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Abstract

In this work, we are going to explore new possibilities of demosaicing
algorithms for Bayer-Pattern images, using edge- and coherence enhancing
anisotropic di�usion. Demosaicing is simply a specialized kind of interpola-
tion, which is applied to so called color-�ltered images (images with missing
color values in a �xed pattern). Di�usion as an image processing method is
closely related to the physical process of di�usion. In image processing, dif-
fusion algorithms equilibrate concentration di�erences of color-values across
the image plane. In the case of demosaicing, one wants to �ll the gaps on the
image grid with the aid of this process. However, to preserve the structure
of the image, one has to prevent propagation of this �ux across edges, thus
a good edge estimation is substantial for the di�usion algorithm to deliver
adequate results. By exploiting di�erent channels from various color models,
we will try to achieve a stable edge detection.

In the �rst section, we will give a short introduction to the basics of
digital image capturing and the kind of post-processing that is necessary to
represent images digitally. We are also going to take a look at the challenges,
that arise with such methods.

Next we will illustrate the concept of di�usion from an image processing
point of view. This will lead us to the structure tensor, a tool for edge
description. We will examine several channels from di�erent color models to
�nd a suitable edge detector, to control the di�usion process.

The next section will introduce ways of measuring the quality of demo-
saicing algorithms. This will allow us to judge the quality of our method
compared to some traditional demosaicing algorithms and some commercial
applications. We will present the results obtained with this method.

In the last section we are going to draw conclusions of di�usion-based
demosaicing in general, look at applicability to other color-�lter-patterns and
give an outlook at what can be expected by such algorithms in the future.

Appendix A gives a short introduction to already available linear and
nonlinear demosaicing algorithms.

The di�usion algorithms used in this paper were developed by the Mathe-
matical Image Analysis Chair at Saarland University. This paper is partially
based on the previous work on this topic from [Rus10].
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1 Introduction

In this section, we will give a short overview of how digital cameras record
images and what kind of post-processing has to be performed to obtain the
�nal full-color image.

1.1 Representation of Digital Images

Digital images are usually represented using a two-dimensional grid of single
picture elements, called pixels. Each pixel comprises data that are necessary
for displaying an image (such as color-, intensity-, lightness- or luminosity-
values, . . . ). Digital photo and video cameras employ the same principle to
record images. Most digital image sensors consist of a rectangular grid of
sensor elements, also called sensels. Each sensor element responds to incom-
ing photons. An electric charge is created which is then transformed into
electronic signals. Those signals are digitized and stored. Since the sensor
is not able to di�erentiate between wavelengths of incoming light, we only
end up with a monochrome image, which means that no color information
is available at �rst. The incoming light has to be color-�ltered before it hits
the sensor, to obtain color information. This process of capturing images
digitally from an engineering standpoint is explained in [Nak06].

One of the most common representations for displaying color images is the
RGB color model. In this format, every pixel contains three color-coded val-
ues (for red, green and blue). All other colors in this color-space are derived
from combinations of those three values. Since a color-�ltered sensor only
records one color information per pixel, this means that two color values are
therefore missing for a proper representation in this format. In some camera
designs, this problem is approached by installing three di�erent sensors in
a camera and fork the lightwaves through a prism in the camera lens. This
solution is of course very expensive and sophisticated, and therefore only
used in some professional environments. Another solution is pixel-binning,
in which each pixel is merged from several subpixels. This would of course
decrease the resolution three or four times or make sensors and camera optics
much bigger and more expensive.

1.2 The Bayer Color Filter Array

Another more feasible approach is to use only one sensor with a combina-
tion of di�erent color-�ltered sensor elements. These color �lters have to
be distributed in an even pattern across the whole sensor. An additional
array of tiny microlenses in front of the �lter-array concentrates the light
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and ampli�es the electric charge. Such a construction is referred to as Color
Filter Array (CFA). Figure 1a illustrates this concept. Now, each sensel only
receives light from a certain frequency band of the visible spectrum, which
enables the distinction of colors. One of the most common �lter patterns is
the Bayer Pattern as seen in �gure 1b.This �lter spreads the three di�erent
color values evenly among the whole grid. The number of green pixels is
twice the number of red and blue values. Therefore only half as many green
values have to be interpolated, which in e�ect means that the green color will
be represented more accurately in the �nal image. The reason for this choice
is that the cone-cells in the human eye are much better �tted to distinguish
color-nuances of light in the green wavelength spectrum.

(a) Array of microlenses and color �lters in
front of the sensor

(b) The Bayer Pattern

Figure 1: Bayer Color Filter Array

This has, as already mentioned, the unwanted e�ect that actually two
thirds of the image data (two of the three color-values in each pixel) are
missing. To obtain color information, which is necessary to correctly1 display
an image, the missing data have to be recovered by interpolation. This
kind of interpolation is commonly referred to as demosaicing (also found in
literature: demosaicking) and is illustrated in �gure 2.

The Bayer Pattern was introduced by Bryce E. Bayer from Eastman Ko-
dak Company in 1976 [Bay75] and can be found in virtually every camera
on the market today (Webcams, Smartphones, Digital Still- and Video Cam-
eras (Consumer and Professional), home, scienti�c and industrial appliances,
. . . ). This work will focus mostly on demosaicing techniques for Bayer CFAs.

1in our sense, correctly means that we want the image to match the original scene as
closely as possible
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(a) Bayer Pattern image before demosaic-
ing (the two non-available values in each
pixel are set to 0)

(b) Full-color image after interpolation

Figure 2: Demosaicing Process

Applicability to other color-�lter-designs will also be discussed brie�y.

1.3 Shortcomings and Problems

Since interpolation is the process of reconstructing missing data points in
between a known set of data, it always involves a certain degree of guessing.
The main criterion for assessing the quality of a demosaicing alogrithm is the
ability to reconstruct the missing color values as closely as possible to the way
the camera would have recorded them in each sensor element. In addition
to this lack of precision, demosaicing can even introduce new artifacts if not
treated properly.

1.3.1 Blurring

Many demosaicing algorithms rely on some type of averaging across a certain
neighborhood. Averaging has the same e�ect as applying a low-pass �lter.
This means that high frequency details (which provide important edge infor-
mation) can get lost. On a low-pixel-level, the image appears blurred as seen
in �gure 3c.
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1.3.2 False-Color and Water-Color E�ect

The green channel of the Bayer Pattern is di�erent from the red or blue
channel in that it has twice as many pixels. This di�erence in frequency
causes color information to be scattered unevenly along edges. These artifacts
are referred to as false-color artifacts (yellow- or green-blue lines around
edges) or so called water-color e�ects (when edges appear as if they were
observed through water). Since all colors of the RGB color-space have to
be assembled from only three color values, di�erent frequencies in the color
channels can end up in wrong chrominance information and new colors can
inadvertently pop up. This e�ect is illustrated in �gure 3d and can also be
seen in 3f

(a) maze-like aliasing ar-
tifacts

(b) staircase artifacts (c) blurring

(d) false-color artifacts (e) isolated dots (f) zippering artifacts

Figure 3: Demosaicing artifacts

1.3.3 Aliasing

Another unwanted e�ect that occurs in interpolation is aliasing. According
to Shannon's Sampling theorem [Sha49], if the sampling frequency is not
at least twice as high as the image frequency, aliasing artifacts can arise.
Since in our case, the sampling frequency of the interpolation algorithm is
restricted to two times the pixel size (caused by the nature of the Bayer
Pattern), aliasing can hardly be prevented. Maze or pattern like structures
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as seen in in �gure 3a are the result. In some cases, even riddle-like patterns
can arise. The only remedy is to lower the image frequency by applying a
low-pass �lter, which however leads to blurring as explained in 1.3.1.

1.3.4 Zippering and Strips

Because of the characteristics of the Bayer Pattern, adjacent pixels have to be
treated di�erently by an algorithm. At otherwise straight edges in horizontal
and vertical direction, this leads to an e�ect called zippering, seen in 3f.
Diagonal edges also su�er from these kinds of artifacts called strips as seen
in 3b.

1.3.5 Isolated Dots

Even with digital cameras, the recording of images still remains an analogue
process, as mentioned in section 1.1. Due to the physical characteristics of
the image sensor, there is always a certain amount of noise present (such
as photon shot noise, thermal noise, analog to digital conversion, . . . ). If
not handled carefully, noise in an otherwise unifrom area can occasionally
be ampli�ed by an interpolation algorithm as seen in 3e. Di�usion-based
algorithms are very capable of dealing with noise, as explained later in section
2.

Thin lines can also cause such dots in locations where they intersect, since
edge information may be misleading or blurred in such spots.
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2 Demosaicing using Anisotropic Di�usion

2.1 Basic Idea of Di�usion-Based Demosaicing

Di�usion in image processing originates from the idea of the physical process
of di�usion. Di�usion is a process in which concentration di�erences in a
body are equilibrated. The same principal can be applied in image process-
ing, where instead of the dispersion of matter in a physical body, the color
values are dispersed across the image plane. An important characteristic of
di�usion is that no mass is created or destroyed. This guarantees us that the
average grayvalues will remain fairly stable during this process. The struc-
ture tensor is a tool that allows us to steer this process in certain directions
to prevent blurring across edges, as explained below. The process of di�usion
is illustrated in �gure 4b.

Our demosaicing algorithm includes the following steps:

• Pre-interpolation using a simple and e�cient algorithm (such as bilin-
ear interpolation)

• converting the image to a more suitable representation for edge-extraction

• computing the structure tensor on the basis of the data from the pre-
ceeding step

• computing the di�usion tensor, based on the structural information
from the preceeding step

• perform di�usion iteratively on the image

A comprehensible introduction to anisotropic di�usion (and partial dif-
ferential equations in general) in the context of image processing is given by
[Wei98].

2.2 Pre-Interpolation

Our di�usion algorithm has to be initiated with a full color image to start. For
this purpose, we will use a simple and e�cient linear interpolation method.
Of course this process will introduce unwanted artifacts, which will be prop-
agated by the di�usion algorithm. Unfortunately this is inevitable. In any
case, based on its characteristics, the di�usion algorithm should be able to
handle such artifacts pretty well.

As pre-interpolation algorithm we choose High Quality Linear Interpola-
tion (HQLI) in this paper, which is presented in Appendix A.3. HQLI uses
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(a) Original image (b) Result of uncontrolled
di�usion

(c) Di�usion with structure
tensor

Figure 4: Di�usion result after 60 iterations

linear 5 ∗ 5 stencils to interpolate the missing pixel values. In our own test-
ing, HQLI resulted in an almost 5 dB increase in peak signal-to-noise ratio
(explained in 3.1.1) and a 1.475 % gain in structral similarity (explained in
3.1.2) to the original image compared to bilinear interpolation2. HQLI also
o�ered a much improved visual quality compared to bilinear interpolation
(high frequency structures don't look as washed-out as they do in bilinear
interpolation), with only an 70 - 80% increase in computational e�ort. The
results are almost on par with nonlinear algorithms, which should su�ce for
our purposes.

2.3 The Structure Tensor

The structure tensor (also called second moment matrix, or interest operator)
was �rst introduced by [FG87]. It is a matrix that contains the calculated
partial derivatives of the underlying image and therefore contains important
edge information. To prevent noise from distorting edge information, the
original image data from which the structure tensor is derived is low-pass-
�ltered with a gaussian kernel of size σ, in this case called the noise scale.
We achieved the best results with σ = 0.4.

An important advantage of the structure tensor, compared to other edge
detectors is that it gives us information about direction and strength (gra-
dient and magnitude) of edges and can prevent cancellation e�ects, when
gradients of opposite direction coincide.

The structure tensor is de�ned as a gaussian-�ltered matrix representa-

2tested on a set of very popular demosaicing test images provided by Eastman Kodak
Company and on a random set of high-resolution photos
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tion of the gradients in horizontal and vertical direction:

Jρ(∇u) := Kρ ∗ (∇u∇uT ) =
(

Kρ ∗ ∂xf 2
i,j Kρ ∗ (∂xfi,j∂yfi,j)

Kρ ∗ (∂xfi,j∂yfi,j) Kρ ∗ ∂yf 2
i,j

)
The gradients in the above formula can be calculated as follows:

∂xfi,j =
1

2
(fi+1,j − fi,j + fi+1,j+1 − fi,j+1)

∂yfi,j =
1

2
(fi,j+1 − fi,j + fi+1,j+1 − fi+1,j)

The eigenvalues of this 2 ∗ 2 Matrix yield important edge information.
By manipulating the eigenvalues of this matrix, we can steer the di�usion
process. If both eigenvalues are zero, this area of the image is homogenous
in grayvalues. If only one eigenvalue is zero, we have a straight edge, if
both eigenvalues are larger than zero, this hints at a corner. The squared
di�erence between the two eigenvalues can be interpreted as a measure of
anisotropy. These kinds of algorithms were �rst introduced by Perona and
Malik [PM87][PM88]. The subsequent work of several researchers, including
[WRV98] has led to notable improvements in this �eld.

Afterwards, the structure tensor itself can be low-pass �ltered with a
gaussian kernel of size ρ, in this case called the integration scale. This causes
the second eigenvalue to attain positive values and creates �ow like structures
across edges later in the di�usion process. In our scenario, we are mainly
interested in enhancing and preserving edges, so the integration scale ρ should
be kept below 0.5.

2.4 Exploring di�erent Color Model Channels for Edge

Detection

In the following, we will study various data channels of di�erent color-models
to �nd a good basis for the computation of the structure tensor.

2.4.1 Intensity Channel

Simply adding all the single channels for edge detection is problematic, since
gradients of same orientation but opposite direction cancel out, and the struc-
tural information gets corrupted. This channel still achieves good results, as
seen in table 1.

Intensity =
1

3
∗ (R +G+B)
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Table 1: Comparison of di�erent channels for the structure tensor

Channel Average Red Green Blue

Intensity 35.8369 34.8945 39.6598 34.6172

Luma Y
′
601 35.8700 34.8865 39.3159 34.8172

Luma Y
′
709 35.8678 34.9313 39.1535 34.8309

Lightness 35.4080 34.2749 38.7577 34.5289

Y
′
0.25,0.6,0.15 35.8775 34.9361 39.3320 34.7827

Y
′
0.25,0.5,0.25 35.8719 34.9585 39.4764 34.6986

Green 35.7991 34.9765 38.7415 34.7951
Hue 30.3577 29.8487 31.3446 30.0561

Saturation 32.2135 31.6898 34.8076 31.0513

2.4.2 Lightness Channel

Because of the alternating pattern of the Bayer-CFA, lightness information
is not very useful for edge detection, since it leads to a zippering e�ect in the
structure tensor itself.

Lightness =
1

2
∗ (Maximum(R,G,B) +Minimum(R,G,B))

2.4.3 Luma Channel

Luma is the weighted average of gamma corrected RGB values. It corre-
sponds more to human perception, since it shifts the weight more towards
the green channel. In our tests, the luma channels achieved the best results.
This outcome was expected, since the green values are also represented more
accurate in the Bayer pattern, as already explained in section 1.2. Several
de�nitions of Luma exist. We could improve the results with a slightly ad-
justed combination of the weights, as seen in table 1. The di�erent luma
channels are de�ned as follows:

Y
′

601 = 0.3 ∗R + 0.59 ∗G+ 0.11 ∗B

Y
′

709 = 0.21 ∗R + 0.72 ∗G+ 0.07 ∗B

Y
′

0.25,0.6,0.15 = 0.25 ∗R + 0.6 ∗G+ 0.15 ∗B

Y
′

0.25,0.5,0.25 = 0.25 ∗R + 0.5 ∗G+ 0.25 ∗B
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2.4.4 Hue and Saturation Channels

As expected hue and saturation channels are of little use for edge detection,
since they don't contain enough structural information. Uniform shapes in
an image usually only vary in lightness and do not contain noticable changes
in hue, but this information is too coarse to be of much use in this context.

2.4.5 Green Channel

The green channel showed acceptable results, but could not exceed luma or
intensity channels. Neglecting red and blue in the structure tensor completely
is therefore not recommended.

2.5 Di�usion

The di�usion process is described by the so called di�usion equation (also
known as heat equation in physics):

∂tu = div(D∇u) (1)

In this formula, t is just the time parameter, div is the divergence in form of a
vector �eld. The �ux D∇u consists of ∇u, the concentration gradient and D,
the di�usivity. To transform the di�usivity in a form, so that we can apply
it to a two-dimensional image grid, we have to use a standard discretization
method as further explained in [Wei98]. The resulting matrix representation
is called the di�usion tensor. The di�usion tensor is an evolving mask that
adapts itself to the local image structure after each step of the di�usion
process. This allows us to control the di�usion process, by steering it towards
interesting image features, in our case edges, as shown in �gure 4c. The
previously available color-values from the Bayer Pattern are of course not
altered during this procedure.
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3 Results

3.1 Quality Measures

3.1.1 Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR, also SNR) is one of the most widely
used quality measures in image processing and -reconstruction. The PSNR
is calculated as follows:

Let I be the original image that is used as reference and let K be the
interpolated image. Let m and n be the width and height of the image.

First, the mean squared error term (MSE) is calculated:

MSE =

∑m−1
i=0

∑n−1
j=0 [I(i, j)−K(i, j)]2

m ∗ n

Let MAX be the maximum possible value. Then the peak signal-to-noise
ratio is de�ned as follows:

PSNR = 10 ∗ log10
(
MAX2

MSE

)
The unit of PSNR is deciBel. The higher the value, the higher the similarity
between the two images. If the two images are identical, the PSNR is un-
de�ned (division with zero in MSE term) and usually set to the maximum
value.

3.1.2 Structural Similarity

The structural similarity (SSIM) is a measure for the assessment of simi-
larities between images, proposed by [WBSS04]. Compared to PSNR, the
strucutral similarity is supposed to be more consistent with human percep-
tion of image quality. The structural similarity takes three di�erent weighted
components into account:

The luminance term:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

The contrast term:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
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The structural comparison:

s(x, y) =
σxy + C3

(σxσy + C3)

Some of the terms cancel out, so that structural similarity is de�ned as:

SSIM =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

)
where

C1 = (K1L)
2

and
C2 = (K2L)

2

withK1 = 0.01,K2 = 0.03 as weights and L as the maximum value (2bitrange−
1), which in case of 8 Bit images is 255. µ is the mean value

µx =
1

NM

N∑
i=1

M∑
j=1

xij

σx the standard deviation, is de�ned as

σx =
1

NM

N∑
i=1

M∑
j=1

(xij − µx)2

σxy is the covariance

σxy =
1

NM

N∑
i=1

M∑
j=1

(xij − µx)(yij − µy)

The structural similarity can attain values in the range of -1 to 1 It is exactly
1 if the two images are identical.
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3.2 Comparison to other Demosaicing Algorithms

In this section, we are going to compare our algorithm to the demosaicing
algorithms presented in Appendix A. Nearest Neighbor Interpolation is, as
expected, inferior to all other algorithms in every sense. Zippering and false-
color artifacts in the balcony on picture 5a are clearly visible. All edges
look heavily pixelated. Bilinear interpolation suppresses most of the pixel
level artifacts of nearest neighbor interpolation at the expense of losing high-
frequency details. The overall image looks blurred as seen in �gure 5b.

(a) Nearest Neighbor Interpolation (b) Bilinear Interpolation

(c) High Quality Linear Interpolation (d) Di�usion-based algorithm

Figure 5: Comparison to other algorithms

High quality linear interpolation o�ers a good tradeo� between conserva-
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tion of high-frequency details and the prevention of edge destruction. The
algorithm handles zippering and aliasing e�ects pretty well. Although, alias-
ing and slight zippering artifacts are still present in the area below the balcony
and the marquee in the upper part of the image in �gure 5c. The advantage
of di�usion based algorithms are clearly visible. The image doesn't notica-
bly lose detail, but the remaining strips, aliasing and zippering artifacts are
almost completely eliminated after di�usion. The PSNR validates the visual
impressions of �gure 5d. The average PSNR values in table 2 are based on a
measurement of 24 popular demosaicing test images from Kodak (�gures 15,
15 and 15. The original images were taken on �lm and digitally scanned.

Table 2: Overall comparison of results, all images combined, SNR values in
dB

Channel Near Nbr Bilinear HQLI VNG Di�usion

Peak Signal-to-Noise Ratio
Red 25.19 26.19 27.19 28.19 34.96
Green 28.71 32.65 37.80 39.48 39.47
Blue 25.35 28.66 33.41 33.03 34.70

Average 26.12 29.46 34.47 34.20 35.87

Structural Similarity
Red 94.66% 97.26% 99.24% 99.06% 99.45%
Green 97.58% 99.01% 99.71% 99.81% 99.80%
Blue 94.19% 97.11% 99.10% 98.98% 99.33%

Average 95.65% 97.90% 99.38% 99.32% 99.55%

3.3 Comparison to commercial RAW processing appli-

cations

Apart from the in-camera processing of color �ltered images, many camera
manufacturers also o�er solutions to save the data in so called RAW for-

mat and postpone the demosaicing to the postprocessing stage on a desktop
computer. Since most commercial software companies only distribute closed
source applications and hardly ever provide some insight to the algorithms
used, we are only able to compare the resulting images. For comparison pur-
poses, we used two of the most widely used post-processing applications for
RAW images, �Canon Digital Photo Professional� and �Adobe Photo RAW
for Adobe Photoshop�. In this test scenario, a SNR comparison to an origi-
nal image is of course not available, since we use actual RAW images from a
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(a) Nearest Neighbor Interpolation

(b) Bilinear Interpolation

(c) High Quality Linear Interpolation

(d) Di�usion - based algorithm

Figure 6: Comparison to other algorithms
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(a) Original full-color image

(b) Di�usion-based Demosaicing result

Figure 7: Result of di�usion-based demosaicing algorithm
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digital camera instead of scanned full color images.

(a) Canon - Digital Photo Professional (b) Adobe Photo RAW

(c) Di�usion-based algorithm (d) Level-adjusted di�usion result

Figure 8: Comparison to commerical software

It is clearly visible that both commercial algorithms apply heavy postpro-
cessing to the image (including color and gamma correction). This kind of
postprocessing leads to an improved perception of sharpness, but also intro-
duces new artifacts and goes to the expense of image quality and precision.
Color hue is arti�cially changed to make the images look more natural. In all
three algorithms, zippering artifacts are almost nonexistent. False-color arti-
facts are also handled very well by all three algorithms. The Canon algorithm
especially su�ers from isolated dots, since it uses extensive image sharpen-
ing. Commercial algorithms are geared towards o�ering the best perception
of sharpness, by bluntly neglecting color- and structural details on a low pixel
level.
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4 Conclusions and Outlook

The methods presented in this thesis should be easily applicable to other
types of �lter patterns, since the di�usion algorithm is working on a pre-
interpolated full-color image in the �rst place. When using a di�erent color-
�lter-pattern, di�erent pre-interpolation algorithms must of course be used.
Minor adjustments to the structure tensor might also be necessary, to take
advantage of the respective characteristics of other �lter patterns.

Di�usion has several very useful properties when used as an interpolation
method. It can preserve edges and average grayvalues and even enhance im-
age quality by suppressing noise or aliasing artifacts. However, there are also
certain limitations. Di�usion has a high computational complexity and can
not easily be applied in multithreading environments since it is a (tempo-
rally) nonlinear process. Because of the number of parameters involved, such
algorithms are better suited for post-processing. Di�usion can be applied in
addition to other demosaicing algorithms to improve quality, as the results
have shown.

Handling lots of parameters can be tricky but also gives many opportu-
nities. Adjusting parameters depending on image content (many high- or
low frequency structures, . . . ) could lead to improvements. Since the green
channel is inherently di�erent from the red and blue channels, it could also
be useful to give the structure tensor of the green channel more attention
(for example with weights).
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A Available Demosaicing Algorithms

In the following, we will take a brief look at available linear and nonlinear
demosaicing algorithms. The techniques presented in this section are used
for comparison wiht our own algorithm. We are also going to utilize these
algorithms in the approach presented in this paper, since, for the di�usion
process to operate correctly, it needs a full-color image to start with.

In the following, we will refer to a green value on a red Bayer Pattern pixel
at location (i, j) in the image as gredi,j , a red value on a blue Bayer Pattern
pixel is denoted as rbluei,j , and so forth. For a Bayer Pattern image, this means
that only the values rredi,j , b

blue
i,j and ggreeni,j ∀i ∈ (0 . . . height) , j ∈ (0 . . .width)

are known from the start. When referring to red (blue) Bayer Pattern rows,
we are talking about rows that contain red (blue) Bayer Pattern pixels3.
Figure 9 illustrates the notations used when referring to pixels on the grid.

We will not go into the details of boundary treatment in this work, since it
is of little interest to us in this context. Extending the image plane by several
pixels in each direction and applying e.g. Neumann- or Dirichlet boundary
conditions is su�cient for our purposes and enables us to ignore boundaries
in the algorithms of this section.

Figure 9: 5 ∗ 5 Neighborhood of pixel (i, j). i denotes height/columns, j
denotes width/rows.

A.1 Nearest Neighbor Interpolation

Nearest Neighbor Interpolation (also known as Pixel Doubling Interpolation,
Proximal Interpolation or Point Sampling) is the most straightforward way
of demosaicing a Bayer Pattern image. This method simply selects one of
the available values from one of its direct neighbors. Since several of the 9
neighbor pixels are possible candidates, the algorithm can be implemented

3we assume the image to start with an RGGB square pattern in the top left corner
(�rst row is a red Bayer Pattern row), as the one in Figure 1b (without loss of generality)
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in several slightly di�erent variations. In our case we (arbitrarily) decided
to always select the values from the neighboring pixels with priority to the
right and then to the bottom.

The green values on red and blue Bayer Pattern pixels are calculated as
follows:

gredi,j = ggreeni,j+1

gbluei,j = ggreeni,j+1

For a missing red value we have:

on a green Bayer Pattern pixel: rgreeni,j =

{
rredi,j+1 in a red row

rredi+1,j in a blue row

on a blue Bayer Pattern pixel: rbluei,j = rredi+1,j+1

and for a missing blue value:

on a green Bayer Pattern pixel: bgreeni,j =

{
bbluei+1,j in a red row

bbluei,j+1 in a blue row

on a red Bayer Pattern pixel: bredi,j = bbluei+1,j+1

A.2 Bilinear Interpolation

A slightly more sophisticated and one of the more popular algorithms is bilin-
ear interpolation. Instead of picking one value from the direct neighborhood,
we calculate the average of all the available neighbor values of corresponding
color. This gives us a more precise estimate of the missing value and, to a
certain extent, also inhibits the zippering e�ect from section 1.3.4.

For a missing green value in red and blue Bayer Pattern pixels, four neigh-
boring values are available:

gredi,j = gbluei,j =
ggreeni−1,j + ggreeni+1,j + ggreeni,j−1 + ggreeni,j+1

4
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(a) G at R and B
locations

(b) B at R loca-
tions

(c) R at B loca-
tions

Figure 10: Bilinear Interpolation - Stencils on red and blue Bayer Pattern
pixels

(a) R at G loca-
tions (blue row)

(b) R at G loca-
tions (red row)

(c) B at G loca-
tions (red row)

(d) B at G loca-
tions (blue row)

Figure 11: Bilinear Interpolation - Stencils on green Bayer Pattern pixels

For missing blue or red values on a green Bayer Pattern pixel, two neighboring
values are averaged:

rgreeni,j =

{
rredi,j−1+r

red
i,j+1

2
in a red row

rredi−1,j+r
red
i+1,j

2
in a blue row

bgreeni,j =

{
bbluei−1,j+b

blue
i+1,j

2
in a red row

bbluei,j−1+b
blue
i,j+1

2
in a blue row

For blue pixels on a red Bayer grid point and vice versa, four neighbors are
available:

bredi,j =
bbluei−1,j−1 + bbluei+1,j−1 + bbluei−1,j+1 + bbluei+1,j+1

4

rbluei,j =
rredi−1,j−1 + rredi+1,j−1 + rredi−1,j+1 + rredi+1,j+1

4

A.3 High Quality Linear Interpolation

High Quality Linear Interpolation was proposed by [MHC04]. It is based
upon bilinear interpolation, but with slightly more sophisticated masks. The
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(a) G at R locations (b) G at B locations

Figure 12: High Quality Linear Interpolation - Green Stencil

(a) R at G locations, red
row

(b) R at G locations, blue
row

(c) B at R locations, blue
row

Figure 13: High Quality Linear Interpolation - Red Stencil

algorithm takes into account that luminance information is much more im-
portant for edges than chrominance information, so it doesn't discard the
other two respective color values of each pixel in the stencil completely, but
instead incorporates the gradient information they contain. According to
our tests in section 2.2, High Quality Linear Interpolation o�ers much better
quality than Bilinear Interpolation. High Quality Linear Interpolation can
keep up with several nonlinear demosaicing algorithms, without requiring
much computational power. The stencils for this method are illustrated in
�gures 12, 13 and 14.

A.4 Variable Number of Gradients Interpolation

Variable Number of Gradients Interpolation (VNG) is a popular technique
that found its way into several open-source photo editing applications. It
was introduces by [CCP99]. VNG �rst calculates the gradients in di�erent
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(a) B at G locations, blue
row

(b) B at R locations, red
row

(c) B at G locations, red
row

Figure 14: High Quality Linear Interpolation - Blue Stencil

directions of a pixel and takes only those values into consideration which lie
in directions with low gradient. This prevents color information to di�use
across edges.

A.4.1 Gradient Calculation

In the �rst step, the gradients (∇) in all 8 cardinal directions of pixel (i, j)
are calculated.

The gradients of green pixels in red Bayer Pattern rows are calculated
as follows (for green pixels in blue Bayer Pattern rows, just switch all the
appearances of �red� with �blue� and �r� with �b� in the following equations):

∇N =
∣∣bbluei−1,j − bbluei+1,j

∣∣+ ∣∣ggreeni−2,j − g
green
i,j

∣∣+ ∣∣ggreeni−1,j−1 − g
green
i+1,j−1

∣∣
2

+

∣∣ggreeni−1,j+1 − g
green
i+1,j+1

∣∣
2

+

∣∣rredi−2,j−1 − rredi,j−1

∣∣
2

+

∣∣rredi−2,j+1 − rredi,j+1

∣∣
2

∇E =
∣∣rredi,j−1 − rredi,j+1

∣∣+ ∣∣ggreeni,j − ggreeni,j+2

∣∣+ ∣∣ggreeni−1,j−1 − g
green
i−1,j+1

∣∣
2

+

∣∣ggreeni+1,j−1 − g
green
i+1,j+1

∣∣
2

+

∣∣bbluei−1,j − bbluei−1,j+2

∣∣
2

+

∣∣bbluei+1,j − bbluei+1,j+2

∣∣
2

∇S =
∣∣bbluei−1,j − bbluei+1,j

∣∣+ ∣∣ggreeni,j − ggreeni+2,j

∣∣+ ∣∣ggreeni−1,j−1 − g
green
i+1,j−1

∣∣
2

+

∣∣ggreeni−1,j+1 − g
green
i+1,j+1

∣∣
2

+

∣∣rredi,j−1 − rredi+2,j−1

∣∣
2

+

∣∣rredi,j+1 − rredi+2,j+1

∣∣
2
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∇W =
∣∣rredi,j−1 − rredi,j+1

∣∣+ ∣∣ggreeni,j − ggreeni,j−2

∣∣+ ∣∣ggreeni−1,j−1 − g
green
i−1,j+1

∣∣
2

+

∣∣ggreeni+1,j−1 − g
green
i+1,j+1

∣∣
2

+

∣∣bbluei−1,j−2 − bbluei−1,j

∣∣
2

+

∣∣bbluei+1,j−2 − bbluei+1,j

∣∣
2

∇NE =
∣∣ggreeni−1,j+1 − g

green
i+1,j−1

∣∣+ ∣∣ggreeni−2,j+2 − g
green
i,j

∣∣
+
∣∣rredi,j−1 − rredi−2,j+1

∣∣+ ∣∣bbluei−1,j+2 − bbluei+1,j

∣∣
∇SE =

∣∣ggreeni+1,j+1 − g
green
i−1,j−1

∣∣+ ∣∣ggreeni+2,j+2 − g
green
i,j

∣∣
+
∣∣rredi+2,j+1 − rredi,j−1

∣∣+ ∣∣bbluei−1,j − bbluei+1,j+2

∣∣
∇NW =

∣∣ggreeni+1,j+1 − g
green
i−1,j−1

∣∣+ ∣∣ggreeni−2,j−2 − g
green
i,j

∣∣
+
∣∣rredi−2,j−1 − rredi,j+1

∣∣+ ∣∣bbluei−1,j−2 − bbluei+1,j

∣∣
∇SW =

∣∣ggreeni−1,j+1 − g
green
i+1,j−1

∣∣+ ∣∣ggreeni+2,j−2 − g
green
i,j

∣∣
+
∣∣rredi+2,j−1 − rredi,j+1

∣∣+ ∣∣bbluei+1,j−2 − bbluei−1,j

∣∣
The gradients of red pixels of the Bayer Pattern are calculated as follows

(for blue pixels of the Bayer Pattern, just switch all the appearances of �red�
with �blue� and �r� with �b� in the following equations):

∇N =
∣∣ggreeni−1,j − g

green
i+1,j

∣∣+ ∣∣rredi−2,j − rredi,j

∣∣+ ∣∣bbluei−1,j−1 − bbluei+1,j−1

∣∣
2

+

∣∣bbluei−1,j+1 − bbluei+1,j+1

∣∣
2

+

∣∣ggreeni−2,j−1 − g
green
i,j−1

∣∣
2

+

∣∣ggreeni−2,j+1 − g
green
i,j+1

∣∣
2

∇E =
∣∣ggreeni,j−1 − g

green
i,j+1

∣∣+ ∣∣rredi,j − rredi,j+2

∣∣+ ∣∣bbluei−1,j−1 − bbluei−1,j+1

∣∣
2

+

∣∣bbluei+1,j−1 − bbluei+1,j+1

∣∣
2

+

∣∣ggreeni−1,j+2 − g
green
i−1,j

∣∣
2

+

∣∣ggreeni+1,j+2 − g
green
i+1,j

∣∣
2

∇S =
∣∣ggreeni−1,j − g

green
i+1,j

∣∣+ ∣∣rredi,j − rredi+2,j

∣∣+ ∣∣bbluei−1,j−1 − bbluei+1,j−1

∣∣
2

+

∣∣bbluei−1,j+1 − bbluei+1,j+1

∣∣
2

+

∣∣ggreeni,j−1 − g
green
i+2,j−1

∣∣
2

+

∣∣ggreeni,j+1 − g
green
i+2,j+1

∣∣
2
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∇W =
∣∣ggreeni,j−1 − g

green
i,j+1

∣∣+ ∣∣rredi,j − rredi,j−2

∣∣+ ∣∣bbluei−1,j−1 − bbluei−1,j+1

∣∣
2

+

∣∣bbluei+1,j−1 − bbluei+1,j+1

∣∣
2

+

∣∣ggreeni−1,j−2 − g
green
i−1,j

∣∣
2

+

∣∣ggreeni+1,j−2 − g
green
i+1,j

∣∣
2

∇NE =
∣∣bbluei−1,j+1 − bbluei+1,j−1

∣∣+ ∣∣rredi−2,j+2 − rredi,j

∣∣+ ∣∣ggreeni−1,j − g
green
i,j−1

∣∣
2

+

∣∣ggreeni+1,j − g
green
i,j+1

∣∣
2

+

∣∣ggreeni−1,j − g
green
i−2,j+1

∣∣
2

+

∣∣ggreeni,j+1 − g
green
i+1,j+2

∣∣
2

∇SE =
∣∣bbluei−1,j−1 − bbluei+1,j+1

∣∣+ ∣∣rredi+2,j+2 − rredi,j

∣∣+ ∣∣ggreeni−1,j − g
green
i,j+1

∣∣
2

+

∣∣ggreeni,j−1 − g
green
i+1,j

∣∣
2

+

∣∣ggreeni,j+1 − g
green
i+1,j+2

∣∣
2

+

∣∣ggreeni+1,j − g
green
i+2,j+1

∣∣
2

∇NW =
∣∣bbluei−1,j−1 − bbluei+1,j+1

∣∣+ ∣∣rredi−2,j−2 − rredi,j

∣∣+ ∣∣ggreeni,j+1 − g
green
i−1,j

∣∣
2

+

∣∣ggreeni+1,j − g
green
i,j−1

∣∣
2

+

∣∣ggreeni−2,j−1 − g
green
i−1,j

∣∣
2

+

∣∣ggreeni,j−1 − g
green
i−1,j−2

∣∣
2

∇SW =
∣∣bbluei−1,j+1 − bbluei+1,j−1

∣∣+ ∣∣rredi,j − rredi+2,j−2

∣∣+ ∣∣ggreeni,j−1 − g
green
i−1,j

∣∣
2

+

∣∣ggreeni+1,j − g
green
i,j+1

∣∣
2

+

∣∣ggreeni+1,j−2 − g
green
i,j−1

∣∣
2

+

∣∣ggreeni+2,j−1 − g
green
i+1,j

∣∣
2

A.4.2 Threshold Calculation

Now we compute a threshold value, based on the gradient results. All the
gradient values that are above the threshold will be discarded in the following
step.

T = (k1 ∗MIN) + (k2 ∗ (MAX−MIN)) with k1 = 1.5 and k2 = 0.5

where MIN and MAX are the minimum and maximum of the 8 gradient
values.

A.4.3 Mean Value Calculation

We now only consider those pixels, that lie within the remaining gradient
directions of our pixel neighborhood, since we want to prevent averaging
across edges. We compute the average across those remaining pixel values
for each color and store them as three variables R, G and B.
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A.4.4 Interpolation Step

We use the color values from the step before to determine a color di�erence
between the known color value at this location and the other two color values
to be recovered. The following formulae are used to compute the missing
values at our respective pixel location:

on a green pixel:
b = g +BGdiff = g + (Bsum−Gsum)

4

r = g +RGdiff = g + (Rsum−Gsum)
4

on a blue pixel:
g = b+GBdiff = b+ (Gsum−Bsum)

4

r = b+RBdiff = b+ (Rsum−Bsum)
4

on a red pixel:
b = r +BRdiff = r + (Bsum−Rsum)

4

g = r +GRdiff = r + (Gsum−Rsum)
4

For a more detailed description of the algorithm, please refer to [CCP99].
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Table 3: Comparison of demosaicing methods; the values respresent the
signal-to-noise ratio between the original full color image and the result-
ing image of the respective demosaicing algorithms (in deciBel); images a)
to h)

Img Chan Near Nbr Bilinear HQLI VNG Di�usion

a
R 22.07 24.68 30.41 28.83 31.89
G 25.08 29.36 35.13 37.39 36.73
B 21.88 25.29 30.50 29.64 31.90

RGB 22.79 26.01 31.53 30.66 33.00

b
R 27.69 30.55 34.81 33.73 35.86
G 32.12 35.46 38.58 40.94 39.82
B 28.44 31.41 34.60 34.58 35.38

RGB 29.04 32.01 35.65 35.46 36.62

c
R 28.83 31.12 35.58 35.06 37.10
G 33.18 36.08 40.33 41.88 42.77
B 29.45 32.67 35.97 35.89 37.23

RGB 30.11 32.84 36.84 36.75 38.37

d
R 27.94 32.33 36.17 36.60 37.04
G 31.24 35.74 40.74 41.90 42.02
B 27.77 30.89 36.16 35.01 37.42

RGB 28.72 32.55 37.23 37.00 38.32

e
R 21.84 25.17 31.83 31.27 33.84
G 24.25 29.08 36.06 37.88 37.61
B 22.05 25.99 31.43 32.10 33.10

RGB 22.58 26.45 32.67 32.93 34.45

f
R 23.13 25.99 31.40 30.51 32.94
G 28.70 30.73 36.13 38.09 38.06
B 23.45 26.73 31.25 30.87 32.67

RGB 24.46 27.38 32.42 32.07 33.96

g
R 26.97 30.72 36.07 35.13 37.63
G 31.04 35.54 40.32 41.69 42.31
B 26.93 32.01 36.31 36.58 37.32

RGB 27.94 32.33 37.18 37.03 38.57

h
R 19.22 22.29 28.09 25.91 29.60
G 21.36 27.28 32.87 34.69 35.11
B 19.36 22.71 27.77 26.10 29.21

RGB 19.87 23.59 29.04 27.48 30.62
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Table 4: Comparison of demosaicing methods; the values respresent the
signal-to-noise ratio between the original full color image and the result-
ing image of the respective demosaicing algorithms (in deciBel); images i) to
p)

Img Chan NN Bilinear HQLI VNG Di�usion

i
R 26.87 31.33 36.23 35.94 37.48
G 30.53 35.14 40.25 41.92 42.08
B 27.21 29.94 35.46 33.81 36.75

RGB 27.92 31.64 36.87 36.11 38.22

j
R 27.42 31.50 36.71 36.75 38.03
G 30.31 34.78 40.86 42.45 42.56
B 27.44 29.75 35.62 34.25 37.16

RGB 28.19 31.55 37.22 36.68 38.70

k
R 24.64 27.51 33.04 32.17 34.60
G 28.05 32.01 37.34 39.25 38.98
B 24.98 28.39 33.20 33.30 34.64

RGB 25.64 28.91 34.13 34.01 35.65

l
R 27.75 30.17 35.81 34.22 37.15
G 31.68 35.78 40.91 42.53 43.17
B 27.44 32.05 36.03 36.19 37.14

RGB 28.58 32.10 37.04 36.48 38.40

m
R 20.06 22.84 28.69 29.14 30.31
G 23.47 26.40 32.50 34.41 33.52
B 20.01 23.11 28.19 29.14 29.57

RGB 20.91 23.85 29.41 30.30 30.83

n
R 23.91 27.44 32.72 32.44 34.12
G 27.81 31.68 36.51 37.78 38.10
B 24.74 28.21 32.03 32.68 33.22

RGB 25.19 28.76 33.36 33.71 34.69

o
R 26.95 28.89 33.92 32.30 34.99
G 29.56 34.09 38.22 39.58 40.07
B 27.12 30.39 33.99 33.71 35.24

RGB 27.73 30.63 34.97 34.26 36.23

p
R 26.68 29.01 33.32 32.73 34.88
G 33.31 34.02 38.40 39.46 40.90
B 27.07 29.69 34.20 33.21 35.64

RGB 28.17 30.42 34.81 34.26 36.45

33



Table 5: Comparison of demosaicing methods; the values respresent the
signal-to-noise ratio between the original full color image and the result-
ing image of the respective demosaicing algorithms (in deciBel); images q)
to x)

Img Chan NN Bilinear HQLI VNG Di�usion

q
R 27.62 31.43 36.74 37.72 38.41
G 29.60 34.47 40.37 42.26 41.50
B 27.37 30.66 36.59 36.76 37.97

RGB 28.09 31.90 37.58 38.34 39.04

r
R 23.73 27.13 32.79 33.22 34.17
G 26.35 30.40 36.38 37.35 37.04
B 23.89 26.70 32.56 32.70 33.86

RGB 24.50 27.79 33.60 33.98 34.81

s
R 23.71 26.82 32.71 30.05 34.27
G 27.25 31.77 37.31 39.76 39.38
B 24.24 26.99 32.74 30.27 34.26

RGB 24.81 28.01 33.79 31.69 35.41

t
R 25.52 29.08 33.24 32.83 34.64
G 29.51 33.08 37.45 39.64 39.56
B 25.82 28.44 32.60 31.80 33.71

RGB 26.61 29.77 33.97 33.67 35.33

u
R 23.93 27.16 32.79 32.19 34.38
G 28.38 31.35 37.00 38.78 38.41
B 24.20 27.54 32.52 32.30 33.82

RGB 25.09 28.32 33.68 33.55 35.12

v
R 26.20 29.18 34.16 33.39 35.64
G 28.42 33.11 37.75 39.45 39.12
B 26.12 29.34 33.71 33.24 34.80

RGB 26.79 30.21 34.87 34.58 36.16

w
R 28.61 31.33 35.26 34.62 36.46
G 32.58 36.81 40.51 42.29 42.51
B 29.16 33.74 38.50 38.39 39.54

RGB 29.80 33.42 37.54 37.38 38.82

x
R 23.25 26.33 32.14 32.38 33.50
G 25.31 29.40 35.38 36.20 36.06
B 22.28 25.26 30.02 30.22 31.17

RGB 23.44 26.67 31.99 32.29 33.14
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15: Set of standard test images, Source: Eastman Kodak Company
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(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 15: Set of standard test images, Source: Eastman Kodak Company
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(q) (r)

(s) (t)

(u) (v)

(w) (x)

Figure 15: Set of standard test images, Source: Eastman Kodak Company
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