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Abstract

Wir betrachten graduierte Moduln endlicher Länge über dem gewichteten Polynom-
ring R = k[x1, . . . , xn], k ein beliebiger Körper, die eine streng selbstduale Auflösung
haben. Wir entwickeln eine Konstruktionsmethode für diese Gorenstein Moduln mit
Hilfe symmetrischer Matrizen in dividierten Potenzen. Unser Hauptresultat ist die
folgende Äquivalenz: Sei n eine ungerade natürliche Zahl. Ein graduierter R-Modul
endlicher Länge besitzt eine selbstduale minimale freie Aufösung mit symmetrischer
beziehungsweise schiefsymmetrischer mittlerer Matrix genau dann wenn er durch
eine symmetrische beziehungsweise schiefsymmetrische Matrix in dividierten Poten-
zen definiert werden kann. Diese Korrespondenz hängt von der Parität von n−1

2 ab.
Wir entwickeln eine Reihe von Anwendungen, zum Beispiel einen Beweis einer Ver-
mutung von Eisenbud und Schreyer: Sei R nun der trivial gewichtete Polynom-
ring. Der Monoid der Betti Diagramme von freien Auflösungen graduierter Cohen-
Macaulay Moduln über R hängt von der Charakteristik des Grundkörpers k ab.
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Abstract

We study graded modules of finite length over the weighted polynomial ring R =
k[x1, . . . , xn], k any field, having a certain strongly selfdual resolution. We give a
construction method of these Gorenstein modules via symmetric matrices in divided
powers. Our main result is the following equivalence: Let n be an odd integer.
A graded R-module of finite length has a selfdual minimal free resolution with
a symmetric respectively skew symmetric middle matrix if and only if it can be
defined by a symmetric respectively skew symmetric matrix in divided powers. The
correspondence depends on the parity of n−1

2 .
We give applications, such as a proof of a conjecture of Eisenbud and Schreyer: Let
R be trivially weighted. The monoid of Betti tables of free resolutions of graded
Cohen-Macaulay modules over R depends on the characteristic of the base field k.
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Introduction

0.1 Algebraic Geometry, Commutative Algebra and

Computer Algebra

In his famous book Hartshorne defines algebraic geometry to be the study of the solutions

of systems of polynomial equations in an affine or projective n-space ([Har77, I.8]). But

”the qualitative study of systems of polynomial equations is the chief subject of commu-

tative algebra as well”, as Eisenbud formulates in ”The Geometry of Syzygies” ([Eis05,

Preface]). This shows the link between geometry and algebra. However usual ideal com-

putations arising from geometric questions can not be tackled by hand anymore. The

concept of Gröbner Bases and the algorithm of Buchberger became the major instrument

of computational algebraic geometry, as Decker and Schreyer point out in ”Varieties,

Gröbner Bases and Algebraic Curves” ([DS07, Chapter 2]). It allows the efficient use of

computers for solving geometric problems.

The emphasis, all theory and results of this thesis are in commutative algebra. However

there are obvious geometric motivations: For a surface X of general type over C we know

that Proj of its canonical ring R(X) is the canonical model. The Godeaux and Campedelli

cases, pg = q = 0 and K2
X = 1, 2, are the first cases in the geography of surfaces of gen-

eral type. ”It is somewhat embarrassing that we are still far from having a complete

treatment of them”, says Reid in [Rei93, 1.1]. Let us focus onto the Campedelli case.

Skew symmetric free resolutions of R(X) over the symmetric algebra in its 2- and three

of its 3-sections would correspond to 2− 3-canonical embeddings of X into the weighted

projective space P(2, 2, 2, 3, 3, 3). Modulo the 3-sections y0, y1, y2 such a complex leads to

a module of finite length with a skew symmetric resolution. Hence it would be interesting

to understand how to construct the module R(X)/(y0, y1, y2) over a polynomial ring in

three variables. Similar situations can be imagined easily whenever locally Gorenstein

schemes appear.

The commutative algebra problem we concentrate on is more general: We want to build

modules of finite length over weighted polynomial rings having minimal free resolutions

with lots of symmetry properties. The Theorem of Buchsbaum and Eisenbud ([BE77,

Theorem 2.1] and A.23) states that every Gorenstein ideal of depth = 3 has a skew

symmetric resolution. It is easy to build ideals with skew symmetric resolutions in a
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polynomial ring with three variables: Every such ideal occurs as the annihilator of a

homogeneous form in divided powers. Here the polynomial ring acts on the divided

power algebra. Macaulay already proved this, calling such an ideal ”principal system”

(see [Mac16]).

We consider finite length modules over weighted polynomial rings with arbitrary many

variables. They are realized as quotients of annihilators of matrices in divided powers.

The question is: What are sufficient conditions for these matrices to gain a module with

a symmetric respectively skew symmetric resolution in the case of an odd number of

variables? Additionally: Are these conditions necessary for such a Gorenstein module of

finite length?

The main result of this thesis is the answer to both of the two questions above. The

theory of matrices in divided powers is developed in Chapter Two, and the answers are

proved there as well. We compute many examples using the computer algebra systems

[Singular] and [Macaulay2].

There is another remarkable motivation to study the special case of Gorenstein mod-

ules of finite length coming from Artinian Gorenstein factor rings of polynomial rings

R = k[x1, . . . , xn] over a field k. This time it is of pure algebraic nature: In their recent

paper Eisenbud and Schreyer ([ES08]) prove a strengthened form of the Boji-Söderberg

conjectures ([BS06]). For example they give an algorithm which expresses every Betti ta-

ble of a finitely generated graded Cohen-Macaulay R-module as a positive rational linear

combination of the Betti tables of Cohen-MacaulayR-modules with pure resolutions. Such

an expression is unique in a certain sense. That is the Betti tables of Cohen-Macaulay

R-modules lie inside a rational cone, whose extremal rays are Betti tables of modules

with pure resolutions. Eisenbud and Schreyer also prove that for any given homological

degree sequence of lenght ≤ n there is a corresponding Betti table of a pure minimal free

resolution of a Cohen-Macaulay module. It is clear that the Betti tables for a given degree

sequence are unique up to rational multiples. But it is not clear which of these multiples

come from actual resolutions, respectively which points of the above mentioned cone lie

inside the monoid of resolutions. Eisenbud and Schreyer conjecture that the monoid de-

pends on the characteristic of the ground field k. We can apply our theory and symmetric

resolution constructions to prove this conjecture by focusing on a certain example. This

application can be found in Section 2.4.

0.2 The Main Result

The main result is developed in Chapter Two. The major aspects can be summarized

briefly as follows:

Let R = k[x1, . . . , xn] be the weighted polynomial ring over an arbitrary field k with

deg xl = dl > 0. Let M be a graded R-module of finite length. For us M is said to be

Gorenstein if for some s ∈ Z there is a graded isomorphism τ : M → Homk(M,k)(−s)
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such that τ = Homk(τ, k)(−s). A slightly more general definition for Gorenstein modules

of finite length is presented in 2.2.4.

Another way to put it, which is especially useful from the computational point of view,

is the following:

Theorem 0.1. M is Gorenstein if and only if there is a symmetric matrix P in divided

powers, such that we have

M ∼= M(P ).

Here M(P ) =
⊕p

j=1R(bj)/AnnR(P ) is the quotient of the annihilator of P . The exact

definition of AnnR(P ) is given in 2.1.2. The proof of Theorem 0.1 follows from Theorem

2.2.1 and Theorem 2.2.5.

For these Gorenstein modules the following theorem holds over any characteristic:

Theorem 0.2 (Selfdual Resolution). Let n ≥ 3 be an odd integer, and let m =
n−1

2
. Assume that M is Gorenstein with τ = Homk(τ, k)(−s), and let ( )∨ =

HomR( , R(−
∑n

l=1 dl − s)). Then there is a graded free resolution of M of the form

0←M ← F0
φ1← F1 ← . . .← Fm

φm+1← (Fm)∨ ← . . .← (F1)
∨ φ∨1← (F0)

∨ ← 0,

such that φm+1 is skew if m is odd and symmetric if m is even.

The proof is given in Theorem 2.3.5. Theorem 0.2 is of special interest in the context

of the applications around the non-existence of certain pure resolutions.

In Corollary 2.3.7 we give a symmetric minimization process such that the symmetry

of the resolution is kept. To do so we need char k 6= 2.

In Section 2.5 an equivalence is given: A symmetric resolution implies already the Goren-

stein property.

These two facts might be summarized as follows:

Theorem 0.3 (Selfdual Minimal Resolution). Let char k 6= 2. Let s be the top degree

of M and ( )∨ = HomR( , R(−
∑n

l=1 dl − s)). Let n ≥ 3 be an odd integer, and set

m := n−1
2

. Then M is Gorenstein if and only if its minimal graded free resolution is of

the form

0←M ← F0
ψ1← F1 ← . . .← Fm

ψm+1← (Fm)∨ ← . . .← (F1)
∨ ψ∨1← (F0)

∨ ← 0,

and satisfies the following condition: ψm+1 is skew if m is odd and symmetric if m is

even.

In Theorem 2.5.1 the Gorensteiness of M is shown to be true. The proof is derived

from the more general Theorem 2.5.9, which is formulated in the language of isomorphisms

of functors.
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0.3 Synopsis of the Content

This work is composed of two chapters. One is devoted to well-known concepts and

general background. It should establish a sound basis on the one hand, and it should

provide a fixation of the notation we use on the other hand. For obvious reasons this

stands at the beginning. However throughout the whole thesis standard notations from

books like Eisenbud ([Eis94]) are used. As long as we apply basic definitions from these

books we avoid recalling them if they are not central in our construction. Moreover at

the very end a glossary of nonstandard notations and an index can be found.

The second chapter contains the new algebraic theory on Gorenstein modules including

our main results and applications. The additionally needed knowledge — like some facts

on divided powers, Gorenstein rings and local cohomology — is put into Appendix A.

At this point, let us give a little more systematic overview.

In the first chapter an introduction is given to graded modules over graded local rings and

minimal free resolutions in the Noetherian case. We specify afterwards on the weighted

polynomial ring. The first section also contains some background like the computation of

the Koszul complex. It fixes the notation throughout this work. Our main reference are

the books of Eisenbud ([Eis94]) and Bruns and Herzog ([BH93]). Finally the first section

is concluded with a proof of the Hilbert’s Syzygy Theorem in the case of the weighted

polynomial ring.

In the second section we give two construction methods of free resolutions of modules

of finite length over the weighted polynomial ring. One of them was originally given

by Nielsen in [Nie81]. We recall and prove in our setting the case for modules of finite

length. For later use it is necessary to define the differentials explicitly. Moreover we

consider polynomial rings with non trivial grading. We point out that both resolution

constructions are the same: They are canonically isomorphic. However the two of them

play their own role in our construction.

As mentioned above Chapter Two contains our main results in commutative algebra,

however computer algebra systems can be used to calculate examples. We have imple-

mented algorithms whenever possible. Roughly a correspondence between symmetric

matrices in divided powers and Gorenstein modules of finite length is given. But again

let us have a more systematic approach.

The first section explains the general connection between graded modules of finite length

over a weighted polynomial ring over any field and matrices in divided powers. All rele-

vant definitions concerning the divided power algebra and systems of divided powers are

recalled in Appendix A.2. We tie in with the contraction action of a weighted polynomial

ring R on the divided power algebra D at the beginning of Section 2.1. Defining what we

understand by the annihilator of a divided power matrix P , we set up the central module

construction M(P ) as a cokernel. We show that M(P t) with the transposed matrix is

the k-vectorspace dual of M(P ). After calculating several examples we introduce the

procedure dualModule which gives an algorithm to compute M(P ) for any P . A proof of
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the fact that any graded module M of finite length over R is isomorphic to some M(P ) is

given, we call such P s the ”associated matrices in divided powers”. Finally it is examined

how unique such a P is.

In Section 2.2 Gorenstein modules of finite length over R are defined. We prove that

any such is given by a symmetric P . We compute concrete examples by hand, and show

that also the opposite is true: Given a symmetric P in divided powers then M(P ) is

Gorenstein. After defining the term it is show that even weakly Gorenstein modules have

a symmetric Hilbert function. But Gorenstein modules provide more: The multiplication

matrices of the generators with respect to any homogeneous form are symmetric. Towards

the end we give an example for a weakly Gorenstein, but not Gorenstein module of finite

length.

Section 2.3 contains the proof of the first part of our main Theorems 0.2, respectively

Theorem 0.3: Any finite length Gorenstein module over R provides a symmetric respec-

tively skew symmetric resolution as described above in Theorem 0.3. But the section

is started by two lemmas concerning the selfduality properties of the Koszul complex.

They and the introduced notions are essential for our construction. We use the Nielsen

resolution construction from Chapter 1 to finally present the proof for the symmetry of

the resolution in our case. An extensive example is calculated by hand and others using

the computer algebra system [Macaulay2].

The following section is on applications of the symmetric resolution theorem of Section 2.3.

On the one hand they concern Artinian Gorenstein ideals in trivially weighted polynomial

rings R with n variables and Hilbert function (1, n, n, 1). Assume at first n ≡ 3 mod 4.

We prove that βm,m+2 is even (m := n−1
2

). This is true in any characteristic. Another ap-

plication concerns the characteristic 2 case. Let now n = 2`− 3 for ` ≥ 3. In that case we

can show that βm,m+2 is odd. This has a meaning for Green’s conjecture in characteristic

2 and the dependence of the monoid of resolutions of finitely generated graded Cohen-

Macaulay R-modules on the characteristic. All this is explained extensively within the

section. Moreover let n be any integer again. We give examples for degree sequences of

length c = 2`−1 ≤ n such that there is no Cohen-Macaulay factor ring of R of codim = c

with a pure resolution having this degree sequence.

The last section provides the other direction of our main Theorem 0.3. Besides this some

isomorphisms of the functors Extn( ) := ExtnR( , ωR) and ( )∗ := Homk( , k) on the

category of graded modules of finite length grMFL over R are discussed. We derive a com-

mutative diagram connecting them. At the beginning some technical lemmas are given

and the equivalences of functors are defined. To do so we use both resolution constructions

of Nielsen. Moreover we define functor isomorphisms from id to Extn(Extn( )), and from

id to Extn(( )∗). The central technical theorem of the section is a commutative diagram

combining the functors ( )∗, Extn( ) and Extn(( )∗∗). There is a sign appearing here

depending on the number of variables, coming basically from the nature of the Koszul

complex. It is needed for Theorem 0.3. An example is computed by hand, and the section

is concluded with the proof of the second part of our main result, as mentioned above.
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There are two appendices which can be found as the end of this work. The first

appendix consists of two sections: One is on local cohomology and on homological algebra.

Besides others the famous Theorem of Auslander and Buchsbaum and the Theorem of

Buchsbaum and Eisenbud are recalled. Moreover we recall the definition of a canonical

module and a Gorenstein ring. The second one is about divided powers.

The final Appendix contains general procedures around graded modules of finite length

(written in [Macaulay2]), presented mainly within Chapter Two.
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2 General Background

At the beginning we recall some well known definitions and facts. In this first Chap-

ter we lay the algebraic background for our resolution constructions given in Chapter

Two. We recapitulate some known theorems, but also give them in the notation we use

throughout this whole work. Moreover we reformulate and reprove a more special setting

of a resolution construction originally given by Nielsen in [Nie81].

In fact the way we will see these Nieslen resolutions gives a new insight into the topic of

graded modules of finite length, which was not the central object of study of Nielsen. He

derives the complex as the total complex of a double complex. Moreover he constructs it

over an arbitrary scheme, while we concentrate on Spec(k) for a field k.

Also a more general construction is described by Aramova and Herzog in [AH95]. They

consider arbitrary modules over local rings and compare the minimal free resolutions with

a similar construction as the Nielsen complex. Finally they get an isomorphism on the

level of spectral sequences associated to both constructions in a certain way.

The first section of this chapter states some very basic facts which will be used fre-

quently. It makes sense to set up these things because we have to fix a clear notation

throughout the thesis. We start by concentrating on graded rings and modules. We

continue defining and constructing minimal graded free resolutions for finitely generated

modules over Noetherian graded local rings. We fix the notion of Koszul complexes and

finish the section by a proof of Hilbert’s Syzygy Theorem over weighted polynomial rings.

The second section is devoted to the Nielsen resolution construction. We define it di-

rectly without focusing on double complexes. We give two versions for the case of graded

modules of finite length over a weighted polynomial ring. Both of which are canonically

isomorphic to each other. But each single one will come into value in Chapter Two. Our

treatment is new in the sense that the construction in [Nie81] is not focused onto the

finite length case, and does not come up with the second version.

1.1 General Background on Resolutions

We start by recapitulating some basic definitions. At first we mainly follow the treatment

of the book of Bruns and Herzog ([BH93]). In this thesis we use the word ring to denote

a commutative ring with 1.

Definition 1.1.1 (Graded module). A graded ring is a ring R with a decomposition

R =
⊕

i∈ZRi as Z-modules such that RiRj ⊂ Ri+j for all i, j ∈ Z. It is called a positively

graded ring if R =
⊕

i≥0Ri.

A graded R-module is an R-module M with a decomposition M =
⊕

i∈ZMi as Z-module

such that RiMj ⊂Mi+j for all i, j ∈ Z. We call Mi the i-th graded part of M .

An element r ∈ R is called homogeneous of degree i if r ∈ Ri for some i ∈ Z. We define

this term analogously for elements of M .
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Graded R-submodules of R are called graded ideals.

Let d ∈ Z. The d-th twist of M, written M(d), is the same as the graded module M , but

we define the i-th graded part of M(d) to be: M(d)i := Md+i.

Definition 1.1.2 (Homogeneous morphism). Let R be a graded ring, and let M and N

be R-graded modules. An R-module homomorphism φ : M → N is called homogeneous

if φ(Mi) ⊂ Ni for all i ∈ Z.

We are nearly ready to define minimal graded free resolutions. To do so we need

another notion:

Definition 1.1.3 (Graded local ring). Let R be a graded ring. Let m ⊂ R be a graded

maximal ideal of R, such that every non trivial graded ideal of R is contained in m. Then

(R,m) is called a graded local ring.

Let (R,m) be a Noetherian graded local ring. Let M be a finitely generated graded

(R,m)-module. Take a homogeneous minimal system of generators (g1, . . . , gl0) of M .

Let F0 :=
⊕l0

i=1R(− deg gi) be a direct sum of twisted graded R-modules, each of them

generated by ei. Then φ0 : F0 → M , defined by ei 7→ gi is a homogeneous R-module

homomorphism. S yz0(M) := ker(φ0) is again a finitely generated graded R-module.

The minimality assumption guarantees that S yz0(M) ⊂ mF0. Iterating this construction

for S yz0(M) and the next syzygy-modules one obtains a minimal graded free resolution.

Throughout the thesis if we work over graded local rings we mean by a minimal resolution

always a minimal graded free resolution.

It is used to collect the terms with the same shift, that means we obtain for the minimal

graded free resolution a form as

0←M ←
⊕
j∈Z

R(−j)β0,j ← . . .←
⊕
j∈Z

R(−j)βi,j ← .

Proposition and Definition 1.1.4 (Betti number). Let (R,m) be a Noetherian graded

local ring, and let M be a finitely generated graded R-module. Then the numbers βi,j in a

minimal graded resolution of M are uniquely determined by M .

The numbers βi,j(M) = βi,j are called graded Betti numbers (of M).

Proof. [BH93, Proposition 1.5.16]

Definition 1.1.5 (Betti table). Let R be any positively graded ring. Let

F : F0
φ1← . . .

φm← Fm
φm+1← . . .

φs← Fs ← 0

be a complex of freeR-modules Fi =
⊕

j R(−j)βi,j , such that all maps φi are homogeneous.

Then the Betti table of F is the following array of numbers:

0 1 . . . s

µ β0,µ β1,µ+1 . . . βs,µ+s

µ+ 1 β0,µ+1 β1,µ+2 . . . βs,µ+s+1

. . . . . . . . . . . . . . .

ν β0,ν β1,ν+1 . . . βs,ν+s
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If (R,m) is a Noetherian positively graded local ring, and M is a finitely generated graded

R-module then the Betti table of M is defined to be a Betti table of a minimal graded

resolution of M . To make it unique we start with the first non zero row and finish with

the last non zero one.

From now on we focus on a more special situation. That is we consider weighted

polynomial rings. This is necessary to obtain finite resolutions: For graded quotients of

weighted polynomial rings this is not always the case (see for example [Eis05, 1C]).

Let us fix the following notation:

Notation 1.1.6. Let k be any field, and let V = 〈x1, . . . , xn〉 be a k-vectorspace such

that deg xl = dl ≥ 1. Moreover, let R = Sym(V ) with the natural grading, that is a

weighted polynomial ring.

The following lemma is a well known tool for computing Betti tables of minimal

resolutions of modules over polynomial rings. We follow mainly the description in [Eis05].

Lemma 1.1.7. Consider k = R/m, with m = (x0, . . . , xn), as graded R-module. Let

F : · · · → F1 → F0 →M

be a minimal free resolution of a finitely generated graded R-module M . Then

dimk TorRi (k,M)j, the j-th graded part of the i-th Tor-group, is the number of the de-

gree j elements of any minimal set of homogeneous generators of Fi.

Proof. We tensorize the resolution to k⊗RF. Then all maps in the new complex are zero,

as F is minimal. Hence for the i-th homology of this complex we have TorRi (k,M) =

k ⊗R Fi. By the Nakayama lemma for the graded case we have that if the residue classes

of elements of Fi generate Fi/mFi = k ⊗R Fi as k-vectorspace then they generate Fi as

R-module. Hence dimk TorRi (k,M)j equals the number of generators of Fi in degree j.

The given lemma leads to a modern proof of Hilbert’s Syzygy Theorem. But before

we are able to give the proof, it is necessary to fix what we mean by a Koszul complex.

On the other hand the Koszul complex will be an important tool for the proof of our main

theorem.

Notation 1.1.8 (Koszul complex). Let R = Sym(V ) be the weighted polynomial ring

as above in 1.1.6 with V = (x1, . . . , xn). Let W be another k-vectorspace such that

V = Homk(W, k). Choose a basis (χ1, . . . ,χn) of W such that the (χl) are a dual to (xl),

and set deg χl = dl.

Fix for the moment xl ∈ V . We consider the assignment,

(w1, . . . , wi) 7→
i∑

j=1

(−1)j−1xl(wj)w1 ∧ . . . ∧ ŵj ∧ . . . ∧ wi.
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It defines an alternating map W i →
∧i−1W . Hence if defines by the universal property

of the exterior algebra a map, the contraction (xl¬ ) :
∧iW →

∧i−1W .

That means on generators we have

(xl¬w1 ∧ . . . ∧ wi) =
i∑

j=1

(−1)j−1xl(wj)w1 ∧ . . . ∧ ŵj ∧ . . . ∧ wi.

View R ⊗k
∧iW as graded free R-module by left multiplication, the grading given by

(R⊗k
∧iW )j =

⊕
j1+j2=j Rj1⊗k (

∧iW )j2 . Then we define δi : R⊗k
∧iW → R⊗k

∧i−1W

on generators by

r ⊗ w 7→
n∑
l=1

rxl ⊗ (xl¬w).

A direct computation shows δi−1 ◦ δi = 0.

We call the graded complex

K(x) : 0→ R⊗k
n∧
W

δn→ . . .→ R⊗k
2∧
W

δ2→ R⊗k
1∧
W

δ1→ R⊗k
0∧
W → 0

the Koszul complex. It has only homology at H0(K(x)) = k (in our case the x1, . . . , xn
form naturally an R-sequence). For the definition and the homology statement see [BH93,

Section 1.6].

Example 1.1.9. Let R = k[x1, x2, x3] with deg xl = 1 for all l. Let us compute the

differentials with respect to the bases (χ1∧χ2∧χ3), (χ1∧χ2,−χ1∧χ2,χ2∧χ3), (χ1,χ2,χ3)

and (1) of
∧3W,

∧2W,
∧1W and

∧0W . Then δ1 : R⊗
∧1W =

⊕3
i=1R(−1)→ R,

1⊗ χ1 7→ x1 ⊗ x1(χ1) = x1 ⊗ 1, 1⊗ χ2 7→ x2 ⊗ 1, 1⊗ χ3 7→ x3 ⊗ 1.

δ2 : R⊗
∧2W = ⊕3

i=1R(−2)→ ⊕3
i=1R(−1) :

1⊗ χ1 ∧ χ2 7→ x1 ⊗ χ2 − x2 ⊗ χ1,

−1⊗ χ1 ∧ χ3 7→ −x1 ⊗ χ3 + x3 ⊗ χ1, 1⊗ χ2 ∧ χ3 7→ x2 ⊗ χ3 − x3 ⊗ χ2.

Finally δ3 maps as follows:

1⊗ χ1 ∧ χ2 ∧ χ3 7→ x1 ⊗ χ2 ∧ χ3 − x2 ⊗ χ1 ∧ χ3 + x3 ⊗ χ1 ∧ χ2.

Now we have the machinery to give a modern proof of Hilbert’s Syzygy Theorem.

Especially the theorem gives an upper bound on the Betti table. We follow the proof

given for the usual polynomial ring in [Eis05].

Theorem 1.1.10 (Hilbert’s Syzygy Theorem). Let R = Sym(V ) as in 1.1.6. Let M be

a finitely generated graded R-module. The graded Betti number βi,j(M) is the dimension
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of the homology, at the term (M ⊗k
∧iW )j =

⊕j−i
µ=0(Mµ ⊗k (

∧iW )j−µ), of the complex

of vectorspaces

0→ (M⊗k
n∧
W )j → . . . (M⊗k

i+1∧
W )j → (M⊗k

i∧
W )j → (M⊗k

i−1∧
W )j → . . .→ (M⊗k

0∧
W )j.

In particular we have βi,j(M) ≤
∑j−i

µ=0((dimkMµ) · (dimk(
∧iW )j−µ)), and βi,j(M) = 0

for i ≥ n+ 1.

Proof. Let βi,j = βi,j(M). By Lemma 1.1.7 we know βi,j = dimk TorRi (M,k)j. We

compute these groups by the free resolution of k as R-module given by the Koszul complex.

So TorRi (M,k)j is the degree j-part of the homology of M ⊗R K(x) at

M ⊗R R⊗k
i∧
W = M ⊗k

i∧
W.

The differentials of M⊗RK(x) are homogeneous, hence the complex decomposes as direct

sum of complexes of vector spaces:

(M ⊗k
i+1∧

W )j → (M ⊗k
i∧
W )j → (M ⊗k

i−1∧
W )j.

This finishes the proof.

1.2 Nielsen Resolutions and Modules of Finite

Length

Let M be any module over any ring R. Then a chain M = M0 ⊃ M1 ⊃ . . . ⊃ Mn of

submodules ofM is called a composition series if allMj/Mj+1 are nonzero simple modules.

The length of M is the least length of a composition series of M , or∞ if there is no finite

such series. M is called a module of finite length if there is a finite composition series of

M . The Jordan-Hölder theorem gives that the length of any finite composition series is

the same.

Proposition 1.2.1. M is of finite length if and only if M is Artinian and Noetherian.

Proof. [Eis94, Theorem 2.13]

From now on throughout this section let k be any field. Let R = Sym(V ) be the

weighted polynomial ring as above in 1.1.6 with V = (x1, . . . , xn) and deg xl = dl > 0.

Let W be another k-vectorspace such that V = Homk(W, k). Choose a basis (χ1, . . . ,χn)

of W such that the (χl) are a dual to (xl) with deg χl = dl.

We obtain the following direct Corollary of Proposition 1.2.1 as R is Noetherian.
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Corollary 1.2.2. Let M be any finitely generated R-module. Then M is of finite length

if and only if M is Artinian.

Remark 1.2.3 (Top degree). If M is any graded R-module of finite length we understand

by top degree the maximal j such that Mj 6= 0.

We state two free resolutions of a graded finite length module which are very strongly

related. Note that they are non minimal in general. We need the constructions as a basic

tool for our main theorem. They are both based on the construction of Nielsen ([Nie81]).

Theorem and Construction 1.2.4 (Nielsen I). Let M be a graded R-module of fi-

nite length. Let Ai(M) = R ⊗k
∧iW ⊗k M be viewed as a graded R-module by left

multiplication (i.e. r′ · r ⊗ w ⊗ m = (r′r) ⊗ w ⊗ m). Define the j-th graded part

(Ai(M))j :=
⊕

j1+j2+j3=j Rj1 ⊗k (
∧iW )j2 ⊗k Mj3.

We define φi : Ai(M)→ Ai−1(M), i = 1, . . . , n, on generators by

r ⊗ w ⊗m 7→
n∑
l=1

xlr ⊗ (xl¬w)⊗m−
n∑
l=1

r ⊗ (xl¬w)⊗ (xl ·m),

for all r ∈ R,w ∈
∧iW and m ∈M . Note that we skip any reference to M in the notation

φi. Moreover it is clear from the context anyways.

xl¬w denotes the usual contraction defined in 1.1.8. By xl ·m is meant the multiplication

in M .

Then

A0(M)
φ1← A1(M)← . . .← An−1(M)

φn← An(M)← 0

is a graded complex of free R-modules.

Proof. We split the complex from an schematic point of view into parts (note that

φi,0(Ai(M)) ∩ φi,1(Ai(M)) = ∅):

Ai−1(M)
φi,1

xxqqqqqqqqqq
Ai(M)

φi,0
oo

φi,1

yyrrrrrrrrrr

Ai−2(M) Ai−1(M)
φi−1,0
oo

φi,0 is defined by the special part of φi from above given by

r ⊗ w ⊗m 7→
n∑
l=1

(xlr)⊗ (xl¬w)⊗m,

and φi,1 by

r ⊗ w ⊗m 7→ −
n∑
l=1

r ⊗ (xl¬w)⊗ (xl ·m).
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Let us show that the above construction really gives a complex. At first we have to see

that φi,0 ◦φi+1,0 = 0, this is because of the corresponding property of the Koszul complex.

The same holds for φi,1 ◦ φi+1,1 = 0:

φi,1 ◦ φi+1,1(r ⊗ w1 ∧ . . . ∧ wi+1 ⊗m) =
n∑

l2=1

n∑
l1=1

r ⊗ (xl2¬(xl1¬w))⊗ (xl2xl1 ·m) = 0.

This is true (xl2¬(xl1¬w)) = −(xl1¬(xl2¬w)) because of

i+1∑
k1=1,k1 6=k2

i+1∑
k2=1

δ(k1,k2)xl2(wk1)xl1(wk2)(−1)k1−1(−1)k2−1w1 ∧ . . . ∧ ŵk1 ∧ . . . ∧ ŵk2 ∧ . . . ∧ wi+1 =

−
i+1∑

k2=1,k2 6=k1

i+1∑
k1=1

δ(k2,k1)xl2(wk1)xl1(wk2)(−1)k1−1(−1)k2−1w1 ∧ . . . ∧ ŵk1 ∧ . . . ∧ ŵk2 ∧ . . . ∧ wi+1,

with δ(k1,k2) :=

{
1 if k1 < k2

−1 if k1 > k2.

Moreover we should see that φi,0 ◦ φi+1,1 = −φi,1 ◦ φi+1,0.

φi,0 ◦ φi+1,1(r ⊗ w ⊗m) = −
n∑

l2=1

n∑
l1=1

(xl2r)⊗ (xl2¬(xl1¬w))⊗ (xl1 ·m) =

n∑
l2=1

n∑
l1=1

(xl1r)⊗ (xl2¬(xl1¬w))⊗ (xl1m) = −φi,1 ◦ φi+1,0(r ⊗ w ⊗m),

as (xl2¬(xl1¬w)) = −(xl1¬(xl2¬w)).

Remark 1.2.5. If R is the trivially weighted polynomial ring, one can define

A(−j−i,j)(M) := R ⊗
∧iW ⊗ Mj. Then the built complex is the total complex of the

double complex obtained from

. . .← A(−j−i+1,j)(M)
φi,0← A(−j−i,j)(M)

φi+1,0← A(−j−i−1,j)(M)← . . .

and

. . .← A(−j−i,j+1)(M)
φi,1← A(−j−i,j)(M)

φi+1,1← A(−j−i,j−1)(M)← . . . .

(Compare [Nie81, 1.5])
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The second complex construction respects the R-module structure of M in a different

way. Before stating it we need to show a lemma at first. The setup is the following:

Notation 1.2.6 (Diagonal Action). Let M be a graded module of finite length over R.

Let F be a graded R-module. Let A = F ⊗k M be the k-vectorspace product.

Then we consider the R-module ∆A = ∆(F ⊗k M) with the diagonal action

∆(x) : x · e⊗m := (1⊗ x) + (x⊗ 1) e⊗m := e⊗ xm + xe⊗m

for all x ∈ V \ 0, e ∈ F , m ∈ M , and its linear extension. If the context is clear then

the delta ∆ should indicate that we mean a module built with respect to this diagonal

action. ∆A is graded with respect to ( ∆A)j =
⊕

j1+j2=j Fj1 ⊗Mj2 .

If F is free ∆A is again a free module:

Lemma 1.2.7. Let F be a graded free R-module, and let (f1, . . . , fµ) be a homogeneous

basis of F . Chosen a homogeneous k-vectorspace basis (m1, . . . ,mν) of M we get that

B = (fi ⊗mj)(i,j)

is a homogeneous basis of ∆A,i.e. ∆A is free R-module of rank ∆A = µ · ν.

Proof. As the tensor product commutes with direct sums it is enough to show that the

module ∆A = ∆(R⊗k M) is free.

Let r ⊗ m ∈ ∆A. Let r = xα and |α| =
∑n

l=1 αl. We show: There is an expression

r ⊗ m =
∑

j rj(1 ⊗ mj) with rj ∈ R. The proof is an induction on |α|. If |α| = 0 we are

done. If |α| > 0 let αl > 0. Then r⊗m = xl·(x(α1,...,αl−1,...,αn)⊗m)−x(α1,...,αl−1,...,αn)⊗(xlm).

Use induction on x(α1,...,αl−1−1,...,αn) ⊗ m and on x(α1,...,αl−1,...,αn) ⊗ (xlm). If r is arbitrary

use linearity. Hence the (1⊗mi) generate ∆A.

Now assume
∑

i ri · (1⊗mi) = 0 with ri ∈ R. And let I ⊂ {1, . . . , ν} be the subset such

that the total degree deg ri ≥ deg rj for all i ∈ I and all j ∈ {1, . . . , ν}.
Moreover let ri = r̃i + ˜̃ri, such that r̃i is the part of the highest degree terms.

Now we have

0 =
∑
i

ri(1⊗mi) =
∑
i∈I

r̃i ⊗mi + . . .+ 1⊗ (r̃imi) +
∑
i∈I

˜̃ri ⊗mi + . . .+ 1⊗ ( ˜̃rimi) +

+
∑
i/∈I

ri ⊗mi + . . .+ 1⊗ (rimi).

The {r̃i ⊗ mi}i∈I are of the highest total degree in the first factor of the tensor product.

Hence the equation gives ∑
i∈I

r̃i ⊗mi = 0.

As the mi are linearly independent we have r̃i = 0 for all i ∈ I. By the choice of I it

follows that rj = 0 for all j. Hence the claim follows.
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We present another complex construction. Its differentials are totally based on the

Koszul complex. It is in the spirit of the Nielsen I construction but with respect to the

diagonal action.

We have a free resolution of M as graded R-module:

Theorem and Construction 1.2.8 (Nielsen II). Let M be a graded R-module of finite

length. Let ∆Ai(M) = ∆(R⊗
∧iW⊗M) be the graded R-module with the diagonal action

x · (r⊗w⊗m) := (xr)⊗w⊗m+ r⊗w⊗ (xm) for all x ∈ V \{0} and its linear extension.

Then

0←M = ∆(k ⊗M)←pr
∆(A0(M))←∆(φ1)

∆(A1(M))← . . .←∆(φn)
∆(An(M))← 0

is a graded free resolution of M where ∆(φi) is defined as in the Koszul complex by

r ⊗ w ⊗m 7→
n∑
l=1

(xlr)⊗ (xl¬w)⊗m.

Note that we skip any reference to M in the ∆(φi), otherwise we would overstress the

notation.

Proof. First of all the differentials are linear: ∆(φi)(x · (r⊗w⊗m)) = ∆(φi)(xr⊗w⊗m+

r⊗w⊗(xm)) =
∑n

l=1 xlxr⊗(xl¬w)⊗m+
∑n

l=1 xlr⊗(xl¬w)⊗(xm) = x · ∆(φi)(r⊗w⊗m)

for all x ∈ V \ {0}.
The exactness follows by the exactness of the Koszul complex K(x), as the differential

behaves as dimkM copies of the Koszul differentials.

Moreover we have onM the usual action as x·m = (1⊗x)+(x⊗1)(1⊗m) = 1⊗xm+x⊗m =

1⊗ xm in ∆(k ⊗k M) ∼= ∆A0/ Im ∆(φ1) for all x ∈ V .

Let us separately consider the construction using the dual Koszul complex.

Corollary 1.2.9 (Nielsen IIa). As in the Construction 1.2.8 (Nielsen II) we consider

free modules via the diagonal action. Let all assumptions be as in 1.2.8, and let ( )∨ =

HomR( , R⊗
∧nW ). By Bi(M) = (R⊗

∧iW )∨⊗M , with
⊕

j1+j2=j(R⊗
∧iW )∨j1⊗Mj2,

we denote the graded free module with the left multiplication, i.e. r′ · (π⊗m) = (r′π)⊗m.

∆(Bi(M)) = ∆((R⊗k
i∧
W )∨ ⊗k M),

is the module together with the diagonal action. Let δ∨i : (R⊗k
∧i−1W )∨ → (R⊗k

∧iW )∨

be the differentials from the dual Koszul complex (see 2.3.3). We denote by ∆(ϕi) the

homomorphisms ∆(Bi−1(M))→ ∆(Bi(M)) defined by

π⊗m 7→ δ∨i (π)⊗m,



General Background 11

for all π ∈ (R ⊗
∧i−1W )∨ and m ∈ M . We do not refer to M in the notation of

∆(ϕi): The dependence is clear from the context. Moreover fix the canonical k-vectorspace

isomorphism

f : Homk(
n∧
W,

n∧
W )

∼=→ k, id 7→ 1.

Then

0←M = ∆(k ⊗M)
f⊗id← ∆(Bn(M))

∆(ϕn)← . . .← ∆(B1(M))
∆(ϕ1)← ∆(B0(M))← 0

is a graded free resolution of M .

Proof. The freeness of the ∆(Bi(M)) is guaranteed by Lemma 1.2.7. Moreover it is clear

that the only non vanishing homology of the complex is H0.

f⊗id is meant as follows: We know that R⊗kHomk(
∧nW,

∧nW ) ∼= HomR(R⊗
∧nW,R⊗∧nW ) given by r ⊗ π 7→ (r′ ⊗ w 7→ rr′ ⊗ π(w)). Call this map γ. Then consider

∆(Bn(M))
γ−1⊗id→ ∆(R⊗k Homk(

n∧
W,

n∧
W )⊗k M)

id⊗f⊗id→ ∆(R⊗k k ⊗k M).

In this sense the complex is a graded free resolution of M .

Now we need to understand the connection between both complex constructions.

Remark 1.2.10. Both complex contructions (Nielsen I and Nielsen II) are isomorphic in

a canonical way. Let i ≥ 1, M a graded R-module of finite length, and let the notation

be as in the above constructions. Then the following diagrams commute for all i:

Ai(M)
εi //

φi

��

∆(Ai(M))

∆(φi)
��

Ai−1(M)
εi−1//

∆(Ai−1(M)),

where εi : Ai(M) → ∆(Ai(M)) is defined by r ⊗ w ⊗ m 7→ r(1 ⊗ w ⊗ m) for all

m ∈M,w ∈
∧iW and r ∈ R. The diagram is commutative as on the one hand

r ⊗ w ⊗m
εi7→ r(1⊗ w ⊗m)

∆(φi)7→ r
n∑
l=1

xl ⊗ (xl¬w)⊗m,

and on the other hand

r ⊗ w ⊗m
φi7→

n∑
l=1

(rxl)⊗ (xl¬w)⊗m−
n∑
l=1

r ⊗ (xl¬w)⊗ (xlm)
εi−17→

n∑
l=1

(rxl)(1⊗ (xl¬w)⊗m)−
n∑
l=1

r(1⊗ (xl¬w)⊗ (xlm)) = r
n∑
l=1

xl ⊗ (xl¬w)⊗m.

Moreover the εi are isomorphisms as they map bases to bases by Lemma 1.2.7.
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Corollary 1.2.11 (Nielsen I). The first complex construction (Nielsen I),

0←M ← A0(M)
φ1← A1(M)← . . .← An−1(M)

φn← An(M)← 0,

is a graded free resolution of the given graded finite length module M .

Proof. By the remark the construction Nielsen I 1.2.4 is isomorphic to 1.2.8 which resolves

M .
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Macaulay [Mac16] laid the foundations of the bijection between the set of graded

Artinian Gorenstein quotients of the polynomial ring and the set of homogeneous divided

power polynomials modulo the action of the base field (see A.27).

In this Chapter we use matrices with entries in divided powers to construct Gorenstein

modules of finite length. The first two sections are devoted to general finite length modules

and to Gorenstein modules, which will be defined in Section 2.2. Sections 2.3 and 2.5

provide the statement and proof of our main theorem: A finite length module over the

polynomial ring is Gorenstein if and only if its resolution is selfdual in a strong sense.

As the construction in 2.3 has a bunch of applications these are described in 2.4. For

example the proof of the dependence of the monoid of Betti tables of graded Cohen-

Macaulay modules over the polynomial ring on the characteristic of the base field can be

found there.

2.1 Graded Modules of Finite Length via Divided

Powers

The aim of this section is to introduce and develop the theory of modules defined by

matrices in divided powers. Troughout this section, let k be a field of arbitrary charac-

teristic and V = 〈x1, . . . , xn〉 be a k-vectorspace such that deg xl = dl ≥ 1. Moreover, let

R = Sym(V ) and let D = grHomk(R, k). As k-vectorspace D can be generated by divided

powers (X(u)) which form a dual basis to (xu = xu1
1 · · ·xun

n ). The theory of divided powers

is recalled in Appendix A.2. We use the notations fixed there. Moreover, we know from

Appendix A.2 that D carries via contraction the structure of a graded R-module.

Obviously D is not finitely generated as R-module. Nevertheless we consider direct

sums of Ds and then concentrate on finitely generated submodules of depth = 0.

Note that in the category of graded rings and modules we always mean by a homo-

morphism a homogeneous homomorphism.

Definition 2.1.1. Let bj, j = 1, . . . , p, be integers and let F =
⊕p

j=1D(bj) be the direct

sum of p shifted R-modules D. Let G =
⊕p

j=1R(−bj). Let φ ∈ G and f ∈ F then

〈f, φ〉 :=

p∑
j=1

φj · fj.

Recall that φj · fj means the contraction action defined in A.24.

Our first aim is to define quotients of annihilators of homogeneous matrices over D.

Now let the ai and bj be non-negative integers and let

P ∈ HomR

(
p⊕
j=1

R(bj),

q⊕
i=1

D(ai)

)
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a homogeneous homomorphism, represented by a homogeneous matrix with entries such

that degPi,j = −bj + ai. That means the a column P j represents P (ej) ∈
⊕q

i=1D(ai),

where ej denotes the j-th coordinate vector of
⊕p

j=1R(bj). Moreover if ei denotes the

i-th coordinate vector of
⊕q

i=1D(ai), then P (ej) =
∑q

i=1 Pi,je
i, where Pi,j ∈ D−bj+ai

.

The big advantage of the P-notation is that we are able to describe (naturally finitely

generated) finite length submodules of the infinitely generated R-module
⊕q

i=1D(ai).

Definition 2.1.2. We define the annihilator of P in R to be

AnnR(P ) :=

{
φ ∈

p⊕
j=1

R(bj)

∣∣∣∣ 〈Pi, φ〉 = 0 for all i

}

where the Pi denote the rows of P considered as Pi ∈
⊕p

j=1D(−bj).

Remark 2.1.3. Clearly the annihilator is an R-module as 〈Pi, rφ〉 = r〈Pi, φ〉.
Moreover AnnR(P ) is up to isomorphism independent from the matrix representation of P :

Let A ∈ AutR(〈e1, . . . , eq〉 ⊂
⊕q

i=1D(ai)) and B ∈ AutR(
⊕p

j=1R(bj)) then if 〈Pi, φ〉 = 0

for all i, then 〈(AP )i, φ〉 = 0 for all i.

Moreover 〈(PB)i, B
−1(φ)〉 = 0, hence AnnR(PB) = B−1(AnnR(P )) ∼= AnnR(P ).

We denote by 〈f, φ〉(0) = 0 that via the projectionD pr→ D0
∼= k we have pr(〈f, φ〉) = 0.

Definition 2.1.4. Let N ⊂
⊕q

i=1R(−ai) be an R-submodule. Then let

N⊥ :=

{
f ∈

q⊕
i=1

D(ai)

∣∣∣∣ 〈f, φ〉(0) = 0 for all φ ∈ N

}
.

In fact we can express any graded R-module M of finite length by a matrix in divided

powers. Consider the following situation: Let d =
∑n

l=1 dl, and let p be minimal such

that there are integers (b1, . . . , bp) with

p⊕
j=1

R(bj)
α→M → 0.

As M if of finite length Homk(M,k) ∼= ExtnR(M,R(−d)) (Lemma A.6). Hence especially

Homk(M,k) is finitely generated as R-module. Again choose q minimal such that for

some integers (a1, . . . , aq)

q⊕
i=1

R(−ai)
β−→ Homk(M,k)→ 0.

We apply grHomk( , k) to the presentation and obtain as above a diagram
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0 0

��

M

OO

id // M

β∗

��

(1)

⊕pj=1R(bj)

α

OO

P // ⊕qi=1D(ai)
The matrix P here is defined to be β∗◦α. Hence the kernel of the matrix P considered

as a map of graded R-module is AnnR(P ).

That motivates a new definition for the construction of modules of finite length. It is

in the spirit of the Theorem of Macaulay, more exactly of the modern version (see A.27).

Our central objects are quotients of annihilators AnnR(P ):

Definition 2.1.5. Let the quotient of P in R be

M(P ) :=

p⊕
j=1

R(bj)

/
AnnR(P ).

From the above diagram (1) one derives immediately the following theorem.

Theorem 2.1.6. Let M be a graded R-module of finite length. Then there are integers

(a1, . . . , aq), (b1, . . . , bp) and a P ∈ HomR(
⊕p

j=1R(bj),
⊕q

i=1D(ai)) such that

M ∼= M(P )

as graded R-modules.

Definition 2.1.7 (Associated matrix in divided powers). Let M be a graded R-module

of finite length. Let p and q be minimal integers such that there are integers (a1, . . . , aq)

and (b1, . . . , bp) with ⊕pj=1R(bj)→M → 0, and with ⊕qi=1R(−ai)→ Homk(M,k)→ 0.

Then we call any homogeneous matrix in divided powers

P ∈ HomR(

p⊕
j=1

R(bj),

q⊕
i=1

D(ai))

an (to M) associated matrix in divided powers, if M(P ) ∼= M as homogeneous R-

homomorphism. By Thereom 2.1.6 such a matrix always exists. Its uniqueness is ex-

amined later on.

Again let P ∈ HomR(
⊕p

j=1R(bj),
⊕q

i=1D(ai)) be any homogeneous matrix in divided

powers.

Lemma 2.1.8. The quotient of P in R, the above defined R-module M(P ), is of finite

length.
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Proof. Over a Noetherian ring it is equivalent to show that R/ ann(M(P )) is Artinian

([Eis94, Corollary 2.17]). Every descending chain in R/ ann(M(P )) can be seen as chain

of descending k-vectorspaces. Hence it is enough to see that R/ ann(M(P )) is finite

dimensional as k-vectorspace. Let N = |min(i,j) degPi,j|. Then for all r ∈ Rl with l > N

we have that rej ∈ AnnR(P ) for all j = 1, . . . , p. Hence r ∈ ann(M(P )) and therefore

r = 0 in R/ ann(M(P )).

Proposition 2.1.9. The following isomorphism of graded R-modules is canonical:

M(P ) ∼= ImR(P ).

Proof. Consider the following exact sequence:

q⊕
i=1

D(ai)
P←−

p⊕
j=1

R(bj) ←− AnnR(P ) ←− 0 (2.1)

Hence we obtain for the image ImR(P ) ⊂
⊕q

i=1D(ai) that

ImR(P ) ∼=
p⊕
j=1

R(bj)

/
AnnR(P ) = M(P ).

Remark 2.1.10. On can say P is the multiplication matrix ofM(P ). Because multiplying

the columns of P is the same as multiplying the generators of M(P ). The result is given

in terms of divided powers and translated back by the isomorphism 2.1.9.

Theorem 2.1.11. There is an isomorphism

M(P t) ∼= Homk(M(P ), k)

as graded R-modules. Here P t denotes the transposed matrix of P , defining an element

in HomR(
⊕q

i=1R(−ai),
⊕p

j=1D(−bj)).

Proof. Now we consider the first part of the sequence 2.1 :

0 ←− CokerP
pr←−

q⊕
i=1

D(ai)
P←−

p⊕
j=1

R(bj) ←− AnnR(P ) ←− 0 (2.2)

Using grHomk( , k), which is left exact ([BH93]), we dualize the sequence to

0 −→ grHomk(CokerP, k) −→
q⊕
i=1

R(−ai)
P ∗=Homk(P,k)−→

p⊕
j=1

D(−bj).
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Note that we have used the canonical isomorphism implied by the definition of

grHomk( , k) α : ⊕qi=1R(−ai)
∼=→ grHomk(⊕

q
i=1D(ai), k), r 7→ (f 7→ f(r)).

Hence we have (P ∗)µ,ν = 〈P ∗(eν), eµ〉 = 〈α(eν) ◦ P, eµ〉 = 〈
∑p

j=1〈P j, eν〉e∗j , eµ〉 =

〈P µ, eν〉 = (P )ν,µ = (P t)µ,ν .

So grHomk(CokerP, k) ∼= kerP ∗ = kerP t = AnnR P
t. That is why dualizing sequence

2.2 we obtain (note that M(P ) is of finite length and hence finite dimensional as k-vector

space)

0 −→ AnnR(P t) −→
q⊕
i=1

R(−ai) −→ grHomk(M(P ), k) −→ 0.

Note that Ext1
k((CokerP )ν , k) = 0 for all ν, hence the sequence is exact.

As grHomk(N, k) = Homk(N, k) for N finite dimensional as k-vector space we have

Homk(M(P ), k) ∼= M(P t).

Example 2.1.12. Let R = k[x1, x2] with all weights 1.

Let

P =
(
X

(3)
1 X

(1)
1 X

(1)
2 +X

(2)
2

)
∈ HomR(R(3)⊕R(2),D).

Then the R-module R(3)⊕R(2) ⊃ AnnR(P ) =〈(
x2

0

)
,

(
x2

1

x1 − x2

)
,

(
0

x2
1

)〉
.

As a k-vector space M(P ) can be represented by the following basis:((
1

0

)
,

(
x1

0

)
,

(
x2

1

0

)
,

(
x3

1

0

)
,

(
0

1

)
,

(
0

x1

))
.

Considering Im(P ) ⊂ D, we give also a basis as k-vector space:

((
X

(3)
1

)
,
(
X

(2)
1

)
,
(
X

(1)
1

)
,
(
X

(1)
1 X

(1)
2 +X

(2)
2

)
,
(
X

(1)
1 +X

(1)
2

)
,
(

1
))

We have the graded R-isomorphism φ : Im(P )→M(P ) given by

(
X

(3)
1

)
7→
(

1

0

)
, and

(
X

(1)
1 X

(1)
2 +X

(2)
2

)
7→
(

0

1

)
.

Note that for example

φ(1) =

(
0

x1x2

)
=

(
x3

1

0

)
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in M(P ) and that in Im(P )

x3
1 ·
(
X

(3)
1

)
= x1x2 ·

(
X

(1)
1 X

(1)
2 +X

(2)
2

)
.

For AnnR(P t) ⊂ R we obtain as generators:〈(
x4

1

)
,
(
x1x2 − x2

2

)
,
(
x2

1x2

)
,
(
x3

2

)〉
.

One sees two things: AnnR(P t)⊥ = Im(P ) and M(P t) can be represented as k-vector

space by the following basis:((
1
)
,
(
x1

)
,
(
x2

1

)
,
(
x3

1

)
,
(
x1x2

)
,
(
x2

))
We can define a graded R-module isomorphism Im(P )→ Homk(M(P t), k) given by(

X
(3)
1

)
7−→

(
m 7→

〈
m,
(
X

(3)
1

)〉
(0)
)
, and(

X
(1)
1 X

(1)
2 +X

(2)
2

)
7−→

(
m 7→

〈
m,
(
X

(1)
1 X

(1)
2 +X

(2)
2

)〉
(0)
)

for all m ∈M(P t).

We have also implemented an algorithm computing M(P ) for a given matrix P in

[Macaulay2]. One finds it in B.1. Here we use this implementation to compute some

more examples:

Examples 2.1.13. We compute four examples and check whether the Betti tables verify
our theorem.

load "dualModule.m2"

kk=QQ;

R1=kk[x_1,x_2];

P1=map(R1^1,R1^{-3,-2},matrix {{x_1^3, x_1*x_2+x_2^2}});

P1t= (transpose P1)**R1^{-3};

MP1=dualModule(P1);

MP1t=dualModule(P1t);

betti res MP1

o1 = total: 1 3 2

0: 1 . .

1: . 1 .

2: . 1 1

3: . 1 1

betti res MP1t

o3 = total: 2 3 1

0: 1 1 .

1: 1 1 .

2: . 1 .

3: . . 1
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Now we check a random matrix.

P2=random(R1^{0,-2,-3},R1^{-5,-8});

P2t= (transpose P2)**R1^{-8};

MP2=dualModule(P2);

MP2t=dualModule(P2t);

betti res MP2

o4 = total: 3 5 2

0: 1 . .

1: . . .

2: 1 . .

3: 1 3 .

4: . 2 .

5: . . 1

6: . . .

7: . . .

8: . . 1

betti res MP2t

o6 = total: 2 5 3

0: 1 . .

1: . . .

2: . . .

3: 1 . .

4: . 2 .

5: . 3 1

6: . . 1

7: . . .

8: . . 1

This time we consider more variables.

R2=kk[x_1,x_2,x_3];

P3=random(R2^{0},R2^{-3,-4});

P3t= (transpose P3)**R2^{-4};

MP3=dualModule(P3);

MP3t=dualModule(P3t);

betti res MP3

betti res MP3t

o6 = total: 1 6 7 2

0: 1 . . .

1: . . . .

2: . 6 4 .

3: . . 3 1

4: . . . 1

o7 = total: 2 7 6 1

0: 1 . . .
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1: 1 3 . .

2: . 4 6 .

3: . . . .

4: . . . 1

Here is an example over a not trivially weighted polynomial ring.

R3=kk[x_1,x_2,x_3, Degrees=>{1,2,3}];

P4=random(R3^{0},R3^{-3,-4});

P4t= (transpose P4)**R3^{-4}

MP4=dualModule(P4);

MP4t=dualModule(P4t);

betti res MP4

betti res MP4t

o9 = total: 1 4 5 2

0: 1 . . .

1: . . . .

2: . 1 . .

3: . 2 . .

4: . 1 1 .

5: . . 3 .

6: . . 1 1

7: . . . 1

o10 = total: 2 5 4 1

0: 1 . . .

1: 1 1 . .

2: . 3 . .

3: . 1 1 .

4: . . 2 .

5: . . 1 .

6: . . . .

7: . . . 1

Let us describe now R-module homomorphisms from M to Hom(M,k). They can also

be identified with matrices in divided powers.

Lemma and Definition 2.1.14. Let β : M → Hom(M,k)(−s) be a homogeneous R-

module homomorphism for some integer s. Then we define an to β associated matrix in

divided powers as follows:

Let p be minimal such that α : ⊕pj=1R(bj)→M → 0 projects on the generators of M , then

also 0→ Homk(M,k)
α∗=Homk(α,k)−→ ⊕pj=1D(−bj) is exact because the functor grHomk( , k)

is left exact and grHomk(N, k) = Homk(N, k) for N finite dimensional k-vectorspace

([BH93]).

Now let us define P ∈ HomR

(⊕p
j=1R(bj),

⊕p
j=1D(−bj − s)

)
as follows:
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0 0

��

M

OO

β
// Homk(M,k)(−s)

α∗

��

⊕pj=1R(bj)

α

OO

P // ⊕pj=1D(−bj − s)

A matrix associated to P represents β with respect to a chosen basis of M and its dual

in Hom(M,k).

If β is injective, hence an isomorphism, then moreover M ∼= M(P ) as kerP = kerα∗ ◦
β ◦ α = kerα.

About the uniqueness of an associated P to a module of finite length one can say the

following:

Theorem 2.1.15. Let P and P̃ ∈ HomR(
⊕q

i=1R(−ai),
⊕p

j=1D(−bj)), such that

M(P ) ∼= M(P̃ ). Let ( )∗ = grHomk( , k).

Then there are δ1 ∈ AutR(
⊕q

i=1R(−ai)) and δ2 ∈ AutR(
⊕p

j=1R(bj)), such that

P = δ∗2 ◦ P̃ ◦ δ1.

If the numbers of generators of M(P ) and M(P̃ ) are chosen minimally then δ1 and δ2 are

isomorphisms.

Proof. Let γ : M(P̃ )
∼=→ M(P ), hence γ∗ : Homk(M(P ), k)

∼=→ Homk(M(P̃ ), k). By
definition we have two diagrams

0 0

��

0 0

��

M(P )

OO

id // M(P )

β∗1
��

M(P̃ )

OO

id // M(P̃ )

β∗2
��

⊕qi=1R(−ai)

α1

OO

P // ⊕pj=1D(−bj), ⊕qi=1R(−ai)

α2

OO

P̃ // ⊕pj=1D(−bj).

As
⊕q

i=1R(−ai) is projective we gain the following lifting δ1:

⊕qi=1R(−ai)
γ◦α2 // M(P )

⊕qi=1R(−ai)

δ1

OO
α1

88qqqqqqqqqq
.

As γ is an isomorphism it follows that δ1 can be chosen as an isomorphism.

If we consider grHomk( , k) we can also lift and define δ2 as follows:

⊕pj=1R(bj)
γ∗−1◦β2// Homk(M(P ), k)

⊕pj=1R(bj)

δ2

OO
β1

77nnnnnnnnnnnn
,hence
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⊕pj=1D(−bj)

δ∗2
��

M(P )
β∗2◦γ−1

oo

β∗1

xxrrrrrrrrrr

⊕pj=1D(−bj) .

That means now δ∗2 ◦ P̃ ◦ δ1 = δ∗2 ◦β∗2 ◦α2 ◦ δ1 = β∗1 ◦γ ◦γ−1 ◦α1 = P . By definition the

δi fulfill the mentioned property as isomorphism, because modulo the annihilators the αi
respectively the βi are isomorphisms, too.

We have implemented in [Macaulay2] an algorithm for computing P for a given

module of finite length. On finds it in Appendix B.2. We use it for computing some

examples.

Examples 2.1.16. The procedure computeP computes one P defining a given module of
finite length. It uses the idea of the proof of 2.1.6.

load "dualModule.m2";

load "computeP.m2";

R1=QQ[x_1,x_2];

P=map(R1^{1:0,1:-1},R1^{-3,-2},matrix{{x_1^3,x_1*x_2+x_2^2},

{x_2^2,x_1}});

MP=dualModule(P);

Pn=computeP(MP);

MPn=dualModule(Pn);

HM=Hom(MP,MPn);

homomorphism(HM_{0})

o1 = {0} | 1 0 |

{1} | 0 1 |

The isomorphism between MP and MPn is induced by the identity map. That is because

MP comes with a system of generators, fixed by P. dualModule uses the same generators.

In the next example we compute via computePsymm a symmetric P for a module given
by a symmetric P . It is the same P up to a scalar multiplication.

R=ZZ/101[x_0..x_2];

P=random(R^{2:0,2:-2},R^{2:-5,2:-3});

P2=P+map(R^{2:0,2:-2},,transpose P);

P3=map(R^{2:0,2:-2},R^{2:-5,2:-3},P2);

MP=dualModule(P3);

P4=computePsymm(MP);

MP2=dualModule(P4);

HM=Hom(MP,MP2);

homomorphism HM_{0}



24 Zero Dimensional Modules over the Polynomial Ring

o2 = {0} | 1 0 0 0 |

{0} | 0 1 0 0 |

{2} | 0 0 1 0 |

{2} | 0 0 0 1 |

P3-(sub(leadCoefficient(P3_(0,0))/leadCoefficient(P4_(0,0)),R))*P4

o3 = 0

Here P3 and P4 are the same up to a scalar multiple. Using 2.1.15 we know that there

is an isomorphism δ1 such that P3 = δ∗1 ◦ P4 ◦ δ1 as both Ps are symmetric. As again all

generators are fixed δ1 is multiple of the identity map.

We compute again a symmetric P , this time in four variables.

R=ZZ/101[x_0..x_3];

P=random(R^{2:0,4:-2},R^{2:-5,4:-3});

P2=P+map(R^{2:0,4:-2},,transpose P);

P3=map(R^{2:0,4:-2},R^{2:-5,4:-3},P2);

MP=dualModule(P3);

P4=computePsymm(MP);

P3-(sub(leadCoefficient(P3_(0,0))/leadCoefficient(P4_(0,0)),R))*P4

o4 = 0

2.2 The Gorenstein Case

We focus now on the Gorenstein case: We define within this section what we mean by

calling a module Gorenstein. The main theorem of this section says basically that M(P )

is Gorenstein if and only if P is symmetric. Within this section R denotes again Sym(V )

with V = 〈x1, . . . , xn〉k, deg xl = dl > 0, k an arbitrary field, if not stated differently.

Also, let D = grHomk(R, k).

Theorem 2.2.1. Let M be a graded R-module of finite length. Moreover let τ : M −→
Homk(M,k)(−s) be an isomorphism of graded R-modules for some integer s with the

following property:

τ ∗ := Homk(τ, k) : M(s) −→ Homk(M,k)

is such that

τ ∗(−s) = τ.

Note that in the definition of τ ∗ we use the canonical isomorphism

Homk(Homk(M,k)(−s), k) ∼= M(s).

Then there exists an

P ∈ HomR

(
p⊕
i=1

R(−ai),
p⊕
i=1

D(ai − s)

)
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for some integers p, a1, . . . , ap such that the transposed matrix P t has the property

P t(−s) = P

and M ∼= M(P ).

Proof. We define P as in 2.1.14. Choose p minimal such that

α : ⊕pi=1R(−ai)→M → 0 projects on the generators of M , then also

0→ Homk(M,k)(−s) α
∗=Homk(α,k)−→ ⊕pi=1D(ai − s). P is defined by the diagram:

0 0

��

M

OO

τ // Homk(M,k)(−s)

α∗

��

⊕pi=1R(−ai)

α

OO

P // ⊕pi=1D(ai − s)
We consider the dual of the diagram (note: M is of finite length and by definition

grHomk(D, k) ∼= R):

0

��

0

Homk(M,k)

α∗

��

M(s)τ∗oo

OO

⊕pi=1D(ai) ⊕pi=1R(s− ai).
P ∗

oo

α

OO

Now we have

< P ∗(ej), ei >=< α∗τ ∗α(ej), ei >=< α∗τα(ej), ei >= Pi,j

by assumption. Here ei denotes the i-th unit vector of
⊕p

i=1R(−ai), and e∗l the l-th of⊕p
i=1D(ai). Moreover

< P ∗(ej), ei >=< e∗∗j ◦ P, ei >=<

p∑
l=1

< P (el), ej > e∗l , ei >=< P (ei), ej >= Pj,i,

hence P = P t(−s). And as in Lemma 2.1.14 M = M(P ).

Example 2.2.2. We begin with an example, coming already from a symmetric matrix,

just to follow the steps in the proof.

Let R = k[x1, x2], weights deg x1 = deg x2 = 1 and char k 6= 2.

Let

P =

(
X

(2)
1 X

(1)
2 X

(2)
2

X
(2)
2 X

(1)
1

)
∈ HomR(R(3)⊕R(2),D ⊕D(1)).

Then the R-module R(3)⊕R(2) ⊃ AnnR(P ) =〈(
0

x2
1

)
,

(
0

x1x2

)
,

(
x2

2

−x1

)
,

(
x2

1

−x2

)〉
.
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As a k-vector space M(P ) can be represented by the following basis:((
1

0

)
,

(
x1

0

)
,

(
x2

0

)
,

(
x1x2

0

)
,

(
x2

1x2

0

)
,

(
0

1

)
,

(
0

x1

)
,

(
0

x2

))
We fix the isomorphism τ : M(P )→M(P )∗(3) := Homk(M(P ), k)(3) given by

e1 =

(
1
0

)
7→

(
m 7→

〈
m,

(
X

(2)
1 X

(1)
2

X
(2)
2

)〉
(0)

)
and e2 =

(
0
1

)
7→

(
m 7→

〈
m,

(
X

(2)
2

X
(1)
1

)〉
(0)

)
.

Here m denotes an arbitrary element of M(P ).

Now let us check, if τ ∗(3) = τ : First of all we are using the canonical isomorphism

M(P )∗∗(−3) τ
∗

// M(P )∗

M(P )(−3)

∼=

OO 77ppppppppppp

and consider τ ∗ as starting from M(P )(3).

Then

τ ∗(e1) =

{
M → k

m 7→ τ(m)(e1)
.

So we have to check whether τ(m)(e1) = τ(e1)(m) for all m ∈M(P ).

This is true, for example

τ

(
0

x1

)
(e1) =

〈
e1,

(
0

1

)〉
(0) = 0 =

〈(
0

x1

)
,

(
X

(2)
1 X

(1)
2

X
(2)
2

)〉
(0) = τ(e1)

(
0

x1

)
,

and for τ ∗(e2) we obtain here

τ

(
0

x1

)
(e2) =

〈
e2,

(
0

1

)〉
(0) = 1 =

〈(
0

x1

)
,

(
X

(2)
2

X
(1)
1

)〉
(0) = τ(e2)

(
0

x1

)
.

By the definition of the associated P we obtain the above P back, as

α∗

(
m 7→

〈
m,

(
X

(2)
1 X

(1)
2

X
(2)
2

)〉
(0)

)
=

(
X

(2)
1 X

(1)
2

X
(2)
2

)
and

α∗

(
m 7→

〈
m,

(
X

(2)
2

X
(1)
1

)〉
(0)

)
=

(
X

(2)
2

X
(1)
1

)
.

Remark 2.2.3. Let again M be a graded R-module of finite length. Then we have

already used the fact that Homk(M,k) ∼= ExtnR(M,R(−
∑n

l=1 dl)) canonically as graded

R-modules.

This can be seen by using local cohomology at the maximal ideal m = 〈x1, . . . , xn〉.
As M is of finite length H0

m(M) = M . On the other hand using theorem A.6 we have in

general Homk(H
i
m(M), k) = Extn−iR (M,R(−

∑n
l=1 dl)).
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Now let us come up with a definition motivated by Theorem 2.2.1.

Definition 2.2.4 (Gorenstein). Let M be a graded R-module of finite length as above.

Then we call M weakly Gorenstein if there exists a graded isomorphism of R-modules

τ : M
∼=−→ Homk(M,k)(−s)

for some integer s.

Let M be weakly Gorenstein, and let τ have the property that

τ ∗ = Homk(τ, k) : M(s)→ Homk(M,k)

is such that

τ ∗(−s) = ±τ.

Then we call M strongly Gorenstein or simply Gorenstein.

Theorem 2.2.5. Let P ∈ HomR (
⊕p

i=1R(−ai),
⊕p

i=1D(ai − s)) be symmetric, i.e.

P t(−s) = P , then there exists τ : M(P )
∼=→ Homk(M(P ), k)(−s) such that τ ∗(−s) = τ .

Proof. Let α :
⊕p

i=1R(−ai) → M(P ) → 0 be the projection and let

α∗ : 0→ Homk(M(P ), k)(−s)→
⊕p

i=1D(ai − s) be the dual map.

Then define τ as follows:

0 0

��

M(P )

OO

τ // Homk(M(P ), k)(−s)

α∗

��

⊕pi=1R(−ai)

α

OO

P // ⊕pi=1D(ai − s).

Let m ∈ M(P ) then choose an m̃ ∈
⊕p

i=1R(−ai) such that α(m̃) = m. P (m̃) is well-

defined, as α(m̃− m̄) = 0 if and only if m̃− m̄ ∈ AnnR(P ), hence we have P (m̃− m̄) = 0.

Moreover we have 〈P (m̃), b〉 = 0 for all b ∈ AnnR(P ) as P is symmetric. Hence P (m̃) ∈
Imα∗. Therefore we can define τ(m) := (α∗)−1(P (m̃)).

τ is injective, because P (m̃) = 0 if and only if m̃ ∈ AnnR(P ), but this is only the case if

α(m̃) = 0 in M(P).

τ is surjective as it is as map of finite dimensional vectorspaces of the same dimension.

As τ ∗ is defined by the diagram

0

��

0

Homk(M(P ), k)

α∗

��

M(P )(s)τ∗oo

OO

⊕pi=1D(ai) ⊕pi=1R(s− ai)
P ∗=Poo

α

OO

we obtain τ ∗(−s) = τ .
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Example 2.2.6. In this example we want to see, what happens in the case, in which P is

non reduced. This means that a column of P is a combination of derivatives of the other

columns.

Let R = k[x1, x2] with weights deg x1 = deg x2 = 1, char k 6= 2 and

P =

 X
(3)
1 X

(2)
1 X

(1)
2

X
(2)
1 X

(1)
1 2

X
(1)
2 2 0

 ∈ HomR(R(3)⊕R(2)⊕R(1),D ⊕D(1)⊕D(2)).

Here we have (x1 + 2x2) · P1 = P2. The R-module R(3)⊕R(2)⊕R(1) ⊃ AnnR(P ) =

〈 x1 + 2x2

−1

0

 ,

 x2
2

0

0

 ,

 0

x2

0

 ,

 0

x2
1

−x2

 ,

 0

0

x1

〉 .
We represent M(P ) by the following basis: 1

0

0

 ,

 x1

0

0

 ,

 x2
1

0

0

 ,

 x3
1

0

0

 ,

 x2

0

0

 ,

 0

0

1

 .

Let m ∈M(P ) be arbitrary. Hence τ : M(P )→M(P )∗(3) can be described by

e1 =

 1
0
0

 7→
m 7→

〈
m,

 X
(3)
1

X
(2)
1

X
(1)
2

〉 (0)

 and e3 =

 0
0
1

 7→
m 7→

〈
m,

 X
(1)
2

2
0

〉 (0)

 .

We consider τ ∗ and want to see τ ∗ = τ , for example we have to check τ(m)(x2 · e1) =

τ(x2 · e1)(m) for all m ∈M(P ) as in Example 2.2.2.

For e3 we have

τ(e3)(x2 · e1) =

〈 x2

0

0

 ,

 X
(1)
2

2

0

〉 (0) = 1 =

〈
e3, x2 ·

 X
(3)
1

X
(2)
1

X
(1)
2

〉 (0) = τ(x2 · e1)(e3).

Using τ let us compute a symmetric P̃ defining τ as in 2.1.14. Note that we have

a minimal projection α : R(3) ⊕ R(1) → M(P ) → 0 defined by e1 7→ ē1 ∈ M(P ) and

e2 7→ ē3 ∈M(P ). As in example 2.2.2 we have to compute

α∗

m 7→

〈
m,

 X
(3)
1

X
(2)
1

X
(1)
2

〉 (0)

 =

(
X

(3)
1

X
(1)
2

)
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and

α∗

m 7→

〈
m,

 X
(1)
2

2

0

〉 (0)

 =

(
X

(1)
2

0

)
.

Hence we obtain P̃ =

(
X

(3)
1 X

(1)
2

X
(1)
2 0

)
∈ Hom(R(3)⊕R(1),D ⊕D(1)).

Corollary 2.2.7. Let M be a graded R-module of finite length. Assume there is a homoge-

neous isomorphism τ : M → Homk(M,k)(−s) for some integer s such that τ ∗(−s) = −τ .
Then there exists a P ∈ HomR(

⊕p
i=1R(s−ai),

⊕p
i=1D(ai)) for some integers p, a1, . . . , ap

with the properties P t(−s) = −P and M ∼= M(P ).

On the other hand if there exists a P ∈ HomR(
⊕p

i=1R(s− ai),
⊕p

i=1D(ai)) for some

integers p, a1, . . . , ap, s such that P t(−s) = −P and M ∼= M(P ), then there exists a

homogeneous R-isomorphism τ : M → Homk(M,k)(−s) such that τ ∗(−s) = −τ .

Proof. The proof is analogues to the proofs of the Theorems 2.2.1 and 2.2.5.

Remark 2.2.8. From Theorem 2.1.11 we know that any symmetric or skew symmetric

matrix P provides an isomorphism M(P ) ∼= Hom(M(P ), k)(s) for some s given by P .

Moreover in a second we see that weakly Gorensteiness does not imply Gorensteiness.

More explicitly we see that Gorensteiness implies a kind of a symmetry for all multipli-

cation forms at once. An example shows that this is not the case for a general weakly

Gorenstein module of finite length.

The next lemma gives us a strong tool in the case that M is Gorenstein. Let τ : M →
Homk(M,k)(−s) with τ ∗ = Homk(τ, k) : M(s) → Homk(M,k) such that τ ∗(−s) = ±τ .
Let M∗ = Homk(M,k). Assume that M is based in degree 0, i.e. M0 6= 0 and Mι = 0 for

all ι < 0. Note that s is the top degree of M in the sense that the Hilbert function HFM

has the property HFM(ι) = 0 for all ι ≥ s+1 and HFM(ι) = HFM(s−ι) for all 0 ≤ ι ≤ b s
2
c.

The last property is true as dimkMι = dimkM
∗(−s)ι = dimkM

∗
ι−s = dimkMs−ι. It is

naturally already true in the weakly Gorenstein case.

Lemma 2.2.9. Let M be a graded R-module, of finite length, which is Gorenstein with

two cases τ ∗(−s) = ±τ . Let B = (bi) be any homogeneous k-vector space basis of M .

There is a homogeneous basis B̃ = (b̃i) of M such that for all integers 0 ≤ h ≤ s and

all ι ≤ s − h the following property is satisfied: For all a ∈ Rι the multiplication maps

Mh

MBeB (·a)h

−→ Mh+ι and Ms−h−ι
MBeB (·a)s−h

−→ Ms−h have the property MBeB (·a)h = ±MBeB (·a)ts−h.
Here B and B̃ are restricted to the subspaces Mh and Mh+ι, respectively Ms−h−ι and

Ms−h.

Proof. Let τ−1 be the given R-module isomorphism M∗(−s) → M . Choose B̃ to be

(b̃i := τ−1(b∗i )), where (b∗i ) denotes the dual k-vectorspace basis to B. Restricting τ−1
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we obtain a vectorspace isomorphism τ−1
h : M∗

−h ⊕M∗
−s+h+ι

∼=−→ Ms−h ⊕Mh+ι. Hence

(b̃i)bi∈Mh⊕Ms−h−ι
is a vectorspace basis for Ms−h ⊕Mh+ι. Restrict B and B̃ in this way.

Define MBeB (·a) to be the vector space morphism Mh⊕Ms−h−ι
∼=−→Ms−h⊕Mh+ι given

by (
0 MBeB (·a)s−h

MBeB (·a)h 0

)
.

Then MBeB (·a)ij = b̃i
∗
(a · bj) = b∗∗i ◦ τ(a · bj) = b∗∗i ◦ (a · τ)(bj) = ±b∗∗i ◦ (a · τ ∗)(bj) =

±b∗∗j ◦ (a · τ)(bi) = ±b∗∗j ◦ τ(a · bi) = ±b̃j
∗
(a · bi) = MBeB (·a)ji.

Remark 2.2.10. In fact in the Gorenstein case the module M has a symmetric respec-

tively skew symmetric dual form, defined by M ×M → k with m×m′ 7→ τ(m)(m′). So

B̃ is the dual base of B with respect to this form.

For a chosen vector space basis B = (bi) of M in the lemma we have defined B̃ =

(τ−1(b∗i )). For exactly the same result we can also define B̃ = (τ(bi)
∗). This means if we

have chosen already B define B̃ in the first way, call it B′. Fixing B′ and applying the

lemma again with the second definition we obtain B̃′ = B.

Let us give an example for a weakly Gorenstein, but not Gorenstein module.

Example 2.2.11. Let R = k[x0, x1, x2] with all weights 1 with char k 6= 2, and

P =


X

(1)
0 X

(1)
1 0 0 0

X
(1)
1 X

(1)
2 0 0 0

0 0 0 X
(1)
1 X

(1)
2

0 0 −X
(1)
1 0 X

(1)
0

0 0 −X
(1)
2 −X

(1)
0 0

 ∈ HomR(R(1)5,D5).

We have

AnnR(P ) =

〈
x2

0
0
0
0

 ,


x1

−x2

0
0
0

 ,


x0

−x1

0
0
0

 ,


0
x0

0
0
0

 ,


0
0
x0

0
0

 ,


0
0
−x2

x0

0

 ,


0
0
x1

0
x0

 ,


0
0
0
x1

−x2

 ,


0
0
0
0
x1

 ,


0
0
0
x2

0


〉

,

and AnnR(P t) = AnnR(P ).

Using Homk(M(P ), k) ∼= M(P t) we can give an isomorphism τ : M
τ1→

Homk(M(P ), k)(−1) by τ1 : M(P ) → M(P t)(−1), ei 7→ ei. Hence M(P ) is weakly

Gorenstein.

Consider the basis B0 of M(P )0 given by the representatives of the standard vectors

B0 = (e1, e2, e3, e4, e5) and B̃1 ofM(P )1 given by (x1e2, x2e2, x1e3, x2e3, x2e5). We compute

MB0

B̃1
(xi) for all i. Then by the above lemma and remark it is enough to show that there

is no G5 ∈ Gl5(k) such that G5 ·MB0

B̃1
(xi) is symmetric respectively skew symmetric for

all i.
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MB0

B̃1
(x0) =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 0 0 0

 ,MB0

B̃1
(x1) =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0

 and MB0

B̃1
(x2) =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 .

If there were such a G5 it would have to be of the form
∗ 0 ∗ 0 0

∗ g2,2 ∗ g2,4 g2,5

∗ ±g2,4 ∗ g3,4 g3,5

∗ 0 ∗ 0 0

∗ ±g2,5 ∗ ±g3,5 g5,5

 ,

because of MB0

B̃1
(x2). Considering for example MB0

B̃1
(x1) one sees that already g4,1 = g2,5 =

g5,1 = g5,3 = 0. From MB0

B̃1
(x2) finally we get g2,4 = g3,1 = g3,3 = g1,3 = g3,4 = g2,1 =

g3,5 = 0. That gives a zero column in G5. That means it is impossible to choose G5 from

Gl5(k). Hence M(P ) is not Gorenstein.

2.3 A Structure Theorem

At the beginning of this section we recall and restate some symmetry properties of the

Koszul complex. In this sense we continue our discussion concerning it from Chapter one.

We use these properties in our symmetric resolution construction for Gorenstein modules

of finite length over the weighted polynomial ring.

More explicitly: We prove our main Theorem 0.2 and one direction of Theorem 0.3 within

this section, namely that any Gorenstein module has a selfdual minimal resolution in a

strong sense.

Notation 2.3.1. In the following — if not stated differently — let k be any field. Let

R = k[x1, . . . , xn] = Sym(V ), V = Homk(W, k), where W = (χ1, . . . ,χn), and let (xl) be

the dual vectorspace basis of (χl) with deg χl = deg xl = dl > 0. Let d =
∑n

l=1 dl.

Lemma and Definition 2.3.2 (Selfduality of the Koszul Complex I). Let 1 ≤ i ≤ n.

Consider αi : R⊗
∧iW → (R⊗

∧n−iW )∨ :

r ⊗ w 7→
{

R⊗
∧n−iW → R⊗

∧nW

(r′ ⊗ w′) 7→ (r′ · r)⊗ (w′ ∧ w),

where ( )∨ = HomR( , R⊗
∧nW ). We denote by (K(x))∨ the dual Koszul complex, i.e.

the complex resulting from applying ( )∨ to K(x). Let `(i) = b i−1
2
c. Then the following

diagram is graded commutative (as the coherent diagram for i = 1, . . . , n):
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K(x) : . . . // R⊗
∧i W

δi //

(−1)n−i(−1)`(i)αi

��

R⊗
∧i−1 W //

(−1)`(i)αi−1

��

. . .

K(x)∨ : . . . // (R⊗
∧n−i W )∨

δ∨n−i+1 // (R⊗
∧n−i+1 W )∨ // . . . .

Proof. We prove the claim on generators R⊗
∧iW 3 r ⊗ w :

r⊗w αi7→
{
R⊗

∧n−iW → R⊗
∧nW

r′ ⊗ w′ 7→ r′r ⊗ w′ ∧ w

}
δ∨n−i+17−→

{
R⊗

∧n−i+1W → R⊗
∧nW

r′′ ⊗ w′′ 7→
∑n

l=1 r
′′rxl ⊗ (xl¬w′′) ∧ w

}
.

And the other way around:

(r ⊗ w)
δi7→

n∑
l=1

rxl ⊗ (xl¬w)
αi−17→

{
R⊗

∧n−i+1W → R⊗
∧nW

(r′′ ⊗ w′′) 7→
∑n

l=1 r
′′rxl ⊗ w′′ ∧ (xl¬w).

Now the claim follows: Because of the linearity we may assume w = χ1 ∧ . . . ∧ χi and

w′′ = χi+1 ∧ . . . ∧ χν−1 ∧ χl ∧ χν ∧ . . . ∧ χn with i+ 2 ≤ ν ≤ n, 1 ≤ l ≤ i.

We show that w′′ ∧ (xl¬w) = (−1)n−i(xl¬w′′) ∧ w:

w′′ ∧ (xl¬w) = (−1)l−1χi+1 ∧ . . . ∧ χl ∧ . . . ∧ χn ∧ χ1 ∧ . . . ∧ χ̂l ∧ . . . ∧ χi =

(−1)l−1(−1)l−1(−1)n−ν+1χi+1 ∧ . . . ∧ χ̂l ∧ . . . ∧ χn ∧ χ1 ∧ . . . ∧ χl ∧ . . . ∧ χi =

(−1)n−ν+1(−1)(ν−1)−i(xl¬w′′) ∧ w =

(−1)n−i(xl¬w′′) ∧ w.

This explains the (−1)n−i in the complex map. That means in the complex map we have

a sign change at every second down arrow. The (−1)`(i) give the actual sign at the first

down arrow of a square.

This leads directly to some symmetry result of the Koszul complex:

Lemma 2.3.3 (Selfduality of the Koszul Complex II). Let n be odd and m = n−1
2

.
Consider the complex

K : 0→ (R⊗
0∧

W )∨
δ∨1→ . . . (R⊗

m∧
W )∨

δm+1◦α−1
m+1→ R⊗

m∧
W → R→ . . .

δ1→ R⊗
0∧

W → 0

with ( )∨ = HomR( , R⊗
∧nW ).

If n ≡ 3 mod 4 then the complex K is skew symmetric. That is if one chooses a homo-

geneous basis B for R ⊗
∧mW and a dual basis B∨ for (R ⊗

∧mW )∨ then δm+1 ◦ α−1
m+1

is skew with respect to these bases.

In the same manner K is symmetric if n ≡ 1 mod 4.

Proof. At first we have to show that αm+1 : R ⊗
∧m+1W

αm+1→ (R ⊗
∧n−m−1W )∨ and

αm : R⊗
∧mW

αm→ (R⊗
∧n−mW )∨ have the property that α∨m+1 = αm.
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We have n−m− 1 = m, hence we have for

α∨m+1 : R⊗
m∧
W

∼=→ (R⊗
m∧
W )∨∨

α∨m+1→ (R⊗
m+1∧

W )∨,

r′ ⊗ w′ 7→ (γ 7→ γ(r′ ⊗ w′)) 7→ (r ⊗ w 7→ (r′ · r)⊗ (w′ ∧ w)).

As w′ ∧ w = (−1)m(n−m)w ∧ w′ = w ∧ w′ the first claim follows.

Now we use Lemma 2.3.2 for i = m+ 1. We have the commutative diagram:

R⊗
∧m+1W

δm+1 //

αm+1

��

R⊗
∧mW

αm

��

(R⊗
∧mW )∨

(−1)mδ∨m+1 // (R⊗
∧m+1W )∨.

Choose a basis B in R ⊗
∧mW and a dual basis B∨ in (R ⊗

∧mW )∨. Then as

α∨m+1 = αm we have

(MB∨

B (δm+1 ◦ α−1
m+1))

t = MB∨

B ((δm+1 ◦ α−1
m+1)

∨) = MB∨

B ((α−1
m+1)

∨ ◦ δ∨m+1) =

MB∨

B (α−1
m ◦ δ∨m+1) = (−1)mMB∨

B (δm+1 ◦ α−1
m+1).

The above result is the basement for our later construction. But now let us recall some

well known fact in our case: Even in the weakly Gorenstein case we have a symmetry of

the Betti table.

Lemma 2.3.4. Let d =
∑n

l=1 dl. Let M be a graded weakly Gorenstein R-module of finite

length such that M ∼= ExtnR(M,R(−d))(−s) for some integer s. If Fi is an R-module, we

write for the moment F∨
i = HomR(Fi, R). Let

0←M ← F0 =
⊕
j≥0

R(−j)β0,j ← . . .← Fn =
⊕
j≥0

R(−j)βn,j ← 0 (∗)

be its graded free resolution. Let i ≤ n. Then Fi ∼= F∨
n−i(−s− d), i.e. βi,j = βn−i,d+s−j.

Proof. We apply the functor HomR( , R(−d)) to (∗) and obtain

0← ExtnR(M,R(−d))← HomR(Fn, R(−d))← . . .← HomR(F0, R(−d))← 0

which is a free resolution of ExtnR(M,R(−d)) as all other Ext-groups vanish (seen by

A.4 and A.6 as M is of finite length). By assumption M ∼= ExtnR(M,R(−d))(−s). This

extends to an isomorphism of complexes. Hence Fi ∼= HomR(Fn−i, R(−d))(−s). But

HomR(Fn−i, R(−d))(−s) = HomR(Fn−i, R)(−d− s) = F∨
n−i(−d− s).

For the equality βi,j = βn−i,d+s−j note that

HomR(Fn−i, R)(−d− s) = HomR(
⊕
j≥0

R(−j)βn−i,j , R)(−d− s) ∼=
⊕
j≥0

R(j − d− s)βn−i,j .
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We are able to formulate and restate the one direction of our main Theorem 0.3 within

this section now. It makes use of the first complex Construction 1.2.4 (Nielsen I) and gives

a selfduality result for the resolution of a graded Gorenstein module M in a strong sense.

That is for any free resolution of M the middle matrix with respect to dual bases is

symmetric respectively skew symmetric.

Theorem 2.3.5 (Selfduality of the Resolution). Let n be odd, m = n−1
2

.

Let M be a graded Gorenstein R-module with τ = ±τ ∗(−s). Recall that ( )∗ =

Homk( , k), and that Ai(M) = R⊗k
∧iW ⊗kM . Define φi as in Theorem 1.2.4 (Nielsen

I). Let βi : Ai(M)→ (An−i(M))∨, with ( )∨ = HomR( , R⊗
∧nW )(−s), be defined by

r ⊗ w ⊗m 7→
{

An−i(M)→ R⊗
∧nW

(r′ ⊗ w′ ⊗m′) 7→ (r′r)⊗ (w′ ∧ w)⊗ τ(m)(m′)
,

for all r, r′ ∈ R,w ∈
∧iW,w′ ∈

∧n−iW and m,m′ ∈M .

Then the graded free resolution of M

K(M) : 0→ (A0(M))∨
φ∨1→ . . . (Am(M))∨

φm+1◦β−1
m+1→ Am(M)→ . . .

φ1→ A0(M)→M → 0

is symmetric in the following sense: Let B be any homogeneous basis of Am(M) and

B∨ its dual basis of (Am(M))∨. Then the matrix representation of φm+1 ◦ β−1
m+1 has the

property:

MB∨

B (φm+1 ◦ β−1
m+1) = (−1)m ± (MB∨

B (φm+1 ◦ β−1
m+1))

t.

(Here the ± denotes the sign of τ = ±τ ∗(−s).)

Proof. As in the proof of Lemma 2.3.3 we have to see at first that βm+1 : Am+1(M)
βm+1→

(Am(M))∨ and βm : Am(M)
βm→ (Am+1(M))∨ have the property β∨m+1 = ±βm.

We have again

β∨m+1 : Am(M)
∼=→ (Am(M))∨∨

β∨m+1→ (Am+1(M))∨,

r′ ⊗ w′ ⊗m′ 7→ (γ 7→ γ(r′ ⊗ w′ ⊗m′)) 7→
{

Am+1(M)→ R⊗
∧nW,

r ⊗ w ⊗m 7→ (r′ · r)⊗ (w′ ∧ w)⊗ τ(m)(m′).

On the other hand βm maps as follows:

r′ ⊗ w′ ⊗m′ 7→
{

Am+1(M)→ R⊗
∧nW,

(r ⊗ w ⊗m) 7→ (r′ · r)⊗ (w ∧ w′)⊗ τ(m′)(m).

As w ∧ w′ = (−1)m(m+1)w′ ∧ w = w′ ∧ w and τ(m′)(m) = ±τ(m)(m′) by the Gorenstein

property the claim follows. Note that τ(m′)(m) = ±τ ∗(m′∗∗)(m) = ±m′∗∗ ◦ τ(m) =

±τ(m)(m′).

Here m′∗∗ denotes the image of m′ under the canonical isomorphism M →M∗∗.
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Let us show that the following diagram is commutative:

R⊗
∧m+1W ⊗M

βm+1 //

φm+1

��

(R⊗
∧mW ⊗M)∨

(−1)mφ∨m+1

��

(∗)

R⊗
∧mW ⊗M βm // (R⊗

∧m+1W ⊗M)∨.

On the one hand we map as follows:

r ⊗ w ⊗m
βm+17→

{
Am+1(M)→ R⊗

∧nW,

(r′ ⊗ w′ ⊗m′) 7→ (r′r)⊗ (w′ ∧ w)⊗ τ(m)(m′),

which is mapped further by φ∨m+1 to an element of (Am+1(M))∨. This is the map
Am+1(M)→ R⊗

∧nW :

(r′′⊗w′′⊗m′′) 7→
n∑
l=1

(xlr′′r)⊗((xl¬w′′)∧w)⊗τ(m)(m′′)−
n∑
l=1

(r′′r)⊗((xl¬w′′)∧w)⊗τ(m)(xlm′′).

On the other way we get

r ⊗ w ⊗m
φm+17→

n∑
l=1

(xlr)⊗ (xl¬w)⊗m−
n∑
l=1

r ⊗ (xl¬w)⊗ (xlm)
βm7→

{
Am+1(M)→ R⊗

∧n W,

(r′′ ⊗ w′′ ⊗m′′){
7→
∑n

l=1(xlrr
′′)⊗ (w′′ ∧ (xl¬w))⊗ τ(m)(m′′)−

∑n
l=1 rr′′ ⊗ (w′′ ∧ (xl¬w))⊗ τ(xlm)(m′′).

Hence because of τ(m)(xlm
′′) = τ(xlm)(m′′) the commutativity comes down to see that

(w′′ ∧ (xl¬w)) = (−1)m((xl¬w′′) ∧ w).

But that is exactly the same computation as in the proof of Theorem 2.3.2 (the selfduality

of the Koszul complex).

Now it follows with the first claim and the commutativity of (*) that

MB∨

B (φm+1 ◦ β−1
m+1)

t = MB∨

B ((φm+1 ◦ β−1
m+1)

∨) = MB∨

B ((β−1
m+1)

∨ ◦ φ∨m+1) =

±MB∨

B ((β−1
m ) ◦ φ∨m+1)) = ±(−1)mMB∨

B (φm+1 ◦ β−1
m+1).

In the following we compute an example. Our motivation to do so is to show that

the proof is constructive. That means it leads to an algorithm for the computation of a

selfdual resolution.

Example 2.3.6. We compute the middle skew symmetric map φ2 ◦ β−1
2 in a concrete

example:

Let R = k[x1, x2, x3] with deg xi = 1 and P =

(
X

(2)
1 X

(1)
2

X
(1)
2 1

)
∈ HomR(R(2) ⊕

R(1),D ⊕D(1)). Let M = M(P ).

As a first basis B of M we fix representatives:

B = (m1, . . . ,m5) =

((
1

0

)
,

(
x1

0

)
,

(
x2

0

)
,

(
0

1

)
,

(
x2

1

0

))
.
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Hence a dual basis B∗ = (µ1, . . . ,µ5) in M∗ = ImP is given by((
1

0

)
,

(
X

(1)
1

0

)
,

(
X

(1)
2

1

)
−
(

0

1

)
,

(
0

1

)
,

(
X

(2)
1

X
(1)
2

))
.

Note that within this notation an element µ ∈ D ⊕D(1) stays for the functional{
M → k

R(2)⊕R(1) 3 m 7→ 〈µ,m〉(0).

Here R(2)⊕R(1) 3 m denotes a representative of an element m ∈M .

Now we have to compute

β2 : A2(M) = R⊗
2∧
W ⊗M → (A1(M))∨ = (R⊗

1∧
W ⊗M)∨ :

1⊗ χi ∧ χj ⊗mj 7→ 1⊗ ( ∧ χi ∧ χj)⊗ τ(mj).

Note that the last expression stands for the functional{
R⊗

∧1W ⊗M → R⊗
∧3W

r ⊗ w ⊗m 7→ r ⊗ (w ∧ χi ∧ χj)⊗ τ(mj)(m).

The map τ : M →M∗(−2) can be computed by m 7→ P (m).
We represent β2 with respect to the bases

B̃ = (1⊗ χ1 ∧ χ2 ⊗m1, 1⊗ χ1 ∧ χ3 ⊗m1, 1⊗ χ2 ∧ χ3 ⊗m1, . . . , 1⊗ χ2 ∧ χ3 ⊗m5)

and

A∨
1 ⊃ B̂ = (1⊗( ∧χ1∧χ2)⊗µ1, 1⊗( ∧χ1∧χ3)⊗µ1, 1⊗( ∧χ2∧χ3)⊗µ1, . . . , 1⊗( ∧χ2∧χ3)⊗µ5).

We use the same abbreviatory notation as above. Hence we have the following matrix
representation

M
eBbB (β2) =


0 0 0 0 13

0 13 0 0 0
0 0 0 13 0
0 0 13 13 0
13 0 0 0 0

 .

where 0 is 3× 3 zero matrix and 13 stands for the 3× 3 unit matrix.

Now let us represent φ2 : A2(M(P ))→ A1(M(P )) again with respect to B̃ and the dual

basis to B̂,

B̂∗ = (1⊗ χ3 ⊗m1, 1⊗ (−χ2)⊗m1, 1⊗ χ1 ⊗m1, . . . , 1⊗ χ1 ⊗m5).
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We use the following abbreviations

K3 =

 0 x1 x2

−x1 0 x3

−x2 −x3 0

 , C1 =

 0 1 0

−1 0 0

0 0 0

 and C2 =

 0 0 1

0 0 0

−1 0 0

 .

In this notation we obtain

M
eBbB∗(φ2) =


K3 0 0 0 0

C1 K3 0 0 0

C2 0 K3 0 0

0 0 0 K3 0

0 C1 0 C2 K3

 ,

where 0 is again a 3× 3 zero matrix.

Finally we obtain the skew symmetric matrix

M
bBbB∗(φ2 ◦ β−1

2 ) = M
eBbB∗(φ2)(M

eBbB (β2))
−1 =


0 0 0 0 K3

0 K3 0 0 C1

0 0 −K3 K3 C2

0 0 K3 0 0

K3 C1 C2 0 0

 .

The blocks can be seen as follows (for example the K3 in the first column represents

φ2,0,2 ◦ β−1
2 ):

A(−1,0)(M)oo (A(−3,2)(M))∨
φ2,0◦β−1

2oo

φ2,1◦β−1
2

vvnnnnnnnnnnnn
oo

A(−2,1)(M)oo (A(−2,1)(M))∨
φ2,0◦β−1

2oo

φ2,1◦β−1

vvnnnnnnnnnnnn
oo

A(−3,2)(M)oo (A(−1,0)(M))∨
φ2,0◦β−1

2oo .oo

We can easily obtain a minimal free resolution with the same symmetry properties as

in Theorem 2.3.5:

Corollary 2.3.7. Let n ≥ 3 be an odd integer, and let m = n−1
2

. Let the characteristic

of the base field k be char k 6= 2. Let d =
∑n

l=1 dl the sum of the variable degrees, and

let f :
∧nW → k(−d) be a fixed isomorphism. Let M be a graded Gorenstein module

of finite length over R, the weighted polynomial ring. Let s be the top degree of M and
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( )∨ = HomR( , R(−d− s)).
Then there is a minimal graded free resolution of M ,

0←M ← F0
ψ1← F1 ← . . .← Fm

ψm+1← (Fm)∨ ← . . .←
ψ∨1← (F0)

∨ ← 0,

with the same symmetry properties as in Theorem 2.3.5 under the same assumptions.

Proof. The proof is constructive: We generate a graded free resolution with the symmetry

properties as in 2.3.5.

K(M) : 0←M ← A0(M)
φ1← . . . Am(M)

φm+1◦β−1
m+1←− (Am(M))∨ . . .

φ∨1← (A0(M))∨ ← 0

Consider now all maps as matrices with respect to arbitrary bases in A0(M) up to

Am(M) and the corresponding dual bases in (A0(M))∨ up to (Am(M))∨. That means φ∨i
is the transposed matrix of φi for all 1 ≤ i ≤ m.

φ1 is not minimal if and only if at least one entry aij := (φ1)ij is a unit. We perform

row and column operations to produce a matrix, which has only zeros in the ith row and

the jth column except for position (i, j). That means we multiply φ1 with an invertible

matrices G1 from the left hand side and G′
1 from the right. In the same way using the

transposed matrices G′t
1φ

∨
1G

t
1 has zeros in the jth row and ith column except for an unit

in (j, i).

Now (G′
1)
−1φ2 must have a zero jth row, and φ∨2G

′t
1
−1

a zero jth column. Cancel the ith

row and jth column from G1φ1G
′
1 and call the new map φ̃1. Do the same with the jth

row from G′
1
−1φ2, call the new map φ̃2, this gives again an exact complex at this point.

In the same manner we cancel the corresponding summand of the free modules of the

resolution. We perform the transposed operations to obtain φ̃∨2 and φ̃∨1 . Continue this

process with the new complex defined by φ1 := φ̃1, φ2 := φ̃2, φ
∨
1 := φ̃∨1 and φ∨2 := φ̃∨2 .

Once φ1 is minimal continue with φ2.

Finally one has to consider the middle matrix D := φm+1 ◦ β−1
m+1. By construction D is

homogeneous with respect to dual bases. Assume the bases to be ordered by the (total)

degree (that can always be achieved easily). That means there are no other elements

besides zeros and units at the right hand side of a unit, and there are no other elements

in the same column under a unit. We start with the lowest row containing a unit and

take its most right one, in position (i, j) say. Assume i 6= j. Clear the whole ith row with

column operations. By symmetry we can perform the same operations on rows to clear

the ith column over the symmetric unit Bj,i. Now clear the jth column over position

(i, j). This does not affect the ith column as the ith row has zeros there. Do the same

with column operations on the jth row. The only point where one has to pay attention

to is the position (j, j). If it is not zero then add both, the ith row and the ith column,
−1
2
Bj,j-times within the last operations.

Finally continue with the row and column deleting process as before.



Gorenstein Modules 39

Remark 2.3.8. Using a computer algebra system we can compute the above selfdual

symmetric resolution of a given Gorenstein Module of finite length. For this purpose we

use implemented algorithms in order to obtain the first part and make a symmetric ansatz

for the middle matrix. A syzygy computation gives the desired matrix. See B.3 for a the

code written in [Macaulay2].

Some examples using [Macaulay2] follow here.

Examples 2.3.9. The procedures resolutionsymm und resolutionskew try to find a
resolution with a skew respectively symmetric middle matrix. The symmetric respectively
skew symmetric ansatz mentioned in the remark is made with respect to the lowest possible
degree of the middle matrix. It leads to equations which we try to solve using the syzygy
command. If there is no sufficient solution the matrix given back contains zero blocks.
They can be recognized in the Betti tables as the unexpected numbers in upper rows,
which are not in a symmetric position.
randomskewP and randomsymmP chose random skew and symmetric matrices with respect
to a list and a positive integer. In the case of M(P ) the list can be thought as the
generator degrees of M(P ) and s as the top degree.
The first example is in three variables with a skew τ .

load "resolutionskew.m2"

R = ZZ/101[x_0..x_2];

gen={2:0,2:-1};

s=3;

P=randomskewP(R,s,gen);

MP=dualModule(P);

betti (C = resolutionsymm(MP))

From our theorem we know, a symmetric resolution must exist:

total: 4 10 10 4

0: 2 . . .

1: 2 10 . .

2: . . 10 2

3: . . . 2

In general there is no skew resolution.

betti (C = resolutionskew(MP))

o1 = total: 4 10 10 10

0: 2 . . .

1: 2 10 . 10

2: . . 10 .

In the same manner a symmetric random matrix in divided powers leads to a skew
symmetric resolution in three variables, but not to a symmetric resolution:
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gen={0,-1,-2};

s=4;

P=randomsymmP(R,s,gen);

MP=dualModule(P);

betti (C = resolutionsymm(MP))

o2 = total: 3 15 15 15

0: 1 . . .

1: 1 . . 15

2: 1 15 15 .

betti (C = resolutionskew(MP))

o3 = total: 3 15 15 3

0: 1 . . .

1: 1 . . .

2: 1 15 15 1

3: . . . 1

4: . . . 1

In five variables the opposite behavior is true: A general symmetric matrix in divided
powers leads to a symmetric resolution, but in general no skew symmetric.

R = ZZ/101[x_0..x_4];

s=1;

gen={2:0};

P=randomsymmP(R,s,gen);

MP=dualModule(P);

betti (C = resolutionsymm(MP))

o4 = total: 2 8 14 14 8 2

0: 2 8 10 4 . .

1: . . 4 10 8 2

betti (C = resolutionskew(MP))

o5 = total: 2 8 14 14 12 2

-1: . . . . 4 .

0: 2 8 10 4 . .

1: . . 4 10 8 2

The whole approach is independent from the weights of the variables. Again in the case
of three weighted variables and a general matrix in divided powers we gain a symmetric
but not a skew symmetric resolution.

R = ZZ/101[x_1,x_2,x_3,Degrees=>{1,2,3}];

s=4;

gen={0,-1,-1,-1};

P=randomskewP(R,s,gen);

MP=dualModule(P);

betti (C = resolutionsymm(MP))
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o6 = total: 4 11 11 4

0: 1 . . .

1: 3 1 . .

2: . 4 . .

3: . 6 . .

4: . . 6 .

5: . . 4 .

6: . . 1 3

7: . . . 1

betti (C = resolutionskew(MP))

o7 = total: 4 11 11 11

0: 1 . . .

1: 3 1 . .

2: . 4 . .

3: . 6 . 6

4: . . 6 4

5: . . 4 1

6: . . 1 .

Corollary 2.3.10 (Zero Dimensional Gorenstein Ideals). Let n be odd, m = n−1
2

, and

char k 6= 2. Let I be a homogeneous zero dimensional Gorenstein ideal in R = k[x1, . . . , xn]

with deg xl = dl > 0, d =
∑n

l=1 dl and top degree s. Then there is a minimal graded free

resolution of R/I,

0← R/I ← R
ψ1← F1 ← . . . Fm

ψm+1← F∨
m ← . . . F∨

1

ψ∨1← R(−d− s)(= R∨)← 0,

such that ψm is skew symmetric if m is odd and symmetric if m is even with respect to

dual bases. Here ( )∨ = HomR( , R(−d− s)).

Proof. We want to apply our main Theorems 2.3.5 respectively 2.3.7 that means we have

to show that a Gorenstein ideal with top degree s induces an isomorphism τ : R/I →
Homk(R/I, k)(−s) such that τ ∗(−s) = τ . By the Theorem of Macaulay A.27 we have

that I⊥ is a simple submodule of D, generated by a homogeneous element f of degree −s
(This is also clear from the definition of the associated P 2.1.7). Moreover I = Ann(f).

Hence P := (f) ∈ HomR(R(−s),D) is the symmetric matrix of Theorem 2.2.1, which

gives the existence of τ .

Remark 2.3.11. There are intersectional cases with the famous Theorem of Buchsbaum

and Eisenbud (A.23 or [BE77, Theorem 2.1]). We do not use the structure as a differential

graded algebra on the resolution of R/I, but only apply the above theorem. On the other

hand our approach is restricted to the very special case of zero dimensional ideals I of R.

Nevertheless we are not restricted on the codimension.
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2.4 Some Applications

The structure Theorem 2.3.5 has a bunch of natural applications. In this section let k be

any field if not stated differently. Moreover let R = k[x1, . . . , xn] be the usual (trivially

weighted) polynomial ring. Recall that in the context of a graded Gorenstein R-module

of finite length ( )∗ stands for the functor Homk( , k). Moreover we use the notation

from the previous section fixed in 2.3.1 — in the case d1 = . . . = dn = 1.

We start with a proposition.

Proposition 2.4.1. Let n be odd, and let m = n−1
2

. Let M be a graded Gorenstein R-

module of finite length with τ : M → (M)∗(−s) such that τ = ±(τ)∗(−s) for some s ∈ Z.

Let the Hilbert function of M be (a0, . . . , ap, ap, . . . , a0) := (dimkM0, . . . , dimkM2p+1).

Let ( )∨ = HomR( , R⊗
∧nW )(−s). Applying the Nielsen I construction, respectively

Theorem 2.3.5, we can choose a homogeneous basis B of Am(M) and its dual B∨ of

(Am(M))∨ such that we gain a resolution of type

a0 . . . a0

(
n

m−1

)
a0

(
n
m

)
a0

(
n

m+1

)
a0

(
n

m+2

)
. . . a0

...
...

ap−1 . . . ap−1

(
n

m−1

)
ap−1

(
n
m

)
ap−1

(
n

m+1

)
ap−1

(
n

m+2

)
. . . ap−1

ap . . . ap
(

n
m−1

)
ap
(
n
m

)
ap
(

n
m+1

)
ap
(

n
m+2

)
. . . ap

ap . . . ap
(

n
m−1

)
ap
(
n
m

)
ap
(

n
m+1

)
ap
(

n
m+2

)
. . . ap

ap−1 . . . ap−1

(
n

m−1

)
ap−1

(
n
m

)
ap−1

(
n

m+1

)
ap−1

(
n

m+2

)
. . . ap−1

...
...

a0 . . . a0

(
n

m−1

)
a0

(
n
m

)
a0

(
n

m+1

)
a0

(
n

m+2

)
. . . a0,

with the following property: The restriction Bp+1 of B to R⊗
∧mW ⊗Mp+1 and B∨

p+1 of

B∨ to (R⊗
∧mW ⊗Mp+1)

∨ guarantees for the constant matrix f := M
B∨

p+1

Bp+1
(φm+1 ◦β−1

m+1)

of size ap
(
n
m

)
that f = ±(−1)mf t and f(i,i) = 0 for all i.

Remark 2.4.2. In the notation of Remark 1.2.5 f represents the map

A(−p−1−m,p+1)(M)
φm+1,1◦β−1

m+1|←− (A(−p−1−m,p+1)(M))∨.

Proof of the proposition. Let Wm = (1⊗ χi1 ∧ . . . ∧ χim)(i1,...,im) be the canonical basis of

R ⊗
∧mW , and let B̃ be any homogeneous basis of M . Let B = Wm ⊗ B̃. By Theorem

2.3.5 we know that f has the property f = ±(−1)mf t, because f is the restriction of the

representation matrix of the middle map φm+1 ◦β−1
m+1 to the elements Bp+1 of B in degree

p+ 1 +m and their duals B∨
p+1 in B∨.

Let b = 1⊗ χi1 ∧ . . . ∧ χim ⊗m be any element of Bp+1, and let β be its dual element in

B∨
p+1. Then β is up to sign of the form β = ( ∧ χim+1 ∧ . . . ∧ χin)⊗ µ :={

R⊗
∧mW ⊗Mp+1 → R⊗

∧nW

r ⊗ w ⊗m 7→ r ⊗ (w ∧ χim+1 ∧ . . . ∧ χin)⊗ µ(m),
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such that i1, . . . , in ∈ {1, . . . , n} are pairwise different.

Then we obtain φm+1 ◦ β−1
m+1(β) = φm+1(χim+1 ∧ . . . ∧ χin ⊗ τ−1(µ)) = xim+1 ⊗ χim+2 ∧

. . .∧ χin ⊗ τ−1(µ) + . . .+ (−1)n−m−1xin ⊗ χim+1 ∧ . . .∧ χin−1 ⊗ τ−1(µ)− 1⊗ χim+2 ∧ . . .∧
χin ⊗ (xim+1τ

−1(µ)) + (−1)n−m−1 ⊗ χim+1 ∧ . . . ∧ χin−1 ⊗ (xinτ
−1(µ)). Hence the linear

representation of φm+1 ◦ β−1
m+1(β) does not involve χi1 ∧ . . . ∧ χim , i.e. not b. Therefore

the diagonal elements f(j,j) = 0 for all j.

Lemma 2.4.3. Let c be a positive integer with c ≥ 2. Let A ∈ kc×c be a skew symmetric

matrix with constant entries, i.e. At = −A. If char k = 2 we require moreover that

A(j,j) = 0 for all j ∈ {1, . . . , c}.
Then A is of even rank.

Proof. The proof is immediate taking into account that A is equivalent to a matrix with

zeros everywhere and blocks of form

(
0 −1

1 0

)

on the diagonal.

Corollary 2.4.4. Let n ≡ 3 mod 4, and let m = n−1
2

. Let I ⊂ R be an Artinian

Gorenstein ideal with Hilbert function (1, n, n, 1).

Then the graded minimal free resolution of R/I has a Betti table of type

0 1 m m+ 1 n

1 −
− β1,2 · · · βm,m+1 2a · · · β1,3 −
− β1,3 · · · 2a βm,m+1 · · · β1,2 −
− − 1

for some a ∈ {0, . . . , b1
2
n
(
n
m

)
c −

(
n

m−1

)
}.

Proof. First of all note that
(

n
m−1

)
and

(
n
m

)
are of equal parity. This is the case as(

n
m−1

)
· m+2

m
=
(
n
m

)
, and m is odd.

By the Theorem of Macaulay A.27 I is given by a homogeneous element f in divided
powers, such that I = AnnR(f). Let P := (f). It defines a symmetric matrix, which gives
a τ : R/I → Homk(R/I, k), such that τ ∗ is τ up to twist. Hence R/I is a Gorenstein
module of finite length in the sense of our definition. We apply the Nielsen Construction of
Theorem 2.3.5. By Proposition 2.4.1 we obtain a resolution of R/I with constant middle
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maps of type

1 . . .
(

n
m−1

) (
n
m
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n
m
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n

m−1

)
gt
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ww
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w
. . . 1

n . . . n
(

n
m−1

)
n
(
n
m

)
n
(
n
m

)
f||yyyyyyyy
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(

n
m−1
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. . . n

n . . . n
(
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n
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n
m

)
g
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w
n
(
n
m

)
n
(

n
m−1

)
. . . n

1 . . .
(

n
m−1

) (
n
m

) (
n
m

) (
n

m−1

)
. . . n,

such that f is skew symmetric, hence by the lemma of even rank. By the assumption

on the Hilbert function g and gt are of full rank. Hence the size n
(
n
m

)
of the matrix f

and the rank
(

n
m−1

)
of g are of the same parity. Therefore we can reduce f by symmetric

operations from the left and right to f̃ , a skew symmetric matrix of even size. f̃ is of even

rank. Hence a minimization gives the free submodules of even rank 2a.

We obtain the following special case in characteristic 2:

Corollary 2.4.5. Let n ≡ 1 mod 4 with n ≥ 5, and let m = n−1
2

. Let k be a field

of characteristic 2. Let I ⊂ R be an Artinian Gorenstein ideal with Hilbert function

(1, n, n, 1). Assume that
(

n
m−1

)
is of opposite parity as

(
n
m

)
. Then the graded minimal free

resolution of R/I has a Betti table of type

0 1 m m+ 1 n

1 −
− β1,2 · · · βm,m+1 2a+ 1 · · · β1,3 −
− β1,3 · · · 2a+ 1 βm,m+1 · · · β1,2 −
− − 1

for some a ∈ {0, . . . , b1
2
n
(
n
m

)
c −

(
n

m−1

)
− 1}.

Proof. As in Corollary 2.4.4 we gain by Proposition 2.4.1 a resolution of R/I with constant
middle maps of type

1 . . .
(

n
m−1

) (
n
m

) (
n
m

) (
n

m−1

)
gt

{{ww
ww
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(
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1 . . .
(
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) (
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) (
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m

) (
n

m−1

)
. . . n,



Gorenstein Modules 45

such that f is symmetric with f(j,j) = 0 for all j. That means in characteristic 2 that f

is also skew symmetric, hence of even rank. By the assumption on the Hilbert function g

and gt are of full rank. Therefore the size n
(
n
m

)
of the matrix f and the rank

(
n

m−1

)
of g

are of opposite parity. We reduce f by symmetric operations from the left and right to f̃ ,

a skew symmetric matrix of odd size. f̃ is still of even rank. That means a minimization

leads to the free submodules of even rank 2a+ 1.

Corollary 2.4.6. Let k be a field of characteristic 2. Let n = 2` − 3 for some ` ≥ 3.

Let I ⊂ R be an Artinian Gorenstein ideal with Hilbert function (1, n, n, 1). Then the

minimal free resolution of R/I is of type as in Corollary 2.4.5.

Proof. It is well known that
(
2`−1
i

)
is odd for all 0 ≤ i ≤ 2` − 1. These are the horizontal

lines of Sierpinski’s gasket one gets from Pascal’s triangle. We know
(
2`−1
i

)
=
(
2`−2
i−1

)
+
(
2`−2
i

)
for all i ≥ 1, and

(
2`−1

0

)
=
(
2`−2

0

)
. Hence the

(
2`−2
i

)
, 0 ≤ i ≤ 2`− 2, alternate with respect

to their parity, starting with odd.

Applying the formula from above again leads to the fact that the
(
2`−3
i

)
change parity in

every second step. That means
(

2`−3
2`−1−3

)
is odd and

(
2`−3

2`−1−2

)
is even as 2`−1−3 ≡ 1 mod 4.

Hence we can apply Corollary 2.4.5.

Remark 2.4.7. Sierpinski’s gasket also shows that all binomial coefficients in the interior

of the ”triangle”
(
2`−1−1

0

)
,
(
2`−1

0

)
,
(

2`−1
2`−1−1

)
,
(
2`−1
2`−1

)
and

(
2`−1

2`−1

)
,
(
2`−1−1
2`−1−1

)
are even. Hence the

only case of Corollary 2.4.5 is the case n = 2` − 3 from 2.4.6.

There are two corollaries of special interest. The first one concerns Green’s Conjecture

in characteristic 2 for curves of genus g = 2` − 1. This case was already determined for

smooth curves by Schreyer in [Sch86] and [Sch91].

Corollary 2.4.8 (Green’s Conjecture in Characteristic 2). The obvious extension of the

Green’s Conjecture to positive characteristic fails for general curves of genus g = 2` − 1

for all ` ≥ 3 in characteristic 2.

Proof. In this case Green’s conjecture would mean that minimal free resolution of canon-

ical model X ⊂ Pg−1 of the curve has a selfdual pure Betti table of type:

0 1 . . . (g − 3)/2 (g − 3)/2 + 1 . . . g − 2

1 −
− β1,2 · · · β(g−3)/2,(g−3)/2+1 −
− − β(g−3)/2,(g−3)/2+1 · · · β1,2

− − 1.

Modulo two regular elements this would lead to an Artinian Gorenstein factor ring with

Hilbert function (1, g − 2, g − 2, 1) over the polynomial ring k[x1, . . . , xg−2] with a pure

resolution. That would be a contradiction to Corollary 2.4.6.
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Remark 2.4.9. In the following by a degree sequence is meant a sequence of integers

d = (d0 < d1 < . . . < dc). A graded minimal free resolution of an R-module M is called

pure with degree sequence d if βi,j(M) = 0 except when j = di.

Note that for a given degree sequence d the Betti table of a pure minimal graded free

resolution with d is uniquely determined by the Herzog-Kühl equations up to a rational

multiple ([HK84, Theorem 1]).

It is clear that the Betti tables of graded minimal free resolutions of R-modules form a

monoid with respect to addition (take the direct sum of the corresponding modules).

The second Corollary concerns the Boji-Söderberg Conjectures ([BS06]) on the exis-

tence of Cohen-Macaulay modules over R = k[x1, . . . , xn] with pure resolutions having

any given degree sequence. The recent paper of Eisenbud and Schreyer [ES08] gives an

introduction and a proof of a strengthened form of the Boji-Söderberg Conjectures. We

can prove an experimentally verified conjecture of Eisenbud and Schreyer from page 7 of

[ES08] : They give an algorithm which expresses every Betti table of a finitely generated

graded Cohen-Macaulay module as a positive rational linear combination of the Betti

tables of Cohen-Macaulay modules with pure resolutions. That means the Betti tables of

Cohen-Macaulay modules over R lie inside a rational cone with Betti tables of pure reso-

lutions as extremal rays. By the way this result is generalized to the non-Cohen-Macaulay

case by Boji and Söderberg in their recent paper [BS08].

However it is not clear which Betti tables really are in the monoid of actual resolutions.

Eisenbud and Schreyer conjecture that the monoid of resolutions depends on the charac-

teristic of the base field k.

Corollary 2.4.10 (Monoid of Resolutions of Cohen-Macaulay Modules). The monoid of

resolutions of Cohen-Macaulay graded R-modules depends on the characteristic of k.

Proof. Let R = k[x1, . . . , x5]. Consider again the case of Artinian Gorenstein factor rings

with Hilbert function (1, 5, 5, 1). If char(k) = 0 it is easy to construct such a module with

betti table
1 0 0 0 0 0

0 10 16 0 0 0

0 0 0 16 10 0

0 0 0 0 0 1.

By Corollary 2.4.5 we know there is no Artinian Gorenstein ideal I ⊂ R over char(k) = 2

with such a resolution. Moreover any Cohen-Macaulay module over a polynomial ring

in more variables with this Betti table comes modulo a regular sequence down to this

situation: Especially the Gorenstein property follows as the associated matrix in divided

powers is symmetric (it is a 1× 1-matrix).

As mentioned above Eisenbud and Schreyer also proved that there exists a Cohen-

Macaulay module with a pure resolution for any given degree sequence ([ES08, Theorem

0.1]). However it is not clear if the lowest possible multiple of the by the Herzog-Kühl
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equations determined Betti table occurs as a resolution of a module. In the above corollary

we have seen examples for characteristic 2. Here are some characteristic independent

examples:

Corollary 2.4.11. Let ` ≥ 2. Consider the degree sequence

(0, 2`−1 + 1, 2`−1 + 2, . . . , 2` − 1, 2` + 1, . . . , 2` + 2`−1 − 2, 2` + 2`−1 − 1, 2`+1)

of length 2` − 1.

Then there is no graded Cohen-Macaulay factor ring over the polynomial ring R of codi-

mension 2` − 1 with a pure minimal free resolution having this degree sequence.

Proof. Assume there is such a factor ring M = R/I. Modulo a regular sequence we

obtain an Artinian Gorenstein factor ring of a polynomial ring in n = 2` − 1 variables

(the associated matrix in divided powers is symmetric). By abuse of notation we call the

polynomial ring again R and the factor ring M = R/I.

The Hilbert function is HFM = (a0, a1, . . . , ap, ap, . . . , a1, a0) =(
1,

(
2` − 1

1

)
,

(
2`

2

)
, . . . ,

(
2` + 2`−1 − 2

2`−1

)
,

(
2` + 2`−1 − 2

2`−1

)
, . . . ,

(
2`

2

)
,

(
2` − 1

1

)
, 1

)
with p = 2`−1. By Sierpinski’s gasket it follows that a2, . . . , ap are even: As in Remark

2.4.7 we see that these binomial coefficients are in the interior of the triangle with odd

sides.

We apply Proposition 2.4.1 and obtain that the constant ”middle” matrix f is skew

symmetric, as n = 2` − 1 ≡ 3 mod 4. Hence f is of even rank. We know that the

minimization of the resolution is set up by the minimization of the constant complexes as

C2p:

0← A(−2p,2p)(M)
φ(1,1)← A(−2p,2p−1)(M)

φ(2,1)← . . .
φ(p−1,1)← A(−2p,p+1)(M)

f← (A(−2p,p+1)(M))∨ . . .

(Recall by Remark 1.2.5 that the resolution is the total complex of the double

complex made by these constant complexes and the linear part.). We know that

rankA(−2p,2p−i)(M) = ai+1

(
2`−1
i

)
for 0 ≤ i ≤ 2`−1 − 1. Hence rankA(−2p,2p−i)(M) is

odd for i = 0 and even else.

Moreover by our assumption on the degree sequence the complex C2p is exact at all

A(−2p,2p−i)(M) for 0 ≤ i ≤ p− 2. Therefore φ(1,1) is of odd rank. By the rank behavior of

the A(−2p,2p−i)(M) we finally gain that φ(p−1,1) is of odd rank. With symmetric operations

we cancel within the minimization process a summand of odd rank from A(−2p,p+1)(M)

and (A(−2p,p+1)(M))∨. As f is of even rank in the last minimization step a summand of

odd rank remains.

Remark 2.4.12. The first case of Corollary 2.4.11 is (0, 3, 5, 8). Here the state-

ment follows also from the Theorem of Buchsbaum and Eisenbud. The next case

is (0, 5, 6, 7, 9, 10, 11, 16). Computer experiments seem to show that there are Cohen-

Macaulay factor rings in any characteristic with this degree sequence and nearly pure

resolutions such that βi,j = 0 except when j = dj and β3,8 = β4,8 = 1.
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2.5 Selfdual Resolution implies the Gorenstein Prop-

erty

In this section we want to verify that whenever a graded module M of finite length

over the polynomial ring R has a selfdual resolution, there is an R-module isomorphism

τ : M → Homk(M,k)(−s) such that τ ∗ := Homk(τ, k) = ±τ(s) for some s ∈ Z. We state

the main theorem first and give the proof at the end of the section. The theorem implies

the second direction of 0.3.

For the proof the language of category theory comes more intensively into play. Espe-

cially we work out some natural equivalences between the functors ExtnR( , R ⊗
∧nW )

and Homk( , k).

Again throughout this section let n be a positive integer, W = 〈χ1, . . . ,χn〉k, V =

Homk(W, k), with (xl) a dual basis to (χl). Let deg χl = deg xl = dl > 0, and d =
∑n

l=1 dl.

Moreover let R = Sym(V ), the weighted polynomial ring.

Frequently in this section we need notations for arbitrary elements in graded R-modules of

finite length M,N and their vectorspace duals M∗ = Homk(M,k), N∗ = Homk(N, k). We

use m ∈M, n ∈ N,µ ∈M∗ and ν ∈ N∗ to denote these elements if not stated differently.

Theorem 2.5.1. Let n be odd and let m = n−1
2

. Let M be a module of finite length

over R. Let ( )∨ = HomR( , R(−d)). We assume that M has a symmetric minimal

resolution of the form

(∗∗) 0←M ← F0
ψ1← F1 ← . . .← Fm

ψm+1← F∨
m(−s)← . . .← F∨

1 (−s)
ψ∨1 (−s)
← F∨

0 (−s)← 0

such that ψ∨m+1 = ±ψm+1 up to twist. Then there exists a graded R-module isomorphism

τ : M →M∗(−s) := Homk(M,k)(−s)

with τ ∗(−s) = ±(−1)mτ (if we identify M = M∗∗).

The proof of the theorem follows at the end of this section.

The following lemma is an essential tool for our machinery within this section.

Lemma 2.5.2. Let F1 and F2 be graded free R-modules, and let M be any graded R-module

of finite length. Let M∗ = Homk(M,k). Let A = F1⊗kM and B = HomR(F1, F2)⊗kM∗.

Recall that ∆A = ∆(F1 ⊗k M) and ∆B = ∆(HomR(F1, F2) ⊗k M∗) are modules with

respect to the diagonal action as defined in 1.2.6. Then there is a canonical R-module

isomophism

αB : ∆B ∼= HomR( ∆A,F2).
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Proof. As the tensor product, HomR( , F2) and HomR(F1, ) commute with direct sums,

it is enough to see the claim for F1 = F2 = R. Moreover let A = R ⊗k M and let

B = HomR(R,R) ⊗k M∗ be equipped with the usual (left-)module structure, i.e. for all

r ⊗m ∈ A and r′ ∈ R: r′ · r ⊗m := (r′r)⊗m (analogously for B).

We define g1 : B → ∆B such that

(r idR)⊗ µ 7→ r(idR⊗µ),

for all r ∈ R,µ ∈M∗. And define g2 : A→ ∆A by

r ⊗m 7→ r(1⊗m),

for all m ∈M .

By arguments on bases both maps are obviously isomorphisms. Moreover consider the

linear map γ : B → HomR(A,R) defined by

(r idR)⊗ µ 7→
{

∆(R⊗M)→ R

(r′ ⊗m) 7→ r idR(r′) · µ(m) = rr′ · µ(m).

Note that the last element is a functional F1 ⊗M → F2. γ is again an isomorphism.

Hence we can define αB : ∆B → Hom( ∆A,R) via

∆B
αB // HomR( ∆A,R)

HomR(g2,R)
��

B

g1

OO

γ
// HomR(A,R)

by

b 7→ HomR(g−1
2 , R) ◦ γ ◦ g−1

1 (b).

Example 2.5.3. Let the M be defined as in Example 2.3.6. Let A = A1(M) = R ⊗∧1W⊗M , i.e. F1 = R⊗
∧1W , and let F2 = R⊗

∧3W . Let ( )∨ = HomR( , R⊗
∧3W ).

We use the following abbreviation: x1 ⊗ ( ∧ χ2 ∧ χ3) stands for the functional{
R⊗

∧1W → R⊗
∧3W

r ⊗ w 7→ rx1 ⊗ w ∧ χ2 ∧ χ3.

Moreover in this example a vector v ∈
⊕

iD(ai) in divided powers denotes the k-functional{
M → k

m 7→ 〈v,m〉(0).

Then let ∆B 3 x1 ⊗ ( ∧ χ2 ∧ χ3)⊗

(
X

(1)
1

0

)
. Via g−1

1 we map it to

x1 ⊗ ( ∧ χ2 ∧ χ3)⊗

(
X

(1)
1

0

)
− 1⊗ ( ∧ χ2 ∧ χ3)⊗

(
1
0

)
γ7→

ω =


A→ R⊗

∧3 W

(r ⊗ χj ⊗m) 7→ x1r · (χj ∧ χ2 ∧ χ3) ·

〈(
X

(1)
1

0

)
,m

〉
(0)− r · (χj ∧ χ2 ∧ χ3) ·

〈(
1
0

)
,m

〉
(0).
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The last functional is an element of HomR(A,F2), let r ∈ R, χj ∈
∧1W and m ∈ M be

arbitrary.

Then HomR(g−1
2 , F2) maps it to an element in HomR( ∆A,F2), which behaves for example

as follows

x1 ⊗ χ1 ⊗
(

1

0

)
g−1
27→ x1 ⊗ χ1 ⊗

(
1

0

)
− 1⊗ χ1 ⊗

(
x1

0

)
7→

−x1 χ1 ∧ χ2 ∧ χ3 − x1 χ1 ∧ χ2 ∧ χ3 = −2x1 χ1 ∧ χ2 ∧ χ3.

In the following we use the language of categories. It is necessary to state later on our

main theorem correctly. We define three isomorphisms of functors involving the functors

( )∗ and ExtnR( , R⊗
∧nW ). We have to fix some abbreviatory notations. Let us give

exactly our definitions:

Remark and Definition 2.5.4. We denote by grMFL the category of graded R-modules

of finite length. Denote by R⊗
∧nW the free R-module sitting in degree d.

We consider the functors

( )∗ := Homk( , k), ( )∨ := HomR( , R⊗
n∧
W ), and Extn( ) := ExtnR( , R⊗

n∧
W ) :

grMFL→ grMFL .

The last one is the n-th right derived functor of the contravariant left exact functor ( )∨.

Let M ∈ Obj(grMFL). Extn(M) can be computed by taking any graded free resolution

F : . . .→ Fn → . . .→ F1 → F0 →M → 0

of M as Extn(M) = Hn(HomR(F,R⊗
∧nW )), the n-th homology group. Especially it is

independent from the choice of the resolution.

Let Pi = R ⊗k
∧iW be the free R-module by left multiplication (i.e. r′ · r ⊗ w =

(r′r) ⊗ w). Recall ∆(Pi ⊗M) means the free R-module with the diagonal action as in

Notation 1.2.6. We want to use the complex construction Nielsen IIa from 1.2.9. Fix the

canonical isomorphism f : Homk(
∧nW,

∧nW ) ∼= k, id 7→ 1.

We define a map

rM : M∗ → Extn(M)

as follows:

We apply the complex construction Nielsen II to M (using the Koszul complex (1.2.8))

and Nielsen IIa to M∗ (using the dual of the Koszul complex (1.2.9)):

0←M∗ ← ∆Bn(M
∗)

∆(ϕn)← ∆Bn−1(M
∗)← . . .← ∆B0(M

∗)← 0.



Gorenstein Modules 51

We define rM via the following diagram using the canonical isomorphisms from Lemma

2.5.2. We set αM,i := αP∨
i ⊗M∗ . Recall that Bi(M

∗) = P∨
i ⊗M∗ and Ai(M) = Pi ⊗M :

0←M∗ ← ∆Bn(M∗) ∆(ϕn)← ∆Bn−1(M∗) . . .
∆(ϕ1)← ∆B0(M∗) ← 0

↓rM ↓αM,n ↓αM,n−1 ↓αM,0

0← Extn(M) ← ( ∆(An(M))∨
( ∆φn)∨← ( ∆(An−1(M))∨ ← . . .

( ∆φ1)∨← ( ∆(A0(M))∨ ← 0.

Note that there is no index shift by our definition of the differentials here. It makes sense

to use the Koszul complex and its dual in the definition: Only in this way we are able to

apply the canonical isomorphisms from Lemma 2.5.2.

Lemma 2.5.5. Then rM is well defined as the diagram is commutative.

Proof. Let w ∈
∧iW and w′ ∈

∧i−1W be arbitrary elements. Let µ ∈ M∗, m ∈ M be

arbitrary, and let for simplicity π ∈ (P∨
i−1) be homogeneous such that 1⊗w 7→ 1⊗w ∧ w̃

for some w̃ ∈
∧n−i+1W .

The diagram commutes because if ∆Bi−1(M
∗) 3 π⊗ µ, then

cπ⊗ µ
∆(ϕi)7→

{
Pi → R⊗

∧nW

1⊗ w 7→ π(
∑n

l=1 xl ⊗ (xl¬w)) =
∑n

l=1 xlπ(1⊗ (xl¬w))

}
⊗ µ

αM,i7→{
∆Ai−1(M)→ R⊗

∧nW

1⊗ w ⊗m 7→
∑n

l=1 xlπ(xl¬w) · µ(m)−
∑n

l=1 π(xl¬w) · (xlµ)(m)

}
,

and on the other hand

π⊗ µ
αM,i−17→

{
∆Ai−1(M)→ R⊗

∧nW

(1⊗ w′ ⊗m) 7→ π(1⊗ w′) · µ(m)

}
( ∆φi)

∨

7→{
∆Ai(M)→ R⊗

∧nW

(1⊗ w ⊗m) 7→
∑n

l=1 xlπ(xl¬w) · µ(m)−
∑n

l=1 π(xl¬w) · µ(xlm).

}

Now we can define the following natural equivalence of the functors ( )∗ and Extn( ).

Let in the following - if not stated differently - ( )∨ = HomR( , R⊗
∧nW ). It is central

in order to understand the relationship between ( )∗ and Extn( ).

Theorem and Definition 2.5.6 (Equivalences of Functors I). Consider the category

grMFL. The collection of isomorphism {M 7→ rM |M ∈ Obj(grMFL)} as defined in

Lemma 2.5.4 gives an isomorphism of the functors ( )∗ and Extn( ), i.e. for all M,N ∈
Obj(grMFL) and all τ ∈ Mor(grMFL), τ : M → N , the diagram

N∗ τ∗ //

rN
��

M∗

rM
��

Extn(N)
Extn(τ)

// Extn(M)

commutes.



52 Zero Dimensional Modules over the Polynomial Ring

Proof. We resolve M and N using the Construction Nielsen II (1.2.8), as rN and rM are

defined via these resolutions. Let n ∈ N , ν ∈ N∗, m ∈ M , µ ∈ M∗, p ∈ Pi and π ∈ P∨
i

be arbitrary. Then we resolve τ by

0←M ← ∆A0(M)
∆(φ1)← ∆A1(M) . . .

∆(φn)← ∆An(M) ← 0

↓τ ↓τ0 ↓τ1 ↓τn

0← N ← ∆A0(N)
∆(φ1)← ∆A1(N) ← . . .

∆(φn)← ∆An(N) ← 0,

where τi : ∆(Pi ⊗M) → ∆(Pi ⊗ N), p ⊗ m 7→ p ⊗ τ(m). Moreover we resolve M∗ and

N∗ via Nielsen IIa (1.2.9) and τ ∗ by

0←M∗ ← ∆Bn(M
∗)

∆(ϕn)← ∆Bn−1(M
∗) . . .

∆(ϕ1)← ∆B0(M
∗) ← 0

↑τ∗ ↑τ∗n ↑τ∗n−1 ↑τ∗0

0← N∗ ← ∆Bn(N
∗)

∆(ϕn)← ∆Bn−1(N
∗) ← . . .

∆(ϕ1)← ∆B0(N
∗) ← 0.

Here τ ∗i : ∆Bi(N
∗)→ ∆Bi(M

∗),π⊗ν 7→ π⊗ τ ∗(ν). We dualize the above diagram with

( )∨ = HomR( , R⊗
∧nW ). Then we connect the dual of the upper diagram with the

lower one via the isomorphisms αM,i = αBi(M∗) and αN,i = αBi(N∗) from 2.5.2. In total we

have nearly gained the commutativity of

(An(M))∨

τ∨n

← . . . ← (A0(M))∨

τ∨i

← 0

Bn(M
∗)
αM,n

??��

OO

τ∗n

←− . . . ← B0(M
∗)

OO

τ∗i

αM,i

??��

← 0

(An(N))∨ . . .← (A0(N))∨ ← 0

Bn(N
∗)
αN,n

??��

←− . . . ← B0(N
∗)

αN,i

??��

← 0.

Note that we skip the ∆( ) in order not to overstress the diagram. The only leftover is

to see the commutativity of the diagrams

∆Bi(M
∗)

αM,i
// ( ∆Ai(M))∨

∆Bi(N
∗)

τ∗i

OO

αN,i
// ( ∆Ai(N))∨.

τ∨i

OO

But that is obviously true. Finally we derive the commutativity of

M∗ rM // Extn(M)

N∗

τ∗

OO

rN // Extn(N).

Extn(τ)

OO

We need to define two other equivalences of functors. They are both used in the main

tool of this section, Theorem 2.5.9.
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Lemma and Definition 2.5.7 (Equivalences of Functors II). We consider on grMFL

two collections of maps. Let M ∈ Obj(grMFL), then we define

sM : M → Extn(Extn(M))

to be the canonical isomorphism. We can compute it as follows: Let

0←M ← F0 ← . . .← Fn ← 0

be any graded free resolution of M . Then sM is resolved by:

0← Extn(Extn(M)) ← ((F0)∨)∨ ← ((F1)∨)∨ . . . ← ((Fn)∨)∨ ← 0
↑sM ↑sM 0 ↑sM 1 ↑sM n

0←M ← F0 ← F1 ← . . . ← Fn ← 0,

where

sMi :

{
Fi → ((Fi)

∨)∨

a 7→ (α 7→ α(a))
.

sM is independent from the resolution.

Moreover we define uM : M →M∗∗ by µ 7→ (φ 7→ φ(µ)).

Both collections {M 7→ sM |M ∈ Obj(grMFL)} and {M 7→ uM |M ∈ Obj(grMFL)}
give obviously isomorphisms of the functors id and Extn(Extn( )), respectively id and

(( )∗)∗.

Corollary 2.5.8 (Equivalences of Functors III). In grMFL the collection {M 7→ tM |M ∈
Obj(grMFL)}, with

tM := Extn(rM) ◦ sM : M → Extn(M∗),

is an isomorphism of functors: id→ Extn(( )∗).

Proof. Let M,N ∈ Obj(grMFL), and let τ ∈ Mor(grMFL), τ : M → N , then the

following diagram commutes:

Extn(N∗) Extn(M∗)
Extn(τ∗)

oo

Extn(Extn(N))

Extn(rN )

OO

Extn(Extn(M))
Extn(Extn(τ))
oo

Extn(rM )

OO

N

sN

OO

M.τ
oo

sM

OO

This is true as the upper part is just Extn( ) of the diagram from 2.5.6.
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The following theorem describes the connection between the two functors ( )∗ =

Homk( , k) and Extn( ) = ExtnR( , R ⊗k
∧nW ) in grMFL. It is central for our main

theorem. That is for the part of Theorem 0.3 we prove within this section. We state it

in the language of the categories from the above isomorphisms of functors (2.5.6, 2.5.7,

2.5.8).

Theorem 2.5.9. Let n be odd, and let m = n−1
2

, and let M,N ∈ Obj(grMFL) and

τ ∈ Mor(grMFL), τ : M → N . Using the isomorphisms of functors from above the

following diagram commutes:

M∗ rM // Extn(M)

N∗

(−1)mτ∗

OO

tN∗
// Extn(N∗∗).

Extn(τ)◦Extn(uN )

OO

Remark 2.5.10. Besides the technical details the central point of this theorem is the

following: For the definition of rM we need to resolve M via the Koszul complex, and M∗

via the dual Koszul complex. Moreover tN∗ — at least in the case N = M∗ — is roughly

Extn( ) of rM . That is why we have to resolve this time N∗ via the Koszul complex and

N∗∗ via its dual. The nature of the Koszul complex finally gives the sign.

Let us continue with the detailed proof.

Proof of Theorem 2.5.9. Let again Pi = R ⊗k
∧iW . Recall that ∆Ai(M) = ∆(R ⊗∧iW ⊗M) and ∆Bi(M) = ∆((R ⊗

∧iW )∨ ⊗M). rM and tN∗ are defined in 2.5.6 and

2.5.8 using certain resolutions. We resolve now τ ∗ and Extn(τ) via these resolutions. The

resolutions use the complex constructions Nielsen II (1.2.8) and Nielsen IIa (1.2.9).

At first we resolve τ . Let `(i) = b i−1
2
c, then we obtain the following commutative

diagram:

0←M ← ∆A0(M) . . .← ∆Am(M) ∆(φm+1)← ∆Am+1(M) . . . ← ∆An(M)← 0
↓τ ↓τ̃0 ↓(−1)`(m)τ̃m ↓(−1)(m+`(m))τ̃m+1 ↓(−1)mτ̃n

0← N ← ∆Bn(N) . . .← ∆Bm+1(N) ← ∆Bm(N) . . . ← ∆B0(N)← 0
↓uN ↓uN n ↓uN m+1 ↓uN m ↓uN 0

0← N∗∗ ← ∆Bn(N∗∗) . . .← ∆Bm+1(N∗∗) ∆(ϕm+1)←− ∆Bm(N∗∗) . . . ← ∆B0(N∗∗)← 0,

where τ̃i : ∆(R⊗
∧iW ⊗M)→ ∆((R⊗

∧n−iW )∨ ⊗N) is given by

r ⊗ w ⊗m 7→
{
R⊗

∧n−iW → R⊗
∧nW

(r′ ⊗ w′) 7→ (rr′)⊗ w′ ∧ w

}
⊗ τ(m),

for all m ∈M , w ∈
∧iW , w′ ∈

∧n−iW and r, r′ ∈ R . Moreover uNi : P∨
i ⊗N → P∨

i ⊗N∗∗

is defined by id⊗uN .
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The diagram commutes by Lemma 2.3.2, because the τ̃i behave exactely as the map
between the Koszul complex and its dual.
Applying ( )∨ = HomR( , R⊗

∧nW ) to the diagram we obtain

0← Extn(M)← ( ∆An(M))∨ . . . ( ∆Am+1(M))∨
( ∆φm+1)∨← ( ∆Am(M))∨ . . . ( ∆A0(M))∨ ← 0

↑
Extn(τ)◦
Extn(uN ) ↑

(−1)m(τ̃n)∨◦
uN 0

∨ ↑
(−1)(m+`(m))(τ̃m+1)∨◦

uN m
∨ ↑

(−1)`(m)(τ̃m)∨◦
uN m+1

∨ ↑
(τ̃0)∨◦
uN n

∨

0← Extn(N∗∗)← ( ∆B0(N∗∗))∨ . . . ( ∆Bm(N∗∗))∨
( ∆ϕm+1)∨← ( ∆(Bm+1(N∗∗))∨ . . . ( ∆Bn(N∗∗))∨ ← 0

In the same manner as above we resolve (−1)mτ ∗ (also using Nielsen II and Nielsen IIa):

0←M∗ ← ∆Bn(M∗) . . .← ∆Bm+1(M∗) ∆(ϕm+1)← ∆Bm(M∗) . . . ← ∆B0(M∗)← 0

↑(−1)mτ∗ ↑(−1)mfτ∗0 ↑(−1)m+`(m) fτ∗m ↑(−1)`(m)τ̃∗m+1 ↑fτ∗n
0← N∗ ← ∆A0(N∗) . . .← ∆Am(N∗) ∆(φm+1)← ∆Am+1(N∗) . . . ← ∆An(N∗)← 0,

where τ̃ ∗i : ∆Ai(N
∗)→ ∆Bn−i(M

∗) is defined by

(r ⊗ w ⊗ ν) 7→
{
R⊗

∧n−iW → R⊗
∧nW

r′ ⊗ w′ 7→ (rr′)⊗ w′ ∧ w

}
⊗ τ ∗(ν)

for all ν ∈ N∗, w ∈
∧iW , w′ ∈

∧n−iW and r, r′ ∈ R .

Consider the canonical isomorphism from 2.5.2, respectively 2.5.4: αM,i : ∆Bi(M
∗)

∼=→
( ∆Ai(M))∨. Hence (αN∗,n−i)

∨ : ∆An−i(N
∗)

∼=→ ( ∆An−i(N
∗))∨)∨

∼=→ ( ∆Bn−i(N
∗∗))∨. We

connect the two diagrams using them.

Let us show the commutativity of the following diagram for all n ≥ i ≥ 0:

∆Bi(M
∗)

αM,i
// ( ∆Ai(M))∨

∆An−i(N
∗)

gτ∗n−i

OO

(αN∗,n−i)
∨
// ( ∆Bn−i(N

∗∗))∨.

(τ̃i)
∨◦(uN,n−i)

∨

OO

Let r ∈ R,ν ∈ N∗, n∗∗ ∈ N∗∗, w ∈
∧n−iW, w̃ ∈

∧iW and m ∈ M be arbitrary.

Moreover let π ∈ P∨
n−i, such that 1⊗ w 7→ 1⊗ w ∧ w′ for some fixed w′ ∈

∧iW .

∆An−i(N
∗) 3 1⊗ w ⊗ ν 7→

{
Bn−i(N

∗∗)→ R⊗
∧nW

π⊗ n∗∗ 7→ π(w) · ν(n)

}
τ̃∨i ◦u∨N,n−i7−→{

Ai(M)→ R⊗
∧nW

(1⊗ w̃ ⊗m) 7→ (w ∧ w̃) · ν(τ(m)) = (−1)i(n−i)(w̃ ∧ w) · ν(τ(m))

}
,

and first applying τ̃ ∗n−i we have

1⊗ w ⊗ ν 7→ (1⊗ ( ∧ w)⊗ ν ◦ τ) 7→
{

Ai(M)→ R⊗
∧nW

(1⊗ w̃ ⊗m) 7→ (w̃ ∧ w) · ν(τ(m))

}
,
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which equals to the above expression as n is odd. Note again that in the last row 1⊗( ∧w)

stands for the functional

R⊗
i∧
W → R⊗

n∧
W, r ⊗ w̃ 7→ r ⊗ (w̃ ∧ w).

Taking into account the commutativity of the diagrams from Lemma 2.5.4 we have

that the right part of the next diagram commutes (note that for the commutativity we

need n to be odd). On the other hand we derive by the definition of the considered

equivalences of functors on the left the diagram of the theorem. For clarity we use a

reduced notation.

0← Extn(M)
OO

Extn(τ)

← (An(M))∨
OO

← . . . ← (A0(M))∨ ← 0
OO

0← M∗
rM

??���

OO

(−1)mτ∗

←− Bn(M
∗)

αM,n

??��

OO
← . . . ←− B0(M

∗)← 0
αM,0

??��

OO

Extn(N∗∗)← (B0(N
∗∗))∨← . . . ← (Bn(N

∗∗))∨ ← 0

0← N∗ oo
tN∗

??���

A0(N
∗)
(αN∗,0)∨
??��

← . . . ← An(N
∗)← 0
(αN∗,n)∨
??��

The following example shows a little more concretely the appearance of the sign.

Example 2.5.11. We give an example using the devided powers notation from the first

section.

Let R = k[x1, x2, x3] with deg xi = 1, we consider again the examples

PM =

(
X

(2)
1 X

(1)
2 X

(2)
2

X
(2)
2 X

(1)
1

)
, PN =

(
X

(2)
1 X

(1)
2

X
(1)
2 1

)
.

As a k-vector space M = M(PM) can be represented by((
1
0

)
,

(
x1

0

)
,

(
x2

0

)
,

(
x1x2

0

)
,

(
x2

1

0

)
,

(
x2

1x2

0

)
,

(
0
1

)
,

(
0
x1

))
,

and N = M(PN) by ((
1
0

)
,

(
x1

0

)
,

(
x2

0

)
,

(
0
1

)
,

(
x2

1

0

))
.

Moreover there is a well-defined map τ : M → N , such that(
1
0

)
7→

(
1
0

)
, and

(
0
1

)
7→

(
0
1

)
.

We consider the commutative diagram (( )∨ = HomR( , R⊗
∧3W )):

0←M∗ ← ∆B3(M∗) ∆(ϕ3)← ∆B2(M∗) ∆(ϕ2)← ∆B1(M∗) ∆(ϕ1)← ∆B0(M∗)← 0
↑−τ∗ ↑−fτ∗0 ↑−fτ∗1 ↑fτ∗2 ↑fτ∗3

0← N∗ ← ∆A0(N∗) ∆(φ1)← ∆A1(N∗) ∆(φ2)← ∆A2(N∗) ∆(φ3)← ∆A3(N∗)← 0.
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And connect it via the isomorphisms αM,i and (αN∗,n−i)
∨ towards behind with

0← Ext3(M)← ( ∆A3(M))∨
( ∆φ3)∨← ( ∆A2(M))∨

( ∆φ2)∨← ( ∆A1(M))∨
( ∆φ1)∨← ( ∆A0(M))∨ ← 0

↑Ext3(τ) ↑−(τ̃3)∨ ↑−(τ̃2)∨ ↑(τ̃1)∨ ↑(τ̃0)∨

0← Ext3(N)← ( ∆B0(N))∨
( ∆ϕ1)∨← ( ∆B1(N))∨

( ∆ϕ2)∨← ( ∆B2(N))∨
( ∆ϕ3)∨← ( ∆B3(N))∨ ← 0.

As an abbreviation we denote by

(
X

(1)
1

0

)
the functional m 7→

〈(
X

(1)
1

0

)
,m

〉
(0). In

the same manner

(
X

(1)
1

0

)
◦ τ is meant.

Let m ∈ M and n ∈ N be arbitrary. For example if we map first via ∆(φ2), then
with −τ̃ ∗1 and αM,2 we obtain

A2(N∗) 3 1⊗ χ1 ∧ χ2 ⊗

(
X

(1)
1

0

)
7→ x1 ⊗ χ2 ⊗

(
X

(1)
1

0

)
− x2 ⊗ χ1 ⊗

(
X

(1)
1

0

)
−fτ∗17→{

R⊗
∧2 W → R⊗

∧3 W

r′ ⊗ w′ 7→ −x1r
′ ⊗ (w′ ∧ χ2)

}
⊗

(
X

(1)
1

0

)
◦ τ +

{
R⊗

∧2 W → R⊗
∧3 W

r′ ⊗ w′ 7→ x2r
′ ⊗ (w′ ∧ χ1)

}
⊗

(
X

(1)
1

0

)
◦ τ

αM,27→


∆(A2(M))→ R⊗

∧3 W

1⊗ w′ ⊗m 7→ −x1 ⊗ (w′ ∧ χ2) ·

〈(
X

(1)
1

0

)
, τ(m)

〉
(0)+

(w′ ∧ χ2) ·

〈(
1
0

)
, τ(m)

〉
(0) + x2 ⊗ (w′ ∧ χ1) ·

〈(
X

(1)
1

0

)
, τ(m)

〉
(0)

}
.

Let us see how this functional for example behaves on the element

1⊗ χ1 ∧ χ3 ⊗
(
x1

0

)
∈ ∆(P2 ⊗M) = ∆A2(M).

It is mapped to −x1 · χ1 ∧ χ3 ∧ χ2 = x1 · χ1 ∧ χ2 ∧ χ3.

If we first apply the isomorphism (αN∗,2)
∨ towards behind, map then via (τ̃1)

∨

and finally (φ2)
∨ we have

1⊗ χ1 ∧ χ2 ⊗

(
X

(1)
1

0

)
7→


∆(B2(N))→ R⊗

∧3 W

π⊗ n 7→ π(χ1 ∧ χ2)

〈(
X

(1)
1

0

)
, n

〉
(0)

 (τ̃1)∨7→


A1(N)→ R⊗

∧3 W

1⊗ w
′′ ⊗m 7→ (χ1 ∧ χ2 ∧ w

′′
)

〈(
X

(1)
1

0

)
, τ(m)

〉
(0)

 .
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To understand its image under (φ2)
∨ it is the easiest to see how it behaves as a functional

in ( ∆A2(M))∨. We choose the same element of ∆A2(M) as above. Then we have:

1⊗ χ1 ∧ χ3 ⊗
(
x1

0

)
∆(φ2)7→ x1 ⊗ χ3 ⊗

(
x1

0

)
− x3 ⊗ χ1 ⊗

(
x1

0

)
=

x1 ·
(

1⊗ χ3 ⊗
(
x1

0

))
− 1⊗ χ3 ⊗

(
x2

1

0

)
− x3 ·

(
1⊗ χ1 ⊗

(
x1

0

))
7→ x1 · χ1 ∧ χ2 ∧ χ3.

Hence we derive the commutativity of the diagram of Theorem 2.5.9:

M∗ rM // Ext3
R(M,R⊗

∧3W )

N∗

−τ∗

OO

tN∗
// Ext3

R(N,R⊗
∧3W ).

Ext3(τ)

OO

Now we are able to prove the central theorem of the section, Theorem 2.5.1. Together

with the main theorem of the last section, Theorem 2.3.5, we gain our main result 0.3.

It basically says that our definition of Gorensteiness is actually equivalent to having a

selfdual resolution.

Proof of Theorem 2.5.1. Let again ( )∨ = HomR( , R(−d)).
Using the given selfdual resolution, we define an isomorphism τ ′ : M →
ExtnR(M,R(−d))(−s) as follows: We consider the dual of the resolution and obtain an
obvious map of complexes as seen in the diagram. By abuse of notation, we denote by

id : Fi
∼=7→ F∨∨

i the canonical isomorphism, too.

0←M ← F0
ψ1← . . .← Fm

ψm+1← F∨
m(−s) ← . . .

ψ∨1 (−s)
← F∨

0 (−s)← 0
↓τ ′ ↓id ↓id ↓±id ↓±id

0← ExtnR(M,R(−d− s)) ← (F∨
0 )∨ ← . . .← (F∨

m)∨
±ψm+1← F∨

m(−s) ← . . .
ψ∨1 (−s)
← F∨

0 (−s)← 0.

Applying HomR( , R(−d)) to the diagram, we obtain (here ExtnR( ) denotes
ExtnR( , R(−d)):

0← ExtnR(M) ← (F∨
0 (−s))∨ . . . (F∨

m(−s))∨
±ψm+1← F∨

m . . . F∨
0 ← 0

↑Extn
R(τ ′) ↑±id ↑±id ↑id ↑id

0← ExtnR(ExtnR(M)(−s)) ← (F∨
0 (−s))∨ . . . (F∨

m(−s))∨
ψm+1← ((F∨

m)∨)∨ . . . ((F∨
0 )∨)∨ ← 0.

We want to make use of the machinery developed within this section. Especially our aim

is to apply Theorem 2.5.9. Therefore in what follows we identify R⊗
∧nW ∼= R(−d), via

r ⊗ χ1 ∧ . . . ∧ χn 7→ r
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Recall that sM : M
∼=→ ExtnR(ExtnR(M,R(−d)), R(−d)) (see 2.5.7) is the derived iso-

morphism from the canonical isomorphism between the resolution of M and

HomR(HomR( , R(−d)), R(−d)). From the diagrams we obtain

ExtnR(τ ′)(−s) = ±τ ′ ◦ s−1
M . (*)

Finally we use the isomorphism rM : M∗ ∼=→ ExtnR(M,R(−d)) from 2.5.4 to define τ :

M →M∗(−s) as

τ := r−1
M (−s) ◦ τ ′. (**)

We apply Theorem 2.5.9 to the situation N = M∗(−s). Hence we obtain (note that

by definition tN = Extn(rN) ◦ sN (see 2.5.8)):

τ ∗ = (−1)mr−1
M ◦ Extn(τ) ◦ Extn(uM∗)(s) ◦ tM∗∗(s)

(∗∗)
=

(−1)mr−1
M ◦ Extn(τ ′) ◦ Extn(rM)−1(s) ◦ Extn(uM∗)(s) ◦ Extn(rM∗∗)(s) ◦ sM∗∗(s)

(∗)
=

±(−1)mr−1
M ◦ τ

′(s) ◦ s−1
M (s) ◦ Extn(rM)−1(s) ◦ Extn(uM∗)(s) ◦ Extn(rM∗∗)(s) ◦ sM∗∗(s)

(1)
=

±(−1)mr−1
M ◦ τ

′(s) ◦ u−1
M (s)

(∗∗)
=

±(−1)mτ(s) ◦ u−1
M (s).

For (1) it remains to show the commutativity of the following diagram:

M∗∗ sM∗∗−→ Extn Extn(M∗∗)
Extn(rM∗∗ )−→ Extn(M∗∗∗)

↓u
−1
M (2) ↓Extn Extn(uM )−1

(3) ↓Extn(uM∗ )

M
s−1
M←− Extn Extn(M)

Extn(rM )−1

←− Extn(M∗).

Diagram (2) commutes as {M 7→ sM |M ∈ Obj(grMFL)} is an isomorphism of functors

(see 2.5.7): id→ Extn(Extn( )). Apply this property to the morphism u−1
M : M∗∗ →M .

Diagram(3) commutes as

M∗∗∗
u−1

M∗
//

rM∗∗
��

M∗

rM
��

Extn(M∗∗)
Extn(uM )

// Extn(M)

(3a)

commutes by using the isomorphism of functors property of {M 7→ rM |M ∈
Obj(grMFL)} (see 2.5.6), ( )∗ → Extn( ), and applying it to the morphism: uM :

M →M∗∗ (note that u∗M = u−1
M∗). Apply Extn( ) to (3a) and gain

Extn(M∗∗∗) Extn(M∗)
Extn(uM∗ )−1

oo

Extn Extn(M∗∗)

Extn(rM∗∗ )

OO

Extn Extn(M).
Extn Extn(uM )
oo

Extn(rM )

OO

Inverting all maps on the right hand side gives (3). Hence we have finished the proof.



60 Zero Dimensional Modules over the Polynomial Ring

Remark 2.5.12. In the proof — omitting for a second the technical details — we see

the reason why we needed tM∗ to be mainly Extn(rM∗): It is because it vanishes together

with Extn(rM)−1 form the definition of Extn(τ), and we can compute τ ∗ in terms of τ .
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A.1 Local Cohomology and Homological Algebra

In this section we want to recall some well known notions and corollaries from the theory

of local cohomology. Let k be any field. In the following, let — if not further specialized —

R always be a Noetherian ring and N an R-module. We are interested in the case where

N is a finitely generated graded module over R = Sym(V ) with V = 〈x1, . . . , xn〉k (as

k-vectorspace) with weights deg xl = dl ≥ 1. Let m = (x1, . . . , xn), and let X = SpecR.

In this case we work out the connection between Hj
m( ) and Extn−jR ( , R(−

∑n
l=1 dl)).

The second part excerpts some results around the famous Theorem of Buchsbaum and

Eisenbud from ”Algebra Structures for Finite Free Resolutions, and some Structure The-

orems for Ideals of Codimension 3” ([BE77]).

Let us now recall the used definitions.

Definition A.1 (Local Cohomology). Let m ⊂ R be any ideal. We define the zeroth

local cohomology module of N to be

H0
m(N) = {n ∈ N |mdn = 0 for some d}.

This defines by restriction of any homomorphism φ : N → M a left exact functor, its

derived functors are called Hj
m ([Eis05, A1A]).

Definition A.2 (Cohomology with Supports). Let F be a sheaf of modules on a topo-

logical space X and let Y ⊂ X be a closed subset. Then let ΓY (X,F ) denote the group

of sections with support on Y ([Har67]). This a left exact functor, its derived functors

are called Hj
Y (X, ). Sometimes we write Hj

m(X, ), if X = SpecR and m ⊂ R is an ideal

such that Y = V (m).

Remark A.3. If m ⊂ R and X = SpecR, then local cohomology is compatible with

sheafification:

Hj
m(X, Ñ) = Hj

m(N),

for all j ≥ 0, see for example [Har77, Exercise III.3.3].

Lemma A.4. Let X = Spec(R). Let m ⊂ R be an ideal, and let m ∈ N>0. Moreover let

N be a finitely generated R-module. Then are equivalent:

(i) Hj
m(X, Ñ) = 0 for all j < m

(ii) depth(m, N) ≥ m.

Proof. [Har67, Theorem 3.8].

Lemma A.5. Let m ⊂ R be any ideal and let U = Spec(R) − V (m). Then there is an

exact sequence:

0→ H0
m(N)→ N → H0(U, Ñ |U)→ H1

m(N)→ 0
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and there are isomorphisms

Hj(U, Ñ |U) ∼= Hj+1
m (N)

for all j > 0.

The same is true for the following setting on the weighted projective space: Let R =

Sym(V ) and m = (x1, . . . , xn). Consider the projective space P(d1, . . . , dn) = Proj(R).

Let N be a finitely generated graded R-module, and consider instead of Hj(U, Ñ |U) the

direct sum
⊕

dH
j(Proj(R), M̃(d)).

Proof. [Har67, Proposition 2.1] and [Eis94, Theorem A.4.1]

Lemma A.6. Let R = Sym(V ), and let m = (x1, . . . , xn). Let N be a finitely generated

graded R-module. Then for all j we have the following (homogeneous) isomorphism of

R-modules

(Hj
m(N))∗ ∼= Extn−jR (N,R(−

n∑
i=1

di)),

where ( )∗ denotes Homk( , k).

Proof. [BH93, Theorem 3.6.29].

Lemma A.7. Let R = Sym(V ), and m = (x1, . . . , xn). Let N be a finitely generated

graded R-module. Then if j < depth(m, N) or j > dimN = dim annN , we have

Hj
m(N) = 0.

Proof. The assertion on depth is a special case of A.4 using A.3. For the second assertion

we use A.6 and the Cohen-Macaulayness of R and can follow the proof of [Eis05, A 1.16]

for this case.

For completeness we recall the Auslander-Buchsbaum formula, which is valid in the

graded and the local case.

Lemma A.8 (Auslander-Buchsbaum). Let (R,m) be any local (not necessarily Noethe-

rian) ring (respectively a positively graded ring, such that m = ⊕i>0Ri), and let N be a

finitely generated (respectively graded) R-module. Let N be of finite projective dimension.

Then we have the following connection between the projective dimension and the depth of

N

pd(N) = depth(m, R)− depth(m, N).

Proof. [Eis94, Theorem 19.9 and Exercise 19.8].

Another very powerful lemma of Peskine and Szpiro is the following:
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Lemma A.9 (Acyclicity Lemma). Let

K : 0→ Fn
φn→ Fn−1 → ...→ F1

φ1→ F0

be a complex of finitely generated modules Fj over a local ring R with maximal ideal m

such that depth(m, Fj) > j. If there is a homology module HjK 6= 0 for some j > 0, then

there is some j such that we have depth(m, HjK) ≥ 1.

Proof. See [PS72, Lemma 1.8] or [Eis94, Lemma 20.11].

Definition A.10. Let R be any ring, and let l ≥ 1 be an integer. Let φ : F → G be a

morphism of free modules over R. Then denote by Il(φ) the ideal of all l× l-minors of φ.

If l = rankφ, then define I(φ) := Il(φ).

Lemma A.11 (Acyclicity Lemma, Second Version). Let R be a Noetherian ring. Let

K : 0→ Fn
φn→ Fn−1 → ...→ F1

φ1→ F0

be a complex of finitely generated free R-modules Fj. Then K is exact if and only if for

each j:

rankφj + rankφj+1 = rankFj and

depth I(φj) ≥ j or I(φj) = R.

Proof. [BE77, Theorem 3.1].

Definition A.12 (alternating). Let R be a any ring, and let F be a finitely generated free

R-module. Let ( )∨ = HomR( , R). Then a morphism φ : F∨ → F is called alternating

if φ is skew symmetric with respect to dual bases. I.e. for any basis B of F let B∨ be the

dual basis of F∨. Then MB∨
B (φ) = −(MB∨

B (φ))t and MB∨
B (φ)(i,i) for all i.

Remark A.13 (Pfaffian). Assume the situation of Definition A.12. If rankF is odd, then

det(φ) = 0, if rankF is even, then there is some element Pf(φ) ∈ R, called the Pfaffian

of φ (a polynomial in the entries of φ), such that

det(φ) = (Pf(φ))2.

If m = rankF is odd one considers the ideal generated by the Pfaffians of the skew

symmetric matrices φj resulting form deleting the j-th row and column (we identify φ

and its matrix). We define Pfn−1(φ) to be the ideal generated by these submaximal

Pfaffians of φ. If l ≥ 1 is any integer, then call by Pf l(φ) the ideal of all Pfaffians of all

skew symmetric l × l-submatrices (obtained from φ by deleting rows and corresponding

columns).
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Remark A.14. Note the following for our usage of the term depth: Let I be an ideal in a

ring R. Let N be any module over R. Then depth(I,N) denotes the length of a maximal

N -sequence in I. Whereas by depth I we mean depth(I, R). Sometimes in the literature

the last one is called grade(I).

Definition A.15 (Canonical Module — local case). Let (R,m) be a Cohen-Macaulay

local ring of dimension d. A finitely generated R-module ωR is a canonical module of R if

ExtjR(R/m, ωR) ∼=
{

0 for j 6= d,

R/m for j = d.

Definition A.16 (Canonical Module — graded case). Let (R,m) be a Cohen-Macaulay

graded local ring of dimension d. A finitely generated graded R-module ωR is a canonical

module of R if there exist homogeneous isomorphisms

ExtjR(R/m, ωR) ∼=
{

0 for j 6= d,

R/m for j = d.

Theorem A.17. Let (R,m) be a Cohen-Macaulay graded local ring, and let ωR be a graded

canonical module of R. Then ωR is uniquely determined up to homogeneous isomorphism.

Proof. [BH93, Proposition 3.6.9]

Theorem A.18 (Construction of Canonical Modules). Let (S, n) be a graded Cohen-

Macaulay ring with canonical module ωS. Let (R,m) be a graded Cohen-Macaulay S-

algebra which is finitely generated as S-module. Then R has a canonical module. If

c = dimS − dimR, then

ωR ∼= ExtcS(R,ωS).

Proof. [BH93, Proposition 3.6.12]

Example A.19. Let R = k[x1, . . . , xn] be the weighted polynomial ring with variables of

degree d1, . . . , dn > 0, and let m = (x1, . . . , xn) be the graded maximal ideal. Then the

Koszul complex yields a graded free resolution of R/m with last term R(−
∑n

l=1 dl). If

we apply Hom( , R) to the complex we obtain that ExtnR(R/m, R) = (R/m)(
∑n

l=1 dl).

Hence ωR = R(−
∑n

l=1 dl).

Definition A.20 (Gorenstein Ring— local case). A Cohen-Macaulay ring (R,m) is

Gorenstein if ωR exists and is isomorphic to R.

Definition A.21 (Gorenstein Ring— graded case). A Cohen-Macaulay graded local ring

(R,m) with canonical module ωR is Gorenstein if ωR ∼= R(a) with a homogeneous iso-

morphism for some a ∈ Z.

Example A.22. Let R be the weighted polynomial ring from A.19. Then R is Gorenstein.

Moreover let f1, . . . , fc be weighted homogeneous polynomials of degrees δ1, . . . , δc such

that f1, . . . , fc form a regular sequence. Then R′ = R/(f1, . . . , fc) is Gorenstein with

canonical module ωR′ = R′(−
∑n

i=0 εi +
∑c

j=1 δj) (see [Eis94, Exercise 21.16]).
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Let us continue with the famous Theorem of Buchsbaum and Eisenbud.

Theorem A.23 (Buchsbaum and Eisenbud). Let R be Noetherian and local with maximal

ideal m.

1. Suppose m ≥ 3 is an odd integer, and let F be a free R-module of rank m. Let

φ : F∨ → F be an alternating map of rank m − 1 whose image is contained in

mF∨. Let Pfm−1(φ) be the ideal generated by the submaximal Pfaffians of φ. Then

depth Pfm−1(φ) ≤ 3, and if depth Pfm−1(φ) = 3, then Pfm−1(φ) is a Gorenstein

ideal. Moreover in this case the complex

R
V(m−1)/2(φ)←− F

φ← F∨ (
V(m−1)/2(φ))∨←− R∨ ← 0

is exact. Here
∧(m−1)/2(φ) denotes the linear map defined by the submaximal Pfaf-

fians of φ and an alternating sign (here φ is identified with a representing matrix).

2. Conversely any Gorenstein ideal I of depth I = 3 arises as in 1).

Proof. [BE77, Theorem 2.1]

Remark A.24 (Buchsbaum and Eisenbud). Let R = k[x1, . . . , xn] be the polynomial

ring over a field k, and let F be a free R-module of odd rank m. Let m = 〈x1, . . . , xn〉,
and let ( )∨ = HomR( , R(d)) for some d ∈ Z. Let φ : F∨ → F be a homogeneous

alternating map of rank m−1. Under these assumptions the Theorem of Buchsbaum and

Eisenbud A.23 is also valid. See for example [IK99, Theorem B.2.].

Lemma A.25. Let R be any ring, and let φ : F∨ → F be an alternating morphism. Let

m ≥ 1 be an integer. Then

1. I2m(φ) ⊂ Pf2m(φ) ⊂ rad(I2m(φ)),

2. I2m−1(φ) ⊂ Pf2m(φ),

3. If rankφ = 2m − 1 is odd, then I2m−1(φ) is nilpotent. If rankF = 2m − 1, then

detφ = 0.

Proof. [BE77, Corollary 2.6]

Lemma A.26. Let F2
φ2→ F1

φ1→ F0 be an exact sequence of free R-modules. Then

rad(I(φ2)) ⊃ rad(I(φ1)).

Proof. [BE77, Proposition 3.2]
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A.2 Divided Powers

In this section let k be a field of arbitrary characteristic if not mentioned otherwise. We

follow the notation of the books of Iarrobino and Kanev ([IK99]) and Eisenbud ([Eis94]).

Let R = k[x1, . . . , xn] =
⊕

j≥0Rj be the weighted polynomial ring, with weights deg xi =

di ≥ 1.

Let D be the graded dual of R, i.e.

D = grHomk(R, k) =
⊕
j≥0

Homk(Rj, k) =
⊕
j≥0

D−j
pr−→ D0 = k.

We denote by xu = xu1
1 · · ·xun

n , ui ∈ N and ‖u‖ = d1 · u1 + · · · + dn · un = j, the

standard monomial basis of Rj. By X1 = X
(1)
1 , . . . , Xn = X

(1)
n we mean the basis dual

to x1, . . . , xn (here V = 〈x1, . . . , xn〉 can be viewed as sub vectorspace of R) and by

X(u) = X
(u1)
1 · · ·X(un)

n the basis elements of D−j dual to the basis {xu : ‖u‖ = j}.
There is a left action of GLn(k) on V given by A · xi =

∑n
j=1Ajixj. It extends to an

left action on R = Sym(V ). By duality we have also a left action of GLn(k) on D defined

by GLn(k)×D → D : (A, f) 7→ f(A−1 ).

Following [Eis94] one can define an algebra structure on D. Consider the diagonal

map ∆̃ : V → V ⊕ V , defined by x 7→ (x, x), and view V as k-vectorspace. Then we have

the following map of symmetric algebras

R = Sym(V )→ Sym(V ⊕ V )
∼=→ Sym(V )⊗k Sym(V ) = R⊗k R,

defined for elements on V by

x 7→ (x, x) 7→ x⊗ 1 + 1⊗ x

and by its linear extension. Call it ∆. The map τ : D⊗D → grHomk(R⊗R, k) is defined

by τ(d1 ⊗ d2)(x⊗ y) = d1(x)d2(y). We obtain by dualizing ∆:

ψ = ∆∗ ◦ τ : D ⊗D → D.

With that multiplication D is called divided power algebra. It is infact an associative

and commutative algebra ([Eis94]Proposition A.2.4).

One can treat the development of divided powers from a more axiomatic point of view

which we do in the following.

Definition A.20 (System of Divided Powers). Let A be graded commutative k-algebra

with A0 = k, then a system of divided powers in A consists of a collection of functions,

one for each integer d ≥ 0 : X 7→ X(d), defined on A>0 = ∪i>0Ai. These functions fullfill
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the following axioms for all X, Y ∈ A>0:

X(0) = 1, X(1) = X, degX(d) = d · degX,

X(d)X(e) = (d+ e)!/(d!e!)X(d+e),

(X(d))(e) = ((de)!/e!(d!)e)X(de),

(XY )(d) = d!X(d)Y (d) = XdY (d) = X(d)Y d,

(aX)(d) = adX(d) for a ∈ A0, and

(X + Y )(d) =
d∑
e=0

X(e)Y (d−e).

Remark A.21. If k is of charateristic char(k) = 0 then the existence is trivial for any

algebra A as in Definition A.20 : Simply take X(d) = Xd/d!. Moreover from the second

relation of A.20 we get that this choice is unique.

More concrete in the case of A = D over k with char(k) = 0 we can set

X(u) =
1

u!

∂

∂xd
=

1

u1! · . . . · un!
∂

∂xu1
1

· · · ∂

∂xun
n

.

The existence of a system of divided powers is true over any field:

Proposition A.22. The algebra D = grHomk(Sym(V ), k) has a system of divided powers.

Moreover D is freely generated as a vectorspace over k by the divided powers which form

a dual basis to the basis (xu) of Sym(V ).

Proof. [Eis94, Propositions A 2.6 and A 2.7]

Example A.23. The dual basis to (xu) at the beginning of this section, which we have

also denoted by (X(u)), consists of divided powers, which are generators of the divided

power algebra D. For example we show that X
(2)
1 ·X

(1)
1 = (2+1)!

2!1!
X

(3)
1 with respect to the

above defined multiplication ψ on D.

X
(2)
1 X

(1)
1 (x3

1) = τ(X
(2)
1 ⊗X

(1)
1 )(((x1, x1)⊗S (x1, x1))⊗S (x1, x1)) =

τ(X
(2)
1 ⊗X

(1)
1 )(((x2

1 ⊗ 1) + 2(x1 ⊗ x1) + (1⊗ x2
1))⊗S (x1 ⊗ 1 + 1⊗ x1)) =

τ(X
(2)
1 ⊗X

(1)
1 )(((x3

1⊗1)+2(x2
1⊗x1)+(x1⊗x2

1))+((x2
1⊗x1)+2(x1⊗x2

1)+(1⊗x3
1))) = 3.

Note that within this notation if we write for example (x1, x1)⊗S (x1, x1), equivalently

as (x1e1 + x1e2)⊗S (x1e1 + x1e2), then ((x2
1 ⊗ 1) + 2(x1 ⊗ x1) + (1⊗ x2

1)) means x2
1e
⊗S2
1 +

2x1e1 ⊗S x1e2 + x2
2e
⊗S2
2 , where ⊗S denotes the symmetric algebra.

Definition A.24. For all (i, j) ∈ N2
0 we define a contraction map

Ri ×D−j −→ D−j+i

as follows: Let φ ∈ Ri and f ∈ D−j. If j < i then let φ · f be 0 and else the functional

ψ 7−→ f(φψ) for ψ ∈ Rj−i.
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Remark A.25. D has a graded R-module structure with the above contraction action.

That is why we consider the negative grading of D.

The induced map Ri×D−i → D0
∼= k is a perfect pairing. All elements of D have negative

degree, e.g. X
(2)
1 X

(1)
2 has degree −3. In this context a graded homomorphism is defined

as usually. Moreover in terms of basis one has

xu1
1 · · ·xun

n ·X
(j1)
1 · · ·X(jn)

n = X
(j1−u1)
1 · · ·X(jn−un)

n .

Lemma A.26. The contraction map is equivariant with respect to the left action of A ∈
GLn(k) mentioned above.

Proof. We have that A · (φ · f) = (A ·φ) · (A · f), because if φ ∈ Ri, f ∈ D−j and ψ ∈ Rj−i

then

A · (φ · f)(ψ) = (φ · f)(A−1ψ) = f(φ(A−1ψ)) = f(A−1(Aφ)(A−1ψ)) =

f(A−1((Aφ)ψ)) = ((A · φ) · (A · f))(ψ)

Let us recall the famous Theorem of Macaulay ([Mac16, §60]). It states the corre-

spondence between homogeneous forms in divided powers and graded Artinian Gorenstein

quotients. Again we use the formulation of Iarrobino and Kanev.

Theorem A.27 (Macaulay). There is a bijective correspondence

{f ∈ Dj mod k∗} σ→ {A = R/I}

with A a graded Artinian Gorenstein quotient of socle degree j. The correspondence is

given by σ(f) = R/AnnR(f), where AnnR( ) is the annihilator of f under the contrac-

tion map.

Proof. [IK99, Lemma 2.12]
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All the following code is written in [Macaulay2].

The next example is for computing the the module M(P ), see 2.1.5, where P is matrix

given in divided powers. Moreover one might verify Theorem 2.1.11.

Example B.1. The procedure dualModule(P) computes the module M(P ) for any given

matrix P in divided powers.

dualModule=(P)->(

R:=ring P;

v:= (max degrees R)#0;

deg1:= degrees target P;

deg2:= degrees source P;

s := max flatten apply(#deg2,i-> max(apply(#deg1,j-> deg2#i-deg1#j)));

t := min degrees target P;

t1:= -(t#0);

T:= target P;

S:= source P;

u:= -max degrees S;

Sd:= degrees S;

S1:= R^(apply(#Sd,i-> (Sd#i)#0));

F1:= (T)**R^t;

--- possible basis of the annihilator

As := apply((s+v+1),i->basis(i,F1));

s1 := rank target P;

s2 := rank source P;

AAn:=map(F1,R^{},0);

--- compute the annihilator

for j from 0 to (s+v) do (

A:=As#j;

while (rank source A == 0) and (j < (s+v)) do (j=j+1; A=As#j;);

s3:= rank source A;

--- we make an ansatz A*P, simulating the contraction action of the

--- base ring on P

A2a:= matrix(apply(s2,l->apply(s3,m -> sum(s1,k->

contract((A_(k,m),P_(k,l)))))));

A2:=map(S1**R^u,R^{s3:-s+j},A2a);

--- and compute the annihilator via constant syzygies

syzA2:=syz(A2,DegreeLimit => (s-j));

s4:= rank source syzA2;

syzA22:=map(R^{s3:-j},R^{s4:-j},syzA2);
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AA := A*syzA22;

--- saving all annihilator vectors

AAn=map(F1,directSum(source AAn, source AA),(AAn|AA)););

coker AAn);

For a given module of finite length over the weighted polynomial ring we compute the

associated matrix in divided powers.

Example B.2. computeP(M) computes for any module of finite length over the (weighted)

polynomial ring an associated matrix in divided powers. That meansM(P) ∼= M. In general

the computed matrix P is pretty redundant, in the sense that is much larger than it needs

to be.

computeP=(M)->(

R:=ring M;

n:=dim R;

s:=sum(n,i->(degrees vars R)#1#i#0);

Rcan:=R^{-s};

ResM:=res M;

F0:=target(ResM.dd_1);

Fn:=source(ResM.dd_(n));

--- in the free resolution F0 and Fn give information on the

--- socle degree of the module M, which restricts the

--- base vectors one has to consider for P

sockeldegree:=(max degrees Fn)#0-s;

Fnc:=Fn**(R^{s+sockeldegree-1});

dFn:=unique degrees Fnc;

Pa:={basis(sockeldegree-1+(dFn#0)#0,F0)};

apply((#dFn-1),i->Pa=join(Pa,{basis(sockeldegree-1+(dFn#(i+1))#0,F0)}));

--- A is the presentation matrix of M, we make again

--- an ansatz and simulate the contraction action of

--- A on Pa

A:= ResM.dd_1;

cond:=apply(#Pa,l->(matrix apply((rank source A),i->

apply((rank source Pa#l),j->sum((rank target Pa#l),k->

contract(A_(k,i),(Pa#l)_(k,j)))))));

cond2:=apply(#cond,l->(map(R^(-degrees source A),

R^(-degrees source Pa#l),cond#l)));

db:=apply(#cond2,l->max degrees source cond2#l);

--- the syzygy command gives a possible solution for P

sol:=apply(#cond2,l->syz(cond2#l,DegreeLimit=>db#l));
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P1:=apply(#sol,l->Pa#l*sol#l);

P11:=P1#0;

apply((#P1-1),l->P11=(P11|P1#(l+1)));

P:=map(F0,,P11);

P);

It is more complicated to compute a associated symmetric matrix in divided powers for

a given of finite length. Naturally this is only possible if the module is Gorenstein (see

Chapter 3). computePsymm(M) gives an associated symmetric divided power matrix for M

back, if possible. M should be defined over a (weighted) polynomial ring in an odd number

of variables.

computePsymm=(M)->(

R:=ring M;

varsR:=apply(rank source vars R,i-> (vars R)_(0,i));

dvarsR:= flatten (degrees vars R)#1;

kk:=coefficientRing R;

n:=dim R;

s:=sum(n,i->(degrees vars R)#1#i#0);

Rcan:=R^{-s};

ResM:=res M;

F0:=target(ResM.dd_1);

Fn:=source(ResM.dd_(n));

sockeldegree:=(max degrees Fn)#0-s;

dF0:=flatten degrees F0;

dF0u:=unique dF0;

Pa:=apply(#dF0u,i->basis(sockeldegree-dF0u#i,F0));

--- as above Pa provides a basis of vectors which can

--- occur in P

ddF0u:=apply(#dF0u,i->sum(#dF0,j-> if((dF0#j)==(dF0u#i)) then 1 else 0));

ddF0u2:=apply(#ddF0u,i->sum(i,j->ddF0u#j));

len:=#dF0;

varnb:=sum(len,i->sum(len-i,j->(rank source

basis((sockeldegree-dF0#(j+i)-dF0#i),R))));

--- S sets up a new polynomial ring in variables standing

--- for the coefficients of the entries of symmetric power matrix

--- in general forms

varS:=join(varsR,apply(varnb,i->a_(i+1)));

dvarS:=join(dvarsR,{varnb:1});

S:=kk[varS,Degrees=>dvarS];

dP:=matrix apply(len,i->apply(len,j->(rank source

basis((sockeldegree-dF0#(j)-dF0#i),R))));

dP2:=matrix apply(len,i->apply(len,j-> if (i<=j) then
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sum(i+1,k-> if (k<i) then sum(len-k,l->dP_(k,l+k)) else

sum(j-i+1,l->dP_(l+i,i))) else 0));

dP3:=matrix apply(len,i->apply(len,j-> if (i==j) then dP2_(i,j)

else 0));

dP4:= dP2+transpose dP2-dP3;

dP5:=apply(#dF0u,i->dP4_{ddF0u2#i..(ddF0u2#i+ddF0u#i-1)});

dP6:=apply(#dF0u,i->dP_{ddF0u2#i..(ddF0u2#i+ddF0u#i-1)});

A:=apply(#dF0u,l-> matrix apply(ddF0u#l,i->flatten

apply(len,j->apply((dP6#l)_(j,i),k->a_((dP5#l)_(j,i)-(dP6#l)_(j,i)+k+1)))));

A2:=apply(#dF0u,l->map(S^(-degrees source Pa#l),,transpose A#l));

A3:=apply(#dF0u,l->sub(Pa#l,S)*A2#l);

A4:=A3#0;

apply(#A3-1,l->A4=(A4|A3#(l+1)));

--- Ages is finally the symmetric ansatz in general forms in divided power

--- polynomials over S

Ages:=map(S^(-degrees F0),,A4);

M1:= sub(ResM.dd_1,S);

len2:=rank source M1;

--- cond gives the conditions from the contraction action of the

--- presentation matrix M1 on Ages

cond:= gens ideal matrix apply(len2,i->apply(len,j->sum(len,k->

contract(M1_(k,i),(Ages)_(k,j)))));

S2:=kk[apply(varnb,i->a_(i+1))];

md:=max dF0u;

mid:=min dF0u;

xd:=md-mid;

xs:=apply(xd,i->sub(basis(i+1,R),S));

I:=ideal mingens ideal sub(sub(cond,S2),S);

apply(xd,i->I=I+ideal mingens ideal sub(sub(contract(xs#i,cond),S2),S));

--- sol is the solution for the coefficients in this case

sol:=vars S%I;

I2:=sub(sol,S2);

I22:=mingens ideal sub(I2,S);

sol2:=apply(rank source I22,i-> I22_(0,i)=>random(0,S));

Ages2:=sub(sub(Ages,sol),sol2);

--- Ages3 is finally the associated symmetric matrix in divided powers

Ages3:=map(R^(-degrees F0),,sub(Ages2,R));

Ages3);

The following code describes how to compute a symmetric respectively skew symmetric
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resolution for a Gorenstein module of finite length. We give in resolutionsymm the

symmetric approach. The skew symmetric approach is analogous.

Example B.3. resolutionsymm=(MP)->(

R := ring MP;

kk:= coefficientRing(R);

n := rank source vars R;

middlematrix:=floor(n/2)+1;

resMPn:=res MP;

deg1:=degrees target resMPn.dd_middlematrix;

deg2:=degrees source resMPn.dd_middlematrix;

sizemat:= #deg1;

deg2i:=apply(sizemat,i->deg2#(sizemat-i-1));

deg3:= flatten apply(sizemat,i->apply(sizemat,j-> if(deg2i#j-deg1#i > {0})

then deg2i#j-deg1#i else {1}));

S:=kk[d_(0,0)..d_((sizemat-1),(sizemat-1)),Degrees=>deg3];

--- degrees in d1, constant part to 0

d1:=(matrix apply(sizemat,i->apply(sizemat,j-> if (deg2i#j-deg1#i > {0})

then d_(i,j) else 0)));

d2:=flatten matrix(d1-transpose d1);

d3:=ideal d2;

d4:=vars S%d3;

--- invert gradings

deg1n:=apply(sizemat,i->-deg1#i);

deg2in:=apply(sizemat,i->-deg2i#i);

D:=map(S^deg1n,S^deg2in,substitute(d1,d4));

--- D is a homogeneous symmetric ansatz

SR:=S**R;

An:=resMPn.dd_(middlematrix-1);

I:=gens ideal (sub(An,SR)*sub(D,SR));

varsD:= mingens ideal sub(D,SR);

Mdiff:=sub(transpose diff(transpose(varsD),I),R);

--- only degree 0 syzygies von are relevant

DD:=syz(Mdiff,DegreeLimit => 0);

--- chose a random solution

r:= random(R^(rank source DD),R^1);

DD2:=DD*r;

ID:=ideal(varsD-(transpose(sub(DD2,SR))));

SolD:=vars SR%ID;



D1:=sub(sub(D,SR),SolD);

Db:=sub(D1,R);

--- form new complex with respect to dual basis

use R;

resDb:=res image Db;

C=new ChainComplex; C.ring=R;

apply(middlematrix,i->C#i=resMPn_i);

apply((middlematrix-1),i->C.dd#(i+1)=resMPn.dd_(i+1));

apply(middlematrix,i->C#(i+middlematrix)=resDb_i);

C.dd#(middlematrix)=Db;

apply((middlematrix-1),i->C.dd#(i+middlematrix+1)=resDb.dd_(i+1));

C)
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[BS06] M. Boji and J. Söderberg, Graded betti numbers of Cohen-Macaulay mod-

ules and the multiplicity conjecture, math.AC/0611081, 2006.

[BS08] , Betti numbers of graded modules and the multiplicity conjecture

in the non-Cohen-Macaulay case, math.AC/0803.1645v1, 2008.

[Cam32] L. Campedelli, Sopra alcuni piani doppi notevoli con curve di diramazione

del decimo ordine, Atti della Accademia Nazionale dei Lincei 15 (1932).

[DS07] W. Decker and F.-O. Schreyer, Varieties, Gröbner bases and algebraic
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Atti Acad. Naz. Lincei 14 (1931).

[God49] , Sur la construction de surfaces non rationelles de genres zéro,
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symmetric Hilbert function, 29

symmetric multiplication matrices, 29

Gorenstein ring

graded, 65

Grade, 65

Graded Betti number, 3, 4

of a module, 3

Graded local ring, 3

Graded module, 2

Graded ring, 2

Green’s Conjecture, 45

Homogeneous element, 2

Homogeneous morphism, 3

Koszul complex, 4

is selfdual I, 31

is selfdual II, 32

Length, 6
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Length

finite, 6

Local cohomology, 62

and Extn−jR , 63

and dimension, 63

Local cohomology

and depth, 62

and homology on the punctured spec-

trum, 62

Main theorem, 34, 48

Matrix in divided powers, 14

Minimal graded free resolution, 3

Minimal selfdual resolution, 37

Minors

ideal of, 64

Module of finite length, resolution of, 7

Monoid of resolutions, 46

Multiplication matrix, 17

Nielsen I, 7

Nielsen II, 10

Nielsen IIa, 10

Nieslson constructions are isomorphic, 11

P-notation, 15

Pfaffian, 64

ideal generated by the submaximal, 64

Pure resolution, 46

Quotient of P in R, 16

is of finite length, 16

Selfduality of the resolution, 34

Strongly Gorenstein, 27

Symmetric resolution implies Gorenstei-

ness, 48

System of divided powers, 67

Theorem

Gorensteiness implies symmetric P, 27

main, first part, 34

main, second part, 48

main, second part

proof of, 58

of Auslander and Buchsbaum, 63

of Buchsbaum and Eisenbud, 66

of Macaulay, 69

of Peskine and Szpiro, 64

symmetric P implies Gorensteiness, 24

Top degree, 7

in the Gorenstein case, 26

Weakly Gorenstein, 27

has symmetric Betti table, 33

is not Gorenstein, 30

Weighted polynomial ring, 31
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