts for procedures attached to certain kinds of modules; they are ex
plained with the respective module. 

30 



uses, call it enters, meaning an such an invasive access to the internal representation, 
e.g. through dereferencing (if the ADT is apointer) or component selection (if it 
is a structure). Then the Glob Type could be further restricted by adding the conjunct 

V(is TypeOfVariable): VenteredBy: (modOfls=SELF). 
meaning that invasive accesses are restricted to come from within the own module. 
Since xpass does not deliver information as detailed as such an enters, this conjunct 
was not added to the definition of AbstrData TypeMod . 

• AbstrDataObjMod: Such a module realizes an abstract data object (ADO), which is 
quite similar in purpose to an ADT, except that it is not a template for generating 
objects, but an object itself. It has thus no constructor function, but only accessors. 
Since the physical object, the AbstrDataObjVar (defined as a ModLoeVar used by a 
GlobProe of that module), is hidden in the module, it is protected and no problems 
with illegal aecesses from other modules arise. Again, only procedures really using 
the AbstrDataObjVar are allowed in the export interface, resulting in the definition 
AbstrDataObjMod := 

Module n :J defines: AbstrDataObjVar 
n V(exports.Proeedure): (:J uses: AbstrDataObjVar) 

Again, this definition does not prevent several AbstrDataObjVars from being defined 
in this module. 

ADOAeessor is defined analogously to the ADT. 

An interesting specialization of AbstrDataObjMod is 
VirtualDevieeMod := AbstrDataObjMod Il 

:Jdefines: (Proeedure n :Jealls: System IOCall). 
This defines a virtual device through some of its proeedures performing physical 
1/0 (with System IOCall being a primitive coneept). We then have 
VirtuallOProe := Proeedure n :JdefBy: VirtualDevieeMod . 

• FunetionalMod: This kind of module realizes a collection of proeedures which are 
functions in the mathematieal sense, i.e., they depend exclusively on their parame
ters. This is neatly expressed by the coneept of being both SideEffeetGuarded and 
not SideEffeetCausing. A common example for this is a module realizing a floating 
point library. Often these modules also export constants, so the definition reads 
FunetionalMod := Module n Vexports: (Constant u 

(SideEffeetGuarded n ...,SideEffeetCausing)) 
with 
SideEffeetGuarded := Proeedure n Vreads: (proeOfls=SELF) 
and 
SideEffeetCausing := Proeedure n :Jwrites: (proeOfls#SELF) 

• DeclarationMod: This is a sort of module that contains only a list of (global) type 
and constant definitions and nothing local. Its defini tion is 
DeclarationMod := Module n 

Vexports: (Type U Constant) n Vdefines: GlobConstruet 
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5.2 ABox-generator 

The ABox-generator transforms .theoutput of the source-code analyzer xp.ass (see Seetion 
3.2) into assertional axioms ready to be loaded into KRIS. Its precision of source code 
information thus depends on how precise xpass's output iso U nfortunately, xpass has 
several precision deficiencies due to its original purpose in the Arch system, which does 
not care for a procedure's internal structure and therefore discards such information. 
Judged relatively to xpass's output, however, the ABox-generator is correct, meaning 
that it makes explicit all relationships between source code items implied in the xpass 
output. It also utilizes all pieces of information extractable at all from there, and it 
provides hooks for future addition of the missing information to the xpass-output which 
it will process correctly without any modifications necessary. 

Annoyingly, xpass also contains some bugs (listed below), which cannot be corrected 
in the ABox-generator. 

5.2.1 Way of Processing 

The generator consists of six programs for the UNIX string-processing language awk 
chained by a pipe, five of which9 are auxiliaries of no more than a few dozen lines, and one, 
make...ABox, is a program of about one thousand lines of awk source doing the bulk of the 
job. Awk was chosen because of its built-in regular expression scanner, string processing 
routines, and hash tables, which were needed to read the various kinds of input lines and 
to store all the reference information between them and between program items. These 
ready-to-use facilities were expected to outweigh the shortcomings of a line-oriented lan
guage like awk, which provides no procedures, only two (even implicit) types, and no data 
structures except arrays and h~h tables. The experience of writing make...ABox, however, 
shows that it is not a good idea to implement a task of a size even as managable as 
this one in awk. Especially awk's property of reading its input lines strictly sequentially 
causes numerous nuisances and temporal storage overhead when the input contains as 
many mutual references as in this case, e.g. when reading a v _use-line, it is not yet clear 
until a corresponding v _use_wi thin appears whether this use is within a function, and, if 
so, w hat function uses i t. 

The input lines to make...ABox originally come from xpasS. This tool parses all source 
files of the examined program (its command interface is identical to that of the C-compiler 
ce) and deli vers its output in the form of a sequence of lines like 

v_decl,34,i,process.c,11,EXTDEF 
v_decl,112,i,check.c,11,EXTERN 
v_use,120,i,check.c,130 
f_decl,248,getData,check.c,86,STATIC 
v_decl,253,v,check.c,90,AUTO 

indicating that a globally visible variable10 i was defined in file process. c at line 11, 
that such a variable is imported in file check. c, used in file check. c at line 130, that a 

gextract...has_decls. advance...has_decls. unique....names. eliminate..1alse_usesISS. 

closeJlBox_world 
IOln C praetiee, this does not neeessarily imply that i is intended as a global variable; many C pro

grammers use "statie" only for proeedure loeal permanent variables and not to distinguish module-Ioeal 
ones from global ones . This is why the TBox was explained to use not declaration, but use to determine 
the level of loeality. 
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function getData was statically (i.e., module-locally) defined at line 86 in file check.c, 
and that an automatie variable v (C jargon for a produre local) was defined at line 90 
in check. c. The number at the second place is an index sequentially counting all lines 
(except those like v_refers . . . which only serve as connectives between other lines). This 
permits references like 

v_refers, 112 ,34 
v_use_within,120,248 
v .llas_type, 112,7 

to express that i was used by the function getData and that it has the type whose type 
definition line has the index 7. This also uniquely identifies the i imported at index 
112 as the one defined at index 34 in process. c. Similar lines are given for definitions, 
declarations and uses of macros and types. 

As awk reads its input lines sequentially, it saves much work to avoid forward references 
where this is easily possible. Such a job is done by advance.llas_decls, which first uses 
extract.llas_decls to collect lines referencing certain declaration lines from the xpass 
output file and then attaches them to the front of the file. 

The next pipe stage is performed by unique..names, which reads the whole file to 
gather all information about the declaration context of all program items , and then at
taches new lines like 

unique..name, 248, check. c..getData 
unique..name, 253, check. c..getData_v 

connecting declaration indices with unique names constructed by prefixing with the mod
ule name and, if it is a procedure local, with the procedure name, too. 

At this point, the data is still in the form of such lines, though enriched as described. 
The next step, however, is make-ABox itself printing the KRIS-axioms, which is followed 
by the final eliminate..:false_usesISS removing certain axioms which had to be printed 
at their time of occurence, but were invalidated by later axioms. 

Now make-ABox reads its input line by line, and it has a matching awk-clause for each 
kind of possi ble line. ll Program items are stored in various arrays and tables to resolve 
references, and finally assertion al axioms are printed12 , e.g. 

(assert-ind i Var) ; that i is global must be inferred by KRIS 
(assert-ind process. c Mod ule) 
(assert-ind process. c i defines) 
(assert-ind i process. c defBy) 
(assert-ind check. c Module) 
(assert-ind process. c..getData ModLocProc) 
(assert-ind process . c process. c..getData defines) 
(assert-ind process. c..getData process. c defBy) 
(assert-ind check. c..getData i uses) 
(assert-ind i check. c..getData usedBy) 
(assert-ind check. c i useslSS) ; see next subsection for useslSS 

Obviously a program produces a large number of such axioms (see Appendix C to get an 

llawk-programs consist of a set of clauses, each of them a pair /regexp/ {actions}, where regexp is a 
regular expression matched with the input li ne and actions is a sequence of variable manipulations (with 
loops and alternatives) is executed on a successful match . 

12 Actually, the axioms are printed in the more readable format "process. c defines i" . The 
format..ABox-utility can be used to change that into KnZS-format. 
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idea of how large), more than one third of which, however, are due to the explicit listing 
of inverse roles, which can regrettably not be expressed by a general terminological axiom 
like usedBy := uses- 1

. 

The axioms can be further reduced by removing duplicates (note, however, that this 
should not be done by the popular UNIX-pipe sortluniq, as this destroys the rough se
quential correspondence of the axioms to the C-source). 

The very last operation performed is usually piping the assertional axioms through 
closeJ\.BoLworld, which attaches the necessary number restriction axioms (see Section 
4.2). 

5.2.2 Policies of Source Interpretation 

There are several questions concerning the intended meaning of the roles occurring in the 
assertional axioms and what axioms are printed at all. Here is a list of how the generator 
decides on such questions: 

• Every source file defining a variable or a function is considered to be a module. 
Other files are appointed modules only when there is no corresponding . c-file with 
the same base name (see next item). 

• Special care was taken to follow the customs in C programming concerning exported 
types and macros: Since the scopes of typedef and #define are restricted to the file 
which contains them, types and macros exported from a file t . c are implemented in 
C by putting their definitions into a header file like t .h, which is then #included 
by all client modules importing the types and macros. According to this, the actual 
module of such types is t . c, and not t . h, which is not considered a module at all. 

• Whenever a variable or a function is used, an additional axiom indicating the use 
of its type is printed along with the use axiom. 

• If a funcLion f in module muses an item i imported from a module different from 
m, this use is "propagated" to m in the form of an axiom musesiSS i, meaning that 
muses i "in one of m's substructures" (e.g. f). This is to keep m's import interface 
clean. 

• Uses of struct components are printed as uses of the whole struct-variable - after 
all , they are apart of it. A distinction of component uses would require a new role 
connecting a structure member to its embedding variable, say isPartOf; but, since 
structs may be nested, the transitive closure of isPartOf would be needed to find 
the embedding variable. Transitive closures of roles, however, are not possible in 
KRIS. 

• Procedure-Iocal variables defined as "static" are printed as module-Iocals: This is 
motivated by the definition of an AbstrDataObjMod (see Section 5.1), because such 
a variable realizes an internal memory of a function which might turn it into a sort 
of AbstrDataObjMod, which requires a module-local variable to be recognized. This 
decision causes no harmful effects elsewhere, but must be kept in mind when reading 
the ABox. 
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5.2.3 Deficiencies 

As was warned before, xpass neglects certain information, which propagates through 
rnake...ABox to the ABox. These are: 

• For an external function or variable e imported locally by a function 1, there is 
no "f Iv _dec1 e" and "f Iv _decLwi thin e 1" printed, if e was already imported 
by the module of 1. This is a neglible deficiency, as the local import was then 
unnecessary anyway. 

• For parameters of a predefined type (int etc.), no v_dec1/v_decLwithin is printed. 

• Variables dedared in a procedure which have a predefined type are ignored com
pletely! This is a dear consequence of xpass's pur~ose for Arch: Such variables are 
irrelevant for the external assumptions of a procedure. 

• For a function returning a predefined type, no Lhas_type is printed. 

• There is no thing as type_deLwi thin printed, although procedure-Iocal types can 
be defined in C. Xpass prints them as usual, i.e., as module-Iocals. 

• There is no thing as type_uses_type printed, although it would be helpful to know 
about type-type-dependencies, as between apointer, array, or struct type and its 
base respectively component type. 

There is, however, a line v_in_type which is to indicate the component-struct rela
tionship, but unfortunately it is buggy. 

• There is no type_uses..JIlacro or macro_useS..JIlacro. 

All these mlssmg lines are serviced nonetheless in make...ABox, i.e., the corresponding 
clauses are fully implemented there, awaiting future use. It is conceivable to write auxiliary 
tools extracting this missing information from the C-source. This would, however, have 
exceeded the scope of this work. 

5.2.4 Bugs 

Additionally to this missing information, there are some plain bugs in xpass, too: 

• A use of a procedure-Iocal variable of a predefined type is falsely printed as a use of 
a global variable of the same name, if such a gl9bal variable exists. 

• The same happens with a procedure-Iocal type. 

• #undefs are foolishly understood as macro uses and should be avoided altogether. 

• Structure components of the same name from two different struct-types are not 
distinguished: no v _dec1 etc. appears for the second set of components, and uses of 
them are falsely printed as uses of the first set of components. 

• Procedure-Iocal "static" variables are printed as module-Iocals (i.e., no v_decLwi thin 
appears for them). But this happens to be just what the TBox expects about statics 
(see the last of the policies above) - so this bug is lucky for our purpose here! 

• Pointers and array variables are treated as if being variables of the base type only. 
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6 The Insights 

This closing section sums up theexperiences gained in thi? investigation, gives a tentative 
evaluation of the original idea of applying TRSs to application-independent software anal
ysis, and speculates about its possible future development. Again, all this is handicapped 
by the missing experiments with the TBox applied to real software. 

The probably most prominent insight can be stated as follows: The architecture of 
real present software systems is generally not automatically extractable by source code 
analysis. While this goal was never really thought to be completely achievable (see Section 
1.1.2), there was hope that this might be possible at least to a large extent. However, 
this investigation should be seen as evidence contributing to the conjecture that such an 
extraction is presently possible to a very limited extent only. 

Still, even this limited extent, as outlined by the TBox, can be of practical help to 
reverse engilleers. 

What experiences support this sobering general judgement? 

80th theory and (even more) practice of software architecture are presently not mature, 
let alone unified. Practice may even be called irregular. Real software applies too few 
standard concepts even of the small set evolved so far, due to deficiencies in software de
velopment practice and programmer education, other (conflicting) parameters of software 
being preferred, lack of adequate development tools and probably many more reasons. 
Therefore the practical value even of the modest module classification developed in this 
paper must be estimated with caution: Most programmers would probably not commit 
themselves to writing only modules whose architectural function is as clear as in this classi
fication, but would rather mix them for ease of expression, efficiency, different preferences 
or simply carelessness. 

Furtheron, all widely-used programming languages are insufficiently elaborated from 
the software architecture point of view (scope control, modularity, different kinds of mod
ules) and thus do not offer enough architecture information in the source code. Fortu
nately, there is strong evidence that this will improve in the course of the general progress 
of programming, but also notably so by the spreading of object-oriented languages. 

The observation that the meaning of many programming concepts can only be cap
tured in run-time terms like "purpose" rather than in terms of compile-time like "ref
erence" severely limits the static approach of source code analysis. Most concepts of 
software architecture belong to the former terms and thus will not be captured by source 
code analysis. They might, however, be tackled by the dynamical analysis of a run-time 
simulation. Work in this area is, however, only just beginning. 

When trying to express such concepts of purpose in terms of syntax nonetheless, the 
ability to express vague knowledge or default knowledge becomes essential. This funda
mentally handicaps a logicallanguage like a TL. Leaving aside hypothetical extensions of 
logics, heuristic algorithms seem to be a good method to achieve better results here, as is 
witnessed by the example of Arch. These cannot be incorporated into any existing TRS, 
but there is work beginning in that direction. Another path out of this problem is that 
of allowing those concepts which are not source code definable (like vague concepts and 
"purpose" concepts) as high-level primitives in a TBox. While they could of course not be 
automatically recognized, this would at least provide the reverse engineer with a language 
to record his hand-extracted knowledge about such elements of the program in the same 
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format as the automatically generated information. Possibly even more complex concepts 
can then be built on top of these high-level primitives, subject to automatie classification 
again, once the user has supplied the ABox assertions naming instances of the high-level 
primitives. 

Putting aside all theoretical difficulties in knowledge, its representation, and imple
mentation, a practical RE-tool will also need the fuH facilities of a relational data base, in 
particular concerning the query interface and defining ad-hoc-expressions. Since inference 
is of course still the bulk of the job, it may be worthwile to examine how well deductive 
data bases instead of TRSs would perform on this job. 

lt must be noted that all this pertains directly to application-independent software anal
ysis only, as was the approach of o'lr investigation here. Application-specijic approaches 
(Iike [DBSB90]) will achieve a larger codex of knowledge and consequently more infer
ences. However, the difficulties reported in Section 4.1 apply in principle to them as weil. 
But the limits can be stretched: the achievable scope of representation of course depends 
on how much of the application domain is formally defined. For any application domain 
amenable to a computer approach at all , such a formalization is partly possible and de
livers new concept definitions. Application-specific software analysis therefore seems to 
have a more promising future. The formally defined fraction of the domain might be con
siderably increased by an addition to the chores of software development: The developer 
would define logical descriptions (preferably concept terms for a TRS) of the implemented 
concepts in parallel to developing these concepts themselves. This would provide a TRS 
for RE with optimal, "first hand" knowledge. The fate of similar suggestions concerning 
program proofs, however, probably reduces this suggestion to a naive hope. 

So where are we arrived now? What is left of the initial idea, and what have we achieved? 

In general, the observation that apart of software analysis is inference, specifically 
that architecture acquisition can be supported by automatie concept recognition, this 
observation is believed here to have shown correct and worth further work. In particular, 
however, the value of this investigation is judged to consist less of formulating a few of 
such concept definitions, than of giving a necessary clarification of the vague idea as it 
was at the beginning. We now know better how to tackle the task and what can be done 
and, perhaps even more useful, what cannot be done with the described means. 

The experiences made here with software as a complex structure which is, though 
formal in syntax and semanties, most prominently human-created, are just another piece 
of evidence for the insight that generally the achievable usefulness of a formal inference 
system (not restricted to TRSs) for understanding such human-created complex structures 
is less determined by that system's inference and representation capabilities than by our 
exact knowledge of how and what for we create these structures at all. 

As so often in computer science, our fundamental task here is not to devise better 
algorithms (indispensable, but coming second), but first to find better languages of our 
own thinking. 
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A Source Code of the TBox 

This is the T-Box of the recognized software concepts in KRIS-format: 

SOME ROLES: 

(defprirnrole defines) 

(defprimrole uses) 

(defprirnrole usedBy) 
the inverse of uses 

(defprirnrole isTypeOf usedBy) 
returns the functions and Variables of a Type 

ALL TRE FEATURES: 

(defprimattribute defBy) 
returns the defining Procedure or Module 

(defprimattribute modOfIs) 
returns the Module of a Construct 
note: modOfIs(m) equals m for all Modules m 

(defprimattribute procOfIs) 
analogously with Procedures 

(defprimattribute typeOfIs) 
returns the Type of a Function or Variable 
as a matter of fact, this ought to be a subfeature of uses - however, since 
uses is a role and typeOf is feature, KRIS does not allow this relationship 
to be expressed within the TBox. The ABox-generator has to ensure that uses 
is duly annoted with every typeOf. 

SOME COHCEPTS: 

THESE 5 COHCEPTS FORM TRE BUILDIHG MATERIAL OF TRE T-BOX: 

(defconcept Module (equals modOfIs SELF» 
the definition part is just a security check - a correct ABox grants this. 

(defconcept Procedure (equals prodOfIs SELF» 
the definition part is just a security check - a correct ABox grants this. 

(defconcept Function (and Procedure (some typeOfIs Type» 

(defprimconcept Constant) 

(defprimconcept Type) 

(defprimconcept Variable) 
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SOME ROLES: 

(defprimrole reads (restr uses Variable» 

(defprimrole writes (restr uses Variable» 

MORE CONCEPTS: 

(defconcept ActiveConstruct (or Module Procedure» 

(defconcept PassiveConstruct (or Variable Type Constant» 

(defconcept SubmoduleConstruct (or PassiveConstruct Procedure» 

(defconcept GlobMod (and Module (not (some defBy .top.»» 

(defconcept LocMod (and Module (some defBy Module») 

(defprimconcept GlobConstruct 
(or (and SubmoduleConstruct (some usedBy (not-equals modOfIs modOfIs(SELF»» 

GlobMod» 
this is primitive because even a variable that is never used from outside 
can be a GlobVar if the programmer defined it as global. 

(defconcept LocConstruct (or LocMod (forall usedBy 
(equals modOfIs modOfIs(SELF»») 

(defconcept ProcLocConstruct (and LocConstruct (some defBy Procedure») 

(defconcept ModLocConstruct (and LocConstruct (some defBy Module») 

(defconcept Construct (or GlobConstruct LocConstruct» 
this is intended to be the root of the concept taxonomy 

(defprimconcept Predefined GlobalConstr) 

(defconcept PreOefType (and Type Predefined» 

(defprimconcept BooleanType PreDefType) 

(defconcept GlobProc (and Procedure GlobConstruct» 

(defconcept LocProc (and Procedure LocConstruct» 

(defconcept ProcLocProc (and Procedure ProcLocConstruct» 

(defconcept ModLocProc (and Procedure ModLocConstruct» 

(defconcept GlobType (and Type GlobConstruct» 

(defconcept LocType (and Type LocConstruct» 
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(defconcept ModLocType (and Type MOdLocConstruct» 

(defconcept ProcLocType (and Type ProcLocConstruct» 

(defconcept GlobVar (and Variable GlobConstruct» 

(defconcept LocVar (and Variable LocConstruct» 

(defconcept ProcLocVar (and Variable ProcLocConstruct» 

(defconcept ModLocVar (and Variable ModLocConstruct» 

(defconcept GlobConst (and Constant GlobConstruct» 

(defconcept LocConst (and Constant LocConstruct» 

(defconcept ProcLocConst (and Constant ProcLocConstruct» 

(defconcept ModLocConst (and Constant ModLocConstruct» 

(defconcept AbstrDataObjVar (and ModLocVar (some usedBy InterfaceProc») 
the Var that is encapsulated in an AbstrDataObjMod 

(defprimconcept InputParameter ProcLocVar) 
we cannot ensure here that this parameter is actually used for input only -
it may also be apointer which is derefenced and then written into! 

(defprimconcept Output Parameter ProcLocVar) 

(defconcept Parameter (or InputParameter OutputParameter» 

(defconcept StackVar (and ProcLocVar (not Parameter») 

SOME ROLES 

(defrole definesLocally (restr defines LocConstruct» 

(defrole exports (restr defines GlobConstr» 

(defprimrole calls (restr uses Procedure» 

(defprimrole usesISS (restr uses GlobConstruct» 
a Module usesISS ("in substructure") an extern construct iff the use occurs 
within a Procedure of the Module and not within the Module's declaration 
or statement part (note: there is no Module statement part in C anyway), 

(defprimrole usedISSBy) 
the inverse of usesISS 

THE GOAL CONCEPTS 

PROCEDURE CLASSIFICATION: 
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(defconcept InterfaceProc (and GlobProc (forall usedBy 
(not-equals modOfIs modOfIs(SELF»») 

(defconcept AdHocProc (and Procedure (atmost 1 usedBy ») 

(defconcept UtilityProc (and Procedure (atleast 2 usedBy») 

(defconcept DeadProc (and Proc (atmost 0 usedBy») 

(defconcept SideEffectGuarded (and Procedure (forall reads 
(equals procOfIs SELF»» 

(defconcept SideEffectCause (and Procedure (some writes 
(not-equals procOfIs SELF»» 

(defprimconcept SystemIOCall (and Procedure Predefined» 

(defconcept SystemIOProc (and Procedure (some calls SystemIOCall») 

(defconcept TestProc (and Procedure (some typeOfIs BooleanType) 
(not SideEffectCausing») 

(defconcept DirectRecurProc 
(and Procedure (some calls (equals procOfIs SELF»» 

MODULE CLASSIFICATIOH: 

(defconcept UtilityMod (or (atleast 2 usedBy) 
(some defines (atleast 2 usedISSBy»» 

(defconcept MainMod (and Module (not (some 
(restr defines (or (some usedBy (not-equals modOfIs SELF» 

(some usedISSBy 
(not-equals modOfIs SELF»»»» 

the constructs of in this module are not used from other modules, so it must 
be the module containing the top-level procedure. 

(defconcept AdHocMod (and Module (atmost 1 usedBy) 
(forall defines (atmost 1 usedISSBy»» 

(defconcept DeclarationMod (ar.d Module (forall exports (or Type Constant» 
(forall defines GlobConstr») 

(defconcept FunctionalMod (and Module 
(forall exports (or (and SideEffectGuarded 

(not SideEffectCausing» 
Constant»» 

no GlobTypes allowed to distinguish it from AbstrDataTypeMod 

ModLocVars and uses of GlobVars need not be forbidden, as they would not 
have any effect anyway: the procedures are all SideEffectGuarded, and 
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there is no other channel for information to flow out of the module 
except the procedure parameters. 

(defconcept AbstrDataObjMod (and Module 

(defconcept AbstrDataTypeMod 
(and Module 

(some defines AbstrDataObjVar) 
(forall (restr exports Procedure) 

(some uses AbstrDataObjVar»» 

(forall (restr exports Procedure) 
(some uses (and GlobType 

(equals modOfIs SELF) 
(some isTypeOf 

(and GlobProc 
(equals modOfIs SELF»»») 

(defconcept VirtualDeviceMod (and AbstrDataObjMod (some defines SystemIOProc») 

PROCEDURES ATTACHED TO THESE MODULES: 

(defconcept VirtualIOProc (and GlobProc (some defBy VirtualDeviceMod») 

(defconcept ADTAccessor (and GlobProc (some defBy AbstrDataTypeMod») 

(defconcept ADOAccessor (and GlobProc (some defBy AbstrDataObjMod») 

B Example Program with its ABox 

Here is the main module client. c, which uses the ADT-module wordcount. c and the 
ADO-module wordcountTable. c. The ABox ouput by the generator follows them. 

/* F I L E wordcount.h */ 

#define WORDLEN 32 

#define INVALID -1 

typedef int Bool; 
#define TRUE 1 

#define FALSE 0 

typedef struct { 
char word[WORDLEN] ; 
int count; 

} 

WordCount; 

extern WordCount makeWC(); 
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extern void 
extern void 

extern int 

/* 

deleteWCO; 
printWCO; 

getWCount(). setWCount(); 

F I L E ilordcount . c */ 

/* realizes an abstract data type "WordCount" asscociating a counter ilith 
astring */ 

#include "wordcount.h" 

WordCount makeWC(name, initCount) 
char *name; 
int initCount; 

/* initialization ~arameters */ 

{ 

WordCount *neilWCp; 

newWCp = (WordCount *) malloc(sizeof(WordCount»; 
strncpy(newWCp->ilord, name, WORDLEN); 
neilWCp->count = initCount; 
return *newWCp; 

} 

void deleteWC(wc) 
WordCount wc; 

{ 

free(.hc) ; 
} 

void printWC(wc) 
WordCount wc; 

{ 

printf ("# of 'los' s %d\n". wc.ilord. ilC.count); 
} 

int getCount(wc) 
WordCount ilC; 

{ 

return wC.count; 
} 

int setCount(wcp, neilCount) 
WordCount *wcp; 

{ 

} 

int neilCount; 

int oldCount; 

oldCount = wcp->count; 
wcp->count = newCount; 
return oldCount; 

/* returns the old counter */ 
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Bool valid(wc) 
WordCount wc; 

{ 

return wc.count != INVALID; 
} 

Bool fits(wc, name) 
WordCount wc; 
char *name; 

/* compares the word to a search name */ 

{ 

return Istrncmp(wc.word, name, WORDLEN); 
} 

/* F I L E wordcountTable.h 

#define MAX_WCTABLE_LEN 100 

extern void 
extern void 
extern int 
extern Bool 
extern WordCoullt 

/* 

ini tWCTable() ; 
printWCTableO; 
lengthWCTable(); 
putWC(); 
getWCO; 

F I L E wordcountTable.c 

*/ 

*/ 

/* realizes an abstract data object (the table) as an arry of instances of 
the abstract data type "WordCount" */ 

#include "wordcount.h" 
#include "wordcountTable.h" 

static int currTableLen; 
static WordCount table[MAX_WCTABLE_LEN]; /* the table */ 

/* As a matter of fact, one would usually cluster these two variables in 
one struct variable. This would correspond to their semantics in a bett er 
way, and it would also make "wordcountTable.c" an "AbstrDataObjMod" 
in the sense i n t end e d by the appropriate TBox-definition 
(i. e. there is exactly one "AbstrDataObjVar" referred to by all exported 
procedures. However, since xpass's struct-handling is bugged, and since 
the TBox-definition (see there!) does not enforce there being exactly one 
"AbstrDartaObjVar", we can leave the table in two distinct variables 
as it is here, and "wordcountTable.c" will be classified as an 
"AbstrDataObjMod" nevertheless! */ 

static WordCount invalidWC; /* dummy signalling unknown entry */ 

void initWCTable() 
{ 

} 

invalidWC = D1akeWC("". INVALID); 
currTableLen = 0; 

void printWCTable() 
{ 

/* initialize the dummy */ 
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} 

int i; 

for(i=O; i < currTableLen; i++) 
printWC(table[i]); 

int lengthWCTable() 
{ 

return currTableLen; 
} 

WordCount getWC(name) /* returns an invalid WordCount. if name unknown */ 
char *name; 

{ 

} 

int i; 

for(i=O; i < currTableLen; i++) 
if(fits(table[i]. name» 

return table[i]; 
return invalidWC; /* not found! */ 

Bool putWC(name. value) /* returns success or failure (due to full table) */ 

{ 

} 

/* 

char *name; /* and makes a new entry if there was none for name */ 
int value; 

int i; 

for(i=O; i < currTableLen; i++) 
if(fits(table[i], name» 

break; 
if(i < currTableLen) /* found */ 

setCount(ktable[i]. value); 
else /* not found: make a new entry, unless table full */ 

if(currTableLen == MAX_WCTABLE_LEN) /* table full */ 
return FALSE; 

else /* make a new entry */ 
table[currTableLen++] = makeWC(name. value); 

return TRUE; 

F I L E client.c */ 

/* uses the abstract data object defined in I wordcountTable" and the 
abstract data type "WordCount" */ 

/* #include "stdio.h" */ 
#include "wordcount.h" 
#include "wordcountTable.h" 

main() /* fills an external WordCount-Table with counted occurences */ 
/* of words from the stdin-stream. and finally prints it. as */ 
/* soon as the word "stop" appears */ 

{ 

char name [WORDLEN] ; 
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WordCount wc; 

ini tWCTable 0 ; 
scanf("%s". name); 
whi1e(strncmp(name. "stop". WORDLEH» 
{ 

/* while name != stop */ 

if(valid(wc = getWC(name») /* we had this word (name) before */ 
putWC(name. getCount(wc) + 1); /* increment its counter */ 

else 
putWC(name. 1); 

scanf("Xs". name); 
/* this is the first occurence of this name */ 
/* get next word */ 

} 

} 

printWCTableO; 

HERE COMES THE A-BOX OF THE PROGRAM : 

BooleanType int 
BooleanType BOOL 
BooleanType BOOLEAH 
BooleanType Boo1 
BooleanType Boolean 
PreDefType int 
PreDefType char 
PreDefType short 
PreDefType long 
makeWC uses ./wordcount .h_WordCount 
makeWC typeOfIs ./wordcount . h_WordCount 
. /wordcount . h_WordCount isTypeOf makeWC 
putWC uses . /wordcount.h_Bool 
putWC typeOfIs ./wordcount.h_Bool 
./wordcount.h_Bool isTypeOf putWC. 
getWC uses ./wordcount . h_WordCount 
getWC typeOfIs ./wordcount . h_WordCount 
. /wordcount.h_WordCount isTypeOf getWC 
Module client . c 
client . c modOfIs client . c 
Procedure main 
client.c defines main 
main modOfIs client . c 
main procOfIs main 
main defBy client.c 
main uses . /wordcount.h_WORDLEH 
. /wordcount . h_WORDLEH usedBy main 
client.c usesISS ./wordcount.h_WORDLEH 
./wordcount.h_WORDLEH usedISSBy c1ient.c 
client . c_main_wc typeOfIs ./wordcount.h_WordCount 
./wordcount . h_WordCount isTypeOf client . c_main_wc 
client . c_main_wc uses . /wordcount . h_WordCount 
main uses . /wordcount .h_WordCount 
. /wordcount.h_WordCount usedBy main 
cl ient . c usesISS ./wordcount . h_WordCount 
./wordcount .h_WordCount usedISSBy client . c 
StackVar c1ient.c_main_wc 
main defines client . c_main_wc 
c1ient . c_main_wc procOfIs main 
client . c_main_wc defBy main 
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client.c_main_wc modOtIs client.c 
main uses initWCTable 
initWCTable usedBy main 
main uses scanf 
scanf usedBy main 
main uses strncmp 
strncmp usedBy main 
main uses ./wordcount.h_WORDLEH 
./wordcount.h_WORDLEH usedBy main 
client.c usesISS ./wordcount.h_WORDLEH 
./wordcount.h_WDRDLEM usedISSBy client.c 
main uses valid 
valid usedBy main 
main uses client.c main wc 
client.c_main_wc usedBy main 
main uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy main 
main uses getWC 
getWC usedBy main 
main uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy main 
main uses putWC 
putWC usedBy main 
main uses ./wordcount.h_Bool 
./wordcount.h_Bool usedBy main 
main uses getCount 
getCount usedBy main 
main uses client.c_main wc 
client.c_main_wc usedBy main 
main uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy main 
main uses putWC 
putWC usedBy main 
main uses ./wordcount.h_Bool 
./wordcount.h_Bool usedBy main 
main uses scant 
scant usedBy main 
main uses printWCTable 
printWCTable usedBy main 
Module wordcountTable.c 
wordcountTable.c modDtIs wordcountTable.c 
ModLocVar wordcountTable . c_currTableLen 
wordcountTable . c detines wordcountTable . c_currTableLen 
wordcountTable.c_currTableLen modDtIs wordcountTable.c 
wordcountTable.c_currTableLen detBy wordcountTable . c 
ModLocVar wordcountTable.c_table 
wordcountTable.c detines wordcountTable.c_table 
wordcountTable.c_table modDtIs wordcountTable.c 
wordcountTable.c_table detBy wordcountTable.c 
wordcountTable.c_table typeDtIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeDf wordcountTable.c_table 
wordcountTable.c_table uses ./wordcount.h_WordCount 
ModLocVar wordcountTable.c_invalidWC 
wordcountTable.c detines wordcountTable.c_invalidWC 
wordcountTable.c_invalidWC modDtIs wordcountTable.c 
wordcountTable . c_invalidWC detBy wordcountTable.c 
wordcountTable . c_invalidWC typeDtIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeDt wordcountTable.c_invalidWC 
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wordcountTable.c_invalidWC uses ./wordcount.h_WordCount 
Procedure initWCTable 
wordcountTable.c defines initWCTable 
initWCTable modOfIs wordcountTable.c 
initWCTable procOfIs initWCTable 
initWCTable defBy wordcountTable.c 
initWCTable uses wordcountTable.c_invalidWC 
wordcountTable.c_invalidWC usedBy initWCTable 
initWCTable uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy initWCTable 
initWCTable uses makeWC 
makeWC usedBy initWCTable 
initWCTable uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy initWCTable 
initWCTable uses ./wordcount.h_INVALIC 
./wordcount.h_INVALID usedBy initWCTable 
wordcountTable.c usesISS ./wordcount.h_INVALID 
./wordcount.h_INVALID usedISSBy wordcountTable.c 
initWCTable uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy initWCTable 
Procedure printWCTable 
wordcountTable.c defines printWCTable 
printWCTable modOfIs wordcountTable.c 
printWCTable procOfIs printWCTable 
printWCTable defBy wordcountTable.c 
printWCTable uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy printWCTable 
printWCTable uses printWC 
printWC usedBy printWCTable 
printWCTable uses wordcountTable.c_table 
wordcountTable.c_table usedBy printWCTable 
printWCTable uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy printWCTable 
Procedure lengthWCTable 
wordcountTable.c defines lengthWCTable 
lengthWCTable modOfIs wordcountTable.c 
lengthWCTable procOtIs lengthWCTable 
lengthWCTable detBy wordcountTable.c 
lengthWCTable uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy lengthWCTable 
Procedure getWC 
wordcountTable.c defines getWC 
getWC modOfIs wordcountTable.c 
getWC procOfIs getWC 
getWC defBy wordcountTable.c 
getWC uses ./wordcount.h_WordCount 
getWC typeOfIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOf getWC 
getWC uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy getWC 
getWC uses fits 
fits usedBy getWC 
getWC uses wordcountTable.c_table 
wordcountTable.c_table usedBy getWC 
getWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy getWC 
getWC uses wordcountTable . c_table 
wordcountTable.c_table usedBy getWC 
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getWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy getWC 
getWC uses wordcountTable.c_invalidWC 
wordcountTable.c_invalidWC usedBy getWC 
getWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy getWC 
Procedure putWC 
wordcountTable.c defines putWC 
putWC modOfIs wordcountTable.c 
putWC procOfIs putWC 
putWC defBy wordcountTable.c 
putWC uses ./wordcount.h_Bool 
putWC typeOfIs ./wordcount.h_Bool 
./wordcount.h_Bool isTypeOf putWC 
putWC uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy putWC 
putWC uses fits 
fits usedBy putWC 
putWC uses wordcountTable.c_table 
wordcountTable.c_table usedBy putWC 
putWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy putWC 
putWC uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy putWC 
putWC uses setCount 
setCount usedBy putWC 
putWC uses wordcountTable.c_table 
wordcountTable.c_table usedBy putWC 
putWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy putWC 
putWC uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy putWC 
putWC uses ./wordcountTable.h_MAX_WCTABLE_LEX 
./wordcountTable.h_MAX_WCTABLE_LER usedBy putWC 
putWC uses ./wordcount.h_FALSE 
./wordcount.h_FALSE usedBy putWC 
wordcountTable.c usesISS ./wordcount.h_FALSE 
./wordcount.h_FALSE usedISSBy wordcountTable.c 
putWC uses wordcountTable.c_table 
wordcountTable.c_table usedBy putWC 
putWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy putWC 
putWC uses wordcountTable.c_currTableLen 
wordcountTable.c_currTableLen usedBy putWC 
putWC uses makeWC 
makeWC usedBy putWC 
putWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy putWC 
putWC uses ./wordcount.h_TRUE 
./wordcount.h_TRUE usedBy putWC 
wordcountTable.c usesISS ./wordcount.h_TRUE 
./wordcount.h_TRUE usedISSBy wordcountTable.c 
Module wordcount.c 
wordcount.c modOfIs wordcount.c 
Procedure makeWC 
wordcount.c defines makeWC 
makeWC modOfIs wordcount.c 
makeWC procOfIs makeWC 
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makeWC defBy wordcount.c 
makeWC uses ./wordcount.h_WordCount 
makeWC typeOfIs . /wordcount.h_WordCount 
. /wordcount.h_WordCount isTypeOf makeWC 
wordcount.c_makeWC_newWCp typeOfIs . /wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOf wordcount.c_makeWC_newWCp 
wordcount.c_makeWC_newWCp uses . /wordcount.h_WordCount 
makeWC uses ./wordcount.h_WordCount 
./wordcount . h_WordCount usedBy makeWC 
StackVar wordcount.c_makeWC_newWCp 
makeWC defines wordcount.c_makeWC_newWCp 
wordcount.c_makeWC_newWCp procOfIs makeWC 
wordcount.c_makeWC_nevWCp defBy makeWC 
wordcount.c_makeWC_newWCp modOfIs wordcount.c 
makeWC uses wordcount.c_makeWC_newWCp 
wordcount.c_makeWC_newWCp usedBy makeWC 
makeWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy makeWC 
makeWC uses malloc 
malloc usedBy makeWC 
makeWC uses strncpy 
strncpy usedBy makeWC 
makeWC uses wordcount.c_makeWC_newWCp 
wordcount.c_makeWC_newWCp usedBy makeWC 
makeWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy makeWC 
makeWC uses ./wordcount.h_WORDLER 
. /wordcount . h_WORDLER usedBy makeWC 
makeWC uses wordcount.c_makeWC_newWCp 
wordcount.c_makeWC_newWCp usedBy makeWC 
makeWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy makeWC 
makeWC uses wordcount.c_makeWC_newWCp 
wordcount.c_makeWC_nevWCp usedBy makeWC 
makeWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy makeWC 
Procedure deleteWC 
wordcount.c defines deleteWC 
deleteWC modOfIs wordcount.c 
deleteWC procOfIs deleteWC 
deleteWC defBy wordcount.c 
wordcount.c_deleteWC_wc typeOfIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOf wordcount.c_deleteWC_wc 
wordcount.c_deleteWC_wc uses . /wordcount.h_WordCount 
deleteWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy deleteWC 
Parameter wordcount.c_deleteWC_wc 
deleteWC defines wordcount . c_deleteWC_wc 
wordcount.c_deleteWC_wc procOfIs deleteWC 
wordcount.c_deleteWC_wc defBy deleteWC 
wordcount.c_deleteWC_wc modOfIs wordcount.c 
deleteWC uses free 
free usedBy deleteWC 
deleteWC uses wordcount.c_deleteWC_wc 
wordcount.c_deleteWC_wc usedBy deleteWC 
deleteWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy deleteWC 
Procedure printWC 

52 



wordcount.c detines printWC 
printWC modOtIs wordcount.c 
printWC procOtIs printWC 
printWC detBy wordcount.c 
wordcount.c_printWC_wc typeOtIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOt wordcount.c_printWC_wc 
wordcount.c_printWC_wc uses . /wordcount.h_WordCount 
printWC uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy printWC 
Parameter wordcount.c_printWC_wc 
printWC detines wordcount.c_printWC_wc 
wordcount.c_printWC_wc procOtIs printWC 
wordcount.c_printWC_wc detBy printWC 
wordcount . c_printWC_wc modOfIs wordcount.c 
printWC uses printt 
printf usedBy printWC 
printWC uses wordcount.c_printWC_wc 
wordcount.c_printWC_wc usedBy printWC 
printWC uses . /wordcount.h_WordCount 
./wordcount.h_WordCount usedBy printWC 
printWC uses wordcount . c_printWC_wc 
wordcount.c_printWC_wc usedBy printWC 
printWC uses ./wordcount.h_WordCount 
./wordcount . h_WordCount usedBy printWC 
Procedure getCount 
wordcount.c detines getCount 
getCount modOtIs wordcount.c 
getCount procOfIs getCount 
getCount defBy wordcount.c 
wordcount.c_getCount_wc typeOfIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOf wordcount.c_getCount_wc 
wordcount.c_getCount_wc uses ./wordcount.h_WordCount 
getCount uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy getCount 
Parameter wordcount.c_getCount_wc 
getCount defines wordcount.c_getCount_wc 
wordcount.c_getCount_wc procOtIs getCount 
wordcount.c_getCount_wc defBy getCount 
wordcount.c_getCount_wc modOtIs wordcount.c 
getCount uses wordcount.c_getCount_wc 
wordcount.c_getCount_wc usedBy getCount 
getCount uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy getCount 
Procedure setCount 
wordcount.c detines setCount 
setCount modOtIs wordcount.c 
setCount procOfIs setCount 
setCount detBy wordcount . c 
wordcount.c_setCount_wcp typeOtIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOf wordcount.c_setCount_wcp 
wordcount.c_setCount_wcp uses ./wordcount.h_WordCount 
setCount uses ./wordcount.h_WordCount 
./wordcount.h_WordCount usedBy setCount 
Parameterwordcount.c_setCount_wcp 
setCount detines wordcount.c_setCount_wcp 
wordcount.c_setCount_wcp procOfIs setCount 
wordcount.c_setCount_wcp detBy setCount 
wordcount . c_setCount_wcp modOfIs wordcount.c 
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setCount uses wordcount.c_setCount_wcp 
wordcount.c_setCount_wcp usedBy setCount 
setCount uses ./wordcount . h_WordCount 
./wordcount.h_WordCount usedBy setCount 
setCount uses wordcount.c_setCount_wcp 
wordcount.c_setCount_wcp usedBy setCount 
setCount uses . /wordcount.h_WordCount 
./wordcount . h_WordCount usedBy setCount 
Procedure valid 
wordcount.c defines valid 
valid modOfIs wordcount . c 
valid procOfIs valid 
valid defBy wordcount.c 
valid uses ./wordcount.h_Bool 
valid typeOfIs ./wordcount . h_Bool 
./wordcount.h_Bool isTypeOf valid 
wordcount.c_valid_wc typeOfIs ./wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOf wordcount.c_valid_wc 
wordcount.c_valid_wc uses ./wordcount.h_WordCount 
valid uses ./wordcount . h_WordCount 
./wordcount.h_WordCount usedBy valid 
Parameter wordcount.c_valid_wc 
valid defines wordcount.c_valid_wc 
wordcount.c_valid_wc procOfIs valid 
wordcount.c_valid_wc defBy valid 
wordcount.c_valid_wc modOfIs wordcount . c 
valid uses wordcount.c_valid_wc 
wordcount . c_valid_wc usedBy valid 
valid uses ./wordcount .h_WordCount 
./wordcount.h_WordCount usedBy valid 
valid uses ./wordcount.h_IIVALID 
./wordcount.h_INVALID usedBy valid 
Procedure fits 
wordcount.c defines fits 
fits modOfIs wordcount . c 
fits procOfIs fits 
fits defBy wordcount.c 
fits uses ./wordcount.h_Bool 
fits typeOfIs ./wordcount.h_Bool 
./wordcount . h_Bool isTypeOf fits 
wordcount . c_fits_wc typeOfIs . /wordcount.h_WordCount 
./wordcount.h_WordCount isTypeOf wordcount.c_fits_wc 
wordcount.c_fits_wc uses ./wordcount.h_WordCount 
fits uses . /wordcount . h_WordCount 
. /wordcount.h_WordCount usedBy fits 
Parameter wordcount . c_fits_wc 
fits defines wordcount.c_fits_wc 
wordcount.c_fits_wc procOfIs fits 
wordcount . c_fits_wc defBy fits 
wordcount.c_fits_wc modOfIs wordcount.c 
fits uses strncmp 
strncmp usedBy fits 
fits uses wordcount.c_fits_wc 
wordcount . c_fits_wc usedBy fits 
fits uses . /wordcount.h_WordCount 
. /wordcount.h_WordCount usedBy fits 
fits uses ./wordcount.h_WORDLEN 
. /wordcount . h_WORDLEI usedBy fits 
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wordcount.c uses strncmp 
strncmp usedBy wordcount.c 
wordcount.c uses printf 
printf usedBy wordcount.c 
wordcount.c uses free 
free usedBy wordcount.c 
wordcount.c uses strncpy 
strncpy usedBy wordcount . c 
wordcount.c uses malloc 
malloc usedBy wordcount.c 
wordcountTable.c uses setCount 
setCount usedBy wordcountTable.c 
wordcountTable.c uses fits 
fits usedBy wordcountTable.c 
wordcountTable . c uses ./wordcount.h_Bool 
./wordcount.h_Bool usedBy wordcountTable.c 
client.c uses getCount 
getCount usedBy client.c 
client.c uses valid 
valid usedBy client.c 
client.c uses ./wordcount.h_Bool 
./wordcount.h_Bool usedBy client.c 
client.c uses strncmp 
strncmp usedBy client.c 
client . c uses scanf 
scanf usedBy client.c 
./wordcountTable.h uses getWC 
getWC usedBy ./wordcountTable.h 
./wordcountTable.h uses ./wordcount . h_WordCount 
. /wordcount.h_WordCount usedBy ./wordcountTable.h 
./wordcountTable.h uses putWC 
putWC usedBy ./wordcountTable.h 
. /wordcountTable.h uses ./wordcount.h_Bool 
./wordcount . h_Bool usedBy . /wordcountTable.h 
./wordcountTable .h uses lengthWCTable 
lengthWCTable usedBy ./wordcountTable.h 
./wordcountTable .h uses printWCTable 
printWCTable usedBy ./wordcountTable.h 
. /wordcountTable.h uses initWCTable 
initWCTable usedBy ./wordcountTable . h 
./wordcount.h uses setWCount 
setWCount usedBy ./wordcount.h 
./wordcount.h uses getWCount 
getWCount usedBy ./wordcount.h 
./wordcount.h uses printWC 
printWC usedBy ./wordcount.h 
./wordcount.h uses deleteWC 
deleteWC usedBy ./wordcount.h 
. /wordcount.h uses makeWC 
makeWC usedBy ./wordcount.h 
./wordcount.h uses ./wordcount.h_WordCount 
. /wordcount.h_WordCount usedBy ./wordcount.h 
./wordcountTable.h uses 
usedBy ./wordcountTable.h 

./wordcount.h uses 
usedBy ./wordcount .h 

Type ./wordcount.h_WordCount 
wordcount . c defines . /wordcount.h_WordCount 
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. /wordcount .h_WordCount modOfIs wordcount.c 

./wordcount . h_WordCount defBy wordcount.c 
Type . /wordcount . h_Bool 
wordcount.c defines ./wordcount.h_Bool 
. /wordcount.h_Bool modOfls wordcount . c 
./wordcount.h_Bool defBy wordcount . c 
Macro ./wordcountTable.h_MAX_WCTABLE_LEH 
wordcountTable.c defines ./wordcountTable.h_MAX_WCTABLE_LEH 
./wordcountTable.h_MAX_WCTABLE_LEH modOfls wordcountTable.c 
./wordcountTable.h_MAX_WCTABLE_LEH defBy wordcountTable . c 
Macro ./wordcount.h_FALSE 
wordcount.c defines . /wordcount .h_FALSE 
./wordcount . h_FALSE modOfls wordcount . c 
./wordcount . h_FALSE defBy wordcount.c 
Macro ./wordcount.h_TRUE 
wordcount . c defines ./wordcount.h_TRUE 
. /wordcount . h_TRUE modOfIs wordcount . c 
. /wordcount.h_TRUE defBy wordcount.c 
Macro . /wordcount.h_lIVALlD 
wordcount.c defines . /wordcount.h_lHVALlD 
. /wordcount . h_IBVALlD modOfls wordcount.c 
./wordcount.h_IHVALlD defBy wordcount.c 
Macro ./wordcount . h_WORDLEH 
wordcount . c defines ./wordcount . h_WORDLEH 
. /wordcount.h_WORDLEH modOfls wordcount.c 
./wordcount . h_WORDLEH defBy wordcount.c 

THIS IS THE EMD OF THE EXAMPLE PROGRAM'S A-BOX 
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