Forschungszentrum
far Kuanstliche
Intelligenz GmbH

Deutsches Document

D-91-09

Proceedings

MLNLO’91

Machine Learning of
Natural Language and Ontology

David Powers and Larry Reeker (Eds)

March 1991

km*

L.

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern, FRG D-6600 Saarbriicken 11, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341



Deutsches Forschungszentrum
far
Kinstliche Intelligenz

The German Research Center for Attificial Intelligence (Deutsches Forschungszentrum fur
Kunstliche Intelligenz, DFKI) with sites in Kaiserslautern und Saarbricken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzie, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of attificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using Al methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

intelligent Engineering Systems
Intelligent User interfaces

Intelligent Communication Networks
Intelligent Cooperative Systems.

cogodo

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director



MLNLO’91 - Machine Learning of Natural Language and Ontology
David Powers & Larry Reeker (Eds)

DFK1-D-91-09



Originally distributed as Working Notes of the AAAI Spring Symposium on

Machine Learning of Natural Language and Ontology, March 26-28, 1991,
Stanford University.

© Copyright 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following notice.

These controbitutions to the Working Notes of the AAAI Spring Symposium on Machine Learning of
Natural Language and Ontology, March 26-28, Stanford University, are copyright by the individual
authors, and are reproduced here with the permission of the authors and the American Assaciation for
Artificial Intelligence.



Preface

People begin their lives without the ability to speak any natural language and are
able, in a few short years, to develop a linguistic competence that enables them to
function as a writer, scholar, politician -- whatever they choose to become. They may,
in fact, learn to communicate in several natural languages. These remarkable
phenomena of language learning have amazed most of us at one time or another, and it
is only natural that we have tried to use computers to study or even duplicate them —
with only partial success to report at this date.

The AAAI Spring Symposium on Machine Learning of Natural Language and
Ontology (MLNLO) provided an opportunity to get together and discuss the partial
successes and the research challenges that lie ahead. It was a rare opportunity, because
the work has tended to be reported in fragments, a thesis here or there, a paper at an Al
or computational linguistics conference, another at a psychology or linguistics or child
language conference or in a philosophy journal. The field is naturally highly multi-
disciplinary, and the interested researchers all speak their own languages — not just
natural languages, but specialized disciplinary dialects, laden with the theoretical
constructs and assumptions of each discipline. So the MLNLO Symposium provided
a forum for useful interchange of ideas.

“Leaming of natural language” is a simple-sounding term that covers a number of
phenomena. On the one hand, there are various aspects of language to be learned,
such as the sounds significant in a particular language (phonology), words (lexicon)
and their variations (morphology), the structure of meaningful utterances (syntax),
meaning and its relation to the lexicon and to syntactic structure (semantics). On the
other hand, there are the different components of learning: inducing the data to be
leared from raw lingustic and non-linguistic data, somehow codifying those data into
an internalized, structured system that can be used in an automatic manner,
generalizing to be able to deal with new inputs never heard before and produce new
outputs never uttered before. The learning of ontology, the understanding of what
exists in the world, is closely linked with the learning of language.

At the symposium, 50 participants discussed contributions in all the areas
mentioned — with 20 full length presentations and a similar number of "advertizing"
spots which allowed virtually all groups some air-time. The first paper, a technical
preface to the working notes as distributed at the symposium, will provide a good
overview of the field and the volume. It was initially written as a background paper to
the call for submissions, and was subsequently reworked to provide both background
to the symposium and a summary of how the various contributions to the volume fit
into the field of Machine Leamning of Natural Language and Ontology.

At the end of the symposium, participants took time out to review the value of the
symposium and look toward the future. It was resolved that we instigate a regular
program of MLNLO events, a newsletter, resource sharing (software, texts, etc.), and
further symposia, workshops and conferences. The symposium participants also felt
that the “Working Notes” of the MLNLO Symposium were a landmark volume worthy
of further distribution — a resolution which led directly to its publication in this form.

The editors wish to thank the German Al Institute (DFKI) for their support during
the organization of the symposium, and in particular for the publication of this
proceedings in their research report series.

David Powers, DFKI, Larry Reeker, C & SE Divn,
University of Kaiserslautem Institute of Defense Analyses
Germany Washington

powers@dfki.uni-kl.de reeker@cs.ida.org
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DISCUSSION

The aim of the MLNLO symposium is to encourage interaction and promote discussion
amongst Language and Learning researchers. With this in mind, in addition to the usual long
talks, we have included a similar number of short spots which allow people to introduce
themselves, their work and their groups. The long talks are a nominal 30 mins and the spots
10 mins.

These times include a few minutes for questions and discussion, as usual, but additional time
is allowed at the end of each session for general discussion. As this discussion is not
intended to be limited to the current session, but may allow picking up and relating of earlier
themes, increasing amounts of discussion time are allowed as the day wears on, and as the
days roll by.

As we are not x"unning parallel session, chairmen also have the freedom to allow discuss_i(_m to
continue following a particularly provocative presentation, taking into account the additional
discussion time in that session. For this reason precise times for talks are not shown in this

programme.

iii
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Preface:

Goals, Issues and Dlrectlons in Machine
Learning of Natural Language and Ontology

David M. W. Powers, FB Informatik
University of Kaiserslautern, FRG
powers@informatik.uni-kl.de

1. INTRODUCTION

This is it! The AAAI Spring Symposium on Machine Learning of
Natural Language and Ontology (MLNLO) has become a reatity,
and this volume of “Working Notes” provides an almost exhaustive
overview of current work in this area. This is the first real opportu-
nity for researchers from all disciplines and all countries to come
together and explore the relationships between Learning (Human
and Machine) and Natural Language. We not only have input from
researchers in Computer Science and Artificial Intelligence
(Machine Learning, Natural Language, Vision, Neural Nets, Paral-
lelism) but contributions from other fields (Linguistics,
Psycholinguistics, Philosophy).

This Preface seeks to provide a brief guide to the contributions,
drawing attention to individual contributions in the context of a
review of the field. The content overlaps to a large degree that of
[PoweB1], but contains material particular to this symposium.
The sgmposium committee hopes that you will enjoy reading these
contributions and participatin% in the symposium, and trust that
you will be as impressed with the progress represented here as we
were.

1.1 Committee

David Powers, Manny Rayner, Larry Reeker, Chris Turk.
1.2 Reference

Powe81] David M. W. Powers, “Goals, Issues and Directions in

achine Learning of Natural Language and Ontology”, SIGART
Bulletin, 2, #1, January 1881. Also available as SEKI Report SR-
90-14, University of Kaiserslautern FRG.

2.1 Applicabliity of traditional machine learning.
2.1.1 Introduction

Under the heading of Machine Learning, we particularly have in
mind work in concept learning - clearly related to semantics and
potentialty to syntax and pragmatics. We are also interested in the
role of teacher and critic, including automatic generation of exam-
ples, implicit criticism, unsupervised learning etc. Application of
traditional techniques to facets of language are fundamental in
that they are immediately accessible and connect with a consider-
able body of previous work.

2.1.2 Bibliography

Angluin, Dana and Carl H. Smith, “Inductive Inference: Theories
and Methods,” Computing Surveys, vol. 15, no. 3, pp. 238-269,
September 1983.

DeJong, G. and Mooney, R. “Explanation-Based Learning: An
Alternative View” Machine Learning vol. 1, ppt45-176, 19886.
Fisher, D. H., “Knowledge Acquisition via Incremental Concep-
tual Clustering,” Machine Learning, vol. 2, pp. 139-172, 1887.

Forsyth, R. and R. Rada, Machine Learning: Applications in Expert
Systems and Information Retrieval, Ellis Horwood, Chichester,
19886.

Haussler, D., “Learning conjunctive concepts in structural
domains,” Machine Learning, vol. 4, pp. 7-40, 19888.

Helmbold, D., R. Sloan, and M. K. Warmuth, “Learning nested dif-
ferences of intersection-ciosed concept classes,” Machine
Learning, vol 5. pp. 165-186, 1880. Also available as UCSC-
CRL-8918, Comp. Res. Lab., Univ. California Santa Cruz, 1989.

Hunt, E. B., J. Marin, and P. J. Stone, Experiments in induction,
Academic Press, New York NY.

Laird, J. E., P. S. Rosenbloom, and A. Newaell, “Chunking in SOAR:
The Anatomy of a General Learning Mechanism,” Machine
Learning, voi. 1, pp. 11-48, 1688.

Langley, P., “Learning search strategies through discrimination,”
Int't Jni of Man-Machine Studies, vol. 18, pp. 513-541, 1983.

Lenat, D. B., “EURISKO: A Program That Learns New Heuristics

and Domain Concepts; The Nature of Heuristics and Domain
Concepts,” Artificial Intelligence, vol. 21, no. 1, pp. 81-89, 1983.

Michalski, R. S., I. Mozstic, J. Hong, and N. Lavrac, “The multi-
purpose incremental learning system AQ15 and its testing appli-
cation in three medical domains.,” Proc. AAAI-86, Philadelphia
PA, 1988.

Mitchell, T. M., Keller, R. M. and Kedar-Cabelli, S. T., “Explanation-
Based Generalization: A Unifying View” Machine Learning, vol.
1, pp47-80.

Muggleton, S. and W. Buntine, “Machine invention of first-order
predicates by inverting resolution,” Proc. 5th Intl Conf. on
Machine Learning, pp. 338-352, Morgan Kauffman, San Mateo
CA, 1988.

Quinlan, J. R., “Induction of decision trees,” Machine Learning,
vol. 1, pp. 81-1086, 1988.

Riesbeck, Christopher K., “Failure-driven Reminding for Incre-
mental Learning,” 7th International Joint Conference on Artificial
Intelligence, pp. 115-120, 1981.

Samuel, A. L., “Some studies in machine learning using the game
of checkers |l - recent progress,” IBM Jour. R & D, vol. 11, no.
6, pp. 601-617, 1967.

Sammut, Claude and R. Banerji, “Learning concepts by asking
questions,” in Machine Learning: an Artificial Intelligence
Approach, ed. R. S. Michalski, J. G. Carbonell and T. M. Mitchell,
vol. 2, 1988.

Shapiro, E., “A general incremental algorithm that infers theories
from facts,” Proc. 7th [JCAI, pp. 448-451, 1981.

Winston, P. H., “Learning structural descriptions from examples,”
in The Psychology of Computer Vision, McGraw-Hill, 1875.

2.1.3 Significance

We here pick out some of the above work for particular comment,
singling out that which has been particularly influential and
crudely indicating streams of development.

Angluin’s work is highly regarded itself (see also section 2), and
the review presented here is a good place to start for a survey of
inductive methods.

Samuel’s checker playing programs is one of the first major suc-
cess stories of machine learning, and indeed the signature table
technique can be said to be a precursor of both today's neural
network tradition (see section 5) and the statistical approaches
represented by the line of Hunt, Michalski and Quinlan, which
has become particularly influential for Knowledge Engineering
purposes (Automatic Acquisition of rules for Expert Systems). To
the extent that language is regarded as ruie based, there is an
obvious potential for application of these techniques of rule
learning, and in particular classification. Such techniques have
been used in MLLNL (see section 7).

Forsyth and Rada is a reasonable text, particularly in relation to
this type of learning, but also in relation to evolutionary learning.
On this point, it may be noted that there are criticisms that lan-
guage cannot be learnt (see section 2) but that language
behaviour is selected from an evolved capacity for language.
These can in part be answered by pointing out that we could
actually employ, for Machine Learning, any “techniques” used by
such evolution - although we may not be happy with the time
scalel

The work of Winston and the line of Banerji, Cohen and Sammut
on developing logical representations of concepts, is particularly
interesting for its showing that the role of teacher may be sepa-
rated from that of critic. In Sammut's system, after a
generalization step the system provides its own new example to
test the validity of the generalization, and only requires positive
or negative criticism. The teacher need only provide the initial
(positive) example. The critic must provide feedback on every
example. This type of approach is particularly appropriate for
learning of semantics. It is primarily in a neural network or statis-
tical context that | am aware of inductive learning applications
where criticism is not used (see sections 4 & 5).

But there are types of learning other than induction, the learning
of new concepts or rules. There is also learning to do things bet-
ter or faster. Explanation-based learning (Mitcheli et al., DeJong
and Mooney), the version space technique (Mitchell), EURISKO
(Lenat) and Chunking (Laird et al.) have also their applications to



MLNL.

We note that Lenat's more recent work on CYC, which uses
explicit acquisition rather than machine learning in the present
stage of the project, deals with other problems related to MLNLO
and is referenced in section 8. Beckwith et al’'s work with Miller
(see section 4) is in some ways similar, concentrating on different
directions than MLNL at the moment in the application of psycho-
linguistic results.

A final classification of learning systems can be made on the
basis of whether they are capable of incremental learning or not.
Winston, Fisher, Shapiro and Riesbeck particularly address this
“problem”. Some of the above techniques like to work with full
information, or a sample, others are inherently incrementali.
Some find restricting themselves to incremental learning a disad-
vantage. However, given that Natural Language can be learnt
with incremental exposure it could well be that incremental aigo-
rithms can be more efficient for a class of problems which
includes MLNL (see section 3).

2.1.4 In this volume

In this volume, Pat Langley provides a further review of the appli-
cability of Machine Learning techniques to Natural Language.
Scott Stethem and Christer Samuelsson with Manny Rayner apply
Explanation Based Learning to completely different domains -
Phonology and Parser Tuning!

Robin Clark presents Genetic Learning techniques which Berwick
has started using for parameter selection for a particular parsing
model.

2.2 Applicability of traditional linguistics and parsing
techniques.

2.2.1 Introduction

Some MLNL approaches are based on traditional theories from lin-

uistics and elsewhere. Learnability provides a very practical test
or a linguistic theory. A good approach to parsing should relate to
a good approach to learning syntax. Many approaches however
are based on non-linguistic traditions, notably neural nets. It is
especially important to consider the connections between different
disciplinary approaches.

2.2.2 Bibllography

Catania, A. C. and S. Harnad, The Selection of Behavior. The
Operant Behaviorism of B. F. Skinner: Comments and Conse-
quences., Cambridge University Press, New York NY, 1688.

Chomsky, Noam, Aspects of the Theory of Syntax, MIT Press,
Cambridge MA, 1865.

Derwing, Bruce L., Transformational Grammar as a Theory of Lan-
guage Acquisition, Cambridge University Press, Cambridge UK,
1973,

Halliday, M. A. K., “Language Structure and Language Function,”
in New Horizons in Linguistics, ed. J. Lyons, Penguin, Harmond-
sworth, Middlesex UK, 1970.

Halliday, M. A. K. and R. Hasan, Cohesion in English, Longman,
London UK, 1976.

Jackendoff, Ray, Semantics and Cognition, MIT Press, Cambridge
MA, 1983. . .

Kay, M., “Parsing in Unification Grammar,” in Natural Language
Parsing, ed. Dowty, Karttunen and Zwicky, 1885.

Marcus, M., A Theory of Syntactic Recognition for Natural Lan-
guage, MIT Press, Cambridge MA, 1980.

Pereira, Fernando C. N. and David H. D. Warren, “Definite clause
grammars for language analysis - a survey of the formalism and
a comparison with augmented transition networks,” Artificial
Intelligence, voi. 13, no. 3, pp. 231-278, 1980.

Pike, Kenneth L., Phonemics, Summer Institute of Linguistics,
Santa Ana CA, 1947.

Pike, Kenneth L., Language in Relation to a Unified Theory of the
Structure of Human Behavior, Mouton, The Hague, Holland,
1954/1967.

Pike, Kenneth L. and E. G. Pike, Grammatical Analysis, Summer
Institute of Linguistics (and University of Texas at Arlington),
Dallas, Texas, 1977.

Popper, K. R., The Logic of Scientific Discovery, Hutchinson, Lon-
don UK, 1959.

Schank, Roger C., “Conceptual Dependency: A Theory of Natural

Language Understanding,” Cognitive Psychology, vol. 3, no. 4,
pp. 552-831, 1972.

Schank, Roger C., Conceptual Information Processing, North Hol-
land, 1875.

Schubert, L. K., “Problems with Parts,” 8th International Joint Con-
ference on Al, pp. 778-784, 1979.

Skinner, B. F., Verbal Behaviour, Appleton-Century-Crofts, New
York NY, 1957.

Skinner, B. F., “The Phylogeny and Ontogeny of Behaviour,” in
Contemporary Issues in Developmental Psychology, ed. E.
Endler, L. Boulter, and H. Osser, pp. 62-77, Holt, Rhinehart and
Winston, New York, 1668. Reprinted from Science, 1968, Vol
153, pp 1205-1213.

Vanderslice, R., “The Prosodic Component: Lacuna in Transfor-
mational Theory,” P-3874, Rand Corporation, Santa Monica CA,
November 1968.

Woods, W. A., “Transition Network Grammars for Natural Lan-
guage Analysis,” CACM, vol. 13, pp. 591-808, 1670.

2.2.3 Significance

The above references have been advertized as traditional lin-
guistics and parsing techniques. Some therefore require a word
of explanation on their inclusion!

The behaviourist references, to Skinner and critiques of his work,
are included here because of his critiques of linguistics, not to
mention the confrontation between his approach and Chomsky's
(which | haven't documented here). The reference to Popper’s
philosophy of science doesn't really belong under Machine
Learning either, but it is fundamental to some of the issues in Lin-
guistics today, and it is also relevant to Machine Learning of
Ontology - in the sense that Science is the process by which, as
a society, we learn about our world.

Some of the Al work, Schubert's for example, is quite a way from
parsing, but deals with issues important to semantics, and is part
of the heritage we have when we come to do MLNLO. Other
work, Schank’s and Wood's, are particularly fundamental tradi-
tions in NL. Schank is concerned also with semantics, and
conceptual dependency theory is one of the most weil developed
semantic representations. The work of his group moreover
extends to MLNL projects (see section 7). Pereira and Warren
are particularly important as representatives of the Logic Pro-
gramming approach to NLL, and learning techniques have also
been applied to their work (see section 7).

Pike is represented for his broad view of language and behav-
iour, being one of the first to recognize that language and
ontology cannot be separated. His theory and methodology of
Phonology are still standard, and his generalization to the Tag-
memics theory of grammar is significant for its supporting of
phrase structure with cohesion, and has also proven the base for
some MLNLO work (see section 7). Halliday is responsible for the
Systemic grammatical theory brought to the attention of the Al
world by Winograd. He also emphasises the role of cohesion.

But even after 30 years, Chomsky’s school of Transformational
Generative Grammar (TGG) remains dominant. It has, moreover,
had a significant influence on Psycholinguistics (see section 4),
which in turn has generated criticism of TGG, represented here
by Derwing and Vandersiice. It too has been used as a guide for
MLNL work, and TGG has benefited from criticism from this
source as well (see section 7). The current manifestations in
Government and Binding Theory highlight fundamental and
apparently universal linguistic properties which should be predic-
tive points on any MLNL modelling agenda.

2.3 Goals and Issues

GOAL: Neural investigations need to determine and characterize
the nature and role of the human (animal) wetware, as well as
stretching the limits of neural inspired models.

ISSUE: What are the limits of genetic determination, boundary
conditions and self?

2.3.1 In this volume
In this volume, Robert Berwick discusses the parameterized

parser to which he is applying genetic learning techniques for

parameter setting, whilst Janet Fodor discusses modifications to
hrase structure grammar (GPSG and HPSG) to achieve better

earnability.



David LeBlanc and Henry Davis look language acquisition in terms
of a modified Government and Binding Theory. Rick Kazman and
Deborah Dahl pursue more probabilistic and lexicon centred
approaches. Mitch Marcus and David Magerman are looking at
combining aspects of TGG with the competitive structuralist
approach, reporting encouraging results even in the absence of an
explicit grammar.

The missing component in much traditional Linguistics, semantics,
is addressed in related fashion by Zernik, Honavar, Wermter and
Scholtes. In some of this work, interestingly, the distinction
between syntax and semantics starts to become rather fuzzy!
Further exploration of the last observation brings us back to the O
in MLNLO, and the Symbol Grounding Problem of Section 8. And
the whole question ot learnability in the different models, already
touched on here, brings us to Complexity Theory, which we will
look at now.

3. COMPLEXITY THEORY

3.1 Formal results on learning and language constraints.

3.1.1 Introduction

Results and proposals based on complexity theory have been driv-
ing forces in some schools of linguistics and psycholingustics -
notabl\{‘ the contributions of Gold and Chomsky. New approaches,
algorithms and claims need to be considered in the light of such
results, and appropriate new analyses should be developed.
Rigourous mathematical analysis is an important source of criti-
cism for Cognitive Science research. Publication of results can
shape the whole future of a field, firmly closing off former paths of
attack, and opening up others. Unfortunately, the effect has not
always been positive. In some noteworthy cases, the wider Cogni-
tive Science community has taken a resuit at face value, applied it
far outside the applicable conditions (spelled out by the original
author), and interpreted it without common-sense reflection on
and reinterpretation of the natural world correlates of the analyzed
system. This list includes a number of such examples. It pays to
consider these resuits first hand!

3.1.2 Bibliography
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176, 1984.
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Pullum, G. K., “On Two Recent Attempts to Show that English is
Not a CFL,” Computational Linguistics, vol. 10, no. 3, pp. 182-
185, 1984.

Valiant, L. G., “A Theory of the Learnable,” Communications of the
ACM, vol. 27, no. 11, pp. 1134-1142, 1984.

Wexler, Kenneth and Peter W. Culicover, Formal Principles of Lan-
guage Acquisition, MIT Press, Cambridge MA, 1980.

3.1.3 Significance

As indicated above, some of the work here has single-handedly
changed the course of history, to negative as well as positive
effect.

Minsky (with Papert) showed that there were certain classes of
problem which were not learnable with certain networks of per-
ceptrons. Still today (comp.ai newsgroup 19 Oct 90) he is fighting
the widespread belief that he killed perceptrons but that now,
finally, connectionism has laid to rest “Perceptrons”, the book. As
he says in comp.ai: “Try reading the book.” (which has recently
come out in an expanded edition). Actually, he has maintained
his research interest in this area over the missing years. Even
today there is a need for the theoretical analyses here: the psy-
cholinguistic evidence about how, what and how long we learn
(section 3) and the connectionist wave of practical successes
(section 4), need to be brought together to reconcile our expec-
tations about what we should be able to build easily with the
evidence about what we can actually do easily. Then we will be
able to start building systems appropriate to the tasks.

Chomsky and Miller also set Linguistics and Psycholinguistics on
a new track with their importation of formal analysis techniques.
However, the accuracy of this diagnosis of linguistics does not
automatically imply the uniqueness or even soundness of Chom-
sky’s remedy. But the resulting massive persuasion to TGG
(section 1.2) has generated a mass of useful research which has
given this theoretical approach unprecedented (in Linguistics)
opportunity for refinement.

Gold has also set a conundrum for Psycholinguistics. If Natural
Language is a Context Free Language (CFL) (see Pullum and
Gazdar and Postal and Langendoen) and if our parents don't pro-
vide us with the criticism necessary to learn a CFL and our
environment doesn’t somehow provide us input in a textbook
order (see section 3 - Psycholinguists are convinced these con-
ditions aren't satisfied) then we cannot learn Natural Languages.

Chomsky’s answer was that we don't learn language, but select
a subset of an innate super-language to be appropriate to our
language environment. The refinement of Chomsky's TGG
approach has lead to the proposal of parameterizable innate
rules which exclude a mass of possibilities whilst allowing a mea-
sure of variability. This opens the door to a whole new type of
tearning, and raises a whole lot more questions about the physi-
cal mechanism involved.

Another approach is to see if we can come up with a closer clas-
sification of Natural Language and the Psycholinguistic and
Environmental restrictions.

3.2 Development of effective classifications of language.
3.2.1 Introduction

Part of the problem with formal theory is the lack of evidence that
the theoretical classification of language relates to the actual
human languages and cognitive restrictions. Some basic assump-
tions are clearly suspect or at least oversimplifications. Do we
need to develop new ways of formally characterizing language in
terms of the restrictions and heuristics which shape human learn-
ing of language?

The lack of references under this head is indicative of a significant
lacuna.

3.2.2 Bibliography
Yngve, Victor H., “The Depth Hypothesis,” Proc. Symposiain App.



Math., vol. Xll, pp. 130-138, Amer. Math. Soc., 1961.
3.2.3 Significance

Miller, cited earlier for his work with Chomsky, made another
important contribution: on the Magic Number Seven. This is
included in the next section. Yngve was the first to put such
restrictions to positive effect, implicitly restricting the class of lan-
guages he was trying to analyze.

3.3 Goals and Issues

GOAL: Theoretical analysis is need to determine and characterize
the relation between supervision level, computational con-
straints, formal language class and base level knowledge.

ISSUE: The positive effect of negative constraints on the compu-
tational capacity has been neglected. Such constraints
effectively define new subclasses of languages learnable by a
given algorithm. The languages humans encounter are not arbi-
trary but are shaped by our algorithms, limitations and
environmental {including supervisory) conditions, being limited
to what can be learned (or, stronger still, invented) under these
conditions.

3.3.1 In this volume

In this volume, Janet Fodor looks at modifications to Phrase Struc-
ture Grammar which Promise to make it learnable. Sanjay Jain and
Arun Sharma look at restrictions which define a reasonable and
learnable language class, whilst Leona Fass provides a new rep-
resentation for Context Free Languages which defines a minimal
model which is indeed learnable using inductive methods.

4. COGNITIVE SCIENCE

4.1 Psychoiogical results on language and restrictions.

Psychological results on language and restrictions are seen as a
major foundation for MLNL, with the hope that old and new resuits
and critiques from Psycholinguistics will inspire those who are
looking for solutions to problems, and ideas they can implement.
For participation in the symposium, it is not necessary that the par-
ticipant has himself worked on learning programs, but the
relevance of his work to such efforts should be made clear.

4.2 Linguistic results on the nature of natural language.

Similar considerations apply here. Comparative advice about lin-
guistic theories or formalisms, with critical evaluation on the basis
of computability, are basic to MLNL research. Implementers who
have adopted a particular linguistic heritage are particularly asked
to comment on the reasons for the choice plus the appropriate-
ness in retrospect.

4.3 Bibliography
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4.4 Significance

Having worked so hard to promote interdisciplinary connections
and establish Cognitive Science, this is not the place to try to dis-
entangle the woven threads into the distinct fields. The work and
the researchers presented here is increasingly moving beyond
the primary boundaries of the host discipline.

By far the majority of the references included here can, however,
be considered as havind a psycholinguistic orientation, a bias
which is by no means independent of our focus on MLNL. And
Piaget can be considered the father of Psycholinguistics. The ref-
erence here is actually the first of a dozen or more books on
language and reasoning ‘chez V'enfant’.

it goes without saying that the work of Anderson, Brown, and
Newell and Simon is essential reading: Anderson for work on
Memory, which has extended in to Language Acquisition models
(section 7); Brown for the enormous contribution he and his
coworkers have made to the analysis of child language and the
direction of the field; and Newsll and Simon for their work on
problem solving which was actually fundamental to the inception
of Al - it is often forgotten that the cognitive science elements
were there from the beginning.

Pike’s broad view of language is a mammoth effort showing
incomparable insight into linguistic processes, and like Piaget
worth making the effort to digest. The work of Lakoff and Johnson
on metaphor is classic and is also essential reading - metaphor
and metonymy are not just linguistic devices but are fundamental
to the way we us language and understand the world. Language
as we know it, ontology, just couldn’t exist without extending our
experience of particular situations to others. Metaphor and para-
digm give us a model for employing contrast and similarity as a
basis for generalization and application of knowledge. The work
of Clark and Clark examines particular aspects of fundamental
metaphorical usage in language and is again essential reading.

Along with a myriad of other fundamental work, the Clarks’
papers are to be found in some key compendia. Six such vol-
umes are included in the bibliography above. We select out some
of the work of particular interest from them here:

Cofer and Musgrave (1963) includes Roger Brown and Colin
Fraser on The Acquisition of Syntax.

Smith and Miller (1966) includes Jerry A. Fodor (How to Learn to
Talk: Some Simple Ways), Eric H. Lenneberg (The Natural His-
tory of Language), David McNeill (Developmental
Psycholinguistics) and Dan I. Slobin (Acquisition of Russian as a
Native Language)

Slobin (1971) includes Martin D. S. Braine (On Two Types of
Models of the Internalization of Grammars), David McNeill (The
Capacity for the Ontogenesis of Grammar) and David S. Palermo
(On Learning to Talk: Are Principles Derived from the Learning
Laboratory Applicable?).

Moore (1973) includes Melissa Bowerman (Structural Relation-
ships in Children’s Utterances: Syntax or Semantic?), Eve V.
Clark (What's in a Word? On the Child’s Acquisition of Semantics
in his First Language), Herbert H. Clark (Space, Time, Seman-
tics, and the Child), Susan Ervin-Tripp (Some Strategies for the
First Years) and Gary M. Olson (Developmental Changes in
Memory and the Acgquisition of Language) and H. Sinclair-
deZwart (Language Acquisition and Cognitive Development).

Fletcher and Garman (1879) includes contributions by Melissa
Bowerman (The Acquisition of Complex Sentences), Bruce L.
Derwing (Language Acquisition: Studies in First Language
Development), Eve V. Clark, (Building a Vocabulary: Words for
Objects, Actions and Relations), William J. Baker, (Recent
Research on the Acquisition of English Morphology), Robert
Grieve and Robert Hoogenraad (First Words), Patrick Griffiths
(Speech Acts and Early Sentences) and Michael P. Maratsos
(Learning How and When to Use Pronouns and Determiners).

MacWhinney (1988) includes E. Clark (The principle of contrast:
A constraint on language acquisition), P. Langley & J. Carbonell
(Language Acquisition and Machine Learning), B. MacWhinney &
J. Sokolov (Acquiring syntax lexically) and S. Pinker (The boot-
strapping problem in language acquisition).

In these cases there would be too much to address each contri-
bution, but the volumes are thoroughly worth a browse through,
looking particularly at the papers mentioned.

As a final topic in Psycholinguistics, we mention the particular
focus of imitation and correction, including the role of language
play. Fraser, Bellugi and Brown have performed fundamental
studies here which have some surprising resuits about the rela-
tive difficulty of production, comprehension and imitation. Kuczaj
and Derrick also extend the ideas of imitation and reduction to
consider the child’s own spontaneous paradigmatic production
and self-imitation, and the parents use of imitation and expan-
sion. Again there may be some surprises about just what parental
language is most, and least, helpful.

There is one other collection of papers, Piatelli (1879), which is
amust, and arises from consideration of the imitation and correc-
tion paradigm and its insufficiency. Here the protagonists of the
great debate of nativism versus constructivism address each oth-
er’s position directly in position papers and in reply. These deals
directly with the issues that came out of the theoretical consider-
ations of section 3 and represents the point of time, around the
birth point of Cognitive Science, where the possibilities for recon-
ciling theoretical and empirical results on language learning were



just beginning to re-emerge in the face of rampant nativism.

Moving from those papers directly concerned with language
learning, we come first to the generalization where a whole cul-
ture and language is incompletely learned and generates pidgins
and creoles. In such a context where the learners come from a
mix of language backgrounds and learn the words but not the
grammar of a new “common” language, a new creole grammar
emerges which is relatively independent of all of the original lan-
guages. Bickerton presents an interesting paper on this
phenomenon. It would seem that it should contribute to our mod-
elling of default preferences during language learning, and that it
should be contrasted with child grammars. These challenges
have yet to be taken up.

Moving further afield, we come to the famous paper of Miller on
the “Magic Number Seven”, which challenges us to take our
known Cognitive Restrictions into account, and is really the key
ingredient in finding a solution to the innateness debate and the
theoretical conundra of section 3. And then there is Huey’s clas-
sic on reading - the only work from last century cited in this
review. Techniques of following eye motion and examining our
reading behaviour can also provide insights into language behav-
iour, and help explain some of the behaviour of our learning
programs too.

Extending from MLNL to MLNLO, leads us to consider important
work related to our ontology, and of course the visual modality
which we feel is so dominant and which is one of the most well
explored areas of cognition. Here the work of Hubel and Wiesel
is again classic - and has been the basis for some experiments
on self-organization neural models, both for vision and language
(Powers, section 4), whilst the work of Pylyshyn is directly com-
plementary to some Psycholinguistic studies. '

4.5 Goals and Issues

GOALS: To provide the empirical evidence for the roles of innate
knowledge and specific and general learning mechanisms, as
well as for environmental conditions including parents and other
human supervisors and critics plus the physical laws and feed-
back deriving from physiological constraints.

ISSUE: How much is (necessarily) innate? From how minimal a
base state can learning be effective in bootstrapping?

ISSUE: How much supervision, teaching and criticism is neces-
sary for effective learning? To what extent can a reactive
environment substitute? What cognitive constraints shape our
languages?

4.5.1 In this volume

In this volume, Mallory Selfridge addresses the question of how
children learn to recognize ungrammatical sentences - the ques-
tion of negative information again. James Martin looks at the
problem of how children acquire and distinguish the manifold met-
aphors which are part and parcel of language. By way of contrast,
Steven Lytinen and Carol Moon consider second language acqui-~
sition, bootstrapping from one language to another.

5. PARALLEL NETWORKS

5.1 Neural models of parsing and learning.

There is a separate parallel symposium on “Connectionist Natural
Language Processing”. For reason we are most concerned here
with the advantages of neural approaches over conventional
machine learning OR with deep modelling of neurolinguistic pro~
cesses, rather than with application of backpropogation in this or
that area - there is really just too much of an explosion in Connec-
tionism to do justice to it here - we provide the fundamental
reterences but no more. But we explore in other directions. In par-
ticular, we are interested in hard neurological evidence and the
associated theories.

5.2 Parallel models of parsing and learning.

Implementations on parallel hardware are also of interest, as are
parallel or parallelized algorithms and theoretical contributions on
the role, parailelism, backtracking etc. in language and learning
processes.

The interest in parallel parsing goes back just as far as the roots
of connectionism - in fact there has been a long standing assump-~
tion that natural language parsing was inherently parallel. This

debate is starting to favour the view that it is not, even with out
backtracking. But there is still evidence that our own brains do use
at least a partly parallel process.

5.3 Bibliography
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language learning proposals | am aware of.
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5.4 Significance

To start with modern Connectionism, Rumelhart and McClelland
and their PDP group have put out three volumes, the last with a
disk of sample programs. For a general review of the field see
Pollack (1688), and in relation to natural language applications,
see Selman (1989) - the other articles in the same issue of Al
Review as these may also be of interest.

To go back to the roots, Hebb originated the plasticity hypotheses
which is largely the basis for the PDP work, with the addition of
backpropogation. Without this feedback, useful learning can still
be done as shown by von der Malsburg in reproducing the visual
cortical columns. Powers has applied the same technique to lan-
guage between the grapheme and noun phrase levels.

Grossberg has been pursuing the properties of recurrence for
well over a decade, originally as a model of memory, but more
recently has come up with some interesting results in feature rec-
ognition. His recent book is not listed but presents his whole
program through the papers he has presented over the years.
Kohonen and Longuet-Higgins et al. also represent older schools
concerned with associative memory properties. Amari and Arbib
provides a good time-stamp for the point just as Connectionism
began to take off and emphasises the competitive and coopera-
tive aspects which have been taking a back seat recently, but
produce useful results when applied to appropriate problems.

Uhr is pretty good for its time, but rather dated now, and some-
what negative on the Perceptron/Self-Organization question.
Waltz and Pollack is very aware of the neural aspects, whilst the
parallelism of Jain and Sharma is totally independent of connec-
tionism - their team model being more related to the OR-
parallelism of logic programming or evolutionary learning.

5.5 Goals and Issues

GOAL: Neural investigations need to determine and characterize
the nature and role of the human (animal) wetware, as well as
stretching the limits of neural inspired models.

ISSUE: What are the limits of genetic determination, boundary
conditions and self-organizational determination?

ISSUE: Neural simulations to date tend to be passive recognizers
reacting to the sensory-motor input. Does there exist some sort
of active learning which-is different, which is not just a feedback

control system, but capable of initiating behaviour?

ISSUE: How does all of this relate to language? Is language just a
consequence of our neural capacities in combination? Or are
language specific neural level mechanisms to be found?

5.5.1 In this volume

In this volume we present some papers which address the appro-
priateness of connectionist methods for MLNLO, and which were
presented in a joint session with the AAAI Spring Symposium on
Connectionist Natural Langua?]e Processing. These include
papers by Jane Hill trying to get the best of both worlds with hybrid
models, Andreas Stolcke looking at the relative merits of the differ-
ent approaches and the blurring of the boundaries, and David
Powers suggests that some connectionist and Al learning tech-
niques are overkill if applied indiscriminately at all levels.

Jan Scholtes and David Powers present work using self-organiza-
tional rather than PDP-style models, observing how rules and
classes can be related to synapses and neurons, and how basic
linguistic properties emerge automatically using these simple nets.
Stevan Harnad takes up the story of what might happen with these
emergent categories, and how they could form the bridge into a
symbolic learning system. Bartell and Cottrell also consider the
relationship between Connectionism and Symbol Grounding,
exploring it with a simulated billiard table. Honavar actually uses
multiple connectionist networks to provide an interacting language
community.,

6. SYMBOL GROUNDING
6.1 Grounding of Natural Language Systems,

Where is the border between syntax and semantics? When can a
system be said to know something as opposed to just churning out
a pat response? Does learning provide an answer to these old
chestnuts? How far can you get with an ungrounded system?

6.2 Interaction between Modalltles and Learning of Ontol-
ogy.

We are particularly interested in contributions in which aspects of
language are learnt and used in a context or where language inﬁut
and output are supplemented by (or indeed supplement) other
forms of interaction between the language system and the envi-
ronment in which it is embedded. The system could be a rocbot,
simulated or actual; the environment could be provided by a vision
system; or we could have a humbler interface to a database, an
operating system or other application.

6.3 Bibllography
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6.4 Significance

The catch-phrase “Symbol-Grounding” has been popularized pri-
marily by Harnad, who has been interested in it from a
philosophical view and ag an exponent of Total Turing Test versus
the Turing Test (in relation to Searle’s Chinese Room). The prob-
lem is that no matter how many time you translate your text to a
new “representation language” you still have a language com-
posed of symbols and no possibility of real meaning or
;mde;standing. Where does our meaning and understanding come
rom

The work referenced here is quite varied, varyin%from a text on
how to learn a language monolingually (Brewester and
Brewester), to various world modelling projects, including Lenat's
CYC project and Carbonell and Hood’s V\}orld Modelers Project.
Lenat sees the problem of representation as being much more
pressing than learning at this time, and his project is not supposed
to start its automatic acquisition phase till 1994.

On a smaller scale, Hume and Powers have developed a Robot
World modelling system for language learning work (used also by
Sammut for concept learning; see also section 7), and many oth-

ers have worked with or proposed similar schemes, including, as
ear%examptes, Block et al. and McCarthy et al. The Naive Phys-
ics Manifesto of Hayes encourages moving to the big time - toy
world's are only good for toy systems, so sometime we have to
represent the world more realistically.

Others researchers have concentrated on particular problems or
manifestations - this includes the work of Sloman and Croucher
and that of Pylyshyn.

Moving further back to the fundamental psycholinguistic and neu-
rolinguistic study of how we develop our ontology and semantics,
we come to some classics. Lettvin et al. on frog vision, and Piaget
and Lenneberg on language understanding in normal and abnor-
mal circumstances respectively. Lerner and Marshall provide more
recent perspectives. Then there is Jolley’s whimsical attempt to
catalogue the whole of knowledge - on the basis of similarities
which run orthogonally across all areas and levels of knowledge.
Again metaghor is an important part of the answer to symbol
grounding. Once the world has made an iconic image somewhere
in our brain, we have an imperfect reflection of reality. We continue
to abstract and manipulate this in a way determined by our expe-
rience, that is by similarity to what we have experienced in the
past, in the same or in different modalities, and always in at least
slightly different contexts. The frame problem arises when we
make our concepts to small and forget that in fact we tend to be
present whole frames in each modality, and it is these we compare
and process.

Irrespective of whether Harnad is right about characterizing this as
being the major problem for Natural Language and Attificial Intel-
ligence, Symbol Grounding is currently one of the weakest areas,
and these few pointers here need to be paid more attention and to
grow into resources for future MLNLO work.

6.5 Goals and Issues

ULTIMATE GOAL: To have language used effectively by the com-
puter for the purpose we intend.

ISSUE: When are we just translating from one language to
another? When are we doing more: understanding, communicat-
ing, intending? Where does a computer derive its motivation
from? Its programmer? Where do we derive our motivation
trom?

TOY SUB GOAL: To provide a toy environment in which the above
is achieved.

REAL SUB GOAL: To achieve this in an actual application

environment.

ISSUE: How similar a sensory-motor environment and perceptual
interface to ouis is needed to allow learning of language? And
what criterion do we learn to?

6.5.1 In this volume

Harnad presents the Symbol Grounding Problem, and consider
Neurological and Neural Network findings which support a thesis
these networks have natural classification properties, such that
the categories which arise could form the ground level for a symbol
system.

Siskind argues also for a solid lexical semantics in the form of a
naive physics and introduces a system providing such a mecha-
nism. Weber and Barteil also tackles this problem: Weber in the
context of toy domain involving geometric objects; Bartell in the
dynamic domain provided by a billiard table simulation. Jeffrey
Siskind acquires new word meanings from dynamic conjunction of
sequences of conceptual structures and correlated language
input.

Honavar looks at leaming across multiple modalities in a dynamic
community of simulated language users, being born, living a while
and dying. He argues for the need for learning, vision and lan-
guage to be treated together.

Itis also possible to learn new semantics second hand, from a dic-
tionary, or from usage in context. Brent and Zernik looks at what
can be acquired from a corpus, examining the range of usage of a
word. Hearst seeks to make use both of a machine readable dic-
tionary and corpus data.

Peter Hastings and Steven Lytinen acquire their semantics in the
more conventional context of a IS-A hierarchy, again examining
what can be learned by tracking word usage.

7. SYSTEM DEVELOPMENT

7.1 Computable hypotheses and heurlstics for language
learning.



"Proposals of how to build alanguage lsarning system are few and
far between, and will be received with interest, as will more limited
argument about the signiticance of various hypotheses, heuristics
or methodologies for language learning implementations.”

At the moment language learning work tends to work in a small
way, examining how far one can get with certain techniques.
Whether these techniques are implemented as Al or Psychological
modelling, they should make a contribution to our understanding
of language and learning.

7.2 Experimentai language learning systems and their
rationale.

“Regods on successfully implemented language learning systems
will be received with amazement! Characterizations of what can be
learnt by the system, or any precursor thereof, should be included,
along with explanations of the methodology used.”

Even when there are concrete ideas about how to proceed, there
has been negligible funding for MLNL research, and the imple-~
mentations have been limited. But the field does seem to be ripe
now for a major effort, and there is no shortage of ideas and meth-
odologies coming from all the disciplinary vantage points
considered in this review.

7.3 Blbliography
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and less than, providing full proposals or implementations, but
research is progressing more or less scientifically, by small
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7.4 Significance

One of the first pieces of work which could claim to be MLNL is
that of Yngve, cited in section 3.1. Contemporary is the work of
Solomonoff, Spark-Jones and Lamb, with Machine Translation as
the primary target, and statistical methods as the primary
weapon. This sort of approach was, however, one of the main tar-
gets of the theoretical analyses of Gold and Chomsky (section 3)
which showed that there were inherent problems with such sim-
plistic approaches. Feigenbaum takes a more Al approach.

Following the example of Yngve, and paralie! to the development
of corresponding techniques in Connectionism, such techniques
are now used in restricted (and normally lower) levels of the lan-
guage hierarchy and attempt to capture some of the restrictions
of human cognition. Such restrictions, as pointed out in section 3
and 4, are somewhat stronger than mere heuristics in that they
actually define natural language. This leads to a change of per-
ception, suggesting that similar methods are appropriate at
corresponding levels of different modalities (suggesting exten-
sion to Ontology), and the different restrictions, teacher-critique
characteristics and algorithms may be appropriate for learning at
different levels of the hierarchies. Anderson and Powers have
built preliminary implementations based on such ideas.

The work of Kelley, McMaster et al., and Harris are also histori-
cally significant pieces of work. Harris was one of the first to work
with a deep semantics - “the parts of speech are the parts of the
robot”.

Another important contribution is the recognition of the place of
errors - an important source of negative information, on the one
hand, and a recognition that language is broader than textbook
grammar, on the other. Langley, Powers and Lehman make use
of errors rather than cursing them, and Kelley introduced very
early the idea of fiitering out what did not fit into one’s grammar
and making use of the borderline, still comprehensible, cases for
learning. This approach has been followed also by Reeker. The
use of discrimination techniques is related, and essential, and
has been pursued by these same researchers.

Some of the work aims to explore the use of a particular tech-
nique or approach. Berwick originally started off within
Chomsky’s TGG paradigm using the Marcus parser. Wirth and
Rayner use particular specialized learning techniques in a lan-
guage context as test bed, and Rayner and Samuelsson have, in
particular, achieved impressive improvements in efficiency
through the application of their approach. Salveter and Selfridge
worked in the context of Schank’s Conceptual Dependency
Graphs (section 2.2).

Applications have also called some projects into being, Rayner’s
we've mentioned. Zernik's, Wolff's, Wagner's are also examples
of this. Some work has had a very specialized focus, outside of
the traditional preoccupation with grammar. Dresher and Kaye
are concerned with Phonology, and Granger, Siskind and Sem-
bugamoorthy (building on the approach of Narasimhan) with
particular aspects of Semantics. There is a lot more room for
work in what should not be peripheral areas.

7.5 Goals and Issues

GOAL: The HAL of 2001, or Bridging the Communication Gap?

ISSUE: Most systems, and natural language learning experi-
ments, are in danger of just translating from one representation
to another. While this is appropriate for specific applications
(database, machine transiation, etc.), there is little merit in learn-
ing a one to one correspondence, or somethings close to it.
Implementers need to make clear they are doing more than that.

ISSUE: Humans learn their language in parallel with their ontol-
ogy! That is humans have to learn about their world too! A
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language learning system which cannot learn about its world is
not adaptable, and has impaired language learning capability.

ISSUE: Most systems, and natural language learning experi-
ments, start with simple examples of sentences (and/or
meanings) and work up (if they're lucky) to complicated exam-
ples. Children learn primarily from full blown adult conversation.
There is relatively little (machine readable) graded material.
There is little advantage in constructing examples by rule.
Learning is only possible of “what we almost already know”. To
use material which is beyond this “next grade” level, we need “fil-
tering” - heuristic elimination of unprocessable input.

ISSUE: Some “field” systems provide mechanisms for accommo-
dating to overly complex or new input, and optimizing to user
variation and development. But the “too hard basket” is dis-
carded. This, however, is precisely where learning systems
should focus their effort, what is beyond the range of “accept-
able” but nonetheless still “understandable”. The excess
baggage is never gratuitous!

ISSUE: What is the relationship between learning for recognition
and learning for production? Children’s generation capability
seems to lag their understanding. Computers often reverse this
trend!

ISSUE: Performance related learning is a factor in language learn-
ing, and a precursor to other aspects of language learning. But
what role does it have and how can performance related devel-
opments In specialized domains incorporate into HALs.

ISSUE: Organization and consolidation have not been problems in
some toy systems or specifically applied adaptive contexts. But
in general, learning to associate similar things, classify and con-
solidate, can create problems in relation to memory.
Programmers don't like to throw anything away. (It can invoive
implementational difficulties anyway.) People don’t remember
everything(?). And they certainly don't remember everything
with the same ease or for the same time. Ciutter can be a prob-
lem. The frame problem is really a special manifestation of this.

METRICS:

: Who provides the examples? (Teacher)

: Who corrects the examples? (Critic)

: Who evaluates the grammar? (Cheat)

: How is meaning represented externally? (Examples)

: How is meaning represented internally? (Knowledge)

: What is the function of the system? (Interaction)

: What aspects of grammar are learnt? (Phoneme to Book)

: What aspects of semantics are learnt? (Noun to Article)

: What aspects of ontology are learnt? (Robot or Database)

These are the metrics | have used in relation to the research listed.

A comprehensive tabulation on the basis of such a list of metrics

does not yet exist. | make an “impressionist’ attempt above. One
day,...

7.5.1 Systems Development

None of the contributions describes all singing, all dancing, all
understanding Natural Language Learning systems. But all of
them represents some progress along the way.

However, some language learning techniques are already promis-
ing to make it into the field. Larry Reeker describes progress with
Adaptive User Interfaces, Mark Goodman uses adaptive Case-
Based Reasoning and Christer Samuelsson and Manny Rayner
use Explanation Based Learning to provide impressive efficiency
and efficiency improvement in Natural Language Database appli-
cations.

8. Apolodgements

In conclusion, what more can | say? The field lies open! Who must
| acknowledge? ! must acknowledge ail whose work | have cited
here. And those whose work | have misse  d out on, miscon-
strued or undervalued? Please let me know! I’'m sure you realize
the impossibility of holding in one’s head every detail of such a fast
expanding and interdisciplinary area, or even every one of the 40
accepted contributions to this symposium.

And | would appreciate it if others with relevant research and inter-
ests would contact me. | hope that the above headings, metrics,
goals and discussions may be of some help in evaluating and guid-
ing your own contributions to this area.

Finally, | wish to thank the commitiee members and participants
who have contributed their time and their papers, and in particular
| wish to single out Larry Reeker for special thanks for his organi-
zational help.
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Abstract

Recent work by researchers [Cottrell, et. al. 90] has focused attention on the Symbol Ground-
ing Problem, which can be paraphrased as follows: if the symbols in a symbol processing system
have no computable relationship with the objects or constructs they are to denote in the world,
how can the symbols have a non-trivial semantics?

We present a recurrent neural network model which learns to generate symbolic catego-
rizations of the temporal characteristics of its stimulus environment. The Symbol Grounding
Problem is addressed by relating the learned categories directly to the perceptual input, and
by analyzing the representation space constructed by the network to perform the task. We
demonstrate that such a grounded system can exhibit useful generalization, and that the in-
ternal representation of the symbolic classes is usefully different than the traditional predicate
logic approach.

1 Introduction

We wish to investigate how a neural network can learn symbolic classifications of data with strongly
temporal features, and how these classifications relate to traditional symbolic approaches to class
membership. By grounding the system in an analog environment, a semantics can be ascribed to the
learned symbolic classifications. This enables us to analyze the representational system with direct
reference to the network’s environment. A relevant contrast which we will draw exists between the
all-or-nothing nature of a logic predicate P, which segments the world into all things P(z) and all
things = P(z), and the graded and textured potential of PDP representations.

This paper presents a simple recurrent neural network (SRN) which was trained to generate
sequences of symbols (which may be interpreted as words from a very simple lexicon) classifying
sequences of perceptual input originating from an environment. The symbols generated, although
from a small set, constitute classifications of an environment which is both analog valued and which
has strongly temporal features. Therefore, the network must correctly learn the temporal regularities
in order to successfully generalize to novel sequences from the same continuous space.

References

[Cottrell, et. al. 90] Cottrell, G. W., Bartell, B. T., Haupt, C. Grounding Meaning in Perception.
German Workshop on Artificial Intelligence (GWAI), 1990.
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1 Task

The stimulus environment is defined by a (possibly
infinite) set of movies presentable to the network,
each of which consists of a sequence of visual im-
ages in a retinotopic (or some alternate more ab-
stract) representation. Each image is a static snap-
shot of the world. At each discrete time step, a sin-
gle image from the current active movie sequence
is presented to the network. Only one movie is ac-
tive at a time. The particular environment used in
the current experiments involves movies in which
a (billiard) ball rolls around a square table using
a starting position and velocity randomly deter-
mined for each movie, and bounces off the table’s
walled edges. A single movie consists of 20 snap-
shots of the ball in successive positions on the ta-
ble. An image is presented to the network using
2 nodes, representing the ball’s < £,y > position.
The table walls are located at +0.8 along both the
z and y axes. Velocities §z and éy are randomly
chosen in the range [—0.3, +0.3].

Descriptions of the environment are sequential enu-
merations of temporal features of the movies. In
the “billiard ball” world, descriptions are sequences
of the form: “rolling { up | down } and { right |
left } { slowly | quickly } period”, where the correct
choice from each pair is instantiated deterministi-
cally based on the current trajectory of the ball.
One symbol is generated at the Output layer each
time step. Note that the net must learn non-trivial
temporal features of the image sequences (e.g. rel-
ative rate of motion) in order to generate an ac-
curate description, and that these features are not
present in any single image. Additionally, since
the perceptual input is rational valued, the net-
work cannot simply niemorize a finite corpus — an
important distinguishing feature between this work
and the work of others in the field ([Allen 90]).

Each word is encoded using a local representation
across the Output units. Thus, the representation
for each word has a single unique node with a value
+0.8, and all other nodes with a -0.8 value. During
word generation, the unit with the highest activa-
tion value determines which word is output by the
network.

2 Recurrent Neural Network Model

The network architecture is depicted in Figure 1.
Because of the task which the network attempts
to solve, it is called the Movie Description Net-
work (MDN). In the figure, each labeled rectan-
gle represents a layer of typical connectionist pro-
cesging units.! Arrows pointing generally upward
represent uni-directional weighted links which fuily

1 Each node generates an output signal equivalent to
a sigmoid, bounded between -1.0 and 1.0, computed on
the inner product of the node’s weight vector and input
activations, plus bias.
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connect the source and target layers to propagate
activation values, and which are trained using non-
temporal back-propagation [Rumelhart 86]. Ar-
rows pointing downward are one-to-one copy links.
The MDN architecture is motivated by the work
of previous researchers (e.g. [Elman 88] [Allen 90]
[StJohn 90]) in connectionist natural language pro-
cessing.

The network operates as follows: a visual snap-
shot of the world is presented to the net at the
Input units, and the lower portion of the network
(the Image SRN) is trained to predict the next vi-
sual state (similar to Elman’s word prediction task
(Elman 88]); at random intervals, the upper por-
tion of the net (the Word SRN) is trained to gen-
erate the sequence of words which describes the
current world based on the activations propagated
forward to the Buffer layer. The Buffer activations
remain fixed during the generation of a single de-
scription sequence. Word errors are propagated
from the Output layer through to the Input layer.
Although the primary task is to generate symbolic
classification sequences, prediction training in the
Word SRN is used to help constrain the informa-
tion content in the Hidden-1 layer (similar to the
“hints” used in [Wiles 90]).

3 Performance

The MDN was trained for 7 iterations through
50,000 randomly generated movies, using a = 0.9
and 5 = 0.001 for 2 epochs, 5 = 0.0005 for the
remaining 5. 20 units were used in each of the
internal layers: Hidden-1, Buffer, and Hidden-2.

A summary of the classification performance of the
network is provided in Table 1. Each column sum-
marizes performance for a test consisting of 250
randomly generated movies presented to the net-
work, with a single description extracted and an-
alyzed. The “Extended Movie” test summarizes
performance when the description is generated af-
ter 50 steps of the movie. The high correctness
rate indicates that the network has generalized
in time, since the network was only trained on
length 20 movie sequences. All other tests sam-
pled the description after 7 steps. The third and
last columns in the table test for generalization to
ball velocities outside of the trained 6z, 6y range
(i.e. in #0.3). Although performance degrades
in these cases, it is gradual and follows the same
pattern as for the trained movies. Figure 2 de-
picts locations of “left/right” word errors plotted
in the ball’s velocity space (for the case §z,6y in
[-0.9,+0.9]). Classification errors for the other de-
cision types (“up/down” and “quickly/slowly™) are
similarly clustered around decision boundaries and
show good generalization performance in the cen-
tral regions of each class.

Note that only semantic class errors are made; the



Word SRN

Figure 1: The Movie Description Network (MDN) architecture, described in the text.

Decision Trained | Extended 8z,8y in 6z, by 1n
Type Range Movie (-0.6,40.6] | [—0.9,+40.9]
Up/Down 92% 947% 89% 81%
Right/Left | 90 92 87 7
Quick/Slow | 84 90 96 96
syntax 100 100 100 100

Table 1: Percent of classifications performed correctly, by decision type, for the trained 6z, 6y range and on

untrained ranges and movie sequence lengths.

syntax of the description sequences was correct on
every test. Classification performance can be im-
proved by further training, although generalization
performance for direction classifications degrades
more rapidly.

4 Discussion

We wish to investigate the character of the trained
network’s internal representations, with specific
emphasis on:

¢ contrasting the representational space used
by the network with traditional binary symbolic
classes, and

¢ visualizing the grounded symbols in terms of
the network’s environment.

Most of the analysis will consider the Hidden-1
layer, since this layer must encode all information
about the environment for the network to perform
the primary description and secondary prediction
tasks successfully. The Buffer layer is also con-
sidered since it encodes class information for the
description task.
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The first, and most obvious, characteristic of the
activations on these layers is that the values are
not limited to a small range of values. Rather, the
complete range is used. This is expected at the
Hidden-1 layer, because of the continuous nature
of its prediction task, but also is the case of the
Bufter layer. This precludes using a finite state
framework for analyzing the recurrence, which is
common in the literature [Sun, et. al. 90]. Infor-
mation is also distributed at the Hidden-1 layer,
with node activation values correlated with combi-
nations of the environment parameters z, y, 6z, and
8y. However, the Buffer layer has learned a much
more local, although still graded, information en-
coding, with nodes well correlated with single pa-
rameters 6z and 8y, and with one node correlated
specifically with ball speed (a non-trivial feature).

One method for visualizing the grounded symbols
is by sampling the network describing a set of
movies, and then plotting the classification with
respect to the environmental features present. Fig-
ure 3 presents this result for the “slow/quick” dis-
crimination. This can be thought of as an ap-
proximate extensional semantics for the two sym-
bols, since we define the symbols (e.g. predi-
cate SLOWY()) with respect to a sample of the



Location of “left/right” errors
vs X position and velocity

0.5

dX
0.0
1

* indicates a misclassification by the network; 250 samples

Figure 2: Classification errors occur almost exclu-
sively around the decision boundaries, even during
generalization to velocities (§z) larger than trained
(£0.3). The horizontal line at §z = 0.0 denotes the
“left/right” boundary. Bouncing (where £ = +0.8)
also separates the classes; diagonal lines indicate
regions in which the ball will appear to move one
direction (due to sampling the world in discretely
timed images) but must be classified as moving in
the opposite direction.

set of things (X) which are classified positively
(SLOW(X)). Note that a single position in veloc-
ity space can be classified in two opposite classes
at different times, because the recurrent context of
the network will be different for different movies.

We may also ask which set of environment feature
values is most typical for each class. One process
for constructing prototypes for each of the symbols
is to average the Hidden-1 activation vectors over
a sample which all generated the same symbolic
description. These prototype Hidden-1 vectors
can be placed in the Image SRN and propagated
through the network to examine the network’s next
image prediction and to check for accurate sym-
bol generation. This process was performed for all
atomic decision symbols as well as for a composite:
up and right. Symbol generation performance was
correct in all cases except for “quick”, which gen-
erated “slow” instead. Predicted motion for each
of the prototypes is displayed in Figure 4, includ-
ing the up-right composite labeled as “up-right-1”
(“up-right-2” is discussed below). Note that the
prediction for “quick” is anything but; in fact, the
true speed of this prototype is 0.058, well below
the 0.240 decision boundary speed.
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dY
0.0
i

Receptive field for “slow/quick”
in velocity space

04

0.2

-0.2
1

-04
1

0.0 0.4

dx
+/0 indicates “slow/quick”; circle indicates opt decision boundary

Figure 3: A method for visualizing the meaning
of the network’s symbols in terms of its grounding
environment: the receptive fields for the symbols
“slow” and “quick”, in terms of sampled ball ve-
locities.

We may also examine the relationship of other
sampled activation vectors to the prototypes. Ta-
ble 2 lists mean distances (in 20D euclidean space)
and standard deviations between the prototypical
“up and right” vector and vectors classified by the
network in other ways. The increase in distance as
the sample vector class moves semantically farther
from the prototype indicates that external similar-
ity judgments between representations are possible
using a simple euclidean distance metric. However,
the large standard deviations suggest interference
due to other free dimensions in the system (mainly
z and y ball positions, which share the Hidden-1
representation space).

Another technique for constructing prototypes is
to use the method of principle components anal-
ysis to decompose a very large sample of activa-
tion vectors {e.g. Hidden-1) into a set of orthonor-
mal vectors spanning the data space. By letting
a base PC vector ¥ be equal to middle component
values along each axis which we are uncorrelated
(empirically) with environment features of inter-
est, and letting the component values of ¥ which
are correlated with features of interest take on non-
mean values, we can calculate a prototype vector
7 = U+ RT, where RT is the transpose of the
principle component rotation matrix. This method
was performed, with prototype “up and right” dis-
played as “up-right-2” in Figure 4.



( | Up/Right | Right | Down/Right | Down | Down/Teft | Left T Up/Teft T Up |

Mean-| 1.717 1.903 | 2.108

2.318

2.584 2.385 | 2.155 1.884

SDev | 0.549 0.561 | 0.508

0.514

0.390 0.487 | 0.495 0.566

Table 2: Mean and standard deviation of euclidean distances between the prototypical “up and right”
representation and other possible segmentations by class.

Candidate symbol prototypes

w
(=}
up-right-2
ro?;p—right-!
> 2 - slow= X, ight
loft e—
j ~ quick
down
]
S -
L 1 1
0.5 0.0 0.5
X
Figure 4: Possible prototypes for each of the

classes, including two “up and right” compositions,
described in the text.

These two methods for constructing prototypical
symbol vectors, and the analysis of distances be-
tween representations, assume that the representa-
tional space used by the network is essentially eu-
clidean in form. This is certainly explicit in the cal-
culation of euclidean distance, but also is implicit
in the averaging operation over representation vec-
tors. By averaging, we assume that symbol repre-
sentations are clustered in this space. However, it
is obvious that these assumptions are not valid in
general, taking the calculated “quick” prototype as
an example (see Figure 4). It is important to note
that the non-linearities in the network (and the ad-
ditional layers between the Hidden-1 layer and the
Output layer) allow arbitrary encodings of the in-
formation at Hidden-1, and a convenient euclidean
space is therefore not necessarily emergent.

5 Conclusion

The Movie Description Network is an architec-
ture for learning a limited descriptive symbolic
vocabulary for an analog temporal environment.
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The labels which the network learns in order to
generate correct descriptions of the varied trajec-
tories of a billiard ball appear functionally sym-
bolic, similar to predicate logics; however, the in-
ternal representations are distributed and contin-
uous. A Euclidean interpretation for the represen-
tation space was examined, and was found to offer
insights in general, but was inadequate in at least
one case. We have demonstrated that symbols can
be grounded in a system’s environment, and that
such a grounded system is able to generalize to
patterns outside its training set.
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From Rules to Principles in Language Acquisition: A View from the Bridge
Robert C. Berwick, MIT Artificial Intelligence Laboratory

The central goal of the research program in language acquisition at the MIT AI Lab over the past 8 years has been
to build implemented, computational models of language acquisition that can work with real databases of parental
speech and acquire substantial grammars of different languages. We aim to link grammatical theories and computer
models of learning by explicit computer models, while maintaining cognitive fidelity constraints on input complexity,
time, and the like. Our ultimate goal, as attested by the associated research of our students and colleagues at this
workshop (Brent, Siskind, Clark) is to model in detail all aspects of language acquisition: to bootstrap lexical-
conceptual and syntactic category knowledge what we know about infants’ cognitive capacities; learn word meanings
from “reading” unrestricted text; and model later stages of syntax and word acquisition.

In the period 1979-84, these efforts were focused on building an acquisition model that used the then-current “rule-
based” representations of syntactic structure and an associated parser. (Berwick, 1979, 1984; 1982 thesis summarized
in 1985). Within that framework, several important results were obtained about the constraints required to guarantee
learning from positive-only examples (explicit negative examples being assumed cognitively implausible, as is standard
in the language acquisition field), and at the same time ensure efficient parsability. The implemented computer model
could acquire roughly 100 if-then English-particular rules under a variety of relatively natural positive-only sentence
presentations with no prescribed training sequence, at each step yielding an efficient (deterministic) parser. This
system worked by incrementally constructing a single new if-then rule based on its inability to parse a novel example
sentence. Significant formal results (“learnability theory”) included reformulation and application of Gold (1967)
and Angluin’s (1978) “subset principle” to linguistic examples, as a necessary and sufficient condition on positive-
evidence acquisition, and demonstration that efficient parsability implied learnability from simple evidence, in that
the constraints that ensured deteterministic parsing also guaranteed learnability. The subset principle was later
extensively extended and applied to linguistic examples and psycholinguistic experiments by Wexler and Manzini
(1987) and Wexler and Chien (1991).

However, there are large problems with the rule-based theory. First, the system does not allow for errors or
retraction of acquired rules; learning was monotonic, in the face of much evidence to the contrary, such as 2-object
dative constructions. Second, it was never demonstrated for other languages. Third, the system does not work in the
face of ungrammatical or noisy input. Fourth, linguistic theory itself has changed, replacing large numbers of language
idiosyncratic rules with a handful declaratively-stated universal constraints ( “principles”) that vary parametrically
over a small range. In this more recent view, acquisition of syntax amounts to setting the parameter values, e.g.,
whether a language is head-first (like English) or head-final (like Japanese). Our current work is designed to put
this newer model to explicit computational test, comparing it to the rule-based view (for a related view comparing
principle vs. rule-hbased approaches, see Fodor and Crain, 1990). To do this, we have constructed the first complete
parsing model for a principle-based theory (in the sense of being an efficient parsing system that incorporates the
entire range of a modern principle-based theory); see Fong and Berwick, 1989; Berwick and Fong, 1991 forthcoming;
Fong, 1991. We can show that by changing just 5 parameters from their English settings we can get a system that
handles an interesting subset of the typologically distinct constructions of Japanese, as predicted by the theory. To
connect this to acquisition, we are at present using Clark’s genetic algorithm approach to learning the parameter
settings from unedited motherese as taken from the Childes database (MacWhinney, 1987), using German and
English (and eventually, Spanish, Italian, French, etc.) Preliminary experiments indicate that acquisition of full
basic tree structures (“Xbar theory”) can be accomplished quite readily by using Clatk’s basic scheme within 150
or so iterations, using unedited text fragments. In fact, these results show that a rule-based system like Fodor and
Crain’s would work as well as a parameterized system in this domain. Further experiments using actual motherese
and a fully parameterized model tied to the parametric parser are underway as this is being written.
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1 Introduction: rule-based acquisition

A central problem for implemented natural language acquisition and machine learning models is the link between
parsability and learnability, and the connection between grammatical theories and computer acquisition models.

As a language or a natural grammar is being learned, parsing must evolve hand-in-hand, but obviously one
cannot assume that the parser is completely in place. This would assume knowledge of the grammar to be acquired
in the first place. On the other hand, if the parser is undeveloped, then example sentences cannot be processed to
learn the grammar. To reconcile this paradox, most implemented computer models of syntax acquisition assume an
error-driven system: an unparsable example sentence forces an incremental change in the system’s existing grammar,
typically, the addition or modification of a single, very particular rule. If an example is fully parsable with existing
rules then no change occurs.

This method had some success and led to interesting mathematical proofs of convergence (Wexler and Culicover,
1980), working computer models based on specific parsers like the Marcus parser (Berwick, 1979; 1985), and for-
malized links between easy parsability and learnability (Berwick, 1984; Berwick and Wexler 1987). The Berwick
model could acquire 100+ if-then rules as used by the Marcus parser from grammatical (positive) input examples,
presented in no particular training sequence. Syntactic category information and an accurate thematic structure for
sentences (“who did what to whom”) was assumed, as well as most morphological preprocessing these are obviously
overly strong constraints that must be relaxed in a more cognitively faithful model (as is being done by our other
research group members like Siskind and Brent). The output was a representation of syntactic sentence structure
as pictured by a then-current transformational theory along with a thematic (case frame) representation. At each
step, the system attempted to parse the input sentence with its current set of if-then grammar rules, in (somewhat
modified) Marcus parser form. The if portion of the rule was a predicate true of a (approximately) 3-cell input
buffer holding words or partially built phrases and the top of a pushdown stack, while the then portion of a rule was
a single action that could attach one part of a syntactic tree to the top of the stack, create a new phrase, or switch
the 1st and 2nd buffer cell contents. If these rules blocked because none applied, or because the output thematic
structure did not match that paired with the input sentence, the system would attempt to build a single new rule
that would work; if not, it would not process the sentence further at that stage. (This last condition provided a
simple kind of simplicity filtering on the input sentences, yielding the presentation order invariance properties of the
system.)

This is a simple error-driven model. Nonetheless, the results were still of interest, since they showed that:
(1) inference of a full language could proceed on the basis of just simple positive sentences (degree of embedding
2 or less); (2) inference was order-insensitive (it could speed up or slow down depending on the presentation of
example sentences, and in fact being faster given the richer percentage of construction types found in motherese);
(3) inference was possibly only if one applied a general learning constraint, the subset principle, first formulated in a
recursive-function theory context by Angluin (1978), such that the system ordered rule hypotheses so that the most
narrow language was always guessed first or so that a guessed, possibly overly-general (superset) language always
nonoverlapped with the correct (improper) subset target; and (4) inference constraints matched those proposed in
Wexler and Culicover’s (1980) mathematical model for the acquisition of a transformational grammar, and guaranteed
efficient parsability. In particular, the learning model obeyed specific locality constraints: e.g., rules could not operate
over unbounded domains, nor in some way set up conditions to “hide” possibly incorrect rules over unbounded
domains, exactly the Wexler and Culicover conditions for learnability that happened also to ensure bounded context
(efficient) parsability. In addition, Berwick (1982, 1985) showed that all of the learning principles then advanced in
linguistic theory could be placed under the rubric of the subset principle.

As an example of the subset principle in operation, consider the arguments to verbs, e.g., direct object, indirect
object, propositional object. The subset principle would claim that arguments are obligatory until positive evidence is
received to indicate the contrary, since the obligatory argument assumption results in a narrower generated language;
if the learner first assumed that arguments were optional, and if this assumption were wrong, then no positive
evidence could counter this assumption, since the obligatory appearance of arguments would be a subset of the
optional argument hypothesis.

Problems with rule-based acquisition models. The very nature of such error-driven rule-based methods is
their downfall. Since they assume that input will be error-free and consistent, such models cannot readily cope with
the actual “ill-formed” or fragment input found in maternal speech. In addition, it is difficult to see how such systems
can be extended to different languages: for example, such a system has difficulties in languages like German where
simple sentences will appear to be Subject-Verb-Object (via verb movement to the verb second position), but more
complex embedded clauses will reveal the “true” verb-final character of German. If the model (or child) receives or
can process simple examples first, then this will lead to an assumed SVO order that is violated later on. In general,
retraction of hypotheses in such models is difficult. Examination of acquisition envelope curves shows that learning
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is “too good”: it is monotonic, with no false steps, which is surely not true of actual acquisition. Overgeneralization
followed by retraction does occur, it has been argued, for dative verbs in English, among others.

Perhaps most importantly, though, the representation of grammatical knowledge has changed radically in the past
decade. Recent shifts in linguistic theory, from language-particular, construction-based rules to declaratively stated
universal constraints or “principles”, have rendered many older accounts of syntactic natural language acquisition
(e.g., Wexler and Culicover 1980) or computer models (e.g., Berwick, 1979; 1982; 1985) obsolete, because these
models assumed many language particular if-then type rules. These rule-based models cannot accommodate current
linguistic theories that replace many hundreds, even thousands of construction specific rules like passive or dative
with a much smaller set of interacting constraints or principles. Our research goal is to see if this change matters for
computer acquisition models.

On this more recent view, there is no “rule” of passive, which is epiphenomenal, but rather a set of deductive
possibilities arising from more basic axioms that set the basic branching structure of a language’s phrases (head
initial-English, French; head final-Japanese; mostly head final-German); the direction of case frame or thematic role
assignment (left to right in English; right to left in Japanese), and so forth. On this view, acquisition amounts to the
setting of parameters given example sentence evidence. While this more modern account accounts for the parametric
variation observed across the Romance languages, modern Germanic languages, and some Asian languages, until
recently it has had few computer implementations, and these have been incomplete. What has been lacking is a
full implementation of a parameterized, principle-based parser and a successful parameter setting algorithm. “Toy”
systems have been built that attempt to set a few parameters in a straightforward sequential way, but these do not
come close to the full set of perhaps 24 distinct modules each with 3 or 4 parameters to set, and it is not clear
that sequential learning will work when scaled up; it is quite easy to get into paradoxical learning sequences where
a parameter is first set (as in German), only to have to undo it. (In fact the situation here is far worse than with
rules.) In addition, with even, say, 24 modules with 3 or 4 settings, we have 100 parameter values and thus a huge
space of possibilities (all the ways of choosing 24 values from 100); this requires too much time and data.

For an explicit computer evaluation, the first step, then, is to a complete principle-based parser; show it can work
for multiple languages; and then develop an acquisition model for it. To deal with the multiple-parameter problem, we
have chosen to couple our principle-based parser coupling that to Clark’s genetic algorithm for parameter acquisition.

The first stage for building a parameter-based acquisition model is to implement a full-fledged principle-based
parser that can be parameterized for different languages. This has been met by Fong’s implementation of such a
parser (in Prolog, see Fong and Berwick, 1989; Fong, 1991) that contains 25 interacting modules parameterized in a
few ways each. The parser can successfully cover many hundreds of construction types (not just sentences), in fact,
the full range of sentence examples used in a current principle-based linguistic textbook, by Lasnik and Uriagerreka
(1988). We will describe how such a parser was readily modified, simply by changing just a few parameters to account
for a similar range of Japanese sentences. Thus the parsing system can represent an family of parsers.

We can then turn to the second stage in building a parameterized acquisition model: the parser can be coupled to
a simulated evolution (genetic) algorithm to select the right parameters for a given language. The genetic algorithm
is designed to be robust against noise, and we have also accommodated the problem of so-called ill-formed input
by using Clark’s metric of number of structures returned as the metric of ‘fitness’. With this metric, even partially
well-formed sentences can provide useful input to the learning system.

Let us first describe the parsing model, and then turn to a brief review of the preliminary acquisition experiments
that have been carried out by under our direction by our student de Marcken.

2 Parsing with parameters: English vs. Japanese

Principle-based language analysis aims to reconstitute the vocabulary of grammatical theory in such a way that
constructions like passive follow from the deductive interactions of a relatively small set of declarative, conjunctive,
node admissibility conditions (the principles). The principles themselves are drawn from the work of that strand
of current linguistic theory sometimes called principles-and-parameters theory. How do the principles conspire to
replace rules? Space permits only a brief sketch here. For instance, one general principle says that verb phrases in
sentences must either begin with a verb in some languages, or end with a verb in others (those are the degrees of
freedom or parameterization in this particular principle). This yields the basic tree shapes in a language, dubbed X
theory, and gives us part of the variation between languages like English and Japanese. A second principle, called
the Case filter, says that all pronounced or lerical noun phrases like ice-cream must receive Case, where Case is
roughly an abstract, but universal, version of the Latinate system that gives objective Case to objects, oblique Case
to objects of prepositions, nominative Case to sentence subjects, and so forth. Case is assigned either from an active
verb like ate or an auxiliary verb like was; the adjectival form eaten does not assign case. A third principle, called the
theta-criterion, insists that every verb must discharge its Thematic arguments and every noun phrase must receive
a thematic role, completing a description of ‘who did what to whom’. A fourth principle, Movement (or Move-a),
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lets one move any phrase a to any available ‘landing site’; and so on, for the remaining 21 principles. Now we can
conceptually imagine the ‘parse’ of a sentence to take place via a naive generate-and-test algorithm that, given a
PF, enumerates all admissible S-structures, and from there, applies the conjunctive constraints of D-structure and
LF to obtain an LF output. For example, given The ice-cream was eaten, the system can ‘guess’ an S-structure such
as [s [ue the ice-cream; [vp was eaten [yp, ]]]], that turns out to meet all constraints, without ever positing a passive
rule. The system knows from the lexicon that eat may assign a thematic role of Affected Object. Further, X theory
says this object must appear to the right of the verb, and Case assignment says that the object appear immediately
to the right. However, this cannot be a full lexical noun phrase, because this would violate the Case filter: in the
lexicon, eaten is an adjectival form that does not assign Case. The only option left is to insert an unpronounced,
nonlexical noun phrase (NP) after eaten. Eat must still discharge its thematic role, to the nonlexical NP, and does
so. Now let us check ice-cream. It receives nominative Case in Subject position as usual; it can receive a thematic
role only if it inherits it from some position, again since was eaten is a predicate adjective. Thus the only remaining
choice is to link the nonlexical NP after eaten to ice-cream, which is done by the device of coindexing (subscripting).
In practice, this generate-and-test mechanism is obviously inefficient, since the principles that apply to S-structure
are but a fraction of those that apply in the overall system. Fong’s actual design takes into account a number of
important design principles that make the system practicable.

Importantly for acquisition, using the same set of principles, but with a different language parameter vector
and lexicon, the system can be automatically reconfigured to parse Japanese examples instead (Spanish, German,
and other Germanic languages are currently being implemented). No reprogramming or handcoded rule rewriting
is required. Figure 1 shows the Prolog textual English/Japanese differences plus an excerpt from both lexicons
(which contain many hundreds of entries when expanded), to emphasize that just 5 binary switches must be reset
to parse Japanese rather than English. We would like to emphasize, however, that the system has not been tested
on a full range of Japanese sentences. Rather, a range of wh questions and other sentences have been evaluated
{(Lasnik and Saito, 1984). Nonetheless, these sentences display many of the typological Japanese-English differences:
(1) SOV Language (Japanese is verb final, more generally, head final); (2) Scrambling. Apart from the fact that
sentences normally begin with a topic and ends with a verb, the order of other elements in the sentence is relatively
free. In particular, direct and indirect objects can be switched, direct (and indirect) objects can appear in front of
the subject in sentence-initial position. (3) Emply subjects. Subjects (other NPs) can be omitted in Japanese. In
general the conditions that determine which elements can or can not be omitted are largely dependent on discourse
considerations; (4) No visible Wh-movement. In English, in non-echo questions wh-words such as what must appear
in clause-initial position, as in I know what john bought rather than ?I know jokn bought what; in Japanese, wh
words appear in situ. While obviously this is very far from being a complete characterization of the differences
between Japanese and English, it is sufficient to cover a wide variety of wh questions, including those in the Lasnik
and Saito (1984) article on English and Japanese. For our acquisition standpoint, what is important is that the
principle-based parser can capture all these distinctions simply by supplying 5 binary parametric differences plus a
new lexicon, as shown in figure 1. (These include some rather subtle distinctions, such as, Taro-ga nani-o te-ni ireta
koto-o sonnani okotteru no, (‘What are you so angry about the fact that Taro obtained’) vs. * Taro-ga naze sore-o
le-ni ireta koto-o sonnani okotteru no (‘Why are you so angry about the fact that Taro obtained it’), which are
the reverse of the acceptability facts in English. Consider the sentence, Taro-ga nani-o te-ns ireta koto-o sonnani
okotteru no (‘What are you so angry about the fact that Taro obtained’) Here the subject of the matrix clause (=
you) has been omitted. Also, nani and te (‘hand’) have been permuted from the canonical order described above—a
simple case of scrambling.) The logical form for this sentence should be something along the lines of: for what z,
pro is so angry about [the fact that Taro obtained z] Here, pro represents the understood subject of okotteru (‘be
angry’).

3 Genetic algorithms and rule- and parameter-based learning

Linking of this parameter-based parser to Clark’s genetic algorithm for acquisition is still underway as this is being
written. However, our student de Marcken has carried out some preliminary simulations that use just an X-bar
parameter system on random paragraph sets taken from ordinary text ( Wall Street Journal), and several hundred
unedited parental speech samples from the Childes database (English and German; Nina at age 1;11 and Katrin from
roughly that age). Note that knowledge of word categories is still assumed, an assumption that we hope to remove
by the use of Siskind’s model. The principle-based design incorporates some improvements to Clark’s model: first,
we use a different genetic algorithm, as described by Schaffer in Davis (1987); second, we use a pure partial phrase
parser, rather than a full principle-based system. (A third improvement that the principle-based design will offer
is that a blocked parse will point to a possibly offending parameter value directly, instead of randomly, which may
improve accuracy and convergence.)
An example of the parameter system:
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Note: ‘\+’ denotes ‘negation as failure’, *** & underlined= English-Japanese differences

English parameters Japanese parameters English lexicon

X-Bar Parameters Proper nouns

specInitial. speclnitial. lex(bill,n,[a(-),p(-),agr([3,5g,m])]).

specFinal :- \+speclnitial. specFinal :- \+speclnitial. ...

*** headlInitial. headFinal. Verbs

*** headFinal :- \+headInitial. ~ headInitial :- \+headFinal lex(arrest,v,[morph(arrest,]),grid([agent],[patient])]).
agr(weak). agr(weak). lex(arrive,v,[morph(arrive,[]),grid([theme],[])]).
Bounding Nodes lex(ask,v,[morph(ask,(]),grid([agent],[?proposition])]).
boundingNode(i2). boundingNode(i2). .s

boundingNode(np). boundingNode(np). Japanese lexicon:

Case Adjacency Parameter lex(biru,n,[a(-),p(-),agr([]),grid([],[])]) bill

*** caseAdjacency. % holds :- no caseAdjacency. lex(doko,n,[a(-),p(-),agr([]),wh,location,grid([],[)])-
Move Wh In Syntax Parameter (where) ...

*** whinSyntax. :- no whlnSyntax. lex(are,v,[morph(are,[]),subcat(vp$[morph(_,[1)],0)])-
Pro-Drop Parameter lex(irer,v,[morph(irer,[]),grid ([agent],[goal,instrument])]).
*** .- no proDrop. proDrop i3

Figure 1: The complete parametric differences between English and Japanese needed to incorporate the Lasnik and Saito theory.

(defparam A-SPEC (left right)) ;; Q on right or left of ABAR
(defparam ADV-SPEC (left right)) ;; Q on right or left of ADVBAR
(defparam INFL-SPEC (left right)) ;; DP on right or left of IBAR
(defparam COMP-COMP (left right)) ;; IP on right or left of COMP
(defparam INFL-COMP (left right)) ;; VP on right or left of I
(defparam DET-COMP (left right)) ;; NP on right or left of DET
(defparam V-THETA (left right)) ;; args on right or left of V
(defparam ADJ-THETA (left right)) ;; args on right or left of A
(defparam N-THETA (left right)) ;; args on right or left of N
(defparam RELCLAUSE-ADJUN (left right)) ;; CP on right or left of DP
(defparam AP-ADJUN (left right)) ;; AP on right or left of NP
(defparam PP-ADJUN (left right)) ;; PP on right or left of DP, VP
(defparam ADVP-ADJUN (left right)) ;; ADVP on right or left of VP
(defparam P-CASE (left right)) ;

In the preliminary experiments, these parameters ground an X-bar system, so in fact, the current results apply
equally to a phrase-structure view like Fodor and Crain’s (1990), in fact, are an explicit computer modeling test of
a part of their proposals. 25 different random sets of parameter settings are created, and used to parse the text.
A rating is assigned, namely the number of phrases returned for the whole text; the actual displayed value is the
opposite, so a higher number is better). In each iteration, two parent settings are chosen, and a new setting is
created by picking randomly between the values of each parent, and with a small probability, randomly assigning a
parameter to any value in its range, regardless of parent settings. The new parameter setting takes the place of one
of the 25 previous settings, with the proviso that it can not take the place of any setting which produced a rating
above the mean rating for all 25 settings. In the sample runs below, 25 settings have been tested before any results
are displayed. Then in every iteration the best five parameter settings (from the 25 in the current population) are

displayed.
A sample run:

(learn)

Iteration 1.
0. -449.0 [DET-N ARG-V VP-NP COMP-S NP-PP P-NP AP~-NBAR SPEC-V V-ADV AP-QP ]
1. =-455.0 [DET-N V-ARG VP-NP S-COMP NP-PP P-NP AP-NBAR V-SPEC V-ADV QP-AP ]
2. =-467.0 [DET-N V-ARG NP-VP COMP-S PP-NP NP-P AP-NBAR SPEC-V V-ADV AP-QP ]
3. -475.0 [DET-N ARG~V NP-VP COMP-S NP-PP P-NP AP-NBAR V~SPEC ADV-V QP-AP ]
4, -486.0 [DET-N ARG-V VP-NP S-COMP PP-NP NP-P AP-NBAR V-SPEC ADV-V QP-AP ]

Iteration 2.

0. -449.0 [DET-N ARG-V VP-NP COMP-S NP-PP P-NP AP-NBAR SPEC-V V-ADV AP- ]
1 -455.0 [DET-N V-ARG VP-NP S-COMP NP-PP P-NP AP-NBAR V-SPEC V-ADV QP-AP ]
2. =-467.0 [DET-N V-ARG NP-VP COMP-S PP-NP NP-P AP-NBAR SPEC-V V-ADV AP-QP ]
3 -475.0 [DET-N ARG~V NP-VP COMP-S NP-PP P-NP AP-NBAR V-SPEC ADV-V QP-AP ]

F=}
o
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4. -486.0 [DET-N ARG-V VP-NP S-COMP PP-NP NP-P AP~NBAR V-SPEC ADV-V QP-AP ]

Iteration 170.
-417.0 [DET-N V-ARG NP-VP COMP-S NP-

P NBAR SPEC-V ADV-V QP
-421.0 [DET-N V-ARG NP-VP COMP-S NP-P

P

P.

NP AP- =AP
NP AP-NBAR SPEC-V V-ADV QP-AP
-427.0 [DET-N ARG-V VP-NP COMP-S NP- NP AP- -
-428.0 [DET-N V-ARG NP-VP S-COMP NP- NP
-428.0 [DET-N V-ARG NP-VP COMP-S NP-P

NBAR SPEC-V ADV-V QP-AP
AP-NBAR SPEC-V ADV-V QP-AP
NP AP-NBAR SPEC-V ADV-V AP-QP

> W N e O

P P- ]
P P- 1
P P- ]
P P= ]
P P- ]

Convergence has proved relatively stable given the initial starting conditions, noise, and text, though it must be
stressed that these results are completely preliminary and have not been fully investigated. It remains to see how
the system will work with full motherese in English and German, and with a full set of parameters; we aim to test
the parameterization of modern Germanic languages proposed by Webelhuth (1989), as well as our running Japanese
system. So far at least, it appears that for basic phrase structure, a rule-based and parameter-based system could
perform equally well using a genetic algorithm for acquisition, overcoming many of the traditional obstacles such as
noise cited earlier.
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Automatically Inferring Dictionaries
from Natural Text and Simple Grammar

MICHAEL R. BRENT

I am developing and implementing algorithms for automatic, unsupervised learning of both syntactic
and semantic properties of verbs. The goal is to automatically generate full-scale dictionaries of natural
languages using large amounts of naturally occurring text as training data. This work provides the first
algorithmic, demonstrably effective approach to three longstanding problems in natural language processing,
artificial intelligence, and cognitive science.

e For natural language processing it removes the lexical barrier to scalable, high coverage parsers.

e For artificial intelligence it derives some of the fundamental ontological categories people use from
the structure of language, so researchers need not rely exclusively on introspection. What’s more, it
provides a dictionary linking the concepts it derives to words.

o For cognitive science it provides an algorithmic approach to the bootstrapping problem — namely,
how does a learner get a sufficient toe-hold on the vocabulary to make use of the input sentences?
These learning algorithms start with only a small, finite-state grammar for a fragment of English and
a dictionary of some two-hundred “grammatical” words like pronouns, prepositions, and helping-verbs.

Verbs are the best studied and apparently the richest part of language in terms of syntactic features with
semantic correlates, so I have concentrated initially on them. In particular, I am focusing on acquisition of
the syntactic argument-taking properties of verbs and the semantic classifications they induce. For example,
the verb ezpect can take an infinitival clause like “to eat ice-cream” as one of its arguments, whereas the
verb jog cannot. This contrast is illustrated in following pair of sentences.

(1) a. I expected [yp the man who jogged yp] to eat ice-cream
b. I doubted [yp the man who liked to eat ice-cream yp)

As a result of the different argument-taking properties of ezpect and jog, the infinitival phrase “to eat ice-
cream” is associated with ezpect, not with the adjacent verb jog in (1a). In (1b), by contrast, the adjacent
verb like does take infinitives and the earlier verb doubt does not. Algorithms for learning this and other
argument-taking properties of verbs from untagged text, along with empirical results obtained with them,
are described in Brent (1991a).

The work on semantic classification of verbs depends on the data obtained from the syntactic component
described above, and hence the semantic work is at a less advanced stage than the syntactic. Further, the
evidence bearing on meaning classification tends to require knowing several, if not all of the possible syntactic
argument types for each verb. However, one classification depends on only a single syntactic form, the verbs
that take as arguments both a direct object and a sentence at once, as in “John told her he was happy.”
These verbs all have a sense involving communication, like advise, assure, convince, inform, reassure, remind,
tell, and warn, all of which my program identified (Brent, 1991a). There are at least fifty and possibly as
many as one-hundred syntactically identifiable semantic classes like these communication verbs.

In addition to the syntactic and semantic classifications induced by argument structure, some interesting
classifications are induced by the verbal auxiliary. For example, verbs whose meaning is purely stative
tend not to occur with a progressive auxiliary, as in “* Jon is knowing calculus.” Brent (1990) describes
initial corpus-based research on this semantic cue, and Brent (1991b) describes an implemented classifier for
stativity.

Brent (1990) M. Brent. Semantic Classification of Verbs from their Syntactic Contexts: Automated Lexi-
cography with Implications for Child Language Acquisition. In Proceedings of the 12th Meeting of the
Cognitive Science Society. Cognitive Science Society, 1990.

Brent (1991a) M. Brent. Automatic acquisition of subcategorization frames from untagged, free-text cor-
pora. Under Review for the 1991 Meeting of the ACL. Manuscript available.

Brent (1991b) Semantic Classification of Verbs from their Syntactic Contexts: An Implemented Classifier
for Stativity. In Proceedings of the 5th European ACL Conference. ACL, 1991.
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Automatic Semantic Classification of Verbs

MICHAEL R. BRENT

MIT AI Lab
545 Technology Square
Cambridge, MA 02139

michael@ai.mit.edu

Until recently there has been little discussion in computational linguistics
of how the meanings of words might be learned automatically. It is not clear
how a complete specification of word-meaning might be acquired!, but there
is reason to hope that words might be automatically assigned to ontologi-
cal classes. For example, Hindle (1990) reports work on automatic semantic
classification of nouns based on a statistical profile of the verbs with which
they appear. This paper describes work on automatically classifying verbs
based on specific constraints between their meaning classes and their syn-
tactic privileges of occurrence. For example, verbs that take a direct object
and a complement clause, as in “Jon told me that Bill is a fool,” are verbs
of communication (Zwicky, 1970). An implemented system for automatic
classification is described, and successful experiments with two examples, in-
cluding the communication verbs, are discussed. The system uses minimal
syntactic knowledge and parsing machinery, ignoring all but the syntacti-
cally most simple cases and using statistics to manage the resulting error, as
well as other anomalies. The combination of specific linguistic/ontological
constraints, limiting to the syntactically simple cases, and analysis of sam-
pling error gives good results in the automatic classification of verbs. This
is important for building computational lexica that automatically track the
language. It also offers a more concrete picture of how child language learn-
ers with little prior knowledge could use such constraints to narrow down the
possible meanings of verbs (Gleitman, 1990).

Brent (1990, 1991b) detail a system that classifies verbs into those that
describe only states of the world, like know, and those that can describe
events, like fiz. The criteria were how often each verb occurs in the progres-
sive and how often it occurs in with rate adverbs like quickly and slowly.? The

'But see Siskind, 1990 for current work on learning relatively detailed definitions.
2These criteria are discussed in Dowty (1979) where they are attributed to Lakoff
(1965).

23



following examples demonstrate that purely stative verbs are not natural in
these two constructions:

Jon is fixing his car

* Jon is knowing calculus
Jon fixes his car quickly

*x Jon knows calculus quickly

Data on the frequency of occurrence of each verb in the sample corpus® in
each construction were analyzed to determine statistically reliable bounds on
their true frequency of occurrence in the absence of sampling error. These
bounds were then used to automatically classify the verbs. The results were
good — when verbs are classified as purely stative if less than 1.2% of their
occurrences are in the progressive (with 95% confidence) and no significant
proportion are modified by rate adverbs then six verbs are labeled stative:
know, seem, like, want, believe, and remain. These six are true statives. On
the other hand the three statives mean, require, and understand are missed.
If the criterion is relaxed somewhat to < 1.35% progressive then these three
are labeled stative, but so is agree, which has a non-stative sense meaning to
voice agreement. This problem might be resolved by a larger corpus which
would give tighter bounds on modification of agree by rate adverbs, or by
distinguishing between occurrences of agree with complement clauses (mostly
stative sense) and those without (mostly non-stative sense).

The automatic classification of verbs as purely stative depends on the
selection of apparently arbitrary cut-off points for frequency in various con-
structions. However, it may be possible to choose the cut-offs automatically.
The distribution of frequencies in the progressive over all the common verbs
showed a marked clustering into distinct populations which might be iden-
tified by a regression analysis. Once the clusters are identified, independent
data on the stativity of a couple of verbs might be sufficient to classify the
rest. This learning algorithm is similar to neural-net methods.

The system of Brent (1990, 1991b) used a parser to identify verbs in the
progressive and those modified by rate adverbs, but that work is now being
duplicated using only simple regular expressions. The regular expressions
work for the progressive construction because it is purely local. Their accu-
racy in determining which verb is modified by a rate adverb is not perfect,

3This work was done on the million-word Lancaster/Oslo/Bergen (LOB) corpus, which
includes edited text from a variety of sources.
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since arbitrarily many words can intervene between the verb and the adverb.
However, these constructions are relatively rare and the only cost of ignoring
them is a small increase in the size of the input corpus needed for significant
results. Such an increase imposes a much smaller burden, both theoreti-
cal and practical, than requiring the learner to have powerful grammatical
knowledge and parsing machinery.

The regular expression technique has recently been applied to a second
ontological class, communication verbs (Brent, 1991a). As noted above all
verbs that take a direct object and a complement clause at once, as in “Jon
told her that he is a happy,” have a sense involving communication. My
program picked a number of such verbs out of 2.6 million-words of the Wall
Street Journal by finding them in the direct-object-plus-complement-clause
construction. In general, distinguishing between a complement clause and
a relative clause, finding the boundaries of a direct object, and identifying
complement clauses not marked by a complementizer require arbitrary pars-
ing. But the cases where the direct object and the subject of the complement
clause are both personal pronouns can be described by a very simple regular
expression. Although the examples are few, the test is so reliable that even
a single instance is useful. Matching the simple regular expression against
a two-million word sample of the Wall Street Journal returned the following
verbs, in order of number of occurrences: tell, assure, convince, inform, re-
mind, advise, persuade, reassure, teach, hit, strike. Unexpectedly, this list
contains verbs of realization, as in, “It hit me that [ had been played for a
fool,” as well as verbs of communication. However, the realization verbs may
only appear with pleonastic it as their subject, whereas the communication
verbs may not appear with pleonastic i¢. What had been thought to be one
syntactic criterion for one semantic class turns out to be two criteria for two
classes. Interestingly, the realization sense of hit is not in Webster’s Ninth
Collegiate Dictionary, although that sense of strike is. This is a reminder of
the difficulties inherent in relying on subjective, manual lexicography rather
than automated, empirical lexicography.
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Title of talk: Learning Complex Syntax Within a Semantic Parser

Claire Cardie and Wendy Lehnert
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Abstract

Because conceptual analyzers focus on meaning representations more than syntactic structures, these
systerns tend to avoid syntactically complicated texts. We describe a cognitively plausible mechanism that
allows a semantically-oriented parser to systematically understand complex embedded clause constructions.
Furthermore, we outline ongoing work on a machine learning component for our parser that uses a case-based
approach to automatically acquire this capability.

Natural Language Processing Research at UMass

A number of semantically-oriented techniques have been devised over the years to address the problems of
conceptual sentence analysis. We have implemented a natural language sentence analyzer, CIRCUS, which
incorporates a number of well-known techniques from the symbolic information processing tradition along with
original techniques based on numerical relaxation. Our basic system architecture supports a stack-controlled
mechanism for managing syntactic predictions, as well as modules for handling two fundamentally distinct
types of semantic preferences: predictive semantics and data-driven semantics. A marker passing algorithm

is used for predictive semantics, and numerical relaxation is used for data-driven semantics. [Lehnert, W.G.
1990]

The multiple architectures of CIRCUS result in a system that is especially well-suited to the task of
selective concept extraction. Portions of sentences that are not covered by the available lexicon can be ignored
while intelligible fragments are still processed. Complex syntactic structures such as dependent clauses and
participial phrases can be processed without the overhead associated with complete parse trees. Because
we effectively ignore those parts of a sentence that are not readily understood, we do not have to design
recovery techniques for ungrammatical sentences or syntactic constructs that are not recognized by CIRCUS.
These features result in a robust approach to text analysis that utilizes variable-depth processing in order to
maximize reliability and minimize processing effort.

Our success with CIRCUS brought us a unique opportunity in 1990. That year CIRCUS was selected as
one of about a dozen state-of-the-art systems chosen to participate in the third DARPA-sponsered Message
Understanding System Evaluation and Message Understanding Conference (MUC-3). This is a competitive
performance evaluation of available technology designed to handle selective concept extraction from wire
service stories about South American terrorism. Using a development corpus of 1100 texts, each system is
first “tuned” for the target domain before the final system evaluations take place. After about 6 months of
development effort, participating systems are then evaluated on the basis of 100-200 test texts. We expect to
learn a great deal about CIRCUS during the course of this evaluation.

There is a great potential for computational models that integrate traditional symbolic processing with
subsymbolic techniques like backpropagation and numerical relaxation. This seems to be especially true
in natural language processing, where many problems can be described in terms of complex constraint
satisfaction and preferred (as opposed to correct) interpretations. We believe that CIRCUS integrates symbolic
and subsymbolic techniques in a manner that optimizes the complementary strengths of both information
processing paradigms.

References:

Lehnert, W.G. 1990. “Symbolic/Subsymbolic Sentence Analysis: Exploiting the Best of Two Worlds,” In Advances in
Connectionist and Neural Computation Theory, Vol. L. (ed: J. Pollack and J. Barnden). Ablex. (in press) Also available

as COINS Technical Report No. 88-99, Department of Computer and Information Science, University of Massachusetts.
1988.
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Learning Syntax Within a Semantic Parser
Claire Cardie and Wendy Lehnert
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1 Complex Syntax from a Semantic Perspective

A relatively large class of natural language processsing systems perform conceptual analysis of text (see
[Riesbeck 75], [Birnbaum & Selfridge 81], [Riesbeck & Martin 85], [Wilks et al. 85], and [Cullingford 86]).
Because these systems focus on meaning representations more than syntactic structures, it is not surprising
that parsers of this class have, for the most part, ignored syntactically complicated texts. Unfortunately,
without mechanisms for correctly and consistently handling complex syntactic constructions, conceptual
analyzers can only achieve limited success in understanding real stories, research papers, discourse, newspaper
articles, ete. Consider the following sentences from a recent article in the Boston Globe:

(1) Last week, the FBI said it had identified people linked with four Middle Eastern terrorist groups who already were in
this country.

(2) The Arab terrorist groups that do have infrastructuresin the US could carry out terrorist attacks here.

(3) FBI agents have approached members of suspected terrorist support groups to let them know the bureau is aware of
their presence.

Like the vast majority of sentences in real texts, examples (1) - (3) contain multiple embedded clause
constructions. Understanding these constructs is especially difficult because a natural language system must
often infer the existence of a missing constituent in the nested clause and associate it with an antecedent
phrase from another clause. In (1), for example, “people” is both the object of “identified” and the missing
actor of the nested clause verb “linked”; “Middle Eastern terrorist groups” is both the cbject of “with” and the
actor of the wh-phrase “were”; in (2), “Arab terrorist groups” is the phonetically null actor of “do have” in the
subordinate clause as well as the actor of “carry out” in the main clause; and in (3), “FBI agents” is the actor
of both the infinitival complement “to let” and the main clause verb “have approached”.

People, however, seem to understand syntactically complex sentences without noticeable effort. Recent
experiments in psycholinguistics show that human processing of complicated nested clause constructions is
quite efficient [Fodor 89] and there is documented evidence that children understand these constructs by
the age of ten [Chomsky 69]. In an attempt to model the way people process language, we have developed
a mechanism for systematically understanding nested clause constructions within a semantically-oriented
parser called CIRCUS [Lehnert 90]. We define a small number of lexically-indexed control kernels (LICKs)
for processing embedded clause constructions and allow individual words to selectively trigger the LICK that
will correctly handle the current clause. Each LICK parses a single clause into its semantic representation
and then returns that representation to surrounding LICKs using constrained conventions for inter-LICK
communication.

In addition, we have evaluated the psychological validity of our approach by comparing CIRCUS’ pro-
cessing of embedded clause constructions with recent psycholinguistic studies of the same constructs
[Cardie & Lehnert 91]. Based on this evaluation, we conclude that our architecture is a plausible com-
putational model of human processing for nested clause constructions. This adherence to a cognitively
plausible architecture allows CIRCUS to achieve robust sentence processing capabilities not found in other
semantically-oriented parsers.

We are currently investigating the possibility of using a case-based approach for automatic acquisition
of the LICK definitions that interpret embedded clauses. A more detailed specification of the goals of this
ongoing work are given in the final section of the paper. The remaining sections provide a brief overview of
CIRCUS and the LICK formalism and present an example of the studies used in our psychological evaluation.
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2 CIRCUS and the LICK Formalism

CIRCUS [Lehnert 90] is a conceptual analyzer that produces a semantic case frame representation of an
input sentence using a stack-oriented control for syntactic processing and a marker-passing mechanism for
predictive preference semantics.!.

In the tradition of conceptual analyzers, CIRCUS’ syntactic component produces no parse tree of the input
and employs no global syntactic grammar. It is based on the McEli parser [Schank & Riesbeck 81] and uses
lexically-indexed local syntactic knowledge to segment incoming text into noun phrases, prepositional phrases,
and verb phrases. As soon as McEli recognizes a syntactic constituent, that constituent is made available to
the predictive semantics module (PSM) that is responsible for making case role assignments. In CIRCUS, this
consists of top-down slot-filling of any active semantic case frames subject to the slot's semantic constraints.?

Figure la, for example, shows the state of CIRCUS after parsing the sentence “Mary saw the boy”. McEli

a8 .
Mary saw the boy

animate? hys-obf?
you : Jou SEE

— Actor :Mary
sun:  (acter ) @ Object :the boy
\— W
(a) (b)

Figure 1: Mary saw the boy.

recognizes “Mary” as the subject (*S*), “saw” as the verb (*V*), and “boy” as the direct object (*DO*). In
addition, “saw” triggers a semantic case frame for a SEE event. The case frame definition shown in Figure la
indicates the mapping between surface constituents and case frame slots: subject — Actor and direct object —
Object. In addition, it depicts the semantic constraints associated with each slot. Namely, the Actor should be
animate and the Object should be a physical object. Because both of these constraints are satisfied, CIRCUS
returns the instantiated case frame of Figure 1b at the end of the sentence.

When sentences become more complicated, we have to “partition” the processing in a way that recognizes
embedded syntactic structures as well as conceptual dependencies. This is accomplished with lexically-indexed
control kernels (LICKs). We view the top-level McEli stack as a single control kernel whose expectations and
binding instructions change in response to specific lexical items as we move through the sentence. When we
come to a subordinate clause, the top-level kernel creates a subkernel that takes over to process the interior
clause. In other words, when a subordinate clause is first encountered, the parent LICK spawns a child
LICK, passes control over to the child, and later recovers control from the child when the subordinate clause
is completed. Each control kernel essentially creates a new parsing environment with its own set of bindings
for the syntactic buffers, its own copy of the main McEli stack, and its own predictive semantics module.

Consider the LICK processing required for the sentence “Mary saw the boy who ran to the lake” (see
Figure 2). The top-level LICK is in control until the lexicon entry for “who” indicates that processing of
the main clause should be temporarily suspended and a child LICK spawned (see Figure 2a). Because the
antecedent for “who” can bind to one of four possible syntactic constituents within the subordinate clause,
CIRCUS initializes each of the child *S*, *DO*, *10*, and *PP* syntactic buffers with “boy”. When the child
completes a semantic case frame instantiation, at least one of these will be overwritten, and few case frame

LCIRCUS also employs a numerical relaxation algorithm to perform bottom-up insertion of unpredicted slots into case frames. This
module is not important for the purposes of this paper, however.
2CIRCUS allows both hard and soft slot constraints. A hard constraint is a predicate that must be satisfied. In contrast, a soft

constraint defines a preference for a slot filler rather than a predicate that blocks slot-filling when it is not satisfied. We will use only soft
constraints in the examples that follow.
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definitions will reference all four buffers in any case. Figure 2b shows the state of the child LICK at the end
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Figure 2: Mary saw the boy who ran to the lake.

of the embedded clause. “Lake” has overwritten *PP* and “ran” has triggered a PTRANS? case frame. Note
that although *IO* still contains the antecedent “boy”, it does not interfere with the semantic representation
because the PTRANS case frame does not access *I0*. At this point, CIRCUS freezes the PTRANS case frame
(with Actor = boy, Object = boy, and Destination = lake), exits the child LICK, and returns control to the main
clause where the PTRANS frame is attached to the antecedent “boy”.

3 Psycholinguistic Studies of Embedded Clause Constructions

Section 2 briefly described how CIRCUS processes embedded clause constructions using its LICK mechanism.
In{Cardie & Lehnert 91] we evaluate this approach by comparing CIRCUS to recent experiments in psycholin-
guistics that address the human processing of nested clauses. In this section, however, we discuss just one of
the experiments included in that psychological evaluation.

Consider the following sentence from a Swinney, Ford, Frauenfelder, and Bresnan study:

(1) The policeman saw the boy who the crowd at the party accused # of the crime.

To fully understand this sentence, we have to infer that it is the boy who is being accused — we associate
an antecedent or filler (in this case “boy”) with the missing direct object or gap in the wh-phrase (at #).
[Swinney et al. 88] determined that people “reactivate” the meaning of a wh-phrase antecedent at the position
of its gap in the embedded clause. At # in sentence 1, for example, subjects respond faster to a word
semantically related to “boy” (e.g., “girl”) than to a control word or to words associated with “policeman” and
“crowd”.* This result implies that people have integrated the meaning of the filler into the current semantic
representation of the sentence at the point of the missing constituent. CIRCUS is consistent with this finding.
Reactivation occurs in CIRCUS when the next constituent expected according to the McEli stack contains the
antecedent. In (1), for example, syntactic knowledge stored with “accused” sets up the McEli stack to expect a
direct object to follow. CIRCUS reactivates “boy” immediately following “accused” because the next constituent
expected by McEl is the direct object, but *DO* already contains the antecedent “boy”.

Furthermore, [Swinney et al. 88] found reactivation only for the correct antecedent at #. They found no
reactivation of “crowd” or “policeman”. CIRCUS also reactivates only the correct antecedent because the LICK
formalism makes “boy” the only main clause constituent accessible to the embedded clause. No other noun
phrases in the sentence (e.g., “policeman”, “crowd”, “party”) are considered as antecedents of “who”.

SPTRANS is a primitive act in conceptual dependency describing a physical transfer (see [Schank 75]). The PTRANS case frame
actually has a fourth slot -—— the original location or Source of the object. For the purposes of this example, however, we will ignore this
slot.

4In the [Swinney et al. 88] study, the target word was briefly flashed at some point during aural presentation of the sentence. Subjects
were asked to decide whether or not the visually presented word was a real word and press the appropriate button. Faster response to a
target is attributed to priming by the noun with which it i8 semantically related.
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Thus, CIRCUS seems to employ a psychologically valid mechanism for reactivation of antecedents in
wh-phrases: it reactivates the antecedent at the point of the gap and it reactivates only the correct antecedent.

4 Machine Learning of LICKs

We are currently working on a supervised learning component for CIRCUS that acquires the knowledge
encoded in LICKs. For each unique LICK, this component will learn: 1) the lexical items that trigger the
LICK, 2) the constituent from the parent LICK (i.e., the antecedent) that should be passed to the child LICK,
3) the set of child LICK syntactic buffers that should inherit the antecedent, and 4) the McEli syntactic
predictions that should be in effect at the start of the embedded clause. All of this information is included in
the definition of a single LICK.

We plan to use a case-based approach for this language acquisition task where each case consists of 1)
the state of the parser (i.e., the McEli stack of syntactic predictions, the contents of the syntactic buffers,
the current semantic case frame, the current word, etc.) at the onset of an embedded clause and 2) the
desired semantic representation of the embedded clause. Although this machine learning task addresses only
a small part of the language acquisition problem, we hope that it offers insights for the development of a more
substantial case-based approach to the machine learning of natural language.
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Abstract

In this paper, | will present a formal model
of parameter setting. This model is intend-
ed first to demonstrate that a principles and
parameters (P€&P) model of universal gram-
mar (UG) has the learnability property and
second to provide a formal basis for modelling
language acquisition. The learner presented
here will correctly hypothesize the parameter
settings for the adult target on the basis of ex-
posure to an input text consisting of only posi-
tive data; that is, it does not need exposure to
ungrammatical strings in order to acquire the
syntax of a natural language. Furthermore,
it is able to converge to the correct grammar
despite the highly ambiguous, equivocal na-
ture of the input data. The system is based
on a simple genetic algorithm (Holland, 1975;
Goldberg, 1989; Clark, 1990) which exploits
natural selection as a basis for learning. The
cumulative selectional pressure exerted on the
learner over time by the input examples has
the effect of gradually pushing the learner to
hypothesize the correct target grammar.

The model develops a notion of the relative
fitness of a parsing device over an input se-
quence. This metric of fitness is such that (1)
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the learner can select the best hypothesis from
a population even in cases where no available
hypothesis can properly account for the input
datum; (2) the learner can efficient eliminate
inferior hypotheses, allowing for an efficien-
t search of the hypothesis space; (3) success-
ful hypotheses can be compared on the basis
of abstract relations (eg, subset/superset rela-
tions) so that the most parsimonious grammar
can be found. The third property of fitness al-
lows the learner to retract overgeneral “super-
set” hypotheses (Berwick, 1985) on the basis
of positive only input.

1 The Learning Problem

In this paper, I will present a formal model
of parameter setting in natural language ac-
quisition. Language acquisition is a central
problem in psychology, linguistics and cogni-
tive science precisely because it is a case where
learners converge to a rich system of knowl-
edge (a grammar) on the basis of highly e-
quivocal, positive-only input data (see Wexler
& Culicover, 1980; Morgan, 1986 and the ref-
erences cited in these works). The system I
will present exploits the theory of natural s-



election as a computational framework using
genetic algorithms (Holland; 1975; Goldberg,
1989; Clark, 1990). In particular, natural lan-
guage grammars are represented as a sequence
of parameter settings which may be taken as
a genotype which determines a parsing device
as its phenotype. The parsing devices deter-
mined by the learner’s hypotheses can be run
against the input data to determine their rela-
tive fitness in providing well-formed represen-
tations for the input, via a fitness metric. The
most highly fit hypotheses are then combined
to generate new hypotheses which can, in turn,
be tested against the input. The system pro-
vides a highly efficient means of searching the
hypothesis space and is tolerant of ambigu-
ous, relatively uninformative input data. The
fitness metric can be defined in such a way
as to penalize overgeneral hypotheses allowing
the learner to retract hypotheses which gener-
ate languages that are supersets of the target
without the need for explicit tutoring in the
form negative data.

Recent syptactic theory has concentrated
on the study  f grammatical principles which
underlie, and organize, the human natural
language faculty. Grammars are organized
around a set of universal principles which reg-
ulate the assignment of syntactic representa-
tions to strings. Language diversity is account-
ed for by means of a finite set of parameter-
s, vectors along which languages may vary.
Comparative syntax and typology can then be
viewed as an attempt to determine the variable
properties of the human language faculty with
respect to the core set of principles.! A giv-
en parameter may be thought of as a variable
inside a grammatical principle which can be
instantiated by a value drawn from a finite set
of possible values defined by universal gram-
mar.

'For a general discussion of this approach to syn-
lactic Lheury, see Chomsky (1981), Chumsky (1985)
and Chomsky (1986).
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One well-known example of the interaction
between principles and parameters is subjacen-
¢y (Chomsky, 1977), a principle which gov-
erns the formation of long-distance extrac-
tion, a process that underlies the formation
of wh-questions (eg, Who do you think that
John saw e? where who has been extracted
long-distance from the position indicated by
e). Subjacency forbids long-distance extrac-
tion across two bounding nodes in a single step.
Crucially, languages show a limited degree of
variation in the categories that they select to
act as bounding nodes, resulting in differential
cross-linguistic behavior with respect to long-
distance extraction. The task for the learner,
then, is to discover which instantiation of the
parameters best fits the input data to which it
is exposed.

A parameter can be expressed as a simple
proposition which may be either true or false:

IP is a bounding node.
CP is a bounding node.
NP is a bounding node.

Given that principles are fixed properties
that do not vary across languages, we could
specify individual grammars with reference on-
ly to particular combinations of parameters
values. That is, individual grammars could
be represented as strings of truth values (0
for false and ! for true). This representation
could then be taken as a way of enumerating
the set of possible natural languages in binary
numbers. If UG consisted of four binary pa-
rameters then 1000 (= 8) would be the gram-
mar that results from setting the first param-
eter to true and all the others to false. On
a more intuitive level, universal grammar may
be thought of as a device whose function is reg-
ulated by a set of binary switches (the param-
eters); each switch-setting would determine a
parsing device which accepts some natural lan-
guage.



On this view, the task of the learner is to
determine which switch-setting best matches
the language it is being exposed to. Formally,
then, the learning problem can be described
by the following relation:

7[¢n © ‘P(a'i)] = Pn

In the above, o; represents an input text (a se-
quence of well-formed sentences from the tar-
get language L;). The learner is represented
by ¢. ¢ produces a sequence of parameter
settings (a hypothesis) based on its exposure
to o;. This sequence of parameter settings is
then interpreted relative to the set of linguis-
tic principles by ¢5 to yield a grammar, G;,
for the language from which the input text o;
was drawn. Finally, ¥ maps the grammar pro-
duced by ¢, 0 ¢(0i) to a parser, Py, for L;.

Recall that the learner cannot rely on tutor-
ing from negative data. This makes the learn-
ing task particularly formidable since the lan-
guages generated by different parameter set-
tings may fall into subset relations (Berwick,
1985). That is, the language generated by set-
ting a parameter p, to 0 may be a proper sub-
set of the language generated by setting the
parameter to I:

L(p,,..
L[p|,..

In this case, if the learner overgeneralizes and
hypothesizes that p, = 1 when, in fact, the
target has p, = 0, the error could be fatal
in the sense that no negative evidence will be
available to the learner to inform it of its error
and all further evidence will be consistent with
the learner’s hypothesis, which is, after all, a
superset_of the target language.

A further problem faced by the learner is
that several inconsistent parameter settings
may derive distinct, but well-formed, represen-
tations for the same datum. Suppose that the

')pz] C
1 P:]

Sy Pr-1, Pz(o)lpr+l, ..
wPr—lst(l)» Pz+1,--
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problematic datum is s,, and that p;, p; and
Pk are parameters such that:

$m € Ly = L[pi(1), p;(
8m € Ly = L[P.‘(O),Pj(
sm € L3 = L[pi(0), p;(

Notice that L, # L; # Lz. That is, the
three hypotheses are not mutually consisten-
t although the grammar for each one derives
$m as a theorem. The learner must have
some means, however, of distinguishing be-
tween these various hypotheses in the long run.

2 Genetic Algorithms

Instead of relying on a costly (and possibly
fragile) deductive procedure, Clark (1990) pro-
poses that the causal relation that exists be-
tween the input text and hypothesis formation
can be most efficiently modeled via natural s-
election; in particular, Clark (1990) develops
a genetic algorithm (Holland,‘]976; Goldberg,
1989) which models the proress of syntactic
parameter setting.

In essence, a genetic algorithm consists of
the following components:

e A representation of hypotheses in terms
of strings, similar in structure to genetic
material.

A measure of fitness of hypotheses in
terms of their performance in an environ-
ment.

A reproductive mechanism which allows a
hypothesis to produce offspring.

A Crossover mechanism. This mechanis-
m combines two hypotheses and produces
a new hypothesis by combining parts of
each to the parent’s genetic material.



e Mutation. This mechanism randomly al-
ters an offsprings genotype to produce a
new hypothesis close to, but not identical
with, the parent’s genetic endowment.

The first of the above ingredients is already
satisfied by the representation of parameter
settings in terms of truth values; the learn-
er’s hypotheses can be treated as strings of 0s
and Is which have the necessary structure for
the other components of the algorithm.

The core component of the algorithm—
the one that feeds reproduction and, hence,
crossover (the generation of new and better
hypotheses)—is the measure of fitness. Intu-
itively, more fit hypotheses are better at deal-
ing with the problems posed by the input tex-
t and, so, should reproduce more prolifical-
ly. Thus, the more fit hypotheses will con-
tribute to the formation of new hypotheses via
crossover. Gradually, the properties that make
hypotheses fit should propagate through the
population until the target is converged upon.

I will take parsing as the basis of a measure
of the goodness of fit of a hypothesis against
the target language. In general, a parser is
successful to the degree that it can reduce an
input string to a single node in a parse tree;
a parse fails if more than one unconnected n-
ode is returned by the parser. If two hypothe-
ses fail to parse the input string successfully,
we can assume that one is a better hypoth-
esis than the other if the former returns less
unconnected nodes than the latter. Finally, as
noted above, overgeneral, superset, hypotheses
should be penalized so that the learner will be
able to retract them in light of less general,
but still adequate, hypotheses.

These considerations suggest that we can
measure the fitness of a hypothesis, h;, and
the parser, p;, which it derives relative to a
single input string, s, from a target language
and a population of n hypotheses by means of
the following formula:
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(i1t +eXjo i) — (i + cei)

(n - 1)(2;:1 tj + CZ;=I ej)

In the above, 3 °_,t; represents the total
number of nodes returned by the population of
parsers and Z;ﬂ e; represents the total num-
ber of overgeneral parameter settings in the
entire population of hypotheses that derive the
parsers; t; and e; represent the number of n-
odes returned by the parser p; and the number
of overgeneral parameter settings in k;, respec-
tively. Finally, c is a weighting constant which
can be used to fine-tune the relative cost of
positing a superset setting for a parameter.

The fewer nodes that an individual parser
returns on an input string relative to a pop-
ulation, the more highly fit it will be judged
by the above metric. Notice that absolute suc-
cess in parsing is not a criterion in the above;
it is sufficient that a parser returns fewer n-
odes than its fellows for it to be judged high-
ly fit, but it need not necessarily reduce the
input string to a single node. Since the most
fit hypotheses reproduce more prolifically and,
hence, are more likely to contribute to the for-
mation of new hypotheses via the crossover
and mutation operations, the parameter set-
tings that made these hypotheses fit will prop-
agate through the entire population. The in-
verse of the coin is that less fit hypotheses
will tend to die off and, thus, the parameter
settings that made these hypotheses relatively
unfit will disappear from the population and
become unavailable.? Furthermore, overgener-
al hypotheses will be less robust, allowing the
learner to retract overgeneralizations.

?The least fit hypotheses are removed from the hy-
pothesis stack with a probability of p < 0.05 in the
current implementation.



3 Parameter Expression

Any given sentence from an arbitrarily select-
ed natural language will be such that it ex-
presses some subset of the parameter settings
that go in to making the grammar for that
language. That is, the sentence can be suc-
cessfully parsed by any grammar with the rel-
evant parameters set in the proper way. Other
parameter settings will be irrelevant for that
sentence. This is just to say that there is a re-
lation between any natural language sentence
and the set of grammars which could in princi-
ple assign a well-formed syntactic parse tree to
that sentence; any one sentence will be com-
patible with a set of parameter settings.®> An
input datum which expresses some set of pa-
rameter settings are, then, triggers for those
parameters.

Clark (1990) proposes that the set of gram-
mars compatible with a given input sentence
can be labelled by virtue of an encoding which
enumerates those parameter settings that are
necessary to assign a well-formed representa-
tion to a given sentence, s,,. Supposing that
the parameter space consisted of five binary
parameters, the p-encoding 9 for s, might be:

P(sm) = [x00 = 1]

where ‘*' is a variable ranging of 0 and 1. The
above encoding indicates that the sentence s,
can be parsed by any grammar where the sec-
ond and third parameters are set to 0 and the
fifth parameter is set to 1. Thus:

¢(8m)
1001 1}

= {00001, 10001, 00011,

31iere,-we abstract away from the form of the par-
ticular lextcal items in the sentence. As observed by
Wexler & Culicover (1980), the problem of lexical ac-
quisition can be segregated Lo a separate learning mod-
ule, allowing us to consider the mathematical structure
of the syutactic acquisition problem.
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The target grammar is derived from the ap-
plication of the learner, ¢,, to the intersection
of all the encodings for each sentence in the
input text, ;. We presuppose here, as seems
natural, that each target parameter setting is
expressed by some encoding in ¢;; an adequate
input text must exemplify all those features of
the target that the learner must acquire. Note
that parsing can be simulated formally be re-
placing individual sentences in the input text
by their encodings and using a simple arith-
metic procedure to estimate the success of a
hypothesis relative to a given encoding.

The picture that emerges from the above
simulation is that the learner is given extreme-
ly ambiguous, vague information about the na-
ture of the target. The learner has no direct
access to the target parameter settings, only
indirect evidence via failed parses on an in-
put text that consists of only well-formed sen-
tences. Given the ability of the fitness function
to discriminate between competing hypotheses
as well as the inherent robustness of cumu-
lative selection as reflected in the interaction
between fitness and reproduction, the current
mode]l can successfully converge in large hy-
pothesis spaces despite the extreme poverty
of the input data. To date, the model has
been tested on a space of 30 binary parame-
ters represented a hypothesis space of 2°Y (=
1,073,741,824) possible languages and has suc-
cessfully converged in that space.

The reason for the learner’s high degree of
fault-tolerance is the way in which it exploit-
s the cumulative nature of natural selection
to search the hypothesis space for the tar-
get. In general, better hypotheses are judged
more fit by the fitness metric, reproduce more
prolifically and, thus, propagate their benefi-
cial features throughout the population of hy-
potheses. This, combined with the mutation
operation,* allow for a highly efficient and ro-

4 The probability of mutation in the maodel is cur-



bust learning procedure. By exploiting natural
selection, the learner can simulate intelligent
design without the exorbitant cost, and brit-
tleness, of deductive procedures, just as is the
case in the natural world.

4 Summary

The model of parameter setting in the acquisi-
tion of natural language syntax presented here
presents a learner that is able to converge in
a large hypothesis space despite extremely im-
poverished data. It thus provides an interest-
ing case study from the point of view of en-
gineering a robust, fault-tolerant learning sys-
tem.

The system makes a number of interesting
conceptual and empirical points when consid-
ered from the viewpoint of theoretical compar-
ative linguistics, psychology and cognitive sci-
ence. The ability of the human organism to ac-
quire a first language quickly and efficiently is
a remarkable feature of the natural world and
the study of this ability stands at the heart of
much research in these fields. This approach to
language learnability implies that typological
analysis of natural languages, empirical case
studies of first language acquisition and the
theory of parameter setting are all of a natural
kind with genetic analysis. Finally, the study
of the relationship between language learnabil-
ity and natural selection promises to provide
a strong formal foundation for the notion of a
parameter in linguistic theory; if this work is
on the right track, then the study of variabil-
ity within the population of natural language
is of the same kind as the study of variability
within a population of organisms.

rently set at 0.005.
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1 Introduction to Research and Bibliography

The problem addressed in this paper is automatic aquisition of the lexical semantics of unknown
predicates in natural language processing, based on a quantitative analysis of corpora. This work
is being done in the context of the development of Pundit, a large, modular, natural language
processing system. The author’s particular interests are in the areas of semantic and pragmatic
processing and evaluation of natural language systems.
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2 Abstra_ct

This paper discusses two experiments in the application of statistical semantic information in the
Unisys spoken language system. The first experiment investigated improving the processing speed
in semantics by applying semantics rules in an order reflecting their frequency of application in
a training corpus. The second experiment investigated using the training data to make informed
guesses about the semantics of unknown predicates. The application discussed here is a database
interface to database of information on air travel, such as flight schedules, airfares and ground
transportation.
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3 Introduction

Using probabilistic information during natural language processing is a promising means of in-
creasing parsing accuracy, improving processing times, and coping with previously unseen mate-
rial. Much work has been done in the area of probabilistic parsing ([2], [1]. However, in order for
improvements in the ability to provide a parse for new material to have an effect on overall system
performance, the rest of the system must also be able to cope with new material. This research
describes a technique for allowing the system to make informed guesses about the semantics of new
verbs, based on training data. Although there has been some previous work on inferring the se-
mantics of unknown verbs ([5], [4]) this previous work has not exploited the quantitative properties
of corpora.

4 Experiments in Semantic Training

4.1 The Pundit Semantic Interpreter

The semantic interpreter of the Unisys system interprets three types of declarative semantics rules
- case frames, rules specifying the mapping of syntactic constituents to the roles of case frames,
and rules specifying semantic class restrictions on the fillers of roles in case frames ([3]).

4.2 Improving Processing Time

Based on a training corpus of 1000 Air Travel Planning (ATIS) sentences, we have developed
by hand an initial set of 200 case frames, 600 syntax/semantics mapping rules and 500 semantic
class restrictions. The frequency of occurrence of each of these rules was measured by processing
the entire training corpus and recording each successful rule application. The system was then
configured to apply the rules in order of their frequency of application in the training corpus when
more than one rule could apply. Processing times between the two cases were then compared.

It was found that the only effect of using rules in the order of their frequency was to improve the
selection of case frames for polysemous words. Otherwise the semantic search is fairly deterministic,
and consequently no speedup through reordering of rules was found. We would expect to see more
of an effect in a broader domain with many polysemous words.

4.3 Hypothesizing the Semantics of Unknown Words

A second use of this training data is to enable the system to make informed guesses about the
case frame structure of new predicates. Previously, semantic processing would fail altogether if
there was no case frame for a verb or predicate adjective, thus the system was not very robust
when confronted with new words. We wished to provide the system with some means of making
intelligent guesses about missing information. We believe that techniques for intelligent guessing
should be based as much as possible on quantitative analysis of corpora rather than on hand built
heuristics, which can be very effective, but which are difficult to generalize across domains and
across languages. For this reason we have developed a guessing mechanism using the frequency
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data collected for the experiment described above. Specifically, the frequency of syntax/semantics
mapping rules in the training corpus is used to infer likely case roles, given a set of syntactic
arguments. For example, the most frequent syntax/semantics mapping in the Unisys ATIS system
is a mapping from the syntactic direct object to the theme of the predicate. Consequently, given
an unknown predicate with a syntactic direct object, the system will guess that the predicate has
a theme and that the direct object maps to the theme role. Other common mapping rules map the
syntactic sub ject to the actor role, 'from’ prepositional phrases to the source role, and so on, so for
example the presence of a from’ prepositional phrase in the parse will justify positing a 'source’
role in the case frame.

The system can guess case frames in either of two modes. In the supervised mode the guessed
case frames are presented to the user in an order reflecting their frequency in the training data. If
the user rejects a proposed case frame a less frequent mapping for one of the roles will be selected
and new case frames will be generated sequentially until the user accepts one of them. In the
unsupervised mode the first guess is assumed to be correct and is used in the current analysis and
is output to a file.

One interesting feature of this approach is that the newly guessed case frame is not assumed to
represent the complete correct semantics of the verb. Since many verbs have optional arguments
as well as several ways of expressing their arguments syntactically, it would be incorrect to simply
assume that all the necessary information for the semantics of a verb is given by one instance.
In the current system this results in a new guess for each instance of a verb in a corpus. A
future improvement to this approach would be to use the algorithm described by [4] in order to
incrementally acquire the complete semantics of a verb given a succession of instantiated case
frames.

4.4 Evaluation

We tested this approach by running 500 ATIS sentences which the system had not previously
trained on, while turning on the guessing feature. These sentences contained 8 verbs for which
the case frames were guessed. In order to assess the semantic correctness of the guessed case
frames, case frames for these predicates were also built by hand and were compared to the guessed
case frames. The results, although preliminary, are very encouraging. In general the difference
between the linguist’s rules and the guessed rules can be characterized by (1) more generality in
the hand generated rules, covering anticipated examples beyond the specific utterance containing
the verb in question and (2) recognition of synonymy relationships between new and old verbs.
We believe that differences (1) and (2) will tend to level out as the system receives additional
training data. Difference (3), recognition of synonymy, is an independent issue from inference of
argument structure, and will require a different treatment. In order to measure the increase in
the robustness of the system provided by this technique we also ran 195 previously unseen ATIS
sentences and found that semantics failures were reduced from ten percent to eight percent of all
queries. Unfortunately the small number of verbs involved makes generalization difficult, so we
plan to repeat these experiments with additional data as it becomes available.
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5 Future Directions

Because semantic correctness of case frames is not sufficient for system accuracy (the case frame
must mean something to the application) an important next step in this research will be to inves-
tigate ways of automatically making the case frame meaningful to the application. To do this it
will be necessary to determine where the new predicate belongs in the knowledge base. We plan to
explore using on-line knowledge sources such as thesauri to address this problem. Once the position
of the new predicate in the knowledge base is determined, the application component can use its
knowledge of what has been done with semantically similar verbs to decide what should be done
with the new verb.

Another important aspect of the meaning of verbs is what kinds of entities act as their ar-
guments. For example think requires that its actor be a human. These requirements are needed
because they provide an important source of constraint on the analysis, allowing the system to
penalize potential analyses which violate them. In current systems these constraints are added
by hand, which can be time consuming, prone to inaccuracies, and requires a trained specialist.
We will explore automating this aspect of natural language processing by allowing the system to
process a corpus while assuming that whatever type of entity appears to fill a role is correct and
then aggregating the types. For example if only humans and animals appear as role fillers for some
role of a verb then the system may be able to assume that this role requires an animate filler.
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Research Interests

My research domain is the machine learning of phonology. The aim is to produce programs which, when faced
with a collection of phonological data, will abstract symbolic rules and/or representations of the data. In this sense,
the research tries to model a linguist, rather than a naive language learner. To date, the work has concentrated on
three learning tasks. The first task, acquiring planar segregation, will be discussed in my talk here. The second is
the task of acquiring a model of a harmony system given sequences of harmonising vowels. The third and current
project involves the acquisition of syllable structure and sonority hierarchies.

In characterising my research, the approach is as significant as the domain. Underlying the approach is the view
that a learning system does not need domain-specific information. This view affects the style of the learning systems.
Asssumptions such as ‘consonants are more frequently intial than vowels’ are not permitted. No ad-hoc information
about the segments in the wordlists (the data) is permitted: an ‘a’ can only differs from a ‘b’ contextually. So the
data is purely structural. Finally, the algorithms used are not domain-specific. A domain-independent measure of
simplicity is applied to all hypotheses that are compatible with the data. This set of hypotheses is then searched
with a domain-independent strategy to find the simplest hypothesis, which is returned as the answer.
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Abstract of Talk

Discovering Planar Segregations

People can learn languages quickly from little information, defying the complexity of the task. One common
explanation states that the language learner has a detailed domain-specific model of language built in, and that
language learning is only setting parameters to this model. It is possible, however, to learn about a language with
little or no a priori information. In this talk I present an algorithm for finding planar segregations, such as discussed
by McCarthy (1989), of phonemes for particular languages. This algorithm requires no domain-specific knowledge
of phonology or phonetics. Despite this lack of knowledge, the implemented algorithm has identified structurally
significant segregations for thirty languages.
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Language acquisition is a problem. The language learner, faced with a finite corpus of moderate size selects
consistently from a very large number of possible grammars. The problem is two-fold: (a) by what criteria is the
choice of grammar made, and (b) how is the choice computationally feasible? Computational theories of acquisi-
tion have a considerable advantage in answering these two questions. If an implementation of a particular theory
(a) works, finding correct grammars or grammar fragments, and (b) does so within a reasonable time, then this
constitutes experimental verification that the theory has answered the acquisition problem for that grammar or
grammar-fragment. Non-computational theories cannot achieve this level of verification.

In this paper, I present an implemented algorithm for finding phonemic planar segregations, using a model of
segregation similar to that described by McCarthy (1989). In keeping with almost all models of planar segregation
(McCarthy (1981,1989) Prince (1987)), the segregations found by the implementation of the algorithm consistently
segregate phonemes onto two planes: one of consonants, the other of vowels.

This result leads to the central thesis of this paper in two steps. First, [ examine two competing criteria
for how the choice of grammar fragments is made: (a) using a domain-specific learning function, or (b) using a
domain-independent learning function. Domain-independence is a priori preferable, by Occam’s Razor. A domain-
specific model of learning should be assumed only if a domain-independent one is not possible, that is, if choosing
a grammar fragment without specific knowledge is not computationally feasible. Second, the program which learns
planar segregation is argued to be domain-independent. The main thesis follows: language learners do not need
domain-specific information in order to discover planar segregations.

1 Acquisition and Learning

Special nativism. The acquisition problem may be tackled by denial. There are not really a large number of
possible grammars from which the language learner can choose. Rather the language learner has at hand a significant
amount of a priori information in the form of a universal grammar which constrains the choice of grammar. The
class of grammars which must be investigated is small, and there may only be one possible grammar compatible
with the corpus. Following O’Grady (1987) I shall call this approach to the learning problem special nativism.

Problems. There are two problems with special nativism. Occam’s Razor, in one interpretation, forbids us from
making unnecessary assumptions. The burden of proof rests with the special nativist to show that each part of the
innate universal grammar is essential. If it can be done without, then it should be.

The second problem with special nativism is that it argues for a specific learning function devoted to language
and separate from learning systems in other domains, hence its name special nativism. Once again, Occam’s Razor
enjoins us to avoid such domain specificity unless it is necessary.

These are by no means problems with universal grammar per se, or its discovery as a scientific goal of linguistics.

Rather these are problems for the view that language learning is governed and directed by an innate knowledge of
universal grammar.

Minimalist learning. An alternative approach argues that while the problem of grammar choice might be hard,
it is by no means intractable. Rather than assuming as much as possible in an effort to minimise the number of
possible grammars, the number of assumptions in the theory is minimised. [ shall term this approach to grammar
choice the minimalist approach. Effort is then oriented towards finding effective search strategies which can deal
with the large number of possible grammars. The search strategy should be as independent of the search space as
possible.

A weakly restricted class of grammars will usually offer a large number of compatible grammars. An evaluation
measure is used to select between grammars not distinguished by the corpus. Just as with the other parts of the
learning system, the evaluation measure should be as free from domain-specific assumptions as possible. A very
general evaluation measure, perhaps the most general possible, is that proposed by Solomonoff.

Solomonoffinduction. Solomonoff(1964) proposed an evaluation measure which is applicable to finding models of
data under any computable theory. Theories are regarded as idealised computers, on which rules, such as grammars,
run as programs that may access some data files, and in any case produce output. Rules plus any required input
which produces a particular corpus in the context of a particular theory is called a model of that corpus.

rules ‘ ‘ input J

The Solomonoff evaluation measure assigns to each model its size in binary bits. The best of a collection of
models which produce the same corpus is the smallest. If we have a 200K program and a 2 program which can
produce our corpus from the same input, say 25K, then the 2K program is better: 200K + 25K = 225K > 27K =
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2K + 25K. On the other hand, if these programs require inputs of 5K and 500K respectively to produce the corpus,
then the first model is better: 200K + 5K = 205K < 502K = 2K + 500K.

The Solomonoff evaluation measure is not specifically oriented towards any domain of knowledge. Under any
computable theory and for any collection of data, the evaluation measure can be used to decide between competing
models.

Where the data consists of strings of symbols, and no contextual dependencies occur within the strings, it can
be shown that the length of the best encoding of a string, s, is given by k + E(s) where k is a prefix indicating the
encoding of the string, and E(s) is the Shannon entropy of the string. In all the cases considered here, k will be
independent of the s, and so can and will be ignored. Given the number of times n; that each symbol i occurs in a
string s of length n over the alphabet 4, the Shannon entropy of s can be calculated by

E(s) = nlogzn—Zni log, ni
tEA

2 Planar segregation

The Model McCarthy (1989) describes a theory of planar segregation which provides a good basis for a simple,
computable theory. In his model, each word is represented, not as a single linear sequence, but rather as a number
of planes each composed of phonemes from a particular class, together with a template which describes how these
planes are interleaved to form the word. In the most commonly proposed models there are two planes: one for
consonants and one for vowels (McCarthy (1989), Prince (1987)).

The model of segregation that is used here is essentially the same as McCarthy’s. The major difference is that,
rather than hold a copy of the template with each word, I replace these copies by a function which assigns to each
word the appropriate template.

As an example, suppose the segment inventory of our language is the English aiphabet, and this is divided into
three classes: a-g, h-q, r-z. A corpus containing the words ‘cat’, ‘dog’, ‘bet’, ‘break’ and ‘cream’ is represented by
the planes ‘cadgbebeacea’, ‘okm’ and ‘ttrr’, together with the templates ‘11312113112’ where the digits specify the
plane from which the next element is to be taken. It is worth noting that there are no symbols to mark the end of
a template.

The length of templates, and hence, how to divide the template string into the individual templates, can be
deduced from one observation and two functions. The observation is that the length of a template must be the same
as the length of any word that uses that template. The first function L from words onto natural numbers, states
the length of each word. The other function, T, is very important in reconstructing the corpus from the model. It
indicates which template is to be used for each word. To determine the length of any template, find a word which
is mapped onto that template by T. The length of that word, as given by L, must equal the length of the template.
Taking each template in turn, we can use this length information to insert separators between templates. Because
end-of-template markers would be redundant, they need not be used within the model.

In our example, the function T is ‘ABACC’, where A is the first template, B the second and C the third. The
function L shows the lengths 33355. From these we can deduce the length of the templates: 335.

Plane 1 ca d g be b ea c ea
Plane 2 o k m

Plane 3 t t r r

T(Word) 113#121#113#13112#13112#

Word w) wa w3 wq ws

L 3 3 3 5 5
' A B c

Templates 113 121 13112



From these three components of a model: the planes, the templates and the functions assigning a template and a
length to each word, the corpus may be derived. If the classes of segments assigned to particular planes are disjoint
then there is a one-to-one correspondence between classifications of segments and models. For the sake of simplicity,
and to reduce the size of the search space, it is assumed that the classes are disjoint.

Evaluating planar segregations The Solomonoff evaluation of a planar segregation model is the sum of the
length of encoding as strings: (i) each plane, (ii) the template list, (iii) the functions T and L, template choice
and word length respectively. The length of the encodings is just the Shannon entropy of the strings, when the
probability of occurrence of any symbol in the string is just the relative frequency of its occurrence.

The word-length function, L, depends only on the corpus and not on the segregation. No matter how it is
encoded, it has no impact on the choice of segregation, and so does not need to be considered when evaluating
segregations.

Now let us look at the example of planar segregation given in the last section, and evaluate it component by
component. The first plane is the string cadgbebeacea. The absolute frequencies of the six symbols, abcdeg,

which occur in this string are 322131, and the length of the string is 12. The Shannon information measure of the
string is

2951 = 12log,12 —3logy3 —2log,2 —2log, 2 — 1log, 1 — 3log, 3 — 1log, 1.

The evaluation for the first plane is 29.51.
The following table shows the evaluations of the other strings in the segregation.

Object The string Alphabet Frequencies | Evaluation
Plane, cadgbeca abedg 322131 29.51
Plane, okm kmo 111 4.25
Planes ttrr rt 22 4.00
T ABACC ABC 212 7.61
Templates 11312113112 123 722 14.40
Total 59.77

It might seem intuitively reasonable that the simplest solution would be one in which all phonemes occur on the

one plane. But this model in fact requires more information to specify. Here are the evaluations for the monoplane
model.

Object The string Alphabet Frequencies | Evaluation
Plane, catdogbetbreakcream abcdegkmort 32213111122 63.20
T AAABB AB 32 4.85
Templates 11111111 1 8 0.00
Total 68.06

The evaluation of Templates and T is lower in this segregation than in the previous one, but this is more than
offset by the cost of placing all phonemes on the one plane. As a result, the segregation which appears to be
qualitatively more compact, is quantitatively more expensive. The best segregation strikes a balance between the
compactness of the templates, which is improved by having fewer planes, and the compactness of the individual
planes which is improved by having many planes.

3  Results

In order to turn the evaluation measure into a learning system, it must be wrapped in a search. Because of the
size of the search space, a non-deterministic weak search was used: simulated annealing. The resulting algorithm
was implemented in C on VAXen and SUNs. The implementation allows the user to select the maximum number of
classes into which tlie segments can be grouped.

Data from thirty languages was collected in a suitable form for the program. The languages were chosen to fit,
as closely as possible subject to the availability of material, the distribution proposed by Bell (1978) to avoid genetic
bias. The artificial language Esperanto was also used to see if it behaved differently from natural languages. For
each language the data consisted of a word list of at least two hundred and fifty words (preliminary testing suggested
that this number was sufficient for convergence) with each phoneme occurring at least five times in the corpus. The
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Language Classification Language Classification

Arabic C-v Mandarin C-CVv
Auyana C-V Martuthunira (C-C)-v
Axininca Campa C-(C-V) Miwok C-v

Big Nambas CvV-vV Nez Perce C-v
Daga C-v Panyjima C-v
Esperanto C-V Piro C-v
Gilbertese C-v Siroi C-v
Gothic CV-v Swahili C-v
Hungarian C-v Telugu C-v
Italian C-v Thai (C-C)-v
Ixil C-v Tigak C-v
Jacaltec C-v Turkish C-v
Japanese C-v Wiyot C-v
Karen (C-C)-v Wojokeso C-v
Latin C-v Yoruba C-v

Figure 1: Classifications of phonemes. A class marked C, V, and CV contains non-syllabic, syllabic or both sorts of
phonemes respectively. Parentheses indicate the classification when restricted to two classes.

words were taken (with the exception of Gilbertese) from continuous texts, to avoid any possible bias due to citation
forms. Arabic data, for example, could be biased if verbs only ever occurred in one binyan. Each word was restricted
to one occurrence in the corpus to avoid undue influence of frequently occurring items. Data was taken in phonemic
form (using the analyses in the source grammars usually), and the classifications in the source analyses were used
for comparison with the program’s results.

Tonal information, even though it is phonemic in Yoruba, Mandarin, Thai and Karen, was ignored. This was
done because the relationship of tonal markings to a segmental ordering is not clear.

The program was run twice on each data set. In the first run, the number of permitted classes was unrestricted,
allowing each phoneme to possibly exist in a class of its own. In all cases, however, the algorithm selected at most
three classes, and often only two. The second run restricted the classification to at most two classes.

The results are shown in figure 1.

C indicates a purely non-syllabic class, V a class containing only syllabic items, and CV a class containing both
syllabic and non-syllabic segments. The parentheses show how classes are joined when restricted to two classes,
if in the unlimited case more than two classes are found. For example, the Axininca Campa phoneme inventory
was divided into three groups. Two of these contained only non-syllabic segments (consonants), the third only
syllabic ones (vowels). When restricted to two classes, one class of consonants was grouped with the vowels. It is
an interesting empirical result that the ternary classifications were always subdivisions of the binary classification.

When restricted to two classes only, the program nearly always divided the phonemes into two classes: one of
consonants and the other of vowels. The results were evaluated by comparing them with the classification into
consonants and vowels that was given in the source material. This result is gratifying as almost ail proposals for
planar segregation upto now have segregated phonemes according to these two classes.

There were four exceptions to this result. Even in the exceptions strongly and exclusively syllabic items (such
as the vowel a) were separated from other strongly and exclusively non-syllabic items (such as k). In one case, Big
Nambas, there was rampant bivalency: many phonemes acted both syllabically and non-syllabically. This caused
problems in the classification due to the restriction that classes be disjoint: the high vowels are classified with the
consonants.

In two other cases, Axininca Campa and Gothic, alternate phonemicisations considered viable but not used in the
sources, gave better results. Mandarin segregated phonemes which could occur in the rhyme from those which could
not. Investigations of Chinese secret languages has uncovered considerable supporting evidence for an onset-rhyme
planar segregation (Ellison (ms)).

When a large number of planes were permitted, upto one for each phoneme, the most common result was to
retain the two plane syllabic/non-syllabic segregation. Once again there were a few exceptions, all using three
planes. In three of these cases, Axininca Campa, Thai and Karen, the split class was divided according to whether
the segment occurred exclusively in a particular syllable position: onset, thyme or coda. In the case of Martuthunira,
interestingly, the program separated out the class of consonants which may begin words.
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Further investigations are needed to determine whether the program indeed found real linguistic structure in
these cases, and, if not, why it failed to arrive at the expected analysis.

4 Discussion

The above results show that for a simple but real and non-trivial learning task, a minimalist approach is both
possible and successful. The choice of model is constrained only by the theory inherent in the statement of the
lcarning problem and the general Solomonoff learning approach.

Exactly the same algorithm can be used to learn things in a non-phonological domain. For example, let the seg-
ment inventory contain digits, metric multipliers (micro-, milli- centi- kilo-) and metric measures (litres,metres,grams).
If the corpus is a list of measurements (232 kilograms, 19 metres, 2 millilitres, etc.) then the program will quite
readily divide the segment inventory into the three classes of digits, multipliers and measures. So the learning
algorithm is not domain-specific as would be one confined to determining phonological planar segregation in all and
only possible human languages.

It follows therefore that domain-specific knowledge is not a necessity for a system to learn linguistic structure,
even when the lack of this knowledge results in large search spaces.

Last but not least, the algorithm provides a new technique for determining planar segregations. It suggests some

interesting results for Mandarin and Martuthunira, as well as lending confirmation to the existing analysis for Arabic
(compare McCarthy (1981)).
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Applying Some CFL Learnability Results to Natural language Learning

Leona F. Fass

An inference process is described, whereby syntactic models for context-free languages (CFLs)
may be inductively constructed, and the languages so learned, fram suitable linguistic knowledge samples.
Properties of learmable generative and recognitive CFL models, and of the knowledge samples requisite for
their successful inference, are emphasized. A related testing process is also described, whereby correct-
ness of potential syntactic models is determined by exhaustive experimental means. The adaptation of
both processes from the domain of CFL learning to that of natural language learning is next proposed.
Then natural languages may be learned (syntactically) through identification in the limit or, otherwise,
learned appraximately. As time permits, there may be additional discussion of the relationship between
these results and such processes as parsing and semantic analysis.
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I. Introduction

Although there are many arguments made against the context-freeness of natural language, most
debators agree that much of the natural language L may be syntactically described as a context-free
language or, a CFL. Thus techniques applicable to the class of context-free languages may be used to
obtain results that (at least) approximately apply to any natural language L. These include results on

the definition and effective determination of syntactic models and, in particular, results on their
learnability.

Bmploying what at first appears to be non-traditional CFL sentence representation enables the
extension of some traditional machine theory, not previously applicable to the CF language domain. Once
this is done, machine learning techniques may be adapted so that generative and recognitive models,
precisely characterizing such CFL representations, can be found.

By representing linguistic knowledge suitably, it is shown that unique syntactic models for the
knowledge exist, that they are finite, and that they may be determined effectively. There are
"complementary” techniques for finding a syntactic model (either a grammar or a recognizer): constructing
it by inductive inference from a sample of correct (positive) data; or determining it by exhaustive
(positive and negative) data tests. Thus "non-traditional" language representation -- actually
closely-related to some traditional CFL parsing techniques -- leads to effective language learning by
positive or negative means. Extensions of these results to the case of natural language learning follow,
by use of adaptive techniques and appraximations.

An overview of main results is presented next, with some attention to related work and possible
future research directions.

II. Representing CFL Knowledge to Define Uhique Syntactic Models

Based on a suggestion of Levy and Joshi [19], we represent the sentences of a CFL L not in the
usual linear-string fashion, but rather, in a fashion conveying some phrase structure: the skeletons S of
their derivation trees (interior labels deleted). Thus we consider, instead of the CFL L, its structured
version, S, as defined by some known context-free grammar. This skeletal, tree-like, structured language
S is recognizable by a class of bottam-up tree recognizers: the class of skeletal autamata that Levy and
Joshi first described [19].

By generalizing classical machine theory to the class of structured CFLs, we have shown that
each such structured language S has a unique finite-state minimal deterministic recognizer.
Corresponding to this unique recognitive characterization is a unique generative characterization: a
canonical CF grammar producing the structured language S unambiguously. Relative to similar grammars it,
too, is minimal. The components of either of these syntactic models are precisely determined by the
structure of the language, conveyed as S. S, generally, is infinite, but is learnable if a
characterizing finite syntactic model is acquirable by finite means.

I1I. Effective Determination of a Finite Syntactic Model

We have shown that if a language is known to be CF then the oconstructs of either of the
syntactic models described above is inductively inferable fram a finite sample of the structures S:
specific positive data. [If it is known there is an n-variable backwards-deterministic grammar (i.e.,
where no two distinct productions have the same right-hand-side) for S, then structures of S of depth
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{2n are proven to be a sufficient data sample for inductive inference of a grammar, or skeletal
autcmaton recognizer, characterizing the entire structured language S. If the Xnown grammar is not
backwards~-deterministic, the sample should be up to depth 2.1 Several algorithms for finding the
models are described [e.g., 1, 2, 12], including an efficient minimizing algorithm in [7].

Precisely the theory for constructive inference of a correct syntactic model for S is adaptable
to the case of testing a potential model of the language, to see whether or not it is (in)correct. Tests
on positive and negative data (relative to S) are described, through which a potential model of S is
learnable, once, by conclusive testing, it is effectively "verified". [If it is known that depth <2n
structures of S define a correct model, through inference, then structures of depth & 2n within S and
not in S, relative to its defined complement, will sufficiently test a potential model and determine
whether or not it is correct.] Thus as long as a language is known to be CF, its syntactic models, as

described, are learnable -~ through inductive inference or testing -- employing finite positive or
negative means.

IV. Adaptations to Natural language Iearming

If a natural language is known to be context-free, and an n-variable grammar for the language
is also known, then all of the above results automatically apply. More likely, though, a sample of
language structures will be given, but it really will not be Ikmown if the language to-be-learned is (or
is not) CF. Here we can show that, if the language really is CF, then the adaptive (monotonic) learning
processes we use eventually will discover a correct language model, by identifying it "in the limit" [18].
If, on the other hand, the language is not CF, then our learning algorithms will never halt to provide a
model successfiully. However, at any point we may cease the inference or testing process and accept that
the result we then have is a "learned" model, that "characterizes the language approximately".

V. Related Results and Future Research Directions

Related results that have came out of this research have included: techniques for "minimizing"”
CF processors and grammars; generalization of some classical camplexity results (with W.I. Gasarch [7])
to the learnable models; and the beginnings of a theory (with E.S. Bainbridge [5], J.C. Cherniavsky,
et al.) relating structured-CFL processors to traditional pda processors -- particularly in the case of
"easily parsable" languages with LL(k) and LR(k) grammars.

Future research plans include further work in the area of parsing; possible applications of
'minimization" results to attribute grammars (semantics), as described in [17]); and adaptations of
structural CF knowledge representation to the broader area of natural language acquisition and processing
(e.g., as suggested in [20]).

A full paper will expand upon the above concepts and provide illustrative examples, as time and
space permit. Many of the results cited in the present paper are proven in the author's work, listed
below.
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RESEARCH INTERESTS

[ have worked on theoretical syntax and semantics, and several aspects of psycholinguistics. I know no computer
science, but try to follow developments in computational linguistics. I am particularly interested in sentence
processing, and favor an interdisciplinary problem-oriented approach which focusses on a particular question and
draws on all available methodologies to answer it. The annual CUNY Conference on Human Sentence Processing was
founded to foster this approach and provide a forum for sharing research results and expertise among linguists,
psychologists, and computer scientists.

In recent years [ have been following the development of non-transformational theories of syntax, particularly
GPSG and HPSG, and have been working with Stephen Crain (Linguistics Dept., U. of Connecticut) to evaluate these
theories against psycholinguistic data. We have sketched how sentence processing would proceed if based on a GPSG
grammar, and have argued that this model accounts for recent experimental results at least as well as a
transformational (Government Binding theory) model. Debate on these issues is summarized in my papers in Language and
Cognitive Processes 4, SI 155-209, 1989; and in T. Wasow, P. Sells and S. Shieber (eds.) foundational [ssues in
Natural Language Processing, MIT Press, 1991.

As reflected in my paper for this symposium, Crain and | have also been working on a model of language
acquisition based on GPSG/HPSG theory. ‘Poverty of the stimulus’ arguments present a serious challenge to any
acquisition model, even assuming considerable innate knowledge. The principles-and-parameters approach of Government
Binding theory offers one solution to these problems. Crain and [ set out to elucidate why no other kind of solution
could be successful, but convinced ourselves instead that phrase structure theory does provide a basis for a simple,
non-reflective acquisition algorithm. We would be happy to hear from anyone interested in implementing a learning
model of this kind.
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MAKING PHRASE STRUCTURE GRAMMARS LEARNABLE
ABSTRACT

GPSG and HPSG (Generalized Phrase Structure Grammar, Head-driven Phrase Structure Grammar) are theories of
language structure not of behavior, but we can ask whether the grammars they define could be learned under
psychologically natural conditions. In fact they cannot. Their language-specific rules could be learned only by a
cumbersome and unreliable hypothesis-formation-and-testing device. Their language-specific constraints cannot be
acquired at all if learners receive no systematic negative input. And the grammars hypothesized by a GPSG/HPSG
learner cannot be guaranteed to respect the Subset Principle: an incomplete grammar for the target language typically
generates a superset of the target, and without negative data there is no motive for the learner to move to the more
complex but more restricted target grammar.

I argue that learnability can be achieved, without loss of descriptive adequacy, by five revisions of current
GPSG/HPSG. These prevent overgeneration by lexical metarules and linear precedence statements, and most importantly
they replace language-specific constraints with universal defaults that can be overridden by acquirable rules. [ call
the resulting system LPSG (Learnable Phrase Structure Grammar). It turns out that these revisions which make learning
possible in principle also greatly simplify the learning process. No hypothesis-formation-and-testing procedures are
necessary. The learner need only strip off predictable feature specifications from the input, by applying innate

feature instantiation principles in reverse. Rule learning in LPSG is thus simple and ‘mechanical’; and unlike a
parameter-setting device, it works uniformly for both the core and the periphery of language.
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MAKING PHRASE STRUCTURE GRAMMARS LEARNABLE

GPSG and HPSG (Generalized Phrase Structure Grammar, Head-driven Phrase Structure Grammar) have been presented
as theories of language structure, not of behavior. (See Gazdar et al. 1985; Pollard and Sag 1987, in press.) But it
is of interest nevertheless to ask whether the grammars they define could be used for sentence processing, and
whether they could be learned, under psychologically natural conditions. With regard to learnability, GPSG/HPSG
grammars do not fare well. There are three main reasons for this, essentially identical to the problems that
afflicted the learning of transformational grammars before the advent of modern parameter-setting models.

(1) GPSG/HPSG grammars contain language-specific constraints, which cannot be acquired on the standard
assumption that language learners receive no systematic negative input (= information about what is not
a sentence of the language). A grammar which lacks a needed constraint will generate a proper superset
of the target language. Thus it will accommodate every positive datum the learner will encounter, so
s/he will have no motive to add the constraint.

(2) GPSG/HPSG grammars contain language-specific rules, couched in syntactic feature notation. Again the
problem is that an incomplete grammar for the target language will generate a superset of the language.
If a learner omits a feature specification from a rule, the result will be a broader rule which
overgenerates. Without negative data the learner could not recognize the necessity of adding the
feature specification.

(3) The fact that GPSG/HPSG grammars constitute a mix of rules and constraints creates descriptive
ambiguities. A learner faced with a novel datum would not know whether to add a new rule, or relax an
existing constraint, or some combination of the two. Thus learning cannot be deterministic. Rather, it
appears to require some kind of hypothesis-formation-and-testing (HFT) device, which can experiment
with the alternatives and select between them on the basis of further data. But HFT devices are
complex, and cumbersome in operation. Either they engage in a vast trial-and-error search through the
space of possible grammars, or their convergence on the correct grammar is difficult to guarantee.

In short: GPSG/HPSG grammars are unlearnable in principle because there is no way to guarantee that the interim
grammars hypothesized by learners will obey the Subset Principle (Berwick 1985), which requires learners without
negative data to start with the most conservative grammar and to proceeed to more powerful ones only when that is
necessary to accommodate further (positive) data. And even if learning were possible in principle, the available
learning procedures appear to compare very poorly in practice with the sort of ‘mechanical’ triggering of parameter
switches that suffices for learning Government 8inding theory grammars.

[t can be shown, however, that this learnability failure is not an inherent property of phrase structure
grammars, or of rule-based systems in general. Everything depends on how the rules interact with other components of
the grammar. In particular, | argue that learnability can be achieved, without loss of descriptive adequacy, by the
following five revisions of current GPSG/HPSG:

(i) No language-specific FCRs (Feature Co-occurrence Restrictions) or FSDs (Feature
Specification Defaults).

(ii) The Specific Defaults Principle: a specific (i.e., non-disjunctive) default
value must be assigned by Universal Grammar to every feature in every context,
unless the value in that context is universally fixed or is universally free.

(iii) The Double M Convention: if a rule contains two or more optional marked feature
specifications, only one marked value may be selected for the same local tree,

unless the rule explicitly indicates that they may co-occur.

(iv) Linear Precedence statements must characterize permitted orders of sister
constituents, not required orders.

(v) Lexical (meta)rules do not preserve subcategorization features. Subcategorization
features are category-valued, not integer-valued. (Already so in HPSG.)

54



| refer to the resulting system as LPSG (Learnable Phrase Structure Grammar). Though I have no proof that (i) - (V)
are jointly sufficient for learnability, I know (at present) of no other modifications that are needed.

Amendments (iv) and (v) block the overgeneralizing tendencies of linear precedence rules and lexical rules; 1
will not discuss these further here. Amendments (i) and (ii) are the most central. Their joint effect is to translate
language-specific constraints (FCRs) in GPSG/HPSG grammars into universal default statements (FSDs) in LPSG. The
result, as I will illustrate below, is a system in which rules differ in markedness, depending on how many of their
feature values need to be explicitly specified and how many can be omitted because they follow from the universal
defaults or from other general principles. Revision (iii) then exploits this markedness system to block the
generalization of rules from unmarked to marked values, which is dangerous, while permitting safer generalizations
from marked to unmarked values.

How does LPSG’s greater reliance on default feature specifications make learning possible? Because all of its
defaults are universal, we can assume they are innate, so the problem of learning them without negative data does not
arise. The defaults, together with any absolute universal constraints, will constitute a learner’s initial hypothesis
about the target language, prior to any experience. Since the defaults in LPSG embody all possible language-specific
constraints, the learner’s initial hypothesis will be maximally restricted, as the Subset Principle requires.
Learning will consist of progressively loosening these restrictions, where necessary, by adding language-specific
rules to override the defaults. It is thus the rules, not the constraints, that capture variation between languages.
Note that rules, unlike constraints, can be learned from positive data. And since each rule adds to the complexity of
the grammar, we can assume that learners won/t adopt a rule until or unless the data require it, so learning will be
conservative. Finally, though LPSG rules are expressed in feature notation, the omission of a feature no longer
licenses indiscriminate generation of trees with either (any) value of that feature. Instead, only the default
(unmarked) value is licensed. [f that value matches the input, the rule can remain underspecified; if the input has
the marked value instead, the mismatch will force the learner to complicate the rule by specifying the marked value.

Consider the learning of language-specific patterns of extraction by WH-movement (or the phrase structure
analogue of such movement, using the feature SLASH). Extraction is very limited in Slavic languages, it is less
restricted in English, and it is freer still in Scandinavian languages. A somewhat over-tidy summary of the relevant
language facts is shown in Figure 1 (for more linguistic details see Cichocki 1983, Engdahl 1982).

Figure 1. Extraction facts (simplified) assumed here:

Polish English  Swedish
Extraction from matrix VP (Who do you like?) yes yeos yes
Extraction from object compl. (Who does John think that you like?) no yes yes
Extraction from WH-compl. (Who does John know whether you like?) no no yes

Note that with respect to these extraction facts, Polish is a proper subset of English, which is a proper subset of
Swedish. The Subset Principle therefore requires that it is the English and Swedish learners who must do the
learning; the strict constraints on Polish must be innately established as the initial hypothesis. But in GPSG, where
the differences between the three languages are captured by language-specific constraints, the relative complexity of
their grammars predicts exactly the opposite of this. As sketched in Figure 2, GPSG predicts that Polish learners
have more learning to do, more constraints to acquire, than English or Swedish learners.

Figure 2. Language-specific constraints in GPSG:

Polish English Swedish
Constraint: no extraction over WH + +
Constraint: no extraction across S +

In LPSG, by contrast, these constraints will have the status of universal defaults, innate, not needing to be
learned. What must be learned is rules to override these defaults, to permit extraction where it does occur. And as
Figure 3 shows, in terms of rules the relative complexity of the three grammars is in keeping with the Subset
Principle.
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Figure 3. Universal default and language-specific rules in LPSG:

Polish English Swedish
Rule: can extract over WH +
Rule: can extract across S + +
Default: no extraction over S or WH + + +

The feature-omission problem is illustrated in Figure 4. In GPSG, a simple rule posited by the learner to
account for a non-extraction structure will generate not only that structure but also the corresponding extraction
structure.

Figure 4. Free instantiation of SLASH in GPSG:

Input: VP Motivates rule: VP --> H , S[FIN] Rule also licenses: VP [SLASH NP}

v

Input:

\
S [FIN]

vP

\
S [WH]

Motivates rule: VP -->

H , S[WH]

v

Rule also licenses:

v

\
S[FIN, SLASH NP}

VP [SLASH NP1
\
S(WH, SLASH NP]

The feature SLASH carries information between a WH-phrase and its trace, licensing the ‘extraction’. GPSG permits
free instantiation of SLASH, subject only to universal constraints (such as the Head Feature Convention); that is,
GPSG construes non-specification of SLASH in a rule as licensing local trees both with and without a SLASH feature.
So once again, Polish learners would learn Swedish by mistake. A Polish learner would encounter the non-extraction
constructions, and would thereby have acquired the corresponding extraction constructions. As shown in Figure 5, all
three languages would have the same rules, which would overgenerate in Polish and English.

Figure 5. Overgenerating rules in GPSG:

Polish English Swedish
Rule: VP --> H , S[FIN] (non-extraction, extraction) + + +
Rule: VP --> H , S[WH] (non-extraction, extraction) + + +

The cure for this in LPSG is the Specific Defaults Principle (= revision (ii) above). This requires every feature
(or: every feature whose value needs to be learned in some natural language) to have a default value, which will be
supplied in a tree whenever the value is left unspecified in a rule. Let us assume, as seems reasonable, that the
default for SLASH is for it to be absent, to have no value (in other words: non-extraction is the unmarked case).
Then the rules in Figure 5 will generate only non-extraction constructions without SLASH. Different rules, more
highly specified ones containing explicit SLASH features, will be necessary to generate the extraction constructions,
as shown in Figure 6. A learner of Polish will not encounter the trees that would motivate these more elaborate rules
with SLASH, and therefore will not overgenerate the extraction constructions.

Figure 6. Same rules subject to default in LPSG, don’t overgenerate:

Polish English Swedish
Default: -SLASH (unless +NULL) + + +
Rule: VP --> H , S[FIN] (non-extraction) + + +
Rule: VP -->_H , S[WH] (non-extraction) + + +
Rule: VP[SLASH NP] --> H , S(FIN, SLASH NP] (extraction) + *
Rule: VP[SLASH NP} --> H , S[WH, SLASH NP] (extraction) +

The grammars for English and Swedish look more complex in LPSG than in GPSG. But (a) the relative complexities are
now right for learnability; (b) the SLASH rules can be collapsed with the basic rules into more general rule
schemata, so the extra complexity is in fact very slight; (c) in compensation, LPSG grammars lack the
language-specific constraints of GPSG.

Most interestingly, it turns out that these revisions which make learning possible in principle also greatly
simplify the learning process. An LPSG learner has no constraints to acquire, but only (lexical entries and) rules.
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So there is no descriptive ambiguity as in standard GPSG/HPSG. When a learner encounters a novel local tree, one not
licensed by his current grammar, his only choice is to add a rule (or add a feature option to an existing rule
schema, which is equivalent to adding a rule and then collapsing it into the schema). Furthermore, since phrase
structure rules are merely schematic characterizations of legal local trees, acquiring a new rule does not call for
any creativity, any reflection, or hypothesis-formation-and-testing procedures, but is a simple routine matter. The
worst that could happen is that the learner simply adopts the novel tree as a new rule in the grammar just as it
stands. But that of course would lead to an unnecessarily vast and redundant grammar. To achieve an optimal grammar,
the learner needs to strip off from the novel local tree all feature specifications that are predictable on the basis
of universal principles and defaults. And to do this, all he need do is apply the principles and defaults (with which
he is innately equipped) in reverse to the novel local tree. The feature specifications that remain after this
feature stripping process will constitute the schematic rule his grammar needs; it will be the minimal
characterization of just what is idiosyncratic to that syntactic construction in that language.

Thus rule learning in LPSG is simple and ‘mechanical’, and does compare well with a parameter-setting model
though completely different from it in its details. LPSG also makes it possible for phrase structure learning to
satisfy various other desiderata for an optimal learning device. For example:

where I = a novel input which initiates a learning event;
Gi = learner’s grammar at the time that [ is encountered;
Gi+1 = the grammar the learner adopts in response to I;
L(G) = the grammar licensed (generated) by grammar G:

(i) Gi+1 = G, if Gi licenses I. [Prevents unnecessary grammar changes.]
i

(ii) G,”‘| licenses [. [Prevents fruitless grammar changes.]
i

(iii) Gi+1 is as small as possible consistent with (ii) and (iv). [Simplicity metric;
permits reductions in grammar size (‘restructuring’), but no unnecessary increases.]

(iv) L(G.+ ) includes as many sentences of L(G, ) as possible, compatible with (ii). [Prevents loss
i i
of prior learning, but allows retreat from errors - tho’ not from Subset Principle violations.}

These conditions (or others similar to them) can help direct grammar choice in profitable directions, and greatly
reduce the amount of random trial and error before convergence on the correct grammar, thus bringing the learning
model closer to a psychologically plausible account of actual language learning. Whether such conditions can be
implemented without unrealistically complex computations depends on how the learning device operates. For example,
Wexler and Culicover (1980) imposed condition (ii) on addition of a transformational rule to the grammar, but could
not impose it on deletion of a transformation because it was too difficult to identify a suitable rule to delete. But
all the conditions above, as well as the Subset Principle, are easily implemented in LPSG; in fact they fall out
quite naturally from the feature stripping mechanism,

Finally, there is one respect in which feature-stripping is arguably superior to GB’s parameter-setting. GB
avoids the familiar drawbacks of hypothesis-testing by assuming that designated inputs automatically trigger the
re-setting of a parameter. But the price for this is that the parameters, their values, and their triggers must all
be innately listed; hence they must be finite, and for a plausible model they should be relatively few in number.
This is why parameter-setting has been proposed only for ‘core grammar’; a completely different (hypothesis-testing?)
learning device is needed in addition for acquiring the more varied and unpredictable ‘periphery’ of a natural
language. But LPSG needs no such duplication of learning mechanisms. Its default principles define a single continuum
of markedness covering core and periphery alike. Rules are more costly to specify the more peripheral they are, i.e.,
the more they depart from the universal defaults. But the same feature-stripping learning device will acquire them
all.

There are some matters needing further attention which [ will not be able to address here. For example: the
feature-stripping device is essentially cost-free, since it utilises feature instantiation principles which must in
any case be innately provided and used in constructing sentence derivations. But it does need to be established that
this derivational algorithm can apply efficiently in reverse as well as in the forward direction (i.e., to vacuum
predictable feature values off trees, rather than to spray them on). Also, to the extent that the collapsing of rules
into schemata is essential for achieving streamlined adult grammars, it must be ascertained that the rule collapsing
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process is information preserving. With the increase in number of default statements in LPSG, it may be necessary to
establish priority principles (e.g., an ‘elsewhere condition’) to determine which ones should override which others
in case of conflict. The process by which learners parse novel input needs to be explored. Since the current grammar
fails, by definition, to license a novel sentence type, the learner must apparently guess how to structure it. We
need to know to what extent this guessing is linguistically guided. finally, it needs to be shown that the LPSG
learning mechanism is (or can be made) resilient to misleading or ungrammatical input. Though I have some thoughts on
each of these points, it seems to me that by far the most practical way to investigate them further is by computer

implementation of the feature-stripping process, and I would be grateful for any advice or assistance that this
audience can offer.
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Research Interests

[ have been involved with the construction of commercial Natural Language
systems since January of 1985. Between 1985 and 1987, my primary interest was
the construction of a General Lexicon of English, including the syntactic and
semantic knowledge necessary to apply this lexicon to a variety of domains. In
1987 I began leading a research effort into Case-Based Reasoning which lead to a
generic CBR shell. This shell has been applied, or is being applied to, problems in
battle planning, network fault diagnosis and recovery, credit worthiness
evaluation, credit collection, geological classification, and machine tool fault
diagnosis and recovery. In 1988, I began work on applying this shell to message
classification, and created the PRISM message classifier which was presented at
[AAI-90. In addition to my work with Parse-O-Matic, I am currently involved in
applying CBR/Adaptive Planning to spatial reasoning and representation, with
particular emphasis on issues of Natural Language ties to spatial reasoning.

Abstract

Recent work with Case-Based Reasoning in the areas of Battle Projection
(Goodman, 1989] and Telex Classification [Goodman, 1990] indicate that this
approach holds the potential for building and fielding large, knowledge-based
systems which are faster, more accurate, and require significantly less time to
knowledge-engineer and maintain than with other approaches. Additionally, CBR
provides a memory-based framework for knowledge representation which
simplifies interaction between sources of knowledge, facilitates the handling of
generalizations and exceptions, and supports learning from success and failure
[Kolodner and Riesbeck, 1990].

Parse-O-Matic, a system which builds frame-based semantic representations of
Natural Language Requests, exploits these characteristics of CBR. Comparative
knowledge engineering time and accuracy are given for Parse-O-Matic, and the
KNET parser [Strong, 1989].

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was
monitored by the Air Force Office of Scientific Research under Contract No. F49620-88-C-0058. The United
States Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright notation hereon.
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Case Representation

Parse-O-Matic represents knowledge of parsing based on a Dynamic Theory of
Activity [Agre and Chapman, 1987]. Each case contains a single step (or routine)
describing a representation-building action to take in a particular context. The
derivation of a representation for a particular request may consist of several
routines. Since the system has decomposed derivations, retrieval has the effect of
dynamically combining individual steps of old derivations to create new
derivations.

(IMPERATIVE
:FOCUS ((DISPLAY)))
(COMPANY
:ST ((PLURAL-SPEC))

COMPANY
PLURAL-SPEC

. (INK :0BJECT (COMPANY)) )}
:TO ((DISPLAY))
SR . _ SLUF [(:OF]]]

(COMPANY B
:MORPHS ((S-PLURAL)))

Companies

(SPAWN
:OBJECT ((COMPANY
ST ((PLURAL-SPEQ)))))

: N\ [ —~~<a_(IMPERA
............................. . DISPLAY

( IMPERATIVE b
:FOCUS ((DISPLAY)))

Word:
Blackboard: Nil
Newest: Nil
Routine:
Previous: N

Show

:OBJECT (IMPERATIVE 2
:FOCUS ((DISPLAY))))

“——— Parse-O-Matic Case Representation |.-/;  —
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In the construction of Parse-O-Matic, we based our representational choice on a
previous parser (the KNET Parser [Strong, 1989]) and representational scheme.
The KNET Parser used a forward-chaining, blackboard-based production system,
compiled into a RETE net, with an underlying Truth Maintenance System to build
a Frame-Based Semantic representation. The action side of each production
allowed the manipulation of the representation on the blackboard, including
actions such as spawning new frames onto the blackboard, linking frames to other
frames (representing a role-filling relationship), changing the type of frames,
removing frames, unlinking frames from other frames, etc. Parse-O-Matic,
therefore, represents routines as frames describing the manipulation of frames on
a blackboard.

In addition to a particular routine, each case representation must also include a
set of features which can be used for case retrieval. These features are used to
determine what makes cases similar with respect to their routines, and serve as
the basis for index generation. An example of the complete case representation is
the sentence "Show companies..." with later cases at the top and earlier cases at
the bottom:

Parse-O-Matic Architecture

This case representation leads to the following architecture for Parse-O-Matic:

' N
Input Text Morphology and
Spelling Correction
Blackboard
Solution
Final
Representation
\ Parse-O-Matic Architecture | 74—
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Parsing proceeds as follows: an input text is passed into a module which performs
word-by-word morphological analysis and spelling correction. The first word is
then passed to a case retriever, which uses the word, the current representation
on the blackboard, and the previous cases (if any) to create a new case. This case
is then used to traverse a set of indices, and a set of best-matching cases is
returned from the case memory. The routine indexed on the retrieved cases is
then adapted, using information on the blackboard, to create a new routine. This
new routine (the solution) is passed into an applier which may fetch frames from
the blackboard, and post frames to the blackboard or modify frames on the
blackboard. The applier then passes control back to the retriever (if an action was
performed), or passes control back to morphology and spelling correction (if no
additional action is required in the current context). When control is passed back
to the retriever, a new case is created with the current blackboard representation
and the previous case, and the process repeats. When control is passed back to
morphology and spelling correction, the next word is passed to the retriever and
the process repeats. If no words remain, Parse-O-Matic is finished with the text
and the final representation is on the blackboard.

Case Indexing and Retrieval

Case indexing in Parse-O-Matic is based on an extended version of the Automatic
Interaction Detection algorithm [Hartigan, 1975]. The technique applies an
analysis of variance model in order to partition a sample into a series of non-
overlapping subgroups whose means explain more of the variance in outcome than
any other set of subgroups. In operation, it is very similar to the CART algorithm
[Brieman, Friedman, Olshen and Stone 1984].

Parse-O-Matic uses three techniques for reducing the total number of features
considered in indexing cases. The first technique is to only consider a small
subset of cases while generating each discrimination. One technique for reducing
the number of cases required is to preselect cases based on certain attributes,
such as a good mix of outcomes, before generating the discrimination.

A second technique is to break indexing into several passes, each of which
considers a heuristic subset of the total features which are frequently meaningful.
Two examples of this technique are: 1) pre-index on the last frames spawned into
working memory since subsequent links, removals, etc. will usually refer to these
new frames, and 2) pre-index on features which are necessary preconditions to
executing the routine, such as the presence or absence of conceptual types
referenced by the routine. In all, Parse-O-Matic uses 10 separate indexing passes
based on different limiting heuristics.

The third technique for reducing the total number of operations is to
incrementally add new cases into an existing library and to generate only those
indices which are required to account for variations in the new cases. Using this
technique, significant development work can be done without fully reindexing the
library. The disadvantage of this approach is that cases which are incrementally
added are only used to generate splits near the leaves of the index tree, whereas
they could be useful in generating appropriate discriminations earlier in indexing.

Since case retrieval consists of traversing a binary discrimination tree of indices,
which is O(log(n)) on the number of cases in the library, and the total number of
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retrievals is roughly linear on the number of words, m, O(m log(n)) parsing is
possible with this architecture.

Case Adaptation

Much of Parse-O-Matic's power comes from its ability to adapt previous routines to nev
situations. A simple example of such an adaptation is a sentence like "Show companies
with beta under 5." Let's say that during a certain point in its derivation of a
representation for this sentence, the best-matching case has a routine like:

(LINK :0OBJECT ((COMPANY))
:TO ((BOOK-VALUE-OF))
:SLOT ((:0F)))

while our current representation looks like:

(IMPERATIVE-1
:FOCUS ((DISPLAY-1
:OBJECT ( (COMPANY-1 :ST ((PLURAL-SPEC-1)))))))
(BETA-OF-1 :IS ((NUMBER-1)))

Since there is no BOOK-VALUE-OF frame in the representation, Parse-O-Matic must
adapt this routine to fit the current situation. Parse-O-Matic does so using Local Searcl
[Kolodner and Riesbeck, 1990]. The missing role-filler, BOOK-VALUE-OF, is
generalized to ATTRIBUTIVE-RELATIONSHIP using the conceptual hierarchy. The
blackboard is then searched for a frame which inherits from ATTRIBUTIVE-
RELATIONSHIP. In this case, it finds BETA-OF-1. The routine is then reinstantiated
with the new role fillers, yielding:

(LINK :0BJECT ((COMPANY))
:TO ((BETA-OF))
:SLOT ((:0F)))

A more difficult adaptation, which Parse-O-Matic does not currently support, is a case
such as "Show companies with earnings per share over 6." Let's assume that we've
spawned an EARNINGS-OF relationship on the word earnings, and on "share" we get
back the nearest routine:

(CHANGE :0BJECT ((BOOK-VALUE-OF))
:TO ((BOOK-VALUE-PER-SHARE-OF)))

while our current representation looks like:

(IMPERATIVE-1
:FOCUS ((DISPLAY-1
- :OBJECT ((COMPANY-1 :ST ((PLURAL-SPEC-1)))))))
(EARNINGS-OF-1 :IS ((MONEY-AMOUNT-1))
:OF ((COMPANY-1)))

Changing the :OBJECT role-filler of the routine to EARNINGS-OF-1 from BOOK-VALUE
OF is the same as above. However, we would like Parse-O-Matic to adapt the routine as
follows: 1) BOOK-VALUE-PER-SHARE-OF is the :PER-SHARE type attribute of BOOK-
VALUE-OF, 2) EARNINGS-OF-1 is being substituted for BOOK-VALUE-OF, 3) Query
Memory to find the :PER-SHARE type attribute of EARNINGS-OF (which would be EPS
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OF), 4) reinstantiate the routine with EPS-OF substituted for BOOK-VALUE-PER-SHAT
OF yielding:

(CHANGE :0BJECT ((EARNINGS-OF))
:TO ((EPS-OF)))

Plans are under way for extending Parse-O-Matic to deal with this kind of adaptation.
Parse-O-Matic currently requires a brute-force approach (i.e. adding examples for all
such CHANGES to case memory) to get this.

Conclusion

Parse-O-Matic views Natural Language Processing as a memory-intensive process.
Its Case-Based architecture allows episodic knowledge to be added in a localized,
incremental fashion. Generalizations and exceptions over lexical, semantic, and
syntactic constructions are handled automatically through Inductive indexing of
the case library.

Parse-O-Matic and the KNET parser have both been applied to the same Natural
Language domain where Parse-O-Matic achieved a comparable accuracy to the
KNET parser (over 90% accuracy) in roughly 50% of the knowledge engineering
time. Parse-O-Matic also parses more quickly (in about 25% of the time taken by
the KNET parser).
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Working Notes for AAAI Symposium: Symbol Grounding: Problem and Practice

THE SYMBOL GROUNDING PROBLEM AND CATEGORICAL PERCEPTION
Stevan Harnad, Department of Psychology, Princeton University, Princeton NJ 08544

Research Interests (S. Harnad): My current research interest is in the symbol grounding
problem and categorical perception: A symbol system is a set of physical tokens (e.g., scratches on
paper, holes on a tape, flip-flop states in a computer) and rules for manipulating them (e.g., erase "0"
and write "1"). The rules are purely syntactic: They operate only on the (arbitrary) shapes of the
symbols, not their meanings. The symbols and symbol combinations can be given a systematic semantic
interpretation, for example, they can be interpreted as meaning objects ("cat," “mat") or states of affairs
("the cat is on the mat"). The meanings of the symbols, however, are not grounded in the symbol
system itself; they derive from the mind of the interpreter. Hence, on pain of infinite regress, the mind
cannot itself be just a symbol system, syntactically manipulating symbols purely on the basis of their
shapes. This is the "symbol grounding problem."

How can one ground the meanings of symbols within the symbol system itself? This is impossible
in a pure symbol system, but in a hybrid system, one based bottom-up on nonsymbolic robotic functions
such as transduction, analog transformations and sensory invariance extraction, the meanings of
elementary symbols can be grounded in the system’s capacity to discriminate and categorize (name) the
external objects and states of affairs that its symbols refer to, based on the projections of those objects
and states of affairs on its sensory surfaces. The grounded elementary symbols ("cat,” "mat") can then
be rulefully combined and recombined to form higher-order symbols and symbol strings ("the cat is on
the mat") that inherit the grounding as nonarbitrary constraints on their shapes.

Hamad, S. (ed.) (1987) Categorical Perception: The Groundwork of Cognition. New York:
Cambridge University Press.

Harnad, S. (1989) Minds, Machines and Searle. Journal of Theoretical and Experimental
Artificial Intelligence 1: 5-25.
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Categorical Perception and the Evolution of Supervised Learning in Neural Nets

Stevan Harnad*, Stephen J. Hanson*,** Joseph Lubin*,
*Princeton University, **Siemens Research Center

Abstract: Some of the features of animal and human categorical perception (CP) for color, pitch
and speech are exhibited by neural net simulations of CP with one-dimensional inputs: When a
backprop net-is trained to discriminate and then categorize a set of stimuli, the second task is
accomplished by "warping" the similarity space (compressing within-category distances and
expanding between-category distances). This natural side-effect also occurs in humans and
animals. Such CP categories, consisting of named, bounded regions of similarity space, may be
the ground level out of which higher-order categories are constructed; nets are one possible
candidate for the mechanism that learns the sensorimotor invariants that connect arbitrary names
(elementary symbols?) to the nonarbitrary shapes of objects. This paper examines how and why
such compressionfexpansion effects occur in neural nets.
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Categorical Perception and the Evolution of
Supervised Learning in Neural Nets

S Hamad*, SJ Hanson® ** & J Lubin*
*Princeton Univ., **Siemens Res. Ctr.

1. Categorical Perception

One of the most remarkable properties of human
perception is that it seems to carve the world at
its joints. The physical signals that bombard our
sensory surfaces do not give rise to a "bloom-
ing, buzzing confusion” but to relatively orderly
experiences, segmented into "chunks" (Miller
1956) or categories. How does our brain sort
things into categories on the basis of the sensory
signals it receives?

A relevant phenomenon in human and animal
perception that has received a good deal of
attention is "categorical perception” (CP) (Har-
nad 1987): Equal-sized physical differences in
the physical signals arriving at our sensory
receptors are perceived as smaller within
categories and larger between categories. For
example, differences in wavelength within the
range we call "yellow" are perceived as smaller
than equal-sized differences that straddle the
boundary between yellow and the range we call
"green.” The wavelength continuum has
somehow been "warped,” with some regions
getting compressed and other regions getting
stretched out.

In the case of color CP, although learning may
have played a role, most of the warping seems
to have been done by evolution, with the result
that it is probably an inborn property of our sen-
sory systems, modifiable only minimally (if at
all) by experience. Other prominent examples of
CP have been found in human speech percep-
tion as well as in some animal signalling sys-
tems (see chapters in Harnad 1987 for exam-
ples). These too seem to be largely innate,
although they are modifiable by experience.
Musical pitch categories may be examples of
CP effects that arise primarily as a result of
learning. CP effects have also been reported to
occur purely as a result of learning in experi-
ments with artificial continua; similar "warping”
effects might be expected to arise from learning
complex multidimensional categories, as in
learning to sort baby chicks as male and female,
or histological slides as cancerous or noncan-

cerous.

The generation of CP (enhanced within-category
similarity and enhanced between-category
differences) by perceptual learning has been
described as the "acquired similarity [difference]
of cues” but no mechanism has been proposed
to explain how or why it occurs.!

In this paper we will show how CP might arise
as a natural side-effect of the means by which
certain standard neural net models (backpropa-
gation, Rumelhart & McClelland 1986) accom-
plish leaming. They acquire the capacity to sort
their inputs into the categories imposed by
supervised learning through altering the pairwise
distances between them (where distance is the
degree to which a pair of inputs is discriminable
by the net) until there is sufficient within-
category compression and between-category
separation to accomplish reliable categorization.
As we shall see, however, the nets don’t neces-
sarity stop a a minimal degree of
compression/separation; rather, they overshoot,
producing much stronger CP effects than seem
necessary to accomplish the categorization.

CP is of interest not only in its own right, as a
very basic perceptual phenomenon, but also as a
possible contributor to solving the "symbol
grounding problem” (Harmnad 1990): In a formal
symbol system such as a computer program, or
in the actual implementation of such a system
on a machine, symbols are manipulated on the
basis of formal rules or algorithms that apply to
the shapes of the symbols, not their meanings
(i.e., symbol manipulation is syntactic rather
than semantic). The meanings of the symbols

1 Behaviorists proposed an associative explanation --
that members of the same category grew more similar
because they were were more closely associated with
one another and with their shared category name than
with members of different categories and their names,
but this is more a restatement of the phenomenon than a
model that explains it. The" motor theory of speech per-
ception” explained speech CP by the similarities and
differences between the moior pattern required to pro-
duce, say, a BA and a DA, but this model applies only
to the special case of speech, where there is a
perception/production analogue, and has given rise to
decades of unfruitful debate about whether or not
speech is "special” The last "theory™ of CP is the
Whorf Hypothesis, according to which CP is a manifes-
tation of how language and culture shape our view of
reality. This too seems more a restatement of the
phenomenon than an explanation of it.
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are projected onto them by the user who inter-
prets the symbols and the symbol manipulations;
they are not intrinsic to the system itself. By
contrast, if, using the sensory projections on its
transducer surfaces, a robot were able to
discriminate and categorize the real-world
objects, events and states of affairs to which its
symbols can be interpreted as referring, then
those symbols would be grounded in the robot’s
causal capacity rather than just being parasitic
on the meanings an interpreter projects onto
them.

So there is a close connection between the sen-
sorimotor capacity to carve the world at its
joints and the cognitive capacity to produce
symbolic descriptions of that world: For the
compressed and separated "chunks” of the simi-
larity space originating from our sensory recep-
tors can be given names, and those category
names can then be combined syntactically to
form propositions about the world. Whatever
mechanism successfully maps the sensory pro-
jections onto their category names is also what
grounds the symbol system.

It is one possible candidate mechanism for map-
ping simple sensory inputs onto category names
that will be analyzed here, and in particular, the
dynamical role that the warping of similarity
space which is characteristic of CP may be
playing in its successful performance.

2. Learning to Split a Line.

Both the neural net architecture and the task
used were very simple. A backpropagation net
with 8 input units, 2 - 12 hidden units and 8 or
9 output units was used. The net’s task was to
learn to sort 8 "lines” into 2 categories (let us
call them "short™ and "long"). The lines were
represented in 6 different ways, in order to test
the effects of the input coding. One variable of
interest was the "iconicity” of the coding (i.e.,
how analog, nonarbitrary, or structure-preserving
it was in relation to what it represented).

The lines were either "place” coded (e.g., a line
of length 4 would be 00 0 1 0 0 0 0) or "ther-
mometer” coded (e.g., line 4 wouldbe 11110
0 0 0). The place code was assumed to be more
arbitrary and the thermometer code more ana-
log, in that the thermometer code preserved
some multi-unit constraints whereas the place
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code did not In addition, the thermometer-
coded lines and the place-coded lines could be
discrete-coded (as above) or they could be
coarse-coded, allowing some gaussian spillover
to adjacent units (e.g., line 4 coarse/placecoded
might be 0 .001 .1 .99 .1 .001 0 0, and line 4
coarse/thermometer-coded might be .90 .99 .99
.90 .1 .001 O 0). Finally, because CP concems
the formation of boundaries between categories,
a lateral inhibition coding was also tested, in
which adjacent coarse-coded units were inhi-
bited so as to enhance boundaries (e.g., line 4
lateral-inhibition/place-coded might be .1 .1 .001
99 001 .1 .1 .1, and line 4 lateral-
inhibiton/thermometer-coded would be .8 9 .9
99 .001 .1 .1 binary coding, again because it
preserved muld-unit constraints. Lateral Inhibi-
tion was likewise more analog than the discrete
code, but also more complicated, because the
width and placement of the boundary effects
from the lateral inhibition could in principle
help or hinder the formation of a CP boundary,
depending on whether the two effects happened
to be in or out of phase.

In human experiments the CP effect is defined
as an interaction between discrimination (the
capacity to tell pairs of stimuli apart, a relative
judgment) and identification (the capacity to
categorize or name individual stimuli, an abso-
lute judgment). Normally, along a one-
dimensional stimulus intensity continuum the
discrimination function is log-linear (i.e., equal-
sized logarithmic increases in stimulus intensity
produce equal-sized increases in sensation inten-
sity, and hence response measures of it, such as
same/difference and degree of similarity judg-
ments). CP is a systematic departure from this
log-linearity, with relative compression (attenua-
tion) of discriminability within categories and/or
relative dilation of discriminability (separation)
between categories. The neural net accordingly
had to be given an initial discrimination func-
tion, which could then be re-examined after
categorization training to see whether it had

"warped.”

The method used to generate the precategoriza-
tion discrimination function was "auto-
association” (Hanson & Kegl 1987; Cotuell,
Munro & Zipser 1987). Different nets were
trained, separately for each of the 6 representa-
tions of the 8 lines, to produce as output exactly
the same pattern they received as input. For



each net trained to a predefined criterion level
of performance on auto-association the inter-
stimulus distances for all pairs of the 8 lines
were then calculated as the euclidean distance
between the vectors of hidden unit activations
for each pair of lines. For example, if there
were four hidden units and their activation
values after training for line X were (x1 x2 x3
x4) and for line Y (yl y2 y3 y4), then the dis-
tance between the two inputs, and hence their
discriminability for that net, would be the dis-
tance between X and Y (see Hanson & Burr
1990 for prior work on using this internal meas-
ure of interstimulus distance).

After auto-association the trained weights for
the connections between the hidden layer and
the output layer were reloaded (and then all
weights were left free to vary) and the net was
given a double task: Auto-association (again)
and categorization, i.e., lines 1 - 4 had to be
given one (arbitrary) "name" and lines 5 - 8 had
to be given another (e.g., "short” and “long"). In
practice, this naming required one more bit on
the output, the usual eight for the auto-
association, and then one more for the categori-
zation (initally seeded randomly with weights
in the (-1.0, 1.0) range).

For each of the six representations, 50 auto-
association nets were trained, and the results of
each of these were used to train 10 categoriza-
tion nets; except where noted, the results
reported here refer 10 averages. Once each net
was trained on the categorization task, the pair-
wise interstimulus distances were again com-
puted, as before, and then compared to their
precategorization values for that net. A CP
effect was defined as a decrease in within-
category interstimulus distances and/or an
increase in between-category interstimulus dis-
tances relative to the auto-association-alone
baseline.

3. Results.

We will first -report the results for auto-
association alone, and then for the pre/post com-
parison. Finally, we will analyze some of the
details of the evolution of the CP effects that
were observed.

The auto-association-alone results for each of
the 6 representations for 4-hidden-unit nets are
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shown in the corresponding upper portions of
Figure la-f. Plotted are the interstimulus dis-
tances (computed as described earlier) between
each pair of inputs for the trained net. As
expected, the most arbitrary representation
(discrete/place) produced the flattest discrimina-
tion function: All interstimulus distances were
equal. To an extent, this is true of all the place-
coded representations, but it can be seen that the
effect of the coarse coding produces some
rounding and spillover. All the thermometer-
coded representations are more iconic (in the
sense that a monotonic increasing relationship,
sometimes even a linear one is maintained as
the pairs move further apart on the continuum,
as in human discrimination functions). This
secems to be reflected equally by the
discrete/thermometer and  coarse/thermometer
codes, but the coarse/thermometer code has
some more of the properties of human discrimi-
nation, as we will see later. The lateral inhibi-
tion representations are more complicated,
because of interactions between the (arbitrarily
chosen) size of the lateral inhibition envelope
and the interstimulus increment.

The lower portions of Figure la-f show the
difference between the interstimulus distances
for auto-association alone and the interstimulus
distances for auto-association-plus-categorization
for each of the six representations. A positive
deviation means that the interstimulus distance
has decreased and a negative deviaton after
categorization means it has increased.2 Hence
positive deviations within categories (compres-
sion) and/or negative deviatdons between
categories (separation) would be CP effects. As
is clear from Figure 1, pronounced CP effects
occurred for all 6 representations. (Although
there may be some trend toward greater magni-
tude CP effects with the more iconic representa-
tions, the scales vary and the relative magnitude
is probably not comparable across representa-
tions with this methodology.)

Having observed strong CP effects in all
representations, our next question was: Why
were they there and what, if anything, were they

2 To facilitate comparison, the 28 possible pairwise
comparisons of the 8 lines are displayed in terms of the
size of the increment: Lines differing by 1 unit first,
then 2 umits, etc. Note that because the category boun-
dary was between lines 4 and §, increments of 4 or
greater are all between-category differences.



for? To examine this more closely we first
hypothesized that CP effects may arise as a
consequence of compressing the input data into
a smaller number of hidden units, so we re-ran
the nets with hidden units varying in number
from 2 - 12, predicting that the CP effect would
diminish with more units. We also thought that
whereas a small number of hidden units may
give rise to global representations, a large
number would allow local ones to form. The
prediction was that the global representations
would show more of a CP effect.

The categorization task turned out to be very
difficult to learn with only 2 hidden units; most
nets did not succeed even after a very large
number of training trials. With 3 there was CP
just as there had been with the 4-hidden-unit
nets in Figure 1, and CP continued to be present
even when the number of hidden units was
increased to 12, exceeding the number of input
units. So CP is not merely a consequence of
compression. With more hidden units, however,
there was more overall separation and less
compression in all directions superimposed on
the CP effect, both within and between
categories.

The next hypothesis was that CP might arise
gradually after the first point of separation in the
task, as the net overlearned to more extreme
values. However, when we trained nets just to
the first epsilon of separation and checked for
CP, we found the CP pattem was already there
then, smaller than in Figure 1, but present.

Another test was whether CP might be an
artifact of using the same net, with reloaded
weights, to do the auto-association as well as
the auto-association-plus-categorization. Now, in
some respects this seems the natural thing to do:
After all, we are the same systems that do
discrimination as well as categorization. So
although it was a bit like comparing apples and
oranges (or at least like making between-subject
rather than within-subject comparisons, we also
compared performance averaged over many nets
for auto-association alone with performance
averaged over many other, independent nets, for
auto-association-plus-categorization. Here too,
although the effect was much weaker and not
present in all representations, there was still evi-
dence of a CP effect.
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A final test concemed iconicity and interpola-
tion: Was the CP restricted to trained stimuli, or
would it "spill over" (or "generalize") to
untrained ones? Nets were trained on auto-
association the usual way, and then, during
categorization training, some of the lines were
left untrained (say, line 3 and line 6) to see
whether they would nevertheless "warp" in the
"right” direction. We found interpolation of the
CP effects to untrained lines, but only for the
coarse-coded representations.

Our provisional conclusion was that, whatever
was responsible for it, CP had to be something
very basic to how these nets leamed, in particu-
lar, to how they accomplished supervised
category learning. So the next step was to look
more closely at the time-course and evolution of
the learning itself. Instead of looking only at the
pre/post-categorization comparison of the inter-
simulus distances, we analyzed how the inter-
stimulus distances evolved across trials for each
of the 8 stimuli. For this we used nets with 3
hidden units. This gave us a visualizable 3-
dimensional hidden unit space in which we
could follow the locus of the representation of
each of the lines in hidden unit space during the
course of learning. The results are shown in Fig-
ure 2.

Three factors were found to influence the gen-
eration of the CP during the course of learning.
Two were related to the sigmoid or logistic
activation function and one was related to the
degree of iconicity of the input representation.

First, a finite, bounded hidden unit space arises
because the units saturate to O and 1. In the
three-dimensional case illustrated here, the hid-
den unit representations for each of the inputs
move into the farthest comers of the unit cube
during the course of auto-association leamning,
maximizing their pairwise distances from one
another. This extreme comering was found with
the discrete/place coding (Fig. 2a); there was
movement into comers and edges with the
discrete/thermometer  coding. The  other
representations showed less of this tendency to
move to the extreme periphery of hidden unit
space.

This separation tendency thus interacts with the
second factor, the iconicity of the thermometer-
coded and coarse-coded inputs: Some hidden



unit representations are forced by the auto-
association to stay closer to one another than
they would otherwise have “liked" to stay
because of the input structure they are con-
strained to inherit (see Figure 2b).
Thermometer<oded and coarse<oded inputs
accordingly arrive at the categorization stage
after auto-association with linearly separable3
configurations of hidden-units representations
whereas place-coded inputs may arrive with
more random configurations (depending on the
random initial "seeding" values given to each of
the weights prior to learning) and hence more of
them may fail to be linearly separable (hence
failing to be categorizable) after categorization
training. Thermometer- and coarse-coded inputs
produce faster and more reliable CP effects than
place-coded inputs, in that they rarely or never
get caught in the local minima that may block
linear separability (cf. Figs. 2¢c - 2e).

The third factor is peculiar to categorization
learmning and arises from the dynamics of the
learning (again because of the logistic function):
Because of the error metric of the leamning
equation, the hidden-unit representations will be
pushed with a force that is inversely propor-
tional to an exponential function of their dis-
tances from the (hyper)plane separating the two
categories.

The codings that generated the largest number
of nets that were unable to learn the categoriza-
tion task were the 2 most arbitrary (nomniconic)
ones, discrete/place (Fig. 2e) and especially
lateral-inhibition/place. Our diagnosis is that
with place-coding the output of the auto-
associator is more likely to generate
configurations in hidden-unit 3-space in which
the representations of the eight lines are not
readily linearly separable into the two 4-member
categories imposed by the task. More training
trials are hence required to move such nets into
a configuration where the the eight representa-
tions are linearly separable (see Figure 2d). The
lateral inhibition probably acts to add bumps to
the representational space and hence to the error
surface. Sometimes the configuration even gets

3 Two sets of points in a plane are “lineardy separ-
able” if and only if they can be divided into their
respective categories by a straight line cutting across the
plane. In three dimensional space, lincar separability is
accomplished by a plane; in higher dimensions, by a
hyperplane, etc.

trapped in a local minimum, in which case the
categorization cannot be learned at all (see Fig-
ure 2¢).

So what can so far be inferred about the evolu-
tion of CP leamning can be stated as follows:
During auto-association the iconic properties of
the inputs are "imprinted" onto them, and are
then reflected in their interstimulus distances in
hidden-unit space. Apart from having to remain
faithful to these constraints, the effect of auto-
association is t0 maximize the pairwise inter-
stimulus distance among all the stimuli within a
bounded, finite space. The categorization phase
then has no choice, if it is to generate successful
performance, but to "warp” the finite space of
this maximal separation, moving some of the
stimuli (those within the same category) closer
together than they would "like" in order to suc-
cessfully separate them from the others (those in
the other category); the magnitude of the warp-
ing effect is proportional to the distance of each
stimulus from the plane that marks the boundary
between the two categories. A complicating fac-
tor, and one affecting either the magnitude of
the CP or the probability or number of trials
before successful performance is attained, is the
initial structure of the 8 stimuli at the end of
successful auto-association and the beginning of
categorization  training: If their initial
configuration is at odds with the partition that is
needed, more warping is needed, and in some
particularly bad configurations (arising mostly
with lateral-inhibition-place coding) conver-
gence may not be possible at all.

4. Conclusions.

We have analyzed how one particular family of
neural nets accomplishes categorization by
"warping” interstimulus similarity space in a
way that resembles human categorical percep-
tion. Other kinds of nets generate CP too (e.g.,
unsupervised ones), but this analysis seems to
be especially revealing about supervised learn-
ing, an important form of learning, because the
contingencies of survival and successful
behavioral adaptation do not always follow the
natural lay of the land: Or, to put it another
way, where nature’s joints are may not be at all
obvious from the input alone. Supervision in the
form of feedback from the consequences of
miscategorization may be our best guide as to
how to carve up objects, events and states of
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affairs. If so, then the plasticity afforded by a
mechanism that can "warp" the landscape in the
service of the partition dictated by behavioral
contingencies would be a useful one indeed,
especially when the behavior is symbolic, and
the task is not just to survive, reproduce and get
around in the environment, but to describe and
explain it -- a mechanism that allows you to
"see" the world differently as you carve out ever
subtler categories with the fine edge of human
language.
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Figure 1. Pairwise distances between the 8

lines in hidden-unit space (4 hidden units) for

each of the 6 input representations:
discrete/place (la), coarse/place (1b), lateral-
inhibition/place (lc), discrete/thermometer (1d),
coarse/thermometer (le), and lateral-
inhibition/thermometer. In each case the upper
figure displays the pairwise distances following
auto-association alone and the lower figure
displays the difference between auto-association
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alone and auto-association plus categorization.
The polarity of these differences is positive if
the interstimulus distance has become smaller
(compression) and negative if it has become
larger (separation). To visualize within-category
and between-category effects more easily, the
comparisons have all been ordered as follows:
first the one-unit comparisons 1-2, 2-3,.. 7-8;
then the two-unit comparisons 1-3, 24, etc, and
so on until the last seven-unit comparison: 7-8.
Note that the category boundary is between
stimuli 4 and 5, hence all pairs that cross that
boundary are between-category comparisons;
otherwise they are within-category comparisons.
Almost without exception, within-category dis-
tances are compressed and between-category
distances are expanded by the categorization
learning. Notice also that interstimulus distances
before categorization (auto-association alone)
tend to be equal (flat) for the more arbitrary
codes (discrete/place, lateral-inhibition/place)
and ascending with increasing distance in units
for the more iconic representations (thermome-
ter and coarse codes).

Figure 2. The evolution of the 8 line represen-
tations in hidden-unit space for 3-hidden-unit
nets. Each line’s representation is displayed as a
point in the unit cube, its value on each axis
corresponding to the activations of each of the
hidden units (the connecting lines are just to
help visualize in 3 dimensions). Figure 2a shows
how the arbitrary discrete/place codings evolve
during auto-association from their initial random
configuration (left) to extreme separation in the
comers and edges of the space after auto-
association learning (right). Figure 2b, again
auto-association alone, shows how the iconic
factors in the coarse/thermometer representation
constrain this separation. Figure 2c shows the
evolution of categorization with the iconic
discrete/thermometer code from the final
configuration after auto-association alone (left)
to the configuration after successful category
learning (right). Figure 2d shows in four stages
from left to right the more difficult evolution of
the configuration with the  arbitrary
discrete/place code; after considerable move-
meni, linear separability between the two
categories is achieved. Finally, Figure 2e shows
a discrete/place net that cannot accomplish
categorization because it is stuck in a local
minimum in which the two categories are not
linearly separable.
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Recurrent Neural Networks for Natural Language Acquisition
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My current research with Peregrine Systems
involves the development of a natural language
interface for information retrieval applications. We
treat this project as a machine learning task and are
applying neural network technology to the problem
of language acquisition. in the following, | will out-
line three major issues our research is addressing
and then mention other elements of my background
which are relevant to this workshop.

The first issue involves the nature of the learning
system’s environment as well as the role of the
learning system in that environment. Because we
consider a system which acquires natural language
through learning, interactions between the learner
and its environment play a prominent role in the sys-
tem's development. Environmental factors can often
determine how well the system can learn, as well as
what exactly is learned. For example, we are explor-
ing the effect of using phonological vs. normal word
representations on learning rate and accuracy in
simple learning tasks.

Another important environmental concern regards
the method of reinforcement which is applied to the
learner. Should it be direct supervision? A principle
motivation behind this project is to avoid direct
supervision whenever possible and instead allow
the system to learn the natural constraints which are
implicit in the language. We hope to avoid direct
supervision techniques in part by allowing the learn-
ing system to learn the majority of syntactic and
contextual constraints from examples of correct
sentences. This approach has been applied with
some success in the past (e.g. Hanson and Keg's
PARSNIP system) and is a promising avenue for
avoiding excessive supervision.

The architecture of the learning system is a second
major consideration. This involves both the nature
of the architecture (is it static or dynamic) as well as
the learning rule(s) associated with it. We have con-
sidered various basic recurrent network architec-
tures such as Elman’s simple recurrent network
(SRN), Jordan's recurrent network and Miikkulain-
en's FGREP network. These architectures have
been extensively utilized in the cognitive science lit-
erature, and we are considering various extensions
to them. We hope to generalize these architectures
to include multiple “memory” layers, as well as
understand how these architectures can be com-
bined together, perhaps even dynamically.
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A final major consideration regards structured con-
cept acquisition. Adding recurrence to the network
is the principle method of allowing the networks dis-
tributed representation to exhibit structured con-
cepts. Thus, this issue may reduce to issues
regarding network architecture. Even so, concept
acquisition remains a difficult problem, especially in
the context of language acquisition. We feel that
neural networks can develop and utilize structured
concepts in @ manner which is quite different from
traditional concept acquisition. For example, we
expect that it will be easier to combine different
aspects of textual comprehension (e.g. parsing,
pronominal reference, ambiguity resolution) with a
distributed representation than it has been with both
symbolic and localist-connectionist systems.

At the moment, this research has yet to generated
any publishable material. Unfortunately, my work at
Peregrine Systems is my first exposure to research
in natural language processing so | have no other
related publications. However, | do have a substan-
tial background in topics related to natural language
processing. | have significant academic experience
in Cognitive Science. This includes courses in
human learning and inductive processes, as well as
language acquisition in children. The later provided
an excellent contrast between Chomsky's theoreti-
cal model of language acquisition to Piaget's devel-
opmental model.

Additionally, my current academic research inter-
ests involve machine learning and adaptive compu-
tation. | am welt versed in the issues involved with
learning tasks in a variety of domains, including
neural networks, traditional machine learning (e.g.
Samuel's checker player) and others. | have also
studied Valiant's learning theory model extensively
and am currently applying this analysis to genetic
algorithms (learning algorithms based on principles
of evolution and selection).

In summary, | believe | would prove to be a produc-
tive member of this workshop. My research relates
to many of the issues considered by the workshop,
and | am prepared to make interesting contributions
to the discussing of the topics covered. My back-
ground in cognitive science machine learning and
natural language development is sufficiently well
developed to enable me to intelligently consider the
issues at hand.
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1 Introduction

We present an incremental approach to the task of learning words from context. The learning task is
defined as follows: given a set of natural language sentences in which a previously unknown lexical item
appears, infer the syntactic class and the meaning (or meanings) of the word. We assume that the vast
majority of other words appearing in the set of sentences are already known.

Our approach has been implemented as part of a natural language processing system called LINK
(Lytinen, 1990; Lytinen, in press). LINK uses a unification grammar and integrated syntactic and semantic
processing. We are using LINK in two prototype applications involving relatively narrow domains (i.e.
the necessary domain knowledge can be described fairly completely), but the textual input is entered by
a large number of users and is therefore subject to wide variations in the terminology used. Our system
is able to infer the meanings of many unknown words in these applications.

Although our approach is used to infer both the syntactic category and the meaning of unknown
words, we will only discuss the learning of meanings in this paper. The reader is referred to (Lytinen and
Roberts, 1988) for a discussion of syntactic learning in LINK.

2 The Approach

LINK'’s domain knowledge is organized in a simple IS-A hierarchy. For each concept in the hierarchy, we
define a set of thematic roles or “slots” that can be attached to the concept, as well as the type of concept
which can fill each slot. The set of restrictions on fillers of slots for a concept must be at least as specific
as the restrictions for its ancestors in the hierarchy (i.e. more general concepts).

Figure | presents an example hierarchy, taken from one of our two prototype domains. Texts in
this domain describe sequences of activities to be performed on an assembly line. In this hierarchy,
since ACTION requires an ACTOR that is ANIMATE, this restriction also implicitly holds for REPAIR-
ACTION, ADJUST-ACTION, and all other descendants of ACTION. CALIBRATE is an example of a
concept which makes a further restriction on a previously constrained slot. Since ADJUST-ACTION
requires an OBJECT which is a DEVICE, the additional restriction on this slot under CALIBRATE must
be a descendant of DEVICE.
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object=DEVICE object=E-PROM

Figure 1: A simple concept hierarchy for LINK

LINK’s domain knowledge is used in the process of learning word meanings. Initially, it is assumed that
every concept in the hierarchy is a candidate hypothesis for the meaning of an unknown word. Example
sentences can provide two types of restrictions on the set of candidate hypotheses. First, the unknown
word may appear as the filler of a thematic role of another word. For example, in the sentence “Calibrate
the flarge,” LINK’s unification grammar suggests that “flarge” is the semantic OBJECT of CALIBRATE.
This condition places an upper bound on the generality of the word’s meaning: “flarge” must be an
E-PROM or a descendant of E-PROM in the hierarchy, since only E-PROM’s can be CALIBRATEJ.
Second, context may suggest a filler for a thematic role of the unknown word, as in the sentence “Flarge
the engine.” In this case, LINK’s unification grammar suggests that ENGINE is the semantic OBJECT
of “flarge.” Information about role-fillers of an unknown concept place a lower bound on the specificity
of the concept: given that ENGINE is the OBJECT, “flarge” cannot refer to a concept that is lower in
the hierarchy than REPAIR-ACTION or ADJUST-ACTION, since concepts below this in the hierarchy
do not allow ENGINEs to be their OBJECTs.

Given that these two types of restrictions are provided by example sentences, this would suggest a least-
commitment approach to learning, such as Mitchell’s candidate-elimination algorithm (Mitchell, 1977).
Mitchell’s algorithm used version spaces to represent the set of candidate hypotheses, and slowly narrowed
the version space depending on the additional constraints provided by new examples. Unfortunately, in
our word learning task, often it is the case that particular kinds of words only appear in examples that
provide one of the two types of restrictions. Nouns, which usually refer to things, almost always appear
as role-fillers of actions or states; thus, examples only serve to limit the upper bound of the candidate
hypotheses. Verbs, on the other hand, usually appear with role-fillers attached to them, and not as role-
fillers themselves, since they refer to actions or states. Thus, examples only serve to place a lower bound
on their candidate hypotheses. Thus, since examples only provide one of the two kinds of restrictions
for many word classes, a least-commitment algorithm would not converge on a single hypothesis for the
meaning of many unknown words.

Because of this, our algorithm is not a least-commitment algorithm. For nouns, we assume the most
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general candidate hypothesis is the correct one. Thus, the hypothesis for “Calibrate the flarge” is that
“flarge” means E-PROM. In the case of verbs, the most specific candidate hypotheses are kept. From
“flarge the engine,” then, “flarge” is assumed to mean either REPAIR-ACTION or ADJUST-ACTION.
A later example like “flarge the wrench” would cause generalization to occur, since a box cannot be the
object of either REPAIR-ACTION or ADJUST-ACTION. A search is initiated up the hierarchy from
these concepts until a concept or set of concepts is found that can take both ENGINEs and TOOLs as
objects. In this case, the new hypothesis would be that “flarge” means ACTION.

3 Limitations of This Technique

The learning mechanism described here is not suggested to be a solution to the problem of automatic
acquisition of word meaning. Rather, it is an attempt to demonstrate how the use of a small amount
of semantic information that is required in the performance of the parsing process along with a general-
purpose learning algorithm can make major strides toward inferring a useful word meaning hypothesis.
Several artifacts of the learning mechanism limit what can be learned.

The first is the assumption that the representation of the ontology is complete, that is that every
concept which is part of the domain is a priori represented by some node in the semantic hierarchy. This
clearly limits the range of concepts that can be learned.

In addition, this techniques relies solely on one type of information, the semantic constraints of role-
fillers. While this information is sufficient to differentiate between many of the word meanings, large
classes of words exist that require additional information to distinguish the members of the class.

As mentioned above, the learning algorithm can not handle ambiguous words. In such cases, an
apparent contradiction is found between competing hypotheses, and an over-general concept is then chosen.
Some sort of mechanism is needed to determine when a more general concept is required or when a
disjunctive mapping is justified.

Finally, the learning algorithm as we have described it so far often does not converge on a single
hypothesis for the meaning of a word, especially in the case of verbs. To see this, consider the hierarchy
in figure 2. It is the same as in figure 1, but with the additional action PICK-UP added. With this
hierarchy, if the system is presented with an example such as “Flarge the e-prom,” intuitively it seems
that the best hypothesis for the meaning of “flarge” would be CALIBRATE, since only E-PROMSs can
be calibrated. However, other hypotheses cannot be eliminated as possibilities: “flarge” might mean
REPAIR-DEVICE, since e-proms are also devices; and it might mean PICK-UP, since e-proms are also
physical objects. Given the hierarchy as it stands, no examples can be given which will narrow down
this set of candidate hypotheses (assuming “flarge” really does mean CALIBRATE), since nothing which
meets the restrictions on the slots of CALIBRATE will violate any of the restrictions on the slots of
REPAIR-DEVICE or PICK-UP. Concepts like PICK-UP, which have rather general restrictions on their
slots, will be candidate hypotheses for the meanings of a relatively large number of unknown words, since
often it will be the case that no examples are possible which will eliminate it from the list of candidates.

To remedy this problem, our algorithm ranks the list of candidate hypotheses according to how
“tightly” each candidate’s constraints on slots match with the actual slot fillers found in the examples.
For the example “flarge the e-prom,” CALIBRATE is the highest-ranked candidate hypothesis for the
meaning of “flarge,” since its restriction on the OBJECT slot exactly matches the OBJECT of “flarge” in
the example sentence. REPAIR-DEVICE is ranked second and PICK-UP third, since DEVICE is closer
in the hierarchy to E-PROM than PHYS-OBJ is.

4 Related Work

Gleitman (1990) proposed a mechanism called "syntactic bootstrapping” that children might use to guide
their search for meanings of verbs through the space of possible meanings that could be iuferred from the
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Figure 2: A slight variation of the first concept hierarchy

immediate context. She suggested that children as young as 17 months have the strong capabilities for
recognizing syntactic distinctions and using them to constrain the meanings of verbs they are learning. For
example, children who didn’t know the meaning of the word FLEX were shown two videos, one of Big Bird
and the Cookie Monster crossing and uncrossing their own arms, and another with one of them crossing
the arms of the other. When the sentences Big Bird is flexing with the Cookie Monster and Big Bird is
flexing Cookie Monster were broadcast through a speaker, the children showed a definite preference for
the ”syntactically congruent screen”, i.e. the video that was showing the action that was being described,
even though they had no semantic knowledge of the meaning of FLEX. Gleitman argued that without
such a constraining mechanism, the task of word learning would be computationally infeasible. But while
her approach relies solely on the syntactic structure of the sentence to yield semantic clues, our approach
combines use of syntactic and semantic information (but no external context) to generate hypotheses.

Similar efforts at using machine learning techniques in lexical acquisition were reported in (Zernik,
1987). Zernik described his approach as using a version space technique to learn phrasal lexicon rules.
However, Zernik’s system receives feedback from a teacher in the form of user-supplied ”contexts” that
explain what the input means. It is not clear if Zernik’s approach can be adapted to a situation in which
feedback is not available.

Selfridge’s CHILD program (1986) used contextual information to provide constraints on definitions
of undefined words in much the same way as our system does for nouns. However, CHILD learned from
only one example, and could not further refine meanings based on subsequent examples.

Jacobs and Zernik (1988) describe the RINA system, in which a task very similar to our word learning
task is performed. RINA examines large corpora, extracting many examples of a given unknown word.
Although they do not describe their algorithm in detail, it appears from examples discussed in the paper
that word meaning acquisition in RINA is driven more heavily by discourse context than in LINK.
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5 Future Work

There are many ways in which our algorithm can be extended. First, the algorithm as it currently stands
only uses information about semantic dependencies that the parser is able to identify between words in
example sentences. [t should be able take advantage of other information available from the examples, such
as the syntactic constructions used with an unknown word, additional semantic contextual information,
and so on. We plan to investigate incorporating the use of some of this additional information into our
learning algorithm.

Second, the assumption that a word must refer to a unique concept in the hierarchy is not a realistic
one. Many words are ambiguous, and thus refer to two or more nodes in the hierarchy. Even an unam-
biguous word’s meaning may not correspond exactly to an already existing node in the hierarchy. Our
system should be able to entertain disjunctive hypotheses for word meanings, and should also be able to
consider “splitting” a node in the hierarchy, so that a word can refer to a new subconcept.

Finally, we plan to test our algorithm in our two prototype domains to see how well it learns. We are
currently testing our hypothesis ranking system to see how well it chooses the correct hypothesis for an
unknown word from the list of candidate hypotheses. As we modify our algorithm further, testing will
provide valuable feedback for us to see if our system’s performance is improving.
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My research is involved with the building of compu-
tational models of acquisition of syntax. The first
model [Hill '82] was a “schema theoretic” model that
learned by adjusting weights in a semantic net rep-
resentations of grammar, lexicon and world knowl-
edge. Our approach has remained a minimalist
approach, as opposed to innatist, since it is our feel-
ing that it is more interesting to explore the limits of
language that can be learned given general cogni-
tive strategies and some world knowledge, than to
begin by assuming that a great deal of specific lin-
guistic knowledge must be built into the model. The
model is intended for use in cognitive exploration. In
our model the learning is implemented by adjusting
weights in the semantic network representations.
World knowledge must be given the model in order
for even primitive syntactic knowledge to be
induced. The system acquires a rudimentary
semantic parser that is highly dependent upon the
input data given. It learns both to understand input
sentences and to generate responses. Current
research in connectionist models of language acqui-
sition and discussions of hybrid models have led us
to reexamine the model with the idea of implement-
ing various aspects of the model in a connectionist
framework. We are interested in developing meth-
odologies for the combining of connectionist model-
ling with more symbolic modelling to take advantage
of the differing strengths of each approach.
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Hybrid Models of Natural Lan-
guage Learning

One way to contrast symbolic models of language
learning with connectionist models is to observe dif-
ferences in “grain size". While symbolic models
typically examine a large picture e.g, Minsky's
frames or Schank's scripts, connectionist models
typically examine in fine detail some aspect of a
larger problem- -as for example McCleiland Rumel-
hart's parallel distributed processing model of the
learning of the past tense of verbs in English. Typi-
cally our “schema-theoretic™ models lie at some mid-
point between the two. A schema is a unit belonging
to an internal model of the world that may vary in
grain size since we may have a schema for an object
or for a detail of an object. Schemas are dynamic
and may combine to form new schemas. We origi-
nally described our schema-theoretic models as
being “in the style of the brain”. While a schema-the-
oretic model may be more symbolic than
connectionist, it is constrained to be at a sufficiently
low level that in principle its separate parts could be
instantiated in terms of a neural network. Schema-
level formalisms, however, only approximate the
behaviour of a model expressed in neural net formal-
ism. Unlike more traditional symbolic modsls,
however, a schema-theoretic model is composed of
many redundant and overlapping modules -- one of
the reasons that such models are described as being
in the style of the brain. These observations may
be made more explicit by contrasting two models



that learn the past tense of verbs in English. The
first is the well-known McClelland and Rumelhart
connectionist model “On Learning the Past Tenses
of English Verbs” [Paralle! Distributed Processing,
1986, vol.2, 216-268], and the second is my schema
theoretic mode! [Hill 1986]. Whereas McClelland
and Rumelhart modelled only the learning of the past
tense forms of verbs, we were able to model their
learning within a larger framework. This is as one
would expect because of the typical difference in
grain-size mentioned above. The input to the
McClelland and Rumelhart model was 420 verbs.
Input to our model was simply adult sentences. This
is important, since McClelland and Rumelhart have
been criticized for presenting a small set of common
verbs to their model before presenting the remaining
verbs. Our model achieves the same kind of selec-
tivity, but with rules of salience. Our model, given a
body of sentences, attends first to a set of simple
verbs. McClelland and Rumelhart’s input was pho-
nologically encoded by means of sets of
Wickelfeature units. Our model simply glossed over
the phonological nature of the input. It was because
of the precise nature of the input that their model
could make the detailed predictions that they made.
Yet it was also the Wickelfeature representation that
suffered the brunt of the criticism, notably from
Pinker and Prince [“On language and Connection-
ism: Analysis of a Parallel Distributed Processing
Model of Language Acquisition” in Connections and
Symbols, A Special Issue of Cognition, Bradford/MIT
1988]. Detailed predictions will foment detailed
objections. Yet in their model the most important
claim was not questioned, namely that systems lack-
ing rules can exhibit rule-like behavior.

The primary advantage of their model is in terms
of the detail of the observed behaviour. Both models
capture the basic three-step path of acquisition of
past tense forms, but their model can show a corre-
lation between difficulty of learning particular past
tense forms in the model and in the child. They cap-
ture many aspects of the differences in performance
on different types of verbs. Our model can draw no
such detailed conclusions about the difficulty of
learning a specific verb. What is learned or not
fearned in our model depends entirely upon the input
corpus. Typically the connectionist model is rich in
specific predictions.
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The connectionist model is computationally inten-
sive. They used a single long run of 260 hours to get
their results. Our mode! is a vehicle for experimen-
tation. One can select a body of sentences and give
them to the model and watch them run, or alterna-
tively one can sit and type a set of sentences into the
model and see what comes out. Some type of
response is instantaneous. One can draw conclu-
sions about what the model attends to depending
upon the current stage of the model’'s grammar.
We agree in our aim to address the time course of
mental development. Their model required a spe-
cific teaching phase followed by a testing phase.
Our model is more realistic in that teaching and test-
ing happen in parallel. We neither of us require
explicit representation of a general rule, but instead
make use of a decentralized interaction of many
components to yield behavior that is describable by
arule, but in no way is the expression of a rule. Our
feeling is that at this early stage of building models
it is important to continue to pursue the implementa-
tion of ali kinds of models because each variety has
its strengths and its weaknesses. Our current
work is too incomplete to merit anything more that a
brief comment. We are currently building a model to
acquire the rules of -un prefixation. Linguists [M.
Bowerman, for one, in “The No Negative Evidence
Problem” in Explaining Language Universals, Hawk-
ins, ed., Basil Blackwell, 1983] have searched for
and failed to find a set of rules that describe those
verbs which can be prefixed by -un. -Yet adults have
no difficulty in recognizing inappropriate use of the
prefix. The lack of a simple coherent set of rules has
led us to implement a connectionist model to explore
the discrimination between verbs which may be pre-
fixed by -un and those that may not. Our first version
of the model uses a simple back-propagation learn-
ing paradigm over a set of features. It is our
intention to match the output of the model against
instances of the use of un- by children in the
CHILDES data base that is maintained at Carnegie-
Mellon University. Ultimately we hope to incorporate
this learning paradigm within the larger framework of
our schema- theoretic model.
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1. Motivation

The evolution of natural language in communities of individuals over several
generations, the development of language over time, the acquisition of language by
language-naive individuals born into the community or introduced into it from outside, the
role played by language in communication among individuals, and the influence of the
communicative role of language on the evolution, development and acquisition of language
are among some of the central questions in cognitive science and artificial intelligence. The
dominant tendency in these fields over the past several decades has been to approach the
study of perception, language, problem solving, motor behavior as if they were isolated from
one another. For instance, computer scientists who work on computational models of vision
(with applications in artificial intelligence and robotics, neuroscience and cognitive science)
and psychologists who work on visual perception have little or nothing to do with computer
scientists who work on natural language and psychologists and linguists who study language
behavior. The study of learning is, for the most part, just as isolated. Learning research
often proceeds as if the content of what is learned has little bearing on the basic processes
postulated. This is especially true of most work in computational approaches to the study of
learning.

In contrast, the distributed artificial intelligence framework outlined below attacks the
problem of understanding natural language evolution, development, acquisition, and
communication processes as an integral part of the broader task of understanding the design,
function, development, adaptation, and evolution of cognitive agents.

2. General Framework

A primary function served by language (defined broadly) is communication among
individuals. It is therefore reasonable to address language acquisition in the context of a
group of individuals which have to communicate with each other in order to survive. Within

This work has been influenced by several authors - J. Hattiangadi, C. Peirce, J. Piaget, L. Vygotsky, R. Al-
len, R. Narasimhan, L. Uhr, P. Langley, J. Laird, S. Harnad, M. Minsky, M. Dyer, and G. Lakoff - among oth-
ers. Their influence is acknowledged without in any way implicating them in the views expressed in this
abstract.
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this paradigm, the group shares a common environment. Each individual or agent is endowed
with one or more sensory channels (e.g., visual, auditory) through which it receives
environmental stimuli. Each agent has its disposal, a set of primitive actions that enable it to
manipulate (e.g., grasp, move) objects in its environment. It can transmit signals or symbols
that impinge on the sensory channels of other individuals. Each agent also has associated
with it, a set of goals, internal drives, and needs (e.g., hunger). The environment embodies
complex dynamics: objects in the environment can change their states in an orderly or
disorderly manner. Each such state change constitutes an event. Each agent might sense
events (through its sensory channels), respond to events (using its repertoire of actions), or
communicate about events to other individuals (by transmitting appropriate signals or
symbols).

Several interesting questions can be raised within this framework:

(1) Given a subset of individuals that use a predetermined language, what basic
mechanisms are needed for individuals newly introduced into the environment to learn
to communicate using the language of the community? This situation is akin to
language acquisition by children. Children’s competence in naive observation and the
use of ordinary language improves as they grow and enables them to acquire more or
less dependable knowledge of the environment in which they live. A model of language
behavior must come to grips with the developmental issues involved in the process:

Language acquisition in children appears to be incremental. This constrains our model
of language acquisition to relying on incremental learning methods. It also appears to
proceed in discernible developmental stages. Generative learning structures and
processes (Honavar & Uhr, 1991) are being applied in this context.

Language learning entails acquisition of meanings which involves a mapping of words
or sentences into the corresponding sensory, motor, or internal representations and vice
versa; The acquisition of the abilty to judge the grammaticality of sentences in and of
itself does not amount to language acquisition. Furthermore,” such meanings are
acquired in a social context, i.e., within a community of multiple agents which have to
communicate among themselves to attain their goals. Generative learning structures
and processes (Honavar & Uhr, 1988; Honavar, 1990; Honavar & Uhr, 1991) enable
agents to extract, abstract, and encode multi-modal sensory and action patterns and
associations among them. Internal representations of the environment so developed
derive their meanings by virtue of being grounded in corresponding analogical sensory
(e.g., visual, auditory) and motor representations. Meanings of such internal
representations are further enriched by the role they play in communication among
individuals in a community.

(2) A variant of the scenario outlined above is one in which individuals that are already
proficient in communicating in some language (first language) are introduced into a
community that uses a different language (second language). We can then ask, what
basic processes are used by such individuals in learning the second language? We can
also study the effect that the knowledge of the first language has on the learning of the
second language; the effect of learning the second language on communication in the
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first language, and so on. The results of such computational models could be correlated
with empirical data on second language learning to identify the structures and processes
that account for such data and to suggest further empirical studies.

(3) Assume two isolated communities, each with a distinct language that inhabit more or
less identical environments. We can examine a scenario in which two such communities
are brought into contact with each other. This places a demand on individuals across
both communities to communicate with each other. The changes observed in the
individual languages or the birth of a new language through such interaction can offer
insights into evolution of new languages from old ones.

(4) Assume a community of individuals into which new language-naive individuals are
introduced over time at intervals determined by a birth-rate and in which a fraction of
the individuals perish at intervals determined by a death-rate. Assume that the
environment and/or the sensory channels, primitive actions, internal needs and drives
change over time at a rate slower than the birth or death rates. We can then ask what
sort of changes manifest themselves in the language used by the community over time?
This is akin to the gradual changes in natural language used by communities over time
and is useful in modeling such changes.

(5) Consider the scenario in which we start with a community of language-naive
individuals. We can then ask what basic mechanisms are necessary to ensure that such a
community over time evolves a sufficiently powerful language that can then be readily
learned by language-naive individuals as they are introduced into the community. This
scenario corresponds to the biological evolution of language. Adaptations of
evolutionary learning methods are being investigated in this context.

3. Modelling Agents, Objects, and Environments

We are in the process of developing software tools that would facilitate the
computational modelling of scenarios of the sort outlined above. Object-oriented
programming paradigm (e.g., CLOS) with its loosely organized collection of interacting
entities provides a versatile tool for building such tools.

We have chosen to model each individual in our toy language community by a
generalized connectionist network (GCN) (Honavar & Uhr, 1990f). GCN offer many
extensions - especially in the form of generative or constructive learning structures (Honavar
& Uhr, 1991), and coordination and control structures (Honavar & Uhr, 1990a) to the
currently popular connectionist network (CN) models. GCN offer an attractive and versatile
framework for the integration of connectionist network and symbol processing approaches to
the modelling of intelligent systems. They also facilitate an exploration of the tradeoffs
between parallel versus serial computation, local versus distributed processing, memory, and
control, symbolic versus sub-symbolic representations, etc.

Very briefly, a GCN is a graph (of linked nodes) with a particular topology I". The total
graph can be partitioned into three functional sub-graphs - I'g (the behave/act sub-graph), I's
(the evolvellearn sub-graph), and 'k (the coordinate/control sub-graph). The nodes in a
GCN compute one or more different type/s of functions: B (behave/act,); A (evolvel/learn,);
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and K (coordinate/control).
GCN = (T, B, A, K}

Starting with a very simple caricature, the model of an agent is being elaborated as
necessary by adding simple planning capabilities, increasingly sophisticated inductive and
deductive learning capabilities, increasingly intricate memory structures, and so on. The
strategy being adopted is one of incremental development aided by exploratory programming
wherein new capabilities are added only when indicated by extensive simulation studies.

The environment in which the agents interact is modelled as a collection of objects that
obey certain physical laws. Agents typically have no built-in explicit knowledge of such
laws; They can however, develop (necessarily incomplete) internal models of their
environment through learning (by direct interaction with the environment or through
communication with other agents in the community).

4. Some Areas of Current Emphasis

The general framework sketched out above is obviously very broad. Our efforts at
present are directed toward a few specific issues:

[1] Development of structures that model internal drives, needs, and goals of agents in a
flexible manner that would facilitate us to study the interaction between such structures
and adaptation and learning processes (e.g., generative learning (Honavar & Uhr,
1991)).

[2] Development of a framework that integrates processes on an evolutionary time-scale
(e.g., competition, selection, cooperation) that operate over several generations of
agents in our toy environment. Here we are influenced considerably by on-going work
by several researchers in artificial life and evolutionary learning algorithms.

[3] Development of a simple psychologically motivated model of language acquisition by
infants. The focus here is on identifying a small set of computational structures and
environmental influences (e.g., the nature and extent of interactions with adults - agents
already proficient in the language - e.g., verbal and non-verbal feedback) that are
necessary and sufficient to facilitate such language acquisition. Our long-term goal is to
use the results of this modelling effort along with data from developmental studies of
children published in the psychology literature to guide further refinement of the model
to examine language acquisition in increasingly complex environments.

[4] Development of models that can successfully demonstrate the acquisition of relatively
simple languages with a pre-defined structure (e.g., languages that describe a small set
of spatial and temporal relationships among simple geometrical objects) by language-
naive individuals placed in a community of agents that use such a language to
communicate with other agents.

5. Summarizing Comments

Languages evolve to meet the needs of individuals and communities; The primary role
of language is communication among individuals dictated by their internal needs and
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environmental pressures for survival; We believe it is impossible to approach the study of
language in isolation from processes such as learning, perception, and cognition that
individuals engage in within the context of a larger environment. We have outlined a general
framework for study of natural language communication, acquisition, development and
evolution in communities of interacting agents. We have also sketched out some tentative
steps we have taken toward the construction of such a framework using an object-oriented
programming paradigm. Much work remains to be done.
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1 Introduction

Motivated by psycholinguistic studies which conclude that children are rarely, if ever, informed
of grammatical errors, Gold [Go67] introduced the seminal notion of identification as a model for
first language acquisition. According to this paradigm, a child (modeled as a machine) receives
(in arbitrary order) all the well-defined sentences of a language, and simultaneously conjectures a
succession of grammars. A criterion of success is for the child to eventually conjecture a correct
grammar for the language being received and never to change its conjecture thereafter. Replacing
the child machine by an arbitrary machine in this scenario yields a formal model of language
acquisition. This model is essentially Gold’s influential language learning paradigm discussed, for
example, by Pinker, Wexler and Culicover, Wexler, and Osherson, Stob, and Weinstein. However,
Gold’s paradigm is a highly idealized model which assumes unbounded resources in the form of time
and storage. In the present paper, we investigate restrictions on the above criterion of successful
learning where a machine is required to conjecture “succinct” grammars. The main results of
this paper demonstrate that such restrictions result in learning criteria that are dependent on
the choice of programming system used to interpret a machine’s conjectures. Our treatment is
recursion theoretic and some of our results build on results and techniques from inductive inference
of recursive functions studied by Freivalds, Kinber, Chen and Case, Jain, and Sharma.

In section 2 we introduce the notation and the preliminary notions of language, grammar,
and programming system. In section 3 we describe Gold’s paradigm and observe that classes of
languages that can be learned are independent of the choice of programming system used to interpret
machines’ conjecture. In section 4 we introduce a number of restrictions in Gold’s paradigm, which
restrictions require that a machine converge to a “succinct” grammar. For each of these restrictions,
we show that the classes of languages that can be learned is dependent on the choice of programming
system used to interpret a machine’s conjectures. Finally, section 5 contains a brief discussion of
our results.

2 Notations

N denotes the set of natural numbers, {0,1,2,3,...}, and N* denotes the set of positive integers,
{1,2,3,...}. Generally, lower case letters near the beginning, middle, and end of the alphabet, with
or without decorations, a, b,c,...,%,7,k,{,m,n,...,2,y, 2z, range over N.

€, C, and C denote, respectively, membership, containment, and proper containment for sets
(including sets of ordered pairs). We let P, S, with or without decorations, range over subsets of
N and we let D, with or without decorations, range over finite subsets of N. ||P|| denotes the
cardinality of P. min(P) and maz(P) respectively denote the minimum and maximum element in
P. We take min(0) to be oo and maz(0) to be 0. Let Az,y.(z,y) denote a fixed pairing function
(a recursive, bijective mapping: N x N — N) [Ro67]. Az,y.(z,y) and its inverses are useful to
simulate the effect of having multiple argument functions. 7, and 7, are corresponding projection
functions, i.e., (Vz,y)[m1({z,y)) = z A m2({z,¥)) = y].

L, with or without decorations, ranges over recursively enumerable (r.e.) subsets of N, which
subsets are usually construed as codings of formal languages. £ denotes the class of all recursively
enumerable languages C N. We let £, with or without decorations, range over subsets of £. L1 AL,
denotes (Ly — L) U (L2 — Ly), the symmetric difference of Ly and L,. 1 and £ range over partial
functions. domain(7) and range(7n) respectively denote the domain and range of partial function 7.
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R denotes the class of all recursive functions, i.e., total computable functions with arguments
and values from N. f,g,h, and p, with or without decorations, range over R. S ranges over subsets
of R. R* denotes the set of recursive functions with range a subset of N*.

¥ with or without decorations ranges over acceptable programming systems [Ro58, Ro67, MY78]
for the partial recursive functions: N — N. We let ¢ to be a fixed acceptable programming sys-
tem. 1%); denotes the partial recursive function computed by %-program number i. W,»’I’ denotes
domain( ;). W{j’ is, then, the r.e. set/language (C N) accepted (or equivalently, generated) by
the t-program number i. We let ¥ be an arbitrary Blum complexity measure [Bl67b] associ-
ated with acceptable programming system ; such measures exist for any acceptable program-
ming system [Bl67b]. For a given total computable function f and an r.e. language L, we define
minprogramy,(f) = min({i | ¢; = f}) and mingrammar,(L) = min({i | W’ = L}).

The quantifiers ‘Y’ and ‘3°°’ mean ‘for all but finitely many’ and ‘there exist infinitely many,’

respectively. The quantifier ‘3" means ‘there exists a unique.” Any unexplained notation is from
[Ro67].

3 Gold’s Paradigm

In this section we briefly introduce Gold’s paradigm for language learning. A sequence o is a
mapping from an initial segment of N into (N U {#}). The content of a sequence o, denoted by
content(co), is the set of natural numbers in the range of o. The length of o, denoted by |o] is
the number of elements in the domain of 0. A tezxt T for a language L is a mapping from N into
(N U {#}) such that L is the set of natural numbers in the range of T. The content of a text
T, denoted by content(T) is the set of natural numbers in the range of T. T'[n] denotes the finite
initial sequence of T' with length n. Suppose M is a learning machine and T is a text. M(T) |
(read M(T) converges) iff (32)(V*°n)[M(T[n]) = ]. In this case we say that M(T) |= ¢ (read M
converges on T to 7).

Definition 1 [Go67) Let i be an acceptable programming system. A machine M TxtExy iden-
tifies L (written: L € TxtExy(M))iff (¥ texts T for L)(3i | WY = L)M(T) |= ).

Below we define the inferring power of the above criterion which is a set theoretic summary of the
capability of various machines to learn according to the criterion.

Definition 2 [Go67] TxtExy, = {£ | (IM)[L C TxtEx,(M)]}.
Proposition 1 For all acceptable programmings systems v, 9’, TxtExy = TxtExy.

Because of the above proposition we often refer to TxtEx,, (for an acceptable programming system
¥) by TxtEx.

4 Minimal Size Restriction

The size of the final stabilized grammar can be very “large.” This poses a difficulty for Gold’s
paradigm to be a model of language acquisition. We describe this problem in the context of a child
modeled as a machine. The human head is of bounded size. A simple result from computability
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theory tells us that any recursively enumerable language can be generated by infinitely many
syntactically distinct grammars whose size is bigger than any prespecified bound on the size of a
child’s head. A child learning a language, hence, must converge to a grammar which fits in its finite
size head. This of course assumes that human brain storage is not magic, admitting of infinite
regress, etc. An interesting complexity restriction to make, then, on the final grammar converged
to in the limit is that it be of “small” size.

Notions from Blum [Bl67a] allow us to treat index for grammars as a program size measure. Qur
results can be suitably modified to hold for any other Blum size measure. A natural restriction,
then, to make on the size of the final grammar is to require that it be of strictly minimal size.
Definition 3 below describes this criterion.

Definition 3

(a) Let ¢ be an acceptable programming system. M TxtMiny-identifies L (written: L €
TxtMiny(M)) iff (V texts T for L)(V*°n)[M(T[r]) = mingrammar,(L)].

(b) TxtMiny = {£ | (IM)[L C TxtMiny(M)]}.

Surprisingly, as a contrast to Proposition 1 we have,
Theorem 1 There ezist acceptable programming systems ¢ and ' such that TxtMiny # TxtMiny.

Thus the classes of languages which can learned via minimal grammars depends on the pro-
gramming system used to interpret the conjectures of the inference machine. Freivalds considered
identification via programs which are of minimal size modulo a recursive (fudge) factor, i.e., the
programs inferred are nearly minimal size. Case and Chi considered an analog of nearly mini-
mal identification in the context of language learning. Definitions below describe this notion for
language learning.

Definition 4 [CC86] Let h € R.

(a) M TxtMex(h, ¥)-tdentifies L € £ (written: L € TxtMex(M, h, %)) <= M TxtEx-identifies
L in the acceptable programming system % and (V texts T for L)[M(T') < h(mingrammar,(L))].
(b) TxtMex(h, ¥) = {£ | (IM)[L C TxtMex(M, h,%)]}.

(c) TxtMex(v) = {L | (Sh € R)[L € TxtMex(h, ¥)}|}.

It is easy to see that for all A, TxtMex(h,¥) C TxtMex(Az.[h(z) + 1]). The following
theorems show that there exist acceptable programming systems for which the above inclusion is
(is not) proper.

Theorem 2 Let hg, hy, ha,... be an infinite r.e. sequence of distinct non-decreasing recursive func-
tions such that (Vz)[hi(z) > z]. (3¢) (Vi)[TxtMex(h;, ) D TxtMex(Az.[hi(z) — 1], ¥)].

Theorem 3 Let ho, hy, ha, ... be an infinite r.e. sequence of distinct non-decreasing recursive func-
tions such that (Vz)[hi(z) > z]. (3¢)(Vi)[TxtMex(h;, ) = TxtMex(Az.[z],¥)].

Kinber [Ki83], in the context of function inference, considered a generalization of minimal-
identification. He showed some initial results about a learning criterion in which, for some positive
integer ¢, an inductive inference machine, when fed the graph of a recursive function, is required to
converge to the i** minimal program in the acceptable programming system 3. We study an even
more general learning criteria.
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Definition 5 Suppose L € £ and 1 € N*. We say that & is the i** ¢-grammar for L (written:
k = i-mingrammar,(L)) < [[W,c = LIA[I{G1 (7 <k)A( Ww D} =i-1]).

Definition 6 below describes our generalized minimal identification criteria in the context of
language learning.

Definition 8 Suppose h € R be such that for all z, h(z) > 0.

(a) M h-TxtMiny-identifies L (written: L € h- Txtme(M)) (V texts T for L)(V*®n)
[M(T[n]) = h(mingrammar,(L))-mingrammar,,(L)].

(b) h-TxtMiny = {£ C £ | (IM)[L C h-TxtMiny(M)]}.

Clearly, (Az.[1])-TxtMiny-identification is the same as TxtMin,-identification.

Theorem 4 (V¢)(V non-decreasing hy,hy € R such that forall z, hi(z) > 0 A hy(z) >
0)[(Vz)[h1(z) > ho(z)] = [h1-TxtMiny C hy-TxtMiny]].

Theorem 5 Let hg, hy, he,... be an infinite r.e. sequence of distinct recursive functions € R*.
(IP)(Vi)[h;-TxtMiny D (Az.[hi(z) + 1])-TxtMiny)].

Corollary 1 [Ki83] (3¢)(Ve > 0) [(Az.[c])-TxtMiny D (Az.[c + 1])-TxtMiny].

Theorem 6 Let hg, hy, ha,... be an infinite r.e. sequence of distinct recursive functions € R¥.
(31/))(Vi,j) [h;-TxtMinw = hj-TxtMinw].

5 Discussion

In the previous section, we presented some results that show the dependence of learning criteria
resulting from the requirement that machines converge to ‘small’ size grammars. We are able to
show similar results for a number of other formulations of succinctness. On first observation, these
results seem to say that language learning criteria resulting from seemingly ‘natural’ notions of
succinctness are uninteresting (or, mathematically dirty) as they are dependent on something as
insignificant as the names of programs. However, we are also able to show that some of these
dependence results still hold if we restrict our attention to a very ‘nice’ subclass of programming
systems called Kolmogrov numberings ( 4#These programming systems are in some sense ‘the most
informative’ ones, as by definition, every acceptable programming system can be reduced to a
Kolmogrov numbering via a recursive function with no more rapid than linear growth (Freivalds
[Fro0])).

These results seem to suggest that complexity restrictions on general models of language acqui-
sition will most likely result in learning criteria which are dependent on the choice of acceptable
programming system. This dependence may be a very fundamental fact about language acquisition
rather than a mathematical inconvenience.

For further results and proofs of the theorems see [JS90d].
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Abstract

Many researchers are studying the possibility of acquiring the syntax and semantics of lexical items from
machine readable dictionaries, and others are exploring the application of statistical metrics to large text
corpora in order to uncover useful correlations anoug lexical items. We are interested in using both machine
readable dictionaries and correlation statistics froin large corpora to aid in the acquisition of the semantics
associated with certain kinds of lexical patterns. In this paper we only briefly outline how to tie the
two techniques together, focusing mainly on lexical acquisition from a dictionary (specifically the Collins
COBUILD English Language Dictionary). We describe some methods for determining the semantics of
simple patterns consisting of a noun or verb followed by a prepositional phrase, and compare this method
to existing techniques.
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1 Introduction

Automatic language acquisition is a promising approach
for the creation and augmentation of lexicons for natural
language processing applications. Currently many re-
searchers (e.g. (Wilks ef al. 1991), (Boguraev & Briscoe
1987), (Ahlswede & Evens 1988), (Jensen & Binot
1987)) are exploring the transformation of machine read-
able dictionaries into what Wilks et al. calls “machine
tractable dictionaries”, i.e. dictionaries traunsformed
into a format usable for NLP. Most of this work focuses
on obtaining word senses or word “relatedness” info:-
mation.

Researchers are also exploring the application of sta-
tistical metrics to large text corpora in order to detect
patterns such as noun similarity (Hindle 1990), colloca-
tion occurrence (Choueka 1988), (Smadja & McKeown
1990), and verb alternations (Brent 1990). These ap-
proaches uncover correlations among lexical items that
are potentially useful for more semantically driven ac-
quisition tasks.

We are interested in using both machine readable dic-
tionaries (specifically, The Collins COBUILD English
Language Dictionary (Sinclair 1987)) and correlation
statistics from large corpora to aid in the acquisition
of the semantics associated with certain kinds of lexi-
cal patterns. In particular, the work we discuss in this
paper focuses on acquiring semantic representations of
patterns composed of a noun or a verb followed by a
prepositional phrase. In many cases, the meanings of
these patterns are not simple compositions of the mean-
ings of their parts, so prior knowledge about the mean-
ings of the individual words may be inadequate for the
interpretation of the phrase.

Section 2 presents an overview of the acquisition
method, Section 3 describes application of the method
to several examples, Section 4 provides a comparison be-
tween this method and previous approaches, and Section
5 concludes the paper.

2 Overview of the Acquisition
Algorithm

2.1 Methods

From a corpus, we selécted several dozen sentences con-
taining noun + preposition and verb 4 preposition pat-
terns. We found that three methods relying on infor-
mation from COBUILD were sufficient for creating a
representation of their meanings. Briefly, these meth-
ods are:

(1) Interpret Definition Directly: Some noun/verb
+ preposition patterns are directly defined in the
dictionary—that is, the noun + preposition pair or verb
+ preposition pair is used in the definition of the main
noun or verb. For example, the definition for fluent 1

9%

hegins, "Someone whois fluent in a particular language,
or who speaks fluent Spanish, French, Russian, etc...,”
indicating that the patterns “fluent in language” and
“speaks fluent language” are defined therein. In cases
like these, the definition is parsed to find semantic con-
straints on complement structure of the pair. This in
turn can require analysis of the definitions of other words
or plirases, a mechanism we label “definition hopping.”
(2) Use Knowledge about How Nouns Derive
from Verbs: For noun + preposition pairs in which the
uoun is derived from a verb, we can apply some stan-
dard rules to derive the noun’s complementation struc-
ture from that of the verb. This is especially useful
because often only the verb + preposition combination
appears cexplicitly in the dictionary.

(3) Use Hand-coded Prepositional Semantics:
This is the catch-all category. In many cases COBUILD
provides an appropriate definition for the preposition
that indicates the relationship between the noun or verb
and the preposition’s object. These definitions often de-
scribe thie preposition’s function rather than defining it
in an ordinary fashion, and so may not be automatically
acquirable. However, since COBUILD provides a fairly
thorough analysis of prepositional meanings, we can use
their definitions as a starting point for hand-coding their
semantics.

We cliose to study COBUILD in our research for sev-
eral reasons. Unlike most dictionaries, COBUILD’s def-
initions are written in complete sentences. For exam-
ple, COBUILD’s definition of decay (omitting nominal
senses) is as follows:

1 When something such as a plant, a piece of
wood, or a piece of meat decays, it becomes
rotten or unusable.

2 If something such as a social or political in-
stitution decays, it gradually becomes weaker
or more corrupt.

‘This presentation style, among other reasons, makes
this dictionary amenable to general-purpose parsing.
Furtherniore, it provides us with information about syn-
tactic and semantic features of typical complements of
words. When we encounter a polysemous word used in
conjunction with a particular complement, we can deter-
mine how well that complement fits the description given
in the definition. To make this determination, we can
use several kinds of background knowledge, the simplest
of which is synonymy/hypernymy information extracted
from the dictionary itself. Such information can be gath-
cred from a genus hierarchy or from COBUILD’s margin
annotations. Ilaving these relationships, especially the
hypernymy relationship, indicated explicitly may make
the task of creating a semantic hierarchy easier than
when using other dictionaries (see (Guthrie et al. 1990)
for a discussion of some of the difficulties associated with
this task). Additionally, if more refined knowledge from



other sources exists in the knowledge base, that can be
used to aid in determining whether the complement used
fits the description.

If the complement preferences are insufficient to
uniquely determine the sense of the word in its given
usage, we can use some simple heuristics to choose be-
tween the possibilities:

Specificity: In general, of a series of senses whose comn-
plement preferences match the current context of the
word in question, we choose the sense with the most
specific preferences, since it is likely to provide the most
accurate information about the given usage.
Definition order: Different dictionaries order their
definitions differently. According to the introduction to
COBUILD, the first sense given for a particular head-
word is not necessarily the most common sense; it may
be the sense which the lexicographer felt was the most
“central” in meaning. But because of this, earlier def-
initions are likely to be more general, and therefore be
at least coarsely appropriate for the given usage.

These two heuristics may seem to be at odds with
each other—specificity would tend to favor more iu-
formative definitions, while earlier definitions are more
general. Specificity is useful in situations in which sev-
eral compatible definitions have fairly restrictive com-
plement preferences; definition order is a more conser-
vative “fallback” heuristic, more useful in situations in
which few or no senses with nontrivial complement pref-
erences exist. Therefore, given a conflict between the
two heuristics, we prefer specificity over definition or-
der.

Though these heuristics are not in general adequate
for disambiguation of ordinary text, we assume that they
will be useful in the restricted domain of dictionary def-
initions. Whether this assumption is justified remains
to be empirically verified.

2.2 Resources

In order to make use of dictionary definitions at all,
we will need to hand-code the semantics of a basic set
of words. While COBUILD does not have an explicit
“defining vocabulary” as does LDOCE (Summers 1987),
another learner’s dictionary,! we can use methods simi-
lar to those of Guo in (Wilks et al. 1991) to determine
a core set of defining terms.? Currently we have hand-
coded just enough basic words to interpret the defini-
tions we have been working on; we will build a larger
set of basic words in time.

To parse COBUILD’s definitions, we plan to use a
Construction Grammar-based parser (Jurafsky 1990)

! We are preparing a report which compares COBUILD with
LDOCE as sources for semantic acquisition.

2Part of this process consists of finding “cliques” of definitions,
all of which refer only to one another, labeling these groups as
primitives and hand coding them. This phenomenon of circular
definitions-as-primitives is also noted in (Amsler 1981) and (ichi
Nakamura & Nagao 1988).
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when it becomes available. In the Construction Gram-
mar f{ormalism (Fillmore 1989), each grammatical ele-
ment (e.g. phrases, clauses, sentences) is viewed as the
unificatiou of a collection of constructions that indicate
syntactic, semantic, and pragmatic information simulta-
neously. Our initial representation language and infer-
ence mechanism is a recent version of KODIAK (Wilen-
sky 1986), although it would be propitious to extend it
to accommodate phrases using some of the techniques
described in (Besemer & Jacobs 1987).

We plan to use the corpus to select noun/verb +
preposition pairs to be learned, using methods that com-
pute statistics over a large text corpus, such as those
described in (Smadja & McKeown 1990). This is an al-
ternative to having the system process pairs on an “as-
needed” basis, with a text-understanding system initi-
ating the acquisition process when it finds an unknown
pair or unknown usage of a known pair. It may be de-
sirable to have statistical evidence that a particular us-
age of a pair is frequent enough to merit entering it in
the lexicon. Furthermore, by examining the contexts in
which a pair occurs, it may be possible to determine
whether or not it has a non-compositional meaning and
so requires detailed semantic analysis. Another poten-
tial use of the corpus is to provide extra information
when the dictionary entry is not detailed enough for
the semantic analysis. We have not explored these last
two options in detail; the remainder of this paper con-
centrates on a description of our use of COBUILD for
semantic acquisition.

3 Examples

In this section, we present examples of how the dictio-
nary, combined with the resources mentioned above, can
be used to interpret the meanings of patterns consisting
of a noun or a verb followed by a prepositional phrase.
The following subsections give some examples of pat-
terns that can be analyzed using each of the three neth-
ods described in Section 2.

3.1 Direct definition

Suppose we want to understand the meaning of conde-
scend to in the following sentence:3

Harris always condescended to waiters and ser-
vants, making snide remarks about their station
in life.

In COBUILD, we find the following definitions for
condescend:

1 [v: IF +PREP THEN to] If you condescend
to people, you behave in a way which shows

3This sentence was created for illustrative purposes; it was not
derived from a corpus, but the methods described herein were
developed using naturally occurring sentences.
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Figure 1: Interpretation of condescend 1

them that you think that you are superior to
them.

2 [v+to-INF / = deign] If you condescend to
do sometliing, you agree to do it, but in a way
that shows that you think that you are doing
people a favor; used showing disapproval.

We can immediately eliminate sense 2 by syntactic
restrictions, since the object of to in the sentence is
a noun, not an infinitive verb. The first clause of the
definition informs us that the subject of condescend
and the object of to must be human beings, a fact we can
easily verify from knowledge about Harris (presumably
from interpreting earlier parts of the text), waiters and
servants. Thus, it seems likely that sense 1 is the proper
sense in this context.

The syntactic complement structure of condescend
1 is easily determined from its definition above. Our in-
terpretation of the semantics of the definition is shown
in Figure 1. Briefly, rectangles contain the names
of relations; ovals contain the names of participants
in those relations. Unlabelled links point to partici-
pants specific to a particular relation, while labelled
links (except for IsA) point to roles inherited from
a parent. For example, the person-behaving link be-
tween Condescend-To-1 and person-condescending indi-
cates that the person-condescending plays the role in the
Condescend-To-1 relation that person-behaving plays in
the Behave-1 relation.?

Let us examine how our algorithm produces this rep-
resentation. First, we know from the definition that
there are two semantic participants directly realized as
syntactic complements of condescend 1; in the di-
agram, these are represented by person-condescending
(realized as the subject of condescend) and person-

4The names given to the relations and participants liere are
provided for clarity; they should not be taken as having any se-
mantic content in and of themselves.
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condescended-to (realized as the object of to). The other
participants are implied by the rest of the definition,
whose interpretation we now describe. For this example,
we will assume that appropriate senses of way, show,
and think are available in the basic hand-coded vocab-
ulary. Given these, we still need to find interpretations
for behave and superior that are syntactically and se-
mantically compatible with their usages in the definition
of condescend 1. Of the senses of behave defined in
COBUILD, only two are syntactically compatible:

1 If you behave in a particular way, you act
in this way, especially because of the situation
you are in or the people you are with.

3 If an object, substance, etc behaves in a par-
ticular way, it functions in a way that follows
the laws of science.

The complement preferences given for the subject of
cach sense of behave here do not unequivocally disam-
biguate the use at hand; the fact that the subject of
condescend 1 is a person is not incompatible with its
being an object, since people are objects. Thus, we have
to make a decision between the two. Both of the heuris-
tics mentioned in Section 2, specificity and definition
order, would lead us to choose behave 1 as the proper
sense in this context.

We will not go into detail about the interpretation
of the definition of behave 1; let us assume that we
have interpreted it and stored its syntax and semantics
in its lexical entry, calling its associated concept Behave-
1, and that it has (at least) the two roles shown in the
diagram. We can now establish that Condescend-To-1
IsA Behave-1. We know that the subject of conde-
scend is also the subject of behave; thus, the person-
condescending participant in the Condescend-To-1 rela-
tion plays the role of the person-behaving participant
in the Behave-1 relation. We create the condescension-
manner participant and the behavior-manner link simi-
larly.

Ve now turn our attention to superior. There are
three senses in COBUILD that are syntactically com-
patible with its use in condescend 1. Of these, the
most appropriate in this context is superior 3:

3 If you feel superior to otlier people, you
believe that you are better than they are. You
often make people aware of your attitude by
vour expression or tone of voice or by the way
you treat them.

However, in order to realize that this sense applies, we
must assume that think [that] and feel are similar in
meaning. In this case, the dictionary can help us: The
definitions of the appropriate senses of each of these have
annotations in the margin indicating that they are both
hyponyins of believe. Superior 3 has more restrictive
complement preferences than the other two senses, and



it is compatible with the usage of superior in conde-
scend 1; therefore, we would choose it over the other
two senses.

After studying whatever unknown words are used in
the definition of superior 3, we can construct its syn-
tactic and semantic representation (not shown in the di-
agram). We then create the participant superior-feeling
to our representation of Condescend-To-1, noting that
it is an instance of Superior-3. From the definition of
condescend 1, we understand that the person who
feels superior is the person-condescending, and the per-
son considered inferior is the person-condescended-to; we
can therefore add these links to the representation. The
information about the condescension-shows participant
can be similarly derived from the definition.

Note that there is nothing corresponding to think
that in the structure. Since we concluded that think
that is equivalent to feel, and since feel is included
in the complement preferences of superior 3, we can
assume that the definition of superior 3 must include
whatever semantics can be attributed to feel (as indeed
it does). Therefore, we can allow the concept associated
with superior 3 to take care of the semantics of think
that/feel.

3.2 Nouns derived from verbs

Many nouns which take prepositional complements are
derived from verbs, and we can exploit some regulari-
ties in English to understand these noun + preposition
patterns. In general, they fall into two categories:

TransVerb — Noun + PP[of] Nominal forms
of transitive verbs often take prepositional phrases
headed by of as complements, where the object of
of plays a similar semantic role to the object of
the original verb. For example, the use of sepa-
ration in “the separation of the executive and ju-
dicial branches [by the Constitution]” is nominally
related to the transitive verb separate; the phrase
is semantically similar to “[The Constitution] sep-
arated the executive and judicial branches.”"

Verb 4+ PP[x] — Noun + PP[x] In cases wlere the
original verb takes a particular prepositional com-
plement, its derived noun often takes the samie
prepositional complement. For example, in “Pro-
vision was made for the project’s eventual ter-
mination,” the PP[for] complement of provision
springs from the PP[for] complement of provide,
as in “They provided for the project’s eventual ter-
mination.”

Thus, even if a particular noun + preposition pat-
tern is not directly defined in the dictionary, we can use
the dictionary or morphological analysis to determine
whether the noun is derived from a verb, and, if so, in-
terpret the role of the preposition’s object accordiugly.
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(Of course, if the noun is not directly defined in the
dictionary, we will have to make recourse to semantic
regularities in order to derive the meaning of the noun
from the meaning of the original verb.)

3.3 Prepositional semantics

If the noun/verb 4 preposition pattern is not explicitly
mentioned in the dictionary at all, and neither of the
regularities in the last section are applicable, we must
attempt to integrate knowledge about the individual
words in the pattern in a plausible way. We might be-
gin by applying our standard dictionary-interpretation
techniques to derive the semantics of the main noun or
verb and the preposition. However, prepositions often
have complex semantics; the dictionary does not always
give complete definitions for prepositional senses.

For example, suppose we wish to interpret the
phrase “jar of mayonnaise.” The appropriate sense in
COBUILD of of for this phrase is 1.1: “You use of af-
ter nouns expressing quantities, groups, measurements,
amounts.” [lowever, the definition COBUILD gives for
the noun jar is “A jar is a container ... that has a wide
top and is used for storing food ...” In order to obtain
the proper sense of of, we must realize that containers
can be schematized as units of measurement; this would
require knowledge about conventional uses of contain-
ers. However, even given that we can identify this as
the proper sense of of, its definition is incomplete, since
it does not specify precisely what the relation is between
“jar” and “mayonnaise”.

Thus, it seems reasonable to include prepositions in
the basic vocabulary, and code their semantics by hand.
We can use COBUILD’s definitions as a starting point,
using the dictionary’s analysis of the various preposi-
tional seuses, but making their meanings explicit in our
knowledge representation language. As before, we can
use the individual senses’ complement preferences as dis-
ambiguational clues. We have only studied a few prepo-
sitions in detail, but COBUILD’s sense analysis and
complement preferences seem to account for a signifi-
cant percentage of cases not covered by the other two
metliods.

4 Comparison to Other Meth-
ods

The way in which definitions are analyzed here is in
some ways similar to other approaches that extract se-
mantics from dictionary definitions. For example, sev-
eral approaches (e.g. (Amsler 1981),(Wilks et al. 1991),
(Jensen & Binot 1987)) make use of taxonomic relations
(hypernyms) for creating a semantic hierarchy, which
aids in “definition hopping” (although as mentioned
above, tlis task is made easier by COBUILD’s mar-
gin anuotations). Approaches such as (Alshawi 1987),



(Boguraev & Briscoe 1987), and (Wilks et al. 1991) as-
sume that a set of 1000 - 3000 primitive senses need
to be pre-encoded in the lexicon, as does our algo-
rithm. (Jensen & Binot 1987) describes a detailed en-
coding of the semantics of the preposition with; the ap-
proach described here requires similar prepositional en-
codings, but interprets them using more generally ap-
plicable mechanisms.

A significant way in which this approach differs from
others is linked to the COBUILD definition style. As
noted above, COBUILD’s definitions are written as com-
plete and fairly simple sentences, and so can be parsed
and interpreted with a general-purpose parser and gram-
mar, which can be used in other tasks. In contrast,
most approaches interpret the definitions by matching
them against specially-tailored patterns (e.g. (Alshawi
1987),(Markowitz et al. 1986), (ichi Nakamura & Nagao
1988)), or by using special-purpose parsers (e.g. (Wilks
et al. 1991), (Zernik & Dyer 1985)) in order to extract
particular semantic relations. This is done both be-
cause the definitions of the dictionary used are more
terse than ordinary language, and so cannot be prop-
erly parsed, and because the dictionaries have enough
uniformity in format to allow this to work successfully.
Ahlswede & Evens (1988) presents an interesting com-
parison between using a general parser and coarse text-
processing tools for the derivation of semantic relations
from a dictionary. They concluded that for the semantic
relations they were acquiring, the text processing tools
were more appropriate than the general purpose parser.
However, they also noted that parsing would have been
useful for verb definitions whose headword is a verb plus
a particle.

5 Conclusion

As we have shown, dictionaries can facilitate the inter-
pretation of patterns larger than a single word, either by
directly defining them, or by providing information that
can be used in combination with other knowledge about
language and the world. Statistical analysis of text cor-
pora may prove useful in determining what kinds of pat-
terns to interpret and in providing appropriate context
in which to interpret these patterns. The interpretation
of dictionary definitions, when combined with some ba-
sic knowledge resources, can provide broad support for
extended knowledge acquisition and natural language
processing tasks. Other acquisitional tools can then re-
fine the knowledge we obtain from the dictionary by
consulting other, more detailed information sources.
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Abstract

Much of the syntax of the world’s languages may be characterized by the inventory and properties of the lexical
items and Functional Categories (FCs) of those languages. FCs are the “little words” of a language: determiners,
auxiliaries, complementizers, prepositions and (inflectional) affixes.

In this paper, I will be investigating the proposal that syntax is acquired by the child as a progression from an
invariant base (a core grammar which is common to all languages) to a more articulated view of language which
includes FCs. Given, however, that the inventory of FCs differs from language to language, an explicit proposal of
how children acquiring a language come to learn its FCs is needed.

I propose that the FCs of a language are originally lacking in the child’s syntax, and are acquired by the child
through an analysis of the agreement facts of the language. This information is available to the child through a
lexical acquisition process which distinguishes the invariant part of a word (the root) from the part which varies
according to changes in salient features of those words (the affixes). This procedure is intended to be psychologically
plausible—it is sensitive to the frequency, phonological and semantic salience of words in the input, and makes
predictions about order of acquisition and overgeneralizations which are corroborated by studies of lexical acquisition
and psychological studies on the nature of the mental lexicon. By examining the generalizations made by the lexical
acquisition procedure, the child has a sufficiently broad understanding of the agreement processes in his language to
be able to hypothesize the FCs of his language.

This proposal makes several predictions for the time course of acquisition: that lexical information about a
category will be acquired in direct relation to the frequency and salience of that category in the input language; that
FCs will originally be missing from the child’s grammar; that the agreement information for a category (the affixes)
will be acquired before the FCs for that category. These predictions have been shown to hold for English, French,
Polish, Dutch and Hebrew.

When seen this way, the acquisition of syntax is not simply a logical problem for the child to solve, as has been
advocated in the past, it is a statistical inductive procedure which the child can only solve after exposure to significant
amounts of data.

Research interests

My interests tend to center in three broad largely unrelated areas: human-computer interfaces, the creation and
manipulation of large text/natural language databases and computational models of language acquisition. I’ll make
the assumption, and I think it’s a safe one, that the first two of my interests are of little interest to workshop
members, and I’ll focus on the third.

Within computational models of language acquisition, I have largely been concerned with creating psychologically
and computationally valid models of the acquisition of the lexicon and syntax. I have concentrated mainly on the
early stages of acquisition, from about 18 to 36 months, when the basic grammar of a language is acquired.

My intent is to create models which both account for the longitudinal facts of acquisition across languages. These
models should, furthermore, have something to say about the adult state. That is, it should be clear how the child
model of language becomes the adult model, and this transformation should not involve the introduction of any
additional principles. In particular, I have been concentrating on the connection between morphology and syntax,
and looking at how the child might use information contained in the lexicon to deduce facts about the syntax of his

language.
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1 Introduction

In recent years linguistic theories have come to rely more and more heavily on a set of linguistic universals, and
on knowledge contained in the lexicon, and less heavily on rules which are specific to a particular grammatical
construction (see, for example Chomsky’s Lectures on Government and Binding [Cho81], and and Pollard and Sag’s
An Information-based Syntaz and Semantics [PS87]. That is, the structure of a natural language can largely be
specified by the properties of individual lexical items, and by the properties of lexical categories, rather than by a set
of rules which detail the phrase structure of the language. This has intuitive appeal in that, seen this way, languages
are of a single basic form, paralleling hypothesized innate cognitive abilities. In a theory of grammar these abilities
are expressed as structural limitations on the possible form of human natural languages. The differences between
languages are encoded in the properties of the lexical items and categories of each language.

Until now, however, this characterization of natural languages has not been extensively tested as a theory of
language acquisition. I am proposing a model of language acquisition which builds a language representation from
a simple common base, tailoring the representation based upon information contained in the lexicon. This tailoring
is manifested as the construction of the language’s functional categories (FCs) [Abn87].! FCs, as a class, are dis-
tinguished from the class of major thematic categories (TCs) of a language (verbs, nouns, adjectives and adverbs).
Many language acquisition researchers have noted that FCs are acquired as a group by the child ([GN88], [Kaz88]).
To account for these facts, I propose a model of lexical and syntactic acquisition which explicitly links the mastery
of agreement paradigms to the creation of FCs.

2 The Lexical Acquisition Model

The model of lexical acquisition which I will propose is intended to be a computationally, psychologically and empir-
ically accurate reflection of the child’s acquisition of the lexicon, with respect to the period of language acquisition
paralleling that of an 18 to 30 month old child. During this period, most of the basic vocabulary and grammar of
the target language are acquired. Furthermore, the lexical acquisition model will be related to a model of syntactic
acquisition. I will show how the results of the morphological analysis provide just the information needed by the
syntactic acquisition procedure in order to correctly characterize agreement relations in the target language.

This work was originally motivated by the desire to provide a principled account of certain observations noted
by language acquisition researchers:

1. Children morphologically overgeneralize.

2. The rate of acquisition of lexical items is directly proportionate to the input frequency and phonological salience
of these items.

3. Agreement paradigms are acquired non-monotonically: children’s mastery of particular agreement paradigms
does not steadily increase, but appears to vary, even from utterance to utterance.

4. Function words, case-marking and syntactic agreement are acquired as a group.

The lexical acquisition procedure accepts parsed sentences as input, one word at a time, and creates lexical entries
to represent the input words. The procedure attempts to distill the core meaning of a word by comparing its use
across many sentences. The parser used is simple and general—it assumes that all features are shared by all words
within a phrase and that a phrase can attach to another phrase either as an argument or as a modifier. Conceptually,
the acquisition procedure is composed of two functions: 1) a version space procedure [Mit77] which compares the
features of words in the input in order to arrive at the minimal set of defining features for each particular word; and
2) a word segmentation procedure which compares different versions of the same word (in the example below, the
words bite and bites are compared) in order to isolate a root—which contains the core meaning and features of the
word—and a number of affixes, which annotate the features of the root (the -ed affix, for example, add the past-tense

feature TNS=PAST to the root).
As a concrete example, consider input sentence 1 (given in its parsed, fully annotated, format):

1. The dogs bite the cats.

!Examples of FCs in English are Complementizer (that, for, which, etc.), Inflection (can, to, will, the past tense affix -ed etc.) and
Determiner (the, a, my, etc.).
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[(WORD: [dh ahO] POS:det SEM:the
IFEATS: [TH=AGT PER=3 NUM=PL DEF=Y] EFEATS:[ROLE=SUB] ARGS:[[SUB=NOUN]] ]

[(WORD: [d aot g z] POS:noun SEM:dog
IFEATS: [TH=AGT PER=3 NUM=PL DEF=Y] EFEATS:[ROLE=SUB] ]

[WORD:[b aal iy t] POS:verb SEM:bite
ARGS: [ [TH=AGT PER=3 NUM=PL DEF=Y ROLE=SUB] [TH=PAT PER=3 NUM=PL DEF=Y ROLE=0BJ]]
IFEATS: [TNS=PRS MOOD=IND] ]

[WORD: [dh ahO] POS:det SEM:the
IFEATS: [TH=PAT PER=3 NUM=SG DEF=Y] EFEATS:[ROLE=0BJ] ARGS:[[SUB=NOUN]] ]

(WORD: [k ael t] POS:noun SEM:cat
IFEATS: [TH=PAT PER=3 NUM=SG DEF=Y] EFEATS:[ROLE=0BJ] ]

Each word in the input presented to the lexical acquisition procedure has the following properties: a phonetic
string (e.g. cats = k ael t s),? a part of speech, a semantic identification token (typically the word itself is used, but
any unique identifier would do), a list of internal features, external features and (optionally) arguments. Consider
the two lexical entries for the determiner the above. The lexical acquisition procedure will compare the two instances
of the, and will produce the generalized entry 2:

2. sem=the rank=0.010000 num_args=1 pos=det
phon=dh ah # projection=det’’
usage=2 num_args=1 ifeats=[PER=3 DEF=Y ]
arg 0 status=Mandatory feats=[SUB=NOUN ]

The important detail to note is that the lexical acquisition procedure has applied a version space technique to
the features of the resulting in a lexical entry which contains only the inherent features of the determiner, i.e. it
subcategorizes for a noun and has the internal features PER=3 DEF=Y (3rd person and definite).

Now consider the effect of sentences 3-4, both of which involve the verb bite (only the entries for the verb are
given here) and the resulting lexical entry, 5, which the lexical acquisition procedure hypothesizes:

3. I bite.

(WORD:[b aal iy t] POS:verb SEM:bite
ARGS: [[TH=AGT PER=1 NUM=SG DEF=Y ROLE=SUB] ] IFEATS:[TNS=PRS MOOD=IND] 1]

4. A dog bites two men.

[(WORD: [b aal iy t s] POS:verb SEM:bite
ARGS: [[TH=AGT PER=3 NUM=SG DEF=N ROLE=SUB] [TH=PAT PER=3 NUM=SG DEF=N ROLE=0BJ]]

IFEATS: [TNS=PRS MOOD=IND] 1]

5. sem=bite rank=0.010000 num_args=2 pos=verb
phon=b aa iy t # projection=verb’’
usage=2 num_args=2 ifeats=[TNS=PRS MOOD=IND ]
arg 0 status=Mandatory feats=[TH=AGT ROLE=SUB ]
arg 1 status=Optional feats=[TH=PAT PER=3 NUM=SG ROLE=0BJ ]

affix: O context=b aa iy t #
changes=1 usage=1 rank=0.005000 pos=verb
feats=[[CH=AFEATO PER=3 NUM=SG DEF=N ] [CH=AFEAT1 DEF=N ] ]
old phonemes=#
new phonemes=s #

2This phonetic string is converted into a distinctive feature [CH68] representation internally, in order to be able to pref:isely discern
which phonetic features condition particular affixes. An affix might only apply to environments which are unvoiced, nasalized, coronal,

etc.
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The word bite now consists of a root, with the phonetic structure b aa iy ¢ (= bite), and an affix, which adds the
-3 affix to the end of the word (indicated by #). The affix also adds the features PER=3 NUM=SG DEF=N (3rd
person, singular, definite) to the verb’s first argument feature list. After seeing more examples of bite, as well as
other verbs which take the -s affix, the set of features which the affix contributes will be honed down to the proper
set: PER=3 NUM=SG.3

Once an affix has been created, it is free to combine with any word of the appropriate category, if that word
provides the correct phonological environment (for instance, the -s affix must agree in voicing with the phonological
material to which 1t immediately attaches). Affixes, as free agents, can then compete for use among the words of the
language, and will be reinforced by any input word in which they appear. In this way, the productive affixes of the
language will be identified.

3 Ramifications for Syntax

One way of viewing the lexical acquisition process just described is that it is a way of distilling information contained
in the lexicon into meaningful classes: the roots and productive affixes of each of the lexical categories. This has two
important consequences: 1) the affixes on a category signal that category’s syntactic agreement relations; 2) if we
adopt the additional assumption that a category’s agreement information has an independent instantiation in syntaz,
as has been argued for theoretic and cross-linguistic reasons by Everett [Eve89], Abney [Abn87] and others, and for
developmental reasons by Kazman [Kaz90] then this position provides just the environment necessary to analyze the
functional categories of a language. In this way, the idiosyncratic structure of a language (as opposed to what is
universal) may be determined through an examination of the lexicon.

Functional categories—things like determiners, complementizers and auxiliaries—tend to be phonologically and
morphologically dependent, stressless and lack independent reference—they merely modify the meaning of their
hosts, just like affixes. Furthermore, the information expressed by a function word in one language is often expressed
by an affix in another. This lack of a consistent syntactic expression across languages argues against the treatment of
functional categories as distinct categories universally—they are merely annotations to the meanings of the thematic
categories. Given this array of facts, it seems natural to propose that the function words and affixes related to a
particular category occupy the same agreement node position in the syntax.

This model assumes that the child initially projects all lexical items identically according to X’ theory and has
no representation for FCs, as in (la). Information about each category is learned by the child through a lexical
acquisition process, which links the rate of acquisition of lexical items to input frequency and phonological salience.
By analyzing the agreement properties of each category, the child will gradually learn which categories exhibit regular
agreement processes—predictable meaning changes paired with changes in the phonetic form of a category. For these
categories, he will posit an agreement node (Agr), dominating the lexical category, as in (1b). Finally, if the child
hears function words which are manifestations of a category’s agreement features, then these words will be identified
with that category’s Agr position, as indicated in (1c) by the re-labelling of the Agr position as Func.

(1a) x” (1b) Agr” (1c) Func”
| | I
X’ Agr’ Func'’
)l( = Agr X" = Func/\X”
xll X/
| |
X X

Although these constructions are proposed as models of the child’s development, each of the stages (la-c) is a valid
stage of Universal Grammar (UG). This can be stated confidently because examples of each kind of construction
exist in the languages of the world: there are lexical categories which have no agreement (Adjectives in English,
or any category in Chinese or Japanese), and would be represented as (la). There are categories which exhibit
agreement but contain no function words (nouns in Polish, for example), and would be represented as (1b). Finally,
there are categories which both exhibit agreement and contain function words (like Nouns and Verbs in English, or

3The lexical entries shown here would not, in fact, be built after so few exposures to input. There is a built in conservatism in the
acquisition system. This serves two purposes: it correctly models the child’s conservatism and it allows the system the time and large
numbers of exposures needed to accurately learn the intrinsic features of words.
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any Romance language), and would be represented as (lc).

The model of syntactic projection works as follows: the lexical acquisition process, given an input of sentences
accompanied by a semantic representation, distills categorial information into the roots and productive affixes of
each of the lexical categories. When a category exhibits regular agreement affixes in the lexicon, an Agr node is
hypothesized for that category in the syntax. Finally, if that category is modified by independent function words,
then the Agr node provides a place wherein those words may be analyzed. This model cannot be “tricked” into
making overgeneralizations about the language, because its basis of knowledge is generalizations made from the
entire lexicon, and not a particular input word or sentence. By allowing the input to dictate which categories will be
simple projections of the head (as in (1a)), which ones will exhibit syntactic agreement (as in (1b)) and which ones
will contain function words (as in (1¢)), a model of the language can slowly be built by the acquisition process. This
method provides a way to “tailor” a maximally general grammar (the Universal Grammar) so that it will be able to
adequately represent a particular language.

Consequently, the analysis of the lexicon provides a means by which the child can analyze function words in his
grammar: when the child sees that a category utilizes a set of productive affixes, he instantiates a agreement node for
these affixes in the syntax. This corresponds to the observed facts, as noted by language acquisition researchers—that
function words become productive at the same time as children begin to master inflection.

4 Conclusions

[ have presented a model of lexical acquisition which classifies the major thematic categories of a language according
to whether they undergo productive agreement processes. This, in turn, allows syntactic structures to be built to
allow a parser to correctly parse the language, including providing an environment in which function words may
be analyzed. This is a fundamental characterization of a language, since, while languages typically share the same
thematic categories, they differ widely on their use of functional categories (function words and agreement).

Furthermore, this model predicts that the set of affixes on a category, manifested as the category’s agreement
node, will be acquired at the same time as function words in the child’s grammar. That is, the structures—agreement
nodes—needed to analyze function words will be developed at this stage. This characterization has been shown to
liave important predictive ramifications cross-linguistically for English, French, Polish, Hebrew and Dutch [Kaz90].

This lexical acquisition mechanism has been implemented as a C program, and shown to be capable of making
the necessary lexical generalizations to support this process. It currently is able to acquire the lexicon and project
the syntactic structures necessary for English. The program is currently being tested with the acquisition of Polish,
and results of this endeavor will also be presented at the conference.
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Abstract

In the early days of machine learning, language acquisition was a major focus of research. Recent work has
focused on other topics, but many current issues are closely related to previous work on language learning.
For instance, one current issue involves the extension of domain theories, which often take the form of Horn
clause grammars, and one can view many early grammar-learning systems as addressing precisely this task.
Another open problem concerns the generation of higher-order terms to improve induction, and a number
of methods for grammar induction tackle this directly, rewriting sentences using such terms during parsing
and constructing new ones when the existing grammar is inadequate. In addition, research on language
acquisition can benefit from recent advances in other areas of machine learning. For example, methods for
learning in problem solving, which provide algorithms for improving the efficiency of parsing, and techniques
for concept formation offer incremental approaches to learning concepts with which one can later associate
words. In general, researchers interested in both linguistic and nonlinguistic aspects of learning would benefit
from closer inspection of each others’ work.

Personal history

I began working on grammar learning in the late 1970’s, developing a model of first language acquisition
that accounted for a number of phenomena observed in childrens’ grammatical behavior. After some years
of work in the area, I decided that all existing models relied too heavily on hand-crafted representations of
the environment, and that before further progress could occur, we needed a model of concept formation in
physical domains, preferably cast within a larger model of an intelligent agent. I have been actively working
in this area since the middle 1980’s, developing ICARUS, an integrated architecture that supports planning,
perception, and action. Eventually, I hope to return to research on grammar acquisition, using ICARUS as
the foundation. Along the way, I have also done some work on representation change, which bears a close
relation to grammar induction, and I have written overview papers on the topic of language learning.
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Introduction

Although research on language acquisition has a long
history within the field of machine learning, in re-
cent years attention has focused mainly on other top-
ics. However, many recently ‘discovered’ issues relate
directly to problems in the acquisition of linguistic
knowledge, and in some cases, tentative solutions al-
ready exist in the literature on language learning. In
other cases, research in other areas of machine has im-
portant implications for work on language acquisition,
although this may not be apparent at first glance.

In this paper, I explore some relations between these
superficially different aspects of the learning process.
The organization follows four topics that are currently
popular within the machine learning community - ex-
tending domain theories, representation change, learn-
ing in problem solving, and concept formation. In the
first two cases, I consider early work on language ac-
quisition that is relevant to current issues. In the latter
two cases, I consider some learning methods developed
for other purposes that may aid in developing methods
for language learning. In all cases, I emphasize the un-
derlying unity of issues that arise in machine learning,
whatever the domain of application.

Extending domains theories

One of the most active paradigms within ma-
chine learning focuses on ezplanation-based approaches
(Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong &
Mooney, 1986). In this framework, the learner begins
with some background knowledge, or domain theory,
often stated as inference rules or Horn clauses. Upon
encountering a positive training instance I for a con-
cept C, one uses the domain theory to explain why I
is an example of C. Typically, this explanation con-
sists of a logical proof, although less formal approaches
are possible. One then uses the explanation to identify
relevant descriptors in the instance, along with vari-
able bindings shared among descriptors. After this,
one constructs a new inference rule that lets one infer
the concept directly from these descriptors, without
the intermediate steps in the explanation.
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Early work on explanation-based learning assumed
that the domain theory was complete and correct.
These simplifications were natural to make, in that
these methods compiled existing knowledge into an-
other form, making the accuracy of the learned rules
a direct function of the accuracy of the background
knowledge. However, researchers realized from the out-
set that they would eventually have to relax these as-
sumptions, and methods for extending incomplete do-
main theories and revising incorrect ones are active
topics of research (e.g., Hall, 1988; Ourston & Mooney,
1990; Pazzani, 1989). In most cases, this work uses
the domain theory to construct a partial explanation
of training instances, then uses descriptors in the in-
stances as material for altering the domain theory.

Few researchers in this tradition have noted the close
connection to earlier work on grammar acquisition. For
instance, Anderson (1977) and Wolff (1982) describe
methods for using existing grammatical rules to con-
struct partial parses, and then extending the grammar
based on the words occurring in the training sentence.
Langley (1982) and Reeker (1976) take a very similar
approach to extending grammars for generation, using
existing rules to produce partial sentences, comparing
these to ones uttered by a teacher, and using differences
to suggest extensions. All of these systems represent
grammatical knowledge in ways that can be mapped
directly onto the inference rules used in most work on
explanation-based learning. The partial parses these
programs construct can be viewed as partial explana-
tions, and the revision of grammars can be viewed as
the revision of incomplete or incorrect domain theories.

The relation between these two research efforts has
been missed because of differences in terminology, area
of application, and - most important - rhetorical
stances. Most work on grammar induction has em-
phasized the inductive nature of this task, and has
paid little attention to intermediate states in which
the learner has only a partial grammar. In contrast,
research on explanation-based learning has emphasized
the importance of ‘justified’ learning, and has argued
against the use of inductive methods. However, despite
this rhetoric against empirical approaches, the alter-



ation of domain theories — like grammar acquisition -
is an inherently inductive task, in that it requires one
to move beyond information in the training instances.
Still, there is room for building on existing knowledge,
whether one refers to this knowledge as an incomplete
domain theory or as a partial grammar.

Representation change

Another important issue within machine learning
concerns constructive induction and representation
change. The first of these deals with the need to rewrite
instances using higher-level terms, so that induction
can occur in this more appropriate language. For in-
stance, given the set of positive instances {1, 15, 3, 29,
7} and negative instances {4, 12, 6, 28}, a trivial rule
suggests itself to those familiar with the notion of even
and odd numbers. Without this, no regularity is ap-
parent, and the most one can do is form a disjunctive
concept based on the observed instances. Recent work
by Drastal, Czako, and Raatz (1989), Elio and Watan-
abe (in press), and others have shown that construc-
tive induction can increase both the rate of learning
and asymptotic accuracy.

Research on representation change focuses on the
generation of such higher-level terms from experience.
The idea here is to detect regularities in the training
instances, introduce new terms that summarize these
regularities, and use these terms to simplify the induc-
tion later in the learning process. Matheus (1989) gives
an insightful review of work in this area by Muggleton
(1987), Schlimmer (1987), and many others. This re-
search paradigm has shown that the introduction of
new terms can lead to improved learning.

Despite progress in this area, few researchers have
recognized that issues arisicg in representation change
are closely linked to ones that arise in grammar in-
duction. In many cases, one can view the process of
rewriting an instance in higher-level terms as a form of
parsing, and one can cast the act of creating new terms
as the induction of new word classes and phrases. In
fact, some existing grammar induction systems deal di-
rectly with these issues, parsing new sentences as they
are observed and constructing new terms when the ex-
isting grammar is inadequate.

For example, consider Wolff’s (1982) SNPR algo-
rithm, which induces phrase-structure grammars from
sequences of letters given as input. The system carries
out a hill-climbing search through the space of such
grammars, using two basic operators. The first notes
frequently occurring sequences of symbols and defines
new ‘chunks’, which correspond to words and phrases.
The second learning operator notes when sets of sym-
bols tend to occur in the same context (i.e., next to a
common symbol); this defines new disjunctive classes,
which correspond to parts of speech and alternative
forms of phrases.
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SNPR is semi-incremental, in that it processes only
part of its input at a given time, using the terms it in-
troduces during earlier learning in processing its later
experience. Specifically, the system constructs a par-
tial grammar to summarize the letter sequences it has
observed, and then it uses this grammar to rewrite new
strings at a higher level of description (i.e., using non-
terminal symbols in the grammar). This is isomorphic
to the process used in constructive induction to re-
describe training instances, and the process of defining
new chunks and classes is clearly a form of representa-
tion change.?

Other grammar acquisition systems, such as
Sikléssy’s (1972) ZBIE and Anderson’s (1977) LAS,
also introduce conjunctive terms (for phrases) and dis-
junctive terms (for word and phrasal classes). In these
cases, the focus is on inducing mappings between sen-
tences and their meanings. This provides additional
constraints on the learning process, so that ZBIE and
LAS can rely less on the type of distributional infor-
mation used by SNPR. However, the types of learned
knowledge structures play a similar role, and both sys-
tems can be viewed as carrying out constructive induc-
tion. Machine learning researchers interested in this
topic would do well to study this early work on gram-
mar learning.

Learning in problem solving

Most work on problem solving within AI operates
within the paradigm of search through some problem
space. At each step in this search, one must select an
operator to apply to some problem state, which gener-
ates a new state from which the search continues. The
combinatorial nature of most problem spaces can be
constrained by heuristics, which suggest operators or
states to select. Thus, one obvious role for learning
within this framework is to acquire such search control
knowledge. Laird, Rosenbloom, and Newell (1986),
Langley (1985), Minton (1990), and many others have
taken this approach to learning in problem-solving do-
mains. An alternative approach is to acquire macro-
operators, which let one take many steps through the
problem space in a single leap. Iba (1989), Shavlik
(1990), and others have explored this approach, most
involving some form of explanation-based learning.

Many treatments of parsing note the importance of
search in understanding sentences, an issue that cuts
across different representations of linguistic knowledge.
In augmented transition networks, one must decide
which arc to consider at each node. In phrase-structure
grammars, one must decide which rewrite rule to use
in expanding a symbol. Machine learning methods for

!One can also view SNPR as extending an incomplete
domain theory. At each stage in learning, the system uses
its existing grammar to construct partial parses, then ex-
tends the grammar based on observed letter sequences.



reducing search have important implications for the
parsing task, although few researchers from either the
language or the learning community have noted this
potential. This is probably because traditional work
on language learning has focused on the acquisition of
accurate grammars, rather than efficient ones.

However, there are some exceptions to this rule.
For instance, Carlson, Weinberg, and Fisher (1990)
have recently used an inductive learning technique to
improve search control (and thus parsing efficiency)
in network grammars. Also, Rayner (1988) has ap-
plied explanation-based methods to compile macro-
operators that improve the efficiency of parsing based
on rewrite rules. The learning task of improving pars-
ing efficiency has much to recommend it for both lan-
guage and learning researchers. The problem is well de-
fined, there exist clear performance criteria, and there
now exist many large grammars (i.e., domain theories)
to support work in the area.

Still, improved parsing efficiency is not the only ap-
plication of search-related methods to language learn-
ing. Consider Berwick’s (1985) approach, which rep-
resents grammatical knowledge as a set of production
rules. In his framework, actions involve parsing oper-
ators such as creating a node in a parse tree, putting
a node in an input buffer, attaching a node to a par-
tial parse tree, and switching items in the buffer. Thus,
parsing can be viewed as a state-space search, in which
the goal is to produce a complete parse tree and an
empty input buffer. His acquisition system attempts
to parse new sentences using these operators, invoking
background knowledge to eliminate illegal steps, and
using steps along the solution path as positive train-
ing instances. The system then carries out induction
over these training instances to determine the legal
conditions for applying each parsing operator. This
approach is very similar to work on heuristics learning
for state-space problem solving (e.g., Langley, 1985).

Concept formation

Most research on language acquisition has dealt with
grammar learning, but there has been some work on
the acquisition of word meanings, which has taken two
basic approaches. The first assumes that symbols for
the relevant concepts already exist in long-term mem-
ory, and all that remains is to link words to the ap-
propriate concepts (e.g., Sikléssy, 1972). The other
scheme defines word meanings in terms of more prim-
itive conceptual structures, but assumes that meaning
acquisition is largely a supervised learning task (Sal-
veter, 1979; Selfridge, 1981). However, there is evi-
dence that, at least in many cases, children form useful
concepts long before they attach words to those sym-
bols. This suggests that the first approach provides a
better view of human word learning, but existing mod-
els provide no explanation for the origin of concepts to
which words are linked.
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Recent work on concept formation — which Gennari,
Fisher, and Langley (1989) define as the incremental
acquisition of concepts from unlabeled instances - of-
fers a path out of this dilemma. Techniques for concept
formation interleave the process of classifying an expe-
rience and the process of altering memory to incorpo-
rate that experience. Over time, such methods build
up a complex memory of concepts at different levels
of abstraction, which can be used for recognition and
prediction. Fisher and Langley (1990) argue that these
methods provide useful models of human concept rep-
resentation, use, and acquisition. Initial studies in this
area focused on simple attribute-value domains, but
more recent work has dealt with concepts that involve
structure and change over time.

To date, research on concept formation has not ad-
dressed the problem of word meanings, but it provides
a promising framework for future work in this area. As-
sumptions about the representation and organization
of concepts from this paradigm provide constraints on
approaches to meaning acquisition, and the latter pro-
vides a task that could challenge existing concept for-
mation techniques. Extensions to existing mechanisms
may prove sufficient to associate words with acquired
concepts, giving a unified model of concept formation
and the acquisition of word meanings.

Conclusions

In summary, previous work on language acquisition
has addressed a number of issues that are currently re-
ceiving attention within the broader machine learning
community, and researchers in the latter tradition have
much to learn from the former. Similarly, recent ad-
vances in nonlinguistic areas of machine learning have
important implications for the study of language ac-
quisition, and researchers interested in this topic would
do well to examine work outside their own area. Many
of these methods learn in an incremental manner, a
prerequisite for modeling human learning and, indeed,
for supporting any intelligent agent that must inter-
act with an external environment over long periods of
time.

In fact, the growing interest in constructing inte-
grated architectures for intelligent agents may directly
support research on language acquisition (Laird et al,
1986; Langley & Carbonell, 1987; Langley, Thompson,
Iba, Gennari, & Allen, in press). A number of proposed
architectures include learning mechanisms as central
components, and the increasing concern with percep-
tion may overcome the hand-crafted representations of
meaning assumed by many early models of linguistic
learning, which bore a remarkable resemblance to parse
trees. An integrated approach to cognition, perception,
and action - the goal of research on architectures for in-
telligent agents — may provide the foundation required
for a complete model of language acquisition.
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1 Introduction

To design a computational first language acquisition
model, one must proceed through three steps:

1) determine an appropriate theory of acquisition, either
by identifying an existing theory or postulating one,

2) design and implement a computational model of the
theorized mature grammar to show that the end result
of the acquisition process can be achieved, and

3) design and implement a computational model of the
acquisition system which will achieve the theorized ma-
ture grammar.

In this paper, we will describe a project in which we
have completed the first two steps, and are about to
actively pursue research towards meeting the third.

2 The Theorized Mature Gram-
mar

The acquisition theory chosen to be the framework of
this project 1s Davis’ version of Government and Bind-
ing Theory. Presented as a dissertation in 1987 (at the
University of British Columbia, Dept. of Linguistics)
this theory has been designed explicitly as a model of ac-
quisition. In the introduction to the dissertation, Davis
argues from Chomsky’s definition of epistemological pri-
ority that a system which maps prelinguistic primitives
into a linguistic theory is preferable to one defined solely
as a linguistic or prelinguistic model. With this goal in
mind, he presents a theory in which the traditional gen-
eration of phrase-structure representations from rules
(whether the explicit phrase-structure rules of context-
free rule-based systems and unification-type grammars
or the highly generalized Xbar-theory of GB) is replaced
by four simple principles of node domination which de-
termine the categorial features of the dominating node of
any two sister nodes in a representation tree using Case,
Theta, and categorial information. It is argued that
this mapping of prelinguistic information onto a linguis-
tic representation (tree structures) meets the definition
of epistemological priority and is therefore preferable to
explicit phrase-structure rule-based systems.

In order to derive these percolation principles, Davis
has had to rework many of the traditional components of
GB Theory. He starts by dividing the supposedly unify-
ing concept of government into two distinct forms, inter-
nal and external. Internal government concerns the rela-
tionship between a lexical governor and elements within
its maximal projection. External government concerns
the relationship between a governor and the elements
within a maximal projection it governs. Internal gov-
ernment is further divided into its core case in which a
lexical head governs its complements (in a ’Canonical
Government Configuration (CGC)’ - minimal govern-
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ment) and maximal government which corresponds to
the m-command of Chomsky (1986). External govern-
ment is a more murky concept which defines government
down a tree structure as dictated by barriers to govern-
ment and is beyond the scope of this abstract. It suffices
to distinguish our two types of government:

Minimal Government

A minimally governs B iff A minimally c-
commands B and there is no C such that A
governs C and C governs B.

Maximal Government

A maximally governs B iff A maximally c-
commands B and there is no C such that A
governs C and C governs B.

Davis uses the core case of internal government to
define internal Theta-assignment. Just as government
is divided into internal and external cases, Theta-
theory is defined in terms of internal Theta-assignment
(which only occurs within a CGC) and external Theta-
assignment. External Theta-assignment relies upon
predication which stipulates how predicates are linked to
their external arguments (i.e., subjects). This relation-
ship is defined by the relationship between the verb and
its AGR-bearing INFL, and Case assignment by INFL to
the subject. Davis also posits the elimination of the con-
troversial PRO by the relaxation of the Theta Criterion
to allow arguments to bear more than one Theta-role.

Case theory has also been divided into internal and ex-
ternal assignment. Internal Case-assignment normally
takes place in a CGC, although in certain circumstances
it is able to penetrate a derived XP to exceptionally
Case-mark its specifier. External Case (in English, left-
ward Case) is the assignment of Case to the subject. It
differs from internal Case in level of application, obliga-
toriness, and (in English) direction and adjacency con-
ditions.

Given these definitions of government, Theta-theory
and Case-theory, we can now present the first two of the
four Percolation Principles:

Percolation Principle I

Where X Theta-governs Y, the categorial fea-
tures of Z (the dominating node) will be those
of X.

Percolation Principle II

Where X assigns Case to Y, the categorial fea-
tures of Z will be those of X.

Percolation Principle III deals with the difference be-
tween the adjunction set and the subcategorization set
of a phrase. We note that adjuncts, elements which are
not tied to others by Theta- or Case- relations, typi-
cally have no effect on categorial structure. In other



words, the categorial features of a node dominating a
member of the adjunction set will bear the features of
the other node to which it is joined. In order to define
a principle based upon this observation, we need to for-
mally differentiate between adjuncts and members of the
subcategorization set. This can be done by modifying
the Revised Extended Projection Principle of Chomsky
(1982) to what Davis calls the GREPP.

Generalized Revised Extended Projection Principle

Subcategorization requirements must be sat-
isfied by all phrase- structure configurations,
where ”subcategorization requirements” refer
both to subcategorized and subcategorizing el-
ements.

This definition has the effect of extending the concept
of subcategorization to include both the subcategorizing
and subcategorized elements. We may now define Per-
colation Principle III as:

Percolation Principle III

Where X is a member of the adjunct set and
Y a member of the subcategorization set of a
phrase Z, the categorial features of Z will be
those of Y.

Finally, we need a principle which determines the cat-
egorial features of a dominating node if none of the
above conditions is present. To this end, Davis presents
a percolation hierarchy based upon three types of cat-
egories he introduces to capture categorial generaliza-
tions: Theta-heads (N,V,A), G-heads (INFL, Det) and
C-heads (complementizers and prepositions). These
types of categories enter into categorial associations with
one another (based on the notion of functional dis-
charge) in all of the Percolation Principles, but most
importantly in IV.

Percolation Principle 1V

Where X and Y are in a CGC, no Case or
Theta relation holds between them, and both
are part of the subcategorization set of Z, the
following hierarchy determines which features
will percolate:

a. C-features of X and Y will percolate to Z
b. G-features of X and Y will percolate to Z
c. Theta-features of X and Y will percolate to
Z

3 Psychologically Plausible Lan-
guage Acquisition

In principle, in order to achieve psychological plausibil-
ity (see Pinker 1979) a model of human first-language
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learning must successfully account for the acquisition of
any possible human grammar, within the time-span in
which normal first-language learning takes place, given
the input available, and what is known about the cog-
nitive abilities and limitations of young children; more-
over, since learning is non-instantaneous, such a model
must mimic the course of real-time acquisition by pre-
dicting where learners make mistakes and the order in
which they acquire syntactic rules and representations.

Given out present knowledge, this is a tall order;
nevertheless, we feel that recent progress in theoreti-
cal, computational and psychological approaches to lan-
guage has put us in a position to make tentative pro-
posals concerning the structure of such a model. In this
section we will begin by presenting a 'logical’ version of
(idealized) language acquisition; we will then examine
the contribution of data from real-time language acqui-
sition to the issues under discussion; and we will end by
proposing some significant modifications to the model,
designed to increase its 'psychological plausibility’.

A viable model of language acquisition must contain
the following component:

(1) A theory of the target grammar.

(ii) A specification of the input (Primary Linguistic
Data, henceforth PLD).

(iii) A learning mechanism.

We will take as our target a government-binding type
grammar as described previously.
As for input, we will adopt the following assumptions:

(1) Young children receive and employ no negative evi-
dence (i.e., their utterances are not generally corrected
for grammaticality, nor do they attend to such correc-
tions if offered).

(i1) Input is 'noisy’ - it contains slips of the tongue and
incomplete and fragmentary utterances.

(iii) The child is limited in its linguistic "intake’ by inde-
pendent cognitive constraints connected with short-term
memory, sequencing, and lexical retrieval.

While not entirely free from controversy, these three
assumptions are generally well-supported empirically in
the child-language literature. Together they constitute
the basis of the enormously influential “poverty of stim-
ulus” argument which has informed much work in the
so-called ’logical’ theory of language acquisition. This
theory is based upon the premise that powerful innate
constraints must be operative during language learn-
ing in order to ensure that the child identifies a tar-
get grammar on the basis of inadequate PLD. In its
most extreme version, embodied in the ’principles-and-
parameters’ model of Chomsky and his followers (1981
and elsewhere), grammar-learning is reduced to a choice
between a few abstract parameters 'triggered’ by certain
key types of data readily available in the input.



Let us then turn to the learning mechanism. Sur-
prisingly little attention has been paid to this part of
the acquisition theory until recently. It has been gen-
erally assumed that the child, innately equipped with a
rich deductive system (Universal Grammar, henceforth
UG) ”learns” by hypothesis testing. If the child en-
counters sentences in the target language which are not
generated by his or her grammar, UG will alter a pa-
rameter setting; the resulting grammar will then once
again be checked against the input, and altered fur-
ther until no counter-evidence is encountered. At this
point the child ’s Language Acquisition Device will have
converged on the adult grammar. It should be pointed
out that under this conception, the relationship between
UG and the PLD is indirect; parameter settings are
ordered by UG according to a fixed and innately pre-
determined hierarchy, constrained by considerations of
cross-linguistic markedness and by the Subset Princi-
ple of Berwick (1985) and much subsequent work. The
latter ensures that a child will never guess at an overgen-
eral grammar, and then be forced to backtrack; given the
proscription against negative evidence mentioned above,
retreat is theoretically impossible for the first-language
learner.

The logical theory of language acquisition, as briefly
described above, is the first viable ’non-instantaneous’
theory of grammar learning. It provides a solution to
the problem posed by the poverty of stimulus argument,
by severely constraining the learner’s hypothesis space;
in fact, ’learning’ is reduced to choosing between a few
limited parametric alternatives. However, the logical
theory is less successful at accounting for the observed
course of real-time language acquisition. This is not sur-
prising, since it was not designed to do so; nevertheless,
it provides a useful null hypothesis against which more
psychologically plausible models can be judged.

A parametric model based on logical acquisition
makes the following predictions for real-time acquisition:

(1) Less marked grammars will be initially hypothesized
by the child, regardless of the relative markedness of
the target grammar. Early grammars will correspond
to cross-linguistically unmarked systems.

(ii) Due to the operation of the Subset Principle, less
inclusive grammars will be hypothesized before more
inclusive ones; the child will not overgeneralize, since
retreat is impossible: .

(iii) Because setting a single parameter can have multi-
ple effects on the resulting grammar, we should expect to
find distinct 'stages’ in language acquisition correspond-
ing to different parameter-settings and characterized by
sets of parametrically linked syntactic properties.

(iv) Since UG is a shared genetic component, and since
the PLD available to children is relatively uniform, we
should expect the course of acquisition to be similar
across subjects learning the same language.
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None of these predictions are borne out by evidence from
language acquisition. In fact, the following generaliza-
tions seem to characterize the acquisition process:

(1) While there has been some work claiming that early
stages in acquisition correspond to less-marked parame-
ter settings (see in particular Hyams (1986) on the pro-
drop parameter in Italian and early English) the ex-
pected strict correlation between syntactic markedness
and relative ease of acquisition has failed to emerge. To
give an example, preposition stranding, as in (la), as
opposed to ”piedpiping”, exemplified in (1b), is known
to be marked cross-linguistically:

la.
b.

What are you talking about?
About what are you talking?

Yet English-speaking children acquire structures like
(1a) literally years before those like (1b) (see French
1984). Of course, this is to be expected given the PLD
available to English-learning children, who are far more
likely in colloquial speech to encounter stranded struc-
tures than their stylistically-marked pied-piped equiv-
alents. However, in an unmodified parameter-setting
model, this is irrelevant; relative frequency of structures
in the input should make no difference to the invariant
and innately ordered sequence of hypotheses available
to the learner.

(ii) The Subset Principle predicts no overgeneralization;
yet a pervasive pattern of overgeneralization character-
izes the acquisition of certain syntactic elements. It will
be argued below that these form a natural class - that
of ’closed-class’ or 'functional’ elements - and that such
elements are associated with a particular type of input-
sensitive learning.

(iii) Again contrary to the predictions of an unmodified
parametric model, acquisition is typically uneven and
variable both across and within categories. Note that a
”lexicalized” parametric model such as that suggested
by Wexler and Manzini (1987) does not solve this prob-
lem, since it neither accounts for why general patterns
eventually emerge, nor for the fact that the same form
may be produced in more than one way at the same
time.

(iv) One of the most striking conclusions to emerge from
the child language literature is the surprising extent of
individual variation in linguistic development. If nei-
ther the input nor the Language Acquisition Device is
variable, the parametric model has simply no way of ac-
counting for such variation.

Thus a logically feasible model of language acquisition
cannot translate straightforwardly into a psychologically
plausible one. At the same time, it should be pointed
out that the latter must retain the advantages of the
former: there is no point in modelling real-time language
acquisition if the model cannot attain the end-point of a
stable human grammar, given the available input. And



of course, the original poverty of stimulus argument still
holds.

What all this suggests is that two different types of
learning mechanism must be available to the language
learner. On the one hand, a powerful deductive sys-
tem is needed to account for the successful acquisition
of target grammars which are severely underdetermined
by the PLD; on the other, an inductive, data-sensitive
mechanism seems necessary to account for the complex
patterns of over- and under- generalization actually ob-
served during language development.

There is in fact some intriguing empirical evidence in
favour of such a suggestion. Newport, Gleitman and
Gleitman (1977) discovered (as part of their study on
the relationship between properties of the PLD and lan-
guage learning) a correlation between the acquisition of
auxiliary elements in (canonical) medial position and
the presence in the input of fronted auxiliaries (in ques-
tions). This correlation was subsequently confirmed by
several other similar studies (see, for example Furrow,
Benedict and Nelson 1979 and Newport, Gleitman and
Gleitman 1984). [t thus appears that the acquisition of
auxiliary elements, which are generally unstressed and
often contracted in medial position, is dependent on
their appearance in the more salient fronted position.
Yet when it comes to production, children initially use
auxiliaries only in medial position, failing to invert them
in both yesno and WH-questions. This leads to a curious
and paradoxical situation: learners need input contain-
ing fronted auxiliaries, yet they initially seem unable to
produce auxiliaries in fronted environments.

A similar situation seems to hold in the acquisition
of German. German is underlyingly an SOV language,
but in main clauses an obligatory rule fronts an inflected
verb, leading to a surface word order where the verb ei-
ther occupies second position (in declaratives) or first
position (in yes-no questions). Under standard assump-
tions, this derived word order will overwhelmingly pre-
dominate in the input to young children, which is gen-
erally monoclausal. Yet the initial word order produced
by German speaking children is apparently almost al-
ways verb-final; it is only when verbal inflections are
acquired that word-order reflects the verb-second con-
straint (see Clahsen 1984, Mills 1984). Once again, we
are forced to the odd conclusion that learners of Ger-
man 'undo’ inflected-verb movement to get at a basic
word order, but then are unable to re-apply it produc-
tively until further developments have taken place in the
grammar.

What are these further developments? In Davis
(1987), it is argued that in both the English and Ger-
man cases, correct production of the relevant structures
is dependent on the acquisition of certain inflectional
elements connected with syntactic agreement. Gener-
alizing from these cases, Davis proposes a 'two-tiered’
model of language acquisition. The first tier consists of
a ’recognition’ phase, in which the child makes use of

the deductive power of UG to set basic parameters and
establish fundamental structural properties of the lan-
guage to be learnt. The second tier involves an ’instan-
tiation’ phase, in which the child must acquire specific
functional elements before being able to use his or her
syntactic knowledge in production.

These two tiers, moreover, involve quite different
types of learning mechanism. Recognition-type learning
is extremely general, involving abstract syntactic cate-
gories; and extremely successful, in that there is little
or no evidence for difficulties in the acquisition of fun-
damental syntactic properties of a language, such as the
identification of basic grammatical categories and rela-
tions. On the other hand, instantiation is frequently
error-laden, and shows a cluster of characteristic prop-
erties, including

(a) A 'U-shaped’ learning curve, involving early under-
generalization, subsequent over-generalization, and final
retreat.

(b) 'Lexical learning effects’.

(c) Type and token variation in production.

This pattern is also characteristic of the acquisition of
inflectional morphology (see McLelland and Rumelhart
1987). Davis (1987) claims, following Emonds (1985),
that there is a syntactically and psycholinguistically sig-
nificant distinction between open-class elements, which
are learnt in a maximally. general fashion, and closed-
class elements, including functional elements such as
auxiliaries, determiners and complementizers as well as
inflectional morphemes, which are learnt in a highly
specific, input-sensitive and probabilistic manner, ac-
counting for properties (a-¢) above. The exact na-
ture of the closed-class learning mechanism is open to
some debate; it is possible that it might involve ei-
ther connectionist-type architecture, or a constraint-
satisfaction type model, as suggested by Pinker (1987).
It should be noted, however, that the role of such a
mechanism is strictly limited in this model to ’low-
level’ learning; there is no suggestion that it could sup-
plant the highly abstract and theory-laden mechanisms
needed for syntactic recognition.

Thus the two-tiered approach allows us to develop a
learning model which accounts in a principled manner
for the child’s ability both to generalize and to partic-
ularize during the course of language acquisition. It
also meshes well with what is known about real-time
language acquisition. It thus seems to be a promising
approach to the construction of a model of acquisition
which takes psychological plausibility seriously.
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4 A Computational Model of
the Mature Grammar

Having previously examined the model of mature gram-
mar described by this theory, we can now describe how
this was implemented in a computational parsing mech-
anism. Implementing the theory presented three major
issues to be overcome:

1. the intrinsic right-left nature of the Percolation Prin-
ciples,

2. multiple possible subcategorizations (and related
Case and Theta assignments), and

3. movement.

The Percolation Principles, as described, are intrinsi-
cally right-left in nature as they presuppose knowledge
of the categorial features of sister nodes. As we are posit-
ing tree structures as our representations, the rightward
branch of any dominating node (other than the right-
most) will be the dominating node of the rest of the
sentence. Therefore, we must know the structure of
the representation of all rightward nodes before form-
ing any dominating node. This is not a psychologically
valid approach as it is almost certain that people process
sentences left-to-right. We resolve this problem by ob-
serving that PPI does not necessarily require knowledge
of the right- adjacent node. PPI stipulates that the cat-
egorial features of a a node which assigns a Theta-role
to a right-sister node will dominate regardless of the fea-
tures of the rightward node. As we have seen, internal
Theta-assignment is always in a CGC, thus we can form
a dominating node whenever we encounter an internal
Theta-assigner. Once one dominating node is formed, a
representation of all nodes thus far encountered can be
constructed. This allows correct partial representations
to be formed while processing left- to-right.

The fact that many predicates have more than one
possible subcategorization type presents a problem in
our left-right parsing paradigm. As we cannot know
the dominating node of the actual subcategorized phrase
until we have actually parsed it, we cannot choose the
correct subcategorization type in advance. As the sub-
categorization itself can influence the phrasal type of the
argument (eg., a CP headed by an empty C), we must
actually try the different possible subcategorizations un-
til a *'match’ is discovered. We have found that ordering
the possible subcategorizations speeds processing; the
parser tries two element subcategorizations first, then
PP, CP, IP and NP. This is however strictly an issue of
implementation.

Movement within the sentence is handled using a
filler-driven paradigm. When an element is encountered
which does not receive the required Case and Theta as-
signments, movement is flagged and subsequent process-
ing tests for possible gaps (corresponding to the moved
element’s original position in the sentence). Gaps are

identified as positions which are assigned Case and/or
Theta roles, but have no receiver present. Procedures
have been implemented to handle leftward movement of
arguments and non-arguments, but rightward movement
remains problematic.
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Our research in machine learning of natural language has been centered around two issues:

1. Second Language Acquisition. In particular, we are interested in second language acquisition
in the context of an instructional setting. We have designed a computer model of second language
acquisition, called ANT, which learns grammar rules for a second language. It receives as input a
set of lessons, each of which describes a grammar rule for the second language and provides a set
of examples illustrating the use of the rule.

We have begun to try to take our model seriously as a model of human second language acquisition.
We have run a pilot study which supports some of our model’s predictions, and we have plans to run
more studies in the future to confirm other predictions about human second language acquisition.
Our paper discusses the pilot study and some of our future plans.

2. Inferring Word Meanings. We are developing a program which can infer the meanings of
unknown words over time from the context in which they appear. Our approach is incremental. As
more examples are encountered in which a previously unknown word appears, the program refines
its hypothesis as to the meaning of the unknown word. Our paper describes the algorithm which we
have developed, and the assumptions that it is based on. The assumptions lead to many limitations
to the algorithm, which are discussed in the paper.
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1 Introduction

We are studying the acquisition of syntactic knowledge in second language learning. We have devel-
oped a computer model of second language acquisition, called ANT (Acquisition using Native-language
Transfer) (Lytinen and Moon,1988; Moon and Lytinen, 1989; Lytinen and Moon, 1990; Moon, 1990).
ANT successfully learns approximately 85% of the grammar rules presented in a typical first-year German
textbook. Input to the system is similar to what is found in a typical introductory text, containing a
mixture of instructions about a grammar rule and examples illustrating the rule. The system modifies its
English grammar rules accordingly, so that they correspond to the grammar of German. ANT can then
“understand” German sentences.

In developing ANT, we have focused on the issue of how instructions and examples interact with each
other during the learning process. We have discovered several reasons why, from a functional standpoint,
both instructions and examples are often useful in learning new grammar rules. From this work, we
can make many specific predictions about second language learning performance. For example, we can
characterize what types of rules are easy or hard for our program to learn, and factors which affect the
difficulty of a rule, such as lesson format (i.e., the effectiveness of instructions and of examples for particular
types of rules), and the order in which lessons are presented.

We have begun to test some of our model’s predictions in a series of psychological experiments, to see
if the they are valid for human second language learning. In particular, we have run a pilot study which
tests some of our predictions about factors that determine the difficulty of different types of grammar
rules, as well as the effects of lesson format on rule difficulty. The pilot study supports our predictions
regarding these factors.

In this paper, we briefly describe the ANT model, and the predictions that the model makes regarding
rule difficulty and lesson format. We then present the pilot study, and discuss future work on empirical
testing.
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2 The Current Model

To explain how ANT learns, we present an example lesson:

In German, verbs come at the end of relative clauses.

Examples:

Der Erdferkel, der Ameisen friBt, lauft langsam
(the aardvark who ants eats runs slowly)!

Der Mann, der mir Bucher gibt, wohnt in Paris.
(the man who me books gives lives in Paris)

ANT’s task is to change its English grammar rules so that they will work for German relative clauses.
Some of ANT’s English relative clause rules are the following:?2

(1) RC — RP VP
(2) RC — RP NP VP’

Although the instruction portion of the lesson describes a difference between German and English
relative clauses, the modification to ANT’s grammar does not involve its relative clause rules at all. This
is because the verb is embedded in rules about verb phrases (VP and VP’). Some of these rules are the
following:

(3) VP — V NP
(4) VP’ — V3

Is is these rules which must be changed. Thus, the problem of finding the relevant English rules which
must be modified is not an easy one. The instruction says something about verbs and relative clauses; it
says nothing about verb phrases.

This is where examples come into play in the learning process. Without examples, ANT would have
to search through its grammar for possible appearances of verbs within relative clauses. In the worst
case, this could mean searching the entire grammar, since a verb could in theory appear inside of any
constituent of a RC, and RC’s could possibly contain every other kind of constituent. However, because
ANT is provided with examples in addition to instructions, ANT parses the examples, letting them guide
it to the rules which must be changed. During the parse, ANT is forced to use the rules which must be
modified for German. Thus, the potentially large search through the grammar is avoided.

Because the instruction portion of our example lesson tells ANT that it is learning a change in word
order within relative clauses, the ordering constraints in its relative clause rules are relaxed when parsing
the examples. As a result, it is able to parse a sentence whose relative clause word ordering does not
conform to English grammar. Let us consider the first example from above. ANT parses it. The relevant
portion of the parse tree which is produced is shown in figure 1. The new form of of rule (3) above is
extracted from the example’s parse tree, producing the following new German rule:

(3') VP — NP V

YANT does not receive an English translation as part of its input. The literal English translation is provided
here for the benefit of the reader.

2 Although ANT’s linguistic knowledge is encoded in a unification-style grammar (Shieber, 1986), for our pur-
poses here we can assume that they are context-free rules.

3The unification form of these rules enforces the verb type appropriately; for example, only transitive verbs
may appear in the constructions specified by rules 3 and 4.
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NP VP
/ \
NP RC
/ \
RP VP
/\
NPV

Figure 1: Parse tree produced by ANT from German example

This rule is overly general, though, since it should only hold for VP’s within relative (and other
subordinate) clauses. ANT avoids this mistake by creating a new category (CL-VP). It knows to do this
because of the information from the instruction. The final rules, then, are:

(1") RC — RP CL-VP
(2) RC — RP NP VP’
(3) CL-VP — NP V
(4) VP’ =V

After several examples illustrating the relative clause construction for other types of verb phrases,
ANT successfully modifies all of its original English rules in a similar fashion.

3 Empirical Testing

ANT’s performance on the relative clause rule suggests (at least) two factors that might play a role in
determining how difficult it to learn a grammar rule. These factors are:

1. Ease of access of relevant native language knowledge. For ANT, the most difficult part of
learning the German relative clause rule is knowing which English rules to change. Identifying the
relevant English rules is due to the “embeddedness” of the change: verbs are embedded inside of
relative clauses in rules about relative clause constituents. Thus, our system would have an easier
time with rule changes that are less embedded. For example, the Spanish rule that direct object
pronouns precede the verb is easier for ANT to learn, because a verb and its direct object appear
in the same grammar rule, VP — V NP.

2. Effects of lesson format. Both instructions and examples play crucial roles in ANT’s learning
process. Thus, ANT’s performance would be adversely affected if either were missing from a lessoun.
However, this affect depends in part on rule difficulty: examples play a crucial role in difficult rules
(by our embeddedness criterion), but for easy rules (non-embedded changes), an instructions-only
lesson format should not cause as much trouble.

We conducted a pilot study to test whether these two factors are important in human second language
acquisition. In the study, we began to explore both the difficulty factor and lesson format factor on
learning performance. 12 subjects were presented with lessons which taught them a grammar rule for a
hypothetical variant of English. Lessons varied in two ways: in the difficulty of the rule being taught, and in
the format of the lesson. Rule difficulty was based on our embeddedness criterion discussed earlier. Thus,
rules with embedded changes were predicted to be more difficult to learn than those with unembedded
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Error rates Timings (secs.)
Instrs | Examples Instrs & || Instrs | Examples Instrs &
Only Only | Examples || Only Only | Examples
Difficult 42 21 .25 15.5 13.6 11.0
Easier .25 .04 .04 12.3 10.4 7.8

Figure 2: Results of translation task for different rule types and lesson formats

changes. Lessons were in one of three formats. One third of the lessons each subject saw were in an
instruction-only format, consisting of a short description of the grammar rule, but no examples. One
third of the lessons consisted only of a set of examples illustrating the rule to be learned. Finally, one
third of the lessons consisted of both a description of the grammar rule and a set of examples. Each
subject received two lessons of each possible combination of rule type and lesson format: difficult vs. hard
rules, and instructions only, examples only, and mixed format. Rules were presented in each different
lesson format to equal numbers of subjects.

After presentation of each lesson, subjects were then given a sentence in “normal” English and asked
to produce a spoken translation of it in the variant dialect, using the rule they had just learned. Their
performance was measured in terms of error rate and production time. Errors were only counted if they
involved misapplication of the newly learned rule.

We predicted that error rates and timings would be higher for difficult than for easy rules, according
to the difficulty criteria from our computer model. We also predicted that, in general, mixed format
lessons would facilitate learning better than either instructions or examples alone. Finally, we predicted
an interaction between the two variables. Based on our model, we would predict that the inclusion of
examples along with instructions in the lesson should facilitate learning more for difficult rules than for
easy ones.

The results of the study are summarized in figure 2. First, error rates for difficult rules were signifi-
cantly higher than for easy rules, according to our difficulty criteria (F(1,11)=6.22; p=.03). Error rates
were also higher for rules learned from instructions only than for those learned from instructions and ex-
amples (F(2,22)=5.41; p=.012). Timing results also showed a significant difficulty effect (F(1,11)=13.78;
p<.005). Lesson format effects were in the right direction, but were not significant for the timings.

These results support our characterization of one factor that influences the difficulty of a new grammar
rule. They also indicate that in general, examples presented in a lesson either alone or with instructions
expedite the learning process as compared to instructions-only lessons.

4 Future Work

Though the pilot study confirms some of our predictions, we discovered some possible methodological
concerns to be addressed in further experimentation. First, the translation task could have an effect on
likelihood of transfer, thus affecting the likelihood of error in performance. We plan to use several tasks
in the full study, including grammaticality judgement of several tasks should guarantee that the results
are not biased by the peculiarities of a single task.

Second, we plan to alter our style of presentation of lessons. In the pilot study, lessons were displayed
for an initial learning period, then were available for inspection during the translation task. This seemed
to negatively affect the amount of effort that subjects put into learning the rule before being asked to
perform the translation task. Since the lesson was available during the task, subjects seemed to put
off learning the rule until it was required during the translation. This probably affected performance,
certainly in terms of translation times, and possibly in terms of number of errors produced. In particular,
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it could explain why subjects performed as well with examples-only lessons as they did with mixed format
lessons. In addition, forcing subjects to learn and remember rules is more similar to instruction and use
in natural settings.

Finally, the pilot study was rather limited in the range of grammar rules that were used. We plan to
expand the range of rule types, testing several criteria for rule difficulty.

We wish to explore other issues in a similar manner. One such issue is lesson sequence. Our model also
can be used to make predictions about effects of different sequencings of lessons on learning. Depending
on what has already been taught, a new rule can be relatively harder or easier to learn. For example,
learning correct German verb location involves learning two new rules for English speakers: the verb is
placed in the second position in main clauses, but at the end in subordinate clauses. Qur model predicts
that learning the general rule of the verb coming second in main clauses before learning the location of
verbs in subordinate clauses should facilitate learning more easily. This is because there is less question
about which rule takes precedence if the more general rule is learned first: it is easier to learn a special
case which overrides the general rule if the special case is learned after the general rule (according to
our model). We propose to vary the order in which sequences of grammar rules is learned, to verify the
accuracy of our predictions.

In addition, we are exploring further refinements of our computer model. One important issue is the
degree to which transfer is utilized in ANT. Our current model makes strong assumptions about transfer.
Specifically, ANT uses corresponding English grammar rules as a starting point for constructing its German
rules whenever possible. Although there is psycholinguistic evidence for transfer (e.g., Jansen, Lalleman,
and Muysken, 1981; Snow, 1981; Selinker, 1969), other evidence indicates that people do not always
transfer native language knowledge to a foreign language (e.g., Rutherford, 1983). We are exploring this
phenomenon, to try to characterize further the situations in which transfer does and does not occur. We
wish to model more closely the data from existing studies, which suggests conditions that affect transfer.
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Distituent Parsing and Grammar Induction

David M. Magerman
CS Department
Stanford University

The work I will be presenting was not originally intended to address the problem of
grammar learning directly. The distituent parser was meant be a natural language parser
for unrestricted text that didn’t have the computational expense of a grammar-based parser
and didn’t require a hand-written grammar. However, since I was trying to determine the
syntactic structure of examples from a language without specifying the language’s grammar,
I was in essence trying to learn grammar.

The mutual information distituent parser was my undergraduate senior thesis, and Mitch
Marcus was my thesis advisor and co-author. I am currently a first-year graduate student in
computer science at Stanford. Aside from this project, I have also developed a probabilistic
parser, Pearl, which estimates context-sensitive conditional probabilities of grammar rules
in order to learn attachment tendencies from a corpus of examples. In my last two years at
the University of Pennsylvania, I also assisted Mitch Marcus on the Penn Treebank project.
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Abstract

The purpose of this paper is to characterize a constituent boundary parsing algo-
rithm, using an information-theoretic measure called generalized mutual information,
which serves as an alternative to traditional grammar-based parsing methods. This
method is based on the hypothesis that constituent boundaries can be extracted from
a given sentence (or word sequence) by analyzing the mutual information values of the
part-of-speech n-grams within the sentence. This hypothesis is supported by the per-
formance of an implementation of this parsing algorithm which determines a recursive
unlabeled bracketing of unrestricted English text with a relatively low error rate. By
using the constituents from the distituent parser, noun phrase and preposition phrase
categories can be induced from a corpus. While the error rate is still to high to allow
for grammar induction, we present a method for reducing this error rate by enforcing
a simple linguistic assumption on the parser.
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Introduction

A standard approach to parsing a natural language
is to characterize the language using a set of rules,
a grammar. A grammar-based parsing algorithm
recursively determines a sequence of applications of
these rules which reduces the sentence to a single
category. Besides determining sentence structure,
grammar-based approaches can also identify attributes
of phrases, such as case, tense, and number, and they
are known to be extremely effective at characteriz-
ing and classifying sentences. But these techniques
are gr.nerally demonstrated using only a subset of the
grammar of the language. In order for a grammar-
based parser to be applied to unrestricted natural lan-
guage text, it must account for most of the complexities
of the natural language. Thus, one must first concisely
describe the bulk of the grammar of that language, an
extremely difficult task.

This characterization suggests that a solution to the
problem of parsing unrestricted natural language text
must rely on an alternative to the grammar-based
approach. The approach presented in this paper is
based on viewing part-of-speech sequences as stochas-
tic events and applying probabilistic models to these
events. Our hypothesis is that constituent boundaries,
or “distituents,” can be extracted from a sequence of n
categories, or an n-gram, by analyzing the mutual in-
formation values of the part-of-speech sequences within
that n-gram. In particular, we will demonstrate that
the generalized mutual information statistic, an exten-
sion of the bigram (pairwise) mutual information of
two events into n-space, acts as a viable measure of
continuity in a sentence.

One notable attribute of our algorithm is that it ac-
tually includes a grammar — a distituent grammar, to
be precise. A distituent grammar is a list of tag pairs
which cannot be adjacent within a constituent. For

*This work was partially supported by DARPA grant
No. N0014-85-K0018, by DARPA and AFOSR jointly un-
der grant No. AFOSR-90-0066, and by ARO grant No.
DAAL 03-89-C0031 PRI. Special thanks to Ken Church,
Stuart Shieber, Max Mintz, Beatrice Santorini, and Tom
Veatch for their valued input, guidance and support.

instance, noun prep is a known distituent in English,
since the grammar of English does not allow a con-
stituent consisting of a noun followed by a preposition.
Notice that the nominal head of 2 noun phrase may
be followed by a prepositional phrase; in the context
of distituent parsing, once a sequence of tags, such as
(prep noun), is grouped as a constituent, it is consid-
ered as a unit.

Based on our claim, mutual information should de-
tect distituents without aid, and a distituent grammar
should not be necessary. However, the application of
mutual information to natural language parsing de-
pends on a crucial assumption about constituents in
a natural language. Given any constituent n-gram,
a)as...a,, the probability of that constituent occur-
ring is usually significantly higher than the probability
of ajas...anan4) occurring. This is true, in general,
because most constituents appear in a variety of con-
texts. Once a constituent is detected, it is usually very
difficult to predict what part-of-speech will come next.
While this assumption is not valid in every case, it
turns out that a handful of cases in which it is invalid
are responsible for a majority of the errors made by
the parser. It is in these few cases that we appeal to
the distituent grammar to prevent these errors.

The distituent parsing algorithm is an example of a
stochastic, corpus-based approach to parsing. In the
past, a significant disadvantage of probabilistic parsing
techniques has been that these methods were prone to
higher than acceptable error rates. By contrast, the
mutual information parsing method presented in this
paper is based on a statistic which is both highly ac-
curate and, in the cases where it is inaccurate, highly
consistent. Taking advantage of these two attributes,
the generalized mutual information statistic and the
distituent grammar combine to parse sentences witl,
on average, two errors per sentence for sentences of
15 words or less, and five errors per sentence for sen-
tences of 30 words or less (based on sentences from a
reserved test subset of the Tagged Brown Corpus, see
footnote 1). Many of the errors on longer sentences re-
sult from conjunctions, which are traditionally trouble-
some for grammar-based algorithms as well. Further,
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this parsing technique is extremely efficient, parsing
a 35,000 word corpus in under 10 minutes on a Sun
4/280.

It should be noted at this point that, while many
stochastic approaches to natural language processing
that utilize frequencies to estimate probabilities suffer
from sparse data, sparse data 1s not a concern in the
domain of our algorithm. Sparse data usually results
from the infrequency of word sequences in a corpus.
The statistics extracted from our training corpus are
based on tag n-grams for a set of 64 tags, not word
n-grams.! The corpus size is sufficiently large that
enough tag n-grams occur with sufficient frequency to
permit accurate estimates of their probabilities. There-
fore, the kinds of estimation methods of (n + 1)-gram
probabilities using n-gram probabilities discussed in
Katz (1987) and Church & Gale (1989) are not needed.

This line of research was motivated by a series of
successful applications of mutual information statis-
tics to other problems in natural language processing.
In the last decade, research in speech recognition (Je-
linek 1985), noun classification (Hindle 1988), predi-
cate argument relations (Church & Hanks 1989), and
other areas have shown that mutual information statis-
tics provide a wealth of information for solving these
problems.

Mutual Information Statistics

Before discussing the mutual information parsing al-
gorithm, we will demonstrate the mathematical basis
for using mutual information statistics to locate con-
stituent boundaries. Terminology becomes very impor-
tant at this point, since there are actually two statistics
which are associated with the term “mutual informa-
tion,” the second being an extension of the first.

In his treatise on information theory, Transmission
of Information (Fano 1961), Fano discusses the mutual
information statistic as a measure of the interdepen-
dence of two signals in a message. This bigram mutual
information is a function of the probabilities of the two
events:

PX,Y(I’y) ) (1)
Px(z)Py(v)
Consider these events not as signals but as parts-of-

speech in sequence in a sentence. Then an estimate of
the mutual information of two categories, ry, is:

MI(z,y) = log

# zy in corpus
total # of bigrams in corpus

() (m)
corpus size corpus size

"The corpus we use to train our parser is the Tagged
Brown Corpus (Francis and Kucera, 1982). Ninety percent
of the corpus is used for training the parser, and the other

ten percent is used for testing. The tag set used is a subset
of the Brown Corpus tag set.

MI(z,y) = log

(2)
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In order to take advantage of context in determin-
ing distituents in a sentence, however, one cannot re-
strict oneself to looking at pairs of tokens, or bigrams;
one must be able to consider n-grams as well, where n
spans more than one constituent. To satisfy this con-
dition, we can simply extend mutual information from
bigrams to n-grams by allowing the events r and y to
be part-of-speech n-grams instead of single parts-of-
speech. We will show that this extension is not suffi-
cient for the task at hand.

The second statistic associated with mutual informa-
tion is what we will call “generalized mutual informa-
tion,” because it is a generalization of the mutual in-
formation of part-of-speech bigrams into n-space. Gen-
eralized mutual information uses the context on both
sides of adjacent parts-of-speech to determine a mea-
sure of its distituency in a given sentence. We will
discuss this measure below.

While our distituent parsing technique relies on gen-
eralized mutual information of n-grams, the founda-
tions of the technique will be illustrated with the base
case of simple mutual information over the space of
bigrams for expository convenience.

Mutual Information

The bigram mutual information of two events is a mea-
sure of the interdependence of these events in sequence.
In applying the concept of mutual information to the
analysis of sentences, we are concerned with more than
Just the interdependence of a bigram. In order to take
into account the context of the bigram, the interdepen-
dence of part-of-speech n-grams (sequences of n parts-
of-speech) must be considered. Thus, we consider an
n-gram as a bigram of an n;-gram and an ns-gram,
where n; + n» n. The mutual information of this
bigram is

P[n-gram)
P(n,-gram|P{ns-gram|’
(3

MZ(n,-gram, no-gram) = log

Notice that there are (n — 1) ways of partitioning
an n-gram. Thus, for each n-gram, there is an (n — 1)
vector of mutual information values. For a given n-
gram z; ...Z,, we can define the mutual information
values of = by:

MIE(zy...z0) = MI(z)...24,Tk41..-Zn) (4)
P(zy...zn)

= | {

8 'P(zl v .J:];)P(Ik+1 . .’En‘)a)

where 1 < k < n.

Notice that, in the above equation, for each MI:‘,(::),
the numerator, P(z, ...z,), remains the same while
the denominator, P(z)...z¢)P(Tk+) ... Zn), depends
on k. Thus, the mutual information value achieves its
minimum at the point where the denominator is max-
imized. The empirical claim to be tested in this paper
is that the minimum is achieved when the two compo-
nents of this n-gram are in two different constituents,



1.e. when z; g4 is a distituent. Our experiments show
that this claim is largely true with a few interesting ex-
ceptions.

The motivation for this claim comes from examin-
ing the characteristics of n-grams which contain pairs
of constituents. Consider a tag sequence, z)...z,,
which i1s composed of two constituents z;...r; and
Lg4) ... Ty Since zp...Tg 1S @ constituent, 2 ...Tp_)
1s very likely to be followed by z;. Thus,

P(zy...ze) = P(zy .. .2k-1). (6)
By the same logic,
P(zig)---Zn) X P(Tht2...2n). (7)

On the other hand, assuming = and z¢4, are uncor-
related (in the general case),

'P(Ik---zn)<<p(1k+l-~-xn) (8)
and
p(.l?1...£k+])<<p(21...l‘k). (9)
Therefore,
MI(zy.. . Tk Tk .. -Ln)
p(Il - .1,',,)
= | 10
D1 .. 2)P(Ts1 .. . 2n) (10)
Plzy...zn)
~ | 11
OgP(n...J:k_l)P(:z:kH...:cn) (11)
P(.L‘l ....L‘n)
> log 12
. Plzy... 251 )P(2k...20) (12)
= MITT] - o Th=TsiB s w:5Tins)s (13)

By applying a symmetry argument and using induc-
tion, the above logt suggests the hypothesis that, in
the general case, if a distituent exists in an n-gram,
it should be found where the minimum value of the
mutual information vector occurs.

There is no significance to the individual mutual in-
formation values of an n-gram other than the mini-
mum; however, the distribution of the values is signif-
icant. If all the values are very close together, then,
while the most likely location of the distituent is still
where the minimum occurs, the confidence associated
with this selection is low. Conversely, if these values
are distributed over a large range, and the minimum is
much lower than the maximum, then the confidence is
much higher that there is a distituent where the mini-
mum occurs. Thus, the standard deviation of the mu-
tual information values of an n-gram is an estimate of
the confidence of the selected distituent.

Generalized Mutual Information

Although bigram mutual information can be extended
simply to n-space by the technique described in the
previous section, this extension does not satisfy the
needs of a distituent parser. A distituent parsing tech-
nique attempts to select the most likely distituents

based  on its statistic. Thus, a straightforward ap-
proach would assign each potential distituent a single
real number corresponding to the extent to which its
context suggests it is a distituent. But the simple ex-
tension of bigram mutual information assigns each po-
tential distituent a number for each n-gram of which
it is a part. The question remains how to combine
these numbers in order to achieve a valid measure of
distituency.

Our investigations revealed that a useful way to com-
bine mutual information values is, for each possible
distituent zy, to take a weighted sum of the mutual
information values of all possible pairings of n-grams
ending with z and n-grams beginning with y, within
a fixed size window. So, for a window of size w = 4,
given the context z,z,z3z4, the generalized mutual in-
formation of z5z3 :

GMTI4(z129,T324),

= kiMI(za,z3) + koMI(z2, r324)+ (14)
kaMI(z z2,23) + kaMZI(2122,2324) (15)
which 1s equivalent to
log <k'P[.rz:xtg]'P[qu:;;n]P[x1:-:21:3] T1ZT9T3T4 )
(16

(P(z2]P[z3]P[z122]P[z324])?

In general, the generalized mutual information of any
given bigram zy in the context z,...z;_1Tyy; ...yj-1
1s equivalent to

[I *kxP(x]

X crosses zy

H PN+

X does not cross zy

log

(17)

This formula behaves in a manner consistent with
one’s expectation of a generalized mutual information
statistic. It incorporates all of the mutual information
data within the given window in a symmetric man-
ner. Since it is the sum of bigram mutual information
values, its behavior parallels that of bigram mutual in-
formation.

The weighting function which should be used for
each term in the equation was alluded to earlier. The
standard deviation of the values of the bigram mutual
information vector of an n-gram is a valid measure of
the confidence of these values. Since distituency is in-
dicated by mutual information minima, the weighting
function should be the reciprocal of the standard devi-
ation.

In summary, the generalized mutual information
statistic is defined to be:

gMI(.'.H')(:L‘I P o O yj)

= ),

X ends with z,
Y begins with y;

L mzx,v), (18)
axy

where oxy is the standard deviation of the MI{‘X”
values within XY.
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The Parsing Algorithm

Due to space limitations, [ will forego a detailed de-
scription of the parsing algorithm here. For more in-
formation about the parsing algorithm, see “Parsing
a Natural Language Using Mutual Information Statis-
tics” in the proceedings of AAAI-90.

Distituent Parsing and Grammar
Induction

Although we have only done preliminary work on
grammar induction using this distituent parsing tech-
nique, the results we have obtained suggest that dis-
tituent parsing may be useful in the initial phases of
grammar learning.

The initial experiment we performed involved pars-
ing ahout 35,000 words of text randomly selected from
the Brown Corpus. By examining the distributions of
the contexts of the constituents which the parser dis-
covered, and clustering constituents which have similar
distributions, we were able to induce most of the noun
phrase and prepositional phrase categories which oc-
curred in the corpus.

However, because the parser makes some systematic
errors, there was also a lot of noise generated by this ex-
periment. The frequency and consistency of the parser
errors make it very difficult to distinguish between lin-
guistically valid constituents and incorrect structures.
Thus, other than the noun phrase and prepositional
phrase categories, the rest of the categories discovered
were filled with errors, and were generally unuseful.

In order to make grammar induction via distituent
parsing more feasible, we must filter out the errors
made by the distituent parser. One way to eliminate
the errors is to make linguistic assumptions about lan-
guage. For instance, we could assume that every con-
stituent has a head and that a head must be either
initial or final. Given this information, we could parse
the language once, determine from the constituents dis-
covered what the possible head categories for the lan-
guage are, and reparse the language enforcing the head
principle. Although we have not yet undertaken this
experiment, based on the types of errors made by the
parser, we believe this technique will be effective on
languages for which this linguistic assumption is true.

Conclusion

We have presented parsing technique which serves as
an alternative to traditional grammar-based parsing.
By searching for constituent boundaries, or distituents,
instead of fully-specified constituents, distituent pars-
ing eliminates the need for bulky grammars, and pro-
vides a computationally feasible method for determin-
Ing syntactic sentence structure.

Since distituent parsing can be accomplished by
training a statistical measure from an unparsed corpus,
it may serve as a viable method for inducing grammars
for natural languages. Although the error rate of the

mutual information-based distituent parser is currently
too high for inducing all of the constituent classes from
a corpus, we may be able to reduce this error rate sig-
nificantly by making universal linguistic assumptions
about language.
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The past five years have seen the beginning of a ma-
Jjor shift of research focus in natural language process-
ing. After twenty years of primary emphasis on on-
line systems which crucially depend upon the magical
ability of users to adapt to the limitations of the sys-
tem, a new generation of systems is emerging that both
extract information from and summarize pre-existing
text from real-world domains. To achieve high cover-
age in such systems, a wide variety of research break-
throughs will be necessary. One advance which is crit-
ical to truly robust wide-coverage systems is a technol-
ogy which allows the automatic acquisition of linguistic
structure through the analysis of both literal and an-
notated text corpora. Research results already in hand
suggest that significant progress in this area, at least
in the area of syntax, may occur in the next few years.

We at Penn have initiated a research program to see
how far the paradigm of trainable systems can take us
towards the fully automatic analysis of unconstrained
text. We are proceeding under the assumption that
this work should proceed by attempting to combine
two different traditions often viewed as mutually ex-
clusive: the research program of generative grammar,
as set forth originally by Noam Chomsky and the re-
search paradigm of distributional analysis, as devel-
oped by the American structural linguists resulting in
the work of Zellig Harris [4].

Information Theoretic Parsing

This investigation of distributional analysis has already
yielded results which are both surprising and encour-
aging. We have investigated how accurately the gram-
matical structure of a sentence can be determined with-
out an explicitly encoded grammar at all, using only
automatically compiled distributional statistics of a
corpus of text which has been hand tagged for part
of speech.

As part of this research, we have developed a con-
stituent boundary parsing algorithm which derives an
(unlabelled) bracketing given text annotated for part
of speech as input [5]. This method is based on
the hypothesis that constituent boundaries can be ex-
tracted from a given part-of-speech n-gram by analyz-
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ing the mutual information values within the n-gram,
extended to a new generalization of the information
theoretic measure of mutual information. This hypoth-
esis 18 supported by the performance of an implemen-
tation of this parsing algorithm which determines re-
cursively nested sentence structure, with an error rate
of roughly 2 misplaced boundaries for test sentences
of length 10-15 words, and five misplaced boundaries
for sentences of 15-30 tokens. (All test sentences were
randomly selected from a reserved test corpus.) We
discuss below a mechanism to deal with the limited set
of specific circumstances in which the hypothesis fails.

The mutual information statistic [2] is a measure of
the interdependence of two signals in a message. It is
a function of the probabilities of the two events:

Pxy(z,y)
Px(z)Py(y)

In this paper, the events z and y will be not single
parts-of-speech, but part-of-speech n-grams.

This work proceeds by viewing the part-of-speech
sequences that make up sentences as stochastic events
and applying probabilistic models to these events. It
tests the hypothesis that constituent boundaries, or
“distituents,” can be extracted from a sequence of
n categories, or an n-gram, by analyzing the mu-
tual information values of the part-of-speech sequences
within that n-gram. More particularly, this hy-
pothesis assumes that, given any constituent n-gram,
a as...an, the probability of that constituent occur-
ring is usually significantly higher than the probability
of ayay...apa,4) occurring.

The performance of the new algorithm demonstrates
that the generalized mutual information statistic, an
extension of the bigram (pairwise) mutual information
of two events into n-space, acts as a viable measure
of continuity in a sentence. This is true, in general,
because most constituents appear in a variety of con-
texts. Once a constituent is detected, it is usually very
difficult to predict what part-of-speech will come next.
As it turns out, however, there are cases in which this
assumption is not valid, but only a handful of these
cases are responsible for a majority of the errors made

MI(z,y) = log



by the parser. To deal with these cases, our algorithm
includes what we will call a distituent grammar — a
list of tag pairs which cannot be adjacent within a con-
stituent. One such pair is noun prep, since English does
not allow a constituent consisting of a noun followed by
a preposition. Notice that the nominal head of a noun
phrase may be followed by a prepositional phrase; in
the context of distituent parsing, once a sequence of
tags, such as (prep noun), is grouped as a constituent,
it is considered as a unit. Our current distituent gram-
mar consists of four rules of two tokens each.

Our current implementation of this parsing algo-
rithm determines a recursive unlabeled bracketing of
unrestricted English text. As stated above, the gener-
alized mutual information statistic and the distituent
grammar combine to parse sentences with, on aver-
age, two errors per sentence for sentences of 15 words
or less, and five errors per sentence for sentences of
30 words or less (based on sentences from a reserved
test subset jof the Tagged Brown Corpus). Many of
the errors on longer sentences result from conjunctions,
which are traditionally troublesome for grammar-based
algorithms as well. Further, this parsing technique is
reasonably efficient, parsing a 35,000 word corpus in
under 10 minutes on a Sun 4/280.

Determining lexical features and part of
speech

To allow this technique to be applied to completely
unannotated text, we are concurrently experimenting
with techniques to automatically derive the feature set
and word classes of a language.! from a large corpus
of text, again using only distributional facts. These
techniques are based upon the following idea, a variant
of the distributional analysis methods from Structural
Linguistics ([3], [4]): features license the distributional
behavior of lexical items. At the two extremes, a word
with no features would not be licensed to appear in any
context at all, whereas a word marked with all features
of the language would be licensed to appear in every
possible context.

The feature discovery system works as follows. First,
a large amount of text is examined to discover the
frequency of occurrence of different bigrams.? Based
upon this data, the system groups words into classes.
Two words are in the same class if they can occur in the
same contexts. In order to determine whether x and y
belong to the same class, the sytem first examines all
bigrams containing x. If for a high percentage of these
bigrams, the corresponding bigram with y substituted
for x exists in the corpus, then it is likely that y has
all of the features that x has (and maybe more). If

! We consider the set of features of a particular language
to be all attributes which that language makes reference to
in its syntax.

2For this experiment, we take a very local view of con-
text, only considering bigrams.
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upon examining the bigrams containing y the system
is able to conclude that x also has all of the features
that y has, it then concludes that x and y are in the
same class.

For every pair of bigrams, the system must deter-
mine how much to weigh the presence of those bigrams
as evidence that two words have features in common.
For instance, assume: (a) the bigram the boy appears
many times in the corpus being analyzed, while the sits
never occurs. Also assume: (b) the bigram boy the (as
in the boy the girl kissed ...) occurs once and sits the
never occurs. Case (a) should be much stronger evi-
dence that boy and sits are not in the same class than
case (b). For each bigram ax occurring in the corpus,
evidence offered by the presence (or absence) of the
bigram ay is scaled by the frequency of ax in the text
divided by the total number of bigrams containing x on
their right hand side. Since the end-of-phrase position
is less restrictive, we would expect each bigram involv-
ing this position and the word to the right of it to oc-
cur less frequently than bigrams of two phrase-internal
words. By weighing the evidence, bigrams which cross
boundaries will be weighed less than those which do
not. See [1] for more information and some prelimi-
nary results.

Verb acquisition

We are also developing a computational model of verb
acquisition which uses what we will call the princi-
ple of structured overcommitment (a specialization of
the subset principle) to eliminate the need for neg-
ative evidence. The learner escapes from the need
to be told that certain possibilities cannot occur (i.e.
are“ungrammatical”) by one simple expedient: It as-
sumes that all properties it has observed are either
obligatory or forbidden until it sees otherwise, at which
point it decides that what it thought was either oblig-
atory or forbidden is merely optional. This model
is built upon a classification of verbs based upon a
simple three-valued set of features which represents
key aspects of a verb’s syntactic structure, its pred-
icate/argument structure, and the mapping between
them. This model was originally implemented and
tested working with a small set of hand-selected ex-
amples (see [7]); we hope to extend this work using
large natural corpora in the near future.

We are also using the techniques discussed above to
determine verb classes using n-gram techniques. We
have been able to show (counter to any reasonable ex-
pectation) that a purely local examination of the two
words (one to the right and one to the left) that occur
immediately adjacent to a given verb provides enough
information to hierarchically cluster these verbs into
meaningful and fairly fine-grained grammatical cat-
egories, even distinguishing benefactive verbs (verbs
that take an indirect object, roughly) into verbs of
propositional attitude (e.g. tell) from verbs of phys-
ical transfer (e.g. give).



Probabilistic CF Parsing

In another experiment, in collaboration with UNISYS,
we have investigated how distributional facts can be
used to choose between the multiple grammatically ac-
ceptable analyses of a single sentence. We have de-
veloped (see [6]) a natural language parsing algorithm
for unrestricted text which uses a novel probability-
based scoring function to select the “best” parse of a
sentence. The parser, Pearl, is a time-asynchronous
bottom-up chart parser with Earley-type top-down
prediction which pursues the highest-scoring theory in
the chart, where the score of a theory represents the
extent to which the context of the sentence predicts
that interpretation. This parser differs from previ-
ous attempts at stochastic parsers in that it uses a
richer form of conditional probabilities based on con-
text to predict likelihood. In preliminary tests, Pearl
has shown promising results in handling part-of-speech
assignment, prepositional phrase attachment, and un-
known word categorization. Trained on a corpus of
1100 sentences from MIT’s Voyager direction-finding
system and using the string grammar from UNISYS’
PUNDIT Language Understanding System, Pearl cor-
rectly parsed 35 out of 40 or 88% of test sentences from
previously unseen Voyager sentences.

The Penn Treebank Project

To faciliate the kind of statistical experiments dis-
cussed above, both by us and by researchers at other
institutions, we have undertaken the development of a
a large annotated corpus of American English, anno-
tated both with part-of-speech information and with a
skeletal syntactic analysis.

But there are other pressing reasons to undertake
such a project. Such data bases are of value for en-
terprises as diverse as the automatic construction of
statistical models for the grammar of both the writ-
ten and colloquial spoken language, the development
of explicit formal theories of the differing grammars of
writing and speech, the investigation of prosodic phe-
nomena in speech, and the self evaluation of the ade-
quacy of parsing models, the various formal syntactic
theories embedded in those parsers, and the particular
grammars of English encoded within those theories.

As a first step towards a much larger corpus, we
have developed an annotation scheme for both part-
of-speech information and higher-level syntactic struc-
ture, along with style books to assure consistent ap-
plication of the annotation scheme, and have tagged a
corpus of over 4 million words of contemporary English
text with part-of-speech information, hand correcting
the output of a stochastic part-of-speech tagger.

After early concerns about productivity, we inves-
tigated a range of methods for syntactic annotation
(henceforth, tree banking) with respect to annotator
speed, for annotators posteditting the output of Don
Hindle’s Fidditch parser. Key results:

1. Annotators take substantially longer to learn tree
banking than the POS annotation task, with sub-
stantial increases in speed occuring after 2 months
of training.

2. Annotators can postedit the full output of Hindle’s

parser at an average speed of 100-200 words per hour
after three weeks, and 400-500 words per hour after
two months.

3. Reducing the output to a far more skeletal represen-

tation similar to that used by the Lancaster UCREL
TreeBank Project increases average speed to 700-750
words per hour. At this speed, a team of 5 part-time
annotators working 3 hours a day should maintain
an output of 2.5 million words a year of “treebanked”
sentences, with each sentence posteditted by one an-
notator.

Treebanking has proceeded at full speed using skele-
tal annotation since December 1. We have annotated
about 250K words of text, with 1/3 of this material
bracketted by more than one annotator.

References

(1] Eric Brill, David Magerman, Mitch Marcus and
Beatrice Santorini. Deducing linguistic structure
from the statistics of large corpora. In Proceedings
of DARPA Speech and Natural Language Work-
shop, June, 1990.

(2] Fano, R. Transmission of Information. New York,
New York: MIT Press, 1961.

(3] Harris, Z.S. Structural Linguistics. Chicago: Uni-
versity of Chicago Press, 1951.

(4] Harris, Z.S. Mathematical Structures of Language.
New York: Wiley, 1968.

[5] David M. Magerman and Mitchell Marcus. Pars-
ing a Natural Language Using Mutual Information
Statistics. In Proceedings of the Eighth National
Conference on Artificial Intelligence. July 1990,
Boston, MA.

(6] David M. Magerman and Mitchell Marcus. Pearl:
A Probabilistic Chart Parser. Proceedings of the
1991 International Workshop on Parser Technol-
09y, February 1991.

[7] Mort Webster and Mitchell Marcus. Automatic
Acquisition of the Lexical Semantics of Verbs
from Sentence Frames. Proceedings of the 27th
Annual Meeting of the Association for Computa-
tional Linguistics. June, 1989, Vancouver, British
Columbia.

125



Learning Conventional Metaphors and
Learning Using Conventional Metaphors

James H. Martin
Computer Science Department and
Institute of Cognitive Science
University of Colorado,
Boulder, CO
80309-0430

January 30, 1991

Abstract

Metaphor is a conventional and ordinary part of language. A computational approach to metaphor based
on the explicit representation of knowledge about metaphors is presented here. This approach asserts that the
interpretation of conventional metaphoric language should proceed through the direct application of specific
knowledge about the metaphors in the language. MIDAS (Metaphor Interpretation, Denotation, and Acquisition
System) is a computer program that has been developed based upon this approach. The focus here is on the
learning capabilities of MIDAS.

Research Interests

My current research interests lie in the area of conventional non-literal language. This area is concerned with the
knowledge and mechanisms needed to adequately interpret language that deviates from what has traditionally been
called literal. In particular, I am developing frameworks for dealing with the representation, use, and acquisition of
knowledge used in the interpretation of idioms, metaphor, metonymy, and indirect requests. [ am currently directing
three projects in this area: the MIDAS system for interpreting metaphoric language, the METAMORPHOSIS learning
system, and the METABANK, a empirically derived knowledge-base of English metaphorical conventions.
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1 Introduction

Metaphor is a frequent, systematic and conventional part of language. Natural language processing systems must be
capable of dealing with metaphor in an effective way if further progress is to be made in applications like question
answering, machine translation, and text summarization.

The main thrust of the approach to metaphor presented here is that the interpretation of conventional metaphoric
language proceeds through the direct application of specific knowledge about the conventional metaphors in the
language. Correspondingly, the interpretation of novel metaphors is accomplished through the systematic extension,
elaboration, and combination of already well-understood metaphors.

Under this view, the proper way to approach the study of metaphor is to study the underlying details of individual
metaphors and systems of metaphors in the language. This approach follows on the metaphor work of Lakoff and
Johnson [7] and the computational approaches to metaphor described in [6, 8.

This approach has been embodied in MiDAS (Metaphor Interpretation, Denotation, and Acquisition System)
MIDAS is a set of computer programs that can be used to perform the following tasks: explicitly represent knowledge
about conventional metaphors, apply this knowledge to interpret metaphoric language, and learn new metaphors as
they are encountered.

This knowledge-based approach to metaphor differs from the traditional computational account of metaphor.
The traditional method is based on a problem solving paradigm. [1, 2, 3, 4, 5] The hearer’s task is to use a problem
solving strategy (typically analogical matching) to find or create the meaning of a metaphorical utterance from a
representation of the literal meaning and more general world knowledge. While this approach does make use of a
great deal of world knowledge, it does not make use of explicit knowledge about the metaphors that are conventionally
a part of a given language.

The metaphoric knowledge approach, given here, raises a number of learning problems that do not arise in the
traditional approach. Our current work is addressing the following two problems.

¢ How do language learners initially acquire the conventional metaphors that make up their language?
e How do these conventional metaphors effect the way that common-sense conceptual domains are acquired?

The next section will describe our efforts to address the first of these learning problems in the context of MIDAS.
The following section describes our preliminary work on the METAMORPHOSIS system, which is intended to explore
the second question.

2 MIDAS

This section provides a brief overview of the Mipas approach to metaphor. In particular, it introduces the following
issues.

Representation: The explicit representation of the conventional metaphors in a language in the form of explicit
associations between concepts.

Learning: The dynamic acquisition of new knowledge about metaphors for which no known metaphor provides
a coherent explanation.

2.1 Knowledge Representation

Consider the following simple example of a conventional UNIX metaphor. The metaphorical use of the word in reflects
a systematic metaphorical structuring of UNIX processes as enclosures.

(1) I am in Emacs.

Metaphors like this may be said to consist of the following component concepts: a source component, a largel
component, and a set of conventional associations from the source to target. The target consists of the concepts
to which the words are actually referring. The source refers to the concepts in terms of which the iutended target
concepts are being viewed. In this example, the target concepts are those representing the state of currently using a
computer process. The source concepts are those that involve the state of being contained within some enclosure.

The approach taken here is to explicitly represent conventional metaphors as sets of associations between source
and target concepts. The metaphor specifies how the source concepts reflected in the surface language correspond to
various target concepts. In this case, the metaphor consists of component associations that specify that the state of
being enclosed represents the idea of currently using the editor, where the user plays the role of the enclosed thing,
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and the Emacs process plays the role of the enclosure. Note that these source-target associations are represented at
the conceptual and not the lexical level. Any single lexical item or expression that can be construed as referring to
the source concept of a known metaphor, may invoke that metaphor. In this example, the source component of the
metaphor is attached to the concept of being enclosed, not to the lexical item in.

These sets of metaphoric associations, along with the concepts that comprise the source and target domains, are
represented using the KODIAK [9] representation language. KODIAK is an extended semantic network language.

These sets of metaphoric associations representing conventional metaphors are full-fledged KODIAK concepts. As
sucli, they can be related to other concepts and arranged in abstraction hierarchies using the inheritance mechanisms
provided by KoptaK. The hierarchical organization of conventional metaphoric knowledge is the primary means used
to capture the regularities exhibited by the system of metaphors in the language. Specifically, KoDIAK is used to
represent specialized domain specific metaphors, pervasive high-level metaphors, and the systems of relations among
related metaphors.

2.2 Analogically Learning New Metaphors

MIDAS normally will locate and apply one these known metaphors to interpret text containing conventional meta-
phorical language. mMiDAs will, however, inevitably face the situation where a metaphor is encountered for which
none of its known metaphors provides an adequate explanation. This situation may result from the existence of a
gap in the system’s knowledge-base of conventional metaphors, or from an encounter with a novel metaphor. In
either case, the system must be prepared to handle the situation. Consider the following example.

In this example, the user has employed the conventional UNIX metaphor that the termination of an ongoing
process can be viewed as a killing. [lowever, unlike the previous example, M(DAS finds that it is initially unable
to interpret this example because it has no knowledge of this conventional metaphor. More precisely, it determines
that the given input can not adequately satisfy the constraints associated with any of the concepts conventionally
associated with the word kull.

> (do-sentence)
Interpreting sentence:
How can I kill a process?

Interpreting concreted input.

(A Killing16 (] Killing)
(killeri16 (] killer) (A I46 (] I)))
(kill-victim16 (] kill-victim) (A Computer-Processi0 (] Computer-Process))))

Failed interpretation: Killingl6 as Killing.

Failed interpretation: Killingl6 as Kill-Delete-Line.
Failed interpretation: Killingl6 as Kill-Sports-Defeat.
Failed interpretation: Killingi6 as Kill-Conversation.
No valid interpretations.

At this point, MIDAS has exhausted all the possible conventional interpretations of the primal representation.
In particular, the direct non-metaphoric interpretation and three known metaphorical interpretations are rejected
because their restrictions of the role of the kill-victim fail to match the semantics of the concept filling that role
in the input, a computer-process.

This example illustrates the operation of the learning component of MiDAS, the Metaphor Extension System
(MES). This system is invoked by MIDAS when it discovers a metaphor for which it has no adequate knowledge. The
task of the MES is to attempt to extend its knowledge of some existing metaphor in a way that will yield a coherent
interpretation for the new use and provide a basis for directly understanding similar uses in future. Analogical
reasoning is at the core of MIDAS’s learning mechanism. However, unlike previous metaphor systems, MIDAS does not
attempt to draw an analogy between source and target domains of a metaphor. Rather, MIDAS attempts to reason
analogically from known metaphors.

In this case, the system finds and extends a closely related known metaphor that also uses kill to mean a kind
of terminate. MIDAS finds that there is a known metaphor covering the use of kill in kill a conversation to mean
to terminate. This known metaphor is applied analogically to the current situation through the common notion of
process meaning a series of related events happening over time.
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Attempting to extend existing metaphor.

Selecting metaphor Kill-Conversation to extend.

Attempting a similarity extension inference.

Creating new metaphor: Killing-Terminate-Computer-Process

(A Killing-Terminate-Computer-Process (] Kill-Metaphor)
(kill-victim-c-proc-termed-map kill-victim — c-proc-termed)
(killer-c-proc-termer-map killer — c-proc-termer)
(killing-terminate-computer-process-map Killing — Terminate-Computer-Process))

Final interpretation of input:

(A How-Q46 (] How-Q)
(topic46 ([ topic)
(A Terminate-Computer-Process10
(1 Terminate-Computer-Process)
(c-proc-termer10 (] c-proc-termer) (A I46 (] I)))
(c-proc-termed10 (] c-proc-termed)
(A Computer-Process10 (] Computer-Process))))))

UC: You can kill a computer process by typing ~ C to the shell.

Finally, the target concept determined by the MES is used to provide an answer to the user.

The approach taken in MIDAS to the understanding of new or unknown metaphors is called the Metaphor Extension
Approach. The basic thrust of this approach is that a new metaphor can best be understood by extending an existing
well-understood metaphor or combining several known metaphors in a systematic fashion. Under this approach, the
ability to understand and learn new metaphors depends critically on systematic knowledge about existing known
metaphors.

This approach, therefore, shifts the processing emphasis in the case of novel metaphors away frotn the notion of
attempting to determine the right target concept by a direct matching against the literal source. Rather, an attempt
is made to determine the correct target through the use of an existing related metaphor. Therefore in this example,
no attempt is made to find the intended target meaning by looking at the source details of literal slaying, rather the
system examines the target concept of an already existing terminating as killing metaphor.

3 Metaphorically Learning New Concepts

Despite the demonstrated effectiveness of MIDAS’s learning system, it clearly has a number of serious deficiencies.
One major problem arises from the fact that while MIDAS relies heavily on the pre—existing conceptual representation
of the various source and accomplish its learning task, it can not alter that representation in any way. Learning
consists entirely of creating and storing new metaphors at various levels of abstraction.

To make this more concrete consider the following examples of the ubiquitous PROCESS-AS-ENCLOSURE metaphor.

(2) How can [ get out of emacs?

(3) Get into vi to edit your .login file.
(4) I'm in mail.

(5) Tell me how to get out of lisp.

These examples illustrate the use of the widespread container metaphor in English. In this domain, this metaphor
structures certain kinds of systems as environments. This concept of a system considered as an environment is not
based on the particular functionality of the system but rather on the way that the user interacts with it.

Consider the following scenario, MIDAS is presented with a knowledge-base that classifies UNIX programs strictly
according to their functionality. Assume further that the kb contains the specific metaphor EMACS-AS-ENCLOSURE,
that structures EMACS as an enclosure. When (3) is encountered MIDAS can appropriately determine its meaning
by analogy to the existing EMACS metaphor. It accomplishes this analogy by making use of the parent category
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EDITOR shared by vi and EMACs. At this point MIDAS may appropriately create a more abstract metaphor EDITOR-
AS-ENCLOSURE.

Continuing with this same scenario, consider what happens when MiDAs encounters (5). In the given functional
hierarchy, LISP and the target concept of the relevant analog metaphor EDITOR-AS-ENCLOSURE are quite distant.
They share the common ancestor concept UNIX-PROGRAM which dominates all the known programs in the knowledge—
base. If this were used in a straightforward way as the basis for learning the meaning of (5) it would result in the
creation of a UNIX-PROGRAM-AS-ENCLOSURE metaphor. The problem of course is that this is far too abstract and
applies to many UNIX programs that simply do not permit this metaphor. To prevent this problem aiDas only
permits analogical generalization to occur when the common ancestor is extremely close to given analogs. (For
example, vl and EMACS).

To summarize, this problem arises because MIDAS can not alter its representation of non-metaphorical domain
knowledge. In this case, there is no appropriate abstract target concept to attach the new metaphor to. MIDAS
must, therefore, either leave multiple metaphors at too specific levels of representation, thereby failing to capture
a generalization, or it must place the metaphor at too high a level of representation potentially leading to an
overgeneralization.

We are currently investigating these problems in the context of a system called METAMORPHOSIS. METAMORPHO-
sis is a learning system that modifies the structure of a given knowledge-base under the influence of a conventional
metaphor. As with MIDAS this investigation is situated in the domain of building natural language consulting systems
for operating systems.

To make the task of METAMORPHOSIS more concrete, we will continue with our environment example. The
system begins with a knowledge-base of facts about UNIX commands and programs. The knowledge-base is initially
structured as an abstraction hierarchy with the various user programs classified according to their functionality. The
task for METAMORPHOSIS is to create new categories that reflect the metaphorical structure of these concepts. [t
must perform this task by monitoring the language processing performed by MIDAS.

In our current example, the system'’s task is to create a new concept that roughly corresponds to the notion of an
interactive system. This is the missing category in the target domain that dominates all and only those programs that
permit the environment metaphor. This ultimately includes the editors, mail, and interactive language processors.
The semantics of this category is determined by the meaning of the metaphors as determined by miDAs. In effect, the
conventional metaphors used by MIDAS are providing an inductive bias necessary for the creation of new categories.
In these examples, the system notes that MIDAS is repeatedly applying a generic container metaplior to a subset of
UNIX commands. Moreover, these metaphors are only being used to refer to certain aspects of these concepts.
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Over the last 12 years, simulation research has been
undertaken in Natural Language Leamning in the context of an
interdisciplinary theoretical framework made explicit in
various hypotheses. The initial research was undertaken
towards a PhD at the University of NSW, and was continued
with a group of research students at Macquarie University (both
in Sydney). At present Dr Powers is located at the University of
Kaiserslautern, supported by ESPRIT BRA 3012: COMPULCG.

The first decade of this research, including a broad
‘cognitive science’ review, is presented in a monograph
[Powe89] — with a further review in [Powe90]. Recent
developments are presented here (overlapping with {Powe91]).

The main hypotheses explored are:

a)  that the mechanisms responsible for language phenomena
arc more general than is often credited;

b)  that the learning of language is inseparably tied to the
learning of ontology;

c) that automatic self-organization and hierarchy formation
can gives rise to a basic conceptual framework based on
positive examples;

d) that the mechanism responsible for language learning
phenomena have a considerable overlap with those for the
rest of our sensory-motor experience;

¢) that recognition and generation activities are logically
and at lcast partially physically scparate;

f)  that the recognition components act as critics for the
production components and provide negative
information;

g) that interaction with the world also provides implicit
negative information;

h) that contrast and similarity assessment of content in
contexts provide a basic learning mechanism based on
metaphor and paradigm;

i)  that cognitive restrictions not only restrict our learning
ca}:abil.lty but the range of natural languages with the
cffect that our limitations actually assist the learning
process;

j)  that language should be examined from the perspective of
ontological learning in an active environment;

k)  that the concepts learned at onc level are the symbolic
building blocks for another level;

1)  that the exchange of information with the environment as
mediated by our sensory-motor system is not inherently
different in form or representation from our higher level
concepts.

Experiments fall into the following categorics:

i)  neuro-visual -association/learning
ii) mixed-mode parsing/lcarning
iii) word-class learning

iv) concurrent parsing/learning

v) statistical formula learning

vi) neural net formula learning

[Powe84,89]

[Powe84,87,89]
[Powe84,87,89]
[Powe84,87,89]
[Powe84,89,91]
[Powe84.89,91]

vii) critical formula learning [Powe87,89]
1ix) critical semantic learning [Powe87,89]
ix ontological learning [Powe89]
x)  morphological learning [Powe91]

In particular these batterics of experiments are all
performed in multiple contexts, in the sense of one or more of:

sensory vs linguistic modality, level of hierarchy, or varous
natural languages.

These hypotheses and results suggest that different forms
of learning are appropriate at different levels of the language
hierarchy which are characterized by different levels of input
requirement, but that these forms of learning are widely
applicable in terms of the precise domain of learning and that
language learning must not be too narrowly characterized.

We summarize our tentative conclusions as follows:

1. at the lower levels, self-organization is achieved in the
absence of a formal teacher and critic (in vision,
orthography, phonology and grammar).

2. at intermediate levels, implicit teacher and critic can
largely be provided by an active environment through

mu ti-modaf interaction;

3. at the higher levels explicit teacher and critic are helpful,
but inessential.
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How far can self-organization go?
Results in Unsupervised Language Learning

Abstract

There are a number of debates in linguistic,
psycholinguistic and neurolinguistic circles which have
relevance to research on machine learning of natural language.
Some of these concern where language lies on the spectrum
between innate and learnt; how much can be learnt in the
absence of semantics; how much can be achieved by neural self-
organization without multi-layer back-propogation; and how
important negative information is to language learning.

The computational research presented in this paper places
a point of reference on each of these spectra, and indeed
suggests that they are not independent.

We present some computational experiments and results,
and propose ideas towards a theory of language learning. More
importantly we pose some traditional questions in a new light
and suggest new avenues of rescarch for the traditional
cognitive science disciplines as well as modern computational
linguistics.



Introduction

[Gold67] and [Mins69] produced results which demonstrated
limitations on the possibility of learning. These were based on
certain assumptions about the learning mechanisms and the
problem domain, and were in various respects both intended and
construed as criticisms of current approaches and claims. In the
first case, [Gold67] showed that context free languages couldn't
be learned without cither a teacher or a critic. In the second case,
[Mins69] showed that a class of (visually presented) group
invariant relations could not be recognized by Perceptrons.

Since then, the more powerful PDP (Parallel Distributed
Processes) approach popularized by [Rume86] (and subsequent
publications from the same group) has demonstrated
overwhelmingly that useful learning (infer alii in the language
and vision domains) can be done with ncural nets. In a less
focussed way, MLNL (Machine Learning of Natural Language) has
also found rencwed vigour (Lang87; Powe90].

But there are still things our machines can’t yet do. And there are
still things our machines can’t ever do. The results hold. But
there are things we, that is humans and other organisms, can do.
And there are language, vision and speech features that carlier
statistical and necural models did learn [Koho84,89,90;
Powe83,89; Ritt89]. The trick is to characterize these accurately
and discover appropriate mechanisms.— whether they be the
natural mechanisms, just similarly cffective mechanisms, or
better mechanisms.

In [Powe83,89] one of several experimental language learning
programs used sclf-organizing neural network techniques to learn
word classes and syntactic rules in a total absence of critical
input. There was simply multiple exposurc to a set of legal
phrases, with no teacher supplying anomalous input in the sense
of [Gold67]. Nonetheless, the system managed to learn the word
classes correctly, as well as grammatical rules which, if not
actually those the grammarians discovered, are nonctheless
cffective. Similar results were achicved in a statistical program
applied to the same data. The neural program was shorter. The
statistical program faster.

[Koho90; Ritt89] independently showed that neural and
comination statistical/neural sclf-organization techniques can
learn word classes (but apparently nor syntactic rules) of similar
complexity in a different domain ~ again in the absence of critical
input. (Similar techniques were applied by [Koho84] to mapping
Finnish and Japanese phonemes - viz. achieving the
feature/phone to phoneme classification.)

What is interesting is not just what was lecarned in terms of word
classes, but what was learned first and why these particular rules
were learned. It turns out that the most closed classes were lcarned
first. These then seemed to act as pointers to the more open word
classes they were associated with. This paper proposes that these
results can give us insights as to why closed class words, such as
articles, occur at all, how they arc learned, and why they are not
used early but are recognized. It also extends the experiments
below the word level to see if there are closed classes there.

None of these previous reports or reviews has fully considered the
broader computational, linguistic and psycholinguistic
significance of these particular results (although [Powe90] does
point to most of the issues involved). Here we consider this
significance in several respects: in relation to closed classes, in
relation to symbolic properties of connectionist systems, in
relation to the weak form of learning used, and in relation to more
accurate characterization of natural language.

Therefore, we will first summarize the methodology and results of
the “noun phrase” experiments of [Powe84] and the “sentence”
experiments of [Ritt89; Koho90], we then address some of the
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issues to which they are relevant and introduce some hypotheses
to be tested. We finally present a computational experiment
using similar techniques in the new, sub word-level, domain of
classification of letters/phonemes into the classes from which
syllables and words are composed, giving our procedures, resuits
and conclusions.

Previous Syntactic Learning Experiments

We do not wish to review statistical, neural or syntactic learning
generally, but to take up certain experiments from [Powe89] and
[Koho90}, and compare the application of similar techniques in
one of the domains that bridges the gap. As mentioned in the
introduction, the pedigree of such work extends back beyond the
criticisms of [Gold67] and [Mins69) and are reviewed and
represented adequately clsewhere (see, in addition, [Lang87;
Powe90] for pointers).

The experiments we wish to review were presented in the context
of noun phrases and filtered scntences; the classes categorized and
grammatical rules learnt were discovered with two different
mechanisms, neither of which required critical input.

We imagine that the computational model represents a child at the
beginning of the stage where he leamns some nouns and verbs and
their meanings and that he is trying to make sense at the same
time of the images he is faced with. We further suppose that there
are prosodic and syntactic features which tend to highlight the
significant words, e.g. that they occur stressed in phrase final
position. We hypothesize further that what is far beyond the
child’s competence and far from these significant positions is
filtered out, and that conversely the child focuses on what is close
to or within his competence.

We actually make no use of these assumptions other than to
provide some justification for the type of dataset used for the
learning experiments, which we present in figures 1 and 2 in the
form used in the simulations of [Powe89] and [Koho90] resp.

the cat. #
a dog. #
my dog? #
this mat| #

Flg. 1. Example dataset @ la [Powe89].

In the original experiments the ‘#’ of Fig. 1 had some
‘monitoring’ significance and was not passed to the learning
algorithm. It also serves as a reminder of the elision. The
prosody of speech is hypothesized to have some correspondence
to the punctuation symbols used in these text experiments.

Mary likes meat
Jim speaks well
Mary likes Jim
Jim eats often

Fig. 2. Example dataset a la [K0ho90].

Note that both of these datasets can be regarded as sets of “three
word sentences” representing utterances from which the
uninteresting parts have been filtered according to different
theories, or different applications of a general theory.

A first criticism can already be mentioned here: results with the
omitted words included are not presented. Although the
preliminary results from experiments with more complex data
were (as could be expected) more complex and less conclusive,
they would be interesting to see, and should give an idea of the



degree of reliance placed on the above-mentioned assumptions.
(A listing of one of the actual ncural programs used is however
presented in [Powe89], allowing the possibility of repetition or
extension of the experiment.)

It should be noted too that the learning, particularly for the {pure)
neural simulations, is very slow. For example, the “semantic
map” of [Koho90: Fig.12] resulted from 2000 presentations of
word-context-pairs derived from 10 000 random sentences of the
kind shown". (It is therefore very time-consuming and
unrewarding to explore the more unlikely directionsl)

Statistical Model

The first model [Powe83,89] makes use of an additional
psycholinguistic hypothesis. It uses the Magical number seven
plus or minus rwo of [Mill56] to constrain the number of partial
parse fragments (trees) kept around on fags and available for
correlation. Unlike some of the earlier models, it then not only
turns collocations of words into hypotheses of rules, but
collocations of tags.

Psycholinguistic

A second technique, also motivated by psycholinguistic
considerations, is used to consolidate rules: in an induction step,
bring together into the same hypothesized class words with
collate similarly, viz. with the same words or classes. Thus
classes are formed initially as small consistent cosets of words.

A thresholding step is used before rules are considered ready for
production use — again a psycholinguistic hypothesis lics behind
this terminolgy. It is proposed that the unthresholded grammar
can play a role in guiding the recognition process in terms of
indicating the likely class of a word, but that there is an implicit
or explicit partitioning into recognition and production
grammars mediated, in part, by some sort of threshold.

We present in Fig. 3 only a sample thresholded, consolidated
grammar to give the flavour of the results,

The first observation to be made (to an extent observable in the
structure of the rules) is that the first class learnt is the
punctuation/prosody. Next come the articles and finally the
nouns. The significant aspect is that the most closed (or
smallest) classes arc leamnt first and that these act as pointers (in
the rules) to the more significant contentive and open classes.

Self-Organizing Neural Net

The above experiment was duplicated [Powe83,89] with a scif-
organizing model inspired by the visual application of such a
neural net by [Mals73], but based in some respects on the model
of [Klop82]. Interestingly, this program did not make use of the
magical number seven directly, but a similar effect result from the
decay model used. Once a neuron had fired it decayed over a
period of time allowing for the possibility of it interacting with
the neurons firing as a result of subsequent “words”.

The results of this experiment were comparable with the
statistical version, and a relationship between neurons and

classes, synapses and grammatical rules was apparent in the
comparison of the results.

The experiments of [Ritt89; Koho90] used a similar model
applied to their dataset. For efficiency they turned to a hybrid
statistical/neural approach in which they first preprocessed the

Sense Class Thresh-Set

formula(lang, 24, [[17, 10]))
formula(lang, 17, [[12, 16]))

Fig. 3. Sample output from [Powe89a].
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data to produce an “‘average context” for each word — an average of
all code vectors of predecessor-successor-pairs surrounding the
given word. Note that this windowing is very sensitive to the
omitted words, but could be justified on the basis that these words
really represent the phrases of which those words are the nucleus.

The methodology of [Ritt89; Koho90] is explicitly exploiting
the contextual similarity of items. The important feature is that
the context is consistently dominant and recognizable in the
learning process, and thus words may be classified by the
contexts they occur in, and that then the classification of words
together allows unification of contexts and consequent
strengthening of the context consistency.

In these experiments the context taken was the pair of “words”
preceding and succeeding the word in focus. In the experiments of
[Powe84,89] the context was determined by the decay
mechanisms or the tag mechanism. In recent experiments based
on the paradigm of [Ritt89], similar results have been produced
with “contextual sensitivity” being provided by the addition of
recurrence between layers [Scho91].

Hypotheses

The experimental perspective taken here is concerned with
understanding the nature of language learning enough to
implement useful models by whatever means, whether neural or
statistical, hybrid or novel. And we follow [Powe89] in
recognizing the importance of contributions from Cognitive
Science, and our theoretical model conforms, in the main, to the
hypotheses present in Chapter 13 thercof. In particular, we
recognize the importance of physiological restrictions for the
determination of the nature of language, we learn language by
making hypotheses which can prove useful irrespective of their
validity, we envisage the negative information necessary for
learning as coming from the natural restrictions of human
physiology, environment and current hypotheses rather than
from explicit teachers and critics.

In ncural networks this type of system behaviour is called self-
organization. In other contexts it is called auto-correlation or
emergence. It is can also be seen as a consequence of fundamental
principles well known in Linguistics, and indeed the foundation
of Phonology (and also its gencralization to Tagmemics),
namely: Contrast in Identical Environments (CIE) and Contrast in
Analogous Environments (CAE).

We wish to develop one hypothesis further here. It is beyond the
scope of this paper to go over once more the psycholinguistic
evidence reviewed in [Powe89], but we note that the experiments
we reviewed in the last section are consistent with, or at least
suggestive of, the complexity hypothesis, pivot grammars, and
nucleus-margin coordination. These suggest respectively that the
simplest concepts (and by extension here, constructs and classes)
are learnt first; that certain words in a child grammar function in a
special way, as pivots, whilst not conforming precisely to adult
grammatical classes; and that a binary grammar is evident, at
many levels, in which the components differ in importance and
may thus be designated as nucleus and margin.

In terms of gramatical classes, the natural complexity metric is
the size of the class. A class that is always represented by a

Sense Class Thresh-Set

class(lang, 16, [a, the,...])
class (lang, 10, ([rat, cat,...])
class(lang, 12, ['.','?',"'!'])



single exemplar, or a very small number of exemplars, but whose
degree of occurence is comparable with other classes, will clearly
provide a unmistakable context which can act as a boundary
condition for the self-organizing process. That is, closed classes
will act as pointers to the more open classes. This facilitates
focussing on the open class “word™ and hence the attachment of
semantics. The broader scope and easy identification of the open
class therefore makes it the ideal candidate to be the main
information carrier, or contentive, as well as the syntactic
nucleus.

Mem (Lev) Description

?? (0) Several independent variables

11 (1) 4 to 6 feature single phone characters
10 (2) 2 or 3 character (C* or V*) clusters
8 (3) 2 or 3 cluster C*V*C* sgyllables

7 (4) 2 or 3 syllable morphs

6 (5) 2 or 3 morph words

4 (6) 2 or 3 word phrases

3 (7) 2 or 3 phrase clauses

2 (8) 2 or 3 clause sentences

1 (9) 1 or 2 sentence (nuc./marg.) segments
5 (10) 2 or 3 segment paragraphs

2 (11) 1 or 2 paragraph monologues

.1 (12) 2 or 3 monoclogue dialogues

Fig. 4. Phono-morpho-phraseology. Levels of the speech-
language hicrarchy, from feature level through Phonology
and Morphology to Phrase Structure and Discourse Grammar
are illustrated with a level number for reference and an idea of
the possible variation of the number of units stored and
vailable at that level (decreasing as complexity increases).

This process can be reflected at many levels, and is by no means
limited to the speech hierarchy (Fig. 4). Similar processes were
indeed first observed in vision [Mals73]. But in the context of
speech, the prosodic features (including stress, intonation,
speech rate and pauses) form clear easily distinguishable classes
of limited membership. This allows focussing on phonological
phrases and syllables. These have a close relationship to the
grammatical phrase and morph, where a similar process can
“identify repeated syllable/morphs as contexts which will cohere
into a closed class. Similarly phrases subtended by a particular
closed class can act as units in which the frequently occuring
templates can provide boundary conditions for the self-
organization at that level.

The experiments reported above demonstrate these effects at
several different levels. Phonemes have been mapped by neural
self-organization; noun phrases have had their word components
classified by the same and related statistical techniques; sentences
have had their phrase/word components classified similarly.

We proposed to explore one of the missing pieces from this
features to sentence classification: the syllable is normally
defined in terms of particular patterns (varying according to
language) or consonant (C) and vowel (V) classes. The syllable
and these consonant vowel classifications are missing from the
above demonstrations. The consonants and vowels are
determined by phonetic features, and a related prosody also helps
to identify syllables. Our theory would suggest that these
physiological characteristics should act as restrictions (or
boundary conditions) defining logical closed classes which would
be actual syntactic entities, and would thus adopt also the
associated syntactic and semantic properties (open = contentive =
nucleus).

Why should we distinguish vowel and consonant — or indeed
liquids, nasals, etc?  Morphophonemics dictates some
constraints, but why would we expect a grammatical function?
This hypothesis provides an explanation. It further leads us to
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predict that we should discovering such a class by application of
self-organization. To be more precise, we would expect the
vowels to appear as a closed class rather than the consonants,
being a smaller class — although liquids or nasals or something
clse could be a candidate according to size, but are cxcluded by
their lack of primary grammatical significance. As there is not a
one to one correspondence between phonemes and graphemes
(characters) we allow the possibility of groups of graphemes to
function as a unit, and hence the possibility that diphthongs or
modified characters (e.g. +h, +r, +], ctc.) might be present.

There is also the question of how small a closed class should be —
even those we have identified could conceivably be subclassified.
We need not to introduce size as a parameter, however the magic
number seven is again used as a memory/window constraint. The
vowels happen, interestingly to fall into the magic number seven
plus or minus two range. They may just be another addition to the
catalogue of its magical properties!

Algorithm

We first note that clusters or phrases (collationally significant
class constructed from lower level units) are significant to the
extent that:

Units occur relatively frequently with their predecessor(s);
Units occur relatively frequently with their successor(s);
Prefixed units have a modified class of successors;

Suffixed units have a modified class of predecessors;

Suffixed units have an almost unmodified class of successors;
Prefixed units have an almost unmodified class of predecessors.

Thus, /qu/ is significant by a, /th/ is significant by b, c and ¢, /ck/
is significant by b, c and d. In the case of properties a and b, one
unit acts as a good predictor for the other member(s) of the
cluster. Properties ¢ and d indicate that the cluster does not
simply inherit collations but has unique characteristics. The final
pair of properties are related to apparent recursion, but are more
general in that they extend to cohesive constraints.

T™he Aas TR

Normally the modified succ/predecessors class is a reduction
which excludes those which make up the other component of the
structure. It may be that the class is as it would have been without
the intervention (apart from such modifiers), or that it follows the
modifier, or both. Thus /t/ can be followed by [h],[r], VOWEL;
/th/ can be followed by [r], VOWEL; /a/ can be followed by
VOWEL,; /thr/ can be followed by VOWEL. So: /th/ is a level 2
modification, /thr/ & /tr/ are level 3 clusters.

Read dict & produce Context-Char sets <= SEVEN
Significant sets => Cluster-Cluster pairs

. Group left & right sets as g & h distributions
. Group complementary clusters into g & h cosets
4a. Intersect gives distribution for both sides
5. Restrict all distribution size to SEVEN t TWO
6. Autocorrelate for subset + TWO of distribution
6a. Intersect/Union for both/either side cosets
7. Make best SEVEN of Intersection/Union classes
7a. Make mutually exclusive hyperclasses

bwl\)l—‘

Fig. 5. OQutline of algorithm.

The present algorithm looks for signs of the first of these three
pairs of properties: it collects all the contexts for each character
and group of character within SEVEN character strings (including
word boundary and capitalization codes); it then groups into
classes all the common characters and character groups which
occur in an identical context (left and right contexts separately),
associating their sets of contextual distributions with the classes;
it finally secks to correlate similar distributions (£ TWO) and
allows evaluation according to ecither symmetric or assymetric



relevance, cither weighted or unweighted by the size of the class
found.

SEVEN and TWO are parameters which may be varied slightly.
Examples of the results and the intermediate stage associations
will be presented in the next section, along with some more detail
concerning the transformations at each stage. An overview of the
algorithm is presented in Fig. 5.

Results

The first stage of the processing can be viewed as the
construction of a finite state machine in which each occuring
string of less than SEVEN characters constitutes a state and the
following character occurences define a transition possibility.
This representation was used for pragmatic reasons, including
efficient indexing and other uses of the structure.

fsm(i,p,1,296).
fsm(v,a,1,297).
fsm(th,e,2,299).
fsm(abl,e,3,301).
fsm(g,1,1,308).
fsm(ab,1,2,309).
fsm('$co',n,3,310).
fsm(ra,n,2,310).

Fig. 6. Finite Siate Machine representation of context and
next character. ‘$’ marks a word boundary; ‘' indicates the
following character was upper case. Arguments are context,
focus, length of context, number of occurences in context.

Examples are shown in Fig. 6 of the predicate fsm. Another
predicate gsm provides a view of all pairs of clusters occuring
with a combined total of SEVEN characters. Then for ecach left
cluster the distribution of right clusters associated with it by gsm
are extracted as dgsm and vice-versa (dhsm). A sample of these
distributional classes is shown in Fig. 7, and it is already
apparent there that the vowels, or something closely related, arc a
significant class.

dgsm (4,189, [d,1,n,r], '$%a’').
dgsm (6,385, (a,e,exr,0,x,u},'$*b').
dgsm (1,36, (x],'$*be"').

dgsm (5,326, (a,ar,h,1,0],'$%c").
dgsm(l, 36, [x],'$"ca').

aysnm (5,198, [a,e,1,0,u],'$"d").
dgsm (1,35, [1],'$%e").

dgsm (2,61, {r,re], '$"£f').

dgsm (1,20, (e],'$"fr').
dgsm(4,144, [a,e,0,r],'$"g").
dgsm (3,206, (a,e,0],'$*h').

dgsm (3,106, (a,e,0],"'$"3").

Flg. 7. Distribution classes subtended by a given left
context (extract). Extract is for word initial contexts from
proper nouns. Arguments are size of class, occurences of
class+context, class, context.

We now repeat the excrcise with dgsm to group together the
cosets of clusters which subtend the same distributional class,
cgsm, and vice-versa (chsm). Although some small groups of
very closely related clusters arise as cosets, as illustrated in Fig.
8, the sets can also often be described in terms of common initial
or final segments (cp. properties c to f above). But as there are
many similar distributional classes which are affected by sample
error in the selection of a limited dataset as well as by memory
constraints with the rejection of rare collations.
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cgsm (1,458, (a,an,e,1,15,0,u}, [pl]).
cgsm(1,2808, [(a,ar,ara, as,at,e,en,er,..], [$p]).
cgsm(2,1031, (a,ar,q,c*,9,1,0,0n], [$"m,"m]).

Flg. 8. Cosets of left contexts subtending the same
distribution class (extract). Arguments are size of coset,
number of occurences, distribution class of clusters, coset of
subtending clusters. Quotation marks are omitted for
compactness.

So far we have performed Contrast in Identical Environments
(CIE) type classification, now we want to perform Contrast in
Analogous Environment (CAE) type classification to bring
together similar distribution classes and combine their cosets and
assess the number of different collations and occurences for these
fuzzier hypersets of distribution classes.

classg(h, [$a,a,e,1i,mi,0,u], (a,0,1,0,u], ($"q,..]).
classg(h, [($a,a,e,i,mi,0o,u],[a,e,1,0,u], [cr]).
classg(h, ($co,$1,a,co,1,0,u], [a,co,i,0,u], [8]).
classg(h, [$co,$1,a,c0,1,0,u},[a,co,i,0,u], [n]}).

Fig. 9. SEVEN classes (right) and close intersections with
left distribution classes (extract). Distribution classes of size
SEVEN+TWO are used to find other distribution classes which
are similar in that the intersection with the SEVEN class differs
by no more than TWO from the SEVEN class. Arguments are
source of selecting SEVEN class, SEVEN class, intersection
with distribution class, coset of distribution class. Quotation
marks arc omitted for compactness.

In fact, we use the sets of known distribution classes intersected
with themselves to define a kernel which must be within TWO of
the size of the intersecting class. For efficiency, we use as
intersecting classes only those with a size in the SEVENXTWO
range. As illustrated in Fig. 9, the vowel class emerges as one of
the most important of these.

At this point, we combine the information from left and right
distributions and compute statistics based on the size of the
common and total cosets of the SEVEN classes, or the number of
actual occurences of subtended collations. On all four meirics, the
vowels emerge as the most well defined class — with a significant
lead over the runner up in second place, as shown with best seven
scores for two of the metrics in Fig. 10.

Conclusions

In these experiments using statistical techniques and a single
exposure to cach word of the Unix dictionary, the vowel class
emerged first, suggesting it as a closed class. The cosets were
primarily consonant clusters, suggested analogously as an open
class. This confirmed a prediction that the vowel-consonant
distinction was of significance in learning, that the vowels would
emerge as a closed class providing a limited number of contexts,
and that consonant clusters would emerge as open classes.

One surprise was that diphthongs were not represented, and indeed
vowel-semivowel collations came nearer to achieving
membership.

We suggest that the magic number seven plus or minus two
[Mill56] should also encompass the number of the vowels. It was
indeed a parameter in the analysis, and variation of this parameter
did vary the precise class learnt, but the relationship has not yet
been analyzed. However, its application to the size of the
sclected class secemed least decisive — similar results were
achieved with 612 and 743 settings, for example.

The exclusion of diphthongs may also be an indicator that they
are recognized as complex, at least in the orthography and under



coseti (28,84,4,12, [a,e,¢a,1,in,0,u], (d,n,s,t],['S1',b,c,d,h,1,n,p, L, 8,8t,t]).
coseti (28,112,4,16, (¢, £f,g,p,s,t,v], [a,0,1,0],(['Sa','Sre',",a,al,an,e,en,0r,i,..]).
cosetli (30,144, 5,24, (¢,4,9,1,8,t], [a,ar,@,1,0],['$a',",a,an,ar,e,en,er,i,in,1,..]).
coseti (30,168,5,28, (a,e,1,0,u,y], (b,c,m,p,s],['Sh','Sm', 'Ss’','St',~, an,b,c,..]).
coseti (48,156,8,26, [a,e,er,0,r,ul, (b,c,e,f,g,i,n,t], ['$”b','SE','Sp','St',.]).
coseti (49,196,7,28, (a,e,1,0,r,ra,u], (b,c,d, f,g,r,t], ['$b', '$c', "'8d', '$g"',..]) .

coseti (85, 385,17,77, (a,e,1,0,u], [b,c,ch,d,e, f,g9,1,11,.

.1, 07874, "8b", "8, ) .

Fig. 10a. Cosets of SEVEN classes of either context sorted by occurence in intersection (extract).
Arguments are occurences of intersection coset, occurences of union coset, size of intersection coset, size
of union coset, SEVEN class, intersection coset, union coset.

cosetdi (30,168,5,28, [a,e,i,0,u,y], [b,c,m,p,8],['S$R', "$m*',"'$s8','5t"',%,an,b,c,..]).
cosetli (49,196,7,28, [(a,e,1,0,r,ra,u], (b,o,d,£,g9,,t],['$b"','Sc','$d","'Sg",..]) .

coseti (3,96,1,32, (a,e,0], [yl, ['5"9', '$hht, 1805, '$hp, '$%s', 'Scr', "g', "*h',.
coseti (16,184,4,46, [a,e,0,u], [i,1),mp,ri], ['$*b",'$"d', '$ch’,'S1','Sm", '$n’,.

-1).
1)

coseti(15,245,3,49,(a,e,i,0,r], [ch,t,th], ['Sb', 'Sc','84','$¢E', 'Sg', 'Sp',..]) .
cosetl (16,232,4,58, [a,e,1i,0], [k,sp,u,v], ['$"1','$"m’', '$"n', "$ ', 'Sbr’,..]).

cosetli (85,385,17,77, (a,e,i,0,u], [b,c,ch,d,e,£f,g,1,11,

Flg. 10b. Cosets of SEVEN classes of either context sorted by size of union (extract).

«en], ['87a', 80, "8, ) .

Arguments are

occurences of intersection coset, occurences of union coset, size of intersection coset, size of union coset,

SEVEN class, intersection coset, union coset.

the assumptions behind this program. Recent psychological
studies indicate that familiarity with written language may
necessary to the (conscious) recognition of segments [Read86;
Mann86]. But are diphthongs recognized as complex? Are
vowels recognized as having features? Is this totally acoustic or
does it have a motor component? It will be very interesting to
see what results of similar experiments achieve on speechl

Although this experiment was performed using statistical
techniques rather than neural networks, it was guided by previous
work which achieved similar results using cither or a mix, and it
is expected that similar results could straightforwardly be
achieved in a neural simulation.

The success of back-propogation in multi-layer ncural nets has
perhaps overshadowed scif-organization in simpler networks,
despite the impressive carly low-level results; the need for
semantics has perhaps overshadowed the internal consistency of
grammar at the lower levels; the theoretical need for ncgative
information from the environment has perhaps overshadowed the
cffective supply of criticism from boundary conditions and
system restrictions; and more generally the tendency to assume
that basic linguistic distinctions are innate and very closely tied
to the perceptual system itself may overshadow the fact that some
of these distinctions can be learnt very easily with very basic
mechanisms. These alternative perspectives are worthy of more
emphasis and study.

This paper has presented some computational results and
hypotheses about language learning. More importantly it poses
some traditional questions in a new light and suggests new
avenues of rescarch for the traditional cognitive science
disciplines.
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My relevant background inciudes a PhD in Computer
Science at Carnegie-Mellon, following a BA in mathematics
and philosophy - with a strong dose of linguistics - at Yale.
| studied a lot of additional linguistics over the years during
graduate school, at Linguistic Institutes, and while | was
teaching. | have held faculty positions (jointly) in linguistics
departments, but primarily have been a computer scientist,
working in theory of computing, programming languages
and systems, and artificial intelligence. | also headed com-
puter science departments at Queensiand (Australia) and
Tulane and have worked as a technical executive in a pri-
vate corporation and on the research staff of IDA, a not-for-
profit "think tank”.

Among the research topics on which | have worked over
the years, my favorite is probably language learning, which
is why | have pursued approaches to modaeling it off and on
for the last twanty years. | won't go into the details of my
early syntactic acquisition models, which are mentioned in
the Handbook of Artificial Intelligence and elsewhere, but
list some relevant publications below and will be glad to
discuss them or send information to anyone interested.
The models were implemented computationally in a set of
SNOBOL4 programs, all called PST, but actually a succes-
sion of elaborations on a single learning paradigm. In each
case, the program was presented sentences, along with a
meaning representation for each sentence. If it could not
process the sentence with its available grammar, it tried to
understand some portion of the sentence. If a certain
degree of understanding was achieved, even at the single
lexical item level, some modifications of the programs
internal grammar could take place. The programs only
addressed this issue of possible adaptation, not the issue
of how lexical semantics are learned or how many trials it
might take to learn (and possibly uniearn) new structures.

Some years ago, | commented to Herb Simon on my
disappointment that there was no way to verify that the
modaels, which acted plausibly in computer simulations,
really had anything to do with human language learning,
since the detailed data about understanding in human
infants was not available, and observation may give a false
picture of the extent of understanding (see Carol Chom-
sky's results and others). He suggested that one might
consider developing a- second language tutoring system
that could, through built-in tests, give a view of how the lan-
guage was being acquired, based on known exposure to
the second language, especially if the language was a suf-
ficiently “exotic” one that the learner’'s exposure was
entirely or predominantly through the system. Leaving
aside the possible differences between first and subse-
quent language acquisition, this would certainly give some
clues to human language acquisition. Although | proposed
to develop such a system and wrote some programs (again
in SNOBOLA4) for individual modules, | never had the time

or funding to do so, except for early design (see the Aus-
tralian paper cited below), but have not given up the
thought.

A few years ago, | floated an idea that again put the
machine in the position of learner, the idea being to use the
human as tutor and a computer program as the learner.
The idea got soma interest from a government laboratory
(the U.S. Air Force Human Resources Laboratory) and a
limited amount of funding, but | was unable to follow up on
it because of more pressing items. More recently, | was
given funding by the Applied Information Technologies
Research Center of Columbus, Ohio, to work the concept
into a system design. That is the topic of my paper at the
Spring Symposium, and | believe that it offers both a desir-
able and practical device for human-computer interaction
and an approach to understanding the language acquisi-
tion process, based on dialogue between the learner and
speakers.

Related Publications (In Additilon to Those Cited in the
Following Working Paper)

Early Syntactic Acquisition:

A Problem Solving Theory of Syntactic Acquisition, PhD Dis-
sertation, Department of Computer Science, Carnegie-
Melion University, 1974,

The interplay of semantic and surface structure acquisition,
Recent Advances in the Psychology of Language (Campbell
and Smith, eds.), Plenum Press, vol. 2, pp.71-90, 1978.

Varieties of learning in grammatical acquisition, Structural/
Process Models of Complex Human Behavior (Scandura

and Brainerd, eds.), Sijthoff and Noordhoff, pp.465-477,
1978.

Second Language Acquisition:

An artificial intelligence approach to natural language teach-
ing, Proc. 3rd Australian Computer Science Confaerence,
Australian National University, Canberra, pp.97-106, 1980.

Language Learning Computer Interface:
(See following paper and references therein).

Miscellaneous Related Topics (Selected Papers):

Artificial intelligence -- a case for agnosticism (with B.
Chandrasekaran), /EEE Transactions on Systems, Man and
Cybernetics, vol. 4, no. 1, pp. 88-94, 1974.

An extended state view of parsing algorithms, Papers in Com-
putational Linguistics, Hungarian Academy of Sciences, pp.
141-160, 1976.

Natural language devices for programming language readabil-
ity: embedding and identifier load, Proc. 2nd Australian
Compute Science Conference, Hobart, pp. 159-167, 1979.

Some results on pure grammars, Proc. 2nd Australian Com-
pute Science Conference, Hobart, 53-71, 1979.

An experimental applicative programming language for lin-
guistics and string processing (with P. A, Bailes), Proc. 8th
Int'l Conference on Computational Linguistics, Tokyo, 520-
525, 1980.

Specialized information extraction: Automatic chemical reac-
tion coding from English descriptions (with E. Zamora and
P. Blower), Proc. Conf. on Applied Natural Language Pro-
cessing, pp. 109-116, ACL, Santa Monica, 1983.

Specialized information extraction from natural language
texts: The “Safety Factor", Proc. 1985 Conf. Intelligent Sys-
tems and Machines, 318-323, Oakland University, 1985.

Pattern-directed processing in Ada (with Kenneth Wauchope),

Proc. 2nd IEEE Int'l Conf. Ada Applications and Environ-
ments, Miami, 49-56, 1986.

137



Language Learning and Adaptive
User Interfaces
Larry H. Reeker
Institute for Defense Analyses
Alexandria, VA USA

Abstract

An adaptive user interface is one that changes its
behavior to accommodate the preferred interactive
behavior of the user. This paper discusses the con-
cept of interfaces that adapt to the linguistic
idiosyncracies of the user. It discusses two slightly
different approaches, both of which have advan-
tages, and argues for the utility of adaptive
interfaces.

1. Introduction: Interface Adaptivity

If the objective of a user interface is to allow communi-
cation with a system in the form most natural to each of a
broad range of users, a form that may include natural or
antificial languages or a mixture of the two, then the inter-
face must be adaptive. In other words, it must be able to
learn to follow the user's commands that it cannot initially
understand. It must also be individualized, since all users
will not want it to adapt in the same way.

2. The Advantages of Adaptivity?

Adaptation has advantages over a natural language
interface. The problems of natural language communica-
tion with computers are well-known (see, for example,
[Reeker, 1980]) and have not really been alleviated by
advances in natural language processing technology. Watt
[1968] perceptively pointed out over twenty years ago the
fact that a natural language interface that is imperfect may
decrease the user’s ability to stay within the bounds of the
acceptable interface language (which we will call the sys-
tem language, contrasted to the user languagse). Natural
language output may do the same, encouraging the user to
expect a greater breadth of linguistic understanding than
actually exists in the system.

There are a number of advantages of a system'’s adap-
tation to the individual user. For occasional users, it
simplifies the process of having to reiearn the system each
time it is used. Even regular users fesl more comfortable
with a “personalized computer” that reacts appropriately to
their idiosyncratic usages, as evidenced by the fact that
seasoned computer programmers develop ways to adapt
their systems to their preferred usages. Some systems pro-
vide means to facilitate manual adaptation in limited ways,
but adaptive systems do it automatically. Thus experienced
users can consciously thange the particulars of interaction
as they become more practiced, and the system will adapt
to the new modes of interaction. Adaptive interfaces have
been proposed as an alternative that has advantages over
a monolithic interface, natural language or otherwise
[Reeker, 1984; Lehman, 1989].

The argument for adaptivity is made strongly by Jill
Fain Lehman [1989; 1990b], who examined some of the
implicit behavioral assumptions underlying the argument
for the benefits of adaptive interfaces. The assumptions
are:
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(1) The user's linguistic interaction with an adaptive
natural language interface will be consistent enough to
arrive at a relatively stable common language for user/sys-
tem interaction.

(2) This language will differ from user to user in signifi-
cant ways.

(3) The user's ability to use more individualized, idio-
syncratic language will result in better task performance
than having to use a built-in interface language.

To test the hypotheses that these assumptions were
valid, Lehman set up experiments using a simulated adap-
tive interface with a hidden operator. The simulation was
based on the design for a real system, subsequently imple-
mented as CHAMP (discussed below). Her results
indicated that the users did exhibit individual consistency
and comparative variability. As might be expected, not all
users had the same difficulty in adapting to the built-in
interface language, but some clearly did, and initial prob-
lems did seem to be overcome by (simulated) system
adaptation.

3. A Deslgn for an Adaptive Individuallzed User
Interface

In proposing adaptivity, it may seem that we are sug-
gesting a task more difficult than building a natural
language interface, since building systems to learn a cog-
nitive skill is generally more difficult than constructing a
system to perform that skiil. But the task of developing an
adaptive interface, while not simple, is facilitated by the use
of a good deal of built-in knowledge. It is not as difficult as
building a natural languagse interface that will be adequate
for all users (if one can exist), and clearly less difficult than
building a system for learning a natural language ab initio,
though it is related.

A slightly different Adaptive Individualized User Inter-
face (AlUl) was designed by this author, using a
transformational approach. In the AlUIl, the system is
allowed a large amount of built-in knowledge, including a
rich lexicon and syntax of the user inputs expected and a
semantic mapping for the built-in inputs that the system
can deal with (system inputs). Based on discovery of the
meaning equivalence between novel user inputs and
known system inputs, the AlUl has to formulate transia-
tions which will be learned in generalized form as a set of
linguistic transformations.

The known, constrained domain of discourse that takes
place at a particular system interface provides an opportu-
nity to use what Rada (Forsyth and Rada, 1986) calls
“knowledge-rich” learning strategies, provided some addi-
tional knowledge can be obtained from the user when
necessary. In the AlUl, this knowledge is obtained by a
user-machine dialogue. And the dialogue quickly zeros in
on the known knowiedge because the machine knows what
it needs, the user is cooperative, and the machine has
been furnished with enough knowledge to conduct the dia-
logue (some of it heuristics based on the domain). The
dialogue does not have to take place every time a user
uses a new utterance, since there are a finite number of dif-
ferent forms (though, for practical purposes, there are not
a finite number of different utterances), and the machine
will generalize over forms.



The AlUl was designed for system inputs consisting of
a limited set of UNIX commands (not a finite languags,
since any file names can be used), and the user inputs may
be those commands or English versions thereof, or combi-
nations of English and UNIX. The choice of this domain
was made because of the constrained domain of dis-
course, rather than the prospective utility of an interface to
UNIX, since the system was experimental.

Space does not permit details of the overall workings of
the AlUI in this paper, but a design summary and discus-
sion of the underlying linguistic framework will be
presented. Further details can be found in the reports on
the design project [Reeker, 1988].

The AlUl contains, for a given user, a User Transforma-
tion Dictionary (UTD). When user commands are not
legitimate system commands as given, the UTD is con-
sulted to look for candidate transformations to system
commands. If no such transformation exists, the AlUI will
try to adapt. The core functional module of the adaptive
process must therefore find a translation of the user input
and execute the command. If the translation and its effect
meet the approval of the user, then a generalization pro-
cess takes place and the resulting transformation is stored
inthe UTD.

A summary of the processes by which the AlUl deals
with user commands that are not in its system command
repertoire is given in Table 1. (Due to implementation con-
siderations, this is not the actual flow in the program, but is
easier to conceptualize.)

Transformations and parsing are discussed below.
4. The AlUl in a Linguistic Framework
4.1. General Description

There is still controversy about how to process language,
in terms of the stress placed on structural processing or
direct meaning processing (proceeding from the lexical
semantics). The view taken in the design of the AlUl is that
either approach can give enough information to at least
begin a dialogue between a person and a machine that will
lead to the desired communication, and that both are
needed if the system is going to adapt to the user. The
knowledge obtained by adaptation is stored in terms of
structural information and semantic mapping information,
as described below.

4.2 The Transformations Used

The process of translation from user input (user com-
mand) to one the system understands (the proper system
command to convey the meaning of the user command) is
driven structurally but incorporates the semantic mapping
through a set of transformations. The transformations have
something in common with Chomsky’s early theories of
transformational grammar [1957], in that there is a kernel
language consisting of the built-in system language, with
the rest derived by transformations. Given the fact that the
kernel sentences can also be considered as the meaning
representation language for all intelligible inputs, the lin-
guistic model begins to look much more like that found in
theories of generative semantics, in which transformations
were from the meaning representation to the surface struc-
ture, without the intervention of a (syntactic) deep structure
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TABLE 1. SUMMARY OF PROCESSES IN AlUI

(When the User Command is Not a System Command,

Case I: User Command Can be Parsed
Case I-A: Transformation in UTD

¢ Apply Transformation

- Maich
- Transform
Case I-B: Transformation Not in UTD
Case I-B-1: Meaning of User Assertion Known to AIUT
¢ Formulate Transformation
- Specific Tree Mapping
- Category Generalization
- “Risky Generalization™
» Organize Transformations
Case I-B-2: Meaning of User Assertion Not Known
o Heuristics
o Partial transformation

Case II: User Command Cannot be Parsed
Case [I-A: All Lexical Items Are Known
e Partial parses

» Formulating New Transformations
* Reformulating Grammars

Case II-B: There Are Unknown Lexical Items
o Assign new categories

* Merge categories that use same Transformations

Case [1-C: Create Transformation for Given String Only

(see e.g. the exposition in |Grinder and tigin, 19/3)). It was
never clear just what the meaning representation should
look like, and today, meaning representation is recognized
as the major problem in natural language processing. But
the meaning representation for the AlUl is clear, so the the-
oretical framework follows naturally.

Since the purpose of transformational grammars is gener-
ally to define the well-formed sentences of the language,
they are formulated as transforming structural descriptions
of kernel sentences to structural descriptions of surface
sentences; but in the AlUI, transformations are used for
translation to kernel sentences, so they are formulated in
the opposite direction. The grammar used to parse input
sentences is context free, with categories that reflect input
expectations, based on the domain semantics. Because
the system commands are all legitimate user commands,
they are part of this grammar. A sample initial grammar and
lexicon are shown in Tables 2 and 3.The types of user
inputs (and their meanings in terms of system commands)
that this grammar could treat is shown in Table 4.

4.3 Some Comparisons to CHAMP

Lehman's interface, CHAMP, does not use transforma-
tions, but learns phrase structures in a way that is quite
analogous to the approach to early syntactic acquisition by



Table 2. llluswauve Partial Grammar for Example Table 4. User Commands and Meanings (System Commands)
£ = <C> <C> = <CT>and <CP2>[<CT> User Command Meaning
<C> 2 <CP> | <CP><CA> <CT>—<OV><CTP><CPP> (1) run vi on aitre. 1 vi aitre. 1
<CP>—xCP>PIPE><CVP>| <CVP><CTP>—<CV >and <CTP>|{<CV> (2) run vi with | on aimrc.1 vi -1 aitre.1

<CV> = <CV> <AP>| <V> <CV'> ~ <V><VPPY <V>

<CA — <CVA> <FILE> <VPP> — <PWITH><ARGS>

(3) run tbl and toff on aitre. 1 tbl aitre.1 | ooff

(4) run vi with r and x on aiwe.1 vi —r —x aitre.1

<AP>—<ARGxAP> <ARG>

<ARGS>—<ARG>nd <ARGS}<ARG3

<CVP> =<CVP><FILE> | <CV> <CPP> — <PONXFILE>

1y ”
BOLDFACE indicates a rule that <CP2> — <CV2> <CPP2>

generates a basic UNIX command <CPP2> =<PTO><FILE>

forto. (i.e. System Grammar rule).

(5) run Is with | and grep with ¢"d” on aitrc.1 Is -1 aime.1 | grep —"d"

16) run off on aitre.i and append to aitrc.2 wroff aitrc.l >> aitrc.2

Tuble 3. Illustrative Partial Lexicon for Grammar of Table 2

<KCVA>— > [>> > <PTO> — tw]on]...

<PIPE> — | <ARG> — -l}-rl..

<QOV> — run|do]... <CV> — s|uwoff ...

<PWITH> ™ with|using]| ... <ARG>— ~||-r|..

<CV2> — append|sendto]... <V> = s | woff ...

<FILE> — aiwe.l |aime.2 ...

Some of the categories in thesystem are defined by morphology or by
situation (e.g. whether a file or directory is in the currently accessible
Jirectory structure), rather by listing in the lexicon.

this author [Heeker, 1970, 19/4, 1975]. In that approach, a
memory-limited bottom-up parser worked on adult input
sentences, producing reduced forms (simulating the baby'’s
impoverished short-term memory). The results were com-
pared to sentences in the child's grammar and changes
were made in single rules and in their corresponding
semantic mapping rules, with generalization constrained
by coherence and consistency criteria.There is a differ-
ence, however, both in the assumption as to inputs and the
richness of the grammatical apparatus. CHAMP's parser is
semantically and pragmatically constrained. In the child
language model, the semantics, which were attribute type
with complex (tree-form) attributes and composition rules,
were separate from the grammar and constrained only the
acquisition, based on the sacond input, which was the
meaning. The view of intermixed structural determination
and meaning determination was not yet current at the time
of the earlier work, but seems more realistic

So in CHAMP the system uses the user’s current gram-
mar and lexicon to try to parse the user input, and
Lehman'’s adaptive parser design classifies common devi-
ations (ones recoverable by insertion, deletion,
substitution, and transposition) in terms of degree of devi-
ance. If the deviance is zero (the user input is parsable
already), there is no adaptation required. If it finds one or
more parses that are deviant by some amount but not more
than a threshold value (which was two in the experiments
mentioned earlier), then it classifies the user input as learn-
able. Learning consists of adding lexical items and/or rules
to the user's grammar and generalizing properly. These are
all discussed in Lehman's thesis [1989] and machine learn-
ing paper [1990a]. There is a similarity to conditions
discussed for learning AlUl [Reeker, 1988; Reeker and
Morrison, 1988), though the details are different because of
the different theoretical framework.
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7Y run Is with [ and grep with e"d" on aitrc.1
and append to aite.2

Is -1 aitre.1 | grep —"d"
>> ajtrc.2

Informationally, it can be shown that the additions ot
rules in a non-transformational generative grammar of suf-
ficient power and the corresponding addition of
transformations is equivalent. Given the form of the gram-
mar in CHAMP, even the semantics carried in the
transformations of AlUl has an equivalent form in the gram-
mar, and things like context sensitive syntax can be dealt
with by constraints. This has an appeal, since the use of a
body of transformations carries a time penalty. There are
no pragmatic constraints in the linguistic apparatus of AlUl,
which may give an advantage to CHAMP. Pragmatics are
used in the heuristics of AlUI, but the user could use a com-
mand with a meaning that is totally strange in the pragmatic
context, and the only problem would be that the system
would have difficulty in discovering the meaning. The role
of pragmatics is an interesting one, as is the question of
which framework is preferable for the grammar. Some
experience with the systems will help to answer questions
about these things.

4.4.BulldIng-In Structural Knowledge

As suggested earlier, it is desirable to have as much
understanding of the structure of anticipated inputs incor-
porated into the system as possible. Thus a rich initial
grammar of user commands is built up by starting with the
syntax of the kernel of system commands and adding
expected structures from English. The grammar given in
the design report may not be ideal in that respect, but there
was an attempt to do it systematically. The grammar for
system commands was developed on a semantic or logical
basis, based on binary divisions of the domain of expres-
sive possibilities. The grammar for user commands was
developed to mirror English usage and to map into this log-
ical format. Being keyed to the sublanguage and to the
mappings to system commands, it carries a lot of seman-
tics in its rules. It is anticipated that the development of
grammars for adaptive interfaces, like other aspects of
applied system design, would become easier as experi-
ence was gained with the systems.

4.5. Determining Meaning Through User Dialogue

The AlUI requires that the system be supplied with the
meaning of an input that it does not understand. Heuristics
for determining the meaning of user commands depend on
the limited universe of discourse and pragmatics of the
interaction. As an example, consider a user command “run
vi on aitrc.1”, the system might not be able to parse it in full
initially, but would still be able to assign to vi the syntactic



category <CV>. It is likely that the syntactic category of
aitrc.1 can be guessed also. First, vi will require a following
file name. It is likely that the file aitrc.1 will appear in the
current directory. If a path name had been given (like “dir1/
dir2/foo”) then it is even more clearly (by morphological cri-
teria) a file. So the user command has within it a UNIX
command verb and a file. The first hypothesis has to be
that the user command means “vi aitrc.1”. When the user
verifies this, the system can hypothesize a transformation.
A series of such heuristics has been derived for the AlUI.
Again, the heuristics are based on the domain of discourse
and must be derived individually; but the richer they can be,
the better the interface will be.

If the user were to type a “hybrid” command like “troff
aitrc.1 and place in y”, a similar dialogue would determine
that this means ‘'troff aitrc.1 > y”. The system merely
assists the user in recognizing that this is the form meant,
then enters a transformation. The user cannot, on the one
hand, expect to use the system without any knowledge of
the commands. Of course, on the other hand, if the user
knows the UNIX commands fully, he or she can immedi-
ately instruct the system on desired customizations. But
the user who does not have a thorough knowledge of the
commands can expect to be able to customize the system
too, and to have to look a given syntactic construction up
(or ask someone else) once at most, rather than again and
again, as the interface will then adapt.

Admittedly, there is a lot of potential overhead in deter-
mining the meaning of an input from the user. The
important thing to realize, however, is that “the price will
have to be paid only once”. This is in stark contrast to help
systems and manuals that often have to be consulted over
and over again. In fact, adaptivity is even better than that:
the inadvertent use of the wrong command can be patched
up once and for all. The DOS user who uses “dir” for UNIX
“Is” can get the machine to adapt so that either the DOS
command or the usual UNIX command will work. The UNIX
user who often types “chmod foo 755" (rather than the cor-
rect “chmod 755 foo”) because it seems more naturai
(more like “change the mode of foo to 755”) will be able to
use either order with impunity. If the user is willing to type
more to use more English-like commands, the interface
can be expected to adapt to “change the mode of foo to
755" or “change foo protection to 755", as well.

Dependence upon “clues” to the meaning is very much
analogous to the way that people often extend their lan-
guage capabilities, whether in their first natural language or
a later natural or artificial language. As mentioned, the
grammar and lexical and morphological routines of AlUI
contain syntactic and semantic information like what is a
file and what is an executable file. Although not included in
the present design, a more sophisticated UNIX adaptive
interface might want to check for unknown words in the
UNIX on-line command manual to see if they are associ-
ated with given commands, etc. All of these sorts of
heuristics should improve the dialogue, provided time cost
is not too great (and that will vary with the speed of
machines).
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4.6. Generallzation

Using this strategy, all possible user commands could
eventually be mapped into system commands even without
using structural descriptions and transformations thereof.
That is, the strings could be mapped individually. But the
process would be very slow. A mapping of a particular
string would not tell much about the mapping of related
strings. In order quickly to get to the point where the system
can understand a great variety of user inputs, it is neces-
sarily to map whole classes through the transformations.
And, in fact, one wants to map classes that are as large as
possible. In order to do this, it is necessary to generalize
the results of a particular mapping.

Certain generalizations are fairly obvious. For instance,
if a mapping exists from “run troft on aitrc.1” to “troff
aitrc.1”, then one should exist from “run nroft on aitrc.1" to
“nroft aitrc.1” and from “run troff on aitrc.2" to “troff aitrc.2”.
One may get some overgeneralization by doing this, but
overgenaralization is less of a problem in this sort of trans-
lation than it is where the same grammar is being used to
produce strings of the language as a whole (i.e. of the user
command language). It does not really hurt that the inter-
face could handle inputs that the user would think
ungrammatical.

There are other generalizations that are less obvious.
For instance, if “run troff on aitrc.1” should be mapped to
“troff aitrc.1”, then “run trofft -me on aitrc.1” should be
mapped to “troff -me aitrc.1”. If the grammar is to be effi-
cient, then there are systematic reasons for wanting “run
troff with me on aitrc.1” to be mapped to “troff (with me)
aitrc.1”, on the way to “troff -me aitrc.1”, since in other con-
texts it is going to be necessary to transform “with me” to “-
me”. The design of the AlUl assumed that strong generali-
zations would be made.

4.7. “Worst Case” Structural Determination

it has been stressed that the type of adaptation that
converges to an overall knowledge of the user's modes of
interaction will only take place when the AlUl is provided
with a corpus of inputs that it can classify structurally
(parse) and with the meanings of those inputs. The struc-
tural classification cannot be expected to be perfect,
however, so the system has “fall-back strategies” to use in
the cases where it cannot parse the user input. These strat-
egies use partial parses provided by a chart parser to
create a hypothesized structure for the user input. Once it
is transformed by a transformation derived after the mean-
ing is determined, the hypothesized parse is added to the
grammar. This will cause some variant structural assign-
ments. In other words, the grammatical regularities
developed in the grammar to that point will only be
reflected in the portions that were matched by the partial
parse. In the very worst case, this will cause a “flat” parse,
dealing only with the lexical categories found for the given
string. The degree to which the system will do this can be
varied.

In investigations to date of the types of rules developed
using these methods, the consequences of varying the
structural assignments have not been great. The main
problem caused by proliferating the grammar to deal with a
lot of particular structures is the expansion of the grammar



and the UTD, and from a practical point of view that is
undesirable because it will slow the adaptive process.
Slowness (excessive reaction time) is a problem for a user
interface, of course, and it will be necessary to see how
much one could relax the restrictions without causing reac-
tion time to become excessive. Another consequence
could be slowed learning, since there can be less general-
ization.Obviously, the most desirable situation is where the
grammar enables parsing of the user commands (which
means that it has built into it, or has acquired, a syntactic
knowledge, not necessarily a semantic knowledge ade-
quate to the task). One would expect the typical situation to
be somewhere between the worst and best cases.
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Introduction

“When interacting in natural language it is easy to fall into assuming that the range of sentences that can be
appropriately processed will approximate what would be understood by a human being with a similar collection of
data. Since this is not true, the user ends up adapting to a collection of idioms --- fixed patterns that experience has
shown will work."

- Winograd and Flores , "Understanding Computers and Cognitions”, 1985, p. 129.

Many users of natural language system tend to phrase themselves in the same way most of the time. The goal of this
project has been to develop an optimization technique based on this observation: if one can speed up the analysis phase
for the limited set of "typical phrases”, one will save a great deal of computing time. The idea is that one can then
bypass normal processing for most input sentences, instead using a set of specialized rules. This will be done paying
the price of a small overhead when no special rule proves applicable. The set of special rules is extracted automatically,
using explanation-based learning (EBL), from training sentences given by a user. EBL is a machine-learning technique
related to chunking and macro-operator learning, that analyzes examples of successfully solved problems to find useful

compositions of known rules. It is thus capable of improving a system's performance, but not of extending its
knowledge.

By learning them from real user interaction, the set of special rules is tailored so as to capture the user's way of
expressing himself. The hope is that a comparatively small set of language constructions will account for the majority
of the sentences actually submitted to the system. Once the rules have been learned, it is important to store them in a
way that minimizes the search for applicable ones at run-time, that is to index the learned rules so that quick access is
guaranteed.

The project was begun in 1988, with the observation that the EBL method could readily be applied to clean logic
grammars. In [Rayner 88], the fundamental ideas are described; some examples with toy grammars are presented,
together with code for the EBL learning component, and a formal proof of its soundness. The leaming component, or
generalizer, has the form of a small Prolog meta-interpreter. In 1989 a series of more elaborate experiments were carried
out on Fernando Pereira's CHAT-80 system, reported in [Rayner & Samuelsson 89]. These showed that it was possible
to apply EBL o all steps of processing, from syntax up to the generation of logical forms; code for a "simplifier” was
also presented, a module which performed a further partial evaluation of the learned rules to reduce their size. Most
important, however, was a first version of an indexing mechanism, which made it possible to locate learned rules
applicable to a given input sentence without performing a linear search. Indexing is performed by associating with each

rule an atomic key, which encodes the lexical category information required for the words in input strings for which the
rule is applicable.

In the last year, starting at the end of 1989, the method has been been successfully applied to two full-scale NL query
systems, one of these being the well-known SRI Core Language Engine. This work is described in detail in [Rayner &
Samuelsson 90] and [Samuelsson 91], and is summarized in the remainder of the present paper. The most important
novelties are the use of a new indexing method based on a decision-tree approach, and the results of experiments carried
out on a large test-corpus of 1663 sentences, derived from real user interaction. In these, the EBL-derived leamed rules
achieved a coverage of 90%, and total speed-up, measured over all sentences in the corpus, of a factor of 3 compared to
normal processing. Median speed-up for sentences where a leamned rule was applicable was approximately by a factor of
15, and median overhead on sentences where no learned rule was applicable was approximately 5%.
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Application to non-toy systems

The general architecture of the EBL module is the
same in both of the large-scale systems to which it
has been applied, and is illustrated schematically in
the following two diagrams; the first shows the
compile-time, and the second the run-time system.
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Diagram 1, The compile-time component.

The compile-time system contains three main
components: the generalizer, which performs the
actual extraction of learned rules; the simplifier,
which attempts to reduce them in size by
performing possible partial evaluations; and the
rule-compiler, which adds indexing information to
ensure quick access at run-time. The simplifier was
not used in the Core Language Engine application.
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Diagram 2, The run-time component.
The run-time system consists of a single main
component, the pattern-matcher, which attempts to
bypass normal processing using the indexed set of
learned rules produced by the compile-time system.
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The detailed functionality of all components in the
run-time and compile-time systems is described in
[Samuelsson 91].

We now make a few remarks about problems
specific to each of the two target systems, before
presenting experimental results.

The large-scale NL query interface
prototype

Even though the large-scale NL query interface
prototype had several characteristics that introducied
problems when applying the EBL technique, it
never the less proved possible to solve them. For
this system the EBL module bypasses only
syntactic analysis.

The main technical difficulties derived from the fact
that our implementation of the EBL method
requires the grammar to be reduced to a set of Hom-
clauses. The two major hurdles with regard to the
grammar formalism used are its non-standard
treatment of features and movement: The basic
feature operation is not unification, but priority
merge. Movement is handled not by gap features,
but rather by "non-restrictive” rules, in which more
than one non-terminal can occur on the left-hand
side of the rule as well as the right.

The problems connected with feature operations
were solved by collecting all feature-manipulating
predicates into the body of the learned rule and thus
postpone all feature operations until run-time, when
all feature values are properly instantiated. Doing
this resulted in fairly large rule bodies, and a
component for simplifying the leamed rules was
included.

The task of converting the the unrestricted grammar
into a pure DCG form was performed by first
representing the unrestricted grammar in Pereira's
Extraposition Grammar (XG) format and then using
an XG compiler to turn the grammar into pure
Horn-clauses. Conceptually, the XG compiler turns
the unrestricted grammar into a DCG, where each
non-terminal is given an extra pair of arguments
(the "extraposition list"), to pass around the
additional left-hand constituents.

The SRI Core Language Engine

EBL is very easy to apply to pure unification
grammars such as the one provided with the SRI
Core Language Engine. The rules extracted by the
generalizer were sufficiently "clean” that there was
no need to include a simplifier. For this system, we
also extended the method by learning a set of rules
that constructs words from word stems and affixes,
i.e. that performs the task of morphological
analysis.

Results of experiments on the ATIS
corpus

We now present a brief summary of experiments
carried out at SRI Menlo Park in November, 1990.
The EBL method was tested on the ATIS corpus, a
large collection of sentences acquired by "Wizard of



Oz" methods, where subjects believed that they
were interacting with a database through a real
natural-language interface. It is therefore reasonable
to suppose that these sentences are typical of real
user interaction.

Two subsets were first selected randomly from the
corpus, one of 1563 sentences for learning and one
of 100 sentences for testing. The EBL method was
applied to the learning set, resulting in the
acquisition of 680 rules; these were then fed to the
test set in increments of 20 rules at a time. After
each increment, the test set was measured for rule
coverage, average bypass time, and average
performance gain. The coverage is defined as the
fraction of a test corpus successfully handled by the
EBL module. The bypass time is defined only for
successful EBL look-ups and then as the processing
times for the EBL module. The performance gain is
simply the ratio of the total processing time for the
test set using normal processing, divided by the
total time using the learmed rules.
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Diagram 3, The coverage as a function of the
number of learned rules.
The coverage, as shown in diagram 3, swiftly rises
1o 60 percent for 150 learned rules and then increases
more slowly reaching 90 percent at 680 rules.
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Diagram 4, The median relative look-up time as a
function of the number of learned rules.
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Diagram 4 shows the look-up time normalized by
the time for corresponding normal processing.
White diamonds indicate successful look-up, black
failure. There is an increase with the number of
learned rules. Though, the EBL look-up times are
small compared to normal processing times - the
median look-up times lie between 1 and 7.5 percent
of normal processing time. With 680 rules, the
median bypass time is 15 times less than that of
normal processing and the median overhead is 5
percent.
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Diagram 5, The overall speed-up as a function of
the number of learned rules.
This results in an overall speed-up increasing slightly
sub-linearly in the number of leamed rules. As can be
seen in diagram 5, the system is twice as fast with
250 leamned rules and with 680 rules the system runs
three times faster.

It is our opinion that these experiments provide
strong evidence to support the claim that EBL can
substantially increase the performance of a natural-
language interface under realistic conditions.

Further directions

One obvious thing to do is to use the leamed rules
"backwards", that is for paraphrasing, by constructing
an indexing scheme for logical forms.

Two interesting software engineering challenges are
to integrate this scheme more closely with the target
system to allow the normal analysis component to
use partial results from the EBL module and vice
versa, and to allow incremental adaption of the
system by letting the leaming component run as a
background process.

Finally, we mention briefly a line of research that we
have just begun to investigate, namely to incorporate
the leamned rules into a probabilistic language model
of the kind used by speech recognition systems.
Although our work to date is still only at a
preliminary stage, it appears that this idea may
potentially be very promising,



Learning Simple Semantics by Self-Organization
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Abstract

The recent neural network boom also inspired many researchers in the field of computational linguistics. Language seems
well suited to be processed with the aid of neural-like computer architectures. Main technique used in various research projects
is the Back-Propagation (BP) algorithm. On the one hand, known for its speed and relative mathematical simplicity. On the
other hand, BP lacks psychological plausibility and self-organizing capabilities. To overcome the short-comings of supervised
learning rules, the research carried out in this project evaluates the usability of self-organizing models in Natural Language
Processing (NLP).
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Background

Connectionism is often seen as the paradigmatic competitor of
the symbolic tradition in artificial intelligence [Graubard,
1988]. Renewed interest in the field was mainly caused by the
limitations of these symbolic methods and the practical
problems occurring in the implementations of parallel
algorithms [Herik et al., 1988], [Henseler et al., 1988].
Especially the property of connectionist systems to distribute
knowledge with conservation of generality and integration was
interesting for NLP research. Most popular in connectionist
NLP is the BP algorithm [Rumelhart et al., 1986]. Although
this algorithm started the 1980s neural bandwagon, it has some
serious short-comings. First, the net can only leam
input/output pairs, resulting in limited applicability. Second,
automatic classification of raw data into various classes is
impossible (leaving the need to predefine data categories on
higher data abstractions, one of the main dilemmas of Al).
Next, after the addition of new elements to the learning set, the
entire set must be processed again. In other words, the model
cannot adapt smoothly to a changing environment.
Furthermore, the restricted architecture of BP nets (no inter-
level connections) decreases complexity but increases
neurological implausibility. More realistic are the self-
organizing models, as proposed by Grossberg, Kohonen,
Linsker and Von der Malsberg. These models can classify data
automatically into non-predefined categories by forming a
cortex-like map, and are capable to adapt slowly to an evolving
environment, without the need to feed the entire learn-set over
and over again. However, one of the main disadvantages of
these models is the tremendous complexity. These models work
fine in speech recognition and vision, but whenever one uses
self-organizing models in NLP and other complicated
processes, the complexity gets completely out of hand.
Moreover, it is quite difficult to develop a self-organizing
model, capable of doing more than sensor-based low-level
pattern recognition. Although the results achieved in this
context are still preliminary and not evaluated in depth yet,
self-organizing systems might provide alternatives for some
unrealistic assumptions in back-propagating neural nets.

Introduction

Globally, the following self-organizing neurally inspired
models are known from literature:

1. Grossberg's ART (much related to Von der Malsbergs'
work ),
2. Linsker's Implementations of

Hebbian Rules,
Kohonen's Feature Maps, and
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Reeke & Edelman's Neuronal Group Selection (NGS)
theory.

All of them are based on variants of the Hebbian learning rule
and the competitive-learning paradigm (the author realizes that
there are many more variants on the above mentioned
architectures, however, the models discussed here are best
evaluated, making them more suitable to be used in NLP
application research). Of all these models, Kohonen feature
maps are most easy to simulate and are quite efficient for being
self-organizing [Kohonen, 1984]. This restricted complexity
is mainly caused by the facts that the model consists of one
layer only, and the interneuronal connections are not learned
(they are only used to implement lateral inhibition for the
determination of the best match on the map). As a result,
Kohonen maps are very efficient, but restricted in there usage:
there are no built-in sequence handling mechanisms and it is
impossible to implement hierarchical relations between
objects formed on the map (it is quite irrelevant to let a map fire
in the Kohonen formalism). [Grossberg, 1980] defines a model
with two layers. Individual cells of the second layer correspond
to the centers of clusters of input pattems. A neuron is
connected to all the neurons in the opposite layer. According
to a competitive learning rule, an adaptive model is obtained.
Grossberg, like Kohonen, only learns the connections between
layers. Connections within one layer are not changed. A more
Hebbian way of leaming can be found in [Malsberg, 1973] and
{Linsker, 1988). Hereby, there are no limitations to the
interconnections of the model. All connections can be learned,
as well connections between neurons of different layers as
connections between neurons within one layer. Even more
biologically inspired is the Neuronal Group Selection (NGS)
theory as proposed in [Reeke et al., 1988] and [Edelman,
1989]. In this theory, a selectionist darwinistic approach is
suggested to describe the process of group formation on the
cortex map. Though these models are much more biologically
likely than the other self-organizing models, they are heavily
computational (if they can be simulated at all), and therefore
not very popular in the already complex field of NLP
applications. Moreover, the still developing ideas and the
limited insight in the mathematical properties make these
models less suited for the research of NLP applications.

Notwithstanding the fact that the Kohonen model is most
restricted in its usage, the research carried out here,
concentrated on extensions of this model. The main reason for
this decision was just this restricted complexity and the
mathematically provable convergation. Future work might
concentrate on more complex models for the implementation
of linguistic and psychological phenomena.



On the one hand, self-organizing systems can overcome some
disadvantages of back-propagating neural nets. On the other
hand, the theory of recurrent models is much less developed as
it is in back propagation. Work by [Jordan, 1986], [Pineda,
1987] and [Williams et al., 1988] thoroughly analyzed
recurrent back propagation. The impact on natural language
processing of these techniques was demonstrated in [Elman,
1988], where the author showed the possibility to derive
grammars from simple sentences. In [Servan-Schreiber et al.,
1989], it was shown that the grammars derived by Elmans'
model were finite state grammars. Although these grammars are
definitely too simple to hold natural language completely, they
have one interesting aspect in common with NLP; the
appearance of a symbol (or word) in a string (or sentence) is
determined by its precedents in that string. The addition of
recurrent features in a self-organizing model completes the
system with a implicit mechanism for temporal processing
abilities, one of the important issues in natural language
processing. In this context, work by [Allen, 1990]
demonstrates even more potentiality of recurrent structures in
connectionist NLP. Mainly for these reasons, the research
carried out here, aims to use self-organizing models, which are
able to process temporal sequences.

Description of the Self-Organizing Models in NLP

The inability of Kohonen maps to process sequences by an
implicit mechanism was encompassed in [Ritter et al., 1989}
and [Ritter et al.,, 1990]. In general, it is of no use to process
single words with a Kohonen map, because the formation of the
structures on the map depends completely on the internal
coding scheme. Therefore, sentences are presented to the
system as a vector combination of words and their
corresponding contextual structure. The structure formed on the
map Iis related to the contextual position of words in sentences
(called a Semantotopic Map of context). These semantics are
just the ones, hardly derivable by logic and other symbolic
techniques. The main disadvantage of this model is the
inability to derive context by itself, mainly caused by the
inability to process sequences and other temporal data.
According to [Kohonen et al.,1981] temporal processing can
be done by adding a buffering mechanism to a map. However,
this mechanism does not support the automatic derivation of
simple syntactic structures, used for further generalizations.

In [Kangas, 1990] a model is proposed, capable to process
sequences within the Kohonen formalism (in fact, it is inspired
by the second map used in Grossberg's ART, the functionality
is almost the same). The model consists of two maps. The first
one has a number of fibers, embodying the input vectors. For
every neuron in this map, the measure of correlation is
calculated by summing the difference between the input
activities and the input weights. These values are combined
into one vector, where every dimension represents a position
on the first map. The second map uses these vectors as input,
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and learns in the same way as the first map. As a result, the
second map holds the former activauons of the first map, and is
thus capable of forming a map representing sequences of input
values (please note that this map holds no clustering
information of the input values, but forms a map of activations
of the first map).

As proposed in [Scholtes, 1990], the addition of recurrent
fibers to the Kohonen model can provide the model with
contextual sensitivity. To be more specific, the mechanism
introduced by Kangas can be used for the derivation of context
in the formation of a '‘Semantotopic Map'. By feeding back the
vectors of the second map, and concatenating this vector with
the input vectors of the first map, the input of the first map
results in a vector which has a symbol part and a automatically
derived context part. As a result, the model can process simple
sentences from scratch, and classify the objects in these
sentences in semantic classes formed on the first map.

Formal Description of the Model

Let m,u be vectors of dimension n in a map of i neurons.
holds the input vector and my the input weights at time ¢. First
the best match for a input vector is determined (i.e. the neuron
which sensor

weights correspond best to the input values, conform to some
mathematical distance measurement). According to the
Kohonen rule, every learn cycle, the weights are adapted:

my+] = mg+ By (my - py) )]

where B = ¢ e‘l/52 if a neuron is in the region of the most
activated neuron, and By = 0 if the neuron is outside this region.
€ is a constant between 0.00 and 1.00 holding the learning
speed, and s is a decreasing function in time of the region size,

forcing the system to converge.
The measure of correlation for each neuron i:: yj; is then

calculated conform:

. 2

yit = 1.0/ (mg-p)"+8) 2
where § is a very small constant, avoiding the system to divide
by zero. Next, the firing rate is determined by:
W 2

Yie =vyit Mt (€)
Yit represents the measure of activation of neuron i at time ¢.
Y. is the summation of all activations within one map. In
addition, this output vector y';; can be averaged: y"{ , so the
system is less sensitive to noise:

Yy =@y + (1-o)yy'r (4)



This context part has dimension i, equal to the amount of
neurons in the first layer. These two parts are concatenated, so
Kt = [Hs1. Hs2, - Hsny Hels He2s - Heil

In learning, the weights of the entire vector m; are adapted
conform (1). The first map holds a spatial representation, the
second one a temporal (caused by the averaging and the
recurrent connections). Due to the combination of the two in a
recurrent environment, the context of words is automatically
stored in the second map, resulting in the completely
unsupervised formation of a Semantotopic Map in the first
layer.

Results

The model is simulated by using the language C on a high-end
PC and on a VAX 8250 mini computer. Three types of input
were used: strings of 0 and 1, strings of characters, and simple
sentences. The semantics of the first two input types are quite
hard to define, so these strings were mainly used to show the
ability of the system to classify objects in hypothetical
semantic (or syntactic) classes. More interesting are the simple
sentences, which were generated by the combination of a
sentence body and some words which could be substituted into

® holds the weigh factor, a value between 0.0 and 1.0, the
higher @ the faster a new element is represented on this map,
but the shorter the memory. The second map has dimension i
(each dimension represents the measure of correlation of a
position on the first map). After normalization (3) and
averaging (4) of the vector, the weights in the map are adapted
in the same way, as the first map, so the second map holds the
centers of activation occurred in the first map. As stated, the
input vector consists of two parts: a symbolic part: pgy,
representing a code pattern for a word, with dimension n.
Second, there is a contextual part: pcp, representing the
activation of the map in the near past, with dimension i. Every
cycle, the input values of the second map are copied into the
context part of the first one.
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the sentences. Most sentences contained three or four words.
The model selects a number of sentences at random from a large
amount of generated samples. First the elements in the samples
are evaluated and a random code is assigned to all different
words. Second, depending on the quantity of learn cycles, a
random example is selected from the leamn set and fed through
the system. After 1000 up to 2000 cycles, a semantotopic map
of context is formed of 50 small example sentences. The
average map size was 25 neurons. The average input dimension
5. This small system already resulted in 30 dimensional input
Sensors.

To be more specific, input elements used for sentence
generation were:

_Elements Sentences

y John, Mary, Joe 1/2/1

2. Loves, Hates, Dislikes 1/4/9

3. Fast, Slow 1/4/8

4, Drinks 1/10/6
5. Cat, Dog, Fish, Horse 1/10/7
6. Meat, Bread 1/4/7

7. Much, Little 1/4/7/8
8. Beer, Wine 5/10/6
9. Well, Poorly 5/10/7/6
10. Eats 5/4/7/8

Some sentences were: John loves Mary, Cats eats much bread,
etc. After the learn cycles, semantic maps were formed were
objects like beer, water, meat and bread were within a region.
Another region was dog, cat, John, Mary and Joe. These maps
are the same as the maps found in the work done by Ritter &
Kohonen. Although, they added the context (a code for the
sentence body) manually to the input vector. Here the input
vectors are derived automatically by concatenating the symbol
code with the recurrent context code.

In the simulations the model started with a large region (about
the map size), which decreased slowly to 0.5. The learning rate
(epsilon) was 0.75. The weight factor, W, averaging the
measure of correlation from the first to the second map was
0.05. Simulation took up to 8 hours on the PC and up to more
than 4 hours in batch on the VAX/VMS system for two maps of
50 neurons. Larger simulations were almost impossible,
because the complexity increases exponentially with the map
size (mainly caused by the amount of recurrent fibers needed).

Discussion

The results presented are promising but preliminary. Important
questions like the types of grammar the model can process, the
maximum length of the sentences, and a better insight in the
formation of semantic or syntactical maps have to be answered
by future research. By now, only vague semantic groups were
formed on the maps after a large amount of learn cycles. The
exact reasons and conditions of map formations and thus a
mathematical analysis must be worked out to define more
thoroughly foundations for these phenomena.



As mentioned in the results, the complexity of the model
increases exponentially with the map size. This growth might
be limited by using the dimensions of the second layer as
average representatives over regions of the first layer instead
of one dimension for each neuron, which is definitely much too
detailed. The size and type of these regions can be interesting
material for further investigations. Beside the limitation of the
models complexity, the investigation of different region types
also has neurobiological reasons. Other variations to the
model are the balance between the quantity of symbol- and
context fibers, the rate of averaging over the second map, etc.
The importance of recurrent fibers for NLP might be clear.
These connections made the automatic derivation of context
possible. The lack of good definitions of recurrent mechanism
in self-organizing systems leaves plenty space for further
research towards other models. Linskers’ work and the even
more biologically inspired Neuronal Group Selection theory by
Reeke & Edelman might be well suited to implement linguistic
phenomena. Main problem with these models is complexity of
simulations and the less developed foundations, making
application research quite tricky. Various hybrid solutions tried
to overcome the disadvantages of self-organizing models. A
possible solution is to use a self-organizing feature map to
discover the features in the learn set, and back-propagate
between these maps to learn and generalize between input and
output pairs (or between input patterns and regions on the
map). The efficient back-propagation algorithm then limits the
complexity and uses known mechanisms, like recurrent
connections, to implement complex phenomena. More on
these solutions can be found in [Hryceg et al., 1990] and
[Gersho et al., 1990].

The advantage of the model discussed over back-propagating
models might be clear. By generalizing over the context of
small sentences, a semantical map is formed completely
automatic without the usage of micro-features or predefined
syntactical structures. The quality of the structural power and
the semantical map is not evaluated in depth yet. Future
research might provide us with more insights on these aspects.
The advantages over symbolic natural language processing
systems might be more than clear. Automatic derivation of
structure and semantics by a system capable of generalizing
over simple sentences which is robust to noisy input cannot be
implemented in classical symbolic techniques easily.
Although Kohonens' self-organizing model is just an efficient
statistical classifier, it is capable to derive semantical features
of symbolic data, as-long as this data is presented to the model
in its proper context.

The same feature of neural nets can be seen in work carried out
by [Miikulainen et al., 1988a], [Miikulainen et al., 1988b],
[St. John et al., 1988a] and [St. John et al.,, 1988b], where
generalization over context resulted in the automatically
derivation of semantic (micro-) features. This ability of neural
nets in general cannot be found in classical symbolic Al,
without the addition of complex procedural modules.
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Conclusions

Problems seems to change nature when being represented in
terms of temporal events, as a result, complex techniques like
recursion in sequential processing can eventually be avoided.
Nevertheless, the types of grammars, the length of the
sequences and other properties of these models are quite
unknown yet. Future research most provide a better insight in
these aspects.

Self-organizing techniques can overcome some of the
disadvantages of the back-propagation algorithm. Main
problem with these self-organizing models is the quickly
increasing complexity. Especially the addition of recurrent
fibers enlarges the time required to process the input data. One
might accept these disadvantages, because the limitation of
back propagation (i.e. the need to learn input/output pairs, the
prewiring of lateral inhibition, the definition of micro-features
and the need to pass the entire learn-set again after addition of
new elements) are even worse.

Recurrent self-organization is still in its early development.
This is mainly caused by the limited knowledge of self-
organization as a whole. Additional research can provide the
insights needed here.

Although limited, a completely autonomous model for the
derivation of context dependent semantics is developed (or in
other words, semantical features are derived by generalizing
over context). The exact properties are not known yet, but
these semantics are just the semantics hard obtainable by logic
and other commonly used semantic techniques. Just therefore
the results are interesting enough to continue further research.
Possible extensions might concemn as well other, more
powerful and complicated models, as more thoroughly defined
examples in i.e. language acquisition as proposed in [Feldman
et al., 1990] and [Weber et al., 1990].
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Abstract

This paper addresses three questions on child language learning: “how do children learn to recognize
ungrammatical sentences?”, “how do children leam an infinite language from finite data?”, and “how do children learn
syntactic word classes?”. This paper proposes answers based on side-effects of mechanisms used by the CHILD
theory of child language leaming. First, children learn to recognize ungrammatical sentences by learning a particular
non-traditional positional syntax to guide understanding. Second, the language children learn is infinite because it is
used to express an infinite meaning representation. Third, children don’t leamn syntactic word classes; the syntax they
do learn does not use them. Current research is investigating how children infer the meaning of incompletely
understood utterances, how they learn high-level knowledge structures by observation, and how the coverage of the
non-traditional syntax can be increased.

Research Interests in Child Language Learning

My overall interest in child language learning research is the development of a psychologically plausible
theory that explains empirical data and supports a computer model of a child and parent in a micro-world that a user
can “talk” to and which learns language and behaves in a manner similar to a child. Prior research involved
development of the CHILD theory and computer model to address learning to understand simple imperatives, generate
simple declaratives, accounting for certain psychological data. Current research focusses on three areas. First, [ am
applying the CHILD theory to traditional linguistic questions, developing extensions to the CHILD theory’s
representation of natural language syntax to more complex constructions, and considering further the problems of
learning languages other than English. Second, I am developing a computer model, called TODDLER, of how
children leamn scripts and other high-level knowledge structures by observation, and how they use those structures for
play within a case-based reasoning paradigm. Finally, I am investigating the problem of unifying TODDLER and
CHILD to address the question of how children use leamned high-level knowledge structures to infer the meaning of
incompletely understood utterances during language leaming.
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Abstract

This paper addresses three questions on child language learning: “how do children learn to recognize
ungrammatical sentences?”, “how do children leam an infinite language from finite data?”, and “how do children learn
syntactic word classes?”. This paper proposes answers based on side-effects of mechanisms used by the CHILD
theory of child language learning. First, children learn to recognize ungrammatical sentences by learning a particular
non-traditional positional syntax to guide understanding. Second, the language children learn is infinite because it is
used to express an infinite meaning representation. Third, children don't learn syntactic word classes; the syntax they
do learn does not use them. Current research is investigating how children infer the meaning of incompletely
understood utterances, how they learn high-level knowledge structures by observation, and how the coverage of the

non-traditional syntax can be increased.

1.0 Introduction

This paper is concemed with three questions on
child language learning: “how do children learn to recognize
ungrammatical sentences?”, “how do children learn an
infinite language from finite data?”, and “how do children
lcarn syntactic word classes?”. These questions arise from a
linguistic account of language learning, which assumes that
the primary process of language learning is learning a set of
transformational grammar rules [1,3,4,5,12,15,16,17].

The CHILD theory of child language learning [25-
33] is intended to account for a set of six psychological
data, on the basis of psychologically plausible cognitive
mechanisms, learning mechanisms, and natural language
experiences. The CHILD theory was implemented and tested
in a computer program, CHILD, whose behavior manifested
the six data within a developmentally accurate progression.
Since the CHILD theory explicitly proposes that children do
not learn transformational grammars, it is important to ask
whether the CHILD theory can provide answers to the three
quesuons.

This paper presents answers to these questions that
were developed within the CHILD theory as side-effects of
mechanisms required to account for the six psychological
data, and identifies further questions that are the subject of
current research. It must be noted that the purpose of this
paper is only to briefly summarize an approach to the
problem of child language acquisition; it is beyond its scope
to present detailed arguments in support of the positions
cxpressed here.

2.0 Three Questions

The first question, that of how children learn to
recognize ungrammatical sentences, can be restated in more
cmpirical terms. For example, if a young child is asked
whether the sentence “ball me the throw” sounds “silly” or
“ok", chances are the child will respond “silly.” Encouraged
to “fix it up,” the child may well generate “throw me the
ball.” Such behavior was reported by Gleitman, Gleitman,
and Shipley [14] for children of two-and-a-half and five
years. This behavior implies that by these ages children
have acquired at least some ability to judge a sentence's
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grammaticality. Further, Gleitman et al. report that by age
five, children's judgements increase in sophistication.

The second question, that of how children learn an
infinite language, is commonly motivated by an
observation: one can always add, say, “John said” to the
front of a grammatical English sentence to produce a longer,
equally grammatical, sentence. Observations such as this
imply that natural language is infinite. However, as has
also been widely observed, the language children are exposed
to is both limited and finite. This apparent ability to learn
an infinite language on the basis of limited and finite
information suggests the question, how do children do this?

The third question, that of how children learn
syntactic word classes, arises because any account of
language learning which assumes that children learn
transformational grammar must assume that children learn
which class each word is a member of. The dependence on
word classes by grammar-based approaches to natural
language is the result of distributional analysis, which,
basically, notes that if one word can be substituted for
another in a sentence then the words can be assumed
members of the same class.

Ideally, psychologically plausible answers to these
questions should result in mechanisms which would behave
as children do in those situations corresponding to the three
questions. That is, a computer program based on such a
theory should be capable of (1) learning to judge certain
sentences “silly”, (2) leaming to generate sentences of
indefinite length, and (3) learning to generate language
showing substitutability, all within a psychologically
plausible model of child language learning.

3.0 The CHILD Theory

The CHILD theory was intended to address a set of
six data on child language learning during the ages of 10
months through five years, and proposed a set of
psychologically plausible mechanisms to account for this
data. The six data are:
« Comprehension precedes generation (2, 36]

« Vocabulary growth rate first increases, then decreases [36]
« Utterance length increases [10,11,13]



» Irregular words are regularized [13]
» Unlikely actives are initially misunderstood [35]
+ Reversible passives are initially misunderstood [6,35].

These data were combined into a single composite eight
stage developmental progression:

Stage 1 (0;10) Knows no language

Stage 2 (1;0) Leamns 22 WPM (words per month), mean
utterance length (MLU) is 1 word

Stage 3 (1;6) MLU is 2 words, uses present tense for

both present and past

Leams 30 WPM; MLU is 3, 4, and §
words; uses a few irregular past tense
words correctly; semantically unlikely
actives misunderstood; passives
understood using semantic likelihood

Stage 4 (2;0)

Stage 5 (2;6) Regularizes previously used past tense

irregulars, learns 83 WPM

Stage 6 (3;0) Correctly uses regular and irregular past

tenses, Leamns 45 WPM

All actives understood correctly,
Reversible passives misunderstood

Stage 7 (4;0)

Stage 8 (5;0) Reversible passives understood correctly

To address the six data and the progression, the
CHILD theory proposed that children bring four cognitive
capacities to language learning: knowledge of the world,
basic mechanisms of language understanding and generation,
the ability to mentally represent natural language meaning
and syntax, and mechanisms to learn word meaning and
syntax. When a child hears an utterance, he first understands
it as well as possible using a preference-based semantic
analyzer [9,33] that uses frame-based representations of word
meaning [21] and syntactic positional knowledge of where
in the utterance frame slot fillers are to be found. Then, the
child uses knowledge of context to infer the complete
meaning if necessary. Finally, he leams word meaning
using concept learning techniques, and learns syntax by
building disjunctive sets of positional syntactic features,
using the predicates PRECEDES and FOLLOWS, to describe
where slot fillers occurred in the input and then storing and
updating those feature sets under the word whose meaning
contained the slot.

The CHILD theory was implemented in a
computer program, CHILD, that learned an English
vocabulary involving active, passive, and prepositional
phrase constructions via the eight stage developmental
progression by being given experiences and language input
that model those that children receive. Previous versions of
CHILD have learned small subsets of Japanese, Spanish,
and Serbo-Croatian {32].

4.0 How Do Children Learn to Recognize
Ungrammatical Sentences?

An explanation of learning to recognize
ungrammatical sentences requires an explanation of the
ability to recognize ungrammatical sentences following
Icarning. The CHILD theory proposes that a child
rccognizes that a sentence is ungrammatical, or “sounds

silly”, if any slot filler is in a position other than that
predicted by the positional syntactic features associated with
the word whose meaning had the slot. In such a case, some
predicates would be false with respect to the correct slot
filler, and a child could use those to generate an explanation
as to why the sentence sounded silly. Since the CHILD
theory assumes that the child has inferred the intended
meaning of the sentence, he can “fix it up” by invoking his
language generation mechanism on that meaning.

Given this account of recognizing ungrammatical
sentences, the CHILD theory’s answer to the question of
how children learn to recognize ungrammatical sentences is
straightforward: they do so by learning to understand, which
involves learning the disjunctive sets of positional syntactic
features that describe where slot fillers occurred in the input.
Prior to lcarning syntax for a word, sentences in which
fillers are out of position will not be recognized as
ungrammatical; once a child learns syntax for a word, he can
recognize when fillers for that word's meaning are out of
position, and such sentences will be recognized as
ungrammatical. This is demonstrated in the following
summary of the performance of the CHILD program, in
which CHILD learns to recognize ungrammatical sentences
in a three stage progression, and generates corrections for
those it recognizes as ungrammatical. In this example,
CHILD knows meanings of “fed”, “cereal”, “Papa”, and
“Ethan”, and assumes from world knowledge that Papa
normally feeds Ethan,

Stage A: CHILD does not know syntax for “fed”
All sentences sound OK

“Papa fed Ethan cereal” understood correctly

“Ethan fed Papa cereal” misunderstood
“Ethan was fed cereal by Papa " understood correctly
“Papa was fed cereal by Ethan " misunderstood

“cereal fed Papa Ethan "
“was cereal Ethan fed Papa by"

Stage B: CHILD learns active syntax for “fed”
Actives sound OK; passives, probes sound silly

“Papa fed Ethan cereal”
“Ethan fed Papa cereal”
“Ethan was fed cereal by Papa ”

understood correctly
understood correctly
misunderstood, &
sounds silly: “Ethan
fed Papa cereal”
misunderstood, &
sounds silly: “Papa
fed Ethan cereal”
sounds silly: “Ethan
fed Papa cereal”
sounds silly: “Ethan
fed Papa cereal”

“Papa was fed cereal by Ethan "

“Cereal fed Papa Ethan ™

“Was cereal Ethan fed Papa by”

Stage C: CHILD learns passive syntax for “fed”
Actives, passives sound OK, probes sound silly

“Papa fed child cereal”

“Ethan fed Papa cereal”

“Ethan was fed cereal by Papa ’
“Papa was fed cereal by Ethan '
“Cereal fed Papa Ethan "

understood correctly
understood correctly
understood correctly
understood correctly
sounds silly: *“Ethan
fed Papa cereal”

sounds silly: “Ethan
was fed cereal by Papa™

1)

1)

“Was cereal Ethan fed Papa by"
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5.0 How Do Children Learn an Infinite
Language from Finite Data?

The question of how children learn an infinite
language on the basis of limited and finite data has been
addressed by a number of researchers [1,3,4,5,12,15,16,17],
but their answers generally incorporate a grammar that
includes recursive rules. The answer proposed by the
CHILD theory is of necessity quite different, since the
CHILD theory does not incorporate such a grammar with
recursive rules. Instead, the CHILD theory’s approach
begins with the empirical phenomenon that is the basis of
the observation that natural language is infinite, namely,
that one can always take a sentence and make a longer
sentence by, for example, adding “John said” to its front.

Given the phenomenon of “longer sentence
generation”, the question arises, how can a person do this?
The CHILD theory proposes a three-part answer: first, the
person understands the shorter sentence, and generates a
meaning representation for it. Second, the person uses
inference to embed the meaning of the shorter sentence
within another concept. Third, the person expresses the
resulting larger concept in natural language using his
generation mechanism. Clearly, this process can be
continued to produce sentences of arbitrary length. Given
this, the CHILD theory’s answer to the question of “longer
sentence generation” is straightforward: they do so by
learning word meanings and their associated syntax. Instead
of relying on recursive grammar rules, the CHILD theory
relies upon a knowledge representation that supports
imbedding to an arbitrary degree and a non-recursive
representation of syntax.

An important secondary question is why is the
CHILD theory’s answer a preferable to the traditional one?
There are three reasons: first, it is simpler. Since all
knowledge representation languages must support arbitrary
cmbedding, accounts relying on grammars with recursive
rules require both a complex knowledge representation
language and a complex grammar, while the CHILD
theory's account relies on a complex knowledge
representation system and a relatively simpler representation
of syntax. The second reason the CHILD theory’s account is
preferable is that it explains “longer sentence generation” as
a side-effect of mechanisms independently required for
language understanding, language generation and reasoning.
Recursive grammar rules, on the other hand, are essentially
a special-purpose mechanism designed specifically to
explain “longer sentence generation.” The third reason the
CHILD theory’s account is preferable is because it is
psychologically plausible, since it directly addresses human
behavior, and accounfsfor that behavior with mechanisms
that are plausibly attributed to people.

6.0 How Do Children Learn Syntactic Word
Classes?

The CHILD theory's answer to the question of
how children leamn syntactic word classes can be stated
simply: children don’t learn syntactic word classes. That is,
the CHILD theory proposes that at no time during language
acquisition do children learn that a given word is a member
of a particular syntactic word class. There are a number of
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reasons for this, but the primary one is that none of the
CHILD theory’s mechanisms ever makes reference to the
syntactic class of a word. The question arises, therefore,
how the CHILD theory can account for those patterns of
natural language that are used to motivate the need for
syntactic word classes?

These pattemns can be accounted for by the CHILD
theory’s standard language analysis and generation
mechanisms. For example, to generate and understand the
sentences “put the ball on the table” and “put the box on the
table” requires only that the meanings of “box” and “table”
be appropriate fillers for the OBJECT slot in the meaning of
put, and that stored under “put” is the syntactic knowledge
that one appropriate position for the OBJECT filler is
FOLLOWING the meaning of “put” and PRECEDING the filler
of the TO slot in the meaning of “put”. No syntactic class
information is ever associated with the words “box” or
“ball”, or any other word that can appear in this position.

A more complex example occurs in the sentences
“John gave Mary a book” and “John gave Mary a kiss.”
Normally, “book” and “kiss™ would be classified as nouns,
in order to account for the fact that they can appear in the
same position. In contrast, the CHILD theory proposes a
different account of processing these two sentences.
Specifically, in “John gave Mary a book”, the meaning of
“give” is the concept referring to the transfer of possession,
and stored under “give” are sets of syntactic predicates
specifying the positions of the fillers of that concept. In
“John gave Mary a kiss”, however, the CHILD theory
proposes that understanding and generation focus on the
word “kiss”, and that the word “give” is used as a post-
position function word marking the position of the ACTOR
of the kiss. That is, the CHILD theory proposes that “John
gave Mary a kiss” should be considered as another ‘voice’,
like passive and active, and one that resembles Japanese and
German in having the action word at the end of the
sentence. Thus the CHILD theory suggests that the fact that
“book” and “kiss” appear in the same position is, in some
sense, fortuitous, and best explained by historical accident,
rather than by placing “book™ and *kiss” in the same
syntactic word class.

7.0 Research Issues in Child Language Learning

This paper has summarized the answers provided
by the CHILD theory to the questions of learning to
recognize ungrammatical sentences, learning an infinite
language from finite data, and learning syntactic word
classes. Obviously, however, the CHILD theory is a long
way from being a complete theory of child language
learning. In particular, there are three important areas which
require additional investigation. First, the CHILD theory
proposes that child language learning depends upon the
child’s ability to infer the meaning of incompletely
understood utterances, but its current inference mechanisms
are not psychologically accurate. Current research is
investigating the use of case-based reasoning [18,19,20,34]
to model the child’s ability to infer the meanings of
incompletely understood utterances. Second, child language
learning occurs while the child is also learning scripts and
other high-level knowledge structures [22,23]. The



TODDLER project, currently underway, is modelling child
learning of scripts and other high-level knowledge structures
via learning by observation and play, and will be
investigating the relationship between such learning and
language learning. Finally, current research is addressing the
issue of increasing the power of the CHILD theory’s
representation of syntax in order to account for additional
empirical data on child language learning. Success in
accounting for additional data would support the proposition
stated at the beginning of this paper, that children do not
lcarn transformational grammars [see also 7,8,24].
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Abstract

Two competing theories have been proposed to explain how children begin acquiring language without any prior
linguistic experience. The first, semantic bootstrapping, claims that children first acquire word meanings and then
use this information to drive acquisition of syntax. The second, syntactic bootstrapping, claims the inverse, that
children use some syntactic knowledge in figuring out what words mean. There are difficulties with both approaches.
Semantic bootstrapping on one hand, requires a referential completeness assumption, that children possess a concrete
understanding of the referent of each word before assigning a lexical category to that word and before formulating
syntactic generalizations around those category assignments. Syntactic bootstrapping on the other hand, requires
that children be able to recover the phrase boundaries of utterances, without the use of syntax, and be able to isolate
verbs prior to knowing their meaning. Proponents of both theories argue their case by claiming that in principle,
language acquisition is impossible without such assumptions. These papers attempt to refute such claims.

The first paper, an extension of work reported by Siskind (1990), presents a set of principles, implemented as an
algorithm, that can simultaneously acquire syntactic parameters of X theory and a lexicon comprising both category
and semantic information from a training corpus containing both linguistic and non-linguistic input. Before training,
the algorithm does not possess a fixed grammar of the target language, nor any information, syntactic or semantic,
about the words to be learned. No referential completeness assumption is made, nor does the algorithm require
knowledge of the phrase structure of, or the lexical category of any word in, the linguistic input. The successful
operation of the algorithm is demonstrated on training sessions both in English and in Japanese.

The methods described in the first paper require that the learner be able to attach a set of possible meanings
to each linguistic utterance. The second paper focuses on how such a set can be derived from the non-linguistic
context of an utterance, particularly the visual context. We describe a system, currently under construction, which
observes a computer generated animation, constructed solely from line segments and circles, and given only continual
updates of the positions, sizes and orientations of those line segments and circles at every frame, is able to construct a
semantic representation of the objects in the animation, the changing spatial relations between them, and the events
in which they are participating. Unlike some prior work in this area, the event perception mechanism we discuss
functions independently of any linguistic input and does not require such input in order to correctly understand
the visual information. Furthermore, unlike other prior work in this area, the event perception mechanism operates
without the benefit of any object or event models. Instead, we incorporate into our theory a model of naive physics.
The choice of which physical assumptions to incorporate into this model, namely substantiality, continuity, ground
plane and gravity, is motivated by experimental evidence of the pre-linguistic knowledge possessed by infants. In
the future, event perception will be tied to the language acquisition theory discussed in the first paper to yield a
complete system for learning language from correlated visual and linguistic experience.
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Dispelling Myths about Language Bootstrapping

1 Introduction

This paper addresses an issue in language acquisition which has become known as the bootstrapping problem. While
in the later stages of language acquisition, children are assisted by previously acquired linguistic knowledge, how do
children begin the language acquisition task without such knowledge? In particular, how do they assign syntactic
categories and semantic representations to the words they hear as part of complete utterances?

Two competing theories have been proposed for solving this problem. The first, due to Grimshaw (1979, 1981) and
Pinker (1984) states roughly that children first acquire the meanings of words and then use this information to derive
the syntactic constraints of their language. This theory has become known as semantic bootstrapping. Semantic
bootstrapping assumes that children first learn the meanings of words, by some unspecified mechanism. They then
apply a default mapping to assign a syntactic category to each word based on its semantic category. In particular,
THINGS are mapped to nouns and EVENTS are mapped to verbs. Such a default mapping has been termed
a Canonical Structure Realization. Finally, syntactic rules are formed around these abstract syntactic categories
which later generalize to cases where the words are not of the appropriate semantic class but are nonetheless of the
appropriate syntactic class. For example, a child hearing the utterance Fido barked knows that Fido is a dog and
that bark is an action and thus maps Fido to a noun and bark to a verb and forms the grammar rule S — N V as
a template to account for the utterance. Elliott and Wexler (1986) propose a variant of of semantic bootstrapping
which requires only that children map THINGS to nouns. Principles of universal grammar then assist the remainder
of the bootstrapping process. Their scheme however, requires that children be able to recover the bracketed phrase
structure of the utterances they hear solely from acoustic and prosodic information.

The second theory, due to Gleitman (1990), states roughly the converse: that children use syntactic information to
acquire word meanings. This theory has become known as syntactic bootstrapping. Like Elliott and Wexler, Gleitman
also assumes that children are able to recover the phrase structure of utterances from acoustic information alone,
and that they use this phrase structure to derive the subcategorization frames associated with each verb. She then
proposes that key elements of a verb’s meaning can be derived solely from its subcategorization frame. For example,
a child hearing the utterance John told Mary that Bill left will deduce that the verb told takes an NP complement
and an S complement and thus is likely to be a verb of communication. Gleitman’s method acquires word meanings
from the utterances alone, without any reference to the non-linguistic context of the utterances. Brent (1990) has
used Gleitman’s method to learn components of word meaning by scanning large text corpora.

Proponents of both semantic and syntactic bootstrapping support their case primarily by arguing that in prin-
ciple language acquisition must work their way as it is impossible to explain language acquisition without such an
assumption. Grimshaw and Pinker (1990) attempt to refute Gleitman’s claims by highlighting the fact that her
theory does not offer a complete account of how verb meanings are acquired. They argue, that while her theory is
in principle plausible, she has yet to prove that it is actually both a necessary and correct account of child language
acquisition.

This paper takes a different approach. It argues that neither semantic nor syntactic bootstrapping are necessary
to account for language bootstrapping. It does so by demonstrating an algorithm called DAVRA' which determines
the syntactic category and meaning of words without relying on semantic or syntactic bootstrapping. It does not
argue that semantic and syntactic bootstrapping are wrong, just that they are not in principle necessary. Likewise,
there is no claim that DAVRA is a correct account of child language acquisition, simply that it is a plausible account.
Determining which account is actually correct awaits further research.

DAVRA relies on a collection of syntactic and semantic principles, collectively termed Universal Grammar. Fol-
lowing the poverty of stimulus argument, DAVRA assumes that the language learner is innately endowed with a
language faculty which incorporates the principles of Universal Grammar. These principles are summarized in Sec-
tion 2. Unlike previous work (Siskind, 1990) which assumed a known fixed context free grammar prior to language
acquisition, DAVRA uses instead a direct encoding of X theory including a capability for parametric variation in the
language to be learned. DAVRA has successfully been applied both to English (Section 4) and Japanese (Section 5)
examples, learning the correct X parameter settings for each. Several key points about this work deserve particular
emphasis.

e A common assumption about language acquisition dating as far back as Locke (1690) is that children are
presented with single word utterances, such as ‘milk’, in a context where it is clearly evident that ‘milk’ refers
to milk. This is termed referential completeness and is a key assumption underlying semantic bootstrapping

IDAVRA or 8717 is a make-believe Aramaic word for word.
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(Bloom 1990). Heath (1983, 1989 p. 338) gives evidence that in some cultures, children are rarely presented
with referentially complete stimuli yet they successfully learn language. DAVRA is not limited to single word
utterances and furthermore allows the learner uncertainty in associating meanings with utterances.

o The learner starts out without knowing the meaning or syntactic category of any words in the linguistic input.
This differs from some prior work (Granger 1977) which learns the syntactic category or meaning of words
appearing in utterances with but a single unknown word, using the context of the remaining known words as a
filter on possible syntactic category and meaning assignments for the unknown word. Furthermore, the learner
starts out without knowing the X parameter settings of the language being learned. At the completion of the
training session, the learner has acquired

- a meaning for each word in the training session,
— a syntactic category for each word in the training session and

— the X parameter settings for the syntax of the language learned.
This is true bootstrapping from nothing more than principles of Universal Grammar.

e We do not assume that the learner has access, via prosody, to the bracketed phrase structure of the linguistic
input.

The key to the success of our paradigm is cross-situational learning. A number of prior approaches to language
acquisition, in particular Elliott and Wexler (1986) and Lasnik (1989), attempt to demonstrate learning from a
single utterance. We believe that in most situations, a single utterance does not offer enough constraint to uniquely
determine either parameter settings or syntactic categories and meanings of words. Instead, we believe that the
learner must find a lexicon and parameter settings which can simultaneously and consistently explain multiple
utterances. Words that co-occur across multiple utterances are the keys which enable the learner to decipher the
language acquisition puzzle. Note that this is not a form of distributional learning. In its classic form, distributional
learning infers equivalence classes between word by observing two different words occurring in the same location
within otherwise equivalent utterances. We make no such restriction on the form of the input nor do we require
the learner to hypothesize any semantic similarity between a group of words to classify them as the same syntactic
category.

2 A Linguistic Theory Supporting Language Acquisition

The linguistic theory incorporated into DAVRA is characterized by the following principles. We assume that the
learner is innately endowed with a language faculty which operates according to these principles.

1. The learner is able to distinguish between linguistic and non-linguistic input. Normally, linguistic input is
available on the auditory channel while non-linguistic input is available on the visual channel though this is not
always the case. Whatever channels carry the linguistic and non-linguistic information (they may in fact be the
same channel) the learner is able to separate and distinguish the linguistic from the non-linguistic information.

2. The learner is able to segment the linguistic input into sentences, to segment those sentences into words and to
group different occurrences of the same word into the same equivalence class despite minor acoustic variation
between occurrences.

3. The learner is equipped with a mechanism for representing meanings of individual words and entire utterances.
All we require is that utterance meanings be represented by ground expressions in some calculus and that
word meanings be represented by expressions in the same calculus, possibly containing variables. In this paper
we arbitrarily take Jackendoff’s (1983) conceptual structures as our meaning calculus. Thus the meaning
of the utterance The cup slid from John to Mary would be GO(cup, [partn FROM(John), TO(Mary)]) and
the meaning of the word slid would be GO(z, [pach ¥,2]). A companion paper (Siskind, 1991) discusses the
inadequacy of this representation and proposes an alternate representation.

4. The learner is exposed to utterances in a single language. Each utterance the learner hears is grammatically
correct in that language and the learner is able to associate each utterance with a set of possible meanings for
that utterance. One of those possible meanings must actually be the correct meaning of the utterance. The
learner’s innate perceptual abilities combined with her naive theories of physics and psychology allow her to
postulate plausible meanings for each utterance. Siskind (1991) proposes a mechanism for how this may be
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done. Note that we do not require that the learner associate a single meaning with each utterance, rather
that the learner postulate a set of plausible meanings, only one of which need be the actual meaning of the
utterance. Future work will relax this constraint even further, allowing for some ungrammatical utterances or

utterances for which none of the possible meanings associated with that utterance by the learner turn out to
be correct.

5. The learner parses each input utterance according to the following variant of X theory:

(a) Each nonterminal node in the parse tree has either one or two daughters.
(b) The lexical categories are N, V, P and I.

(¢) Each lexical category X projects into the categories Xspgc, X and XP.
(d) Each utterance that the learner hears is of category IP.

(e) Ispec 1s processed as NP.

(f) Tis processed as VP. This differs somewhat from current linguistic theory and is done to simplify DAvraA.
Future work will discuss modifications to DAVRA which handle I in accord with current linguistic theory.

(g) The language the learner hears is either a SPEC initial language or a SPEC finallanguage. If the language
is SPEC initial then for every lexical category X, the language follows the rule
XP — Xspec X.
If the language is SPEC final then for every lexical category X, the language follows the rule

XP — X Xspgc.

(h) The language the learner hears is either a head initial language or a head final language. If the language
is head initial then for every lexical category X (except for I) the language follows the rule

X-XYP

for every lexical category Y. If the language is head final then for every lexical category X (except for I)
the language follows the rule _ _
X—=YPX

for every lexical category Y. Furthermore, irrespective of whether the language is head initizl or final, the
language also follows the rule

X—X
for every lexical category X (except for I).
(i) The categories Xspgc (except for Ispec) and lexical categories X (except for [) are terminal.

6. A meaning is associated with each node in the parse tree. The meanings associated with terminals nodes are
word meanings from the lexicon. The meaning associated with the root node is one of the meanings postulated
for the utterance. The meanings associated with nonterminal nodes are related by the following linking rule.

(a) If a node has a single daughter, then the meaning of the parent and the daughter are the same.

(b) If a node X has two daughters Y and Z, then one of the daughters is called the template and the other
is called the argument. We will call X the resultant. The resultant meaning is derived from the template
meaning by renaming the variables of the argument meaning so that they are distinct froii those in the
template meaning and then substituting the argument meaning for all occurrences of some variable in the
template meaning. Alternatively, the argument meaning may be the distinguished symbol L, in which
case the resultant meaning is the same as the template meaning.

7. Nodes of category X are templates while nodes of category Xspec and XP are arguments.
8. Argument meanings must be variable-free.
9. A word cannot have a meaning which is just a variable.

10. A node of category XP cannot have L as its meaning.
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11. The following exceptions notwithstanding, any terminal can be non-overt, i.e. it may have no overt word
associated with it.

(a) The semantics of a node with no overt descendants must be L.

(b) Nodes of category X must have at least one overt descendant.

12. The learner observes a monosemy constraint, i.e. the learner will assign each word at most one syntactic
category and one meaning. Future work will relax this constraint. Other work in language acquisition often
assumes a converse constraint that each distinct possible meaning be conveyed by at most one distinct word.
Note that we do not require such a constraint ruling out synonyms.

Note that the above principles do not account for movement. While dealing with movement adds significant com-
plexity to this system, there does not seem to be any reason why it could not be incorporated in a fashion analogous
to the techniques used in this paper. This is a fruitful area for future research.

3 The Algorithm

DAVRA is written in a nondeterministic dialect of CoMMON Lisp known as SCREAMER (Siskind, 1991). DavraA
has been implemented and correctly processes the examples given in Sections 4 and 5. Due to length limitations
on this paper, this section containing an annotated description of the main portion of the code had to be omitted.
The full paper, as well as the complete code, are available from the author. Use of a nondeterministic dialect
allows a straightforward and transparent encoding of the principles of Universal Grammar directly as statements
in the program. While useful for pedagogical purposes, more efficient implementations are possible. Siskind (1990)
discusses one such algorithm (called MAIMRA) for a linguistic theory which is similar to, though not identical to, the
one presented in Section 2.

4 An English Example

Consider a scenario where the learner observes John rolling from a location near Mary to a location near Bill while
hearing the utterance John rolled. The learner might hypothesize at least the following six potential meanings for
that utterance since each of the following six events are subevents of the main event observed.

e John was near Mary (at the beginning of the main event).

e John was near Bill (at the end of the main event).

o John moved along some unspecified path.

o John moved along a path starting from a location near Mary.

e John moved along a path to a location near Bill.

e John moved along a path from a location near Mary to a location near Bill.

We presented DAVRA with a training session consisting of the nine utterances given in Figure 1. Each of the nine
utterances was paired with between three and six possible meanings similar to those discussed above. These possible
meanings were represented as Jackendovian conceptual structures.

Prior to the training session, DAVRA was not given any linguistic information other than the principles covered
in Section 2. In patticular, DAVRA was not given the X parameter settings for English, nor was DAVRA given the
syntactic category or meaning of any of the words appearing in the training session. From this training session alone,
Davra produces the following lexicon as output:
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BE(person,, AT(person,)) V BE(person,, AT(person,))V
GO(person,, [path ]) V GO(person,, FROM(person,))v
GO(person,, TO(person,)) V GO(person,, [pa;n, FROM(person,), TO(person,)])
John rolled.

BE(person,, AT(person,)) v BE(person,, AT(person, ))V
GO(person,, (path ]) V GO(person,, FROM(person,))V
GO(person,, TO(person,)) V GO(person,, [path FROM(person,), TO(person,)])
Mary rolled.

BE(person,, AT(person,)) vV BE(person,, AT(person,))v
GO(persong, [path ]) V GO(person,, FROM(person,))v
GO(persong, TO(person,)) vV GO(person;, [path FROM(person, ), TO(person,)])
Bill rolled.

BE(object,, AT (person,)) Vv BE(object,, AT(person,))Vv
GO(object,, [patn ]) V GO(object,, FROM(person, ))V
GO(object,, TO(person,)) vV GO(object, [patn FROM(person,), TO(person,)])
The cup rolled.

BE(person,, AT(person,)) vV BE(person,, AT (person,))V
GO(persony,, [path ]) V GO(person,, FROM(person,))v
GO(person,, TO(person,)) vV GO(persong, [path FROM(person,), TO(person,)])
Bsll ran to Mary.

BE(person,, AT(person,)) V BE(person,, AT (person,))V
GO(persony, [path |) V GO(person,, FROM(person,))v
GO(person,, TO(person,)) vV GO(person,, [path FROM(person, ), TO(person,))])
Bill ran from John.

BE(person,, AT(person,)) V BE(person,, AT(object,))Vv
GO(person,, [payy |) V GO(person,, FROM(person,))v
GO(person,, TO(object,)) V GO(person,, [path FROM(person, ), TO(object,)])
Bill ran to the cup.

BE(object,, AT(person,)) v BE(object,, AT(person,))Vv
GO(object,,[path ]) V GO(object,, FROM(person, ))Vv
GO(object,, TO(person,)) V GO(object,, [parzn FROM(person, ), TO(person,)])
The cup slid from John to Mary.

ORIENT(person,, TO(person,))v
ORIENT(person,, TO(person;))v
ORIENT(person,, TO(person,))
John faced Mary.

Figure 1: An English training session presented to DAVRA

162




Head Initial, SPEC Initial.
John:  [N] person,
Mary:  [N] person,
Bill: [N] person,
cup: (N] object,
the: (Nspec] L
rolled: V] GO(z, [path ])
ran: (V] GO(z,y)
sid: V] GO(z, [pach ¥, 2)
faced:  [V] ORIENT(z, TO(y))
from:  [N,V,P] FROM(z)
to: [N.V.P] TO(z)

Note that DAVRA has determined on the basis of the training session that English is both head initial and
SPEC initial. Additionally, DAVRA has converged to a single meaning for each word in the training session, without
referentially complete knowledge of the meaning of any of the training utterances. Furthermore, for all but the
prepositions, DAVRA has determined a unique syntactic category for each word. The only uncertainty remaining after
processing this session is whether from and fo are nouns, verbs or prepositions. It is easy to see that DAVRA can never
uniquely determine that an English preposition is in fact of category P since the principles incorporated into DAVRA
allow nouns and verbs to appear anywhere prepositions can with the same semantic consequences. One must add
further principles from Universal Grammar to DAVRA in order to allow her to distinguish prepositions. Incorporating
a variant of case theory which states both that noun phrases must receive case and that nouns are not case assigners
would allow DAVRA to determine that English prepositions could not be nouns since their complements would not
receive case. Furthermore, noticing that English prepositions are never inflected would give indirect negative evidence
(Lasnik, 1989) that they are not verbs. Adding such principles to DAVRA would remove any remaining uncertainty
from the above training session.

5 A Japanese Example

MAIMRA, a predecessor of DavRA discussed in Siskind (1990), is often criticized as being unrealistic due to its
assumption of a fixed, built in grammar prior to lexical acquisition. DAVRA attempts to address this criticism by
utilizing a parameterized variant of X theory instead of a fixed context free grammar, and acquiring the X parameter
settings simultaneously with the lexicon from the same training session. To demonstrate the success of this approach,
we translated the utterances of the training session from Figure 1 into Japanese, while leaving the non-linguistic input
unchanged, and presented this new session to DAVRA. The translated utterances are given below:

Head Final, SPEC Initial.

Taro ga korogashimashita. g".’:ﬂ %g} pzrzzgl
Eriko ga korogashimashita. Yr's ?' [N] pef'sonz
Yasu ga korogashimashita. ha v ) N] :))b et 3
Chawan ga korogashimashita. ¢ flwan. v ] L Jech
Yasu ga Eriko ni hashirimashita. e . . SPEC
Yasu ga Taro kara hashirimashita korogashimushita;  [V] GO(z, [parn ])
Yasu ga chawan ni hashirimashita. hazhxrlnma.’s‘i?txtzlz: R//% gggz' E’l) 2))
Chawan ga Taro kara Ertko ni suberimashita. ‘::Cz:;r:‘;‘;l; * Vi ORIE’I‘I?(? ‘Z')
Taro ga Eriko ni tachimukau. kara: [N.V.P] FROM(z)

ni: [N,V,P] TO(z)

From these utterances, DAVRA produced the above lexicon as output. Again, DAvVRA was able to uniquely
determine the X parameter settings for Japanese, as well as unique meaning and syntactic category assignments for
most words in the training session. Like before, the only uncertainty which DAVRA was unable to resolve was the
assignment of category P to the words kara and ni. Methods similar to those discussed previously could remove this
remaining uncertainty.

6 Conclusion

We emphasize that we have not demonstrated an algorithm that converges to parameter settings and a lexicon for
all possible input of the form a child might encounter. While such a result is crucial for a complete account of child
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language acquisition it is still beyond our current understanding. What we have done is to demonstrate, by way of a
single example, how in principle, an algorithm can infer X parameter settings and a lexicon with neither semantic or
syntactic bootstrapping assumptions. We also acknowledge that the linguistic theory incorporated into DAvRA has
limited syntactic and semantic coverage. Nonetheless, we believe that the techniques discussed in this paper can be

can be applied to build language acquisition models using more elaborate theories of syntax and semantics as such
theories are developed.
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Naive Physics, Event Perception, Lexical Semantics
and Language Acquisition

1 Introduction

In a companion paper, Siskind (1991) argues that during the early bootstrapping stages of language acquisition,
when children start out without knowing either syntax or the meanings of any words, children are aided in their task
by hypothesizing a set of potential meanings for each utterance heard. For example, a child hearing the utterance
John entered the room would look out into her environment and see John standing, walking, opening the door,
being outside the room, and later being inside the room, along with many other possible events occurring in the
environment unrelated to John. Hypothesizing that the utterance as a whole refers to one of those events aids the
learner in figuring out what the individual words mean, as well as the syntactic categories of those words and the
syntactic parameters of the language being learned. But how can a child hypothesize utterance meanings from visual
perception? This is the topic addressed by this paper.

Since we want to understand how a child’s perception of the world can aid the language acquisition task, we must
look for evidence of what knowledge pre-linguistic children already possess prior to linguistic activity.! Spelke (1988)
discusses habituation/dishabituation experiments which attempt to elucidate such knowledge. These experiments
provide evidence that pre-linguistic children possess at least the following kinds of knowledge:

substantiality: the knowledge that objects take up space and cannot pass through one another,

continuity: the knowledge that an object appearing at point A and then at point B must have moved along a
continuous path between those two points,

gravity: the knowledge that unsupported objects fall and
ground plane: the knowledge that the ground offers universal support for objects.

We refer to these collectively as pre-linguistic principles.

We are currently writing a program called Abigail, which attempts to incorporate such pre-linguistic knowledge
into a simulated language learner to test the hypothesis that such knowledge can aid the language acquisition task.
Abigail watches a computer animation constructed from line segments and circles. Along with that animation,
Abigail receives a narration text describing the events occurring in the movie. The experimental paradigm of having
a learner acquire new word meanings by watching a narrated movie has been explored by Rice (1990). In our case
however, the learner is a machine rather than a child. Using techniques which incorporate the aforementioned pre-
linguistic principles, Abigail analyzes the animation frame by frame and produces a semantic representation of the
events occurring in that animation. The events of this semantic representation constitute the meanings hypothesized
for utterances appearing in the narrative text. Siskind (1991) presents a learning algorithm which can utilize such
a semantic representation to learn the syntactic categories and meanings of words. This paper focuses on how to
produce this semantic representation from visual input using models of children’s pre-linguistic knowledge.

Abigail lives in a microworld of animated movies. These movies contain objects which participate in events. The
ontology of this microworld differs somewhat from that of our world. More importantly, however, the ontology of
Abigail’s world is similar enough to our world to model the pre-linguistic principles of substantiality, continuity,
gravity and ground plane. A frame from one of Abigail’s movies is shown in Figure 1. In this movie, the man walks
to the table, picks up the ball, walks back and forth with it before putting it back on the table. Later, the woman
repeats the same actions, and finally the man goes, picks up the ball and gives it to the woman who then puts it
back on the table. Abigail's computational mechanisms are not specific to the particular objects and event in this
movie. Unlike the system discussed by Badler (1975), Abigail does not possess any prior object or event models.
Furthermore, the animation is generated by a program distinct from Abigail. Abigail has no access to the internal
data structures of this animation program. Abigail observes only the positions, sizes, shapes and orientations of
the line segments and circles comprising each animation frame. From this information, Abigail utilizes a theory
based on the pre-linguistic principles of substantiality, continuity, gravity and ground plane to construct a semantic
representation of the objects and events in the animation. Without any modification, Abigail can watch a different
animation containing different objects participating in different events and still be able perform a semantic analysis
to yield an appropriate representation of the objects and events in this new movie.

! This paper remains agnostic as to whether such pre-linguistic knowledge is innate or acquired during the early months of life.
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Abigail

Help  Mew  Open ... Swoa  Seve Mg ... [y Stow  Percave Arvia  Bagm  Trwws  Rell  Malt  Leieien

A

Liatener

Figure 1: A frame from one of Abigail’s movies.

2 The Theory

As mentioned previously, Abigail does not directly perceive objects such as people, tables and chairs. Instead Abigail
perceives the figures, such as line segments and circles, out of which objects are constructed, and then interprets
certain collections of figures as objects. In particular, Abigail understands that figures may be joined together.
We denote a joint connecting figures f and g as f — ¢g. Such a joint can be described by three parameters: the
displacement of the joint along the length of f, the displacement of the joint along the length of ¢ and the angle
formed between f and g. Any joint can be either rigid or flexible, independently along each of these three dimensions.
A rigid joint parameter has some fixed value while a flexible joint parameter leaves its value unspecified. For technical
reasons, we require that at least one of the displacement parameters of every joint be rigid. Any set of figures which
are connected by joints will be interpreted as an object. Abigail does not directly perceive joints between figures. She
infers those joints which are necessary to explain the unfolding animation according to the pre-linguistic principles.
Furthermore, the set of joints and their parameter values need not be invariant for the duration of the movie. During
the course of the movie, joints may change from rigid to flexible, or vice versa, and may even appear or disappear
completely. This allows new objects to be built by combining old objects, old objects to be broken into parts and
objects to be broken and then fixed again. Abigail, must continually maintain and update a joint model of the world
to understand such construction and destruction events.

Abigail’s microworld is nominally a two dimensional world. The figures that she perceives directly do not con-
tain any depth information. Such a two dimensional world is not capable of supporting an interesting model of
substantiality. The motion of objects in a two dimensional world which obeys substantiality is highly constrained.
Nonetheless, when humans view the animation based on Figure 1 where the man walks from one side of the table to
the other, they are not disturbed by the fact that in doing so, the man’s figures overlap the table’s figures. They never
entertain the possibility that the man is walking through the table. Instead they assume that the man is walking
either behind or in front of the table. In a similar fashion, Abigail attempts to reconstruct such depth information
to explain the image and uphold the principle of substantiality. While not perceiving depth information directly,
Abigail constructs a depth model which assigns certain figures constituting the image to the same layer and others
to different layers. This model comprises a set of assertions of the form layer(f) = layer(g), when figures f and g¢
are known to be on the same layer, and layer(f) # layer(g) when they are known not to be on the same layer. Only
figures on the same layer must obey substantiality.

The layer model constitutes a partial third dimension. Abigail requires that at all times the layer model be
a complete and consistent equivalence relation though not necessary total. Thus from layer(f) = layer(g) and
layer(g) = layer(h) Abigail will infer layer(f) = layer(h). Likewise, from layer(f) = layer(g) and layer(g) #
layer(h) Abigail will infer layer(f) # layer(h). However, for some pairs of layers, Abigail may not know whether or
not they are on the same layer. Note that these layers are not ordered and in particular there is no notion of adjacent
layers. Additionally, the assignment of figures to layers may change during the course of the movie. Thus Abigail
must continually update the layer model both to maintain its internal consistency as well as to uphold substantiality
judgments in the changing world.

The layer model consists of a list (a;,...,a,) of layer assertions. New assertions are always added to the front of
this list. Whenever new assertions are added, we check the consistency of successively longer initial prefixes of the
model. If the prefix (aj,...,a;_;) is consistent but the prefix (aj,...,a;) is not, then the assertion g; is removed
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from the model. This is repeated until the entire model is consistent.
How does Abigail apply the pre-linguistic principles to update both the layer and joint model? At every frame,
Abigail looks for six types of evidence between every pair of figures f and g.

1. Evidence that the assertion layer(f) = layer(g) should be added to the model.

Evidence that the assertion layer(f) # layer(g) should be added to the model.

Evidence that some parameter of the joint f — g should be demoted from rigid to flexible.
Evidence that an existing joint f — g should be removed from the model.

Evidence that some parameter of the joint f < g should be promoted from flexible to rigid.

o o s ww

Evidence that a new joint f «— g should be added to the model.

Two forms of evidence can be used to infer case 1: support and collision. Whenever two figures touch and one would
fall without being supported by the other, Abigail can infer that they are on the same layer. Likewise, if one figure
moves toward another figure, touches it, and moves away from it according to the laws of physics, the apparent
collision gives evidence that the two figures are on the same layer. Collision detection is not currently implemented
in Abigail. In a similar fashion, there are two forms of evidence for case 2: overlap and exiting an apparent container.
A direct observation that two figures overlap give clear evidence that they are on different layers. Furthermore, if
one figure is initially surrounded by another figure and then moves so that it is no longer surrounded by that figure,
the principles of continuity and substantiality imply that those two figures must be on different layers. Currently,
only direct observation is implemented in Abigail. For case 3, an observation that the value of some rigid parameter
of a joint has changed is evidence for demoting that parameter. An observation that two figures no longer intersect
is evidence for case 4. Abigail currently does not implement any evidence for case 5. For case 6, Abigail infers a new
joint whenever two figures touch and the two figures would cease to touch under the effect of gravity if they were
not connected by a joint. In general, whenever Abigail hypothesizes new joints and same layer assertions to account
for the stability of an object in the image, she attempts to hypothesize a minimal set of new joints and same layer
assertions with same layer assertions taking priority over new joints when both offer the same explanatory power.

Central to the above process is a mechanism for determining support relationships between objects. Abigail uses
a simulator for this purpose. This simulator takes the figures appearing in the current frame, along with a set of joints
and layer assertions, and predicts how the image will change under the effect of gravity. This simulator is essentially
a quantitative kinematic simulator that incorporates the pre-linguistic principles of substantiality, continuity, gravity
and ground plane. It lacks any notion of dynamics, such as momentum, kinetic energy and friction. Nonetheless, it
is adequate for determining the support relationships between objects, the same layer relationships between figures
and the necessity of joints between figures.

Abigail continually performs such simulations every frame, hypothesizing what would happen in the world under
different sets of joint and layer assertion assumptions. This has fairly strong psychological implications. For Abigail to
be a plausible reflection of human perception, humans must be shown to be capable of performing such simulations and
must also be shown to be performing them fairly regularly, albeit subconsciously. Freyd, Pantzer and Cheng (1988)
gives evidence that humans perceive objects to displace slightly downward, as if they were falling, when support is
removed from them.

Once Abigail has constructed the joint and layer model for each frame, and has collected connected figures into
objects, she computes the following relations between those objects and the regions of space that they occupy:

(i, j]ezists(a): Object a exists continually for frames i through j.
(2, j]contacts(a, B): "Object o touches and is on the same layer as object 3 continually for frames i through j.

(i, 7]joined(a, B): For frames i through j, objects a and 3 are joined together by at least one joint connecting a figure
from o to a figure from 5.

(i, j]supports(a, B): For frames i through j, object 8 falls if the image is simulated without object a but object 8
does not fall if the image is simulated with object a.

2, 7]supported(a): For frames i through j, object o does not fall when the image is simulated.

[i, j]jmoving(a): For every frame between i and j, the position, size or orientation of some figure in object o has
changed from the previous frame.
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(i, )Jmoving-root(a): For every frame between i and j, the position, size or orientation of some figure in the root of
object o has changed from the previous frame. The root of an object is defined to be the subset of its figures
which has the greatest mass and which is connected by joints which have not changed parameters since the
previous frame. .

(i, j]translating(a, p): Indicates that the center of mass of the root of object « is changing position for every frame
between ¢ and j. The path pis a trace of the movement of that center of mass.

(i, j]rotating-clockwise(a): The root of object a is rotating clockwise for every frame between i and j.

(, j]rotating-counterclockwise(a): The root of object « is rotating counterclockwise for every frame between i and j.
(i, j]rotating(a): For frames i through j, the root of object « is rotating either clockwise or counterclockwise.
(i,7]place(a,p): Object o occupies the region of space indicated by p for frames i through ;.

at(p,q): Points p and q are approximately coincident modulo a tolerance.

in(p, q): Region p is a subregion of region q.

to(p, q): The ending point of path p is approximately coincident with point ¢ modulo a tolerance.

from(p, q): The starting point of path p is approximately coincident with point ¢ modulo a tolerance.
towards(p,q): Every point along path p is closer to point ¢ than the previous point along that path.

away-from(p, q): Every point along path p is further away from point ¢ than the previous point along that path.

up(p): The y-coordinate of every point along path p is greater than the y-coordinate of the previous point along that
path.

down(p): The y-coordinate of every point along path p is less than the y-coordinate of the previous point along that
path.

3 An Example

The above relations are the primitives out of which semantic representations of events are constructed. Consider an
event such as John kicked the ball in the room. This event could be represented as follows using the above primitives:

[t1,ta]translating(foot(John), pll) A [t1,tq]place(ball, p2) A towards(p,, center-of-mass(pa))A
[t2, t2] contacts(foot(John), ball) A [to, t3]translating(ball, p3)A
(ta, ta]place(ball, ps) A [t), t4]place(room, ps) A in(pa, p5)
Each of the relations in the above expression can be derived from an animation of this event using the techniques
described in this paper. A future paper will discuss how these relations are aggregated together to form the composite

event description and how such an event description can be used by a language learner to learn the meanings of
words in an utterance describing that event.
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Abstract

An Explanation-Based Learning (EBL) system is
used to learn macro-operators from rule-governed fea-
tures in phonological representations. In the do-
main of generative phonology, EGGS-Phon follows
the EBL machine learning paradigm to use exist-
ing domain knowledge in building explanations from
examples. The system learns from relevant linguis-
tic knowledge and produces macro-operators for han-
dling vowel lengthening and consonant aspiration in
English. EGGS-Phon’s methodology is extended for
languages which apply phonological rules in linear or-
der.

1 Introduction

Explanation-based learning (EBL) takes existing
knowledge (encoded as rules and facts) about a do-
main and “[constructs] an explanation for why a spe-
cific example is a member of a concept or why a
specific combination of actions achieves a goal.” [6]
The explanation is typically in the form of a new
rule, called a macro-operator. The system presented,
EGGS-Phon, uses EGGS (Explanation Generaliza-
tion using a Global Substitution) as its learning foun-
dation [6]. EGGS-Phon is provided with basic con-
cepts from generative phonology.

Many phonological features in an Underlying
phonemic Representation (UR) are governed by rules,
with each natural language having its own particular
set of rules, rule orderings, and rule-governed fea-
tures. EGGS-Phon’s knowledge base specifies fea-
tures about the phonemic inventory of languages,
as well as their rule orderings.! EGGS-Phon takes
a phonemic representation associated with a lexical
entry (z.e., the UR), and applies phonemic rules to
produce a phonetic representation (which has a suf-
ficient level of detail for pronunciation).? Examples
of turning URs into Phonetic Representations (here-
after, PRs) are shown in figure 1. Two rule-governed
features are illustrated:

o the feature aspirated (represented by *P”) for

/p/,/t/, and /k/; and

o the feature long (represented by “.”) for /2/ and

/o/.

EGGS-Phon uses the well-established observation
that English unvoiced stop consonants (u.e.. /p/, /t/,

!Phonemes in this paper are written with symbols of the
International Phonetic Alphabet (IPA) [2].

2Such rules and representations would be usable by various
modules (e.g., morphology, syntax, phonology) in a Natural
Language Processing system.
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Lexical Item Phonemic Representation Phounetic Representation

“pat” /p mt/ [prwt)
“‘neb” /o = b/ (o = b|
“cab” /k » b/ [k® 2: b}
“potomec” /patomik/ [pP*at*o:m k|

Figure 1: Examples of turning underlying lexical rep-
resentations into phonetic representations

and /k/) have their aspiration (i.¢., the puff of air ac-
companying its pronunciation) completely predicted
by phonemic rules.3

To generate the PR, EGGS-Phon:

o considers each phoneme of the UR (containing
an ordered list of phonemes, enclosed in //) se-
quentially,

¢ , determines the values for all of the features of
this phoneme which are governed by rules, and

e applies these rules.

At the end of this generation process (i.e., after all
phonemes are examined), the resulting phonological
changes indicate the surface-level PR.

EGGS-Phon also orders rule applications, with
each intermediate result serving as the phonological
input to the next linearly ordered rule.

2 Motivation

Many Artificial Intelligence (AI) programs derive
much of their inspiration from psychological plausi-
bility. EGGS-Phon takes an analogous approach, em-
ploying linguistically plausible phenomena (e.g., nat-
ural categories, rule-governed features, and ordered
rules). By providing a computational framework for
the linguist, the output of EGGS-Phon can reveal dif-
ferences between the PR generated by the rules and
the expected PR. The linguist may also evaluate the
relevancy of learned macro-operators.

The EBL paradigm provides some advantages in
representing phonological information. Linguists re-
fer to “natural categories”, notions which appear
with great frequency across languages. Figure 2 il-
lustrates some of these notions.

Natural categories can be kept as rules in EGGS,
even as EGGS creates additional rules. A sample nat-
ural category rule is: If X is consonantal and X 1s not
sonorant, not continuant. not voiced, and not nasal,

3 Aspirated stop consonants are in complementary distribu-
tion with their unaspirated counterparts. Thus, [ph e t], not
[p 2 t], would be pronounced by native English speakers.



o positional information
o word-initial
o word-final
o syllable-initial
o syllable-final

o context-sensitive information
o precedes-consonant

o precedes-vowel
¢ phonological classes
o stop-consonants (e.g., /p/, /k/, /t/)
o glides (e.g., /b/, /w/, /y/)
o affricates (e.g., /¢/, /ts/, /pt/)
o fricatives (e.g., /s/, /z/, /§/, 18/, [3/)
o front-vowels (e.g., /i/, /e/, [=/, [e/)
o open-unrounded vowels (e.g., /a/, /a/, /o/).

Figure 2: Natural Categories

then X has the feature stop. Once exposed to exam-
ples (i.e.. lexical representations of words) needing
features specified, EGGS generalizes from the exam-
ple a new learned rule: [f X is a word-initial conso-
nant, and X is consonantal and X 1s not sonorant, not
continuant, not voiced, and not nasal, then X has the
feature aspirated.

3 System Description

EGGS-Phon stores phonological features about the
consonants and vowels of the user-specified language
in its knowledge rule base. EGGS-Phon utilizes the
EGGS module (for generalizing explanations) as well
as the DEDUCE module (for inferencing and proof
generating).* As a rule-based system, EGGS-Phon
works by iteratively applying concise “if-then” rules
to a phonemic representation. An applicable rule
modifies the UR by:

1. determining the feature’s value (i.e., presence or
absence), and/or

2. inserting, deleting, or substituting phonemes.

Once EGGS-Phon has applied all rules, the resul-
tant phonological representation is transformed into
a surface-level PR. By learning a series of rules and
generalizing over them into a single macro-operator,
the system prepares itself for encountering similar ex-
amples in later input.

The phonological features of English used to
demonstrate EGGS-Phon’s feature processing are
based on Fromkin and Rodman [4]. The linearly-
ordered rules and sample words (including their in-
termediate phonological forms) of Tonkawa are from
Kenstowicz and Kisseberth {5].

1Both modules are courtesy of R. Mooney.
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3.1 Feature Processing

Languages have two types of features: immutable and
rule-governed. EGGS-Phon takes the UR and returns
a list of the features which must be changed to be-
come a surface-level PR. More specifically, for each
phoneme associated with the lexical entry, EGGS-
Phon considers each rule-governed feature of the
phoneme, with EGGS computing the present/absent
value.

3.1.1 Rule-Governed Features

An example of this process is determining if the /k/
of /kag/ (“og”)is aspirated. When EGGS is asked
to show that /k/ is aspirated, the system provides a
proof that /k/ is aspirated because:

1. it is word-initial (and thus stressed syllable ini-
tial), and

2. 1t is a stop consonant.

This proof is generalized to become a macro-operator
for later use.

3.1.2 Results

When EGGS-Phon was given the UR for “potomac”,
1t used facts from the knowledge base and rule appli-
cations to derive [ph], [t?], [o:] for the PR. Figure 3
shows the efforts involved in determining vowel length
and consonant aspiration.®

From basic (user-specified) rules, EGGS learned
two new more specialized rules: one for aspiration
that takes place at the beginning of a word (as in the
“cog” example), and another rule for aspiration that
occurs at the beginning of a stressed syllable (such
as the /t/ in “potomac”). Note that the learning
generalizes the salient portions of the rule base’s “if”
conditions.

Figure 3 summarizes the findings on an English
word potomac, which possesses three stop (unvoiced)
consonants (with two being aspirated by different
rules), and a vowel /o/ lengthened because it appears
before a nasal (voiced) consonant. In both sections of
the figure, when two numbers are listed in an entry:

e the first number indicates learning without in-
terference (i.e., learning when only user-defined
rules exist for that predicate), whereas

e the second number indicates learning with inter-
ference (i.e., learning when EGGS has defined a
related macro-rule yet it does not apply to the
phoneme and its current environment).

>Note that this example shows rule application as a one-
pass process through the UR, with no dramatic alterations
(such as deleting phonemes) to the UR.



Before Learning

Phonemes for Rule Rules Answers  Answers
potomac Retrievals Tried Tried Made
aspirated 14, 16 56 12, 13 4,4
logg /3/ et 6, 10 2,3 3,6 0,0
aspirated /t/ 16, 17 6,7 13, 13 4,4
long /o/ 6 2 5 2
aspirated /m/ 5,7 3,4 1,2 0,0
long /v/ 6 2 3 0
aspirated /k/ 4,5 3.4 0,0 0,0
After Learning
Phonemes for Rule Rules  Answers  Answers
potomac Retrievals Tried Tried Made
aspirated /p/ 9,11 1,2 8,9 1,1
long /a/ 10 3 6 0
aspirated /t/ 10, 11 1,2 9,9 11
long /o/ 5 1 4 1
aspirated /m/ 8 5 2 0
long /v/ 10 3 6 0
aspirated /k/ 6 5 0 0

Figure 3: Learning Rule-Governed Features in po-
tomac, where paired numbers x, y represent the to-
tals for learning without interference and with in-
terference, respectively.

In the After chart of figure 3. the first number indi-
cates the benefit of learning macro-operators, benefits
which start to decrease once there is learning with in-
terference (as reflected in the second number). Note
that “Answers Made” is non-zero only if the feature
(e.g., aspirated, long) applies.

Performance degradation (of serial systems) is a
potential probiem in EBL systems that learn macro-
operators. This potential degradation can be seen
in the attempt to discern that /m/ is not aspirated,
where EGGS retrieved only five rules before learning
but retrived eight rules after learning.

3.2 Rule Processing

An important notion of generative phonology is han-
dling rules, with rule ordering being a key issue.
While features are governed by rules, rules themselves
are governed by ordering constraints.

3.2.1 Rule Ordering

The rule ordering portion of EGGS-Phon controls
access to the inference mechanism (i.e., EGGS and
DEDUCE). Examples from Tonkawa [3] were chosen
to investigate phonological rule orderings. Linguistic
evidence for linear ordering is discussed by Kenstow-
icz and Kisseberth [5]. EGGS-Phon models Tonkawa
with four linearly applied rules:

1. apocope — truncate a vowel if it ends a word,

172

2. elision — delete an element in a certain context,

3. truncation — delete the first of two consecutive
vowels, and

4. vocalization — turn glides into vowels.

EGGS-Phon ran on six sample Tonkawa words. In
all cases, the intermediate forms as well as the final
forms were correctly generated: the rule ordering was
never violated.

3.2.2 Results

The experiment verified that EGGS-Phon could al-
low rules to be ordered. While rules like truncation
generalized, other rules (consisting solely of looking
up facts) in the knowledge base did not generalize
into macro-operators.

4 Directions for Future Re-
search

While EGGS-Phon can support application of rules
in linear order (1.e., multiple rule firings), this system
needs a more general mechanism than is currently im-
plemented to process partially-ordered phonological
rules.®

Anderson [1] also argues for a phonological compo-
nent that supports cyclical application of rules, with
rules being organized into sets in a hierarchy. Such
notions are beyond the scope of the current imple-
mentation of EGGS-Phon, and would require a spe-
cialized inference mechanism.

EGGS-Phon has only been tested on intonational
languages. The phonological representation currently
implemented would have to be extended to handle
tonal languages (e.g., Mandarin Chinese).

“Noisy data” exists in all natural languages, where
certain lexical entries (due to language change or his-
torical accident) are exceptions to rules. Linguists
call such “noisy” lexical items suppletions, and just
list them in the data, with no further analysis. An
avenue for enhancing EGGS-Phon would be to in-
clude examples with noisy data, and verify that no
macro-operators would be learned from suppletions.

Since EGGS-Phon only used the EGGS system
(and not the full GENESIS system), it does not have
all the capabilities discussed in the later chapters
of Mooney [6]. Specifically, EGGS lacks a schema
learner. Only the GENESIS module provides schema
acquisition: the ability to “[build] a schema describ-
ing plans for a wide variety of situations.” [3] So, it

SUse of non-linear rule application is discussed in
Mooney (6] but is not available in the EGGS module. An-
derson provides linguistic evidence for partial ordering {1].



was not possible to devise an example that EGGS
could solve after learning macro-operators that it
could not have done before learning.

The most intriguing direction would be to incor-
porate “discovery learning” programs with EGGS-
Phon. Using the basic linguistic knowledge base
(consisting of natural categories and an inventory of
phonological features) and a corpus of natural lan-
guage examples. the “discovery learning” program
could derive rules and generalizations that explain
the data. EBL can then be used on these rules, both
for testing their validity (whether given the same,
subset, or different corpus of linguistic examples) and
for finding the “short-cuts” (i.e., macro-operators).
However, the encoding strategy needed for this lin-
guistic knowledge base to be usable by a discovery
program (in making interesting new concepts) is not
readily apparent, and would require further research.

5 Conclusion

EGGS-Phon demonstrates that explanation-based
learning can be successfully applied to such linguis-
tic domains as generative phonology. EGGS-Phon
was able to learn rules for aspiration of stop conso-
nants and for vowel-lengthening in English; its pre-
liminary results of rule ordering were also encourag-
ing. The functionality of EGGS-Phon (by facilitat-
ing tests of rules on natural language examples) could
be of interest to computational linguists. With fur-
ther enhancements (e.g., to its inference mechanism),
EGGS-Phon will have even greater applicability to
generative phonology.

6 Bibliography

1. Anderson, Stephen R. The Organization of
Phonology. Academic Press, Inc., 1974.

2. Catford, J.C. A Practical Introduction to Pho-
netics. Oxford University Press, 1988.

3. Ellman, Thomas. FEzplanation-Based Learning:
A Survey of Programs and Perspectives. Com-
puting Surveys, June 1989.

4. Fromkin, Victoria, and Rodman, Robert. An
Introduction to Language. CBS College Publish-
ing, Third Edition. 1983.

5. Kenstowicz, Michael, and Kisseberth, Charles.
Generative Phonology: Description and Theory.
Academic Press, Inc., 1979.

6. Mooney, Raymond. .4 General Erplanation-
Based Learning Mechanism and Its Application

173

to Narrative Understanding. Technical Report
AITR88-66, Artificial Intelligence Laboratory,
University of Texas at Austin. Jan. 1988.

7 Acknowledgements
[ am grateful to Steven Salzberg, Andrew Philpot,

Jodie Kalikow, and others for reviewing earlier ver-
sions of this manuscript.



Vector Space Grammars and the Acquisition of
Syntactic Categories:
Getting Connectionist and Traditional Models to Learn from Each Other

Andreas Stolcke

Abstract

This papers describes a method for applying certain adaptive learning techniques usually found in connectionist
systems to traditional symbolic grammatical descriptions. The approach is based on a generalization of context-free
grammars in which discrete grammatical categories are replaced by elements from a continuous vector space, leading
to the concept of Vector Space Grammars. Continuity of the representations, as well as differentiability with respect
to rule application then enable use of learning techniques like competitive learning and error backpropagation. We
show how this hybrid formalism can be used to learn grammar rules and category labels from phrase-bracketed
positive and negative sample strings of a language.

Furthermore, since Vector Space Grammars are formally and conceptually derived from classical grammar for-
malisms, the results of learning can be analyzed and interpreted in terms of classical notions. In particular we show
how the continuous rule representations learned can be analyzed to be quasi-isomorphic to classical context-free rules.

It is argued that generalization and extension of classical formalism to accommodate adaptive learning is a
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1 Introduction

This paper describes work in progress aimed at exploring
connectionist learning techniques for the construction of lan-
guage acquisition devices. The main thrust of this work is
to reconcile and capitalize on both the significant results in
connectionist learning research and the body of linguistic
knowledge as incorporated in standard high-level theories of
language.

Connectionism, and especially Parallel Distributed Pro-
cessing (PDP) has developed an array of models of learn-
ing systems (backpropagation, Boltzmann machines, com-
petitive learning (Rumelhart et al.,, 1986b)), these models
typically operate on representations at a rather low and un-
structured level (unit activations, bit vectors, microfeatures)
relative to the structures used in traditional linguistic de-
scriptions (trees and graphs, case frames, grammar rules,
stacks). This, of course, is no coincidence: the learning al-
gorithms used, e.g., in Backprop Learning and Boltzmann
machines are powerful and general precisely because they
operate on simple and homogeneous representations. The
simplicity of the representation allows a simple mathemati-
cal characterization and analysis, which in turn leads to (and
justifies) the respective learning procedure (such as gradient
decent and simulated annealing).

A second prerequisite for these connectionist learning al-
gorithms is that representations be continuous in nature.
Continuity of the representation space, with the added re-
quirement that the performance measure be differentiable
with respect to the representations, ensures that adaptive
learning can take place, i.e., gradual adjustment towards a
specified goal. Again, continuity and differentiability are typ-
ically not found in traditional linguistic descriptions, which
for the most part are inherently discrete (Fuzzy Languages
(Zadeh, 1972) are a notable exception).

The question that shapes up, then, is this: how can
we harness the power of apparently powerful connection-
ist learning techniques without simply starting from scratch
with respect to the linguistic insights gained and formulated
within the existing theories of language. Put differently, how
can we bridge the representational gap between these two
fields so as to both extend the applicability of connectionist
learning and add learning power to linguistic theories?

Assuming for a moment that we can be successful along
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these lines, an additional benefit becomes evident. If our con-
nectionist representations are specifically designed to have a
well-defined relation to existing theoretical constructs (such
as linguistic rules and categories) we will increase the chance
that the outcome of our learning procedure will not be just a
collection of weights that apparently ‘do the job’. Instead we
can reinterpreted the solution found by the network in terms
of the theoretical framework, even if that requires departing
from some of the theoretical assumptions we started with.

This approach contrasts with some PDP research in
which networks were trained on some linguistic task, and
where the researcher post hoc tries to analyze the structures
found and construct an adequate ‘theory’ of the networks
internal behavior. The rational, of course, is to start out
with an ‘unbiased’ network and to let it ‘discover’ the struc-
ture of the input as well as adequate internal representations.
Invariably, however, the post hoc analysis has to refer to pre-
formed concepts of language (Elman, 1988; Pollack, 1988;
Elman, 1989). This is not surprising since many of those
preformed concepts not only have a strong theoretical and
empirical motivation, but are intuitive to some extent (like
the fact that there are sentences and non-sentences, that
verbs behave differently from nouns, etc).

2 Vector Space Grammars

The work reported here is a specific example of how tra-
ditional linguistic concepts might be combined successfully
with adaptive learning techniques to result in a framework
within which certain aspects of language and grammar can
be learned.

We have developed a generalization of traditional context-
free grammars (CFGs), called Vector Space Grammars
(VSGs). VSG rules have the same format as standard CFG
rules in Chomsky Normal Form (CNF), namely nonterminal
productions of the form

X—-YZ (1)
and lexical (terminal) rules
X—a (2)

to derive strings of a language. Whereas in traditional gram-
mars categories (X, Y, Z) are symbols in a space with a



terminal

symbols

Figure 1: Vectors involved in VSG rule application. The new
root vector a is a function of the subtree root vectors b and
¢ and the vectors in the rule x — y z, e.g., a = (b-y)(c-z)x.

binary metric (equality/nonequality), VSG uses vectors as
nonterminal categories. This gives a continuous metric on
the category space, thus fulfilling one of the prerequisites for
an adaptive learning mechanism. Terminals (words) in VSG
are still unanalyzed atomic entities, and strings of terminals
form the domain in which a language is defined.

A standard non-terminal rule mape two specific symbolic
categories into a third symbolic category (the left-hand side
of the rule). Similarly, a VSG rule mape two vectors onto a
third. From a bottom-up parsing point of view, a traditional
CFG rule is applicable if and only if its two right-hand side
categories match exactly two other categories (roots of par-
tial parses). In VSG, rule applicability becomes a graded no-
tion, and every rule will be applicable to every two categories
to some extent. However, the formalism is designed such that
well-matching rules give a ‘high’ output, and poorly match-
ing rules result in a vector close to the zero vector. This is
accomplished by the following ‘activation function’ for VSG
rules. Let x — y z be the rule appliced to two categories b
and c (we use bold letters to denote vector quantities). Then
the category resulting from the rule application is defined as

a=(b-y)(c-z)x (3)

where - denotes the inner product of the vector space. The
two inner products on the right express the match of cat-
egories, and since the right-hand side terms in a context-
free rule work conjunctively (all have to match), the values
are multiplied. Choosing the inner product as the measure
of matching partly determines the structure of the category
space: categories will behave differently to the extent that
they are orthogonal. The elements involved in rule applica-
tion are depicted schematically in figure 1.

It can be shown that traditional CFGs and their way
of rule application is a special case of VSG rule application.
Roughly speaking, each dimension in the category space cor-
responds to a non-terminal in a traditional grammar.

Acceptance of strings by a grammar can be defined anal-
ogously to traditional grammars, although acceptance be-
comes a non-discrete function (similar to Fuzzy Languages).
Since these definitions are not directly relevant to rule for-
mation we will omit them here and turn immediately to the
learning algorithm (see (Stolcke, tion) for details).
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3 Learning with Vector Space
Grammars

The problem of learning to parse strings of a language can be
broken down into two subproblems: finding the structure of
the parse tree, and assigning category labels to the nodes in
the tree. There are indications that the two problems might
in fact be handled separately.

Morgan et al. have shown that this assumption can be
justified from at least three perspectives. Firstly, across
natural languages there is a variety of cues present in the
surface structure of language (both intra-sententially and
cross-sententially) which correlate well with phrase bound-
aries and would therefore form a suitable basis for phrase
structure extraction prior to grammar learning. Secondly, it
can be shown that at least adults actually depend on these
cues when taught artificial languages (Morgan et al., 1987;
Morgan et al., 1989). Finally, learnability arguments show
that the absence of such prestructuring in grammar learning
would require unrealistically large amounts of processing ca-
pacity and input samples (Morgan, 1986) for learning to be
successful on theoretical grounds.

In the following we will discuss how the category system
and the rules for a language can be learned within the for-
mal framework provided by VSG, given positive and negative
instances of the language along with their phrase structure
boundaries.

It should be pointed out at this stage that the overall
algorithm about to be described is not connectionist in the
sense that, for every aspect of its operation, a neurally plau-
sible implementation can be given. In particular, structures
will be created dynamically throughout the algorithm, some-
thing for which no elegant connectionist mechanism is known
so far. However, the structures themselves (VSG rules), as
well as the operations involved in the application of individ-
ual rules and in the learning procedure, are implementable
with mainstream connectionist hardware.

Two global parameters of the system are the dimension of
the category space and the number of rules to be used. These
parameters should be set ‘large enough’ for a given language,
and have an effect similar to the number of hidden units in
a backpropagation network. With too little resources, the
system will not converge on a solution, and with too many
degrees of freedom the solution might be redundant and not
express certain generalizations about the input.

At the outset of learning, then, a fixed number of non-
terminal rule ‘templates’ of the form (1) (with a given vector
space dimension) are allocated. Additionally, for each ter-
minal symbol, a rule of the form (2) is created. All category
vectors, in all rules, are set to random unit-length vectors.

Given a sample string from the language and a parse tree
skeleton, we construct a labeled parse tree from the cur-
rent set of rules. To assign a category vector to a node, the
rule whose right-hand side represents the best match for the
child node categories is selected and equation (3) is used to
compute the output category for that node. ‘Best match’ is
defined according to the same inner product metric as used
in equation (3), i.e., using the value (b - y)(c:z). Only
the rules selected at some node will later participate in the
learning process, and since only the currently best rules get
selected the whole process strongly resembles the method of
competitive learning (Rumelhart and Zipser, 1985).



By working from the terminal nodes to the root we arrive
at a category label for the entire string. If the training sample
is a positive instance of the language we know what the target
category for the parse should be: the sentence category ‘S’.
Without loss of generality we can fix S throughout training
to be a particular vector, e.g., the unit vector (1,0,...,0).

The second idea adapted from connectionist learning
methods is that of error backpropagation (Rumelhart et al.,
1986a). At the root node we can immediately compute an
error term for the discrepancy between the desired output
and the actual output. For positive examples this is just the
difference between S and the root category, for negative ex-
amples we compute an error term which tends to make the
output category and S orthogonal. A recursive procedure
(based on the chain rule) can then compute the derivative
of that error with respect to every category vector occurring
in some rule (left of right-hand side) applied somewhere in
the tree. The details of the computation of derivatives can
be found in the appendix.

Derivatives for each category vector are then added up
and multiplied by some constant (the ‘learning rate’) to give
the adjustment to be applied to that category. All rules
are updated accordingly, all categories are rescaled to unit-
length, and the next training example is processed. The
algorithm cycles through the training set until the error be-
comes negligible or no further improvement is observed over
a long period of time.

4 A Sample Grammar

Preliminary results show that the learning procedure
sketched above can indeed learn grammars for both artifi-
cial languages and natural language fragments of moderate
complexity. As emphasized in the introduction, the results
of the learning process can then be analyzed in terms of the
context-free formalism VSGs are based on.

As an example consider a fragment of English ‘consist-
ing of transitive sentences (‘A circle touches a square’) and
copula sentences (‘A circle is below a square’) involving the
nouns circle, square, the verbs is, touches, the prepositions
above, below and the determiner a (this fragment is borrowed
from the Lo project domain (Feldman et al., 1990), a sample
grammar for it is given below).

The algorithm was run over a set of 6 positive and 18
negative samples, listed in figure 2. the number of rules was
set to 5 and the category dimension to 15. At a constant
learning rate of 0.5 the error was typically negligible after 50
passes over the training set.

As a method for analyzing the resulting VSG we used
cluster analysis, which groups vectors according to a dis-
tance metric in a hierarchical fashion. Figure 3 shows the
result of clustering all vectors occurring in rules as well as
the fixed S vector. The graph shows that the vectors fall
into nine major clusters of left-hand side and right-hand side
rule vectors. Further analysis of these clusters shows not
only that they form a rule system that accounts precisely for
the input sample, but also that these rules and categories
can be put into a one-to-one correspondence with a natural
standard CFG for the language at hand:

S - NPVP
NP — DetN

((a circle) (touches (a square)))

((a square) (touches (a circle)))

((a circle) (is (below (a square))))
((a square) (is (below (a circle))))
((a circle) (is (above (a square))))
((a square) (is (above (a circle))))
(a square)

(a circle)

- (above (a circle))

-~ (below (a square))

- (touches (a circle))

- (touches (a square))

- (is (above (a square)))

- (is (above (a square)))

- (is (below (a circle)))

- ((a circle) (below (a square)))

- ((a square) (above (a circle)))

- ((a circle) (is (touches (a square))))
- ((is circle) (touches (a square)))

- ((a circle) (a (a square)))

- ((a square) (is (below (is circle))))
-~ ((a square) (touches (below (a circle))))
- ((a circle) (is (a square)))

- ((a square) (a (above (a circle))))

I+ 4+ + + + +

Figure 2: Training set used for the VSG learning experiment.
The data is drawn from a fragment of English generated by
the grammar given in the text. Positive training instances
are labeled with +, negatives ones with -.

vP — VT NP
vP — VC PP
PP — PNP

N — square|circle
VT — touches
VC — s

P —  above|below
Det — a

(Figure 3 explains how CFG symbols map onto vector clus-
ters.)

Of course the details of the resulting rule and cate-
gory structure are highly dependent on the training environ-
ment. For this example, extreme conditions were intention-
ally chosen to generate the perfect correspondence between
the structure learned and the traditional CFG. Specifically,
constraining the number of rules to five forces a parsimonious
use of categories. With more rules to work with either redun-
dancies would develope (several rules serving the same func-
tion) or some rules stay useless (never winning a competition
and not converging onto meaningful categories). Also, the
relatively large number of negative examples ensured that
the categories formed were sufficiently discriminatory. With
less or no negative examples a grammar develops that ac-
counts for all the positive examples but fails to exclude all
the negative ones, due to overly general rules.



Figure 3: Clusters of category vectors derived from sample
language. The rules are arbitrarily numbered R971 through
R975, left-hand side vectors are labeled ‘lhs’, first and second
right-hand sides ‘rhsl’ and ‘rhs2’, preterminals ‘lex’. The
nine major clusters correspond (from top to bottom) to the
nonterminals NP, VT, PP, VC, VP, N, Det, P, and S.

5 Conclusions

These and other examples show that the algorithm sketched
above is effective in extracting categories under the tight
constraints imposed by the theoretical framework (context-
freeness). More importantly, Vector Space Grammars show
that traditional theoretical concepts can be generalized to
profit from some of the powerful techniques developed in re-
search on connectionist learning. Our ongoing work is geared
towards both exploring the possibilities of Vector Space
grammatical representations and finding other areas were
traditional theories and connectionist methods can ‘learn’
from each other.
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Appendix: Error backpropaga-
tion through grammar rules

This section shows how the equations for error backpropa-
gation through the parse tree are derived.

As noted earlier, we can define the result a of applying a
rule x — y z to two categories b and c as

a=(b-y)(c-z)x

Consider a general node in the parse tree with category
vector a, derived from two child nodes with vectors b and



c using the rules x — y z.
‘activation rule’

We will consider the general

a=f(b-y)f(c z)x (4)

where f is a differentiable and monotonic ‘activation func-
tion’ as typically used in other connectionist approaches. In
the experiments reported f is either linear (the identity) or
sigmoid.

" An error function E is defined on the root category of the
parse tree. If the training sample was a positive one, this is
typically the sine of the angle between the the S vector and
the root, on negative samples the cosine of that angle. Back-
propagation starts by computing %—E for the root category a

directly from that error function. We use % here as a con-

venient shorthand for the vector of partial derivatives with

respect to the individual components of a,

The inductive assumption in the procedure is then that ££ is

already computed, and that the remaining derivatives, 3%,

2—-.3, %, %5—, and % can be derived from there. Eventu-

ally only the latter three derivative vectors are needed to
determine the rule adjustment, but the remaining ones are
required as intermediate values in the recursion. The recur-
sion bottoms out at the lexical nodes, since lexical rules have
only a left-hand side vector, but no adjustable right-hand
side.

From the expanded version of eq. (4),

0 = S b S evmi)zi, ()
we get | |

= g—f;f'(b~Y)ysf(C~Z)Ij

:

= ( , ‘5’%%) f'(b-y)f(c- )y

= (G2 NI O e 2y
or, using the shorthand,

2 (% 05 byl 2y (6)
The situation for 2% is symmetrical and we get

22— (CE 01-y)f (e 2 (1)

We can now compute derivatives for the components of
the rule. For the left-hand side we get

9F _ OEou
oz, da; 0z

(b y)f(e2)
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or, in shorthand,

72 oE
K..f(b-y)f(c-z)ﬁ (8)
The equations for derivatives with respect to y and z are
symmetrical to the ones with repsect to b and c, respectively

(eqs. (6) and (7)).

% = %.x)f’(b.y)f(c«z)b (9)
% ___(%_f.x)f(b-y)f'(c-z)c (10)
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ABSTRACT

Natural language and knowledge are tightly connected. In this paper some fundamental questions conceming the relation be-
tween language and knowledge are posed. Such questions are relevant to any research in the field of computational linguistics,
including the field of machine learning of natural language. However, most answers are not available, or lead to further ques-
tions. But, one thing is certain: language cannot do without knowledge.

Further research into the relation knowledge-language seems unavoidable. The outline of a model is introduced, which
forms a foundadon for further research. In the model, a multi-layered knowledge base interfaces with the world through a
dynamic, context-dependent conceptual model. A meta-cognitive level interprets the interaction with the world on the basis of
the conceptual model. It also decides what knowledge to project from the knowledge base into the conceptual model, depen-
dent on the current context. The conceptual model feeds back into the knowledge base. In this way knowledge on higher-order
entities (concepts) can be included in the base, and a mult-layered knowledge base emerges.

It might be necessary to develop new logical systems for inferring on the knowledge and the conceptual model. The strict
logic of existing systems seems to conflict with the flexibility of the human mind. Reformulation of logical concepts like
“inconsistency” seems unavoidable. In the context of language, the term incompatible seems more appropriate. Such incom-
patibilites in the conceptual model, which is a partial projection of the knowledge base, should be resolved. A non-classical
inference mechanism executed by a meta-cognitive level resolves this incompatibility.

The ultimate goal of this research is a data-driven knowledge model which, when implemented, will show gradual “sponta-
neous” development of language performance. Emphasis is on knowledge. It is therefore likely that other data (e.g. visual)
will have to be considered, apart from linguistic data.

The ideas sketched in this paper are still in a state of genesis. They are presented here 10 provoke discussion. Many aspects
of the relation knowledge-language remain undiscussed, e.g. the exact location of language rules in the model.
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INTRODUCTION

Knowledge plays an important role in language performance.
Numerous facts show us that language performance cannot
exist without world knowledge. As an example, consider the
fictitious headline: “Bush stands firm in storm™. No one who
has read any newspapers lately, will interpret this sentence
as: “Scrub survives the windy forces of nature”. Interpretation
of such sentences draws heavily upon our world knowledge
(in this case “world” in the most literal sense).

Such considerations show us that knowledge is essential
to natural language. However, the main question remains un-
answered: how is knowledge involved in natural language?
What is the relation between our knowledge and natural lan-
guage performance? Do we translate language utterances into
some internal (e.g. propositional) format, and then check the
consistency of the translated utterance against our knowledge
base? This seems highly unlikely. In the case of the example
above, we directly come to the correct reading, instead of
testing the possible interpretations? against our knowledge
base. The context (a headline during the crisis in the gulf)
forces the intended reading.

The context prepares us for the correct interpretation.
Thus, language analysis seems to be guided by knowledge,
and not checked against knowledge. We isolate parts of our
knowledge into an expectancy model. When reading the word
“Bush" we already know that the president is meant. We
would be taken by surprise if the article continued as: *“Last
Wednesday, a scrubwood was not taken down by heavy wind
in the southeast of Texas™.

In this paper a model of knowledge is described which in-
corporates such context-dependent concepts. The described
model will serve as the basis for research on the relation be-
tween knowledge acquisition and language acquisition. Main
goal is to develop a model which, when implemented, will
show “‘spontaneous™ language development.

KNOWLEDGE AND LANGUAGE

Analysis of the interaction between knowledge and language
leads to other questions. Can we speak of two diffent sys-
tems, a knowledge base and a language faculty, both with
specific properties? A number of alternatives exists. When
we process some language utterance, it seems psychological-
ly plausible to presuppose some speech recognition compo-
nent which translates sounds into some other representation
(language of thought?). Recent results in speech recognition
with the use of connectionist models seem to support this.
But what is the nature of this preprocessing? Does it concern
syntactic, semantic or even pragmatic analysis as well as
phonetic analysis? If so, the argument above implies that
such preprocessing would have to be controlled by our
knowledge. Can we directly include the output of such a pre-
processor in our knowledge base, if such a base exists?

If a preprocessing component does not perform this exten-
sive analysis of utterances, would that not imply the exist-
ence of some “language of thought” with semantic - or even
syntactic - properties? What should such a language of
thought look like?

The nature of our knowledge base seems to be a deciding fac-
tor in this analysis. Apart from the question whether we can
speak of a separate storage place for knowledge, the question
arises how knowledge would be stored in such a system. Is it
stored in the form of language-like expressions, (proposi-

2 There are a1 least twelve possible interpretations. "Bush”
can be interpreted as the president, as scrubwood, or as
jungle. Both “stands firm" and "storm” can be interpreted

in a literal sense, or in a metaphorical sense.
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tions or “language of thought”), in the form of images, in a
distributed form in a neural net, or in some other, stil un-
known, representation? The connectionist answer is a temp-
ting one. Psychologically, it can be quite succesfully defend-
ed. It sheds light on processes like association, memory re-
trieval, memory loss, the often surprising absence of severe
effects of minor brain damage and many more aspects of
knowledge.

It seems less plausible that our knowledge is represented
by language-like expressions. For these representations can
be directly translated into language utterances. But it is com-
mon knowledge how difficult it can be to express our knowl-
edge in a precise way. Secondly, one hardly ever uses the
same words to express the same knowledge.

It is plausible that knowledge is represented in a distributed
system. Does this imply the existence of an independent, se-
parate knowledge system? If we consider language, some in-
terface between language-like expressions and the knowledge
system exists. It seems reasonable to assume that the transla-
tion takes place in the mind, before expressing the resulting
utterance. This would imply that the language faculty and the
knowledge base are two distinct systems.

If we consider language acquisition, the list of dreadful ques-
tions continues. Which underlying principles of language are
innate? Why the discrepancy between the active and the pass-
ive language performance of children? Is this just a matter of
filtering out the understandable parts of an utterance?

A common conception of children's language acquisition is
that child language travels through successive stages of com-
plexity: one-word sentences, two-word sentences, subject-
verb-object sentences etc., before reaching adult complexity.
However, many children (the author is one of them) show a
different kind of development. They start to use language at
an advanced age, first talking double Dutch for a short period
of time, but in sentences with adult intonation. After this
stage, they talk in understandable, relatively complex senten-
ces. Why this remarkable difference in development? It is too
simple an answer to assume that the second group silently
travels the same stages as the first group, for why should
they keep silent? Shyness?

What is the relation between knowledge acquisition and
language acquisition? Can we speak of a recurrent process:
language acquisition bringing forth knowledge acquisition
and knowledge acquisition bringing forth language acquisi-
tion? But we should not underestimate the influence of other
perceptional stimuli like vision, hearing, smell, taste, touch
etc. Does language play the same role as such stimuli or is
there a fundamental difference?

How is knowledge acquired and how does its acquisition in-
fluence language? Knowledge seems again a crucial factor.
But also again a nasty one, for questions rise which cannot
(yet) be answered.

The ideas sketched in the rest of this paper have their origin
in my dissatisfaction with the current classical language para-
digm. The classical approach consists of parsing a sentence
(syntax), interpretating the result (semantics), and applying
the interpretation (pragmatics). The Holy Trinity of syntax,
semantics and pragmatics is a convenient one for language
analysis, but seems to be an artificial one for describing nat-
ural language understanding. It has been used to strictly sep-
arate the three properties of language. I think that a reason-
able model should integrate these properties.

The classical approach is outdated. It implies that seman-
tics is influenced by syntax, and pragmatics by semantics
and syntax. But, semantic and pragmatic considerations con-
trol syntactic analysis, e.g. when resolving ambiguity. Prag-
matic considerations affect the semantic analysis of a senten-



ce: interpretation does not solely depend on structure, but a
great deal on context as well. We have seen that knowledge
guides language analysis. But where does it fit in?

Language understanding is a complex process, consisting
of interwoven processes of feature analysis (concemning syn-
tax, semantics, pragmatics, and knowledge). This situation
becomes even more complex in the field of language acquisi-
tion.

Until now | have only posed questions without providing the
answers. And I doubt it that anyone will be able to answer
these questions in the near future. However, these questions
are relevant to the field of computational natural language
analysis. Insight in human language performance can provide
us with strong clues on how to implement natural language
systems. Computers cannot compete with humans in activi-
ties like language. The reason for this does not lie in storage
problems, processor speed, but in more fundamental pro-
blems like representation and inference.

As an attempt to bypass the problems discussed, the present-
ed model will be primarily concerned with knowledge. It
forms an attempt to tackle the problems at the bottom
(knowledge), as an alternative to the top-down syntax-seman-
tics-pragmatics approach. Its basic assumption is that the
state of knowledge reflects the state of language and vice
versa.

The model presented in this paper is essentially a computa-
tionial one. The main goal of this research is to develop a
language leaming system, which is knowledge-based. How-
ever, we should not forget to keep an eye on human language
performance for valuable clues on how to (or rather: on how
not to) develop computational models.

The ultimate goal of this research project is a knowledge
model which, when implemented, will show gradual *“sponta-
neous” development of language performance, whilst explain-
ing some properties of human language acquisition, a most
ambitious goal indeed! Such a model would have to cope with
knowledge acquisition, knowledge processing, and acquisi-
tion of linguistic rules. The model should be formalized such
that implementation is easy, and draw upon knowledge about
human language acquisition.

A MODEL OF KNOWLEDGE AND LANGUAGE

I have stressed the importance of knowledge in language rel-
ated activities. This simple statement brings forth utterly
complex questions, which cannot (yet) be answered. One is
forced to make choices which might be psychologically im-
plausible, in order to “get something to work™.

In this section 1 will confront the reader with some prema-
ture ideas still in the state of genesis, which will hopefully
lead to such an inaccurate, but working model. I present them
to provoke discussion, not to present research results.

In the model I will postulate a separate knowledge base. As
has been argued in the previous section, it is plausible that
our knowledge is represented in a distributed form. I will also
postulate a conceptual ‘system. This system forms the inter-
face between language and knowledge. In this conceptual sys-
tem, a language-like representation is assumed. I think that
this is the main featre of the presented model: a projection
of distributed knowledge into a language-like representation.

What are the properties of this conceptual system? Depen-
ding on the context, distributed knowledge is projected into
the system. On the level of knowledge, association forms the
inference mechanism. On the level of the conceptual system,
other inference mechanisms like deduction take place. At this
level, inference is conscious. We manipulate symbols instead
of having them “pop up”.
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Consider for instance a game of chess. If we analyze a posi-
tion, we unconsciously associate and a move “pops up". We
then consciously check whether such a move would be a good
one. We “see”” combinations, and afterwards analyze them for
correctness. Such active symbol manipulations are relatively
hard. Try to verify checkmate in eight moves!

The crucial implication of the above considerations is that
knowledge is on the fly projected into a context-dependent,
dynamic system. Abstraction becomes a parametrized process
instead of a logical property. In slightly different contexts,
our conceptual system might be quite different.

In the conceptual system, we can use the more classical lo-
gical approaches to natural language processing, for it is as-
sumed that we use a language-like representation in this sys-
tem.

Some important parts of the model are still missing. For how
to control the association in the knowledge base? And how
is the link between language and the conceptual system esta-
blished? I assume that a meta-cognitive level exists, which
controls the association process in the knowledge base, dep-
endent on the current state of the conceptual system and in-
coming information from interaction with the world. Incom-
ing information is processed by the meta-cognitive level,
taking the conceptual system as data. The meta-cognitive
level feeds such processed information into the knowledge

base. Finally, the meta-cognitive level generates output to
the world.

The model can be visualized as:

Experience

generatlonT l analysis

meta-cognitive

level
control | feedback : 'Nojessing
—i . projection
ywiedyge:] Conceptual
4 (] MO8
feedback

Fig. 1: Model of the relation knowledge-world.

The knowledge base is projected into a conceptual model.
This projection process is controlled by the meta-cognitive
level, such that association takes place in a context-depen-
dent way. Knowledge relevant to the current context is in-
cluded in the conceptual system in a language-like representa-
tion, irrelevant knowledge is not. The projection also in-
volves the translation from distributed knowledge into lan-
guage-like expressions. It might be necessary to process the
chosen knowledge, for instance by providing extra relations
between pieces of knowledge or by adding information about
certain knowledge. The meta-cognitive level implicitly con-
trols what knowledge to include, change or remove and what
information to add by controlling the association process in
the knowledge base.

The interaction with the world (experience) is evaluated by
the meta-cognitive level on the basis of the conceptual mod-
el. The meta-cognitive level takes the conceptual model as
data and reasons on the basis of this data in order to analyze
input or to generate output. In case of conceprual “crashes”



(e.g. when the headline is followed by the unexpected conti-
nuation), the meta-cognitive level will have to decide on
what actions to undertake. Thus, complex reasoning will be
carried out by the meta-cognitive level, although it seems
sensible to ascribe some reasoning capabilities to the con-
ceptual system.

The conceprual model is dynamic, for it is context-depen-
dent. The conceptual system changes when context changes,
information will be included, discarded, or play a different
role in the conceptual model. The projected conceptual sys-
tem is relevant to a certain situation. If a <‘tuation changes,
its related model changes as well.

New experiences can be analyzed by the meta-cognitive level
and the conceptual system and then be included in the knowl-
edge base. “Spontaneous” processing of the knowledge base
(meta-cognitive controlled self-organization) might also lead
to changes in the system. Structures in the knowledge base
can emerge, relations found etc., by this controlled self-orga-
nization.

The meta-cognitive level and the conceptual model feed back
into the knowledge base. Thus, knowledge can be added or
changed. A second effect of this feedback is that it ensures a
multi-layered knowledge base, for knowledge about concepts
in the conceptual system can be fed into the base. Higher-
order entities in the conceptual system can play the role of
basic entities in the base.

In this research, language will be emphasized as the means
for interaction with the world, both passive and active. How-
ever, it is not clear whether such a restriction will lead to a
reasonable model. Visual contact with the world, for instan-
ce, seems to be an important factor in knowledge acquisition
and conceptual development. It might therefore be unavoid-
able to incorporate emulation of visual interaction in the
model as well.

The question remains where and how language exactly in-
teracts with the conceptual system. I cannot provide an
answer yet. Are linguistic rules included in the meta-cogni-
tive level such that utterances are translated into a “language
of thought™? Do we check the resulting language-of-thought
expressions against the conceptual system? At this moment
this approach seems a sensible one. The acquisition process
is then implemented by evolution of the knowledge base and
the meta-cognitive level (both affecting the conceprual mod-
el).

HUMAN KNOWLEDGE BASES

The conceprual system has a language-like representation and
is governed by inference processes like deduction. But, if we
view such bases as logical systems, we encounter severe pro-
blems with the rigid notions of logic. Consider for instance
the notion of inconsistency. If a set of logical expressions
is inconsistent, in classical logic one can deduce anything
from it (ex falso sequitur quodlibet) and in intuitionistic logic
one can deduce nothing from it.

This problem emerges when using propositional knowl-
edge representation. Distributed and imagery representation
do not suffer from this problem. The problem lies in the lo-
gical system, not in the human mind. The research will try to
reformulate logical notions such that better correspondence
exists between the used logical systems and the model of hu-
man knowledge processing. As an example, in the case of in-
consistency, it seems better to speak of incompatibility be-
tween diffent layers (levels).

Consider for instance a knowledge base which contains the
information that birds fly, that an ostrich is a bird and that
ostriches do not fly. When asked whether birds fly, the best
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answer seems to be: “Yes”. This conforms to the Gricean
maxims, for with this answer we cover the greater part of the
bird population. We access the knowledge base on the level
of the bird class. If the question follows: “But how about os-
triches?”, we answer: “No, they don't, but they are an excep-
tion”. We are forced to shift our attention towards a different
level, that of the primitive class. At this level we access the
specific information about ostrichs to conclude that they
form an exception to the general rule accessed before.

Incompatibility between the level of birds and that of the
primitive class exists. When incompatibilty is involved (in
the case of the second question), we can resolve this incom-
patibility by reasoning that ostriches form an exception (at
the meta-cognitive level). With such an approach to knowl-
edge more abstract and declarative descriptions of phenomena
like prototype theory, default logic, and concept formation
theories like in Bartsch (90) follow implicitly from the
model in a more procedural way, thus explaining why instead
of stating that it is the case.

As may be concluded from the considerations above, the
knowledge base might not conform to the classical logical
form. Alternative knowledge representations and non-
monotonic reasoning might prove to be more useful, e.g.:

Vx (ostrich(x) — bird(x))
Vx (ostrich(x) — = fly(x))
Vx (bird(x) — fly(x))

Vx (sparrow(x) — bird(x))
bird(ostrich)

= fly(ostrich)

fly(bird)

bird(sparrow)

Classical:

Alternative:

The classical base is inconsistent. In the alternative case we
use predicates over sorts. This means that deduction cannot
automatically take place. When confronted with a question a-
bout ostriches, we first review the data on ostriches. Welil,
they do not fly and thus deduction is finished. But, if we ask
whether sparrows fly, we do not find the data at this level.
We are then allowed to relate the predicate bird to the sort
bird. In such cases, we can infer the corresponding classical
rules from bird(sparrow) and fly(bird): Vx bird(x) — fly(x)
and Vx sparrow(x) — bird(x), and it readily follows that spar-
rows fly.

Such a deduction system is efficient: special properties of
the species (positive and negative facts) are included at the
species level, common properties at a higher level. The de-
duction mechanism described forces us to review the most
specific data first: inconsistency is resolved.

The reasoning involved takes place in the meta-cognitive
level. Here we decide which lebel to access, what to do when
deduction fails, which higher level then to access etc. The
facts are included in the conceptual system. They represent
our conceptual declarative conceptual knowledge.

Humans are able to reason about conceptual deviations. We
would not want to lose this property in our model. The meta-
cognitive level should not only be able to control the deduc-
tion process, but also to perform meta-logical operations. If
one asks whether birds fly, and then whether ostriches fly,
the meta-cognitive level will have to realize that an excep-
tion is involved.



CONCLUSIONS

In this paper I have siressed the importance of a knowledge-
oriented approach to natural language. In the field of lan-
guage acquisition this approach seems to be of the utmost
importance. I have outlined some proposals for a knowledge
model.

An important aspect of the model is the role of the knowl-
edge base in it, and how information in the base is interpre-
ted. ] propose a model in which knowledge about entities of
different levels of abstraction can be included. Such levels
emerge naturally when a feedback from the conceptual system
is included in the model.

The approach taken here might have important consequen-
ces for the logic involved. It might be necessary to develop
a new kind of logical interpretation in order to make the sys-
tem work. I do not see this as problematic. The ideas ex-
pressed in this paper are heavily inspired by years of dissa-
tisfaction with the gap between rigid logic and flexible hu-
manity. The approach is also an effort to bring the two to-
gether again.
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Abstract

This paper presents an outline of how to build a miniature language learning system, along with some preliminary
results on learning selected system components.

The Lo research effort at ICSI focuses on the problem of building a language learning system for the toy domain of
simple geometric scenes. Our initial target problem, the Miniature Language Task (MLA), is to learn a fragment of an
arbitrary natural language from training examples of descriptive sentences paired with pictures of simple geometric
objects. As the focus of this effort is language acquisition and not computer vision, the system starts out with
an internal representation for visual scene semantics. Individual scenes are presented in a form the system already
understands; its task is to establish the syntax and semantics of the accompanying (partial) linguistic descriptions in
the given target natural language. If there are biases in description emphasis characteristic of a particular language,
these should be learned along with the grammar syntax and lexeme semantics.

The Lg project at ICSI is undertaken jointly with members of the UC Berkeley Computer Science and Linguistics
Departments. The project is headed by Professor Jerome Feldman, the director of ICSI and a professor of Electrical
Engineering and Computer Science at UC Berkeley (Feldman et al., 1990a; Feldman et al., 1990b). Adéle Goldberg,
a doctoral candidate in Linguistics at UC Berkeley, is gathering cross-linguistic data relevant to the task. Professor
George Lakoff of the UC Berkeley Linguistics Department brings to Lo a comprehensive knowledge of all sorts of exotic
and obscure world languages. Terry Regier, a doctoral candidate in Computer Science at UC Berkeley, is looking
into the acquisition of image-based lexical semantics for closed-class polysemous lexemes describing spatial relations
(e.g. prepositions, verbal prefixes) (Regier, 1990; Regier, forthcoming). Andreas Stolcke, a doctoral candidate in
Computer Science at UC Berkeley, working on learning syntactic categories (Stolcke, 1990; Stolcke, 1991). Susan
Weber, a post-doctoral fellow at ICSI, works on the spatio-temporal semantics of the Lo domain (Weber and Stolcke,

1990; Weber, 1990).
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graphical scene editor

| 777
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Figure 1: The task is to learn both the syntax and
semantics of a natural language fragment from simple
scene descriptions with only positive training examples.

1 The Ly testbed

We are investigating the problem of learning a natural
language fragment from training examples consisting of
simple geometric scenes accompanied by (correspond-
ingly simple) true descriptions in the target language
(see Figure 1). An example of system input appears in
Figure 2: any given scene can be labelled in a wide vari-
ety of ways, depending on the elements being described.

We are assuming that natural languages induce a fi-
nite number of decompositions or categorizations of sim-
ple visual stimuli. We posit the existence of a set of cog-
nitive primitives that can be combined to produce any
known linguistic description of simple geometric scenes.
We intend to catalogue these primitives by analyzing
the overlap between concepts acquired for a reasonably
large set of natural languages. If our hypothesis is cor-
rect, this cataloging process will soon converge on the
common underlying representations.

Our initial target language is a fragment of English
known as L. A non-learning prototype system has been
implemented in Prolog as a testbed for the components
of the eventual learning system. The interfaces between
the language, vision and semantic representation com-
ponents will crucially determine the ease with which lan-
guage can be acquired.

The system’s architecture is sketched in Figure 3.
Two of the three input sources of the hypothetical learn-
ing system are still in use, but the testbed, modeling a
fully trained learner, produces yes/no truth assessments
of the linguistic input (the ‘description’ is treated as a
query). The internal structure of the testbed provides
us with a working blueprint for the structure of the tar-
get learning system. Components include: categorical
feature vectors, object representations generated by an
interactive scene design session on the graphics interface;

linguistic description

o
O

A dark circle is above a square.
Un triangle est a droit d’un cercle.

Um cerculo esta embaixo de um triangulo

Figure 2: Training input to the MLA task: a sample
picture and several possible partial descriptions, one in
English, one in French and one in Portuguese. Train-
ing input for a given language would consist of multiple
scenes each with assorted descriptions in the target lan-
guage.

graphical scene editor linguistic description

spatial

; io
categorical pelations

feature vectors

i : ic
lexical semantics logical form

— ]

Prolo

answer to implicit query

Figure 3: Representational fixpoints chosen to facilitate
learning the inter-representational mappings.
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LO Picture Editor

[crests object] (Redify chject] [eTete object] [RediFy scone] [escribe] [wirt]
— e I e

Descriptive sentence for verification

Iﬂmllmﬂmam |

o= ]

Figure 4: The graphical scene editor with an English
language query.

spatial relations, eg. how the region ‘above’ a landmark
object is defined; parsing into a logical form, i.e. the
assignment of lexemes to an appropriate syntactic cate-
gory; and lexical semantics, the association of each syn-
tactic component with its corresponding spatial relation
or categorical feature value.

A graphical interface (see Figure 4) allows a user to
draw scenes involving circles, squares and triangles, and
to pop up a window for the natural language ‘query’ on
the given picture. Since object features can be modified,
both present and past tense queries are supported, as
are static (eg. is above) and dynamic (eg. moved onto)
relations. From the system’s standpoint, the ‘visual’
input is a collection of facts about particular feature
value assignments, eg. at time step 2 there is an ob-
ject at location (10, 30) with circular shape, light shade
and radius of 5. The linguistic description is parsed and
translated into an internal logical form which is repre-
sentationally compatible with the scene data. Once the
mapping between the internal linguistic representation
and the internal visual representation has been estab-
lished, the task is complete. The question is how to
achieve the desired mapping.

The crux of the mapping problem is the relational
nature of natural languages. Virtually all naturally de-
scriptive predicates in a simple spatial domain are rela-
tional in nature. Even at the level of linguistic reference,
it turns out that while objects can be physically pointed
to for diectic reference, purely verbal forms of communi-
cation must rely on indirect methods of establishing ref-
erence identity. When a unique property value (or con-
junction of values) exists in the frame of reference, that
value can be named, eg. the large light square. When
property values alone leave ambiguity of reference, how-
ever, relational properties must be resorted to, eg. the
square below the circle. In the visual domain, however,
information is available in terms of scene geometry and
categorical feature values eg. position and radius. The

Figure 5: Object reference by relational properties:
the referent of “the square on top of another” should
be available in constant time; however, in the Prolog
testbed the time to resolve the reference is quadratic in
the number of objects in the field.

question is then how to transform this categorical infor-
mation into the relational form used in language?

There are two approaches to solving this matching
problem. The one used in the Prolog testbed is to dy-
namically determine which visual relation is being re-
ferred to. This involves searching the object feature
vector space until an appropriate set of vectors is found
which satisfies the relational definitions referred to in
the query. The flaw with the approach is it does not
correctly handle reference by relational property (see
Figure 5). The second option is to tabulate all the rela-
tional information in the scene, then perform unification
with the linguistic input. This approach can turn out to
be combinatoric unless attentional selectivity in the lin-
guistic input is exploited to focus and direct the visual
processing.

The testbed system is being used as a platform to test
out learning components. There are three components
under development, a static model of lexical semantics,
learning grammar syntax and learning spatial relations.

2 Lexical semantics

An alternative to relying on object reference to index
and verify relations is to have the capacity to tabulate
all the relations in the picture and use the linguistic in-
put to edit out the irrelevant ones. In this scenario,
combinatorics are avoided by having a fixed sized buffer
and relying on the linguistically supplied focus of atten-
tion (much as the eye would rely on foveating) to load
only currently relevant information into the buffer.
This situation suggests an obvious bootstrapping
strategy: before the linguistic knowledge exists to offer
editorial control (and in the absence of visual focus of at-
tention), the visual scenes must be kept extremely sim-
ple, to avoid confusion due to cross talk. That is, noun
and adjective semantics must be acquired before tack-
ling relational properties. As the training input grows
progressively more complex, the fact remains that unless
the linguistic tag contains an unambiguous reference, ei-
ther to an object or to a relation, the picture semantics is
liable to be too noisy for the system to be able to frame
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any reasonable learning hypothesis as to the semantics
of the unknown lexemes.

The architecture proposed is shown in Figure 6.
Visual scene analysis proceeds in three stages. First
each potential landmark object in the scene is allocated
its own set of primitive relational maps. Relations cur-
rently supported are: fouches, near, far, and the two
categorical definitions for each of above, below, lefi-of
and right-of shown in Figure 7. These maps are defined
by differing patterns of connectivity such that for any
location of the input stimulus the appropriate region
will be generated by spreading activation. Once these
regions have been established, the activity in the maps
decays to nothing unless an externally excitatory signal
inhibits the decay process, where the signal in question
is drawn from the set of all potential trajector objects.
After this stage the activity in the map reflects the land-
mark’s participation in the given relation. That is, if a
landmark’s above map displays activity, then there is
some trajector object above it.

The third stage involves feedback loops to the trajec-
tor and landmark controllers, as well as a winner-take-all
competition among the map activity summation units.
The latter enhances the salience of any unique relations
in the scene, while the former, by reducing the number
of inputs to the system, may assist in narrowing down
the target semantics. The entire process iterates until
no further changes are seen at the controller level (tra-
jector, landmark and w.t.a. nodes). At this point it will
hopefully be possible for the system to form a reasonable
learning hypothesis as to the semantics of the unknown
lexeme.

Note that this proposal will result in the system be-
ing able to acquire linguistically inspired distinctions be-
tween relational descriptions. For example, speakers of
one language group may tend to adopt the half-plane
definition of ‘below’, while others may favor the vertical
extension definition (see Figure 7).

3 Learning grammar syntax

As a preliminary investigation into the difficult problem
of classifying lexemes into lexical categories, Andreas
Stolcke ran an experiment with Elman style recurrent
nets. The task was to derive a semantic feature vector
or slot-filler representation from sequential word level
input. There were three slots used: first argument, re-
lation and second argument. Arguments, as object ref-
erences, have at least one feature value (eg. circle, dark,
small) and relations map into known quantities (eg. be-
low, left-of). The system performed well on sentences
with tail recursion like “the circle is above the square be-
low the triangle”, and even on sentences with one layer
of center embedding, like “the circle above a square is
touching a triangle”, but failed on sentences with center
embedding of depth greater than 1, such as “the circle

188

ODE8aE

nE00
oooo
0000
0000
0E00
OB00
m[E[ ]
onoo
0000
nooo0
00on

f
b

EIE
i':

0000 OB guon
L

000
oooo
0000
oooo
0oon
OR@E
omogd
OBROg
OBEE
oooo B
0ooo
oo0og
ooao
mEEE

1
\

Figure 6: Relational information is tabulated in three
stages. First all primitive relations are generated in a
dedicated set of maps. Then the maps are edited to re-
flect overlap with all possible trajector objects. Finally
the map activity summation units enter a winner-take-
all competition, providing salience to unique relations,
and feedback is sent to the trajector and landmark con-
trollers.
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Figure 7: Two possible categorical definitions for ‘be-
low’. In the looser version, any object in the half-plane
defined by the object’s lower surface is ‘below’ it. In the
stricter form, an object must be in the area defined by
the vertical downward extension of the landmark refer-
ence. A graded form of the concept would presumably
combine the two; see Figure 9.

above the square touching a triangle is below a circle”.
The system would incorrectly interpret this to mean “a
triangle is below a circle”. While humans exhibit in-
creasing difficulty in parsing sentences as the depth of
the center embedding grows, this behaviour is unreal-
istically brittle. This brittleness can be attributed to
an inherent deficiency in Elman nets, with their fixed
width “sliding window” of attention to the input. For
any fixed Elman architecture, a sentence can be con-
structed whose center embedding is deep enough to sever
the connection between the subject and the predicate.

The Elman net approach having proved too limited,
Stolcke is currently experimenting with Vector Space
Grammars (VSGs), an approach to grammar learning
where syntactic categories are represented as points in
a continuous metric space. VSGs are a generalization
of standard phrase-structure grammars that uses con-
tinuous vectors instead of symbols to represent non-
terminals in grammar rules. The goal of this generaliza-
tion is to make the formalism suitable for adaptive learn-
ing techniques inspired by connectionism, such as com-
petitive learning and error backpropagation. In contrast
to other PDP approaches to this problem, the structure
of the grammar is explicitly constrained; for example,
the grammar is forced to be context free. Results of
using this approach appear promising; details appear in
(Stolcke, 1991). ’

4 Learning Spatial Relations

Different languages impose different structurings on
physical space. For example, Mixtec is a Mexican In-
dian languages in which common English spatial con-
cepts such as “above” and “below” are entirely missing.
They are replaced by a system of locative terms which
does not map at all straightforwardly onto the English

system (Brugman, 1983). There are also discrepancies
among the spatial systems of closely related languages,
such as English, German, and Dutch (Bowerman, 1989).
Thus, a significant part of the L task is learning the sys-
tem of spatial concepts embodied in the language being
learned.

Terry Regier is developing a connectionist learning
system that learns such systems of spatial concepts. The
system currently works for single points located relative
to some object; the system is being extended to handle
full objects located relative to other objects.

The system has so far learned a system of eight En-
glish concepts (above, below, left, right, in, out, off, and
on), and several concepts from other languages as well,
including Mixtec. Figure 8 presents three of the eight
English spatial concepts learned. In this figure, the tri-
angle is to be seen as the reference object (that object
with respect to which other objects are located). The
size of the black circles indicates the appropriateness,
as judged by the system, of using a particular term to
describe each position in space.

The system learned these concepts in the absence of
explicit negative evidence, as discussed in (Regier, 1990;
Regier, 1991). Note also that the system’s training set
did not include any triangles, and that the system never-
theless correctly generalizes to scenes involving triangles
as reference objects.

5 Conclusions

The Lo task, originally posed as a ‘touchstone’ prob-
lem for cognitive science, is proving as challenging and
rewarding as originally hoped. Our attempt to solve
this deceptively simple task has split into three distinct
efforts, lexical syntax, lexical semantics and spatial se-
mantics. The obvious next step is to somehow harness
the three learning components together as a true test of
the soundness of the proposed solution paradigm.
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General Overview

Our general research interests include the representation of natural language using connectionist and symbolic meth-
ods. Our approach aims at evaluating and integrating properties of symbolic and connectionist architectures. Pri-
marily, we concentrate on syntactic and semantic representations focusing on structural disambiguation and semantic
classification. As a general task we chose the analysis of phrases. Phrasal analysis often can not rely on as much
predictive top-down knowledge as complete sentence analysis and therefore more bottom-up analysis is needed. In
this context, connectionist networks appear to be a particularly useful method for learning and representing necessary
knowledge for a bottom-up analysis. Using online available corpora and library classifications we designed several
hiybrid symbolic/connectionist architectures. As examples for structural disambiguation we focused on prepositional
phrase attachment and coordination using localist relaxation networks, distributed plausibility networks, and a sym-
bolic chart parser. As examples for semantic classification we designed a combination of a preprocessing chart parser
with a connectionist autoassociator as well as a connectionist architecture using recurrent sequential classification
networks. These architectures allow the combination of predefined symbolic knowledge with learned connectionist
knowledge for natural language processing.
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Abstract -

This paper describes a hybrid architecture which uses symbolic and connectionist representations for the structural
disambiguation of noun phrases. As a representative example for a whole class of structural attachment problems
we focus on coordination (constructions with conjunctions). The architecture combines a symbolic chart parser with
connectionist plausibility networks for dealing with coordination. While the symbolic modul supports the sequential
compositional syntactic representation, the connectionist modul learns and represents the semantic control knowl-
edge which can modify preliminary syntactic structures. Since other problems like the attachment of prepositional
phrases, verb phrases, and relative clauses are very similar, this architecture can be extended for other structural dis-
ambiguation problems. The architecture allows for preserving domain-independent syntactic knowledge and learning
domain-dependent semantic control knowledge.
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1 Constraints for Structural Disambiguation

In this section we will focus on structural disambiguation of coordination®, and we will demonstrate that coordination
is just one class of typical attachment problems involving prepositional phrases, verb phrases, and relative clauses.
While verbs in sentences can have semantic top-down preferences for subsequent constituents [Wilks 75], noun
phrases have less preferences than complete sentences and we have to rely more on semantic bottom-up plausibilities
for different coordinations. Consider the following example:

(1) Systems using transistors and transductors

Example (1) contains neither enough syntactic constraints nor verb-related semantic preferences to resolve the co-
ordination. However, the semantic plausibility that “transistors and transductors” are coordinated is higher than
the plausibility that “systems and transductors” are coordinated because “transistors and transductors” are similar
electric objects while “systems” is a more general term.

The following phrases illustrate that similar structural ambiguities occur in different constructions involving prepo-
sitional phrases, verb phrases, and relative clauses. In examples (2) and (3) the prepositional phrase at the end can
attach to two different preceding nouns. The same holds for the verb phrase at the end of examples (4) and (3) and
for the relative clause at the end of the examples (6) and (7).

(2) Symposiums on hydrodynamics in the ionosphere

(3) Symposiums on hydrodynamics in the auditorium

(4) Symposiums about spacecrafts sent in orbit

(5) Symposiums about spacecrafts held in Germany

(6) Symposiums about spacecrafts which are shot in orbit

(7) Symposiums about spacecrafts which are held in Germany

Since on the one hand such noun phrases show a great deal of sequentiality, compositionality, and recursiveness
(symbolic properties) and on the other hand a somewhat restricted complexity for learning graded semantic rela-
tionships (connectionist properties), hybrid modeling [Dyer 88] [Hendler 89] [Wermter and Lehnert 89] promises to
be a particularly useful approach. In the next section we will see how syntactic and semantic constraints can be
implemented in a hybrid model for coordination.

2 Syntactic Constraints in a Symbolic Chart Parser

Syntactic constraints determine how a syntactic structure is composed of its parts. Since compositionality and sequen-
tiality are inherent properties of a symbolic representation we implemented a context-free grammar for noun phrases
for a symbolic bottom-up chart parser based on [Winograd 83] [Gazdar and Mellish 89]. This chart parser generates
a preliminary syntactic structure and deals with simple forms of coordination which can be solved syntactically, for
instance coordinated prepositional phrases.

PP --> PP CONJ PP

Using this rule the parser builds the following syntactic structure for example (8):

! The following description is partly based on [Wermter 90).
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(8) Electron collision frequencies in nitrogen and in the lower ionosphere

(NP (NG (NN (N ELECTRON)
(NN (N COLLISION)
(NN (N FREQUENCIES)))))
(PP (PP (P IN)
(NP (NG (NN (N NITROGEN)))))
(CONJ AND)
(PP (P IN)
(NP (NG (DET THE)
(ADJG (ADJ LOWER))
(NN (N IONOSPHERE)))))))

In this syntactic structure we see that the two prepositional phrases “in nitrogen™ and “in the lower ionosphere™ are
coordinated because their syntactic categories PP are at the same level in the preliminary struciure above. These
examples illustrate that a syntactic chart parser can resolve some simple structure-dependent forms of coordination.

3 Semantic Constraints in Connectionist Plausibility Networks

In the absence of clear syntactic constraints and semantic top-down preferences, we rely on the plausibility of seman-
tic coordination relationships. Plausibility networks can learn semantic relationships between two coordinated nouns
in a fully-connected architecture shown in figure 1. The input layer consists of 32 input units for two nouns in a coor-
dination relationship and each noun is represented with 16 binary semantic features. We extracted semantic features
based on the NASA thesaurus [NASA 85] and developed the following 16 semantic features for noun phrases from the
scientific technical NPL corpus [Sparck-Jones and VanRijsbergen 76]: measuring-event, changing-event, scientific-
field, property, mechanism, electric-object, physical-object, relation, organization-form, gas, spatial-location. time,
energy, material, abstract-representation, empty. The hidden layer consists of 12 units and the output laver has one
unit®. The real-valued output unit indicates if a coordination relationship between two nouns® is plausible (values
close to 1) or if it is implausible (values close 10 0). For instance, the noun phrase “Systems using transistors and
transductors” has the following plausible and implausible coordination relationships.

transistors COORDINATED_WITH transductors 1 (plausible)
systems COORDINATED_WITH transductors O (implausible)

Output unit
(Plausibility value)

Hidden units

‘\'nput units (Semantic Featum)/'

Noun1 coordinated_with Noun2 J

1|0jojojcjop jojojojrjojojrjojo

Figure 1: Plausibility Network for Coordination Relationships

20ther architectures with 1 to 18 hidden units were tested and the architecture with 12 hidden units performed best.
3For compound nouns, only the last noun (the headnoun) is integrated in the coordination relationship.
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This plausibility network was trained and tested with coordination relationships of 53 noun phrases from the NPL
corpus. There were 40 noun phrases (92 training instances) in the training set and 13 noun phrases (29 test instances)
in the test set. The representations of the test instances had not been in the training set. Each training instance
consisted of the 32 semantic features for the two nouns and the plausibility value for the coordination relationship.
The plausibility value was set to 1 if the coordination relationship was plausible, otherwise it was set to 0.

The network was trained for 800 epochs using the backpropagation learning rule {Rumelhart et al 86] with the
learning rate 0.01 and the weight change momentum 0.9. Three different training runs were performed to he more
independent from the different start initializations of the network. The average of the total sum squared error over all
training stances could be reduced during the learning phase fromn values of 32.5 to values of 3.2. A training instance
was considered correct if the generated plausibility value was higher than 0.5 for a plausible coordination relationship
(desired value 1) and lower than 0.5 for an implausible coordination relationship (desired value 0) After 800 epochs
the average percentage of correctly learned training instances was 94.2% and the average percentage ol correctly
classified unknown test instances was 78.2%. In the next section we will describe how this learned knowledge 1s used
for resolving coordination problems.

4 Coupling the Constraints

In our hvbrid model a chart parser and a plausibility network interact for coordination problems. The chart parser
generales a preliminary syntactic structure according to the Right Association strategy [Frazier and Fodor T&] which
assumes that a constituent attaches to the directly preceding constituent. [n this step, some coordinations are
resolved based on syntactic constraints, e.g.. coordinations of prepositional phrases as shown in the example above.
Right Association is used il no semantic knowledge is available. If more specific semantic coordination relationships
exist, they can overrule the Right Association strategy. The following example shows the preliminary syntactic
structure together with the plausibilities of the semantic coordination relationships.

(9) Fading of satellite transmissions and ionospheric irregularities

Preliminary syntactic structure:
(NP (NG (NN (N FADING)))
(PP (P OF)
(NP (NG (NN (N SATELLITE)

(NN (N TRANSMISSIONS))))

(CONJ AND)

(NP (NG (ADJG (ADJ IONOSPHERIC))
(NN (N IRREGULARITIES)))))))

Semantic Relationships:
Transmissions COORDINATED_WITH irregularities  (implausible)
Fading COORDINATED_WITH irregularities (plausible)

Final syntactic structure:
(NP (NG (NP (NG (NN (N fading)))
(PP (P of)
(NP (NG (NN (N satellite)
(NN (N transmissions)))))))

(CONJ and)
(NP (NG (ADJG (ADJ ionospheric))

(NN (N irregularities))))))

In example (9), the chart parser generates a preliminary syntactic structure which disagrees with the semantic plau-
sibilities of the coordination relationships. Since semantic constraints overrule syntactic constraints, the preliminary
synutactic structure is modified so that in the final syutactic structure “fading and irregularities” are coordinated
mstead of “satellite transmissions and irregularities”.
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5 Results and Conclusion

\We tested our hybrid architecture on 158 noun phrases which were taken from the NPL corpus and which contained
the conjunction “and”. The chart parser generated a preliminary parsing structure for these noun phrases based
on the context-free rules and based on the lexicon which currently contains about 900 words with their syntactic
categories. Within the preliminary syntactic structure several forms of coordination could be detected based on
syntactic constraints alone. In 89 of the 158 noun phrases there were no coordination ambiguities because the
coordination was at the beginning (e.g., “Space probes and satellites”). In 14 noun phrases the coordination was
between adjectives (e.g., “Observation of single and double inflexions”) and in 2 noun phrases the coordination was
between explicitly repeated prepositions in prepositional phrases (e.g., “Electron collision frequencies in nitrogen
and in the lower ionosphere™). The remaining 53 of the 158 noun phrases were more complex and needed semantic
plausibility networks as well. Using the plausibility networks as a means to correct a preliminary syntactic structure all
40 noun phrases with coordination relationships from the training corpus and 11 of 13 noun phrases with coordination
relationships {ronm the test corpus were assigned the right structural interpretation with respect to coordination.

Our approach uses symbolic syntactic rules to generate a preliminary structure of a noun phrase and connectionist
semantic constraints to modify the representation if necessary. This approach is different from other approaches
since our system learns part of its semantic constraints and since the system can generalize the learned knowledge.
This hybrid approach can be adopted not only for coordination problems but for other problems as well (e.g.
prepositional phrase attachiment, relative clause attachment, participle constructions). In all these cases, learned
semantic constraints can be used to support the disambiguation of structural representations. The hybrid model relies
on symbolic rules and on bottom-up knowledge learned in connectionist networks. This allows to combine predefined
syntactic knowledge with learned and generalized semantic control knowledge for structural disambiguation.
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