
 
 

 

 

 

 

 

 

Electrospinning as a novel fabrication technique for drug 

delivery and tissue engineering 

 

 

 

Dissertation 

zur Erlangung des Grades 

des Doktors der Naturwissenschaften 

der Naturwissenschaftlich-Technischen Fakultät 

der Universität des Saarlandes 

 

von 

Salem Seif 

 

Saarbrücken 

2017 



 
 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Tag des Kolloquiums:  13.07.2017 

Dekan:    Prof. Dr. Guido Kickelbick 

Berichterstatter:   Prof. Dr. Maike Windbergs 

    Prof. Dr. Claus-Michael Lehr 

Vorsitzender:   Prof. Dr. Uli Kazmaier 

Akad. Mitarbeiter:   Dr. Sonja M. Keßler 



 
 

Die vorliegende Arbeit wurde von November 2011 bis Dezember 2015 unter der 

Leitung von Herrn Prof. Dr. Claus-Michael Lehr und Frau Prof. Dr. Maike Windbergs 

am Institut für Pharmazeutische Technologie und Biopharmazie der Universität des 

Saarlandes und Helmholtz-Institut für Pharmazeutische Forschung Saarland 

angefertigt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          To my family 

 

 



 
 

  



 
 

List of Original Publications Included in this Thesis 

 

Parts of this thesis were published in the following articles: 

 Article I: 

S. Seif, L. Franzen, M. Windbergs. Overcoming drug crystallization in 

electrospun fibers – Elucidating key parameters and developing strategies for 

drug delivery. International Journal of Pharmaceutics, 2015. 478(1): p. 390-

397. DOI: 10.1016/j.ijpharm.2014.11.045. 

 

 Article II: 

S. Seif, V. Planz, M. Windbergs. Controlling the release of proteins from 

therapeutic nanofibers: the effect of fabrication modalities on biocompatibility 

and antimicrobial activity of lysozyme.  

Planta Medica, 2017. 83(05): p. 445-452. DOI: 10.1055/s-0042-109715. 

 

 Article III: 

S. Seif, V. Planz, M. Windbergs. Delivery of therapeutic proteins using 

electrospun fibers – recent developments and current challenges.  

Archiv der Pharmazie, 2017. 350. DOI: 10.1002/ardp.201700077. 

 

 Article IV: 

S. Seif, F. Graef, S. Gordon, M. Windbergs. Monitoring drug release from 

electrospun fibers using an in situ fiber optics system. 

Dissolution Technologies, 2016. 23(2). doi.org/10.14227/DT230216P6. 

 

 Article V: 

V. Planz*, S. Seif*, J. Atchison, B. Vukosavljevic, L. Sparenberg, E. Kroner, M. 

Windbergs. Three-dimensional hierarchical cultivation of human skin cells on 

bio-adaptive hybrid fibers. 

Integrative Biology, 2016. 8: p. 775-784. DOI: 10.1039/C6IB00080K. 

*These authors contributed equally to this work 

 

 



  



 

9 
 

Table of contents 

i. Short summary .................................................................................................. 11 

ii. Kurzzusammenfassung ..................................................................................... 12 

iii. List of Abbreviations .......................................................................................... 13 

1. Introduction ........................................................................................................ 15 

1.1. Background and process of electrospinning ................................................ 15 

1.2. Applications of electrospun fibers ................................................................ 17 

1.3. Biomedical applications of electrospun fibers .............................................. 18 

1.3.1. Electrospun fibers for drug delivery applications ................................... 19 

1.3.2. Electrospun fibers for tissue engineering and cellular cultivation .......... 24 

2. Aims of the Thesis ............................................................................................. 25 

3. Scientific Outcome............................................................................................. 26 

3.1. Fabrication and characterization of drug-loaded electrospun fiber mats: 

evaluating drug stability upon fabrication ....................................................... 27 

3.1.1. Introduction ........................................................................................... 27 

3.1.2. Overcoming drug crystallization in electrospun fibers – elucidating key 

 parameters and developing strategies for drug delivery ....................... 27 

3.2. Controlling drug release from hydrophilic electrospun fibers for protein drug 

delivery by means of post-modification treatments ........................................ 36 

3.2.1. Introduction ........................................................................................... 36 

3.2.2. Controlling the release of proteins from therapeutic nanofibers: the effect 

of fabrication modalities on biocompatibility and antimicrobial activity of 

lysozyme ............................................................................................... 36 

3.3. Establishment of novel approaches for in situ dissolution analysis of 

 electrospun fibers ........................................................................................ 42 

3.3.1. Introduction ........................................................................................... 42 

3.3.2. Monitoring drug release from electrospun fibers using an in situ fiber 

optics system ........................................................................................ 42 



 

10 
 

3.4. Generation of novel electrospun fibers with tunable biomechanical properties 

 for cultivation of human cells ....................................................................... 47 

3.4.1. Introduction ........................................................................................... 47 

3.4.2. Three-dimensional hierarchical cultivation of human skin cells on bio-

adaptive hybrid fibers. ........................................................................... 47 

4. General conclusion and perspective.................................................................. 56 

5. References ........................................................................................................ 58 

6. Original publications .......................................................................................... 62 

6.1. Overcoming drug crystallization in electrospun fibers – Elucidating key 

parameters and developing strategies for drug delivery........................................ 63 

6.2. Controlling the release of natural proteins from therapeutic nanofibers – the 

effect of fiber fabrication on pharmacological activity and biocompatibility............ 64 

6.3. Delivery of therapeutic proteins using electrospun fibers – recent 

developments and current challenges................................................................... 65 

6.4. Monitoring Drug Release from Electrospun Fibers Using an In Situ Fiber-

Optic System ......................................................................................................... 66 

6.5. Three-dimensional hierarchical cultivation of human skin cells on bio-

adaptive hybrid fibers ............................................................................................ 67 

7. Curriculum Vitae ................................................................................................ 68 

8. Acknowledgments ............................................................................................. 71 

 

  



 

11 
 

i. Short summary 

Electrospinning as an advanced fabrication technique for polymeric fibers has drawn 

a substantial interest in the last few decades. Recently, one focus was directed 

towards the biomedical applications of this technique to fabricate biocompatible fibers 

for drug delivery and tissue engineering. This is mainly attributed to the numerous 

advantages provided by electrospun fibers including high surface area to volume 

ratio, ability to encapsulate different types of drugs, structural flexibility, similarity to 

the extracellular matrix, and many others. 

This work aimed at studying the factors affecting the biomedical applicability of 

electrospun fibers for drug delivery and tissue engineering. At first, factors leading to 

inappropriate drug encapsulation as a result of hydrophilic drug crystallization on the 

surface of hydrophobic polymer fibers were identified and successfully overcome. 

Further, prolonging the release of proteins from hydrophilic electrospun fibers by 

means of different post-modification approaches was studied, focusing on 

investigating the effect on proteins’ activity and cytotoxicity. Moreover, novel 

approaches for in situ dissolution analysis of electrospun fibers were investigated, 

with the focus on developing strategies to prevent sample folding during dissolution 

testing. Further, novel electrospun fiber mats composed of a combination of natural 

and synthetic polymers were generated and investigated for their application as 

substrates for cultivation of human cells. Overall, the results obtained in this work 

enhance our understanding of the factors that affect the biomedical applications of 

electrospinning, and can serve as guidance for rational development of novel drug 

delivery systems and tissue engineering scaffolds based on electrospun fibers. 
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ii. Kurzzusammenfassung 

Elektrospinnen als fortgeschrittene Herstellmethode für polymerbasierte Fasern hat 

in den letzten Jahren großes Interesse erweckt. Ein Schwerpunkt ist die Verwendung 

von Elektrospinnen um biokompatible Fasern für biomedizinische Anwendungen wie 

Arzneistoffträgersysteme und Gewebezüchtung herzustellen. Dies ist hauptsächlich 

zurückzuführen auf die zahlreiche Vorteile von elektrogesponnen Fasern wie einem 

hohen Oberfläche-Volumen-Verhältnis, die Möglichkeit, verschiedene Arten von 

Wirkstoffe zu verkapseln, strukturelle Flexibilität, Ähnlichkeit mit der extrazellulären 

Matrix, und vielen anderen.  

Ziel dieser Arbeit war die Untersuchung der Faktoren, die die biomedizinische 

Anwendbarkeit von elektrogesponnenen Fasern für Arzneistoffträgersysteme und 

Gewebezüchtung beeinflussen. Zunächst wurden die Faktoren, die zu 

unzureichender Wirkstoffverkapselung in Form von Kristallisierung hydrophiler 

Wirkstoffe auf der Oberfläche hydrophober Polymerfasern führen identifiziert und 

überwunden. Außerdem wurde die Verlängerung der Proteinfreisetzung aus 

hydrophilen elektrogesponnenen Fasern mittels unterschiedlicher 

Nachbearbeitungsmethoden untersucht, mit Fokus auf der Aktivität der verkapselten 

Proteine sowie auf der Zytotoxizität. Darüber hinaus wurden neue Ansätze für die in 

situ Analyse der Wirkstofffreisetzung aus elektrogesponnenen Fasern untersucht, 

diesbezüglich wurde neue Strategien entwickelt, um die Faltung der Proben während 

der Freisetzungsversuche zu vermeiden. In dem letzten Teil dieser Arbeit wurde 

neuartige elektrogesponnen Vliese bestehend aus einer Kombination von natürlichen 

und synthetischen Polymeren entwickelt und auf ihre Einsetzbarkeit als Substrate für 

die Kultivierung von menschlichen Zellen untersucht. Insgesamt, die Ergebnisse 

dieser Arbeit sind wichtige Bausteine für unser Verständnis der biomedizinischen 

Anwendbarkeit von elektrogesponnenen Fasern für Arzneistoffträgersysteme und 

Gewebezüchtung. 
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iii. List of Abbreviations 

CAF   caffeine 

CRM   confocal Raman microscopy 

DMF   dimethylformamide 

DSC   differential scanning calorimetry 

ECM   extracellular matrix 

EtOH   ethanol 

FFA   flufenamic acid 

FT-IR   fourier-transform infrared spectroscopy 

GTA   glutaraldehyde 

LDH   lactate dehydrogenase 

MeOH   methanol 

MTT   methylthiazol tetrazolium 

PBS   phosphate buffer saline  

PCL   polycaprolactone 

PEG   poly(ethylene glycol) 

PVA   poly(vinyl alcohol) 

SEM   scanning electron microscopy  

TFE   2,2,2-trifluoroethanol 

UV   ultraviolet 
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1. Introduction 

1.1. Background and process of electrospinning 

Electrospinning is a straightforward and versatile technique that allows the production 

of continuous polymeric fibers in the nano- and micrometer range utilizing 

electrostatic forces [1]. The basic principle of the technique was established based on 

the cumulative efforts of researchers from various interdisciplinary fields who paved 

the way for the current state-of-the-art of the technique [1, 2]. The earliest 

contribution is attributed to William Gilbert in the 16th century who was the first to 

describe how electrostatic forces can deform the shape of water droplets without any 

physical contact [2, 3]. Despite the few studies that followed the work of Gilbert, the 

main purpose of applying electrostatics on liquids was for entertainment with no real 

application being realized [2]. It was in the 20th century when Anton Formhals 

succeeded in preparing polymeric fibers using electrostatic forces, hence his crucial 

patent filed in 1934 motivated researchers to further investigate and contribute to this 

field [4]. At this point, the interest in electrospinning was drastically increasing, 

leading to more achievements being reached in the following few years. Researchers 

started to thoroughly investigate the process of fiber formation using electrostatic 

forces. In this context, one of the most important contributions is attributed to Sir 

Geoffrey I. Taylor who mathematically modeled the shape of the cone formed by a 

fluid droplet upon applying electric field to it. Hence, his work was the first to provide 

deeper understanding on the process of electrospinning revealing the underlying 

parameters responsible for fibers formation [1, 5]. These early discoveries form 

together the foundation stone that allowed for the current electrospinning 

developments.  

A general electrospinning setup is composed of a syringe containing polymer 

solution, a syringe pump, a high voltage power supply and a metallic collector. The 

polymer solution is pumped at a defined flow rate through the syringe tip which is 

connected to the high voltage power supply and therefore acts as an electrode. The 

high voltage starts to deform the polymer solution droplet ejected from the tip of the 

syringe forming a cone shape known as the Taylor cone. Once the voltage is high 

enough to overcome the surface tension of the polymer solution, the solvent starts to 

rapidly evaporate allowing electrospun fibers to be formed. The fibers are directed to 
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the metallic collector which is located at the opposite of the syringe tip and connected 

to a power supply with an opposite polarity. The fibers move at a very high speed and 

deposit on each other forming one coherent fiber mat. A schematic of a typical 

electrospinning setup is illustrated in Figure 1.  

 

 

Figure 1: Typical electrospinning setup composed of a syringe containing polymeric solution, high voltage power 

supply and metallic collector. The Taylor cone formed upon increasing the voltage is depicted in the magnified 

image. 
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1.2. Applications of electrospun fibers 

One major advantage of electrospinning is attributed to its versatility and flexibility, 

bearing the possibility to produce different types of fibers for a high variety of 

applications [1, 6]. In this context, full understanding of the electrospinning process is 

crucial for the fabrication of tailor-made electrospun fibers suiting the desired 

application [6, 7]. There are many parameters that affect the shape and nature of the 

fabricated electrospun fibers, and can mainly be divided into polymer-solution related 

parameters (such as polymer solubility, polymer molecular weight, solvent boiling 

point, solvent vapor pressure, pH value, conductivity, dielectric constant, surface 

tension, etc.) and process related parameters (including tip-to-collector distance, 

collector shape, flow rate, voltage intensity, temperature, relative humidity, etc.) [1, 6, 

8]. The ability to control each parameter offers numerous options in terms of fibers 

morphology and functionality which led to a high variety of applications being 

suggested, some of which could successfully be introduced to the market. For 

instance, in 1936 Igor Petryanov-Sokolov, from the aerosol department at the Karpov 

Institute of Physical Chemistry, noticed that electrospun membranes made from 

thinner fibers would make very effective filters [9, 10]. Thereafter, his innovative work 

was employed for the production of industrial scale electrospun fibers that were 

popularized as “Petryanov filters” and were applied for military gas masks in the 

former Soviet Union [9, 10]. Despite this early breakthrough, filters based on 

electrospun fibers were not commercialized until the 1980s by the Donaldson 

company in the United States of America [2]. Another example of pioneer approach 

for applying electrospun fibers was in the textile fabrication. In this regard, 

researchers suggested combining electrospun fibers with conventional textiles (e.g. 

as an interlining) in order to provide additional features such as regulating the water-

gas permeability, improving the thermal insulation, providing protection against 

chemical or biological hazards [1, 11]. Further interest led to innovations in many 

areas including biomedical field (e.g.: drug delivery systems and tissue engineering), 

energy applications (e.g.: solar cells, capacitors, batteries, etc.), catalysis, agriculture, 

self-cleaning surfaces (super hydrophobic surfaces) and many others [1, 12-14]. 

However, as the main focus of this thesis is on the biomedical applications, the 

following sections will highlight the major advantages, application possibilities and 

state-of-the-art of utilizing electrospun fibers in this interdisciplinary field. 
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1.3. Biomedical applications of electrospun fibers 

Electrospun fibers offer a very attractive platform for various biomedical applications 

due to the versatility of electrospinning and the unique ultrafine fibrous structure of 

electrospun fibers [7, 15, 16]. In more details, the mechanical flexibility, high surface 

area to volume ratio, tunable surface porosity, ability to incorporate different types of 

drugs and most important the similarity to the extracellular matrix are prominent 

examples of advantages provided by electrospun fibers. A substantial interest in 

applying electrospun fibers for biomedical purposes evolved in the middle 1990s and 

kept rapidly increasing leading to an impressive trend of articles and patents being 

published [7, 17]. Furthermore, the current advances in the field of polymer chemistry 

and the development of polymers with special functionality (such as polymers with 

antibacterial activity, shape memory polymers, etc.) provided more options in terms 

of materials selection. Novel drug delivery systems, tailor-made wound dressings, 

heart valves and vascular prostheses are only few examples of what can be achieved 

using electrospinning [7, 18]. The various biomedical applications of electrospun 

fibers can mainly be categorized in two main groups: 1) drug delivery applications, 

and 2) tissue engineering applications. 
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1.3.1. Electrospun fibers for drug delivery applications 

For the application of electrospun fibers for drug delivery, one of the most important 

features of electrospinning is the flexibility in incorporating drug molecules in 

electrospun fibers. So far, different types of drugs could successfully be encapsulated 

where various potential applications were evaluated [7, 19]. Drug molecules ranging 

from low molecular weight drugs, macromolecules (e.g. proteins and peptides) and 

nucleic acids could successfully be encapsulated in electrospun fibers [7, 18]. Further 

advantages of electrospun fibers as novel drug carriers include the high drug loading 

capacity and the high encapsulation efficiency in comparison to other drug carriers 

[20]. In addition, the flexibility in choosing the desired drug/polymer combination 

provides additional control over the mechanism of drug release and can further 

enhance the therapeutic performance. Drug encapsulation in electrospun fibers can 

mainly be achieved by one of the following methods:  

 

1) Post-spinning modification  

2) Direct drug incorporation  

3) Co-axial electrospinning 

 

These methods are discussed with further details in the following sections. 

 

Post-spinning modification 

Post-spinning modification is a straightforward method for incorporating sensitive 

drug molecules [18, 21]. The general idea of this method is quite simple, electrospun 

fibers are first produced, and then drug molecules are added to the surface of the 

fabricated electrospun fibers. For instance, a study by Bolgen et al. reported the 

incorporation of ornidazole as a model drug on the surface of electrospun 

polycaprolactone (PCL) fibers, this was achieved by evenly adding defined amount of 

the drug solution to pieces of electrospun PCL [21]. Major drawback of this method 

was that the drug only attached to the fibers surface via physical adsorption, which 

led to a very rapid burst release reaching 80 % in the first 3 hours [21]. In order to 

overcome this issue of rapid drug release, researchers suggested improving drug 

binding to fibers via chemical conjugation in order to control the release of the 
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incorporated drug. For instance, matrix metalloproteinases (MMPs) were introduced 

on the surface of polycaprolactone-poly(ethylene glycol) (PCL-PEG) copolymer fibers 

as cleavable linker in order to allow for efficient binding of poly(ethyleneimine) (a 

linear cationic polymer), which in turns can bind to DNA allowing for efficient 

incorporation for gene therapy [22]. DNA release could be realized by the cleavage of 

the MMPs linker occurring over time, thus providing an efficient controlled gene 

delivery system [22]. Despite the advantages provided by post-spinning modification 

especially for encapsulating sensitive drugs, only limited studies investigating this 

approach are available [18]. 

 

Direct drug incorporation 

Unlike post-spinning modification, direct incorporation of drugs in electrospun fibers is 

performed by adding the drug to the polymeric solution before electrospinning. Direct 

drug incorporation is the most used method for fabricating drug loaded electrospun 

fibers. This is mainly attributed to the simplicity of this approach allowing the drug to 

be efficiently incorporated within the fibers, and therefore a better drug encapsulation 

efficiency and improved controlled release kinetics can be achieved. Kenawy et al. 

investigated in an early study the incorporation of tetracycline HCl in electrospun 

fibers so that the drug and the polymer were dissolved together in the same solvent 

system and electrospun directly [23]. In their study, the controlled release of 

tetracycline HCl was investigated and compared to the release from Actisite® (a 

commercially available tetrycline HCl containing polymeric dosage form) [23]. 

Different types of drugs were successfully incorporated within electrospun fibers 

using this method including antibiotics, antioxidants and non-steroidal anti-

inflammatory drugs [7, 18]. For effective drug incorporation, the physicochemical 

properties of both, the drug and the polymer have to be taken into consideration. In 

this context, drug solubility within the polymeric solution is a crucial factor determining 

whether the drug can be molecularly dispersed within the polymeric solution or an 

emulsion has to be formed. For instance, stable polymers that can resist rapid 

degradation and therefore can be used for controlled drug delivery are mainly soluble 

in organic solvents. So if the drug of interest is only soluble in water such as proteins 

and peptides, the best way to encapsulate such drugs within stable polymers is by 

forming water in oil (W/O) emulsion where the drug is in the inner phase and the 
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polymer is in the outer phase. As an example, Maretschek et al. prepared a W/O 

emulsion containing cytochrome C as a model protein in aqueous solution and poly(l-

lactide) (PLLA) in chloroform [24]. Based on this formulation, they were able to 

produce cytochrome C loaded PLLA nanofibers while reserving the activity of the 

encapsulated protein. In addition, by adding PEG as a hydrophilic polymer to the 

cytochrome C/PLLA emulsion, they were able to improve the release kinetics and 

control the duration of drug release [24]. While the study of Maretschek et al. showed 

no significant loss in the activity of encapsulated cytochrome C, other reports 

indicated that the activity of another types of proteins could partially be damaged as a 

result of the electrospinning process [25]. In such cases, the use of stabilizers to 

preserve the protein activity was essential. For instance, Chew et al. encapsulated 

nerve growth factor (NGF) in electrospun poly(caprolactone-co-ethyl ethylene 

phosphate) fibers [25]. In their study, bovine serum albumin (BSA) was added as a 

filler to help stabilizing NGF during the electrospinning process. They showed by 

cellular assay that the bioactivity of NGF could -at least partially- be maintained for up 

to 3 months [25].  

 

Co-axial electrospinning 

Co-axial electrospinning (also known as core-shell electrospinning) is an advanced 

method that allows combining two polymeric solutions to form one concentric jet with 

core-shell structure [26]. This method provides even more options compared to the 

other conventional drug incorporation techniques, as it bears the potential to utilize 

two polymer solutions with different physicochemical properties allowing for more 

flexibility in terms of choosing desired drug-polymers combinations [26]. Generally, 

core-shell electrospinning is suitable to encapsulate sensitive drug molecules (e.g. 

proteins) in the core using a hydrophilic water soluble polymer, while the shell 

composed of stable hydrophobic polymer provide the necessary protection against 

degradation and allows for controlled drug release to be achieved. For instance, 

Jiang et al. fabricated core-shell electrospun fibers containing lysozyme as a model 

protein added to PEG forming the core, and PCL as a hydrophobic polymer forming 

the shell [27]. Using this approach, direct contact between the protein and the organic 

solvent used for PCL could be avoided. As a result, controlled release kinetics could 

be reached while successfully maintaining the structure and bioactivity of lysozyme 
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[27]. Although the general idea of core-shell electrospinning is to protect the 

components of the core using the shell, other approaches were suggested. For 

instance, a co-axial electrospinning setup was used to fabricate core-shell fibers 

where the core was composed of PCL and cationized gelatin (prepared by derivation 

with N,N-dimethylethylenediamine) forming the shell [28]. While PCL provided the 

necessary support, the cationized gelatin allowed for efficient incorporation of bovine 

serum albumin (BSA) or heparin onto the fibers’ surface. Furthermore, the addition of 

vascular endothelial growth factor (VEGF) as a second step to the heparin loaded 

fibers resulted in efficient immobilizing of VEGF to the fibers due to the specific 

binding of VEGF to heparin where VEGF was slowly released over 15 days [28]. 

Core-shell electrospinning was not only used to encapsulate drugs such as low 

molecular weight molecules, proteins and DNA [28-31], recent studies suggested the 

encapsulation of living cells for advanced tissue engineering applications. For 

instance, Townsend-Nicholson et al. reported using co-axial electrospinning setup to 

encapsulate cells in electrospun fibers where a biosuspension of living cells was 

forming the core and medical grade poly(dimethylsiloxane) medium was forming the 

shell [32]. After fabrication, the cells were cultured and the results were quite 

promising as the cells viability was not affected upon fabrication showing no sign of 

cellular damage during the electrospinning process [32].  

While each of these methods has its own up- and down-sides, choosing the suitable 

method depends mainly on the type of drug and the intended application [18]. Table 

1 provides an overview of different studies for applying electrospun fibers for drug 

delivery. 
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Table 1: Examples of electrospun fibers for drug delivery applications. 

Drug polymer 
Method of drug 

incorporation 

Intended 

application 
Ref. 

Ornidazole PCL 
Post-modification 

(adsorption) 

Prevention of 

post-surgery 

abdominal 

adhesion 

[21] 

epidermal 

growth factor 

(EGF) 

PCL and PEG 
Post-modification 

(Chemical conjugation) 

Protein drug 

delivery 
[33] 

fibroblast 

growth factor 

(FGF-2) 

Collagen or gelatin 
Post-modification 

(Chemical conjugation) 

Tissue 

engineering 
[34] 

Heparin or 

bovine serum 

albumin (BSA) 

PCL and gelatin 
Post-modification 

(Chemical conjugation) 

Protein drug 

delivery 
[28] 

DNA PCL-PEG copolymer 
Post-modification 

(Chemical conjugation) 
Gene therapy [22] 

Tetracycline 

HCl 

poly(lactic acid) and 

poly(ethylene-co-vinyl 

acetate) 

Direct drug 

incorporation 

(blend) 

Drug delivery [23] 

Cytochrome C poly(l-lactide) 

Direct drug 

incorporation 

(Emulsion) 

Protein drug 

delivery 
[24] 

Bone 

morphogenetic 

protein-2 

(BMP2) 

poly(D,L-lactide-co-

glycolide)/hydroxy-

lapatite (PLGA/HAp) 

Direct drug 

incorporation 

(Emulsion) 

Protein drug 

delivery 
[35] 

Bovine serum 

albumin (BSA) 
PCL 

Core-shell 

electrospinning 

Protein drug 

delivery 
[30] 

Plasmid DNA PCL and PEG 
Core-shell 

electrospinning 
Gene therapy [31] 
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1.3.2. Electrospun fibers for tissue engineering and cellular cultivation 

The extracellular matrix (ECM) forms the basic framework for all tissues in the human 

body, providing an outstanding environment for the cells and controlling their growth 

and behaviors in vivo [36]. ECM is mainly composed of nanofibrous proteins forming 

a three-dimensional network that holds the cells together and helps in determining 

their shape and activities [37]. Many attempts were taken by researchers to mimic the 

ECM for providing functional scaffolds for tissue engineering applications. However, 

only limited success could be achieved. This was related to the fact that conventional 

fibers production methods either results in fibers much thicker than ECM fibers (>10 

µm in diameter), or lack the ability to produce continuous fibers [36]. It was only in the 

recent years when electrospinning emerged as a versatile technique for producing 

continuous ultrafine fibers based on high variety of synthetic and natural polymers 

[16, 36]. Since then, very rapid progress could be achieved thus offering new 

solutions for cell cultivation and tissue engineering covering different types of 

aspects. In this context, many applications were evolved in the recent years 

including: cell cultivation [36], vascular tissue engineering (artificial prosthesis, heart 

valves) [38, 39], nerve tissue engineering [40, 41], bone regeneration [42, 43], skin 

reconstruction [44] and many others [7, 16, 45]. In order to achieve the desired 

mechanical properties while facilitating cellular attachments and growth, it is very 

important to choose the suitable materials after considering their characteristics. For 

instance, combining synthetic hydrophobic polymer (providing mechanical stability) 

with natural hydrophilic polymer (improving cellular attachment, growth, etc.) in the 

same scaffold is a successful strategy for fabricating electrospun fibers for tissue 

engineering. In this regard, deep understanding of the human ECM is crucial for the 

design of tailor-made biomimetic electrospun fiber scaffold for tissue engineering and 

cell cultivation. 
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2. Aims of the Thesis 

The aim of this work was to study of the factors affecting the biomedical 

applicability of electrospun fibers. Thorough investigation of the parameters 

determining drug encapsulation in electrospun fibers in terms of drug, distribution 

within the fibers, drug stability, and drug release has to be conducted while the 

suitability of electrospun fibers for applications on human cells has to be 

confirmed. In this context, the experimental studies should establish the basis for 

tailor-made electrospun fibers for drug delivery and tissue engineering. 

 

More specifically, the aims of this thesis were:  

 To investigate the factors influencing the encapsulation of hydrophilic drugs in 

hydrophobic polymers, focusing on overcoming drug crystallization upon 

fabrication.  

 To study the effects of different post-modification treatments of hydrophilic 

electrospun fibers to prolong drug release for protein delivery. 

 To establish novel approaches for in situ dissolution analysis of electrospun 

fibers and to develop strategies to prevent sample folding during dissolution 

testing. 

 To generate novel electrospun fibers with tunable biomechanical properties as 

substrates for cultivation of human cells. 
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3. Scientific Outcome 

 

 

 

 

 

 

 

 

 

 

 

 

The following sections encompass the scientific outcome of this work published in 

articles (I – V). A more detailed description of the experimental and results can be 

found in the respective publications.  
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3.1. Fabrication and characterization of drug-loaded electrospun fiber mats: 

evaluating drug stability upon fabrication  

3.1.1. Introduction 

Even though electrospinning has been proved as a versatile technique for fabricating 

fiber-based drug delivery systems [7], encapsulating hydrophilic drugs in hydrophobic 

polymers for controlled drug release bears several challenges [46]. One important 

issue is represented by uncontrolled drug recrystallization in the dosage form 

after/during fabrication which is a common challenge for thin polymeric dosage forms, 

and can potentially cause inhomogeneous drug distribution, affecting uniformity of the 

drug delivery system and consequently affecting drug release kinetics as well as 

physical stability during storage [47]. In this section, a comprehensive study aimed at 

understanding the underlying parameters responsible for crystal formation of caffeine 

(CAF) as a model drug in electrospun fibers comparing different polymers. After 

elucidating the role of the solvent system in controlling drug crystal formation, a 

successful fabrication of crystal-free electrospun fibers could be achieved, providing 

an improved drug distribution and therefore improved dissolution behavior could be 

realized.  

 

Corresponding article: I. 

 

3.1.2. Overcoming drug crystallization in electrospun fibers – elucidating key 

parameters and developing strategies for drug delivery  

For fabricating drug-loaded electrospun fibers and for investigating the effect of 

uncontrolled drug crystallization, CAF as a model drug was combined with two 

different biocompatible and biodegradable polymers possessing different 

physicochemical characteristics. Poly(vinyl alcohol) (PVA) was chosen as a 

hydrophilic polymer while polycaprolactone (PCL) was selected as hydrophobic 

polymer. PVA is normally utilized to form immediate release matrices, while PCL is 

rather used for controlled release systems. CAF was chosen as a hydrophilic model 

drug due to its high crystallization tendency [47].  
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In general, the high evaporation rate of the solvents in electrospinning is thought to 

facilitate the formation of solid solutions of the drug in the fibers [48]. However, few 

studies reported the presence and growth of drug crystals on electrospun fibers 

affecting the morphology and the physicochemical characteristics of the fibers which 

can mainly be observed when encapsulating hydrophilic drugs in hydrophobic 

polymer fibers [46, 49]. In this study, electrospinning of the CAF-PVA solution 

resulted in a homogeneous fiber mat with fiber diameters in the lower micrometer 

range. Scanning electron microscopy (SEM) images revealed continuous fibers with 

a smooth outer surface (Figure 2A) and confocal Raman microscopy (CRM) 

visualized a homogeneous distribution of the drug in the polymer fibers without any 

detectable crystals (Figure 2B). In comparison, while electrospinning of the CAF-PCL 

solution resulted in homogenous fibers in the lower micrometer range, the SEM 

images revealed crystal formation on the fiber surface (Figure 2C). CRM allowed 

identifying the observed crystals as pure CAF (Figure 2D, CAF is depicted in red).  

 

Figure 2: A) SEM image of electrospun CAF-PVA fibers, B) CRM false color image showing CAF-PVA fibers. 

Both compounds could be detected in each pixel (green), C) SEM image of electrospun CAF-PCL fibers, D) CRM 

false color image of electrospun CAF-PCL showing crystalline CAF in red and PCL containing pixels in blue. 

Reproduced with permission from [50]. 
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While electrospinning is thought to overcome crystallization of incorporated drugs 

during fabrication due to the high evaporation rate of the solvent, CAF crystallization 

on the outer surface of PCL surface raised the question whether the rate of fiber 

formation is the only affecting key factor. In order to understand the crystal formation 

of CAF on the outer surface of PCL fibers, comprehensive studies aimed at 

investigating the process of fibers formation focusing on two main aspects: 1) 

process parameters and 2) properties of the polymeric solutions.  

As electrospinning process parameters are known to affect the final fibers 

characteristics [6], the following experiments focused on testing different set of 

parameters for electrospinning using the same CAF-PCL solution, and the fabricated 

fibers were investigated with respect to drug crystal formation on the fiber surface. 

Pumping flow rate of the polymer solution, nozzle-collector distance, and voltage 

were the main parameters tested (Table 2). After fabrication, the prepared fibers 

using these parameters were investigated with SEM and the corresponding images 

are depicted in Figure 3. Generally, only a minor influence of process parameter 

variation on fiber diameter as well as on the crystal formation was observed. 

Therefore, the following part of this study focused on the CAF-PCL solution and the 

physicochemical properties of its components. 

Table 2: Summary of the investigated electrospinning process parameters.  

 
Parameter 

set 1 

Parameter 

set 2 

Parameter 

set 3 

Parameter 

set 4 

Parameter 

set 5 

Parameter 

set 6 

Flow rate 

(ml/h) 
0.3 0.3 0.3 2 3 3 

Distance 

(cm) 
13 13 16 18 13 16 

Voltage 

(kV) 
6.48 11.51 6.48 8.26 12.28 12.30 

SEM 

image 
3-A 3-B 3-C 3-D 3-E 3-F 
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Figure 3: SEM images of CAF-PCL fibers prepared with different electrospinning process parameters according to 

table 2. Reproduced with permission from [50]. 

The physicochemical properties of the polymer solution are known to have an 

important impact on the final morphology and characteristics of the formed 

electrospun fibers [51]. Especially, compatibility of drug and polymer were already 

shown to directly affect the drug encapsulation and its release kinetics [46]. In this 

context, the hydrophilicity of CAF in contrast to the hydrophobic PCL can be 

expected to influence the crystallization process of the drug [52]. In order to verify this 

hypothesis, CAF was exchanged against the hydrophobic drug flufenamic acid (FFA) 

and electrospun fibers were prepared from the same polymeric solution as for the 

CAF experiments. FFA was efficiently encapsulated within PCL resulted in smooth 

crystal-free fibers as shown in (figure 4A). These results indicate that the hydrophilic-

hydrophobic relationship of drug and polymer highly affects CAF crystallization on the 

PCL fiber surface. Based on our results, we focused in the following studies on 

modifying the solvent regarding the solubility of the drug and the polymer and its 

impact on the electrospinning process. It is known that fiber formation can be affected 

by the properties of the applied solvents such as boiling point, surface tension and 

dielectric constant [6]. Among them, the solvent dielectric constant (as an indicator of 

solvent polarity) was found to be a strong influential parameter. Solutions with high 
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dielectric constant were shown to facilitate and improve the electrospinning process 

as well as the morphology of the final fibers [53, 54]. Therefore, we investigated the 

effect of solvent polarity on our polymer solutions. At first, we prepared solutions with 

2,2,2-trifluoroethanol (TFE), a solvent with high polarity capable to dissolve CAF as 

well as PCL. Interestingly, electrospun fibers based on these solutions showed 

significantly decreased crystal formation (Figure 4B). Apparently, the higher polarity 

of TFE facilitated CAF encapsulation within PCL. In order to corroborate these 

results, we investigated dimethylformamide (DMF) as a solvent with higher polarity 

than TFE. However, as pure DMF cannot efficiently dissolve PCL, a mixture of 

TFE:DMF (75:25 v/v) was used for the next experiments. Crystallization of CAF on 

the fiber surface was successfully prevented as depicted in Figure 4C. However, the 

reduction in the diameter of the individual fibers as a result of the high dielectric 

properties and high conductivity of the polymer solution led to rapid release kinetics 

for the embedded CAF (data not shown). Therefore, we reduced the amount of DMF 

and repeated the experiment with a TFE:DMF ratio of 90:10 v/v. The resulting fibers 

were smooth and homogeneous with no CAF crystals on the surface as depicted in 

the corresponding SEM images in Figure 4D. The diameters of the fibers were in the 

lower micrometer range and thus comparable to those produced by CAF-PVA (Figure 

2A). These results prove the importance of solvent selection in preventing CAF 

crystallization on the fiber surface. The mixture of TFE:DMF (90:10 v/v) assured an 

efficient encapsulation of CAF compared to the previously used chloroform:ethanol 

(50:50 v/v) mixture. Considering the physicochemical properties of both solvent 

systems, we accredit the effectiveness of the TFE:DMF (90:10 v/v) mixture to its high 

polarity which influenced the electrospinning leading to the homogeneous CAF 

distribution in the fibers, and thus efficiently overcoming drug crystallization on the 

fiber surface.  
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Figure 4: SEM images representing: A) FFA-PCL fibers, B) CAF-PCL fibers prepared in TFE, C) CAF-PCL fibers 

prepared in TFE:DMF 75:25 v/v, D) CAF-PCL fibers prepared in TFE:DMF 90:10v /v. Reproduced with permission 

from [50]. 

Subsequent analysis concentrated on the physicochemical characterization of the 

final CAF-PCL fibers prepared using TFE:DMF (90:10 v/v). CRM analysis confirmed 
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that for the final CAF-PCL fiber formulation, no CAF crystals were detected on the 

surface of the fibers, instead a homogeneous distribution of both compounds could 

be visualized in each pixel (Figure 5A and B). Differential scanning calorimetry (DSC) 

analysis was performed to determine the physical form of CAF within the electrospun 

PCL fibers. In contrast to the initial CAF-PCL fibers (with CAF crystals); the 

thermogram of the final crystal-free CAF-PCL showed no melting peaks representing 

crystalline CAF, hence, indicating the formation of a solid solution (Figure 5C). 
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Figure 5: A) Raman spectra of pure CAF, CAF-PCL fibers and pure PCL, B) CRM image of CAF-PCL fiber mat 

prepared with TFE:DMF (90:10 v/v), crystalline CAF is depicted in red and pixels containing CAF and PCL are 

assigned in purple, C) DSC thermograms of the electrospun fibers and pure substances. Reproduced with 

permission from [50]. 

In the final step of this study, we investigated drug release from the fabricated PCL 

fiber mats. For comparison, we determined the CAF release from hydrophilic PVA 
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fibers, the initial CAF-PCL fiber mats (with CAF crystals) and the final crystal free 

CAF-PCL fiber mats (prepared with TFE:DMF (90:10 v/v)). The hydrophilic PVA 

fibers showed an immediate release of CAF (Figure 6). Almost 100% of the 

encapsulated CAF was detected in the release medium after only 15 min. This 

correlates to the expected burst release due to fast degradation of the hydrophilic 

polymer PVA and the good aqueous solubility of CAF as a hydrophilic drug. The 

release of CAF from the initially prepared PCL mats with visible CAF crystals on the 

fiber surface follow immediate release kinetics similar to CAF-PVA fiber mats (Figure 

6). Since CAF is mainly located at the outer surface of the fibers, its solubility in the 

release medium determines the release kinetics, rather than the diffusion from the 

PCL fibers. In contrast, the crystal free CAF-PCL fibers prepared in TFE:DMF (90:10 

v/v) show a sustained drug release. As 100% release was not reached until four 

hours, an encapsulation of the CAF in the PCL and release by passive diffusion can 

be assumed.  

 

Figure 6: In vitro release of CAF from the prepared PVA and PCL based fiber. (mean ± SD, n≥3). Reproduced 

with permission from [50]. 

In conclusion, crystallization behavior of hydrophilic drugs in hydrophobic electrospun 

fibers is affected mainly by the composition of the polymer solution as well as - to a 

minor extent - by the electrospinning process parameters. Based on a systematic 

investigation of caffeine crystallization in electrospun PCL fibers, the solvent polarity 

was found to have a major impact on drug crystallization. Successful prevention of 

uncontrolled drug crystallization led to homogeneous drug distribution, accordingly 

controlled drug delivery could effectively be achieved.  
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3.2. Controlling drug release from hydrophilic electrospun fibers for protein 

drug delivery by means of post-modification treatments 

3.2.1. Introduction 

Electrospun nanofibers gained considerable attention as novel drug carriers for the 

delivery of natural proteins [24, 55]. However, even though immediate drug release 

from such fibers can easily be realized, the fabrication of fiber mats providing 

controlled protein release over longer time periods still bears challenges [24]. In this 

section, a systematic investigation on the effect of different post-modification 

treatments of hydrophilic electrospun nanofibers to prolong protein release was 

performed. Analysis of the fibers focused on the effect of post-modification on fiber 

morphology, chemical composition, release of embedded proteins, protein activity as 

well as cytotoxicity. 

 

Corresponding articles: II and III. 

 

3.2.2. Controlling the release of proteins from therapeutic nanofibers: the 

effect of fabrication modalities on biocompatibility and antimicrobial 

activity of lysozyme 

Lysozyme, a natural protein was encapsulated in PVA fibers followed by 

postmodification with methanol (MeOH), ultraviolet (UV) irradiation, or glutaraldehyde 

(GTA) vapor. After modification, the fibers were stored in a desiccator for 24 hours at 

4 °C prior to analysis. Untreated lysozyme-PVA fibers (without any post-modification) 

displayed a rather homogeneous smooth surface and a uniform fiber diameter in the 

nanometer range (mean around 500 nm) as depicted in Figure 7A. This also holds for 

fibers treated with MeOH (Figure 7B). However, it can be noticed that the fibers 

treated with MeOH appear closer packed, thus resulting in a slightly denser fiber 

network. As a second postmodification approach in our study, GTA was applied as a 

broadly known chemical cross-linking agent for the stabilization of polymers [56]. 

While earlier studies showed that treating electrospun fibers with GTA vapor for long 

time (5 hours) can cause the fibers to collapse forming a coherent film-like structure 

[56], in our study we exposed our fibers to GTA vapor for only 1 hour in order to avoid 
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such effect. As a result, the GTA treated fibers maintained their individual shape and 

morphology and only a slightly more stacked fiber mat structure can be visualized 

(Figure 7C) as already found for the MeOH treated samples (Figure 7B). For the third 

approach, controlled application of UV irradiation on the fiber mats was executed. In 

contrast to previous studies, where UV light in combination with chemical sensitizers 

to electrospun fibers were applied [57, 58], we solely exposed each side of the drug 

loaded fiber mats for 3 hours to UV light to avoid potential interactions of lysozyme 

and sensitizer molecules. The resulted fibers after UV treatment do not show any 

morphological changes (Figure 7D) compared to the untreated fibers (Figure 7A). In 

summary, no significant change on the fiber morphology upon treatment with any of 

the approaches could be observed, only for the cases of MeOH and GTA treatment, 

where the fiber mats appeared slightly denser packed.  

 

Figure 7: SEM images of the electrospun lysozyme -loaded PVA fibers: A) untreated fibers, B) MeOH treated 

fibers, C) GTA treated fibers and D) UV treated fibers. Reproduced with permission from [59]. 

In vitro drug release testing in phosphate buffered saline (PBS) (pH 7.4) was 

performed with all fiber mats. For lysozyme quantification, bicinchoninic acid assays 

(BCA assays) were used, as such assays provide the advantage of detecting 

proteins even in their denatured state, and therefore assure accurate calculation of 

the encapsulated protein content and its release kinetics [60]. As expected, the drug 

release from the untreated fibers was very rapid due to the fast disintegration rate of 
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the PVA fibers (Figure 8). For the first post-modification approach, lysozyme release 

from the MeOH treated fibers did not show significant difference compared to the 

untreated fibers (Figure 8). In an earlier study, Kenawy et al. reported that MeOH 

treatment of PVA fibers loaded with ketoprofen can prolong the release of the 

encapsulated drug reaching less than 40 % in two weeks [57], the differences of their 

data to the release kinetics for lysozyme represented in Figure 8 are most likely due 

to the hydrophilicity of lysozyme (in comparison to ketoprofen), rather than due to 

differences in the prepared fibers. Slower release kinetics could be achieved using 

GTA vapor where around 60-70 % of the encapsulated lysozyme was released in 18 

days (Figure 8). The third postmodification approach using UV was shown to be more 

efficient in terms of prolonging the release, for which the released lysozyme did not 

exceed 40 % during 18 days.  

  

Figure 8: Lysozyme release from PVA electrospun fibers during a period of 18 days (A), and a close-up view on 

the release for the first 4 hours (B). Results are expressed as mean ± SD, n≥3. Reproduced with permission from 

[59]. 

For a better understanding of the effect of the release experiments on the fibers 

morphology, samples were immersed in PBS (pH 7.4) at 37 °C for 18 days, gently 

rinsed with water to remove any residual amount of the buffer and visualized with 

SEM. Interestingly, SEM images revealed that changes of the fibers surface structure 

correlate to the release kinetics for the encapsulated lysozyme. The surface of the 

untreated fibers changed into a homogeneous coherent film-like sheet with a slightly 

structured surface and individual fibers no longer visible (Figure 9A). In comparison, 

the initial fiber structure of MeOH and with GTA treated fibers is still generally visible, 

only in some smaller areas coherent film-like structures are also noticeable (Figure 

9B and C). The UV treated fibers maintain their fiber morphology to a great extent, 
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which also corresponds to the slowest release kinetics for the embedded protein 

(Figure 9D).  

 

Figure 9: SEM images of the electrospun lysozyme-loaded PVA fibers after release experiments: A) untreated 

fibers B) MeOH treated fibers, C) GTA treated fibers, D) UV treated fibers. The initial state of the fibers is depicted 

in the small images for each formulation. Reproduced with permission from [59]. 

The next step was to investigate the effect of postmodification methods on the 

encapsulated lysozyme. One of the most reliable methods to investigate its activity is 

based on detecting the rate of its lytic activity on bacteria like Micrococcus 

lysodeikticus [61, 62]. The reduction of light absorbance of a suspension of 

Micrococcus lysodeikticus incubated with lysozyme can subsequently be used as an 

indicator for the activity of the protein. In this respect, a decrease in light absorbance 

correlates with high lysozyme activity. For our studies, lysozyme activity for each fiber 

mat sample was compared to the corresponding activity of freshly prepared solutions 

containing the same amount of lysozyme. For the untreated fibers, the activity of the 

encapsulated lysozyme was not affected, indicating the activity of the encapsulated 

protein was maintained during the electrospinning process (Figure 10A). Likewise, 

post-modification with MeOH did also not affect the activity of the encapsulated 

lysozyme (Figure 10A). In contrast, treatment with GTA vapor and UV light was 

associated with a loss of about 50 % of the initial protein activity (Figure 10A).  
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In a next step, potential effects of the different post-modification approaches on 

interactions with biological systems (cell cytotoxicity) were investigated by incubating 

cells with fiber mats and determining their cellular mitochondrial activity using 

methylthiazol tetrazolium (MTT) assays. The results show no significant reduction of 

the cell proliferation capacity for cells grown on MeOH treated fiber mats compared to 

untreated fibers (Figure 10B). Compared to cells maintained in standard two-

dimensional polystyrene culture wells serving as positive control, only a slight 

reduction in absorbance values was observed for the cells cultivated on fibers. This is 

presumably related to the structural differences between the fiber mats and the two-

dimensional culture wells. For GTA treated fibers, cells grown on these fibers showed 

hardly any mitochondrial cell activity and the results were much comparable to that of 

the negative control experiments (where cell death was induced by means of Triton 

X-100) (Figure 10B). The present results indicate that despite the relatively minimal 

exposure time to GTA vapor, residuals of GTA on the fiber surface could have 

implicate cytotoxic effect on the cells. For the fibers treated with UV light, significant 

reduction of the mitochondrial activity of the cells was found compared to the 

untreated fibers and the positive control (Figure 10B). This could be attributed to the 

UV induced formation of free radicals which can damage the cell structure and 

therefore affect cell viability [63, 64]. However, it has to be taken into considerations 

that MTT assays are normally performed on cell monolayers, which are much 

sensitive to external stimuli and are not sufficiently equivalent to the in vivo situation 

in the human body. 

  

Figure 10: Analysis of the protein activity in the electrospun fibers (A) and cell viability testing of the fiber mats 

using an MTT assay (B) in which PC and NC represent the positive and negative controls, respectively. Results 

are expressed as the mean ± SD, n=3. Statistical significance was considered at p<0.05 (*). Reproduced with 

permission from [59]. 
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In conclusion, the results of this study provide a deeper insight into the effect of post-

modification of protein loaded electrospun fibers on protein release and activity, and 

on cytotoxicity of the fibers. While the protein release could successfully be 

prolonged by means of post-modification methods, crucial requirements for optimum 

therapeutic effectiveness of such protein-loaded delivery systems include maintaining 

the activity of the encapsulated protein and exclusion of any adverse effects to the 

human body. In this context, lysozyme activity was not affected by treatment with 

MeOH, whereas GTA and UV treatment considerably reduced its activity. 

Furthermore, cytotoxic effects on cultivated human cells were identified for fibers 

treated with GTA, as well as to a lesser extent for UV-treated fibers, whereas MeOH-

treated fibers did not affect cell viability. These results elucidate the effects of fiber 

postmodification on release kinetics as well as on activity and biocompatibility of 

protein therapeutics, thus providing better insight into this option for the development 

of protein drug delivery systems based on electrospun fibers. 
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3.3. Establishment of novel approaches for in situ dissolution analysis of 

electrospun fibers 

3.3.1. Introduction 

Dissolution testing for electrospun fibers is generally performed in small vials by 

immersing the fiber mats in buffered solutions. Then, defined aliquots of dissolution 

medium are withdrawn at predefined time points and the dissolved drug is quantified. 

However, this procedure is associated with several drawbacks including inaccuracies 

in the case of frequent sampling and partial folding of the fiber mats upon contacting 

the dissolution media. This section presents the development of a predictive 

dissolution setup for electrospun fibers based on a fully automated fiber optics 

system for advanced in situ monitoring of drug release from electrospun fibers. 

 

Corresponding article: IV. 

 

3.3.2. Monitoring drug release from electrospun fibers using an in situ fiber 

optics system 

Lysozyme was encapsulated within electrospun fibers based on PVA. For 

comparison, PVA films were prepared from the same solutions. Even though both 

systems were based on the same polymeric solution, a clear difference in the visual 

appearance could be observed (Figure 11). While the ultrafine substructure of the 

fiber network in the electrospun fibers led to the opaque white color appearance 

(Figure 11A and B) [23], the casted film exhibited a smooth surface with transparent 

appearance (Figure 11C and D). Although circular punches with the same diameter 

were acquired from films and fiber mats, the ultrafine substructure of the electrospun 

fibers increases the actual surface area of these samples, which can be expected to 

have an impact on the release kinetics of encapsulated drugs. 
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Figure 11: (A) Surface morphology of the electrospun fibers, (B) SEM image of the electrospun fibers, (C) surface 

morphology of a casted film, (D) SEM image of a casted film. Reproduced with permission from [65]. 

Conventional drug release experiments are generally performed by immersing the 

drug-loaded dosage form in buffered solutions and determining the concentration of 
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the released drug at predetermined time points. Although this method can be applied 

for thin polymeric dosage forms such as electrospun fiber mats, films, or transdermal 

patches, the thin and flexible nature of such systems make them susceptible to 

folding upon immersion in the release media as shown in Figure 12. This folding can 

eventually decrease the surface area of the investigated sample, leading to 

inaccurate determination of the release kinetics.  

 

Figure 12: Electrospun fiber mat with glass vial for conventional drug release testing before immersion in 

dissolution medium, and in dissolution medium (magnification). Reproduced with permission from [65]. 

In this respect, it is necessary to preserve the flat structure of the sample during the 

release experiment for improve accuracy and reproducibility. For instance, dissolution 

testing from transdermal patches requires the fixation of the sample by using a strip 

of double-sided adhesive or an extraction cell [66]. The same concept was 

considered for polymeric films [67]. However, in the case of electrospun fibers 

release experiments are generally performed by simply immersing the fiber mats in 

buffer without any fixation of the sample [68]. The issue of sample folding was rarely 

addressed for electrospun fibers. For instance, in a study by Verreck et al. a modified 

Finn chamber was used to investigate drug release from electrospun fibers, thus 

keeping the sample from folding during dissolution [48]. 

In this study, we designed a novel flexible adapter to keep the sample fixed in a 

certain position during the release experiments. The designed adapter consisted of 

commercially available silicone and a nylon based net (Figure 13). While the 

mechanical flexibility of silicone allowed for convenient use, the nylon net provided 

the required support and at the same time unrestricted diffusion of the release 
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medium as well as released drug. Prior to the release experiments, interactions of net 

and drug were experimentally excluded (data not shown). 

 

Figure 13: Sample mounting using the designed flexible adapter. (A) Adapter without (top) and with (bottom) 

electrospun mat, (B) adapter with fiber mat installed within the dissolution vessel. Reproduced with permission 

from [65]. 

Release experiments in PBS (pH 7.4) were performed with the electrospun fiber mats 

as well as with the casted films. The designed adapter was used to mount the 

samples to the wall of the dissolution vessel, preventing undesired sample folding 

(Figure 13). The dissolution setup was composed of fiber optics immersed in glass 

vials that were tightly sealed during the experiments to prevent volume changes due 

to evaporation of the media. Furthermore, each fiber optic channel (corresponding to 

a separate dissolution vial) was calibrated with its own standard curve prior to 

experiments, and a very good linearity was achieved as shown in the representative 

calibration curve (Figure 14A). Complete drug release from electrospun fibers and 

casted films was achieved after approximately 20 minutes, which can be attributed to 

the hydrophilic nature of the drug and the polymeric material. The results of the 

dissolution experiments are shown in Figure 14B. The high sampling intervals 

provided a deeper insight into the release process from the electrospun fibers as well 

as from the casted films. Lysozyme release from electrospun fibers occurred much 

faster compared to its release from casted films (Figure 14B). This can be attributed 

to the higher surface provided by the ultrafine fibrous structure, which facilitated the 

release into the dissolution media. Although the overall difference in the release 

kinetics can be considered marginal, the frequent sampling intervals allowed for the 

successful identification of this occurrence to be achieved. 
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Figure 14: (A) Representative calibration curve and (B) lysozyme release from fiber mats as well as from films 

(mean ± SD, n=3). Reproduced with permission from [65]. 

In conclusion, fully automated fiber optics systems provide many advantages for the 

dissolution testing of electrospun fibers, not only in terms of saving time, but also in 

providing deeper insight into the release kinetics due to the high sampling frequency. 

Furthermore, the flexible adapter designed in this work provided the required support 

for the tested samples and prevented the undesired sample folding. The present 

study highlights the potential of applying fiber optics dissolution systems for 

investigating drug release from electrospun fiber mats, thus providing an advanced 

alternative to the conventional dissolution experimental setups. 
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3.4. Generation of novel electrospun fibers with tunable biomechanical 

properties for cultivation of human cells 

3.4.1. Introduction 

The fibrous three-dimensional structure of electrospun fibers resembles the 

extracellular matrix (ECM). This similarity initially encouraged the researches for 

applying electrospun fibers for cell cultivation and tissue engineering [36]. 

Electrospun fibers were shown to provide a unique comfortable environment for cells 

facilitating their attachments and proliferation [36]. In this section, novel hybrid 

electrospun fibers with tunable biomechanical properties combining natural and 

synthetic polymers were generated. Thorough characterization of these fibers was 

performed with respect to their morphology, biomechanical properties and 

interactions with primary human cells. 

 

Corresponding article: V. 

 

3.4.2. Three-dimensional hierarchical cultivation of human skin cells on bio-

adaptive hybrid fibers.  

In order to fabricate electrospun fibers as substrates for cultivation of human cells, 

three different types of electrospun fiber mats varying in their biomechanical 

properties were generated, followed by characterization and evaluation of their 

interactions with primary human cells. The first fiber mat was solely composed of 

PCL, a synthetic, FDA-approved, biocompatible and water-insoluble polymer 

providing mechanical stability and flexibility  [69]. For the second fiber mat, blend 

electrospun fibers were fabricated by mixing PCL with gelatin as a natural, water-

soluble polymer [70]. The aim of this approach was to increase the wettability of the 

fiber surface and to coordinate the biomechanical behavior using a multi-component 

system. The third fiber mat aimed at further modulating the fiber mat´s mechanical 

properties and facilitating its hydrophilic characteristics. For this purpose, gelatin 

fibers were simultaneously electrospun along with the blend fibers forming a binary 

fiber system. The fibers generated in this study are schematically illustrated in Figure 

15. 
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Figure 15: schematic illustration of the PCL, blend and hybrid fiber mats generated in this study. The red color 

represents PCL, while gelatin is represented in green.  

All three types of fiber mats were compared to native human ECM which was 

decellularized after isolation from human skin. SEM imaging revealed that each fiber 

mat exhibited a homogenous fiber network with well-defined, interconnected porosity 

similar to the hierarchical architecture of native ECM and smooth surface (Figure 

16A). Especially the hybrid fibers were closely comparable to native ECM in terms of 

fibers diameters. As the spatial distribution of different compounds in one fiber 

strongly affects the biomechanical properties of the prepared fibers, confocal Raman 

microscopy was used to investigate the distribution of PCL and gelatin within the 

blend fibers. Based on a z-stack analysis, virtual slices of the fibers in different focal 

planes allowed for spatially resolved, three-dimensional visualization of the fiber 

composition. One representative false-color image is depicted in Figure 16B. 

Interestingly, gelatin (green) is mainly found at the surface of the fiber, whereas the 

cores of the fibers mainly consist of pure PCL (red).  
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Figure 16: A) SEM images of the fabricated electrospun PCL, blend and hybrid fibers, and isolated ECM, B) Non-

invasive, chemically selective Raman analysis of compound distribution (PCL – red, gelatin – green) in 

electrospun hybrid fibers. Reproduced with permission from [71]. 

Considering that the surface wettability is an important factor affecting the biological 

behavior of cells on material surfaces, contact angle measurements were conducted 

on the fabricated fiber mats. While PCL fibers exhibited a rather hydrophobic surface 

(contact angle of 119°), the gelatin containing fibers (namely blend and hybrid fibers) 

were shown to have a much improved wettability and hydrophilic properties with 

contact angle of 0°.  

The next step in characterizing the generated electrospun fibers focused on testing 

their mechanical properties. In this respect, uniaxial tensile testing was used to 

record the structural changes of the fibers and their failure upon tensile loading. This 

test aimed at evaluating the fibers in terms of stiffness, flexibility, and toughness 

properties. Subsequently, SEM analysis of the investigated fibers was performed to 

provide better understanding of the fibers failure. For the PCL fiber mats, deformation 

started by extensive necking and continuous propagation along the tension axis, until 

the final failure was reached (Figure 17A). In the case of blend fiber mats, non-

uniform elongation along the tensile axis was observed. Defects started to appear at 

different positions of the sample until a critical defect density led to failure (Figure 

17A). The tearing failure started from sample edge with rapid propagation along the 

sample surface. In comparison to PCL fibers, the presence of gelatin in blend fibers 

contributed to improving the mechanical properties by increasing the toughness of 
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the blend fibers as shown by the higher Young’s modulus [72]. This can be seen by 

the steep shift of the linear elastic phase within the stress-strain curve in y-direction 

(Figure 17B). Interstingly, the hybrid fibers, failed by gradual fiber breakage, where 

each failure event seemed to allow unraveling of the fibers and facilitated increased 

elongation as shown in Figure 17A. The continuous elongation of the hybrid fibers 

resulted in thinning of the parallely realigned fibers until breakage of the sample was 

induced by sequential failure of individual fibers. Further, the stress-strain curve 

revealed a brittle-to-ductile transition during fracture of hybrid fibers. A detailed 

characterizaiton of the mechanical properties of the generated fibers is summarized 

in Figure 17C.  
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Figure 17: Mechanical properties of electrospun PCL, blend and hybrid fiber mats. (A) Visualization of the 

different failure modes based on acquired time-lapsed serial images upon tensile loading and representative 

optical micrographs of the fracture fiber surfaces after mechanical testing. (B) Mechanical properties calculated 

from the engineering stress-strain curves. (C) Typical engineering stress-strain curves for each type of fiber mats. 

Reproduced with permission from [71]. 

In order to evaluate the suitability of the fabricated fibers for the cultivation of human 

cells, primary human skin fibroblasts were cultivated on all three fiber formulations 

(PCL, blend, and hybrid fibers). Interestingly, significant differences in terms of cell 

morphology and density were observed among the fabricated fibers. For instance, 

the level of cell coverage on the PCL fibers was rather low (Figure 18A). This can be 

attributed to the rather hydrophobic surface of PCL fiber mats (water contact angle 
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119°, n= 5), low stiffness (8.0 MPa ± 2.5 MPa, n = 6), and moderate toughness (1.99 

x 104 J/m³ ± 0.42, n = 6). In comparison, blend fiber mats showed a higher cell 

density and three-dimensional cell shaping (Figure 18B), which were induced by 

improved cell attachment properties due to the increased hydrophilicity (water contact 

angle 0°, n= 5) as well as substantial increase in stiffness (78.2 MPa ± 16.6 MPa, n = 

6) and toughness (2.42 x 104 J/m³ ± 0.71, n = 6). The highest level of cell growth and 

three-dimensional cell organization was observed for the hybrid fiber mats, where 

cells could attach to several fibers due to their improved hydrophilicity and smaller 

pore sizes in the initial phase (Figure 18C).  
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Figure 18: Evaluation of cell-matrix interactions by analysis of cell behavior as response to fiber surface. 

Fluorescence staining of cell membrane (red) and cell nuclei (blue) to visualize human dermal fibroblasts 

cultivated for 14 days onto (A) PCL, (B) blend and (C) hybrid fiber mats revealing considerable differences in cell 

density and three dimensional cell-shaping among these three electrospun fiber mats. Reproduced with 

permission from [71]. 

In order to follow up with the previous results, the next studies aimed at evaluating 

the potential of the hybrid fiber mats for the hierarchical three-dimensional cultivation 

of different human cells. In this context, fibroblasts (as cells forming the dermis in 

human skin) were cultivated on hybrid fiber mats in a multi-well plate assembly 

equipped with permeable membrane inserts. After two weeks of cultivation, 

keratinocytes (resembling the upper part of the skin, the epidermis) were seeded on 
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top of the same multi-well plate assembly. Then, the well plate inserts were lifted to 

the air-liquid interface to induce a stratification of the upper keratinocytes layers, thus 

mimicking the in vivo situation in the human body. Schematic illustration of the 

assembly is illustrated in Figure 19A. Fluorescence-based staining of the cell 

membrane (red) and cell nuclei (blue) revealed a three-dimensional cellular 

organization of the fibroblasts after two weeks of cultivation as well as high cell 

density of keratinocytes detected on the hybrid fiber mat surface after ten days of 

cultivation (Figure 19A).  

The final step of this study was to compare the fiber mats with excised human skin by 

histological analysis. For this purpose, Hematoxylin/eosin stained cross sections 

were prepared (Figure 19B). While hematoxylin (blue) binds to cell nuclei, eosin 

(pink) stains collagenous structures as the main constituents of the dermis part. 

Direct comparison of hybrid fiber mat and excised human skin showed high 

comparability represented by the multilayered sheet of keratinocytes located on the 

outer surface of the fiber mat scaffold and the presence and growth of the fibroblasts 

within the fiber mat scaffold (Figure 19B). Furthermore, the barrier formation was 

verified using involucrin (green) as a specific immunofluorescence-based marker for 

terminal differentiation of the keratinocytes [73, 74]. Additionally, 4',6-diamidino-2-

phenylindole staining (DAPI Staining) (blue) allowed visualization of the cell nuclei, 

which can be seen in high density in the viable epidermis. Thus confirming the 

localization of involucrin occurring towards the air exposed region above the viable 

part of the epidermis (Figure 19B). The presence of an intact barrier along the entire 

length of the fiber mat cross section is represented by the uniform consistent 

stratified layer as shown in the bottom left corner of Figure 19B. 
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Figure 19: Evaluation of the applicability of electrospun hybrid fiber mats for hierarchical co-cultivation of human-

derived skin cells. (A) Experimental setup for in vitro reconstruction of human skin tissue using a Transwell®-

system by first seeding human primary dermal fibroblasts on electrospun hybrid fiber mats for 14 days, followed 

by cocultivation with human keratinocytes on top of the fiber mats surface for 10 days under submersed culture 

conditions and further cultivation at air-liquid interface for 14 days. (B) Example of in vitro reconstructed skin 

tissue visualized by hematoxylin/ eosin staining and evaluation of barrier formation by immunofluorescence-

staining of terminal differentiated keratinocytes (green) using involucrin (right column) compared to ex vivo human 

skin tissue (left column). Reproduced with permission from [71]. 

To summarize, in this study we introduced a novel approach for designing and 

fabricating bio-inspired functional electrospun fibers derived from the native 

architecture of human ECM with tailor-made biomechanical properties favoring cell 

attachment. The three-dimensional fibrous network offered by hybrid electrospun 

fiber mat provided a unique bio-adaptive environment for cell attachment, migration, 

and proliferation within the matrix. The present results confirm the synergistic effect 

of tailored biomechanics, surface wettability, and biodegradation of the fiber mat on 

the cellular behavior, hence, providing a better understanding on the factors affecting 

the development of scaffolds based on electrospun fibers for application in cell 

cultivation and tissue engineering. 
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4. General conclusion and perspective 

Electrospinning shows great potential for broad spectrum of biomedical applications 

ranging from drug delivery to tissue engineering. Success in achieving the optimum 

results depends highly on the good understanding of the various parameters 

controlling the process of fibers fabrication and drug encapsulation. In this context, 

consideration of the physicochemical properties of both drug and polymer is of great 

importance for efficient drug encapsulation and controlled drug release. As for 

hydrophobic polymers, their slow degradation rate is an important advantage which 

allows for controlled drug delivery applications. However, using such type of 

polymers bears challenges if used for encapsulating hydrophilic drugs. In this case, 

inefficient drug encapsulation resulting in drug crystallization on (or near) the fibers 

outer surface can be a major problem as it leads to instant drug release. In this 

respect, increasing the polarity of solvent system was identified as a successful 

strategy for overcoming this undesired effect of drug crystallization. 

In contrast to hydrophobic polymers, the adequate water solubility of hydrophilic 

polymers offers a more convenient alternative to encapsulate water soluble 

substances that are sensitive to organic solvents such as proteins. In general, 

hydrophilic polymers exhibit a rapid degradation rate in aqueous media. This feature 

allows for applications where instant drug release is desired (e.g. for fast dissolving 

oral films etc.), nevertheless, it can also be considered as a limitation if prolonged 

drug release is required. Based on that, this work investigated different post-

modification methods to stabilize protein-loaded electrospun fibers using lysozyme as 

a model protein and poly(vinyl alcohol) as hydrophilic polymer. The applied post-

modification methods included treatments with methanol, glutaraldehyde vapor, or 

ultraviolet light. These methods could prolong the release of the encapsulated 

substance at different extents. However, as the therapeutic effectiveness of such 

protein-loaded electrospun fibers requires activity maintenance of the encapsulated 

protein and exclusion of any adverse effects to the human body, future studies 

should focus on elaborating the mechanism by which such post-modification methods 

would affect the encapsulated protein. Further, the effect of post-modified protein-

loaded fibers on in vitro 3D models has to be investigated in order to determine 

factors affecting cellular response to these fibers.  
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For establishing novel in situ dissolution analysis of electrospun fibers, the application 

of fully automated fiber-optic system was investigated. This approach provided many 

advantages over conventional dissolution testing as the higher sampling frequency 

allowed for a deeper insight into release kinetics. Further, to avoid partial folding of 

electrospun fibers that occurs upon contact with dissolution media, a novel adaptor 

was designed providing the required support for the tested samples and preventing 

the undesired sample folding.  

As for applying electrospun fibers as substrates for the cultivation of human cells, 

novel biocompatible electrospun fibers were generated encompassing natural as well 

as synthetic polymers. Subsequently, the fibers biomechanical properties and fibers 

interaction with primary human cells were thoroughly investigated. The three-

dimensional fiber network could successfully simulate the complex structure of the 

extracellular matrix providing a unique bio-adaptive environment, hence facilitating 

cellular attachment, migration, and proliferation.  

In conclusion, this work provides a better understanding of various factors affecting 

the applicability of electrospun fibers for drug delivery and tissue engineering, by 

addressing several points of concerns including: drug stability, drug distribution within 

the fibers, drug release kinetics, and interactions of electrospun fibers with human 

cells. Thus, it offers a solid background for further research on electrospinning for 

biomedical applications. 

For the near future, the possibility to encapsulate pharmaceutically active substances 

within electrospun fibers for tissue engineering applications has to be investigated. 

While the current work focused on either applying electrospun fibers for drug delivery 

or for tissue engineering, combination of these approaches can be very promising for 

advanced biomedical applications. For instance, encapsulating growth factors or anti-

infectives within our hybrid electrospun fibers can be expected to provide an advance 

system for applications like chronic wounds. Characterization of these drug loaded 

fiber mats has to be complemented with thorough investigation by means of in vitro 

models followed by in vivo studies to evaluate their effectiveness. 
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