
BALLView
A molecular viewer and modeling tool

Dissertation zur Erlangung des Grades des Doktors der
Ingenieurwissenschaften der Naturwissenschaftlich–

Technischen Fakultäten der Universität des Saarlandes

vorgelegt von

Diplom-Biologe Andreas Moll

Saarbrücken im Mai 2007

Tag des Kolloquiums: 18. Juli 2007

Dekan:

Prof. Dr. Thorsten Herfet

Mitglieder des Prüfungsausschusses:

Prof. Dr. Philipp Slusallek

Prof. Dr. Hans-Peter Lenhof

Prof. Dr. Oliver Kohlbacher

Dr. Dirk Neumann

Acknowledgments

The work on this thesis was carried out during the years 2002-2007 at the Center for

Bioinformatics in the group of Prof. Dr. Hans-Peter Lenhof who also was the supervisor

of the thesis. With his deeply interesting lecture on bioinformatics, Prof. Dr. Hans-Peter

Lenhof kindled my interest in this field and gave me the freedom to do research in those

areas that fascinated me most.

The implementation of BALLView would have been unthinkable without the help of all

the people who contributed code and ideas. In particular, I want to thank Prof. Dr. Oliver

Kohlbacher for his splendid work on the BALL library, on which this thesis is based on.

Furthermore, Prof. Kohlbacher had at any time an open ear for my questions. Next I want

to thank Dr. Andreas Hildebrandt, who had good advices for the majority of problems

that I was confronted with. In addition he contributed code for database access, field line

calculations, spline points calculations, 2D depiction of molecules, and for the docking in-

terface. Heiko Klein wrote the precursor of the VIEW library. Anne Dehof implemented the

peptide builder, the secondary structure assignment, and a first version of the editing mo-

de. Bettina Leonhardt and Carla Haid implemented the docking interface and its graphical

frontend. Andreas Bertsch developed the SMARTS matcher and the ring perception al-

gorithms that are the basis for the MMFF94 atom typing process. Stefan Strobel wrote

the molecular surface calculation code. Jan Küntzer contributed code for the PDB and

PubChem access. Andreas Krauser developed the first version of the BALLView installer

for Microsoft Windows. Dr. Dirk Neumann and Dr. Andreas Kämper had the patience to

explain some of the finer details on organic chemistry to me. Alexander Rurainski gave

me advice on some mathematical and numerical problems while Sophie Weggler dis-

cussed the details of the MMFF94 forces implementation with me. Gernot Ziegler kindly

provided hints on OpenGL graphics and access to the MPI multimedia room. Furthermo-

re, my thanks go to all other member of the chair for bioinformatics who made this time in

my life so enjoyable.

Last, but certainly not least, I want to thank my wife Petja Moll and my parents for their

understanding and support.

Abstract

Over the last ten years, many molecular modeling software were developed, but most

of them offer only limited capabilities or are rather difficult to use. This motivated us to

create our own molecular viewer and modeling tool BALLView, based on our biochemical

algorithms library BALL. Through its flexible and intuitive interface, BALLView provides

a wide range of features in fields of electrostatic potentials, molecular mechanics, and

molecular editing. In addition, BALLView is also a powerful molecular viewer with state-of-

the-art graphics: it provides a variety of different models for biomolecular visualization, e.g.

ball-and-stick models, molecular surfaces, or ribbon models. Since BALLView features

a very intuitive graphical user interface, even inexperienced users have direct access

to the full functionality. This makes BALLView particularly useful for teaching. For more

advanced users, BALLView is extensible in different ways. First, extension on the level of

C++ code is very convenient, since the the underlying code was designed as a modular

development framework. Second, an interface to the scripting language Python allows the

interactive rapid prototyping of new methods. BALLView is portable and runs on all major

platforms (Windows, MacOS X, Linux, most Unix flavors). It is available free of charge

under the GNU Public License (GPL) from our website (www.ballview.org).

www.ballview.org

German abstract

Im Laufe der letzten zehn Jahre wurden viele verschiedene Molecular Modeling Program-

me geschrieben, aber die meisten bieten nur eingeschränkte Funktionalität, oder sind

sehr unintuiv zu bedienen. Dies impliziert, dass viele Forscher Probleme mit diesen Pro-

grammen haben und benutzerfreundlichere Software vorziehen würden. Dies inspirierte

uns dazu, mit BALLView ein neuartiges Modellierungsprogramm zu entwickeln, basierend

auf unserer biochemischen Algorithmenbibliothek BALL. Durch seine flexible Oberfläche

bietet BALLView eine reiche Palette an Funktionen in den Bereichen Elektrostatik, Mole-

kularmechanik und dem Edititieren von Molekülen an. Darüberhinaus ist BALLView auch

ein leistungsfähiges Programm zur Visualisierung von Molekülen, das über Grafikfähigkei-

ten verfügt, die dem neuesten Stand der Technik entsprechen. BALLView unterstützt ne-

ben allen Standard-Molekülmodellen wie bspw. Stick, Cartoon, Ribbon und Oberflächen

auch die Visualisierung von elektrostatischen Feldern. Alle aufgeführten Funktionen kön-

nen auch von unerfahrenen Benutzern verwendet werden, da BALLView eine sehr intuiti-

ve Benutzeroberfläche besitzt. Dadurch ist es hervorragend geeignet zum Einsatz in der

Lehre. Für fortgeschrittene Benutzer ist BALLView erweiterbar auf zwei unterschiedlichen

Wegen: Durch das Design der zugrundeliegenden Klassenhierarchie sind Erweiterungen

auf der Ebene des C++ Programmcodes sehr einfach zu realisieren. Desweiteren bietet

BALLView ein Interface zur Skriptsprache Python, die interaktives Rapid-Prototyping von

neuen Funktionen erlaubt. BALLView ist portierbar und kann auf allen verbreiteten Platt-

formen (Windows, MacOS X, Linux, die meisten Unix-Derivate) verwendet werden. Es ist

frei verfügbar unter der LGPL Lizenz und kann von unserer Webseite heruntergeladen

werden (www.ballview.org).

www.ballview.org

German summary

Im Laufe der letzten zehn Jahre wurden die Methoden zur Aufklärung der dreidimensio-

nalen Struktur komplexer organischen Substanzen wie bspw. Proteinen und Nukleinsäu-

ren ständig weiterentwickelt. Als Folge dessen nimmt die Anzahl der neu publizierten

Stukturen von Jahr zu Jahr zu. Die vielleicht grösste Herausforderung unserer Zeit ist

es nun, diese Daten in nutzbringendes Wissen zu verwandeln: Ein tieferes Verständnis

des Verhaltens und Zusammenspiels der einzelnen Biomoleküle wird zu bahnbrechen-

den Entwicklungen in der biologischen und biochemischen Grundlagenforschung führen.

Darüberhinaus wird dieses Verständnis die Entwicklung von neuartigen Medikamenten

ermöglichen, die gleichzeitig wirksamer und spezifischer (geringere Nebenwirkungen)

sein werden. Die Schlüsseltechnologie für die Aufklärung der zugrundeliegenden Me-

chanismen ist das sogenannte ”Molecular Modeling”. Es kann definiert werden, als die

theoretischen Methoden und Berechnungtechniken, die dazu dienen, das Verhalten von

Moleküle zu modelieren, simulieren und visualisieren. Im den letzten Jahren wurden vie-

le verschiedene Modellierungsprogramme entwickelt, aber die meisten bieten nur einge-

schränkte Funktionalität, oder sind schwer zu verstehen und zu benutzen. Dies impliziert,

dass viele Forscher und Studenten Probleme mit diesen Programmen haben und leich-

ter zu bedienende Software vorziehen würden. Das inspirierte uns dazu, mit BALLView

ein neuartiges Modellierungsprogramm zu entwickeln, basierend auf unserer biochemi-

schen Algorithmenbibliothek BALL. Durch seine flexible Oberfläche bietet BALLView eine

reiche Palette an Funktionen in den Bereichen Elektrostatik, Molekularmechanik sowie

dem Edititieren von Molekülen an. Darüberhinaus ist BALLView auch ein leistungsfä-

higes Programm zur Visualisierung von Molekülen, das über Grafikfähigkeiten verfügt,

die dem neuesten Stand der Technik entsprechen. So unterstützt BALLView neben allen

Standard-Molekülmodellen wie bspw. Stick, Cartoon, Ribbon und Oberflächen auch die

Visualisierung von elektrostatischen Feldern. Desweiteren erlaubt es die Erstellung von

hochqualitativen Abbildungen in beliebigen Auflösungen, durch den Export zum Raytra-

cer POVRay. Benutzer können zusätzlich auf sehr einfache Weise Videodateien erstellen

oder 3D-Stereo-Projektionen verwenden.

Alle aufgeführten Funktionen können auch von unerfahrenen Benutzern verwendet wer-

den, da BALLView eine sehr intuitive Benutzeroberfläche besitzt. Um den Benutzer weite-

re Hilfestellung zu reichen, bietet sie eine integrierte Dokumentation und kontextsensitive

Hilfsfunktionen an. Dadurch eignet sich BALLView auch hervorragend zum Einsatz in der

Lehre, insbesondere zur Vermittlung biochemischer Grundlagen und bioinformatischer

Methoden. Für fortgeschrittene Benutzer ist BALLView auf zwei unterschiedlichen We-

gen erweiterbar:

• Durch das objektorientierte Design der zugrundeliegenden Klassenhierarchie las-

sen sich Erweiterungen auf der Ebene des des C++ Programmcodes sehr leicht

realisieren. Desweiteren wurde die zugrundeliegende Funktionalität in verschiede-

ne, unabhängige Module zerlegt, die beliebig kombiniert und ergänzt werden kön-

nen. Dadurch lassen sich sehr einfach benutzerdefinierte Programme schreiben,

die genau die gewünschte Funktionalität besitzen.

• Zusätzlich bietet BALLView ein Interface zur Skriptsprache Python. Dazu wurde

die C++ Klassenbibliothek in ein Python-Modul umgewandelt. Die darin enthaltenen

Python-Klassen sind dabei nahezu identisch zu den C++ Klassen, was die notwen-

dige Einarbeitungszeit minimiert. Als Resultat erlaubt die Pythonschnittstelle den

schnellen Zugriff auf alle geladenen Daten in Realzeit. Ausserdem ermöglicht das

Python-Interface interaktives Rapdid-Prototyping von neuen Funktionen. Da Python

als Skriptsprache nicht kompiliert werden muss, kann sein Einsatz die Entwick-

lungsphase deutlich beschleunigen. Um das Arbeiten mit dem Python-Interpreter

zu vereinfachen, ist BALLView auch eine Integrierte Entwicklungsumgebung (IDE):

Der Editor für Pythonskripte bietet unter anderem Syntaxhervorhebung, Autovervoll-

ständigung sowie kontextsensitive Hilfe zum Klasseninterface. Daher können auch

Einsteiger sehr einfach eigene Skripte schreiben.

Da BALLView so einfach zu erweitern ist, eignet es sich hervorragend als Grundlage für

Studentenprojekte im Bereich der strukturellen Bioinformatik. Hier erlaubt es den Stu-

denten sich auf die Kernproblematik ihrer Projekte zu konzentrieren anstatt bspw. Da-

teiformate zu implementieren. Dadurch werden auch Projekte ermöglicht, die bisher auf

Grund der benötigten Basisfunktionalität nicht realisiert werden konnten. Dies hat bereits

zu einer interessanten Lehre geführt. Da BALLView frei verfügbar ist (unter der LGPL Li-

zenz) kann es auch von anderen Forschungsgruppen verwendet werden um ihre eigenen

Softwareprojekte darauf aufzubauen. Um dies weiter zu vereinfachen, wurde BALLView

sehr portierbar implementiert, so dass es auf allen verbreiteten Plattformen (Windows,

MacOS X, Linux, die meisten Unix-Derivate) verwendet werden kann. Um die Installation

zu erleichtern, bieten wir automatische Installer bzw. Binärpakete für die verschiedenen

Platformen an. Die entsprechenden Dateien können von der Webseite des Projektes her-

untergeladen werden (www.ballview.org).

www.ballview.org

Contents

1. Introduction 3

1.1. Current state-of-the-art . 5

1.2. Aims of this work . 7

2. Design and implementation 11

2.1. Overview . 11

2.2. Design goals . 12

2.3. Modularity . 16

2.3.1. MainControl . 17

2.3.2. Modeling of the modular widgets . 17

2.3.3. Messaging system . 21

2.4. Extensibility . 21

2.4.1. Support for arbitrary data sets . 23

2.4.2. Creation of dialogs . 25

2.4.3. Configurability . 25

2.5. Class design for the visualization features 29

2.5.1. Geometric objects . 29

2.5.2. Representations . 30

2.5.3. Molecular models and their colorings 30

2.5.4. Renderer . 31

2.6. Performance tuning . 32

2.6.1. Visualization . 33

2.6.2. The force field calculations . 34

2.6.3. Multithreading . 35

2.6.4. Tuning the OpenGL rendering . 40

2.7. Quality assurance . 42

2.7.1. Verification . 42

2.7.2. GUI testing . 43

2.7.3. Usability testing . 44

2.8. Comparison with other visualization and modeling frameworks 45

1

Contents

3. Features and applications 47

3.1. Graphical user interface . 47

3.1.1. Architecture . 47

3.1.2. Usability . 49

3.1.3. Documentation . 52

3.2. Visualization functionality . 55

3.2.1. Representations . 56

3.2.2. Molecular models and colorings . 57

3.2.3. Visualization of electrostatic potentials 59

3.2.4. OpenGL graphics . 64

3.2.5. Creation of images and movies . 69

3.2.6. Comparison with related software 73

3.3. Molecular modeling functionality . 74

3.3.1. Basic modeling features . 74

3.3.2. Molecular Mechanics . 77

3.3.3. Molecular editing . 89

3.3.4. Docking . 92

3.3.5. Electrostatics calculation . 93

3.3.6. Comparison with related software 94

3.4. Python interface . 97

4. Conclusion and discussion 105

A. MMFF94 forces 111

Bibliography 113

Figures 119

2

1. Introduction

”If the 20th century was the century of physics, the 21st century will be the

century of biology.” [100]

Over the last ten years the experimental methods for resolving three-dimensional struc-

tures of complex organic compounds like proteins and nucleic acids have been steadily

improved. This resulted in ever increasing numbers of newly published molecular struc-

tures per year (see Fig. 1.1). Along with the number of structures the complexity of the

newly resolved structures increased significantly: The protein database [49] now con-

tains large macromolecular machines with up to 100,000 atoms, like entire proteasomes

or ribosomal subunits.

Figure 1.1: Growth of the protein database in total numbers and new entries per year.
The red bars represent the total numbers of entries, the blue bars the new entries per
year. (Values for the year 2006 as at early September, taken from www.pdb.org)

3

Introduction

The challenge of our time is to transform this huge pile of data into knowledge. A deeper

understanding of the function, behavior, and interplay of the individual molecules will not

only lead to advances in the fields of biochemics and biology, but will also facilitate the

development of new, more specific drugs: While in the past drugs were mostly naturally

occurring substances, nowadays, active substances can be interactively designed in the

computer. As a result, future drugs may become increasingly effective and at the same

time have less side effects. The key technology for this process is called molecular mod-

eling which is the field that develops theoretical methods and computational techniques

to model, simulate, and visualize the behavior of molecules [78].

While many molecular modeling software tools were released over the years, most of

them offer only limited capabilities or are difficult to use. This motivated us to develop our

own molecular viewer and modeling tool BALLView. It should offer an intuitive graphical

user interface to access the wide molecular modeling functionality of our biochemical al-

gorithms library BALL [76]. In addition to the molecular modeling capabilities, we wanted

to provide BALLView with state-of-the-art visualization capabilities. With this combination

of visualization and modeling capabilities, users would no longer require multiple applica-

tions to calculate and visualize their molecular data. Thus, they could be more productive,

since they no longer have to master several programs or need to exchange data between

their modeling application and their visualization tool via file operations.

In contrast to most other available software tools, BALLView should be extensible by

its users. This should be possible on two different levels: First, we wanted to realize a

new extensible C++ software library VIEW that provides the most common features for

molecular modeling and visualization. This new library was designated to become a part

of our BALL software framework and the basis of our molecular viewer and modeling

application BALLView. By using the VIEW library, users could either extend the existing

program or create new software tools.

Second, we wanted to offer full access to the BALL and VIEW software libraries through

a standard scripting language. This would enable real-time inspection and modification of

any underlying data and the automation of repetitive tasks. Furthermore, such a scripting

interface can serve as basis for student research projects, making BALLView an ideal tool

for teaching molecular modeling and structural bioinformatics.

To get an idea about the prerequisites necessary to realize our vision, we first had a

look at comparable software products. The next section gives an overview of the existing

tools.

4

Current state-of-the-art

1.1. Current state-of-the-art

The software in the field of structural bioinformatics falls into three groups (see Fig. 1.2):

One can differentiate between pure molecular viewers and molecular modeling software

which concentrate on functionality like molecular mechanics. A third group is composed

of molecular software libraries like Ghemical [13], which also aim at developers and can

be used for own development projects. The Table 1.1 gives an overview of the most

prominent tools in the different groups.

Figure 1.2: Molecular software tools can be divided into viewers, modeling tools and
software frameworks. No available software provides an elaborate combination of these
three groups.

While testing the available molecular visualization / modeling tools and libraries, we ob-

served that most of them shared common drawbacks (see below). These design flaws

were addressed in our own molecular viewer and modeling tool.

• Most software tools only support a limited number of operating systems or hardware

platforms.

5

Introduction

Molecular viewers
Chimera http://www.cgl.ucsf.edu/chimera

DS Visualizer http://www.accelrys.com

PyMol http://pymol.sourceforge.net

Raster3D http://skuld.bmsc.washington.edu/raster3d

VMD http://www.ks.uiuc.edu/Research/vmd

YASARA http://www.yasara.org

Molecular modeling software and editors
Benchware 3D explorer http://www.tripos.com

Cerius2 http://www.accelrys.com/products/cerius2

HyperChem http://www.hyper.com/products/Professional

MOE http://www.chemcomp.com

Mopac http://comp.chem.umn.edu/mopac

MMTK http://www.python.net/crew/hinsen/MMTK

RasMol http://www.umass.edu/microbio/rasmol

Spartan 04 http://www.chemistry-software.com/molecmod.htm

SYBYL http://www.ch.cam.ac.uk/cil/SGTL/Tripos

Molecular software libraries
Ghemical http://www.bioinformatics.org/ghemical

JOELIB http://joelib.sourceforge.net

Table 1.1: Examples for software products in molecular modeling and structural bioinfor-
matics

• Visualization packages (e.g. AVS [1]) are extremely powerful for general visualiza-

tion tasks, but quite difficult to adapt to specific tasks in molecular modeling.

• Most freely available molecular visualization tools (like VMD [67], PyMOL [57], We-

bLabViewer [11], or RasMol [94]) are more or less monolithic applications, well-

suited for molecular visualization, but lacking further functionality. Only a few pro-

grams like the Swiss-PdbViewer[61] offer additional modeling capabilities. In con-

trast, most available molecular modeling tools have very limited visualization capa-

bilities. Thus, users often have to master two different applications to produce and

visualize their data. And even more, it is necessary to transfer data between the

different applications via file operations, which can be both, time consuming and

annoying.

• Commercial molecular modeling packages like SYBYL [43], Discovery studio [11],

or MOE [23] provide a broad functionality in molecular modeling and computer-

aided drug design. Unfortunately, they are highly expensive and rarely allow for

extension on the source code level.

6

http://www.cgl.ucsf.edu/chimera
http://www.accelrys.com
http://pymol.sourceforge.net
http://skuld.bmsc.washington.edu/raster3d
http://www.ks.uiuc.edu/Research/vmd
http://www.yasara.org
http://www.tripos.com
http://www.accelrys.com/products/cerius2
http://www.hyper.com/products/Professional
http://www.chemcomp.com
http://comp.chem.umn.edu/mopac
http://www.python.net/crew/hinsen/MMTK
http://www.umass.edu/microbio/rasmol
http://www.chemistry-software.com/molecmod.htm
http://www.ch.cam.ac.uk/cil/SGTL/Tripos
http://www.bioinformatics.org/ghemical
http://joelib.sourceforge.net

Aims of this work

• Only few software tools have scripting features like PyMOL [57] to allow for automa-

tion of repetitive tasks or the interactive inspection of the underlying data. Even if

an application provides scripting capabilities, it often does not support a standard

language and the scripting interface is thus difficult to learn and offers only limited

functionality. In addition, it is often hard to determine which features are available

through the scripting interface and how this can be done.

• Many molecular modeling tools only offer complex textual or file interfaces that are

hard to learn let alone to master. While molecular viewers at least supply a graph-

ical user interface (GUI), many of them are still unintuitive to handle (VMD [67] or

PyMOL [57]), because they are not based on standard user interface concepts and

modern GUI frameworks.

• Very few molecular viewer and modeling tools can be extended. In many cases

either the tool’s source code is cryptic or it is not available at all. Thus, few tools

can be used for developing own projects.

• Many molecular modeling tools and software libraries only offer inadequate docu-

mentation, which is often outdated or difficult to search and browse.

• Since most programs have some of the above design flaws, only few tools are

suitable for teaching biochemistry, molecular modeling, or structural bioinformatics:

They are often either too expensive, not extensible, too difficult to learn and use, or

do not run on the desired platform.

1.2. Aims of this work

This section gives a short overview of BALLView’s main design goals that distinguish it

from any other available software tool.

State of the art graphics

Since the size of resolved molecular structures has drastically increased over the last

years, molecular viewer need fast and effective rendering engines that enable the visual-

ization of complex molecules like entire ribosomal subunits. Therefore, BALLView should

harness the growing power of modern 3D graphic accelerator cards in order to offer pow-

erful visualization capabilities like molecular surfaces or cartoon models. Furthermore,

it should make use of advanced computer graphics features, for instance to visualize

electrostatic potential data.

Combination of powerful molecular visualization and model ing features

Most molecular software tools presented earlier either focus on modeling capabilities or

7

Introduction

on their visualization capabilities. In contrast, we wanted to create a new application that

was specifically designed to combine state-of-the-art techniques from both fields. As a

result, our software would allow its users to perform all standard modeling tasks under

one intuitive user interface and visualize the results of their calculations in real time. As

an example, it should be possible to load a molecule, perform and observe an energy

minimization run, stop it at any time, modify the molecule, and restart the minimization.

Furthermore, our program should offer the capabilities to visualize the resulting structure

in a variety of ways and support the creation of images, either as screenshots or through

an external renderer.

Scripting and automation

While many tools either do not provide scripting support at all or only at a very restricted

level, we wanted to offer full scripting capabilities through a standard language and de-

cided to use the Python language [35]. Python is widely used, powerful, and easy to

learn. It would allow for extending BALLView with functionality that is not offered through

the graphical user interface and for automating repetitive tasks. Furthermore, the Python

interface should enable BALLView to serve as a powerful tool for rapid prototyping.

Ease of use

All features should be offered through one flexible and convenient graphical user inter-

face which would make BALLView easily amenable even for inexperienced users (e.g. for

students). In addition, the user interface should provide all possible means to increase

the productiveness of experienced users.

A tool for research and teaching

We planed to use BALLView as a tool for teaching, and thus we wanted to fulfill the

following points:

• BALLView should become easy to learn and operate, such that it can be operated

by less experienced users, like students.

• BALLView should run on all major platforms and low-end hardware.

• BALLView and the underlying libraries should be available under a free license like

the LGPL and extensible on the source code level. Thus, they would be the ideal

basis for software projects of research groups.

• A scripting interface with access to the full functionality of the BALL library should

make BALLView ideally suited for student projects. The students thus would not

need to implement any basic functionality and could thus concentrate on the more

challenging parts of their projects.

8

Aims of this work

Functionality

With the above design goals in mind, we created the new molecular modeling and vi-

sualization tool BALLView. It provides numerous visualization capabilities, including all

standard molecular models and sophisticated methods for displaying electrostatics po-

tentials. To render these kinds of data, BALLView uses an integrated OpenGL engine

that allows for realtime visualization. But the rendering possibilities are not limited to the

internal renderer. As an alternative, users can export their scenes to the external ren-

derer POVRay and thus achieve very detailed images.

BALLView is not limited to visualization alone. From the very start of its development, we

also designed it as a powerful tool for molecular modeling that provides a common graph-

ical interface for the wide range of functionality implemented in the BALL library [76, 51].

Therefore, it supports molecular mechanics features, like the AMBER [55], CHARMM [52],

and MMFF94 [62] force fields, molecular dynamics simulations and energy minimizations.

Furthermore, BALLView provides molecular editing, the calculation of molecular electro-

static potentials and molecular docking.

All this functionality is not only available in the form of a standalone application. The

underlying VIEW framework allows for full access to all feature domains, like the molec-

ular mechanics functionality or the 3D visualization. These domains were encapsulated

in individual widgets that are independent from each other (see Page 16). Therefore,

programmers can easily combine the existing functionality to create new, custom-tailored

programs.

In order to allow access to the BALL and VIEW libraries from within BALLView, we ex-

tended its graphical user interface with an embedded Python interpreter. It supports

Integrated Development Environment features like syntax sensitive help and auto com-

pletion and thus greatly simplifies the development of Python scripts.

The description of the modeling, implementation, and functionality of BALLView and the

underlying VIEW framework are the content of this work. The next chapter will give an

overview on the applied design concepts and some implementation details, followed by

the presentation of the software’s features and capabilities in Chapter 3. Finally, a con-

cluding summary and an outlook on future work will be given.

9

Introduction

10

2. Design and implementation

2.1. Overview

At the start of this work, the Biochemical Algorithms Library already contained visualiza-

tion functionality [76, 51]. This code was still immature and had some serious problems:

• Memory leaks, e.g. in in the OpenGL rendering code

• Crashes, e.g. if a MD simulation produced strange energies

• Inefficiencies, e.g. in the calculation and rendering of the models

Furthermore, the existing implementation was quite difficult to use, since its control flow

was difficult to understand. As an example, it was often unclear which classes and func-

tions were responsible for performing basic tasks like adding new molecules or atoms,

updating the 3D view or (re)building models. Thus, the existing code had to be simplified.

Moreover, the original visualization code was divided in two distinct software libraries, ”lib-

VIEW” for general visualization tasks and ”libMOLVIEW” for the visualization of molecules.

This distinction was artificial, because some classes could not be clearly assigned to one

of the two domains and the division in two distinct libraries caused unnecessary overhead.

Therefore, a redesign of the entire software project was necessary. We created a new

software library ”VIEW” that contains all visualization features of the BALL framework.

Next, we performed a detailed analysis of the existing implementation and came to the

conclusion that our new visualization library should still use the majority of the existing

classes (for a description of the original approach see [73]). To adapt the classes to the

new software design, they had to be heavily re-engineered and most of them were basi-

cally rewritten from scratch. In addition, further efforts were needed to ensure that the

existing code worked correctly on Microsoft Windows and Mac OS.

Dependencies on external libraries

Since the visualization library should be accessible through a graphical user interface, it

had to rely on a GUI toolkit. This toolkit should be portable, object-oriented, written in C++,

and easy to use. Therefore, the Qt framework [36] was the only adequate choice: It im-

plements all the functionality required to write GUI based applications and offers support

for the integration of the OpenGL library [26]. This was very useful, since OpenGL is the

11

Design and implementation

only feasible basis for our 3D graphics engine, as it is platform independent and provides

high-performance rendering.

Unfortunately, OpenGL’s platform independence is also the reason for an unpleasant

drawback. The versions of the OpenGL header files can differ in-between the individ-

ual platforms and every graphics driver delivers its own header files. Therefore, it can

not be guaranteed that all OpenGL methods are defined in one set of header files. To

circumvent this problem, OpenGL 1.1 introduced the usage of function pointers to access

the newly added methods. Unfortunately, the syntax for obtaining these pointers is differ-

ent under Linux, Mac OS, and Windows. Thus, wrapping code would be needed around

every piece of code that uses advanced OpenGL features. This would not only be incon-

venient for the programmers, but also very error-prone. To circumvent these problems,

our implementation uses the open-source library GLEW [14], which offers a convenient

interface to the OpenGL functions. GLEW is released under the GLX Public License,

available for all platforms, and thus fits well in our software project.

Structure of the VIEW framework

The functionality in the VIEW framework can be categorized into different domains (see

Fig. 2.1)). First, we created a set of basic data structures and functions. Based on these,

we developed the application functionality, like the visualization classes. They consist of

simple geometric objects, the different models, coloring schemes and several renderers.

Next, we designed a set of dialogs and classes that form the graphical user interface and

guarantee the modularity of our approach. To this end, we implemented a set of modular

widgets that are widely independent from each other and encapsulate one set of features

each, like e.g. the 3D graphics, or the molecular modeling functionality. By combining

these and other widgets to an application, we were able to build BALLView with roughly

500 lines of additional code.

The following sections will describe the more interesting domains in the VIEW library and

their interplay. Since the library currently consists of roughly 180 classes, 50 dialogs and

more than 30,000 lines of code, the following text can only give a very limited overview.

Therefore, it concentrates on the main design principles and gives some examples of the

library’s usage.

2.2. Design goals

Many molecular viewers are available without costs, but most of them are not available

under a public free license like the GPL [15], i.e. users can not freely copy or modify

the software. Even worse, most molecular modeling tools are closed source software

and come with a hefty price tag, which may overextend the budgets of many research

12

Design goals

D a t a S t r u c t u r e s
M o d e l i n g M o d u l a r i t y D i a l o g s G e o m e t r i cO b j e c t s

M o d u l a r W i d g e t s
R e n d e r e r M o d e l s

Figure 2.1: The design of the VIEW framework: Based on the BALL library, we devel-
oped a set of classes for the GUI, visualization, and molecular modeling. These different
functionality domains were encapsulated into individual modular widgets which were com-
bined to build BALLView.

institutes. BALL, VIEW, and BALLView should become free software such that they can

be used worldwide at every institute, by individual researches, students, and even pupils.

In addition, every user should be allowed to modify the source code to his liking, such

that he can adapt it to his needs. Therefore, BALLView should be ideally suited as a tool

in teaching or research.

With this vision in mind and after analyzing the available software tools, we found that our

molecular viewer and modeling tool should address the following issues:

Generality:

”the degree to which a system or component performs a broad range of functions” [89]

Our software should provide a wide range of features, challenging all other comparable

tools. Since we based BALLView on our Biochemical Algorithms Library (BALL), it bene-

fits from BALL’s powerful capabilities in the field of structure based bio- and chemoinfor-

matics. Thus, we were able to create a tool which allows its users to perform all standard

13

Design and implementation

modeling task via an intuitive user interface and visualize the results. To this end, BAL-

LView offers advanced visualization features like molecular surfaces or the rendering of

electrostatic potentials (see Section 3.2.3).

Efficiency:

”the degree to which a system or component performs its designated functions with mini-

mum consumption of resources (CPU, Memory, I/O, Peripherals, Networks)” [89]

While the runtime of complex calculations if often of key concern, a high efficiency is

even more important for all fields that require real time interaction since users strongly

dislike programs that force them to pause their work. This particularly applies for ren-

dering three-dimensional graphics. Therefore, we optimized the time-critical parts of our

software such that it can fluently process and render large molecular complexes. Further-

more, BALLView is thoroughly memory efficient and supports rendering at different detail

levels such that it can be run on low-end hardware. For an overview on the performance

optimizations see Section 2.6.1.

Usability:

”the ease with which a user can learn to operate, prepare inputs for, and interpret outputs

of a system or component” [89]

Many of the software tools described in Section 1.1 are difficult to use: While molec-

ular viewers offer at least some kind of graphical user interface (GUI), these are often

unintuitive. Furthermore, many modeling tools or molecular mechanics packages only

offer interfaces based on cryptic configuration files. This results in book sized manuals,

which have to be studied even for basic tasks like reading or writing a molecular file for-

mat. In contrast, we wanted to offer a wide functionality through an intuitive graphical

user interface. To meet the need for such a state-of-the-art, user-friendly, and portable

graphical user interface, we decided to base BALLView on Qt [36], a GUI toolkit available

for all relevant platforms. Qt not only provides all essential functionality to build graphical

applications in C++, its object-oriented design fits well with the design of BALL, allowing

for a seamless integration of the two libraries. To further ease the program’s usage, we

developed new context sensitive help systems. A full description of our software’s usabil-

ity features is given in Section 3.1.2.

Portability:

”the ease with which a system or component can be transferred from one hardware or

software environment to another” [89]

14

Design goals

Most molecular modeling tools only support a limited number of operating systems and of-

ten depend on one type of hardware, like the x86 architecture. This is annoying for users

that depend on another operating system for their day to day work. Therefore, BALL and

BALLView support all common operating systems and most modern hardware. This is

achieved through the combination of C++ , Qt, and OpenGL, which ensures a maximum

of portability (see Page 11).

Extendability:

”the ease with which a system or component can be modified to increase its storage or

functional capacity” [89]

Almost all available molecular viewers and modeling tools have a fixed set of function-

ality and can not be easily extended by their users. In contrast, BALLView was designed

as open source software that is extensible and adaptable by any user with knowledge in

C++ or Python. The means to achieve a high extendability are described in Section 2.4.

Maintainability:

”the ease with which a software system or component can be modified to correct faults,

improve performance, or other attributes, or adapt to a changed environment” [89]

Ensuring the maintainability of large software projects is often a nontrivial task, because

it is difficult to estimate if changing one part of a software results in potential problems

in any other part. Therefore, both BALL and the VIEW library are strictly object oriented.

In addition, we applied a modular software design that results in individual functionality

modules, like file input/output or the 3D graphics, which are largely independent from

each other. To monitor if a change in an existing implementation would introduce any

faults in other parts of our software, we created an elaborated testing framework for the

individual classes. Next, we produced comprehensive documentation for all the classes

and integrated it into the source code to ease any subsequent changes.

Correctness:

”the degree to which a system or component is free from faults in its specification, design,

and implementation” [89]

Large software projects impose huge engineering challenges: Through their mere size it

can become almost impossible to ensure the correctness of the source code, let alone

the program as a whole. The situation even gets worse if additional dependencies on

external libraries exist. Here, especially GUI frameworks are troublesome if they have

15

Design and implementation

their own stability issues or the behavior of individual methods changes between individ-

ual versions. Further problems arise if different platforms or compilers are involved.

Unfortunately, all the above points apply to the VIEW framework. Therefore, we had to

invest much time and effort to ensure our software’s correctness and stability. Details are

given in Section 2.7.1.

Robustness:

”the degree to which a system or component can function correctly in the presence of

invalid inputs or stressful environment conditions” [89]

Biochemical data is often erroneous or incomplete. Hence, we needed to ensure that

our software still works correctly if the data input contains any flaws. This is achieved by

adding try/catch blocks or consistency queries to the critical pieces of the source code.

Faulty input data thus results in descriptive error messages instead of crashes or unex-

pected behavior. Another source of trouble arises from the combination of multithreading

techniques with a graphical user interface: such a program has to enforce at any time that

users can not accidentally interfere with any ongoing tasks in a way that causes instabil-

ities. Our approach to this problem is twofold. First, we disable all user interface entries

that must not be used at a given time. Second, we implemented a locking mechanism

that aims at preventing any harmful function calls while additional threads are running

(see Section 2.6.3).

2.3. Modularity

Most available tools in the fields of structural bioinformatics are monolithic software pack-

ages that do not easily allow for any further extensions. In contrast to such tools (like

VMD or PyMOL) the VIEW library was designed with the goal to achieve a maximal ex-

tensibility and maintainability. To realize these demands, we encapsulated the individual

feature domains into different modules (like OpenGL rendering or force field methods)

that were realized as a set of independent modular widgets (see Fig. 2.2). These mod-

ules automatically connect to each other and thus can be freely combined to form an

application. In addition, this approach allows users to create their own widgets and thus

incorporate new kinds of functionality.

To this end, we have designed a set of base classes describing the interactions of the

individual widgets. The two most important components in this design are MainControl,

the application’s main window, and ModularWidget, the base class for all modules. The

next pages will describe the modeling and implementation of this approach. To improve

the readability, class names and methods will be shown in typesetting style.

16

Modularity

2.3.1. MainControl

The class MainControl is derived from Qt’s QMainWindow and thus realizes an applica-

tion’s main window. To minimize the potential overhead, it contains only the most essen-

tial data structures that are always present in a molecular viewer and modeling tool: the

molecular structures and the visualization objects.

To ease the management of these data in the MainControl, we integrated two additional

classes: the CompositeManager stores all molecular entities (Composite objects) and the

RepresentationManager is responsible for the visualization models and the thread for

their (re)calculation. All further functionality (like reading and writing of structures, the

scripting interface, etc.) are added to the main window by instantiating one of the classes

derived from ModularWidget.

MainControl

ModularWidget

Representation

QMainWindow

AtomContainer

MolecularControl

DatasetControl

GeometricControl

PyWidgetLogViewScene

Modular Widget is the
base class for about 20
derived classes.

Figure 2.2: UML diagram of BALLView’s core architecture: The MainControl is the main
window of every VIEW application and serves as a container for all loaded molecules and
representations. It also connects the modular widgets with the messaging system. The
classes derived from ModularWidget, which are shown in yellow, can be found in Fig. 3.1.
QMainWindow stems from the Qt-library.

2.3.2. Modeling of the modular widgets

ModularWidget is a common base class for all the modules that can be combined to form
an application. As stated above, the MainControl only contains the most basic set of data
structures, the loaded molecules and the visualization objects. The design of the VIEW
framework allows these data sets to be represented and modified by several modular
widgets at the same time. This is realized through the so called ”Observer Synchroniza-
tion ” pattern [30]. Every individual widget can act as an ”Observer” on commonly shared
data and provide user interface elements to modify this data. If a widget modifies the

17

Design and implementation

data, it notifies all other widgets of these changes, which will respond by updating their
visual content.
To reduce the complexity of this approach, we have designed the individual widgets such
that they do not need to know about each other: instead of passing the messages directly
to the receiving widgets, the sending widget hands the message over to the MainControl
which then notifies all registered ModularWidget one by one. A receiving widget freely
decides if it has to react to the incoming message, by checking the message’s type and
contained data. The details of the messaging system will be described in detail in the
next section.
As a complementary technique, we used ”Flow Synchronization ”, i.e. screens get syn-
chronized with the underlying model based on the flow of the user interaction between
the screens [30]. This approach was used for dialogs that are not constantly needed
and thus were not implemented as modular widgets. Instead they are contained in one
ModularWidget, which is responsible for keeping their content synchronized. In the ma-
jority of cases, this was achieved by setting these dialogs to be modal, i.e. no other user
interface elements can be accessed, while such a dialog is open. Thus, the dialog’s con-
tent only needs to be synchronized before and after showing it.

The VIEW library already contains numerous prefabricated modular widgets, each of
which is designed for one specific task (see Table 2.1). Therefore, in order to build an
application, the user only has to instantiate the modular widgets with the MainControl as
their parent, as can be seen in the following code snippet:

Mainframe::Mainframe(...)

: MainControl(...)

{

new MolecularControl(this); // widget (1)

new GeometricControl(this); // widget (2)

new DatasetControl(this); // widget (3)

new LogView(this); // widget (4)

new Scene(this); // widget (5)

new PyWidget(this); // widget (6)

}

These few lines of code (header includes were omitted for brevity) create a fully-fledged

molecular structure viewer with the set of widgets shown in Fig. 3.1.

Additional features of the modular widgets

The modularity of our approach greatly contributes to the extendability of our software

since users can add new functionality, by implementing additional modular widget. To

further ease and accelerate this kind of extensions, we designed the ModularWidget

class to provide many commonly needed features:

18

Modularity

Name Functionality
DatasetControl Management of data sets
DemoTutorialDialog Demo and stepwise tutorial
DisplayProperties Creation and modification of models
DockingController Molecular docking
DownloadPDBDialog Downloads from the protein database
EditableScene Molecular editing
FDPBDialog Calculation of electrostatic potentials
FileObserver Observing changes in a molecular file
GeometricControl Management of graphical representations
HelpViewer Integrated documentation viewer
LabelDialog Creation of labels in the 3D view
LogView Logging window
ModifyRepresentationDialog Customization of models
MolecularControl Hierarchical overview of loaded molecules
MolecularFileDialog Reading and writing of molecular files
MolecularStructure Molecular mechanics and modeling features
PubchemDialog Download and creation of small ligands
PyWidget Python scripting
Scene Three-dimensional graphics
SnapshotVisualisationDialog Visualization of trajectories
TestFramework Recording and playback of user input

Table 2.1: Overview of the classes derived from ModularWidget. Each individual class
was created for one specific functional domain and is widely independent from the other
widgets.

• Messaging system

While the modular widgets are widely independent, they can still notify each other

about the current work flow. This is achieved by a messaging system that allows

a ModularWidget to send a message which is then received by all other modular

widgets (see Section 2.3.3).

• Printing status and error messages

To keep the user informed about the application’s current state and potential prob-

lems, all modular widgets support the sending of status and error messages. These

can either be piped to the standard output device (like a shell window), printed in a

special log windows, or shown in the application’s status bar.

• Management of menu and toolbar entries

The MainControl as the application’s main window provides a menu bar that is

accessible by the modular widgets, to add their own entries. The widgets are re-

sponsible for disabling their menu entries if the corresponding action is disallowed

at a given time.

19

Design and implementation

• Registering widgets and menu entries for the help system

The VIEW framework features a context sensitive help system (realized in yet an-

other modular widget). It allows for binding individual GUI elements to a correspond-

ing section in the documentation (see Page 54). If a modular widget contains such

GUI elements, it is responsible for creating the binding. As an example, to regis-

ter the 3D view to its documentation, all that is needed is the following line in the

classes constructor:

registerForHelpSystem(this, "scene.html");

• Configurability

Every modular widget can have an arbitrary number of child pages in the applica-

tion’s preferences dialog (see Section 2.4.3). In addition, the ModularWidget class

defines an automatic interface for reading, storing and applying a widget’s settings

to/from a configuration file.

• Registering of supported file formats

Since the libraries functionality is separated into independent modules, the modules

have to register their supported file formats. This is needed for parsing command

line arguments or for the drag-and-drop support. The registration process is rather

simple. A derived ModularWidget class just has to overload the two following meth-

ods:

virtual bool canHandle(const String& fileformat) const;

virtual bool openFile(const String& filename);

• Access to individual instances

While the molecular widgets are widely independent, they sometimes still might

need directly access to each other. Therefore, we derived the modular widgets

from the class Embeddable. It provides access to a classes instances through the

method getInstance().

• Access to the MainControl, the loaded structures, and the re presentations

All modular widgets can easily access the MainControl and through it the loaded

molecules and representations.

• Locking of molecular entities

To achieve better performance and responsiveness of the graphical user interface,

the VIEW library supports multithreading techniques (see Section 2.6.3). These

techniques require the locking of shared data, i.e. the molecular structures. There-

fore, all modular widgets have the means to lock and unlock this data.

20

Extensibility

• Freely placeable and dockable widgets

With the class DockWidget, we designed a derived ModularWidget class that allows

for the creation of freely placeable and dockable widgets (see Fig. 3.1).

By providing these features, the class ModularWidget greatly simplifies the development

of additional widgets. As a result, users can easily combine new and existing widgets

both to extend BALLView with new functionality or build new custom-tailored applications.

2.3.3. Messaging system

A special mechanism was needed for enabling the individual modular widgets to be in-

dependent from each other, but still be able to work together, by notifying each other

about the current work flow. This was achieved through a messaging system that allows

a ModularWidget to send a message which is then received by all other modular widgets.

As an example, the MolecularControl is a modular widget that provides a hierarchical

overview of the loaded molecules. Other widgets offer functions that operate on the cur-

rently highlighted molecular entities in the MolecularControl. The menu entries for these

features must be disabled if no molecular item is highlighted. Therefore, when a user

highlights some of its items, the MolecularControl sends a ControlSelectionMessage

to notify the other widgets. Since the modular widgets have to notify each other about

many varying types of events, the class Message has many subclasses (see Table 2.2),

which store different data, like selections or object pointers. If a new event is introduced,

it can easily be added by creating another Message subclass.

The actual sending of messages is done in the method ModularWidget::notify_,

while the message is received by ModularWidget::onNotify(). In this method the

modular widget decides if it needs to react to the message, which is done through

runtime type identification. Furthermore, many types of message provide enumer-

ation values for defining further specialized message subtypes. As an example, a

CompositeMessage can cope with the events of an added or deleted molecule by using the

types CompositeMessage::NEW_COMPOSITE or CompositeMessage::REMOVED_COMPOSITE.

By using such enumeration subtypes, less subclasses are needed to distinguish different

types of events, resulting in a more compact implementation. Thus, new Message sub-

classes were only added, when a message had to transmit a new kind of data or if no

appropriate class existed.

2.4. Extensibility

BALLView’s extensibility was of central importance, since it was designed to become the

basis for our future developments in molecular modeling and molecular visualizations.

Here, it allows students to integrate their research projects into one common graphical

21

Design and implementation

CompositeMessage SceneMessage
GenericSelectionMessage ControlSelectionMessage
NewSelectionMessage GeometricObjectSelectionMessage
RepresentationMessage MolecularTaskMessage
ShowDisplayPropertiesMessage CreateRepresentationMessage
DatasetMessage DockingFinishedMessage
DeselectControlsMessage

Table 2.2: Derived message classes. Almost all can contain specific data or have addi-
tional enumeration types.

user interface. This will both, ease these developments and extend BALLView’s function-

ality. In addition, the VIEW framework is released as free software and can thus also

serve as basis for development projects in other research groups or companies.

With these ideas in our mind, we spend a substantial amount of time and effort to guaran-

tee that every aspect of BALLView and the underlying VIEW framework can be adapted

and extended:

• The modularity of our approach, described in Section 2.3.2 allows for incorporating

new functionality through the implementation of additional modular widgets. These

new widgets can either be independent from the already implemented ones or

use the existing functionality by calling the corresponding modular widget methods.

Since the graphical user interface is modular and can be freely rearranged, it allows

for the seamless integration of any additional widgets.

• Both, the application and the underlying libraries, have a fully object-oriented de-

sign to simplify any future extensions. As an example, all existing modular widgets

contain virtual methods that are intended to be overloaded in derived classes. Thus,

users can easily change the behavior of the existing widgets by adding new meth-

ods.

• The application’s preferences dialog can easily be expanded (see Section 2.4.3).

To add a new child dialog, only one line of code is needed:

preferences.insertEntry(new ModelSettingsDialog(this, "Models");

• Arbitrary types of data sets can be stored and manipulated in a specially designed

widget. This DatasetControl can easily be extended with support for additional

data types (see Section 2.4.1).

• The class design for the rendering engine (see Section 2.5.4) allows to develop

further types of renderers by deriving a new class from Renderer. Such a new

renderer could in the future, for instance export a scene to VRML format or provide

an integrated ray tracing engine. In addition, support for rendering further geometric

22

Extensibility

objects (see Section 2.5.1) can be added by extending the existing renderers with

the new methods.

• New models and coloring processors can be added by implementing a derived

model information class and overloading the corresponding dialogs.

• The Python interface (see Section 3.4) allows to add new functionality without the

need to write, compile, and link any C++ source files.

All these extensions can be realized without any changes to the existing code. To further

improve the extendability, we wrote an elaborate documentation, describing the usage of

the BALL and VIEW library as well as the graphical interface (see Section 3.1.3). Fur-

thermore, we created tutorials that covers the usage of the basic BALL classes and the

extension of the viewer functionality.

2.4.1. Support for arbitrary data sets

As described on Page 17, the MainControl only stores the two most important and

commonly needed types of data: the molecules and their visualizations. Support for

storing any additional data types is available through a specialized modular widget, the

DatasetControl (see Fig. 3.1). When we implemented this class, our goal was to make

the class design as modular, extensible, maintainable, and easy to use as possible.

Therefore, we decided to employ the ”ModelViewController (MVC) ” pattern [30] and

thus split the interface into three parts: the model (or data), the view (or widget), and

the controller. Since the data management is thus decoupled from the presentation in

the widget, the implementations of the different data types can be realized in separate,

independent classes. As a result, future extensions to provide additional data types can

be implemented without changing any existing code. To realize the above described ap-

proach, a common generic interface was needed. This interface is defined in the Dataset

and DatasetController base classes (see Fig. 2.3).

A Dataset can contain any type of data and supplemental information, like the objects

name and a pointer to the molecular entity from which it originates. The actual data

storage is performed in derived classes to achieve a type safe encapsulation. As an

example, the class DockResultDataset stores a docking run result. To simplify the cre-

ation of derived Dataset classes, we developed a preprocessor macro that automatically

defines and implements such a class. As a result, only one line of code is needed to

define a derived data set class, as can be seen in the following example for the class

DockResultDataset:

BALL_CREATE_DATASET(DockResult)

23

Design and implementation

Figure 2.3: UML diagram for the DatasetControl. Widgets are shown in blue, messages
in yellow, data set controllers in gray, data set classes in green. For the description see
Page 23.

The DatasetController base class defines the interface for storing data sets and ac-

cessing the respective functionality like file operations, visualization and deletion. These

features are implemented in derived classes, where each class provides the support

for one data type. For instance, we created the DockResultController class for

DockResultDataset, .

To make their functionality available, the controllers provide their own menu entries

which are automatically added to the application when a controller is registered in the

DatasetControl. This registration is very simple, as can be seen in the following exam-

ple:

DatasetControl* dc = DatasetControl::getInstance(0);

dc->registerController(new RegularData3DController);

dc->registerController(new VectorGridController);

dc->registerController(new TrajectoryController);

dc->registerController(new DockResultController);

These few lines install the controllers for the four data types that are currently supported

in BALLView: scalar data grids, vector grids, trajectories, and docking results.

24

Extensibility

The controllers must also support the management of data sets that are created else-

where. This happens for example in the case of docking runs, where another modular

widget is responsible for starting the docking runs and thus creating the corresponding

data object. Therefore, the messaging system (see Section 2.3.3) had to be extended

to support such data set related events. This was achieved by implementing a new

DatasetMessage class that stores a Dataset object (see Fig. 2.3). When such a mes-

sage is received by the DatasetControl, it compares the contained data type with the

registered controllers. If a matching controller is found, it is used to process the message,

for instance to add a new item to the list view.

While the described approach may seem somewhat complicated, it improves the main-

tainability and simplifies future modifications and extensions. The DatasetControl can,

e.g. easily be customized to provide only support for the needed types of data. This can

lead to leaner applications. Also, support for additional data types can be added by de-

riving a new DatasetController class and registering it. Finally, the chosen approach

allows for a much simpler messaging system since only one message class is needed for

any kind of data.

2.4.2. Creation of dialogs

To layout the dialogs in the VIEW library, we used the program "Qt Designer" (see Fig. 2.4).

It is part of every Qt-package and provides a comfortable "What you see is what you get"

(WYSIWYG) interface for designing widgets. The result of the "Qt Designer" program is

a ".ui" file, which is then transformed into a set of C++ source files by the Qt program "uic".

These source files contain a base class, which defines the dialog’s layout. The actual

dialog class is derived from the layout class and contains the dialog’s functionality.

While this procedure may seem a bit complicated, it is straightforward and very useful.

Not only does the WYSIWYG interface accelerate the development process, the resulting

"*.ui" files uncouple the dialog’s layout from its function. Thus, a software engineer can

extend the functionality without having to care about the dialog’s layout, while a GUI

designer can change the layout without the need to adapt the source code. Also, after

creating one dialog layout, this design can be applied to several dialogs which can differ

in functionality and behavior.

2.4.3. Configurability

A common problem with software products is the lack of configurability, i.e. users can not

adapt a program’s features to their needs. In contrast, we intended to give BALLView’s

users the opportunity to adjust it to their liking in any conceivable way, including the dif-

ferent models, coloring methods, and display options. Therefore, an extensible graphical

25

Design and implementation

Figure 2.4: The Qt Designer for developing graphical user interfaces.

user interface for applying these settings was needed. For this purpose, we developed

the Preferences dialog, which can contain an arbitrary number of child dialogs. These

child dialogs are stored in a QWidgetStack and are shown as entries in a hierarchical

list (see Fig. 2.5). If a user clicks on such an entry, the corresponding dialog is shown

in the widget stack. This approach allows to cluster the settings in a hierarchical way

and enables users to freely browse and apply the individual settings. Furthermore, the

Preferences dialog can have any number of child dialogs and still have a concise layout.

Automating the (re)storing of the settings
The configurability of our software would not make much sense if the settings would not
get stored for later usage since users would find themselves forced to enter the same
settings over and over again. Therefore, all of BALLView’s settings are stored when the
application is closed. This process relies on two mechanisms: First, every individual
modular widget has methods to read, store, and apply any arbitrary number of settings
in a line based configuration file. As a second alternative mechanism, we provided the
Preferences dialog with the ability to append its settings to the same configuration file.
In the early versions of our implementation, every modular widget and dialog contained

26

Extensibility

Figure 2.5: The PreferencesDialog allows to adjust almost all kind of features in BAL-
LView

its own routines for the reading and storing process. Since this resulted in large overhead
in terms of redundant source code, we automated the (de)serialization. We designed a
base class PreferencesEntry, which can act as a base class for any dialog. It automat-
ically registers a dialog’s GUI elements, whose content is later saved or restored. Thus,
extending a dialog with this feature is very simple, since exactly one line of code has to
be added to it’s constructor:

registerWidgets_();

This sole line ensures that the dialog’s data get stored or read. Compared to the ear-

lier implementation, which required dozens lines of code per dialog, this is an essential

improvement.

The storing process

To store the content of the registered GUI elements, their content is transformed into a

string (see below) which is later written to the configuration file along with the name of

the GUI element:

...

if (RTTI::isKindOf<QLabel>(*widget))

{

value = getColor(dynamic_cast<const QLabel*>(widget));

}

27

Design and implementation

else if (RTTI::isKindOf<QLineEdit>(*widget))

{

value = ascii((dynamic_cast<const QLineEdit*>(widget))->text());

}

...

The resulting configuration file is divided into sections, which can correspond to individ-
ual dialogs. The following lines illustrate the file format, by presenting the section for the
energy minimization setup dialog. From these lines the dialog’s content can be recon-
structed and thus the minimization settings restored.

...

[MINIMIZATION]

energy_difference_lineedit=0.0001

minimization_group=conjugate_button

max_grad_lineedit=1.000000

...

Further applications

Since the described approach for storing the content of dialogs turned out to be very ef-

fective, we extended its usage. Now, dialogs no longer have to be child widgets in the

Preferences dialog, to use this feature. In addition, the PreferencesEntry class sup-

ports the storing of default values that are applied when a dialog’s ”Defaults” button is

pressed (see e.g. Fig. 2.5). In the same way a dialog is restored to its originally values,

when the ”Cancel” button is pressed.

Another extension was made to support more sophisticated GUI elements. We cre-

ated a base class ExtendedPreferencesObject that defines an interface for (re)storing

the content of composite widgets, like the tables for the setup of the different color-

ing methods. This approach further improves the extensibility, because new derived

ExtendedPreferencesObject classes can be designed and thus support for sophisti-

cated composite GUI elements be added.

Summary

We designed a user-friendly way to apply any arbitrary number of options. Furthermore,

the implemented approach is very powerful, since it is extensible and minimizes the ef-

forts for (re)storing the content of further dialogs. Even more importantly, the described

approach is less error-prone than the naive implementation, since developers can no

longer forget to add the (re)storing code for one GUI element.

The VIEW library in its current state has more than 20 dialogs whose content is (re)stored.

28

Class design for the visualization features

These dialogs have in total more than 200 widgets storing user defined values. A conser-

vative estimation of 8 lines of code per widget for the storing/restoring of its data yields a

saving of more than 1500 lines of code.

2.5. Class design for the visualization features

This section describes the class hierarchy for computing and rendering visualizations.

First, the different geometric objects which may belong to a visualization are presented.

Next, the concept of a representation is described and the process of creating a visu-

alization is illustrated. Finally, the section concludes with an overview of the supported

rendering techniques.

2.5.1. Geometric objects

We designed a base class GeometricObject which provides a general interface for ge-

ometric shapes that can be computed and rendered in the VIEW framework. From this

base class, we then derived the classes for the individual geometric objects (see Ta-

ble 2.3). The instances of these derived classes are constructed by a model processor,

are later colored by the color processor, and finally stored in a Representation. The ren-

derer classes then translate their information such that they can be drawn on the screen

or processed by external programs.

Box Disc
Label GridVisualisation
Mesh QuadMesh
Point SimpleBox
Sphere Tube
Line TwoColoredLine
Tube TwoColoredTube
MultiLine

Table 2.3: Overview of the different geometric objects that are supported in the VIEW
framework.

To guarantee that a wide range of shapes and objects can be visualized, we implemented

numerous derived GeometricObject classes. If nevertheless the need for new kinds of

geometric objects will arise, such extensions can be realized with minimal effort. All

that is needed is the creation of a derived GeometricObject class and the adding of the

corresponding rendering methods to the Renderer classes (see Page 31).

29

Design and implementation

2.5.2. Representations

To offer the user an intuitive way of handling models and their coloring, we designed

the class Representation. For each visualized object, this class stores the selection

of molecular entities, the used model and coloring method, the drawing style, and the

geometric objects representing the model (see Fig. 2.6). This approach has many advan-

tages:

• The different models and coloring methods can be freely combined.

• Users can combine as many representations as they like and thus compose com-

plex molecular visualizations.

• The individual representations can be enabled/disabled at any time.

• A Representation can easily be redrawn, when the corresponding atoms have

changed.

• A user can disable all updates to a representation, and thus for instance visualize

the differences between two steps in a trajectory.

• It is possible to write project files which store all representations for later usage.

• Users can develop customized representations by employing the Python scripting

interface.

To simplify the creation and modification of representations, we designed a user-friendly

dialog which allows to assign all settings of a Representation.

2.5.3. Molecular models and their colorings

We created a wide variety of different models (see Section 3.1), each of which

is implemented in one corresponding class. All these model classes are de-

rived from the class ModelProcessor. This class is derived from the BALL class

UnaryProcessor<Composite>, which provides a general interface for recursively iterat-

ing and processing a molecular entity (Composite) tree. Therefore, a ModelProcessor

can be applied to entire proteins as well as to individual atoms, which allows for the build-

ing of models for user defined subselections of molecules. When a model processor

is applied to such a selection, it first iterates over the Composite tree and collects the

information necessary for the model’s construction. With this information, the method

createGeometricObjects() computes the individual geometric objects, which form the

model. The geometric objects are created on the heap and stored in a list inside the

Representation, which is then responsible for deleting them.

30

Class design for the visualization features

Representation

Geometric Object

ModelProcessor

ColorProcessor

AtomContainer 0..*0..*

<<use>>

0..10..1

0..10..*

0..10..1

<<use>>

Figure 2.6: Each visualized object corresponds to an instance of the class
Representation. The ModelProcessor creates GeometricObjects, like tubes or meshes
for all atoms stored in the AtomContainers. Next, the ColorProcessor colorizes the
GeometricObjects, e.g. by element, charge or temperature factor. The individual model
types and coloring methods are realized by derived classes. This approach simplifies the
implementation of new models and coloring methods and allows their free combination.

The counterpart of ModelProcessor is the ColorProcessor class, which iterates over a

list of GeometricObjects and computes their colors. Currently, 16 coloring methods are

available and each is implemented as a derived ColorProcessor class.

Since users directly perceive how long it takes to compute a representation, we made

great efforts to ensure maximum performance for the model and coloring calculations.

For details on these optimizations see Section 2.6.1.

2.5.4. Renderer

Currently BALLView support two different renderers. Real time graphics are offered by
the OpenGL renderer (GLRenderer) while high quality graphics are available through the
POVRay exporter (POVRenderer). Both classes are derived from a common base class
Renderer, which defines a general interface. This common interface ensures that, in fu-
ture versions, arbitrary renderers can be added by deriving a further Renderer class.
The actual rendering of a Representation is done in the method Renderer::render(const
Representation&). It iterates over all geometric objects in the Representation and, by
using runtime type identification, finds the corresponding rendering method:

if (RTTI::isKindOf<Point>(*go)) renderPoint_(*(const Point*) go);

else if (RTTI::isKindOf<Disc>(*go)) renderDisc_(*(const Disc*) go);

else if (RTTI::isKindOf<Line>(*go)) renderLine_(*(const Line*) go);

...

31

Design and implementation

These methods are overridden in the derived classes with the actual rendering code, like

OpenGL function calls in the GLRenderer. This approach ensures that the renderers can

be extended with support for new kinds of geometric objects, simply by adding a new

rendering method and the corresponding runtime check.

Unlike the OpenGL renderer, the POVRenderer does not provide real time graphics, but

an interface to the external POVRay renderer. This is achieved by translating the data

in the geometric objects to a form that can be parsed by the POVRay application. The

resulting text is then written to an output stream, which is either a file or the standard

console output. For further details about the POVRay exporter see Page 70.

2.6. Performance tuning

This section illustrate some of our efforts to optimize the performance of both, the visual-

ization and the modeling features.

Hardware specific tuning

Several pieces of code in the VIEW library had further tuning potential if we could ob-

tain detailed information about the hardware, on which it is run. Therefore, we added

corresponding code that can for instance query the computer’s amount of free mem-

ory. As an example, this information can be used to increase the resolution of regular

three-dimensional data grids, which can improve the performance of geometric hashing

algorithms for finding non-bonded-interactions (see Section 2.6.2).

A current trend in modern hardware design are multi-core and multi-processor computers.

Thus, the information on the number of available CPUs is getting more and more impor-

tant. Therefore, we added support for querying this information so that future versions

of the VIEW library can determine the optimal number of parallel threads for updating

models or subdividing calculations.

Benchmarking through Python scripts

For BALLView’s development, it was important to have precise benchmark results be-

cause they allowed the comparison of varying implementations and hardware setups.

Since BALL provides an interface to the Python scripting language and Python was ide-

ally suited for these benchmarking tasks we wrote several such scripts. One script for

example measures the OpenGL performance for all standard models and calculates a

total score in so called ”BALLView-GL-stones”. This script is not only useful for the devel-

opers, but also for users, who want to compare the performance of their hardware setup

with reference values. When we analyzed the results of this script for different comput-

ers, we came to the conclusion that BALLView’s OpenGL rendering performance directly

32

Performance tuning

corresponds to the power of the graphics accelerator cards, especially its clock speed.

A corresponding script was written for measuring the performance of the model building

algorithms. By using this script, we were able to identify and remove several bottle necks,

and we could thus accelerate the model and coloring calculations.

Profiling

In addition to the benchmark scripts described above, we used several profiling programs

(KCachegrind, Quantify, gprof) and could thus find and remove further performance prob-

lems. As an example, we were able to half BALLView’s startup time. Without the usage

of the profiling tools, this would probably never have been noticed.

2.6.1. Visualization

Models and coloring methods

Initially ModelProcessors and ColorProcessors were reapplied every time the model’s

atom positions changed. This was computationally expensive, especially in the course

of MD simulations or when a user visualized a trajectory. To accelerate the update pro-

cess, we developed the following approach. Some GeometricObjects like Sphere and

Tube can have their positions specified by Vector3 pointers, which can be set to the

pointer of an atom’s three-dimensional position. Thus, when the atom is moved, the corre-

sponding Sphere in a Stick model still shares the atom’s current position. This eliminates

the need to recalculate the Stick model. Analogically, we were able to accelerate most

ColorProcessors like the ElementColorProcessor which colors an GeometricObject

with the color of the element of the corresponding atom. If only simple geometric ob-

jects like spheres or tubes have to be colorized in such a way, and the hierarchy of the

Composite tree did not change, there is no need to reapply the coloring. This results

from the fact that under these conditions, a model’s geometric objects are not destroyed

and recreated in recurring updates. Table 2.4 gives an overview which models and color-

ing methods support the described techniques.

Mesh coloring through geometric hashing

For the most time consuming coloring tasks, the coloring of triangulated surfaces, the

above described approach is not feasible. Even if only one single atom in a molecule

moves, the whole set of vertices in a mesh must be recalculated. As a result, the mesh’s

coloring needs to be recalculated and the vertices have to be mapped to their correspond-

ing (nearest) atoms with respect to their van-der-Waals radius. Since this has to be done

at every step of a trajectory, an efficient solution was needed. To this end, we developed

an algorithm that is based on geometric hashing. It applies the BALL class HashGrid3,

which can store any type of data and supports arbitrary grid spacings. By using this grid

33

Design and implementation

Models Coloring Methods
Line by element
Stick by atom charge / distance
Ball and stick by residue index / name / type
Van-der-Waals (VDW) by secondary structure
Solvent-excluded/accessible surface by chain / molecule
Ribbons by forces
Backbone by occupancy
Cartoon by temperature factor
Hydrogen-bonds by a custom color

Table 2.4: Some models and coloring methods could be implemented in a time saving
way, such that they do not have to be reapplied when only the positions of the corre-
sponding atoms have changed. These models and coloring methods are shown in a bold
font.

class, we can divide the 3D space, containing the atom and vertices position into equally

sized cubes. We then apply the constraint that a vertex and its corresponding atom can

at most be a given distance away from each other. The exact value for this distance de-

pends on the model type; for SE surfaces, we use 2.62 Angstrom, which corresponds to

the estimated largest possible van-der-Waals radius. This maximum distance is used for

the edge length of the individual cubes. Now, for a given vertex, the nearest atom can

only be contained in the same cube as the vertex, or in the 26 direct neighboring cubes.

Therefore, we can reduce the search space for finding the corresponding atoms and thus

significantly accelerate the mesh coloring.

2.6.2. The force field calculations

One of the computationally most intense calculations in a force field (see Section 4) is the

calculation of the pair list for the non-bonded interactions like the VDW and electrostatics

components. This list contains all pairs of atoms that are close enough to interact with

each other via non-bonded interactions. Since this list has to be updated whenever atoms

are moved (e.g. in the course of an MD simulation or minimization), this calculation can

be responsible for a good portion of the runtime. Therefore, any approach to accelerate

the computing of the pair list is highly desirable. To this end, we implemented a new

geometric hashing algorithm that is similar to the above described approach for coloring

meshes. It also uses the HashGrid3 class to compare the distances between the atoms

in the individual grid cubes. But since the algorithm aims at finding all pairs of atoms

with at most a given distance to each other and each pair has only to be added once,

the algorithm can speed up the calculation. It was designed such that for each atom

only half of the neighboring cubes must be taken into account, which almost doubles the

algorithm’s speed. In addition, the implementation was carefully tuned, for instance to

34

Performance tuning

accelerate the testing for the grid bounds. As a result, the described approach scales

much better than any of the earlier algorithms in BALL. Therefore, it is ideally suited for

larger molecules with more than 1000 atoms. For smaller molecules, the brute force

algorithm that simply compares all atoms with each other, is still faster, since it lacks the

overhead for creating the grid.

2.6.3. Multithreading

Molview, the precursor of BALLView was designed as a single-threaded application. As

a result, the graphical user interface freezed during time intensive calculations like molec-

ular dynamics simulations, and users could thus no longer interfere with the application.

This was especially tiresome since the calculations could not be aborted, except by shut-

ting down the entire program. To circumvent these limitations, we had to redesign our

software to use multithreading techniques. Now all time intensive calculations, like MD

simulations and energy minimizations are started in their own thread. This has several

advantages:

• The user interface stays responsive at any time.

• Multithreaded calculations can be stopped with one single mouse click.

• The 3D graphics widget can show intermediate results, e.g. of a minimization run.

• Users can reposition the viewpoint to focus on a specific substructure.

Since multithreading has so many advantages, we used it for further purposes, like the

(re)calculation of representations and for downloading structures from databases.

Locking data structures and synchronization of threads

Unfortunately, multithreading is one of the most complex fields in programming since the

individual threads have to be synchronized:

"Granted, multithreading can lead to very elegant programs, especially when

network access or long-running computations are involved, but you will not

care much about this elegance when you bang your head on the wall because

you cannot find the cause of a synchronization problem." [56]

Unfortunately, this citation particularly applies to GUI applications, as we experienced

ourselves. The early multithreaded versions of our software had serious stability issues.

As an example, users could modify or delete molecular structures, which were used in

multithreaded calculations like an MD simulation, resulting in immediate crashes. Other

frequent problems were deadlocks, when two threads competed for access on the same

data or race conditions, when two threads depended on each other.

35

Design and implementation

To solve these and other problems, we redesigned the library to use strict mutex locking.

Only one modular widget at a time can obtain the exclusive read and write access to the

molecular structures or representations. This is achieved by locking the molecular entities

(Composite objects) by calling the following function:

bool ModularWidget::lockComposites()

If this call is successful, the modular widget can safely access and modify the Composite

objects or start a thread for doing so. While the molecular entities are locked, further calls

of lockComposites() will fail and thus prevent any harmful changes. When the locking

widget no longer needs access to the Composite objects, it must free the lock with the

following method:

bool ModularWidget::unlockComposites()

While the molecular entities are locked, the application has to notify the user that any

changes to the structures are now forbidden: Beside showing a ”busy” mouse cursor, all

corresponding menu entries and widgets are disabled. This provides direct feedback on

which actions can still be performed. The disabling of potentially harmful GUI elements

and keyboard shortcuts also acts as an additional protective barrier that prevents any

adverse effects in the program flow.

With these two interlocking mechanisms, the multithreading approach runs stable and it

became one of the central techniques in the VIEW library.

Inter-Thread Communication

We had to consider a problematic aspect in the design of the Qt library: Only the main

thread is qualified to modify GUI elements. This issue was addressed in the design of

our library, by transmitting data between the different threads. We decided to use Qt’s

internal messaging system that allows one thread to send events that are then received

in the main thread. The adequate class for passing user defined data is QCustomEvent, so

we derived several classes from it, which can contain arbitrary data. This approach has

the important advantage that it allows for delivering messages from the VIEW library (see

Section 2.3.3) over thread boundaries. To this end, we derived the class MessageEvent,

which can contain a Message instance. Thus, any thread can post such an event to the

MainControl, where its Message is then sent through the conventional VIEW messaging

system. As an example, the thread that calculates MD simulations notifies the main

thread when it has computed a given number of steps with the following lines of code:

CompositeMessage* msg = new CompositeMessage(

composite, CompositeMessage::CHANGED_COMPOSITE);

qApp->postEvent(main_control_, new MessageEvent(msg));

36

Performance tuning

In the main thread, the MainControl then receives this event and sends the VIEW mes-

sage to itself and all modular widgets:

bool MainControl::event(QEvent* e)

{

if (e->type() == (QEvent::Type) MESSAGE_EVENT)

{

Message* msg = dynamic_cast<MessageEvent*>(e)->getMessage();

sendMessage(*msg);

return true;

}

return QMainWindow::event(e);

}

Example for the usage of multithreading

This paragraph illustrates the multithreaded calculation of a molecular dynamics simula-

tion (see Fig. 2.7) together with the resulting update of the loaded representations. In this

process, three different threads are used:

1. The main thread handles the VIEW messaging system, the GUI, and the Qt event

loop and is thus responsible for the responsiveness of the graphical user interface.

2. An additional UpdateRepresentationThreadwhich is derived from Qt’s thread class

QThread, calculates the visualization updates. This thread is created at the ap-

plication’s startup and performs a continuous loop until the program is closed.

In every cycle of this loop, the thread queries the RepresentationManager if a

Representation is to be updated. If so, it calls Representation::update_() and

thus (re)computes the representation’s model and coloring. When no update is

needed, the thread sleeps for some microseconds to prevent unnecessary CPU

usage until processing another cycle.

3. The computation of the MD simulation is performed in an instance of

MDSimulationThread. This thread is created in the modular widget

MolecularStructure when a user clicks on the corresponding menu entry. The

MD simulation is performed in a loop (see below), such that intermediate results

can be rendered. To this end, a MessageEvent containing a CompositeMessage

is posted to the main thread, where it is received by the MainControl. As a re-

sult, the RepresentationManagermarks the representation to be updated and the

UpdateRepresentationThreadwill perform the model and coloring calculation. The

MDSimulationThread’s main loop tests once per cycle if the user wants to abort the

computation, by checking the return value of MainControl::stopedSimulation():

37

Design and implementation

/ / i t e r a t e u n t i l done and re f resh the screen

while (! main_contro l_−>stoppedSimula t ion () &&

mdsim_−>getNumberOfI tera t ions () < steps_ &&

mdsim_−>s i m u l a t e I t e r a t i o n s (steps_between_updates_ , t rue) ;

{

updateStructure_ () ;

waitForUpdateOfRepresentat ions_ () ;

. . .

}

38

P
erform

ance
tuning

Figure 2.7: UML diagram for a multithreaded MD simulation. Three different threads are used. The main thread handles the GUI and
the VIEW messaging system, the MDSimulationThread performs the molecular dynamics simulation, and the UpdateRepresentation-
Thread recomputes all models for changed compounds.

39

Design and implementation

2.6.4. Tuning the OpenGL rendering

Both, CPU’s and GPU’s performance, increased exponentially over the last years

(Moore’s Law) and will probably continue to do so for the next years. Thus, one might

be tempted to think that molecular viewers no longer require highly optimized graphics

performance. But, since the newly-published molecular complexes are getting bigger and

bigger, a high rendering performance is still as crucial as in the beginnings of molecular

visualization. Therefore, we optimized BALLView’s rendering engine to achieve top per-

formance.

Basic tuning

The original Molview program constructed backbone models with interleaving spheres

and tubes. This created considerable overhead and was thus much slower than the tri-

angulated backbone in the current BALLView version. Wherever feasible, BALLView now

uses triangulated meshes, which have several advantages: Beside the better appearance

and the faster rendering, these meshes can be drawn as wireframes or in toon mode (see

Page 65), they can be colored according to scalar regular data grids (see Fig. 3.8), and

they support additional tuning techniques (see below).

Quite small modifications in the OpenGL rendering code can often result in drastic

changes in performance. Therefore, the source code for drawing the different geometric

objects like spheres or meshes (see Section 2.5.1) was optimized. Furthermore, model

specific changes were introduced. As an example, in the Stick model, the atoms with

three or more bound partners are almost not visible and can therefore be drawn with less

detailed spheres than the other atoms.

Culling

OpenGL provides many different techniques to accelerate the rendering and one of the

most basic, but still most important ones is the so called ”Culling”. This means that

the normally invisible backside of geometric shapes will not be drawn: OpenGL decides

which parts of a shape is the backside by comparing all triangle normals with the direc-

tion of the view vector. Unfortunately, in BALLView it is often desired to view the inside

of, e.g., a solvent-excluded surface, either because the view point lies in the molecule

itself or because the user is using clipping planes (see Page 66). In contrast, for trans-

parent surfaces and Backbone/Cartoon models, clipping is highly desirable. Therefore,

the GLRenderer class decides whether clipping should be applied based on the repre-

sentation’s model and transparency. This increases the performance but still shows the

backsides when needed.

40

Performance tuning

Display Lists

Another technique for improved rendering performance are ”Display Lists”. Such a list

contains a group of OpenGL commands which are processed and stored on the graphics

accelerator card for subsequent execution. Thus, if an object has to be drawn more

than once, the usage of Display Lists can significantly accelerate the rendering. In the

VIEW library, Display Lists are used in two different ways to achieve best results: First,

often occurring geometric objects, like spheres are rendered into a Display List. Second,

every Representation is rendered into its own Display List. This approach showed to

be very effective: When the scene has to be redrawn (e.g. because a user changed the

viewpoint), the rendering is accelerated up to a factor of two.

Vertex buffer objects

Vertex Buffer Objects (VBOs) are similar to Display Lists, since they can accelerate the

rendering process by storing data on the graphics accelerator card, but they are only

suited for numerical data. Unfortunately, only recent version of OpenGL and graphics

accelerator cards support VBOs. Therefore, we test if VBOs are available and if so, we

use them for storing the vertices, normals, and coloring of meshes. This accelerates the

drawing of meshes, about a further 30 percent compared to the Display List approach

(depending on the graphics accelerator card).

Preview mode

The advanced techniques described above yield a significant improvement of the ren-

dering speed. But, unfortunately even the most powerful hardware available today will

not allow to fluently render the largest currently available structures with optimal quality.

This is most often the case for Ball-and-Stick and VDW models which can contain large

numbers of spheres and tubes corresponding to huge numbers of vertices and triangles.

On slower computers, this will prevent the fluent rotation of a molecule. To circumvent

this problem, we added an optional preview mode. It renders the stick and sphere based

models with less detail and without anti-aliasing (see below) while a user is modifying the

scene or moving a molecule. When the user releases the mouse button and thus ends

such an action, the models are redrawn with their full level of detail.

Improving the rendering quality

To achieve a more appealing visualization, BALLView can use two different anti-aliasing

methods, when available. First, OpenGL can be told to try anti-aliasing for lines and

polygons by calling:

glEnable(GL_LINE_SMOOTH);

glEnable(GL_POLYGON_SMOOTH);

41

Design and implementation

Since the polygon smoothing was not thoroughly convincing and resulted in problems on

some machines, we only enabled line smoothing.

A newer and more powerful technique is called supersampling. It works by rendering

the image at a much higher resolution than the one being displayed, and then shrinking

it to the desired size, using the extra pixels for a smooth interpolation. In BALLView

we enable this OpenGL feature via the Qt library. The results are high quality images,

which can almost compete with the results of the POVRay renderer. Unfortunately, many

graphics accelerator cards do not support supersampling for off-screen rendering (which

will be described in Section 3.2.5).

2.7. Quality assurance

2.7.1. Verification

Since we have to ensure the stability of our software on multiple platforms and with dif-

ferent compilers, quality assurance and verification play a significant role in BALLView’s

development. Therefore, we use several complementary methods to verify our source

code:

• To verify BALLView’s basic functionality we performed unit tests with BALL’s inte-

grated testing framework (see [73]).

• The implementation of the MMFF94 force field was validated by a specially written

test program. It compares our results with the values from the MMFF94 valida-

tion suite [22], which roughly consists of 750 molecules and 17,000 atoms. For all

individual atoms, the assigned types, constants, and calculated energies were com-

pared to the reference values. This ensures maximum consistency with the original

implementation.

• To further improve the stability, we used several programs (Rational Rose [39], Pu-

rify [34], valgrind [44]) to verify our source code. This lead to the detection and

solving of many flaws in the implementation. We could remove several memory

leaks, uninitialized members, and invalid memory access through invalid pointers

and iterators. In addition, the above programs were used to analyze the code cov-

erage.

• Where appropriate, we used Python scripts for automatic testing on large data sets.

One such script tested our implementation of the DSSP algorithm [70] for assigning

secondary structures and the Cartoon model processor. For all entries in the pro-

tein database [49], the script calculated a Cartoon model before and after reassign-

ing the secondary structures. Occurring crashes were logged for finding stability

42

Quality assurance

problems. In addition, the script created a screenshot for every individual molecule.

From the resulting images, several hundred were chosen randomly and manually

checked for potential problems.

• We performed extensive manual tests with the application on all supported plat-

forms. This enabled us to find crashes and other problems that could not be found

with any of the other described methods.

2.7.2. GUI testing

The methods described in the last section have a common drawback: they do not allow

for automatic testing the graphical user interface. Thus they can only incompletely test

for problems that arise from the interplay of the individual components. To circumvent

this limitation, we had to perform automatic GUI testing. Unfortunately, all available ap-

plications turned out to be inappropriate for the task since none of these programs had

support for Qt 4.0 and higher. We thus decided to implement our own GUI testing frame-

work. It is divided into three distinct phases. First, BALLView allows to record any user

input, both from the mouse and the keyboard. This input is then serialized in a line based

format that stores one input event (e.g. mouse click) and the corresponding time stamp

per line. Second, the resulting files can be modified manually to incorporate consistency

checks. These checks can be composed of any valid Python code and thus access the

full functionality of the BALL and VIEW libraries (see Section 3.4). Therefore, very de-

tailed query checks can be performed, for instance for the state of the loaded molecules

or visualization objects. To illustrate the usage of these tests, we wrote the following

example line:

T|0.1|len(getMainControl().getSelection())|1|

The first field "T" defines that this line corresponds to a test and is not, for instance a

user input event. Next follows the time in seconds to wait until the test is performed and

the Python code. In this example it tests for the size of the current molecular selection.

Finally, the last field contains the expected result for the test. It is string-wise compared

with the result of the Python command. If the two strings differ, this is written to the

standard output and into a logging file. Third, BALLView can be started with the resulting

file from step 2. Now, all previously performed user inputs are simulated by using Qt’s

internal QTestLib framework. Unfortunately, this framework does not support the (de-

)serialization of the events, so we had to write the corresponding code ourselves. Here,

the main problem was the identification of the correct widget which shall receive, for

instance a mouse event. To uniquely identify a widget, we decided to use the QObject

tree. QObject is a base class for every Qt GUI element and each QObject has exactly

one parent, with the QMainWindow as the top parent, resulting in a tree-like structure. In

43

Design and implementation

addition, every QObject can have a string as its name. Thus, if all QObjects only have

children with differing names, we can uniquely identify each widget, by storing its name

and the name of all of its ancestors in the tree. Next, we had the problem that the size of

the individual GUI elements can differ as a result of the GUI styles and user defined font

sizes. This is problematic, since we need the exact screen positions for the simulation

of mouse events, for instance for pressing entries in the QTreeWidget in the hierarchical

overview of molecules. To enforce that the GUI at runtime is consistent with the state at

the recording time of a test file, the test file supports the loading of BALLView’s project

file. Since this file include all settings that influence the layout of the GUI elements we

can thus fully restore the GUI settings. As a result, test files can also be correctly be

replayed if they were recorded on a differing platform or with an other Qt version. Thus,

we were able to create a platform-independent GUI testing framework. In addition to the

usage for automatic testing it can furthermore ease the bug-tracking process: user that

experience strange behavior in BALLView can record a corresponding test file and attach

it to a bug report. The developers can then replicate the error, simply by starting the

test file. Furthermore, the described functionality also allows to record and playback user

input for other purposes: users can for instance prepare a presentation or tutorial for later

usage.

2.7.3. Usability testing

To ensure that, despite its rich functionality, BALLView remains intuitively usable, we re-

peatedly performed usability studies. To obtain results from users with differing levels

of experience, we made studies with individual researchers that had large experience in

molecular modeling, small groups of undergraduate students, and even pupils that had

never seen a molecular viewer before. The users were only given a short introduction

and were then asked to perform standard tasks like opening molecular files, creating rep-

resentations, and editing molecules. In addition to the comments of the users in and after

the tests, we carefully analyzed their course of action. As a result, we were able to find

potential problems and optimize the usability. For example, we redesigned multiple di-

alogs in order to simplify their interface. Several times, we also tested different alternative

implementations. For example, we implemented three algorithms for the placement of

clipping planes and tested them with several users until the most intuitive handling was

found.

44

Comparison with other visualization and modeling frameworks

2.8. Comparison with other visualization and modeling

frameworks

The BALL and VIEW libraries were designed as extensible software frameworks, such

that they can serve as basis for applications in both molecular visualization and modeling.

Only few software libraries with a comparable scope exist and all of them have serious

drawbacks:

• Chimera [10] is supposed to be extensible, but it is closed source and does not

support the insertion of new methods or members into its molecular classes. For

these reasons, it is not suited for large scale extensions.

• Ghemical [13] is a computational chemistry package with an OpenGL interface that

is released under a free GPL license. While it has interesting molecular mechanics

and visualization features, it lacks any serious documentation of its classes.

• JOELIB [18] is a bioinformatics library, written in Java that has a wide range of

features. Unfortunately, its documentation is very sparse and does not give any

details on how to use the individual classes and their methods. Furthermore, it

provides only very limited visualization capabilities.

• MOE [23] is based on its own novel programming language, the Scientific Vector

Language (SVL). While this language may be powerful and efficient in terms of

runtime, its usage is limited to this application. MOE therefore requires users to

learn and master its own proprietary language. In addition, it is very expensive and

the source code is not available, so developers cannot freely modify the application.

Thus, it is less suited as a basis for own development projects.

45

Design and implementation

46

3. Features and applications

This chapter gives an overview of BALLView’s functionality, but due to its wide range of

features, this overview can only be very perfunctory. Therefore, we concentrate on the

presentation of the major features in the different domains. First, the graphical user inter-

face is described, including its design, layout, and features. Next, the visualization and

molecular modeling capabilities are discussed, along with some examples for the differ-

ent techniques. Finally, the overview ends with the description of the Python scripting

interface, its graphical frontend, and the Integrated Developer Environment functionality.

3.1. Graphical user interface

In contrast to most other molecular visualization and modeling tools, BALLView provides

a state-of-the-art graphical user interface that complies with modern user-interface design

principles. The appliance of these principles makes our software more user-friendly. As

a result, new users can get easily acquainted with the application, while experienced

users have access to BALLView’s rich functionality which may increase their productivity.

This section will describe the architecture of the graphical user interface and the design

principles that were applied.

3.1.1. Architecture

BALLView’s graphical user interface mainly consists of a set of independent modular

widgets (see also Section 2.3.2). The most important of these widgets are shown in

Figure 3.1. Each widget encapsulates a different domain of features:

1. The MolecularControl is a hierarchical list of all loaded compounds. It provides

detailed information about the structures and supports many standard tasks like

copying, deletion, and selecting substructures.

2. The GeometricControl lists all representations and allows for their manipulation.

Users can for example customize representations or switch them on and off.

3. The DatasetControl lists data sets like electrostatic potential grids, docking results

or trajectories.

47

Features and applications

Figure 3.1: BALLView’s graphical user interface consists of independent widgets that can
be combined at the users discretion to form an application. They can be freely placed,
docked in and out of the main window and switched on and off.

4. The LogView provides access to the logs.

5. The Scene is a 3D view of the currently active models.

6. The PyWidget contains the graphical user interface to the Python interpreter.

In addition to the visible widgets, several hidden ones provide menu and toolbar entries,

e.g. for molecular modeling features or database access. Users can freely place the

visible widgets, undock them from the main window and even switch them on and off. As

a result, the graphical user interface is highly configurable and can therefore provide the

optimal layout for very diverse tasks:

• For molecular modeling, a user can employ the MolecularControl and the logging

widget and thus run energy minimizations.

48

Graphical user interface

• For mere visualization tasks, the GUI can be reduced to the fullscreen 3D graphics

widget.

• Users that develop new Python scripts in the Integrated Developer Environment

can switch off all widgets except for the BALL class documentation and the Python

widget.

3.1.2. Usability

Usability can be defined as ”the ease with which a user can learn to operate, prepare

inputs for, and interpret outputs of a system or component” [89]. We worked hard to

ensure that our software can easily be operated, even by inexperienced users. Therefore,

BALLView not only supports all standard features of graphical interfaces, but we also

developed new ways to assist the user. The following pages will describe our efforts to

achieve a high usability.

Installation

Apparently, an application’s ease-of-use already begins with the installation procedure.

For a long time, installing BALLView was quite complex, since the entire BALL library had

to be configured and compiled first. Since this is very time consuming and complicated for

inexperienced users, we have created prebuilt binary packages for most of the common

platforms, like Debian, Ubuntu, Mac OS and Windows. For users that need to build the

library and application from the sources, we developed automatic installers that ease this

process significantly.

Standard interface elements

By using the Qt library, BALLView has support for all standard widgets, like text edi-

tor fields or comboboxes. In addition, different display themes can be used, including

the native styles of the different operating systems and window managers like Windows,

Mac OS, and KDE.

Effective layout

The layout of dialogs and widgets was done according to standard norms and heuris-

tics [86, 90]:

• Keep it simple: We tried to design all user interfaces with as few elements as

possible.

• Grouping: We used group boxes or sub menus to arrange elements with similar

functionality where appropriate.

49

Features and applications

• Consistency: We used the same vocabulary, syntax and styling in all dialogs and

widgets. Furthermore, similar dialogs have similar layouts.

• Predictability: The labeling of BALLView’s user interface elements provides clear

information on what will happen if they are used.

• Provide clear exits: We added clearly marked buttons to cancel dialogs and abort

actions. This prevents users from being ”trapped” in a task or dialog.

• Access aid: Through direct observation, we learned how important access aid

can be for handicapped people that for instance have problems using a mouse.

Therefore, we ensured that all dialogs can be navigated with the ”Tab” key.

• Default actions: Most dialogs have a default button that is especially marked and

can be quickly activated by pressing the ”Return” key.

• Informative error messages: We made all error and warning messages as under-

standable as possible and suggest possible solutions.

• Allow only legal inputs: Where appropriate, we used Qt’s feature to allow only

valid inputs, for example in the form of integer or floating point numbers. As an

alternative we used slider widgets that can limit the possible input values between

a sensible minimum and maximum value.

Fast access to all features

We made sure that BALLView’s functionality is quickly available through corresponding

menu entries. In addition, we added toolbar entries for the most important and commonly

used features like opening molecular files, downloading PDB files, or building represen-

tations. Furthermore, most of BALLView’s features are also available through keyboard

hotkeys. This can be faster and more convenient than using the mouse (e.g. when chang-

ing the modes in the 3D view). To allow for the creation of user-defined keyboard short-

cuts and menu entries, we developed a unique feature that no other molecular software

tools provides. Users can write their own Python scripts and map them to hotkeys (see

Section 3.4). From these hotkeys, the application then automatically creates correspond-

ing menu entries. This user-defined shortcuts allows a noticeable acceleration of the

workflow when performing repetitive tasks.

Navigational jumps

Where appropriate, we used navigational jumps from one dialog to another. As an ex-

ample, the dialogs for starting molecular dynamics simulations or energy minimizations

contain a button to setup the chosen force field through another dialog. While this dialog

can also be opened from BALLView’s main menu, the described approach allows faster

50

Graphical user interface

access to this functionality.

Since we use HTML as basis for BALLView’s help system, the documentation allows for

jumping to individual elements (see below).

Responsiveness

Since we implemented time intensive computations in separate threads, BALLView’s

graphical user interface stays responsive while performing MD simulations or calculating

complex visualization. Moreover, the multithreading approach allows to cancel simula-

tions and progress information can be shown with the estimated remaining runtime of the

current task.

Continuous feedback

We wanted to provide users with a continuous feedback on any ongoing task. Therefore,

we added a status bar at the bottom of the main window that shows hints, warnings, and

error messages. In addition, important messages get logged in a special widget to allow

for later examination.

As another way to provide feedback, we use several distinct mouse cursors that indicate

the current mode or inform the user when the application is busy. Furthermore, BAL-

LView’s menu and toolbar entries are enabled/disabled when their preconditions do / do

not hold. Thus, users are always informed about the actions that can be performed at a

given time. If the mouse cursor is placed on a disabled menu entry, the user is informed

why this feature is currently unavailable.

Integration into the window manager

BALLView can be integrated into most common window managers for the registration of

file formats or drag-and-drop operations, for opening structures or Python scripts.

Adjustability

We designed BALLView to be highly configurable, i.e. almost all features, including the

different models, coloring methods, and display settings, can be adjusted to the user’s

liking. To ease the setup process and to provide a common interface for the individual

preferences, we designed a comfortable dialog (see Fig. 2.5). It clusters the options in

hierarchical groups and allows to freely browse and apply the individual settings. (For

the implementation details see Section 2.4.3.) Furthermore, the 3D graphics view sup-

ports adjustable mouse sensitivities. In particular, disabled people can thus benefit of low

mouse sensitivities.

Since all configuration options are stored when BALLView is closed, it has the same look

and feel when it is restarted. This includes the size, placement, and coloring of the wid-

51

Features and applications

gets as well as the options for the different models. Therefore, users can adapt BALLView

to their liking once and keep their customized working environment.

Project files

After elaborately composing a complex scene, users often want to save their work for later

usage. Therefore, we implemented a special file format for storing BALLView’s settings

along with the loaded molecules and models. This enables users to store a specific setup,

e.g. for a presentation. In addition, users can perform a ”quicksave” or ”quickload”, which

writes/reads a project file named ”quick.bvp” in the user’s home directory. This can serve

as a kind of undo/redo functionality. For faster access, the ”quicksave” and ”quickload”

functionality is accessible through toolbar entries.

Automatic contextual help

We worked very hard to make BALLView as easily usable as possible, however, users

may sometimes still have difficulties apprehending the function and usage of individual

interface elements. As an example, it may be difficult to understand why a given button

is disabled or what will happen if it is pressed. A common way to support users in such

situations is automatic contextual help through tooltips. These labels pop up when the

mouse cursor rests for a certain time over an interface element. A conceptual problem

of tooltips is the length of this time. If too short, users get annoyed by undesired popups,

while longer times make users wait. BALLView in general provides tooltips, but we also

implemented an other approach. The status bar instantly shows a short description when

the mouse cursor is placed on a menu entry. If the entry is disabled, the description tells

why. In addition, more extensive documentation is available through a special help mode

(see below).

3.1.3. Documentation

The effect of a detailed documentation on a software’s usability can not be overestimated.

Therefore, we invested considerable time and effort into a well-elaborated documentation

for the BALL and VIEW class libraries as well as BALLView’s graphical user interface.

Documentation for the framework

Similar to the BALL framework, the visualization library contains the documentation for

its class interface in the header files. This approach allows for keeping the documen-

tation consistent with the current implementation. To extract the documentation out of

the source code, we use the tool ”doxygen” [12], which parses the class declarations as

well and can thus automatically include information on class hierarchies, member protec-

tion, parameters, and return types. Since doxygen supports the creation of HTML output

52

Graphical user interface

(see Fig. 3.2) and since BALLView provides an integrated HTML viewer, the class docu-

mentation is available in the application itself. This significantly eases the development

of Python scripts in BALLView (see Section 3.4), since the class documentation can be

shown next to the Python editor. In addition to the integrated documentation viewer, we

provide the HTML files on the project’s website for online access.

Figure 3.2: Example for the class interface documentation in HTML format. It supports
easy navigation between the individual classes.

For developers, the BALL library provides a tutorial for the installation of the library, the

class interfaces and modules. We added further chapters describing the extensions of

the viewer with new widgets and instructions on how to add new geometrical primitives

to the rendering engines.

Documentation for BALLView

We provide additional documentation describing the usage of BALLView’s graphical user

interface. This documentation written in HTML format is available via the project’s web-

site and integrated in the application (see Fig. 3.3). Furthermore, the usage of HTML

has the advantage that different parts of the documentation can easily be linked together.

53

Features and applications

The documentation also contains a quick reference of the possible actions and the corre-

sponding keyboard shortcuts.

Figure 3.3: Example for the BALLView documentation shown inside the program itself.

Context sensitive help

While developing BALLView, special care was taken to prevent long familiarization phases

for inexperienced users, for instance by providing context sensitive help (see Page 52).

Further detailed information for individual elements in the graphical user interface is pro-

vided via a special help mode. It is available by the "What’s this?" entry in the "Help"

menu. To inform the user that the application has entered this mode, the mouse cursor

is transformed into a question mark. While the mode is active, a left mouse click on any

widget will open the corresponding entry in the documentation (see Fig. 3.3). To leave

the "What’s this?" mode, the right mouse button or the "Escape" key can be used.

As an alternative, the "F1" key will pop up the documentation of the widget at the mouse

cursor’s current position.

Demo and tutorial

To familiarize new users with BALLView, it provides an integrated demo and a step-by-

step tutorial that describes the essential interface elements, their usage, and some basic

concepts with simple examples. Hopefully, this will motivate users to continue learning

BALLView’s user interface on their own.

54

Visualization functionality

3.2. Visualization functionality

BALLView was designed as a molecular viewer and thus provides numerous visualization

capabilities. It supports all standard molecular models and features sophisticated meth-

ods for displaying electrostatics potentials. To render this data in realtime, BALLView

contains an integrated OpenGL engine. However, BALLView not only offers this internal

renderer. As an alternative, users can export their scenes to an external renderer like

POVRay and thus create very detailed images. As already discussed, this functionality is

also available through the underlying VIEW framework which allows for the realization of

own visualization applications.

Figure 3.4: Visualization of HIV protease with an inhibitor (PDB Id 1FB7). It shows a Car-
toon model of the protease in combination with a van-der-Waals model of the inhibitor.
Additionally, a solvent excluded surface was split in a given range around the ligand to
visualize the binding pocket. These three different models correspond to three ”Repre-
sentations” (see Section 3.2.1).

This section will present the underlying ideas and features of the visualization functionality,

beginning with the concept of a ”Representation”, the supported molecular models and

coloring methods. Then the different options to render electrostatic potentials (or any

other kind of scalar data grids) are explained. Next follows a description of BALLView’s

55

Features and applications

integrated OpenGL rendering engine, including its features and supported techniques.

Finally, the section presents several ways to create image files and movies.

3.2.1. Representations

To offer an intuitive way of handling individual models and their coloring, we designed

the concept of a Representation, which corresponds to one entity of visualized objects.

The advantages of this concept have been discussed in Section 2.5.1. A Representation

stores the user defined selection of the considered molecular system, the model, coloring

method, and drawing style that are applied. After the model and coloring have been

created, a Representation also contains the geometric objects representing the model

(see Fig. 2.6).

Figure 3.5: The DisplayProperties dialog was designed to simplify the creation and
modification of a Representation by providing direct access to all available options.
Users can freely choose and combine the different models, coloring methods, levels of
detail, drawing modes, and transparency.

Since the individual representations are independent from each other, users can easily

construct very complex scenes with varying models for different functional groups. As

an example, Fig. 3.4 shows the visualization of a ligand in its binding pocket. To simplify

the creation and modification of representations, we designed a user-friendly dialog that

allows for the assignment of all the different settings (see Fig. 3.5). As a result, the

application of a model to a given selection just takes a few mouse clicks.

56

Visualization functionality

3.2.2. Molecular models and colorings

BALLView allows for visualizing complex molecular scenes along with additional informa-

tion. It provides all standard molecular models (see Table 3.1) that are available in mod-

ern molecular viewers and many different coloring methods. The details of the different

models will be discussed on the following pages.

Models Coloring Methods

Line by element
Stick by atom charge
Ball-and-stick by atom distance
Van-der-Waals (VDW) by residue index
Solvent-excluded surface by residue name
Solvent-accessible surface by residue type
Backbone by secondary structure
Ribbon by chain
Cartoon by molecule
Hydrogen-bonds by forces
Forces by occupancy

by temperature factor
by a custom color

Table 3.1: Molecular models and coloring methods in BALLView. All models and coloring
schemes can be freely combined and applied to arbitrary subsets of atoms.

• Line models allow the visualization of large molecules even on low end machines.

• Ball-and-stick models offer detailed information on bond orders and aromaticity.

As an alternative, this model can be reduced to a Stick model.

• Hydrogen-Bond models allow deeper insights into the mechanism that form a

molecule’s secondary structure.

• Forces models are very useful in MD simulations and minimizations to provide

information about suboptimal placed atoms.

• Surfaces are among the most important models implemented in BALLView and

come in three different definitions: Solvent accessible and solvent excluded sur-

faces (SES/SAS) can be computed with adaptable probe radius and degree of trian-

gulation. Regularly spaced data grids can be used to calculate isocontour surfaces,

e.g. for visualizing electrostatics (see Fig. 3.15). In addition, these data grids can

also be used for coloring all kinds of surfaces (see Fig. 3.8). Furthermore, BAL-

LView allows for reducing surfaces to patches, for instance in vicinity of a ligand.

For an example see Fig. 3.4.

57

Features and applications

Figure 3.6: Example for a Cartoon model. Helices are colored blue, sheets red, and turns
green. This image was rendered with the Toon Shader mode and offscreen rendering
(PDB Id 1QD6).

• Visualization of secondary structures

For the visualization of secondary structures, we implemented a Cartoon model that

supports proteins as well as nucleic acids. For proteins, it shows the three most im-

portant secondary structure elements. Helices are shown as ribbons, Sheets as

arrows, and Turns as tubes (see Fig. 3.6). For nucleic acids, we provide two dif-

ferent models. The first, the so-called Ladder model, is rather simple. It renders a

nucleic acid’s phosphate backbone as a continuous tube and creates one cylinder

for every individual base. The second model was inspired by the original hand-

made wireframe model of Watson and Crick [103]. The phosphate backbone is

shown as a ribbon, while the sugar residues and individual bases are abstracted by

small plates (see Fig. 3.8).

Since the Cartoon model provides an abstracted view, it is often better suited for il-

58

Visualization functionality

lustrating a molecule’s characteristics than any other model. This especially applies

for large molecules with thousands of atoms, where most other models are simply

too packed.

• Labels

When creating molecular visualizations, users often wish to add labels to individual

atoms or functional groups. To meet this need, we added support for automatic

and persistent labels, which can contain the name, charge, or type information of

individual atoms (see Fig. 3.7). If the respective values of the atoms change, the

labels are automatically updated. Of course, it is also possible to create labels with

user defined text.

Figure 3.7: Labels can be created for individual atoms as well as entire residues and
chains. The figure shows the automatic labeling of atoms with their names, types and
partial charges.

3.2.3. Visualization of electrostatic potentials

Electrostatic interactions play a crucial role in protein folding and stability, enzyme catal-

ysis or protein-protein recognition. In contrast to most other molecular modeling tools,

59

Features and applications

BALLView provides a rich functionality for the calculation and visualization of electrostatic

potentials, similar to tools like GRASP [85] and DelPhi [84]. Potential grids can either be

read from external sources or calculated through the integrated Finite-Difference Poisson

Boltzmann (FDPB) solver (see Section 3.3.5). The resulting potential grids can be visu-

alized in a variety of ways, which will be illustrated in the following paragraphs. All these

methods can also be applied to any other kind of scalar data grids.

Coloring of surfaces

One of the most common methods to visualize a molecule’s electrostatic potential is the

coloring of the molecular surface (see Fig. 3.8). For this purpose, BALLView features a

comfortable dialog (see Fig. 3.9) which allows for the assignment of all colors and inter-

polation values. Aside from molecular surfaces, all other kinds of triangulated meshes

(like Cartoon models) can be colorized in the same way.

Figure 3.8: Electrostatic potential of the DNA-binding domain of the glucocorticoid recep-
tor. The receptor is shown via its solvent-excluded surface colored by its electrostatic
potential (blue: positive potential, red: negative potential). The potential was computed
using BALLView’s integrated FDPB solver. The DNA is drawn as a Cartoon model show-
ing the individual bases, sugar residues, and the phosphate backbone in a schematic
representation (PDB Id 1GLU).

60

Visualization functionality

Figure 3.9: Dialog for colorizing meshes by scalar grid data.

Isocontour surfaces

Another approach to visualize scalar grid data are isocontour surfaces (also called isosur-

faces), which show all the points in a data set with the same given value. The computation

of these isosurfaces is available through BALL’s internal "Marching Cubes Algorithm". To

start such a calculation, a user only has to open the corresponding dialog and enter the

desired value and color. While isosurfaces are supported by a variety of modeling tools,

BALLView provides advanced features for isocontour surfaces.

• Users can freely re-colorize isosurfaces or change their rendering mode. For in-

stance, surfaces can be rendered transparent or as wireframe to allow a view inside

a molecule.

• To perceive the three-dimensional gradient of a molecule’s electrostatic potential, it

is possible to combine multiple isocontour surfaces and slice them with a clipping

plane (see Fig. 3.15).

• A Python script that is part of the actual BALLView installation allows for the cre-

ation of movies to visualize the electrostatic potential. Between a lower and upper

value, contour surfaces are calculated and shown one by one. This provides a good

overview of the potential’s gradient. Such a movie is available for download at the

project’s website [4].

61

Features and applications

Volume Rendering

The capabilities of modern graphics accelerator cards to render three-dimensional tex-

tures allow for new innovative methods for the visualization of scalar grids. BALLView

now supports Volume Rendering that can be considered as a fog with color values and

density according to the values of the scalar grid. To achieve this effect, we render sev-

eral successive planes that are colored by a texture representing the grid values. Due to

the missing depth perception in a static view, a figure as 3.10 can only give a glimpse on

this feature’s capabilities.

Figure 3.10: Example for BALLView’s Volume Rendering. This image visualizes the elec-
trostatic potential of N-acetyl-D-glucosamine. The potential was calculated with the inte-
grated FDPB solver based on the charges from the MMFF94 force field.

Projection on a plane

To visualize the electrostatic potential at a given position, we added the possibility to

create and freely place planes, which are colored using a potential grid. This can be

useful for visualizing the potential in a binding pocket. The planes are colored using

three-dimensional OpenGL textures, similar to the above described approach for volume

rendering. With a provided Python script, it is also possible to create movies by stepwise

62

Visualization functionality

translation of a projection plane. Such a movie is available for download at the project’s

website [5].

Field Lines

In addition to the methods for visualizing electrostatic potentials discussed above, BAL-

LView supports field lines for the direct visualization of the electrostatic field. The field

Figure 3.11: Example for the visualization of field lines. Their starting positions were
calculated by using the approach of Stalling et al. [97]. To provide further information
about the field, the field lines were colored by the potential’s values.

lines or integral curves for a given vector field are those lines that are tangent to the field

at any point in space. While the path of a field line is determined by the vector field, there

are many different ways for controlling the distribution of field lines in three-dimensional

space. Therefore, we implemented two distinct ways for calculating the starting positions

of the individual field lines. The first approach generates a number of equidistant points

for every individual atom. Each point becomes the start position for one field line.

Next, we implemented an approach that was described by Stalling et al. [97], in which

the line placement is based on the electrostatic field strength. The data grid is divided

into equally sized cubes and the probability for one field line to start in any given cube is

63

Features and applications

proportional to the strength of the field in that cube. The exact three-dimensional position

in the cube is then randomly chosen. This approach provides a good overview of a field’s

strength, since it directly corresponds to the spatial field line density.

To obtain further information on the potential field’s characteristics, BALLView sup-

ports the coloring of individual field lines with respect to the electrostatic potential (see

Fig. 3.11). To achieve best results, users can freely choose the colors and interpolation

values or use transparency.

3.2.4. OpenGL graphics

BALLView’s integrated three-dimensional visualization is based on OpenGL [26], the cur-

rent industry standard for platform-independent 3D graphics. In addition to its high per-

formance, OpenGL has the advantage to be available on all major operating systems

and for all graphics accelerator cards. As a result, BALLView is very portable. The next

paragraphs will give an overview of the OpenGL engine’s features.

Adaptable levels of detail

Graphics accelerator cards come in very different flavors and price classes. Therefore, a

molecular viewer must be able to cope with several magnitudes of graphic performance.

To solve this problem and to enable the visualization of really huge molecules, like entire

ribosomal subunits, all models support four levels of detail with the exception of the Line

model, where this is no issue. The lowest level shows only a very coarse approximation of

the models, while the highest level provides very detailed representations, which are also

suited for closeups. This enables users to create visualizations for molecules with thou-

sands of atoms even on laptops with low-end graphics accelerator cards and software

rendering. BALLView uses three methods for achieving the different levels of details.

For all OpenGL Utility Library (GLU) [26] based geometric shapes, like spheres or tubes,

it is straightforward to scale the level of detail, since GLU can build these objects in the

specified level of detail. For solvent-accessible or solvent-excluded surfaces, the level of

detail is set via the parameter ”degree of triangulation”. The adaptation of the Backbone

and Cartoon models is more complex, since these models do not consist of prebuilt ge-

ometric shapes. Here, the model processor is responsible for creating the desired level

of detail by setting the interpolation degree for the splines and the number of points per

circle/ellipse to appropriate values.

Drawing modes

BALLView features four different drawing modes to meet the needs for sophisticated visu-

alizations. The dot mode renders all models as a set of simple dots and is thus the fastest

mode. It was very helpful in the project’s first years, since the graphics accelerator cards

64

Visualization functionality

were often too slow to render the other drawing modes. Today it is still part of BALLView,

mainly for historical reasons, but for some users it may still be of use. By far more com-

mon is the solid mode , which renders all objects as opaque polygons and produces the

most ”realistic” graphics. Despite of its name, the solid drawing mode also supports the

rendering of transparent models (see Fig. 3.13). The wireframe mode is often a good

alternative for rendering objects transparent since it allows to visualize surfaces along

with a model of the individual atoms (see Fig. 3.12). Furthermore, drawing wireframes is

quite fast and thus allows for efficient visualizations on computers with limited graphics

performance. We added a fourth drawing mode, the so called toon mode (see Fig. 3.14),

which uses cel shading [8] for drawn-like results that are especially suited for schematic

drawings. To achieve the desired effect, first, a black wireframe model with an increased

line thickness is rendered. Second, the model is redrawn as solid polygons, but without

lighting. Third, the lighting is simulated by using a 1D texture and by comparing all surface

normals with the view vector. The toon mode is slower than the other modes, since all

models have to be drawn twice and it does not support rendering through ”Display Lists”

(see Page 41). This results from the fact that the drawing depends on the actual viewing

vector and thus can not be preprocessed. The idea for the toon mode stems from an on-

line OpenGL cel-shading tutorial [27]. The toon rendering is the only drawing mode that

is currently not supported through by the POVRay export, since it uses OpenGL specific

features that are not available in the POVRay renderer.

Figure 3.12: A solvent excluded surface as wireframe in combination with a solid Ball-
and-stick model (PDB Id 2PTC).

65

Features and applications

Figure 3.13: Comparison of solid and transparent surfaces. This image was created by
using two clipping planes, one for each surface (PDB Id 2PTC).

User defined settings for the 3D graphics

We offer users a wide variety of means to adapt the 3D graphics to their liking, both to

enable them to create sophisticated visualizations and to achieve the best looking results.

Therefore, in addition to the possibility to modify the model properties like thickness and

coloring, the rendering options are adaptable. This includes the material parameters that

specify the behavior of the light reflections, depth cueing (i.e. fog), and the positions and

intensities of the light sources. Thus, it is possible to highlight specific parts of a molecule

or achieve better depth perception.

Clipping/Capping planes

The most interesting parts of a molecule are often hidden in a binding pocket. In such

cases, it is difficult to find a perspective where no disturbing parts hide the point of in-

terest. This problem can sometimes be solved by visualizing only a selected part of the

molecule. Therefore, BALLView offers OpenGL clipping planes (see Fig. 3.15) which can

cut individual representations at any given position in space. The positions can either be

changed with the mouse or by specifying a point on the plane and a normal vector. In

addition, the planes can be switched on/off with one mouse click. Another way of using

66

Visualization functionality

Figure 3.14: Toon shader model for a topoisomerase (PDB Id 1A36).

the clipping plane functionality are capping planes, which allow not only for slicing models,

but also for enclosing them (see Fig. 3.16).

3D stereo visualization

In computer graphics three-dimensional objects are usually projected into a two-

dimensional plane that represents the resulting images. Since this reduces the available

information for the human eye, users often have problems with their spatial perception.

This especially applies for the visualization of molecules, where the interesting parts of

a structure are often hidden in a binding pocket. To circumvent this problem, molecular

viewers often provide stereoscopic vision by rendering two half images with distinct view

points and thus creating the illusion of depth. BALLView provides two different ways to

achieve 3D stereo graphics with affordable hardware.

The first mode is called Side-by-Side projection. Here a left and right half image are

shown, for instance on two projectors by using polarization filters. The disadvantage of

67

Features and applications

Figure 3.15: Example for the usage of clipping planes. Several isocontour surfaces were
created for a dipeptide and sliced by one clipping plane to allow the view on the potential’s
gradient.

this method is that the horizontal resolution gets halved.

The second mode uses shutter glasses along with a CRT monitor, which shows the two

half images in turn. To reach the desired effect, the half images have to be synchronized

with the shutter glasses, which is often done via an infrared sensor. Unfortunately, on

some platforms, this approach requires quite expensive graphics cards with the so called

"Quad Buffer" feature. Furthermore, a CRT monitor with a high refresh rate is needed,

because the rate for every half image is half the monitor’s original frequency. If the refresh

rate for a half image falls below 60 Hz, users may experience dizziness and headaches.

We performed many stereoscopic presentations and achieved good results with both

methods. For a pleasant experience, it is important that users can adapt the strength of

the 3D effect, since otherwise the stereoscopic view may be too weak or lead to dizziness.

The effect’s strength is defined by the distance between the two distinct viewpoints (the

so called eye-distance). BALLView offers a keyboard shortcut to modify the eye-distance

such that the view can be adapted without leaving the stereoscopic view. Alternatively, the

graphical user interface can be used. Since the eye distance gets stored when BALLView

is closed, the setting is available for the next presentation.

68

Visualization functionality

Figure 3.16: Example for the usage of capping planes. For a better view on the binding
pocket, the receptor’s surface has been clipped.

3.2.5. Creation of images and movies

Researchers often have to create images from molecular data for teaching, presentations,

and publications. For some of these applications, users want to quickly produce images

via snapshots, while for other purposes high quality images are required. To this end,

we offer three distinct mechanisms to create images. The easiest and fastest way is

to dump a screenshot in the "Portable Network Graphics" (PNG) format [31]. This file

format provides lossless compression and is supported on virtually all operating systems.

Unfortunately, screen dumps have some common drawbacks. They can only be used

if no other window overlaps BALLView’s 3D graphics window and the resolution of the

resulting images is limited to the screen’s physical resolution.

Offscreen rendering

To circumvent the above limitations, we implemented an additional way to create images

that makes use of OpenGL’s ”Offscreen Rendering” feature (for a result see Fig. 3.6).

Instead of producing a visible image, OpenGL can render into a hidden ”Frame Buffer

Object” (FBO), whose content can then be written to a PNG file. This approach supports

resolutions of up to 4096 * 4096 pixels, which is sufficient for all common use-cases. If

the full resolution of 16 megapixels is not needed, the image files can be downsampled

69

Features and applications

with any graphics software to achieve high quality anti-aliasing. The offscreen rendering

has a further advantage. Since no visible window is needed to create an image, it can be

used in non-GUI-applications, e.g. for the automated visualization of large image sets.

Unfortunately, offscreen rendering is not supported by older graphic cards. For users

with such a card, we provide an alternative procedure to obtain high quality images by

exporting to the POVRay renderer (see below).

Export to the POVRay renderer

BALLView’s internal OpenGL renderer is just one way of visualizing molecular structures.

In a similar fashion, almost all models can be exported to POVRay (Persistence of Vision,

Figure 3.17: Example for BALLView’s POVRay export. It shows a Cartoon model for the
protein in combination with a VDW model for the ligand (PDB Id 1EGY).

a raytracer [32]) to produce publication-quality images with correct shadows and arbitrary

resolutions (for an example see Fig. 3.17). This is done by translating all the different

geometric objects into POVRay’s notation and writing the resulting text stream into a

file. Unfortunately, for complex scenes, these files can have a size of several hundreds

megabytes. Therefore, it was important to optimize the POVRenderer class, such that it

70

Visualization functionality

uses time and space-efficient algorithms, while creating the POVRay files. The following

techniques accelerate the rendering times and reduce the resulting file sizes up to a factor

of ten compared to the naive implementation:

1. Indexing all occurring colors, instead of repeating this data.

2. Usage of limited precisions for the 3D positions data.

3. Usage of POVRay’s Mesh2 objects.

4. Usage of POVRay macros.

POVRay macros provide not only the means to reduce the resulting file sizes, but also

a convenient way for users to customize the resulting images to their liking. Thus, the

header of our POVRay files allows for the adjustment of the transparency, lighting, and

material parameters. While these settings can also be modified in the graphical user in-

terface, it is sometimes faster to manually change the values in the file, since the export

can be time intensive for complex scenes.

To ease the usage of the POVRay renderer, the first few lines of our POVRay files contain

a command line with all required arguments:

povray +I1glu.pov +FN +O1glu.png +Q9 +W929 +H870 +A0.3

This line starts POVRay with reasonable values for the most important options, like the

resulting image size, image format, quality settings, and antialiasing.

Unfortunately, some of the features offered in the OpenGL renderer are not available

through the POVRay exporter. Cel-shading, capping planes, and volume rendering

are currently not supported by POVRay and adding the corresponding functionality to

POVRay is out of the scope of this work.

Creating movies

Images are clearly the most common and most important results of molecular viewers.

But a single image does not suffice to visualize complex information like the course of a

MD simulation. For such a task, movies and animation are often better suited. Therefore,

BALLView, unlike other molecular viewers, offers a variety of ways to easily produce such

movies and animations:

• through the POVRay renderer

• with the help of prebuilt Python scripts

• through a recording mode in the 3D view

71

Features and applications

• visualization of trajectories (see below)

All these methods have in common that they first store the resulting image files and

then merge them with an external program in a second step. For this task, many free

software tools exists, like mencoder [20] for Linux and Virtualdub [45] for Windows. The

project’s website contains several example movies that where created with the different

approaches.

Visualizing trajectories

Trajectories computed by molecular dynamics simulations in BALLView or by external

programs can be read and stored in DCD-format. By using a comfortable dialog (see

Fig. 3.18), they can be visualized with any combination of models. Additionally, movies

can be created from trajectories, either by using hard-copy images or the POVRay export.

An example for such a visualization is available at the project’s website [6].

We also implemented a new way for visualizing the mobility of the individual atoms in

the course of an MD simulation. Here, a Python script iterates over all snapshots in a

trajectory and builds a sphere at every atom position. This leads to images like Fig. 3.30.

Figure 3.18: Trajectories can either be visualized snapshot by snapshot or as animation.
The individual snapshots can be exported as PNG or POVRay files.

72

Visualization functionality

3.2.6. Comparison with related software

While a plethora of molecular viewers exists, only few are still under active development,

and even fewer have a range of features that can compete with BALLView. Of these tools,

the most advanced are: Chimera [10], PyMOL [57], and VMD [67]. Compared with these

applications, BALLView has several advantages:

BALLView is much more user-friendly. This already starts with the graphical user in-

terface framework: Since BALLView uses the Qt framework, which is one of the most

advanced standard graphical user interface toolkits, users are accustomed to the look

and feel of the GUI elements. This makes BALLView much more intuitive than the above

tools that use proprietary or outdated GUI frameworks. Additional means like a sensible

layout, context sensitive help, and user-defined hotkeys further improve the usability.

BALLView provides a higher adjustability than most comparable tools: A comfortable

dialog allows to setup almost every feature to the user’s liking. This includes the model

and coloring options, the rendering’s detail level as well as the design and layout of the

graphical user interface: users can e.g. freely place all the main widgets and switch them

on and off. Therefore, BALLView can be specifically adapted to the task at hand.

We designed BALLView such that users can easily obtain detailed information on the

loaded structures. This includes hierarchical overviews of the compounds, their bond

orders, charges, as well as atom names and types. These pieces of information are avail-

able both in custom-build dialogs and through their rendering in the 3D graphics widget.

BALLView provides state-of-the-art visualization features that are not supported by most

molecular viewers. As an example, it provides an intuitive way of handling the combina-

tion of models and colorings: users can quickly create as many varying representations

(see Page 29) as they like and customize them to their liking. Even more, since the

different models and coloring methods can be freely combined, BALLView allows to visu-

alize very complex relations very easily. BALLView, can thus e.g. visualize a molecule’s

electrostatic potential along with its structure.

73

Features and applications

3.3. Molecular modeling functionality

From the very beginning, BALLView was also designed as a powerful tool for molecular

modeling that provides a common graphical interface to the BALL library [51, 76]. This

combination of molecular visualization and modeling capabilities offers some advantages:

• Users can work more efficiently, since they no longer need to exchange data

between their modeling application and their visualization tool via file operations.

Since no data has to be exchanged between the different programs, many potential

error causes like file format incompatibilities are avoided.

• BALLView’s comfortable graphical user interface and its powerful visualization func-

tionality can accelerate the setup of many molecular modeling tasks. As an exam-

ple, users can quickly find and solve potential problems when working with erro-

neous molecular structures.

• The real time visualization for molecular modeling processes, like e.g. MD simu-

lations or energy minimizations allows for monitoring such a calculation and for

aborting it, e.g., if undesired results are produced.

• The combination of visualization and modeling features is ideal for teaching. As

an illustration, students can experiment with the setup options of force fields, MD

simulations, and minimizations and visualize the results in realtime. This may lead

to a faster and deeper understanding of the underlying mechanisms.

3.3.1. Basic modeling features

File operations and database access

Importing and exporting data sets are prerequisites for virtually all computational tasks.

Thus, BALLView contains native support for a wide range of file formats. It can read and

write PDB, HIN, MOL, MOL2, and SD files.

In addition, the graphical user interface provides the means to download PDB files directly

from the protein data bank [49] by using the PDB identifiers. Since many users have

Internet connections that only allow access to HTTP and FTP through a proxy server, we

added proxy support. In addition, it is possible to enter own URLs for downloading PDB

files, either to use local database servers or any existing PDB mirror site. Furthermore,

this feature will be useful if the PDB database should change the URLs of its files.

Working on subselections

When simulating a highly complex system such as large bio-molecules, it is often desir-

able to work on certain interesting subsets, like for example a special set of atoms in a

molecular structure. BALLView offers three different ways to define such a subset. The

74

Molecular modeling functionality

first possibility is to select atoms or molecules from the 3D graphics widget by clicking into

the scene. The second possibility is provided by the structure widget (see Fig. 3.1, No. 4)

which contains a hierarchical overview of the amino acid sequences and the correspond-

ing atoms. It also allows for selecting certain objects like individual molecules, chains or

residues. As a third possibility, advanced users can enter complex Boolean expressions

into a special text field. As an example, the expression ”element(H) AND residue(LYS)”

selects all hydrogen atoms in lysine side chains. Since BALLView supports SMARTS ex-

pressions (see Page 80), users can even search for very complex molecular patterns, like

all carbon atoms in carboxy groups.

Independent from its origin, a sub-selection can be used to copy, cut, paste, and delete

the corresponding molecular entities. In addition, models can be created from subselec-

tions, e.g. to highlight a ligand.

Obtaining information on atoms, residues and chains

Another common task in molecular modeling is the identification of atoms based on their

3D representation, i.e. to identify the atoms at a given 3D position. In the ”Picking” mode,

BALLView enables the user to identify an atom with one mouse click. As a result, the

atom is highlighted in the hierarchical list of loaded structures. Similarly, it is possible to

mark atoms in the 3D graphics widget, by selecting them in the hierarchical list. Aside

from the simple identification, BALLView provides many other means to obtain detailed

information about a molecular entity:

• When a user double-clicks on an atom’s representation in the 3D graphics, the

atom’s residue, name, type, and charge (formal or partial) are displayed.

• In addition, automatic and persistent labels are available with the name, charge,

and type information of individual atoms (see Section 3.2.2).

• The distances, bond and torsion angles angles between atoms can easily be printed

by selecting them.

• The number of atoms, bonds, and residues in a chain or molecule can be counted

by using the corresponding context menu entry.

• Custom-built dialogs provide all available data for a given atom, bond or residue.

• Detailed information on all the atoms in a structure, including charge, formal charge,

radius and atom type are available through a custom-build dialog (see Fig. 3.19). It

allows to modify any of these values.

75

Features and applications

Figure 3.19: A custom-build dialog provides access to all atoms and their properties. It
allows for adjustments of the elements, types, charges (partial and formal) and radii.

Working with incomplete and erroneous molecular structure s

A frequent problem while applying molecular mechanics methods are incomplete struc-

tures due to missing atoms in the x-ray structures. In particular, in low- to medium-

resolution protein structures the hydrogens are missing. To solve these issues, BALL

contains efficient heuristics for placing missing atoms which are available via the graphi-

cal user interface. This function even allows for adding missing side chains.

In addition, BALLView can search for common structural problems, e.g. overlapping

atoms, ”strange” charges (i.e. charges that are uncommon for a given element and con-

nectivity), or extreme bond lengths. The atoms in question are highlighted to ease their

inspection and manipulation. Users can then move or delete these substructures, or

manually assign missing atom types and charges, if necessary.

Assignment of secondary structures

The knowledge about a protein’s secondary structure can provide deep insights into its

organization, similarity to other structures, and functions. Although most entries in the pro-

tein database already contain a secondary structure assignment, many of these assign-

ments are simply wrong. Therefore, we implemented a variant of the DSSP algorithm [70],

which is one of the most renowned algorithm for assigning secondary structures. Based

on hydrogen bond patterns, that are identified in a first step, it generates an automatic

assignment of a proteins secondary structures.

76

Molecular modeling functionality

3.3.2. Molecular Mechanics

Molecular modeling mainly relies on two different techniques for describing the energies

and forces on the molecular scale: quantum mechanics and molecular mechanics. Quan-

tum mechanics uses wave functions to fully describe the atomic particles in a molecular

system. It has the advantage to yield very accurate results without the need for any prior

knowledge on the system’s behavior (ab initio calculations). Unfortunately, the number

of required operations grows with at least O(n4), where n is the number of symmetry-

independent basis orbitals [77]. Therefore, quantum mechanics approaches are less

suited for computing the behavior of large molecules with hundreds or more atoms. To

circumvent this limitation, molecular mechanics methods have been developed. They can

cope with molecular systems consisting of thousands of atoms, because here the com-

putation time grows with at most O(n2), where n is the number of atoms. To achieve this

reduction in complexity several assumptions are made:

1. Each atom is simulated as a single particle such that relatively simple physical

models can be applied. These models can be thought of as mutually independent

springs that restore ”natural” bond lengths, angles, etc. Unfortunately, this approach

leads to less accurate results compared with quantum mechanics methods since

explicit interactions between individual electrons are neglected.

2. To describe the interactions between individual atoms, often equilibrium values are

used, e.g., for bond lengths, bond angles or inter-nucleic distances between non-

bonded atoms. These parameters sometimes stem from ab initio quantum mechan-

ics calculations, but are mostly obtained through fitting experimental data . There-

fore, to calculate the behavior of one type of molecules, previous experimental val-

ues for similar structures are required.

3. Since atoms of the same element can show different chemical behavior, molecular

mechanics differentiates between individual types of atoms. For this purpose, often

the hybridization of the atoms is used which leads, for example to sp, sp2, or sp3

carbon atom types. The atom types define which values are used for the parameters

in the individual components, e.g., for equilibrium bond lengths.

4. Molecular mechanics calculates a system’s potential energy as a sum of energy

terms that are presumably independent from each other, e.g.:

E = Ebond + Eangle + Edihedral
︸ ︷︷ ︸

Ecovalent

+Eelectrostatic + EvdW
︸ ︷︷ ︸

Enon−bonded

For instance, Ebond is the sum of all bond stretching energies. Here, the energy of

one bond between the atoms i and j is calculated through the following equation,

77

Features and applications

based on the difference ∆ri j between their current inter-nucleic distance and the

equilibrium distance (for a more detailed description of this equation see Page 88):

EBi j = 143.9325
kbi j

2
∆r2

i j (1 + cs ∆ri j +
7
12

cs2
∆r2

i j)

One such equation and the corresponding parameters is called a ”force field com-

ponent” while an entire set of components is a ”force field”. Force field components

can be divided into the bonded interactions that are applied on atoms connected

through covalent bonds and the so called ”non-bonded” interactions.

Figure 3.20: Configuration dialog for the AMBER force field [55]. Like all other force
fields in BALLView, it can be easily configured, including enabling/disabling the individual
components of the force field as well as their cutoff values.

BALLView provides a common graphical interface to the wide range of molecular mechan-

ics capabilities implemented in the BALL library [51, 76]. Users can choose between the

AMBER [55], CHARMM [52], and MMFF94 [62] force fields and use them for a wide

variety applications like the calculation of single point energies, molecular dynamics sim-

ulations, or the relaxation of strained conformations through energy minimizations. In

78

Molecular modeling functionality

addition, the force fields provide routines for the assignment of formal and partial charges

that are suitable as basis for electrostatic potential calculations or visualization tasks. The

graphical user interface provides many different ways to ease these tasks. For instance,

the force fields can be easily be configured to user-friendly dialogs (see Fig. 3.20). This

also includes the enabling/disabling of individual force field components, like electrostat-

ics or the van-der-Waals component. The configuration of the force fields is automatically

stored, such that it will be identical the next time BALLView is started.

When a force field is applied to a molecular system, any problems with the parametriza-

tion are logged to allow their inspection. Furthermore, if a user defined threshold of

unassigned atoms is exceeded, the calculation is aborted and the problematic atoms are

highlighted to allow for manual assignment of the atom types.

Since we implemented the molecular dynamics simulations and energy minimizations as

separate threads (see Section 2.6.3), a user can observe their realtime visualization, stop

the calculations at any time and continue them later on.

The MMFF94 force field

At the beginning of this work, the BALL library contained the implementations of two force

fields: AMBER [55] and CHARMM [52]. While these force fields are very powerful, they

have one common drawback. In their original form, both are parametrized for amino

acids and nucleotides but they lack suitable data for small compounds. Therefore, we

wanted to add a further force field with a parametrization for these kinds of molecules.

This force field could not only be used for Protein-Ligand Docking but also for minimiza-

tions of structures that contain small ligands. In addition, it would be especially useful for

BALLView’s molecular editing functionality (see Section 3.3.3). We analyzed the speci-

fications of the existing force fields and found the MM3 [48], CFF [87], GAFF [58], and

MMFF94 [62, 63, 64, 65, 66] force fields the most promising ones. Out of these candi-

dates, we chose the Merck Molecular Force Field (MMFF94) since it is well documented

and has a wide parametrization. The following pages will describe our implementation of

the MMFF94 force field.

Atom type assignment

As mentioned above, the MMFF94 force field can be applied to a wide variety of com-

pounds. To this end, MMFF94 requires a complex atom typing mechanism that differs

from the type assignment in our implementations of AMBER and CHARMM. In these two

force fields, the atom types were simply assigned based on the atom names. In contrast,

the MMFF94 atom types are based on molecular patterns describing the chemical neigh-

borhood of the considered atoms, where e.g. one atom type corresponds to the carbon

79

Features and applications

atoms in carboxy groups. The type assignment procedure can be divided into four distinct

phases:

1. Assignment of basic types

The atom typing process starts with the assignment of the atom types for all heavy

atoms. MMFF94 differentiates between roughly 100 different atom types and each

type can require several rules, resulting in more than 150 assignment rules. The

atom types are represented by numerical values (1-99) and textual symbols (e.g.

"C = O").

2. Assignment of aromatic types

Based on the previously assigned general atom types, new types are assigned to

the atoms in aromatic rings. The main criteria for this process is the number of

bonds between an atom and it’s aromatic ring’s hetero atom.

3. Assignment of hydrogen atoms types

Hydrogen atoms are assigned last in correspondence to their partner atoms. Every

hetero atom that can share a bond with a hydrogen atom thus also defines an atom

type for the connected hydrogens.

The SMARTS matcher

Since the Merck force field requires more than 150 assignment rules, implementing this

assignment procedure in C++would have been quite complex and time consuming. There-

fore, we decided to base the basic atom type assignment on a SMARTS [41] matcher

which was implemented by Andreas Bertsch. SMARTS is a language for describing

molecular patterns similar to SMILES [104] (Simplified Molecular Input Line Entry Sys-

tem) which can be used for searching patterns in compound databases. SMARTS pro-

vides symbols for describing atomic properties (like the atomic symbol and charge, see

Table 3.2) along with bond properties (e.g. bond order). Both, atomic symbols and bond

properties, can be combined with Boolean operators to describe complex substructures.

For example, phenol has the SMARTS expression ”[OH]c1ccccc1”, where the ”[OH]” pre-

fix defines a hydroxy group that is bound to one of six aromatic carbon atoms that form an

aromatic ring. The usage of SMARTS for realizing the rule set had several advantages

compared to a C++ implementation. The development process was much faster since the

rule set could be modified without the need to recompile and link the software library. In

addition, users can customize or extend the rule sets for new atom types, since we devel-

oped an easily modifiable file format for the assignment rules. It stores one assignment

rule per line, starting with the type’s element, next the textual type, the numerical type,

and the SMARTS expression:

80

Molecular modeling functionality

Symbol Atomic properties

* any atom
a aromatic
A aliphatic
D< n > < n > explicit connections
H< n > < n > attached hydrogens
h< n > < n > implicit hydrogens
R< n > in < n > SSSR rings
r< n > in smallest SSSR ring of size < n >
v< n > total bond order < n >
X< n > < n > total connections
x< n > < n > total ring connections
-< n > -< n > formal charge
+< n > +< n > formal charge
#n atomic number < n >

Symbol Bond properties

- single bond (aliphatic)
= double bond
triple bond
: aromatic bond
˜ any bond (wildcard)
@ any ring bond

Symbol Meaning

!e1 not e1
e1&e2 a1 and e2 (high precedence)
e1,e2 e1 or e2
e1;e2 a1 and e2 (low precedence)

Table 3.2: Overview on the SMARTS syntax. It provides symbols for atom and bond
properties as well as Boolean operators.

*ELE| SYMBOL | TYPE | RULE

C | CR | 1 | [#6X4]

C | CSP2 | 2 | [#6X3]

C | C=C | 2 | [$([#6]=[#6])]

C | C=O | 3 | [$([#6]=O)]

Unfortunately, the SMARTS matching process is computationally expensive for expres-

sions like

[$([#7](-!#7)=[#6X3]-[#7X3][!#7])]

which is only a part of the expression for a type of nitrogen atoms that appears in some

resonance structures. Here, a pattern search has to be performed over a depth of four

81

Features and applications

atoms, to ensure that the connectivity of all atoms matches the sought pattern: a nitro-

gen that is not bound to an other nitrogen but that shares a double bond with a carbon

atom (that has three connections) which is again bound to an other nitrogen atom (with

three connections). This nitrogen must not be bound to an other nitrogen. In a naive

implementation, all 150 rules would have to be successively applied to the entire atom

set, resulting in long runtimes. Therefore, we had to tune the assignment process. To this

end, the implementation sorts the rules into groups for the individual elements such that

a rule only has to be applied for the atoms with the corresponding element (line 8). Here,

the SMARTS matcher returns the atoms that match a given rule. These atoms are then

assigned with the corresponding type for the current rule (line 10). To further accelerate

the matching code, it was modified such that the more specific atom types are assigned

first. Thus, successfully assigned atoms can be removed from later assignment trials

(line 11).

1 c learPr io rAss ignment ()

2 SMARTSMatcher smarts

3 a l l_atoms = co l l e c tA l l A to ms ()

4 fo r ru le_group i n a l l _ r u l e s :

5 element = ru le_group . element

6 atoms_to_assign = co l lec tA toms (a l l_atoms , element)

7 fo r r u l e i n ru le_groups :

8 matched_atoms = smarts . match (atoms_to_assign , r u l e . expression)

9 fo r atom i n matched_atoms :

10 atom . setType (r u l e . type)

11 atoms_to_assign . erase (atom)

For a further acceleration, the SMARTS expressions were carefully tuned to deliver opti-

mal performance. Now, the more stringent and faster testable constraints (like the num-

ber of valence electrons) are checked first, before e.g. comparing the connectivity of the

neighboring atoms. By using the above techniques, we managed a significant acceler-

ation of the atom typing process. As an example, the atoms in the MMFF94 validation

suite [22] are now typed more than ten times faster, compared to our earlier implementa-

tion.

Since for many self drawn structures no explicit charge information would be available,

we decided to base these assignment rules as far as possible on the bond connectivity

instead of the formal charge information. The only cases were the charge information is

still needed are monoatomic ions as Fe2+ or Fe3+, since they have no covalent bonds.

Since the described approach showed to be very effective, we implemented the SMARTS

atom typer as a generic class that can easily be adapted for future assignment tasks, for

instance in the implementation of additional force fields.

82

Molecular modeling functionality

Verification of the type assignment rules

Unfortunately, the description of the individual atom types in the original paper is in parts

very vague. As a result, for many types different alternative expressions were thinkable

that could match the short textual descriptions. Therefore, a lot of testing and adaption

was needed to ensure the consistency with the original implementation for all assignment

rules. The testing was performed against the MMFF94 validation suite [22], which con-

sists of roughly 17,000 atoms in more than 750 different molecules. The final SMARTS

rule set now matches all these atoms to the correct MMFF94 atom types. Since the val-

idation suite does not contain proteins or the full set of amino acids, we had to perform

additional tests for these kind of structures. Therefore, we created peptides containing

the 20 common amino acids and compared the resulting atom types with the assignment

of the MMFF94 implementation in the CHARMM program.

Kekulization

Organic compounds often consist of aromatic groups, meaning that some of the partic-

ipating electrons are delocalized and shared between the individual atoms. The bonds

in such groups can either be annotated as conjugated single/double bonds or simply as

”aromatic”. While many molecular file formats may contain the latter kind of bond or-

der assignment, the MMFF94 force field unfortunately does not support it. Thus, if one

wants to use such molecules with the Merck force field, the annotation of these bonds

has to be transformed into conjugated single/double bonds, a process often referred to

as ”Kekulization” after the pioneer work of Kekulé [72] (see Fig. 3.21).

Figure 3.21: Kekulization of Pyrrole. The aromatic bond assignment on the left is trans-
formed into conjugated single and double bonds on the right. Pyrrole is one of the small-
est aromatic compounds and its Kekulization is therefore almost trivial. Fig. 3.22 shows
the Kekulization of a more complex structure.

83

Features and applications

Therefore, we extended BALL with a Kekulizer implementation. This also became very

useful, when we developed the molecular editing functionality (see Page 90), since it

allows a user to sketch aromatic rings without explicit bond order assignment. While the

Kekulization process is trivial for all atoms that are not part of an aromatic ring system, the

situation drastically changes for polycyclic aromatic compounds. Here, no simple rules

can be applied for the assignment. Unlike other Kekulizer implementations, for instance in

the JOELIB [18] software, our version should not require explicit information on the formal

charges of the participating atoms and thus accelerate the sketching of molecules (see

Section 3.3.3). Furthermore, if for a given structure different assignments are thinkable,

the best solution shall be found. Best here means (in the order of importance):

1. the resulting charges match any previously set formal charges

2. the least amount of newly introduced formal charges

3. the electronegativities of the individual atoms are taken into account

4. for assignments with several charged atoms, the optimal charge distribution shall be

found (equally charged atoms shall be as far apart as possible, oppositely charged

atoms as near as possible).

The first three points are realized in a simple function that calculates a penalty for an

atom’s current bond assignment. The penalty is based on the atom’s element and the

resulting formal charge and accounts for chemical preferences:

ca lcu la tePenal tyForCharge (atom) :

i f use_formal_charges and atom . formal_charge != atom . charge

re turn 100

i f atom i s p o s i t i v e l y charged n i t r o g e n re turn 10

i f atom i s n e g a t i ve l y charged n i t r o g e n re turn 11

i f atom i s n e g a t i ve l y charged carbon re turn 25

i f atom i s p o s i t i v e l y charged carbon re turn 26

While this heuristic is rather simple, it provides accurate results (see Page 86). If never-

theless the need should arrive for a more sophisticated approach, the Kekulizer class can

easily be modified to exchange the scoring function.

The core of the Kekulizer is designed as a branch-and-bound algorithm, which recur-

sively iterates over all atoms in an aromatic system. First, some initializations are per-

formed where the lowest found penalty for any found solution is set to the highest possible

value (line 1) and the penalty for the current assignment is set to zero. Next, the assign-

ment is started for the first atom in the current aromatic system (line 3). The method

fixAromaticSystem has only one parameter which is the number of the atom that is to

be processed.

84

Molecular modeling functionality

Kekulizer algorithm

1 lowest_pena l ty = INT_MAX

2 cu r re n t_ p e n a l t y = 0

3 f ixAromat icSystem (0) / / 0 = f i r s t atom i n cu r re n t aromat ic system

4 i f l owest_pena l ty < INT_MAX

5 a p p l ySo l u t ion (c a l c u l a t e B e s t D i s t r i b u t e d S o l u t i o n ())

6

7 f ixAromat icSystem (atomno) :

8 i f cu r re n t_ p e n a l t y > lowest_pena l ty re turn
9

10 current_atom = getAtom (atomno)

11 i f no more atoms

12 i f cu r re n t_ p e n a l t y < lowest_pena l ty

13 c l e a r S o l u t i o n s ()

14 lowest pena l ty = cu r re n t_ p e n a l t y

15 s to re So l u t i o n ()

16 re turn
17

18 i f not f u r t h e r bonds are to be assigned fo r current_atom

19 X = calcu la tePenal tyForCharge (current_atom)

20 cu r re n t_ p e n a l ty += X

21 f ixAromat icSystem (atomno + 1)

22 cu r re n t_ p e n a l ty −= X

23 re turn
24

25 i f current_atom i s uncharged f ixAromat icSystem (atomno + 1)

26

27 i f f u r t h e r double bonds can be assigned to current_atom

28 i f not atom i s uncharged wi th one double bond

29 Y = calcu la tePenal tyForCharge (current_atom)

30

31 fo r a l l aromat ic bonds o f current_atom

32 i f partner_atom a l lows f u r t h e r double bond

33 Z = calcu la tePenal tyForCharge (partner_atom)

34 assignDoubleBond (current_atom , partner_atom)

35 cu r re n t_ p e n a l t y += Y + Z

36 f ixAromat icSystem (atomno + 1)

37 eraseDoubleBond(current_atom , partner_atom)

38 cu r re n t_ p e n a l t y −= Y + Z

39

40 i f not current_atom has minimum numbers o f double bonds

41 A = calcu la tePenal tyForCharge (current_atom)

42 cu r re n t_ p e n a l ty += A

43 f ixAromat icSystem (atomno + 1)

44 cu r re n t_ p e n a l ty −= A

45 re turn

85

Features and applications

In the line 8, the algorithm tests if the penalties for the currently assigned bonds and

charges is higher than the penalty for a previously found solution. If this is the case, the

algorithm steps back one atom and tries an other assignment. Otherwise the algorithm

tests if there are still atoms to be processed (line 11). If there are no remaining atoms,

the algorithm has found a solution that is at least as good as any previous solution. If

the newly found solution is better, the earlier found solutions are cleared (line 13). In any

case, the solution and its penalty are stored (line 14-15) for later access. If the algorithm

reaches line 17, there are still atoms to be processed. The algorithm then tests if no more

double bonds can be assigned for this atom. If this is the case and thus a further charge

must be assigned to the aromatic system, the corresponding penalty is calculated (line

19). Anyhow, the assignment process is continued for the next atom in line 21.

Next, a solution is sought where the current atom is uncharged (line 25). This can lead to

faster results for aromatic systems where no charges must be assigned. In the lines 31-

38, the algorithm iterates over all aromatic bonds of the current atom and tries a double

bond assignment for one bond after the other. Since these newly assigned double bonds

are only created to atoms with a higher atomno, the previously calculated penalties still

apply. As a last test, the lines 40-45 try an assignment where the current atom does not

obtain a double bond at all.

The described process in fixAromaticSystem thus first searches for an assignment with-

out introducing any additional charges and then stepwise adds more and more charges

until a solution is found. Further solutions are sought until it becomes obvious that no

better assignment can be found. At this point, the algorithm stops and processes the

found solutions. If a solution was found where no additional charge were assigned, it is

applied. Otherwise, the solution with the best distributed charges (see point 4 above) is

assigned (line 5). The described approach theoretical has an exponentially growing run-

time with the numbers of atoms in a aromatic system. But for the numerous test cases

that we have computed so far (see below), the branch-and-bound algorithm quickly iden-

tifies new solutions and thus rapidly reduces the search space. Thus, runtimes in the

region of milliseconds are achieved, even for complex systems.

To test the Kekulizer implementation, we mainly relied on the MMFF94 validation

suite [22] since it contains a wide variety of aromatic compounds. To perform the test-

ing, we implemented the following procedure:

1. Aromatic bond types are assigned to all bonds in aromatic ring systems.

2. To achieve a more stringent test, we clear any formal charge assignment.

3. Next, our Kekulizer is applied.

4. The newly assigned bond orders and formal charges are compared to the original

values in the validation suite.

86

Molecular modeling functionality

Figure 3.22: The process of Kekulization for a complex heteroaromatic polycyclic com-
pound. Since the order of any ring bond depends on the order of any other ring bond,
Kekulizing such a molecule is quite sophisticated.

Our results showed to be identical to the initial values, except for two molecules (Ids GEY-

WOW and FITTIL), where our Kekulizer produced another, but still correct assignment.

These two compounds are charged in a way that the formal charge information is needed

to achieve the original assignment. If our Kekulizer is allowed to use these charges, it

computes the original values. As a result, we were able to show that our Kekulizer imple-

mentation exhibits a reasonable assignment.

To ensure that our Kekulizer can also cope with very complex and uncommon structures,

we performed additional tests. We searched in compound databases for different kinds

of heteroaromatic polycyclic structures (see e.g. Fig. 3.22) that were not included in the

MMFF94 validation suite. Our Kekulizer also correctly assigned these molecules.

Components

The Merck force field consists of seven different components, which contribute to the

energy expression:

EMMFF =

∑

EBi j+

∑

EAi jk +

∑

EBAi jk +

∑

EOOPi jk;l +
∑

ETi jkl +

∑

EvdWi j +

∑

EQi j

The subscripts i, j, k, l correspond to the individual atoms. The components will be de-

scribed on the following pages. Here, large letters I, J,K, L will mark constants which only

depend on the atom types rather than on the atom positions.

The bond stretching component employs a quartic function that calculates a potential

87

Features and applications

energy based on the difference ∆ri j between the current bond length and the reference

bond length of atoms i and j. kbIJ is a force constant in millidyne/angstrom (md/Å) that

is specific for the atom types I and J. cs = −2 Å−1 is the ”cubic-stretch” constant.

EBi j = 143.9325
kbIJ

2
∆r2

i j (1 + cs ∆ri j +
7
12

cs2
∆r2

i j) (3.1)

For the angle bending , MMFF94 uses a cubic expansion to calculate the resulting ener-

gies with respect to the deviation ϑi jk (in degree) of the optimal angle between the atoms

i, j, and k. cb = −0.007 deg−1 is the ”cubic-bend” constant.

EAi jk = 0.043844
kaIJK

2
∆ϑ2

i jk(1 + cb ∆ϑi jk) (3.2)

The stretch-bend component applies the following equation, where kbaIJK and kbaKJI are

force constants that couple the i − j and k − j stretches to the i − j − k bend.

EBAi jk = 2.51210(kbaIJK∆ri j + kbaKJI∆rkj)∆ϑi jk (3.3)

For trigonal centers, the out-of-plane component calculates the potential through the

following equation. Here, χi jk;l is the Wilson angle between the bond j − l and the plane

i − j − k. The three angles that arise at a given central atom j are all assigned the same

koopIJK;L force constant (md Å/rad2).

EOOPi jk;l = 0.043844
koopIJK;L

2
χ2

i jk;l (3.4)

The torsion component calculates the potential for the atoms i, j,k and l, where i− j, j− k,

and k − l are bonded pairs and φ is the i − j − k − l torsion angle.

ETi jkl = 0.5(V1(1 + cos(φ)) + V2(1 − cos(2φ)) + V3(1 + cos(3φ))) (3.5)

While the above components all arise between bonded atoms, the van-der-Waals com-

ponent only applies to atoms, that are separated by at least three bonds . ǫIJ is the well

depth (calculated based on the atomic polarizability), Ri j the current distance, and R∗
IJ

the

optimal distance between the two atoms.

EvdWi j
= ǫIJ

(1.07R∗
IJ

Ri j + 0.07R∗
IJ

)7(1.12 R∗
IJ

7

R7
i j
+ 0.12R∗

IJ
7 − 2

)

(3.6)

88

Molecular modeling functionality

The electrostatics component uses a buffered coulombic form, where qi and q j are the

partial charges, Ri j is the distance of the two atom nuclei, ω = 0.05 Å is the ”electrostatic

buffering” constant, and D is the ”dielectric constant”(default = 1). To achieve a distance

dependent dielectric constant, n can be set to 2, but the default is 1. In contrast to the

VDW interactions, 1,4-electrostatic interactions are scaled by a factor of 0.75.

EQi j = 332.0716 qiq j/
(

D(Ri j + ω)n
)

(3.7)

Unfortunately, the runtime for the non-bonded interactions grows exponentially since al-

most all atoms can interact with each other. To accelerate these components by several

magnitudes, we added support for cutoff distances, beyond which non-bonded interac-

tions are ignored.

To obtain the force equations (see Appendix A), we differentiated the above energy equa-

tions. For some components, like the torsion and out-of-plane terms, several ways can be

thought of for distributing the arising forces on the individual atoms. Therefore, we com-

pared our equations with the MMFF94 implementation in the CHARMM package, where

our results showed to be consistent with the original values.

3.3.3. Molecular editing

The rational design and modification of molecular structures requires the availability of

powerful molecular editing functionality. It can not only lead to deeper insights into molec-

ular interactions but can also be used for developing new lead structures. To the best of

our knowledge only a few commercial software tools like HyperChem [16] offer full editing

functionality. Therefore, we decided to supplement BALLView with molecular editing func-

tionality that is comparable to the best of the currently available tools. Thus, users can

now freely add, move, delete, and modify atoms and bonds. As an example, it is possible

to add atoms and bonds with one click and a double click can change an atom’s ele-

ment or transform bond orders. In addition, the editing mode supports keyboard hotkeys,

which can sometimes be faster than the corresponding mouse actions. Table 3.3 gives

an overview of the supported keys and their triggered actions.

More sophisticated features aim at automating and accelerating the editing process:

Templates

BALLView provides template compounds, like simple aromatic rings, nucleotides or amino

acids, that ease the construction of larger structures. The templates can be selected

from a list, freely placed in the 3D view and then connected with bonds. BALLView

also provides an interface to the large ligand data set in the PubChem database [33].

89

Features and applications

The interface allows for searching by keywords or SMARTS expressions and the search

results can be previewed as two-dimensional thumbnails, then downloaded, and placed.

Furthermore, we added support for creating ligands by using SMILES expressions.

Assigning aromatic rings

As described on page 83, we implemented a Kekulizer algorithm for transforming ”aro-

matic” bond type assignments into conjugated single/double bonds. This Kekulizer algo-

rithm is also useful for the editing mode. First, users can mark a ring system as aromatic,

by double-clicking on it. Second, the Kekulizer places single and double bonds. This

makes the editing process faster and more convenient.

Adding of hydrogen atoms

To simplify the creation of new ligands, we developed an algorithm for saturating com-

pounds with hydrogen atoms. This new approach does not rely on predefined templates,

like amino acids. Instead, for every atom, the number of preferred valence electrons is

calculated, based on the connectivity, formal charge, and group in the periodic table of el-

ements. To place the new hydrogen atoms, we first calculate the bond lengths through a

modified Schomaker-Stevenson rule [66]. It is based on the electronegativities of the two

binding partners and their atom radii. The exact placement of the new hydrogen atoms is

based on their heavy-atom partners and the existing bond connectivity.

This version of the modified Schomaker-Stevenson rule is used in the MMFF94 force field

for the calculation of reference bond lengths. The applied bond angles are mainly based

on the standard reference bond angles for sp, sp2 and sp3 hybridized atoms, which can be

found in any standard chemistry textbook (see e.g. [53]).

Quick optimization

Hand sketched molecules are always coarse since the bond lengths and angles can differ

strongly from their values in the real world. Therefore, a tool is needed to quickly optimize

the placement of the individual atoms. While most other programs like HyperChem [16]

rely on simple heuristics, with limited accuracy, we chose another approach that applies

the Merck force field. First, we calculate small random perturbations of the positions of

all atoms. Then, we perform an energy minimization, followed by a short MD simulation,

and another energy minimization. This usually results in more realistic structures than a

minimization alone.

Peptide builder

While BALLView’s general molecular editing capabilities are powerful, they are less suit-

able for building peptides. It would be a lengthy and tiresome operation to correctly

90

Molecular modeling functionality

Mouse button Functionality
Left click on empty space Create a new atom
Left click on atom and drag Move atom in X and Y direction.
Left click on atom and drag + Shift Move atom in Z direction
Double click on atom Set the atom’s element
Double click on ring bond Make whole ring aromatic
Double click on bond Cycle through bond orders
Middle (or Left + Control) Create bond
Right Context menu for item under cursor
Mouse wheel Zoom in or out

Key pressed Effect
Escape Switch to last mode (e.g. rotate mode)
H,N,C,O,P,S Select the element for the next atom
D Delete atom under cursor
Backspace Delete bond under cursor

Table 3.3: Mouse and keyboard shortcuts in the edit mode. We ensured that the most
important actions in the edit mode can be done with one key or mouse click.

Figure 3.23: Dialog for creating peptides from a given amino acid sequence and angles.

place the individual amino acids and connect them with bonds. Instead, BALLView sup-

ports the more comfortable creation of peptides via a given amino acid sequence and

the corresponding backbone dihedral angles. To realize this feature, we designed the

PeptideDialog (see Fig. 3.23), which allows to quickly construct any peptide. (This func-

tionality and also other parts of the editing mode stem from a student research project of

Anne Dehof.)

91

Features and applications

3.3.4. Docking

The computational techniques in molecular modeling that predict how strong two

molecules bind to another are called ”molecular docking”. While multiple methods ex-

ist for this kind of predictions, the most common ones are geometric approaches that

compare the shapes of the two binding partners, molecular mechanics methods that

model the interactions between the molecules, and genetic algorithms. Since molecular

docking can find potential interaction partners, for instance by scanning large compound

databases, it plays a significant role in the field of drug design. Therefore, we decided

that BALLView should provide a graphical user interface for molecular docking. The cor-

responding functionality was then developed in the student research projects of Bettina

Leonhardt and Carla Haid. As a result of this work, BALLView can be used to prepare a

structure, run a docking algorithm and visualize its results, which can accelerate the work-

flow. All this functionality is available through a comfortable and intuitive graphical user

interface. To start and setup a docking run, we provide a generic dialog. Here, a user

can choose the two docking partners, the docking algorithm, and the scoring function.

An additional tab provides access to preprocessing steps like adding hydrogens, building

bonds, and assigning charges or radii. Of course, the options of a docking run can be

stored to rerun it again, or to uncouple the docking’s setup and its application. Users can

thus apply the settings on one machine, then transfer the resulting configuration file to

another dedicated computing machine and start the docking run there. For docking runs

that are performed within BALLView, it offers a dialog that continuously provides detailed

information about the current progress, the used setup options or any other data from the

algorithm (see Fig. 3.25). Of course, this dialog also allows to abort the docking run and

access the preliminary results. When a docking run is finished, another dialog provides

detailed information about the results (see Fig. 3.26). The scoring of all computed poten-

tial complex conformations is shown. The same dialog provides the ability to rescore the

conformations or to carry out a finer sampling around one result.

By developing the above dialog, we achieved a graphical docking interface that is much

easier to use than the complex configuration files in other applications. BALLView thus

also allows absolute beginners to perform a docking run. Therefore, the docking interface

is ideally suited for teaching purposes, especially for introducing students into molecular

docking.

Unfortunately, the number of supported docking algorithms in BALLView is still very lim-

ited, since it currently only supports a variant of the Katchalski-Katzir et al. algorithm [71]

for protein-protein docking based on the geometric conformation of the two docking part-

ners. But work is under way to add further docking algorithms. In the near future a genetic

protein-ligand docking approach similar to AutoDock [60] and GOLD [101] will be added

to BALLView. Furthermore, we are currently extending the docking interface with sup-

92

Molecular modeling functionality

Figure 3.24: Dialog for starting a docking run. Users can choose the docking partners,
the applied algorithm, and the scoring function. An additional tab provides access to
preprocessing steps like adding hydrogens, building bonds, and assigning charges or
radii.

port for parallel computing: future versions will allow the setup and monitoring of docking

algorithms that run distributed on multiple processors or different machines.

3.3.5. Electrostatics calculation

As was already mentioned in Section 3.2.3, BALLView allows for calculating electrostatic

potentials of arbitrary compounds through an integrated Finite-Difference Poisson Boltz-

mann (FDPB) solver [84]. To illustrate the ease of this feature, we will now describe the

steps required to create a potential grid:

First, a molecular file is downloaded from the protein database [49] using BALLView’s

graphical user interface. Second, hydrogen atoms are added and optimized with one of

the implemented force fields. This automatically assigns the initial charges to the individ-

ual atoms, which will be used to compute the potential. Finally, the dialog for the FDPB

solver (see Fig. 3.27) can be used to compute a user-defined potential grid.

Since the preparation of the structure and the calculation of the potential can be done

within one application, user do not have to switch between multiple tools or get acquainted

with different file formats and interfaces. Therefore, it takes a user less than one minute to

create a grid (the time for the minimization of the hydrogen atoms not accounted for). The

93

Features and applications

Figure 3.25: Dialog that informs about a docking run’s current progress. It gives an
overview of the used options as well as the estimated remaining run time and allows the
user to abort the docking run.

resulting potential grids can then be exported into files for external usage, or visualized

directly in BALLView with any of the visualization capabilities discussed in Section 3.2.3.

3.3.6. Comparison with related software

In the following pages, we will compare BALLView with some of the most advanced and

sophisticated modeling tools:

Chimera [10] is not only a molecular viewer, but also a modeling tool that shares many

features with BALLView: it supports assignment of hydrogen atoms and charges, energy

minimizations and molecular editing. But many of these features still look unfinished and

have serious design flaws and other drawbacks. For instance, users can not abort mini-

mization runs. In addition, Chimera’s editing mode does not support templates and it is

not possible to change bond orders. Moreover, the handling is very cumbersome: atoms

and bonds can not easily be placed or deleted with the mouse.

HyperChem [16] is a sophisticated molecular modeling environment that combines 3D

visualization with quantum chemical calculations, semi-empiric models, molecular me-

chanics, and dynamics. Further features include a ligand database and a wide set of

QSAR and other prediction functionality.

At its current state BALLView can not fully compete with this wide range of computational

methods, since it is specialized in molecular mechanics and does not include quantum

mechanics calculations. But current work is underway to add corresponding functionality

94

Molecular modeling functionality

Figure 3.26: The results of a docking run are show in a dialog that allows to rescore the
calculated conformations.

to BALLView, like ligand database access and QSAR methods.

While HyperChem is without doubt a very powerful modeling tool, it still has some disad-

vantages. Compared with BALLView, HyperChem has an outdated and unintuitive GUI

that slows users down. HyperChem’s biggest drawback is probably its limited render-

ing functionality. Since it only provides a very limited spatial perception of the shown

compounds, HyperChem is not well suited for modeling large molecules like proteins. In

contrast, BALLView supports state-of-the-art visualization for any kind of structures and

thus for instance allows to modify and model a ligand directly in its binding pocket.

MOE [23] and SYBYL [43] are very powerful commercial modeling suites which cost sev-

eral thousands dollars per year. Both programs were developed and steadily improved

over more than ten years and represent the current state-of-the art in molecular model-

ing. While BALLView can not fully compete with their rich functionality, this section will

nevertheless try to give a comparison. First of all, both commercial modeling suites also

provide molecular visualization. Here BALLView can stand the comparison with MOE and

SYBYL, both in terms of supported visualization methods, as well as the rendering qual-

ity. Next, if one compares the modeling functionality, one finds that all three applications

have many features in common, like molecular mechanics, molecular docking, and the

95

Features and applications

Figure 3.27: Configuration dialog for the FDPB solver.

calculation of electrostatics. While BALLView also provides this functionality, the commer-

cial applications often provide better configurability and performance, a clear result of the

companies man-power and the long development time.

96

Python interface

3.4. Python interface

Scripting capabilities are of great importance for visualization and modeling programs

since they allow users to extend these software tools with own functionality and to auto-

mate repetitive tasks. Fortunately, the BALL library was designed to provide an interface

to Python [35] . Python is a powerful, object oriented scripting language for which many

extensions exist, especially in the fields of scientific computing and engineering. Since

Python it is an interpreted language it does not require recompilation of the code between

changes. Thus, the overhead times for compiling, linking, and starting the application

drop out which can significantly reduce the development time for new methods.

To realize the Python interface, the BALL and VIEW libraries provide a corresponding

Python class for most of their C++ classes. These Python classes are semi-automatically

generated by the wrapper generator SIP [40] and share a virtually identical interface with

their C++ counterpart. Since Python is easy to learn and we used an object oriented de-

sign of the underlying C++ class interface, new users can get easily acquainted with the

scripting interface.

Figure 3.28: BALLView’s graphical user interface reduced to the Python widget. It is
divided into a window for instant interpretation and an editor widget for writing scripts
(see Fig. 3.29). This figure illustrates some of the Integrated Developer Environment
(IDE) features like syntax highlighting and completion.

97

Features and applications

In order to make Python available from within BALLView, we extended its graphical user

interface with an embedded Python interpreter. The corresponding window is divided

into two parts, represented by two widgets. The first one (see Fig. 3.28) allows for instant

access to the Python interpreter, i.e. any entered line of code is processed when the

return key is pressed. The second widget (see Fig. 3.29) enables the development and

execution of sophisticated scripts. Users thus have full access to the rich functionality in

the BALL and VIEW libraries as well as to Python’s own modules. As a result, BALLView

can be easily extended at runtime.

Figure 3.29: BALLView’s editor for developing Python scripts. It supports user defined
fonts, syntax highlighting and context sensitive help.

To further simplify the usage of the Python interface and accelerate the creation of scripts,

BALLView provides Integrated Developer Environment (IDE) features, which will be de-

scribed in the following text.

Since the BALL and VIEW libraries altogether consist of several hundred classes with

thousands of members, even experienced users sometimes do not remember which func-

tions a class provides. To help users in such situations we implemented a source code

completion. It allows for the completion of classes and object names as well as the search

for all methods in a given object, which match a given prefix (see Fig. 3.28). If for such

a search multiple matches are found, they are shown in a combo box allowing users to

choose the desired completion. If only one feasible completion is found, the correspond-

98

Python interface

ing text is automatically inserted at the cursors current position. The implementation of

the completion feature works, by first parsing the text line that is to be completed. Here,

the last object in front of the cursor position is searched for, based on Python’s syntax.

Next, the Python commands __class__ and dir() are used to obtain the object’s type

and its members.

To make full use of the rich functionality in the BALL and VIEW libraries, users need an

easy accessible documentation for the class interface. To this end we have implemented

a syntax sensitive help. For the object or function at the current cursor position, it can

show the corresponding documentation entry inside the application. This allows for a

quick overview of a class’s methods or the expected arguments for a given function. An

example for such a documentation page is given in Fig. 3.2. The implementation of the

syntax sensitive help works similar to the above described completion by parsing the text

line and applying the same Python commands. Next, to find the corresponding help page,

the BALL documentation’s file names are compared with the class name of the object.

To better illustrate the Python code, the editor supports syntax highlighting. This can ac-

celerate the development process and is especially useful for finding potential problems

and errors in a script. If nevertheless the execution of a Python script fails, the Python

widget parses the interpreter’s output and attempts to identify and highlight the erroneous

code fragment.

As a result of the above described approach for creating the Python bindings and the

IDE features, which are not supported by any other molecular modeling or visualization

tool, BALLView’s scripting features are much easier to use and more powerful. Thus very

sophisticated scripts can be written with very few code, as can be seen in the following

examples.

Structure preparation and molecular mechanics

BALLView’s Python interface is ideally suited for automating repetitive tasks. As an exam-

ple, we present a typical script that reads a molecule from a PDB file, adds the missing

hydrogen atoms, and selects them. Finally, a steepest-descent minimization is performed

for a hundred steps on the hydrogen atoms.

pdb = PDBFile("bpti.pdb")

S = System()

pdb.read(S)

getMainControl().insert(S)

getMolecularStructure().addHydrogens()

getMolecularControl().applySelector("element(H)")

amber = getMolecularStructure().getAmberFF()

amber.setup(S)

m = SteepestDescentMinimizer(amber)

m.minimize(100)

99

Features and applications

getMainControl().update(S)

BALLView can be assigned a Python start-up script, which is applied every time the

program starts. This can, e.g., be used to load given structures or perform any kind of

setup actions via a user defined script similar to the above.

Access to external programs

While BALLView is already a powerful modeling tools, it still lacks some functionality like

for instance quantum mechanics methods. These limitations can often be circumvented

by starting external applications with data from within BALLView. To illustrate how this can

be done, we wrote the following script. It creates a MOPAC [24] input file containing the

atoms of the first system currently loaded in BALLView. It then calls MOPAC to execute

a single-point calculation using the PM3 semi-empirical Hamiltonian. Finally, the script

prints the resulting total energy. With just a few lines more, this example could be adapted

to other quantum chemistry packages or to minimize the structure’s energy and return the

optimized structure.

S = getSystem(0)

text = "PM3 1SCF MMOK GEO-OK\n\n\n"

for i in atoms(S):

e = i.getElement().getSymbol()

p = i.getPosition()

text += "%s %f 1 %f 1 %f 1\n" % (e, p.x, p.y, p.z)

open("tmp.dat", ’w’).write(text)

os.system("run_mopac tmp")

print os.popen(’grep "TOTAL ENER" tmp.out’).read()

User built representations

Another application of the Python interface are user defined visualizations: If none of the

predefined models should suit a user’s needs or he wants to modify an existing model,

Python allows him to produce customized visualizations. As an example, the Python inter-

face can be used to quickly create single geometric objects, e.g. to visualize a bounding

box. This requires only a few lines of code including the setup of the geometric object’s

position, radius, color, and transparency. Of course, more sophisticated applications can

also be realized. As an illustration, Figure 3.30 shows the visualization of a trajectory

through spheres for the positions of all non-hydrogen-atoms. This functionality was real-

ized by the following script with 20 lines of code, including opening the molecule and the

trajectory, computing the Stick model, iterating over all atoms, and placing the spheres:

100

Python interface

dp = getDisplayProperties()

dp.selectModel(MODEL_STICK)

dp.selectColoringMethod(COLORING_ELEMENT)

openFile("AlaAla.hin")

dcd = DCDFile("alaala.dcd")

system = getSystem(0)

ssm = SnapShotManager(system, AmberFF(), dcd)

rep = Representation()

current_ss = 0

while ssm.applyNextSnapShot():

current_ss += 1

ratio = float(current_ss) / float(dcd.getNumberOfSnapShots())

for atom in atoms(system, "!element(H)"):

sphere = Sphere()

sphere.setPosition(atom.getPosition())

sphere.setColor(ColorRGBA(1.0 - ratio, 1.0 - ratio, ratio))

sphere.setRadius(0.03)

rep.insert(sphere)

getMainControl().insert(rep)

getMainControl().update(rep)

Figure 3.30: Example for the usage of the Python interface for visualizing the atom mo-
bility in an MD simulation. Every individual sphere corresponds to the position of one
non-hydrogen-atom at one trajectory step. The spheres were colored according to the
step number, blue for the first step and yellow for the last step.

101

Features and applications

Movies

The Python scripting interface allows for the creation of movies to visualize complex dy-

namic data. We have written a variety of predefined scripts for different purposes:

• ”Fly by” animations to show a molecule from varying angles [3]

• Moving of molecular subunits [2], e.g. for the simulation of docking processes

• Fading models in/out, for instance for smooth transitions

• Visualization of electrostatic potentials [4, 5]

• Time courses for instance from MD simulations [6]

Some results of these scripts are available for download from the project’s website. All

prebuilt scripts can easily be integrated to create movies that include the different anima-

tions. As a further advantage, they allow the adaptation of all important variables, like

step width, transparency or colors.

Hotkeys with user assigned functionality

To further ease the usage of Python scripts, BALLView enables the user to map them to

user-defined hotkeys (see Fig. 3.31) that allow for starting a specific script by pressing a

single key.

Figure 3.31: Dialog for mapping Python scripts to hotkeys. Any F-key can be assigned to
any line of Python code.

In total, more than 30 user-defined scripts can be mapped to individual hotkeys. For those

users that have difficulties to remember the mapping of the hotkeys, BALLView provides

menu entries for starting the scripts. For around a dozen of standard task, we offer short

102

Python interface

scripts, mapped on predefined hotkeys. Thus, it only takes one key press to remove all

water molecules or to add optimized hydrogen atoms.

Conclusion

As we have shown in the above examples, the development of new features with the

Python scripting interface is straightforward. When the development of a new feature is

finished, the Python code can easily be transformed into C++, since all classes share the

same interface (i.e. methods and members) in the both languages. Python scripts that

have been transformed into C++ code, can then benefit of the better runtime performance

and eventually may become part of the standard BALL library.

103

Features and applications

104

4. Conclusion and discussion

Based on our C++ software library BALL, we created the powerful molecular viewer and

modeling tool BALLView. BALL was specifically developed for rapid prototyping of applica-

tions in molecular modeling and structural bioinformatics. Therefore, BALLView benefits

from BALL’s functionality in the field of molecular modeling and in particular molecular

mechanics: three different force fields (AMBER, CHARMM, and MMFF94) can be used

for molecular mechanics simulations, energy minimizations, and molecular docking. Fur-

thermore, an integrated Poisson-Boltzmann solver allows for calculating electrostatic po-

tentials which can be directly visualized in a variety of ways. In addition, we incorporated

molecular editing features for creating and modifying polypeptides or other organic com-

pounds. Since all these features are offered through one common interface, BALLView

can accelerate the development of lead structures or the identification of potential drug

targets.

Molecular modeling is a multi-disciplinary field in which researchers with very different

backgrounds are involved. Therefore, great efforts have to be made to make molecu-

lar modeling applications easy to understand and use. Unfortunately, most commonly

available modeling tools have severe usability problems. In contrast, we ensured that

our software can be easily operated: beside offering all standard graphical user interface

features, BALLView also provides more sophisticated support for the user, like a context

sensitive help.

In addition to its modeling functionality, BALLView is also a molecular viewer with state of-

the-art graphics. While this combination of molecular visualization and modeling capabili-

ties is still rather uncommon, it has the major advantage that users no longer need to rely

on multiple applications to calculate and visualize their molecular data. Thus, they do not

have to exchange data between the different tools via file operations. Consequently, over

the last years some molecular viewers like Chimera were extended with molecular mod-

eling functionality, but the resulting features are still somewhat immature (see Page 94).

In contrast, BALLView from its very start was designed to combine both domains. As a

result, BALLView offers its users a much wider range of modeling functionality. Moreover,

we developed new visualization methods to increase the information density of molecular

visualizations. BALLView allows for the rendering of many different structural features si-

multaneously. This includes molecular models, automatic and persistent labels, resulting

forces, potential fields, and many other molecular properties. Moreover, users can render

105

Conclusion and discussion

as many representations at the same time as they like. In doing so, they can benefit

from advanced features like transparency and wireframe models such that the individual

models can be shown without hidden each other. Therefore, BALLView may allow for a

deeper understanding of the underlying mechanisms and processes in molecular struc-

tures.

All above-mentioned features are not only accessible through an intuitive graphical user

interface, but also through the object-oriented scripting language Python. To make this

interface more powerful, we developed a new concept for a tight interlocking of script-

ing and GUI functionality. First, we extended BALLView with a graphical frontend to the

Python scripting language. This frontend was designed as an Integrated Development

Environment (IDE) with syntax highlighting, completion, and context sensitive help such

that even inexperienced users can develop own scripts. Second, we developed the nec-

essary means such that the Python interface enables the modification of the graphical

user interface, for instance the creation of user-defined shortcuts and menu entries. This

eases the automation of repetitive tasks since user defined scripts can be started with

one key stroke. But the usage of the scripting interface is not limited to the access of

predefined functionality. Since the rich set of features in the BALL and VIEW libraries are

available through Python, users can develop complex new applications with a few lines

of Python code. Hence, BALLView is a Problem Solving Environment (PSE) in the field

of molecular modeling: for many problems/theories in this field, researchers can quickly

implement a model/solution by using BALL’s built-in features and the rapid prototyping

capabilities through Python. The resulting data can be visualized directly in the applica-

tion which significantly eases the analysis. Moreover, the scripting interface can be used

to inspect any of the underlying data in realtime. Any findings can then be incorporated

to refine the model and the development cycle can be restarted without ever leaving the

graphical user interface. This makes BALLView unique in the field of molecular modeling

applications.

In addition to the stand-alone program BALLView, we designed the visualization func-

tionality as an extensible software framework that can easily be adapted to the needs of

users and is available under an Open Source license (GPL). Thus, for the first time, a

free software package is available that combines state-of-the art visualization and mod-

eling functionality, high extensibility, as well as a unique scripting interface (see Fig. 1.2).

This enables other molecular modeling research groups to base their own developments

on our software and thus save much time and effort. As a result, we may see an ac-

celerated progress in biochemistry and structural bioinformatics, since researchers can

concentrate on their main fields of interests, instead of having to implement the same

functionality over and over again.

106

Over the last years, we have successfully used BALL and BALLView in graduate and

undergraduate courses on computer-aided drug design, molecular modeling, structural

bioinformatics, and protein structure. In our experience, BALLView has proven to be an

ideal tool for teaching in these fields. This is mainly due to the intuitive interface which

lowers the barriers usually imposed by the difficult handling of many standard tools. The

teaching could thus focus on the methods and the theory behind them rather than spend-

ing too much time on interface and file format issues. Moreover, BALL and BALLView

served as a basis for many student exercises on implementations and algorithms. Here,

they allowed a faster introduction of the key issues in structural bioinformatics. Tasks

which could not be implemented before due to the amount of program code necessary

were often realized with a few lines of Python or C++ code. Due to the modularity of our

approach, the results of the student projects could then be refined and became integral

parts of BALL and BALLView.

In addition to the application in teaching, BALLView was also intended as basis for our

research in the fields of molecular modeling and visualization. Here, it accelerated many

different projects, like the development of new docking algorithms and energy minimizers

as well as the implementation of non-local electrostatic potentials. Therefore, we can con-

clude that the underlying modular framework is well suited for most research projects in

structural bioinformatics. Moreover, BALLView showed to be an excellent tool for creating

sophisticated images for publications.

While we can only guess the number of BALLView’s users, we had a substantial amount

of downloads of the binary installers and source packages: in total around 6500 over

the last three years. Moreover, we presented BALLView at the major bioinformatics con-

ferences and got positive comments. Most people were impressed by the detailed and

sophisticated visualizations. We also received a warm welcome in the Debian mailing

list where several people intend to port BALL and BALLView to Debian. As a result,

BALLView will become a standard Debian package in the near future. In addition, it will

be incorporated in Debian-Med and DebiChem, two specialized Debian distributions for

biochemistry-related software.

Outlook

While BALLView is already a powerful visualization and modeling tool, it still has huge

potential to grow. Currently, we are working on adding further functionality, in particular

in the following fields:

• 2D depiction

• automatic structure generation from SMILES expressions

• alignment of structures

107

Conclusion and discussion

• detection of binding pockets

• QSAR and CoMFA functionality

• advanced non-local electrostatics calculations

• database interfaces

• new, more sophisticated minimizers

• adding of further docking algorithms for protein-ligand docking

• new features for homology modeling

Many of these features will already be included in the next major BALLView release. In

addition to this already running work other tasks still remain to be done:

Over the last years, we had rather long development cycles with up to 18 months be-

tween stable releases. We plan to shorten these periods to significantly less than a year.

To accelerate the development cycle we will reintroduce automatic testing of daily builds.

Here, the new automatic build process under windows and the GUI testing framework will

make the testing even more powerful. Thus, we will be able to find errors earlier in the

development phase.

A current trend in computer graphics (CG) are the programmable shaders of modern

graphics accelerator cards, available for instance through the "OpenGL Shading Lan-

guage". Up to now we have not yet worked on adding corresponding functionality to

BALLView, since we focused on visualization techniques that are supported by almost all

graphics cards. Since now all currently sold cards provide this functionality, we could add

features like "Real Time Ambient Occlusion" or "Depth Aware Silhouette Enhancement"

which are, for instance, offered by QuteMol [37] to provide better 3D perception. More-

over, the programmable shaders could improve the rendering of volumetric data sets.

Here, they would allow a more appealing look and a better rendering performance. To

make best use of the volume rendering functionality, we will add support for standard vol-

umetric data file formats (e.g. the Gaussian cube file format). Another trend in CG goes

to realtime ray-tracing [102]. Adding support for such a realtime raytracer engine could

result in more fluent and more realistic graphics with improved lighting, arbitrary shadows

as well as a higher level of detail. Since the underlying VIEW framework is fully modular,

any of these extensions could be realized without significant changes to the existing code.

In the field of molecular modeling, we have seen the emergence of new hardware systems

that revolutionize complex calculations like MD simulations. By utilizing the capabilities of

the new, high performance Graphics Processing Units (GPUs) or the new Cell processor,

108

developers were able to achieve performances that previously were only possible on su-

percomputers. The next step in this direction are chips that incorporate vast amounts of

cores in one processor like, for instance, Polaris, the new experimental 80-core chip from

Intel. But also low-budget multi-core processors are getting more and more common. As

a result, for future molecular modeling applications, it will be crucial to make efficient use

of multi-threading. While we already incorporated such techniques in BALLView, we will

need to add support for subdividing computations like MD simulations such that the ap-

plications can run in parallel on multiple cores. Otherwise, we will risk that our software

becomes obsolete. In addition, BALLView should obtain support for distributed comput-

ing. Here, it could enable the efficient management of these calculations by providing the

graphical frontend for starting the computations on the individual machines, the presen-

tation of intermediate results, and the analysis of the final results.

Another field is the support for sequence data. In particular, we should add multiple se-

quence alignment functionality. BALLView could then be used to organize, display, and

analyze both sequence and structural data. Thus, it would be better suited for processes

like homology modeling. Furthermore, we could add collaborative working environment

features, additional data base functionality and support for external programs. In par-

ticular, we should develop wrapper scripts or graphical interfaces to ab initio quantum

mechanics packages, like GAMESS and Gaussian.

While developing BALLView, special care was taken to achieve a high usability, but we

still can do better, especially much work remains to be done for the documentation. In

the future, it should contain detailed information for every single parameter in the different

computations. The goal here is that also users with less knowledge in the individual fields

can efficiently work with BALLView. Moreover, we will start developing teaching materials

like stepwise tutorials such that pupils and students can learn the elementary mechanism

in biochemistry and molecular modeling. BALLView may then become a standard teach-

ing aid in high schools and universities.

As shown above, still many challenges await us. But, with the presented work we laid

the proper groundwork for these challenges. Since BALL, VIEW and BALLVIEW will be

continued at two bioinformatics chairs (of Prof. Lenhof and Prof. Kohlbacher), their devel-

opment will proceed for many years such that the above issues can be addressed in the

future.

109

Conclusion and discussion

110

A. MMFF94 forces

The following equations define the forces for the individual MMFF94 components. Vectors

are shown in bold, like dij for the vector from atom i to atom j. Normalized vectors are

shown with a ”hat”, like d̂ij. The forces were derived from the potential’s negative gradient:

~F = −~∆V

For a further description on the individual variables see Page 87.

Stretch forces

Si j =
143.9325

2
kbIJ ∆ri j (2 + 3 cs ∆ri j −

14
3

cs ∆r2
i j)

FSi = −FSj = Si j

d̂ij
∣
∣
∣dij

∣
∣
∣

Bend forces

Bi jk =
0.043844

2
kaIJK∆ϑi jk (2 + 3cb ∆ϑi jk)

FBi = Bi jk

d̂ij × d̂ki × d̂ij
∣
∣
∣dij

∣
∣
∣

FBk = Bi jk

d̂ij × d̂ki × d̂kj
∣
∣
∣dkj

∣
∣
∣

FBj = −FBi − FBk

Stretch Bend forces

Ai jk = −(2.51210)2 (kbaIJK ∆ri j + kbaKJI ∆rkj) ∆ϑi jk

FSBi = Ai jk kbaIJK

d̂ij × d̂ki × d̂ij
∣
∣
∣dij

∣
∣
∣

FSBk = Ai jk kbaKJI

d̂ij × d̂ki × d̂kj
∣
∣
∣dkj

∣
∣
∣

FSBj = −FSBi − FSBk

111

MMFF94 forces

Torsion forces

Ti jkl = V1 sin(φ) − 2V2 sin(2φ) + 3V3 sin(3φ)

FTi = Ti jkl

−d̂ij × d̂jk

sin(φ)2
∣
∣
∣dij

∣
∣
∣

FTl = Ti jkl

d̂jk × d̂kl

sin(φ)2 |dkl|

FTj = FTi

∣
∣
∣dij

∣
∣
∣

∣
∣
∣djk

∣
∣
∣ (−cos(φ))

− 1 − FTl
|dkl|

∣
∣
∣djk

∣
∣
∣ (−cos(φ))

FTk = −(FTi + FTj + FTl)

Out-of-plane forces

Oi jkl =
0.043844 χi jk;l ∗ koopIJK;L

cos(χi jk;l)

FOi = Oi jkl

d̂jk × d̂jl + (−d̂ji + (d̂jk cos(ϑi jk) sin(χi jk;l)/sin(ϑi jk))
∣
∣
∣dji

∣
∣
∣ sin(ϑi jk)

FOk = Oi jkl

d̂jl × d̂ji + (−d̂jk + (d̂ji cos(ϑi jk) sin(χi jk;l)/sin(ϑi jk))
∣
∣
∣djk

∣
∣
∣ sin(ϑi jk)

FOl = Oi jkl

d̂ji × d̂jl/sin(ϑi jk) − d̂jl sin(χi jk;l)
∣
∣
∣djl

∣
∣
∣

FOj = −(FOi + FOk + FOl)

VDW forces

q = Ri j/R
∗
IJ

Vi j =
ǫi j

R∗
IJ

(

1.07
q + 0.07

)7(
−7.84 q6

(q7 + 0.12)2 +
−7.84/(q7

+ 0.12) + 14
q + 0.07

)

FVi = −FVj = Vi j d̂ij

Electrostatic forces

Ei j = 332.0716
qi q j n

D (Ri j + ω)n+1

Fi = −Fj = Ei j d̂ij

112

Bibliography

[1] AVS visualization software: http://www.avs.com.

[2] BALLView movie (animation): http://www.ballview.org/Gallery/DNA.avi.

[3] BALLView movie (fly by): http://www.ballview.org/Gallery/ribosome.avi.

[4] BALLView movie (isosurface): http://www.ballview.org/Gallery/fdpb.avi.

[5] BALLView movie (project plane): http://www.ballview.org/Gallery/1FB7.avi.

[6] BALLView movie (trajectory): http://www.ballview.org/Gallery/mds.avi.

[7] BALLView website: http://www.ballview.org.

[8] Cel shading:

http://www.gamedev.net/reference/programming/features/celshading.

[9] Cerius: http://www.accelrys.com/cerius2/.

[10] Chimera: http://www.cgl.ucsf.edu/chimera/.

[11] Discovery Studio: http://www.accelrys.com/products/dstudio/index.html.

[12] Doxygen: http://sourceforge.net/projects/doxygen/.

[13] Ghemical: http://www.uku.fi/~thassine/projects/ghemical/.

[14] GLEW: http://glew.sourceforge.net.

[15] GNU: http://www.gnu.org.

[16] HyperChem: http://www.chemistry-software.com/.

[17] Interface design principles:

http://www.asktog.com/basics/firstPrinciples.html.

[18] JOELib 2: http://www-ra.informatik.uni-tuebingen.de/software/joelib.

[19] KD Executor: http://kdab.net/kdexecutor.

[20] Mencoder: http://www.mplayerhq.hu.

113

http://www.avs.com
http://www.ballview.org/Gallery/DNA.avi
http://www.ballview.org/Gallery/ribosome.avi
http://www.ballview.org/Gallery/fdpb.avi
http://www.ballview.org/Gallery/1FB7.avi
http://www.ballview.org/Gallery/mds.avi
http://www.ballview.org
http://www.gamedev.net/reference/programming/features/celshading
http://www.accelrys.com/cerius2/
http://www.cgl.ucsf.edu/chimera/
http://www.accelrys.com/products/dstudio/index.html
http://sourceforge.net/projects/doxygen/
http://www.uku.fi/~thassine/projects/ghemical/
http://glew.sourceforge.net
http://www.gnu.org
http://www.chemistry-software.com/
http://www.asktog.com/basics/firstPrinciples.html
http://www-ra.informatik.uni-tuebingen.de/software/joelib
http://kdab.net/kdexecutor
http://www.mplayerhq.hu

Bibliography

[21] Meshi: http://www.cs.bgu.ac.il/~meshi.

[22] MMFF94 validation suite: http://ftp.ccl.net/cca/data/MMFF94/index.shtml.

[23] Molecular Operating Environment (MOE): http://www.chemcomp.com/.

[24] MOPAC: http://www.cachesoftware.com/mopac/index.shtml.

[25] Open Inventor: http://oss.sgi.com/projects/inventor/.

[26] OpenGL library: http://www.opengl.org.

[27] OpenGL tutorial:

http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=37.

[28] OpenMOIV: http://www.tecn.upf.es/openMOIV.

[29] Overview of molecular visualization and modeling tools:

http://molvis.sdsc.edu/visres/molvisfw/titles.jsp.

[30] Patterns of Enterprise Application Architecture:

http://martinfowler.com/eaaDev.

[31] PNG file format: http://www.libpng.org/pub/png.

[32] POVRay renderer: http://www.povray.org.

[33] PubChem: http://pubchem.ncbi.nlm.nih.gov.

[34] Purify: http://www.ibm.com/software/awdtools/purifyplus.

[35] Python scripting language: http://www.python.org.

[36] Qt library: http://www.trolltech.com.

[37] QuteMol: http://qutemol.sourceforge.net.

[38] Raster3D: http://skuld.bmsc.washington.edu/raster3d.

[39] Rational Rose: http://www.ibm.com/software/rational.

[40] SIP (Python bindings generator):

http://www.riverbankcomputing.co.uk/sip.

[41] SMARTS:

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.

[42] Squish: http://www.froglogic.com.

[43] SYBYL 7.0, Tripos Inc., 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA.

114

http://www.cs.bgu.ac.il/~meshi
http://ftp.ccl.net/cca/data/MMFF94/index.shtml
http://www.chemcomp.com/
http://www.cachesoftware.com/mopac/index.shtml
http://oss.sgi.com/projects/inventor/
http://www.opengl.org
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=37
http://www.tecn.upf.es/openMOIV
http://molvis.sdsc.edu/visres/molvisfw/titles.jsp
http://martinfowler.com/eaaDev
http://www.libpng.org/pub/png
http://www.povray.org
http://pubchem.ncbi.nlm.nih.gov
http://www.ibm.com/software/awdtools/purifyplus
http://www.python.org
http://www.trolltech.com
http://qutemol.sourceforge.net
http://skuld.bmsc.washington.edu/raster3d
http://www.ibm.com/software/rational
http://www.riverbankcomputing.co.uk/sip
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.froglogic.com

Bibliography

[44] Valgrind: http://valgrind.org.

[45] Virtualdub: http://www.virtualdub.org.

[46] Website on usability: http://www.useit.com.

[47] International Standard ISO/IEC 14882: Programming languages – C++. American

National Standards Institute, 11 West 42nd Street, New York 10036, 1998.

[48] N. L. Allinger, Y. H. Yuh, and J. H. Lii. Molecular Mechanics. The MM3 Force Field

for Hydrocarbons. 1. J. Am. Chem. Soc., 111, 8551-8565., 1989.

[49] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.

Shindyalov, and P.E. Bourne. The Protein Data Bank, 2000.

[50] F. Bernstein, T. Koetzle, G. Williams, E. Meyer Jr, M. Brice, J. Rodgers, O. Kennard,

T. Shimanouchi, and M. Tasumi. The protein data bank: a computer-based archival

file for macromolecular structures. Eur. J. Biochem., 80:319–24, 1977.

[51] N. P. Boghossian, O. Kohlbacher, and H. P. Lenhof. Rapid software prototyping

in molecular modeling using the biochemical algorithms library (BALL). J. Exp.

Algorithmics, page 16, 2000.

[52] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus. "CHARMM: A program for macromolecular energy minimization and

dynamics calculations". J. Comput. Chem., 4:187–217, 1983.

[53] P. Bruice. Organic Chemistry. Prentice Hall, Upper Saddle River, NJ, 2003.

[54] U. Burkert and N. L. Allinger. Molecular Mechanics. ACS Monograph, Washington,

D.C., 1982.

[55] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C.

Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. A second generation force

field for the simulation of proteins, nucleic acids, and organic molecules. J. Am.

Chem. Soc., 117:5179–5197, 1995.

[56] M. Dahlheimer. Programming with Qt. O’Reilly, Sebastopol, 2002.

[57] W.L. DeLano. The PyMOL molecular graphics system, 2002.

[58] J. Wang et al. Development and testing of a general AMBER force field. J. Compu-

tat. Chem., 25, 1157-1174, 2004.

[59] M. Fowler and K. Scott. UML distilled. Addison-Wesley, Boston, 1997.

115

http://valgrind.org
http://www.virtualdub.org
http://www.useit.com

Bibliography

[60] D.S. Goodsell, G.M. Morris, and A.J. Olson. Automated docking of flexible ligands:

applications of autodock. J. Mol. Recognit., pages 9, 1–5., 1996.

[61] N. Guex and M.C. Peitsch. SWISS-MODEL and the Swiss-PdbViewer: An environ-

ment for comparative protein modeling. Electrophoresis, 18:2714–2723, 1997.

[62] T. Halgren. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization

and Performance of MMFF94. J. Comput. Chem., 17:490–519, 1996.

[63] T. Halgren. Merck molecular force field. II. MMFF94 van der Waals and electrostatic

parameters for intermolecular interactions. J. Comput. Chem., 17:520–552, 1996.

[64] T. Halgren. Merck molecular force field. III. Molecular geometries and vibrational

frequencies for MMFF94. J. Comput. Chem., 17:553–586, 1996.

[65] T. Halgren. Merck molecular force field. IV. Conformational energies and geome-

tries for MMFF94. J. Comput. Chem., 17:587–615, 1996.

[66] T. Halgren. Merck molecular force field. V. Extension of MMFF94 using experimen-

tal data, additional computational data, and empirical rules. J. Comput. Chem.,

17:616–641, 1996.

[67] W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual Molecular Dynamics. J.

Mol. Graphics, 14:33–38, 1996.

[68] J. J. Irwin and B. K. Shoichet. ZINC - A free database of commercially available

compounds for virtual screening. J. Chem. Inf. Comput. Sci., 45:177-82, 2005.

[69] J. Johnson. GUI Bloopers. Morgan Kaufmann, San Fransisco, 2000.

[70] W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pattern recog-

nition of hydrogen bonded and geometrical features. Biopolymers, 22:2577–2637,

1983.

[71] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. Friesem, C. Aflalo, and I. Vakser.

Molecular surface recognition: determination of geometric fit between proteins and

their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA, pages 2195–

2199, 1992.

[72] F. A. Kekulé. Untersuchungen über aromatische Verbindungen. Liebigs Annalen

der Chemie, 137, 129-36, 1866.

[73] O. Kohlbacher. New approaches to protein docking. Dissertation, Saarland Univer-

sity, Saarbrücken, 2001.

116

Bibliography

[74] O. Kohlbacher, A. Burchardt, A. Moll, A. Hildebrandt, P. Bayer, and H.P. Lenhof. A

NMR-spectra-based scoring function for protein docking. In RECOMB 2001 – Pro-

ceedings of the Fifth Annual International Conference on Computational Molecular

Biology, pages 169–177. ACM press, 2001.

[75] O. Kohlbacher, A. Burchardt, A. Moll, A. Hildebrandt, P. Bayer, and H.P. Lenhof.

Structure prediction of protein complexes by a NMR-based protein docking algo-

rithm. J. Biomol. NMR, 20:15–21, 2001.

[76] O. Kohlbacher and H.P. Lenhof. BALL - Rapid Software Prototyping in Computa-

tional Molecular Biology. Bioinformatics, 16:815–824, 2000.

[77] R. W. Kunz. Molecular Modelling für Anwender. Teubner Studienbücker Chemie,

Stuttgart, 1997.

[78] A. Leach. Molecular Modeling: Principles and Applications. Addison-Wesley,

Boston, 1996.

[79] S. Meyers. Effective STL. Addison-Wesley, Boston, 2001.

[80] S. Meyers. Effective C++. 55 Specific Ways to Improve Your Programs and Designs.

Addison-Wesley, Boston, 2005.

[81] A. Moll, A. Hildebrandt, H.P. Lenhof, and O. Kohlbacher. BALLView: a tool for

research and education in molecular modeling. Bioinformatics, 22:365–6, 2006.

[82] A. Moll, A. Hildebrandt, H.P. Lenhof, and O. Kohlbacher. BALLView: an object-

oriented molecular visualization and modeling framework. J. Comput. Aided. Mol.

Des., 19:791–800, 2006.

[83] D. Musser, A. Saini, and G. Derge. STL tutorial and reference guide : C++ pro-

gramming with the standard template library. Addison-Wesley, Boston, 2001.

[84] A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing succes-

sive over-relaxation to solve the poisson-boltzmann equation. J. Comput. Chem.,

12:435–445, 1990.

[85] A. Nicholls, K. Sharp, and B. Honig. Protein folding and association: Insights from

the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct.

Funct. Genet., 11:281ff, 1991.

[86] J. Nielsen. Usability Engineering. Morgan Kaufman, San Francisco, 1994.

[87] S. R. Niketic and K. Rasmussen. The Consistent Force Field: A Documentation.

Lecture Notes in Chemistry, 37, vii + 212 p., 1977.

117

Bibliography

[88] Object Management Group. Unified modeling language specification, 1998.

http://www.omg.org.

[89] Institute of Electrical and New York Electronics Engineers. IEEE standard computer

dictionary: A compilation of IEEE standard computer glossaries, 1990.

[90] H. Pradeep. User Centered Information Design for Improved Software Usability.

Artech House Publishers, 1998.

[91] J. Raskin. The Humane Interface: New Directions for Designing Interactive Sys-

tems. Addison-Wesley, Boston, 2000.

[92] J. Robbins. Debugging Applications for Microsoft .NET and Microsoft Windows.

Microsoft Press, 2003.

[93] J. Rumbaugh, I. Jacobson, and G. Booch. The unified modeling language refer-

ence manual. Addison-Wesley, Boston, 1999.

[94] R. Sayle and J. Milner-White. RasMol: Biomolecular graphics for all. Trends

Biochem. Sci., 20:374, 1995.

[95] D. Shreiner. OpenGL Reference Manual. The Official Reference Document to

OpenGL. Addison-Wesley, Boston, 2004.

[96] D. Shreiner, M. Woo, and J. Neider. OpenGL Programming Guide. The Official

Guide to Learning OpenGL. Addison-Wesley, Boston, 2005.

[97] D. Stalling, M. Zockler, and H.-C. Hege. Fast display of illuminated field lines. IEEE

Trans. Vis. Comput. Graph., 3:118–128, 1997.

[98] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Boston, 2000.

[99] L. Stryer. Biochemie. Spektrum Akademischer Verlag, Heidelberg, 1991.

[100] C. Venter and D. Cohen. The century of biology. New Perspectives Quarterly,

21:73–77, 2004.

[101] M. Verdonk, J. Cole, M. Hartshorn, C. Murray, and R. Taylor. Improved Protein-

Ligand Docking Using GOLD. Proteins, 52:609–623, 2003.

[102] I. Wald, C. Benthin, and P.Slusallek. Distributed interactive ray tracing of dynamic

scenes. Proceedings of the IEEE Symposium on Parallel and Large-Data Visual-

ization and Graphics, 2003.

[103] J. D. Watson. The Double Helix: A Personal Account of the Discovery of the Struc-

ture of DNA. Atheneum, New York, 1968.

118

Bibliography

[104] D. Weininger. SMILES, a chemical language and information system. 1. Introduc-

tion to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28, 31 - 36.,

1988.

119

Bibliography

120

List of Figures

1.1. Growth of the protein database . 3

1.2. Overview of molecular software tools . 5

2.1. Design of the VIEW library . 13

2.2. UML diagram of BALLView’s core architecture 17

2.3. UML diagram for the DatasetControl . 24

2.4. Qt Designer for developing GUIs . 26

2.5. PreferencesDialog . 27

2.6. UML diagram for the Representation class 31

2.7. UML diagram for a multithreaded MD simulation 39

3.1. BALLView’s graphical user interface . 48

3.2. Example for the class documentation . 53

3.3. Example for the BALLView documentation 54

3.4. Visualization of HIV protease . 55

3.5. The DisplayProperties dialog . 56

3.6. Example for a Cartoon model . 58

3.7. Example for the usage of labels . 59

3.8. Example for an electrostatic potential visualization 60

3.9. Dialog for colorizing meshes by scalar grid data 61

3.10.Example for the Volume Rendering . 62

3.11.Visualization of field lines . 63

3.12.Example for a SE surface in wireframe mode 65

3.13.Comparison of solid and transparent surfaces 66

3.14.Toon shader model for a topoisomerase . 67

3.15.Example for the usage of clipping planes . 68

3.16.Example for the usage of capping planes 69

3.17.Example for BALLView’s POVRay export . 70

3.18.Dialog for visualizing trajectories . 72

3.19.Atom overview dialog . 76

3.20.Configuration dialog for the AMBER force field 78

3.21.Kekulization of Pyrrole . 83

121

List of Figures

3.22.Kekulization of a complex structure . 87

3.23.Dialog to create peptides . 91

3.24.Dialog for starting a docking run . 93

3.25.Docking progress dialog . 94

3.26.Docking result dialog . 95

3.27.Configuration dialog for the FDPB solver . 96

3.28.GUI interface to Python . 97

3.29.Python script editor . 98

3.30.A user built representation . 101

3.31.Dialog for assigning hotkeys . 102

122

	Introduction
	Current state-of-the-art
	Aims of this work

	Design and implementation
	Overview
	Design goals
	Modularity
	MainControl
	Modeling of the modular widgets
	Messaging system

	Extensibility
	Support for arbitrary data sets
	Creation of dialogs
	Configurability

	Class design for the visualization features
	Geometric objects
	Representations
	Molecular models and their colorings
	Renderer

	Performance tuning
	Visualization
	The force field calculations
	Multithreading
	Tuning the OpenGL rendering

	Quality assurance
	Verification
	GUI testing
	Usability testing

	Comparison with other visualization and modeling frameworks

	Features and applications
	Graphical user interface
	Architecture
	Usability
	Documentation

	Visualization functionality
	Representations
	Molecular models and colorings
	Visualization of electrostatic potentials
	OpenGL graphics
	Creation of images and movies
	Comparison with related software

	Molecular modeling functionality
	Basic modeling features
	Molecular Mechanics
	Molecular editing
	Docking
	Electrostatics calculation
	Comparison with related software

	Python interface

	Conclusion and discussion
	MMFF94 forces
	Bibliography
	Figures

