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Preface: 
Goals, Issues and Dlrectlons In Machlne 

Learnlng of Natural Language and Ontology 
David M. W. Powers, FB Informatik 

University 01 Kaiserslautern, FRG 
powers@in10rmatik.un~kl.de 

1.INTRODUCTION 

This is it! The AAAI Spring Symposium on Machine Learning of 
Natural Language and Ontology (MLNLO) has become a reality, 
and this volume of 'Working Notes" provides an almost exhaustive 
overview of current work in this area. This is the lirst real opportu­
nity lor researchers Irom all disciplines and all countries to come 
together and explore the relationships between Learning (Human 
and Machine) and Natural Language. We not only have input Irom 
researchers in Computer Science and Artillcial Intelligence 
(Machine Learning, Natural Language, Vision, Neural Nets, Paral­
lelism) but contributions Irom other fjelds (Linguistics, 
Psycholinguistics, Philosophy). 
This Prelace seeks to provide a briel guide to the contributions, 
drawing attention to individual contributions in the context 01 a 
review 01 the field. The content overtaps to a large degree that 01 
[Powe91J, but contains material particular to this symposium. 
The symposium committee hopes that you will enjoy reading these 
contributions and participating in the symposium, and trust that 
you will be as impressOO with the progress represented here as we 
were. 

1.1 Commlttee 

David Powers, Manny Rayner, Larry Reeker, Chris Turk. 

1.2 Reference 

[Powe91] David M. W. Powers, "Goals, Issues and Directions in 
Machine Learning 01 Natural Language and Ontology", SIGART 
Bulletin, 2, #1, January 1991. Also available as SEKI Report SR-
90-14, University 01 Kaiserslautern FRG. 

2.1 Applicablllty of tradltlonal machlne learnlng. 

2.1.1 Introductlon 

Under the heading 01 Machine Learning, we particularly have in 
mind work in concept learning - clearly related to semantics and 
potentially to syntax and pragmatics. We are also interested in the 
role 01 teacher and critic, including automatic generation of exam­
pies, implicit criticism, unsupervised learning etc. Application of 
traditional techniques to facets of language are fundamental in 
that they are immediately accessible and connect with a consider­
able body of previous work. 

2.1.2 Blbllography 

Angluin, Dana and Carl H. Smith, "Inductive Inference: Theories 
and Methods," Computing Surveys, vol. 15, no. 3, pp. 238-269, 
September 1983. 

DeJong, G. and Mooney, R. "Explanation-BasOO Learning: An 
Alternative View" Machine Learning vol. 1, pp145-176, 1986. 
Fisher, D. H., "Knowledge Acquisition via Incremental Concep­
tu al Clustering," Machine Learning, vol. 2, pp. 139-172, 1987. 

Forsyth, R. and R. Rada, Machine Learning: Applications in Expert 
Systems and Inlormati9n Retrieval, Ellis Horwood, Chichester, 
1986. 

Haussier, D., "Learning conjunctive concepts in structural 
domains," Machine Learning, vol. 4, pp. 7-40, 1989. 

Helmbold, D., R. Sioan, and M. K. Warmuth, "Learning nestoo dif­
ferences of intersection-closed concept clasS8s," Machine 
Learning, vol 5. pp. 165-196, 1990. Also available as UCSC­
CRL-8919, Comp. Res. Lab., Univ. California Santa Cruz, 1989. 

Hunt, E. B., J. Marin, and P. J. Stone, Experiments in induction, 
Academic Press, New York NY. 

Laird, J. E., P. S. Rosenbloom, and A. Newell, "Chunking in SOAR: 
The Anatomy of a General Learning Mechanism," Machine 
Learning, vol. 1, pp. 11-46, 1986. 

Langley, P., "Learning search strategies through discrimination," 
Int'l Jnl of Man-Machine Studies, vol. 18, pp. 513-541, 1983. 

Lenat, D. B., "EURISKO: A Program That Learns New Heuristics 
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and Domain Concepts; The Nature 01 Heuristics and Domain 
Concepts,n Artificiallntelligence, vol. 21, no. 1, pp. 61-99, 1983. 

Michalski, R. S., I. Mozetic, J. Hong, and N. Lavrac, "The multi­
purpose incrementallearning system AQ15 and its testing appli­
cation in three medical domains.," Proc. AAAI-86, Philadelphia 
PA,1986. 

MitcheII, T. M., Keller, R. M. and Kedar-Cabelli, S. T., "Explanation­
Based Generalization: A Unifying View" Machine Learning, vol. 
1, pp47-80. 

Muggleton, S. and W. Buntine, "Machine invention of first-order 
predicates by inverting resolution," Proc. 5th Int'l Conf. on 
Machine Learning, pp. 339-352, Morgan Kauffman, San Mateo 
CA,1988. 

Quinlan, J. R., "Induction 01 decision trees," Machine Learning, 
vol. 1, pp. 81-106, 1986. 

Riesbeck, Christopher K., "Failure-driven Reminding lor Incre­
mental Learning," 7th International Joint Conlerence on Artilicial 
Intelligence, pp. 115-t20, 1981. 

Samuel, A. L., "Some studies in machine learning using the game 
01 checkers 11 - recent progress," I BM Jour. R & D, vol. 11, no. 
6, pp. 601-617, 1967. 

Sam mut, Claude and R. Banerji, "Learning concepts by asking 
questions,n in Machine Learning: an Artilicial Intelligence 
Approach, 00. R. S. Michalski, J. G. Carbonell and T. M. MitcheII, 
vol. 2,1986. 

Shapiro, E., "A general incremental algorithm that infers theories 
Irom facts," Proc. 7th IJCAI, pp. 446-451, 1981. 

Winston, P. H., "Learning structural descriptions from examples," 
in The Psychology 01 Computer Vision, McGraw-Hill, 1975. 

2.1.3 Slgnlficance 

We here pick out some of the above work lor particular comment, 
singling out that which has been particularly influential and 
crudely indicating streams of development. 

Angluin's work is highly regarded itsell (see also section 2), and 
the review presented here is a good place to start lor a survey 01 
inductive methods. 

Samuel's checker playing programs is one of the first major suc­
cess stories 01 machine learning, and indeed the signature table 
technique can be said to be aprecursor 01 both today's neural 
network tradition (see section 5) and the statistical approaches 
represented by the line 01 Hunt, Michalski and Quinlan, which 
has become particularly influential lor Knowledge Engineering 
purposes (Automatic Acquisition 01 rules lor Expert Systems). To 
the extent that language is regarded as rule based, there is an 
obvious potential lor application 01 these techniques 01 rule 
learning, and in particular classilication. Such techniques have 
been used in MLNL (see section 7). 

Forsyth and Rada is a reasonable text, particularly in relation to 
this type of learning, but also in relation to evolutionary learning. 
On this point, it may be noted that there are criticisms that lan­
guage cannot be learnt (see section 2) but that language 
behaviour is selected from an evolved capacity for language. 
These can in part be answered by pointing out that we could 
actually employ, lor Machine Learning, any "techniques" used by 
such evolution - although we may not be happy with the time 
scalel 

The work of Winston and the line 01 Banerji, Cohen and Sammut 
on developing logical representations 01 concepts, is particularly 
interesting for its showing that the role 01 teacher may be sepa­
rated from that 01 critic. In Sammut's system, after a 
generalization step the system provides its own new example to 
test the validity 01 the generalization, and only requires positive 
or negative criticism. The teacher need only provide the initial 
(positive) example. The critic must provide feedback on every 
example. This type of approach is particularly appropriate lor 
learning of semantics. It is primarily in a neural network or statis­
tical context that I am aware of inductive learning applications 
where criticism is not used (see sections 4 & 5). 

But there are types of learning other than induction, the learning 
of new concepts or rules. There is also learning to do things bet­
ter or laster. Explanation-based learning (Mitchell et al., DeJong 
and Mooney), the version space technique (MitcheII), EURISKO 
(Lenat) and Chunking (Laird et al.) have also their applications to 











just beginning to re-emerge in the face 01 rampant nativism. 

Moving from those papers directly concerned with language 
learning, we come first to the generalization where a whole cul­
ture and language is incompletely learned and gene rates pidgins 
and creoles. In such a context where the learners come Irom a 
mix 01 language backgrounds and learn the words but not the 
grammar 01 a new "common" language, a new creole grammar 
emerges which is relatively independent of all 01 the originallan­
guages. Bickerton presents an interesting paper on this 
phenomenon. It would seem that it should contribute to our mod­
elling 01 default preferences during language learning, and that it 
should be contrasted with child grammars. These challenges 
have yet to be taken up. 

Moving lurther alield, we come to the famous paper of Miller on 
the "Magic Number Seven", which challenges us to take our 
known Cognitive Restrictions into account, and is really the key 
ingredient in finding a solution to the innateness debate and the 
theoretical conundra of section 3. And then there is Huey's clas­
sic on reading - the only work Irom last century cited in this 
review. Techniques of lollowing eye motion and examining our 
reading behaviour can also provide insights into language behav­
iour, and help explain some of the behaviour 01 our learning 
programs too. 

Extending from MLNL to MLNLO, leads us to consider important 
work related to our ontology, and 01 course the visual modality 
which we leel is so dominant and wh ich is one 01 the most weil 
explored areas 01 cognition. Here the work 01 Hubel and Wiesel 
is again ciassic - and has been the basis lor some experiments 
on self-organization neural models, both lor vision and language 
(Powers, section 4), whilst the work 01 Pylyshyn is directly com-
plementary to some Psycholinguistic studies. . 

4.5 Goals and Issues 

GOALS: To provide the empirical evidence for the rales 01 innate 
knowledge and specific and general learning mechanisms, as 
weil as for environmental conditions inciuding parents and other 
human supervisors and critics plus the physicallaws and feed­
back deriving Irom physiological constraints. 

ISSUE: How much is (necessarily) innate? From how minimal a 
base state can learning be effective in bootstrapping? 

ISSUE: How much supervision, teaching and criticism is neces-­
sary for effective learning? To what extent can a reactive 
environment substitute? What cognitive constraints shape our 
languages? 

4.5.1 In thls volume 

In this volume, Mallory Selfridge addresses the question of how 
children leam to recognize ungrammatical sentences - the ques­
tion 01 negative information again. James Martin looks at the 
problem of how children acquire and distinguish the manilold met­
aphors which are part and parcel of language. By way of contrast, 
Steven Lytinen and Carol Moon consider second language acqui­
sition, bootstrapping from one language to another. 

5. PARALLEL NETWORKS 

5.1 Neural models of parsing and leemlng. 

There is a separate parallel symposium on "Connectionist Natural 
Language Processing". For reason we are most concerned here 
with the advantages 01 neural approaches over conventional 
machine learning OR wlth deep modelling of neurolinguistic pre>­
cesses, rather than with application 01 backpropogation in this or 
that area - there is really just too much 01 an explosion in Connec­
tionism to do justice to it here - we provide the fundamental 
relerences but no more. But we expiore In other directions. In par­
ticular, we are interested in hard neurological evidence and the 
associated theories. 

5.2 Parallel models of parsing end learnlng. 

Implementations on parallel hardware are also 01 interest, as are 
parallel or parallelized algorithms and theoretical contributions on 
the role, parallelism, backtracking etc. in language and leaming 
processes. 
The interest in parallel parsing goes back just as lar as the roots 
of connectionism - in lact there has been a long standing assump­
tion that natural language parsing was inherently parallel. This 
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debate is starting to favour the view that it is not. even with out 
backtracking. But there is still evidence that our own brains do use 
at least a partly parallel pracess. 

5.3 Blbllography 

This very short list points to both tha old school and the new aga 
of associative and neural networks, as weil as the only parallel 
languaga learning proposals I am aware of. 

Amari, S. and M. A. Arbib, Competition and Cooperation in Neural 
Nets, Springer-Verlag, Berlin GDR, 1982. 

Charniak, E. and E. Santos, "A connectionist context-free parser 
which is not context-Iree, but then it is not really connectionist 
either," Proc. 9th Conf. 01 the Cog. Sei. Soc., pp. 70-77, Seattle 
WA, July 1987. 

Fodor, J. A. and Z. W. Pylyshyn, "Connectionism and cognitive 
architecture: A critical analysis," Cognition, vol. 3, pp. 3-72, 
1988. 

Gigley, H. M., "Artilicial Intelligence meets Brain Theory: An Inte­
grated Approach to Simulation Modelling 01 Natural Language 
Processing," Proceedings 01 the Sixth European Meeting on 
Cybernetics and Systems Research, North-Holland, 1982. 

Gigley, H. M., Neurolinguistically Constrained Simulation of Sen­
tence Comprehension: Integrating Artificial Intelligence and 
Brain Theory, Ph.D. Thesis, University 01 Massachusetts. 
Amherst Massachusetts, 1982. 

Gigley, H. M., "From HOPE en I'ESPERANCE: On the Role 01 
Computational Neurolinguistics in Cross-Language Studies," 
Proceedings of Coling84, pp. 452-458, Association for Compu­
tational Linguistics, 2-6 July 1984. 

Grossberg, S., "Contour Enhancement, Short Term Memory, and 
Constancies in Reverberating Neural Networks," Stud. App. 
Math., vol. LlI, no. 3, pp. 213-257,1973. 

Grossberg, S., "Adaptive Pattern Classilication and Universal 
Recoding: I. Parallel Development and Coding of Neural Fea­
tures," Biol. Cyb., vol. 23, pp. 121-134, 1976. Sequel: 11. 
Feedback, Expectation, Olfaction, Illusions (pp. 187-202) 

Grossberg, S., "On the Development 01 Feature Detectors in the 
Visual Cortex with Applications to Learning and Reaction-Diffu­
sion Systems," Biol. Cyb., vol. 21, pp. 145-159, 1976. 

Hebb, D. 0 ., Organization and Behaviour, Wiley, New York, 1949. 
Hinton, G. E., "Representing part-whole hierarchies in connec­
tionist networks," Proc. 10th Conf. of the Cog. Sei. Soc., pp. 48-
54, Montreal, 1988. 

Holbach-Weber, Susan, "Connectic..nist Models and Figurative 
Speech", DFKI TM-89-0 1, Deutsches Forschungzentrum fuer 
KI, Saarbruecken FRG 1989. 

Jain, Sanjay and Arun Sharma, "Language Learning by a 'Team'," 
Proc. ICALP'90, 1990. 

Kohonen, T., "A Simple Paradigm for the Self-Organized Forma­
tion 01 Structured Feature Maps," in Competition and 
Cooperation in Neural Nets, ed. S. Amari and M. A. Arbib, pp. 
248-266, Springer-Verlag, 1982. 

Kohonen, T., "Self-Organized Formation of Topologically Correct 
Feature Maps," Biol. Cyb., vol. 43, pp. 59-89, 1982. 

Kohonen, T., "Analysis of a Simple Sell-Organizing Process," Biol. 
Cyb., vol. 44, pp. 135-140, 1982. 

Lachter, J and T. G. Bever, "The relation between linguistic struc­
ture and associative theories 01 language learning - A 
constructive critique of some connectionist learning models," 
Cognition, vol. 28, pp. 195-247, 1988. 

Longuet-Higgins, H. C., David J. Willshaw, and O. P. Buneman, 
''Theories 01 Associative Recall," atly Revs Biophysics, vol. 3, 
no. 2, pp. 223-244,1970. 

Malsburg, C. von der, "Sell-Organization 01 Orientation Selective 
Cells in the Striate Cortex", Kybernetik, vol. 14, pp. 85-100, 
1973. 

Pinker, Steven and A. Prince, "On language and connectionism: 
Analysis 01 a parallel distributed processing model 01 language 
acquisition," Cognition, vol. 3, pp. 73-193,1988. 

Pollack, J. B., ''Cascade back-propagation on dynamic connec­
tionist networks," Proc. 9th Mtg 01 Cog. Sci. Soc., pp. 391-404, 
Seattle WA, 1987. 

Pollack, J. B., ''Connectionism: past, present and future," AI 
Review, vol. 3, pp. 3-20, 1989. 

Powers, David M. W., "Neurolinguistics and Psycholinguistics as a 





Speak: A Case Report," in Contemporary Issues in Develop­
mental Psychology, 00. E. Endler, L. Boulter, and H. Osser, pp. 
403-411, Holt, Rhinehart and Winston, New Vork, 1968. 
Reprinted from Journal of Abnormal and Social Psychology, 
1962, Vol 65, pp 419-425. 

Lerner, E. J., "Computers That See," IEEE Computer, vol. 17, no. 
10, pp. 28-33, October 1980. 

Lettvin, J. V., H. R. Maturana, W. S. McCulioch, and W. H. Pitts, 
"What the Frog's Eye Teils the Frog's Brain," ProceOOings of the 
Institute of Radio Engineers, vol. 47, no. 11, pp. 1940-1951, 
November 1959. 

MarshalI, John C., "Language Acquisition in a Biological Frame of 
Reference," in Language Acquisition: Studies in First Language 
Development, ed. P. Fletcher and M. Garman, pp. 437-453, 
Cambridge University Press, Cambridge UK, 1979. 

McCarthy, J., L. D. Earnest, D. R. Reddy, and P. J. Vicens, "A Com­
puter with Hands, Eyes, and Ears," AFIPS Conf. Proc. Fall JCC 
1968, vol. 33:1, pp. 329-338,1968. 

Newell, A., "Physical Symbol Systems," Cognitive Science, vol. 4, 
pp. 135-83, 1980. 

Piaget, Jean, The Child's Conception of the World, Kegan Paul, 
Trench, Truber and Co., London UK, 1929. 

Piaget, Jean, The Construction of Reality in the Child, Basic 
Books, New Vork, 1954. Original Tille: 'La Construetion du Reel 
chez l'Enfant. 

Powers, David M. W., "Robot Intelligence," Eleetronics Today 
International (Australia) , pp. 15-18, December 1983. 

Pribram, K. H., Languages of the Brain, Prentice-Hall, Englewood 
Cliffs, NJ, 1971. 

Pustejovsky, James, "On the acquisition of lexical entries: The per­
ceptual origin of thematic relations," Proc. 25th Ann. Mtg of the 
Association for Computational Unguistics, pp. 172-178, 1987. 

Pylyshyn, Z. W. , The robot's dilemma: The frame problem in artifi­
cial intelligence, Ablex , Norwood NJ, 1987. 

Reeker, Larry, "The interplay of semantic and surface structure 
acquisition," in Recent Advances in the Psychology of Lan­
guage, ed. R. Campbell and P. Smith, vol. 2, pp. 71-90, Plenum 
Press, 1978. 

Sam mut, Claude and David Hume, "Learning concepts in a com­
plex robot world," in Machine Learning: a Guide to Current 
Research, Kluwer, Boston MA, 1986. Shepard, R. N. and L. A. 
Cooper, Mental images and their transformations, MIT Press, 
C~mbridge MA, 1982. 

Sioman, Aaron and Monica Croucher, 'Why Robots will have Emo­
tions," 7th International Joint Conference on Artificial 
Intelligence, pp. 197-202, 1981. Tanz, Christine, Studies in the 
Acquisition of Deietic Terms, Cambridge University Press, Cam­
bridge UK, 1980. 

Turbayne, C. M., The My1h of Metaphor, University of South Caro­
lina Press, Columbia, South Carolina, 1971. 2nd Ed. 

Wales, Roger, "Deixis," in Language Acquisition: Studies in Firsl 
Language Development, ed. P. Fletcher and M. Garman, pp. 
241-260, Cambridge University Press, Cambridge UK, 1979. 

Widerstrom, Anne, "Mothers' Language and Infant SensoriMotor 
Development: Is there a Relationship," Language Learning , vol. 
32, no. 1, pp. 145-166, 1982. 

6.4 Slgnlficance 

The catch-phrase "Symbol-Grounding" has been popularized pri­
marily by Harnad, who has been interested in it from a 
philosophical view and ~ an exponent of Total Turing Tesl versus 
the Tunng Test (in relation to Searle's Chinese Room). The prob­
lem is that no matter how many time you translate your text to a 
new "representation language' you still have a language com­
posed of symbols and no possibility 01 real meaning or 
understanding. Where does our meaning and underslanding come 
!rom? 
The work referenced here is quite varied, varying from a text on 
how to learn a language monolingually (Brewester and 
Brewester), to various world modelling projeets, including Lenat's 
CVC projeet and Carbonell and Hood's World Modelers Projeet. 
Lenat sees the problem of representation as being much more 
pressing than learning at this time, and his project is not supposed 
to start ItS automatic acquisition phase till 1994. 
On a sm aller scale, Hume and Powers have developed a Robot 
World modelling system for language learning work (used also by 
Sam mut for concept learning; see also seetion 7), and many oth-
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ers have worked with or proposed similar schemes, including, as 
~arly examples, Block et al. and McCarthy et al. The .Naive Phys­
ICS Manlfesto of Hayes encourages movmg to the blg time - toy 
world's are only good for toy systems, so sometime we have to 
represent the world more realistically. 
Others researchers have concentrated on particular problems or 
manifestations - this includes the work of Sioman and Croucher 
and that of Pylyshyn. 
Moving furt her back to the fundamental psycholinguistic and neu­
rolinguistic study of how we develop our ontology and semantics, 
we come to some classics. Lettvin et al. on frog vision, and Piaget 
and Lenneberg on langua~e understanding in normal and abnor­
mal circumstances respeetlvely. Lerner and Marshall provide more 
recent perspectives. Then there is Jolley's whimsical attempt to 
catalogue the whole of knowledge - on the basis of similarities 
which run orthogonally across all areas and levels of knowlOOge. 
Again metaphor is an important part of the answer to symbol 
groundin\1. Once the world has made an iconic image somewhere 
in our bram, we have an imperfect reflection of reality. We continue 
to abstraet and manipulate this in a way determined by our expe­
rience, that is by similarity to wh at we have experienced in the 
past, in the same or in different modalities, and always in at least 
slighlly different contexts. The frame problem arises when we 
make our concepts to sm all and forget that in fact we tend to be 
present whole frames in each modality, and it is these we compare 
and process. 
Irrespective of whether Harnad is right about characterizing this as 
being the major problem for Natural Language and Artificial Intel­
ligence, Symbol Grounding is currently one of the weakest areas, 
and these few pointers here need to be paid more attention and to 
9 row into resources for future MLNLO work. 

6.5 Goals and Issues 

ULTIMATE GOAL: To have language used effectively by the com­
puter for the purpose we intend. 

ISSUE: When are we just translating from one language to 
another? When are we doing more: understanding, communicat­
ing, intending? Where does a computer derive its motivation 
from? Its programmer? Where do we derive our motivation 
from? 

TOV SUB GOAL: To provide a toy environment in which the above 
is achieved. 

REAL SUB GOAL: To achieve this in an actual application 
environment 
ISSUE: How similar a sensory-motor environment and perceptual 

interface to OViS is neOOed to allow learning of language? And 
what criterion do we learn to? 

6.5.1 In thls volume 

Harnad presents the Symbol Grounding Problem, and consider 
Neurological and Neural Network findin~s which support a thesis 
these networks have natural classificatlon propertles, such that 
the categories which arise could form the ground level for a symbol 
system . 
Siskind argues also for asolid lexical semantics in the form of a 
naive physics and introduces a system providing such a mecha­
nism. Weber and BarteIl also tackles thls problem: Weber in the 
context of toy domain involving geometric objects; BarteIl in the 
dynamic domain provided by a billiard table simulation. Jeffrey 
Siskind acquires new word meanings from dynamic conjunction of 
sequences of conceptual struetures and correlated language 
input. 
Honavar looks at learning across multiple modalities in a dynamic 
community of simulated language users, bein\1 born, living a while 
and dying. He argues for the need for learnlng, vision and lan­
guage to be treated together. 
It is also possible to learn new semantics second hand, from a die­
tionary, or lrom usage in context. Brent and Zernik looks at what 
can be acquired from a corpus, examining the range of usage of a 
word. Hearst seeks to make use both of a machine readable dic­
tionary and corpus data. 
Peter Hastings and Steven Lytinen acquire their semantics in the 
more conventional context of a IS-A hierarchy, again examining 
what can be learned by trecking word usage. 

7. SYSTEM DEVELOPMENT 

7.1 Computable hypotheses and heurlstlcs for language 
leamlng. 

















From Rules to Principles in Language Acquisition: A View from the Bridge 
Robert C. Berwick, MIT Artificial Intelligence Laboratory 

The central goal of the research program in language acquisition at the MIT AI Lab over the past 8 years has been 
to build implemented, computational models of language acquisition that can work with real databases of parental 
speech and acquire substantial grammars of different languages. We aim to link grammatical theories and computer 
models of learning by explicit computer models, while maintaining cognitive fidelity constraints on input complexity, 
time, and the like. Our ultimate goal, as attested by the associated research of our students and colleagues at this 
workshop (Brent, Siskind, Clark) is to model in detail all aspects of language acquisition: to bootstrap lexical­
conceptual and syntactic category knowledge what we know about infants' cognitive capacities; learn word meanings 
from "reading" unrestricted text; and model later stages of syntax and word acquisition. 

In the period 1979-84, these efforts were focused on building an acquisition model that used the then-current "rule­
based" representations of syntactic structure and an associated parser. (Berwick, 1979, 1984; 1982 thesis summarized 
in 1985). Within that framework, several important results were obtained about the constraints required to guarantee 
learning from positive-only examples (explicit negative examples being assumed cognitively implausible, as is standard 
in the language acquisition field), and at the same time ensure efficient parsability. The implemented computer model 
could acquire roughly 100 if-then English-particular rules under a variety of relatively natural positive-only sentence 
presentations with no prescribed training sequence, at each step yielding an efficient (deterministic) parser. This 
system worked by incrementally constructing a single new if-then rule based on its inability to parse a novel example 
sentence. Significant formal results ("learnability theory") included reformulation and application of Gold (1967) 
and Angluin's (1978) "subset principle" to Iinguistic examples, as a necessary and sufficient condition on positive­
evidence acquisition, and demonstration that efficient parsability implied learnability from simple evidence, in that 
the constraints that ensured deteterministic parsing also guaranteed learnability. The subset principle was later 
extensively extended and applied to linguistic examples and psycholinguistic experiments by Wexler and Manzini 
(1987) and Wexler and Chien (1991). 

However, there are large problems with the rule-based theory. First, the system does not allow for errors or 
retraction of acquired rules; learning was monotonic, in the face of much evidence to the contrary, such as 2-object 
dative constructions. Second, it was never demonstrated for other languages. Third, the system does not work in the 
face of ungrammatical or noisy input. Fourth, linguistic theory itself has changed, replacing large numbers of language 
idiosyncratic rules with a handful declaratively-stated universal constraints ("principles") that vary parametrically 
over a small range. In this more recent view, acquisition of syntax amounts to setting the parameter values, e.g., 
whether a language is head-first (Iike English) or head-final (like Japanese). Our current work is designed to put 
this ne wer model to explicit computational test, comparing it to the rule-based view (for a related view comparing 
principle vs. rule-hased approaches, see Fodor and Crain, 1990). To do this, we have constructed the first complete 
parsing model for a principle-based theory (in the sense of being an efficient parsing system that incorporates the 
entire range of a modern principle-based theory); see Fong and Berwick, 1989; Berwick and Fong, 1991 forthcoming; 
Fong, 1991. We can show that by changing just 5 parameters from their English settings we can get a system that 
handles an interesting subset of the typologically distinct constructions of Japanese, as predicted by the theory. To 
connect this to acquisition, we are at present using Clark's genetic algorithm approach to learning the parameter 
settings from unedited motherese as taken from the Childes database (MacWhinney, 1987), using German and 
English (and eventually, Spanish, Italian, French, etc.) Preliminaryexperiments indicate that acquisition of full 
basic tree structures ("Xbar theory") can be accomplished quite readily by using Clark's basic scheme within 150 
or so iterations, using unedited text fragments. In fact, these results show that a rule-based system like Fodor and 
Crain's would work as weil as a parameterized system in this domain. Further experiments using actual motherese 
and a fully parameterized model tied to the parametric parser are underway as this is being written. 
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1 Introduction: rule-based acquisition 

A central problem for implemented naturallanguage acquisition and machine learning models is the link between 
parsability and learnability, and the connection between grammatical theories and computer acquisition models. 

As a language or a natural grammar is being learned, parsing must evolve hand-in-hand, but obviously one 
cannot assurne that the parser is completely in place. This would assurne knowledge of the grammar to be acquired 
in the first place. On the other hand, if the parser is undeveloped, then example sentences cannot be processed to 
learn the grammar. To reconcile this paradox, most implemented computer models of syntax acquisition assurne an 
error-driven system: an unparsable example sentence forces an incremental change in the system's existing grammar, 
typically, the addition or modification of a single, very particular rule. If an example is fully parsable with existing 
rules then no change occurs. 

This method had some success and led to interesting mathematical proofs of convergence (Wexler and CuJicover, 
1980), working computer models based on specific parsers like the Marcus parser (Berwick, 1979; 1985), and for­
malized links between easy parsability and learnability (Berwick, 1984; Berwick and Wexler 1987) . The Berwick 
model could acquire 100+ if-then rules as used by the Marcus parser from grammatical (positive) input examples, 
presented in no particular training sequence. Syntactic category information and an accurate thematic structure for 
senten ces ("who did what to whom") was assumed, as weil as most morphological preprocessing these are obviously 
overly strong constraints that must be relaxed in a more cognitively faithful model (as is being done by our other 
research group members like Siskind and Brent). The output was a representation of syntactic sentence structure 
as pictured hy a then-current transformation al theory along with a thematic (case frame) representation. At each 
step, the system attempted to parse the input sentence with its current set of if-then grammar rules, in (somewhat 
modified) Marcus parser form. The if portion of the rule was a predicate true of a (approximately) 3-cell input 
buffer holding words or partially built phrases and the top of a pushdown stack, while the then portion of a rule was 
a single action that could attach one part of a syntactic tree to the top of the stack, create a new phrase, or switch 
the 1st and 2nd buffer cell contents. If these rules blocked because none applied, or because the output thematic 
structure did not match that paired with the input senten ce, the system would attempt to build a single new rule 
that would work; if not, it would not process the senten ce further at that stage. (This last condition provided a 
simple kind of simplicity filtering on the input sentences, yielding the presentation order invariance properties of the 
system.) 

This is a simple error-driven model. Nonetheless, the results were still of interest, since they showed that: 
(1) inference of a full language could proceed on the basis of just simple positive sentences (degree of embedding 
2 or less); (2) inference was order-insensitive (it could speed up or slow down depending on the presentation of 
example sentences, and in fact being faster given the richer percentage of construction types found in motherese); 
l3) inference was possibly only if one applied a generallearning constraint, the subset principle, first formulated in a 
recursive-function theory context by Angluin (1978), such that the system ordered rule hypotheses so that the most 
narrow language was always guessed first or so that a guessed, possibly overly-general (superset) language always 
nonoverlapped with the correct (improper) subset target; and (4) inference constraints matched those proposed in 
Wexler and Culicover's (1980) mathematical model for the acquisition of a transformation al grammar, and guaranteed 
efficient parsability. In particular, the learning model obeyed specific locality constraints: e.g., rules could not operate 
over unbounded domains, nor in some way set up conditions to "hide" possibly incorrect rules over unbounded 
domains, exactly the Wexler and Culicover conditions for learnability that happened also to ensure bounded context 
(efficient) parsability. In addition, Berwick (1982, 1985) showed that all of the learning principles then advanced in 
linguistic theory could be placed under the rubric of the subset principle. 

As an example of the subset principle in operation, consider the arguments to verbs, e.g., direct object, indirect 
object, propositionalobject. The subset principle would claim that arguments are obligatory until positive evidence is 
received to indicate the contrary, since the obligatory argument assumption results in a narrower generated language; 
if the learner first assumed that arguments were optional, and if this assumption were wrong, then no positive 
evidence could count~r this assumption, since the obligatory appearance of arguments would be a subset of the 
optional argument hypothesis. 

Problems with rule-based acquisition models. The very nature of such error-driven rule-based methods is 
their downfall. Since they assurne that input will be error-free and consistent, such models cannot readily cope with 
the actual "ill-formed" or fragment input found in maternal speech. In addition, it is difticult to see how such systems 
can be extended to different languages: for example, such a system has difficulties in languages like German where 
simple senten ces will appear to be Subject-Verb-Object (via verb movement to the verb second position), but more 
complex embedded clauses will reveal the "true" verb-final character of German. Ir the model (or child) receives or 
can process simple examples first, then this will lead to an assumed SVO order that is violated later on . In general, 
retraction of hypotheses in such models is difficult. Examination of acquisition envelope curves shows that learning 
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is "too good": it is monotonic, with no false steps, which is surely not true of actual acquisition. Overgeneralization 
followed by retraction does occur, it has been argued, for dative verbs in English, among others. 

Perhaps most importantly, though, the representation of grammatical knowledge has changed radically in the past 
decade. Recent shifts in linguistic theory, from language-particular, construction-based rules to deelaratively stated 
universal constraints or "principles", have rendered many older accounts of syntactic natural language acquisition 
(e.g., Wexler and Culicover 1980) or computer models (e.g., Berwick, 1979; 1982; 1985) obsolete, because these 
models assumed many language particular if-then type rules. These rule-based models cannot accommodate current 
linguistic theories that replace many hundreds, even thousands of construction specific rules like passive or dative 
with a much sm aller set of interacting constraints or principles. Our research goal is to see if this change matters for 
computer acquisition models. 

On this more recent view, there is no "rule" of passive, which is epiphenomenal, but rather a set of deductive 
possibilities arising from more basic axioms that set the basic branching structure of a \anguage's phrases (head 
initial-English, French; head fina\-J apanese; mostly head final-German); the direction of case frame or thematic role 
assignment (left to right in English; right to left in J apanese), and so forth. On this view, acquisition amounts to the 
setting of parameters given example sentence evidence. While this more modern account accounts for the parametric 
variation observed ac ross the Romance languages, modern Germanic languages, and some Asian languages, until 
recently it has had few computer implementations, and these have been incomplete. What has been lacking is a 
fuH implementation of a parameterized, principle-based parser and a successful parameter setting algorithm. "Toy" 
systems have been built that attempt to set a few parameters in a straightforward sequential way, but these do not 
come elose to the full set of perhaps 24 distinct modules each with 3 or 4 parameters to set, and it is not clear 
that sequential learning will work when scaled up; it is quite easy to get into paradoxical learning sequences where 
a parameter is first set (as in German), only to have to undo it. (In fact the situation here is far worse than with 
rules .) In addition, with even, say, 24 modules with 3 or 4 settings, we have 100 parameter values and thus a huge 
space of possibilities (all the ways of choosing 24 values from 100); this requires too much time and data. 

For an explicit computer evaluation, the first step, then, is to a complete principle-based parser; show it can work 
for multiple languages; and then develop an acquisition model for it. To deal with the multiple-parameter problem, we 
have chosen to couple our principle-based parser coupling that to Clark's genetic algorithm for parameter acquisition. 

The first stage for building a parameter-based acquisition model is to implement a full-ftedged principle-based 
parser that can be parameterized for different languages. This has been met by Fong's implementation of such a 
parser (in Prolog, see Fong and Berwick, 1989; Fong, 1991) that contains 25 interacting modules parameterized in a 
few ways each. The parser can successfully cover many hundreds of construction types (not just sentences), in fact, 
the full range of sentence examples used in a current principle-based linguistic textbook, by Lasnik and Uriagerreka 
(1988). We will describe how such a parser was readily modified, simply by changing just a few parameters to account 
for a similar range of J apanese sentences. Thus the parsing system can represent an family of parsers. 

We can then turn to the second stage in building a parameterized acquisition model: the parser can be coupled to 
a simulated evolution (genetic) algorithm to select the right parameters for a given language. The genetic algorithm 
is designed to be robust against noise, and we have also accommodated the problem of so-called ill-formed input 
by using Clark's metric of number of structures returned as the metric of 'fitness'. With this metric, even partially 
well-formed sentences can provide useful input to the learning system. 

Let us first describe the parsing model, and then turn to a brief review of the preliminary acquisition experiments 
that have been carried out by under our direction by our student de Marcken. 

2 Parsing with parameters: English vs. Japanese 

Principle-based language analysis aims to reconstitute the vocabulary of grammatical theory in such a way that 
constructions like passive follow from the deductive interactions of a relatively small set of declarative, conjunctive, 
node admissibility conditions (the principles). The principles themselves are drawn from the work of that strand 
of current linguistic 'theory sometimes called principles-and-parameters theory. How do the principles conspire to 
replace rules? Space permits only a brief sketch here. For instance, one general principle says that verb phrases in 
sentences must either begin with a verb in some languages, or end with a verb in others (those are the degrees of 
freedom or parameterization in this particular principle). This yields the basic tree shapes in a language, dubbed X 
theory, and gives us part of the variation between languages like English and Japanese. A second principle, called 
the Gase filter, says that all pronounced or lexical noun phrases like ice-cream must receive Case, where Case is 
roughly an abstract, but universal, version of the Latinate system that gives objective Case to objects, oblique Case 
to objects of prepositions, nominative Case to sentence subjects, and so forth. Case is assigned either from an active 
verb like ate or an auxiliary verb like was; the adjectival form eaten does not assign case. A third principle, called the 
theta-criterion, insists that every verb must discharge its Thematic arguments and every noun phrase must receive 
a thematic role, completing a description of 'who did what to whom'. A fourth principle, Movement (or Move-ll'), 
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lets one move any phrase a to any available 'landing site'; and so on, for the remaining 21 principles. Now we can 
conceptually imagine the 'parse' of a sentence to take place via a naive generate-and-test algorithm that, given a 
PF, enumerates all admissible S-structures, and from there, applies the conjunctive constraints of D-structure and 
LF to obtain an LF output . For example, given The ice-cream was eaten, the system can 'guess' an S-structure such 
as [S [NP the ice-creaml [vp was eaten [NPI ]]]J. that turns out to meet all constraints, without ever positing a passive 
rule . The system knows from the lexicon that eat may assign a thematic role of Affected Object. Further, X theory 
says this object must appear to the right of the verb, and Case assignment says that the object appear immediately 
to the right. However, this cannot be a full lexical noun phrase, because this would violate the Case filter: in the 
lexicon, eaten is an adjectival form that does not assign Case. The only option left is to insert an unpronounced, 
nonlexical noun phrase (NP) after eaten . Eat must still discharge its thematic role, to the nonlexical NP, and does 
so. Now let us check ice-cream. It receives nominative Case in Subject position as usual; it can receive a thematic 
role only if it inherits it from some position, again since was eaten is a predicate adjective. Thus the only remaining 
choice is to link the nonlexical NP after eaten to ice-cream, which is done by the device of coindexing (subscripting) . 
In practice, this generate-and-test mechanism is obviously inefficient, since the principles that apply to S-structure 
are but a fraction of those that apply in the overall system. Fong's actual design takes into account a number of 
important design principles that make the system practicable. 

Importantly for acquisition, using the same set of principles, but with a different language parameter vector 
and lexicon, the system can be automatically reconfigured to parse Japanese examples instead (Spanish, German, 
and other Germanic languages are currently being implemented). No reprogramming or handcoded rule rewriting 
is required. Figure 1 shows the Prolog textual EnglishjJapanese differences plus an excerpt from both lexicons 
(which contain many hundreds of entries when expanded), to emphasize that just 5 binary switches must be reset 
to parse J apanese rather than English. We would like to emphasize, however, that the system has not been tested 
on a full range of Japanese senten ces. Rather, a range of wh questions and other sentences have been evaluated 
(Lasnik and Saito, 1984). N onetheless, these sentences display many of the typological J apanese-English differences: 
(1) SOV Language (Japanese is verb final, more generally, head final); (2) Scrambling. Apart from the fact that 
sentences normally begin with a topic and ends with averb, the order of other elements in the sentence is relatively 
free. In particular, direct and indirect objects can be switched, direct (and indirect) objects can appear in front of 
the subject in sentence-initial position. (3) Empty subjects. Subjects (other NPs) can be omitted in Japanese. In 
general the conditions that determine which elements can or can not be omitted are largely dependent on discourse 
considerations; (4) No visible Wh-movement. In English, in non-echo quest ions wh-words such as what must appear 
in c1ause-initial position, as in I know what john bought rather than ?I know john bought what; in Japanese, wh 
words appear in situ. While obviously this is very far from being a complete characterization of the differences 
between Japanese and English, it is sufficient to cover a wide variety of wh questions, induding those in the Lasnik 
and Saito (1984) article on English and Japanese. For our acquisition standpoint, what is important is that the 
principle-based parser can capture all these distinctions simply by supplying 5 binary parametric differences plus a 
new lexicon, as shown in figure 1. (These include some rather subtle distinctions, such as, Taro-ga nani-o te-ni ireta 
koto-o sonnani okotteru no, ('What are you so angry about the fact that Taro obtained') vs. • Taro-ga naze sore-o 
te-ni ireta koto-o sonnani okotteru no ('Why are you so angry about the fact that Taro obtained it'), which are 
the reverse of the acceptability facts in English. Consider the senten ce, Taro-ga nani-o te-ni ireta koto-o sonnani 
okotteru no ('What are you so angry about the fact that Taro obtained') Here the subject of the matrix dause (= 
you) has been omitted. Also, nani and te ('hand') have been permuted from the canonical order described above-a 
simple case of scrambling.) The logical form for this sentence should be something along the lines of: for what x, 
pro is so angry about [the fact that Taro obtained xl Here, pro represents the understood subject of okotteru ('be 
angry ' ). 

3 Genetic algorithms and rule- and parameter-based learning 

Linking of this param-eter-based parser to Clark's genetic algorithm for acquisition is still underway as this is being 
written . However, our student de Marcken has carried out some preliminary simulations that use just an X-bar 
parameter system on random paragraph sets taken from ordinary text (Wall Street Journal), and several hundred 
unedited parental speech sam pies from the Childes database (English and German; Nina at age 1;11 and Katrin from 
roughly that age). Note that knowledge of word categories is still assumed, an assumption that we hope to remove 
by the use of Siskind's model. The principle-based design incorporates some improvements to Clark's model: first, 
we use a different genetic algorithm, as described by Schaffer in Davis (1987); second, we use a pure partial phrase 
parser, rather than a full principle-based system. (A third improvement that the principle-based design will offer 
is that a blocked parse will point to a possibly offending parameter value directly, instead of randomly, which may 
improve accuracy and convergence.) 

An example of the parameter system: 
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Note: '\+' denotes 'negation as fa.ilure', ••• "'- underlined= English-Japanese differences 
English parameters 
X-Bar Parameters 
specInitia.l. 
specFina.l :- \+specInitia.l . 
*** headlnitia.l . 
* ** head Fina.l :- \ +hea.dlnitia.l . 
agr(weak) . 
Bounding Nodes 
boundingNode(i2) . 
boundingNode(np) . 
Case Adjacency Parameter 
*** caseAdjacency. % holds 
Move Wh In Syntax Parameter 
*** whlnSyntax. 
Pro-Drop Parameter 

J apanese parameters 

specInitia.l . 
spec Fina.l :- \ +specInitia.l. 
headFina.l. 
headlnitia.l :- \+hea.dFina.l 
agr( weak). 

boundingNode(i2) . 
boundingN ode( np) . 

:- no caseAdjacency. 

:- no whlnSyntax. 

*** :- no pro Drop. pro Drop 

English lexicon 
Proper nouns 
lex(bill,n,[ a( - ),p( -) ,agr([3,sg,m])]). 

Verbs 
lex( arrest, v ,[morph( arrest ,O) ,grid([agent ] ,[patient])]) . 
lex( arrive, v ,[morph( arrive,O) ,grid([theme] ,0)]). 
lex( ask, v, [morph( ask, 0) ,grid([ agen t] , [? proposition])]) . 

J apanese lexicon: 
lex(biru,n,[ a( - ),p( -) ,agr(O),grid(O ,D)]) bill 
lex( doko,n ,[ a( -), p( -),agr(O), wh ,location ,grid(O ,O)]) . 
(where) ... 
lex( are, v ,[morph( are,Q) ,subcat( vp$[morph(_ ,O)] ,0)]) . 
lex(irer, v ,[morph(irer ,O),grid([ agentJ,[goa.l ,instrument])]) . 

Figure 1: The complete par&metric differences between Engl.ish IUId JaplUlese needed t o incorporate the Lasnik and Sai to theory. 

(defpara. A-SPEC (left right» ;; Q on right or lelt 01 ABAR 
(defpara. ADV-SPEC (left right» ; ; Q on right or left of ADVBAR 
(defpara. INFL-SPEC (left right» ;, DP on right or lelt of IBAR 
(defpara. COMP-COMP (left right» " IP on right or left 01 COMP 
(defpara. INFL-COMP (left right» " VP on right or left 01 I 
(defparaa DET-COMP (left right» ,; NP on right or left 01 DET 
(defpara. V-THETA (left right» " arge on right or lelt of V 
(defpara. ADJ-THETA (left right» ,; arge on right or lelt 01 A 
(defpara. N-THETA (left right» " arge on right or left 01 • 
(defpara. RELCLAUSE-ADJUI (left right» ;, CP on right or left of DP 
(defpara. AP-ADJUN (left right» ,; AP on right or left of NP 
(defparaa PP-ADJUN (left right» " pp on right or left of DP, VP 
(defpara. ADVP-ADJUN (left right» " ADVP on right or left of VP 
(defpara. P-CASE (left right» ; 

In the preliminary experiments, these parameters ground an X-bar system, so in fact, the current results apply 
equally to a phrase-structure view like Fodor and Crain's (1990), in fact, are an exp!icit computer modeling test of 
apart of their proposals. 25 different random sets of parameter settings are created, and used to parse the text. 
A rating is assigned , namely the number of phrases returned for the whole text ; the actual displayed value is the 
opposite, so a higher number is better). In each iteration, two parent settings are chosen, and a new setting is 
created by picking randomly between the values of each parent, and with a small probability, randomly assigning a 
parameter to any value in its range, regardless of parent settings. The new parameter setting takes the place of one 
of the 25 previous settings, with the proviso that it can not take the place of any setting which produced a rating 
above the mean rating for all 25 settings. In the sampie runs below, 25 settings have been tested before any results 
are displayed . Then in every iteration the best five parameter settings (from the 25 in the current population) are 
displayed. 

A sam pie run : 

(learn) 

Iteration 1. 
O. -449.0 [DET-N ARG-V VP-NP COMP-S NP-pp P-NP AP-NBAR SPEC-V V-ADV AP-QP ) 
1. -455.0 [DET-N V-ARG VP-NP S-COMP NP-pp P-NP AP-NBAR V-SPEC V-ADV QP-AP ) 
2. -467 . 0 [DET-N V-ARG NP-VP COKP-S PP-NP NP-P AP-NBAR SPEC-V V-ADV AP-QP ) 
3. -475.0 [DET-N ARG-V NP-VP COKP-S NP-PP P-NP AP-NBAR V-SPEC ADV-V QP-AP ] 
4. -486 . 0 [DET-N ARG-V VP-NP S-COKP PP-NP NP-P AP-NBAR V-SPEC ADV-V QP-AP ] 

Iteration 2. 
O. -449 . 0 [DET-N ARG-V VP-NP COKP-S NP-PP P-NP AP-NBAR SPEC-V V-ADV AP-QP ) 
1. -455.0 [DET-N V-ARG VP-NP S-COKP NP-PP P-NP AP-NBAR V-SPEC V-ADV QP-AP ] 
2. -467 . 0 [DET-N V-ARG NP-VP COKP-S PP-NP NP-P AP-NBAR SPEC-V V-ADV AP-QP ] 
3. -475.0 [DET-N ARG-V NP-VP COKP-S NP-PP P-NP AP-NBAR V-SPEC ADV-V QP-AP ] 
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4. -486.0 [DET-If ARG-V YP-1fP S-COMP PP-1fP IfP-P AP-IfBAR V-SPEC ADV-V QP-AP ] 

Iteration 170. 
O. 
1. 

2. 
3. 
4. 

-417.0 
-421.0 
-427 . 0 
-428 . 0 
-428.0 

[DET-N V-ARG XP-YP COMP-S IfP-PP P-1fP AP-IfBAR SPEC-V ADV-V QP-AP ] 
[DET-X V-ARG IfP-YP COMP-S IfP-PP P-1fP AP-IfBAR SPEC-V V-ADV QP-AP ] 
[DET-X ARG-V YP-XP COMP-S IfP-PP P-1fP AP-IfBAR SPEC-V ADV-V QP-AP ] 
[DET-X V-ARG XP-YP S-COMP IfP-PP P-1fP AP-IfBAR SPEC-V ADV-V QP-AP ] 
[DET-!f V-ARG XP-VP COMP-S IfP-PP P-1fP AP-XBAR SPEC-V ADV-V AP-QP ] 

Convergence has proved relatively stable given the initial starting conditions, noise, and text, though it must be 
stressed that these results are completely preliminary and have not been fully investigated. It remains to see how 
the system will work with fuH motherese in English and German, and with a full set of parameters; we aim to test 
the parameterization of modern Germanic languages proposed by Webelhuth (1989), as weil as our running Japanese 
system. So far at least, it appears that for basic phrase structure, a rule-based and parameter-based system could 
perform equally weil using a genetic algorithm for acquisition, overcoming many of the traditional obstacles such as 
noise cited earlier. 
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Automatically Inferring Dictionaries 
from Natural Text and Simple Grammar 

MICHAEL R. BRENT 

I am developing and implementing algorithms for automatie, unsupervised learning of both syntactic 
and semantic properties of verbs. The goal is to automatically generate full-scale dictionaries of natural 
languages using large amounts of naturally occurring text as training data. This work provides the first 
algorithmic , demonstrably effective approach to three longstanding problems in natural language processing , 
artificial intelligence, and cognitive science. 

• For natural language processing it removes the lexical barrier to scalable, high coverage parsers. 

• For artificial intelligence it derives some of the fundamental ontological categories people use from 
the structure of language, so researchers need not rely exclusively on introspection. What 's more , it 
provides a dictionary linking the concepts it derives to words. 

• For cognitive science it provides an algorithmic approach to the bootstrapping problem - namely, 
how does a learner get a sufficient toe-hold on the vocabulary to make use of the input sentences? 
These learning algorithms start with only a smalI, finite-state grammar for a fragment of English and 
a dictionary of some two-hundred "grammatical" words like pronouns, prepositions, and helping-verbs. 

Verbs are the best studied and apparently the richest part of language in terms of syntactic features with 
semantic correlates, so I have concentrated initially on them. In particular, I am focusing on acquisition of 
the syntactic argument-taking properties of verbs and the semantic classifications they induce. For example , 
the verb expect can take an infinitival clause like "to eat ice-cream" as one of its arguments, whereas the 
verb jog cannot. This contrast is illustrated in following pair of sentences. 

(1) a . I expected [NP the man who jogged NP] to eat ice-cream 
b. I doubted [NP the man who liked to eat ice-cream NP] 

As a result of the different argument-taking properties of expect and jog, the infinitival phrase "to eat ice­
cream" is associated with expect, not with the adjacent verb jog in (la). In (lb), by contrast, the adjacent 
verb /ike does take infinitives and the earlier verb doubt does not . Algorithms for learning this and other 
argument-taking properties of verbs from untagged text, along with empirical results obtained with them, 
are described in Brent (1991a). 

The work on semantic classification of verbs depends on the data obtained from the syntactic component 
described above, and hence the semantic work is at a less advanced stage than the syntactic. Further, the 
evidence bearing on meaning classification tends to require knowing several, if not all of the possible syntactic 
argument types for each verb. However, one classification depends on only a single syntactic form, the verbs 
that take as arguments both a direct object and a sentence at once, as in "John told her he was happy." 
These verbs all have a sense involving communication, like advise, assure, convince, in/orm, reassure , remind, 
tell, and warn, all of which my program identified (Brent, 1991a) . There are at least fifty and possibly as 
many as one-hundred syntactically identifiable semantic classes like these communication verbs. 

In addition to the syntactic and semantic classifications induced by argument structure , so me interesting 
classifications are induced by the verbal auxiliary. For example, verbs whose meaning is purely stative 
tend not to occur with a progressive auxiliary, as in ,,* Jon is knowing calculus." Brent (1990) describes 
initial corpus-based research on this semantic cue, and Brent (1991b) describes an implemented classifier for 
stati vity. 

Brent (1990) M. Brent . Semantic Classification of Verbs from their Syntactic Contexts: Automated Lexi­
cography with Implications for Child Language Acquisition. In Proceedings 0/ the 12th Meeting 0/ the 
Cognitive Science Society. Cognitive Science Society, 1990. 

Brent (1991a) M. Brent . Automatie acquisition of subcategorization frames from untagged , free-text cor­
pora. Under Review for the 1991 Meeting of the ACL. Manuscript available. 

Brent (1991b) Semantic Classification of Verbs from their Syntactic Contexts: An Implemented Classifier 
for Stativity . In Proceedings 0/ the 5th European ACL Con/erence. ACL, 1991. 
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Abstract 

Because conceptual analyzers focus on meaning representations more than syntactic structures, these 
systems tend to avoid syntactically complicated texts. We describe a cognitively plausible mechanism that 
allows a semantically-oriented parser to systematically understand complex embedded clause constructions. 
Furthermore, we outline ongoing work on a machine learning component for our parser that uses a case-based 
approach to automatically acquire this capability. 

Natural Language Processing Research at UMass 

A number of semantically-oriented techniques have been devised over the years to address the problems of 
conceptual sentence analysis. We have implemented a natural language sentence analyzer, CIRCUS, which 
incorporates a number ofwell-known techniques from the symbolic information processing tradition along with 
original techniques based on numerical relaxation. Our basic system architecture supports a stack-controlled 
mechanism for managing syntactic predictions, as weIl as modules for handling two fundamentally distinct 
types of semantic preferences: predictive semantics and da ta-driven semantics. A marker passing algorithm 
is used for predictive semantics, and numerical relaxation is used for da ta-driven semantics. [Lehnert, w.G. 
1990] 

The multiple architectures of CIRCUS result in a system that is especially well-suited to the task of 
selective concept extraction. Portions of sentences that are not covered by the available lexicon can be ignored 
while intelligible fragments are still processed. Complex syntactic structures such as dependent clauses and 
participial phrases can be processed without the overhead associated with complete parse trees. Because 
we effectively ignore those parts of a sentence that are not readily understood, we do not have to design 
recovery techniques for ungrammatical senten ces or syntactic constructs that are not recognized by CIRCUS. 
These features result in a robust approach to text analysis that utilizes variable-depth processing in order to 
maximize reliability and minimize processing effort. 

Our success with CIRCUS brought us a unique opportunity in 1990. That year CIRCUS was selected as 
one of about a dozen state-of-the-art systems chosen to participate in the third DARPA-sponsered Message 
Understanding System Evaluation and Message Understanding Conference (MUC-3). This is a competitive 
performance evaluation of available technology designed to handle selective concept extraction from wire 
service stories about South American terrorism. Using a development corpus of 1100 texts, each system is 
first "tuned" for the target domain before the final system evaluations take place. After about 6 months of 
development effort, participating systems are then evaluated on the basis of 100-200 test texts. We expect to 
leam a great deal about CIRCUS during the course of this evaluation. 

There is a great potential for computational models that integrate traditional symbolic processing with 
subsymbolic techniques like backpropagation and numerical relaxation. This seems to be especially true 
in natural language processing, where many problems can be described in terms of complex constraint 
satisfaction and preferred (as opposed to correct) interpretations. We believe that CIRCUS integrates symbolic 
and subsymbolic techniques in a manner that optimizes the complementary strengths .cf both information 
processing paradigms. 

References: 

Lehnert, w.G. 1990. "Symbolic/Subsymbolic Sentence Analysis: Exploiting the Best ofTwo Worlds," In Advances in 
Connectionist and Neural Computation Theory, Vol. I. (ed: J. Pollack and J. Barnden). AbleL (in press) Also available 
as COINS Technical Report No. 88-99, Department of Computer and Information Science, University of Massachusetts. 
1988. 
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2 CIRCUS and the LICK Formalism 

CIRCUS [Lehnert 90] is a conceptual analyzer that produces a semantic ease frame representation of an 
input sentence using a stack-oriented control for syntactic processing and a marker-passing mechanism for 
predictive preference semantics. 1. 

In the tradition of conceptual analyzers, CIRCUS' syntactic component produces no parse tree of the input 
and employs no global syntactic grammar. It is based on the McEli parser [Schank & Riesbeck 81] and uses 
lexieally-indexed loeal syntactic knowledge to segment incoming text into noun phrases, prepositional phrases, 
and verb phrases. As soon as McEli recognizes a syntactic constituent, that constituent is made available to 
the predictive semantics module (PSM) that is responsible for making ease role assignments. In CIRCUS, this 
consists of top-down slot-filling of any active semantic ease frames subject to the slot's semantic constraints. 2 

Figure 1a, for example, shows the state of CIRCUS after parsing the sentence "Mary saw the boy". McEli 

Mary saw lhe boy 

"S' r:b '00' 

SEE 

Actor : Mary 
ObJect : the boy 

(a) (b) 

Figure 1: Mary saw the boy. 

recognizes "Mary" as the subject (*S*), "saw" as the verb (*V"'), and "boy" as the direct object (*00"'). In 
addition, "saw" triggers a semantic ease frame for a SEE event. The ease frame definition shown in Figure 1a 
indieates the mapping between surface constituents and case frame slots: subject -- Actor and direct object -­
Object. In addition, it depicts the semantic constraints associated with each siot. Namely, the Actor should be 
animate and the Object should be a physical object. Because both of these constraints are satisfied, CIRCUS 
returns the instantiated ease frame of Figure 1b at the end of the sentence. 

When sentences become more complicated, we have to "partition" the processing in a way that recognizes 
embedded syntactic structures as weIl as conceptual dependencies. This is accomplished with lexically-indexed 
control kerneis (LICKs). We view the top-Ievel McEli stack as a single contral kernel whose expectations and 
binding instructions change in response to specific lexical items as we move through the sentence. When we 
co me to a subordinate dause, the top-level kernel creates a subkernel that takes over to process the interior 
dause. In other words, when a subordinate dause is first encountered, the parent LICK spawns a duld 
LlCK, passes control over to the child, and later recovers contral from the child when the subordinate dause 
is completed. Each' control kernel essentially creates a new parsing environment with its own set of bindings 
for the syntactic buffers, its own copy of the main McEli stack, and its own predictive semantics module. 

Consider the LICK processing required for the sentence "Mary saw the boy who ran to the lake" (see 
Figure 2). The top-level LICK is in contral until the lexicon entry for "who" indieates that processing of 
the main dause should be temporarily suspended and a child LICK spawned (see Figure 2a), Because the 
antecedent for "who" can bind to one of four possible syntactic constituents within the subordinate dause, 
CIRCUS initializes each of the duld *S*, "'00"', *10"', and *pp. syntactic buffers with "boy". When the child 
completes a semantic ease frame instantiation, at least one of these will be overwritten, and few ease frame 

lCIRCUS also employs a numerical relaxation algorithm to perform bottom-up insertion of unpredicted slots into case frames. This 
module is not important for the purposes ofthis paper, however. 

2CIRCUS allows both hard and soft slot constraints. A hard constraint is a predicate that must be satisfied. In contrast, a soft 
constraint defines a preference for a slot filler rather than a predicate that blocks slot-filling when it is not satisfied. We will use only soft 
constraints in the examples that follow. 
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definitions will reference all four buffers in any case. Figure 2b shows the state of the child LICK at the end 

'S ' 
~·Ooy~T~'·~: 

Mary , s_ 

" 

I C2:J 

the boy , 
'00' 

(a) (b) 

Figure 2: Mary saw the boy who ran to the lake. 

of the embedded dause. "Lake" has overwritten *pp* and "ran" has triggered a PTRANS3 case frame . Note 
that although *10* still contains the antecedent "boy", it does not interfere with the semantic representation 
because the PTRANS case frame does not access *10*. At this point, CIRCUS freezes the PTRANS case frame 
(with Actor = boy, Object = boy, and Destination = lake), exits the child LICK, and returns control to the main 
dause where the PTRANS frame is attached to the antecedent "boy". 

3 Psycholinguistic Studies of Embedded Clause Constructions 

Section 2 briefly described how CIRCUS processes embedded dause constructions using its LICK mechanism. 
In [Cardie & Lehnert 91] we evaluate this approach by comparing CIRCUS to recent experiments in psycholin­
guistics that address the human processing of nested dauses. In this sec ti on, however, we discuss just one of 
the experiments induded in that psychological evaluation. 

Consider the following sentence from a Swinney, Ford, Frauenfelder, and Bresnan study: 

(1) The policeman saw the boy who the crowd at the party accused # ofthe crime. 

To fully understand this sentence, we have to infer that it is the boy who is being accused - we associate 
an antecedent or filler (in this case "boy") with the missing direct object or gap in the wh-phrase (at #). 
[Swinney et al. 88] determined that people "reactivate" the meaning of a wh-phrase antecedent at the position 
of its gap in the embedded dause. At # in sentence 1, for example, subjects respond fa ster to a word 
semantically related to "boy" (e.g., "girl") than to a control word or to words associated with "policeman" and 
"crowd".4 This result implies that people have integrated the meaning of the filler into the current semantic 
representation ofthe sentence at the point ofthe missing constituent. CIRCUS is consistent with this finding. 
Reactivation occurs in CIRCUS when the next constituent expected according to the McEli stack contains the 
antecedent. In (1), for example, syntactic knowledge stored with "accused" sets up the McEli stack to expect a 
direct object to follow. CIRCUS reactivates "boy" immediately following "accused" because the next constituent 
expected by McEli is the direct object, but *DO* already contains the antecedent "boy". 

Furthermore, [Swinney et al. 88] found reactivation only for the correct antecedent at #. They found no 
reactivation of"crowd" or "policeman". CIRCUS also reactivates only the correct antecedent because the LICK 
formalism makes "boy" the only main dause constituent accessible to the embedded dause. No other noun 
phrases in the sentence (e.g., "policeman", "crowd", "party") are considered as antecedents of"who". 

3PTRANS i8 a primitive aet in coneeptual dependeney describing a physieal transfer (see (Schank. 75]). The PTRANS ease frame 
actually haß a fourth slot - the origin.alloeation or Souree of the objeet. For the purposes of thiB example, however, we will ignore this 
slot. 

4In the (Swinney et al. 88]study, the target word was brietly tlashed at some point during aural presentation ofthe sentenee. Subjecta 
were asked to decide whether or not the visually presented word was areal word and press the appropriate button. Faster response to a 
target i8 attributed to priming by the noun with which it i8 semantically related. 
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Thus, CIRCUS seems to employ a psychologically valid mechanism for reactivation of antecedents in 
wh-phrases: it reactivates the antecedent at the point ofthe gap and it reactivates only the correct antecedent. 

4 Machine Learning of LIeKs 

We are currently working on a supervised learning component for CIRCUS that acquires the knowledge 
encoded in LICKs. For each unique LICK, this component will learn: 1) the lexical items that trigger the 
LICK, 2) the constituent from the parent LICK (i.e., the antecedent) that should be passed to the child LICK, 
3) the set of child LICK syntactic buffers that should inherit the antecedent, and 4) the McEli syntactic 
predictions that should be in effect at the start of the embedded dause. All of this information is induded in 
the definition of a single LICK 

We plan to use a case-based approach for this language acquisition task where each case consists of 1) 
the state of the parser (i.e., the McEli stack of syntactic predictions, the contents of the syntactic buffers, 
the current semantic case frame, the current word, etc.) at the onset of an embedded dause and 2) the 
desired semantic representation of the embedded dause. Although this machine learning task addresses only 
a small part of the language acquisition problem, we hope that it offers insights for the development of a more 
substantial case-based approach to the machine learning of naturallanguage. 
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Abstract 

In this paper, I will present a formal model 
of parameter setting. This model is intend­
ed first to demonstrate that a principles and 
parameters (P8P) model of universal gram­
mar (UG) has the learnability property and 
seeond to provide a formal basis for modelling 
language aequisition. The learner presented 
here will eorreetly hypothesize the parameter 
settings for the adult target on the basis of ex­
posure to an input text eonsisting of only posi­
tive data; that is, it does not need exposure to 
ungrammatieal strings in order to acquue the 
syntax of a natural language. Furthermore, 
it is able to eonverge to the eorreet grammar 
despite the highly ambiguous, equivoeal na­
ture of the input data. The system is baaed 
on a simple genetie algorithm (Holland, 1975; 
Goldberg, 1989; Clark, 1990) whieh exploits 
natural seleetion as a basis for learning. The 
eumulative seleetional pressure exerted on the 
learner over time by the input examples has 
the effeet. of gradually pushing the learner to 
hypothesize the eorrect target grammar. 

The model develops a notion of the relative 
fitneu of a parsing deviee over an input se­
quenee. This metrie of fitness is such that (1) 
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the learner ean seleet the best hypo thesis from 
a population even in eases where no available 
hypothesis ean properly aeeount for the input 
datum; (2) the learner ean effieient diminate 
inferior hypotheses, allowing for an effieien­
t seareh of the hypothesis spaee; (3) sueeess­
fu! hypotheses ean be eompared on the basis 
of abstract relations (eg, subset/superset rela­
tions) so that the most parsimonious grammar 
can be found. The third property of fitness al-
10W's the learner to retraet overgeneral "super­
set" hypotheses (Berwiek, 1985) on the basis 
of positive only input. 

1 The Learning Problem 

In this paper, I will present a formal model 
of parameter setting in natural language ae­
quisition. Language aequisition is a eentral 
problem in psyehology, linguisties and eogni­
tive seience preeisely beeause it is a ease where 
learners eonverge to a rieh system of knowl­
edge (a grammar) on the basis of highly e­
quivocal, positive-only input data (see Wex.ler 
&l Culieover, 1980; Morgan, 1986 and the ref­
eren ces cited in these worb). The system I 
will present exploits the theory of natural s-



election as a computational framework using 
genetic a/gorithm! (Holland; 1975; Goldberg, 
1989; Clark, 1990) . In particular, naturallan­
guage grammars are represented as a sequenee 
of parameter settings whieh may be taken as 
a genotype w hieh determines a parsing deviee 
as its phenotype. The parsing devices deter­
mined by the learner's hypotheses can be run 
against the input data to determine their rela­
tive fi tnes5 in providing weLl-formed represen­
tations for the input, via a fitness metric . The 
most highly fit hypotheses are then eombined 
to generate new hypotheses whieh ean, in turn, 
be tested against the input. The system pro­
vides a highly effieient means of searehing the 
hypothesis spaee and is tolerant of ambigu­
ous, relatively uninformative input data. The 
fitness metrie ean be defined in such a way 
as to penalize overgeneral hypotheses allowing 
the learner to retract hypotheses whieh gener­
ate languages that are supersets of the target 
without the need for explieit tutoring in the 
form negative data. 

Reeent syq.taetie theory has eoneentrated 
on the study '~ r grammatical prineiples whieh 
underlie, and organize, the human natural 
language faeulty. Grammars are organized 
around a set of universal principles which reg­
ulate the assignment of syntaetie representa­
tions to strings. Language diversity is aecount­
ed for by means of a finite set of parameter­
s, veetors along whieh languages may vary. 
Comparative syntax and typology ean then he 
viewed as an attempt to determine the variable 
properties of the human language faeulty with 
respeet to the eore set of prineiples .1 A giv­
en parameter may be thought of as a variable 
inside a grammatieal prineiple which can be 
instantiated by a value drawn from a finite set 
of possible values defined by universal gram­
mar. 

I [otor a JoIem:ral disc.useion of this approach to s~' n­

lac.tic. Lhe"r~' , se~ Cho msk~' (1981), Chumsk~' (1985) 
anti Chol!lsk.\" (1986). 

33 

One well-known example of the interaction 
between prineiples and parameters is !ubjacen­
cy (Chomsky, 1977), a principle whieh gov­
erns the formation of long-distanee extrac­
tion, a proeess that underlies the format,ion 
of wh.-questions (eg, Who do you thinJc that 
John !aw e P where who has been extraeted 
long-distanee flom the position indieated by 
e). Subjaceney forbids long-distanee extrac­
tion aeross two bounding node! in a single step. 
Crueially, languages show a limited degree of 
variation in the eategories that they seleet to 
aet as bounding nodes, resulting in differential 
eross-linguistie behavior with respeet to long­
distanee extraction. The task for the learner, 
then, is to discover whieh instantiation of the 
parameters best fits the input data to which it 
is exposed. 

A parameter ean be expressed as a simple 
proposition whieh may be either true or false : 

IP is abounding node. 
CP is abounding node. 
NP is abounding node. 

Given that principles are fixed properties 
that do not vary aeross languages, we eould 
speeify individual gramm ars with referenee on­
Iy to partieular eombinations of parameters 
values. That is, individual gramm ars eould 
be represented as strings of truth values (0 
for fal!e and 1 for true). This representation 
eould then be taken as a way of enumerating 
the set of possible naturallanguages in binary 
numbers. If UG eon.isted of four binary pa­
rameters then 1000 (= 8) would be the gram­
mar that resu1ts from setting the first param­
eter to true and all the others to fa/!e. On 
a more intuitive level, universal grammar may 
be thought of &I a deviee whose function is reg­
ulated by a set of binary switches (the param­
eters); each switeh-setting would determine a 
parsing device whieh aeeepts some naturallan­
guage. 



On this view, the task of the learner is to 
determine which switch-setting best matches 
the language it is being exposed to. Formally, 
then, the learning problem can be described 
by the following relation : 

1'[4>n 0 <p(lT;)] = Pm 

In the above, lTi represents an input text (a se­
quence of well-formed sentences from the tar­
get language Li). The learner is represented 
by <po <p produces a sequence of parameter 
settings (a hypothesis) based on its exposure 
to lTi. This sequence of parameter settings is 
then interpreted relative to the set of linguis­
tic principles by 4>n to yield a grammar, Gi, 
for the language from which the input text lTi 

was drawn. Finally, l' maps the grammar pro­
d uced by 4>n 0 <p( lT;) to a parser, Pm, for Li . 

Recall that the learner cannot rely on tutor­
ing from negative data. This makes the learn­
ing task particularly formidable since the lan­
guages generated by different parameter set­
tings may fall into !ub!et relations (Berwick, 
1985). That is, the language generated by set­
ting a parameter Pr to 0 may be a proper sub­
set of the language g::nerated by set ting the 
parameter to 1: 

L(PI, . .. , Pr-I, Pr(O), Pr+I,···, p:l c 
L(PI, ... , Pr- I, Pr (1), Pr+ I, .. . , P:] 

In this case, if the learner overgeneralizes and 
hypothesizes that Pr = 1 when, in fact, the 
target has Pr = 0, the error could be fatal 
in the sense that no negative evidence will be 
available to the learner to inform it of its error 
and all further evidence will be consistent with 
the learner 's hypothesis, which is, after all , a 
superset. of the target language. 

A further problem faced by the learner is 
that several inconsistent parameter settings 
may derive distinct, but well-formed, represen­
tations for the same datum. Suppose that the 

problematic datum is !,.. and that Pi, Pj and 
Pk are parameters such that : 

!m E LI = L(Pi(l),pj(O),Pk(O)] 
!m E L2 = L(Pi(O),pj(l),Pk(O)] 
!m E L3 = L(Pi(O),Pj(O),Pk(l)] 

Notice thai LI :f:. L2 :f:. L3' That is, the 
three hypotheses are not mutually consisten­
t a!though the grammar for each one derives 
!m as a theorem. The learner must have 
some means, however , of distinguishing be­
tween these various hypotheses in the long run . 

2 Genetic Algorithms 

Instead of relying on a costly (and possi bly 
fragile) deductive procedure, Clarlr. (1990) pro­
poses that the causa! relation that exists be­
tween the inpui text and hypothesis format ion 
can be most efficiently modeled via natural s­
electionj in particular, Clark (1990) develops 
a genetic algorithm (Holland.,.] 976j Goldberg, 
1989) which models the pnr,-:ess of syntactic 
parameter setting. 

In essence, a genetic a!gorithm consists of 
the following components: 

• A representation of hypotheses in terms 
of strings, similar in structure to genetic 
material. 

• A measure of fitness of hypotheses in 
terms of their performance in an environ­
ment. 

• A reproductive mechanism which allows a 
hypothesis to produce offspring. 

• A Crossover mechanism. This mechanis­
m combines two hypotheses and produces 
a new hypothesis by combining parts of 
each to the parent's genetic material. 
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• Mutation. This mechanism randomly al­
ters an offsprings genotype to produce a 
new hypothesis dose to, but not identical 
with, the parent's genetic endowment. 

The first of the above ingredients is already 
satisfied by the representation of parameter 
settings in terms of truth values; the learn­
er's hypotheses can be treated as strings of Os 
and ls which have the necessary structure for 
the other components of the algorithm. 

The core component of the algorithm­
the one that feeds reproduction and, hence, 
crossover (the generation of new and better 
hypotheses)-is the measure of fitness. Intu­
itively, more fit hypotheses are bett er at deal­
ing with the problems posed by the input tex­
t and, so, should reproduce more prolifical­
ly. Thus, the more fit hypotheses will con­
tribu te to the formation of new hypotheses via 
crossover. Gradually, the properties that make 
hypotheses fit should propagate through the 
population until the target is converged upon. 

I will take parsing as the basis of a measure 
of the goodness of fit of a hypothesis against 
the target language. In general, a parser is 
successful to the degree that it can reduce an 
input string to a single node in a parse tree; 
a parse fails if more than one unconnected n­
ode is returned by the parser. If two hypothe­
ses fail to parse the input string successfully, 
we can assume that one is a better hypoth­
esis than the other if the former returns less 
unconnected nodes than the laUer. Finally, as 
noted above, overgeneral, ",uper,et, hypotheses 
should be penalized so that the learner will be 
able to retract them in light of less general, 
but still adequate, hypotheses. 

These considerations suggest that we can 
measu~e the fitness of a hypothesis, h i , and 
the parser, Pi, which it derives relative to a 
single input string, "', from a target language 
and a population of n hypotheses by means of 
the following formula: 
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0:=;:1 tj + C 1:;=1 ej) - (ti + cei) 

(n - 1)(1:;=1 tj + c1:;=1 ej) 

In the above, 1:;=1 tj represents the total 
number ofnodes returned by the population of 
parsers and 1:;=1 ej represents the total num­
ber of overgeneral plLIameter settings in the 
entire population of hypotheses that derive the 
parsers; tj and ei represent the number of n­
odes returned by the parser Pi and the number 
of overgeneral plLIameter settings in h i , respec­
tively. Finally, cis a weighting constant which 
can be used to fine-tune the relative cost of 
positing a 5uperset setting for a parameter . 

The fewer nodes that an individual parser 
returns on an input string relative to a pop­
ulation, the more highly fit it will be judged 
by the above metric. N otice that absolu te suc­
cess in PlLIling is not a criterion in the above; 
it is sufficient that a parser returns fewer n­
odes than its fellows for it to be judged high­
Iy fit, but it need not necesslLIily reduce the 
input string to a single node. Since the most 
fit hypotheses reproduce more prolifically and, 
hence, are more likely to contribute to the for­
mation of new hypotheses via the crossover 
and mutation operations, the parameter set­
tings that made these hypotheses fit will prop­
&gate through the entire population. The in­
verse of the coin is that less fit hypotheses 
will tend to die off and, thus, the parameter 
settings that made these hypotheses relatively 
unfit will disappear from the population and 
become unavailable. 2 Furthermore, overgener­
al hypotheses will be less robust, allowing the 
learner to retract overgeneralisations. 

2 The least fit h~'potheses are removed fr .. m lhe h~'­
p0thesis stack with a probabilit.,· of p < u.u5 in lhe 
current implementation. 



3 Parameter Expression 

Any given sentence horn an arbitrarily select­
ed natural language will be such that it ex­
presses so me subset of the parameter settings 
that go in to making the grammar for that 
language. That is, the sentence can be suc­
cessfully parsed by any grammar with the rel­
evant parameters set in the proper way. Other 
parameter settings will be irrelevant for that 
sentence . This is just to say that there is a re­
lation between any natural language sentence 
and the set of grammars w hich could in princi­
pie assign a well-formed syntactic parse tree to 
that sentence; any one sentence will be com­
patible with a set of parameter settings.3 An 
input datum which expresses some set of pa­
rameter settings are, then, trigger6 for those 
parameters. 

Clark (1990) proposes that the set of gram­
mars compatible with a given input sentence 
can be labelled by virtue of an encoding which 
enumerates those parameter settings that are 
necessary to assign a well-formed representa­
tion to a given sentence, Sm. Supposing that 
the parameter space consisted of five binary 
parameters, the p-encoding 1/J for 6 m might be: 

1/J(6m ) = [*00 * 1] 

w here • *' is a variable ranging of 0 and 1. The 
above encoding indicates that the sentence Sm 

can be parsed by any grammar where the sec­
ond and third parameters are set to 0 and the 
fifth parameter is set to 1. Thus: 

1P(Sm) = {00001, 10001, 00011, 
10011 } 

311I'rp.,. WI' abstract a\\'I1..' · from lhe form of thf' pll.r­
I i,IIIM le~iral item. in the sentence. As obsen'ed b~' 
\\'"xler & Culic""er (198lJ), the problp.m of lexical ac­
quisil.i"" rart he segre/tatecltn aseparate learning mod­
ul .. , all .. wi,,!/. tJ. l .. c"It.iocr the mathematicalstruc ture 
.. f lhe s.' ·ulani " a"4uisiti"11 prIJblem. 
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The target grammar is derived from the ap­
plication of the learner, tPn, to the intersection 
of all the encodings for each sentence in the 
input text, O"i. We presuppose here, as seems 
natural, that each target parameter setting is 
expressed by some encoding in O"i; an adequate 
input text must exemplify all those features of 
the target that the learner must acquire. Note 
that parsing can be simulated formally be re­
placing individual sentences in the input text 
by their encodings and using a simple arith­
metic procedure to estimate the success of a 
hypothesis relative to a given encoding. 

The picture that emerges horn the above 
simulation is that the learner is given extreme­
ly ambiguous, vague information about the na­
ture of the target. The learner has no direct 
access to the target parameter settings, only 
indirect evidence via failed parses on an in­
put text that consists of only well-formed sen­
tences. Given the ability of the fitness function 
to discriminate between competing hypotheses 
aa well as the inherent robustness of cumu­
lative selection as reflected in the interaction 
between fitness and reproduction, the current 
model can successfully converge in large hy­
pothesis spaces despi te the extreme poverty 
of the input data. To date, the model has 
been tested on aspace of 30 binary parame­
ters represented a hypothesis space of 23U (= 
1,073,741,824) possible languages and has suc­
cessfully converged in that space. 

The reason for the learner's high degree of 
fault-tolerance is the way in which it exploit­
s the cumulative nature of natural selection 
to search the hypothesis space for the tar­
get. In general, better hypotheses are judged 
more fit by the fitness metric, reproduce more 
prolifically and, thus, propagate their benefi­
dal features throughout the population of hy­
potheses. This, combined with the mutation 
operation,4 allow for a highly efficient and ro-

4 The pro babiüt.\" uf mutation in the m .. del is cur-



bust learning procedure. By exploiting natural 
selection, the learner can simulate intelligent 
design without the exorbitant cost, and brit­
tleness, of deductive procedures, just as is the 
case in the natural world. 

4 Summary 

The model of parameter setting in the acquisi­
tion of naturallanguage syntax presented here 
presents a learner that is able to converge in 
a large hypothesis space despite extremely im­
poverished data. It thus provides an interest­
ing case study from the point of view of en­
gineering a robust, fault-tolerant learning sys­
tem. 

The system makes a number of interesting 
conceptual and empirical points when consid­
ered from the viewpoint of theoretical compar­
ative linguistics, psychology and cognitive sci­
ence. The ability ofthe human organism to ac­
quire a first language quickly and efficiently is 
a remarkable feature of the natural world and 
the study of this ability stands at the heart of 
much research in these fields . This approach to 
language learnability implies that typological 
analysis of natural languages, empirical case 
studies of first language acquisition and the 
theory of parameter setting are all of a natural 
kind with genetic analysis. Finally, the study 
of the relationship between language learnabil­
ity and natural selection promises to provide 
a strong formal foundation for the notion of a 
parameter in linguistic theorYi if this work is 
on the right track, then the study of variabil­
ity within the population of natural language 
is of the· same kind as the study of variability 
within a population of organisms. 

re llll ,\' s"l al U.UlI5 . 
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1 Introduction to Research and Bibliography 

The problem addressed in this paper is automatie aquisition of the lexical semantics of unknown 
predicates in naturallanguage processing, based on a quantitative analysis of corpora. This work 
is being done in the context of the development of Pundit, a large, modular, natural language 
processing system. The author's particular interests are in the areas of semantic and pragmatic 
processing and evaluation of naturallanguage systems. 
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Air Travel Domain", Proceedings of the Darpa Speech and Language Workshop, Morgan Kauf­
mann , 1990. 

2 Abstract 

This paper discusses two experiments in the application of statistical semantic information in the 
Unisys spoken language system. The first experiment investigated improving the processing speed 
in semantics by applying semantics rules in an order reftecting their frequency of application in 
a training corpus. The second experiment investigated using the training data to make informed 
guesses about the semantics of unknown predicates. The application discussed here is a database 
interface to database of information on air travel, such as flight schedules, airfares and ground 
transp ortation. 
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3 Introd uction 

Using probabilistic information during natural language processing is a promising means of in­
creasing parsing accuracy, improving processing times, and coping with previously unseen mate­
rial. Much work has been done in the area of probabilistic parsing ([2J, [lJ. However, in order for 
improvements in the ability to provide a parse for new material to have an effect on overall system 
performance, the rest of the system must also be able to cope with new material. This research 
describes a technique for allowing the system to make informed guesses about the semantics of new 
verbs, based on training data. Although there has been some previous work on inferring the se­
mantics of unknown verbs ([5J, [4J) this previous work has not exploited the quantitative properties 
of corpora. 

4 Experiments in Semantic Training 

4.1 The Pundit Semantic Interpreter 

The semantic interpreter of the Unisys system interprets three types of declarative semantics rules 
- case frames, rules specifying the mapping of syntactic constituents to the roles of case frames, 
and rules specifying semantic class restrictions on the fillers of roles in case frames ([3]). 

4.2 Improving Processing Time 

Based on a training corpus of 1000 Air Travei Planning (ATIS) sentences, we have developed 
by hand an initial set of 200 case frames, 600 syntax/semantics mapping rules and 500 semantic 
dass restrictions. The frequency of occurrence of each of these rules was measured by processing 
the entire training corpus and recording each successful rule appllcation. The system was then 
configured to appIy the rules in order of their frequency of appllcation in the training corpus when 
more than one rule could appIy. Processing times between the two cases were then compared. 

It was found that the only effect ofusing rules in the order oftheir frequency was to improve the 
selection of case frames for polysemous words. Otherwise the semantic search is fairly deterministic, 
and consequently no speedup through reordering of rules was found. We would expect to see more 
of an effect in a broader domain with many polysemous words. 

4.3 Hypothesizing the Semantics of Unknown Words 

A second use of this training data is to enable the system to make informed guesses about the 
case frame structure of new predicates. Previously, semantic processing would fall altogether if 
there was no case frame for a verb or predicate adjective, thus the system was not very robust 
when confronted with new words. We wished to provide the system with some means of making 
intelligent guesses about missing information. We belleve that techniques for intelligent guessing 
should be based as much as possible on quantitative analysis of corpora rat her than on hand built 
heuristics, which can be very effective, but which are diflicult to generalize across domains and 
across Ianguages. For this reason we have developed a guessing mechanism using the frequency 
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data collected for the experiment described above. Specmcally, the frequency of syntax/semantics 
mapping rules in the training corpus is used to infer likely case roles, given a set of syntactic 
arguments. For example, the most frequent syntax/semantics mapping in the Unisys ATIS system 
is a mapping from the syntactic direct object to the theme of the predicate. Consequently, given 
an unknown predicate with a syntactic direct object, the system will guess that the predicate has 
a theme and that the direct object maps to the theme role. Other conunon mapping rules map the 
syntactic subject to the actor role, 'from' prepositional phrases to the source role, and so on, so for 
example the presence of a 'from' prepositional phrase in the parse will justify positing a 'source' 
role in the case frame. 

The system can guess case frarnes in either of two modes. In the supervised mode the guessed 
case frarnes are presented to the user in an order refiecting their frequency in the training data. If 
the user rejects a proposed case frarne a less frequent mapping for one of the roles will be selected 
and new case frames will be generated sequentially until the user accepts one of them. In the 
unsupervised mode the first guess is assumed to be correct and is used in the current analysis and 
is output to a file. 

One interesting feature of this approach is that the newly guessed case frarne is not assumed to 
represent the complete correct semantics of the verb. Since many verbs have optional arguments 
as weil as several ways of expressing their arguments syntactically, it would be incorrect to simply 
assume that a1l the necessary information for the semantics of a verb is given by one instance. 
In the current system this results in a new guess for each instance of a verb in a corpus. A 
future improvement to trus approach would be to use the algorithm described by [4] in order to 
incrementa1ly acquire the complete semantics of a verb given a succession of instantiated case 
frarnes. 

4.4 Evaluation 

We tested trus approach by running 500 ATIS sentences wruch the system had not previously 
trained on, while turning on the guessing feature. These sentences contained 8 verbs for which 
the case frames were guessed. In order to assess the semantic correctnessof the guessed case 
frarnes, case frarnes for these predicates were also built by hand and were compared to the guessed 
case frarnes. The results, although preliminary, are very encouraging. In general the difference 
between the linguist's rules and the guessed rules can be characterized by (1) more generality in 
the hand generated rules, covering anticipated examples beyond the specific utterance containing 
the verb in question and (2) recognition of synonymy relationships between new and old verbs. 
We believe that differences (1) and (2) will tend to level out as the system re ce iv es additional 
training data. Difference (3), recognition of synonymy, is an independent issue from inference of 
argument structure, and will requiIe a different treatment. In order to measure the increase in 
the robustness of the system provided by this technique we also ran 195 previously unseen ATIS 
senten ces and found that semantics faUures were reduced from ten percent to eight percent of all 
queries. Unfortunately the sma1l number of verbs involved makes generalization difficult, so we 
plan to repeat these experiments with additional data as it becomes avaUable. 
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5 Future Directions 

Because semantic correctness of case frames is not sufficient for system accuracy (the case frame 
must mean something to the application) an important next step in this research will be to inves­
tigate ways of automatically making the case frame meaningful to the application. To do this it 
will be necessary to determine where the new predicate belongs in the knowledge base. We plan to 
explore using on-line knowledge sources such as thesauri to address this problem. Once the position 
of the new predicate in the knowledge base is determined, the application component can use its 
knowledge of what has been done with semantically similar verbs to decide what should be done 
with the new verb. 

Another important aspect of the meaning of verbs is what kinds of entities act as their ar­
guments. For example think requires that its actor be a human. These requirements are needed 
because they provide an important sour ce of constraint on the analysis, allowing the system to 
penalize potential analyses which violate them. In current systems these constraints are added 
by hand, which can be time consuming, prone to inaccuracies, and requires a trained specialist. 
We will explore automating this aspect of naturallanguage processing by allowing the system to 
process a corpus while assuming that whatever type of entity appears to fill a role is correct and 
then aggregating the types. For example if only humans and animals appear as role fillers for some 
role of a verb then the system may be able to assume that trus role requires an animate filler. 
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Research Interests 

\Iy research domain is the machine learning of phonology. The aim is to produce programs which, when faced 
with a collection of phonological data, will abstract symbolic rules and/or representations of the data. In this sense, 
the research tries to model a linguist, rather than a naive language learner. To date, the work has concentrated on 
three learning tasks. The first task, acquiring planar segregation, will be discussed in my talk here. The second is 
the task of acquiring a model of a harmony system given sequences of harmonising vowels. The third and current 
project involves the acquisition of syllable structure and sonority hierarchies . 

In characterising my research, the approach is as significant as the domain . U nderlying the approach is the view 
that a learning system does not need domain-specific information. This view affects the style of the learning systems. 
Asssumptions such as 'eonsonants are more jrequent/y intia/ than vowe/s' are not permitted. No ad-hoc information 
about the segments in the wordlists (the data) is permitted: an 'a' can only differs from a ' b' contextually. So the 
da ta is purely structural. Finally, the algorithms used are not domain-specific. A domain-independent measure of 
simplicity is applied to all hypotheses that are compatible with the data. This set of hypotheses is then searched 
with a domain-independent strategy to find the simplest hypothesis, which is returned as the answer. 
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Abstract of Talk 

Discovering Planar Segregations 

People can learn fanguages quickly from little information, defying the complexity of the task. One common 
explanation states that the language learner has a detailed domain-specific model of language built in, and that 
language learning is only setting parameters to this model. It is possible, however, to learn about a language with 
little or no apriori information . In this talk I present an algorithm for finding planar segregations, such a.s discussed 
Gy ~IcCal'thy (1989), of phonemes for particular languages. This algorithm requires no domain-specific knowledge 
of phonology or phonetics. Despite this lack of knowledge, the implemented algorithm has identified structurally 
significant segregations for thirty languages. 
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Language acquisition is a problem. The language learner, faced with a finite corpus of moderate size selects 
consistently from a very large number of possible grammars. The problem is two-fold: (a) by what criteria is the 
choice of grammar made, and (b) how 1S the choice computationally feasible? Computational theories of acquisi­
tion have a considerable advantage in answering these two questions. If an implementation of a particular theory 
(a) works , finding correct grammars or grammar fragments, and (b) does so within a reasonable time, then this 
constitutes experimental verification that the theory has answered the acquisition problem for that grammar or 
grammar-fragment. Non-computational theories cannot achieve this level of verification. 

In this paper, I present an implemented algorithm for finding phonemic planar segregations, using a model of 
segregation similar to that described by McCarthy (1989). In keeping with almost all models of planar segregation 
(~lcCarthy (1981,1989) Prince (1987)), the segregations found by the implementation of the algorithm consistently 
segregate phonemes onto two planes: one of consonants, the other of vowels . 

This result leads to the central thesis of this paper in two steps. First , I examine two competing criteria 
for how the choice of grammar fragments is made: (a) using a domain-specific learning function , or (b) using a 
domain-independent learning function. Domain-independence is apriori preferable, by Occam's Razor. A domain­
specific model of learning should be assumed only if a domain-independent one is not possible, that is , if choosing 
a grammar fragment without specific knowledge is not computationally feasible. Second, the program which learns 
planar segregation is argued to be domain-independent. The main thesis folIows: language learners do not need 
domain-specific information in order to discover planar segregations. 

1 Acquisition and Learning 

Special nativism. The acquisition problem may be tackled by denial. There are not really a large number of 
possible grammars from wh ich the language learner can choose. Rather the language learner has at hand a significant 
amount of apriori information in the form of a universal grammar which constrains the choice of grammar. The 
dass of grammars which must be investigated is smalI, and there may only be one possible grammar compatible 
with the corpus . Following O'Grady (1987) I shall call this approach to the learning problem special nativism. 

Problems. There are two problems with special nativism. Occam's Razor, in one interpretation, forbids us from 
making unnecessary assumptions. The burden of proof rests with the special nativist to show that each part of the 
innate universal grammar is essential. If it can be done without, then it should be. 

The second problem with special nativism is that it argues for a specific learning function devoted to language 
and separate from learning systems in other domains, hence its name special nativism. Once again, Occam's Razor 
enjoins us to avoid such domain specificity unless it is necessary. 

These are by no means problems with universal grammar per se, or its discovery as a scientific goal of linguistics. 
Rather these are problems for the view that language learning is governed and directed by an innate knowledge of 
uni versal grammar. 

Minimalist learning. An alternative approach argues that while the problem of grammar choice might be hard, 
it is by no means intractable. Rather than assuming as much as possible in an effort to minimise the number of 
possible grammars, the number of assumptions in the theory is minimised. I shall term this approach to grammar 
choice the minimalist approach . Effort is then oriented towards finding effective search strategies which can deal 
with the large number of possible grammars. The search strategy should be as independent of the search space as 
possible . 

A weakly restricted dass of grammars will usually offer a large number of compatible grammars. An evaluation 
measure is used to select between grammars not distinguished by the corpus. J ust as with the other parts of the 
learning system, the evaluation measure should be as free from domain-specific assumptions as possible. A very 
general evaluation measure, perhaps the most general possible, is that proposed by Solomonoff. 

Solomonoff induction. Solomonoff(1964) proposed an evaluation measure which is applicable to finding models of 
data under any computable theory. Theories are regarded as ideaJised computers, on which rules , such as grammars, 
run as programs that may access some data files, and in any case produce output. Rules plus any required input 
which produces a particular corpus in tlle context of a particular theory is called a model of that corpus. 

~ ____ ~m~odre~l ______ _ 
rules 1 1 input 

theory 
corpus 

The Solomonoff evaluation measure assigns to each model its size in binary bits. The best of a collection of 
models which produce the same corpus is the smallest. If we have a 200K program and a 2K program which can 
produce our corpus from the same input, say 25K, then the 2K program is better : 200K + 25K = 225K > 27K = 
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2K + 25K. On the other hand, if these programs require inputs of 5K and 500K respectively to produce the corpus, 
then the first model is better: 200K + 5K = 205K < 502K = 2K + 500K. 

The Solomonoff evaluation measure is not specifically oriented towards any domain of knowledge. Under any 
computable theory and for any collection of data, the evaluation measure can be used to decide between competing 
models . 

Where the data consists of strings of symbols, and no contextual dependencies occur within the strings, it can 
be shown that the length of the best encoding of astring, s, is given by k + E(s) where k is aprefix indicating the 
encoding of the string, and E(s) is the Shannon entropy of the string. In all the cases considered here, k will be 
independent of the s , and so can and will be ignored . Given the number of times ni t.hat each symbol i occurs in a 
string s of length Tl over the alphabet A, the Shannon entropy of s can be calculated by 

2 Planar segregation 

E(s) = n log2 n - L ni log2 nj 
iEA 

The Model McCarthy (1989) describes a theory of planar segregation which provides a good basis for a simple, 
computable theory. In his model, each word is represented, not as a single linear sequence, but rather as a number 
of planes each composed of phonemes from a particular c\ass, together with a template which describes how these 
planes are interleaved to form the word . In the most commonly proposed models there are two planes : one for 
consonants and one for vowels (McCarthy (1989) , Prince (1987)). 

The model of segregation that is used he re is essentially the same as McCarthy's. The major difference is that, 
rather than hold a copy of the template with each word , I replace these copies by a function which assigns to each 
word the appropriate template. 

As an example, suppose the segment inventory of our language is the English al phabet, and this is divided into 
three c\asses : a-g, h-q, r-z. A corpus containing the words 'cat', 'dog', 'bet', ' break' and 'cream' is represented by 
the planes 'cadgbebeacea', 'okm' and 'ttrr', together with the templates '11312113112' where the digits specify the 
plane from which the next element is to be taken. It is worth noting that there are no symbols to mark the end of 
a template. 

The length of templates, and hence, how to divide the template string into the individual templates, can be 
deduced from one observation and two functions . The observation is that the length of a template must be the same 
as the length of any word that uses that template . The first function L from words onto natural numbers, states 
the length of each word. The other function, T, is very important in reconstructing the corpus from the model. It 
indicates which template is to be used for each word. To determine the length of any template, find a word which 
is mapped onto that template by T. The length of that word , as given by L, must equal the length of the template . 
Taking each template in turn, we can use this length information to insert separators between templates. Because 
end-of-template markers would be redundant, they need not be used within the model. 

In our example, the function T is 'ABACC', where A is the first template, B the second and C the third . The 
function L shows the lengths 33355. From these we can deduce the length of the templates : 335. 

Plane 1 c a d g be b e a c e a 

Plane '2 o k m 

Plane 3 r 

T(Word) 113#121#113#13112#13112# 

Word Wl W2 W3 W4 W5 

L 3 3 3 5 5 

T A B A C C 

~ ~ 
A B C 

Templates 113 121 1 3 1 1 2 
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From these three components of a model: the planes, the templates and the functions assigning a template and a 
length to each word, the corpus may be derived. If the classes of segments assigned to particular planes are disjoint 
then there is a one-to-one correspondence between classifications of segments and models . For the sake of simplicity, 
and to reduce the size of the search space, it is assumed that the classes are disjoint . 

Evaluating planar segregations The Solomonoff evaluation of a planar segregation model is the sum of the 
length of encoding as strings: (i) each plane, (ii) the template list, (iii) the functions T and L, template choice 
and word length respecti vely. The length of the encodings is just the Shannon entropy of the strings, when the 
probability of occurrence of any symbol in the string is just the relative frequency of its occurrence. 

The word-Iength function , L, depends only on the corpus and not on the segregation. No matter how it is 
encoded, it has no impact on the choice of segregation, and so does not need to be considered when evaluating 
segregat ions. 

Now let us look at the example of planar segregation given in the last section, and evaluate it component by 
component. The first plane is the string cadgbebeacea. The absolute frequencies of the six symbols, abcdeg, 
which occur in this string are 322131, and the length of the string is 12. The Shannon information measure of the 
string is 

29.51 = 12 log2 12 - 3 log2 3 - 2 log2 2 - 2 log2 2 - 110g2 1 - 3 log2 3 - 1 log2 1. 

The evaluation for the first plane is 29.51. 
The following table shows the evaluations of the other strings in the segregation. 

Object The string Alphabet Frequencies Evaluation 
Planel cadgbeca abcdg 322131 29.51 
Plane2 okm kmo 111 4.25 
Plane3 ttrr rt 22 4.00 
T ABACC ABC 212 7.61 
Templates 11312113112 123 722 14.40 
Total 59.77 

It might see m intuitively reasonable that the simplest solution would be one in which all phonemes occur on the 
one plane . But this model in fact requires more information to specify. Here are the evaluations for the monoplane 
model. 

Object The strlng Alphabet Frequencies Evaluation 
Plane! catdogbet breakcream abcdegkmort 3221311 1 122 63.20 
T AAABB AB 3 2 4.85 
Templates 11111111 1 8 0.00 
Total 68.06 

The evaluation of Templates and T is lower in this segregation than in the previous one, but this is more than 
offset by the cost of placing all phonemes on the one plane. As a result, the segregation which appears to be 
qualitatively more compact, is quantitatively more expensive. The best segregation strikes a balance between the 
compactness of the templates, which is improved by having fewer planes, and the compactness of the individual 
planes which is improved by having many planes. 

3 Results 

In order to turn the evaluation measure into a learning system , it must be wrapped in a search. Because of the 
size of the search space, a non-deterministic weak search was used : simulated annealing. The resulting algorithm 
was implemented in C on VAXen and SUNs. The implementation allows the user to select the maximum number of 
classes into which the segments can be grouped. 

Data from thirty languages was collected in a suitable form for the program. The languages were chosen to fit, 
as closely as possible subject to the availability of material, the distribution proposed by Bell (1978) to avoid genetic 
bias . The artificial language Esperanto was also used to see if it behaved differently from natural languages. For 
each language the data consisted of a word list of at least two hundred and fifty words (preliminary testing suggested 
that this number was sufficient for convergence) with each phoneme occurring at least five times in the corpus . The 
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Language Classification Language Classification 
Arabic C-V Mandarin C-CV 
Auyana C-V Martuthunira (C-C)-V 
Axininca Campa C-(C-V) Miwok C-V 
Big Nambas CV-V Nez Perce C-V 
Daga C-V Panyjima C-V 
Esperanto C-V Piro C-V 
Gilbertese C-V Siroi C-V 
Gothic CV-V Swahili C-V 
Hungarian C-V Telugu C-V 
Halian C-V Thai (C-C)-V 
lxii c-v Tigak c-v 
Jacaltec c-v Turkish c-v 
Japanese c-v Wiyot c-v 
Karen (C-C)-V Wojokeso c-v 
Latin c-v Yoruba c-v 

Figure 1: Classifications of phonemes. A class marked C, V, and CV contains non-syllabic, syllabic or both sorts of 
phonemes respectively. Parentheses indicate the classification when restricted to two classes. 

words were taken (with the exception of Gilbertese) from continuous texts , to avoid any possible bias due to citation 
forms. Arabic data, for example, could be biased if verbs only ever occurred in one binyan. Each word was restricted 
to one occurrence in the corpus to avoid undue influence of frequently occurring items. Data was taken in phonemic 
form (using the analyses in the source grammars usually), and the classifications in the source analyses were used 
for comparison with the program's results. 

Tonal information, even though it is phonemic in Yoruba, Mandarin, Thai and Karen, was ignored. This was 
done because the relationship of tonal markings to a segmental ordering is not dear. 

The program was run twice on each data set. In the first run, the number of permitted dasses was unrestricted , 
allowing each phoneme to possibly exist in a dass of its own. In all cases, however, the algorithm selected at most 
three dasses, and often only two. The second run restricted the dassification to at most two dasses. 

The results are shown in figure 1. 
C indicates a purely non-syllabic dass, V a dass containing only syllabic items, and CV a dass containing both 

syllabic and non-syllabic segments. The parentheses show how dasses are joined when restricted to two dasses, 
if in the unlimited case more than two dasses are found. For example, the Axininca Campa phoneme inventory 
was divided into three groups. Two of these contained only non-syllabic segments (consonants), the third only 
syllabic ones (vowels) . When restricted to two dasses, one class of consonants was grouped with the vowels. It is 
an interesting empirical result that the ternary dassifications were always subdivisions of the binary classification. 

When restricted to two dasses only, the program nearly always divided the phonemes into two dasses: one of 
consonants and the other of vowels. The results were evaluated by comparing them with the classification into 
consonants and vowels that was given in the source material. This result is gratifying as almost all proposals for 
planar segregation upto now have segregated phonemes according to these two dasses. 

There were four exceptions to this result . Even in the exceptions strongly and exdusively syl1abic items (such 
as the vowel a) were separated from other strongly and exdusively non-syllabic items (such as k) . In one case, Big 
Nambas, there was rampant bivalency: many phonemes acted both syllabically and non-syllabically. This caused 
problems in the classi.fication due to the restriction that classes be disjoint: the high vowels are dassified with the 
consonants. 

In two other cases, Axininca Campa and Gothic, alternate phonemicisations considered viable but not used in the 
sources, gave better results. Mandarin segregated phonemes which could occur in the rhyme from those which could 
not. Investigations of Chinese secret languages has uncovered considerable supporting evidence for an onset-rhyme 
planar segregation (Ellison (ms)). 

When a large number of planes were permitted, upto one for each phoneme, the most common result was to 
retain the two plane syllabic/non-syllabic segregation. Once again there were a few exceptions, all using three 
planes. In three of these cases, Axininca Campa, Thai and Karen, the split dass was divided according to whether 
the segment occurred exdusively in a particular syllable position: onset, rhyme or coda. In the case of Martuthunira, 
interestingly, the program separated out the dass of consonants which may begin words. 
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Further investigations are needed to determine whether the program indeed found real linguistic structure in 
these cases, and, if not, why it failed to arrive at the expected analysis. 

4 Discussion 

The above results show that for a simple but real and non-trivial learning task, a minimalist approach is both 
possible and successful. The choice of model is constrained only by the theory inherent in the statement of the 
lcarning problem and the general Solomonoff learning approach. 

Exactly the same algorithm can be used to leam things in a non-phonological domain. For example, let the seg­
ment inventory contain digits, metric multipliers (micro-, milli-,centi-,kilo-) and metric measures (litres,metres ,grams). 
If the corpus is a list of measurements (232 kilograms, 19 metres, 2 millilitres, etc.) then the program will quite 
readily divide the segment inventory into the three classes of digits, multipliers and measures. So the learning 
algorithm is not domain-specific as would be one confined to determining phonological planar segregation in alt and 
only possible human languages. 

It follows therefore that domain-specific knowledge is not a necessity for a system to leam linguistic structure, 
even when the lack of this knowledge results in large search spaces. 

Last but not least, the algorithm provides a new technique for determining planar segregations. It suggests some 
interesting results for Mandarin and Martuthunira, as weil as lending confirrnation to the existing analysis for Arabic 
(compare McCarthy (1981)). 
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Applying' ~ (E, Ieamability Results to Natural IaD;)uage Lear:ning 

Iama F. Fass 

Abstract: 

An inference process is descril:ed, ~lhereby syntactie trodels for context-free langllages (CF1.s) 

rray be induetively constructed, and the langllages so leamed, fran suitable linguistic Imowledge samples. 
Properties of leamable generative and recognitive CFL trodels, and of the Imowledge samples r~lisite for 
their SllCt."'eSsful inference, are anphasized. A related testing process is also descril:ed, \lhereby correct­
ness of potential syntaetic trodels is determined by exhausti ve experirrental rreans. 'Ihe adaptation of 
both processes fran the darain of CFL learning to that of naturallangllage learning is next proposed. 
'Ihen naturallangllages may be learned (syntactieally) through identification in the li mi t or, otherwise, 
learned approxirrately. As türe penni ts, there may be additional diSCllSsion of the relationship betHeen 
these res1l1ts and such processes as parsing and semantie analysis. 
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I. :rntroc!IJctioo. 

Although there are ll'Blly argulIents made against the context-freeness of natural language, rrost 
debators agree that muc:h of the natural language L may be syntactically deseribed as a context-free 
language or, a CFL. TIms techniques applicable to the class of context-free languages tray be used to 
obtain results that (at least) approximately apply to any natural language L. These inelude resllits on 
the definition and effective determination of syntactic models and, in particular, results on their 
learnability. 

Employing what at first appears to be non-traditional CFL sentence representation enables the 
extension of sare traditional mchine theory, not previously applieable to the CF langllage darain. Once 
this is done, mchine learning techniqlles my be adapted so that generative and recognitive rrodels, 
precisely characterizing such CFL representations, ean be found . 

By representing lingllistie lmowledge slli tably, i t is shown that Imique syntactie rrodels for the 
knowledge exist, that they are finite, and that they tray be detennined effectively. There are 
"canpleaentary" techniques for finding a syntactic model (either a gramrar or a recognizer): constructing 
it by indlrtive inference frem a sample of correct (positive) datai or determining it by exhaustive 
(positive and negative) data tests. Thus "non-traditional" langllage representation -- actually 
elosely-related to sare traditional CFL parsing techniques -- leads to effecti ve language learning by 
positive or negative rreans. Extensions of these results to the case of naturallangllage learning fOllow, 
by use of adaptive techniques and appraxiIrations. 

An overview of min results is presented next, with saIe attention to related worIC and possible 
future research directions. 

H. RepreBeDtiog Cft. RboII1edge to D!fine {hique Syntactic M:ldels 

Based on a suggestion of Levy and Joshi [19], we represent the sentences of a CFL L not in the 
Ilsual linear-string fashion, but rathcr, in a fashion conveying sare phrase structure: the sKeletons S of 
their derivation trees (interior labels deleted) . Thus we consider, instead of the CFL L, its strllctured 
version, S, as defined by sare lmown context-free gramnar. This sICeletal, tree-liICe, stnrtured language 
S is recognizable by a elass of bottcm-up tree recognizers: the cl ass of sICeletal autarata that Levy and 
Joshi first described [19]. 

By generalizing elassical lIBdti.ne theory to the elass of structured CFLs, we have shown that 
each such structllred language S has a Imique fini te-state minimal deterministie recognizer. 
Corresponding to this Imiql.le recognitive characterization is a Imique generative characterization: a 
canonical CF gramrar prodl.lcing the structured langllage S Ilnambiguously. Relative to similar gramrars it, 
too, is minimal. The components of either of these syntactie models are precisely detennined by the 
stncture of the langllage, conveyed as S. S, generally ,is infinite, but is learnable if a 
characterizing finite syntactie model is aequirable by finite means. 

IH. Effectiw DeteIminatioo. of a Finite Syntactic MxIel 

v.e have shown that if a language is lmown to be CF then the constmcts of either of the 
syntactie models described above is indl.lctively inferable frem a finite sample of the stmctllres S: 
specifie positive data. [If it is lmown there is an n-variable backWards-deterministie gramnar (i.e., 
where no two distinct productions have the same right-hand-side) for S, then stmctures of S of depth 
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'- 2n are proven to be a sllfficient data sample for inductive inference of a grarrrrar, or slceletal 
autaraton recognizer, characterizing the entire structured language S. If the Imown gramnar is not 
backwards-deterministic, the sample shOllld be up to depth :f1.] Several algorithms for finding the 
models are described [e.g., 1,2, 12], including an efficient minimizing algorithm in [7]. 

PreciselY the theory for constructi ve inference of a correct syntactic model for S is adaptable 
to the case of testing a potential model of the language, to see whether or not it is (in)correct. Tests 
on positive and negative data (relative to S) are described, through which a potential model of S is 
learnable, on<.."e, by conclusive testing, it is effectively "verified". [If it is Imown that depth ~2n 
structures of S define a correct model, through inference, then structures of depth ~ 2n within S and 
not in S, relative to its defined catq)larent, will sllfficiently test a potential model and determine 
,mether or not it is <-'orrect.] Thus as long as a lan91lage is Imown to be CF, its syntactic models, as 
described, are learnable -- through inductive inference or testing -- employing finite positive or 
negative llEans. 

IV. AdaptC!ticms to Natural Ianguage IamrlD;J 

If a natural lan91lage is Immm to be context-free, and an n-variable grarmar for the lan91.1age 
is also Immm, then all of the above reSlllts autaratically apply. t-bre lilcely, though, a sample of 
lan91.1age structures will be given, but it really will not be Imown if the language to-be-learned is (or 
is not) CF. Here we can show that, if the language really is CF, then the adaptive (rronotonic) learning 
processes we use eventl.lally will discover a correct lan91.1age model, by identifying i t "in the lirni t" [18]. 
If, on the other hand, the lan91.1age is not CF, then our learning algorithms will never halt to provide a 
model SllCCessfl1l1y. IIowever, at any point we may cease the inference or testing process and accept that 
the reSlllt we then have is a "learned" model, that "characterizes the language approximately". 

V. Related Ieul.ts and Future Resea.rch Directic:ms 

Related reslllts that have cane out of this researd1 have included: techniques for "minimizing" 
CF prO<.."'eSSOrs and granmars; generalization of sare classical catq)lexity reSlllts (with W. I. Gasarch [7]) 
to the learnable modelS; and the beginnings of a theory (with E.S. Bainbridge [5], J.C. Cl1.erniavsky, 
et al.) relating structured-CFL processors to traditional pda prO<.."essors -- partiC1llarly in the case of 
"easily parsable" lan91lages with IL(k) and LR(k) granmars. 

Future researdl plans include further worlc in the area of parsing; possible applications of 
"minimization" reSlllts to attribute grarnrars (semantics), as described in [17]; and adaptations of 
structural CF Imowledge representation to the broader area of natural langl.lage acquisi tion and processing 
(e. g., as suggested in [20]). 

A full paper uill expand upon the above concepts and provide illustrative examples, as tillE and 
spa<""e permit. !vBIi.y of the reSlllts cited in the present paper are proven in the author's 'rlOrlc, listed 
below. 
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RESEARCH INTERESTS 
I have worked on theoretical syntax and semantics, and several aspects of psycholinguistics. I know no computer 

science, but try to follow developments in computational linguistics. I am particularly interested in sentence 
processing, and favor an interdisciplinary problem-oriented approach which focusses on a particular question and 
draws on all available methodologies to answer it. The annual CU NY Conference on Human Sentence Processing was 
founded to foster this approach and provide a forum for sharing research results and expertise among linguists, 
psychologists, and computer scientists. 

In recent years I have been following the development of non-transformational theories of syntax, particularly 
GPSG and HPSG, and have been working with Stephen Crain (Linguistics Dept., U. of Connecticut) to evaluate these 
theories against psycholinguistic data. We have sketched how sentence processing would proceed if based on a GPSG 
grammar, and have argued that this model accounts for recent experimental results at least as weIL as a 
transformational (Government Binding theory) model. Debate on these issues is summarized in my papers in Lanquage and 
Cognitive Processes 4, SI 155-209, 1989; and in T. Wasow, P. Seils and S. Shieber (eds.) Foundational Issues in 
Natural Language Processing, MIT Press, 1991. 

As reflected in my paper for this symposium, Crain and I have also been working on a model of language 
acquisition based on GPSG/HPSG theory. 'Poverty of the stimulus' arguments present a serious challenge to any 
acquisition model, even assuming considerable innate knowledge. The principles-and-parameters approach of Government 
Binding theory offers one solution to these problems. Crain and I set out to elucidate why no other kind of solution 
could be successful, but convinced ourselves instead that phrase structure theory does provide a basis for a simple, 
non-reflective acquisition algorithm. We would be happy to hear from anyone interested in implementing a learning 
model of this kind. 
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MAKING PHRASE STRUCTURE GRAMMARS LEARNABLE 
ABSTRACT 

GPSG and HPSG (Generalized Phrase Structure Grammar, Head-driven Phrase Structure Grammar) are theories of 
language structure not of behavior, but we can ask whether the grammars they define could be learned under 
psychologically natural conditions. In fact they cannot. Their language-specific rules could be learned only bya 
cumbersome and unreliable hypothesis-formation-and-testing device. Their language-specific constraints cannot be 
acquired at all if learners receive no systematic negative input. And the grammars hypothesized by a GPSG/HPSG 
learner cannot be guaranteed to respect the Subset Principle: an incomplete grammar for the target language typically 
generates a superset of the target, and without negative data there is no motive for the learner to move to the more 
complex but more restricted target grammar. 

I argue that learnability can be achieved, without loss of descriptive adequacy, by five revisions of current 
GPSG/HPSG. These prevent overgeneration by lexical metarules and linear precedence statements, and most importantly 
they replace language-specific constraints with universal defaults that can be overridden by acquirable rules. I call 
the resulting system LPSG (Learnable Phrase Structure Grammar). It turns out that these revisions which make learning 
possible in principle also greatly simplify the learning process. No hypothesis-formation-and-testing procedures are 
necessary. The learner need only strip off predictable feature specifications from the input, by applying innate 
feature instantiation principles in reverse. Rule learning in LPSG is thus simple and 'mechanical'; and unlike a 
parameter-setting device. it works uniformly for both the core and the periphery of language. 
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MAKING PHRASE STRUCTURE GRAMMARS LEARNABLE 

GPSG and HPSG (Generalized Phrase Structure Grammar, Head-driven Phrase Structure Grammar) have been presented 
as theories of language structure, not of behavior_ (See Gazdar et al. 1985; Pollard and Sag 1987, in press.) But it 
is of interest nevertheless to ask whether the grammars they define could be used for sentence processing, and 
whether they could be learned, under psychologically natural conditions. With regard to learnability, GPSG/HPSG 
grammars do not fa re well. There are three main reasons for this, essentially identical to the problems that 
afflicted the learning of transformational grammars before the advent of modern parameter-setting models. 

(1) GPSG/HPSG grammars contain language-specific constraints, which cannot be acquired on the standard 
assumption that language learners receive no systematic negative input (= information about what is QQ! 

a sentence of the language). Agrammar which lacks a needed constr~int will generate a proper superset 
of the target language. Thus it will accommodate every positive datum the learner will encounter, so 
s/he will have no motive to add the constraint. 

(2) GPSG/HPSG grammars contain language-specific rules, couched in syntactic feature notation. Again the 
problem is that an incomplete grammar for the target language will genera te a superset of the language. 
If a learner omits a feature specification from a rule, the result will be a broader rule which 
overgenerates. Without negative data the learner could not recognize the necessity of adding the 
feature specification. 

(3) The fact that GPSG/HPSG grammars constitute a mix of rules and constraints creates descriptive 
ambiguities. A learner faced with a novel datum would not know whether to add a new rule, or relax an 
existing constraint, or some combination of the two. Thus learning cannot be deterministic. Rather, it 
appears to require some kind of hypothesis-formation-and-testing (HFT) device, which can experiment 
with the alternatives and select between them on the basis of further data. But HFT devices are 
complex, and cumbersome in operation. Either they engage in a vast trial-and-error search through the 
space of possible grammars, or their convergence on the correct grammar is difficult to guarantee_ 

In short: GPSG/HPSG grammars are unlearnable in principle because there is no way to guarantee that the interim 
grammars hypothesized by learners will obey the Subset Principle (Berwick 1985), which requires learners without 
negative data to start with the most conservative grammar and to proceeed to more powerful ones only when that is 
necessary to accommodate further (positive) data. And even if learning were possible in principle, the available 
learning procedures appear to compare very poorly i.1 practice with the sort of 'mechanical' triggering of parameter 
switches that suffices for learning Government Binding theory grammars. 

It can be shown, however, that this learnability failure is not an inherent property of phrase structure 
grammars, or of rule-based systems in general_ Everything depends on how the rules interact with other components of 
the grammar. In particular, I argue that learnability can be achieved, without loss of descriptive adequacy, by the 
following five revisions of current GPSG/HPSG: 

(i) No language-specific FCRs (Feature Co-occurrence Restrictions) or FSDs (Feature 
specification Defaults)_ 

(ii) The Specific Defaults Principle: a specific (i.e., non-disjunctive) default 
value must be assigned by Universal Grammar to every feature in every context, 
unless t~e value in that context is universally fixed or is universally free. 

(iii) The Double M Convention: if a rule contains two or more optional marked feature 
specifications, only one marked value may be selected for the same local tree, 
unless the rule explicitly indicates that they may co-occur. 

(iv) Linear Precedence statements must characterize permitted orders of sister 
constituents, not required orders. 

(v) Lexical (meta)rules do not preserve subcategorization features. Subcategorization 
features are category-valued, not integer-valued_ (Already so in HPSG_) 
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I refer to the resulting system as LPSG (Learnable Phrase Structure Grammar). Though I have no proof that (i) - (v) 
are jointly sufficient for learnability, I know (at present) of no other modifications that are needed. 

Amendments (iv) and (v) block the overgeneralizing tendencies of linear precedence rules and lexical rules; I 
will not discuss these further here. Amendments (i) and (ii) are the most central. Their joint effect is to translate 
language-specific constraints (FCRs) in GPSG/HPSG grammars into universal default statements (FSOs) in LPSG. The 
result, as I will illustrate below, is a system in which rules differ in markedness, depending on how many of their 
feature values need to be explicitly specified and how many can be omitted because they follow from the universal 
defaults or from other general principles. Revision (iii) then exploits this markedness system to block the 
generalization of rules from unmarked to marked values, which is dangerous, while permitting safer generalizations 
from marked to unmarked values. 

How does LPSG's greater reliance on default feature specifications make learning possible? Because all of its 
defaults are universal, we can assume they are innate, so the problem of learning them without negative data does not 
arise. The defaults, together with any absolute universal constraints, will constitute a learner's initial hypothesis 
about the target language, prior to any experience. Since the defaults in LPSG embody all possible language-specific 
constraints, the learner's initial hypothesis will be maximally restricted, as the Subset Principle requires. 
Learning will consist of progressively loosening these restrictions, where necessary, by adding language-specific 
rules to override the defaults. It is thus the rules, not the constraints, that capture variation between languages. 
Note that rules, unlike constraints, can be learned from positive data. And since each rule adds to the complexity of 
the grammar, we can assume that learners won!t adopt a rule until or unless the data require it, so learning will be 
conservative. Finally, though LPSG rules are expressed in feature notation, the omission of a feature no longer 
licenses indiscriminate generation of trees with either (any) value of that feature. Instead, only the default 
(unmarked) value is licensed. If that value matches the input, the rule can remain underspecified; if the input has 
the marked value instead, the mismatch will force the learner to complicate the rule by specifying the marked value . 

Consider the learning of language-specific patterns of extraction by ~H'movement (or the phrase structure 
analogue of such movement, using the feature SLASH). Extraction is very limited in Slavic languages, it is less 
restricted in English, and it is freer still in Scandinavian languages. A somewhat over-tidy summary of the relevant 
language facts is shown in Figure 1 (for more linguistic details see Cichocki 1983, Engdahl 1982). 

Figure 1. Extraction facts (simplified) assumed here: 
Polish Engl ish Swedish 

Extraction from matrix VP (~ho do you like?) yes yes yes 
Extraction from object compl. (~ho does John think that you like?) no yes yes 
Extraction from ~H-compl. (~ho does John know whether you like?) no no yes 

Note that with respect to these extraction facts, Polish is a proper subset of English, which is a proper subset of 
Swedish. The Subset Principle therefore requires that it is the English and Swedish learners who must do the 
learning; the strict constraints on Polish must be innately established as the initial hypothesis. But in GPSG, where 
the differences between the three languages are captured by language-specific constraints, the relative complexity of 
their grammars predicts exactly the opposite of this. As sketched in Figure 2, GPSG predicts that Polish learners 
have more learning to do, more constraints to acquire, than English or Swedish learners. 

Figure 2. Language-specific constraints in GPSG: 

Cons~raint: no extraction over ~H 
Constraint: no extraction ac ross S 

Polish 
+ 

+ 

English Swedish 
+ 

In LPSG, by contrast, these constraints will have the status of universal defaults, innate, not needing to be 
learned. ~hat must be learned is rules to override these defaults, to permit extraction where it does occur. And as 
Figure 3 shows, in terms of rules the relative complexity of the three grammars is in keeping with the Subset 
Principle. 

55 



Figure 3. Universal default and language-speeifie rules in LPSG: 
Pol i sh English Swedish 

Rule: can extraet over WH + 
Rule: can extraet ac ross S + + 
Default: no extraction over S or WH + + + 

The feature-omission problem is illustrated in Figure 4. In GPSG, a simple rule posited by the learner to 
account for a non-extraction strueture will generate not only that strueture but also the corresponding extraction 
structure_ 

Figure 4. Free instantiation of SLASH in GPSG: 

Input: VP Motivates rule: VP --> H, S[FIN] Rule also licenses: VP[SLASH NP] 
/ \ / \ 

v S [F IN] v S[FIN, SLASH NP] 

Input: VP Motivates rule: VP --> H, S[WH] Rule also licenses: VP[SLASH NP] 

/ \ / \ 
v S [WH] v S [WH, SLASH NP] 

The feature SLASH carries information between a WH-phrase and its traee, licensing the 'extraetion'. GPSG permits 
free instantiation of SLASH, subject only to universal constraints (such as the Head Feature Convention); that is, 
GPSG construes non-speeification of SLASH in a rule as licensing local trees both with and without a SLASH feature. 
So once again, Polish learners would learn Swedish by mistake. A Polish learner would encounter the non-extraction 
constructions, and would thereby have acquired the corresponding extraction constructions. As shown in Figure 5, all 
three languages would have the same rules, whieh would overgenerate in Polish and English. 

Figure 5. Overgenerating rules in GPSG: 
Polish English Swedish 

Rule: VP --> H , S[FIN) (non-extraction, extraction) + + + 

Rule: VP --> H • S[WH] (non-extraction, extraction) + + + 

The cure for this in LPSG is the Speeific Defaults Principle (= revision (ii) above). This requires every feature 
(or: every feature whose value needs to be learned in some natural language) to have adefault value, whieh will be 
supplied in a tree whenever the value is left unspeeified in a rule. Let us assume, as seems reasonable, that the 
default for SLASH is for it to be absent, to have no value (in other words: non-extraction is the unmarked ease). 
Then the rules in Figure 5 will genera te only non-extraction constructions without SLASH. Different rules, more 
highly specified ones containing explieit SLASH features, will be necessary to generate the extraetion constructions, 
as shown in Figure 6. A learner of Polish will not encounter the trees that would motivate these more elaborate rules 
with SLASH, and therefore will not overgenerate the extraction constructions. 

Figure 6. Same rules subject to default in L~SG, don't overgenerate: 

Default: -SLASH (unless +NULL) 
Rule: VP --> H , S[FIN) (non-extraction) 
Rule: VP -->. H , S [WH) (non-extraction) 
Rule: VP[SLASH NP] --> H 
Rule: VP[SLASH NP) --> H 

S[FIN, SLASH NP) 
S[WH, SLASH NP) 

(extraetion) 
(extraetion) 

Pol ish 
+ 

+ 

+ 

Engl ish Swedish 
+ + 

+ + 

+ + 

+ + 

+ 

The grammars for English and Swedish look more complex in LPSG than in GPSG. But (a) the relative complexities are 
now right for learnability; (b) the SLASH rules ean be collapsed with the basie rules into more general rule 
schemata, so the extra complexity is in fact very slight; (c) in compensation, LPSG grammars lack the 
language-specific constraints of GPSG. 

Most interest ingly, it turns out that these revisions which make learning possible in principle also greatly 
simplify the learning process. An LPSG learner has no constraints to acquire, but only (lexical entries and) rules. 
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So there is no descriptive ambiguity as in standard GPSG/HPSG. When a learner encounters a novel local tree, one not 
licensed by his current grammar, his only choice is to add a rule (or add a feature option to an existing rule 
schema, which is equivalent to adding a rule and then collapsing it into the schema). Furthermore, since phrase 
structure rules are merely schematic characterizations of legal local trees, acquiring a new rule does not call for 
any creativity, any reflection, or hypothesis-formation-and-testing procedures, but is a simple routine matter. The 
worst that could happen is that the learner simply adopts the novel tree as a new rule in the grammar just as it 
stands. But that of course would lead to an unnecessarily vast and redundant grammar. To achieve an optimal grammar, 
the learner needs to strip off from the novel local tree all feature specifications that are predictable on the basis 
of universal principles and defaults. And to do this, all he need do is apply the principles and defaults (with which 
he is innately equipped) in reverse to the novel local tree. The feature specifications that remain after this 
feature stripping process will constitute the schematic rule his grammar needs; it will be the minimal 
characterization of just what is idiosyncratic to that syntactic construction in that language. 

Thus rule learning in LPSG is simple and 'mechanical', and does compare well with a parameter-setting model 
though completely different from it in its details. LPSG also makes it possible for phrase structure learning to 
satisfy various other desiderata for an optimal learning device. For example: 

where 1 = a novel input which initiates a learning event; 
G. learner's grammar at the time that ( is encountered; 

1 • 
G. the grammar the learner adopts in response to I; 

1+1 
L(G) the grammar licensed (generated) by grammar G: 

( i ) 

( i i ) 

( i i i ) 

( iv) 

G. G. if G. licenses I. (Prevents unnecessary grammar changes.] 
1 +1 1 1 

G. l icenses (. (Prevents fruitless grammar changes.] 
1 +1 

G. is as small as possible consistent with (ii) and (iv). (Simplicity metric; 
1+1 

permits reductions in grammar size ('restructuring'), but no unnecessary increases.] 

L(G. ) includes as many sentences of L(G.) as possible, compatible with (ii). (Prevents loss 
of ~;lor learning, but allows retreat fr~ errors - tho' not from Subset Principle violations.] 

These conditions (or others similar to them) can help direct grammar choice in profitable directions, and greatly 
reduce the amount of random trial and error before convergence on the correct grammar, thus bringing the learning 
model closer to a psychologically plausible account of actual language learning. Whether such conditions c~n be 

implemented without unrealistically complex computations depends on how the learning device operates. For example, 
~exler and Culicover (1980) imposed condition (ii) on addition of a transformational rule to the grammar, but could 
not impose it on deletion of a transformation because it was too difficult to identify a suitable rule to delete. But 
all the conditions above, as well as the Subset Principle, are easily implemented in LPSG; in fact they fallout 
quite naturally from the feature stripping mechanism. 

Finally, there is one respect in which feature-stripping is arguably superior to GB's parameter-setting. GB 
avoids the familiar drawbacks of hypothesis-testing by assuming that designated inputs automatically trigger the 
re-setting of a parameter. But the price for this is that the parameters, their values, and their triggers must all 
be innately listed; hence they must be finite, and for a plausible model they should be relatively few in number. 
This is why parameter-setting has been proposed only for 'core grammar'; a completely different (hypothesis-testing?) 
learning device is needed in addition for acquiring the more varied and unpredictable 'periphery' of a natural 
language. But LPSG needs no such duplication of learning mechanisms. Its default principles define a single continuum 
of markedness covering core and periphery alike. Rules are more costly to specify the more peripheral theyare, i.e., 
the more they depart from the universal defaults. But the same feature-stripping learning device will acquire them 
all. 

There are some matters needing further attention which 1 will not be able to address here. For example: the 
feature-stripping device is essentially cost-free, since it utilises feature instantiation principles which must in 
any case be innately provided and used in constructing sentence derivations. But it does need to be established that 
this derivational algorithm can apply efficiently in reverse as well as in the forward direction (i.e., to vacuum 
predictable feature values off trees, rather than to spray them on). Also, to the extent that the collapsing of rules 
into schemata is essential for achieving streamlined adult grammars, it must be ascertained that the rule collapsing 
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process is information preserving. with the increase in number of default statements in LPSG, it may be necessary to 
establish priority principles (e.g., an 'elsewhere condition') to determine which ones should override which others 
in case of conflict. The process by which learners parse novel input needs to be explored. Since the current grammar 
fails, by definition, to license a novel sentence type, the learner must apparently guess how to structure it. We 
need to know to what extent this guessing is linguistically guided. Finally, it needs to be shown that the LPSG 
learning mechanism is (or can be made) resilient to misleading or ungrammatical input. Though I have seme thoughts on 
each of these points, it seems to me that by far the most practical way to investigate them further is by computer 
implementation of the feature'stripping process, and I would be grateful for any advice or assistance that this 
audience can offer. 
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I have been involved with the construction of commercial Natural Language 
systems since January of 1985. Between 1985 and 1987. my primary Interest was 
the construction of a General Lex.icon of English, including the syntactic and 
semantic knowledge necessary to apply this lexicon to a variety of domains. In 
1987 I began leading a research effort into Case-Based Reasoning which lead to a 
generic CBR shell. This shell has been applied, or Is being applied to, problems in 
battle planning, network fault diagnosis and recovery, credit worthiness 
evaluation, credit collection, geological classification, and machine tool fault 
diagnosis and recovery. In 1988, I began work on applying this shell to message 
classification, and created the PRISM message classifier which was presented at 
lAAI-90. In addition to my work with Parse-O-Matic, I am currently involved in 
applying CBR/ Adaptive Plannlng to spatial reasoning and representation, with 
particular emphasis on issues of Natural Language ties to spatial reasoning. 

Abstract 

Recent work with Case-Based Reasoning in the areas of Battle ProJection 
[Goodman, 1989] and Telex Classification [Goodman, 1990] indicate that this 
approach holds the potential for building and fielding large, knowledge-based 
systems which are faster, more accurate. and require significantly less time to 
knowledge-engineer and maintain than with other approaches. Additionally, CBR 
provides a memory-based framework for knowledge representation which 
simplifies interaction between sources of knowledge, facilitates the handling of 
generalizations and exceptions. and supports leaming from success and failure 
[Kolodner and- Riesbeck. 1990]. 

Parse-O-Matic, a system which bunds frame-based semantic representations of 
Natural Language Requests. exploits these characteristics of CBR. Comparative 
knowledge engineering time and accuracy are given for Parse-O-Matic. and the 
KNET parser [Strong. 1989]. 

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was 
monitored by the Air Force Office of Scientific Research under Contract No. F49620-88-C-0058. The United 
States Government is authorized to reproduce and distribute reprints for governmental purposes 
notwithstanding any copyright notation hereon. 
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Case Representation 

Parse-O-Matic represents knowledge of parsing based on a Dynamic Theory of 
Activity lAgre and Chapman. 1987]. Each case contains a single step (or routine) 
descIibing a representation-building action to take in a particular context. The 
deIivation of a representation for a particular request may consist of several 
routines. Since the system has decomposed deIivations. retIieval has the effect of 
dynamically combining individual steps of old deIivations to create new 
derivations. 

CompaJdell 

Show 

Word: NU 
Blackboard: 
Newe.t:. 

(IMPERATIVE 
:FOCUS «(DISPlAYl)) 

(COMPANY 
:ST «PLURAL-SPEClll 

.... 
COMPANY 
PLURAL-SPEC 

Routine: - I r (LINK :OBJECT «COMPANY)) 
Previoua: , .... :TO «(DISPlAYl) 

Newe.t: _ 

:SLOT «:OF))) 

(COMPANY 
:MORPHS ((S-PLURAL))) 

IMPERATIVE 
DISPLAY 

(SPAWN 
:OBJECT «COMPANY 

:ST «(PLURAL-SPEC))))) 

(IMPERATIVE 
:FOCUS «DISPlAYl)) 

, , ... 

Routine: .... 
Previoua: 

Word: 
Blackboard: Nil 
Newe.t: Nil 
Routine: _--fiIiiP'-
Previoua: Nil 

(SPAWN 
:OBJECT ((IMPERATIVE 

:FOCUS «(DISPlAYl)))) 

" Parse-O-Matic Case Representation I'~ 
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In the construction of Parse-O-Matic. we based our representational choice on a 
previous parser (the KNET Parser [Strong. 1989]) and representational scheme. 
The KNET Parser used a forward-chaining, blackboard-based production system, 
compiled into a RETE net. with an underlying Truth Maintenance System to build 
a Frame-Based Semantic representation. The action side of each production 
allowed the manipulation of the representation on the blackboard, including 
actions such as spawning new frarnes onto the blackboard. linking frames to other 
[rames (representing a role-filling relationship), changing the type of frarnes, 
removing frarnes. unlinking frarnes from other frarnes. etc. Parse-O-Matic. 
therefore, represents routines as frarnes describing the manipulation of frarnes on 
a blackboard. 

In addition to a particular routine. each case representation must also include a 
set of features which can be used for case retrieval. These features are used to 
detennine what makes cases similar with respect to their routines, and serve as 
the basis for index generation. An example of the complete case representation is 
the sentence "Show companies ... " with later cases at the top and earlier cases at 
the bottom: 

Parse-O-Matic Architecture 

This case representation leads to the followmg architecture for Parse-O-Matic: 

Input Text. Morphology and 
Spelllng Correction 

-

Blackboard Adapter 

.. 
. :,.-

Final 
Representation 

AppUer 

Parse-O-Matlc Architec e r~ ~ 
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Parsing proceeds as follows: an input text is passed into a module which perforrns 
word-by-word morphological analysis and spelling correctlon. The first word is 
then passed to a case retIiever, which uses the word, the current representation 
on the blackboard, and the previous cases Uf any) to create a new case. This case 
is then used to traverse a set of indices, and a set of best-matching cases 1s 
retumed from the case memory. The routine indexed on the retrieved cases 1s 
then adapted, using information on the blackboard, to create a new routine. This 
new routine (the solution) 1s passed into an applier which may fetch frarnes from 
the blackboard, and post frarnes to the blackboard or modify frames on the 
blackboard. The applier then passes control back to the retriever Uf an action was 
performed), or passes control back to morphology and spe1l1ng correction (if no 
additional action is required in the current context). When control is passed back 
to the retriever, a new case is created with the current blackboard representation 
and the previous case, and the process repeats. When control is passed back to 
morphology and spelling correction, the next word is passed to the retriever and 
the process repeats. If no words remain, Parse-O-Matic is finished with the text 
and the final representation is on the blackboard. 

Case Indexing and Retrteval 

Case indexing in Parse-O-Matic is based on an extended version of the Automatic 
Interaction Detection algorithm [Hartigan, 1975]. The technique applies an 
analysis of variance model in order to partition a sarnple into aseries of non­
overlapping subgroups whose means explain more of the variance in outcome than 
any other set of subgroups. In operation, it is very similar to the CARf algorithm 
[Brieman, Friedman, Olshen and Stone 1984]. 

Parse-O-Matic uses three techniques for reducing the total number of features 
considered in indexing cases. The first technique is to only consider a small 
subset of cases while generating each discrimination. One technique for reducing 
the number of cases required 1S to preselect cases based on certain attributes, 
such as a good mix of outcomes, before generating the discrimination. 

A second technique is to break indexing into several passes, each of which 
considers a heuristic subset of the total features which are frequently meaningful. 
Two examples of this technique are: 1) pre-index on the last frarnes spawned into 
working memory since subsequent links, removals, etc. will usually refer to these 
new frarnes, and 2) pre-index on features which are necessary preconditions to 
executing the routine, such as the presence or absence of conceptual types 
referenced by the routine. In al1, Parse-O-Matlc uses 10 separate indexing passes 
based on different limiting heuristlcs. 

The third techpique for reducing the total number of operations is to 
incrementally add new cases into an existing library and to generate only those 
indices which are required to ac count for variations in the new cases. Using this 
technique, significant development work can be done without fully reindexing the 
library. The dis advantage of this approach is that cases which are incrementally 
added are only used to generate splits near the leaves of the index tree, whereas 
they could be useful in generating appropriate discriminations earlier in indexing. 

Since case retrieval consists of traversing a binary discrimination tree of indices, 
which is O(1og(n)) on the number of cases in the library, and the total number of 
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retrievals is roughly linear on the number of words. m. Olm log(n)) parsing is 
possible with this architecture. 

Case Adaptation 

Much of Parse-O-Matic's power comes from its ability to adapt previous routines to nev 
situations. A simple example of such an adaptation is a sentence like "Show companie~ 
with beta und er 5." Let's say that during a certain point in its derivation of a 
representation for this sentence. the best-matching case has a routine like: 

(LINK : OBJECT ((COMPANY)) 
: TO ((BOOK-VALUE-OF)) 
:SLOT ((:OF))) 

while our current representation looks like: 

(IMPERATIVE-l 
:FOCUS ((DISPLAY-l 

:OBJECT ((COMPANY-l :ST ((PLURAL-SPEC-l))))))) 
(BETA-OF-l :IS ((NUMBER-l))) 

Since there is no BOOK-VALUE-OF frame in the representation. Parse-O-Matic must 
adapt this routine to fit the current situation. Parse-O-Matic does so using Local Searcl 
[Kolodner and Riesbeck. 1990]. The missing role-filler. BOOK-VALUE-OF. is 
generalized to ATfRIBUTIVE-RELATIONSHIP using the conceptual hierarchy. The 
blackboard is then searched for a frame which inherits from ATfRIBUTIVE­
RELATIONSHIP. In this case. it finds BETA-OF-l. The routine is then reinstantiated 
with the new role fillers. yielding: 

(LINK :OBJECT ((COMPANY)) 
: TO ((BETA-OF)) 
: SLOT ((: OF) ) ) 

A more difficult adaptation. which Parse-O-Matlc does not currently support. is a case 
such as "Show companies with earnings per share over 6." Let's assume that we've 
spawned an EARNINGS-OF relations hip on the word earnings. and on "share" we get 
back the nearest routine: 

(CHANGE :OBJECT ((BOOK-VALUE-OF)) 
:TO ((BOOK-VALUE-PER-SHARE-OF))) 

while our current representation looks like: 

( IMPERATIVE-l 
:FOC~S ((DISPLAY-l 

- : OBJECT ((COMPANY-l : ST ((PLURAL-SPEC-l))))))) 
(EARNINGS-OF-l :IS ((MONEY-AMOUNT-l)) 

: OF ((COMPANY-l))) 

Changing the :OBJECT role-filler of the routine to EARNINGS-OF-1 from BOOK-VALUE 
OF is the same as above. However. we would like Parse-O-Matlc to adapt the routine as 
follows: 1) BOOK-VALUE-PER-SHARE-OF is the :PER-SHARE type attribute of BOOK­
VALUE-OF. 2) EARNINGS-OF-1 is being substituted for BOOK-VALUE-OF. 3) Query 
Memory to find the :PER-SHARE type attribute of EARNINGS-OF (which would be EPS 
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OF), 4) reinstantiate the routine with EPS-OF substituted for BOOK-VALUE-PER-SHAF 
OF yielding: 

(CHANGE :OBJECT ((EARNINGS-OF» 
: TO ((EPS-OF») 

Plans are und er way for extending Parse-O-Matie to deal with this kind of adaptation. 
Parse-O-Matie eurrently requires a brute-force approach (Le. adding examples for all 
such CHANGEs to case memory) to get this. 

Concluslon 

Parse-O-Matic views Natural Language Proeessing as a memory-intensive process. 
Its Case-Based arehitecture allows episodie knowledge to be added in a localized, 
incremental fashion. Generalizations and exceptlons over lexieal, semantie, and 
syntaetic construetions are handled automatieally through Inductive indexing of 
the case library. 

Parse-O-Matic and the KNET parser have both been applied to the same Natural 
Language domain where Parse-O-Matic aehieved a eomparable aeeuracy to the 
KNET parser (over 90% aceuraey) in roughly 50% of the knowledge engineering 
time. Parse-O-Matie also parses more quickly (in about 25% of the time taken by 
the KNET parser). 
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Working Notes for AAAI Symposium: Symbol Grounding: Problem and Practice 

THE SYMBOL GROUNDING PROBLEM AND CATEGORICAL PERCEPTION 

Stevan Hamad, DeparUnent of Psychology, Princeton University, Princeton NJ 08544 

Research Interests (S. Harnad): My current research interest is in the symbol grounding 
problem and categorical perception: A symbol system is a set of physical tokens (e.g., scratches on 
paper, holes on a tape , flip-flop states in a computer) and rules for manipulating them (e.g .• erase "0" 
and write "I "). The mIes are purely syntactic: They operate only on the (arbitrary) shapes of the 
symbols, not their meanings. The symbols and symbol combinations can be given a systematic semantic 
interpretation, for example, they can be interpreted as meaning objects ("cat," "mal") or states of affairs 
("the cat is on the mal"). The meanings of the symbols, however, are not grounded in the symbol 
system itself; they derive from the mind of the interpreter. Hence, on pain of infinite regress, the mind 
cannot itself be just a symbol system, syntactically manipulating symbols purelyon lhe basis of their 
shapes. This is the "symbol grounding problem." 

How can one ground the meanings of symbols within the symbol system itself? This is impossible 
in a pure symbol system, but in a hybrid system, one based bottom-up on nonsymbolic robotic functions 
such as transduction, analog transformations and sensory invariance extraction, the meanings of 
elementary symbols can be grounded in the system 's capacity to discriminate and categorize (name) the 
extemal objects and states of affairs thal its symbols refer to, based on the projections of those objects 
and states of affairs on its sensory surfaces. The grounded elementary symbols ("cat," "mal") can then 
be mlefully combined and recombined to form higher-order symbols and symbol strings ("the cat is on 
the mat") that inherit the grounding as nonarbitrary constraints on their shapes. 
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Categorical Perception aod tbe Evolution or Supervised Learning in Neural Nets 

Stevan Hamad*, Stephen J. Hanson· ... Joseph Lubin·, 
·Princeton University, "Siemens Research Center 

Abstract: Some of lhe fealures of animal and human calegorical perceplion (CP) for color. pi/ch 
and speech are exhibiled by neural nel simulations of CP wilh one-dimensional inputs: When a 
backprop nel- is trained 10 discriminale and lhen calegorize a seI of slimuli, lhe second lask is 
accomplished by "warping" 1!Je similarity space (compressing wilhin-calegory distances and 
expanding between-calegory dislances). This nalural side-effecl also occurs in humans and 
animals. Such CP calegories. consisling of named. bounded regions of similarity space. may be 
lhe ground level oul of which higher-order calegories are conslrucled; nelS are one possible 
candidale for lhe mechanism lhal learns lhe sensorimolOr invariants lhal connecl arbitrary names 
(elementary symbols?) 10 lhe nonarbilrary shapes of objecls. This paper examines how and why 
such compression/expansion effecls oCCUT in neural nels. 
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Categorical Perception and the Evolution 01 
Supervised Learningln Neural Nets 

S Hamad·. SI Hanson·.·· & 1 Lubin· 
·Princeton Univ .• ··Siemens Res. Ctr. 

1. Categorical Perception 

One of the most remarlcable properties of human 
perception is that it seems to carve the world at 
its joints. The physical signals that bombard our 
sensory surfaces do not give rise to a "bloom­
ing. buzzing confusion" but to relatively orderly 
experiences. segmented into "chunks" (Miller 
1956) or categories. How does our brain sort 
things into categories on the basis of the sensory 
signals it receives? 

Arelevant phenomenon in human and animal 
perception that has received a good dea1 of 
attention is "categorical perception" (CP) (Rar­
nad 1987): Equal-sized physical differences in 
the physical signals arriving at our sensory 
receptors are perceived as smaller within 
categories and larger between categories. For 
example. differences in wavelength within the 
range we call "yellow" are perceived as sm aller 
than equal-sized differences that straddle the 
boundary between yellow and the range we call 
"green." The wavelength continuum has 
somehow been "warped: with some regions 
getting compressed and otha regions getting 
stretched out 

In the case of color CP. although learning may 
have played a role. most of the warping seems 
to have been done by evolution. with the result 
that it is probably an inbom property of our sen­
sory systems. modifiable only minirnally (if at 
all) by experience. Other prominent examples of 
CP have been found in human speech percep­
tion as well as in some animal signalling sys­
tems (see chapters in Hamad 1987 for exam­
pies). These 100 seem to be largely inruue, 
although they are modlfiable by experience. 
Musical pitch categories may be examples of 
CP effects thal arise primari.ly as a result of 
leaming. CP effects have also been reponed to 
occur purely as a result of learning in experi­
ments with artificial continua; similar "warping" 
effects might be expected to arise from learning 
complex multidimensional categories. as in 
leaming to sort baby chicks as male and female, 
or hislOlogical slides as cancerous or noncan-

cerous. 

The generation of CP (enhanced within-category 
similarity and enhanced between-category 
differences) by perceptual learning has been 
described as the "acquired similarity [difference] 
of cues" but no mechanism has been proposed 
to explain how or why it occurs. 1 

In this paper we will show how CP might arise 
as a natural side-effect of the means by which 
certain standard neural net models (backpropa­
gation. Rumelhart & McClelland 1986) accom­
plish leam in g. They acquire the capacity to sort 
their inputs inlO the categories imposed by 
supervised leaming through altering the pairwise 
distances between them (where distance is the 
degree 10 which a pair of inputs is discriminable 
by the net) until there is sufficient within­
category compression and between-category 
separation to accomplish reliable categorization. 
As we shall see. however. the nets don't neces­
sarily SlOp at a minimal degree of 
compression/separation; rather. they overshoot. 
producing much stronger CP effects than seem 
necessary 10 accomplish the categorization. 

CP is of interest not only in its own right, as a 
very basic perceptual phenomenon. but also as a 
possible contributor to solving the "symbol 
grounding problem" (Hamad 1990): In a formal 
symbol system such as a computer program. or 
in the actWll implementation of such a system 
on a machine, symbols are manipulated on the 
basis or"formal rules or algorithms that apply to 
the shapes of the symbols, not their meanings 
(Le., symbol manipulation is syntactic rather 
than semantic). The meanings of the symbols 

I Behaviorists proposed an usoc:iative expl.anation -­
Ihat memben cl Ihe same category grew more similar 
because they weft: weft: more clo.ely associated wilh 
one anotber and with !heir shared cat.egory name Ihan 
wilh memben of different cat.egories md !heir name •• 
but Ihis is moft: a restal.ement of Ihe phenomenoo Ihan a 
model that explain. iL The" mOlOr theory of speech per­
ceptioo" explained speech CP by the similaritie. and 
differenc:es between the mOlOr paaem required to pro­
duce, .. y. a BA and a DA. but Ihis model applie. only 
to the special cue of speech. wheft: Iheft: is a 
perceptiOD/produaioo analogue. and hu giVeD rise 10 

decades of unfruitful debale aboul whelher or nOl 

5 peech is "special." The last "theory" oe CP is Ihe 
Wborf Hypothesis. ac:cordinllO which CP is a manila­
tatiOll cl bo1lll lanauaae and ailiure shape our view of 
real.ity. This 100 seem. mOfti a restatement cl Ihe 
pheoomenon than an explanation cl iL 
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are projected OntD them by the user who inter­
prets the symbols and the symbol manipulations; 
they are not intrinsie lO the system itself. By 
contrast. if, using the sensory projections on its 
transducer surfaces, a robot were able to 
discriminate and categorize the rea1-world 
objects, events and states of affairs to which its 
symbols can be interpreted as referring, then 
those symbols would be grounded in the robot's 
causa! capacity rather than just being parasitic 
on the meanings an interpreter projects onlO 
them. 

So there is a close connection between the sen­
sorimolOr capacity to carve the world at its 
joints and the cognitive capacity to produce 
symbolic descriptions of that world: For the 
compressed and separated "chunks" of the simi­
larity space originating from our sensory recep­
tors can be given names, and those category 
names can then be combined syntacticaUy to 
form propositions about the world. Whatever 
mechanism successfully maps the sensory pro­
jections onto their category names is also what 
grounds the symbol system. 

It is one possible candidate mechanism for map­
ping simple sensory inputs onto category narnes 
that will be analyzed here, and in particular, the 
dynamica1 role that the warping of similarity 
space which is characteristic of CP may be 
playing in its successful performance. 

2. Learning to SpUt a Line. 

Both the neural net architecture and the task 
used were very simple. A backpropagation net 
with 8 input units, 2 - 12 hidden units and 8 or 
9 output units was used. The net's task was to 
learn to son 8 "lines" into 2 categories (tet us 
call them "shon" and "long"). The lines were 
represented in 6 different ways, in order to test 
the effects of the input coding. One variable of 
interest was the "iconicity" of the coding (Le., 
how analog, nonarbitrary, or structure-presecving 
it was in relatio~ _ to what it represented). 

The lines were either "place" coded (e.g., a line 
of length 4 would be 0 0 0 1 0 0 0 0) or "ther­
mometer" coded (e.g., line 4 would be 1 1 1 1 0 
o 0 0). The place code was assumed to be more 
arbitrary and the thermometer code more ana­
log, in that the thermometer code preserved 
some multi-unit constraints whereas the place 
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code did not In addition, the thermometer­
coded lines and the place-coded lines could be 
discrete-coded (as above) or they could be 
coarse-coded, allowing some gaussian spillover 
to adjacenl units (e.g., line 4 coarse/place-coded 
might be 0 .001 .1 .99 .1 _001 0 0, and line 4 
coarselthermometer-coded might be _90 _99 _99 
.90 .1 _001 0 0). Finally, because CP concems 
the formation of boundaries between categories, 
a lateral irthibition coding was also tested, in 
which adjacent coarse-coded units were inhi­
bited so as lO enhance boundaries (e.g., line 4 
lateral-irthibition/place-coded might be .1 .1 .00 1 
.99 .001 .1 .1 .1, and line 4 lateral­
inhibition/thermometer-coded would be .8 .9 .9 
.99 .001 .1 .1 binary coding, again because it 
preserved multi-unit constraints. Lateral Inhibi­
tion was likewi.se more analog than the discrete 
code, but also more complicated, because the 
width and placement of the boundary effects 
from the lateral inhibition could in principle 
help or hinder the formation of a CP boundary, 
depending on whether the two effects haPpened 
to be in or out of phase. 

In human experiments the CP effect is defined 
as an interaction between discrimination (the 
capacity to teU pairs of stimuli apart, a relative 
judgment) and identification (the capacity to 
categorize or name individual stimuli, an abso­
lute judgment). Normally, along a one­
dimensional stimulus intensity continuum the 
discrimination function is log-linear (Le., equal­
sized logarithmic increases in stimulus intensity 
produce equal-sized increases in sensation inten­
sity, and hence response measures of it, such as 
sameldifference and degree of similarity judg­
ments). CP is a systematic departure from this 
log-linearity, with relative compression (attenua­
tion) of di.scriminability within categories andIor 
relative dilation of discriminability (separation) 
between categories. The neural net accordingly 
had to be given an initial discrimination fune­
tion, which could then be re-examined after 
categorization training to see whether it had 
"warped." 

The method used to generate the precategoriza­
tion discrirnination function was "auto­
association" (Hanson & Kegl 1987; Cottrell, 
Munro & Zipser 1987). Different nets were 
trained, separately for each of the 6 representa­
tions of the 8 lines, to produce as output exactly 
the same pattern they received as input. For 
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each net trained to a predefined criterion level 
of performance on auto-association Lhe inter­
stimulus distances for all pairs of Lhe 8 lines 
were Lhen caJculated as Lhe euclidean distance 
between Lhe vectors of hidden unit activations 
for each pair of lines. For example, if there 
were four hidden units and Lheir activation 
values after training for line X were (x 1 x2 x3 
x4) and far line Y (yl y2 y3 y4), Lhen Lhe dis­
tance between the two inputs, and hence their 
discriminability for Lhat net, would be Lhe dis­
tance between X and Y (see Hanson & Burr 
1990 for prior work on using Lhis internal meas­
ure of interstimulus distance). 

After auto-assoclatlon Lhe trained weights for 
Lhe connections between the hidden layer and 
Lhe output layer were re loaded (and Lhen all 
weights were left free to vary) and Lhe net was 
given a double task.: Auto-association (again) 
and caregorization, i.e., lines 1 - 4 had to be 
given one (arbitrary) "name" and lines 5 - 8 had 
to be given another (e.g., "sOOrt" and "Iong"). In 
practice, trus naming required one more bit on 
Lhe output, Lhe usual eight for Lhe auto­
association, and Lhen one more for the categori­
zation (initially seeded randornly with weights 
in Lhe (-1.0, 1.0) range). 

For each of Lhe six representations, 50 auto­
association nets were trained, and the results of 
each of Lhese were used to train 10 categoriza­
tion nets; except where noted, Lhe results 
reported here refer LO averages. Once each net 
was trained on the categorization task., the pair­
wise interstimulus distances were agam corn­
puted, as be fore , and then compared LO Lheir 
precaregorization values for that net A CP 
effect was defined as a decrease in within­
category interstimulus distances and/or an 
increase in between-category interstimulus dis­
tances relative LO Lhe auto-association-alone 
baseline. 

3. Results. 

We will first -report Lhe results for auto­
association alone, and Lhen for Lhe pre!post corn­
parison. Finally, we will analyze some of Lhe 
details of Lhe evolution of Lhe CP efIects that 
were observed. 

The auto-association-alone results for each of 
Lhe 6 representations for 4-hidden-unit nets are 
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shown in the corresponding upper portions of 
Figure la-f. Plotted are Lhe interstimulus dis­
tances (computed as described earlier) between 
each pair of inputs for the trained net As 
expec ted , Lhe most arbitrary representation 
(discrete/place) produced Lhe flattest discrimina­
tion function: All interstimulus distances were 
equal. To an extent, this is true of all Lhe place­
coded represenla1ions, but it can be seen that the 
effect of Lhe coarse coding produces some 
rounding and spillover. All the thennometer­
coded representations are more iconic (in the 
sense Lhat a monotonic increasing relationship, 
sometimes even a linear one is maintained as 
Lhe pairs move funher apart on Lhe continuum, 
as in human discrimination functions). This 
seems to be reflected equally by the 
discrete/thennometer and coarse/thennometer 
codes, but the coarse/Lhennometer code has 
some more of the properties of hwnan discrimi­
nation, as we will see later. The lateral inhibi­
tion representations are mare complicated, 
because of interactions between the (arbitrarily 
chosen) size of the lateral inhibition envelope 
and the interstimulus increment. 

The lower portions of Figure la-f show the 
difference between the interstimulus distances 
for aULO-association alone and the interstimulus 
distances for aULO-association-plus-categorization 
for each of Lhe six representations. A positive 
deviation means that the interstimulus distance 
has decreased and a negative deviation after 
categorization means it has increased.2 Hence 
positi ve deviations wiLhin categories (compres­
sion) and/ar negative deviations between 
categories (separation) would be CP effects. As 
is clear from Figure I, pronounced CP effects 
occurred for all 6 representations. (Although 
there may be some trend toward greater magni­
tude CP effects wiLh Lhe more iconic representa­
tions, Lhe scales vary and the relative magnitude 
is probably not comparable across representa­
tions wiLh this methodology.) 

Having observed strong CP effects in all 
representations, our next question was: Why 
were they there and what, if anything, were Lhey 

2 To facililae compariJOII, !he 28 possible pairwise 
compariJons of the 8 lines are displayed in Lenns of !he 
size of the increment: lines differing by 1 unit fint, 
!hen 2 units, etc. Note !hat because !he caLegory boun­
dary wu between lines 4 and S, increments of 4 or 
greaLer are aIl between-caLegory differencel. 
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for? To examine this more closely we first 
hypothesized thal CP effects may arise as a 
consequence of compressing the input data into 
a smaller number of hidden units. so we re-ran 
the nets with hidden units varying in number 
from 2 - 12. pred.icting !hat the CP effect would 
diminish with more units. We also thought that 
whereas a small number of hidden units may 
give rise 10 global represenwions. a \arge 
number would allow local ones 10 form. The 
pred.iction was !hat the global represenwions 
would show more of a CP effect 

The categorization task turned out 10 be very 
difficult 10 leam with only 2 hidden units; most 
nets did not succeed even after a very \arge 
number of training trials. With 3 there was CP 
just as there had been with the 4-hidden-unit 
nets in Figure 1. and CP continued 10 be present 
even when the number of hidden units was 
increased 10 12. exceeding the number of input 
units. So CP is not merely a consequence of 
compression. With more hidden units. however. 
there was more overall separation and less 
compression in all directions superimposed on 
the CP effect, both within and between 
categories. 

The next hypothesis was that CP might arise 
gradually after the first point of separation in the 
task. as the net overleamed 10 more extreme 
values. However. when we trained nets just 10 

the first epsilon of reparation and checked for 
CP. we found the CP pattern was already there 
then. smaller than in Figure 1. but present 

Another test was whether CP might be an 
artifact of using the same net, with reloaded 
weights. 10 do the auto-association as weU as 
the auto-association-plus-categorization. Now. in 
some respects this seems the natural thing 10 do: 
After all. we are the same systems that do 
discrimination as weU as categorization. So 
although it was a bit li.ke comparing apples and 
oranges (or at least like making between-subject 
rather than with_iJ.t-subject comparisons. we also 
compared performance averaged over many nets 
for au1O-association alone with performance 
averaged over many other. independent nets. for 
auto-association-plus-categorization. Here too. 
although the effect was much weaker and not 
present in all represenwions. there was still evi­
dence of a CP effect 
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A final test concemed iconicity and interpola­
tion: Was the CP restricted 10 trained stimuli. or 
would it "spill over" (or "generalize") 10 
untrained ones? Nets were trained on auto­
association the usual way. and then. during 
categorization training. some of the lines were 
left untrained (say. line 3 and line 6) 10 see 
whether they would nevertheless "warp" in the 
"right" direction. We found interpolation of the 
CP effects 10 untrained lines. but only for the 
coarse-coded represenwions. 

Our provisional conclusion was that, whatever 
was responsible for it, CP had to be something 
very basic ta how these nets leamed. in particu­
lar. 10 how they accomplished supervised 
category leaming. So the next step was 10 look 
more closely at the time-course and evolution of 
the leaming i tsel f. Instead of loolcing only at the 
pre!post-categorization comparison of the inter­
stimulus distances. we analyzed how the inter­
stimulus distances evolved across tria1s for each 
of the 8 stimuli. For this we used nets with 3 
hidden units. This gave us a visualizable 3-
dimensional hidden unit space in which we 
could follow the locus of the representation of 
each of the lines in hidden unit space during the 
course of leaming. The results are shown in Fig­
ure 2. 

Three factors were found 10 ini1uence the gen­
eration of the CP during the course of learning. 
Two were related 10 the sigmoid or logistic 
activation function and one was related to the 
degree of iconicity of the input representation. 

First, a finite. bounded hidden unit space arises 
because the units saturate 10 0 and 1. In the 
three-dimensional case illustrated here. the hid­
den unit representations for each of the inputs 
move into the farthest corners of the unit cube 
during the course of au1O-association learning. 
maximizing their pairwise distances from one 
another. This extreme cornering was found with 
the discrete/place coding (Fig. 2a); there was 
movement inta corners and edges with the 
discrete/thermometer coding. The other 
representations showed less of this tendency to 
move 10 the extreme periphery of hidden unit 
space. 

This separation tendency thus interacts with the 
second factor. the iconicity of the thermometer­
coded and coarse-coded inputs: Some hidden 



unit representations are forced by the auto­
association to stay c10ser to one another than 
they would otherwise have "liked" to stay 
because of the input structure they are con­
strained to inherit (see Figure 2b). 
Thennometer-coded and coarse-coded inputs 
accordingly arrive at the categorization stage 
after auto-association with linearly separable3 

configurations of hidden-units representations 
whereas place-coded inputs may arrive with 
more random configurations (depending on the 
random initial "seed.ing" values given to each of 
the weights prior to leaming) and hence more of 
them may fail to be linearly separable (hence 
failing to be categorizable) after categorization 
training. Thennometer- and coarse-coded inputs 
produce faster and more reliable CP effects than 
place-coded inputs, in that they rarely or never 
get caught in the local minima that may block 
linear separability (cf. Figs. 2c - 2e). 

The lhird factor is peculiar to categorization 
leaming and arises from the dynamics of the 
leaming (again because of the logistic function): 
Because of the error metric of the leaming 
equation, the hidden-unit representations will be 
pushed with a force !hat is inversely propor­
tional 10 an exponential function of their 00-
tances from the (hyper)plane separating the two 
categories. 

The codings !hat generated lhe largest number 
of nets that were unable 10 leam the categoriza­
tion task were the 2 most arbitrary (noniconic) 
ones, d.iscretelplace (Fig. 2e) and especially 
lateral-inrubition/place. Our diagnosis is !hat 
with place-coding the output of the auto­
associator is more likely to generate 
configurations in hidden-unit 3-space in which 
the representations of the eight lines are not 
readily linearly separable into the two 4-member 
categories imposed by the task. More training 
trials are hence required to move such nets into 
a configuration where the the eight representa­
tions are linearly separable (see Figure 2d). The 
lateral inhibition probably acts 10 add bumps 10 
the representational space and hence to the error 
surface. Sometimes the configuration even gets 

3 Two seu of poinu in I plane Ire ,inearly separ­
able" if IOd only if they can be divided UIIO their 
rcspective calcgorie. by I straight line cutting IcrosS the 
plane. In three dimensional spaee, linear separability is 
acoomplished by I plane; in higber dimensiOlll, by I 

hyperplane, etc. 
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trapped in a local minimum, in wruch case the 
categorization cannot be leamed at all (see Fig­
ure 2e). 

So what can so far be inferred about the evolu­
tion of CP leaming can be stated as follows: 
During auto-association the iconic properties of 
the inputs are "imprinted" onto them, and are 
then reftected in their interstimulus distances in 
hidden-unit space. Apart from having to remain 
faithful to these constraints, the effect of auto­
association is to maximize the pairwise inter­
stimulus distance among all the stimuli within a 
bounded, finite space. The categorization phase 
then has no choice, if it is to generate successful 
perfonnance, but to "warp" the finite space of 
this maximal separation, moving some of the 
stimuli (those within the same category) closer 
together than they would "like" in order to suc­
cessfully separate them from the others (those in 
the Other category); the magnitude of the warp­
ing effect is proportional to the distance of each 
stimulus from the plane that marks the boundary 
between the two categories. A complicating fac­
tor, and one affecting either the magnitude of 
the CP or the probability or number of trials 
before successful perfonnance is attained, is the 
initial structure of the 8 stimuli at the end of 
successful auto-association and the beginning of 
categorization training: If their initial 
configuration is at odds with the partition that is 
needed. more warping is needed. and in some 
particularly bad configurations (arisi.,g mosLly 
with lateral-inhibition-place coding) conver­
gence may not be possible at all. 

4. Conclusions. 

We have analyzed how one particular family of 
neural nets accomplishes categorization by 
"warping" interstimulus similarity space in a 
way that resembles human categorical percep­
tion. Olher kinds of nets generate CP 100 (e.g., 
unsupervised ones), but this analysis seems to 
be especially revealing about supervised leam­
ing, an important form of leaming, because the 
contingencies of survival and successful 
behavioral adaptation do not always follow the 
natural Iay of the land: Or, to pUl it another 
way, where nature's joints are may not be at all 
obvious from the input alone. Supervision in the 
form of feedback from the consequences of 
mis categorization may be our best guide as to 
how to carve up objects, events and states of 
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affairs. If so, then the plasticity afforded by a 
mechanism that can "warp" the landscape in the 
service of the partition dictated by behavioral 
contingencies would be a useful one indeed, 
especially when the behavior is symbolic, and 
the task is not just to survive, reproduce and get 
around in the environment, but to describe and 
explain it •. a mechanism that allows you to 
"see" the world differently as you carve out ever 
subtler categories with the fine edge of hwnan 
language. 
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Figure 1. Pairwise distances between the 8 
lines in hidden-unit space (4 hidden units) for 
each of the 6 input representations: 
discrete/place (la), coarse/place (lb), lateral­
inhibition/piace (lc), discretelthermometer (ld), 
coarselthermometer (le), and lateral­
inhibition/thermometer. In each case the upper 
figure displays the pairwise distances foUowing 
auto-association alone and the lower figure 
displays the difference between auto-association 
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alone and auto-assoclatiOn plus categorization. 
The polarity of these differences is positive if 
the interstimulus distance has become smaller 
(compression) and negative if it has become 
larger (separation). To visualize within-category 
and between-category effects more easily. the 
comparisons have all been ordered as foUows: 
first the one-unit comparisons 1-2, 2-3.... 7-8; 
then the two-unit comparisons 1-3, 2-4, etc, and 
so on until the last seven-unit comparison: 7-8. 
Note that the category boundary is between 
stimuli 4 and 5, hence all pairs that cross that 
boundary are between-category comparisons; 
otherwise they are within-category comparisons. 
Almost without exception, within-category dis­
tances are compressed and between-category 
distances are expanded by the categorization 
leaming. Notice also that interstimulus distances 
before categorization (auto-association alone) 
tend to be equal (Hat) for the more arbitrary 
codes (discrete/place, lateral-inhibition/place) 
and ascending with increasing distance in units 
for the more iconic represenlations (thermome­
ter and coarse codes). 

Figure 2. The evolution of the 8 line represen­
tations in hidden-unit space for 3-hidden-unit 
nets. Each line's represenlation is displayed as a 
point in the unit cube, its value on each axis 
corresponding to the activations of each of the 
hidden units (the connecting lines are just to 
help visualize in 3 dimensions). Figure 2a shows 
how the arbitrary discrete/place codings evolve 
during auto-association from their initial random 
configuration (left) to extreme separation in the 
corners and edges of the space after auto­
association leaming (right). Figure 2b, again 
auto-association alone, shows how the iconic 
factors in the coarse/thermometer representation 
constrain this separation. Figure 2c shows the 
evolution of categorization with the iconic 
discrete/thermometer code from the final 
configuration after auto-association alone (Ieft) 
to the configuration after successful category 
leaming (right). Figure 2d shows in four stages 
from left to right the more difficult evolution of 
the configuration with the arbitrary 
discrete/place code; after considerable move­
mem, linear separability between the two 
categories is achieved. Finally, Figure 2e shows 
a discretelplace net that cannot accomplish 
categorization because it is stuck in a local 
minimum in which the two categories are not 
Iinearly separable. 
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My current research with Peregrine Systems 
involves the development of a natural language 
interface for information retrieval applications . We 
treat this project as a machine learning task and are 
applying neural network technology to the problem 
of language acquisition. In the following, I will out­
line three major issues our research is addressing 
and then mention other elements of my background 
which are relevant to this workshop. 

The first issue involves the nature of the learning 
system's environment as weil as the role of the 
learning system in that environment. Because we 
consider a system which acquires natural language 
through learning, interactions between the learner 
and its environment playaprominent role in the sys­
tem's development. Environmental factors can often 
determine how weil the system can learn, as weil as 
what exactly is learned. For example, we are explor­
ing the effect of using phonological vs. normal word 
representations on learning rate and accuracy in 
simple learning tasks. 

Another important environmental concern regards 
the method of reinforcement wh ich is applied to the 
learner. Should it be direct supervision? A principle 
motivation behind this project is to avoid direct 
supervision whenever possible and instead allow 
the system to learn the natural constraints which are 
implicit in the language. We hope to avoid direct 
supervision techniques in part by allowing the learn­
ing system to learn the majority of syntactic and 
contextual constralnts from examples of correct 
sentences. This approach has been applied with 
some success in the past (e.g. Hanson and Keg's 
PARSNIP system) and is a promising avenue for 
avoiding excessive supervision. 

The architecture of the learning system is a second 
major consideration. This involves both the nature 
of the architecture (is it static or dynamic) as weil as 
the learning rule(s) associated with it. We have con­
sidered various basic recurrent network architec­
tures such as Elman's simple recurrent network 
(SRN), Jordan's recurrent network and Miikkulain­
en's FGREP network. These architectures have 
been extensively utilized in the cognitive science lit­
erature, and we are considering various extensions 
to them. We hope to generalize these architectures 
to include multiple "memory" layers, as weil as 
understand how these architectures can be com­
bined together, perhaps even dynamically. 
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A final major consideration regards structured con­
cept acquisition. Adding recurrence to the network 
is the principle method of allowing the networks dis­
tributed representation to exhibit structured con­
cepts. Thus, this issue may reduce to issues 
regarding network architecture . Even so, concept 
acquisition remains a difficult problem, especially in 
the context of language acquis ition . We feel that 
neural networks can develop and utilize structu red 
concepts in a manner which is quite different from 
traditional concept acquisit ion . For example , we 
expect that it will be easier to combine different 
aspects of textual comprehension (e.g. parsing, 
pronominal reference, ambiguity resolution) with a 
distributed representation than it has been with both 
symbolic and localist-connectionist systems. 

At the moment, this research has yet to generated 
any publishable material. Unfortunately, my work at 
Peregrine Systems is my first exposure to research 
in natural language processing so I have no other 
related publications. However, I do have a substan­
tial background in topics related to naturallanguage 
processing. I have significant academic experience 
in Cognitive Science. This includes courses in 
human learning and inductive processes, as weil as 
language acquisition in children. The later provided 
an excellent contrast between Chomsky's theoreti­
cal model of language acquisition to Piaget's devel­
opmental model. 

Additionally, my current academic research inter­
ests involve machine learning and adaptive compu­
tation. I am weil versed in the issues involved with 
learning tasks in a variety of domains, including 
neural networks, traditional machine learning (e.g. 
Samuel's checker player) and others . I have also 
studied Valiant's learning theory model extensively 
and am currently applying this analysis to genetic 
algorithms (Iearning algorithms based on principles 
of evolution and selection). 

In summary, I believe I wou ld prove to be a produc­
tive member of this workshop. My research relates 
to many of the issues considered by the workshop, 
and I am prepared to make interesting contributions 
to the discussing of the topics covered. My back­
ground in cognitive science machine learning and 
natural language development is sufficiently weil 
developed to enable me to intelligently consider the 
issues at hand. 
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We present an incremental approach to the task of learning words from context. The learning task is 
defined as folIows: given a set of natural language sentences in which a previously unknown lexical item 
appears, infer the syntactic dass and the meaning (or meanings) of the word. We assume that the vast 
majority of other words appearing in the set of sentences are al ready known. 

Our approach has been implemented as part of a natural language processing system called LI N K 
(Lytinen, 1990; Lytinen, in press). LINK uses a unification grammar and integrated syntactic and semantic 
processing. We are using LINK in two prototype applications involving relatively narrow domains (i .e. 
the necessary domain knowledge can be described fairly completely), but the textual input is entered by 
a large number of users and is therefore subject to wide variations in the terminology used. Our system 
is able to infer the meanings of many unknown words in these applications. 

Although our approach is used to infer both the syntactic category and the meaning of unknown 
words, we will only discuss the learning of meanings in this paper. The reader is referred to (Lytinen and 
Roberts, 1988) for a discussion of syntactic learning in LINK. 

2 The Approach 

LINK's domain knowledge is organized in a simple IS-A hierarchy. For each concept in the hierarchy, we 
define a set of thematic roles or "slots" that can be attached to the concept, as welt as the type of concept 
which can fill each slot. The set of restrictions on fillers of slots for a concept must be at least as specific 
as the restrictions for its ancestors in the hierarchy (i .e. more general concepts) . 

Figure 1. presents an example hierarchy, taken from one of our two prototype domains . Texts in 
this domain describe sequences of activities to be performed on an assembly line. In this hierarchy, 
since ACTION requires an ACTOR that is ANIMATE, this restriction also implicitly holds for REPAIR­
ACTION, ADJUST-ACTION, and all other descendants of ACTION. CALIBRATE is an example of a 
concept which makes a further restriction on a previously constrained slot . Since ADJUST-ACTIO N 
requires an OBJECT which is a DEVICE, the additional restriction on this slot under CALIBRATE must 
be a descendant of DEVICE. 
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I 

CALIBRATE 
object=E-PROM 

Figure 1: A simple cancept hierarchy far LINK 

LINK 's domain knowledge is used in the process oflearning word meanings. Initially, it is assumed that 
every concept in the hierarchy is a candidate hypothesis for the meaning of an unknown word . Example 
sentences can provide two types of restrictions on the set of candidate hypotheses.First, the unknown 
word may appear as the filler of a thematic role of another word. For example, in the sentence "Calibra te 
the flarge," LINK 's unification grammar suggests that "flarge" is the semantic OBJECT of CALIBRATE . 
This condition places an upper bound on the generality of the word's meaning : "flarge" must be an 
E-PROM or a descendant of E-PROM in the hierarchy, since only E-PROM's can be CALIBRATEd. 
Second, context may suggest a filler for a thematic role of the unknown word, as in the sentence "Flarge 
the engine." In this case, LINK's unification grammar suggests that ENGINE is the semantic OBJECT 
of "ftarge." Information about role-fillers of an unknown concept place a lower bound on the specificity 
of the concept : given that ENGINE is the OBJECT, "ftarge" cannot refer to a concept that is lower in 
the hierarchy than REPAIR-ACTION or ADJUST-ACTION, since concepts below this in the hierarchy 
do not allow ENGINEs to be their OBJECTs. 

Given that these two types of restrictions are provided by example sentences, this would suggest a least­
commitment approach to learning, such as Mitchell's candidate-elimination algorithm (MitchelI, 1977) . 
Mitchell's algorithm used version spaces to represent the set of candidate hypotheses, and slowly narrowed 
the version space depending on the additional constraints provided by new examples. U nfortunately, in 
our word learning task, often it is the case that particular kinds of words only appear in examples th a t 
provide one of the two types of restrictions. Nouns , which usually refer to things, almost always appear 
as role-fillers of actions or states; thus, examples only serve to limit the upper bound of the candidate 
hypotheses. Verbs, on the other hand, usually appear with role-fillers attached to them, and not as 1'01e­
fillers themselves , since they refer to actions or states. Thus, examples only serve to place a lower bou nd 
on their candidate hypotheses. Thus, since examples only provide one of the two kinds of restrictions 
for many word classes, a least-commitment algorithm would not converge on a single hypothesis for the 
meaning of many unknown words. 

Because of this, our algorithm is not a Ieast-commitment algorithm. For nouns, we assume the most 
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general candidate hypothesis is the correct one. Thus, the hypothesis for "Calibrate the flarge" is that 
"flarge" means E-PROM. In the case of verbs, the most specific candidate hypotheses are kept. From 
"flarge the engine," then, "flarge" is assumed to mean either REPAIR-ACTION or ADJUST-ACTION. 
A later example like "flarge the wrench" would cause generalization to occur, since a box cannot be the 
object of either REPAIR-ACTION or ADJUST-ACTION. A search is initiated up the hierarchy from 
these concepts until a concept or set of concepts is found that can take both ENGINEs and TOOLs as 
objects. In this case, the new hypothesis would be that "flarge" means ACTION. 

3 Limitations of This Technique 

The learning mechanism described here is not suggested to be a solution to the problem of automatie 
acquisition of word meaning. Rather, it is an attempt to demonstrate how the use of a small amount 
of semantic information that is required in the performance of the parsing process along with a general­
purpose learning algorithm can make major strides toward inferring a useful word meaning hypothesis. 
Several artifacts of the learning mechanism limit what can be learned. 

The first is the assumption that the representation of the ontology is complete, that is that every 
concept which is part of the domain is apriori represented by some node in the semantic hierarchy. This 
clearly limits the range of concepts that can be learned . 

In addition, this techniques relies solelyon one type of information, the semantic constraints of role­
fillers. While this information is sufficient to differentiate between many of the word meanings, large 
classes of words exist that require additional information to distinguish the members of the class. 

As mentioned above, the learning algorithm can not handle ambiguous words. In such cases, an 
apparent contradiction is found between competing hypotheses, and an over-general concept is then chosen. 
Some sort of mechanism is needed to determine when a more general concept is required or when a 
disjunctive mapping is justified. 

Finally, the learning algorithm as we have described it so far often does not converge on a single 
hypothesis for the meaning of a word, especially in the case of verbs. To see this, consider the hierarchy 
in figure 2. It is the same as in figure 1, but with the additional action PICK-UP added. With this 
hierarchy, if the system is presented with an example such as "Flarge the e-prom," intuitively it seems 
that the best hypothesis for the meaning of "flarge" would be CALIBRATE, since only E-PROMs call 
be calibrated. However, other hypotheses cannot be eliminated as possibilities: "flarge" might mean 
REPAIR-DEVICE, since e-proms are also devices; and it might mean PICK-UP, since e-proms are also 
physical objects. Given the hierarchy as it stands, no examples can be given which will narrow down 
this set of candidate hypotheses (assuming "flarge" really does mean CALIBRATE), since nothing which 
meets the restrietions on the slots of CALIBRATE will violate any of the restrietions on the slots of 
REPAIR-DEVICE or PICK-UP. Concepts like PICK-UP, which have rat her general restrictions on their 
slots, will be candidate hypotheses for the meanings of a relatively large number of unknown words, since 
often it will be the case that no examples are possible which will eliminate it from the list of candidates . 

To remedy this problem, our algorithm ranks the list of candidate hypotheses according to how 
"tightly" each candidate's constraints on slots match with the actual slot fillers found in the examples. 
For the example "flarge the e-prom," CALIBRATE is the highest-ranked candidate hypothesis for the 
meaning of "flarge," since its restriction on the OBJECT slot exactly matches the OBJECT of "flarge" in 
the example sentence. REPAIR-DEVICE is ranked second and PICK-UP third, since DEVICE is doser 
in the hierarchy to E-PROM than PHYS-OBJ iso 

4 Related Work 

Gleitman (1990) proposed a mechanism called "syntactic bootstrapping" that children mi~ht use to guide 
their search for meanings of verbs through the space of possible meanings that could be lnferred from the 
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Figure 2: A slight variation of the first concept hierarchy 

immediate context. She suggested that children as young as 17 months have the strong capabilities for 
recognizing syntactic distinctions and using them to constrain the meanings of verbs they are learning. For 
example, children who didn't know the meaning of the word FLEX were shown two videos, one of Big Bird 
and the Cookie Monster crossing and uncrossing their own arms, and another with one of them crossing 
the arms of the other. When the senten ces Big Bird is fiexing with the Cookie Monster and Big Bird is 
fiexing Cookie Monster were broadcast through a speaker, the children showed a definite preference for 
the "syntactically rongruent screen", i.e. the video that was showing the action that was being described, 
even though they had no semantic kn0wledge of the meaning of FLEX. Gleitman argued that without 
such a constraining mechanism, the task of word learning would be computationally infeasible. But while 
her approach relies solelyon the syntactic structure of the sentence to yield semantic clues, our approach 
combines use of syntactic and semantic information (but no external context) to generate hypotheses. 

Similar efforts at using machine learning techniques in lexical acquisition were reported in (Zernik, 
1987). Zernik described his approach as using aversion space technique to learn phrasal lexicon rules. 
However, Zernik's system receives feedback from a teacher in the form of user-supplied "contexts" that 
explain what the input means. It is not clear if Zernik's approach can be adapted to a situation in which 
feedback is not available. 

Selfridge's CHILD program (1986) used contextual information to provide constraints on definitions 
of undefined words in much the same way as our system does for nouns. However, CHILD learned from 
only one example, and could not further refine meanings based on subsequent examples. 

J acobs and Zernik (1988) describe the RIN A system, in which a task very similar to our word learning 
task is perfor.med. RINA examines large corpora, extracting many examples of a given unknown word. 
Although they do not describe their algorithm in detail, it appears from examples discussed in the paper 
that word meaning acquisition in RINA is driven more heavily by discourse context than in LINK. 

78 



5 Future Work 

There are many ways in which our algorithm can be extended . First, the algorithm as it currently stands 
only uses information about semantic dependencies that the parser is able to identify between words in 
example sentences. It should be able take advantage of other information available from the examples, such 
as the syntactic constructions used with an unknown word, additional semantic contextual information, 
and so on. We plan to investigate incorporating the use of some of this additional information into our 
learning algorithm. 

Second, the assumption that a word must refer to a unique concept in the hierarchy is not a realistic 
one. Many words are ambiguous, and thus refer to two or more nodes in the hierarchy. Even an unam­
biguous word's meaning may not correspond exactly to an already existing node in the hierarchy. Our 
system should be able to entertain disjunctive hypotheses for word meanings, and should also be able to 
consider "splitting" anode in the hierarchy, so that a word can refer to a new subconcept. 

Finally, we plan to test our algorithm in our two prototype domains to see how weil it learns. We are 
currently testing our hypothesis ranking system to see how weil it chooses the correct hypothesis for an 
unknown word from the list of candidate hypotheses. As we modify our algorithm further, testing will 
provide valuable feedback for us to see if our system 's performance is improving. 
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My research is involved with the building of compu­
tational models of acquisition of syntax. The first 
model [Hili '82] was a "schema theoretic 8 model that 
learned by adjusting weights in a semantlc net rep­
resentations of grammar, lexicon and world knowl­
edge. Our approach has remained a minimal ist 
approach, as opposed to innatist, since it is our feel­
ing that it is more interesting to explore the limits of 
language that can be learned given general cogni­
tive strategies and some world knowledge, than to 
begin by assuming that a great deal of specific lin­
guistic knowledge must be built into the model. The 
model is intended for use in cognitive exploration. In 
our model the learning is implemented by adjusting 
weights in the semantic network representations. 
World knowledge must be given the model in order 
for even primitive syntactic knowledge to be 
induced. The system acquires a rudimentary 
semantic parser that is highly dependent upon the 
input data given. It learns both to und erstand input 
sentences and to generate responses. Current 
research in connectionist models of language acqui­
sition and discussions of hybrid models have led us 
to reexamine the model with the idea of implement­
ing various aspects of the model in a connectionist 
Iramework. We are interested in developing meth­
odologies for the combining of connectionist model­
ling with more symbolic modelling to take advantage 
of the differing strengths of each approach. 
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Hybrid Models of Natural Lan­
guage Learning 

One way to contrast symbolic models of language 
learning with connectionist models is to observe dif­
ferences in "grain size 8

• While symbolic models 
typically examine a large picture e .g, Minsky's 
frames or Schank's scripts, connectionist models 
typically examine in fine detail some aspect of a 
larger problem- -as for example McClelland Rumel­
harfs parallel distributed processing model of the 
learning of the past tense of verbs in English. Typi­
cally our "schema-theoretic' models lie at some mid­
point between the two. A schema is a unit belonging 
to an internal model of the world that may vary in 
grain size since we may have a schema for an object 
or for a detail of an object. Schemas are dynamic 
and may combine to form new schemas. We origi­
nally described our schema-theoretic models as 
being "in the style of the brain 8

• While a schema-the­
oretic model may be more symbolic than 
connectionist, it is constrained to be at a sufficiently 
low level that in principle its separate parts could be 
instantiated in terms of a neural network. Schema­
level formalisms, however, only approximate the 
behaviour of a model expressed in neural net formal­
ism. Unlike more traditional symbolic models, 
however, a schema-theoretic model is composed of 
many redundant and overlapping modules -- one of 
the reasons that such models are described as being 
in the style of the brain. These observations may 
be made more explicit by contrasting two models 



that learn the past tense of verbs in English. The 
first is the well-known McClelland and Rumelhart 
connectionist model "On Learning the Past Tenses 
of English Verbs" [Parallel Distributed Processing, 
1986, vol.2, 216-268], and the second is my schema 
theoretic model [Hili 1986]. Whereas McClelland 
and Rumelhart modelled only the learning of the past 
tense forms of verbs, we were able to model their 
learning within a larger framework. This is as one 
would expect because of the typical difference in 
grain-size mentioned above. The input to the 
McClelland and Rumelhart model was 420 verbs. 
Input to our model was simply adult sentences. This 
is important, since McClelland and Rumelhart have 
been criticized for presenting a small set of common 
verbs to their model before presenting the remaining 
verbs. Our model achieves the same kind of selec­
tivity, but with rules of salience. Our model, given a 
body of sentences, attends first to a set of simple 
verbs. McClelland and Rumelhart's input was pho­
nologically encoded by means of sets of 
Wickelfeature units . Our model simply glossed over 
the phonological nature of the input. It was because 
of the precise nature of the input that their model 
could make the detailed predictions that they made. 
Yet it was also the Wickelfeature representation that 
suffered the brunt of the criticism, notably from 
Pinker and Prince ["On language and Connection­
ism: Analysis of a Parallel Distributed Processing 
Model of Language Acquisition" in Connections and 
Symbols, A Speciallssue of Cognition, Bradford/MIT 
1988]. Detailed predictions will foment detailed 
objections. Yet in their model the most important 
claim was not questioned, namely that systems lack­
ing rules can exhibit rule-like behavior. 

The primary advantage of their model is in terms 
of the detail of the observed behaviour. Both models 
capture the basic three-step path of acquisition of 
past tense torms, but their model can show a corre­
lation between difficulty of learning particular past 
tense forms in the model and in the child. They cap­
ture many aspects of the differences in performance 
on different types of verbs. Our model can draw no 
such detailed conclusions about the difficulty of 
learning a specific verb. What is learned or not 
learned in our model depends entirely upon the input 
corpus. Typically the connectionist model is rich in 
specific predictions. 
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The connectionist model is computationally inten­
sive . They used a single long run of 260 hours to get 
their results. Our model is a vehicle for experimen­
tation. One can select a body of sentences and give 
them to the model and watch them run, or alterna­
tively one can sit and type a set of sentences into the 
model and see what comes out. So me type of 
response is instantaneous. One can draw conclu­
sions about what the model attends to depending 
upon the current stage of the model's grammar. 
We agree in our aim to address the time course of 
mental development. Their model required a spe­
cific teaching phase followed by a testing phase. 
Our model is more realistic in that teaching and test­
ing happen in parallel. We neither of us require 
explicit representation of a general rule, but instead 
make use of a decentralized interaction of many 
components to yield behavior that is describable by 
a rule, but in no way is the expression of a rule. Our 
feeling is that at this early stage of building models 
it is important to continue to pursue the implementa­
tion of all kinds of models because each variety has 
its strengths and its weaknesses. Our current 
work is too incomplete to merit anything more that a 
brief comment. We are currently building a model to 
acquire the rules of -un prefixation. Linguists [M. 
Bowerman, for one, in "The No Negative Evidence 
Problem" in Explaining Language Universals, Hawk­
ins, ed., Basil Blackwell, 1983] have searched for 
and failed to find a set of rules that describe those 
verbs which can be prefixed by -un o -Vet adults have 
no difficulty in recognizing inappropriate use of the 
preflx. The lack of a simple coherent set of rules has 
led us to implement a connectionist model to explore 
the discrimination between verbs which may be pre­
fixed by -un and those that may not. Our first version 
of the model uses a simple back-propagation learn­
ing paradigm over a set of features. It is our 
intention to match the output of the model against 
instances of the use of un- by children in the 
CHILDES data base that is maintained at Carnegie­
Mellon University. Ultimately we hope to incorporate 
this learning paradigm within the larger framework of 
our schema- theoretic model. 
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The evolution of natural language in commumtles of individuals over several 
generations, the development of language over time, the acquisition of language by 
language-naive individuals born into the community or introduced into it from outside, the 
role played by language in communication among individuals, and the inftuence of the 
communicative role of language on the evolution, development and acquisition of language 
are among some of the central questions in cognitive science and artificial intelligence. The 
dominant tendency in these fields over the past several decades has been to approach the 
study of perception, language, problem solving, motor behavior as if they were isolated from 
one another. For instance, computer scientists who work on computational models of vision 
(with applications in artificial intelligence and robotics, neuroscience and cognitive science) 
and psychologists who work on visual perception have little or nothing to do with computer 
scientists who work on naturallanguage and psychologists and linguists who study language 
behavior. The study of learning is, for the most part, just as isolated. Learning research 
often proceeds as if the content of what is learned has litde bearing on the basic processes 
postulated. This is especially true of most work in computational approaches to the study of 
learning. 

In contrast, the distributed artificial intelligence framework outlined below attacks the 
problem of understanding natural language evolution, development, acquisition, and 
communication processes as an integral part of the broader task of understanding the design, 
function, development, adaptation, and evolution of cognitive agents. 

2. General Framework 

A primary function served by language (defined broadly) is communication among 
individuals. It is therefore reasonable to address language acquisition in the context of a 
group of indivlduals which have to communicate with each other in order to survive. Within 

This work has been inftuenced by several auLhors - J. Hattiangadi, C. Peirce, J. Piaget, L. Vygotsky, R. Al­
len, R. Narasimhan, L. Uhr, P. Langley, J. Laird, S. Harnad, M. Minsky, M. Dyer, and G. Lakoff - among oLh­
ers. Their influence is acknowledged wiLhout in any way implicating them in Lhe views expressed in Lhis 
abstract. 
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this paradigm, the group shares a common environment. Each individual or agent is endowed 
with one or more sensory channels (e.g., visual, auditory) through which it receives 
environmental stimuli. Each agent has its disposal, a set of primitive actions that enable it to 
manipulate (e.g., grasp, move) objects in its environment. It can transmit signals or symbols 
that impinge on the sensory channels of other individuals. Each agent also has associated 
with it, a set of goals, internal drives, and needs (e.g., hunger). The environment embodies 
complex dynamics: objects in the environment can change their states in an orderly or 
disorderly manner. Each such state change constitutes an event. Each agent might sense 
events (through its sensory channels), respond to events (using its repenoire of actions), or 
communicate about events to other individuals (by transmitting appropriate signals or 
symbols). 

Several interesting questions can be raised within this framework: 

(1) Given a subset of individuals that use a predetennined language, what basic 
mechanisms are needed for individuals newly introduced into the environment to leam 
to communicate using the language of the community? This situation is akin to 
language acquisition by children. Children's competence in naive observation and the 
use of ordinary language improves as they grow and enables them to acquire more or 
less dependable knowledge of the environment in which they live. A model of language 
behavior must come to grips with the developmental issues involved in the process: 

Language acquisition in children appears to be incremental. This constrains our model 
of language acquisition to relying on incremental learning methods. It also appears to 

proceed in discernible developmental stages. Generative learning structures and 
processes (Honavar & Uhr, 1991) are being applied in this context. 

Language learning entails acquisition of meanings which involves a mapping of words 
or sentences into the corresponding sensory, motor, or internal representations and vice 
versa; The acquisition of the abilty to judge the grammaticality of sentences in and of 
itself does not amount to language acquisition. Furthermore,' such meanings are 
acquired in a sodal context, i.e., within a community of multiple agents which have to 
communicate among themselves to attain their goals. Generative learning structures 
and processes (Honavar & Uhr, 1988; Honavar, 1990; Honavar & Uhr, 1991) enable 
agents to extract, abstract, and encode multi-modal sensory and action patterns and 
associations among them. Internal representations of the environment so developed 
derive their meanings by vinue of being grounded in corresponding analogical sensory 
(e.g., visual, auditory) and motor representations. Meanings of such internal 
representations are further enriched by the role they play in communication among 
individuals in a community. 

(2) A variarit of the scenario outlined above is one in which individuals that are already 
proficient in communicating in some language (first language) are introduced into a 
community that uses a different language (second language). We can then ask, what 
basic processes are used by such individuals in learning the second language? We can 
also study the effect that the lenowledge of the first language has on the learning of the 
second language; the effect of learning the second language on communication in the 
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first language, and so on. The results of such computational models could be correlated 
with empirical da ta on second language learning to identify the structures and processes 
that account for such data and to suggest further empirical studies. 

(3) Assurne two isolated communities, each with a distinct language that inhabit more or 
less identical environments. We can examine a scenario in which two such communities 
are brought into contact with each other. This places a demand on individuals across 
both communities to communicate with each other. The changes observed in the 
individual languages or the birth of a new language through such interaction can offer 
insights into evolution of new languages from old ones. 

(4) Assurne a community of individuals into which new language-naive individuals are 
introduced over time at intervals detennined by a birth-rate and in which a fraction of 
the individuals perish at intervals determined by a death-rate. Assurne that the 
environment andlor the sensory channels, primitive actions, internal needs and drives 
change over time at a rate slower than the birth or death rates. We can then ask what 
sort of changes manifest themselves in the language used by the community over time? 
This is akin to the gradual changes in natural language used by communities over time 
and is useful in modeling such changes. 

(5) Consider the scenario in which we start with a community of language-naive 
individuals. We can then ask what basic mechanisms are necessary to ensure that such a 
community over time evolves a sufficiently powerful language that can then be readily 
learned by language-naive individuals as they are introduced into the community. This 
scenario corresponds to the biological evolution of language. Adaptations of 
evolutionary learning methods are being investigated in this context. 

3. Modelling Agents, Objects, and Environments 

We are in the process of developing software tools that would facilitate the 
computational modelling of scenarios of the sort outlined above. Object-oriented 
programming paradigm (e.g., CLOS) with its loosely organized collection of interacting 
entities provides a versatile tool for building such tools. 

We have chosen to model each individual in our toy language community by a 
generalized connectionist network (GCN) (Honavar & Uhr, 19900. GCN offer many 
extensions - especially in the fonn of generative or constructive leaming structures (Honavar 
& Uhr, 1991), and coordination and control structures (Honavar & Uhr, 1990a) to the 
currently popular connectionist network (CN) models. GCN offer an attractive and versatile 
framework for the integration of connectionist network and symbol processing approaches to 
the modelling of intelligent systems. They also facilitate an exploration of the tradeoffs 
between parallel versus serial computation, local versus distributed processing, memory, and 
control, symbolic versus sub-symbolic representations, etc. 

Very briefty, a GCN is a graph (of linked nodes) with a particular topology r. The total 
graph can be partitioned into three functional sub-graphs - rB (the behavelact sub-graph), rA 
(the evolvellearn sub-graph), and r K (the coordinatelcontrol sub-graph). The nodes in a 
GCN compute one or more different typeis of functions: B (behavelact,); A (evolvellearn,); 
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and K (coordinate/control). 

GeN = {r, B, A, K} 

Starting with a very simple caricature, the model of an agent is being elaborated as 
necessary by adding simple planning capabilities, increasingly sophisticated inductive and 
deductive learning capabilities, increasingly intricate memory structures, and so on. The 
strategy being adopted is one of incremental development aided by exploratory programming 
wherein new capabilities are added only when indicated by extensive simulation studies. 

The environment in which the agents interact is modelled as a collection of objects that 
obey certain physical laws. Agents typically have no built-in explicit knowledge of such 
laws; They can however, develop (necessarily incomplete) internal models of their 
environment through learning (by direct interaction with the environment or through 
communication with other agents in the community). 

4. Some Areas of Current Emphasis 

The general framework sketched out above is obviously very broad. Dur efforts at 
present are directed toward a few specific issues: 

[1] Development of structures that model internal drives, needs, and goals of agents in a 
flexible manner that would facilitate us to study the interaction between such structures 
and adaptation and learning processes (e.g., generative learning (Honavar & Uhr, 
1991)). 

[2] Development of a framework that integrates processes on an evolutionary time-scale 
(e.g., competition, selection, cooperation) that opera te over several generations of 
agents in our toy environment. Here we are influenced considerably by on-going work 
by several researchers in artificiallife and evolutionary learning algorithms. 

[3] Development of a simple psychologically motivated model of language acquisition by 
infants. The focus here is on identifying a small set of computational structures and 
environmental influences (e.g., the nature and extent of interactions with adults - agents 
already proficient in the language - e.g., verbal and non-verbal feedback) that are 
necessary and sufficient to facilitate such language acquisition. Dur long-term goal is to 
use the results of this modelling effort along with data from developmental studies of 
children published in the psychology literature to guide further refinement of the model 
to examine language acquisition in increasingly complex environments. 

[4] Development of models that can successfully demonstrate the acquisition of relatively 
simple languages with a pre-defined structure (e.g., languages that describe a small set 
of spatial and temporal relationships among simple geometrical objects) by language­
naive individuals placed in a community of agents that use such a language to 
communicate with other agents. 

S. Summarizing Comments 

Languages evolve to meet the needs of individuals and communities; The primary role 
of language is communication among individuals dicta ted by their internal needs and 
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environmental pressures for survival; We believe it is impossible to approach the study of 
language in isolation from processes such as leaming, perception, and cognition that 
individuals engage in within the context of a larger environment. We have outlined a general 
framework for study of natural language communication, acquisition, development and 
evolution in communities of interacting agents. We have also sketched out some tentative 
steps we have taken toward the construction of such a framework using an object-oriented 
programming paradigm. Much work remains to be done. 
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Abstract 

Study of program size restrictions in inductive learning is motivated with arguments from 
"formallanguage learning theory" and "computational philosophy of science". A number of iden­
tification criteria resulting from various size restrictions on prograrns inferred in the limit by an 
inductive inference machine are considered. A main concern of the paper is the investigation of 
relationships of these criteria with acceptable programming systems. 
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1 Introduction 

Motivated by psycholinguistic studies which conclude that children are rarely, if ever, informed 
of grammatical errors, Gold [G067] introduced the seminal notion of identification as a model for 
first language acquisition. According to this paradigm, a child (modeled as a machine) receives 
(in arbitrary order) all the well-defined sentences of a language, and simultaneously conjectures a 
succession of grammars. A criterion of success is for the child to eventually conjecture a correct 
grammar for the language being received and never to change its conjecture thereafter. Replacing 
the child machine by an arbitrary machine in this scenario yields a formal model of language 
acquisition. This model is essentially Gold's influentiallanguage learning paradigm discussed, for 
example, by Pinker, Wexler and Culicover, Wexler, and Osherson, Stob, and Weinstein. However, 
Gold's paradigm is a highly idealized model which assurnes unbounded resources in the form of time 
and storage. In the present paper, we investigate restrictions on the above cri terion of successful 
learning where a machine is required to conjecture "succinct" grammars. The main results of 
this paper demonstrate that such restrictions result in learning criteria that are dependent on 
the choice of programming system used to interpret a machine's conjectures. Our treatment is 
recursion theoretic and so me of our results build on results and techniques from inductive inference 
of recursive functions studied by Freivalds, Kinber, Chen and Case, Jain, and Sharma. 

In section 2 we introduce the notation and the preliminary notions of language, grammar, 
and programming system. In section 3 we describe Gold's paradigm and observe that classes of 
languages that can be learned are independent of the choice of programming system used to interpret 
machines' conjecture. In section 4 we introduce a number of restrictions in Gold's paradigm, which 
restrictions require that a machine converge to a "succinct" grammar. For each of these restrictions, 
we show that the dasses of languages that can be learned is dependent on the choice of programming 
system used to interpret a machine's conjectures. Finally, section 5 contains abrief discussion of 
our results. 

2 Notations 

N denotes the set of natural numbers, {O, 1,2,3, ... }, and N+ denotes the set of positive integers, 
{I, 2, 3, ... }. Generally, lower case letters near the beginning, middle, and end of the alphabet. wi th 
or without decorations, a,b,c, ... ,i.j,k,l,m,n, ...• x,y,z, range over N. 

E, ~, and C denote, respectively, membership, containment, and proper containment for sets 
(induding sets of ordered pairs). We let P, S, with or wi thout decorations, range over subsets of 
N and we let D, with or without decorations, range over finite subsets of N . IIPII denotes the 
cardinality of P. min( P) and max( P) respectively denote the minimum and maximum element in 
P. We take min(0) to be 00 and max(0) to be O. Let AX, y. (x, y) denote a fixed pairing function 
(a recursive, bijective mapping: N x N - N) [R067). AX, y.(x, y} and its inverses are useful to 
simulate the effect of having multiple argument functions. 11'1 and 11'2 are corresponding projection 
functions, i.e., ('v'X,y)[1I'1((X,y}) = x /\ 1I'2((X,y}) = y). 

L, with or without decorations, ranges over recursively enumerable (r.e.) subsets of N, which 
subsets are usually construed as codings of formallanguages. & denotes the dass of all recursively 
enumerable languages ~ N. We let C, with or without decorations, range over subsets of &. L 16L 2 

denotes (LI - L2) U (L2 - Ld, the symmetrie difference of LI and L2. 1] and ~ range over partial 
functions. domain(1]) and range(1]) respectively denote the domain and range of partial function 1]. 
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R denotes the dass of all recursive functions, Le., total computable functions with arguments 
and values from N. J, g, h, and p, with or without decorations, range over R. S ranges over subsets 
of R. R+ denotes the set of recursive functions with range a subset of N+. 

'I/J with or without decorations ranges over acceptable programming systems [Ro58, Ro67, MY78] 
for the partial recursive functions: N --+ N. We let cp to be a fixed acceptable programming sys­
tem. 'l/Ji denotes the partial recursive function computed by 'I/J-program number i. Wi,p denotes 

domain('l/Jj). Wi,p is, then, the r.e. set/language (~ N) accepted (or equivalently, generated) by 
the 1/J-program number i. We let W be an arbitrary Blum complexity measure [B167b] associ­
ated with acceptable programming system 'I/J; such measures exist for any acceptable program­
ming system [Bl67b]. For a given total computable function J and an r.e. language L, we define 

minprograI11,p(J) = min({i I'l/Ji = J}) and mingrammar,p(L) = min({i I Wj,p = L}). 
The quantifiers '\:100' and '300 ' mean 'for all but finitely many' and 'there exist infinitely many,' 

respectively. The quantifier '3!' means 'there exists a unique.' Any unexplained notation is from 
[Ro67J. 

3 Gold 's Paradigm 

In this section we briefly introduce Gold 's paradigm for language learning. A sequence a is a 
mapping from an initial segment of N into (N U {#}). The content of a sequence a, denoted by 
content( a), is the set of natural numbers in the range of a. The length of a, denoted by lai is 
the number of elements in the domain of a. A text T for a language L is a mapping from N into 
(N U {#}) such that L is the set of natural numbers in the range of T. The content of a text 
T, denoted by content(T) is the set of natural numbers in the range of T. T[n] denotes the finite 
initial sequence of T with length n. Suppose M is a learning machine and T is a text. M(T) 1 
(read M(T) converges) iff (3i)(\:Ioo n)[M(T[n]) = i]. In this case we say that M(T) l=i (read M 
converges on T to i). 

Definition 1 [Go67] Let 1/J be an acceptable programming system. A machine M TxtEx,p iden­

tifies L (written: L E TxtEx,p(M)) iff (\:I texts T for L )(3i I Wj,p = L )[M(T) 1= iJ. 

Below we define the inferring power of the above criterion which is a set theoretic summary of the 
capability of various machines to learn according to the criterion. 

Definition 2 [Go67] TxtEx,p = {.c I (3M)[.c ~ TxtEx,p(M)]}. 

Proposition 1 For all acceptable programmings systems 'I/J, 1/J', TxtEx,p = TxtEx,pl. 

Because of the .above proposition we often refer to TxtEx,p (for an acceptable programming system 
1/J) by TxtEx. 

4 Minimal Size Restrietion 

The size of the final stabilized grammar can be very "Iarge." This poses a difficulty for Gold's 
paradigm to be a model of language acquisition. We describe this problem in the context of a child 
modeled as a machine. The human head is of bounded size. A simple result from computability 
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theory teils us that any recursively enumerable language can be generated by infinitely many 
syntactically distinct grammars whose size is bigger than any prespecified bound on the size of a 
child's head. A child learning a language, hence, must converge to a grammar which fits in its finite 
size head. This of course assurnes that human brain storage is not magie, admitting of infinite 
regress, etc. An interesting complexity restrietion to make, then, on the final grammar converged 
to in the limit is that it be of "small" size. 

Notions from Blum [BI67a] allow us to treat index for grammars as a program size measure. Our 
results can be suitably modified to hold for any other Blum size measure. A natural restrietion, 
then, to make on the size of the final gramm ar is to require that i t be of strictly minimal size. 
Definition 3 below describes this criterion. 

Definition 3 
(a) Let ?jJ be an acceptable programming system. M TxtMin.p-identifies L (written: L E 
TxtMin",(M» iff (V texts T for L)(VOOnHM(T[n]) = mingrammar",(L)]. 
(b) TxtMin", = {.c I (3MH.c ~ TxtMin",(M)]}. 

Surprisingly, as a contrast to Proposition 1 we have, 

Theorem 1 There exist acceptable programming systems ?jJ and?jJ' such that TxtMin.p :f:. TxtMin.pl. 

Thus the classes of languages which can learned via minimal grammars depends on the pro­
gramming system used to interpret the conjectures of the inference machine. Freivalds considered 
identification via programs which are of minimal size modulo a recursive (fudge) factor, i.e., the 
programs inferred are nearly minimal size. Case and Chi considered an analog of nearly mini­
mal identification in the context of language learning. Definitions below descri be this notion for 
language learning. 

Definition 4 [CC86] Let hER. 
(a) M TxtMex(h, ?jJ)-identifies LEE (written: L E TxtMex(M, h, ?jJ» {::::::::> M TxtEx-identifies 
L in the acceptable programming system?jJ and (V texts T for LHM(T) ::; h(mingrammar.p(L»]. 
(b) TxtMex(h,?jJ) = {.c I (3M)[.c ~ TxtMex(M,h,?jJ)]}. 
(c) TxtMex(?jJ) = {.c I C=:'h E RH.c E TxtMex(h,?jJ)]}. 

It is easy to see that for all h, TxtMex(h,?jJ) ~ TxtMex(Ax.[h(x) + 1]). The following 
theorems show that there exist acceptable programming systems for which the above inclusion is 
(is not) proper. 

Theorem 2 Let ho, h1 , h2 , . •. be an infinite r.e. sequence 0/ distinct non-decreasing recursive /unc­
tions such that (VxHhi(x) > x]. (3?jJ) (ViHTxtMex(hi,?jJ) :J TxtMex(Ax.[hi(x) - 1], ~,)]. 

Theorem 3 Let ho, h1, h2 , •.. be an infinite r.e. sequence 0/ distinct non-decreasing recursive /unc­
tions such that (VxHhj(x) ~ xl. (3?jJ)(Vi)[TxtMex(hj,?jJ) = TxtMex(AX.[X],?jJ)]. 

Kinber [Ki83], in the context of function inference, considered a generalization of minimal­
identification. He showed so me initial results about a learning criterion in which, for some positive 
integer i, an inductive inference machine, when fed the graph of a recursive function, is required to 
converge to the i th minimal program in the acceptable programming system ?jJ. We study an even 
more generallearning criteria. 
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Definition 5 Suppose LEE and i E N+. We say that k is the i th 'ljJ-grammar for L (written: 

k = i-mingrammar,p(L)) ~ [[wt = L]/\ [!I{j I (j < k) I\(Wf = Lnll = i-I]]. 

Definition 6 below describes our generalized minimal identification criteria in the context of 
language learning. 

Definition 6 Suppose hER be such that for all x, h(x) > O. 
(a) M h-TxtMin",-identifies L (written: L E h-TxtMin,p(M)) ~ (V texts T for L)(VOOn) 
[M(T[n]) = h(mingrammar",(L))-mingrammar",(L)]. 
(b) h-TxtMin", = {.c ~ E I (3M)[.c ~ h-TxtMin",(M)]}. 

Clearly, (.\x.[l])-TxtMin,p-identification is the same as TxtMin",-identification. 

Theorem 4 (V'ljJ )(V non-decreasing h 1 , h 2 ERsuch that forall x, h1 (x) > 0 /\ h2 (x) > 
0)[(Vx)[h1(x) ~ h 2(x)] => [h1-TxtMin", ~ h2-TxtMin",]]. 

Theorem 5 Let ho, h1 , h2 , ••. be an infinite r.e. sequence of distinct recursive functions E R+. 
(3'ljJ)(Vi)[hi -TxtMin", :J (.\x.[hj(x) + l])-TxtMin",]. 

Corollary 1 [Ki83] (3'ljJ)(Vc > 0) [(.\x.[c])-TxtMin", :J (.\x.[c + l])-TxtMin,p]. 

Theorem 6 Let ho, h1 , h2 , ••• be an infinite r.e. sequence of distinct recursive functions E R+. 
(3'ljJ)(Vi,j) [hj-TxtMin", = hj-TxtMin",]. 

5 Discussion 

In the previous section, we presented some results that show the dependence of learning criteria 
resulting from the requirement that machines converge to 'smalI' size grammars. We are able to 
show similar results for a number of other formulations of succinctness. On first observation, these 
results seem to say that language learning criteria resulting from seemingly 'natural' notions of 
succinctness are uninteresting (or, mathematically dirty) as they are dependent on something as 
insignificant as the names of programs. However, we are also able to show that so me of these 
dependence results still hold if we restrict our attention to a very 'nice' subclass of programming 
systems called Kolmogrov numberings ( "These programming systems are in some sense 'the most 
informative' ones, as by definition, every acceptable programming system can be reduced to a 
Kolmogrov numbering via a recursive function with no more rapid than linear growth (Freivalds 
[Fr90])). 

These results seem to suggest that complexity restrictions on general models of language acqui­
sition will most likely result in learning criteria which are dependent on the choice of acceptable 
programming system. This dependence may be a very fundamental fact about language acquisition 
rat her than a mathematical inconvenience. 

For further results and proofs of the theorems see [JS90d]. 
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machine readable dictionaries, and others are exploring the application of statistical metrics to large text 
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associated with certain kinds of lexical patterlls. In tl! is paper we only briefly outline how to tie the 
two techniques together, focusing mainly on lexical acquisition from a dictionary (specifically the Col/ins 
COBUILD Eng/ish Language Dictionary). We dcscribe so me llletllOds for determining the semantics of 
simple patterns consisting of a noun or verb followcd by a prepositional phrase, and compare this method 
to existing techniques. 

Biographies 

Narciso Jaramillo and Marti Hearst are Ph.D. studcnts in the Berkeley Artificial Intelligence Research 
group (BAIR) at the U niversity of California, Berkeley, working with advisor Robert Wilensky. 

Jaramillo is studying the feasibility of extracting useful semantic information from definitions in the Collins 
COBUILD Eng/ish Language Diciionary. 

Hearst is exploring coarse-grained approaches to text interpretation anel lexical acquisition. She participated 
in the AAAI Spring Symposium on Text Based Intelligent Systems (1990), describing a method for placing 
structure on a corpus by sorting the documents into categories ba'ied on limited semantic and syntactic 
analysis (Hearst 1(90). More recently, she has been developing an accurate, relatively low-overhead method 
for the disambiguation of English noun homonyms using a large corpus of free text (Hearst 1(91). 

References 
Hearst, l\L A. (1990). A hybrid approach to restrictecl text, in tcrprctation. In P. S. J acobs, editor, Text-Based 

Intelligent Systems: Current Research in Text Analysis, ln/orllwtion Ex/raction, and Retrieval, pages 38-43. 
GE Research & Development Center, TR 90CRDl98. 

Hearst, M. A. (1991) . Toward noun homonym clisal1lbigualion usillg IDcal context in large text corpora. Submitted 
to The Proceedings 0/ the 29th A nnual Meeting 0/ the rl.~liociat io lt /or Computational Linguistics. 

°This material is based on work supported uy a grant [rom the Dp.partmcnt of De[cnse Advanced Research Projects Agency, 
monitored by the Office of Naval Research under grant number N00011-8!)-J-3205, as weil as by aNational Science Foundation 
Graduate Fellowship awarded to the first author. 

93 



1 Introduction 

Automatie language acquisition is a promising approach 
for the creation and augmentation of lexicons for natural 
language processing applications. Currently many re­
searchers (e.g. (Wilks et af. 1991), (Boguraev &; ßriscoe 
1987), (Ahlswede &; Evcns 1988), (Jensen &; Billot 
1987)) are exploring the transformation ofmachine read­
able dictionaries into what Wilks et af. calls "machinc 
trac table dictionaries", i.e. dictionaries trallsformed 
into a format usable for NLP. Most of this work focuscs 
on obtaining word senses or word "relatedness" in for­
mation. 

Researchers are also exploring the application of sta­
tistical metrics to large text corpora in order to detcct 
patterns such as noun similarity (Hindie 1990), colloca­
tion occurrence (Choueka 1988), (Smadja &; McKcown 
1990), and verb alternations (Brent 1990). These ap­
proaches uncover correlations among lexieal items that 
are potentially useful for more semantically driven ac­
quisition tasks. 

We are interested in using both machine readable dic­
tionaries (specifically, The GoI/ins GOB UILD Engfish 
Language Dictionary (Sinclair 1987)) and correlation 
statistics from large corpora to aid in the acqllisition 
of the semantics associated with certain kinds of lexi­
cal patterns. In particular, the work we discuss in this 
paper focuses on acquiring semantic representatiolls of 
patterns composed of a noun or a verb followed by a 
prepositional phrase. In many cases, the meanings of 
these patterns are not simple compositions of the mean­
ings of their parts, so prior knowledge about the mean­
ings of the individual words may be inadequate for the 
interpretation of the phrase. 

Section 2 presents an overview of the acquisition 
method, Section 3 describes application of the method 
to several examples, Section 4 provides a comparison be­
tween this method and previous approaches, and Scction 
5 concludes the paper. 

2 Overview of the Acquisition 
Algorithm 

2.1 Methods 

From a corpus, we selected several dozen sentences con­
taining noun + preposition and verb + preposition pat­
terns. We found that three methods relying on infor­
mation from COßUILD were sufficient for crcating a 
representation of their meanings. Briefly, these meth­
ods are: 
(1) Interpret Definition Directly: Some nounj verb 
+ preposition patterns are directly defined in the 
dictionary-that is, the noun + preposition pair or verb 
+ preposition pair is used in the definition of the main 
noun or verb. For example, the definition for fluent 1 
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begins, "Someone who is fluent in a particular language, 
01' who speaks fluent Spanish, French, Russian, etc ... ," 
indicating that the patterns "ftuent in fanguage" and 
"speaks fluent fanguage" are defined therein. In cases 
like these. the definition is parsed to find semantic con­
straints on complement structure of the pair. Tllis in 
turn can rcquire analysis ofthe definitions of other words 
or phrases, a mechanism we label "definition hopping." 
(2) Use Knowledge ab out How Nouns Derive 
from Verbs: For noun + preposition pairs in which the 
noun is derived from averb, we can apply some stan­
dard rules t.o derive the noun's complementation struc­
lure fr0111 that of the verb. This is especially useful 
because often only the verb + preposition combination 
appcars cxplicitly in the dictionary. 
(3) Use Hand-coded Prepositional Semantics: 
This is the eatch-all category. In many cases COBUILD 
providcs an appropriate definition for the preposition 
that indicatcs the relationship between the noun or verb 
and the preposition's object. These definitions often de­
scribe thc preposition 's function rat her than defining it 
in an ordinary fashion, and so may not be automatically 
acquil'ablc. However, since COBUILD provides a fairly 
thorough analysis of prepositional meanings, we can use 
their definitions as a starting point for hand-coding their 
s~manLics. 

We chose to study COBUILD in our research for sev­
eral reasons. Unlike most dictionaries, COBUILD's def­
initions are written in complete sentences. For exam­
pie, COBUILD's definition of decay (omitting nominal 
scnses) is as folIows: 

1 When something such as a plant, a piece of 
wood, 01' a piece of meat decays, it becomes 
rotten or unusable. 

2 If something such as a soeial or political in­
stitution decays, it gradually becomes weaker 
01' more corrupt. 

This prescnt.ation style, among other reasons, makes 
this dict.ionary amenable to general-pur pose parsing. 
Furthel'lllOre, it provides us with information about syn­
tactic and scmantic features of typieal complements of 
\\lords. \Vhell we encounter a polysemous word used in 
conjllnction with a particular complement, we can deter­
mine how weil that complement fits the description given 
in t.he definition. To make this determination, we can 
use several kinds of background knowledge, the simplest 
of which is synonymy jhypernymy information extracted 
from t.he dictionary itself. Such information can be gath­
cred from a genus hiel'archy or from COBUILD's margin 
annotations. IIaving these relationships, espeeially the 
hypemymy relationship. indicated explicitly may make 
the task of creating a semantic hierarchy easier than 
whcn llsing other dictionaries (see (Guthrie et af. 1990) 
for a d isc USSiOll of some of the difficulties assoeiated wi th 
this task). Additionally. if more refined knowledge from 



other sources exists in the knowledge base, that can be 
used to aid in determining whether the complement used 
fits the description. 

If the complement preferences are insufficient to 
uniquely determine the sense of the word in its gi yen 
usage, we can use some simple heuristics to choose be­
tween the possibilities: 
Specificity: In general, of aseries of senses whose COlU­

plement preferences match the current context of t,he 
word in question, we choose the sense with the most 
specific preferences, since it is likely to provide the most, 
accurate information about the given usage. 
Definition order: Different dictionaries order their 
definitions differently. According to the introduction to 
COBUILD, the first sense given for a particular head­
word is not necessarily the most common sense; it may 
be the sense which the lexicographer feit was the most 
"central" in meaning. B ut because of this, earlier def­
initions are likely to be more general, and therefore be 
at least coarsely appropriate for the given usage. 

These two heuristics may seem to be at odds with 
each other-specificity would te nd to favor more iu­
formative definitions, while earlier definitions are more 
general. Specificity is useful in situations in whicb sev­
eral compatible definitions have fairly restrictive COIll­

plement preferences; definition order is a more conser­
vative "fall back" heuristic, more useful in situations in 
which few or no senses with nontrivial complement pref­
erences exist. Therefore, gi yen a conRict bet>veen the 
two heuristics, we prefer specificity over definition or­
der. 

Though these heuristics are not in general adequate 
for disambiguation of ordinary text, we assurne that they 
will be useful in the restricted domain of dictionary def­
initions. Whether this assumption is justified remains 
to be empirically verified. 

2.2 Resources 

In order to make use of dictionary definitions at all, 
we will need to hand-code the semantics of a basic set 
of words. While COBUILD does not have an explicit 
"defining vocabulary" as does LDOCE (Summers 1(87), 
another learnel"s dictionary,l we can use methods simi­
lar to those of Guo in (Wilks et al. 1991) to detel'llline 
a co re set of defining terms.2 Currently we have band­
coded just enough basic words to interpret thc defini­
tions we have been working on; we will build a larger 
set of basic words in time. 

To parse COBUILD's definitions, we plan to use a 
Construction Grammar-based parser (Jurafsky 1(00) 

L We Are preparing areport which compares COBUILD with 
LDOCE as sources for semantic acquisition. 

2 Part of this process consists of fincüng "cliques" of definitions, 
all of which refer only to one another. labeling these gl'OUPS as 
primitives and hand cocüng them. This phenomenon of circu.lar 
definitions-as-primitives is also noted in (Amsler 1981) and (ichi 
:-.rakamura & Nagao 1988). 
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when it becomes available. In the Construction Gram­
mar formalism (Fillmore 1989), each grammatical ele­
ment (e.g. phrases, clauses, sentences) is viewed as the 
uniflcation of a collection of constructions that indicate 
syntactic, semantic, and pragmatic information simulta­
Ilcously. Our initial representation language and infer­
ence mechanism is arecent version of KODIAK (Wilen­
sky 1986), although it would be propitious to extend it 
Lo accolllfilOdate phrases using some of the techniques 
described in (ßesemer & Jacobs 1987). 

\\1(, plan to use the corpus to select noun/verb + 
prcposition pairs to be learned, using methods that com­
pute statistics over a large text corpus, such as those 
described in (Smadja & McKeown 1990). This is an al­
ternative to having the system process pairs on an "as­
needed" basis, with a text-understanding system initi­
ating the acquisition process when it finds an unknown 
pair or unknown usage of a known pair. It may be de­
sirable to have statistical evidence that a particular us­
age of a pair is frequent enough to merit ente ring it in 
the lexicon. Furthermore, by examining the contexts in 
wllich a pair occurs, it may be possible to determine 
whether or not it has a non-compositional meaning and 
so requires detailed semantic analysis. Another poten­
tial use of the corpus is to provide extra information 
when the dictionary entry is not detailed enough for 
the semantic analysis. We have not explored these last 
t.wo options in detail; the remainder of this paper con­
cent rate::; on a description of our use of COBUILD for 
semantic acquisition. 

3 Examples 

In this section, we present examples of how the dictio­
nary, combined with the resources mentioned above, can 
be used to interpret the meanings of patterns consisting 
of a noun or a verb followed by a prepositional phrase. 
The following su bsections give some examples of pat­
terns that can be analyzed using each of the three meth­
ods described in Section 2. 

3.1 Direct definition 

Suppose we want to understand the meaning of conde­
scend to in the following sentence: 3 

Harris always condescended to waiters and ser­
vants, making snide remarks about their station 
in life. 

In C08U1LD, we find the following definitions for 
condescend: 

1 [v: IF +PREP THEN to] If you condescend 
to people, you behave in a way which shows 

JTltis senteJlce was created for illustrative pW'poses; it was not 
derived frolll a corpus, but Lhe meLhods described herein were 
dc\'elopeJ using naturally occwTing sentences. 
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Figure 1: Interpretation of condescend 1 

them that you think that you are superior to 
them. 

2 [V+to-INF / = deign] If you condescend to 
do something, you agree to do it, but in a way 
that shows that you think that you are doing 
people a favorj used showing disapproval. 

We can immediately eliminate sense 2 by syntactic 
restrietions, since the object of to in the sentence is 
a noun, not an infinitive verb. The first clause of the 
definition informs us that the subject of condescend 
and the object ofto must be human beings, a fact we can 
easily verify from knowledge about Rarris (presumably 
from interpl'eting earlier parts of the text), waiters and 
servants. Thus, it seems likely that sense 1 is the proper 
sense in this context. 

The syntactic complement structure of condescend 
1 is easily determined from its definition above. Our in­
terpretation of the semantics of the definition is shown 
in Figure 1. Briefly, rectangles contain tbe names 
of relations; ovals contain the names of participants 
in those relations. U nlabelled links point to partici­
pants specific to a particular relation, while labelIed 
links (except for IsA) point to roles inheritcd from 
a parent. For example, the person-behaving link be­
tween Condescend-To-1 and person-condescending indi­
cates that the person-condescending plays the role in the 
Condescend-To-1 relation that person-behaving plays in 
the Behave-1 relation.4 

Let us examine llOW our algorithm produces this rcp­
resentation. First, we know from the defiJlition that 
there are two semantic participants directly realized as 
syntactic complements of condescend 1; in the di­
agram, these are represented by person-cond escend ing 
(realized as the su bject of condescend) and person-

4 The names given to the relations and participants here are 
provided for clarity; they should not. be taken as having any se­
mantic content in and of themselves. 
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condescended-to (realized as the object ofto). The other 
participants are implied by the rest of the definition, 
whose interpretation we now describe. For this example, 
we will assurne that appropriate senses of way, show, 
und think are available in the basic hand-coded vocab­
ulary. G iven these, we still need to find interpretations 
for behave and superior that are syntactically and se­
mantically compatible with their usages in the definition 
of condescend 1. Of the senses of behave defined in 
COBUILD, only two are syntactically compatible: 

1 If you behave in a particular way, you act 
in this way, especially because of the situation 
you are in or the people you are with. 

3 If an object, substance, etc behaves in a par­
ticular way, it functions in a way that folio ws 
the laws of science. 

Tbe complement preferences given for the subject of 
each sense of behave here do not unequivocally disam­
biguate the use at hand; the fact that the subject of 
condescend 1 is a person is not incompatible with its 
beillg an object, since people are objects. Thus, we have 
to make adecision between the two. Both of the heuris­
tics mentioned in Section 2, specificity and definition 
order, would lead us to choose behave 1 as the proper 
sense in this context. 

We will not go into detail about the interpretation 
of the definition of behave 1; let us assurne that we 
have interpreted it and stored its syntax and semantics 
in its lexical entry, calling its associated concept Behave-
1, and that it has (at least) the two roles shown in the 
diagram. We can now establish that Condescend-T 0-1 
IsA Behave-l. We know that the subject of conde­
scend is also the subject of behave; thus, the person­
condescen din g participant in the Condescend-T 0-1 rela­
tion plays the role of the person-behaving participant 
in the Behave-1 relation. We create the condescension­
manner participant and the behavior-manner link simi­
larly. 

Wc now t.urn our attention to superior. There are 
t.hrce senses in COBUILD that are syntactically com­
palible with its use in condescend 1. Of these, the 
most appropriate in this context is superior 3: 

3 If you feel superior to other people, you 
believe that you are better than they are. You 
oft.en make people aware of your attitude by 
your expression or tone of voice or by the way 
you treat them. 

lIowevcr, in order to realize that this sense applies, we 
must assurne that think [that] and feel are similar in 
meaning. In this case, the dictionary can help us: The 
definitions of t he appropriate senses of each of these have 
aunotat.ions in the margin indicating that they are both 
hyponyms of believe. Superior 3 has more restrictive 
complement preferences than the other two senses, and 



it is compatible with the usage of superior in conde­
scend 1; therefore, we would choose it over the other 
two senses. 

After studying whatever unknown words are used in 
the definition of superior 3, we can construct its syn­
tactic and semantic representation (not shown in the di­
agram). We then create the participant superior-feeling 
to our representation of Condescend-To-l, noting that 
it is an instance of Superior-3. From the definition of 
condescend 1, we understand that the person who 
feels superior is the person-condescending, and the per­
son considered inferior is the person-condescended-to; we 
can therefore add these links to the representation. Tlle 
information about the condescension-shows participant 
can be similarly derived from the definition. 

Note that there is nothing corresponding to think 
that in the structure. Since we concluded that think 
that is equivaIent to feel, and since feel is included 
in the complement preferences of superior 3, we can 
assurne that the definition of superior 3 must include 
whatever semantics can be attributed to feel (as indeed 
it does). Therefore, we can aIlow the concept associated 
with superior 3 to take care of the semantics of think 
that/feel. 

3.2 Nouns derived from verbs 

l\Iany nouns which take prepositional complements are 
derived from verbs, and we can exploit some regulari­
ties in English to understand these noun + preposition 
patterns. In general, they fall into two categories: 

TransVerb -+ Noun + PP[ofl Nominal forms 
of transitive verbs often take prepositiona! phrases 
headed by of as complements, where the object of 
of plays a similar semantic role to the object of 
the original verb. For example, the use of sepa­
ration in "the separation of the executive and ju­
dicial branches [by the Constitution]" is nominally 
related to the transitive verb separate; the pluase 
is semantically similar to "[The Constitution] sep­
arated the executive and judicial branches." · 

Verb + PP[x] - Noun + PP[x] In cases wllere the 
original verb takes a particular prepositional com­
plement, its derived noun often t.akes the same 
prepositional complement. For example, in "Pro­
vision was mad'e' for the project's eventual ter­
mination," the PP[Jor] complement of provision 
springs from the PP[Jor] complement of provide, 
as in "They provided for the project's eventual ter­
mination." 

Thus, even if a particular noun + preposition pat­
tern is not directly defined in the dictionary, we can use 
the dictionary or morphologicaI analysis to determine 
whether the noun is derived from averb, and, if so, in­
terpret the role of the preposition 's object accordillgly. 
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(Of course, if the noun is not directly defined in the 
dictionary, we will have to make recourse to semantic 
regularities in order to derive the meaning of the noun 
from the meaning of the original verb.) 

3.3 Prepositional semantics 

If the noun/verb + preposition pattern is not explicitly 
mentioned in the dictionary at all , and neither of the 
regularities in the last section are applicable, we must 
attempt to integrate knowledge about the individual 
words in the pattern in a plausible way. We might be­
gin by applying our standard dictionary-interpretation 
techniques to derive the semantics of the main noun or 
verb and the preposition, However, prepositions often 
have complex semantics; the dictionary does not always 
give cOlllplcte definitions for prepositional senses. 

For example, suppose we wish to interpret the 
phrase "jar of mayonnaise." The appropriate sense in 
COI3UILD of of for this phrase is 1.1: "You use of af­
ter nouns expressing quantities, groups, measurements, 
alllounts." lIowever, the definition COBUILD gives for 
tlle noun jar is "A jar is a container ... that has a wide 
top and is used for storing food ... " In order to obtain 
the proper sense of of, we must realize that containers 
can be schematized as units of measurement; this would 
require knowledge about conventional uses of contain­
ers. However, even given that we can identify this as 
the proper sense of of, ita definition is incomplete, since 
it does not specify precisely what the relation is between 
"jar" and "mayonnaise". 

Thus, it seems reasonable to include prepositions in 
tllC basic vocabulary, and code their semantics by hand. 
We can use COBUILD's definitions as a starting point, 
llsing the dictionary's analysis of the various preposi­
tional sellses, but making their meanings explicit in our 
knowledge representation language. As before, we cau 
use the individual senses' complement preferences as dis­
ambiguational clues. We have only studied a few prepo­
sitions in detail, but COBUILD's sense analysis and 
complclllent preferences seem to account for a signifi­
cant percentage of cases not covered by the other two 
me t 1 IOds. 

4 Comparison to Other Meth­
ods 

The way in which definitions are analyzed here is in 
so me ways similar to other approaches that extract se­
mantics from dictionary definitions. For example, se v­
eral approaches (e.g. (Amsler 1981),(Wilks et al. 1991), 
(Jenscn & Binot 1987)) make use of taxonomic relations 
(hypernyms) for creating a scmantic hierarchy, wh ich 
aids ia "definition hopping" (although as mentioned 
above, t.his task is made easier by COBUILD's mar­
gin alJlIotations). Approaches such as (Alshawi 1987), 



(Boguraev & Briscoe 1987), and (Wilks et al. 1991) as­
sume that a set of 1000 - 3000 primitive senses need 
to be pre-encoded in the lexicon, as does our algo­
rithm. (Jensen & Binot 1987) describes a detailed en­
coding of the semantics of the preposition withj the ap­
proach described here requires similar prepositional en­
codings, but interprets them using more generally ap­
plicable mechanisms. 

A significant way in which this approach differs from 
others is linked to the COBUILD definition style. As 
noted above, COBUILD's definitions are written as COlll­
plete and fairly simple sentences, and so can be parsed 
and interpreted with a general-pur pose parser and gram­
mar, which can be used in other tasks. In contrast, 
most approaches interpret the definitions by matching 
them against specially-tailored patterns (e.g. (Alshawi 
1987),(Markowitz et al. 1986), (ichi Nakamura & Nagao 
1988)), or by using special-purpose parsers (e.g. (Wilks 
et al. 1991), (Zernik & Dyer 1985)) in order to extract 
particular semantic relations. This is done both be­
cause the definitions of the dictionary used are more 
terse than ordinary language, and so cannot be prop­
erly parsed, and because the dictionaries have enough 
uniformity in format to allow this to work successfully. 
Ahlswede & Evens (1988) presents an interesting com­
parison between using a general parser and coarse text­
processing tools for the derivation of semantic relations 
from a dictionary. They concluded that for the semantic 
relations they were acquiring, the text processing tools 
were more appropriate than the general purpose parser. 
However, they also noted that parsing would have been 
useful for verb definitions whose headword is a verb plus 
a particJe. 

5 Conclusion 

As we have shown, dictionaries can facilitat.e the inter­
pretation of patterns larger than a single word, either by 
directly defining them, or by providing information that 
can be used in combination with other knowledge about 
language and the world. Statistical analysis of text cor­
pora may prove useful in determining what kinds of pat­
terns to interpret and in providing appropriate context 
in which to interpret these patterns. The interpretation 
of dictionary definitions, when combined with some ba­
sic knowledge reSOUl'ces, can provide broad support for 
extended knowledge acquisition and natural language 
processing tasks. Other acquisitional tools can then re­
fine the knowledge we obtain from the dictionary by 
consulting other, more detailed information sourees. 
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Abstract 

Much of the syntax of the world's languages may be characterized by the inventory and properties of the lexical 
items and Functional Categories (FCs) of those languages. FCs are the "little words" of a language: determiners, 
auxiliaries, complementizers, prepositions and (inflectional) affixes. 

In this paper, I will be investigating the proposal that syntax is acquired by the child as a progression from an 
invariant base (a co re grammar which is common to alilanguages) to a more articulated view of language whieh 
includes FCs. Given, however, that the inventory of FCs differs from language to language, an explicit proposal of 
how children acquiring a language co me to learn its FCs is needed. 

I propose that the FCs of a language are originally lacking in the child's syntax, and are acquired by the ehild 
through an analysis of the agreement facts of the language. This information is available to the child through a 
lexical acquisition process which distinguishes the invariant part of a word (the root) from the part which varies 
according to changes in salient features of those words (the affixes). This procedure is intended to be psychologically 
plausible-it is sensitive to the frequency, phonological and semantic salience of words in the input, and makes 
predictions about order of acquisition and overgeneralizations which are corroborated by studies of lexical acquisition 
and psychological studies on the nature of the mentallexicon. By examining the generalizations made by the lexieal 
acquisition procedure, the child has a sufficiently broad understanding of the agreement processes in his language to 
be able to hypothesize the FCs of his language. 

This proposal makes several predictions for the time course of acquisition: that lexical information about Cl. 

category will be acquired in direct relation to the frequency and salience of that category in the input language; that 
FCs will originally be missing from the child's grammar; that the agreement information for a category (the affixes) 
will be acquired before the FCs for that category. These predictions have been shown to hold for English, Freneh, 
Polish, Dutch and Hebrew. 

When seen this way, the acquisition of syntax is not simply a logical problem for the child to solve, as has been 
advocated in the past, it is a statistical inductive procedure which the child can only solve after exposure to significant 
amounts of data. 

Research interests 

My interests tend to center in three broad largely unrelated areas: human-computer interfaces, the creation and 
manipulation of large text/natural language databases and computational models of language acquisition. 1'11 make 
the assumption, and I think it's a safe one, that the first two of my interests are of little interest to workshop 
mcmbers, and 1'11 focus on the third. 

Within computational models of language acquisition, I have largely been concerned with creating psychologieally 
and computationally valid models of the acquisition of the lexicon and syntax. I have concentrated mainly on the 
early stages of acquisition, from about 18 to 36 months, when the basic grammar of a language is acquired. 

!\Iy intent is to create models which both account for the longitudinal facts of acquisition across languages. These 
models should, furthermore, have something to say about the adult state. That is, it should be clear how the ehild 
model of language becomes the adult model, and this transformation should not involve the introduetion of any 
aJJitional principles. In particular, I have been concentrating on the conneetion between morphology and syntax, 
and looking at how the child might use information contained in the lexicon to deduce facts about the syntax of his 
language. 
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1 Introduction 

In reeent years linguistie theories have eome to rely more and more heavily on a set of linguistie universals, and 
on knowledge eontained in the lexieon, and less heavily on rules whieh are speeifie to a partieular grammatieal 
eonstruetion (see, for example Chomsky's Lectures on Government and Binding [Ch081], and and Pollard and Sag's 
An Information-based Syntax and Semantics [PS87] . That is, the strueture of a natural language ean largely be 
speeified by the properties of individuallexical items, and by the properties of lexieal eategories, rat her than by a set 
of rules whieh detail the phrase strueture of the language. This has intuitive appeal in that, seen this way, languages 
are of a single basie form, paralleling hypothesized innate eognitive abilities. In a theory of grammar these abilities 
are expressed as structural limitations on the possible form of human natural languages. The differenees between 
languages are eneoded in the properties of the lexieal items and eategories of eaeh language. 

U ntil now, however, this eharaeterization of natural languages has not been extensi vely tested as a theory of 
language aequisition . I am proposing a model of language aequisition whieh builds a language representation from 
a simple eommon base, tailoring the representation based upon information eontained in the lexieon . This tailoring 
is manifested as the eonstruction of the language's functional categories (FCs) [Abn87].1 FCs, as a dass, are dis­
tinguished from the dass of major thematic categories (TCs) of a language (verbs, nouns, adjeetives and adverbs). 
Many language aequisition researehers have noted that FCs are aequired as a group by the ehild ([GN88], [Kaz88]) . 
To aeeount for these facts, I propose a model of lexieal and syntaetie aequisition whieh explieitly links the mastery 
of agreement paradigms to the ereation of FCs. 

2 The Lexical Acquisition Model 

The model of lexical aequisition whieh I will propose is intended to be a eomputationally, psyehologieally and empir­
ieally aeeurate refieetion of the ehild's aequisition of the lexieon, with respect to the period of language aequisition 
paralleling that of an 18 to 30 month old ehild. During this period, most of the basic voeabulary and gramm ar of 
the target language are aequired . Furthermore, the lexical aequisition model will be related to a model of syntactie 
aequisition. I will show how the results of the morphologieal analysis provide just the information needed by the 
syntactic aequisition proeedure in order to eorreetly eharaeterize agreement relations in the target language. 

This work was originally motivated by the desire to provide a prineipled aeeount of eertain observations noted 
by language aequisition researehers: 

1. Children morphologieally overgeneralize. 

2. The rate of aequisition of lexieal items is directly proportionate to the input frequeney and phonologieal salience 
of these items. 

3. Agreement paradigms are aequired non-monotonieally: ehildren's mastery of partieular agreement paradigms 
does not steadily inerease, but appears to vary, even from utteranee to utteranee . 

4. Funetion words, ease-marking and syntactie agreement are aequired as a group. 

The lexieal aequisition proeedure aeeepts parsed sentenees as input, one word at a time, and ereates lexieal entries 
to represent the input words. The proeedure attempts to distill the core meaning of a word by eomparing its use 
aeross many sentenees. The parser used is simple and general-it assurnes that all features are shared by all words 
within a phrase and that a phrase ean attaeh to another phrase either as an argument or as a modifier. ConeeptuaJly, 
the aequisition proeedure is eomposed of two funetions: 1) aversion spaee proeedure [Mit77] whieh compares the 
features of words in the input in order to arrive at the minimal set of defining features for each partieular word ; and 
2) a word segment at ion proeedure whieh eompares different versions of the same word (in the example below, the 
\\'ords bite and bites are eompared) in order to isolate a root-whieh eontains the co re meaning and features of the 
word-and a number of affixes, whieh annotate the features of the root (the -ed affix, for example, add the past-tense 
feature TNS=PAST to the root) . 

As a eonerete example, eonsider input sentenee 1 (given in its parsed, fully annotated, format): 

1. The dogs bite the cats. 

I Examples of FCs in English are Complementizer (that, for, which, etc.), InHection (can, to, will, the past tense affix -ed etc.) and 
Detenniner (the, a, my, etc .). 
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[WORD: [dh ahO] POS:det SEM:the 
IFEATS: [TH=AGT PER=3 NUM=PL DEF=Y] EFEATS: [ROLE=SUB] ARGS: [[SUB=NOUN]] ] 

[WORD: [d aol g z] POS:noun SEM:dog 
IFEATS: [TH=AGT PER=3 NUM=PL DEF=Y] EFEATS:[ROLE=SUB] ] 

[WORD: [b aal iy t] POS:verb SEM:bite 
ARGS: [ [TH=AGT PER=3 NUM=PL DEF=Y ROLE=SUB] [TH=PAT PER=3 NUM=PL DEF=Y ROLE=OBJ]] 
IFEATS: [TNS=PRS MOOD=IND] ] 

[WORD: [dh ahO] POS:det SEM:the 
IFEATS: [TH=PAT PER=3 NUM=SG DEF=Y] EFEATS: [ROLE=OBJ] ARGS:[[SUB=NOUN]] ] 

[WORD: [k ael t] POS:noun SEM:cat 
IFEATS:[TH=PAT PER=3 NUM=SG DEF=Y] EFEATS:[ROLE=OBJ] ] 

Each word in the input presented to the lexical acquisition procedure has the following properties: a phonetic 
string (e.g. cats = k ael t S),2 apart of speech, a semantic identification token (typically the word itself is used, but 
any unique identifier would do), a list of internal features, external features and (optionally) arguments. COllsider 
the two lexical entries for the determiner the above. The lexical acquisition procedure will compare the two instances 
of the, and will produce the generalized entry 2: 

2. sem=the rank=O.OlOOOO num_args=l pos=det 
phon=dh ah # projection=det" 
usage=2 num_args=l ifeats=[PER=3 DEF=Y ] 
arg 0 status=Mandatory feats=[SUB=NOUI] 

The important detail to note is that the lexical acquisition procedure has applied aversion space technique to 
the features of the resulting in a lexical entry which contains only the inherent features of the determiner, i.e. it 
subcategorizes for a noun and has the internal features PER=3 DEF=Y (3rd person and definite). 

Now consider the effect of sentences 3-4, both of wh ich involve the verb bite (only the entries for the verb are 
given here) and the resulting lexical entry, 5, which the lexical acquisition procedure hypothesizes: 

3. I bite. 

[WORD: [b aal iy t] POS:verb SEM:bite 
ARGS: [[TH=AGT PER=l NUM=SG DEF=Y ROLE=SUB] ] IFEATS:[TBS=PRS MOOD=IND] ] 

4. A dog bites two men. 

[WORD:[b aal iy t s] POS:verb SEM:bite 
ARGS: [[TH=AGT PER=3 NUM=SG DEF=I ROLE=SUB] [TH=PAT PER=3 NUM=SG DEF=N ROLE=OBJ]] 
IFEATS: [TNS=PRS MOOD=IND] ] 

5. sem=bite rank=O.OlOOOO num_args=2 pos=verb 
phon=b aa iy t # projection=verb" 
usage=2 num_args=2 ifeats=[THS=PRS MOOD=IND ] 
arg 0 status=Mandatory feats=[TH=AGT ROLE=SUB ] 
arg 1 status=Optional feats=[TH=PAT PER=3 NUM=SG ROLE=OBJ ] 

affix: 0 context=b aa iy t # 
changes=l usage=l rank=O.005000 pos=verb 
feats=[[CH=AFEATO PER=3 NUM=SG DEF=N] [CH=AFEATl DEF=N ] ] 
old phonemes=# 
new phonemes=s # 

2This phonetic string is converted into a distinctive feature [CH68) representation internally, in order to be able to precisely discern 
",hich phonetic features condition particular affixes. An affix might only apply to envirorunent8 wruch are unvoiced, nasalized, coronal, 

etc. 
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The word bite now eonsists of a root, with the phonetie strueture b aa iy t (= bite), and an affix, whieh adds the 
-8 affix to the end of the word (indieated by #). The affix also adds the features PER:::3 NUM=SG DEF=N (3rd 
person, singular, definite) to the verb's first argument feature list. After seeing more examples of bite, as weil as 
other verbs whieh take the -s affix, the set of features whieh the affix eontributes will be honed down to the proper 
set: PER=3 NUM=SG. 3 

Onee an affix has been ereated, it is free to eombine with any word of the appropriate eategory, if that word 
provides the eorrect phonologieal environment (for instanee, the -5 affix must agree in voieing with the phonologieal 
material to whieh it immediately attaches). Affixes, as free agents, can then compete for use among the words of the 
language, and will be reinforced by any input word in whieh they appear. In this way, the produetive affixes of the 
language will be identified. 

3 Ramifications for Syntax 

One way of viewing the lexical acquisition process just described is that it is a way of distilling information eontained 
in the lexicon into meaningful classes: the roots and productive affixes of each of the lexical eategories. This has two 
important consequences: 1) the affixes on a category signal that category's syntaetie agreement relations; 2) if we 
adopt the additional assumption that a category's agreement information has an independent instantiation in syntax, 
a8 has been argued for theoretic and cross-linguistic reasons by Everett [Eve89J, Abney [Abn87) and others, and for 
developmental reasons by Kazman [Kaz90) then this position provides just the environment neeessary to allalyze the 
functional categories of a language. In this way, the idiosyncratic structure of a language (as opposed to what is 
universal) may be determined through an examination of the lexieon. 

Funetional categories-things like determiners, complementizers and auxiliaries-tend to be phonologieally and 
morphologically dependent, stressless and lack independent reference-they merely modify the meaning of tlleir 
hosts, just like affixes. Furthermore, the information expressed by a function word in one language is often expressed 
by an affix in another. This lack of a consistent syntactic expression ac ross languages argues against the treatment of 
functional categories as distinct categories universally-they are merely annotations to the meanings of the thematie 
categories. Gi ven this array of facts, it seems natural to propose that the function words and affixes related to a 
particular category occupy the same agreement node position in the syntax. 

This model assumes that the child initially projects all lexical items identically aceording to X' theory and has 
110 representation for Fes, as in (la). Information about each eategory is learned by the child through a lexieal 
uequisition process, which links the rate of aequisition of lexical items to input frequency and phonologieal salienee. 
By analyzing the agreement properties of each eategory, the child will gradually learn whieh eategories exhibit regular 
agreement processes-predictable meaning ehanges paired with changes in the phonetic form of a eategory. For these 
eategories, he will posit an agreement node (Agr), dominating the lexical category, as in (lb). Finally, if the ehild 
hears function words which are manifestations of a category's agreement features, then these words will be identified 
with that category's Agr position, as indicated in (lc) by the re-Iabelling of the Agr position as Func. 

(la) X" (lb) Agr" (lc) Fune" 

I I I 
X' X Fune' 

I => => A 
X Agr X" Func X" 

I I 
X' X' 
I I 
X X 

Although these constructions are proposed as models of the child 's development, each of the stages (la-e) is a valid 
st.age of Universal Grammar (UG). This can be stated confidently because examples of eaeh kind of eonstruetion 
exist in the languages of the world: there are lexical categories whieh have no agreement (Adjectives in English, 
or any eategory in Chinese or Japanese), and would be represented as (la). There are eategories whieh exhibit 
agreement but contain no function words (nouns in Polish, for example), and would be represented as (lb). finally, 
there are eategories which both exhibit agreement and eontain function words (like Nouns and Verbs in English, or 

JThe lexical entries shown here would not, in fact, be buHt after 50 few exposures to input. There is a built in conservatism in the 
acquisition system. Trus serves two purposes: it correctly models the cltild's conaervatism and it allows the system the time and large 
numbers of exposures needed to accurately leam the intrinsie features of words. 
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any Romance language), and would be represented as (lc). 
The model of syntactic projection works as folIows: the lexical acquisition process, given an input of sentences 

accompanied by a semantic representation, distills categorial information into the roots and productive affixes of 
each of the lexical categories. When a category exhibits regular agreement affixes in the lexicon, an Agr node is 
hypothesized for that category in the syntax. Finally, if that category is modified by independent function words, 
tben the Agr node provides a place wherein those words may be analyzed. This model cannot be "tricked" into 
making overgeneralizations about the language, because its basis of knowledge is generalizations made from the 
entire lexicon, and not a particular input word or sentence. By allowing the input to dictate which categories will be 
simple projections of the head (as in (la)), which ones will exhibit syntactic agreement (as in (lb)) and which ones 
will contain function words (as in (lc)), a model of the language can slowly be built by the acquisition process. This 
method provides a way to "tailor" a maximally general grammar (the Universal Grammar) so that it will be able to 
adequately represent a particular language. 

Consequently, the analysis of the lexicon provides a me ans by which the child can analyze function words in his 
grammar: when the child sees that a category utilizes a set of productive affixes, he instantiates a agreement node for 
these affixes in the syntax. This corresponds to the observed facts, as no ted by language acquisition researchers-that 
function words become productive at the same time as children begin to master inft.ection. 

4 Conclusions 

1 have presented a model of lexical acquisition which classifies the major thematic categories of a language according 
to whether they undergo productive agreement processes. This, in turn, allows syntactic stl'uctures to be built to 
allow a parser to correctly parse the language, including providing an environment in which function words may 
be analyzed . This is a fundamental characterization of a language, since, while languages typically share the same 
thematic categories, they differ widely on their use of functional categories (function words and agreement). 

Furthermore, this model predicts that the set of affixes on a category, manifested as the category's agreement 
node, will be acquired at the same time as function words in the child's grammar. That is, the structures-agreement 
nodes-needed to analyze function words will be developed at this stage. This characterization has been shown to 
have important predictive ramifications cross-linguistically for English, French, Polish, Hebrew and Outch [Kaz90] . 

This lexical acquisition mechanism has been implemented as a C program, and shown to be capable of making 
the necessary lexical generalizations to support this process. It currently is able to acquire the lexicon and project 
the syntactic structures necessary for English. The program is currently being tested with the acquisition of Polish, 
alld results of this endeavor will also be presented at the conference. 
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In the early days of machine learning, language acquisition was a major focus of research. Recent work has 
focused on other topics, but many current issues are closely related to previous work on language learning. 
For instance, one current issue involves the extension of domain theories, which often take the form of Horn 
clause granunars, and one can view many early granunar-learning systems as addressing precisely this task. 
Another open problem concerns the generation of higher-order terms to improve induction, and a number 
of methods for granunar induction tackle this directly, rewriting sentences using such terms during parsing 
and constructing new ones when the existing granunar is inadequate. In addition, research on language 
acquisition can benefit from recent advances in other areas of machine learning. For example, methods for 
learning in problem solving, which provide algorithms for improving the efficiency of parsing, and techniques 
for concept formation offer incremental approaches to learning concepts with which one can later associate 
words. In general, researchers interested in both linguistic and nonlinguistic aspects of learning would benefit 
from closer inspection of each others' work. 

Personal history 

I began working on granunar learning in the late 1970's, developing a model of first language acquisition 
that accounted for a number of phenomena observed in childrens' granunatical behavior. After some years 
of work in the area, I decided that all existing models re lied too heavily on hand-crafted representations of 
the environment, and that before furr.her progress could occur, we needed a model of concept formation in 
physical domains, preferably cast within a larger model of an intelligent agent. I have been actively working 
in this area since the middle 1980's, developing ICAR.US, an integrated architecture that supports planning, 
perception, and action. Eventually, I hope to return to research on granunar acquisition, using ICAR.US as 
the foundation. Along the way, I have also done some work on representation change, which bears a elose 
relation to granunar induction, and I have written overview papers on the topic of language learning. 
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Introduction 

Although research on language acquisition has a long 
his tory within the field of machine learning, in re­
cent years attention has focused mainly on other top­
ics. However, many recently 'discovered' issues relate 
directly to problems in the acquisition of linguistic 
knowledge, and in some cases, tentative solutions al­
ready exist in the literature on language learning. In 
other cases, research in other areas of machine has im­
portant implications for work on language acquisition, 
although this may not be apparent at first glance. 

In this paper, I explore some relations between these 
superficially different aspects of the learning process. 
The organization folio ws four topics that are currently 
popular within the machine learning community - ex­
tending domain theories, representation change, learn­
ing in problem solving, and concept formation. In the 
first two cases, I consider early work on language ac­
quisition that is relevant to current issues. In the latter 
two cases, I consider some learning methods developed 
for other purposes that may aid in developing methods 
for language learning. In all cases, I emphasize the un­
derlying unity of issues that arise in machine learning, 
whatever the domain of application. 

Extending domains theories 

One of the most active paradigms within ma­
chine learning focuses on explanation-based approaches 
(MitchelI, Keller, & Kedar-Cabelli, 1986; DeJ ong & 
Mooney, 1986). In this framework, the learner begins 
with so me background knowledge, or domain theory, 
orten stated as inference mies or Horn elauses. Upon 
encountering a positive training instance I for a con­
cept C, one uses the- domain theory to explain why I 
is an example of C. Typically, this explanation con­
sists of a logical proof, although less formal approaches 
are possible. One then uses the explanation to identify 
relevant descriptors in the instance, along with vari­
able bindings shared among descriptors. After this, 
one constmcts a new inference rule that lets one infer 
the concept directly from these descriptors, without 
the intermediate steps in the explanation. 
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Early work on explanation-based learning assumed 
that the domain theory was complete and correct. 
These simplifications were natural to make, in that 
these methods compiled existing knowledge into an­
other form, making the accuracy of the learned mies 
a direct function of the accuracy of the background 
knowledge. However, researchers realized from the out­
set that they would eventually have to relax these aB­

sumptions, and methods for extending incomplete do­
main theories and revising incorrect ones are active 
topics ofresearch (e.g., Hall, 1988; Ourston & Mooney, 
1990; Pazzani, 1989). In most cases, this work uses 
the domain theory to construct a partial explanation 
of training instances, then uses descriptors in the in­
stances as material for altering the domain theory. 

Few researchers in this tradition have noted the elose 
connection to earlier work on granunar acquisition. For 
instance, Anderson (1977) and Wolff (1982) describe 
methods for using existing granunatical mies to con­
struct partial parses, and then extending the granunar 
based on the words occurring in the training sentence. 
Langley (1982) and Reeker (1976) take a very similar 
approach to extending granunars for generation, using 
existing mies to produce partial sentences, comparing 
these to ones uttered by a teacher, and using differences 
to suggest extensions. All of these systems represent 
granunatical knowledge in ways that can be mapped 
directly onto the inference mies used in most work on 
explanation-based learning. The partial parses these 
programs constmct can be viewed as partial explana­
tions, and the revision of granunars can be viewed as 
the revision of incomplete or incorrect domain theories. 

The relation between these two research efforts has 
been missed because of differences in terminology, area 
of application, and - most important - rhetorical 
stances. Most work on granunar induction has em­
phasized the inductive nature of this task, and has 
paid little attention to intermediate states in which 
the learner has only a partial granunar. In contrast, 
research on explanation-based learning has emphasized 
the importance of 'justified' learning, and has argued 
against the use ofinductive methods. However, despite 
this rhetoric against empirical approaches, the alter-



ation of domain theories - like grammar acquisition -
is an inherently inductive task, in that it requires one 
to move beyond information in the training instances. 
Still, there is room for building on existing knowledge, 
whether one refers to this knowledge as an incomplete 
domain theory or as a partial granunar. 

Representation change 

Another important issue within machine learning 
concerns constructive induction and representation 
change. The first of these deals with the need to rewrite 
instances using higher-Ievel terms, so that induction 
can occur in this more appropriate language. For in­
stance, given the set of positive instances {I, 15, 3, 29, 
7} and negative instances {4, 12,6, 28}, a trivial rule 
suggests itself to those familiar with the notion of even 
and odd numbers. Without this, no regularity is ap­
parent, and the most one can do is form a disjunctive 
concept based on the observed instances. Recent work 
by Drastal, Czako, and Raatz (1989), Elio and Watan­
abe (in press), and others have shown that construc­
tive induction can increase both the rate of learning 
and asymptotic accuracy. 

Research on representation change focuses on the 
generation of such higher-level terms from experience. 
The idea here is to detect regularities in the training 
instances, introduce new terms that summarize these 
regularities, and use these terms to simplify the induc­
tion later in the learning process. Matheus (1989) gives 
an insightful review of work in this area by Muggleton 
(1987), Schlimmer (1987), and many others. This re­
search paradigm has shown that the introduction of 
new terms can lead to improved learning. 

Despite progress in this area, few researchers have 
recognized that issues arisicg in representation change 
are closely linked to ones that arise in granunar in­
duction. In many cases, one can view the process of 
rewriting an instance in higher-Ievel terms as a form of 
parsing, and one can cast the act of creating new terms 
as the induction of new word classes and phrases. In 
fact, so me existing granunar induction systems deal di­
rectly with these issues, parsing new sentences as they 
are observed and constructing new terms when the ex­
isting granunar is inadequate. 

For example, consider Wolff's (1982) SNPR algo­
rithm, which induces phrase-structure granunars from 
sequences of letters given as input. The system carries 
out a hill-climbing search through the space of such 
granunars, using two basic operators. The first notes 
frequently occurring sequences of symbols and defines 
new 'chunks', which correspond to words and phrases. 
The second learning operator notes when sets of sym­
bols te nd to occur in the same context (i.e., next to a 
common symbol); this defines new disjunctive classes, 
which correspond to parts of speech and alternative 
forms of phrases. 
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SNPR is semi-incremental, in that it processes only 
part of its input at a given time, using the terms it in­
troduces during earlier learning in processing its later 
experience. Specifically, the system constructs a par­
tial granunar to summarize the letter sequences it has 
observed, and then it uses this granunar to rewrite new 
strings at a higher level of description (i.e., using non­
terminal symbols in the granunar). This is isomorphie 
to the process used in constructive induction to re­
describe training instances, and the process of defining 
new chunks and classes is clearly a form of representa­
tion change. 1 

Other granunar acquisition systems, such as 
Sikl6ssy's (1972) ZBIE and Anderson's (1977) LAS, 
also introduce conjunctive terms (for phrases) and dis­
junctive terms (for word and phrasal classes) . In these 
cases, the focus is on inducing mappings between sen­
tences and their meanings. This provides additional 
constraints on the learning process, so that ZBIE and 
LAS can rely less on the type of distributional infor­
mation used by SNPR. However, the types of learned 
knowledge structures playa similar role, and both sys­
tems can be viewed as carrying out constructive induc­
tion. Machine learning researchers interested in this 
topic would do weil to study this early work on gram­
mar learning. 

Learning in problem solving 

Most work on problem solving within AI operates 
within the paradigm of search through some problem 
space. At each step in this search, one must select an 
operator to apply to so me problem state, which gener­
ates a new state from which the search continues. The 
combinatorial nature of most problem spaces can be 
constrained by heuristics, which suggest operators or 
states to select. Thus, one obvious role for learning 
within this framework is to acquire such search control 
knowledge. Laird, Rosenbloom, and Newell (1986), 
Langley (1985), Minton (1990), and many others have 
taken this approach to learning in problem-solving do­
mains. An alternative approach is to acquire macro­
operators, which let one take many steps through the 
problem space in a single leap. Iba (1989), Shavlik 
(1990), and others have explored this approach, most 
involving so me form of explanation-based learning. 

Many treatments of parsing note the importance of 
search in understanding sentences, an issue that cuts 
across different representations of linguistic knowledge. 
In augmented transition networks, one must decide 
which are to consider at each node. In phrase-structure 
granunars, one must decide which rewrite rule to use 
in expanding a symbol. Machine learning methods for 

10ne can also view SNPR aB extending an incomplete 
domain theory. At each stage in learning, the system uses 
its existing grammar to construct partial parses, then ex­
tends the grammar based on observed letter sequence8. 



reducing search have important implications for the 
parsing task, although few researchers from either the 
language or the learning community have noted this 
potential. This is probably because traditional work 
on language learning has focused on the acquisition of 
accurate grammars, rather than efficient ones. 

However, there are so me exceptions to this rule. 
For instance, Carlson, Weinberg, and Fisher (1990) 
have recently used an inductive learning technique to 
improve search control (and thus parsing efficiency) 
in network grammars. Also, Rayner (1988) has ap­
plied explanation-based methods to compile macro­
operators that improve the efficiency of parsing based 
on rewrite rules. The learning task of improving pars­
ing efficiency has much to recommend it for both lan­
guage and learning researchers. The problem is well de­
fined, there exist clear performance criteria, and there 
now exist many large grammars (i.e., domain theories) 
to support work in the area. 

Still, improved parsing efficiency is not the only ap­
plication of search-related methods to language learn­
ing. Consider Berwick's (1985) approach, which rep­
resents grammatical knowledge as a set of production 
rules. In his framework, actions involve parsing oper­
ators such as creating a uode in a parse tree, putting 
anode in an input buffer, attaching anode to a par­
tial parse tree, and switching items in the buffer. Thus, 
parsing can be viewed as a state-space search, in which 
the goal is to produce a complete parse tree and an 
empty input buffer. His acquisition system attempts 
to parse new sentences using these operators, invoking 
background knowledge to eliminate illegal steps, and 
using steps along the solution path as positive train­
ing instances. The system then carries out induction 
over these training instances to determine the legal 
conditions for applying each parsing operator. This 
approach is very similar to work on heuristics learning 
for state-space problem solving (e.g., Langley, 1985). 

Concept formation 

Most research on language acquisition has dealt with 
grammar learning, but there has been some work on 
the acquisition of word meanings, which has taken two 
basic approaches. The first assurnes that symbols for 
the relevant concepts already exist in long-term mem­
ory, and all that remains is to link words to the ap­
propriate concepts (e.g., Sikl6ssy, 1972). The other 
scheme defines word meanings in terms of more prim­
itive conceptual structures, but assurnes that meaning 
acquisition is largely' a. supervised learning task (Sal­
veter, 1979; Selfridge, 1981). However, there is evi­
dence that, at least in many cases, children form useful 
concepts long before they attach words to those sym­
bols. This suggests that the first approach provides a 
bet ter view of human word learning, but existing mod­
els provide no explanation for the origin of concepts to 
which words are linked. 
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Recent work on concept formation - which Gennari, 
Fisher, and Langley (1989) define as the incremental 
acquisition of concepts from unlabeled instances - of­
fers a path out of this dilemma. Techniques for concept 
formation interleave the process of classifying an expe­
rience and the process of altering memory to incorpo­
rate that experience. Over time, such methods build 
up a complex memory of concepts at different levels 
of abstraction, which can be used for recognition and 
prediction. Fisher and Langley (1990) argue that these 
methods provide useful models of human concept rep­
resentation, use, and acquisition. Initial studies in this 
area focused on simple attribute-value domains, but 
more recent work has dealt with concepts that involve 
structure and change over time. 

To date, research on concept formation has not ad­
dressed the problem of word meanings, but it provides 
a promising framework for future work in this area. As­
sumptions about the representation and organization 
of concepts from this paradigm provide constraints on 
approaches to meaning acquisition, and the latter pro­
vides a task that could challenge existing concept for­
mation techniques. Extensions to existing mechanisms 
may prove sufficient to associate words with acquired 
concepts, giving a unified model of concept formation 
and the acquisition of word meanings. 

Conclusions 

In summary, previous work on language acquisition 
has addressed a number of issues that are currently re­
ceiving attention within the broader machine learning 
community, and researchers in the latter tradition have 
much to learn from the former. Similarly, recent ad­
vances in nonlinguistic areas of machine learning have 
important implications for the study of language ac­
quisition, and researchers interested in this topic would 
do well to examine work outside their own area. Many 
of these methods learn in an incremental manner, a 
prerequisite for modeling human learning and, indeed, 
for supporting any intelligent agent that must inter­
act with an external environment over long periods of 
time. 

In fact, the growing interest in constructing inte­
grated architectures for intelligent agents may directly 
support research on language acquisition (Laird et al, 
1986; Langley &; Carbonell, 1987; Langley, Thompson, 
Iba, Gennari, &; Allen, in press). A number ofproposed 
architectures include learning mechanisms as central 
components, and the increasing concern with percep­
tion may overcome the hand-crafted representations of 
meauing assumed by many early models of linguistic 
learning, which bore a remarkable resemblance to parse 
trees. An integrated approach to cognition, perception, 
and action - the goal of research on architectures for in­
telligent agents - may provide the foundation required 
for a complete model of language acquisition. 
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1 Introduction 

To design a computational first language acqulsltlOn 
model, one must proceed through three steps: 

1) determine an appropriate theory of acquisition, either 
by identifying an existing theory or postulating one, 
2) design and implement a computational model of the 
theorized mature grammar to show that the end result 
of the acquisition process can be achieved, and 
3) design and implement a computational model of the 
acquisition system which will achieve the theorized ma­
ture grammar. 

In this paper, we will describe a project in which we 
have completed the first two steps, and are about to 
actively pursue research towards meeting the third. 

2 The Theorized Mature Gram­
mar 

The acquisition theory chosen to be the framework of 
this project is Davis' version of Government and Bind­
ing Theory. Presented as a dissertation in 1987 (at the 
University of British Columbia, Dept. of Linguistics) 
this theory has been designed explicitly as a model of ac­
quisition. In the introduction to the dissertation, Davis 
argues from Chomsky's definition of epistemological pri­
ority that a system which maps prelinguistic primitives 
into a linguistic theory is preferable to one defined solely 
as a linguistic or prelinguistic model. With this goal in 
mind, he presents a theory in which the traditional gen­
~ration of phrase-structure representations from rules 
(whether the explicit phrase-structure rules of context­
free rule-based systems and unification-type grammars 
or the highly generalized Xbar-theory of G B) is replaced 
by four simple principles of node domination which de­
termine the categorial features of the dominating node of 
any two sister nodes in a representation tree using Case, 
Theta, and categorial information. It is argued that 
this mapping of prelinguistic information onto a linguis­
tic representation (tree structures) meets the definition 
of epistemological priority and is therefore preferable to 
explicit phrase-structure rule-based systems. 

In order to derive these percolation principles, Davis 
has had to rework mal1Y of the traditional components of 
GB Theory. He starts by dividing the supposedly unify­
ing concept of government into two distinct forms, inter­
nal and external. Internal government concerns the rela­
tionship between a lexical governor and elements within 
its maximal projection. External government concerns 
the relationship between a governor and the elements 
within a maximal projection it governs. Internal gov­
ernment is further divided into its core case in which a 
lexical head governs its complements (in a 'Canonical 
Government Configuration (CGC)' - minimal govern-
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ment) and maximal government which corresponds to 
the m-command of Chomsky (1986). External govern­
ment is a more murky concept which defines government 
down a tree structure as dictated by barriers to govern­
ment and is beyond the scope of this abstract. It suffices 
to distinguish our two types of government: 

Minimal Government 

A minimally governs B iff A minimally c­
commands Band there is no C such that A 
governs C and C governs B. 

Maximal Government 

A maximally governs B iff A maximally c­
commands Band there is no C such that A 
governs C and C governs B. 

Da vis uses the core case of internal government to 
define internal Theta-assignment. Just as government 
is divided into internal and external cases, Theta­
theory is defined in terms of internal Theta-assignment 
(which only occurs within a CGC) and external Theta­
assignment. External Theta-assignment relies upon 
predication which stipulates how predicates are linked to 
their external arguments (i.e., subjects). This relation­
ship is defined by the relationship between the verb and 
its AGR-bearing INFL, and Case assignment by INFL to 
the subject. Davis also posits the elimination of the con­
troversial PRO by the relaxation of the Theta Criterion 
to allow arguments to bear more than one Theta-role. 

Case theory has also been divided into internal and ex­
ternal assignment. Internal Case-assignment normally 
takes place in a CGC, although in certain circumstances 
it is able to penetrate a derived XP to exceptionally 
Case-mark its specifier. External Case (in English, left­
ward Case) is the assignment of Case to the subject. It 
differs from internal Case in level of application, obliga­
toriness, and (in English) direction and adjacency con­
ditions. 

Given these definitions of government, Theta-theory 
and Case-theory, we can now present the first two of the 
four Percolation Principles: 

Percolation Principle I 

Where X Theta-governs Y, the categorial fea­
tures of Z (the dominating node) will be those 
of X. 

Percolation Principle 11 

Where X assigns Case to Y, the categorial fea­
tures of Z will be those of X. 

Percolation Principle III deals with the difference be­
tween the adjunction set and the subcategorization set 
of a phrase. We note that adjuncts, elements which are 
not tied to others by Theta- or Case- relations, typi­
cally have no effect on categorial structure. In other 



words, the categorial features of anode dominating a 
member of the adjunction set will bear the features of 
the other node to which it is joined. In order to define 
a principle based upon this observation , we need to for­
mally differentiate between adjuncts and members of the 
subcategorization set. This can be done by modifying 
the Revised Extended Projection Principle of Chomsky 
(1982) to what Davis calls the GREPP. 

Generalized Revised Extended Projection Principle 

Subcategorization requirements must be sat­
isfied by all phrase- structure configurations, 
w here "subcategorization req uiremen ts" refer 
both to subcategorized and subcategorizing el­
ements. 

This defini tion has the effec t of extending the concept 
of subcategorization to include both the subcategorizing 
and subcategorized elements. We may now define Per­
colation Principle III as: 

Percolation Principle III 

Where X is a member of the adjunct set and 
Y a member of the subcategorization set of a 
phrase Z, the categorial features of Z will be 
those of Y. 

Finally, we need a principle which determines the cat­
egorial features of a dominating node if none of the 
above conditions is present. To this end, Davis presents 
a percolation hierarchy based upon three types of cat­
egories he introduces to capture categorial generaliza­
tions: Theta-heads (N,V,A), G-heads (INFL, Det) and 
C-heads (complementizers and prepositions) . These 
types of categories enter into categorial associations with 
one another (based on the not ion of functional dis­
charge) in all of the Percolation Principles, but most 
importantly in IV. 

Percolation Principle IV 

Where X and Y are in a CGC, no Case or 
Theta relation holds between them, and both 
are part of the subcategorization set of Z, the 
following hierarchy determines which features 
will percolate: 
a. C-features oLX- and Y will percolate to Z 
b. G-features of X and Y will percolate to Z 
c. Theta-features of X and Y will percolate to 
Z 

3 Psychologically Plausible Lan­
guage Acquisition 

In principle, in order to achieve psychological plausibil­
ity (see Pinker 1979) a model of human first-language 
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learning must successfully account for the acquisition of 
any possible human grammar, within the time-span in 
which normal first-language learning takes place, given 
the input available, and what is known about the cog­
nitive abilities and limitations of young children; more­
over, since learning is non-instantaneous, such a model 
must mimic the course of real-time acquisition by pre­
dicting where learners make mistakes and the order in 
which they acquire syntactic rules and representations. 

Given out present knowledge, this is a tall order; 
nevertheless, we fee I that recent progress in theoreti­
cal, computational and psychological approaches to lan­
guage has put us in a position to make tentative pro­
posals concerning the structure of such a model. In this 
section we will begin by presenting a 'Iogical' version of 
(idealized) language acquisition; we will then examine 
the contribution of data from real-time language acqui­
sition to the issues under discussion; and we will end by 
proposing some significant modifications to the model, 
designed to increase its 'psychological plausibility'. 

A viable model of language acquisition must contain 
the following component: 

(i) A theory of the target grammar. 
(ii) A specification of the input (Primary Linguistic 
Data, henceforth PLD). 
(iii) A learning mechanism. 

We will take as our target a government-binding type 
grammar as described previously. 

As for input, we will adopt the following assumptions: 

(i) Young children receive and employ no negative evi­
dence (i.e., their utterances are not generally corrected 
for grammaticality, nor do they attend to such correc­
tions if offered). 
(ii) Input is 'noisy' - it contains slips of the tongue and 
incomplete and fragmentary utterances. 
(iii) The child is limited in its linguistic ' intake' by inde­
pendent cognitive constraints connected with short-term 
memory, sequencing, and lexical retrieval. 

While not entirely free from controversy, these three 
assumptions are generally well-supported empirically in 
the child-language literat ure. Together they constitute 
the basis of the enormously infiuential "poverty of stim­
ulus" argument which has informed much work in the 
so-called 'logical' theory of language acquisition. This 
theory is based upon the premise that powerful innate 
constraints must be operative during language learn­
ing in order to ensure that the child iden ti fies a tar­
get grammar on the basis of inadequate PLD. In its 
most extreme version, embodied in the 'principles-and­
parameters' model of Chomsky and his followers (1981 
and elsewhere) , grammar-learning is reduced to a choice 
between a few abstract parameters 'triggered' by certain 
key types of data readily available in the input . 



Let us then turn to the learning mechanism. Sur­
prisingly little attention has been paid to this part of 
the acquisition theory until recently. It has been gen­
erally assumed that the child, innately equipped with a 
rich deductive system (Universal Grammar, henceforth 
UG) "Iearns" by hypothesis testing. If the child en­
counters sentences in the target language which are not 
generated by his or her grammar, UG will alter a pa­
rameter setting; the resulting grammar will then on ce 
again be checked against the input, and altered fur­
ther until no counter-evidence is encountered. At this 
point the child 's Language Acquisition Device will have 
converged on the adult grammar. It should be pointed 
out that under this conception, the relationship between 
UG and the PLD is indirect; parameter settings are 
ordered by UG according to a fixed and innately pre­
determined hierarchy, constrained by considerations of 
cross-linguistic markedness and by the Subset Princi­
pie of Berwick (1985) and much subsequent work. The 
latter ensures that a child will never guess at an overgen­
eral grammar, and then be forced to backtrack; given the 
proscription against negative evidence mentioned above, 
retreat is theoretically impossible for the first-language 
learner. 

The logical theory of language acquisition, as briefly 
described above, is the first viable 'non-instantaneous' 
theory of grammar learning. It provides a solution to 
the problem posed by the poverty of stimulus argument, 
by severely constraining the learner's hypothesis space; 
in fact, 'Iearning' is reduced to choosing between a few 
limited parametric alternatives. However, the logical 
theory is less successful at accounting for the observed 
course of real-time language acquisition. This is not sur­
prising, since it was not designed to do so; nevertheless, 
it provides a useful null hypothesis against which more 
psychologically plausible models can be judged. 

A parametric model based on logical acquisition 
makes the following predictions for real-time acquisition: 

(i) Less marked grammars will be initially hypothesized 
by the child, regardless of the relative markedness of 
the target grammar. Early grammars will correspond 
to cross-linguistically unmarked systems. 
(ii) Due to the operation of the Subset Principle, less 
inclusive grammars will be hypothesized before more 
inclusive ones; the child will not overgeneralize, since 
retreat is impossible; . 
(iii) Because setting a single parameter can have multi­
ple effects on the resulting grammar, we should expect to 
find distinct 'stages' in language acquisition correspond­
ing to different parameter-settings and characterized by 
sets of parametrically linked syntactic properties. 
(iv) Since UG is a shared genetic component, and since 
the PLD available to children is relatively uniform, we 
should expect the course of acquisition to be similar 
across subjects learning the same language. 
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None of these predictions are borne out by evidence from 
language acquisition. In fact, the following generaliza­
tions seem to characterize the acquisition process: 

(i) While there has been some work claiming that early 
stages in acquisition correspond to less-marked parame­
ter settings (see in particular Hyams (1986) on the pro­
drop parameter in Italian and early English) the ex­
pected strict correlation between syntactic markedness 
and relative ease of acquisition has failed to emerge. To 
give an example, preposition stranding, as in (la), as 
opposed to "piedpiping", exemplified in (1 b), is known 
to be marked cross-linguistically: 

1a. What are you talking about? 
b. About what are you talking? 

Yet English-speaking children acquire structures like 
(la) literally years before those like (lb) (see French 
1984). Of course, this is to be expected given the PLD 
available to English-learning children, who are far more 
likely in colloquial speech to encounter stranded struc­
tures than their stylistically-marked pied-piped equiv­
alents. However, in an unmodified parameter-setting 
model, this is irrelevant; relative frequency of structures 
in the input should make no difference to the invariant 
and innately ordered sequence of hypotheses available 
to the learner. 
(ii) The Subset Principle predicts no overgeneralization; 
yet a pervasive pattern of overgeneralization character­
izes the acquisition of certain syntactic elements. It will 
be argued below that these form a natural dass - that 
of 'closed-class' or 'functional' elements - and that such 
elements are associated with a particular type of input­
sensiti ve learning. 
(iii) Again contrary to the predictions of an unmodified 
parametric model, acquisition is typically uneven and 
variable both ac ross and within categories. Note that a 
"Iexicalized" parametric model such as that suggested 
by Wexler and Manzini (1987) does not solve this prob­
lem, since it neither accounts for why general patterns 
eventually emerge, nor for the fact that the same form 
may be produced in more than one way at the same 
time. 
(iv) One of the most striking conclusions to emerge from 
the child language literat ure is the surprising extent of 
individual variation in linguistic development. If nei­
ther the input nor the Language Acquisition Device is 
variable, the parametric model has simply no way of ac­
counting for such variation. 

Thus a 10gicaJly feasible model of language acquisition 
cannot translate straightforwardly into a psychologically 
plausible one. At the same time, it should be pointed 
out that the latter must retain the advantages of the 
former: there is no point in modelling real-time language 
acquisition if the model cannot attain the end-point of a 
stable human grammar, given the available input. And 



of course, the original poverty of stimulus argument still 
holds. 

What all this suggests is that two different types of 
learning mechanism must be available to the language 
learner. On the one hand, a powerful deductive sys­
tem is needed to account for the successful acquisition 
of target grammars which are severely underdetermined 
by the PLD; on the other, an inductive, data-sensitive 
mechanism seems necessary to account for the complex 
patterns of over- and under- generalization actually ob­
served during language development. 

There is in fact some intriguing empirical evidence in 
favour of such a suggestion. Newport, Gleitman and 
Gleitman (1977) discovered (as part of their study on 
the relationship between properties of the PLD and lan­
guage learning) a correlation between the acquisition of 
ituxiliary elements in (canonical) medial position and 
the presence in the input of fron ted auxiliaries (in ques­
tions). This correlation was subsequently confirmed by 
several other similar studies (see, for example Furrow, 
Benedict and Nelson 1979 and Newport, Gleitman and 
Gleitman 1984). It thus appears that the acquisition of 
auxiliary elements, which are generally unstressed and 
often contracted in medial position, is dependent on 
their appearance in the more salient fronted position. 
Yet when it comes to production, children initially use 
auxiliaries only in medial position, failing to invert them 
in both yesno and WH-questions. This leads to a curious 
and paradoxical situation: learners need input contain­
ing fronted auxiliaries, yet they initially seem unable to 
produce auxiliaries in fronted environments. 

A similar situation seems to hold in the acquisition 
of German. German is underlyingly an SOV language, 
but in main clauses an obligatory rule fronts an inftected 
verb, leading to a surface word order where the verb ei­
ther occupies second position (in declaratives) or first 
position (in yes-no questions). Under standard assump­
tions, this derived word order will overwhelmingly pre­
dominate in the input to young children, which is gen­
erally monoclausal. Yet the initial word order produced 
by German speaking children is apparently almost al­
ways verb-final; it is only when verbal inftections are 
acquired that word-order reftects the verb-second con­
straint (see Clahsen 1984, Mills 1984). Once again, we 
are forced to the odd conclusion that learners of Ger­
man 'undo' inftected-verb movement to get at a basic 
word order, but then are unable to re-apply it produc­
tively until further de~elopments have taken place in the 
grammar. 

What are these further developments? In Davis 
(1987), it is argued that in both the English and Ger­
man cases, correct production of the relevant structures 
is dependent on the acq uisition of certain inftectional 
elements connected with syntactic agreement . Gener­
alizing from these cases, Davis proposes a 'two-tiered' 
model of language acquisition. The first tier consists of 
a 'recognition' phase, in which the child makes use of 

the deductive power of UG to set basic parameters and 
establish fundamental structural properties of the lan­
guage to be learnt. The second tier involves an 'instan­
tiation' phase, in which the child must acquire specific 
functional elements before being able to use his or her 
syntactic knowledge in production. 

These two tiers, moreover, involve quite different 
types of learning mechanism. Recognition-type learning 
is extremely general, involving abstract syntactic cate­
gories; and extremely successful, in that there is little 
or no evidence for difficulties in the acquisition of fun­
damental syntactic properties of a language, such as the 
identification of basic grammatical categories and rela­
tions. On the other hand, instantiation is frequently 
error-laden, and shows a cluster of characteristic prop­
erties, including 

(a) A 'U-shaped' learning curve, involving early under­
generalization, subsequent over-generalization, and final 
retreat. 
(b) 'Lexicallearning effects'. 
(c) Type and token variation in production. 

This pattern is also characteristic of the acquisition of 
inftectional morphology (see McLelland and Rumelhart 
1987). Davis (1987) claims, following Emonds (1985), 
that there is a syntactically and psycholinguistically sig­
nificant distinction between open-class elements, which 
are learnt in a maximally. general fashion, and closed­
class elements, including functional eiements such as 
auxiliaries, determiners and complementizers as weil as 
inftectional morphemes, which are learnt in a highly 
specific, input-sensitive and probabilistic manner, ac­
counting for properties (a-c) above. The exact na­
ture of the closed-class learning mechanism is open to 
some debate; it is possible that it might involve ei­
ther connectionist-type architecture, or a constraint­
satisfaction type model, as suggested by Pinker (1987). 
It should be noted, however, that the role of such a 
mechanism is strictly limited in this model to 'low­
level' learning; there is no suggestion that it could sup­
plant the highly abstract and theory-laden mechanisms 
needed for syntactic recognition. 

Thus the two-tiered approach allows us to develop a 
learning model which accounts in a principled mann er 
for the child's ability both to generalize and to partic­
ularize during the course of language acquisition. It 
also meshes weil with what is known about real-time 
language acquisition. It thus seems to be a promising 
approach to the construction of a model of acquisition 
which takes psychological plausibility seriously. 
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4 A Computational Model of 
the Mature Grammar 

Having previously examined the model of mature gram­
mar described by this theory, we can now describe how 
this was implemented in a computational parsing mech­
anism. Implementing the theory presented three major 
issues to be overcome: 

1. the intrinsic right-Ieft nature of the Percolation Prin­
ciples, 
2. multi pie possi ble subcategorizations (and related 
Case and Theta assignments), and 
3. movement. 

The Percolation Principles, as described, are intrinsi­
cally right-Ieft in nature as they presuppose knowledge 
of the categorial features of sister nodes. As we are posit­
ing tree structures as our representations, the rightward 
branch of any dominating node (other than the right­
most) will be the dominating node of the rest of the 
sentence. Therefore, we must know the structure of 
the representation of all rightward nodes before form­
ing any dominating node. This is not a psychologically 
valid approach as it is almost certain that people process 
sentences left-to-right. We resolve this problem by ob­
serving that PPI does not necessarily require knowledge 
of the right- adjacent node. PPI stipulates that the cat­
egorial features of a anode which assigns a Theta-role 
to a right-sister node will dominate regardless of the fea­
tures of the rightward node. As we have seen, internal 
Theta-assignment is always in a CGC, thus we can form 
a dominating node whenever we encounter an internal 
Theta-assigner. Once one dominating node is formed, a 
representation of all nodes thus far encountered can be 
constructed. This allows correct partial representations 
to be formed while processing left- to-right. 

The fact that many predicates have more than one 
possible subcategorization type presents a problem in 
our left-right parsing paradigm. As we cannot know 
the dominating node of the actual subcategorized phrase 
until we have actually parsed it, we cannot choose the 
correct subcategorization type in advance. As the sub­
categorization itself can infiuence the phrasal type of the 
argument (eg., a CP headed by an empty C), we must 
actually try the different possible subcategorizations un­
til a 'match' is discoy~red. We have found that ordering 
the possi ble su bcategorizations speeds processing; the 
parser tries two element subcategorizations first, then 
PP, CP, IP and NP. This is however strictly an issue of 
implementation. 

Movement within the sentence is handled using a 
filler-driven paradigm. When an element is encountered 
which does not receive the required Case and Theta as­
signments, movement is fiagged and subsequent process­
ing tests for possible gaps (corresponding to the moved 
element's original position in the sentence). Gaps are 

identified as positions wh ich are assigned Case and(or 
Theta roles, but have no receiver present. Procedures 
have been implemented to handle leftward movement of 
arguments and non-arguments, but rightward movement 
remains problematic. 
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of examples ilJustrating the use of the rule. 
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1 Introduction 

I 

Cognitive Modeling of 

Second Language Acquisition 

Steven L. Lytinen 
Artificial Intelligence Laboratory 

The University of Michigan 
Ann Arbor, MI 48109 

and 

Carol E. Moon 
Department of Computer Science 

Harvey Mudd College 
Claremont, CA 91711 

We are studying the acquisition of syntactic knowledge in second language learning. We have devel­
oped a computer model of second language acquisition, called ANT (Acquisition using Native-Ianguage 
Transfer) (Lytinen and Moon,1988; Moon and Lytinen, 1989; Lytinen and Moon, 1990; Moon, 1990). 
ANT successfully learns approximately 85% of the grammar rules presented in a typical first-year German 
textbook . Input to the system is similar to what is found in a typical introductory text, containing a 
mixture of instructions about a grammar rule and examples illustrating the rule. The system modifies its 
English grammar rules accordingly, so that they correspond to the grammar of German. ANT can then 
"understand" German sentences. 

In developing ANT, we have focused on the issue of how instructions and examples interact with each 
other during the learning process. We have discovered several reasons why, from a functional standpoint, 
both instructions and examples are often useful in learning new grammar rules. From this work, we 
can make many specific predictions about second language learning performance. For example, we can 
characterize what types of rules are easy or hard for our program to learn, and factors which affect the 
difficulty of a rule, such as lesson format (i.e., the effectiveness ofinstructions and of examples for particular 
types of rules), and the order in which lessons are presented . 

We have begun to test some of our model's predictions in aseries of psychological experiments, to see 
if the they are valid for human second language learning. In particular, we have run a pilot study whicll 
tests some of our predictions about factors that determine the difficulty of different types of grammar 
rules, as weil as the effects of lesson format on rule difficulty. The pilot study supports our predictions 
regarding these factors. 

In this paper, we briefly describe the ANT model, and the predictions that the model makes regarding 
rule difficulty and lesson format. We then present the pilot study, and discuss future work on empirical 
testing . 
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2 The Current Model 

To explain how ANT learns, we present an example lesson: 

In German, verbs come at the end of relative clauses. 

Examples: 

Der Erdferkel, der Ameisen frißt, läuft langsam 
(the aardvark who ants eats runs slowly)l 

Der Mann, der mir Bücher gibt, wohnt in Paris . 
(the man who me books gives lives in Paris) 

ANT's task is to change its English grammar rules so that they will work for German relative clauses. 
So me of ANT's English relative clause rules are the following: 2 

(1) Re -+ RP VP 
(2) Re -+ RP NP VP' 

Although the instruction portion of the lesson describes a difference between German and English 
relative clauses, the modification to ANT's grammar does not involve its relative clause rules at all. This 
is because the verb is embedded in rules about verb phrases (VP and VP'). So me of these rules are the 
following: 

(3) VP -+ V NP 
(4) VP' __ V3 

Is is these rules which must be changed. Thus, the problem of finding the relevant English rules which 
must be modified is not an easy one. The instruction says something about verbs and relative clauses; it 
says nothing about verb phrases. 

This is where examples come into play in the learning process. Without examples, ANT would have 
to search through its grammar for possible appearances of verbs within relative clauses. In the worst 
case, this could mean searching the entire grammar, since a verb could in theory appear inside of any 
constituent of aRe, and Re's could possibly contain every other kind of constituent. However, because 
ANT is provided with examples in addition to instructions, ANT parses the examples, letting them guide 
it to the rules which must be changed. During the parse, ANT is forced to use the rules which must be 
modified for German. Thus, the potentially large search through the grammar is avoided. 

Because the instruction portion of our example lesson teils ANT that it is learning a change in word 
order within relative clauses, the ordering constraints in its relative clause rules are relaxed when parsing 
the examples. As a result, it is able to parse a sentence whose relative clause word ordering does not 
conform to English grammar. Let us consider the first example from above. ANT parses it. The relevant 
portion of the parse tree which is produced is shown in figure 1. The new form of of rule (3) above is 
extracted from the example's parse tre~, producing the following new German rule: 

(3') VP -- NP V 

1 ANT doe~ not receive an English translation as part of its input . The literal Ellglish translation is provided 
here for the benefit of the reader. 

2 Although ANT's linguistic knowledge is encoded in a unification-style grammar (Shieber, 1986), for our pur­
poses here we can assume that they are context-free rules. 

3The unification form of these rules enforces the verb type appropriately; for example, only transitive verbs 
may appear in the constructions specified by rules 3 and 4. 

118 



s 
/ \ 

NP VP 
/ \ 

NP Re 
/ \ 

RP VP 
/ \ 

NP V 

Figure 1: Parse tree produced by ANT from German example 

This rule is overly general, though, since it should only hold for VP's within relative (and other 
subordinate) clauses. ANT avoids this mistake by creating a new category (CL-VP). It knows to do this 
because of the information from the instruction . The final rules, then, are: 

(1') RC - RP CL-VP 
(2) RC ---+ RP NP VP' 
(3') CL-VP - NP V 
(4) VP' - V 

After several examples illustrating the relative clause construction for other types of verb phrases , 
ANT successfully modifies all of its original English rules in a similar fashion . 

3 Empirical Testing 

ANT's performance on the relative clause rule suggests (at least) two factors that might playa role in 
determining how difficult it to learn a grammar rule . These factors are: 

l. Ease of access of relevant native language knowledge. For ANT, the most difficult part of 
learning the German relative clause rule is knowing wh ich English rules to change. Identifying the 
relevant English rules is due to the "embeddedness" of the change: verbs are embedded inside of 
relative clauses in rules about relative clause constituents. Thus, our system would have an easier 
time with rule changes that are less embedded. For example, the Spanish rule that direct object 
pronouns precede the verb is easier for ANT to learn, because a verb and its direct object appear 
in the same grammar rule, VP - V NP. 

2. Effects of lesson format. Both instructions and examples play crucial roles in ANT's learning 
process. Thus, ANT's performance would be adversely affected if either were missing from a lesson . 
However , this affect depends in part on rule difficulty: examples playa crucial role in difficult rules 
(by our embeddedness criterion), but for easy rules (non-embedded changes), an instructions-only 
lesson format should not cause as much trouble. 

We conducted a pilot study to test whether these two factors are important in human second language 
acquisition. In the study, we began to explore both the difficulty factor and lesson format factor on 
learning performance. 12 subjects were presented with lessons which taught them a grammar rule for a 
hypothetical variant of English . Lessons varied in two ways: in the difficulty of the rule being taught, and in 
the format of the lesson. Rule difficulty was based on our embeddedness criterion discussed earlier. Thus, 
rules with embedded changes were predicted to be more difficult to learn than those with unembedded 
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Error rates Timings (sees.) 
Instrs Examples Instrs & Instrs Examples Instrs & 
Only Only Examples Only Only Examples 

Difficult .42 .21 .25 15.5 13.6 11.0 

~E .25 .04 .04 12.3 10.4 7.8 
'--- --

Figure 2: Results of translation task for different rule types and lesson formats 

changes. Lessons were in one of three formats. One third of the lessons each subject saw were in an 
instruction-only format, consisting of a short description of the grammar rule, but no examples. One 
third of the lessons consisted only of a set of examples illustrating the rule to be learned. Finally, one 
third of the lessons consisted of both a description of the grammar rule and a set of examples. Each 
subject received two lessons of each possible combination of rule type and lesson format: difficult vs. hard 
rules, and instructions only, examples only, and mixed format . Rules were presented in each different 
lesson format to equal numbers of subjects. 

After presentation of each lesson, subjects were then given a sentence in "normal" English and asked 
to produce a spoken translation of it in the variant dialect, using the rule they had just learned. Their 
performance was measured in terms of error rate and production time. Errors were only counted if ehey 
involved misapplication of the newly learned rule. 

We predicted that error rates and timings would be higher for difficult than for easy rules, according 
to the difficulty criteria from our computer model. We also predicted that, in general, mixed format 
lessons would facilitate learning better than either instructions or examples alone. Finally, we predicted 
an interaction between the two variables. Based on our model, we would predict that the indusion of 
examples along with instructions in the lesson should facilitate learning more for difficult rules than for 
easy ones. 

The results of the study are summarized in figure 2. First , error rates for difficult rules were signifi­
cantly higher than for easy rules, according to our difficulty criteria (F(l,11)=6.22; p=.03). Error rates 
were also higher for rules learned from instructions only than for those learned from instructions and ex­
amples (F(2,22)=5.41; p=.012). Timing results also showed a significant difficulty effect (F(1 ,1l)=13.78; 
p< .005) . Lesson format effects were in the right direction, but were not significant for the timings. 

These results support our characterization of one factor that infiuences the difficulty of a new grammar 
rule. They also indicate that in general, examples presented in a lesson either alone or with instructions 
expedite the learning process as compared to instructions-only lessons. 

4 Future Work 

Though the pilot study confirms some of our predictions, we discovered some possible methodological 
concerns to be addressed in further experimentation. First, the translation task could have an effect on 
likelihood of transfer, thus affecting the Iikelihood of error in performance. We plan to use several tasks 
in the full study, induding grammaticality judgement of several tasks should guarantee that ehe results 
are not biase.d by the peculiarities of a single task. 

Second, w~ plan to alter our style of presentation of lessons. In the pilot study, lessons were displayed 
for an initial learning period, then were available for inspection during the translation task . This seemed 
to negatively affect the amount of effort that subjects put into learning the rule before being asked to 
perform the translation task. Since the lesson was available during the task, subjects seemed to put 
off learning the rule until it was required during the translation. This probably affected performance, 
certainly in terms of translation times, and possibly in terms of number of errors produced. In particular, 
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it could explain why subjects performed as well with examples-only lessons as they did with mixed format 
lessons. In addition, forcing subjects to learn and remember rules is more similar to instruction and use 
in natural settings. 

Finally, the pilot study was rather limited in the range of grammar rules that were used. We plan to 
expand the range of rule types, testing several criteria for rule difficulty. 

We wish to explore other issues in a similar manner. One such issue is lesson sequence. Our model also 
can be used to make predictions about effects of different sequencings of lessons on learning. Depending 
on what has already been taught, a new rule can be relatively harder or easier to learn. For example, 
learning correct German verb location involves learning two new rules for English speakers: the verb is 
placed in the second position in main clauses, but at the end in subordinate clauses. Our model predicts 
that learning the general rule of the verb coming second in main clauses before learning the location of 
verbs in subordinate clauses should facilitate learning more easily. This is becaUse there is less question 
about which rule takes precedence if the more general rule is learned first : it is easier to learn a special 
case which overrides the general rule if the special case is learned after the general rule (according to 
our model). We propose to vary the order in which sequences of grammar rules is learned, to verify the 
accuracy of our predictions. 

In addition, we are exploring further refinements of our computer model. One important issue is the 
degree to which transfer is utilized in ANT. Our current model makes strong assumptions about transfer . 
Specifically, ANT uses corresponding English grammar rules as a starting point for constructing its German 
rules whenever possible. Although there is psycholinguistic evidence for transfer (e.g., Jansen, Lalleman , 
and Muysken, 1981; Snow, 1981; Selinker, 1969), other evidence indicates that people do not always 
transfer native language knowledge to a foreign language (e.g., Rutherford, 1983) . We are exploring this 
phenomenon, to try to characterize further the situations in which transfer does and does not occur . We 
wish to model more closely the data from existing studies, which suggests conditions that affect transfer. 
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The work I will be presenting was not originally intended to address the problem of 
grammar learning directly. The distituent parser was meant be a natural language parser 
for unrestricted text that didn't have the computational expense of a grammar-based parser 
and didn't require a hand-written grammar. However, since I was trying to determine the 
syntactic structure of examples from a language without specifying the language's grammar, 
I was in essen ce trying to learn grammar. 

The mutual information distituent parser was my undergraduate senior thesis, and Mitch 
Marcus was my thesis advisor and co-author. I am currently a first-year graduate student in 
computer science at Stanford. Aside from this project, I have also developed a probabilistic 
parser, Pearl, which estimates context-sensitive conditional probabilities of grammar mies 
in order to learn attachment tendencies from a corpus of examples. In my last two years at 
the University of Pennsylvania, I also assisted Mitch Marcus on the Penn Treebank project . 
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Abstract 

The purpose of this paper is to characterize a. constituent boundary parsing algo­
rithm, using an information-theoretic measure called generalized mutual information, 
which serves as an alternative to traditional grammar-based parsing methods. This 
method is based on the hypothesis that constituent boundaries can be extracted from 
a given senten ce (or word sequence) by analyzing the mutual information values of the 
part-of-speech n-grams within the sentence. This hypothesis is supported by the per­
formance of an implementation of this parsing algorithm which determines a recursive 
unlabeled bracketing of unrestricted English text with a relatively low error rate. By 
using the constituents from the distitucnt parser, noun phrase and preposition phrase 
categories can be induced from a corpus. While the error rate is still to high to allow 
for grammar induction, we present a method for reducing this error rate by enforcing 
a simple linguistic assumption on the parser. 

122a 
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Introduction 
A standard approach to parsing a natural language 
is to characterize the language using a set of rules , 
a grammar. A grammar-based parsing algorithm 
recursively determines a sequence of applications of 
these rules which reduces the sentence to a single 
category. Besides determining sentence structure, 
grammar-based approaches can also identify attributes 
of phrases, such as case, tense, and number, and they 
are known to be extreme!y effective at characteriz­
ing and classifying sentences. But these techniques 
are g' :lerally demonstrated using only a subset of the 
grammar of the !anguage. In order for a grammar­
based parser to be app!ied to unrestricted natural lan­
guage text , it must account for most of t.he complexities 
of the naturallanguage . Thus, olle must first concisely 
describe the bulk of the grammar of that language, an 
extremely difficult task. 

This characterization suggests that a solution to the 
problem of parsing unrestrict.ed natural !anguage text 
must rely on an alternative to the grammar-based 
approach . The approach presented in this paper is 
based on viewing part-of-speech sequences as stochas­
tic events and applying probabilistic models to these 
events. Our hypothesis is that constituent boundaries, 
or "distituents," can be extracted from a sequence of n 
categories, or an n-gram, by analyzing the mutual in­
formation values of the part-of-speech sequences within 
that n-gram. In particular, we will demonstrate that 
the generalized mutual information statistic, an exten­
sion of the bigram (pairwise) mutual information of 
two events into n-space, acts as a viable measure of 
continuity in a sentence . 

One notable attribute of our algorithm is that it ac­
tually includes a grarTlllfar - a distituent grammar, to 
be precise. A distituent gramm ar is a list of tag pairs 
which cannot be adjacent within a constituent. For 

'This work was partially supported by DARPA grant 
No. N0014-85-K0018, by DARPA and AFOSR jointly un­
der grant No. AFOSR-90-0066, and by ARO grant No. 
DAAL 03-89-C0031 PRr. Special thanks to Ken Church, 
Stuart Shieber , Max Mintz, Beatrice Santorini, a.nd Tom 
Veatch for their valued input, guidil.ßce and support. 

instance, noun prep is a known distituent in English, 
since the grammar of English does not allow a con­
stituent consisting of a noun followed by apreposition . 
Notice that the nominal head of a noun phrase may 
be folJowed by a prepositional phrase; in the context 
of distituent parsing, once a sequence of tags , such as 
(prep noun), is grouped as a constituent, it is consid­
ered as a unit. 

Based on our claim, mutual infprmation should de­
tect distituents without aid , and a distituent grammar 
should not be necessary. However, the application of 
mutual information to natural language parsing de­
pends on a crucial assumption about constituents in 
a natural language . Given any constituent n-gram , 
al a2 .. . an, the probability of that constituent occur­
ring is usually significantly higher than the probability 
of ala2 . .. anan+l occurring. This is true, in general. 
because most constituents appear in a variety of con­
texts. Once a constituent is det.ected, it is usually very 
difficult to predict what part-of-speech will co me next . 
While this assumption is not valid in every case, it 
turns out that a handful of cases in which it is invalid 
are responsible for a majority of the errors made by 
the parser. It is in these few cases that we appeal to 
the disti tuent grammar to prevent these errors . 

The distituent parsing algorithm is an example of a 
stochastic, corpus-based approach to parsing. In the 
past, a significant disadvantage of probabilistic parsing 
techniques' has been that these methods were prone to 
higher than acceptable error rates. By contrast, the 
mutual information parsing method presented in this 
paper is based on a statistic which is both highly ac­
curate and, in the cases where it is inaccurate , highly 
consistent. Taking advantage of these two attributes, 
the generalized mutual information statistic and the 
distituent grammar combine to parse sentences with, 
on average, two errors per sentence for sentences of 
15 words or less, and five errors per sentence for sen­
tences of 30 words or less (based on sentences from a 
reserved test subset of the Tagged Brown Corpus, see 
footnote 1). Many of the errors on Ion ger sentences re­
sult from conjunctions , which are traditionally trouble­
some for grammar-based algorithms as weil. Further, 
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this parsing technique is extremely efficient, parsing 
a 35,000 word corpus in under 10 minutes on a Sun 
4/280. 

It should be noted at this point that, while many 
stochastic approaches to natural language processing 
that u tilize frequencies to estimate probabilities suffer 
from sparse dat.a, sparse data IS not a concern in the 
domain of our algonthm . Sparse data usually results 
from the infrequency of word sequences in a corpus. 
The statistics extracted from our training corpus are 
based on tag n-grams for a set of 64 tags, not word 
n-grams. 1 The corpus size is sufficiently large that 
enough tag n-grams occur with sufficient frequency to 
permit accurate estimates oftheir probabilities. There­
fore, the kinds of estimation methods of (n + 1 )-gram 
probabilities using n-gram probabilities discussed in 
Katz (1987) and Church & Gale (1989) are not needed. 

This line of research was motivated by aseries of 
sllccessful appl ications of mu tual information statis­
tics to other problems in natural language processing. 
In the last decade, research in speech recognition (Je­
linek 1985), noun classification (Hindie 1988), predi­
cate argument relations (Church & Hanks 1989), and 
other areas have shown that mutual information statis­
tics provide a wealth of information for solving these 
problems. 

Mutual Information Statistics 

Before discussing the mutual information parsing al­
gorithm, we will demoI1strate the mathematical basis 
for using mutual information statistics to locate COI1-
stituent boundaries. Terminology becomes very impor­
t.ant at this point, since there are actually two statistics 
which are associated with the term "mutual informa­
tion," the second being an extension of the first. 

In his treatise on information theory, Transmission 
of Information (Fano 1961), Fano discusses the mutual 
information statistic as a measure of the interdepell­
dence of two signals in a message. This bigram mutual 
information is a function of the probabilities of the two 
events: 

_ PX,Y(x, y) 
Ml(x, y) - log Px(x)py(y)' (1) 

Consider these events not as signals but as parts-of­
speech in sequence in a senten ce. Then an estimate of 
the mutual information of two categories, xy, is: 

# ry in corpus 

Ml(x, y) ~ log ~otal # oe bigrams in corpus 

( #r ) ( #y ) 
corpus size corpus .ize 

(2) 

I The corpus we use to train our parser is the Tagged 
Brown Corpus (Francis and Kucera, 1982). Ninety percent 
of the corpus is used for training the parser, and the other 
ten percent. is used for testing. The tag set used is a subset 
of the Brown Corpus tag set. 

In order to take advantage of context in determin­
ing distituents in a sentence, however, one cannot re­
strict oneself to looking at pairs of tokens, or bigrams; 
one must be able to consider n-grams as weIl, where n 
spans more than one constituent. To satisfy this con­
dition, we can simply extend mutual information from 
bigrams to n-grams by allowing the events .z; and y to 
be part-of-speech n-grams il1stead of single parts-of­
speech. We will SIIOW that this extension is not suffi­
cient for the task at hand. 

The second st.atistic associated with mutual informa­
tion is what we will call "generalized mutual informa­
tion," because it is a generalization of the mutual in­
formation of part-of-speech bigrams into n-space. Gen­
eralized mutual information uses the context on both 
sides of adjacent parts-of-speech to determine a mea­
sure of its distituency in a given sentence. We will 
discuss this measure below. 

While our distituent parsing technique relies on gen­
eralized mutual information of n-grams, the founda­
tions of the technique will be illustrated with the base 
case of simple mutual information over the space of 
bigrams for expository convenience. 

Mutual Information 
The bigram mutual information of two events is a mea­
sure of the interdependence of these events in sequence. 
In applying the concept of mutual information to the 
analysis of sentences, we are concerned with more than 
just t.he interdepelldence of abigram. In order to take 
into account the context of the bigram, the interdepen­
dence of part-of-speech n-grams (sequences of n parts­
of-speech) must be considered. Thus, we consider an 
n-gram as abigram of an ni-gram and an n2-gram, 
where nl + n2 = n. The mutual information of this 
bigram is 
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P[n-gram] 
Ml(nl-gram, n2-gram) = log ( ] [ ]' 

P ni-gram P n2-gram 
(3) 

N otice that there are (n - 1) ways of partitioning 
an n-gram. Thus, for each n-gram, there is an (n - 1) 
vector of mutual information values. For a given n­
gram XI .. . X n , we can define the mutual information 
values of x by: 

Ml~(xl . .. x n ) = Ml(xl" .Xl:,Xl:+I .. . x n ) (4) 

log P(XI .. . x n ) (~) 
P(XI ... Xl:)P(Xl:+I . . . Xn 

where 1 < k < n. 
N otice that, in the above equation, for each Ml~ (x), 

the numerator, P(XI ... x n ), remains the same while 
the denominator, P(XI ... Xl:)P(Xl:+I ... x n ), depends 
on k. Thus, the mutual information value achieves its 
minimum at the point where the denominator is max­
imized. The empirical claim to be tested in this paper 
is that the minimum is achieved when the two compo­
nents of this n-gram are in two different constituents, 



i.e. when XkXk+1 is a distituent . Our experiments show 
that this claim is largely true with a few interesting ex­
eeptions. 

The motivation for this claim comes from examin­
ing the ehuaeteristies of n-grams whieh eontain pairs 
of constituents. Consider a tag sequenee, XI· .. Xn , 
which is eomposed of two constit.uents XI . . . Xk and 
Xk+I" .X" . Sinee XI . . . Xk is a eonstituent, XI·· . Xk_1 
is very likely to be followed by Xk . Thus, 

P(XI . .. Xk) ~ P(XI . .. xk-d. (6) 

By t.he same logie, 

P(Xk+I " .xn ) ~ P(XH2 " . x n ). (7) 

On the other hand, assuming X/c and X/c+1 are uneor­
related (in the general ease), 

P(Xk ... xn )« P(XIc+I" .xn) (8) 

and 
P(II .. . xHd «P(XI '" Xk) . (9) 

Therefore, 
Ml(xl " .Xk,XHI.· .In ) 

I P(XI ... Xn) 
og 

P(II" . Xk)P(Xk+I .. . Xn ) 
(10) 

~ 
I P(II . . . Xn) 

(11 ) og 
P(XI .. . Xk- dP( XHI .. . Xn ) 

> 
I P(II .. . In) 
0'" 

o P(XI " .xk-ilP(Xk .. . Xn ) 
(12) 

/vtl(xl . . . Xk_I,Xk .. . Xn ). (13 ) 

By applying a symmetry argument and using induc­
tion , the above logi€ suggests the hypothesis that, in 
the general case, if a distituent exists in an n-gram, 
it should be found where the minimum value of the 
mutual information veetor oeeurs. 

There is no signifieanee to the individual mutual in­
formation val lies of an n-gram other than the mini­
mum; however, the distribution of the values is signif­
ieant. If all the values are very elose together, then, 
while the most likely location of the distituent is still 
w here the minimum oecurs, the confidenee associated 
with this selection is low. Conversely, if these values 
are distributed over a large range, and the minimum is 
mueh lower than the maximum, then the confidence is 
much higher that there is a distituent where the mini­
mum occurs. Thus, the standard deviation of the mu­
tual information values.of an n-gram is an estimate of 
the eonfidence of the seleeted disti tuent. 

Generalized Mutual Information 
Although bigram mutual information ean be extended 
simply to n-space by the technique described in the 
previous section, this extension does not satisfy the 
needs of a distit.llent parser. A distituent parsing tech­
nique attemp!" to seleet the most likely distituents 

based' on its statistic. Thus, a straightforward ap­
proach would assign each potential distituent a single 
real number corresponding to the extent to which its 
context suggests it is a distituent. But the simple ex­
tension of bigram mutual information assigns each po­
tential distituent a number for each n-gram of which 
it is apart. The question remains how \.0 combine 
these numbers in order to achieve a valid measure of 
distituency. 

Our investigations revealed tllat a useful way to com­
bine mutual information values is, for each possible 
distit.uent xy, to take a weighted sum of the mutual 
information values of all possible pairings of n-grams 
ending with x and n-grams beginning with y , within 
a fixed size window . So, for a window of size w = 4. 
given the context XIX2X3X4, the generaIized mutual in­
formation of X2X3 : 

9M14(xl x 2, X3 X4), 

= k IMl(x2,x3) + k2Ml(x'2 , I3X4) + (14) 

k3Ml(xlx2,x3) + k4Ml(II X2,X3 X4) (1 .5) 

which is equivalent. to 

log (k P[X2X3]P[X2X3X4]P[XIX2X3]P[XIX2X3X4]) 
[pr X2]P[X3]P[XI x21 P [x3 x 4]12 

(16 ) 
In general, the generalized mutual information of any 
given bigram xy in the context XI " .Xi_IIYYI" . Yj_1 
is equivalent. to 

( 
rr kxP[.);'] ) 

I 
x crosses ry 

og rr p[X](i+il/ 2 

X does not croll8 ry 

( 1 'i) 

This formula behaves in a manner consistent with 
one's expectation of a generaIized mutual information 
statistic. It incorporates all of the mutual information 
data within the given window in asymmetrie man­
ner . Sinee it is the sum of bigram mutual information 
values, its behavior par allels that of bigram mutual in­
formation. 

The weighting function which should be used for 
each term in the equation was alluded to earIier . The 
standard deviation of the values of the bigram mutual 
information vector of an n-gram is a valid measure of 
the confidence of these values . Since distituency is in­
dicated by mutual information minima, the weighting 
function should be the reciprocal of the standard devi­
ation. 

In summary, the generalized mutual information 
statistic is defined to be: 

9Ml(i+j)(Xl . .. Xi,Yl· · · Yj) 

= L _1_M1 (X, V), 
O'XY 

X ends with r, 
Y begins with YI 

( 18) 

where 0' XY is the standard deviation of the M1rn' l 
values within XY. 
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The Parsing Algorithm 
Due to space !imitations, I will forego a detailed de­
scription of the parsing algorithm here. For more in­
formation about the parsing aJgorithm, see "Parsing 
a Natural Language Using Mutual Information Statis­
tics" in the proceedings of AAAI-90. 

Distituent Parsing and Grammar 
Induction 

Although we have only done pre!iminary work on 
grammar induction using this distituent parsing lech­
nique, the results we have vbtained suggest that dis­
tituent parsing may be useful in t.he initial phases of 
grammar learning. 

The initial experiment we performed involved pars­
ing about 35,000 words of text randomly selected from 
the Brown Corpus . By examining the distributions of 
the contexts of the constituents which the parser dis­
covered, and clustering consti tuents which have similar 
distributions, we were able to induce most of the noun 
phrase and prepositional phras~ categories which oc­
curred in the corpus. 

However, because the parser makes some systematic 
errors, there was also a lot of noise generated by this ex­
periment. The frequency and consist.ency of the parser 
errors make it very difficult 1.0 distinguish between !in­
guistically valid constituents alld incorrect structures. 
Thus, other than the noun phrase and prepositional 
phra."p. categories, the rest of tlw categories discovered 
were filled with errors, and were generally unuseful. 

In order to make grammar induction via distit.uent 
parsing more feasible, we must. filter out the errors 
made by the dist.ituent parser. One way to eliminate 
the errors is to make !inguistic assull1ptions about lan­
guage. For instance, we could assume that every -:on­
stituent has a head and that a head must be either 
initial or final. Given this information, we could parse 
the language once, determine from the constituents dis­
covered what the possible head categories for the lan­
guage are, and reparse the language enforcing the head 
principle. Although we have not yet undertaken this 
experiment, based on the types of errors made by tbe 
parser, we believe this technique will be effective on 
languages for which this linguistic assumption is true. 

Conclusion 
We have presented parsing technique which serves as 
an alt.ernative to traditional grammar-based parsing. 
By searching for constituent boundaries, or distituents, 
instead of fully-specified constit.uents, distituent pars­
ing eliminates the need for bulky grammars, and pro­
vides a computationally feasible method for determin­
ing syntactic sentence structure. 

Since distituent parsing can be accomplished by 
training a statistical measure from an unparsed corpus, 
it may serve as a viable method for inducing grammars 
for natural languages. Although the error rate of the 

mutual information-based distituent parser is currently 
too high for inducing all of the constituent classes from 
a corpus, we may be able to reduce this error rate sig­
nificantly by making universal Iinguistic assumptions 
about language. 
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The past five years have seen the beginning of a ma­
jor shift of research focus in natural language process­
ing . After twenty years of primary emphasis on on­
line systems which crucially depend upon the magical 
ability of users to adapt to the !imitations of the sys­
tem, a new generation of systems is emerging that both 
extract information from and summarize pre-existing 
text from real-world domains. To achieve high cover­
age in such systems, a wide variety of research break­
throughs will be necessary. One advance which is crit­
ical to truly robust wide-coverage systems is a technol­
ogy which allows the automatie acquisition of linguistic 
structure through the analysis of both literal and an­
notated text corpora. Research results al ready in hand 
suggest that significant progress in this area, at least 
in the area of syntax, may occur in the next few years . 

We at Penn have initiated a research program to see 
how far the paradigm of trainable systems can take us 
towards the fully automatie analysis of unconstrained 
text. We are proceeding under the assumption that 
this work should proceed by att.empting to combine 
two different traditions often viewed as mutually ex­
clusive: the research program of generative grammar, 
as set forth originally by Noam Chomsky and the re­
search paradigm of distributional analysis, as devel­
oped by the American structural linguists resulting in 
the work of Zellig Harris [4]. 

Information Theoretic Parsing 
This investigation of distributional analysis has al ready 
yielded results which are both surprising and encour­
aging. We have investigated how accurately the gram­
matical structure of a sentence can be determined with­
out an explicitly encoded grammar at all , using only 
automatically compil~d distributional statistics of a 
corpus of text which has been hand tagged for part 
of speech . 

As part of this research, we have developed a con­
stituent boundary parsing algorithm which derives an 
(unlabelled) bracketing given text annotated for part 
of speech as input [5] . This method is based on 
the hypothesis that constituent boundaries can be ex­
tracted from a given part-of-speech n-gram by analyz-
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ing the mutual information values within the n-gram , 
extended to a new generalization of the information 
theoretic measure of mutual znformatlon. This hypoth­
esis is supported by the performance of an implemen­
tation of this parsing algorithm which determines re­
cursively nested sentence structure, with an error rate 
of roughly 2 misplaced boundaries for test sentences 
of length 10-15 words , and five misplaced boundaries 
for sentences of 15-30 tokens. (All test sentences were 
randomly selected from a reserved test corpus.) We 
discuss below a mechanism to deal with the limited set 
of specific circumstances in which the hypothesis fails . 

The mutual information statistic [2] is a measure of 
the interdependence of two signals in a message . It is 
a function of the probabilities of the two events : 

P x y(x ,y) 
MI(x , y) = log Px(~)Py(y) 

In this paper , the events x and y will be not single 
parts-of-speech, but part-of-speech n-grams. 

This work proceeds by viewing the part-of-speech 
sequences that make up senten ces as stochastic events 
and applying probabilistic models to these events . It 
tests the hypothesis that constituent boundaries, or 
"distituents," can be extracted from a sequence of 
n categories, or an n-gram, by analyzing the mu­
tual information values of the part-of-speech sequences 
within that n-gram. More particularly, this hy­
pothesis assurnes that, given any constituent n-gram, 
ala2 . . . an, the probability of that constituent occur­
ring is usually significantly higher than the probability 
of ala2' " anan+l occurring. 

The performance of the new algorithm demonstrates 
that the generalized mutual information statistic, an 
extension of the bigram (pairwise) mutual information 
of two events into n-space, acts as a viable measure 
of continuity in a sentence. This is true, in general , 
because most constituents appear in a variety of con­
texts. Once a constituent is detected , it is usually very 
difficult to predict what part-of-speech will co me next. 
As it turns out , however, there are cases in which this 
assumption is not valid , but only a handful of these 
cases are responsible for a majority of the errors made 



by the parser . To deal with these cases, our algorithm 
includes what we will call a distituent grammar - a 
list of tag pairs which cannot be adjacent within a COn­
stituent. One such pair is noun prep, since English does 
not allOW a constituent consisting of a noun followed by 
apreposition. Notice that the nominal head of a noun 
phrase may be followed by a prepositional phrase; in 
the context of distituent parsing, once a sequence of 
tags, such as (prep noun), is grouped as a constituent~ 
it is considered as a unit. Our current distituent gram­
mar consists of four rules of two tokens each. 

Our current implementation of this parsing algo­
rithm determines a recursive unlabeled bracketing of 
unrestricted English text. As stated above, the gener­
alized mutual information statistic and the distituent 
grammar combine to parse sentences with, on aver­
age, two errors per senten ce for sentences of 15 words 
or less, and five errors per sentence for sentences of 
30 words or less (based on sentences from a reserved 
test subset jof the Tagged Brown Corpus) . Many of 
the errors on longer sentences result from conjunctions, 
which are traditionally troublesome for grammar-based 
algorithms as weil. Further, this parsing technique is 
reasonably efficient, parsing a 35,000 word corpus in 
under 10 minutes on a Sun 4/280. 

Determining lexical features and part of 
speech 

To allow this technique to be applied to completely 
unannotated text, we are concurrently experimenting 
with techniques to automatically derive the feature set 
and word classes of a language. 1 from a large corpus 
of text, again using only distributional facts. These 
techniques are based upon the following idea, a variant 
of the distrihutional analysis methods from Structural 
Linguistics ([3], [4]): features license the distributional 
behavior of lexical items. At the two extremes, a word 
with no features would not be licensed to appear in any 
context at all, whereas a word marked with all features 
of the language would be licensed to appear in every 
possible context. 

The feature discovery system works as folIows . First, 
a large amount of text is examined to discover the 
frequency of occurrence of different bigrams. 2 Based 
upon this data, the system groups words into classes. 
Two words are in the same class if they can occur in the 
same contexts. In order to determine whether x and y 
belong to the same cl ass , the sytem first examines all 
bigrams containing x. If for a high percentage of these 
bigrams, the corresponding bigram with y substituted 
for x exists in the corpus, then it is likely that y has 
all of the features that x has (and maybe more). If 

1 We consider the set of features of a particular language 
to be all attributes which that language makes referenee to 
in its syntax. 

2 For this experiment, we take a very loeal view of eon­
text, only considering bigrams. 
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upon examining the bigrams containing y the system 
is able to conclude that x also has all of the features 
that y has, it then concludes that x and y are in the 
same dass. 

For every pair of bigrams, the system must deter­
mine how much to weigh the presence of those bigrams 
as evidence that two words have features in common. 
For instance, assume: (a) the bigram the boyappears 
many times in the corpus being analyzed, while the sits 
never occurs. Also assurne: (b) the bigram boy the (as 
in the boy the girl kissed ... ) occurs once and sits the 
never occurs. Case (a) should be much stronger evi­
dence that boy and sits are not in the same class than 
case (b). For each bigram ax occurring in the corpus , 
evidence offered by the presence (or absence) of the 
bigram ay is scaled by the frequency ofax in the text 
divided by the total number of bigrams containing x on 
their right hand side. Since the end-of-phrase position 
is less restrictive, we would expect each bigram involv­
ing this position and the word to the right of it to oc­
cur less frequently than bigrams of two phrase-internal 
words. By weighing the evidence, bigrams which cross 
boundaries will be weighed less than those which do 
not. See [1] for more information and some prelimi­
nary results. 

Verb acquisition 
We are also developing a computational model of verb 
acquisition which uses what we will call the princi­
pIe of structured overcommitment (a specialization of 
the subset principle) to eliminate the need for neg­
ative evidence. The learner escapes from the need 
to be told that certain possibilities cannot occur (i.e. 
are"ungrammatical") by one simple expedient: It as­
sumes that all properties it has observed are either 
obligatory or forbidden until it sees otherwise, at which 
point it decides that what it thought was either oblig­
atory or forbidden is merely optional. This model 
is built upon a classification of verbs based upon a 
simple three-valued set of features whieh represents 
key aspects of a verb's syntactic structure, its pred­
ieate/ argument structure, and the mapping between 
them. This model was originally implemented and 
tested working with a small set of hand-selected ex­
amples (see [7]); we ho pe to extend this work using 
large natural corpora in the near future. 

We are also using the techniques discussed above to 
determine verb classes using n-gram techniques. We 
have been able to show (counter to any reasonable ex­
pectation) that a purely local examination of the two 
words (one to the right and one to the left) that occur 
immediately adjacent to a given verb provides enough 
information to hierarchically cluster these verbs into 
meaningful and fairly fine-grained grammatical cat­
egories, even distinguishing benefactive verbs (verbs 
that take an indirect object, roughly) into verbs of 
propositional attitude (e .g. tel0 from verbs of phys­
ical transfer (e.g. give). 



Probabilistic CF Parsing 
In another experiment, in collaboration with U NISYS, 
we have investigated how distributional facts can be 
used to choose between the multiple grammatically ac­
ceptable analyses of a single sentence. We have de­
veloped (see [6]) a natural language parsing algorithm 
for unrestricted text which uses a novel probability­
based scoring function to select the "best" parse of a 
sentence. The parser, Pearl , is a time-asynchronous 
bottom-up chart parser with Earley-type top-down 
prediction which pursues the highest-scoring theory in 
the chart , where the score of a theory represents the 
extent to which the context of the sentence predicts 
that interpretation . This parser differs from previ­
ous attempts at stochastic parsers in that it uses a 
richer form of conditional probabilities based on con­
text to predict likelihood. In preliminary tests, Pearl 
has shown promising results in handling part-of-speech 
assignment, prepositional phrase attachment, and un­
known word categorization. Trained on a corpus of 
1100 sentences from MIT's Voyager direction-finding 
system and using the string grammar from UNISYS' 
PUNDIT Language Understanding System, Pearl cor­
rectly parsed 35 out of 40 or 88% of test sentences from 
previously unseen Voyager sentences. 

The Penn Treebank Project 
To faciliate the kind of statistical experiments dis­
cussed above , both by us and by researchers at other 
institutions, we have undertaken the deve!opment of a 
a large annotated corpus of American English, anno­
tated both with part-of-speech information and with a 
skeletal syntactic analysis . 

But there are other pressing reasons to undertake 
such a project. Such data bases are of value for en­
terprises as diverse as the automatic construction of 
statistical models for the grammar of both the writ­
ten and colloquial spoken language, the development 
of explicit formal theories of the differing grammars of 
writing and speech, the investigation of prosodic phe­
nomena in speech, and the self evaluation of the ade­
quacy of parsing models, the various formal syntactic 
theories embedded in those parsers, and the particular 
grammars of English encoded within those theories. 

As a first step towards a much larger corpus, we 
have developed an annotation scheme for both part­
of-speech information and higher-Ievel syntactic struc­
ture, along with style books to assure consistent ap­
plication of the annot?-tion scheme, and have tagged a 
corpus of over 4 million words of contemporary English 
text with part-of-speech information, hand correcting 
the output of a stochastic part-of-speech tagger. 

After early concerns about productivity, we inves­
tigated a range of methods for syntactic annotation 
(henceforth, tree banking) with respect to annotator 
speed, for annotators posteditting the output of Don 
Hindie 's Fidditch parser. Key results: 

1. Annotators take substantially longer to learn tree 
banking than the POS annotation task, with sub­
stantial increases in speed occuring after 2 months 
of training. 

2. Annotators can postedit the full output of Hindle's 
parser at an average speed of 100-200 words per hour 
after three weeks, and 400-500 words per hour after 
two months. 

3. Reducing the output to a far more skeletal represen­
tation simiJar to that used by the Lancaster UCREL 
TreeBank Project increases average speed to 700- 750 
words per hour. At this speed , a team of 5 part-time 
annotators working 3 hours a day should maintain 
an output of2 .5 million words a year of "treebanked" 
sentences, with each sentence posteditted by one an­
notator . 

Treebanking has proceeded at full speed using skeJe­
tal annotation since December 1. We have annotated 
about 250K words of text, with 1/3 of this material 
bracketted by more than one annotator . 
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Abstract 

~Ietaphor is a conventional and ordinary part of language. A computational approach to metaphor based 
on the explicit representation of knowledge about metaphors is presellted here. This approach asserts that the 
interpretation of conventional metaphoric Janguage should proceed t.hrough the direct application of specific 
knowledge about the metaphors in the language. MIDAS (Metaphor Interpretation, Denotation, and Acquisition 
System) is a computer program that has been developed based upon this approach. The focus here is on the 
learning capabilities of MIDAS . 

Research Interests 

My current research interests lie in the area of conventional non-literal language. This area is concerned wilh the 
knowledge and mechanisms needed to adequately interpret language that deviates from what has traditionally been 
called litera!. In particular, I am developing frameworks for dealing with the representation, use, anu acquisition of 
knowledge used in the interpretation of idioms, metaphor, metonymy, and indirect requests. I am currently directing 
three projects in tllis area: the MIDAS system for interpreting metaphoric language, the META~IORPHOSIS learning 
system, and the METABANK, a empirically derived knowledge--base of English metaphorical conventions. 
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1 Introduction 

Metaphor is a frequent, systematic and conventional part of language. Natural language processing systems must be 
capable of dealing with metaphor in an effective way if further progress is to be made in applicatiolls like quest ion 
answering, machine translation, and text summarization . 

The main thrust of the approach to metaphor presented here is that the interpretation of conventional metaphoric 
language proceeds through the direct application of specific knowledge about the conventional metaphors in the 
language . Correspondingly, the interpretation of novel metaphors is accomplished through the systematic extension, 
elaboration, and combination of al ready well-understood metaphors . 

Under this view, the proper way to approach the study of metaphor is to study the underlying details of individual 
metaphors and systems of metaphors in the language. This approach follows on the metaphor work of Lakoff and 
Johnson [7] and tlle computational approaches to metaphor described in [6, 8]. 

This approach has been embodied in MIDAS (Metaphor Interpretation , Denotation, and Acqllisition System) 
MIDAS is a set of computer programs that can be used to perform the following tasks: explicitly repl'cscnt knolVledge 
about conventional metaphors, apply this knowledge to interpret metaphoric language, and learn ncw metaphors as 
they are encountered. 

This knowledge-based approach to metaphor differs from the traJitional computational account of metaphor. 
The traditional method is based on a problem solving paradigm. [1,2,3,4, 5J The hearer's task is to use a problem 
solving strategy (typically analogical matching) to find or create the meaning of a metaphorical utterance from a 
representation of the literal meaning and more general world knowledge. While this approach docs make use of a 
great deal of world knowledge, it does not make use of explicit knowledge about the metaphors that are cOllventionally 
apart of a given language. 

The metaphoric knowledge approach, given here, raises a number of learning problems that do not arise in the 
traditional approach. Our current work is addressing the following tlVO problems . 

• How do language learners initially acquire the conventional metaphors that make up their language? 

• How do these con ventional metaphors effect the way that commoll-sense conceptual domains are acqu i red ? 

The next section will describe our efforts to address the first of these learning problems in the context of ~1IDAS. 
The following section describes our preliminary work on the METAMORPHOSIS system, which is intended to explore 
the second question. 

2 MIDAS 

This section provides abrief overview of the MIDAS approach to metaphor. In particular, it introduces the follolVing 
lssues. 

Representation: The explicit representation of the conventional metaphors in a language in the form of explicit 
associations between concepts . 

Learning: The dynamic acquisition of new knowledge about metaphors for which no known metaphor provides 
a coherent explanation. 

2.1 Knowledge Representation 

Consider the followillg simple example of a conventional UNIX metaphor. The metaphorical use of the lVord in reflects 
a systematic metaphorical structuring of UNIX processes as enclosures. 

(1) I am in Emacs . 

Metaphors like this may be said to consist of the following component concepts: a source component, a target 
component , and a set of conventional associations from the source to target . The target consists of the concepts 
to which the words are actually referring. The source refers to the concepts in terms of which the iutended target 
concepts are being viewed. In this example, the target concepts are those representing the state of currently using a 
computer process. The source concepts are those that involve the state of being contained within some enclosure. 

The approach taken he re is to explicitly represent conventional metaphors as sets of associations between source 
and target concepts. The metaphor specifies how the source concepts reftected in the surface language correspond to 
various target concepts. In this case, the metaphor consists of component associations that specify that the state of 
being enclosed represents the idea of currently using the editor, where the user plays the role of the enclosed thing, 
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and the Emacs process plays the role of the enclosure. Note that these source-target associations are represented at 
the conceptual and not the lexical level. Any single lexical item or expression that can be construed as referring to 
the source concept of a known metaphor, may invoke that metaphor. In this example, the source component of the 
metaphor is attached to the concept of being enclosed , not to the lexical item in. 

These sets of metaphoric associations, along with the concepts that comprise the source and target domains, are 
represented lIsing the KODIAK [9J representation language . KODIAK is an extended semantic network language. 

These sets of metaphoric associations representing conventional metaphors are full-ftedged KODIi\I( concepts . As 
such, they can be related to other concepts and arranged in abstract ion hierarchies using the inheritance mechanisms 
provided by KODIAK. The hierarchical organization of conventional metaphoric knowledge is the prilllary means used 
to capture the regularities exhibited by the system of metaphors in the language. Specifically, KOD(,\K is used to 
represent specialized domain specific metaphors, pervasive high-level metaphors, and the systems of relatiolls among 
related metaphors. 

2.2 Analogically Learning New Metaphors 

~IlDAS normally will locate and apply one these known metaphors to interpret text containing cOllventional mcta­
phorical language. MlDAS will, however, inevitably face the situation where a metaphor is encountered for which 
none of its known metaphors provides an adequate explanation. This situation may result from the existence of a 
gap in the system's knowledge-base of conventional metaphors , or from an encounter with a novel ntetaphor . In 
either case, the system must be prepared to handle the situation. Consider the following example. 

In this example , the user has employed the conventional UNIX metaphor that the termination of all ongoing 
process can be viewed as a killing. 1I0wever, unlike the previous example, MIDAS finds that it is initially unable 
to interpret this example because it has no knowledge of this conventional metaphor. More precisely, it determines 
that the given input can not adequately satisfy the constraints associated with any of the concepts conventionally 
associated with the word kill. 

> (do-sentence) 
Interpreting sentence: 
How can I kill a process? 

Interpreting concreted input. 

(A Killing16 (i Killing) 
(killer16 (i killer) (A I46 (j I») 
(kill-victirn16 (j kill-victirn) (A Cornputer-Processl0 (l Cornputer-Process»» 

Failed interpretation: Killing16 as Killing. 
Failed interpretation: Killing16 as Kill-Delete-Line. 
Failed interpretation: Killing16 as Kill-Sports-Deteat. 
Failed interpretation: Killing16 as Kill-Conversation. 
No valid interpretations. 

At this point, ~IlDAS has exhausted all the possible conventional interpretations of the primal representation. 
In particular, the direct non-metaphoric interpretation and three known metaphorical interpretations are rejected 
because their restrietions of the role of the kill-victirn fail to match the semantics of the concept filling that role 
in the input, a cornputer-process. 

This example illustrates the operation of the learning component of MlDAS, the Metaphor Extension System 
(l>.\ES). This systern is invoked by MlDAS when it discovers a metaphor for which it has no adequate knowledge. The 
task of the ;..\ ES is to attempt to extend its knowledge of some existing metaphor in a way that will yield a coherent 
interpretation for the new use and provide a basis for directly understanding similar uses in future. Analogical 
reasoning is at the core of MIDAS 's learning mechanism. However, unlike previous metaphor systems, MTDAS does not 
attempt to draw an analogy between source and target domains of a metaphor. Rather, MlDAS attempts to reason 
analogically from known metaphors. 

In this case, the system finds and extends a closely related known metaphor that also uses kill to mean a kind 
of terminate. MlDAS finds that there is a known metaphor covering the use of kill in kill a conversation to mean 
to terminate. This known metaphor is applied analogically to the current situation through the contmon notion of 
process meaning aseries of related events happening over time. 
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=========================================================== 
Entering Metaphor Extension System 
=========================================================== 

Attempting to extend existing metaphor. 
Selecting metaphor Kill-Conversation to extend. 
Attempting a similarity extension interence. 
Creating new metaphor: Killing-Terminate-Computer-Process 

(A Killing-Terminate-Computer-Process (f Kill-Metaphor) 
(kill-victim-c-proc-termed-map kill-victim ~ c-proc-termed) 
(killer-c-proc-termer-map killer ~ c-proc-termer) 
(killing-terminate-computer-process-map Killing ~ Terminate-Computer-Process)) 

Final interpretation ot input: 

(A How-Q46 <f How-Q) 
(topic46 (f topic) 

(A Terminate-Computer-Processl0 
(T Terminate-Computer-Process) 
(c-proc-termerlO (f c-proc-termer) (A 146 (f I))) 
(c-proc-termedlO (f c-proc-termed) 

(A Computer-Processl0 <f Computer-Process)))))) 

UC: You can kill a computer process by typing - C to the shell. 

Finally, the target concept determined by the MES is used to provide an answer to the user. 
The approach taken in MIOAS to the understanding of new or unknowll metaphors is called the Metaphor Extension 

Approach. The basic thrust of this approach is that a new metaphor can best be understood by extending an existing 
well-understood metaphor or combining several known metaphors in a systematic fashion. Under this approach, the 
ability to understand and learn new metaphors depends critically on systematic knowledge about existing known 
metaphors . 

This approach, therefore, shifts the processing emphasis in the case of novel metaphors away froln the notion of 
attempting to determine the right target concept by a direct matching against the literal source. I1ather, an attempt 
is made to determine the correct target through the use of an existing related metaphor. Therefore in this example, 
no attempt is made to find the intended target meaning by looking at the source details of literal slaying, rat her the 
system examines the target concept of an al ready existing terminating as killing metaphor. 

3 Metaphorically Learning N ew Concepts 

Despite the demonstrated effectiveness of MIOAS'S learning system, it clearly has a number of serious deficiencies. 
One major problem arises from the fact that while MIOAS relies heavily on the pre-existing conceptual representation 
of the various source and accomplish its learning task, it can not alter that representation in any way. Learning 
consists entirely of creating and storing new metaphors at various levels of abstraction. 

To make this more concrete consider the following examples of the ubiquitous PROCESS-AS-ENCLOSURE metaphor. 

(2) JIow can I get Ol)t of emacs? 
(3) C"l into vi to edit your .Iogin file. 
(4) I'rn in mai!. 
(5) Tell me how to get out of lisp . 

These examples illustrate the use of the widespread container metaphor in English. In this domain, this metaphor 
structures certain kinds of systems as environments. This concept of a system considered as an environment is not 
based on the particular functionality of the system but rather on the way that the user interacts with it. 

Consider the following scenario, MIDAS is presented with a knowledge-base that classifies UNIX programs strictly 
according to their functionality. Assume further that the kb contains the specific metaphor EMACS-AS-ENCLOSURE, 

that structures EMACS as an enclosure . When (3) is encountered MIOAS can appropriately determine its meaning 
by analogy to the existing EMACS metaphor. It accomplishes this analogy by making use of the parent category 
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EDITOR shared by VI and EMACS. At this point MIDAS may appropriately create a more abstract metaphor EDITOR­

AS-ENCLOSURE. 

Continuing with this same scenario, consider what happens when MIDAS encounters (5). In the given functional 
hierarchy, L1SP and the target concept of the relevant analog metaphor EDITOR-AS-ENCLOSURE are quite distant. 
They share the common ancestor concept UNIX-PROGRAM which dominates all the known programs in the knowledge­
base. If this were used in a straightforward way as the basis for learning the meaning of (5) it would result in the 
creation of a U~IX-PROGRAM-AS-ENCLOSUR8 metaphor. The problem of course is that this is far too abstract and 
applies to many UNIX programs that simply do not per mit this metaphor . To prevent this problem ~IIDAS only 
permits analogical generalization to occur when the common ancestor is extremely dose to given analogs . (For 
example, VI and 8~IACS) . 

To summarize, this problem arises because MIDAS can not alter its representation of non-metaphorical domain 
knowledge. In this case , there is no appropriate abstract target concept to attach the new metaphor to. ~IIDAS 
must , therefore , either leave multiple metaphors at too specific levels of representation, thereby railing to capture 
a generalization, or it must place the metaphor at too high a level of representation potentially leading to an 
overgeneralization. 

We are currently investigating these problems in the context of a system called M8TAMORPHOSIS. METAMORPHO-

515 is a learning system that modifies the structure of a given knowledge-base under the influencc of a collventional 
metaphor. As with MIDAS this investigation is situated in the domain of building naturallanguage consulting systems 
for operating systems . 

To make the task of M8TAMORPHOSIS more concrete, we will continue with our environment example . The 
system begins with a knowledge-base of facts about UNIX commands and programs. The knowledge-base is initially 
structured as an abstraction hierarchy with the various user programs dassified according to their functionality . The 
task for M8TAMORPHOSIS is to create new categories that reftect the metaphorical structure of these concepts. [t 
must perform this task by monitoring the language processing performed by MIDAS. 

In our current example, the system 's task is to create a new concept that roughly corresponds to the llotion of an 
interactive system. This is the missing category in the target domain that dominates all and only those programs that 
permit the environment metaphor. This ultimately includes the editors, mail, and interactive language processors. 
The semantics of this category is determined by the meaning of the metaphors as determined by 1\11 DAS. In eITect , the 
conventional metaphors used by MIDAS are providing an inductive bias necessary for the creation of new categories. 
In these examples, the system notes that MIDAS is repeatedly applying a generic container metaphor to a subset of 
UNIX commands. Moreover, these metaphors are only being used to refer to certain aspects of these concepts. 
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Over the last 12 years. simulation research has been 
undertaken in Natural Language Leaming in the context of an 
interdisciplinary theoretical framework made explicit in 
various hypotheses. The initial research was undertaken 
towards a PhD at the University of NSW, and was continued 
with a group of research students at Macquarie University (both 
in Sydney). At present Dr Powers is located at the University of 
Kaiserslautern, supported by ESPRIT BRA 3012: COMPULOG. 

The first decade of tbis research, including a broad 
'cognitive science' review, is presented in a monograph 
[Powe89] - with a further review in [Powe90). Recent 
developments are presented here (overlapping with [Powe91J). 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

k) 

I) 

The main hypotheses explored are: 

that the mechanisms re~nsible for language phenomena 
are more general than is often credited; 
that the learning of language is inseparably tied to the 
learning of ontology; 
that automatie self-organization and hierarchy fonnation 
can. ßives rise to a basic conceptual framework based on 
pOSItive examples; 
that the mechanism responsible for language leaming 
phenomena have a considerable overlap with those for the 
rest of our sensory-motor experience; 
that recognition and generation activities are logically 
and at least partially physieally separate; 
that the recognition components act as critics for the 
production components and provide negative 
mformation; 
that interaction with the world also provides implicit 
negative infonnation; 
that contrast and similarity assessment of content in 
contexts provide a basic leaming mechanism based on 
metaphor and paradigm; 
that co~nitive restrictions not only restrict our leaming 
capability but the ranße of naturill lansuages with the 
effect that our lirnitauons actually asSIst the leaming 
process; 
that language should be examined from the perspective of 
ontologlcal leaming in an active environment; 
that the concepts learned at one level are the symbolic 
building blocks for another level; 
that the exchange of information with thc environment as 
mediated by our sensory-motor system is not inherently 
different in fonn or representation from our higher level 
concepts. 

Experiments fall into the following categories: 

i) neuro-visual ,a~sociation/leaming [Powe84.89) 
[Powe84.87.89] 
[Powe84.87,89] 
[Powe84.87,89] 
[Powe84,89,91] 
[Powe84.89,91] 
[Powe87.89] 
[Powe87,89] 
[Powe89] 
[Powe91] 

ii) mixed-mode parsing/learning 
iii) word-dass leaming 
iv) concurrent parsing/learning 
v) statistical fonnula leaming 
vi) neural net fonnula leaming 
vii) critical fonnula leaming 
iix) critical semantic learning 
ix ontological leaming 
x) morphological learning 

In particular these batteries of experiments are all 
perfonned in multiple contexts, in the sense of one or more of: 
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sensory vs linguistic modality, level of hierarchy, or vanous 
natural languages. 

These hypotheses end results suggest that different forms 
of leaming are appropriate at different levels of the language 
hierarchy which are characterized by different levels of input 
requirement, but that these fonns of learning are widely 
applicable in terms of the precise domain of leaming and that 
language leaming must not be too narrowly characterized. 

We summarize our tentative conclusions as follows: 

I . at the lower levels, self-organization is achieved in the 
absence of a formal teacher and critic (in vision. 
orthography, phonology and grammar). 

2. at intennediate levels. implicit teacher and critic can 
large.ly beJ~ovided. by an active environment through 
mulh-mod lIlteracuon; 

3 . at the bigher levels explicit teacher and critic are helpful. 
bu tinessential. 
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How far can self-orgaoizatioo go? 
Results in Unsupervlsed Language Learning 

Abstract 

There are a number of debates in linguistic, 
psycholinguistic and neurolinguistic circles which have 
relevance to research on machine leaming of natural language. 
Some of these concern where language lies on the spectrum 
between innate and leamt; how much can be learnt in the 
absence of semantics; how much can be achieved by neural self­
organization without multi-Iayer back-propogation; and how 
important negative infonnation is to language leaming. 

The computational research presented in this paper places 
a point of reference on each of these speClra, and indeed 
suggests that they are not independent. 

We present some computational experiments and results, 
and propose ideas towards a theory of language learning. More 
importantly we pose some traditional questions in a new light 
and suggest new avenues of research for the traditional 
cognitive science disciplines as weil as modem computational 
linguistics. 



Introduction 

[Gold67] and [Mins69] produced results which demonstrated 
limitations on the possibility of leaming. These were bued on 
certain assumptions about the learning mechanisms and the 
problem domain. and were in various respects both intended and 
construed u criticisms of current approaches and claims. In the 
first case, [Gold67] showed that context free languages couldn't 
be leamed without either a teacher or a critic. In the second cue, 
[Mins69] showed that a dus of (visually presented) group 
invariant relations could not be recognized by Perceptrons. 

Since then, the more powerful PDP (Parallel Distributed 
Processes) approach popularized by [Rume86) (and subsequent 
publications from the same group) has demonstrated 
overwhelmingly that useful learning (inur alii in the language 
and vision domains) can be done with neural nets. In aleS! 
focussed way. MLNL (Machine Leaming of Natural Language) hu 
also found ccnewed vigour [Lang87; Powe90J. 

But there are still things our machines can't yet do. And there are 
still things our machincs can't ever do. The results hold. But 
there are things we, that is humans and other organisms, can do. 
And there are language, vision and speech features that earlier 
statistical and neural models did learn [Koh084,89,90; 
Powe83,89; Ritt89). The trick is to characterize these accurately 
and discover appropriate mechanisms . - whether they be the 
natural mechanisms, just similarly effective mechanisms, or 
b~tter mcchanisms. 

In [Powe83,89] one of several experimental language learning 
prograrns used self-organizing neural network techniqucs to leam 
word duses and syntactic ruIcs in a total absence of critical 
input. There wu sirnply multiple exposure to a set of legal 
phrues. with no teacher supplying anomalous input in the sense 
of [Gold67]. Nonethelcss, the system managed to leam the word 
duses correctly, as well u grammatieal rules which, if not 
actually those the grammarians discovered, are nonetheleIl 
effcctive. Sirnilar results werc achieved in a statistical program 
applied to the same data. The neural program wu shorter. The 
statistical program futer. 

[Koh090; Ritt89] independently showed that neural and 
comination statistical/neural self-organization technique. can 
leam word duses (but apparently not syntactic rulcs) of sirnilar 
complexity in a different domain - again in the absence of critical 
input. (Sirnilar tcchniqucs were applied by [Koho84] to mapping 
Finnish and lapanese phonemes - viz. achieving the 
feature/phone to phoneme dassification.) 

What is interesting is not just what wu learncd in terms of WMd 
duses, but what wu leamed flr'lt and why these particular rules 
were leamed. It tums out that the most dOlled dUSC8 were learncd 
first. These then seemed to act as pointers to the more open word 
classes they were usociated with. Tbis paper proposes that these 
results can give us insights as to why closed dass wards, such 81 

artides. occur at all, how they are leamed. and why they are not 
used early but are recognized It also extends the experiments 
below the word level to see if there are closed duses there. 

None of these previous reports or reviews hu fully considered the 
broader computational, linguistic and psycholinguistic 
significance of these particular results (although [Powe90] does 
point to most of the issues involved). Here we consider tbis 
significance in several respects: in relation to dosed clanes, in 
relation to symbolic properties of connectionist systems, in 
relation to the wealt fonn of learning used, and in relation to more 
accurate characterization of natural language. 

Therefore, we will flr'lt summarize the methodology and rcsults of 
the "noun phrue" experiments of [powe84] and the "sentence" 
experiments of [Ritt89; Koho90], we then address some of the 
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issues to which they are relevant and introduce some hypotheses 
to be tested. We fmaIly present a computational experiment 
using sirnilar techniques in the new. sub word-Ievel, domain of 
clusification of letters/phonemes into the cluses from which 
syllables and wards are composed, giving our procedures, results 
and conclusions. 

Previous Syntactic Learning Experiments 

We do not wish to review statistical. neural or syntactic leaming 
generally, but to talte up certain experiments from [Powe89] and 
[Koh090], and compare the application of sirnilar techniques in 
one of the domains that bridges the gap. ~ mentioned in the 
introduction, the pedigree of such work extends back beyond the 
criticisms of [Gold67] and [Mins69] and are reviewed and 
represented adequately elsewhere (see, in addition. [Lang87; 
Powe90) for pointers). 

The experiments we wish 10 review were presented in the context 
of noWJ phraes and filtered senten ces; the dalles catcgorizcd and 
grammatical rules leamt were discovered with two different 
mechanisms, neither of which required critical input. 

We imagine that the computational model represents a dUld at the 
beginning of the stage where he leams some nouns and verbs and 
their meanings and that he is trying to malte sense at the same 
time of the images he is faced with. We further suppose that there 
are prosodie and syntactic features which tend to highlight the 
significant words, e.g. that they occur strcssed in phrase final 
position. We hypothesize furthcr that what is fnr beyond the 
chlld's competence and far from these signifieant positions is 
filtered out, and that conversely the child focuscs on what is close 
to or within bis competence. 

We actually malte no use of these assumptions other than to 
provide some justification for the type of dataset used for the 
learning experiments, which we present in figures I and 2 in the 
form used in the simulations of [powe891 and [Koh090] resp. 

tha cat. t 
a dog. t 
my dog? t 
this matl t 

Flg. 1. Examp/~ datas~t cl la {Pow~89J. 

In thc original experiments the '#' of Fig. 1 had some 
'monitoring' significance and was not passed to the lenrning 
algorithm. lt also serves u areminder of the elision. The 
prosody of speech is hypothesized to have some correspondence 
to the punctuation symbols used in these text experiments. 

Mary likas maat 
Jim spaaks ",all 
Mary Hkas Jim 
Jim eats often 

Fig. 2. E.lCample dataset a la {Koho90J. 

Note that both of these datasets can be regarded as sets of "three 
word sentences" representing utterances from which the 
uninteresting parts have been filtered according to different 
theories, or different applications of a general theory. 

A first criticism can already be mentioned here: results with the 
ornitted words included are not presented. Although the 
prelirninary results from experiments with more complex datR 
were (as could be expected) More complex and leS! conclusive. 
they would be interesting to see, and should give an idea of the 



degree of reliance placed on the above-mentioned aslNmptiOl1ll. 
(A listing of one of the actual neural programs used is however 
presented in [Powe891, allowing the possibility of repetition or 
extension of the experiment.) 

It should be noted too that the leaming, particularly for the (pure) 
neural simulations, is very slow. For example, the "semantic 
map" of [Koh090: Fig.12] resulted from "2000 presentations of 
word-context-pairs derived from 10 000 random sentences of the 
k.ind shown". (It is therefore very time-consuming and 
unrewarding to explore the more unlikely dircctionsl) 

Statlstlc:al Psycbollngulstlc Model 

The first model [Powe83,89] makes use of an additional 
psycholinguistic hypothesis. It uses the Magical number seven 
plus or minus two of [MillS6] to constrain the number of partial 
parse fragments (trees) k.ept around on tags and available for 
correlation. Unlike some of the earlier models, it then not ooly 
turns collocations of words into hypotheses of rules, but 
collocations of !ags. 

A second technique, also motivated by psycholinguistic 
eonsiderations, is used to eonsolidate rules: in an induetion step, 
bring together into the same hypothesized class words with 
eollate sirnilarly, viz. with the same words or classes. Thus 
classes are formed initially as small eonsistent coselll of woros. 

A thresholding step is used before rules are eonsidered ready for 
production use - again a psycholinguistic hypotbesis lies behind 
this terminolgy. It is proposed that the unthresholded grammar 
ean playa role in guiding the recognition process in tenns of 
indicating the likely dass of a word, but that there is an implicit 
or explicit partitioning into recognition and production 
grammars mediated, in part, by some sort of threshold. 

We present in Fig. 3 ooly a sampie thresholded, consolidated 
grarnmar to give the flavour of the resullll. 

The first observation to be made (to an extent observable in the 
structure of the rules) is that the first class leamt is the 
punctuationlprosody. Next eome the artie/es and fmally the 
nouns. The signifieant aspect is that the most c/osed (or 
smallest) classes are leamt first and that these act as pointers (in 
the rules) to the more significant contentive and open classes. 

Self-Organlzlng Neural Net 

The above experiment was duplicated [powe83,89] witb a self­
organizing model inspired by the visual application of such a 
neural net by [Mals73], but based in some respeelll on tbc model 
of [Klop82]. Interestingly, th.is program did not make use of the 
magical number seven direetly, but a similar effect relNlt from the 
duay model used. Once a neuron had flred it decayed over a 
period of time allowing for the pollllibility of it interacting with 
the neurons fu:ing as a result of subsequent "words". 

The results of this experiment were comparable with the 
statistical version, and a relationship between neurons and 
classes, synapses and grarnmatical rules was apparent in the 
eomparison of the results. 

The experiments oe [Rin89; Koh090] used a similar model 
applied to their dataset. For efficiency they turned to a hybrid 
statistical/neural approach in whieh they ftrst preprocessed the 

Sen$. Cla$$ Thre$h-Set 

fODllula(lang, 24, [[17, 10J]) 
fODllula (lang, 17, [[12, 16J J) 

Fig. 3. Sampie output from IPowe89aJ. 
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data to produce an "average context" for each word - an average of 
all code vectors of predecellllor-successor-pairs surrounding the 
given word. Note that tbis windowing is very sensitive to the 
omined words, but could be justified on the basis that these words 
really represent the phrases of which tbose words are the nucleus. 

The methodology of [Rin89; Koh090] is explicitly exploiting 
the contextual sirnilarity of items. Tbc important feature is that 
the context is consistently dominant and recognizable in the 
learning process, and thus words may be c1assified by the 
contexts they occur in, and that then the c1assifieation of words 
together allows unification of contexts and consequent 
strengthening of the eontext consistency. 

In these experiments the context taken was the pair of "word'" 
preceding and suceeeding the word in focus . In the experiments of 
[Powe84,89] the context was determined by the decay 
mechanisms or the tag mechanism. In recent experiments based 
on the paradigm of [Ritt89]. similar results have been produeed 
with "contextual sensitivity" being provided by the addition of 
recurrence between layers [Sch091]. 

Hypotheses 

The experimental perspective taken he re is coneemed with 
understanding the nature of language learning enough to 
implement useful models by whatever means, whether neural or 
statistical, hybrid or novel. And we follow [Powe89] in 
recognizing the importance of contributions from Cognitive 
Science, and our theoretical model conforms, in the main, to the 
hypothese. present in Chapter 13 thereof. In particular. we 
recognize the importance of physiological restrictions for the 
determination of the nature of language, we leam language by 
mak.ing hypotheses which can prove useful irrespeetive of their 
validity, we envisage the negative Wormation neeessary for 
learning as coming from the natural restrictions of human 
physiology, environment and eurrent hypotheses rather than 
from explicil teachers and critics. 

In neural networks th.is type of system behaviour is called self· 
organization. In otber contexts it is ealled auto-correlalion or 
emergence. It is can also be seen u a consequence of fundamental 
principles well known in Linguistics, and indeed the foundation 
of Phonology (and also its generalization to Tagmemics), 
namely: Contrast in Identical Environments (CIE) and Contrast in 
Analogous Environments (CAE). 

We wish to develop one hypothesis further bcre. It is beyond the 
scope of th.is paper to go over once more the psycholinguistic 
evidence reviewed in [Powe89], but we note that the experiments 
we reviewed in the last section are consistent with, or at least 
suggestive of, tbc compluiry hypothesis. pivot grammars, and 
nucleus-margin coordinalion. These suggest respectively that the 
simplest concepts (and by extension here, construcU and classes) 
are leamt first; that certain words in a child grammar function in a 
special way, BI pivots. whilst not confonning precisely to adult 
grammatical classes; and that a binary grammar is evident. Bt 
many levels, in which the components differ in importance and 
may thus be designated as nucleus and margin. 

In terms of gramatical e/asses. the natural eomplexity metric is 
the size of the class. A class that is always represented by a 

Sen$e ClS$$ Thre$h-Set 

class (lang, 16, [a, the, ... ]) 
claas (lang, 10, [rat, cat, ... J) 
clasa(lang, 12, ['.', '?','! ']) 



single exemplar. or a very small number of exemplars. but whose 
degree of oceurence is eomparable with other cluses, will clearly 
provide a urunistakable context whieh ean aet as a boundary 
eondition for the self-organizing proeess. That is, closed classes 
will &Ct as pointers to the more open classes. This faeilitates 
foeussing on the open class "word" and henee the attaehment of 
semanties. The broader seope and easy identifieation of the open 
class therefore makes it the ideal eandidate to be the main 
information carrier, or eontentive, as well as the syntactie 
nucleus. 

Mem (Lev) Description 

11 (0) Several independent variables 
11 (1) 4 to 6 feature single phone characters 
10 (2) 2 or 3 character (C* or V*) clusters 

8 (3) 2 or 3 cluster C~*C* syllables 
7 (4) 2 or 3 sy11ab1e morphs 
6 (5) 2 or 3 morph words 
4 (6) 2 or 3 word phrases 
3 (7) 2 or 3 phrase clauses 
2 (8) 2 or 3 clause sentences 
1 (9) 1 or 2 sentence (nuc./marg.) segments 

.5 (10) 2 or 3 segment paragraphs 

.2 (11) 1 or 2 paragraph monologuea 

.1 (12) 2 or 3 mono1ogue dialogues 

Fig. 4, Phono-morpho-phraseology. Levels of the speeeh­
language hierarehy, from feature level through Phonology 
and Morphology to Phrase Strueture and Discourse Granunar 
are illusttated with a level number for refcrence and an idea of 
the possible variation of the numbcr of units stored and 
available at that level (decreasing as eomplexity inereases). 

This process ean bc reflected at many levels, and is by no means 
limited to the speech hierarehy (Fig. 4). Simi1ar processes were 
indeed fmt observed in vision [Mals731. But in the context of 
speech. the prosodie features (including stress, intonation, 
speech rate and pauses) form eie ar easily distinguishable cluses 
of limited membership. This allOWl focussing on phonologieal 
phrases and syllabies. These have a close relations hip to the 
grammatieal phrase and morph, whcrc a simi1ar process ean 

. identify repeated syllable/morphs u eontexts whieh will cohere 
into a closed class. Simi1arly phrases subtendcd by a partieular 
closed clus can aet as units in whieh thc frequently oeeuring 
templates ean provide boundary eonditions for thc self­
organization at that level. 

The experiments reported above demonstrate these effeets at 
several different levels. Phonemes have been mappcd by neural 
self-organization: noun phrases have had their word eomponents 
classified by the same and related statistieal techniques; sentences 
have had their phrase/word eomponents clusified similarly. 

We proposed to explore one of the rniuing pieces from this 
features to sentenee classifieation: the syllable is normally 
defined in terms of partieular patterns (varying aeeording to 
language) or eonsonant (C) and vowcl (V) cluses. The syllable 
and these eoosonant vowcl classifieations are missing from the 
above demonstrations . The consonants and vowels are 
determined by phonetie features, and a related prosodY also helps 
to identify syllabies. Our theory would suggest that these 
physiologie al charaeteristies should act as restrictions (or 
boundary conditions) defming logical closed classes whieh would 
be actual syntactie entities, and would thus adopt also the 
associated syntaetie and semantie properties (open = eontentive = 
nucleus). 

Why should we distinguish vowel and consonant - or indeed 
liquids, nasals, etc? Morphophonemies dictatcs some 
eonstraints, but why would we expeet a grammatieal function? 
This hypothesis provides an explanation. It further leads us to 

prediet that we should discovering such a clus by applieation of 
self-organization. To bc more precise, we would expect the 
vowels to appcar as a closed class rather than the eonsonants, 
being a smaller class - although liquida or nasals or something 
else eould be a eandidate aecording to size, but are excluded by 
their lack of primary grammatieal significance. As there is not a 
one to one eorrespondcnce between phonemes and graphemes 
(eharaeters) we allow the posaibility of groups of graphemes to 
funetion as a unit, and henee the possibility that diphthongs or 
modified eharaeters (e.g. +h, +r, +1, ete.) might be present. 

Thcre is also the question of how small a closed clus should be -
even those we have identified could eoneeivably be subclusified. 
We nud not to introduee size as a parameter, however the magie 
number seven is again used as a memory/window eonstraint. The 
vowels happen, interestingly to fall into the magie number seven 
plus or minus /Wo range. They may just be another addition to the 
eatalogue of its magieal propertiesl 

Algorithm 
We first note that clusters or phrases (eollationally significant 
class eonstrueted from lower level units) are signifieant to the 
extent that: 

a. Units oceur relatively frequently with their predecessor(s); 
b. Units oceur relatively frequently with their sueeessor(s); 
e. PrefIXed units have a modified class of sueeessors: 
d. SuffIXed units have a modified class of predecessors: 
e. SuffIXed units have an almost unmodified class of successors: 
f . PrefIXed units have an almost unmodified class of predecessors. 
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Thus, /qu/ is signifieant by a, /th! ja signifieant by b, e and e, /ek/ 
is signifieant by b, e and d. In the ease of properties a and b, one 
unit aets as a good predietor for the other member(s) of the 
cluster. Propcrties e and d indieate that the cluster does not 
simply inherit eollations but has unique characteristics. The final 
pair of propertics are related to apparent reeursion, but are more 
general in that they extend to eohesive eonstraints. 

Normally the modified suee/predeeessors class ja a reduction 
whieh excludes those which make up the other eomponent of the 
strueture. It ma)' be that the clus is as it would have becn without 
the intervention (apart from such modifiers), or that it follows the 
modifier, or both. Thus /1/ can be followed by [hl,[rl,VOWEL: 
/th/ ean bc followed by [rl,VOWEL: /tr/ ean be followed by 
VOWEL; /thr/ ean be followed by VOWEL. So: /th/ is a level 2 
modifieation, /Ibr/ &: /trI are level 3 clusters. 

1. Read dict & produce COntext-char sets <- SEVEN 
2. Significant sets -> C1uster-C1uster pairs 
3, Group 1eft & right sets as g & h distributions 
4. Group comp1ementary clusters into g & h co sets 
4a. Interseot gives distribution for both sides 

5. Restrict all distribution size to SEVEN ± TWO 
6. Autocorrelate for subset ± '!WO of distribution 
6a. Int.rsect/Union for both/either side cosets 

7. Make best SEVEN of Interseotion/Union c1asses 
7a. Make mutua11y exc1usivQ hyperc1ass.s 

Fig. S. Outline of algoritflm. 

The present algorithm looks for sigos of the f1l'llt of these three 
pairs of properties: it collects all the contexts for each character 
and group of eharacter within SEVEN charaeter slrings (including 
word boundary and capitalization codes): it then groups into 
classes all the eommon eharaeters and charaeter groups which 
oeeur in an identieal eontext (left and right eontexts separately), 
usociating their sets of eontextual distributions with the classes: 
it finally seeks to corrclate similar distributions (± TWO) and 
allOWl evaluation aecording to either symmetrie or usymetric 



relevance, either weighted or unweighted by the size of the clus 
found. 

SEVEN and TWO are parameters which may be varied s1ightly. 
Examples of the results and the intermediate stage associations 
will be presented in the next section, along with same more detail 
conceming the transformations at each stage. An overview of the 
algorithm is presented in Fig. 5. 

Results 

The first stage of the processing can be viewed as the 
construction of a finite state machine in which each occuring 
string of less than SEVEN characlers constitutes astate and the 
following characler occurences define a transilion possibility. 
This representalion was used for pragmatic reasons. including 
efficienl indexing and other uses of the structure. 

fsm(i,p,1,296) • 
fsm(v,a,1,297) • 
fsm(th,e,2,299) • 
fsm(abl,e,3,301) . 
fsm(q,i,1,308) • 
fsm(ab,1,2,309) • 
fsm('$co' ,n,3,310). 
fsm(ra,n,2,310). 

Fig. 6. Finite State Maehine representation of eontext and 
nut eharaeter. '$' marks a ward boundary; ..... indicates thc 
following characler wu upper case. Arguments are eontext , 
foeus, length of eontext, number of oeeurenees in eontext. 

Examples are shown in Fig. 6 of the predicatc fsm. Anolher 
predicale gsm provides a view of al1 pairs of clusters occuring 
with a combined total of SEVEN characters. Then for each left 
cluster the distribution of right clusters usocialed with it by gsm 
are exeracted u dgsm and vice-versa (dhsm), A sample of these 
distribu lional c1uses is shown in Fig. 7, and it is already 
apparent there that the vowels, or something closely related. are a 
significant class. 

dgsm(4,189, [d,l,n,r), '$"'a'). 
dgsm (6,385, Ca, e, er, 0, r, ul , '$"'b') • 
dgsm(1,36, [rl, '$"'be'). 
dgsm (5, 326, [a, Ar, h, 1, 0), '$"'0 ') • 
dqsm(1,36, [r), '$"'ca'). 
~sm (5, 198, [a, e, i, 0, u) , '$"'d') • 
dgsm(1,35, [lI, '$"'e'), 
dgsm(2,61, [r,re), '$"'f'). 
dgsm (1, 20, [eI, '$"'fr') • 
dgsm(4,144, [a,e,o,rl, '$"'q'). 
dgsm(3,206, [a,.,ol, '$"'h'). 
dgsm(3, 106, [a,e,ol,' $"'j'). 

Fig. 7, Distribution classes subtended by a given left 
eontext (extraet) . Extract is for word initial conlexts from 
proper nouns. Arguments are si:e of class, oeeurenees of 
c1ass+eontext, class, eontext. 

We now repeal the exercise wilh dgsm to group together Ihe 
cosets of clusters which subtend the same distributional class. 
cgsm, and vice-versa (ehsm) . Although some small groups of 
very c10sely related clusters we as cosets, as illustrated in Fig. 
8, the sets can also often be described in terms of common initial 
or fmal segments (cp. properties e to f above). But as there are 
many similar distributional c1asses which are affecled by samplc 
error in the selection of a limited dataset as well as by memory 
constraints with the rejection of rare collations. 
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cqsm(1,458, [a,an,e, i,io,o,ul, [pI]). 
cgsm(1,2808, [a,ar,ara,as,at,e,en,er, ... I, ($pl). 
cqsm(2, 1031, [a,ar,o,c"',.,i,o,on], [$"m,"'ml). 

Fig. 8. Cosets of left eontexts subtending the same 
distribution class (extraet) . Arguments are siu 01 coset, 
number of oeeurenees, distribution c1ass of clusters, e05et of 
subtending clusters. Quotation marks are omitted for 
compaclness. 

So far we have performed Contrast in Identieal Environments 
(CIE) type classification, now we want to perform Contrast in 
Analogous Environment (CAE) type classification to bring 
together similar distribution classes and combine their cosets and 
assess the number of different collations and occurences for these 
fuzzier hypersets of distribution classes. 

classq (h, [$a, a, e, i, mi, 0, u) , Ca, e, i, 0, ul , [$"d, ... 1) • 
classq(h, [$a,a,e,i,mi,o,ul, [a,e,i,o,ul, [cr). 
classq (h, [$00, Si, a, co, i, 0, u) , [a, co, i, 0, ul , [s] ) . 
classq (h, [$co, Si, a, co, i, 0, ul , [a, co, i, 0, ul, [nI ) . 

Fig. 9. SEYEN c1asses (right) and close intersections with 
left distribution classes (extraet). Distribution c1asses of size 
SEVEN±TWO are used to fmd other distribution classes which 
are similar in that the intersection with the SEVEN class differs 
by no more than TWO &om the SEVEN class. Arguments are 
source of seleeting SEVEN class, SEVEN c1ass, intersection 
with distribution c1ass, eoset of distribution c1ass. Quotation 
marlts are omitted for compaclness. 

In fact, we use thc sets of known distribution classes intersected 
with thernselves to defme a kernel which must be within TWO of 
the size of thc intersccting dass. For efficiency, we use as 
intersecting classes only those with a size in the SEVEN±TWO 
range. As illustraled in Fig. 9, the vowel class emerges as one of 
the most important of these. 

At this point, we combine the information from left and right 
distributions and compute statistics based on the size of the 
common and total coscts of the SEVEN classes. or the number of 
actual cccurences of subtended collations. On all four metrics, the 
vowels emerge as the most weil deflncd class - with a significant 
lead over the runncr up in second place, as shown with best seven 
scores foe two of the metrics in Fig. 10. 

Conclusions 
In these experiments using statistical lechniques and a single 
exposure to each word of thc Unix dictionary, the vowel clus 
emerged fust, suggesting il as a closed class. The cosets were 
primarily consonant clusters, suggestcd analogously as an open 
class. This conf'mned a prediction that the vowel-consonant 
distinction was of significance in learning, that the vowels would 
emerge as a closed class providing a limited number of contexts, 
and that consonant clusters would emerge as open classes. 

One surprise was that diphthongs were not representcd. and indeed 
vowel-semivowel collations came nearer to achieving 
membership. 

We suggest that the magic number seven plus or minus two 
[Mill56] should also encompass the number of the vowels. lt was 
indeed a parameter in the analysis, and variation of this parameter 
did vary the precise class leamt. but the relationship has not yet 
been analyzed. However, its application to the size of the 
selected class seemed least decisive - similar results were 
achieved with 6±2 and 7±3 settings, foe example. 

The exclusion of diphthongs may also be an indicator that they 
are recognized as complex, at least in the orthography and under 



eoseti (28,84,4,12, [a,., e&, i, in, 0, ul , [d, n, 15, tl , [' $1 ' , b, e, d, h, 1, n, p, r, 15, st, tl ) . 
coseti (28,112, 4,16, [0, f, q, p, 15, t, vI , Ca, e, i, 0 I , [' $a' , '$r.' , ", a, al, an, e, an, er, i, -.1 ) • 
coseti (30,144,5,24, [e, d, q, 1, s, tl , Ca, ar, e, 1, 0 I , [ , $a' , ", a, an, ar, e, an, er, i, in, 1, -.1 ) • 
coseti (30,168,5,28, [a, e, i, 0, u, yl , [b, c, m, p, 81 I , [ , $h' , , $m' , '$81' , '$t' , ", an, b, c, -.1 ) . 
coseti (48,156,8,26, Ca, e, er, 0, r, u) , [b, 0, e, f, q, i, n, tl , [' $"b' , , $f' , '$p' , '$t ' , ... 1 ) • 
eoseti (49,196,7,28, [a, e, i, 0, r, ra, ul , [b, e, d, f, q, r, t) , [' $b' , '$e' , , $d' , '$q' , ... ) ) . 
coseti (85, 385, 17,77, [a,e,i, o,u), [b, e,eh,d,e, f,q, 1, 11, ... ), [' $"d', '$b', '$e', ' ... 1) • 

Fig. 10a. Couts of SEVEN claSilu of eithu contut sort~d by occurenc~ in intersection (~xtract). 
Argurnena are occurences of intersection coset. occurenas of union coset. sire of intusection cost!t, sire 
of union coset, SEVEN class, intusection coset, union coset. 

eoseti (30,168,5,28, [a,e,i,o,u,yl, [b,e,m,p,sl, ['$h', '$m', '$15', '$t' ,",an,b,e, ... ). 
coseti(49,196,7,28, [a,e,i,o,r,ra,uI, [b,o,d,f,q,r,tl, ['Sb', '$e', '$d', '$q', ... ]l. 
eoseti (3, 96, 1,32, [a,e,o), [yl, [' $"q', '$"h',' $"j', '$"p',' $"s',' $er', '''q',' "h' , ... ). 
eoseti (16,184,4,46, [a,e,o,u), [i,ll,mp,ri), [' $"b', '$"d', '$ch', '$1', '$m', '$n' , ... ] l. 
eoseti(15,245,3,49, [a,e,i,o,rl, [ch,t,thl, ['$b', '$0', '$d', '$f', '$q', '$p' , ... 1). 
coseti (16,232,4,58, [a, e, i, 0) , [k, sp, u, vI , [ , $"1' , '$"m' , , $"n' , '$"r' , , $br' , ... ] l . 
eoseti (85,385,17,77, [a,e,i,o,ul, [b,e,ch,d,e, f,q,1,11, ... I, ['$"d',' $b', 'Sc' , ... 1). 

Fig. lOb. Cosets of SEVEN classes of t!ithu context sorted lry sizt! of union (utract). Argumcna are 
occurenas of intusection coset, occurenas of union coset, sire of intusurion coset, size of union cost!t, 
SEVEN class, interseerion coset, union coset. 

the assumptions behind tbis pro gram. Recent psychological 
studies indicate that familiarity with written language may 
necessary to the (consdous) recognition of segmcna [Read86; 
Mann86]. But are diphthongs rccognized as complex1 Are 
vowcls recognizcd as having features1 ls this totally acoustic or 
docs it have a motor component1 It will be very interesting to 
see what rcsula of similar experimena achieve on speechi 

Although this experiment was performed using statistical 
techniquCl rather than neural networb, it was guidcd by prcvious 
work which achieved similar rcsula using either or a mix, and it 
is expected that similar results could straightforwardly be 
achievcd in a neural simulation. 

The succeSl of back-propogation in multi-layer neural nea has 
perhaps overshadowed self-organization in simpler networks. 
despite the impressive early 10w-level results; the necd for 
semantics hu perhaps overshadowcd the interna! consistency of 
grammar at the 10wer levels; the theoretkal necd for negative 
information from tlte environment has pcrhaps overshadowcd the 
effective supply of criticism from boundary conditions and 
systern rcstrictions; and more genera1ly the tendency to assume 
that basic linguistic distinctions arc ionate and vcry c10sely ticd 
to the perceprual system itself may overshadow the fact that some 
of these distinctions can be leamt very easily with very basic 
mechanisms. These alternative pcrspectives are worthy of more 
emphasis and study. 

This paper has presented some computational results and 
hypotheses about language leaming. More importandy it poses 
some tradition al questions in a new light and suggest! new 
avenues of research for the traditional cognitive science 
disciplines. 
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Seienee at Carnegie-Mellon, foilowing a BA in mathematics 
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puter science departments at Queensland (Australia) and 
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Among the research topics on wh ich I have worked over 
the years, my favorite is probably language learning, which 
is why I have pursued approach es to modeling it off and on 
for the last twenty years. I won't go into the details of my 
early syntactic acquisition models, which are mentioned in 
the Handbook of Artificial Intelligence and elsewhere, but 
list some relevant publications below and will be glad to 
discuss them or send information to anyone interested. 
The models were implemented computationally in a set of 
SNOBOL4 programs, all called PST, but actually a succes­
si on of elaborations on a single learning paradigm. In each 
ease, the program was presented sentences, along with a 
meaning representation for each sentence. If it could not 
process the sentence with its available grammar, it tried to 
understand some portion of the sentence. If a eertain 
degree of understanding was achieved, even at the single 
lexical item level, some modifications of the programs 
internal grammar could take place. The programs only 
addressed this issue of possible adaptation, not the issue 
of how lexical semantics are learned or how many trials it 
might take to learn (and possibly unlearn) new structures. 

Some years ago, I commented to Herb Simon on my 
disappointment that there was no way to verify that the 
models, which acted plausibly in computer simulations, 
reaily had anything to do with human language learning, 
sinee the detailed data about understanding in human 
infants was not available, and observation may give a false 
pieture of the extent of understanding (see Carol Chom­
sky's results and others). He suggested that one might 
eonsider developing a- second language tutoring system 
that could, through built-in tests, give a view of how the lan­
guage was being acquired, based on known exposure to 
the second language, especially if the language was a suf­
ticiently "exotie" one that the learner's exposure was 
entirely or predominantly through the system. Leaving 
aside the possible differences between first and subse­
quent language acquisition. this would certainly give some 
clues to human language acquisition. Although I proposed 
to develop such a system and wrote some programs (again 
in SNOBOL4) tor individual modules, I never had the time 

or funding to do so, except for early design (see the Aus­
tralian paper eited below), but have not given up the 
thought. 
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machine in the position of learner, the idea being to use the 
human as tutor and a computer program as the learner. 
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(the U.S. Air Force Human Resources Laboratory) and a 
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given funding by the Applied Information Technologies 
Research Center of Columbus, Ohio, to work the concept 
into a system design. That is the topic of my paper at the 
Spring Symposium, and I believe that it oHers both a des ir­
able and practical device for human-computer interaction 
and an approach to understanding the language aequisi­
tion process, based on dialogue between the learner and 
speakers. 
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Abstract 
An adaptive user interface is one that changes its 
behavior to accommodate the preferred interactive 
behavior of the user. This paper discusses the con­
cept of interfaces that adapt to the linguistic 
idiosyncracies of the user. It dlscusses two slightly 
different approaches, both of which have advan­
tages, and argues for the utility of adaptive 
interfaces. 

1. IntroductIon: Interface Adaptlvlty 

If the objective of a user interface is to allow communi­
cation with a system in the form most natural to each of a 
broad range of users, a form that may include natural or 
artificial languages or a mixture of the two, then the inter­
face must be adaptive. In other words, it must be able to 
learn to follow the user's commands that it cannot initially 
und erstand. It must also be individualized, since all users 
will not want it to adapt in the same way. 

2. The Advantages of Adaptlvlty? 

Adaptation has advantages over a natural language 
interface. The problems of natural language communica­
tion with computers are well-known (see, for example, 
[Reeker, 1980J) and have not really been alleviated by 
advances in naturallanguage processing technology. Watt 
[1968] perceptively pointed out over twenty years ago the 
fact that a naturallanguage interface that is imperfect may 
decrease the user's ability to stay within the bounds of the 
acceptable interface language (wh ich we will call the sys­
tem language, contrasted to the user language). Natural 
language output may do the same, encouraging the user to 
expect a greater breadth of linguistic understanding than 
actually exists in the system. 

There are a number of advantages of a system's adap­
tation to the individual user. For occasional users, it 
simplifies the process of having to relearn the system each 
time it is used. Even regular users fee I more comfortable 
with a "personalized computer" that reacts appropriately to 
their idiosyncratic usages, as evidenced by the fact that 
seasoned computer programmers develop ways to adapt 
their systems to their preferred usages. Some systems pro­
vide means to facilitate manual adaptation in limited ways, 
but adaptive systems ~o it automatically. Thus experienced 
users can consciously change the particulars of interaction 
as they become more practiced, and the system will adapt 
to the new modes of interaction. Adaptive interfaces have 
been proposed as an alternative that has advantages over 
a monolithic interface, natural language or otherwise 
[Reeker, 1984; Lehman, 1989]. 

The argument for adaptivity is made strongly by Jill 
Fain Lehman [1989; 1990b], who examined some of the 
implicit behavioral assumptions underlying the argument 
for the benefits of adaptive interfaces. The assumptions 
are: 
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(1) The user's linguistic interaction with an adaptive 
natural language interface will be consistent enough to 
arrive at a relatively stable common language for user/sys­
tem interaction. 

(2) This language will differ from user to user in signifi­
cant ways. 

(3) The user's ability to use more individualized, idio­
syncratic language will result in better task performance 
than having to use a built-in interface language. 

To test the hypotheses that these assumptions were 
valid, Lehman set up experiments using a simulated adap­
tive interface with a hidden operator. The simulation was 
based on the design for a real system, subsequently imple­
mented as CHAMP (discussed below). Her results 
indicated that the users did exhibit individual consistency 
and comparative variability. As might be expected, not all 
users had the same difficulty in adapting to the built-in 
interface language, but some clearly did, and initial prob­
lems did seem to be overcome by (simulated) system 
adaptation. 

3. A Design for an Adaptive Indlvlduallzed User 
Interface 

In proposing adaptivity, it may seem that we are sug­
gesting a task more difficult than building a natural 
language interface, since building systems to learn a cog­
nitive skill is generally more difficult than constructing a 
system to perform that skill. But the task of developing an 
adaptive interface, while not simple, is facilitated by the use 
of a good deal of built-in knowledge. It is not as difficult as 
building a natural language interface that will be adequate 
for all users (if one can exist), and clearly less difficult than 
building a system for learning a naturallanguage ab initio, 
though it is related. 

A slightly different Adaptive Individualized User Inter­
face (AIUI) was designed by tliis autho., using a 
transformational approach. In the AIUI, the system is 
allowed a large amount of built-in knowledge, including a 
rich lexicon and syntax of the user inputs expected and a 
semantic mapping for the built-in inputs that the system 
can deal with (system inputs). Based on discovery of the 
meaning equivalence between novel user inputs and 
known system inputs, the AIUI has to formulate transla­
tions which will be learned in generalized form as a set of 
linguistic transformations. 

The known, constrained domain of discourse that takes 
place at a particular system interface provides an opportu­
nity to use what Rada (Forsyth and Rada, 1986) calls 
"knowledge-rich" learning strategies, provided some addi­
tional knowledge can be obtained from the user when 
necessary. In the AIUI, this knowledge is obtained by a 
user-machine dialogue. And the dialogue quickly zeros in 
on the known knowledge because the machine knows what 
it needs, the user is cooperative, and the machine has 
been furnished with enough knowledge to conduct the dia­
logue (some of it heuristics based on the domain). The 
dialogue does not have to take pi ace every time a user 
uses a new utterance, since there are a finite number of dif­
ferent forms (though, for practical purposes, there are not 
a finite number of different utterances), and the machine 
will generalize over forms. 



The AIUI was designed for system inputs consisting of 
a limited set of UNIX commands (not a finite language, 
since any file names can be uSed), and the user inputs may 
be those commands or English versions thereof, or combi­
nations of English and UNIX. The choice of this domain 
was made because of the constrained domain of dis­
course , rather than the prospective utility of an interface to 
UNIX, since the system was experimental. 

Space does not permit details of the overall workings of 
the AIUI in this paper, but a design summary and discus­
sion of the underlying linguistic framework will be 
presented. Further details can be found in the reports on 
the design project [Reeker, 1988]. 

The AIUI contains, for a given user, a User Transforma­
tion Dictionary (UTD). When user commands are not 
legitimate system commands as given, the UTD is con­
sulted to look for candidate transformations to system 
commands. If no such transformation exists, the AIUI will 
try to adapt. The core functional module of the adaptive 
process must therefore find a translation of the user input 
and execute the command. If the translation and its effect 
meet the approval of the user, then a generalization pro­
cess takes place and the resulting transformation is stored 
in the UTD. 

A summary of the processes by which the AIUI deals 
with user commands that are not in its system command 
repertoire is given in Table 1. (Due to implementation con­
siderations, this is not the actual flow in the program, but is 
easier to conceptualize.) 

Transformations and parsing are discussed below. 

4. Tha AIUI In a Llngulstlc Framawork 

4.1. General Descrlptlon 

There is still controversy about how to process language, 
in terms of the stress placed on structural processing or 
direct meaning processing (proceeding trom the lexical 
semantics). The view taken in the design of the AIUI is that 
either approach can give enough information to at least 
beg in a dialogue between a person and a machine that will 
lead to the desired communication, and that both are 
needed if the system is going to adapt to the user. The 
knowledge obtained by adaptation is stored in terms of 
structural information and semantic mapping information, 
as described below. 

4.2 The Transformations Used 

The process of translation from user input (user com­
mandl to one the system understands (the proper system 
command to convey the meaning of the user command) is 
driven structurally but lncorporates the semantic mapping 
through a set of transformations. The transformations have 
something in common with Chomsky's early theories of 
transformational grammar [1957], in that there is a kernel 
language consisting of the built-in system language, with 
the rest derived by transformations. Given the fact that the 
kernel sentences can also be considered as the meaning 
representation language for all intelligible inputs, the lin­
guistic model beg ins to look much more like that found in 
theories of generative semantics, in which transformations 
were from the meaning representation to the surface struc­
lure, without the intervention of a (syntactic) deep structure 
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TABLE 1. SUMMARY OF PROCESSES IN AIUI 
(When the User Command is Not a System Command, 

Case I: User Command Can be Parsed 

Case 1-A: Transformation in UTD 

• Apply Transformation 

- Match 

- Transform 

Case 1-B: Transformation Not in UTD 

Case 1-B-l : Meaning oflJser Assertion Known to .-\.IUl 

• Formulate Transformation 

- $pecific Tree ~1apping 

- Category Generalizauon 

- "Risky Generalization" 

• Organize Transformations 

Case 1-B-2: Meaning of User Assertion "ot Known 

• Heuristics 

• Partial transformation 

Case n : User Command Cannot be Parse<! 

Case n-A: All Lexical Items Are Known 

• Partial parses 

• Formulating New Transformations 

• Reformulating Grammars 

Case n-B: There Are Unknown Lexicalltems 

• Assign new categories 

• Merge calegories that use same Transfolmations 

Case n-c: Create Transformation for Given String Only 

(see e.g . the exposition In l<.:irtnder and t:lgln, , ~/:3J). It was 
never clear just what the meaning representation should 
look like, and today, meaning representation is recognized 
as the major problem in natural language processing. But 
the meaning representation for the AIUI is clear, so Ihe the­
oretical framework follows naturally. 

Since the purpose of transformational grammars is gener­
ally to define the well-formed sentences of the language, 
they are formulated as transforming structural descriptions 
of kernel sentences to structural descriptions of surface 
sentences; but in the AlU I, transformations are used for 
translation to kernel sentences, so they are formulated in 
the opposite direction. The grammar used to parse input 
sentences is context free, with categories that reflect input 
expeetations, based on the domain semantics. Because 
the system commands are all legitimate user commands, 
they are part of this grammar. A sampie initial grammar and 
lexicon are shown in Tables 2 and 3.The types of user 
inputs (and their meanings in terms of system commands) 
that this grammar could treat is shown in Table 4. 

4_3 Some Comparlsons to CHAMP 

Lehman's interface, CHAMP, does not use transforma­
tions, but learns phrase structures in a way that is quile 
analogous to the approach to early syntactic acquisition by 



Table 2. Illusuauve Pal1ial Grarnmar for Exarople 

!: ..... <C> <C> ..... <CI'> and <CP2> I <CI'> 

<C> ..... <CP> I <CP><CA> <CI'>"'" <OY ><CTP><CPP> 

<CP>--i.:CP><PIPE><CYP> I <C yp><CTI'> ..... <CV >and <CTP>I <CV > 

<CY> ..... <CY> <,\P> I <v> <Cy· > ..... <YxYPP>! <V> 

<CA ..... <CV .. \> <FILE> <YPP> ..... <P~TH><ARGS> 

<.-\P> ..... <ARG><AP~ <ARG> <A RGS>-1<A RG>and <A RGS~ <.'\ RG~ 

<C\lP> ..... <CYP><FILE> I <CY> <CPP> ..... <PON><FlLE> 

BOLDFACE indicates a rule that <CP2> ..... <CY 2> <CPP2> 

generales abasie UNIX command <CPP2> ..... <PTO><FILE> 

form. (i.e. S:ystem Gramm ar ruJe). 

T~bk J . Illustrative Pll1ial Lexicon forGrammar of Table 2 

<CVA> -1 >I» I> <PTO> ..... to I on I··· 

<PIPE> ..... 1 <ARG> ..... ·11·r I ... 

<OY> ..... run I da I ··· <CY>..... s I [Toff ... 

<PWITH> ..... with I using I ... <ARG> ..... -11 -r I .. . 

<CY 2> ..... append I send to I ··· <V> ..... Is 1 troff ... 

<FILE> ..... ai trc. ll ai trc.2 ... 

Same of the o:a tegories in thesystem are defined by morphology or by 
,:Iuation (e.g . .... hether a file or directory is in the eurrently aeee:;sible 
, '; r~ ': I[\fY stru,·ture ). rather by Jisting in the le,ucun. 

IhlS autnor lHeeker, 19/0, 19 f4 , 1 ~!5 J. In that approaCh, a 
memory-limited bottom-up parser worked on adult input 
sentences, producing reduced forms (simulating the baby's 
impoverished short-term memory). The results were com­
pared to sentences in the child's grammar and changes 
were made in single rules and in their corresponding 
semantic mapping rules, with generalization constrained 
by coherence and consistency criteria. There is a differ­
ence, however, both in the assumption as to inputs and the 
richness of the grammatical apparatus. CHAMP's parser is 
semantically and pragmatically constrained. In the child 
language model, the semantics, which were attribute type 
with complex (tree-form) attributes and composition rules, 
were separate from the grammar and constrained only the 
acquisition, based on the second input, which was the 
meaning. The view of intermixed structural determination 
and meaning determination was not yet current at the time 
of the earlier work, but seems more realistic 

So in CHAMP the system uses the user's current gram­
mar and lexicon to try to parse the user input, and 
Lehman's adaptive parser design classifies common devi­
ations (ones recoverable by insertion. deletion. 
substitution, and transposition) in terms of degree of devi­
ance. If the deviance is zero (the user input is parsable 
already), there is no adaptation required. If it fiods one or 
more parses that are deviant by some amount but not more 
than a threshold value (wh ich was two in the experiments 
mentioned earlier). then it classifies the user input as learn­
able. Learning consists of adding lexical items and/or rules 
to the user's grammar and generalizing properly. These are 
all discussed in lehman's thesis [1989) and machine learn­
ing paper [1990a]. There is a similarity to conditions 
discussed for learning AIUI [Reeker. 1988; Reeker and 
Morrison. 1988). though the details are different because of 
the different theoretical framework. 

I 
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Table 4. User Cornrnands and Meanings (System Commands) 

User Commllld Meaning 

(l ) run vi on aitre. 1 vi aitre.1 

(2) run vi with Ion aicrc.1 vi -I aicrc.1 

(3) run lbl and troff on aitrC.I tbl aicrc.1 I troff 

( ~) run vi with r llld:< on aitre.1 vi -r -)( aicrc .1 

(5) run Is with land g!1:p with e"d" on aicrc.1 Is -I aitre .1 I grep -e"d" 

,6) run tr0ff on aitre. i and append 10 aitre.2 troff aicrc .1 » aicrc.2 

, ') run Is with I and grep with e"d" on aicrc.1 Is -I aicrc .1 I grep -e"d" 
aud ap:xr.d to ait='C,2 » aitre.2 

Informatlonally. it can be ShOwn that Ihe additionS 01 
rules in a non-transformational generative grammar of sul­
ficient power and the corresponding addition of 
transformations is equivalent. Given the form of the gram­
mar in CHAMP. even Ihe semantics carried in Ihe 
transformations of AIUI has an equivalent form in the gram­
mar. and things like context sensitive syntax can be dealt 
with by constraints. This has an appeal. since the use of a 
body of transformations carries a time penalty. There are 
no pragmatic constraints in the linguistic apparatus of AIUI. 
which may give an advantage to CHAMP. Pragmatics are 
used in the heuristics of AIUI. but the user could use a com­
mand with a meaning that is totally strange in the pragmatic 
context. and the only problem would be that the system 
would have difficulty in discovering the meaning. The role 
of pragmatics is an interesting one. as is Ihe question of 
which framework is preferable for the grammar. Some 
experience with the systems will help to answer questions 
about these things. 

4.4.Bulldlng-ln Structural Knowledge 

As suggested earlier. it is desirable to have as much 
understanding of the structure of anticipated inputs incor­
porated into the system as possible. Thus a rich initial 
grammar of user commands is built up by starting with the 
syntax of the kernel of system commands and adding 
expected structures from English. The grammar given in 
the design report may not be ideal in that respect. but there 
was an attempt to do it systematically. The grammar for 
system commands was developed on a semantic or logical 
basis. based on binary divisions of the domain of expres­
sive possibilities. The grammar for user commands was 
developed to mirror English usage and to map into this log­
ical format. Being keyed to the sublanguage and to the 
mappings to system commands. it carries a lot of seman­
tics in its rules. It is anticipated that the development of 
grammars for adaptive interfaces, like other aspects of 
applied system design, would become easier as experi­
ence was gained with the systems. 

4.5. Determlnlng Meanlng Through User Dlalogue 

The AIUI requires that the system be supplied with the 
meaning 01 an input that it does not understand. Heuristics 
for determining the meaning of user commands depend on 
the limited universe of discourse and pragmatics of the 
interaction. As an example. consider a user command "run 
vi on aitrc.1~, the system might not be able to parse it in lull 
initially. but would still be able to assign to vi the syntactic 



category <CV>. It is likely that the syntactic category of 
aitrc.1 can be guessed also. First, vi will require a following 
lile name. It is likely that the file aitrc.1 will appear in the 
current directory. II a path name had been given (Iike "dir1! 
dir2!foo") then it is even more clearly (by morphological cri­
teria) a lile. So the user command has within it a UNIX 
command verb and a lile. The first hypothesis has to be 
that the user command means "vi aitrc.1". When the user 
verilies this, the system can hypothesize a transformation. 
Aseries ot such heuristics has been derived tor the AIUI. 
Again, the heuristics are based on the domain of discourse 
and must be derived individually; but the richer they can be, 
the better the interlace will be. 

If the user were to type a "hybrid" command like "troff 
aitrc.1 and place in y", a similar dialogue would determine 
that this means "troff aitrc.1 > y". The system merely 
assists the user in recognizing that this is the form meant, 
then enters a transformation. The user cannot, on the one 
hand, expect to use the system without any knowledge of 
the commands. Of course, on the other hand, if the user 
knows the UNIX commands fully, he or she can immedi­
ately instruct the system on desired customizations. But 
the user who does not have a thorough knowledge of the 
commands can expect to be able to customize the system 
too, and to have to look a given syntactic construction up 
(or ask someone else) once at most, rather than again and 
again, as the interlace will then adapt. 

Admittedly, there is a lot of potential overhead in deter­
mining the meaning of an input from the user. The 
important thing to realize, however, is that ''the price will 
have to be paid only once". This is in stark contrast to help 
systems and manuals that often have to be consulted over 
and over again. In fact, adaptivity is even better than that: 
the inadvertent use of the wrong command can be patched 
up once and for all. The DOS user who uses "dir" for UNIX 
"Is" can get the machine to adapt so that either the DOS 
command or the usual UNIX cOlTImand will work. The UNIX 
user who olten types "chmod foo 755" (rather than the cor­
rect "chmod 755 foo") because it seems more natural 
(more like "change the mode of foo to 755") will be able to 
use either order with impunity. II the user is willing to type 
more to use more English-like commands, the interface 
can be expected to adapt to "change the mode of foo to 
755" or "change 100 protection to 755", as weil. 

Dependence upon "clues" to the meaning is very much 
analogous to the way that people olten extend their lan­
guage capabilities, wh ether in their first naturallanguage or 
a later natural or artificial language. As mentioned, the 
grammar and lexical and morphological routines of AIUI 
contain syntactic and semantic information like what is a 
file and what is an exe-cutable file. Although not included in 
the present design, a more sophisticated UNIX adaptive 
interface might want to check for unknown words in the 
UNIX on-line command manual to see if they are associ­
ated with given commands, etc. All of these sorts of 
heuristics should improve the dialogue, provided time cost 
is not too great (and that will vary with the speed of 
machines). 
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4.6. Generallzatlon 

Using this strategy, all possible user commands could 
eventually be mapped into system commands even without 
using structural descriptions and transformations thereol. 
That is, the strings could be mapped individually. But the 
process would be very slow. A mapping of a particular 
string would not tell much about the mapping of related 
strings. In order quickly to get to the point where the system 
can understand a great variety of user inputs, it is neces­
sarily to map whole classes through the transformations. 
And, in fact, one wants to map classes that are as large as 
possible. In order to do this, it is necessary to generalize 
the results of a particular mapping. 

Certain generalizations are fairly obvious. For instance, 
il a mapping exists lrom "run troff on aitrc.1" to "troff 
aitrc.1", then one should exist from "run nroff on aitrc.1" to 
"nroff aitrc.1" and trom "run troff on aitrc .2" to "troff aitrc.2". 
One may get some overgeneralization by doing this, but 
overgeneralization is less 01 a problem in this sort of trans­
lation than it is where the same grammar is being used to 
produce strings of the language as a whole (i.e. of the user 
command language). It does not really hurt that the inter­
lace could handle inputs that the user would think 
u ng rammatical. 

There are other generalizations that are less obvious. 
For instance, il "run troff on aitrc.1" should be mapped to 
''troff aitrc.1", then "run troff -me on aitrc.1" should be 
mapped to "troff -me aitrc.1". It the grammar is to be efti­
cient, then there are systematic reasons for wanting "run 
troff with me on aitrc.1" to be mapped to "troff (with me) 
aitrc.1", on the way to "troff -me aitrc.1", since in other con­
texts it is going to be necessary to transform "with me" to "­
me". The design of the AIUI assumed that strong generali­
zations would be made. 

4.7. "Warst Cas." Structural Determination 

It has been stressed that the type 01 adaptation that 
converges to an overall knowledge 01 the user's modes of 
interaction will only take place when the AIUI is provided 
with a corpus 01 inputs that it can classify structurally 
(parse) and with the meanings 01 those inputs. The struc­
tural classilication cannot be expected to be perlect, 
however, so the system has "fall-back strategies" to use in 
the cases where it cannot parse the user input. These strat­
egies use partial parses provided by achart parser to 
create a hypothesized structure for the user input. Once it 
is transformed by a transformation derived after the mean­
ing is determined, the hypothesized parse is added to the 
grammar. This will cause some variant structural assign­
ments. In other words, the grammatical regularities 
developed in the grammar to that point will only be 
reflected in the portions that were matched by the partial 
parse. In the very worst case, this will cause a ''1lat" parse, 
dealing only with the lexical categories found for the given 
string. The degree to wh ich the system will do this can be 
varied. 

In investigations to date of the types of rules developed 
using these methods, the consequences of varying the 
structural assignments have not been great. The main 
problem caused by prolilerating the grammar to deal with a 
lot of particular structures is the expansion of the grammar 



and the UTD, and from a practical point of view that is 
undesirable because it will slow the adaptive process. 
Siowness (excessive reaction time) is a problem for a user 
interface, of course, and it will be necessary to see how 
much one could relax the restrictions without causing reac­
tion time to become excessive. Another consequence 
could be slowed learning, since there can be less general­
ization.Obviously, the most desirable situation is where the 
grammar enables parsing of the user commands (which 
means that it has built into it, or has acquired, a syntactic 
knowledge, not necessarily a semantic knowledge ade­
quate to the tas\(). One would expect the typical situation to 
be somewhere between the worst and best cases. 
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"When interacting in natural language it is easy to fall into assuming that the range of sentences that can be 
appropriately processed will approximate what would be understood by a human being with a similar collection of 
dala. Since this is not true. the user ends up adapling to a collection of idioms --- fixed patterns that experience has 
shown will work." 

- Winograd and Flores, "Understanding Computers and Cognitions". 1985, p. 129. 

Many users of naturallanguage system tend to phrase themselves in the same way most of the time. The goal of lhis 
project has been to develop an optimization t.echnique based on this observation: if one can speed up the analysis phase 
for the limited set of "typical phrases", one will save a great deal of computing time. The idea is that one can lhen 
bypass nonnal processing for most input sentences, instead using a set of specialized rules. This will be done paying 
the price of a small overhead when no special rule proves applicable. The set of special rules is extracted automatically, 
using explanation-based leaming (EBL), from training sentences given by a user. EBL is a machine-leaming technique 
related to chunking and macro-operator leaming, that analyzes examples of successfully solved problems to find useful 
compositions of known rules. It is thus capable of improving a system's performance, but not of extending its 
knowledge. 
By learning them from real user interaction, the set of special rules is tailored so as to capture the user's way of 
expressing hirnself. The hope is that a comparatively small set of language constructions will account for the majority 
of the sentences actua1ly submitted to the system. Once the rules have been learned, it is important to store them in a 
way that minimizes the search for applicable ones at run-time, that is to index the leamed rules so that quick access is 
guaranteed. 
The project was begun in 1988, with the observation that the EBL method could readily be applied to clean logic 
grammars. In [Rayner 88]. the fundamental ideas are described; some examples with toy grammars are presented. 
together with code for the EBL learning component, and a fonnal proof of its soundness. The learning componenl, or 
generaliter, has the fonn of a small Prolog meta-interpreter. In 1989 aseries of more elaborate experiments were carried 
out on Femando Pereira's CHA T-80 system, reported in [Rayner & Samuelsson 89]. These showed that it was possible 
to apply EBL to all steps of processing, from syntax up to the generation of logical fonns; code for a "simplifier" was 
also presented, a module which perfonned a further partial evaluation of the leamed rules to reduce their size. Most 
important, however, was a first version of an indexing mechanism, which made it possible to locate leamed rules 
applicable to a given input sentence without perfonning a linear search. Indexing is perfonned by associating with each 
rule an atomic key, which encodes the lexical category infonnation required for the words in input strings for which the 
rule is applicable. 

In the last year, starting at the end of 1989, the method has been been successfully applied to two full-scale NL query 
systems. one of these being the well-known SRI Core Language Engine. This work is described in detail in [Rayner & 
Samuelsson 90] and [Samuelsson 91]. and is summarized in the remainder of the present paper. The most important 
novelties are the use of a new indexing method based on a decision-tree approach, and the results of experiments carried 
out on a large test-<:orpus of 1663 sentences, derived from real user interaction. In these, the EBL-derived learned rules 
achieved a coverage of 90%, and total speed-up, measured over all sentences in the corpus, of a factor of 3 compared lO 
nonnal processing. Median speed-up for sentences where a leamed rule was applicable was approximately by a faclor of 
15, and median overhead on sentences where no leamed rule was applicable was approximately 5%. 
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Application to non-toy systems 
The general architecture of the EBL module is the 
same in both of the large-scale systems to which it 
has been applied, and is illustrated schematically in 
the following two diagrams; the first shows the 
compile-time, and the second the run-time system. 

Slmpllfier 

Rule 
Compiler 

Diagram J, The compile-time component. 
The compile-time system contains three main 
components: the generalizer, which performs the 
actual extraction of learned rules; the simpfijier, 
which attempts to reduce them in size by 
performing possible partial evaluations; and the 
rufe-compiler, which adds indexing information to 
ensure quick access at run-time. The simplifier was 
not used in the Core Language Engine applicatiün. 

Morph. 
a na lysis 

Syntactlc 
analysis 

Semantlc 
analysis 

Pattern­
matcher 

Diagram 2, The run-time component. 
The run-time system consists of a single main 
component. the pattern-matcher, which auempts to 
bypass normal processing using the indexed set of 
learned rules produced by the compile-time system. 
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The detailed functionality of all components in the 
run-time and compile-time systems is described in 
[Samuelsson 91]. 
We now make a few remarks about problems 
specific to each of the two target systems, before 
presenting experimental results. 

The large-scale NL query interface 
prototype 
Even though the large-scale NL query interface 
prototype had several characteristics that introducied 
problems when applying the EBL technique, it 
never the less proved possible to solve them. For 
this system the EBL module bypasses only 
syntactic analysis. 
The main technical difficulties derived from the fact 
that our implementation of the EBL method 
requires the grammar to be reduced to a set of Horn­
clauses. The two major hurdles with regard to the 
grammar formalism used are its non-standard 
treatment of features and movement: The basic 
feature operation is not unification, but priority 
merge. Movement is handled not by gap features, 
but rather by "non-restrictive" rules, in which more 
than one non-terminal can occur on the left-hand 
side of the rule as well as the right. 
The problems connected with feature operations 
were solved by collecting all fearure-manipulating 
predicates into the body of the learned rule and thus 
postpOne alt feature operations until run-time, when 
all feature values are properly instantiated. Doing 
this resulted in fairly large rule bocties, and a 
component for simplifying the learned rules was 
included. 
The tasIc of convening the the unrestricted grammar 
into a pure DCG form was performed by first 
representing the unrestricted grammar in Pereira's 
Extraposition Grammar (XG) format and then using 
an XG compiler to turn the grammar into pure 
Hom-clauses. Conceptually, the XG compiler turns 
the unrestricted grammar into a DCG, where each 
non-terminal is given an extra pair of arguments 
(the "extraposition list"), to pass around the 
additionalleft-hand constituents. 

The SRI Core Language Engine 
EBL is very easy to apply to pure unification 
grammars such as the one provided with the SRI 
Core Language Engine. The rules extracted by the 
generalizer were sufficiently "clean" that there was 
no need to include a simplifier. For this system, we 
also extended the method by learning a set of rules 
that constructs words from word sterns and affiXes, 
i.e. that performs the task of morphological 
analysis. 

Results of experiments on the ATIS 
corpus 
We now present a brief summary of experiments 
carried out at SRI Menlo Park in November, 1990. 
The EBL method was tested on the ATIS corpus, a 
!arge collection of sentences acquired by "Wizard of 



Oz" methods, where subjects believed that they 
were interacting with a database through a real 
natural-Ianguage interface. It is therefore reasonable 
to suppose that these sentences are typical of real 
user interaction. 
Two subsets were flfSt selected randomly from the 
corpus, one of 1563 sentences for learning and one 
of 100 sentences for testing. The EBL method was 
applied to the learning set, resulting in the 
acquisition of 680 mIes; these were then fed to the 
test set in increments of 20 mies at a time. After 
each increment, the test set was measured for rule 
coverage, average bypass time, and average 
perfonnance gain. The coverage is defined as the 
fraction of a test corpus successfully handled by the 
EBL module. The bypass time is defined only for 
successful EBL look-ups and then as the processing 
times for the EBL module. The perfonnance gain is 
simply the ratio of the total processing time for the 
test set using nonnal processing, divided by the 
total time using the learned mies. 

Coverage 
Percent Coverage 
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Diagram 3. The coverage as a[unction o[ the 
number o[ learned rwes. 

The coverage, as shown in diagram 3, swiftly rises 
to 60 percent for 150 learned mies and then increases 
more slowly reaching 90 percent at 680 mIes. 

Median relative look-up times 
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Diagram 4, The median relative look-up time as a 
[unction o[ the number o[ learned rwes. 
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Diagram 4 shows the look-up time nonnaJized by 
the time for corresponding nonnal processing. 
White diamonds indicate successful look-up, black 
failure. There is an increase with the number of 
learned rules. Though, the EBL look-up times are 
small compared to nonnal processing times - the 
median look-up times lie between 1 and 7.5 percent 
of normal processing time. With 680 rules, the 
median bypass time is 15 tim es less than that of 
nonnal processing and the median overhead is 5 
percenL 

Speed Up 
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Overall Speed-Up 
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Diagram 5, The overall speed-up as a [unction o[ 
the number o[ learned rules. 

This results in an overall speed-up increasing slightly 
sub-linearly in the number of learned mies. As can be 
seen in diagrarn 5, the system is twice as fast with 
250 learned rules and with 680 mies the system mns 
three times faster. 

It is our opinion that these experiments provide 
strong evidence to suppon the claim thal EBL can 
substantially increase the performance of a natural­
language interface under realistic conditions. 

Further directions 
One obvious thing to do is to use the learned mies 
"backwards", that is for paraphrasing, by consU'Ucting 
an indexing scheme for logical fonns. 
Two interesting software engineering challenges are 
10 integrate this scheme more c!osely with the target 
system to allow the nonnal analysis component 10 

use partial results from the EBL module and vice 
versa, and to allow incremental adaption of the 
system by letting the learning component run as a 
background process. 
Finally, we mention briefly a line of research that we 
have just begun to investigate, namely to incorporate 
the learned rules into a probabilistic language model 
of the kind used by speech recognition systems. 
Although our work to date is still only at a 
preliminary stage, it appears that this idea may 
potentially be very promising. 



Leaming Simple Semantics by Self-Organization 

J .C. SchoItes· 
University of Amsterdam, The Netherlands 

Abstract 

The recent neural network boom also inspired many researchers in the field of computationallinguistics. Language seems 
weil suited to be processed with the aid of neural-lilce computer architectures. Main technique used in various research projeclS 
is the Back-Propagation (BP) a1gorithm. On the one hand, Ienown for its speed and relative mathematical simplicity. On the 
other hand, BP lacks psychological plausibility and self-organizing capabilities. To overcome the short-comings of supervised 
Iearning rules, the research carried out in this project evaluates the usability of self-organizing models in Natural Language 
Processing (NLP). 
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Background 

Connectionism is often seen as the paradigmatic competitor of 
the symbolic tradition in artificial intelligence [Graubard, 
1988] . Renewed interest in the field was mainly caused by the 
!imitations of these symbolic methods and the practical 

problems occurring in the implementations of parallel 
algorithrns [Herik et al., 1988], [Henseler et al., 1988J. 
Especially the property of connectionist systems to distribute 
knowledge with conservation of generality and integration was 
interesting for NLP research. Most popular in connectionist 
NLP is the BP algorithm [Rumelhart et al., 1986]. Although 
this algorithrn started the 1980s neural band wagon, it has some 
serious short-comings. First, the net can only learn 
input/output pairs, resulting in limited applicability. Second, 
automatic classification of raw data into various classes is 
impossible (Ieaving the need to predefine data categories on 

higher data abstractions, one of the main dilemmas of AI). 
Next, after the addition of new elements to the learning set, the 
entire set must be processed again. In other words, the model 
cannot adapt smoothly to achanging environment. 
Furthermore, the restricted architecture of BP nets (no inter­
level connections) decreases complexity but increases 
neurological implausibility . More realistic are the self­
organizing models, as proposed by Grossberg, Kohonen, 
Linsker and Von der Malsberg. These models can classify data 
automatically into non-predefined categories by forming a 
cortex-like map, and are capable to adapt slowly to an evolving 
environment, without the need to feed the entire learn-set over 
and over again. However, one of the main disadvantages of 
these models is the tremendous complexity. These models work 
fine in speech recognition and vision, but whenever one uses 

self-organizing models in NLP and other complicated 
processes, the compJexity gets completely out of hand. 
Moreover, it is quite difficult to develop a self-organizing 
model, capable of doing more than sensor-based low-level 
pattern recognition. Although the results achieved in this 
context are still preliminary and not evaluated in depth yet, 

self-organizing systems might provide alternatives for some 
unrealistic assumptions in back-propagating neural nets. 

Introductlon 

Globally, the following self-organizing neu rally inspired 

models are known from literature: 

I. 

2 . 

Grossberg's ART (much related to Von der Malsbergs' 

wor'·'. 
Linslcer's Irnplementations of 

Hebbian Rules, 
3. Kohonen's Feature Maps, and 

4. Reeke & Edelrnan's Neuronal Group Selection (NGS) 
theory. 

All of them are based on variants of the Hebbian leaming role 
and the competitive-learning paradigm (the author realizes that 
there are many more variants on the above mentioned 
architectures, however, the models discussed here are best 
evaluated, making them more suitable to be used in NLP 
application research). Of all these models, Kohonen fearure 
maps are most easy to simulate and are quite efficient for being 
self-organizing [Kohonen. 1984]. This restricted complexity 
is mainly caused by the facts that the model consists of one 
layer only, and the interneuronal connections are not leamed 
(they are only used to implement lateral irthibition for the 
determination of the best match on the map). As a result, 
Kohonen maps are very efficient, but restricted in there usage: 
there are no built-in sequence handling mechanisrns and it is 
impossible to implement hierarchical relations between 
objects formed on the map (it is quite irrelevant to let a map fire 
in the Kohonen formalism). [Grossberg, 1980J defmes a model 
with !Wo layers. Individual cells of the second layer correspond 
to the centers of clusters of input patterns. A neuron is 

connected to all the neurons in the opposite layer. According 
to a competitive learning roJe, an adaptive model is obtained. 
Grossberg, like Kohonen, only learns the connections between 
layers. Connections within one layer are not changed. A more 
Hebbian way of leaming can be found in [Mals berg, 1973) and 
[Linsker, 1988). Hereby, there are no limitations to the 
interconnections of the model. All connections can be leamed, 
as weil connections between neurons of different layers as 
connections between neurons within one layer. Even more 
biologically inspired is the Neuronal Group Selection (NGS) 

theory as proposed in [Reeke et al., 1988] and [Edelman, 
1989]. In this theory, a selectionist darwinistic approach is 
suggested to describe the process of group formation on the 
cortex map. Though these models are much more biologically 
likely than the other self-organizing models, they are heavily 
computational (if they can be simulated at all), and therefore 
not very popular in the already complex field of NLP 
applications. Moreover, the still developing ideas and the 
limited insight in the mathematical properties make these 
models less suited for the research of NLP applications. 
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Notwithstanding the fact that the Kohonen model is most 
restricted in its usage, the research carried out here, 
concentrated on extensions of this model. The main reason for 
this decision was just this restricted complexity and the 
mathematically provable convergation. Future work might 
concentrate on more complex models for LIle implementation 
of linguistic and psychological phenomena. 



On the one hand, self-organizing systems can overcome some 

disadvantages of back-propagating neural nets. On the other 
hand, the theory of recurrent models is much less developed as 
it is in back propagation. Work by [Jordan, 1986]. [Pineda, 
1987] and [Williams et al., 1988] thoroughly analyzed 
recurrent back propagation. The impact on natural language 
processing of these techniques was demonstrated in [Elman, 
1988J, where the author showed the possibility to derive 
grammars from simple sentences. In [Servan-Schreiber et al., 
1989], it was shown that the grammars derived by Elmans' 

model were flJ'tite state grammars. Although these grammars are 
definitely lOO simple to hold natural language completely, they 
have one interesting aspect in common with NLP; the 
appearance of a symbol (or word) in a string (or sentence) is 
determined by its precedents in that string. The addition of 
recurrent features in a self-organizing model completes the 
system with a implicit mechanism for temporal processing 
abilities, one of the important issues in natural language 
processing. In this context,. work by [Allen, 1990] 
demonstrates even more potentiality of recurrent structures in 
connectionist NLP. Mainly for these reasons, the research 

canied out here, airns to use self-organizing models, which are 
able to process temporal sequences. 

Descrlptlon of tbe Self-Organlzlng Models In NLP 

The inability of Kohonen maps to process sequences by an 
implicit mechanism was encompassed in [Riller et al., 1989] 
and [Riller et al., 1990]. In general, it is of no use to process 
single words with a Kohonen map, because the formation of the 
structures on the map depends completely on the interna I 
coding scheme. Therefore, sentences are presented to the 
systelT) as a vector combination of words and their 
corresponding contextual structure. The structure formed on the 
map is related lO the contextual position of words in sentences 
(calIed a SemanlOlOpic Map of context). These semantics are 
just the ones, hardly derivable by logic and other symbolic 
techniques. The main disadvantage of this model is the 
inability to derive context by itself, mainly caused by the 
inability to process sequences and other temporal data. 
According to [Kohonen et al.,1981] temporal processing can 
be done by adding a buffering mechanism to a map. However, 

this mechanism does not support the automatic derivation of 
simple syntactic structures, used for further generalizations. 

In [Kangas, 1990] a model is proposed, capable to process 
sequences within w_ Kohonen formalism (in fact, it is inspired 
by the second map used in Grossberg's ART, the functionality 
is almost the same). The model consists of two maps. The fU"st 
one has a number of fibers, embodying the input vectors. For 
every neuron in this map, the measure of correlation is 
calculated by summing the difference between the input 

activities and the input weights. These values are combined 
into one vector, where every dimension represents a position 
on the first map. The second map uses these vectors as input, 

and leams in the same way as the fU"st map. As a resull, the 
second map holds the former activauons of the fmt map. and is 
thus capable of forming a map representing sequences of input 
values (please note that this map holds no c1ustering 
information of the input values, but forms a map of activations 
of the fmt map). 

As proposed in [Scholtes, 1990]. the addition of recurrent 
fibers to the Kohonen model can provide the model with 
contextual sensitivity. To be more specific, the mechanism 
introduced by Kangas can be used for the derivation of contcxt 
in the formation of a 'Semantotopic Map· . By feeding back the 
vectors of the second map, and concatenating this vector with 
the input vectors of the fU"st map. the input of the first map 
results in a vector which has a symbol part and a automatically 
derived context part. As a resull, the model can process simple 
sentences from scratch, and c1assify the objects in these 
sentences in semantic classes formed on the fU"st map. 
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Formal Descrlptlon of tbe Model 

Let m,u be veclOrs of dimension n in a map of i neurons . ~t 
holds the input veclOr and mt the input weights at time t. First 

the best match for a input vector is determined (i.e. the neuron 
which sensor 
weights correspond best to the input values, conform to some 
mathematical distance measurement). According to the 
Kohonen rule, every learn cycle. the weights are adapted: 

mt+l = mt + ßt . (mt -lJ.t) (I) 

where ßt = E' e- l /s2 if a neuron i~ in the region of the most 

acuvated neuron, and ßt = 0 if the neuron is outside this region. 

E is a constant between 0.00 and 1.00 holding the leaming 

speed. and s is a decreasing function in time of the region size. 
forcing the system to converge. 
The measure of correlation for each neuron i:: Yit is then 

calculated conform: 

2 
Yit = 1.0 / «mt-lJ.t) +0) (2) 

where 0 is a very smalI constanl, avoiding the system to divide 

by zero. Nexl, the fuing rate is determined by: 

, 2/y 
Y it = Yit t (3) 

Yit represents the measure of activation of neuron i at time t . 

Y t is the summation of all activations within one map. In 
addition, this output veclOr Y'it can be averaged: y"t • so the 

system is less sensitive lO noise: 

y"t = (1rY't + (l-co)'Y"t-l (4) 



This context part has dimension i. equal tO the amount of 
neurons in the fint layer. These two pans are concatenated. so 

).Lt = [).Ls I. J.Ls2 • .... J.Lsn. J.Lc 1. ).Lc2 • .. .• ).Lci] 

In learning. the weights of the entire vector mt are adapted 

conform (1) . The flISt map holds a spatial representation. the 
second one a temporal (caused by the averaging and the 
recurrent connections). Due to the combination of the two in a 
recurrent environment. the context of words is automatically 
stored in the second map. resulting in the completely 
unsupervised formation of a Semanlotopic Map in the first 
layer . 

Results 

The model is simulated by using the language C on a high-end 
PC and on a VAX 8250 mini computer. Three types of input 
were used: strings of 0 and I. strings of characters. and simple 
sentences. The semantics of the first twO inPUt types are quite 
hard to deflIle. so these strings were mainly used to show the 
ability of the system to c1assify objects in hypothetical 
semantic (or syntactic) c1asses. More interesting are the simple 
sentences. which were geneuted by the combination of a 
sentence body and some words which could be substituted inlO 

(j) holds the weigh factor. a value between 0.0 and 1.0. the 

higher (j) the faster a new element is represented on this map. 

but the shorter the memory. The second map has dimension i 
(each dimension represents the measure of correlation of a 
position on the first map). After normalization (3) and 
averaging (4) of the vector. the weights in the map are adapted 
in the same way. as the first map. so the second map holds the 
centers of activation occurred in the first map. As stated. the 
input vector consists of two parts: a symbolic part: ).Lst. 

representing a code pattern for a word. with dimension n. 
Second. there is a contextual part: ).LCt. representing the 

activation of the map in the near past. with dimension i. Every 
cyc1e. the input values of the second map are copied inlO the 
context pan of the fIrst one. 

-<-
fl,yr' Jo D, Ceapu'lpp, hcDmD 
~ 

-~ 

=001< copiod 10 I 
IDP"1 't'KIDI' 
c:very cycle. 

-, 
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the sentences. Most sentences contained three or four words . 
The model selects a number of sentences at random from a large 
amount of generated sampies. Fint the elements in the sampies 
are evaluated and a random code is assigned lO all different 
words. Second, depending on the quantity of leam cyc1es. a 
random example is selected from the leam set and fed through 
the system. After 1000 up lO 2000 cycles. a semanlOlOpic map 
of context is formed of 50 sm all example sentences. The 
average map size was 25 neurons. The average input dimension 
5. This sm all system already resulted in 30 dimensional input 
sensors. 
To be more specific. input elements used for sentence 
generation were: 

El~!aJ~ Sentences 

I. lohn. Mary. loe 1/2/1 
2. Loves. Hates. Dislikes 1/4/9 
3. Fast. Siow 1/4/8 
4. Drinks 1/10/6 
5. eat. Dog. Fish. Horse 1/10/7 
6. Meat. Bread 1/4/7 
7 . Much. Little 1/417/8 
8. Beer. Wine 5/10/6 
9. Well. Poorly 5/1017/6 
10. Eats 5/4/7 /8 

Some sentences were: lohn loves Mary. Cats eats much bread. 
elC. After the leam cycles. semantic maps were formed were 
objects like beer. water. meat and bread were within a region. 
Another region was dog. cat. lohn. Mary and loe. These maps 
are the same as the maps found in the work done by Ritter & 

Kohonen. Although. they added the context (a code for the 
sentence body) manually to the input vector. Here the input 
vectors are derived automatically by concatenating the symbol 
code with the recurrent context code. 
In the simulations the model started with a large region (about 
the map size). which decreased slowly lO 0.5. The leaming rate 
(epsilon) was 0.75. The weight factor. W. averaging the 
measure of correlation from the first to the second map was 
0.05. Simulation took up to 8 hours on the Pe and up to more 
than 4 hours in balCh on the V AX/VMS system for two maps of 
50 neurons. Larger simulations were almost impossible. 
because the complexity increases exponentially with the map 
size (mainly caused by the amount of recurrent fibers needed). 

Discussion 

The results presented are promising but preliminary. Important 

questions like the types of grarnmar the model can process. the 
maximum length of the sentences. and a better insight in the 
formation of semantic or syntactical maps have to be answered 
by future research. By now. only vigue semantic groups were 
formed on the maps after I luge amount of leam cycles. The 
exact reasons and conditions of map formations and thus a 
mathematical analysis must be worked out 10 define more 
thoroughly foundations for these phenomena. 



As mentioned in the results, the COmplellity of the model 
increases elllxmentially with the map size. This growth might 
be limited by using. the dimensions of the second layer as 
average representatives over regions of the fU'st layer instead 
of one dimension for each neuron, which is defuUtely much too 
detailed . The sire and type of these regions can be interesting 
material for further investigations. Beside the limitation of the 
models complellity, the investigation of different region types 
also has neurobiological reasons . Other variations to the 
model are the balance between the quantity of symbol- and 
contellt fibers, the rate of averaging over the second map, etc. 
The importance of recurrent fibers for NLP might be c\ear. 
These connections made the automatic derivation of contellt 
possible. The lack of good defuUtions of recurrent mechanism 
in self-organizing systems leaves plenty space for further 
research towards other models. Linskers' work and the even 
more biologically inspired Neuronal Group Selection theory by 
Reeke & Edelman might be well suited to implement linguistic 
phenomena. Main problem with these models is complellity of 
simulations and the less developed foundations, making 
application research quite tricky. Various hybrid solutions tried 
to overcome the dis advantages of self-organizing models. A 
possible solution is to use a self-organizing fearure map to 
discover the features in the leam set, and back-propagate 
between these maps to leam and generalize between input and 
output pairs (or between input patterns and regions on the 
map). The efficient back-propagation algoritlun then limits the 
complexity and uses known mechanisms, like recurrent 
connections, to implement complex phenomena. More on 
these solutions can be found in [Hryceg et al ., 1990J and 
[Gersho et al., 1990J. 

The advantage of thc model discussed over back-propagating 
models might be clear. By generalizing over the context of 
small sentences, a semantical map is fonned completely 
automatic without the usage of miero-features or predefined 
syntactical structures . The quality of the structural power and 
the semantical map is not evaluated in depth yel. Future 
research might provide us with more insights on these aspects. 
The advantages over symbolic natural language processing 
systems might be more than clear. Automatic derivation of 
s!rucrure and semantics by a system capable of generalizing 
over simple sentences which is robust to noisy input cannot be 
implemented in classical symbolic techniques easily. 
Although Kohonens' self-organizing model is just an efficient 
statistical c\assifier, it is capable to derive semantical fearures 
of symbolic data, aS 'long as this data is presented to the model 
in i ts proper co ntell t. 
The same fearure of neural nets can be seen in work carried out 
by [Miikulainen et al., 1988a], [Miikulainen et al ., 1988bJ, 
[St. John et al., 1988aJ and [Sl. John et al., 1988bJ, where 
generalization over context resulted in the automatically 
derivation of semantic (miero-) fearures . This ability of neural 
nets in general cannot be found in classical symbolic AI, 
without the addition of complex procedural modules. 

150 

CODclusloDS 

Problems seems to change nature when being represented in 
terms of temporal events, as a result. complell techniques like 
recursion in sequential processing can evenrually be avoided. 
Nevertheless, the types of grammars, the length of the 
sequences and other properties of these models are quite 
unknown yeL Future research most provide a better insight in 
these aspects. 

Self-organizing techniques can overcome so me of the 
disadvantages of the back-propagation algorithm . Main 
problem with these self-organizing models is the quickly 
increasing complellity. Especially the addition of recurrent 
fibers enIarges the time required to process the input data. One 
might accept these dis advantages, because the limitation of 
back propagation (i.e. the need to learn input/output pairs, Lhe 
prewiring of lateral inhibition, the deflIlition of miero -fearures 
and the need to pass the entire leam-set again after addition of 
new elements) are even worse. 

Recurrent self-organization is still in its early developmenl. 
This is mainly caused by the limited knowledge of self­
organization as a whole. Additional research can provide Lhe 
insights needed here. 

Although limited, a completely autonomous model for the 
derivation of context dependent semantics is developed (or in 
other words, semantical features are derived by generalizing 
over context). The ellact properties are not known yet. but 
these semantics are just the semantics hard obtainable by logic 
and other commonly used semantic techniques. Just therefore 
the results are interesting enough to continue further research. 
Possible extensions might concern as weH other, more 
powerful and complicated models, as more thoroughly defmed 
ell8mples in Le. language acquisition as proposed in [Feldman 
et al., 1990J and [Weber et al., 1990). 
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Abstract 

This paper addresses three questions on child language learning: "how do children leam to recognize 
ungrammatical sentences?", "how do children leam an infinite language from finite data?", and "how do children learn 
synlactic word classes?". This paper proposes answers based on side-effects of mechanisms used by the CHILD 
theory of child language leaming. First, children leam 10 recognize ungrammatical semences by leaming a parlicular 
non-tradilional posilional syntax to guide understanding. Second, the language children learn is infinite because it is 
used to express an infinite meaning representation. Third, children don't learn syntactic word c1asses; the syntax they 
do leam does not use them. Current research is investigating how children infer the meaning of incompletely 
understood ullerances, how they learn high-level knowledge slructures by observation, and how the coverage of the 
non-traditional syntax can be increased. 

Research Interests in Child Language Learning 

My overall interest in child language leaming research is the development of a psychologically plausible 
theory that explains empirical data and supports a computer model of a child and parent in a micro-world that a user 
can "talk" to and which learns language and behaves in a manner similar to a child. Prior research involved 
development of the CHll...D theory and computer model 10 address learning 10 understand simple imperatives, generate 
simple declaratives, accounting for certain psychological data. Currem research focusses on three areas. First, I am 
applying the CHILD theory to traditional linguistic questions, developing extensions to the CHILD theory's 
representation of naturallanguage syntax to more complex constructions. and considering further the problems of 
leaming languages other than English. Second, I am developing a computer model, called TODDLER, of how 
children learn scripts and other high-level knowledge slructures by observation, and how they use those structures for 
play within a case-based reasoning paradigm. Finally, I am investigating the problem of unifying TODDLER and 
CHILD to address the question of how children use leamed high-level knowledge slructures 10 infer the meaning of 
incompletely understood utterances during language leaming. 
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Abstract 

This paper addresses three questions on child language learning: "how do children learn to recognize 
ungrammatical sentences?" , "how do children leam an infinite language from fmite data?", and "how do children leam 
syntactic word classes?". This paper proposes answers based on side-effects of mechanisms used by the CHILD 
theory of child language learning. First, children leam to recognize ungrammatical sentences by !earning a particular 
non-traditional positional syntax to guide understanding. Second, the language children learn is infinite because it is 
used to express an infinite meaning representation. Third, children don 't learn syntactic word classes; the syntax they 
do leam does not use them. Current research is investigating how children infer the meaning of incompletely 
understood utterances, how they learn high-Ievellcnowledge structures by observation, and how the coverage of the 
non-traditional syntax can be increased. 

1.0 Introduction 

This paper is concemed with three questions on 
child language leaming: "how do children leam to recognize 
ungrammatical sentences?" , "how do children learn an 
infinite language from finite data?", and "how do children 
leam syntactic word classes?". These questions arise from a 
linguistic account of language learning, which assurnes that 
the primary process of language learning is learning a set of 
transfonnaLional grammar rules [1,3,4,5,12,15,16,17). 

The CHILD theory of child language leaming [25-
33) is intended to account for a set of six psychological 
data, on the basis of psychologically plausible cognitive 
mechanisms, learning mechanisms, and natural language 
experiences. The CHILD theory was irnplemented and tested 
in a computer program, CHILD, whose behavior manifested 
the six data within a developmentally accurate progression. 
Since the CHILD theory explicitly proposes that children do 
not leam transformational grammars, it is important to ask 
whether the CHILD theory can provide answers to the three 
quesLions. 

This paper presents answers to these questions that 
were developed within the CHILD theory as side-effects of 
mechanisms required to account for the six psychological 
data, and identifies further questions that are the subject of 
current research. It must be noted that the purpose of this 
paper is only to briefly summarize an approach to the 
problem of child language acquisition; it is beyond its scope 
to present detailed arguments in support of the positions 
expressed here. 

2.0 Three Questions 

The first question, that of how children leam to 
rccognize ungrammaLical sentences, can be restated in more 
empirical terms. For example, if a young child is asked 
whether the sentence "ball me the throw" sounds "silly" or 
"ok", chances are the child will respond "silly." Encouraged 
to "fix it up," the child may weil generate "throw me the 
ball." Such behavior was reported by Gleitman, Gleitman, 
and Shipley [lA] for children of two-and-a-half and five 
years. This behavior implies that by these ages children 
have acquired at least some ability to judge a sentence's 

grammaticality. Further, Gleitman et al. report that by age 
five, children's judgements increase in sophisLication. 

The second question, that of how children leam an 
infinite language, is commonly motivated by an 
observation: one can always add, say, "lohn said" to the 
front of a grammatical English sentence to produce a longer, 
equally grammatical, sentence. Observations such as this 
imply that natural language is infinite. However, as has 
also been widely observed, the language children are exposed 
to is both limited and finite. This apparent ability to !earn 
an infinite language on the basis of limited and finite 
information suggests the question, how do children do this? 

The third question, that of how children leam 
syntactic word classes, arises because any account of 
language learning which assurnes that children learn 
transformational grammar must assurne that children !eam 
wh ich class each word is a member of. The dependence on 
word classes by grammar-based approaches to natural 
language is the result of distributional analysis, which, 
basically, notes that if one word can be substituted for 
another in a sentence then the words can be assumed 
members of the same dass. 

Ideally, psychologically plausible answers to these 
questions should result in mechanisms which would behave 
as children do in those situations corresponding to the three 
questions. That is, a computer program based on such a 
theory should be capable of (1) learning to judge certain 
sentences "silly " , (2) leaming to generate sentences of 
indefinite length, and (3) learning to generate language 
showing substitutability , all within a psychologically 
plausible model of child language learning. 

3.0 Tbe CHILD Theory 
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The CHILD theory was intended to address a set of 
six data on child language leaming during the ag es of 10 
months through five years, and proposed a set of 
psychologically plausible mechanisms to account for this 
data. The six data are: 

• Comprehension precedes generation [2, 36] 
• Vocabulary growth rate fIrst increases, then decreases [36] 
• U tterance leng th increases [10,11,13] 



• Irregular words are regularized [13] 
• Unlikely actives are initially misunderstood [35] 
• Reversible passives are initially misunderstood [6,35]. 

These data were combined into a single composite eight 
stage developmental progression: 

Stage 1 (0;10) Knows no language 

Stage 2 (1;0) Leams 22 WPM (words per month), mean 
utterance length (MLU) is 1 word 

Stage 3 (1;6) MLU is 2 words, uses present tense for 
both present and past 

Stage 4 (2;0) Leams 30 WPM; MLU is 3, 4, and 5 
words; uses a few irregular past tense 
words correctly; semantically unlikely 
actives misunderstood; passives 
understood using semantic likelihood 

Stage 5 (2;6) Regularizes previously used past tense 
irregulars, leams 83 WPM 

Stage 6 (3;0) Correctly uses regular and irregular past 
tenses, Leams 45 WPM 

Stage 7 (4;0) All actives understood correctly, 
Reversible passives misunderstood 

Stage 8 (5;0) Reversible passives understood correctly 

To address the six data and the progression, the 
CHILD theory proposed that children bring four cognitive 
capacities to language learning: knowledge of the world, 
basic mechanisms of language understanding and generation, 
the ability to mentally represent natural language meaning 
and syntax, and mechanisms to learn word meaning and 
syntax. When a child hears an utterance, he flESt understands 
it as weIl as possible using a preference-based semantic 
analyzer [9,33] that uses frame-based representations of word 
mcaning [21] and syntactic positional knowledge of where 
in the utterance frame slot fIllers are to be found. Then, the 
child uses knowledge of context to infer the complete 
meaning if necessary. Finally, he leams word meaning 
using concept learning techniques, and learns syntax by 
building disjunctive sets of positional syntactic features, 
using the predicates PRECEDES and FOLLOWS, to describe 
where slot fillers occurred in the input and then storing and 
updating those feature sets under the word whose meaning 
comained the slol. 

The CHILD theory was implemented in a 
computer program, CHILD, that learned an English 
vocabulary involving active, passive, and prepositional 
phrase constructions via the eight stage developmental 
progression by being given experiences and language input 
that model those that children receive. Previous versions of 
CHILD have learned small subsets of Japanese, Spanish, 
and Serbo-Croatian [32]. 

4.0 How Do Children Learn to Recognize 
Ungrammatical Sentences? 

An explanation of learning to recognize 
ungrammatical senten ces requires an explanation of the 
ability to recognize ungrammatical sentences following 
lcarning. The CHILD theory proposes that a child 
rccognizes that a sentence is ungrammatical, or "sounds 

silly", if any slot filler is in a position other than that 
predicted by the positional synt.actic features associated with 
the word whose meaning had the slol. In such a case, some 
predicates would be false with respect to the correct slot 
fliler, and a child could use those to generate an explanation 
as to why the senten ce sounded silly. Since the CHILD 
theory assurnes that the child has inferred the intended 
meaning of the sentence, he can "fix it up" by invoking his 
language generation mechanism on that meaning. 

Given this account of recognizing ungrammatical 
sentences, the CHILD theory's ans wer to the question of 
how children leam to recognize ungrammatical sentences is 
straightforward: they do so by learning to understand, which 
involves leaming the disjunctive sets of positional syntaclic 
features that describe where slot fillers occurred in the input. 
Prior to lcaming syntax for a word, sentences in which 
fiIIers are out of position will not be recognized as 
ungrammatical; once a child leams syntax for a word, he can 
recognize when fillers for that word's meaning are out of 
position, and such sentences will be recognized as 
ungrammatical. This is demonstrated in the following 
summary of the perfonnance of the CHILD program, in 
which CHILD learns to recognize ungrammatical sentences 
in a three stage progression, and generates corrections for 
those it recognizes as ungrammatical. In this example, 
CHILD knows meanings of "fed", "cereal", "Papa", and 
"Ethan", and assurnes from world knowledge that Papa 
nonnally feeds Ethan. 

Stage A: CHILD does not know syntax for "fed" 
All sentences sound OK 

"Papa fed Ethan cereal" 
"Ethan fed Papa cereal" 
"Ethan was fed cereal by Papa" 
"Papa was fed cereal by Ethan .. 
"cereal fed Papa Ethan .. 
"was cereal Ethan fed Papa by" 

understood correctly 
misunderstood 
understood correctly 
misunderstood 

Stage B: CHILD leams active syntax for "fed" 
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Actives sound OK; passives, probes sound silly 

"Papa fed Ethan cereal" 
"Ethan fed Papa cereal" 
"Ethan was fed cereal by Papa .. 

"Papa was fed cereal by Ethan " 

"Cereal fed Papa Ethan " 

"Wascereal Ethan fed Papa by" 

understood correctly 
understood correctly 
misunderstood, & 
sounds silly: "Ethan 
fed Papa cereal" 
misunderstood, & 
sounds silly: "Papa 
fed Ethan cereal" 
sounds silly: "Ethan 
fed Papa cereal" 
sounds silly: "Ethan 
fed Papa cereal" 

Stage C: CHILD leams passive syntax for "fed" 
Actives, passives sound OK, probes sound silly 

"Papa fed child cereal" 
"Ethan fed Papa cereal" 
"Ethan was fed cereal by Papa .. 
"Papa was fed cereal by Ethan " 
"Cereal fed Papa Ethan " 

"Wascereal Ethan fcd Papa by" 

understood correctly 
understood correctly 
understood correctly 
understood correctly 
sounds silly: "Ethan 
fed Papa cereal" 
sounds silly: "Ethan 
was fed cereal by Papa" 



5.0 How Do Children Learn an Infinite 
Language from Finite Data? 

The question of how children learn an infinite 
language on the basis of limited and finite data has been 
addressed by a number of researchers [1,3,4,5,12,15,16,17], 
but lheir answers generally incorporate a grammar that 
includes recursive rules. The answer proposed by the 
CHILD lheory is of necessity quite different, since the 
CHILD theory does not incorporate such a grammar with 
recursive rules. Instead, the CHILD theory's approach 
begins with the empirical phenomenon that is the basis of 
the observation that natural language is infinite, namely, 
that one can always take a sentence and make a longer 
sentence by, for example, adding "John said" to its front. 

Given the phenomenon of "Ionger sentence 
generation", the question arises, how can a person do this? 
The CHILD theory proposes a three-part answer: first, the 
person understands the shorter sentence, and generates a 
meaning representation for it. Second, the person uses 
inference to embed the meaning of the shorter sentence 
wilhin another concept. Third, the person expresses the 
resulLing larger concept in natural language using his 
generation mechanism. Clearly, this process can be 
continued to produce senten ces of arbitrary length. Given 
this, the CHILD theory's answer to the question of "longer 
semence generation" is straightforward: they do so by 
learning word meanings and their associated syntax. Instead 
of relying on recursive grammar mies, the CIDLD theory 
relies upon a knowledge representation that supports 
imbedding to an arbitrary degree and a non-recursive 
representation of syntax. 

An important secondary question is why is the 
CHILD theory's answer a preferable to the traditional one? 
There are three reasons: first, it is simpler. Since all 
knowledge representation languages must support arbitrary 
cmbedding, accounts relying on grammars with recursive 
rules require both a complex knowledge representation 
language and a complex grammar, while the CHILD 
lheory's account relies on a complex knowledge 
representation system and a relatively simpler representation 
of syntax. The second reason the CHILD theory's account is 
preferable is that it explains "longer sentence generation" as 
a side-effect of mechanisms independently required for 
language understanding, language generation and reasoning. 
Recursive grammar rules, on the other hand, are essentially 
a special-purpose mechanism designed specifically to 
explain "Ionger sentence generation." The third reason the 
CHILD theory's account is preferable is because it is 
psychologically plausible, since it directly addresses human 
behavior, and accounts -for that behavior with mechanisms 
lhat are plausibly attributed to people. 

6.0 How Do Children Learn Syntactic Word 
Classes? 

The CHlLD theory's ans wer to the question of 
how children leam syntactic word classes can be stated 
simply: children don 't learn syntactic word classes. That is, 
lhe CHILD theory proposes that at no time during language 
acquisition do children learn that a given word is a member 
of a particular syntactic word class. There are a number of 
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reasons for this, but the primary one is that none of the 
CIDLD theory's mechanisms ever makes reference to the 
syntactic class of a word. The question arises, therefore. 
how the CHILD theory can account for those patterns of 
natural language that are used 1O motivate the need for 
syntactic word classes? 

These patterns can be accounted for by the CHILD 
theory's standard language analysis and generation 
mechanisms. For example, to generate and understand the 
sentences "put the ballon the table" and "put the box on lhe 
table" requires only that the meanings of "box" and "table" 
be appropriate fillers for the OBJECf slot in the meaning of 
put, and that stored under "put" is the syntactic knowledge 
that one appropriate position for the OB JECT filler is 
FOUOWING the meaning of "put" and PRECEDING the filler 
of the TO slot in the meaning of "put". No syntactic class 
information is ever associated with the words "box" or 
"ball". or any other word that can appear in this position. 

A more complex example occurs in the sentences 
"John gave Mary a book" and "John gave Mary a kiss." 
Normally. "book" and "kiss" would be classified as nouns, 
in order to account for the fact that they can appear in lhe 
same position. In contrast, the CIDLD theory proposes a 
different account of processing these two sentences. 
Specifically, in "John gave Mary a book", the meaning of 
"give" is lhe concept referring to the transfer of possession. 
and stored under "give" are sets of syntactic predicates 
specifying the positions of the fillers of that concept. In 
"John gave Mary a kiss". however, the CHILD theory 
proposes that understanding and generation focus on lhe 
word "kiss", and that the word "give" is used as a post­
position function word marking the position of the ACTOR 
of the kiss. That is, the CHILD theory proposes that "John 
gave Mary a kiss" should be considered as another 'voice', 
like passive and active, alld one that resembles Japanese and 
German in having the action word at the end of lhe 
sentence. Thus the CHILD theory suggests that the fact that 
"book" and "kiss" appear in the same position is, in some 
sense, fortuitous, and best explained by historical accident, 
rather than by placing "book" and "kiss" in the same 
syntactic word class. 

7.0 Research Issues in Child Language Learning 

This paper has summarized the answers provided 
by the CHILD theory to the questions of learning to 
recognize ungrammatical sentences, learning an infinite 
language from finite data, and learning syntactic word 
classes. Obviously, however, the CHILD theory is a long 
way from being a complete theory of child language 
leaming. In particular, there are three important areas which 
require additional investigation. First, the CHILD theory 
proposes that child language learning depends upon the 
child's ability to infer the meaning of incompletely 
understood utterances, but its current inference mechanisms 
are not psychologically accurate. Currem research is 
investigating the use of case-based reasoning [18,19,20,34] 
to model the child's ability to infer the meanings of 
incompletely understood utterances. Second, child language 
leaming occurs while the child is also leaming scripts and 
other high-level knowledge structures [22,23]. The 



TODDLER project, currently underway, is modelling child 
leaming of scripts and other high-level knowledge structures 
via learning by observation and play, and will be 
investigating the relationship between such learning and 
language leaming. Finally, currem research is addressing the 
issue of increasing the power of the CHILD theory's 
representalion of syntax in order to account for additional 
empirical data on child language learning. Success in 
accounting for additional data would support the proposition 
staled at the beginning of this paper, that children do not 
leam lIansformational grammars [see also 7,8,24]. 
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Abstract 

Two competing theories have been proposed to explain how children begin acquiring language without any prior 
linguistic experience. The first, semantic bootstrapping, claims that children first acquire word meanings and then 
use this information to drive acquisition of syntax. The second, syntactic bootstrapping, claims the inverse, that 
children use some syntactic knowledge in figuring out what words mean. There are difficulties with both approaches. 
Semantic bootstrapping on one hand, requires a referential completeness assumption, that children possess a concrete 
understanding of the referent of each word before assigning a lexical category to that word and before formulating 
syntactic generalizations around those category assignments. Syntactic bootstrapping on the other hand, requires 
that children be able to recover the phrase boundaries of utterances, without the use of syntax, and be able to isolate 
verbs prior to knowing their meaning. Proponents of both theories argue their case by claiming that in principle, 
language acquisition is impossible without such assumptions. These papers attempt to refute such claims. 

The first paper, an extension of work reported by Siskind (1990), presents a set of principles, implemen ted as an 
algorithm, that can simultaneously acquire syntactic parameters of X theory and a lexicon comprising both category 
and semantic information from a training corpus containing both linguistic and non-linguistic input. Before training, 
the algorithm does not possess a fixed grammar of the target language, nor any information, syntactic or semantic, 
about the words to be learned. No referential completeness assumption is made, nor does the algorithm require 
knowledge of the phrase structure of, or the lexical category of any word in, the linguistic input. The successful 
operation of the algorithm is demonstrated on training sessions both in English and in J apanese. 

The methods described in the first paper require that the learner be ahle to attach a set of possible meanings 
to each linguistic utterance. The second paper focuses on how such a set can be derived from the non-linguistic 
context of an utterance, particularly the visual context. We describe a system, currently under construction, which 
observes a computer generated animation, constructed solely from line segments and circles, and given only continual 
updates of the positions, sizes and orientations of those line segments and circles at every frame, is able to construct a 
semantic representation of the objects in the animation, the changing spatial relations between them, and the events 
in which they are participating. Unlike so me prior work in this area, the event perception mechanism we discuss 
functions independently of any linguistic input and does not require such input in order to correctly understand 
the visual information. Furthermore, unlike other prior work in this area, the event perception mechanism operates 
without the benefit of any object or event models. Instead, we incorporate into our theory a model of naive physics. 
The choice of which physical assumptions to incorporate into this model, namely substantiality, continuity, ground 
plane and gravity, is motivated by experimental evidence of the pre-linguistic knowledge possessed by infants. In 
the future, event perception will be tied to the language acquisition theory discussed in the first paper to yield a 
complete system for learning language from correlated visual and linguistic experience. 
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Dispelling Myths about Language Bootstrapping 

1 Introduction 

This paper addresses an issue in language acquisition which has become known as the bootstrapping problem. While 
in the later stages of language acquis ition, children are assisted by previously acquired linguistic knowledge, how do 
children begin the language acquisition task without such knowledge? In particular , how do they assign syntactic 
categories and semantic representations to the words they hear as part of complete utterances? 

Two competing theories have been proposed for solving this problem. The first, due to Grimshaw (1979,1981) and 
Pinker (1984) states roughly that children first acquire the meanings of words and then use this information to derive 
the syntactic constraints of their language. This theory has become known as semantie bootstrapping. Semantic 
bootstrapping assumes that children first learn the meanings of words, by some unspecified mechanism. They then 
apply adefault mapping to assign a syntactic category to each word based on its semantic category. In particular, 
THINGS are mapped to nouns and EVENTS are mapped to verbs. Such adefault mapping has been termed 
a Canonical Structure Realization. Finally, syntactic rules are formed around these abstract syntactic categories 
which later generalize to cases where the words are not of the appropriate semantic c1ass but are nonetheless of the 
appropriate syntactic c1ass . For example, a child hearing the utterance Fido barked knows that Fido is a dog and 
that bark is an action and thus maps Fido to a noun and bark to a verb and forms the grammar rule S -+ N V as 
a template to account for the utterance. Elliott and Wexler (1986) propose a variant of of semantic bootstrapping 
which requires only that children map THINGS to nouns. Principles of universal grammar then assist the remainder 
of the bootstrapping process. Their scheme however, requires that children be able to recover the bracketed phrase 
structure of the utterances they hear solely from acoustic and prosodie information. 

The second theory, due to Gleitman (1990), states roughly the converse: that children use syntactic information to 
acquire word meanings. This theory has become known as syntaetie bootstrapping. Like Elliott and Wexler, Gleitman 
also assurnes that children are able to recover the phrase structure of utterances from acoustic information alone , 
and that they use this phrase structure to derive the subcategorization frames associated with each verb . She then 
proposes that key elements of a verb 's meaning can be derived solely from its subcategorization frame . For example, 
a child hearing the utterance lohn told Mary that Billieft will deduce that the verb told takes an NP complement 
and an S complement and thus is likely to be a verb of communication. Gleitman's method acquires word meanings 
from the utterances alone, without any reference to the non-linguistic context of the utterances. Brent (1990) has 
used Gleitman's method to learn components of word meaning by scanning large text corpora. 

Proponents of both semantic and syntactic bootstrapping support their case primarily by arguing that in prin. 
eiple language acquisition must work their way as it is impossible to explain language acquisition without such arl 

assumption . Grimshaw and Pinker (1990) attempt to refute Gleitman's claims by highlighting the fact that her 
theory does not offer a complete account of how verb meanings are acquired. They argue, that while her theory is 
in principle plausible, she has yet to prove that it is actually both a necessary and correct account of child language 
acquisition. 

This paper takes a different approach. lt argues that neither semantic nor syntactic bootstrapping are necessary 
to account for language bootstrapping. It does so by demonstrating an algorithm called DAVRA 1 which determines 
the syntactic category and meaning of words without relying on semantic or syntactic bootstrapping. lt does not 
argue that semantic and syntactic bootstrapping are wrang, just that they are not in prineiple neeessary. Likewise, 
there is no claim that DAVRA is a correct account of child language acquisition, simply that it is a plausible account. 
Determining which account is actually correct awaits further research. 

DAVRA relies on a collection of syntactic and semantic principles, collectively termed Universal Grammar. Fol­
lowing the poverty of stimulus argument, DAVRA assurnes that the language learner is innately endowed with a 
language faculty whi<.:h incorporates the principles of Universal Grammar. These principles are summarized in Sec­
tion 2. Unlike previous work (Siskind, 1990) which assumed a known fixed context free grammar prior to language 
acquisition, DAVRA uses instead a direct encoding of X theory including a capability for parametric variation in the 
language to be learned. DAVRA has successfully been applied both to English (Section 4) and Japanese (Section 5) 
examples, learning the correct X parameter settings for each. Several key points about this work deserve particular 
emphasis . 

• A common assumption about language acquisition dating as far back as Locke (1690) is that children are 
presented with single word utterances, such as 'milk' , in a context where it is c1early evident that 'milk' refers 
to milk. This is termed referential completeness and is a key assumption underlying semantic bootstrapping 

1 DAVRA or N1J.' is a make-believe Aramaie word for Ulord. 
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(Bloom 1990). Heath (1983, 1989 p. 338) gives evidence that in some cultures, children Me ra.te\y -presented. 
with referentiaHy complete stimuli yet they successfuHy learn language. DAVRA is not limited to single word 
utterances and furthermore allows the learner uncertainty in associating meanings with utterances . 

• The learner starts out without knowing the meaning or syntactic category of any words in the linguistic input. 
This differs from some prior work (Granger 1977) which learns the syntactic category or meaning of words 
appearing in utterances with but a single unknown word, using the context of the remaining known words as a 
filter on possible syntactic category and meaning assignments for the unknown word. Furthermore, the learner 
starts out without knowing the X parameter settings of the language being learned. At the completion of the 
training session, the learner has acquired 

- a meaning for each word in the training session, 

- a syntactic category for each word in the training session and 

- the X parameter settings for the syntax of the language learned . 

This is true bootstrapping from nothing more than principles of Universal Grammar . 

• We do not assurne that the learner has access, via prosody, to the bracketed phrase structure of the Iinguistic 
input . 

The key to the suecess of our paradigm is cross-situational learning. A number of prior approaches to language 
acquisition, in particular Elliott and Wexler (1986) and Lasnik (1989), attempt to demonstrate learning from a 
single utterance. We believe that in most situations, a single utterance does not offer enough constraint to uniquely 
determine either parameter settings or syntactic categories and meanings of words. Instead , we believe that the 
learner must find a lexicon and parameter settings which can simultaneously and eonsistently explain multiple 
utterances. Words that co-occur across multiple utterances are the keys which enable the learner to deeipher the 
language acquisition puzzle. Note that this is not a form of distributional learning. In its classic form, distributional 
learning infers equivalence dasses between word by observing two different words oceurring in the same loeation 
within otherwise equivalent utterances. We make no such restriction on the form of the input nor do we require 
the learner to hypothesize any semantic similarity between a group of words to classify them as the same syntaetic 
category. 

2 A Linguistic Theory Supporting Language Acquisition 

The linguistic theory incorporated into DAVRA is characterized by the following principles. We assurne that the 
learner is innately endowed with a language faculty which operates aceording to these principles. 

1. The learner is able to distinguish between linguistic and non-linguistic input. Normally, linguistic input is 
available on the auditory channel while non-linguistie input is available on the visual channel though this is not 
always the case. Whatever channels carry the Iinguistic and non-linguistic information (they may in fact be the 
same channel) the learner is able to separate and distinguish the linguistic from the non-linguistic information. 

2. The learner is able to segment the linguistic input into sentences, to segment those sentences into words and to 
group different occurrences of the same word into the same equivalence dass despite minor acoustic variation 
between occurrences . 

3. The learner is equipped with a mechanism for representing meanings of individual words and entire utterances. 
All we require )s that utterance meanings be represented by ground expressions in some calculus and that 
word meanings be represented by expressions in the same calculus, possibly containing variables. In this paper 
we arbitrarily take Jackendoff's (1983) coneeptual structures as our meaning calculus. Thus the meaning 
of the utterance The cup slid from lohn 10 Mary would be GO(cup, [Path FROM(John), TO(Mary)]) and 
the meaning of the word slid would be GO(x, [Path y, z]). A eompanion paper (Siskind, 1991) discusses the 
inadequacy of this representation and proposes an alternate representation. 

4. The learner is exposed to utterances in a single language. Eaeh utteranee the learner hears is grammatically 
correct in that language and the learner is able to associate each utterance with a set of possible meanings for 
that utterance . One of those possible meanings must actually be the correct meaning of the utterance. The 
learner's innate perceptual abilities combined with her naive theories of physics and psychology allow her to 
postulate plausible meanings for eaeh utterance. Siskind (1991) proposes a mechanism for how this may be 
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done. Note that we do not require that the learner associate a single meaning with each utterance , rather 
that the learner postulate a set of plausible meanings, only one of which need be the actual meaning of the 
utterance. Future work will relax this constraint even further , allowing for some ungrammatical utterances or 
utterances for which none of the possible meanings associated with that utterance by the learner turn out to 
be correct. 

5. The learner parses each input utterance according to the following variant of X theory: 

(a) Each nonterminal node in the parse tree has either one or two daughters . 

(b) The lexical categories are N I V I P and I. 

(c) Each lexical category X projects into the categories XSPEC, X and XP . 

(d) Each utterance that the learner hears is of category IP. 

(e) IsPEc is processed as NP. 

(f) I is processed as VP. This differs somewhat from current linguistic theory and is done to simplify DAVRA. 

Future work will discuss modifications to DAVRA which handle I in accord with current linguistic theory. 

(g) The language the learner hears is either a SPEC initiallanguage or a SPEC finallanguage. If the language 
is SPEC initial then for every lexical category X, the language folio ws the rule 

XP - XSPEC X. 

If the language is SPEC final then for every lexical category X, the language folio ws the rule 

XP - X XSPEC. 

(h) The language the learner hears is either a head initiallanguage or a head finallanguage. If the language 
is head initial then for every lexical category X (except for I) the language follows the rule 

X-Xyp 

for every lexical category Y . If the language is head final then for every lexical category X (except for I) 
the language follows the rule 

X-YPX 

for every lexical category Y. Furthermore, irrespective of whether the language is head initial or final, the 
language also foHows the rule 

X-X 

for every lexica1 category X (except for I). 

(i) The categories XSPEC (except for ISPEc) and lexical categories X (except for I) are terminal. 

6. A meaning is associated with each node in the parse tree . The meanings associated with terminals nodes are 
word meanings from the lexicon . The meaning associated with the root node is one of the meanings postulated 
for the utterance. The meanings associated with nonterminal nodes are related by the following linking rule. 

(a) If anode has a single daughter, then the meaning of the parent and the daughter are the same. 

(b) If anode X has two daughters Y and Z I then one of the daughters is called the template and the other 
is called tohe argument. We will call X the resultant. The resultant meaning is derived from the template 
meaning bOy renaming the variables of the argument meaning so that they are distinct froll! those in the 
template meaning and then substituting the argument meaning for all occurrences of some variable in the 
template meaning. Alternatively, the argument meaning may be the distinguished symbol .L, in which 
case the resultant meaning is the same as the template meaning. 

7. Nodes of category X are templates while nodes of category XSPEC and XP are arguments . 

8. Argument meanings must be variable-free. 

9. A word cannot have a meaning which is just a variable. 

10. Anode of category XP cannot have .L as its meaning. 
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11. The following exceptions notwithstanding, any terminal can be non-overt, i.e. it may have no overt word 
associated with it. 

(a) The semantics of anode with no overt descendants must be 1... 

(b) Nodes of category X must have at least one overt descendant. 

12 . The learner observes a monosemy constraint, i.e . the learner will assign each word at most one syntactic 
category and one meaning. Future work will relax this constraint. Other work in language acquisition often 
assurnes a converse constraint that each distinct possible meaning be conveyed by at most one distinct word. 
Note that we do not require such a constraint ruling out synonyms. 

Note that the above principles do not account for movement. While dealing with movement adds significant com­
plexity to this system, there does not seem to be any reason why it could not be incorporated in a fashion analogous 
to the techniques used in this paper . This is a fruitful area for future research. 

3 The Algorithm 

DAVRA is written in a nondeterministic dialect of COMMON LlsP known as SCREAMER (Siskind, 1991). DAVRA 
has been implemented and correctly processes the examples given in Sections 4 and 5. Due to length !imitations 
on this paper, this section containing an annotated description of the main portion of the code had to be omitted. 
The full paper, as weil as the complete code, are available from the author. Use of a nondeterministic dialect 
allows a straightforward and transparent encoding of the principles of Universal Grammar directly as statements 
in the program. While useful for pedagogical purposes, more efficient implementations are possible. Siskind (1990) 
discusses one such algorithm (calIed MAlMRA) for a linguistic theory which is similar to, though not identical to, the 
one presented in Section 2. 

4 An English Example 

Consider a scenario where the learner observes John rolling from a location near Mary to a location near Bill while 
hearing the utterance lohn rolled. The learner might hypothesize at least the following six potential meanings for 
that utterance since each of the following six events are subevents of the main event observed. 

• John was near Mary (at the beginning of the main event). 

• J ohn was near Bill (at the end of the main event). 

• John moved along some unspecified path. 

• John moved along a path starting from a location near Mary. 

• John moved along a path to a location near Bill. 

• John moved along a path from a location near Mary to a location near Bill. 

We presented DAVRA with a training session consisting of the nine utterances given in Figure 1. Each of the nine 
utterances was paired with between three and six possible meanings similar to those discussed above. These possible 
meanings were represented as J ackendovian conceptual structures. 

Prior to the training session, DAVRA was not given any linguistic information other than the principles covered 
in Section 2. In patticular, DAVRA was not given the X parameter settings for English, nor was DAVRA given the 
syntactic category or meaning of any of the words appearing in the training session. From this training session alone, 
DAVRA produces the following lexicon as output: 
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BE(personl • AT(personJ» v BE(personl • AT(person2»V 
GO(personl • [Path D v GO(personl • FROM(personJ»v 

GO(person l • TO(person2)) v GO(personl • [Path FROM(person3). TO(person2)]) 
lohn rolled. 

BE(person2• AT(personJ» V BE(person2• AT(personl»V 
GO(person2' (Path D V GO(person2• FROM(personJ»v 

GO(person2• TO(persond) V GO(person2' [Path FROM(personJ). TO(persondD 
Mary rolled. 

BE(personJ• AT(person l » V BE(person3• AT(perso~»v 
GO(person3• [Path D V GO(personJ• FROM(personl»v 

GO(personJ• TO(person2» V GO(person3, [Path FROM(person l ). TO(person2)]) 
Bill rolled. 

BE(object l • AT(persond) V BE(objectl • AT(person2»v 
GO(object l , [Path ]) V GO(object l • FROM(personl »V 

GO(object l • TO(person2» V GO(object l • [Path FROM(personl ), TO(perso~)]) 
The cup rolled. 

BE(personJ• AT(person l » V BE(personJ, AT(person2»v 
GO(person3• (Path ]) V GO(personJ• FROM(personl »V 

GO(person3• TO(person2» V GO(person3• [Path FROM(personl ), TO(person2)]) 
Bill ran to Mary. 

BE(personJ• AT(person l » V BE(person3• AT(perso~»V 

GO(personJ• [Path]) V GO(personJ• FROM(persond)v 
GO(personJ , TO(person2» V GO(personJ• [Path FROM(persond. TO(person2)]) 

Bill ran /rom lohn. 
BE(person3, AT(personl » V BE(personJ • AT(object l »v 
GO(person3 , [Path D V GO(personJ• FROM(personl»v 

GO(person3• TO(objectd) V GO(person3• [Path FROM(persond, TO(objectdD 
Bill ran to the cup. 

BE(object l • AT(person l )) V B E(object l • AT(person2»v 
GO(object l • (Path ]) V GO(object l • FROM(personl »v 

GO( object p TO(person2» V GO( object l • [Path FROM(personl ). TO(perso~)]) 
The cup slid from lohn to Mary. 

ORIENT(person l • TO(person2»v 
o RIENT(person2, TO(personJ»v 
ORIENT(personJ , TO(persond) 

lohn faced Mary. 

Figure 1: An English training session presented to DAVRA 
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Head Initial, S P EC Initial. 
lohn: 

I~l 
person, 

Mary: person2 

Bill: [N] person3 
cup: [N] object, 
the: [NSPEcl l. 
rolled: [V] GO(x, [Path ]) 
ran: [V] GO(x, y) 
slid: [V] GO{x, [Path y, z]) 
faced: [V] ORIENT(x, TO(y)) 
from: [N,V,P] FROM{x) 
to: [N,V,P] TO(x) 

Note that DAvRA has determined on the basis of the training session that English is both head initial and 
SPEC initial. Additionally, DAVRA has converged to a single meaning for each word in the training session, without 
referentially complete knowledge of the meaning of any of the training utterances. Furthermore, for all but the 
prepositions, DAvRA has determined a unique syntactic category for each word. The only uncertainty remaining after 
processing this session is whether from and to are nouns, verbs or prepositions. It is easy to see that DAVRA can never 
uniquely determine that an English preposition is in fact of category P since the principles incorporated into DAvRA 

allow nouns and verbs to appear anywhere prepositions can with the same semantic consequences . One must add 
further principles from Universal Grammar to DAVRA in order to allow her to distinguish prepositions. Incorporating 
a variant of case theory which states both that noun phrases must receive case and that nouns are not case assigners 
would allow DAvRA to determine that English prepositions could not be nouns since their complements would not 
receive case . Furthermore, noticing that English prepositions are never inflected would give indirect negative evidence 
(Lasnik, 1989) that they are not verbs. Adding such principles to DAVRA would remove any remaining uncertainty 
from the above training session. 

5 A Japanese Example 

MAlMRA, a predecessor of DAVRA discussed in Siskind (1990), is often criticized as being unrealistic due to its 
assumption of a fixed, built in gramm ar prior to lexical acquisition. DAvRA attempts to address this criticism by 
utilizing a parameterized variant of X theory instead of a fixed context free grammar, and acquiring the X parameter 
settings simultaneously with the lexicon from the same training session . To demonstrate the success of this approach, 
we translated the utterances of the training session from Figure 1 into Japanese, while leaving the non-linguistic input 
unchanged, and presented this new session to DAvRA. The translated utterances are given below: 

Taro ga korogashimashita. 
Eriko ga korogashimashita. 
Yasu ga korogashimashita. 
Chawan ga korogashimashita. 
Yasu ga Eriko ni hashirimashita. 
Yasu ga Taro kara hashirimashita. 
Yasu ga chawan ni hashirimashita. 
Chawan ga Taro kara Eriko ni suberimashita. 
Taro ga Eriko ni tachimukau. 

Head Final, SPEC Initia.l. 
Taro: 
Eriko: 
Yasu: 
chawan: 
ga: 
korogashimashita: 
hashirimashita: 
suberimashita: 
tachimukau: 
kara: 
nl: 

[NJ 
[N] 
[N] 
[N] 
[VSPEC] 
[V] 
[V] 
[V] 
[V] 
[N,V,P] 
[N,V,P] 

person, 
person2 
person3 

object, 
l. 
GO(x, (Path ]) 
GO(x, y) 
GO(x, [Path y, z]) 
ORIENT(x, y) 
FROM(x) 
TO(x) 

From these utterances, DAVRA produced the above lexicon as output. Again, DAvRA was able to uniquely 
determine the X parameter settings for J apanese, as weil as unique meaning and syntactic category assignments for 
most words in the training session . Like before, the only uncertainty which DAVRA was unable to resolve was the 
assignment of category P to the words kam and ni. Methods similar to those discussed previously could remove this 
remaining uncertainty. 

6 Conclusion 

We emphasize that we have not demonstrated an algorithm that converges to parameter settings and a lexicon for 
all possible input of the form a child might encounter. While such a result is crucial for a complete account of child 
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language acquisition it is still beyond our current understanding. What we have done is to demonstrate, by way of a 
single example, how in principle, an algorithm can infer X parameter settings and a lexicon with neither semantic or 
syntactic bootstrapping assumptions. We also acknowledge that the linguistic theory incorporated into DAvRA has 
limited syntactic and semantic coverage . Nonetheless, we believe that the techniques discussed in this paper can be 
can be applied to build language acquisition models using more elaborate theories of syntax and semantics as such 
theories are developed. 
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Naive Physics, Event Perception, Lexical Semantics 
and Language Acquisition 

1 Introduction 

In a companion paper, Siskind (1991) argues that during the early bootstrapping stages of language acqulsltlOn, 
when children start ou t withou t knowing either syn tax or the meanings of any words, children are aided in their task 
by hypothesizing a set of potential meanings for each utterance heard. For example, a child hearing the utterance 
lohn entered the room would look out into her environment and see John standing, walking, opening the door, 
being outside the room, and later being inside the room, along with many other possible events occurring in the 
environment unrelated to John. Hypothesizing that the utterance as a whole refers to one of those events aids the 
learner in figuring out what the individual words mean, as weil as the syntactic categories of those words and the 
syntactic parameters of the language being learned. But how can a child hypothesize utterance meanings from visual 
perception? This is the topic addressed by this paper. 

Since we want to understand how a child's perception of the world can aid the language acquisition task, we must 
look for evidence of what knowledge pre-linguistic children al ready possess prior to linguistic activity.l Speike (1988) 
discusses habituation/dishabituation experiments which attempt to elucidate such knowledge. These experiments 
provide evidence that pre-linguistic children possess at least the following kinds of knowledge: 

substantiality: the knowledge that objects take Hp space and cannot pass through one another, 

continuity: the knowledge that an object appearing at point A and then at point B must have moved along a 
continuous path between those two points, 

gravity: the knowledge t.hat unsupported objects fall and 

ground plane: the knowledge that the ground offers universal support for objects. 

We refer to these collectively as pre-linguistic principles. 
We are currently writing a program called Abigail, which attempts to incorporate such pre-linguistic knowledge 

into a simulated language learner to test the hypothesis that such knowledge can aid the language acquisition task. 
Abigail watches a computer animation constructed from line segments and circles. Along with that animation, 
Abigail receives a narration text describing the events occurring in the movie. The experimental paradigm of having 
a learner acquire !'lew word meanings by watching a narrated movie has been explored by Rice (1990). In our case 
however, the learner is a machine rather than a child. Using techniques which incorporate the aforementioned pre­
linguistic principles, Abigail analyzes the animation frame by frame and produces a semantic representation of the 
events occurring in that animation. The events of this semantic representation constitute the meanings hypothesized 
for utterances appearing in the narrative text. Siskind (1991) presents a learning algorithm which can utilize such 
a semantic representation to learn the syntactic categories and meanings of words. This paper focuses on how to 
produce this semantic representation from visual input using models of children 's pre-linguistic knowledge. 

Abigail lives in a microworld of animated movies. These movies contain objects which participate in events. The 
ontology of this microworld differs somewhat from that of our world. More importantly, however, the ontology of 
Abigail's world is similar enough to our world to model the pre-linguistic principles of substantiality, continuity, 
gravity and ground plane. A frame from one of Abigail's movies is shown in Figure 1. In this movie, the man walks 
to the table, picks up the ball, walks back and forth with it before putting it back on the table. Later, the woman 
repeats the same actions, and finally the man goes, picks up the ball and gives it to the woman who then puts it 
back on the table. Abigail's computational mechanisms are not specific to the particular objects and event in this 
movie. Unlike the system discussed by Badler (1975), Abigail does not possess any prior object or event models. 
Furthermore, the animation is generated by a program distinct from Abigail. Abigail has no access to the internal 
data structures of this animation program. Abigail observes only the positions, sizes, shapes and orientations of 
the line segments and circles comprising each animation frame. From this information, Abigail utilizes a theory 
based on the pre-linguistic principles of substantiality, continuity, gravity and ground plane to construct a semantic 
representation of the objects and events in the animation. Without any modification, Abigail can watch a different 
animation containing different objects participating in different events and still be able perform a semantic analysis 
to yield an appropriate representation of the objects and events in this new movie. 

1 This paper remains agnostic as to whether such pre-Iinguistic knowledge is innate or acquired during the early months of life. 
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X htl~ 1 
Figure 1: A frame from one of Abigail's movies. 

2 The Theory 

As mentioned prev iously, Abigail does not directly perceive objects such as people, tables and chairs. Instead Abigail 
perceives the figures , such as line segments and circ\es, out of which objects are constructed, and then interprets 
certain collections of figures as objects . In particular, Abigail understands that figures may be joined together . 
We denote a joint connecting figures / and gas/ +-+ g. Such a joint can be described by three parameters: the 
displacement of the joint along the length of /, the displacement of the joint along the length of 9 and the angle 
formed between / and g . Any joint can be either rigid or flexible, independently along each of these three dimensions. 
A rigid joint parameter has some fixed value while a flexible joint parameter leaves its value unspecified . For technical 
reasons, we require that at least one of the displacement parameters of every joint be rigid. Any set of figures which 
are connected by joints will be interpreted as an object . Abigail does not directly perceive joints between figures . She 
infers those joints which are necessary to explain the unfolding animation according to the pre-linguistic principles. 
Furthermore, the set of joints and their parameter values need not be invariant for the duration of the movie. During 
the course of the movie, joints may change from rigid to flexible, or vice versa, and may even appear or disappear 
completely. This allows new objects to be built by combining old objects , old objects to be broken into parts and 
objects to be broken and then fixed again . Abigail , must continually maintain and update a joint model of the world 
to understand such construction and destruction events . 

Abigail's microworld is nominally a two dimensional world. The figures that she perceives directly do not con­
tain any depth information. Such a two dimensional world is not capable of supporting an interesting model of 
substantiality. The motion of objects in a two dimensional world which obeys substantiality is highly constrained . 
Nonetheless, when humans view the animation based on Figure 1 where the man walks from one side of the table to 
the other , they are not disturbed by the fact that in doing so, the man's figures overlap the table's figures. They never 
entertain the possibility that the man is walking through the table. Instead they assurne that the man is walking 
either behind or in front of the table. In a similar fashion, Abigail attempts to reconstruct such depth information 
to explain the image and uphold the principle of substantiality. While not perceiving depth information directly, 
Abigail constructs a depth model which assigns certain figures constituting the image to the same layer and others 
to different layers . This model comprises a set of assertions of the form /ayer(J) = /ayer(g), when figures / and 9 
are known to be on the same layer, and /ayer(J) i= /ayer(g) when they are known not to be on the same layer. Only 
figures on the same layer must obey substantiality. 

The layer model.constitutes a partial third dimension. Abigail requires that at all times the layer model be 
a complete and consistent equivalence relation though not necessary total. Thus from /ayer(J) = /ayer(g) and 
/ayer(g) = /ayer(h) Abigail will infer /ayer(J) = /ayer(h). Likewise, from /ayer(J) = /ayer(g) and /ayer(g) i= 
/ayer(h) Abigail will infer /ayer(J) i= /ayer(h) . However, for some pairs of layers , Abigail may not know whether or 
not they are on the same layer . Note that these layers are not ordered and in particular there is no notion of adjacent 
layers. Additionally, the assignment of figures to layers may change du ring the course of the movie. Thus Abigail 
must continually update the layer model both to maintain its internal consistency as weil as to uphold substantiality 
judgments in the changing world. 

The layer model consists of a list (al, .. . ,an) of layer assertions . New assertions are always added to the front of 
this list. Whenever new assertions are added, we check the consistency of successively longer initial prefixes of the 
model. Ifthe prefix (al, ... ,aj_d is consistent but the prefix (al, ... ,aj) is not, then the assertion aj is removed 
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from the model. This is repeated until the entire model is consistent. 
How does Abigail apply the pre-linguistic principles to update both the layer and joint model? At every frame, 

Abigaillooks for six types of evidence between every pair of figures fand g. 

1. Evidence that the assertion layer(f) = layer(g) should be added to the model. 

2. Evidence that the assertion layer(f) :j:. layer(g) shouJd be added to the model. 

3. Evidence that some parameter of the joint f ..... 9 should be demoted from rigid to flexible. 

4. Evidence that an existing joint f ..... 9 should be removed from the model. 

5. Evidence that some parameter of the joint f ..... 9 should be promoted from flexible to rigid. 

6. Evidence that a new joint f ..... 9 should be added to the model. 

Two forms of evidence can be used to infer case 1: support and collision. Whenever two figures touch and one would 
fall without being supported by the other, Abigail can infer that they are on the same layer . Likewise, if one figure 
moves toward another figure, touches it, and moves away from it according to the laws of physics, the apparent 
collision gives evidence that the two figures are on the same layer. Collision detection is not currently implemented 
in Abigail. In a similar fashion, there are two forms of evidence for case 2: overlap and exiting an apparent container. 
A direct observation that two figures overlap give clear evidence that they are on different layers. Furthermore, if 
one figure is initially surrounded by another figure and then moves so that it is no longer surrounded by that figure, 
the principles of continuity and substantiality imply that those two figures must be on different layers. Currently, 
only direct observation is implemented in Abigail. For case 3, an observation that the value of so me rigid parameter 
of a joint has changed is evidence for demoting that parameter. An observation that two figures no longer intersect 
is evidence for case 4. Abigail currently does not implement any evidence for case 5. For case 6, Abigail infers a new 
joint whenever two figures touch and the two figures would cease to touch under the effect of gravity if they were 
not connected by a joint. In general, whenever Abigail hypothesizes new joints and same layer assertions to account 
for the stability of an object in the image, she attempts to hypothesize a minimal set of new joints and same layer 
assertions with same layer assertions taking priority over new joints when both offer the same explanatory power. 

Central to the above process is a mechanism for determining support relationships between objects. Abigail uses 
a simulator for this purpose. This simulator takes the figures appearing in the current frame, along with a set of joints 
and layer assertions, and predicts how the image will change under the effect of gravity. This simulator is essentially 
a quantitative kinematic simulator that incorporates the pre-linguistic principles of substantiality, continuity, gravity 
and ground plane. It lacks any notion of dynamics, such as momentum, kinetic energy and friction. Nonetheless , it 
is adequate for determining the support relationships between objects, the same layer relationships between figures 
and the necessity of joints between figures. 

Abigail continually performs such simulations every frame, hypothesizing what would happen in the world under 
different sets of joint and layer assertion assumptions. This has fairly strong psychological implications. For Abigail to 
be a plausible reflection of human perception, humans must be shown to be capable of performing such simulations and 
must also be shown to be performing them fairly regularly, albeit subconsciously. Freyd, Pantzer and Cheng (1988) 
gives evidence that humans perceive objects to displace slightly downward, as if they were falling, when support is 
removed from them. 

Once Abigail has constructed the joint and layer model for each frame, and has collected connected figures into 
objects, she computes the following relations between those objects and the regions of space that they occupy: 

[i,j]exists(O'): Object 0' exists continually for frames i through j. 

[i,j]contacts(O', ß):Object 0' touches and is on the same layer as object ß continually for frames i through j. 

[i, jUoined( 0', ß): For frames i through j, objects 0' and ß are joined together by at least one joint connecting a figure 
from 0' to a figure from ß. 

[i,j]supports(O',ß): For frames j through j, object ß falls if the image is simulated without object 0' but object ß 
does not fall if the image is simulated with object 0'. 

[i,j]supported(O'): For frames i through j, object 0' does not fall when the image is simulated . 

[i,j]moving(O'): For every frame between i and j, the position, size or orientation of some figure in object 0' has 
changed from the previous frame. 
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[i,j]moving-root(a): For every frame between i and j, the position, size or orientation of some figure in the root of 
object a has changed from the previous frame. The root of an object is defined to be the subset of its figures 
which has the greatest mass and which is connected by joints which have not changed parameters since the 
previous frame. 

[i,j]translating(a, p): Indicates that the center of mass of the root of object a is changing position for every frame 
between i and j. The path pis a trace of the movement of that center of mass. 

[i,j]rotating-c1ockwise(a): The root of object a is rotating clockwise for every frame between i and j . 

[i,j]rotating-counterclockwise(a): The root of object ais rotating counterclockwise for every frame between i and j. 

[i,j]rotating(a): For frames i through j, the root of object ais rotating either clockwise or counterclockwise. 

[i,j]place(a,p): Object a occupies the region ofspace indi~ated by p for frames i through j. 

at(p, q): Points p and q are approximately coincident modulo a tolerance. 

in(p, q): Region p is a subregion of region q. 

to(p, q): The ending point of path P is approximately coincident with point q modulo a tolerance. 

from(p, q): The starting point of path p is approximately coincident with point q modulo a tolerance. 

towards(p, q): Every point along path p is closer to point q than the previous point along that path. 

away-from(p, q): Every point along path p is further away from point q than the previous point along that path. 

up(p): The y-coordinate of every point along path pis greater than the y-coordinate of the previous point along that 
path. 

down(p): The y-coordinate of every point along path pis less than the y-coordinate of the previous point along that 
path. 

3 An Example 

The above relations are the primitives out of which semantic representations of events are constructed. Consider an 
event such as John kicked the ball in the room. This event could be represented as follows using the above primitives: 

[tl, t2] translating(foot( John), pd 1\ [t I, t2]place(ball, P2) 1\ towards(PI, center-of-mass(p2))1\ 
[t2, t2]contacts(foot(John), ball) 1\ [t2, t3]translating(ball,P3)1\ 

[t3, t4]place(ball, P4) 1\ [tl, t4]place( room, Ps) 1\ in (P4, Ps) 

Each of the relations in the above expression can be derived from an animation of this event using the techniques 
described in this paper. A future paper will discuss how these relations are aggregated together to form the composite 
event description and how such an event description can be used by a language leamer to leam the meanings of 
words in an utterance describing that event. 
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Abstract 
An Explanation-Based Leaming (EBL) system is 

used to leam macro-operators from rule-govemed fea­
tures in phonological representations. In the do­
main of generative phonology, EGGS-Phon follows 
the EBL machine learning paradigm to use exist­
ing domain knowledge in building explanations from 
examples. The system leams from relevant linguis­
tic knowledge and produces macro-operators for han­
dling vowel lengthening and consonant aspiration in 
English . EGGS-Phon's methodology is extended for 
languages which apply phonological rules in linear or­
der . 

1 Introduction 

Explanation-based learning (EBL) takes existing 
knowledge (encoded as rules and facts) about a do­
main and "[constructs] an explanation for why a spe­
eif'ic example is a member of a eoneept or why a 
speeifie eombination of actions aehieves a goal." [6J 
The explanation is typically in the form of a new 
rule , called a macro-operator . The system presented , 
EGGS-Phon, uses EGGS (Explanation Generaliza­
tion using a Global Substitution) as its learning foun­
dation [6J. EGGS-Phon is provided with basic con­
cepts from generative phonology. 

Many phonological features in an Underlying 
phonemic Representation (UR) are governed by rules, 
with each naturallanguage having its own particular 
set of rules , rule orderings, and rule-governed fea­
tures. EGGS-Phon 's knowledge base specifies fea­
tures about the phonemic inventory of languages, 
as weil as their rule orderings. 1 EGGS- Phon takes 
a phonemic represen tation associated with a lexical 
entry (i.e., the UR), and applies phonemic rules to 
produce a phonetic representation (which has a suf­
ficient level of detail for pronunciation) .2 Examples 
of turning URs into Phonetic Representations (here­
after , PRs) are shown in figure 1. Two rule-governed 
feat ures are i 11 ustrated: 

• the feature aspirated (represented by .<h") for 
Ip/, It/, and Ik/; and 

• the feature Iong(represented by ":" ) for lrel and 

10;' 

EGGS-Phon uses the well-established observation 
that English unvoiced stop consonants (i.e ·./p/, It/, 

1 Phonemes in trus paper are written with symbols of the 
fnternational Phonetic Alphabet (IPA) [2J . 

2Such rules and representations would be usable by various 
modules (e .g. , morphology, syntax, phonology) in a Natural 
Language Processing system. 
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Lexieall .... m PbODeullC R.epre.a~ioD Pbonetic R.ep.-..~ioa 

"p •• ' /p " t/ 
-.. •• ' /n "b/ 
"c'" /k "b/ 
·po''''''.C· /p • , 0 m , k/ 

[p" " 'I 
[n ." bl 
[1<" '" bl 
[p" • 't' 0: m , kl 

Figure 1: Examples of turning underlying lexical rep­
resentations into phonetic representations 

and Ik/) have their aspiration (i. e. , the puff of air ac­
companying its pronunciation) completely predicted 
by phonemic rules. 3 

To generate the PR, EGGS-Phon: 

• considers each phoneme of the UR (containing 
an ordered list of phonemes , enclosed in I j) se­
quentially, 

• , determines the values for all of the features of 
this phoneme which are governed by rules, and 

• applies these rules. 

At the end of this generation process (i. e. , after all 
phonemes are examined), the resulting phonological 
changes indicate the surface-Ievel PR. 

EGGS-Phon also orders rule applications, with 
each intermediate result serving as the phonological 
input to the next linearly ordered rule. 

2 Motivation 

Many Artificial Intelligence (AI) programs derive 
much of their inspiration from psychological plausi­
bility. EGGS-Phon takes an analogous approach, em­
ploying linguistically plausible phenomena (e.g., nat­
ural categories, rule-governed features , and ordered 
rules). By providing a computational framework for 
the linguist, the output of EGGS-Phon can reveal dif­
ferences between the PR generated by the rules and 
the expected PR. The linguist mayaiso evaluate the 
relevancy of learned macro-operators . 

The EBL paradigm provides some advantages in 
representing phonological information. Linguists re­
fer to "natural categories", notions which appear 
with great frequency ac ross languages. Figure 2 il­
lustrates some of these notions. 

Natural categories can be kept as rules in EGGS, 
even as EGGS creates additional rules . A sampie nat­
ural category rule is : lf X is consonantal and X is not 
sonorant, not continuant. not voiced, and not nasal, 

J Aspirated stop consonants are in complementary distribu­
tion with their una..spirated counterparts. Thus . (ph ae tJ, not 
(p ae tJ, would be pronounced by native English speakers. 



• poeitional information 
o "ord-initial 
o word-final 
o .yllable-initial 
o .yllable-final 

• context-8e08itive information 
o precedes-cooaonant 
o precedes-vo"el 

• phonologica1 cI_ 
o .top-co08onanta (e.g., Ipl, Ikl, It/) 
o glids (e.g., Ihl, Iw/, Iy/) 
o affric&t.es (e.g., Itl, IG/, IpT/) 

o fricatives (e .g., Isl, Iz/, Irl, 19/, 13/) 
o front-vowels (e.g., li/, lei, l<e/, lce/) 
o open-unrounded vowels (e.g., lai, 10/, 10/). 

Figure 2: Natural Categories 

then X has the feature stop. Once exposed to exam­
pies (I.e ., lexical representations of words) needing 
features specified. EGGS generalizes from the exam­
pie a new learned rule: If X is a word-initial conso­
nant, and X is consonantal and X is not sonorant, not 
continuant, not voiced, and not nasal, then X has the 
feature aspirated. 

3 System Description 

EGGS- Phon stores phonological features about the 
consonants and vowels of the user-specified language 
in its knowledge rule base. EGGS-Phon utilizes the 
EGGS module (for generalizing explanations) as weil 
as the DEDUCE module (for inferencing and proof 
generating) .4 As a rule-based system, EGGS-Phon 
works by iteratively applying concise "if-then" rules 
to a phonemic representation . An applicable rule 
modifies the UR by: 

1. determining the feature's value (i. e., presence or 
absence), and/or 

2. inserting, deleting, or substituting phonemes. 

Once EGGS-Phon has applied all rules, the resul­
tant phonological representation is transformed into 
a surface-level PJl. By learning aseries of rules and 
generalizing over them into a single macro-operator, 
the system prepares itself for encountering similar ex­
amples in later input. 

The phonological features of English used to 
demonstrate EGGS-Phon's feature processing are 
based on Fromkin and Rodman [4]. The linearly­
ordered rules and sampie words (including their in­
termediate phonological forms) of Tonkawa are from 
Kenstowicz and Kisseberth [5]. 

~ 80th modules are courtesy of R. Mooney. 
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3.1 Feature Processing 

Languages have two types offeatures: immutable and 
rule-governed. EGGS-Phon takes the UR and returns 
a list of the features which m ust be changed to be­
come a surface-Ievel PR. More specifically, for each 
phoneme associated with the lexical entry, EGGS­
Phon considers each rule-governed feature of the 
phoneme, with EGGS computing the present/absent 
value. 

3.1.1 Rule-Governed Features 

An example of this process is determining if the /k/ 
of /k ag/ ( "cog") is aspirated. When EGGS is asked 
to show that /k/ is aspirated, the system provides a 
proof that /k/ is aspirated because: 

1. it is word-initial (and thus stressed syllable ini­
tial), and 

2. it is a stop consonant . 

This proof is generalized to become a macro-operator 
for later use. 

3.1.2 Results 

When EGGS-Phon was given the UR for "potomac", 
it used facts from the knowledge base and rule appli­
cations to derive [Ph], [th], [0:] for the PR. Figure 3 
shows the efforts involved in determining vowellength 
and consonant aspiration. 5 

From basic (user-specified) rules, EGGS learned 
two new more specialized rules: one for aspiration 
that takes place at the beginning of a word (as in the 
"cog" example), and another rule for aspiration that 
occurs at the beginning of a stressed syllable (such 
as the /t/ in "potomac"). Note that the learning 
generalizes the salient portions of the rule base's "ir' 
conditions. 

Figure 3 summarizes the findings on an English 
word potomac, which possesses three stop (unvoiced) 
consonants (with two being aspirated by different 
rules), and a vowel/o/lengthened because it appears 
before a nasal (voiced) consonant. In both sections of 
the figure , when two numbers are listed in an entry: 

• the first number indicates learning without in­
terference (i. e. , learning when only user-defined 
rules exist for that predicate), whereas 

• the second number indicates learning with inter­
ference (i. e., learning w hen EGGS has defined a 
related macro-rule yet it does not apply to the 
phoneme and its current environment) . 

~ Note that this example shows role application as a one­
pass process through the UR, with no drarnatic &Iterations 
(such as deleting phonemes) to the UR. 



Before Learning 

Phonemes for Rule Rules Anawers Answel'l 

potomac ReLrievals Tried Tried Made 

aapirat.ed Ipl 14, 16 5, 6 12, 13 4. 4 

lang /al 6, 10 2, 3 3, 6 0, 0 

a.spirated Itl 16. 17 6, 7 13, 13 4, " 
lang 101 6 2 5 2 

aapirat.ed Iml 5, 7 3, 4 I, 2 0, 0 

long N 6 2 3 0 

aspirat.ed Ik I 4, 5 3. 4 0, 0 O. 0 

After Learning 

Phonemes for Rule Rules Anawers Answel'l 
potomac ReLrievals Tried Tried Made 

aspirated Ip/ 9, 11 1,2 8, 9 I, 1 
long lai 10 3 6 0 
aspirat.ed Itl 10, 11 1, 2 9, 9 1,1 
Ion!! 101 5 1 4 1 
aspirat.ed I ml 8 5 2 0 
Ion!! M 10 3 6 0 
a.spirat.ed Ikl 6 5 0 0 

Figure 3: Learning Rule-Governed Features in po-
tomac, where paired numbers x, y represent the to-
tals for learning without interference and with in-
terference, respectively. 

In the After chart of figure 3. the first number indi­
cates the benefit oflearning macro-operators, benefits 
which start to decrease once there is learning with in­
terference (as reftected in the second number). Note 
that "Answers Made" is non-zero only if the feature 
(e.g., aspirated, lang) applies. 

Performance degradation (of serial systems) is a 
potential probiem in EBL systems that learn macro­
operators. This potential degradation can be seen 
in the attempt to discern that Iml is not aspirated, 
where EGGS retrieved only five rules before learning 
but retri ved eight rules after learning. 

3.2 Rule Processing 

An important notion of generative phonology is han­
dling rules, with rule ordering being a key issue. 
While feat ures are governed by rules , rules themsel ves 
are governed by ordering constraints. 

3.2.1 Rule Or<i'ering 

The rule ordering portion of EGGS-Phon controls 
access to the inference mechanism (i. e., EGGS and 
DEDUCE). Examples from Tonkawa [5] were chosen 
to in vestigate phonological rule orderings . Linguistic 
evidence for linear ordering is discussed by Kenstow­
icz and Kisseberth [5] . EGGS-Phon models Tonkawa 
with four linearly applied rules: 

1. apocope - truncate a vowel if it ends a word, 
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2. elision - delete an element in a certain context, 

3. truncation - delete the first of two consecutive 
vowels, and 

4. vocalization - turn glides into vowels . 

EGGS-Phon ran on six sam pie Tonkawa words. In 
all cases, the intermediate forms as weil as the final 
forms were correctly generated: the rule ordering was 
never violated. 

3.2.2 Results 

The experiment verified that EGGS-Phon could al­
low rules to be ordered . While rules like truncation 
generalized, other rules (consisting solely of looking 
up facts) in the knowledge base did not generalize 
into macro-operators. 

4 Directions for Future Re­
search 

While EGGS-Phon can support application of rules 
in linear order (i. e., multiple rule firings), this system 
needs a more general mechanism than is currently im­
plemented to process partially-ordered phonological 
rules. s 

Anderson [1] also argues for a phonological compo­
nent that supports cyclical application of rules, with 
rules being organized into sets in a hierarchy. Such 
notions are beyond the scope of the current imple­
mentation of EGGS-Phon, and would require a spe­
cialized inference mechanism. 

EGGS-Phon has only been tested on intonational 
languages. The phonological representation currently 
implemented would have to be extended to handle 
tonallanguages (e.g., Mandarin Chinese). 

"Noisy data" exists in all naturallanguages, where 
certain lexical entries (due to language change or his­
torical accident) are exceptions to rules . Linguists 
call such "noisy" lexical items suppte/ions, and just 
list them in the data, with no further analysis. An 
avenue for enhancing EGGS-Phon would be to in­
clude examples with noisy data, and verify that no 
macro-operators would be learned from suppletions. 

Since EGGS-Phon only used the EGGS system 
(and not the full GENESIS system), it does not have 
all the capabilities discussed in the later chapters 
of Mooney [6]. Specifically, EGGS lacks a schema 
learner. Only the GENESIS module provides schema 
acquisition: the ability to "[buildJ a schema describ­
ing plans for a wide variety of situations." [3J SO, it 

6 Cse of non-linear rule application is d..iscussed in 
\1ooney [6J but is not available in the EGGS module. An­
derson provides linguistic evidence for partial ordering [I J. 



was not possible to devise an example that EGGS 
could solve after learning macro-operators that it 
could not have done before learning. 

The most intriguing direction would be to incor­
porate "discovery learning" programs with EGGS­
Phon. Using the basic linguistic knowledge base 
(consisting of natural categories and an inventory of 
p honological features ) and a corpus of natural lan­
guage examples. the "discovery learning" program 
could derive rules and generalizations that explain 
the data. EBL can then be used on these rules , both 
for testing their validity (whether given the same, 
subset, or different corpus of linguistic examples) and 
for finding the "short-cuts" (i . e. , macro-operators) . 
However, the encoding strategy needed for this lin­
guistic knowledge base to be usable by a discovery 
program (in making interesting new concepts) is not 
readily apparent, and would require further research . 

5 Conclusion 

EGGS-Phon demonstrates that explanation-based 
learning can be successfully applied to such linguis­
tic domains as generative phonology. EGGS-Phon 
was able to leam rules for aspiration of stop conso­
nants and for vowel-Iengthening in English; its pre­
liminary results of rule ordering were also encourag­
ing. The functionality of EGGS-Phon (by facilitat­
ing tests of rules on naturallanguage examples) could 
be of interest to computational linguists. With fur­
ther enhancements (e. g., to its inference mechanism) , 
EGGS-Phon will have even greater apiJlicability to 
generative phonology. 
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Abstract 

Vector Space Grammars and the Acquisition of 
Syntactic Categories: 

Getting Connectionist and Traditional Models to Learn from Each Other 

Andreas Stolcke 

This papers describes a method for applying certain adaptive learning techniques usually found in connectionist 
systems to traditional symbolic grammatical descriptions. The approach is based on a generalization of context-free 
grammars in which discrete grammatical categories are replaeed by elements from a continuous vector space, leading 
to the concept of Vector Space Grammars. Continuity of the representations, as weil as differentiability with respect 
to rule application then enable use of learning techniques like competitive learning and error backpropagation. We 
show how this hybrid formalism can be used to learn grammar rules and category labels from phrase-bracketed 
positive and negative sampie strings of a language. 

Furthermore, since Vector Space Grammars are formally and conceptually derived from classical grammar for­
malisms, the results of learning can be analyzed and interpreted in terms of classical notions. In particular we show 
how the continuous rule representations learned can be analyzed to be quasi-isomorphic to classical context-free rules . 

It is argued that generalization and extension of classical formalism to accommodate adaptive learning is a 
promising approach towards integrating traditional and connectionist methods. 
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1 Introduction 

This paper describes work in progress aimed at exploring 
connectionist learning techniques for the construction of lan­
guage a.cquisition devices. The main thrust of this work is 
to reconcile and capitalize on both the significant results in 
connectionist learning research and the body of linguistic 
knowledge a.s incorporated in standard high-level theories of 
language. 

Connectionism, and especially Parallel Distributed Pro­
cessing (PDP) ha.s developed an array of models of learn­
ing systems (ba.ckpropagation. Boltzmann ma.chines. com­
petitive learning (Rumelhart et al., 1986b)), these models 
typically operate on representations at 80 rather low and un­
structured level (unit a.ctivations, bit vectors, microfeatures) 
relative to the structures used in traditional linguistic de­
scriptions (trees and graphs, case frames, grammar rules, 
sta.cks). This, of course, is no coincidence: the learning al .. 
gorithms used, e.g., in Ba.ckprop Learning and Boltzmann 
ma.chines are powerful and general precisely because they 
operate on simple and homogeneous representations. The 
simplicity of the representation allows 80 simple mathemati­
cal chara.cterization and analysis, which in turn leads 10 (and 
justifies) the respective learning procedure (such a.s gradient 
decent and simulated annealing) . 

A second prerequisite for these connectionist learning al­
gorithms is that representations be continuo", in nature. 
Continuity of the representation spa.ce, with the added re­
quirement that the performance mea.sure be differentiable 
with respect to the representations, ensures that adaptive 
learning can take pla.ce, i.e., gradual adjustment towards 80 

specified goal. Again, continuity and differentiability are typ­
ically not found in traditional linguistic descriptions, which 
for the most part are inherently discrete (Fuzzy La.nguages 
(Zadeh, 1972) are 80 notable exception). 

The question that shapes up, then, is this: how can 
we harness the power of apparently powerful connection­
ist learning techniques without simply starting from scratch 
with respect to the linguistic insights gained and formulated 
within the existing theories of language. Put differently, how 
can we bridge the representational gap between these two 
fields so a.s to both extend the applicability of connectionist 
learning and add learning power to linguistic theories? 

Assuming for 80 moment that we can be successful along 
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these lines, &Il additional benefit becomes evident. If our con­
nectionist representations are specifically designed to have 80 

well-defined relation to existing theoretical constructs (such 
a.s linguistic rules and categories) we will increase the chance 
that the outcome of our learning procedure will not be just 80 

collection of weights that apparently 'do the job'. Instead we 
can reinterpreted the solution found by the network in terms 
of the theoretical framework, even if that requires departing 
from some of the theoretical a.ssumptions we started with. 

This approa.ch contra.sts with some PDP research in 
which networks were trained on some linguistic task. and 
where the research er post hoc tries to analyze the structures 
found and construct an adequate 'theory' of the networks 
internal behavior. The rational, of course, is to start out 
with an 'unbiased' network and to let it 'discover' the struc­
ture of the input a.s weil a.s adequate internal representations. 
Invariably, however, the post hoc analysis ha.s to refer to pre­
formed concepts of language (Elman. 1988; Polla.ck, 1988; 
Elman, 1989). This is not surprising since many of those 
preformed concepts not only have 80 strong theoretical and 
empirical motivation, but are intuitive to some extent (like 
the fact that there are sentences and non-sentences, that 
verbs behave differently from nouns, etc) . 

2 Vector Space Grammars 
The work reported here is 80 specific example of how tra­
ditional linguistic concepts might be combined successfully 
with adaptive learning techniques to result in 80 framework 
within which certain aspects of language and grammar can 
be learned. 

We have developed 80 generalization of traditional context­
free grammars (CFGs), called Vector Spoce Grammars 
(VSGs) . VSG rules have the same format a.s standa.rd CFG 
!ules iD Chomsky Normal Form (CNF), namely nonterminal 
productions of the form 

X-YZ (1) 

and lexical (terminal) rules 

X-a (2) 

to derive strings of alanguage. Wherea.s in tradition al gram­
mars categories (X, Y, Z) are symbols in 80 spa.ce with 80 



terminal 

Figure 1: Vedorl involved in VSG rule applica.tion. The new 
root vector a iB a function of the subtree root vectorl b ud 
c &nd the vectors in the rule x - y Z, e.g., a = (b·y)(c.z)x. 

binary metric (equa.lity/nonequality), VSG U&eI tJector. u 
nonterminal categories. ThiB gives a continuoul metric on 
the category Ipaee, tbul fulfilling one of the prerequisites for 
an adaptive leuning mechanism. Terminals (wordl) in VSG 
are still unanalyzed atomic entities, ud Itrings of terminals 
form the doma.in in whicb a language is defined. 

A standard non-terminal rule mape two Ipecific lIymbolic 
categories into a third Iymbolic category (the left-bud lide 
of the rule). Similarly, a VSG rule mape two vectorl onto a 
third. From a bottom-up parsing point of view, a tradition al 
CFG rule iB applicable if and only if itll two right-hand lide 
categories match exaetly two oth~r categories (root8 of par­
tial PU8e8). In VSG, rule applicability becomes a graded no­
tion, and every rule will be applicable to every two categories 
to IIOme extent. However, the formalism iB designed luch that 
well-matching rules give a 'high' output, ud poorly match­
ing rules result in a vector dOlle to the zero vector. This iB 
aecomplished by the following 'aetivation function' for VSG 
rules. Let x - y z be the rule applioo to two categories b 
and c (we use bold leUerll to denote vector quantities). Then 
the category resulting !rom the rule application is defined u 

a=(b·y)(c·z)x (3) 

where . denotes the inner product of the vector Ipace. The 
two inner products on the right express the match of cat­
egories, and since the right-hand lide terms in a context­
!ree rule work conjunctively (all have to match), the values 
are multiplied. Cho08ing the inner product as the meuure 
of matching partly determines the Itructure of the category 
spaee: categories will behave differently to the extent that 
they are orthogonal. The elements involved in rule applic&­
tion are depicted schematically in figure 1. 

It can be 8hown that tradition al CFGs and their way 
of rule application iB a lpecial cue of VSG rule application. 
Roughly lpeaking, eaeh dimenIion in tbe category Ipace cor­
respond8 to a non-terminal in a traditional grammar. 

Acceptance 0/ dring. by a grammar can be deined ual­
ogously to traditional gramm&rll, although acceptuce be­
comes a non-discre1e function (similar 10 Fuzzy Langua.ges). 
Since these definitionl are not directly relevut 10 rule for­
mation we will omit them here ud turn immediately 10 the 
learning algorithm (see (Stolcke, tion) for details). 
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3 Learning with Vector Space 
G ram mars 

The problem of learning to puse Itringll of al&nguage can be 
broken doWll in10 two lubprobleml: finding tbe IIlruclure of 
the parse tree, and uaigning category labels to tbe nodes in 
the tree. There are indicationl that the two probleml migbl 
in fact be handled separately. 

Morgu et al. have Ihown that tbi. Ulumplion can be 
juatified !rom at Ieut three perspectives. Firstly, a.cr088 
natural lugua.ges there iB a variety of cues present in lhe 
IUrface Itructure of langua.ge (bolb intra-sententia.lly and 
crou-sententially) which correlate weil witb phrase bound­
aries and would tberefore form a 8uitable basis for phrase 
Itructure e:draction prior 10 gra.rnma.r leuning. Secondly, it 
cu be Ihown thal at Ieut adultll aclually depend on these 
cues when taught artificial lugua.ges (Morgu et al., 1987; 
Morgu et al., 1989). Finally, learnability argumentl show 
that the abeence of IUda prestructuring in gra.mmar learning 
would require unrea.listically large amount8 of processing ca­
pa.city ud input la.mples (Morgan, 1986) for learning to be 
luccessful on theoretical groundl. 

In the following we will discu. how the category sY8tem 
and the rules for a language can be learned within the for­
mal !ramework provided by VSG, given positive ud negative 
inatances of the language along with tbeir phrase 8tructure 
bounda.ries. 

It Ihould be pointed out at thiB Itage tbat the overa.ll 
algorithm about to be described iB not connectionist in the 
sense that, for every upect of itl operation, a neura.lly plau­
lible implementation cu be given. In particular, 8tructures 
will be created dynamically throughout the algorithm, IIOme­
thing for which no elegant connectionist mechanism is known 
10 far. However, the Itructures themselves (VSG rules), a.s 
weU u the operation I involved in the application of individ­
ual rules ud in the learning procedure, are irnplementable 
with mamltrea.rn connectionist hardware. 

Two global para.meters of the IYltem are the dimension of 
the category space and the number of rules to be used. These 
parameters should be set 'large enough' for a given l&nguage, 
ud have u effect limilar to the number of hidden unit8 in 
a backprop&gation network. With too little resources, the 
IYltem will not converge on a IOlution, ud with 100 m&nY 
degrees of !reedom the IOlution might be redundant ud not 
express certa.in genera.lizationl about the input. 

At the out.set of learning, then, a fixed number of non­
terminal rule 'templates' of the form (1) (witb a given vector 
Ipace dimenIlion) are allocated. Additionally, for ea.ch ter­
minallymbol, a rule of the form (2) is created. All category 
vectors, in all rules, are set to random unit-length vectorl. 

Given a aa.mple .tring from the luguage ud a parse tree 
skeleton, we conltruct a labeled pa.rse tree !rom the cur­
rent set of rules. To usign a category vector to anode, the 
ru1e whOlie right-hud aide represents the best match for tbe 
child node C&tegories iB selected ud equation (3) is used to 
compute the output category for that node. 'Best match' is 
deined accord.ing to the aa.me inner product metric u used 
in equation (3), i.e., uling the value (b. y)(c . z). 0nly 
the rules selected at IOme node will later participate in the 
Iearning proceu, ud .ince oo1y the currently best rules get 
selected the whole process .trongly resembles the method of 
compehtitJe leGming (Rumelhart and Zipeer, 1985). 



By working from the termin&! nodes to the root we urive 
at a category label for the entire string. If the training I&D1ple 
is a p08itive instance of the language we know what the tuget 
category for the puse should be: the sentence category es'. 
Without 1088 of genera.lity we can fix S throughout training 
to be a particulu vector, e.g., the unit vector (1,0, ... ,0). 

The second idea adapted from connectionist leuning 
methods is that of e"ro,. backp,.opagation (Rumelhut et &!., 
1986a). At the root node we can immediately compute u 
error term for the discrepancy between the desired output 
and the a.ctu&! output. For p08itive examples this is juat the 
difference between S and the root category, for negative ex­
amples we compute an error term which tenda to make the 
output category and S orthogon&!. A recursive procedure 
(ba.sed on the ehain rule) can then compute the derivative 
of that error with respect to every category vector oecurring 
in !IOme rule (Ieft of right-hand side) applied 80mewhere in 
the tree. The details of the computation of derivatives cu 
be found in the appendix. 

Derivatives for ea.ch category vector are then added up 
and multiplied by !IOme constant (the 'Iearning rate') to give 
the adjustment to be applied to that category. All rules 
are updated a.ccordingly, all categories are resc&!ed to unH­
length, and the next training example is processed. The 
&!gorithm cycles through the training set until the error be­
comes negligible or no further improvement is observed over 
a long period of time. 

4 A Sampie Grammar 
Preliminary results show that the learning procedure 
sketched above can indeed learn gra.mmars for both artifi­
ci&! languages and natur&! language fragments of moderate 
complexity. As emphasized in the introduction, the resulta 
of the learning procesa can then be an&!yzed in terms of the 
context-free forma.lism VSGs are ba.sed on. 

As an example consider a fragment of Englishconsist­
ing of transitive sentences (' A circle touches a square') and 
copula sentences (' A circle is below a squue') involving the 
nouns ci,.cle, !quare, the verba i!, touche., the prepositions 
above, belowand the determiner a (this fragment is borrowed 
from the La project domain (Feldman et &!., 1990), a sa.mple 
grammar for it is given below). 

The &!gorithm was run over a set of 6 p08itive and 18 
negative sam pies, listed in figure 2. the number of rules was 
set to 5 and the category dimension to 15. At a constant 
learning rate of 0.5 the error was typica.lly negligible after 50 
passes over the training set. 

As a method for an&!yzing the resulting VSG we used 
clu!te,. analy!i!, wlUc~ groupe vectora a.ccording to a dis­
tance metric in a hierarchie&! fashion. Figure 3 shows the 
result of clustering a.ll vectors occurring in rules as weil as 
the fixed S vector. The graph shows that the vectors fall 
into nine major clusters of left-hand side and right-hand side 
rule vectors. Further an&!ysis of these clusters shows not 
only that they form a rule system that accounts precisely for 
the input sampie, but also that these rules and categories 
can be put into a one-to-one correspondence with a natur&! 
standard eFG for the language at hand: 

S NPVP 

NP Dei N 

+ «a eirele) (touche. (a square») 
+ «a square) (touche. (a eirele») 
+ «a eirele) (i. (balo. (a square»» 
+ «a square) (i. (balo. (a eirele»» 
+ «a eire I.) (i. (abo.e (a square»» 
+ «a squar.) (i. (abo.e (a eirele»» 
- (a squar.) 
- (a eireI.) 
- (&bo •• (a eireI.» 
- (balo. (a .quare» 
- (touch •• (a eireI.» 
- (touch •• (a squar.» 
- (i. (abo •• (a square») 
- (i. (abo.e (a .quare») 
- (is (balo. (a eirele») 
- «a eireI.> (b.lo. (a square») 
- «a .quar.) (abo •• (a eirele») 
- «a eireI.) (i. (touehes (a square»» 
- «ie eirele) (touehe. (a square») 
- «a eirele) (a (a square») 
- «a square) (is (belo. (is cirele»» 
- «a square) (touehes (belo. (a eirele»» 
- «a eirele) (is (a square») 
- «a .quar.) (a (abo.e (a eirele»» 

Figure 2: Training set used for the VSG learning experiment. 
The data is drawn from a fragment of English generated by 
the grammar given in the text. Positive training instances 
are labeled with +, negatives ones with - . 
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VP VT NP 

VP VC PP 

PP P NP 

N squa,.e!ci ,.ele 

VT touche.! 

VC I! 

P abovelbelow 

DeI a 

(Figure 3 explains how eFG symbols map onto vector clus­
ters.) 

Of course the details of the resulting rule and cate­
gory structure are highly dependent on the training environ­
ment. For this example, extreme conditions were intention­
a.lly chosen to generate the perfeet correspondence between 
the structure learned and the tradition&! eFG. Specifically, 
constraining the number of rules to five forces a parsimonious 
use of categories. With more rules to work with either redun­
dancies would develope (sever&! rules serving the same func­
tion) or some rules stay uselesa (never winning a competition 
and not converging onto meaningful categories). Also, the 
relatively luge number of negative examples ensured that 
the categories formed were sufficiently discriminatory. With 
lesa or no negative examples a grammar develope that a.c­
counts for a.ll the positive examples but fa.ils to exclude all 
the negative ones, due to overly gener&! rules. 



. ,. 
... am .... 

rIIol ·""1 
.... lJ7l 

rtal·am 

"I·."" 
_·TOlIOB 

.... '71 _·.m 
"I.am ..... 

"'U'14 _·.m 
.... m 

.. 1·.,.,1 
_·IIILOW 

Figure 3: Clusters of category vectors derived from sam pie 
language. The rules are arbitrarily numbered R971 through 
R975, left-hand side vectors are labeled 'lhs', first and second 
right-hand sides 'rhsi' and 'rhs2', preterminals 'lex' . The 
nine major clusters correspond (from top to bottom) to the 
nonterminals NP, VT, PP, VC, VP, N, Det, P, and S. 

5 Conclusions 

These and other examples show that the algorithm sketched 
above is effective in extracting categories under the tight 
constraints imposed by the theoretical framework (context­
freeness). More importantly, Vector Space Grammars show 
that tradition al theoretical concepts can be generalized to 
profit from some of the powerful techniques developed in re­
search on connectionist learning. Our ongoing work is geared 
towards both exploring the possibilities of Vector Space 
grammatical representations and finding other areas were 
traditional theories and connectionist methods can 'learn' 
from each other . 
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Appendix: Error backpropaga­
tion through grammar rules 
This section ShOW8 how the equations for error ba.ckpropa.­
gation through the parse tree are derived. 

As noted earlier, we can define the result a of applying a 
rule x - y z to two categories band c as 

&=(b.y)(c · z)x 

Consider a general node in the parse tree with category 
vector &, derived from two child nodes with vectors band 



c using the rules x - y z. We will eonsider the geaeral 
'activation rule' 

a = f(b. y)f(c· z)x (4) 

where f is a. dilferentia.ble and monotonie 'activatioa fune­
tion' as typiea.lly used in other eonnectionist a.pproaches. In 
the experiments reported f is either linear (the identity) or 
sigmoid. 

An error funetion E is defined on the root ea.tegory of the 
parse tree . If the tra.ining sam pie was a. positive one, thia is 
typiea.lly the sine of the a.ngle between the the S vector ud 
the root, on negative sam pies the eosine of that a.ngle. Back­
propaga.tion sta.rts by eomputing ~ for the root eategory a 
directly from that error funetion . We UBe ~ he re u .. eoa­
venient shortha.nd for the vector of partia.l derivatives with 
respect to the individua.l eomponents of a, 

( ~~) ""3 

"E 
""" 

The induetive a.ssumption in the proeedure is then that :; is 
a.lrea.dy eomputed, a.nd that the rema.ining deriva.tives, ~, 
"E "E "E d "E b d . ed f h E OC' 8lZ' 8Y' a.n 8!' ean e env rom t ere. ventu-
a.lly only the latter three derivative vectors are needed to 
determine the rule a.djustment, but the rema.ining oaes are 
required a.s intermediate va.lues in the recursion . The recur­
sion bottoms out a.t the lexiea.l nodes, sinee lexiea.l rules ha.ve 
only a left-ha.nd side vector, but no a.djusta.ble right-ha.nd 
side. 

From the expanded version of eq. (4), 

we get 

oE 
Obi 

aj = f(LbiYi)f(LC;Z;)~;' 

"" oE oa, 
= L- (Jaj obi 

J 

= 

= 

= 

"" (JE J'(b. y)y;J(c . z)~j L- (Ja· 
J J 

( ~ !:, "j) !,(b. y)f( C 'lv; 

oE , ( (- . x)f (b . y)f C · Z)Yi oa 
or, using the shortha.nd, 

oE oE , - = (- . x)f (b . y)f(c· z)y ob oa 
The situa.tion for ~ is symmetriea.l and we get 

oE oE , - = (- . x)f(b· y)f (c · z)z oe oa 

(5) 

(6) 

(7) 

We ean now eompute deriva.tives for the eomponents of 
the rule. For the left-hand side we get 

oE oE oai 
= 

OXi 

= 

Oai O~i 
oE 
-f(b· y)f(c. z) 
oa; 

or, in shorthud, 

oE 
(JE = f(b . y)f(c . z) oa 
Ox. 

(8) 

The equatioll8 for derivatives with respect to y a.nd z a.re 
symmetriea.l to the ones with repsect to b a.nd c , respectively 
(eql. (6) ud (7)) . 

oE oE , - = (- . x)f (b . y)f(c · z)b (9) 
Gy (Ja 

(JE (JE , - = (- . x)f(b . y)f (c · z)c (10) 
OZ oa 
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Narurallanguage and knowledge are tightly connected. In this paper some fundamental questions conceming the relation be­
tween language and knowledge are posed. Such questions are relevant to any research in the field of computationai linguistics, 
including the field of machine leaming of natW1Ü language. However. most answers are not available. or lead to further ques­
tions. But, one thing is certain: language cannot do without knowledge. 

Further research into the relation knowledge-Ianguage seems unavoidable. The outline of a model is introduced. which 
fonns a foundation for further research. In the model. a multi-layered knowledge base interfaces with the world through a 
dynamic. context-dependent conceptual model. A meta-cognitive level interprets the interaction with the world on the basis of 
the conceptual model. It also decides what knowledge to project from the knowledge base into the conceptual model. depen­
dent on the current context. The conceptual model feeds back into the knowledge base. In this way knowledge on higher-order 
entities (concepts) can be included in the base. and a multi-Iayered knowledge base emerges. 

It might be necessary to develop new logical systems for inferring on the knowledge and the conceptual model. The strict 
logic of existing systems seems to conflict with the flexibility of the human mind. Refonnulation of logical concepts like 
"inconsistency" seems unavoidable. In the context of language. the tenn incompatible seems more appropriate. Such incom­
patibilites in the conceptual model. which is a partial projection of the knowledge base. should be resolved. A non-classical 
inference mechanism executed by a meta-cognitive level resolves this incompatibility. 

The ultimate goal of this research is a data-driven knowledge model which. when implemented. will show gradual "sponta­
neous" development of language perfonnance. Emphasis is on knowledge. It is therefore lilcely that other data (e.g. visual) 
will have to be considered. apart from linguistic data. 

The ideas sketched in this paper are still in a stace of genesis. They are presented here to provoke discussion. Many aspects 
of the relation knowledge-language remain undiscussed. e.g. the exact location of language rules in the model. 
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INTRODUCTION 

Knowledge plays an important role in language performance. 
Numerous facts show us that language performance cannot 
ex ist without world knowledge. As an example, consider the 
fictitious headline: "Bush stands finn in storm". No one who 
has read any newspapers lately, will interpret this sentence 
as: "Scrub survives the windy forces of nature". Interpretation 
of such sentences draws heavily upon our world knowledge 
(in Ws case "world" in the most literal sense). 

Such considerations show us that knowledge is essential 
to natural language. However, the main question remains un­
answered: how is knowledge involved in natural language? 
What is the relation between our knowledge and natural lan­
guage performance? Do we translate language utterances into 
some internal (e.g. propositional) format, and then check the 
consistency of the translated utterance against our knowledge 
base? This seems highly unlikely. In the case of the example 
above, we directly come to the correct reading, instead of 
testing the possible interpretations2 against our knowledge 
base. The context (a headline during the crisis in the gulO 
forces the intended reading. 

The context prepares us for the correct interpretation. 
Thus, language analysis seems to be guided by knowledge, 
and not checked against knowledge. We isolate parts of our 
knowledge into an expectancy model. When reading the word 
"Bush" we already know that the president is meant. We 
would be laken by surprise if the article continued as: "Last 
Wednesday, a scrubwood was not laken down by heavy wind 
in the southeast of Texas". 

In this paper a model of knowledge is described wh ich in­
corporates such context-dependent concepts . The described 
model will serve as the basis for research on the relation be­
tween knowledge acquisition and language acquisition. Main 
goal is to develop a model which, when implemente<!. will 
show "spontaneous" language development. 

KlI'OWLEDGE AND LANGUAGE 

Analysis of the interaction between knowledge and language 
leads to other questions. Can we speak of two diffent sys­
tems, a knowledge base and a language faculty, both with 
specific properties? A number of alternatives exists. When 
we process some language utterance, it seems psychological­
Iy plausible to presuppose some speech recognition compo­
nent which translates sounds into some other representation 
(Ianguage of thought?). Recent results in speech recognition 
with the use of connectionist models seem to support this. 
But wh at is the nature of ws preprocessing? Does it concern 
syntactic, semantic or even pragrnatic analysis as weil as 
phonetic analysis? If so, the argument above implies that 
such preprocessing would have to be controlled by our 
knowledge. Can we directly include the output of such apre­
processor in our knowledge base, if such a base exists? 

If a preprocessing component does not perform ws exten­
sive analysis of utterances, would that not imply the exist­
ence of some "Ianguage of thought" with semantic - or even 
syntactic - properties? What should such a language of 
thought look like? 

The nature of our knowledge base seerns to be a deciding fac­
tor in ws analysis. Apart from the question whether we can 
speak of a separate storage place for knowledge, the question 
arises how knowledge would be stored in such a system. Is it 
stored in the form of language-like expressions, (proposi-

2 There Ire .1 least Iwelve possible inlerpretation •. "Bu.h" 
ean be inlerpreled .. the presidenl, •• serubwood, or .s 
jungle. Both "stand. finn" and "stonn" can be interpreted 
in • lilera! sense, or in • metaphorical sense. 

tions or "Ianguage of thought"), in the form of images, in a 
distributed form in a neural net, or in some other, stil un­
known, representation? The connectionist answer is a temp­
ting one. Psychologically, it can be quite succesfully defend­
ed. It sheds light on processes like association, memory re­
trieval, memory 1055, the often surprising absence of severe 
effects of minor brain darnage and many more aspects of 
knowledge. 

It seems less plausible that our knowledge is represented 
by language-like express ions. For these representations can 
be directly translated into language utterances . But il is com­
mon knowledge how difficult it can be to express our knowl ­
edge in a precise way. Secondly, one hardly ever uses the 
same words to express the same knowledge. 

It is plausible that knowledge is represented in a distributed 
system. Does this imply the existence of an independent, se­
parate knowledge system? If we consider language. some in­
terface between language-like expressions and the knowledge 
system exists. It sums reasonable to assume that lhe transla­
tion takes place in the mind, before expressing the resulting 
utterance. This would imply that the language faculty and the 
knowledge base are two distinct systems. 

If we consider language acquisition. the list of dreadful ques­
tions continues. Which underlying principles of language are 
innate? Why the discrepancy between the active and the pass ­
ive language performance of children? 15 Ws just a matter of 
filtering out the understandable parts of an utterance? 

A common conception of children's language acquisition is 
that child language travels through successive slages of com­
plexity: one-word sentences. two-word sentenees. subject­
verb-object sentences etc., before reaching adult complexity . 
However, many children (the author is one of them) show a 
different kind of development. They start to use language at 
an advanced age, first talking double Dutch for a short period 
of time, but in sentences with adult intonation. After this 
stage, they talk in understandable, relatively complex senlen­
ces. Why this remarkable difference in development? lt is 100 

simple an answer to assume that the second group silenlly 
travels the same stages as the first group, for why should 
they keep silent? Shyness? 
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What is the relation between knowledge acquisition and 
language acquisition? Can we speak of a recurrent process: 
language acquisition bringing forth knowledge acquisilion 
and knowledge acquisition bringing forth language acquisi ­
tion? But we should not underestimate the influence of other 
perceptional stimuli like vision, hearing, smell, taste. touch 
etc. Does language play the same role as such stimuli or is 
there a fundamental difference? 

How is knowledge acquired and how does its acquisition in­
fluence language? Knowledge seems again a crucial factor . 
But also again a nasty one, for questions rise which CaItnot 
(yet) be answered. 

The ideas sketched in the rest of ws paper have their origin 
in my dissatisfaction with the current classical language para­
digm. The classical approach consists of parsing a sentence 
(syntax), interpretating the result (semantics), and applying 
the interpretation (pragmatics). The Holy Trinity of syntax, 
semantics and pragmatics is a convenient one for language 
analysis, but seems to be an artificial one for describing nat­
ural language understanding. lt has been used to strictly sep­
arate the three propenies of language. I think that a reason­
able model should integrate these properties. 

The classical approach is outdated. It implies that sem an­
tics is influenced by syntax, and pragmatics by semantics 
and syntax. But. semantic and pragmatic considerations con­
trol syntactic analysis, e.g. when resolving ambiguity. Prag­
matic considerations affect the semantic analysis of a senten-



ce: interpretation does not solely depend on structure. but a 
great deal on context as weil. We have seen that knowledge 
guides language analysis. But where does it fit in? 

Language understanding is a complex process. consisting 
of interwoven processes of feature analysis (conceming syn­
tax, semantics. pragmatics, and knowledge). This situation 
becomes even more complex in the field of language acquisi­
tion. 

Until now I have only posed questions without providing the 
answers. And I doubt it that anyone will be able to answer 
these questions in the near future. However, these questions 
are relevant to the field of computational natural language 
analysis. Insight in hwnan language perfonnance can provide 
us with strong c\ues on how to implement natural language 
systems. Computers cannot compete with hwnans in activi­
ties like language. The reason for this does not lie in storage 
problems, processor speed, but in more fundamental pro­
blems like representation and inference_ 

As an attempt to bypass the problems discussed. the present­
ed model will be primarily concerned with knowledge. It 
forms an altempt to tackle the problems at the bottom 
(knowledge), as an alternative to the top-down syntax-seman­
tics-pragmatics approach. Its basic assumption is that the 
state of knowledge reflects the state of language and vice 
versa. 

The model presented in this paper is essentially a computa­
tionial one. The main goal of this research is to develop a 
language leaming system. which is knowledge-based. How­
ever. we should not forget to keep an eye on human language 
perfonnance for valuable clues on how to (or rather: on how 
not to) develop computational models. 

The ultimate goal of this research project is a knowledge 
model which. when implemented, will show gradual "sponta­
neous" development of language perfonnance. whilst explain­
ing some properties of human language acquisition. a most 
ambitious goal indeed! Such a model would have to cope with 
knowledge acquisition. knowledge processing, and acquisi­
tion of linguistic rules. The model should be fonnalized such 
that implementation is easy. and draw upon knowledge about 
human language acquisition. 

A MODEL OF KNOWLEDGE AND LANGUAGE 

I have stressed the importance of knowledge in language rel­
ated activities. This simple statement brings forth utterly 
complex questions. which cannot (yet) be answered. One is 
forced to make choices which might be psychologically im­
plausible. in order to "get something to work". 

In this section I will confront the reader with some prema­
ture ideas still in the state of genesis, which will hopefully 
lead to such an inaccurate, but working model. I present them 
to provoke discussion. not to present research results. 

In the model I will postulate aseparate knowledge base. As 
has been argued in the previous section. it is plausible that 
our Icnowledge is represented in a distributed fonn. I will also 
postulate a conceptual' system. This system fonns the inter­
face between language and Icnowledge. In this conceptual sys­
tem, a language-like representation is asswned. I think that 
this is the main feature of the presented model: a projection 
of distributed Icnowledge into a language-like representation. 

Wh at are the properties of this conceptual system? Depen­
ding on the contexl, distributed Icnowledge is projected into 
the system. On the level of Icnowledge, association fonns the 
inference mechanism. On the level of the conceptual system, 
other inference mechanisms like deduction take place. At this 
level. inference is conscious. We manipulate symbols instead 
of having them "pop up". 
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Consider for instance agame of chess. If we analyze aposi· 
tion, we unconsciously associate and a move "pops up". We 
then consciously check whether such a move would be a good 
one. We "see" combinations, and afterwards analyze them for 
correctness. Such active symbol manipulations are relatively 
hard. Try to verify checkmate in eight moves! 

The crucial implication of the above considerations is that 
knowledge is on the fly projected into a context-dependent, 
dynamic system. Abstraction becomes a parametrized process 
instead of a logical property. In slightly different contexts. 
our conceptual system might be quite different. 

In the conceptual system, we can use the more classical 10-
gical approaches to natural language processing, for it is as· 
swned that we use a language-like representation in tltis sys­
tem. 

Some important parts of the model are still missing. For how 
to control the association in the knowledge base? And how 
is the link between language and the conceptual system eSla· 
blished? I assume that a meta-cognitive level exists. which 
controls the association process in the knowledge base. dep. 
endent on the current state of the conceptual system and in­
coming infonnation from interaclion with the world. Incom­
ing infonnation is processed by the meta-cognitive level. 
taking the conceptual system as data. The meta-cognitive 
level feeds such processed information into the 1cnowledge 
base. Finally, the meta-cognitive level generates output to 
the world. 

The model can be visualized as: 

~ 
Experience 

control 

Fig. 1: Mcxkl 0/ IM rtlaliofl Iotowltdgt-world. 

The knowledge base is projected into a conceptual model. 
This projection process is controlled by the meta-cognitive 
level. such that association takes place in a context-depen­
dent way. Knowledge relevant to the current context is in­
cluded in the conceptual system in a language-like representa­
tion, irrelevant knowledge is not. The projection also in­
volves the translation from distributed knowledge into lan­
guage-like expressions. It might be necessary to process the 
chosen knowledge, for instance by providing extra relations 
between pieces of Icnowledge or by adding infonnation about 
certain Icnowledge. The meta-cognitive level implicitly con­
trols what Icnowledge to include. change or remove and what 
infonnation to add by controlling the association process in 
the Icnowledge base. 

The inter action with the world (experience) is evaluated by 
the meta-cognitive level on the basis of the conceptual mod­
el. The meta-cognitive level takes the conceptual model as 
da ta and reasons on the basis of this data in order to analyze 
input or to generate output. In case of conceprual "crashes" 



(e.g. when the headline is followed by the unexpecled conti­
nualion), the meta-cognitive level will have to decide on 
whal aClions 10 undertake. Thus, complex reasoning will be 
carried oul by the mela-cognitive level, allhough il seems 
sensible 10 ascribe some reasoning capabililies 10 the con­
ccptual syslem. 

The conceprual model is dynamic, for it is conlext-depen­
denl. The conceprual system changes when context changes, 
information will be included, discarded, or playadifferent 
role in the conceprual model. The projecled conceprual sys­
tem is relevant to a certain siruation. If a ~:ruation changes, 
its related model changes as weil. 

New experiences can be analyzed by the mela-cognitive level 
and the conceprual syslem and then be included in the knowl­
edge base. "Sponlaneous" proeessing of the knowledge base 
(meta.cognitive controlled self-organizatiEln) might also lead 
to changes in the syslem. Structures in the knowledge base 
can emerge, relations found etc., by this controlled self-orga­
nization. 

The mela-cognitive level and the conceprual model feed back 
into the knowledge base. Thus, knowledge can be added or 
changed. A second effect of this feedback is that il ensures a 
mulli-Iayered knowledge base, for knowledge about concepts 
in the conceprual system can be fed inlO the base. Higher­
order entities in the conceprual system can play the role of 
basic entities in the base. 

ln this research, language will be emphasized as the me ans 
for interaction with the world, both passive and active. How­
ever, il is not clear whether such a restriction will lead lO a 
reasonable model. Visual conlacl with the world, for instan­
ce, seems to be an imporlanl faclOr in knowledge acquisition 
and coneeprual developmenl. It mighl therefore be unavoid­
able to incorporale emulation of visual inleraclion in the 
model as weil. 

The question remains where and how language exactly in­
teraets with lhe conceplual system. I cannol provide an 
answer yel. Are linguistic rules included in the mela-cogni­
tive level such thaI utterances are translaled into a "language 
of thought"? 00 we check the resulting language-of-thoughl 
expressions againsl the conceprual system? Al this moment 
this approach seems a sensible one. The acquisition process 
is then implemented by evolulion of the knowledge base and 
the mela·cognitive level (both affecling the conceprual mod­
el). 

HUMAN Kl'oiOWLEDGE BASES 

The conceprual syslem has a language-like represenlation and 
is governed by inferenee processes like deduction. But, if we 
view such bases as logical syslems, we encounler severe pro­
blems with the rigid nOlions of logic. Consider for instance 
the notion of inconsislency. lf a seI of logical expressions 
is inconsistent. in classical logic one can deduce anYlhing 
from it (ex falso sequitur quodlibet) and in inruilionistic logic 
one can deduce nothing from il. 

This problem emerges when using propositional knowl­
edge representation. Oistributed and imagery representation 
do not suffer from this problem. The problem lies in the 10-
gieal syslem. nol in the human mind. The research will try lO 
reformulate logical notions such that beller correspondence 
exists belween the used logical systems and the model of hu­
man knowledge processing. As an example, in the case of in­
consistency, il seems be tIer 10 speak of incompatibility be­
lween diffenl layers (levels). 

Consider for instance a knowledge base which contains the 
information thaI birds fly, thaI an ostrich is a bird and thaI 
ostriches do nol fly. When asked whether birds fly, the besl 

answer seems to be: "Yes". This conforms to the Gricean 
maxirns, for with this answer we cover the greater part of the 
bird population. We access the knowledge base on lhe level 
of the bird class. lf the question folIows: "BUI how aboul os· 
triches?", we answer: "No, they don't, but they are an excep· 
tion". We are forced to shifl our attention lowards a differenl 
level, thaI of the primitive class. Al this level we access the 
specific information aboul oSlrichs 10 conclude that they 
form an exeeption lO the general rule aeeessed before. 

lncompatibililY belween the level of birds and that of the 
primitive class exists. When incompatibilty is involved (in 
the case of the second question), we can resolve this incom­
patibililY by reasoning thaI ostriches form an exception (at 
the mela-cognitive level). With such an approach to knowl· 
edge more abstracl and declarative descriptions of phenomena 
like prolotype theory, default logic, and concept formation 
theories like in Bartscb (90) follow implicitly from the 
model in a more procedural way. thus explaining why inSlead 
of Slaling thaI il is the case. 

As may be eoncluded from the considerations above. the 
knowledge base mighl nol conform 10 the classical logical 
form. Allernative knowledge represenlations and non· 
monolonic reasoning mighl prove lO be more useful. e.g. : 

Classical: '<Ix (ostrich(x) -+ bird(x» 
'<Ix (ostrich(x) -+ --, Oy(x» 
'<Ix (bird(x) -+ Oy(x» 
'<Ix (sparrow(x) -+ bird(x» 

Allernative: blrd(ostrich) 
--, ny(ostrieh) 
ny(bird) 
blrd(sparrow) 

The classical base is inconsislenl. ln lhe alternative case we 
use predicales over sorts. This means that deduction cannot 
aUlOmatically lake place. When confronted with a question a­
boul oSlriches, we firsl review the data on ostriches. Weil. 
they do not Oy and thus deduction is fmished . But. if we ask 
whether sparrows fly, we do nOl find the data at this level. 
We are then allowed 10 relale the predieate bird 10 1Je son 
bird. In such cases, we can infer the corresponding classical 
rules from blrd(sparrow) and ny(bird): '<Ix bird(x) -+ fly(x) 
and '<Ix sparrow(x) -+ bird(x), and il readily follows that spar· 
rows Oy. 
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Such a deduction syslem is efficient: special properties of 
the species (positive and negative facts) are included at the 
species level, common properlies al a higher level. The deo 
duction mechanism described forces us lO review the mosl 
specific da la first: inconsisleney is resolved. 

The reasoning involved takes place in the meta-cognitive 
level. Here we deeide whieh lebe I 10 aecess, whal 10 do when 
deduction fails, which higher level lhen 10 aecess etc. The 
facts are included in the coneeprual syslem. They represenl 
our conceptual declarative conceptual knowledge. 

Humans are able to reason aboul eonceptual deviations. We 
would nol want 10 lose this property in our model. The mela­
cognilive level should not only be able lO control the deduc· 
tion process, bUl also 10 perform mela-Iogieal operations. If 
one aslts whether birds fly, and then whether ostriches Oy, 
the mela-cognilive level will have lO realize that an excep· 
tion is involved. 



CO~CLUSIONS 

In this paper I have stressed the importance of a knowledge­
oriented approach to natural language. In the field of lan· 
guage acquisition this approach seems 10 be of the utmost 
importance. I have outlined so me proposals for a Icnowledge 
model. 

An important aspect of the model is the role of the Icnowl­
edge base in it. and how infonnation in the base is interpre­
ted. I propose a model in which Icnowledge about entities of 
different levels of abstraction can be included. Such levels 
emerge naturally when a feedback from the conceptual system 
is included in the model. 

The approach laken here might have important cons~uen· 
ces for the logic involved. It might be necessary to develop 
a new kind of logical interpretation in order to make the sys­
tem work . I do not see this as problematic. The ideas ell· 
pressed in this paper are heavily inspired by years of dissa­
tisfaction with the gap between rigid logic and flellible hu· 
man ity. The approach is also an effort to bring the two to· 
gether again. 
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This paper presents an outline of how to build a miniature language learning system, along with some preliminary 
results on learning selected system components. 

The Lo research effort at ICSI focuses on the problem of building a language learning system for the toy domain of 
simple geometrie scenes. Our initial target problem, the Miniature Language Task (MLA), is to learn a fragment of an 
arbitrary natural language from training examples of descriptive sentences paired with pictures of simple geometrie 
objects. As the focus of this effort is language acquisition and not computer vision, the system starts out with 
an internal representation for visual scene semantics. Individual scenes are presented in a form the system al ready 
understands; its task is to establish the syntax and semantics of the accompanying (partial) linguistic descriptions in 
the given target naturallanguage. If there are biases in description emphasis characteristic of a particular language, 
these should be learned along with the grammar syntax and lexeme semantics. 

The Lo project at ICSI is undertaken jointly with members of the UC Berkeley Computer Seien ce and Linguistics 
Departments. The project is headed by Professor Jerome Feldman, the director of ICSI and a professor of Electrical 
Engineering and Computer Science at UC Berkeley (Feldman et al., 1990a; Feldman et al., 1990b). Adele Goldberg, 
a doctoral candidate in Linguistics at UC Berkeley, is gathering cross-linguistic data relevant to the task. Professor 
George Lakoff of the UC Berkeley Linguistics Department brings to Lo a comprehensive knowledge of all sorts of exotic 
and obscure world languages. Terry Regier, a doctoral candidate in Computer Science at UC Berkeley, is looking 
into the acquisition of image-based lexical semantics for closed-class polysemous lexemes describing spatial relations 
(e .g. prepositions, verbal prefixes) (Regier, 1990; Regier, forthcoming). Andreas Stolcke, a doctoral candidate in 
Computer Science at UC Berkeley, wOi'king on learning syntactic categories (Stolcke, 1990; Stolcke, 1991). Susan 
Weber, a post-doctoral fellow at ICSI, works on the spatio-temporal semantics of the Lo domain (Weber and Stolcke, 
1990; Weber, 1990). 
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graphical scene editor linguistic description 

??? 

'true' 

Figure 1: The task is to learn both the syntax and 
semantics of a natural language fragment from simple 
scene descriptions with only positive training examples. 

1 The Lo test bed 

We are investigating the problem of learning a natural 
language fragment from training examples consisting of 
simple geometrie scenes accompanied by (correspond­
ingly simple) true descriptions in the target language 
(see Figure 1). An example of system input appears in 
Figure 2: any given scene can be labe lied in a wide vari­
ety of ways, depending on the elements being described. 

We are assuming that natural languages induce a fi­
nite number of decompositions or categorizations of sim­
ple visual stimuli. We posit the existence of a set of cog­
nitive primitives that can be combined to produce any 
known linguistic description of simple geometrie scenes. 
We intend to catalogue these primitives by analyzing 
the overlap between concepts acquired for a reasonably 
Jarge set of natural languages. If our hypothesis is cor­
reet, this cataloging process will soon converge on the 
common underlying representations. 

Our initial target language is a fragment of English 
known as Lo. A non-learning prototype system has been 
implemented in Prolog as a testbed for the components 
of the eventual learning system. The interfaces between 
the language, vision and semantic representation com­
ponents will crucially determine the ease with which lan­
guage can be acquired. 

The system's architecture is sketched in Figure 3. 
Two of the three in pu t sou rces of the hypotheticallearn­
ing system are still in use, but the testbed, modeling a 
fully trained learner, produces yes/no truth assessments 
of the linguistic input (the 'description' is treated as a 
query). The internal strueture of the testbed provides 
us with a working blueprint for the structure of the tar­
get learning system. Components include: categorical 
feature vectors, object representations generated by an 
interactive scene design session on the graphics interface; 

• 
D 

6 
o 

A dark circle is above a square. 

Un triangle est a droit d'un cercle. 

Um cerculo esta embaixo de um triangulo 

Figure 2: Training input to the MLA task: a sam pie 
picture and several possible partial descriptions, one in 
English, one in French and one in Portuguese. Train­
ing input for a given language would consist of multiple 
scenes each with assorted descriptions in the target lan­
guage. 
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graphical scene editor linguistic description 

categorical 
feature vectors 

spatial 
relations 

lexical semantics 

answer to implicit query 

Figure 3: Representational fixpoints chosen to facilitate 
learning the inter-representational mappings. 
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Figure 4: The graphical scene editor with an English 
language query. 

spatial relations, ego how the region 'above' alandmark 
object is definedj parsing into a logical form, i.e. the 
assignment of lexemes to an appropriate syntactic cate­
gory; and lexical semanties, the association of each syn­
tactic component with its corresponding spatial relation 
or categorical feature value. 

A graphical interface (see Figure 4) allows a user to 
draw scenes involving circles, squares and triangles, and 
to pop up a window for the natural language 'query' on 
the given picture. Since object features can be modified, 
both present and past tense queries are supported, as 
are static (eg. is above) and dynamic (eg. moved onto) 
relations. From the system's standpoint, the 'visual' 
input is a collection of facts about particular feature 
value assignments, ego at time step 2 there is an ob­
ject at location (10, 30) with circular shape, light shade 
and radius of 5. The linguistic description is parsed and 
translated into an internat logical form which is repre­
sentationally compatible with the scene data. Once the 
mapping between the internat linguistic representation 
and the internal visual representation has been estab­
lished, the task is complete. The question is how to 
achieve the desired mapping. 

The crux of the mapping problem is the relational 
nature of natural languages. Virtually all naturally de­
scriptive predicates in a simple spatial domain are rela­
tional in nature. Even at the level of linguistic reference, 
it turns out that white objects can be physically pointed 
to for diectic reference, purely verbal forms of communi­
cation must rely on indirect methods of establishing ref­
erence identity. When a unique property value (or con­
junction of values) exists in the frame of reference, that 
value can be named, ego the large light square. When 
property values alone leave ambiguity of reference, how­
ever, relational properties must be resorted to, ego the 
square below the circle. In the visual domain, however, 
information is available in terms of scene geometry and 
categorical feature values ego position and radius. The 
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Figure 5: Object reference by retational properties: 
the referent of "the square on top of another" should 
be available in constant time; however, in the Prolog 
testbed the time to resolve the reference is quadratic in 
the number of objects in the field. 

quest ion is then how to transform this categorical infor­
mation into the relation al form used in language? 

There are two approaches to sotving this matching 
problem. The one used in the Prolog testbed is to dy­
namically determine which visual relation is being re­
ferred to. This involves searching the object feature 
vector space until an appropriate set of vectors is found 
which satisfies the relational definitions referred to in 
the query. The flaw with the approach is it does not 
correctly handle reference by relational property (see 
Figure 5) . The second option is to tabulate all the rela­
tional information in the scene, then perform unification 
with the linguistic input. This approach can turn out to 
be combinatoric unless attentionat selectivity in the lin­
guistic input is exploited to focus and direct the visual 
processing. 

The testbed system is being used as a platform to test 
out learning components. There are three components 
under development, a static model of lexical semantics, 
learning grammar syntax: and learning spatial relations. 

2 Lexical semantics 

An alternative to relying on object reference to index 
and verify relations is to have the capacity to tabulate 
all the relations in the picture and use the linguistic in­
put to edit out the irrelevant ones. In this scenario, 
combinatorics are avoided by having a fixed sized buffer 
and relying on the linguistically supplied focus of atten­
tion (much as the eye would rely on foveating) to load 
only currently relevant information into the bulfer. 

This situation suggests an obvious bootstrapping 
strategy: before the linguistic knowledge exists to olfer 
editorial control (and in the absence of visual focus of at­
tention), the visual scenes must be kept extremely sim­
ple, to avoid confusion due to cross talk. That is, noun 
and adjective semantics must be acquired before tack­
ling relational properties. As the training input grows 
progressively more complex, the fact remains that unless 
the linguistic tag contains an unambiguous reference, ei­
ther to an object or to a relation, the picture semantics is 
liable to be too noisy for the system to be able to frame 
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any reasonable learning hypothesis as to the semantics 
of the unknown lexemes. 

The architecture proposed is shown in Figure 6. 
Visual scene analysis proceeds in three stages. First 
each potential landmark object in the scene is allocated 
its own set of primitive relational maps. Relations cur­
rently supported are: touches, near, Jar, and the two 
categorical definitions for each of above, below, left-oJ 
and right-oJshown in Figure 7. These maps are defined 
by differing patterns of connectivity such that for any 
location of the input stimulus the appropriate region 
will be generated by spreading activation. Once these 
regions have been established, the activity in the maps 
decays to not hing unless an externally excitatory signal 
inhibits the decay process, where the signal in quest ion 
is drawn from the set of all potential trajector objects. 
After this stage the activity in the map reBects the land­
mark's participation in the given relation. That is, if a 
landmark's above map displays activity, then there is 
some trajector object above it. 

The third stage involves feedback loops to the trajec­
tor and landmark controllers, as weil as a winner-take-all 
competition among the map activity summation units. 
The latter enhances the salience of any unique relations 
in the scene, while the former, by reducing the number 
of inputs to the system, may assist in narrowing down 
the target semantics. The entire process iterates until 
no further changes are seen at the controller level (tra­
jector, landmark and w.t.a. nodes). At this point it will 
hopefully be possible for the system to form a reasonable 
learning hypothesis as to the semantics of the unknown 
lexeme. 

Note that this proposal will result in the system be­
ing able to acquire linguistically inspired distinctions be­
tween relational descriptions. For example, speakers of 
one language group may tend to adopt the half-plane 
definition of 'below', while others may favor the vertical 
extension definition (see Figure 7) . 

3 Learning grammar syntax 

As a preliminary investigation into the difficult problem 
of classifying lexemes into lexical categories, Andreas 
Stolcke ran an experiment with Elman style recurrent 
nets . The task was to derive a semantic feature vector 
or slot-filler represeritation from sequential word level 
input. There were three slots used : first argument, re­
lation and second argument. Arguments, as object ref­
erences, have at least one feature value (eg. circle, dark, 
smalI) and relations map into known quantities (eg. be­
low, left-of) . The system performed weil on sentences 
with tail recursion like "the circle is above the square be­
low the triangle" , and even on sentences with one layer 
of center embedding, like "the circle above a square is 
touching a triangle" , but failed on sentences with center 
embedding of depth greater than 1, such as "the circle 
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Figure 6: Relational information is tabulated in three 
stages. First all primitive relations are generated in a 
dedicated set of maps. Then the maps are edited to re­
flect overlap with all possible trajector objects. Finally 
the map activity summation units enter a winner-take­
all competition, providing salience to unique relations, 
and feedback is sent to the trajector and landmark con­
trollers. 
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Figure 7: Two possible categorical definitions for 'be­
low' . In the looser version, any object in the half-plane 
defined by the object's lower surface is 'below' it. In the 
stricter form, an object must be in the area defined by 
the vertical downward extenS'ion of the landmark refer­
ence. A graded form of the concept would presumably 
combine the two; see Figure 9. 

above the square touching a tri angle is below a cireIen . 
The system would incorrectly interpret this to me an cea 
triangle is below a circle". While humans exhibit in­
creasing difficulty in parsing sentences as the depth of 
the center embedding grows, this behaviour is unreal­
istically brittle. This brittleness can be attributed to 
an inherent deficiency in Elman nets, with their fixed 
width "sliding windown of attention to the input. For 
any fixed Elman architecture, a senten ce can be con­
structed whose center embedding is deep enough to sever 
the connection between the subject and the predicate. 

The Elman net approach having proved too limited, 
Stolcke is currently experimenting with Vector Space 
Grammars (VSGs), an approach to grammar learning 
where syntactic categories are represented as points in 
a continuous metric space. VSGs are a generalization 
of standard phrase-structure grammars that uses con­
tinuous vectors instead of symbols to represent non­
terminals in grammar rules. The goal of this generaliza­
tion is to make the formalism suitable for adaptive learn­
ing techniques inspired by connectionism, such as com­
petitive learning and error backpropagation . In contrast 
to other POP approaches to this problem, the structure 
of the grammar is explicitly constrainedj for example, 
the grammar is forced to be context free. Results of 
using this approach . appear promising; details appear in 
(Stolcke, 1991) . . 

4 Learning Spatial Relations 

Different languages impose different structurings on 
physical space. For example, Mixtee is a Mexican In­
dian languages in which common English spatial con­
cepts such as "above" and "below" are entirely missing. 
They are replaced by a system of locative terms which 
does not map at all straightforwardly onto the English 

system (Brugman, 1983). There are also discrepancies 
among the spatial systems of eIosely related languages, 
such as English, German, and Dutch (Bowerman, 1989). 
Thus, a significant part of the Lo task is learning the sys­
tem of spatial concepts embodied in the language being 
learned. 

Terry Regier is developing a connectionist learning 
system that learns such systems of spatial concepts. The 
system currently works for single points located relative 
to some objectj the system is being extended to handle 
fuH objects located relative to other objects. 

The system has so far learned a system of eight En­
glish concepts (abo"e , below, left, right, in, out, off, and 
on), and several concepts from other languages as weil, 
ineIuding Mixtee. Figure 8 presents three of the eight 
English spatial concepts learned. In this figure , the tri­
angle is to be seen as the reference object (that object 
with respect to which other objects are located). The 
size of the black cireIes indicates the appropriateness, 
as judged by the system, of using a particular term to 
describe each position in space. 

The system learned these concepts in the absence of 
explicit negative evidence, as discussed in (Regier, 1990; 
Regier, 1991). Note also that the system's training set 
did not ineIude any triangles, and that the system never­
theless correctly generalizes to scenes involving triangles 
as reference objects. 

5 Conclusions 

The Lo task, originally posed as a ' touchstone' prob­
lem for cognitive science, is proving as challenging and 
rewarding as originaHy hoped . Our attempt to solve 
this deceptively simple task has split into three distinct 
efforts, lex.ical syntax, lexical semantics and spatial se­
mantics. The obvious next step is to somehow harness 
the three learning components together as a true test of 
the soundness of the proposed solution paradigm. 

References 

Bowerman, M. (1989). Learning a semantic system: 
What role do cognitive predispositions play? In 
et al, M. L. R., editors, The Teachabi/ity 0/ Lan­
guage, pages 133-169. Paul H. Brookes, Baltimore. 

Brugman, C. (1983). The use of body-part terms as loca­
tives in chalcatongo mixtee. in Report No. 4 of the 
Survey of California and other Indian Languages, 
pp. 235-90. University of California, Berkeley. 

Feldman, J. A., Lakoff, G., Stolcke, A., and Weber, S. H. 
(1990a). Miniature language acquisition: A touch­
stone for cognitive science. In Proceedings 0/ the 
12th Annual Con/erence 0/ the Cognitive Science 
Society, pages 686-693. MIT, Cambridge, Mass. 

189 



(above) 

(in) 

(on) 

................... , ..................• , .................•• , ................••• , 
•••••••••••••••••••• •••••••••••••••••••• ••••••••••••••••••• •••••••••••••• 

· ·~·····I· •• •••••• 
::::~ 
"cHffij 

r ••• •• •• 

• 
Figure 8: Three English spatial concepts learned by 
Regier 's system 

Feldman, J. A., Weber, S. H., and Stolcke, A. (1990b) . A 
testbed for the miniature language Lo. In Proceed­
ing! 0/ the 5th Rocky Mountain Gon/erence on Ar­
tificial Intelligence, pages 25-30, New Mexico State 
University, Las Cruzes, N.M. 

Regier, T. The acquisition of lexical semantics for spa­
tial terms. PhD dissertation, Computer Science 
Division, EECS Dept , University of California at 
Berkeley, in preparation . 

Regier, T. (1990). Learning spatial terms without ex­
plicit negative evidence. Technical Report 57, In­
ternational Computer Science Institute, Berkeley, 
California. 

Regier, T. (1991). Learning perceptually-grounded se­
mantics in the 10 project. In Proceeding! 0/ the 1991 
AAAI Spring Srmpo!ium on Gonnectioni!t Natural 
Language Proces!ing. 

Stolcke, A. (1990). Learning feature-based semantics 
with simple recurrent networks. Technical Report 
TR-90-015, International Computer Science Insti­
tute, Berkeley, Ca. 

Stolcke, A. (1991) . Vector space grammars and the ac­
quisition of syntactic categories. In Proceeding! 0/ 
the 1991 AAAI Spring Symposium on Gonnection­
ist Natural Language Processing. 

Weber, S. H. (1990) . Acquiring categorical aspects: a 
connectionist account of figurative noun semantics. 
In Proceeding! 0/ the 5th Rocky Mountain Gon/er­
ence on A rtificial Intelligence, pages 295-300, New 
Mexico State University, Las Cruzes, N.M. 

Weber, S. H. and Stolcke, A. (1990). Lo: a testbed for 
miniature language acquisition. Technical Report 
TR-90-01O, International Computer Science Insti­
tute. 

190 



Learning and Representing Natural Language Phrases 
in a Hybrid Symbolic/Connectionist Approach 
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Our general research interests include the representation of naturallanguage using connectionist and symbolic meth­
ods . Our approach aims at evaluating and integrating properties of symbolic and connectionist architectures. Pri­
marily, we concentrate on syntactic and semantic representations focusing on structural disambigu<üion and semantic 
classification. As a general task we chose the analysis of phrases. Phrasal analysis often can not rely on as much 
predictive top-down knowledge as complete sentence analysis and therefore more bottom-up analysis is needed. In 
this context , connectionist networks appear to be a particularly useful method for learning and representing necessary 
knowledge for a bottom-up analysis . Using online available corpora and library classifications we designed several 
hybrid symbolic/connectionist architectures. As examples for structural disambiguation we focused on prepositional 
phrase attachment and coordination using localist relaxation networks, distributed plausibility networks, and a sym­
bolic chart parser . As examples for semantic classification we designed a combination of a preprocessing chart parser 
with a connectionist autoassociator as weil as a connectionist architecture using recurrent sequential classification 
networks. These architectures allow the combination of predefined symbolic knowledge with learned connectionist 
knowledge for natural language processing. 
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Abstract 

This paper describes a hybrid architecture wh ich uses symbolic and connectionist representations for the structural 
disambiguation of noun phrases. As a representative example for a whole class of structural attachment problems 
we focus on coordination (constructions with conjunctions). The architecture combines a symbolic chart parser with 
connectionist plausibility networks for dealing with coordination . While the symbolic modul supports the sequential 
compositional syntactic representation, the connectionist modul learns and represents the semantic control knowl­
edge which can modify preliminary syntactic structures . Since other problems like the attachment of prepositional 
phrases, verb phrases, and relative clauses are very similar, this architecture can be extended for other structural dis­
ambiguation problems. The architecture allows for preserving domain-independent syntactic know1edge and learning 
domain-dependent semantic control knowledge. 
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1 Constraints for Structural Disambiguation 

In this section we will focus on structural disambiguation of coordination 1, and we will demonstrate th at coordin ation 
is just one dass of typical attachment problems involving prepositional phrases, verb phrases, and relative clauses. 
vVhile verbs in sentences can have semantic top-down preferences for subsequent constituents [Wilks 75], noun 
phras~s have less preferences than complete sentences and we have to rely more on semantic bottom-up plausibilities 
for different coord inations. Consider the following example: 

(1) Systems using transistors and transductors 

Example (1) contains neither enough syntactic constraints nor verb-related semantic preferences to resolve the co­
ordination . However, the semantic plausibility that "transistors and transductors" are coordinated is higher than 
the plausibility that "systems and transductors" are coordinated because "transistors and transductors" are similar 
electric objects while "systems" is a more general term. 

The following phrases illustrate that similar structural ambiguities occur in different constructions invol vin g prep o­
sitional phrases, verb phrases , and relative clauses. In examples (2) and (3) the prepositional phrase at th e en d can 
attach to tIVO different preceding nouns. The same holds for the verb phrase at the end of examples (4) and (5) and 
for the relative clause at the end of the examples (6) and (7) . 

(2) Symposiums on hydrodynamics in the ionosphere 

(3) Symposiums on hydrodynamics in the auditorium 

(4) Symposiums about spacecrafts sent in orbit 

(5) Symposiums about spacecrafts held in Germany 

(6) Symposiums about spacecrafts which are shot in orbit 

(7) Symposiums about spacecrafts which are held in Germany 

Since on the one hand such noun phrases show a great deal of sequentiality, compositionality, and recursiveness 
(symbolic properties) and on the other hand a somewhat restricted complexity for learning graded semantic rela­
tionships (connectionist properties) , hybrid modeling [Dyer 88] [Hendler 89] [Wermter and Lehnert 89] promises to 
be a particularly useful approach. In the next section we will see how syntactic and semantic constraints can be 
implemented in a hybrid model for coordination. 

2 Syntactic Constraints in a Symbolic Chart Parser 

Syntactic constraints determine how a syntactic structure is composed of its parts. Since compositionality and sequcn­
tiality are inherent properties of a symbolic representation we implemented a context-free grammar for noun phrases 
for a symbolic bottom-up chart parser based on [Winograd 83] [Gazdar and Mellish 89]. This chart parser generates 
a preliminary syntactic structure and deals with simple forms of coordination which can be solved syntactically, for 
instance coordinated prepositional phrases . 

pp --> pp CONJ pp 

Using this rule the parser builds the following syntactic structure for example (8) : 

1 The foUowing description is partly based on [Werrnter 90J. 
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(8) Electron collision frequencies in nitrogen and in the lower ionosphere 

(NP (NG (NN (N ELECTRON) 
(NN (N COLLISION) 

(NN (N FREQUENCIES»») 
(PP (PP (p IN) 

(NP (NG (NN (N NITROGEN»») 
(CONJ AND) 
(PP (P IN) 

(NP (NG (DET THE) 
(ADJG (ADJ LOWER» 
(NN (N IONOSPHERE»»») 

In this syntactic structure lI'e :see that the tll'O prepositional phra')es "in nitrogpn" and "in the 101l"('r ionosphprp" ;HP 

coordinatecl because their :;yntactic categories pp are at the same level in the preliminary strucLure above . The~e 
examples illustrate that a s)'ntactic chart parser can resolve some simple structure-dependent forms of coordination. 

3 Semantic Constraints in Connectionist Plausibility Netwotks 

In the absence of elear syntactic constraints and semantic top-down preferences, we rely on the plausibilily ofseman­
tic coordination relationships. Plausibility netll'orks can learn semantic relationships between tl\'O coordinated nOUllS 
in a fully-connected architecture shown in figure l. The input layer consists of 32 input units for tl\'O nouns in a coor­
dillation relationship and each noun is represented with 16 binary semantic features. We extracted semantic features 
based on the NASA thesauru:> [NASA 85] and developed the following 16 semantic features for noun phrases from the 
scientific technical NPL corpus [Sparck-Jones and VanRijsbergen 76]: measuring-event, changing-event, scientific­
field , property, mechanisil1, electric-object, physical-object, relation, organizatioll-form, gas, spatial-location. time, 
energy, material, abstract-representation, empty. The hidden layer consists of 12 units ancl the output layer has one 
unit2 The real-valued output unit indicates If a coordination relationship betl\'een two noun;;3 is plausible ("alues 
close to I) or if it is implausible (values elose 10 0). For instance, the noun phrase "Systems using transistors and 
transductor~" has the folloll' i ng plausi ble and im p la usi ble coordination relatlOlIshi ps. 

transistors COORDINATED_WITH transductors 1 (plausible) 
systems COORDINATED_WITH transductors o (implausible) 

Output unit 
(Plausibility value) 

Hidden units 

units (Semantlc Featur~ 

Noun1 coordinated_with Noun2 

figure 1: Plausibility Network for Coordination Relationships 

20 t her architectures with 1 to 18 hidden units were lesLed and the architectw-e with 12 hidden units perforllled best. 
J For compound nouns, only the last lloun (the headnolUl) is integrate<! in the coordinalioll relat.ionship. 
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Tl!is plausibility network was tl'ained and tested witl! coordination relationships of 53 noun phrases from the NPL 
corpus. There were 40 noun phrases (92 training installces) in the training set and 13 noun phrases (29 test instances) 
in the test set. The representations of the test instances had not been in the training set. Each training instance 
consisted of the 32 semantic features for the two nouns and the plausibility value for the coordination relationship 
The plausibllity value was set to 1 if the coordination relationship wa<; plausible, otherwise it was set to O. 

The nelll'ork Wi\.S trained for 800 epochs using the backpropagation learning rule [Rumelhart et al 86] with the 
learnillg rate 0.01 and the weight change momentum 0.9. Three different training runs were performed to be more 
indelJelldenl from the differellt start initializations of the network, The average of the total sum squared error over all 
trainillg Illstances could be rt'duced during the learning phase from values of 32,') to values of 3.2. A traming instance 
lras cOllsldered correct if the gC'llerated plausibility value \\las higher than 0.5 for a plausible coordination relationship 
(desired \'alue I) alld 10ll'er than 0.5 for an implausible coordinatioll reiationsillp (desired \'alue 0) After 800 epoclls 
the a\'erage percentage of correctly learned training instances \\las 942% and the average percentag;e of correctly 
classified unknown test instances was 78.2%. In the next section we will descrlbe hol'.' this learlled knowledge IS used 
for resolving coordination problems. 

4 Coupling the Constraints 

111 our hybrid model achart parser and a plausibility network interact for coordinatioll problellls. The chart parser 
generates a prelilllillary synta('tlc strllcture a('('Qrding to the Right Associalioll strategy [Frazier and Fodor 78] WlliCh 
assuilles lhat a constituenl atlaches to the directly preceding constituent. [n this step, SOllle coordinations are 
resoh'ed based Oll syntact,ic constraints, e.g., coordinatiolls of prepositional phrases as shown in the example abo\'e. 
Right Association is used if 110 selllalltic klloll'ledge is a\'ailable. If more specific semantic coordination relationships 
exist, they can o\'errule the Right Association strategy. The following example shows the IJreliminary syntactic 
structure together with the plausibilities of the semantic coordination relatiollslIips. 

(9) Fading of satellite transmissions and ionospheric irregularities 

Preliminary syntactic structure: 
(NP (NG (NN (N FADING))) 

(pp (p OF) 
(NP (NG (NN (N SATELLITE) 

(NN (N TRANSMISSIONS)))) 
(CONJ AND) 
(NP (NG (ADJG (ADJ IONOSPHERIC)) 

(NH (H IRREGULARITIES))))))) 

Semantic Relationships: 
Transmissions COORDINATED_WITH irregularities 
Fading COORDINATED_WITH irregularities 

Final syntactic structure: 
(NP (NG (NP (NG (NN (H fading))) 

(PP (P of) 
(NP (NG (NN (N satellite) 

(implausible) 
(plausible) 

(NN (N transmissions))))))) 
(CONJ and) 
(NP (NG (ADJG (ADJ ionospheric)) 

(NN (N irregularities)))))) 

[n example (9), the chart parser generates a prelimillary sYlltactic structure which disagrees with the selllalltic plau­
sibilities of the coordination relatiollships. Since semautic constraints overrule syntactic constraints, the prelilllillary 
sYlitactic structure is modified so that in the final syutactic structure "fadillg alld irregularit.ies" are coorJinated 
IIlstead of "satellite transmissions and irregularities". 
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5 Results and Conclusion 

We tested our hybrid architecture on 158 noun phrases which were taken from the NPL corpus and which contained 
the conjullction "and" . The chart parser generated a preliminary parsing structure for these noun phrases based 
on the con!.ext -free rules and based on the lexicon which currently contains about 900 words with their syntactic 
cat.egories . Within the preliminary syntactic structure several forms of coordination could be detected based on 
syntactic constraints alone . In 89 of the 158 noun phrases there were no coordination ambiguities because the 
coordillation was at the beginning (e .g., "Space probes and satellites" ). In 14 noun phrases the coordination was 
between adjectives (e.g ., "Observation ofsingle and double inflexions") and in 2 noun phrases the coordination wa~ 
between explicitly repeated prepositions in prepositional phrases (e.g., "Electron collision frequencies in nitrogen 
and in thc lower ionosphere"). The remaining 53 of the 158 noun phrases were more complex and needed semantic 
plausibility networks as weil. Using the plausibiJity networks as a means to correct a preliminary syntactic structure all 
40 noun phrases with coordination relationships frolll the training corpus and 11 of 13 noun phra.~es with coordinatlon 
relalionships frol1\ the test corpus were assigned the right structural interpretation with respect to coordination. 

Our approach uses symbolic syntactic rules to generate a preliminary structure of a noun phrasE' and connectionist 
selllantic constraints to modify the representation if necessary, This approach is different from other approaches 
since our system learns part of its semantic constraints and since the system can generalize the learned knowledge . 
This hybrid approach can be adopted not only for coordination problems but for other problems as weil (e .g. 
prepositional phrase attachment, relative c1ause attachment , participle constructions) . In all these cases , learned 
semantic constraints can be used to support the disambiguation of structural representations . The hybrid model relies 
on sYl1lbolic rules and on bonom-up knowledge learned in connectionist networks. This allows to combine predefin ed 
syntactic knowledge with hamed aHd genera/i:ed sel1lantic control knowledge for structural disal1lbiguation . 
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