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1 SUMMARY 

In disease, communication networks are responsible for phenotypic behaviours that may 

overcome immune responses and sustain unfavourable cellular developments, ultimately 

leading to treatment resistance. Innovative approaches and a broader understanding of these 

pathways are necessary to capitalize therapeutic strategies and increase therapy efficacy. In this 

work, I focus on the prospective clinical benefit of interfering with cell-to-cell signalling in 

Pseudomonas infections and prostate cancer. Potent signal receptor (PqsR) antagonists and 

first-in-class dual-inhibitor (also targeting signal synthase PqsD) potentiated favourable 

antivirulence outcomes within the cell density-dependent Pseudomonas quinolone signal (PQS) 

quorum sensing. Best compounds significantly reduced acute and chronic (biofilm) 

pathogenicity-related molecules and protected G. mellonella larvae without a selective pressure 

on growth. Timely antivirulence approach is a promising strategy with potential for lower 

therapy resistance development. 

In mammals, misregulation of steroid signalling axes can lead to cancer initiation and 

metastases. Using diverse prostate carcinoma cell lines, we demonstrated the potential of 

androgen-responsive cells in generating mitogenic neurosteroid 5a-pregnan-3b,6a-diol-20-one 

in a CYP17-independent manner. Currently the central target for therapy, suppression of 

CYP17 activity also led to androgen precursor formation in a neuroendocrine fashion, 

untargeted by the current therapeutic armamentarium against the disease.  
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2 ZUSAMMENFASSUNG 

Während des Verlaufs verschiedenster Krankheiten spielen molekulare Kommunikations-

Netzwerke eine wichtige Rolle. Innovative Strategien und ein besseres Verständnis dieser 

Netzwerke sind notwendig, um neue therapeutische Ansätze zu entwickeln und die Effizienz 

bestehender Therapien zu verbessern. Diese Arbeit ist darauf fokussiert, gezielt in solche 

definierten Signalwege einzugreifen: in das Zell-Zell-Signalling bei Infektionen durch 

Pseudomonaden einerseits, und bei Prostata-Krebserkrankungen andererseits.  

So zeigten potente Signalrezeptor (PqsR) - Antagonisten und die ersten dualen Hemmstoffe 

(die neben PqsR auch PqsD hemmen) vielversprechende anti-Virulenz Aktivitäten innerhalb 

eines von der Zelldichte abhängigen, sogenannten „Pseudomonas quinolone signal (PQS) 

quorum sensing“ Netzwerks. Die besten Verbindungen reduzierten die akuten und chronischen 

(Biofilm) mit der Pathogenität in Beziehung stehenden Moleküle signifikant. Zudem schützten 

diese Hemmstoffe G. mellonella - Larven, ohne auf diese einen Selektionsdruck auszuüben. 

Ein solcher anti-Virulenz-Ansatz ist eine vielversprechende Strategie mit dem Potential, die 

Resistenzentwicklung im Therapieverlauf zu minimieren.  

In Säugern kann eine Fehlregulation der Steroid-Signalwege zu einer Krebsentstehung und 

Metastasen führen. Im Rahmen dieser Arbeit wurden diverse Prostata-Karzinom-Zellen 

untersucht. Hier konnte gezeigt werden, dass es möglich ist, dass Zellen, die auf Androgene 

ansprechen, das mitogene Neurosteroid 5a-pregnan-3b,6a-diol-20-one auf CYP17-

unabhängige Weise bilden können. Eine Hemmung von CYP17, dem derzeit zentralen 

Therapie-Target, führte auch zu der Bildung von Androgen-Vorläufern auf eine neuroendokrine 

Art und Weise, was bei heutigen Therapieversuchen bislang nicht berücksichtigt wird. 
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6 INTRODUCTION 

6.1 Cell-to-cell Communication Mechanisms and Resistance to 

Treatment 

The origins of cell-to-cell (or intercellular) communication in the ancient unicellular world have 

remained elusive to the scientific community for centuries (1). Reliance on patchy fossil records 

and the often contradictory findings of modern computer modelling (2,3) are likely to intrigue 

evolution experts for many more years to come. It is evident, however, that the ability to 

effectively communicate has conferred unicellular and multicellular organisms significant 

survival benefits that were readily and successively selected over time (4–7), constituting today 

the abundant and often complex mechanisms of intercellular signalling networks. At its 

simplest, intercellular communication functions as an optimal tool for cooperation, 

specialization/differentiation, and environmental adaptation (8). Illustrating Darwin’s seminal 

work, cells, by “talking” to each other, ensure the survival of the fittest (9). 

The concept of “major evolutionary transitions” (10) hypothesises that previously independent 

individuals cooperate to form new, more complex systems with some ecological or efficiency 

benefit (Figure 1) (i.e. genes became genomes, archaea and eubacteria formed eukaryotic cells, 

and unicellular eukaryotes formed multicellular organisms) through the storage and 

transmission of heritable information. The rationale between intra- and interspecies cooperation 

involve predation evasion, facilitation of reproduction, and increased efficiency in the use and 

production of resources for metabolism and survival, ultimately benefiting overall fitness of the 

organisms involved (11,12). 

The chemical languages used in cell-to-cell communication mechanisms are almost as diverse 

as the number and nature of individuals involved in these microscopic conferences. Broadly, 

they include the synthesis, release, and detection of communication-relevant molecules, which 

are generally termed signalling molecules (13,14). In prokaryotes, signalling molecules exert 

their communicative function by diffusion to the extracellular environment and across cell 

membranes. These compounds are defined by their 1) involvement as a reaction to 

environmental changes, 2) perception or recognition by a specific receptor, and 3) ensuing 

concerted response that 4) extends beyond any physiological changes required simply to 

metabolize or detoxify it (15). More specifically, the most studied signalling molecules 

involved in bacterial intraspecies communication to date include N-Acyl-L-homoserine lactones 

(AHLs) (16) – most widely found in Gram-negative pathogens; Autoinducer-2 (AI-2) (17) – 
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shared among Gram-negative and Gram-positive bacteria; Autoinducer-3 (AI-3) (18) – 

bacterial response to eukaryotic hormones; Autoinducing peptide (AIP) (19) – regulating 

virulence and competence of Gram-positive organisms; Diffusible (Signal) Factors (DSFs) 

(20,21) – colonization and infection of eukaryotic hosts; and Indoles (22,23) – influencing 

quorum sensing (QS) phenotypes in population density-sensitive microorganisms such as 

Escherichia coli and Pseudomonas aeruginosa (PA). In addition, bacteria have also developed 

interspecies communication methods to ensure survival during the course of evolution. Notably, 

peptidoglycans – involved in symbiotic and pathogenic interactions with animals and plants 

(24) – and antibiotics such as erythromycin and streptomycin, whose synthetic pathways 

predate human clinical use by 500 million years (25), have been shown to regulate homeostasis 

and competition strategies in microbial communities (26). The (extracellular) factors described 

above are of paramount importance for microbial populations and constitute some of the 

precursors of multicellularity (9). The ever-increasing synergy of clustered individual cells to 

maximize the efficiency of their cooperation, by sharing energetically costly “public goods”, 

evolved into large, well-integrated, and highly cooperative communities of specialized 

(differentiated) individuals (Figure 1). 

 
Figure 1. Major steps in the transition to multicellularity and cellular specialization/differentiation. 
Individual cells initially formed cooperative groups with increased efficiencies (i.e., microbial communities) that 
later evolved into synergistic, more complex systems or organisms (i.e., mammalian endocrine glands). Modified 
from ref. (9). 

These ultimately resulted in the independent appearance of complex multicellular organisms 

multiple times from a variety of ancestral unicellular lineages in the history of observable 

evolution (5). Progressive growth, spatial segregation, and temporal specialization of multiple 

cell types (with some eventually losing their reproductive capacity) led to differential gene 

expression at defined time points and within varied regions of the same organism (27). This 

allowed a remarkable plasticity of biological innovations that would be impossible for single 

cells, which is particularly true in their intricate cross-talk mechanisms (28). These coordinated 

societies of interacting partners demanded signalling units many times more complex than those 

found in unicellular exocrine systems (29). Broadly speaking, multicellular organisms display 

three distinct mechanisms (14) of cell-to-cell communication namely, 1) extracellular 
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pathways, which include the secretion and effector functions of hormones, growth factors, 

cytokines and neurotransmitters; 2) intracellular metabolic pathways, triggered by extracellular 

effectors and initiated by a variety of second messengers such as cyclic adenosine 

monophosphate (cAMP), Ca++, reactive oxygen species (ROS), nitric oxide, ceramide, and 

(mitogen-activated) protein kinases; and 3) gap junctional intercellular communication (GJIC), 

constituted of direct cytoplasmic continuity between adjacent cells through densely packed 

membrane channels, which is a hallmark and an absolute requirement for multicellular life, 

intimately related to embryonic development and overall tissue homeostasis (30,31). 

Knowing the different languages used in cell-to-cell communication mechanisms is the first 

step in unravelling the complexity of signalling pathways taking place in different systems but, 

in addition, it is crucial to understand the means through which these networks take place in 

orchestrating the coexistence of the many cell types and the high level of coordination they 

demand. Fundamentally, the communication or transfer of information from one cell to another 

is categorized by a recipient/target cell responding to the signal from a secreting/donor cell, a 

process taking place by the highly specific binding of the signalling molecule to its cognate 

receptor (32). Cell-to-cell interactions are regulated via different methods depending on the 

distances between the donor and the target cells. Locally-borne signals include 

autocrine/autonomic inputs – target and secreting cells are identical, and paracrine – target cell 

is in the vicinity of the secreting zone, while distantly-borne messages, exclusive to 

multicellular organisms, are termed endocrine – target and secreting cells are distant and 

secreted factors typically depend on a contiguous specialized media, such as the blood or lymph 

(30,33,34). Most biologic phenomena are under the overlapping influence of two or more of 

these systems.  

Apart from maintaining cellular/tissue integrity and homeostasis, and ensuring adequate cell 

growth and development, signalling molecules and associated pathways in cell-to-cell 

communication mechanisms are also closely associated with the protection and survival of uni- 

and multicellular organisms against biotic or abiotic stressors. From a clinical and medicinal 

standpoint, the latter translates (in the case of pathophysiological processes) in the development 

of one of humanity’s greatest healthcare challenges: resistance to treatment. That is antibiotic 

resistance in bacterial infections that depend on quorum-sensing (9,35,36) and abrogation of 

therapeutic antitumour activity in the complex microenvironment of endocrine cancers that 

possess mis-regulated signalling circuits (30,31,34,37). 

The focus of this work has two fronts: to explore the auto- and paracrine signalling pathways 

of the population density-dependent quorum sensing phenomenon of the Gram-negative 
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bacterium PA in driving virulence, biofilm formation and innate/adaptive antibiotic resistance 

against clinically relevant therapeutics. Thus, highlighting the relevance and promising 

outcomes of hampering bacterial communication by the inhibition of synthesis and binding of 

signalling molecules (autoinducers – AIs) to cognate receptors that result in highly detrimental, 

coordinated group behaviours. And increase the understanding of the endocrine mechanisms 

that initiate and propagate tumour cell development, conferring immune- and therapeutic 

evasion of metastatic, drug-resistant human prostate cancer (PC) cells]. Hopefully, paving the 

way to developing novel, more robust and long-lasting approaches that are needed to treat 

affected patients effectively. While it is important to note that correlations exist between 

bacterial infections and cancers in humans, as in the cases of infection-driven cytokine 

production leading to uncontrolled stimulation and proliferation and tumour cells (38), as well 

as steroid hormones modulating bacterial phenotypes by promiscuous receptors (39), this work 

will address QS and PC separately. 

6.2 Pseudomonas aeruginosa – An End to Traditional 

Antibiotics? 

PA is a ubiquitous Gram-negative bacterium highly adaptive to changes in environmental 

conditions and able to colonize a variety of mammalian tissues (40) and medical devices 

(41,42), causing both acute and chronic infections (43). Commonly found in ventilator-

associated pneumonia, sputum of cystic fibrosis (CF) patients, meningitis, abscesses, soft 

tissue, urinary, catheter-associated, and corneal infections, as well as conjunctival erythema 

(44), the healthcare-associated cost load and clinical relevance of PA infections to 

immunocompromised individuals and global societies, cannot be overstated. The successful 

treatment and eradication of Pseudomonas infections are severely hampered by the ready 

acquisition of resistance (45) to commonly used antibiotics such as ciprofloxacin, imipenem, 

tobramycin, and aztreonam (46). In addition, the appearance of multidrug-resistant (MDR) 

phenotypes in 13% of PA-associated colonisations (in the US alone) highlights the serious 

threat of such infections (44). Colistin, a cyclic amphipathic antibiotic, is currently the last 

resort of treatment left against MDR PA (47) and already shows signs of resistance development 

(48). The high incidence, severity, and recalcitrance of this “superbug” are made possible by 

multifaceted contributing factors, including PA’s multi-factorial arsenal of virulence factors at 

its disposal, as well as the ability to form highly complex microbial communities, called 

biofilms (43,44,49–51).  
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The co-evolutionary battle between bacterial infections and antimicrobial compounds has been 

extensively studied, and resistance mechanisms can be broadly classified as occurring via 

either: 1) innate (52), 2) acquired (53,54), and 3) adaptive (55,56) resistances. Specifically to 

PA, innate or intrinsic resistance is largely based on the semi-permeable outer membrane of 

Gram-negative bacteria that acts as a significant physical barrier to the penetration of antibiotics 

(57), narrowing antimicrobial treatments to small hydrophilic compounds such as b-lactams 

and quinolones. This fact synergizes with another innate mechanism: the prevalence of efflux 

pumps and periplasmic extended-spectrum b-lactamases (58), making PA infections naturally 

challenging to treat. In addition, exposure to selective pressures, such as antibiotics, leads to 

acquired resistance insofar the occurrence and selection of a broad array of chromosomal 

mutations (59) and horizontal transfer of resistance-containing plasmids (60). Often, the effects 

of intrinsic resistance can be further potentiated by such mutations, as seen in the case of 

increased expression of MexEF-OprN and AmpC genes, responsible for the formation and 

activity of multidrug efflux pumps and b-lactamases, respectively (61,62). Finally, adaptive 

resistance, rapidly triggered by variations in environmental growth circumstances such as pH, 

heat shock, DNA stress (SOS response), and nutrient deficiencies (43) are becoming 

increasingly appreciated for its contribution in MDR phenotypes and the shifts between 

planktonic and sessile life cycles (63). The onset of adaptive resistance involves the expression 

and interaction of a plethora of genes (termed “resistomes”) and is exemplified in social 

behaviour changes, such as the formation of biofilm and swarming motility in PA (56,64). 

Overall, antibiotic resistance in microbial infections results from the contribution of intrinsic, 

acquired and adaptive mechanisms intertwined in complex genetic networks and metabolic 

heterogeneity of bacterial subpopulations in vivo. This already precarious scenario is made 

worse by the prevalence of MDR species vastly outpacing the advent of new antibiotic classes 

or the successful administration of currently available antibiotic combinations that do not 

possess some degree of cross-resistance mechanisms (65). Ultimately, addressing multidrug 

resistance demands a paradigm shift in therapy focus and strategy, ensuring successful 

clearance of pathogens while protecting the symbiotic host-microbial balance. 

Some of the emerging strategies to circumvent the global threat of antibiotic resistance include 

the inhibition of bacterial adherence capabilities (66,67), the employment of viral therapies 

(bacteriophages) (68), and efflux pump inhibitors (69). However, while the first does not 

directly address acute or systemic infections, the latter two are still amenable to resistance 

development (70,71), rendering treatments ineffective due to selective pressure responses by 

the bacteria. 
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Alternatively, the increasing comprehension of bacterial reliance on highly conserved cell-to-

cell QS communication mechanisms (35) implicated in invasion abilities, adaptation, and 

development of escape mechanisms as well as virulence factor expression (pathogenicity) 

(72,73) represents a promising and attractive target as an alternative to classical antibiotic 

treatment. This approach, coined as antivirulence therapy (74), depends on the activity of 

quorum quenchers, or pathoblockers, that hinder the production, release and/or perception of 

small diffusible bacterial signalling molecules (AIs). These accumulate with increasing cell 

density and trigger coordinated responses, achieving outcomes that would otherwise be 

impossible as single individuals. The rationale behind the effective use of pathoblockers is the 

avoidance of the enormous selective pressure of bactericidal (targeting cell viability) and 

bacteriostatic (targeting cell growth) drugs (75) aiming at essential biochemical processes such 

as cell wall integrity and protein/nucleic biosynthesis (76) – the central strategy of current 

antibiotics. Rather, antivirulence compounds supposedly apply less evolutionary pressures, and 

thereby promote less drug resistance, as most virulence traits are not essential for survival (50). 

In addition, QS, albeit non-essential, is linked to a variety of physiological processes in bacteria 

(77) namely, bioluminescence, competence, antibiotic biosynthesis, motility, biofilm 

maturation and antibiotic susceptibility (increased tolerance of biofilms and upregulation of 

resistance-associated genes) (78,79). Therefore, QS inhibition not only holds the potential to 

reduce bacterial virulence but may also restore antibiotic efficacy in patients. 

6.2.1 The Antivirulence Approach Against Pseudomonas aeruginosa 

Quorum Sensing  

Fortuitously, PA has been extensively studied as a model organism for bacterial quorum 

sensing, and while the complexity of bacterial “molecular languages” is far from complete 

elucidation, significant progress has been made in understanding this pathogen’s intricate 

communication mechanisms (80,81). In general, Gram-negative bacteria rely on AHL-based 

signalling systems typically constituted of synthases and cognate receptors homologous to LuxI 

and LuxR, first described in the bioluminescent marine bacterium Vibrio fischeri in the early 

1970’s (82). The length and saturation state of the acyl chain translate into receptor affinity and 

fidelity of different quorum sensing-capable species. In PA, two of at least four hierarchically 

interconnected QS circuits (81) (Figure 2) depend on AHLs in order to trigger their cell density-

dependent gene expression programme, namely the superordinate las (by N-(3-

oxododecanoyl)-L-homoserine lactone: 3-oxo-C12-HSL) and rhl (N-butanoyl-L-homoserine 

lactone: C4-HSL) (83) systems. Briefly, the diffusible 3-oxo-C12-HSL molecule, synthesised 
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by LasI, binds and activates the transcription factor LasR upon reaching a putative threshold 

concentration in the cellular microenvironment, driving the production of virulence factors such 

as LasB elastase, LasA and Apr proteases, and exotoxin A (64), as well as the increased 

expression of lasI itself (thus the term autoinducers) (44). Analogously, in the rhl system, C4-

HSL targets gene promoters upon binding and activation of RhlR responsible for pyocyanin 

(and other phenazines), rhamnolipids, siderophores, hydrogen cyanide, and cytotoxic lectin 

production (36). 

 
Figure 2. Schematic representation of the four QS signalling networks las, rhl, pqs, and iqs in P. aeruginosa, 
with respective regulons. Arrows indicate a stimulatory effect and flat lines represent a negative regulation. Text 
boxes highlight physiological phenomena and production of virulence factors intimately related to the effects of 
corresponding QS systems. Abbreviations: 3-oxo-C12-HSL, N-(3-oxododecanoyl)-L-homoserine lactone; C4-
HSL, N-butanoyl-L-homoserine lactone; PQS, Pseudomonas quinolone signal; IQS, integrating QS signal. 
Modified from ref. (81). 

Increasing the level of complexity of Pseudomonas aeruginosa QS networks, a third system, 

dependent on a different class of signalling molecules, the 4-hydroxy-2-alkylquinolines 

(HAQs) (84), was described in the late 1990’s and termed the Pseudomonas quinolone signal 

system (pqs) (85). Contrary to the canonical AHL production and signalling found in a variety 

of Gram-negative organisms, HAQ biosynthesis has been restricted to Pseudomonas and 

Burkholderia genera. While the intermediate 2-heptyl-4(1H)-hydroxyquinoline (HHQ) is likely 

involved in promiscuous interspecies signalling (86) (especially important for interactions in 

microbial communities such as biofilms), the final product of the pqs pathway, 2-heptyl-3-
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hydroxy-4(1H)-quinolone (PQS), is exclusive to PA. Both molecules wield signalling 

capabilities, albeit with different affinities, by binding to the PQS receptor (PqsR), as known as 

multiple virulence factor receptor (MvfR). These facts highlight the particularity of the pqs 

network, discussed in more detail in the next section, and its attractiveness as an antivirulence 

target. As shown in Figure 2, pqs signalling is partially modulated by the activities of las and 

rhl, and itself regulates the expression of the rhl system in a positive feedforward loop (87). In 

addition, Lee and colleagues (88) have recently reported a stress response-mediated mechanism 

that plays a role in integrating PA’s environmental responses to stress with its complex QS 

network, named integrating QS signal (IQS), which uses 2-(2-hydroxyphenyl)-thiazole-4-

carbaldehyde as its signalling molecule. 

Taken together, the QS systems in Pseudomonas are true master switches of bacterial behaviour 

and survival. Quorum sensing mechanisms have been shown to ultimately regulate more than 

300 genes across PA’s genome (89), with PqsR alone controlling 141 genes (86) and indirectly 

modulating 18% of the bacterium’s total genome (90), underlining its role in global genomic 

regulation. 

6.2.2 Pseudomonas aeruginosa pqs QS System and the Synthesis of HAQs 

The leading actor in the pqs signalling network is PqsR, and unlike the AHL-dependent QS 

systems that rely on LuxR-type of transcriptional regulators, it belongs to the distinctive 

evolutionary family of LysR-type transcriptional regulators (LTTRs) (91). The LysR group is 

most abundant in proteobacteria, and its uniqueness lies in the dual function (autoregulation of 

activation and repression of specific genomic promoters) of its members, as opposed to the 

single type receiver-response mechanism of LuxR regulators (92). 

Briefly, the biosynthesis of HHQ and PQS start with the sequential metabolism of anthranilic 

acid (derived from tryptophan or chorismic acid (93)) by enzymes located in the pqs 

polycistronic operon pqsABCDE, regulated by PqsR activity, and pqsH (94,95) (Figure 3). 

Initially, PqsA ligase and Coenzyme A (CoA) convert anthranilic acid into anthraniloyl-CoA 

(96). Upon binding to the active site of PqsD, the thioester is converted into 2-

aminobenzoylacetate-CoA (2-ABA-CoA) with the help of malonyl-CoA (97). The thioesterase 

PqsE catalyses the cleavage of the thioester bond of 2-ABA-CoA resulting in the formation of 

2-aminobenzoylacetate (2-ABA) (98). In turn, 2-ABA is transformed into HHQ after 

condensation with octanoic acid accomplished by the activity of the heterodimeric enzyme 

PqsBC (97). Finally, oxidation of HHQ by the flavin monooxygenase PqsH in the presence of 

NADH results in the formation of PQS (99), with 100-fold higher affinity to binding and 

activating PqsR than its HHQ precursor (100). Activation of PqsR reignites the system in a 
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positive forward feedback loop (autoinduction) as well as the concomitant expression of PqsR-

dependent physiological changes, resulting in the production of the arsenal of virulence- and 

biofilm-associated factors (44). In addition to PQS and HHQ, the biosynthetic pathway 

described above is also implicated in the production of important but less appreciated 

intermediates, namely dihydroxyquinoline (DHQ), 4-hydroxy-2-heptyl-quinoline-N-oxide 

(HQNO), and 2-aminoacetophenone (2-AA). DHQ and HQNO are pathogen-derived toxins 

with significant cytotoxic effects to eukaryotic (pathogenicity) (101) and prokaryotic 

(competition and biofilm formation through the release of DNA into the extracellular space – 

eDNA) (102) cells respectively, layering Pseudomonas niches of infection. In turn, 2-AA, a 

small volatile molecule, appears to be involved in the generation of persistence in PA infections 

by regulating the switch between acute and chronic phenotypes (103). 

 
Figure 3. Schematic representation of signalling molecule biosynthesis and dual quorum sensing inhibition 
strategy in the Pseudomonas quinolone signal QS biosynthetic system. Simultaneous inhibition of signal 
synthesis and sensing is a promising approach to the reduction of virulence factor and biofilm formation. 
Abbreviations: CoA, Coenzyme A; HHQ, 2-heptyl-4-quinolone; PQS, Pseudomonas quinolone signal; QSI, 
quorum sensing inhibitor. Reprinted with permission from (104), p. 1280. Copyright © 2016, American Chemical 
Society. 

The diverse chemical nature and biological effects of the different signalling molecules in the 

pqs QS system shown above illustrate the complexity of this network. Notably, PQS and related 

intermediates are fundamental in Pseudomonas ubiquitous signalling language, blurring the line 

between the autocrine and paracrine communication routes, shifting between the two or using 

them simultaneously (105). The first, as cells that produce a signalling molecule and its cognate 

receptor – self-communication – and the latter, designed for cells to communicate with others 

in the vicinity – neighbour communication. Moreover, the pqs QS system also facilitates 
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paracrine signalling in PA’s sessile, biofilm phenotype typical of chronic infections (49,106). 

As previously mentioned, biofilms occur in a form of adaptive resistance, developed in order 

to promote horizontal gene transfer between microbial populations, limit antibiotic/stressor 

penetration through thick, viscous extracellular polymeric substance (EPS) (107), and generate 

unique environmental niches that modulate physiological activity within the biofilm. This can 

be accomplished, for example, by restricting oxygenation or nutrient distribution and 

stimulating the formation of tolerant and persistent cells with decreased growth and metabolism 

(49). Biofilms, however, are far from being static communities, active dispersal of planktonic 

individuals (thereby propagating infection), differential gene expression, and immune invasion 

are tightly controlled mechanisms (106). This control is partially performed by the pqs QS 

network, insofar the production of cytotoxic compound HQNO that generates significant 

amounts of eDNA from lysed organisms (including PA itself) (102). Extracellular DNA not 

only partakes in the structural architecture of biofilms but also facilitates cell migration and 

shuttling of exosomes and QS molecules through a complex, interconnected network of furrows 

and trails within the community (108). 

6.2.3 Silencing the pqs QS System with Quorum Sensing Inhibitors (QSIs) 

Quorum quenching strategies rely on three broad mechanisms that target QS-mediated bacterial 

cell-to-cell communication structures, namely 1) inhibition of signalling molecule biosynthesis, 

2) the availability of the signal itself, and 3) the sensing/reception of the signalling molecule by 

sensor cells (76). Although AHL-based quorum quenching has been the most investigated as 

an alternative to antibiotic therapy (64,76), inhibition of the pqs system has additional 

advantages based on its restricted phylogenetic distribution as previously mentioned, allowing 

for highly selective therapies that would spare beneficial symbionts and commensals of the 

human microbiome. As shown in Figure 3, the pqs system has a number of possible theoretical 

targets, including the AI synthases (PqsA, PqsD, PqsE, PqsBC, and PqsH) and the AI cognate 

receptor PqsR. Not all synthases are equally suitable for appropriate drug targeting, however. 

Inhibition of the catalytic activity of downstream enzymes such as PqsBC and PqsH would 

eventually result in the accumulation of PQS precursors still bearing detrimental biological 

activity shown in murine models such as DHQ and 2-AA, and HHQ, respectively (109). 

Additionally, the thioesterase function of PqsE has been shown to be non-essential, with 

redundant activity by non-specific enzymes (i.e., TesB) still leading to the production of HHQ 

and PQS in mutants (98). Finally, from the upstream synthases involved in PQS biosynthesis, 

PqsD stands out as the most promising drug target in this pathway due to the lack of available 

PqsA crystal structure to date and attenuated virulent phenotypes observed in pqsD mutants 
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(94,110). Since the first reported PqsD inhibitors (111), significant progress has been made 

yielding potent and selective compounds (112–115) with no bactericidal or bacteriostatic 

properties. 

The arrest of signal synthesis is but one approach to silence bacterial communication. Another, 

perhaps even more relevant strategy, is to avoid the activation of cognate receptors responsible 

for eliciting the downstream signal transduction cascade. Due to the redundancy of bacterial 

communication mechanisms, QS systems also integrate information from metabolic and 

environmental stimuli (63,76). Therefore, efficient antivirulence approaches that address 

receptor activation (by cognate AIs or otherwise) hold even greater promise. In that regard, 

targeting PqsR is pivotal in hampering Pseudomonas’ virulence and pathogenicity (64). PqsR 

mutants resulted in the absence of HAQs and pyocyanin production (91,94) as well as reduced 

biofilm-forming capabilities of adherence-related lectin A and constituents of the complex 

extracellular matrix such as eDNA(116). In addition, these mutants were also deficient in 

producing the persistence-related molecule 2-AA, highlighting the role of the pqs system in 

acute, sessile, and resistant infections. Furthermore, PqsR activity is an absolute requirement 

for full virulence phenotypes against plants (117), nematodes (94), and mice (118). Successful 

discovery and optimization of PqsR antagonists based on natural ligands (119,120), small 

fragment approaches (121,122), and high-throughput screening (91) have already shown the 

remarkable achievements made possible when silencing the pqs system. 

As indicated above, addressing AI synthases do hold great potential as antivirulence therapy 

candidates to treat PA infections as well as blockage of cognate receptors demonstrated by the 

successes in in vitro and animal studies of these proposed treatments. However, due to the 

complexity and plasticity of the PQS QS system, a combination of inhibition/antagonism 

strategies may be necessary to silence communication and prevent pathogenesis fully. This fact 

prompted us to investigate a dual-target approach addressing both ends of the PQS QS pathway 

spectrum (Figure 3). In this work, the suitability and relevant cumulative benefits of addressing 

signal synthesis and sensing (dual inhibition) are explored and highlighted on Chapter 1 (104). 

6.3 Steroid Cell-to-Cell Communication – The Complex Micro 

“Talk” of Multicellular Organisms 

Steroid hormones are true masters of intercellular communication in vertebrates and under 

normal physiological conditions coordinate and control the correct development and function 

of a variety of tissues, organs, and glands from early embryonic development through to adult 

life (123). Broadly speaking, these cholesterol-derived compounds can be classified as 
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progestogens (early steroid precursors), corticosteroids, oestrogens, and androgens (124) all of 

which target specific steroid hormone receptors (SHRs) in the organism. SHRs are ligand-

activated, tissue- and cell type-specific receptors mostly located in the cytosol (125) with some 

also found in the membrane of eukaryotic cells (126), initiating the downstream signalling 

cascade of tyrosine kinases. SHRs regulate numerous biological processes by interacting with 

specific response elements in the cellular DNA and various coregulatory proteins (activators or 

repressors of gene expression) (125). This cross-talk, achieved by such genomic and non-

genomic interactions, adds immense complexity to hormonal responses and provide precise, 

robust, and versatile intercellular signalling (127). 

 
Figure 4. Schematic representation of steroidogenic biosynthesis leading to the production of corticosteroids 
and androgens from primordial steroid precursor cholesterol. Classical androgen axis (grey arrows) leads to 
the production of AR ligands testosterone and DHT by a series of sequential metabolizing enzymes with intricate 
tissue- and cell-type specificity. Non-classical pathways, i.e., 5a-dione (shaded area) and proposed 5a-3b,6a-P 
(dashed area), are suggested actors in mis-regulated signalling mechanisms. Abi abrogates systemic androgen 
production by the inhibition (flat arrows) of the CYP17A1 enzyme. Abbreviations: HSD, hydroxysteroid 
dehydrogenase; CYP, cytochrome P450; SRD5A, 5a-reductase; AKR, aldo-keto reductase; Abi, abiraterone. 

6.3.1 Endocrine Signalling of Androgens in the Human Prostate 

The biological effects of androgens are particularly required for cell differentiation, growth, 

and maturation of male sexual organs, including the human prostate (128). In men, androgen 
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biosynthesis from cholesterol takes place primarily in the testes through a series of sequential 

metabolic steps (Figure 4), with smaller amounts being supplemented by cortical cells of the 

adrenal glands from circulating dehydroepiandrosterone (DHEA) (129). Testosterone is the 

primary product of the androgen endocrine system and the most well-known kind of androgen. 

Its biological effects involve the promotion of secondary male sexual characteristics such as the 

increase in muscle and bone masses and the development of body hair (130). Testosterone is 

converted to dihydrotestosterone (DHT), the most potent human androgen, upon reaching the 

prostate by the activity of the 5a-reductase enzyme (131). 

Circulating hormones can only be directly sensed by a subset of cognate receptor+ cells that 

exist in a precise spatial distribution for signal sensing and message transmission to 

neighbouring cells in a paracrine manner (132). Not surprisingly, the adult prostate is a complex 

structure of highly specialized members. Fibromuscular stroma cells comprised of 

mesenchymal lineages surround secretory ducts of basal and luminal epithelial cells, with 

punctuated cells of neuroendocrine (NE) origin (133), all of which are responsible for tissue 

organization and function. Development and maintenance of the gland rely on endocrine and 

paracrine signals of stromal and epithelial cells in response to androgen signalling and 

neuroendocrine stimuli that are androgen-independent. Paracrine communication of stromal 

cells regulates epithelial growth and differentiation of basal and proliferative/secretory luminal 

cells, ensuring the healthy physiological compliance of the prostate (37). In addition, 

neuroendocrine cells also provide trophic signals in a paracrine manner to epithelial populations 

through the secretion of neuropeptides, growth factors and parathyroid-like hormone, amongst 

others (134). 

Testosterone and DHT exercise their communicative roles upon binding to the androgen 

receptor (AR) in the cellular cytoplasmic space. The AR is a member of the nuclear hormone 

receptor family of transcription factors encoded by a single copy gene on the X chromosome. 

AR activation can occur through classical or non-classical signalling mechanisms. Canonical 

activation and signalling involve the dissociation from chaperones upon testosterone or DHT 

binding, resulting in the migration of this ligand-receptor complex to the cell nucleus and 

formation of homodimers that tightly bind to androgen response elements (AREs). In the 

nucleus, AR recruits several other regulators in order to ultimately transcribe target genes (135) 

and establish cross-talks with many other pathways associated with cellular signalling and 

apoptosis (136). In this scenario, AR+ stromal cells sense androgens and translate their stimuli 

into cues as paracrine signals to neighbouring AR- epithelial and neuroendocrine cells (126) 

(Figure 5). Non-classical activation occurs when the bound AR activates non-genomic 
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cytoplasmic signalling pathways, or AREs but in the absence of ligand (137). In addition, 

binding of non-androgenic ligands result in allosteric changes of the receptor and ensue a 

differential gene expression pattern intimately related to the physiological and genetic context 

of the target cell and its milieu (125). Finally, the androgen communication axis ends with the 

activity of UDP-glucoronyltransferases (UGTs) (131), leading to their elimination and 

cessation of further biotransformation processes. 

6.3.2 Prostate Cancer and the Role of the AR in Disease 

Due to their convoluted balance and pleiotropic effects, mis-regulation of the communication 

pathways in steroid signalling may have catastrophic results, as observed in endocrine 

neoplasms of the thyroid (138), pancreas (139), ovaries and endometrium (140), as well as 

pituitary (141) and prostate (142) glands. Interestingly, AR-related mechanisms have been 

found in a number of typically AR-independent malignancies (135), such as mantle cell 

lymphoma and bladder, liver, and kidney cancers, stressing the complexity and importance of 

this receptor in diseased states. In this work, we focus on its role in prostate cancer pathology. 

In the United States, prostate cancer was the leading cause of cancer (220.800 newly diagnosed 

cases) and the second leading cause of cancer-related deaths (27.540 individuals) in 2015 (143). 

To date, mainstay treatment of prostate cancer relies on its initial dependency of androgen 

signalling through the AR observed in the seminal work of Huggins and Hodges in 1941 (144). 

Since then, androgen deprivation therapy (ADT) through anatomical or, more recently, 

chemical castration has been successful in treating 80% of prostate cancer patients (145). 

However, the high incidence of cancer mortality is linked to more advanced stages of the 

disease where ADT ultimately fails, AR signalling is sustained despite treatment, and patients 

eventually relapse with a more aggressive, androgen-independent form of the disease (146) 

termed castration-resistant prostate cancer (CRPC) (147). 

In the cancer microenvironment, AR-driven phenotypical changes arise from a perturbed 

communication between stroma and epithelium (148). Smooth muscle is replaced by cancer-

associated fibroblasts that actively react to the environment and enhance tumorigenic epithelial 

growth, cell invasion and metastasis (148) (Figure 5). This perturbed communication is 

characterised by a shift from normal paracrine signalling to abnormal autocrine/intracrine 

mechanisms that lead to cancer progression and resistance to treatment (37,126,133) whereby 

cancer cells produce hormones and oncogenic growth factors in a positive forward feedback 

loop. Researchers worldwide have postulated a variety of possible mechanisms underlying the 

development of CRPC. AR-dependent mechanisms involve the punctuated progression of 

genetic mutations (chromoplexy) into states of high genomic instability governed by broader 
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chromosomal rearrangements and hypermutational events (chromothripsis) (149), and can be 

broadly grouped into 1) de novo androgen synthesis in situ – prostate (independence of 

endocrine functions) (150); 2) increased expression of the AR and its coactivators (151); and 

very importantly, 3) AR mutations on the receptor’s ligand binding domain (LBD) and splice 

variants of its intrinsically disordered N-terminal binding domain (ID-NTD), involved in 

conformational flexibility and high receptor promiscuity (125,134,146). AR splice variants 

(AR-Vs) are notoriously promiscuous and represent a significant therapeutic challenge and a 

hallmark of progression in patients with advanced forms of the disease (152,153). Their 

expression is significantly increased and drive PC progression during ADT (154) where 

activation occurs in the absence of (native) ligands (155) and mediate therapy resistance. Two 

of the most important variants include AR-V7 and AR–V567, which lack androgen binding 

sites and induce autonomous tumour formation and proliferation in metastatic and CRPC 

specimens in human patients (156). Splice variants and mutated ARs are involved in the outlaw 

(activation by growth factors and tyrosine kinases) and promiscuous (nonandrogenic steroid 

binders) pathways (134). 

 
Figure 5. Mis-regulation of the communication mechanisms of the gland are observed in advanced cases of 
the disease and are perhaps driven by ADT therapy as a means of cancer adaptation and resistance to 
treatment. The paracrine mechanisms for prostate homeostasis consist of signalling between stromal and 
epithelial (basal & luminal) cells in response to androgens (left). A shift to autocrine AR signalling leads to tumour 
growth and development. Shortly thereafter, AR-independent oncogenic events by AR- and neuroendocrine cells 
culminate in rupture of the basal membrane and metastasis (right). Abbreviations: DHT, dihydrotestosterone; AR, 
androgen receptor; ADT, androgen deprivation therapy; Neuroend, neuroendocrine cells. 

Various endocrine-based therapies are directed toward inhibiting AR activity (157), but AR-

independent mechanisms (bypass pathways) are likely to occur concomitantly, namely, 

microenvironment-dependent (de)differentiation of epithelial and neuroendocrine cells (149) 
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and tumour suppressor degradation/anti-apoptotic protein overexpression (146), both of which 

are intimately linked to the cancer-related signalling pathway PI3K/Akt/mTOR 

(133,135,158,159). More recently, AR has been associated with the modulation and 

acceleration of non-coding microRNAs (miRNAs) gene expression with oncogenic and anti-

apoptotic activity in hormone-dependent cancerous tissues (160,161). 

6.3.3 Disrupting Cancer Intercellular Communication and Resistance to 

Treatment 

The clinical relevance and requirement of AR-dependent signalling in prostate cancer (AR 

overexpression and androgen-regulated genes) have prompted the synthesis, development, and 

commercialization of several compounds targeting the LBD of full-length wild-type AR 

(146,158). First-generation antagonists included non-steroidal inhibitors flutamide, nilutamide, 

and bicalutamide, which block androgen binding by competitive inhibition (162). Treatment 

with first-generation drugs was ineffective and inferior to anatomical castration (163) insofar 

some of these antiandrogens had the consequential ability to function as AR agonists. However, 

they were successful in making evident some of the molecular mechanisms underlying 

treatment resistance, including LBD point mutations and ensuing promiscuity (164,165). 

Second-generation antagonist enzalutamide has a much higher affinity for the AR compared to 

its predecessors, minimal to absent agonist capabilities, and its favourable results rely on three 

distinct inhibition mechanisms: impaired AR nuclear translocation, AR binding to AREs, and 

recruitment of coactivators (166). Despite the promising activities of enzalutamide and other 

AR antagonists, urgent challenges remain in the successful treatment of advanced prostate 

cancer since AR- cells cannot be targeted by AR antagonists and might play a role in resistance 

and recurrence of CRPC, with low response to treatment and poor prognosis. Both AR- and 

androgen-independent AR+ cells present steroid intercellular communication mechanisms 

associated with endocrine therapy resistance (167). 

The biotransformation of cholesterol into late androgens is catalysed by tissue-specific enzymes 

with differential regional and substrate selectivity (Figure 4) (131). Generally, D5 steroid 

pregnenolone is obtained by the cleavage of the side chain in cholesterol molecules through the 

activity of mitochondrial enzyme CYP11A1 in the adrenal cortex, dwarfing the steroidogenic 

output of the testes and other organs such as adipose tissue and the brain (168). The oxidation 

of 3b-hydroxy-D5-steroids (pregnenolone, 17a-OH-pregnenolone, DHEA and androstenediol 

(A-diol)) into their 3-keto-D4-congeners is performed by the 3b-HSD1/2 isoenzymes by the 

prostate and other steroidogenic tissues where the double bond between C5 and C6 is 
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isomerized to that between C4 and C5 (169). Alternatively, pregnenolone can also be acted 

upon by the dual-function CYP17A1 microsomal enzyme, converting C21 compounds into C19 

steroids in testes and adrenal glands (169). The sequential activities of CYP17A1 17a-

hydroxylase and 17,20-lyase functions result in the formation of 17-keto androgens such as 

DHEA and androstenedione (AD). In addition, testosterone is obtained by the promiscuous 

aldo-keto reductase 1 (AKR1C3) enzyme that reduces AD to testosterone in the adrenals or by 

3b-HSD2 from circulating DHEA. Finally, the last reaction in the classical androgen 

biosynthetic pathway involves the conversion of testosterone to DHT by both isoforms of the 

steroid 5a-reductase (SRD5A1/2). As previously mentioned, redundant “backdoor” pathways 

may develop in cancer cells able to produce their own steroids in an autocrine/intracrine manner 

(168,170). Therefore, blockage of androgen biosynthesis by pharmacological means (chemical 

castration) was another treatment avenue pursued concomitant to receptor antagonism. 

Prior to the arrival of second-generation AR antagonists into the market, 14a-demethylase 

antifungal inhibitor ketoconazole showed a promising reduction of circulating androgen levels 

through weak and non-specific CYP17A1 inhibitory properties (171). Due to the high doses 

necessary in order to achieve sufficient CYP17A1 inhibition, ketoconazole fell out of favour in 

prostate cancer treatment owing to considerable neurological, respiratory and hepatic toxicities 

(171,172). It did, however, argue for the therapeutic potential of more selective CYP17A1 

inhibitors in hampering the biosynthesis of androgens and ensuing AR activation. One such 

inhibitor and the current standard treatment for metastatic prostate cancer (in combination with 

enzalutamide) is abiraterone (Abi) (158,171). Abi is a pregnenolone-derived steroidal 

antiandrogen with a 3-pyridil substituent and a double-bond between the 16 and 17 positions of 

the steroidal skeleton that successfully reduces extragonadal testosterone synthesis (158). These 

added structural features are responsible for both its potency and selectivity against CYP17A1 

lyase and hydroxylase functions (171) via covalent binding of its pyridine nitrogen to the heme 

iron in the enzyme (173). Continuous efforts in the field of polypharmacology led to the 

development of galeterone (TOK001), a compound with a unique dual mechanism of action 

targeting both the androgen receptor (as an antagonist but in addition also increasing AR protein 

degradation), including CRPC drug resistant variant 7 (AR-V7), and preferentially the lyase 

function of CYP17A1 enzyme, thereby avoiding the necessity of glucocorticoid co-

administration therapy. 

Unfortunately, despite the important progress in prostate cancer treatment, the benefits of state-

of-the-art therapies, including Abi and enzalutamide, are short-lived, and resistance invariably 

occurs (134,146,158). Patients presenting primary (within the first three months) or acquired 
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(any time thereafter) resistance to both drugs make evident the limitations of current therapies 

(169). Resistance mechanisms involve upregulation of steroidogenic enzymes that compensate 

for CYP17A1 inhibition and bypass AR transcriptional programmes (158). This apparently 

inevitable refractory behaviour is due to the extreme plasticity of oncogenic pathways and 

enzymatic machinery found in cancer cells. In the case of prostate cancer, these might develop 

from steroids upstream of CYP17A1 activity, whereby the excess of progestogenic steroids 

appear to stimulate AR-Vs, thus resulting in the selection of AR+ malignant phenotypes (174), 

and androgen-independent, AR- neuroendocrine lineages (148). Reports on the possibility of 

ADT enhancing disease aggressiveness and disrupting cellular genotypes (very much like the 

selective pressures of antibiotics in the case of microbial resistance) (Figure 5) suggest that 

altered molecular targets should be exploited (148) and is treated with greater detail on Chapter 

3. 
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7 AIM OF THE THESIS 

Cell-to-cell communication systems have evolved in unicellular and multicellular organisms as 

intricate adaptation mechanisms to ensure homeostasis, growth, and survival in response to 

complex environmental challenges and nutritional cues. In pathological scenarios, the ability to 

engage in these convoluted intercellular signalling networks often result in resistance 

development against targeted therapies, as individual or clustered cells strive to cooperate in 

order to outlast treatment and endure. In that regard, the quorum sensing phenomena of the 

multidrug resistant bacterium Pseudomonas aeruginosa and the plasticity of oncogenic prostate 

cellular phenotypes belong to a common communication spectrum where autocrine/paracrine 

signalling leads to highly deleterious outcomes and pathogenesis. 

Recalcitrant Pseudomonas infections rely on a variety of intrinsic, acquired, and adaptive 

resistance mechanisms that readily render the use of current antibiotics ineffective and vastly 

outpace the development of new bactericidal compounds. Therefore, the emergence of 

antivirulence quorum sensing inhibitors in overcoming existing, and circumventing novel, 

resistances constitutes an attractive alternative. To that end, interference with Pseudomonas-

specific signalling molecule synthesis and sensing hinder effective bacterial communication 

and abrogate acute virulence and chronic-like biofilm formation without affecting the 

commensal microbiota. The first goal of this thesis is to highlight the potential clinical relevance 

of targeting the PQS-quorum sensing network in vitro and in vivo. Not only potent and selective 

PqsR antagonists successfully hampered bacterial pathogenicity, but the rational design of dual-

target PqsD/PqsR inhibitor further potentiated therapeutic benefits in addressing the often-

present redundancy of existing QS signalling pathways. 

Furthermore, the second goal of this work is to help understand some of the resistance 

mechanisms of prostate epithelium cancer cells to state-of-the-art androgen castration therapy 

with CYP17 inhibitor Abiraterone. We show the discovery and characterization of a resistance-

related, neurosteroid-derived mitogenic compound, 5a-pregnan-3b,6a-diol-20-one, and the 

CYP17-independent formation of androgen precursor, DHEA. Our results add further evidence 

to the increasingly demonstrated phenomenon of oncogenic plasticity and neuro-

transdifferentiation of endocrine tumours. In this case, normalcy-related endocrine/paracrine 

mechanisms gradually shift to malignancy-related autocrine/autonomic pathways. These 

elusive mis-regulated, self-sufficient chemical languages evade current therapeutic strategies 

and argue for a shift in our clinical understanding of prostate cancer signalling. 
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8 RESULTS 

8.1 Chapter 1 – Application of Dual Inhibition Concept within 

Looped Autoregulatory Systems toward Antivirulence Agents 

against Pseudomonas aeruginosa Infections 
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ABSTRACT: Pseudomonas aeruginosa quorum-sensing (QS)
is a sophisticated network of genome-wide regulation triggered
in response to population density. A major component is the
self-inducing pseudomonas quinolone signal (PQS) QS system
that regulates the production of several nonvital virulence- and
biofilm-related determinants. Hence, QS circuitry is an
attractive target for antivirulence agents with lowered
resistance development potential and a good model to study
the concept of polypharmacology in autoloop-regulated
systems per se. Based on the finding that a combination of
PqsR antagonist and PqsD inhibitor synergistically lowers
pyocyanin, we have developed a dual-inhibitor compound of
low molecular weight and high solubility that targets PQS transcriptional regulator (PqsR) and PqsD, a key enzyme in the
biosynthesis of PQS-QS signal molecules (HHQ and PQS). In vitro, this compound markedly reduced virulence factor
production and biofilm formation accompanied by a diminished content of extracellular DNA (eDNA). Additionally,
coadministration with ciprofloxacin increased susceptibility of PA14 to antibiotic treatment under biofilm conditions. Finally,
disruption of pathogenicity mechanisms was also assessed in vivo, with significantly increased survival of challenged larvae in a
Galleria mellonella infection model. Favorable physicochemical properties and effects on virulence/biofilm establish a promising
starting point for further optimization. In particular, the ability to address two targets of the PQS autoinduction cycle at the same
time with a single compound holds great promise in achieving enhanced synergistic cellular effects while potentially lowering
rates of resistance development.

Polypharmacology, or addressing two or more disease-
related targets at the same time, has proven to have a

significant impact on the treatment efficacy of, e.g., cancer,1,2

bacterial3,4 and viral infections,5 high blood pressure,6 asthma,7

and hormone-related diseases8 in clinical setups. These
multitarget effects are in most cases achieved by a combination
of selective single target agents. Drug combinations can either
act synergistically, whereby the combined effect is greater than
the sum of their separate responses, or additively, when the
resulting activity is the outcome of their combined individual
effects, both of which are shown to have favorable outcomes on
lowered resistance development in cancer9 and microbial10

infections.11 Unfortunately, such multidrug cocktails may incur
several drawbacks, such as undesired drug−drug interactions
and increasingly complex dosing schemes resulting in a lesser
compliance of patients to follow the prescribed intake
schedules.12 To reduce those problems, development of
multitarget drugs is a worthwhile endeavor. In many of the

above-mentioned intricate systems, self-inducing autoloop
cycles can be found. In this study, we describe the concept of
such a multitarget approach in positively regulated autoloop
systems to achieve beneficial and synergistic inhibitory effects
against Pseudomonas aeruginosa (PA) infections. Autoinducing
pathways are widely spread in mammalian,13 plant,14 and
bacterial kingdoms15 and regulate vital functions in a variety of
organisms.
As a model system to provide proof of this concept, we chose

the cell-density-dependent16 Pseudomonas quinolone signal
quorum-sensing system (PQS-QS) of Pseudomonas aeruginosa,
which was intensively studied by us in the past.17−19 In PA,
PQS and 2-heptyl-4-quinolone (HHQ) are the natural agonists
of PqsR, which is the transcriptional regulator of the pqsABCDE
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operon (Figure 1).20 This operon harbors the genes encoding
for the synthases responsible for PQS production. Thus, as
soon as PQS and/or HHQ activate PqsR, they induce their
own production and the concentration of signal molecules rises
exponentially (Figure 1).21 Interference experiments, combined
with mutational analysis, revealed PqsR and PqsD to be
attractive drug targets for reducing pathogenicity of PA in
vivo.17,22 Thus, PQS-QS displays an ideal and relevant model to
study the concept of polypharmacology in such positive
feedback loops with the possibility to directly transfer the
results herein toward other similarly controlled biological
systems. Furthermore, we directly put the lessons learned from
drug combination experiments to an application for the
straightforward rational design of the first drug-like dual-target
PqsD/R inhibitors. Additionally, an optimized compound was
achieved that shows promising reduction of two major
virulence factors and biofilm inhibition in vitro. Finally, this
optimized dual inhibitor displayed convincing activity in an in
vivo acute PA infection model.

■ RESULTS AND DISCUSSION
Combination of PqsD Inhibitor and PqsR Antagonist

Prominently Reduces Relevant Marker Pyocyanin
through Synergistic Activity. As proof of principle to assess
the amenability of the PQS-QS system to dual-target inhibition
with improved outcome, we initially investigated the
combinatorial effect of a PqsD inhibitor and a PqsR antagonist
on a QS-dependent PA-exclusive secondary metabolite,
pyocyanin.23,24 Pyocyanin is one of PA’s most prominent
virulence factors with distinct roles in acute infection
establishment and biofilm formation. Pyocyanin also substan-
tially contributes to the generation of reactive oxygen species

(ROS) by inhibiting the activity of catalase in eukaryotic cells.
ROS is one of pseudomonas’ adaptations to environmental
competition against other microbes and is the cause for its
cytotoxicity toward eukaryotic cells.25 As a consequence,
pyocyanin production is linked to increased inflammation,
modulation of iron metabolism, and tissue necrosis.26 Its
important physiological role in diseased states and correlation
with the QS system suggest that by monitoring pyocyanin
levels we may gain relevant insights into the suitability of dual
inhibition that efficiently targets PA virulence.
We cultured P. aeruginosa (PA14) wild type in the presence

of different concentrations of a PqsD inhibitor 119 and PqsR
antagonist 2,17 as a single treatment or combination therapy. As
seen in Figure 2, 500 μM of 1 alone does not influence the
production of pyocyanin, but interestingly, when added in
combination with 15 μM of 2, we observed a dose-dependent
decrease in pyocyanin production. Notably, the decrease from
38% (2 alone) to 34%, 23%, and 18% (2 added of 100 μM, 300
μM, and 500 μM of 1, respectively) is highly significant at
higher concentrations of 1, corroborating the synergistic activity
of two PQS-QS inhibitors with different modes of action. These
results further demonstrate that a biomarker negative synthase
inhibitor (e.g., compound 1) can indirectly increase the potency
of a receptor antagonist (e.g., 2) presumably by decreasing the
natural ligand concentration and thus lowering competition to
the receptor’s binding site. However, when extending the
exposure of PA14 to PqsD inhibitor 1, we observed a slight, yet
significant, reduction of pyocyanin after 48 h of incubation (see
Supporting Information, section IIc). Obviously, a continuous
attenuation of PQS/HHQ production through PqsD inhibition
can result in an antivirulence effect.

Figure 1. Schematic representation of the Pseudomonas quinolone signal (PQS) quorum-sensing system, involved in virulence factor production and
biofilm formation. Anthranilate is converted by the pqsABCDE gene products into 2-heptyl-4-quinolone (HHQ), which can be converted
intracellularly into PQS by the action of PqsH. HHQ and PQS are ligands of the Pqs Receptor (PqsR). Simultaneous inhibition of PQS synthesis
(e.g., through PqsD) and interference with the autoloop transcriptional regulator PqsR lead to increased reduction of pathogenicity-associated
biomarkers.
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Application of Concept Study toward the Rational
Design of Dual PqsD/R Inhibitors. Having demonstrated
the potential of combining synthase inhibition and receptor
antagonism, we searched through our in-house inhibitor library
with regard to structural similarity of selective PqsD and PqsR

inhibitors. From this search, we found compound 3, which was
designed as a PqsR antagonist (IC50 = 26 μM) with good
activity on PA’s virulence factor pyocyanin (Figure 3) and a
quite similar compound, 4, which was designed to target PqsD
(IC50 = 1.7 μM) based on SPR screening results recently
reported by us (Figure 3).27 As for 1, compound 4 displayed no
inhibitory activity on pyocyanin even at the maximum soluble
concentration.
Although, both compounds are selective for their respective

targets, they share the same molecular scaffold: a pyrimidine
core decorated with a triazole and a sulfone moiety (Figure 3).
Thus, we decided to synthesize compound 5 and assess its
biological activity, as it represents a simplified molecule
consisting only of the shared structural features. Notably, the
obtained compound 5 showed inhibition of both targets.
Moreover, in very good accordance to our conceptual studies
(vide supra), compound 5 showed a stronger reduction of
pyocyanin compared to the equipotent PqsR selective
precursor 3 (Figure 3). These results indicate that the concept
of dual inhibition with combination experiments and the
observed synergism can be directly combined in one
compound. With regard to ligand lipophilicity efficiency
(LLE), a metric used in medicinal chemistry to evaluate the
activity of a compound based on its molecular weight and
lipophilicity for further drug design, 5 showed a LLE = 0.56 on
both targets which is above the suggested minimum score of
0.3.28 To further improve the potential of 5 based on its LLE,
we decided to modify it via a bioisosteric replacement of C4 at
the triazole substituent. Introducing a nitrogen at this site
yielded the tetrazole congener 6 (Figure 3). To confirm the
regiochemistry of the introduced tetrazole moiety, we crystal-
lized intermediate 6a29 and verified the structure by X-ray
analysis (CCDC-No.: 1432241, Supporting Information,
section Ib.). As expected for the tetrazole substituent,
lipophilicity of 6 dropped compared to 5, leading to an
increase of the LLE score (PqsR = 0.67; PqsD = 0.66) and
better solubility. Notably, activity on PqsR was slightly
increased, while activity on PqsD was retained, resulting in an
overall IC50 on pyocyanin of 86 μM (Figure 3).

Figure 2. Synergistic activity of PqsD inhibitor 1 and PqsR antagonist
2 on pyocyanin inhibition in PA14 wild type. Treatment with 500 μM
of 1 alone did not alter pyocyanin production. However, basal
pyocyanin production under inhibition with 15 μM of 2 is significantly
increased upon combinatorial titrated administration of 1 (100 μM,
300 μM, and 500 μM, respectively), indicative of synergistic activity.
All values are relative to a control without inhibitors. Error bars
represent the standard deviation of three independent experiments (n
= 3). * = p < 0.05, ** = p < 0.005.

Figure 3. Reduction of structurally related PqsR antagonist 3 and PqsD inhibitor 4 to the common molecular core resulting in the first dual-active
compound 5 (red). In comparison to 3, 5 shows higher activity on pyocyanin, although being similarly active on PqsR, corroborating the findings of
the combination experiments (Figure 2). Bioisosteric modification (blue) led to dual inhibitor 6 with improved physicochemical properties as shown
by its increased ligand lipophilicity efficiency (LLE).
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Dual Inhibitor Not Only Affects Pyocyanin Production
but Also Modulates the Generation of a Second
Virulence Factor, Pyoverdine (PVD). Pyoverdines are
Pseudomonas’ primary siderophores. These fluorescent signaling
molecules are used by the bacterium in iron scavenging and
metabolism and are closely related to the production of other
virulence factors in acute infections, as well as the correct
architectural construction of biofilms.30,31 Since the absence of
PVD in deficient mutants has shown to drastically reduce
infection ability,32 and iron acquisition in vitro is linked to
biofilm formation,33 PVD metabolism provides a connection
between acute pathogenicity and biofilm-related severe
infections. The intrinsic relationship of PQS and PVD signaling
pathways in iron metabolism and virulence has been shown to
be mutual: on one hand, PQS induces the expression of genes
involved in the biosynthesis of PVD,34 on the other, PvdS, one
of the major regulators in the biosynthesis of PVD, controls the
expression of PqsR.35,36 Hence, we investigated whether our
PQS dual inhibitor would have a beneficial effect on PVD
inhibition by targeting PQS biosynthesis. We grew PA14 wild-
type cultures in the presence of increasing concentrations of 6
(Figure 4). In accordance with our assumption, 6 was able to

decrease PVD significantly in all tested concentrations (500 μM
to 100 μM). Production of the siderophore was essentially
blocked at the highest tested concentration of 6, while
compounds 1 and 2 had only moderate or low effects in this
assay (69.7% ± 1.3 and 92.8% ± 8.2, respectively). Thus, dual
inhibitor 6 is not only able to target pyocyanin biosynthesis, but
also addresses PVD production, disrupting iron metabolism,
and virulence factor production, ultimately reducing the
environmental competitive advantage of PA, as well as its
pathogenicity to lower levels that better respond to treatment.
These beneficial cellular effects may contribute to attenuation
of biofilm formation and establishmenta scenario that we
further investigated in our next experiments.

Compound 6 Reduces Biofilm Formation and Re-
stores Antibiotic Efficacy. Biofilms are one of the major
clinically relevant resistance mechanisms of PA against
antibiotic treatment,37 immune responses,38 and antimicrobial
petides39 in particular. Thus, reduction of biofilm mass holds
the potential to enable immunological clearance of the
pathogen and restore antibiotic activity, features of undoubtedly
high interest. The development of biofilms is dependent on the
PQS Quorum sensing network, as shown in previous knockout
studies.40 Recently, we showed that PqsD inhibitor 1 reduces
PA biofilms at high concentrations (reduction of biofilm
volume to 62% at 500 μM).19 Furthermore, antibiofilm
activities have been reported for PqsR antagonists designed
on the basis of the natural ligand HHQ,41 the biological
precursor of PQS (Figure 1), and we observed a reduction in
biofilm volume by compound 2 to 84.8% ± 4.7 at 15 μM (see
supplementary Figure 5). These target-related effects and the
reduction of the biofilm-associated virulence factor PVD (vide
supra) motivated us to test whether our dual target compound
6 was also active on preventing biofilm formation. Indeed, 6
displayed prominent effects on biofilm development with an
IC50 of 100 μM (Figure 5A, circles). This is in good accordance
with previously obtained data regarding biofilm inhibition
targeting either PqsR or PqsD.19,41,42

We concluded that the dual inhibition concept might not
only pronouncedly reduce pyocyanin formation but also result
in stronger inhibition of PA biofilm. To further validate the
target of 6 under biofilm-conditions, we assessed whether the
dual inhibitor is still active on a PqsR deficient mutant strain of
PA. We observed a reduced activity of about 1 log unit of the
ΔpqsR mutant strain compared to wild type PA. This result, on
the one hand, underlines the target-related activity but also
shows that the compound has an additional target involved in

Figure 4. Effects of compounds 1, 2, and 6 on pyoverdine production.
Compound 6 showed a prominent, significant decrease in pyoverdine
levels in a concentration-dependent manner. At the highest
concentration of 500 μM, pyoverdine production was almost
completely arrested (5% ± 8), and halved at the lowest inhibitor
concentration of 100 μM (58% ± 10). All values are relative to a
control without inhibitors. Error bars represent standard deviation of
three independent experiments (n = 3). * = p < 0.05, ** = p < 0.005.

Figure 5. Dose-dependent reduction of biofilm in PA14 wild type cultures treated with compound 6 (A). Pronounced reduction of extracellular
DNA (eDNA), polysaccharides (PS), and proteins of the biofilm matrix (Volume) was found at 400 μM of 6 (B). Activity of 1 μM ciprofloxacin
(CIPX) was increased by a combination of the antibiotic with 50 μM of 6 under biofilm conditions (C). Error bars represent standard error of at
least two independent experiments. ns = not significant, **** = p < 0.0001.
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biofilm formation. A biofilm is a heterogeneous matrix
composed of different components, e.g., polysaccharides (PS),
proteins, lipopolysaccharides (LPS), and extracellular DNA
(eDNA).43 The latter has been described as responsible for
resistance development against aminoglycoside44 and fluoro-
quinolone antibiotics45 as well as increased tolerance against
host defensins.46 Moreover, release of eDNA is directly
regulated by the presence of pyocyanin47 and PQS.48 Hence,
we were curious how 6 affects the components of the biofilm
(Figure 5B). Our results demonstrate that 6 significantly
inhibited eDNA release under biofilm conditions (7% ± 2
residual eDNA detected), which is in good accordance with the
previous findings described above. Moreover, we observed a
marked attenuation of PS and protein BF constituents down to
27% ± 20 and 25% ± 13, respectively. As a targeted decrease of
eDNA might lead to higher efficacy of antibiotics on biofilm
cultures of PA, we tested the susceptibility of PA14 against the
fluoroquinolone-based antibiotic ciprofloxacin, the activity of
which has been described to be hindered in the presence of
eDNA.45 Under biofilm conditions, no significant inhibition of
PA viability by ciprofloxacin was observed (Figure 5C).
However, in combination with 6, which alone had no effect
on the viability of PA, antibiotic activity could be restored
under biofilm conditions that mimic a chronic infection in vitro.
Furthermore, these findings complement published data
regarding the application of PqsR antagonists in acute infection
models.42 Thus, therapy of QSIs in combination with antibiotic
treatment in acute and chronic PA infections holds great
promise for future anti-infective drug discovery focusing on
quorum sensing inhibition.
Compound 6 Reduces Pathogenicity of PA14 in Vivo.

Until today, a variety of in vivo models to assess the
pathogenicity of PA were developed. We chose an animal
infection model employing Galleria mellonella larvae which has
been previously shown to have a high correlation with mouse
PA infection models49 and was also used by us to validate a
PqsR antagonist in vivo.17 To determine efficacy of our dual-
target compound 6, G. mellonella larvae were inoculated with
the agent in the presence and absence of PA. Interestingly, 6
was able to increase the survival rate of larvae in a dose-
dependent manner with 53% survival at 1.25 nmol and 29%
survival at 0.5 nmol applied dose (Figure 6). The susceptibility
of larvae was described to be 50% if infected by one cell of
PA.49 Notably, in our experiments one larva was challenged
with 10−13 PA cells, resulting in a very high bacterial load and
hurdle to be taken by an anti-infective treatment. Regarding the
average hemolymph and body weight (450 μL and 450 mg)17

of each larvae, the most beneficial protective effect was
observed at a dosage of 1.25 nmol, correspondent to a final
in vivo concentration of 2.7 μM or 0.63 mg kg−1.
Most interestingly, when assessing toxicity of 6 in G.

mellonella we could show that even a 4 times higher
concentration (5 nmol) than the effective dose was well
tolerated with no observable disparity with PBS control.

■ CONCLUSION
In this study, we demonstrated the applicability of dual
synergistic inhibition within the frame of positive feedback
autoloop systems as a novel concept for the development of
quorum sensing inhibitors. We chose the model PQS-QS
system of Pseudomonas aeruginosa to demonstrate that an
enzyme inhibitor 1 can increase the potency of the associated
receptor antagonist 2 regarding virulence factor production.

Presumably, this beneficial effect is due to lowered signal
molecule levels and, therefore, less competition at the
receptor’s binding site. We successfully exploited this concept
of dual inhibition in a rational design strategy to achieve the
first dual-active inhibitor 5 targeting the PQS-QS system. This
compound was further improved by bioisosteric replacement,
culminating in inhibitor 6 with an enhanced efficiency/
lipophilicity profile. This compound effectively reduced
pyocyanin and pyoverdine, two major virulence factors of PA,
in a dose-dependent manner without affecting bacterial growth.
Importantly, 6 had a strong effect on PA biofilm assembly and
restored the efficacy of ciprofloxacin, presumably due to
hindrance of eDNA release. Finally, dual inhibitor 6 was also
active in vivo, protecting G. mellonella larvae from lethal PA
infections. Taken together, the presented dual inhibition
strategy holds great potential to effectively interfere with
intricate cellular systems. Via this promising approach, we
achieved an enhanced bioactivity profile through synergistic
action at two points-of-intervention (PqsD and PqsR) within a
positive feedback loop (the PQS-QS system). Hence, this
strategy might be a powerful tool for devising new treatment
options for diseases related to complex or compensatory
metabolic pathways similar to the one investigated in this study.

■ METHODS
Pyocyanin Assay. Pyocyanin formation was assessed as previously

described18,23,50 with minor modifications. A single colony was
removed from agar plates after 16 h of growth at 37 °C and
transferred into 25 mL Erlenmeyer flasks with 10 mL of PPGAS
medium. Following 19 h of aerobic growth with shaking at 200 rpm
and 37 °C, cultures were centrifuged at 7.450g, washed once with 10
mL of fresh PPGAS medium, and resuspended to a final volume of 5
mL. Cultures were then diluted to a final OD600 of 0.02 and distributed
into test tubes in 1.2 mL aliquots. Compounds 1 and 2 were added in
1:100 dilutions with a final DMSO concentration of 1% (v/v). Treated
and untreated cultures were incubated for an additional 17 h under
aerobic conditions as mentioned above. Pyocyanin was extracted by
adding 900 μL of chloroform to 900 μL of overnight culture and
subsequently re-extracted with 250 μL of 0.2 M HCl from the organic
phase. OD520 was measured in the aqueous phase. Pyocyanin
formation values were normalized to a corresponding OD600 of the
respective sample.

Figure 6. Dose-dependent in vivo protective effect of 6 on the survival
of Pseudomonas aeruginosa PA14-challenged larvae of Galleria
mellonella. Survival rate was significantly higher for treated larvae
(0.5 nmol or 1.25 nmol) compared to the untreated control (0.5 and
1.25 nmol applied doses: p < 0.0001; log-rank test).
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Pyoverdine Assay. For the analysis of pyoverdine formation,
culture workup and stock solution of compounds 1, 2, and 6 were
performed as described above (Pyocyanin Assay). Treated and
untreated cultures were incubated in 200 μL of PPGAS medium for
8 h under aerobic conditions in black 96-well plates with glass
bottoms. This allowed for the simultaneous measurements of
pyoverdine (fluorescent light units with excitation at 400 ± 10 and
emission at 460 ± 10) and bacterial growth at OD600. Inhibition of
pyoverdine was normalized to OD600 values.
Galleria mellonella Virulence Assay. An infection model of G.

mellonella was used to determine disruption of virulence mechanisms
in vivo as described in the works of Lu et al.17 Treatment conditions of
larvae included (a) sterile PBS solution, (b) PA14 suspension, (c) 0.50
nmol of compound 6 in “b,” and (d) 1.25 nmol of compound 6 in “b.”
For each treatment, data from at least three independent experiments
were combined.
Biofilm Assay. Commonly used crystal violet (CV) assay

procedures51−53 were adapted for determination of biofilm mass.
For the cultivation of biofilm in 96-well plates, the protocol described
by Frei et al.53 was slightly modified by replacement of the medium
and the Pseudomonas strain used. The experiment was performed using
the P. aeruginosa PA14 strain (including ΔpqsR mutant, kindly
provided by S. Haüssler) and M63 medium.54 CV staining was used to
detect compound effects on the overall biofilm biomass. The impact
on eDNA was assessed by incubation of biofilm with propidium iodine
solution (0.05 mg mL−1) for 3 h and detection of specific florescence
at 620 nm after a thorough washing step with 18MΩ H2O.

55

Polysaccharide levels in biofilm were specified by congo red staining
described by Ghafoor et al.56 For this purpose, a 20 mg mL−1 congo
red solution was incubated with the matured biofilm for 3 h, followed
by a washing step with water and the concentration measurement at
490 nm. For the detection of protein levels, Bradford reagent was
diluted 1:5 (Roti-Quant, Carl Roth) and incubated with the washed
biofilm for 5 min.57 Next, 18MΩ H2O was used to remove unbound
dye. The amount of proteins was determined by absorbance
measurement at 595 nm. To investigate the killing efficacy of
ciprofloxacin in combination with QS inhibitor on biofilm-encapsu-
lated bacteria, biofilm was grown under the same conditions used for
CV assay. At first, biofilm growth was initiated under QS inhibitor
treatment (50 μM) or DMSO control. After washing steps, matured
biofilm was incubated with 4 μg mL−1 ciprofloxacin dissolved in M63
medium and grown for a further 24 h. Viability of bacteria in the
biofilm was determined by BacTiter-Glo Assay using black plates.58

Chemical Synthesis and Analytical Characterization. NMR
spectra were recorded on an Avance AV 300 or a Bruker DRX 500.
The residual proton, 1H, or carbon, 13C, resonances of the >99%
deuterated solvents were used for internal reference of all spectra
acquired (CDCl3 1H 7.260 ppm, 13C 77.16 ppm; DMSO-d6,

1H 2.500
ppm, 13C 39.52 ppm). Electrospray ionization (ESI) mass spectrom-
etry and LC-UV purity determination were recorded with a Surveyor
LC system MSQ electrospray mass spectrometer (ThermoFisher) LC-
MS couple and acetonitrile/water gradient in positive mode (+), if not
indicated otherwise. Then, 1% TFA was added if necessary.
Compound 6 was analyzed using a setup produced by Waters
Corporation containing a 2767 Sample Manager, a 2545 binary
gradient pump, a 2998 PDA detector, and a 3100 electron spray mass
spectrometer. Water containing 0.1% formic acid and acetonitrile
containing 0.1% formic acid were used as solvents for the analysis. A
Waters X-Bridge column (C18, 150 × 4.6 mm, 5 μM) has been used
with a flow of 1 mL min−1 starting with 10% acid containing
acetonitrile to 95% acid containing acetonitrile. All final compounds
were of ≥95% purity. Unless otherwise stated, all reagents used were
purchased from commercial vendors and used without further
purification.
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(40) Müsken, M., Di Fiore, S., Dötsch, A., Fischer, R., and Haüssler,
S. (2010) Genetic determinants of Pseudomonas aeruginosa biofilm
establishment. Microbiology 156, 431−441.
(41) Ilangovan, A., Fletcher, M., Rampioni, G., Pustelny, C.,
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8.2 Chapter 2 – Effects of Next Generation PqsR-targeting Anti-

infectives against Biofilm and Virulence of Pseudomonas aeruginosa 
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INTRODUCTION 

“It is time to close the book on infectious diseases, and declare the war against pestilence won” 

– even if the origin of this statement cannot be precisely tracked down1, it reflects the 

conventional wisdom2 over decades in the 20th century. But this popular belief was quickly 

abandoned due to the alarming occurrence of multi- and pan-resistant microbial pathogens.3 

This situation has even been worsened by shortening the research efforts in the field of 

antibacterial drug discovery.4,5 Nowadays, we are facing a lack of novel treatment options for 

many human pathogens which acquired resistance against nearly all available antibiotics.6 The 

development of compounds which reduce bacterial virulence without affecting viability has 

attracted increasing attention during the last years. These antivirulence drugs have the potential 

to overcome the burden of rapid development and spreading of resistance mechanisms  and 

may help to regenerate the antimicrobial development pipeline.7 

Inspired by this idea, we and others targeted the virulence of Pseudomonas aeruginosa, a Gram-

negative opportunistic human pathogen, by interference with bacterial cell-to-cell 

communication.8 The release of virulence determinants is regulated mainly by a process called 

quorum sensing (QS).9 QS enables P. aeruginosa to coordinate gene expression collectively 

dependent on bacterial cell-density via the release and sensing of small diffusible molecules.9 

P. aeruginosa employs the las10,11 and rhl12,13 QS systems which use acetyl homoserine lactones 

(AHLs) as signaling molecules, prevalent among Gram-negative bacteria. Furthermore, this 

bacterium uses a rather unique system called pqs14 (Pseudomonas quinolone signal) applying 

alkylquinolones (AQs). The autoinducers 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) and its 

precursor 2-heptyl-4-quinolone (HHQ) activate the transcriptional regulator PqsR15 

(Pseudomonas quinolone signaling receptor also referred to as MvfR).16,17,18 The activated 

receptor regulates the expression of various genes involved in the production of virulence 

factors e.g. pyocyanin16, elastase, lectines etc.19 Additionally PqsR up-regulates the expression 

of the HHQ biosynthesis operon pqsA-E to form an autoinductive loop.20,21 Moreover, the pqs 

system is involved in the establishment of P. aeruginosa biofilms via multiple ways. Mutants 

lacking of a functional pqs system showed a reduced release of eDNA22 and expression of 

lectins A/B19. Both are integral parts for the P. aeruginosa biofilm architecture.22,23 P. 

aeruginosa strains which switched to a sessile biofilm lifestyle are the main cause of chronic 

persistent pneumonia found in cystic fibrosis patients.24,25 Bacteria growing in the biofilm mode 

adapt to intense antibiotic treatment and to the host immune response.25 Taken together, the pqs 

system and its central regulator PqsR play a critical role during the acute and chronic infections. 



RESULTS 

	
	

31	

Following a ligand-based approach, we were able to transform the native agonist HHQ into the 

potent antagonists showing a lack of activity due to metabolic conversion in P. aeruginosa.26,27 

Further optimization led to the analog 1 which was able to fully protect Galleria mellonella 

larvae from a lethal P. aeruginosa infection providing the first in vivo proof of concept.27 In a 

similar approach quinazolinone-based antagonists were developed and the first crystal structure 

of the ligand-binding domain (LBD) of PqsR was solved.28 The potential of PqsR as drug target 

was further corroborated by the benzamido-benzimidazole antagonists 2 and 3. These 

antagonists originated from a high throughput screening (HTS) campaign. 3 was demonstrated 

to be efficacious in mouse acute infection models as standalone treatment and as a 

pathoblocker-antibiotic combination therapy.29 All discovered antagonist suffer from poor 

physicochemical properties. To address this issue we initiated two fragment screening 

campaigns30,31 which led to chemically diverse ligands. The optimization of 2-amino-pyridine 

derivatives (4) resulted in nanomolar active antagonists.32 

 
Figure 1. Published PqsR antagonists (1-4) and schematic representation of the applied 
medicinal chemistry strategy. 

In this manuscript, we report on the nifty development of hybrid compounds by merging of the 

reported HTS hit 2 and the fragment-screening-derived antagonist 4. We were able to generate 

a plausible binding-pose of 2 based on a pharmacophore-guided docking approach. An overlay 
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with the crystal structure of 4 led to the synthesis of hybrid compounds consisting of a 

trifluoromethyl-pyridine headgroup derived from a fragment screening32 and the 

thioglycolamide-aryl moieties of 2 and 3, respectively. These hybrid compounds showed an 

improved physico-chemical profile while keeping high on-target and antivirulence activities. 

Furthermore, these compounds displayed specific effects on P. aeruginosa biofilms by 

abolishing the release of eDNA. 

RESULTS AND DISCUSSION 

Chemistry 

Fragment hits 5 and 6 were obtained from commercial suppliers. The synthesis of the key 

precursors 2a and 3a is shown in Scheme 1. The particular anilines were condensed with 

thioglycolic acid in neat reaction at 130°C under an argon atmosphere.33 After cooling to RT 

the product was isolated in good yields by simple trituration with isopropanol and filtration.  

Scheme 1. Synthesis of Thioglycolamide Precursorsa, 

 
aReagents and Conditions: a) pressure vial, neat, 130°C, Ar. 

The heteroaryl halide 7a was synthesized as described in our previous publication.32 Precursors 

8a, 9a and 13a were obtained from commercial suppliers. Hybrid compounds 7-12 were 

synthesized as outlined in Scheme 2. Heteroaryl halides 7a-9a, 13a were reacted with 2a and 

3a in a classical SNAr reaction using potassium carbonate as base to give the final products 7-

13. 
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Scheme 2. Synthesis of Hybrid Compounds. 

 
aReagents and Conditions: a) K2CO3, DMF, -20°C to RT, Ar. 

In-silico studies 

Fragment-based lead discovery and HTS are often described as “mutually exclusive” strategies 

although there are complementary aspects of both approaches as well.34 The discovery of 

benzamido-benzimidazole PqsR antagonists29 (2 and 3) by a HTS screening inspired us to 

investigate on their binding mode (Figure 1) in order to combine these insights with structural 

information of the identified fragment hits. The nitro moiety was identified as obvious common 

feature in the quinolone class (1)26 and in the benzamido-benzimidazole class (2 and 3)29. 

Hence, we hypnotized that both antagonist classes overlap at this position in the LBD. The 

structure of the LBD in complex with the quinolone derivatives NHQ28 (2-nonyl-4-quinolone) 

and HHQ32 were resolved. Based on these crystallographic results we derived a binding pose 

of the highly similar antagonist 1 (Figure 2A). Following our hypothesis, the nitro moiety and 

the adjacent aryl ring were defined as essential pharmacophore points. Subsequently, a 

pharmacophore-guided docking study with compound 2 was conducted. 2 was used due to 

lower number of rotatable bounds compared to 3 what facilitated a more accurate docking due 

to lower degrees of conformational freedom in the ligand.  

The thioglycol amide linker adopted an angled position in all generated docking poses which 

positioned the 4-chloro-phenyl ring in the alkyl sidechain pocket of HHQ. We superimposed 

these docking poses with the crystal structure of 4 (Figure 2B and 2C). The trifluoromethyl 

moiety of 4 is similarly oriented as the nitro group of 1 and 2. This finding was in line with the 

SAR observed by Lu et al. where the nitro group was exchanged by trifluoromethyl without 

any change of the antagonistic activity.26 To further validate our binding hypothesis, we used 
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fragment competition studies. The amino-pyridine headgroup of 4 binds into the quinolone 

pocket (Figure 2B) and fragment 5 was used as a mimic thereof. According to our hypothesis 

the 5-nitro-benzimidazole heterocycle of 2 also occupies the same part of the pocket. In this 

case, fragment 6 was used. 

 
Figure 2. PqsR docking studies: (A) overlay of modeled binding mode of 1 (blue) and highest 
scored docking pose for 2 (yellow). (B) overlay of the crystal structure of 4 and highest ranked 
docking pose of 2 (yellow). (C) alternative binding pose of 2 (yellow) superimposed with 
crystal structure of 4. 
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Figure 3. ITC competition experiments. Raw ITC data are shown on top and integrated 
normalized data on bottom. Titration of 150 µM PqsR with 1500 µM 6 (■, black curve); 
Titration of 150 µM PqsR with 1500 µM 6 in the presence of 1500 µM compound 5 (Δ, red 
curve). 

According to isothermal titration calorimetry (ITC) competition experiments both fragments 

compete for binding to PqsR (Figure 3) what is indicated by the loss of heat release when 6 is 

titrated to PqsR in the presence of 5. This finding clearly corroborates our binding model. 

Overall, the most striking difference between the particular docking poses of 2 was observed 

for the most flexible linker part. Comparing the poses depicted in Figure 2B and 2C, the position 

of the benzimidazole is shifted leading to altered linker geometry. These results promoted the 

positions 2-4 at the pyridine as possible attachment points for the thioglycolamide aryl moiety 

(Figure 1). In a parallel approach, the 4-position was discovered as vector for growing the 

trifluoromethyl pyridine headgroup.32 Thus, this position was included and the fact that similar 

heteroaryl compounds were also reported as hits from the HTS campaign35 encouraged us to 

pursue also the 2-position as possible attachment point. The 3-position, however, was lower 
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ranked in priority due to the more difficult synthetic feasibility caused by the higher electron 

density in meta-position of the pyridine ring.  

Hybrid antagonists 

Compounds 7 and 8 were rapidly accessible via a nucleophilic substitution reaction in 2- and 

4-position of the pyridine ring, respectively. At first, potential PqsR antagonists were evaluated 

in a heterologous E. coli reporter gene system. This system allows an undistorted analysis of 

agonistic or antagonistic properties without the penetration problems observed in P. aeruginosa 

and possible bacteria-mediated deactivation of test compounds.27 Compounds displaying 

sufficient antagonistic properties were further analyzed for their effect on the virulence factor 

pyocyanin and the signaling molcecule HHQ in P. aeruginosa. Moreover, the solubility of the 

compounds under assay conditions was determined. Subsequently, the ligand lipophilicity 

efficiency (LLE) was calculated which evaluates the potency normalized for the heavy atom 

count of a compound taking also lipophilicity into account.36 Hybrid molecules 7 and 8 showed 

antagonistic activities in the nanomolar range and were able to translate these activities into 

inhibition of pyocyanin in the low micromolar range (Table 1). Additionally, both compounds 

were able to affect the levels of the signaling molecule HHQ and their superimposition 

suggested synthesizing compound 9. The latter showed a comparable profile to 8 regarding 

antagonistic activity and pyocyanin inhibition but a significantly lowered clogD, which was 

also reflected in a slightly improved LLE. Encouraged by these results and inspired by the SAR 

reported by Starkey et al.29 we decided to exchange the chloro substituent for a phenoxy moiety 

(10-12). For all three headgroups an enhanced antagonistic activity was observed. There was a 

22 fold (7 vs. 10) and 33 fold (9 vs. 12) boost in activity for the 4-position linked headgroups 

with amino function, whereas we measured a 2-fold increase (8 vs. 11) for the at the 2-position 

linked pyridine. These findings raised the question whether the presence of the NH2 moiety or 

the positioning of thioglycolamide linker in 2- or 4-position of the pyridine nitrogen is pivotal 

for antagonistic activity. As an answer, the missing link 13 was synthesized. The latter showed 

a 2-fold improved antagonistic activity (10 IC50 = 0.019±0.001 µM vs. 13 IC50 = 0.008±0.003 

µM) leading to the conclusion that the amino group is an accessory feature to enhance the 

physicochemical properties but not fundamental for activity when combined with the R2 tail. 

In contrary, the positioning of the pyridine nitrogen is more determining. The attachment of the 

linker in 4-position of the pyridine is clearly favored (11 IC50 = 0.086±0.05 µM vs. 13 IC50 = 

0.008±0.003 µM). 
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Table 1. Biological and physico-chemical properties of PqsR antagonists. 

 

# Structure 

Antagonistic 

Activity 

IC50 [µM]a 

Pyocyanin 

Inhibition 

IC50 [µM]b 

HHQ 

Inhibition 

[µM]c 

Solubility 

[µM]d 

clogD 

pH 7.4e 

LLE 

(Astex)f 

3 
(M64) 

 

0.005±0.001 0.12±0.01 0.22 25 4.7 0.29 

7 

 

0.426±0.10 12 ± 0.7 42±1 

@ 50 µM 

100 3.7 0.27 

8 

 

0.176±0.10 4.8 ± 0.3 30±8 

@ 50 µM 

50 3.7 0.30 

9 

 

0.233±0.02 8.3± 4.6 40±2 

@ 50 µM 

100 3.0 0.33 

10 

 

0.019 ± 

0.001 

0.276 ± 

0.016 

0.52 

±0.05 

25 4.4 0.28 

11 

 

0.086 ± 0.05 0.822 ± 

0.30 

44±3 

@ 5 µM 

12.5 4.5 0.24 

12 

 

0.007 ± 

0.004 

0.384 ± 

0.134 

2.29±0.1 50 3.0 0.36 

13 

 

0.008 ± 

0.003 

0.339±0.02 0.54±0.05 12.5 4.3 0.30 

 aevaluated in an E. coli reporter gene assay in the presence of 50 nM PQS; IC50 represents the 
concentration of the half maximal antagonistic activity. bmeasured photometrically after 
extraction from PA14 cultures; IC50 represents the concentration of 50% inhibition. cmeasured 
by UPLC-MS from PA14pqsH cultures and referenced against DMSO control. ddetermined in 
PPGAS medium at 1% DMSO by visual inspection ecalculated using ACD/Percepta 2015. 
fligand lipophilicity efficiency36 determined from antagonistic activity, heavy atom count and 
clogD.  
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It was of major interest to quantify the effect of the top candidates 10 and 12 on the 2-amino-

acetophenone (2-AA) in PA14 wt. 2-AA is a shunt product of the AHQ biosynthesis process37 

and promotes chronic infection phenotypes38 as well as accumulation of persister cells39 in 

P. aeruginosa. Compound 10 showed potent inhibition of 2-AA production (IC50 = 1.2 ± 0.2 

µM) whereas the effect of compound 12 leveled out at around 50% (Figure 4). Remarkably, 

both compounds showed comparable effects regarding pyocyanin inhibition (Figure 4) and 

antagonistic activity in the reporter gene assay (Table 1). A similar scenario was observed for 

the inhibition of HHQ production (10 IC50 = 0.54±0.05 vs. 12 IC50 = 2.29±0.1). These data 

emphasizes that small changes (pyridine to pyrimidine) within a molecule can drastically 

influence the efficacy of the antagonists to inhibit the AHQ biosynthesis and virulence 

expression (pyocyanin).  

 

 
Figure 4. Dose-response curves for the inhibition of pyocyanin and 2-AA in PA14 wt for 
compound 10 (A, upper row) and 12 (B, lower row). Given data represent the mean of at least 
two independent experiments with n=3. Non linear regression analysis (continuous black line) 
was applied to determine IC50 values using a four variables model with constrains (bottom = 0 
and top = 100 % except for the effect of 12 on 2-AA) included in Graph Pad Prism (5.04).  

Compounds containing an amino-pyridine and -pyrimidine scaffold are frequently reported as 

inhibitors of different kinases.40,41 Therefore, we analyzed selected compounds for potential 

cytotoxic effects on eukaryotic HEK293 cells (SI Table S1). None of the tested compounds 

affected cell viability except for compound 7 but only at a significantly higher concentration 

than the measured effect on pyocyanin. Additionally, the scaffolds were subjected to an in silico 

toxicology prediction42 using the Derek Nexus database. This screening displayed no alerts 

concerning the amino-pyridine and -pyrimidine headgroups.  
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Overall, compound 12 showed the best combination of nanomolar antagonistic activity, potent 

pyocyanin inhibition and remarkable physicochemical properties, which is reflected by a 

strikingly better LLE value compared to the benchmark compound 3.  

Effects on static biofilms and lecB expression in P. aeruginosa 

Compound 12 was selected for further evaluation in a static biofilm assay. The bacteria growing 

in sessile biofilm phenotype are prevalently found in most chronic infections caused by P. 

aeruginosa.25 Biofilms are bacterial communities embedded in a self-produced polymeric 

matrix attached to a surface.43 The structural components of this matrix are mainly 

polysaccharides, proteins and DNA.44 The establishment of a biofilm is a complex regulatory 

process, which necessitates close coordination by the involved regulatory systems. The pqs QS 

system clearly affects P. aeruginosa biofilm formation19 regulatory mechanisms by triggering 

the release of eDNA22 and lectinA/B expression.23 Besides its function as cell-connecting 

component during biofilm development,45 eDNA protects sessile bacteria from host immune 

response and antibacterial treatment by the complexation of cationic peptides and xenobiotics.46 

LectinA/B are carbohydrate-binding proteins which plays an important role for surface 

attachment and stability of P. aeruginosa biofilms.23,47 The effect of PqsR antagonists on P. 

aeruginosa biofilms was first reported by Ilangovan et al.28 However, the doses employed for 

these experiments have not been reported. Hence, we sought to investigate the biofilm effects 

of our antagonist in more detail. PA14 static biofilms were grown in the presence of 5 µM of 

the antagonist 12 for 24 h. We evaluated total biofilm volume (biomass) as well as the pqs-

dependent biofilm component eDNA (Figure 4A). While the PqsR antagonist 12 displayed only 

minor effects on the whole biovolume, it completely inhibited the accumulation of eDNA. This 

observation is in line with our results for the pqsR negative mutant. Moreover, compounds 10 

and 12 showed potent inhibition of lectinB in P. aeruginosa (Figure 4B). Notably, these 

experiments were performed in planktonic PAO1 cultures due to experimental feasibility and 

the specificity of the used antibody. 
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Figure 4. (A) Effects of compound 12 on PA14 static biofilms. While only a low effect was 
observed on total biofilm volume, compound 12 was able to drastically reduce eDNA 
accumulation to levels comparable with the pqsR- mutant strain. Error bars represent standard 
error of at least two independent experiments.**** = p < 0.0001. (B) Western blot analysis of 
LecB eexpression in P. aeruginosa PAO1. Total cell (TC) fractions were analyzed by 
immunoblotting using anti-LecB serum. Cultures were grown for 24 h in absence or presence 
of compound 10 or 12 (5 µM or 25 µM).  

CONCLUSION 

Growing in a biofilm mode is the native form of bacterial lifestyle.48 This lifestyle allows 

bacteria to colonize different niches and protects the single organism against severe external 

conditions.43,48 These insights altered the perspective on our bacterial opponent - from 

planktonic unicellular organisms to highly organized sessile communities. Nevertheless, 

learning, how these communities are organized, enables the development of alternative 

treatment strategies for the post antibiotic era.49 In this study, we describe the development of 

improved lead compounds interfering with P. aeruginosa cell-to-cell communication with the 

aim to contribute to the development pipeline towards novel, innovative antimicrobials. Based 

on cocrystal structures and in silico methods, we developed a plausible binding-pose for the 

HTS hit 2.29 An overlay with the cocrystal-structure of in-house fragment derived antagonist 

432 showed that both scaffolds partially overlap in the quinolone binding pocket of PqsR. This 

finding raised the idea to merge the trifluoro-pyridine headgroup with the benzamido-

benzimdazole scaffold (2 and 3). This strategy resulted in the straightforward development of 

hybrid PqsR antagonists resulting in potent pyocyanin and HHQ inhibition in P. aeruginosa 

while keeping superior physicochemical properties. In doing so, the potentially problematic 

nitro moiety at the benzimidazole core was exchanged by a more drug-like trifluoromethyl 
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group. Subsequently, these compounds were profiled for their effects on PA14 static biofilms. 

For some of the described biofilm inhibiting compounds the exact mode of action is poorly 

understood or their effect might be mediated through a direct physicochemical interaction with 

the biofilm matrix.50 In contrast, the effects of our PqsR antagonist were in accordance with the 

biofilm profile generated by a pqsR mutant strain: the overall biovolume was only slightly 

affected but the pqs-mediated release of eDNA was completely abolished. To what extent the 

reduction of eDNA affects the biofilm structure and permeability will be addressed in future 

experiments.  

Taken together, in this approach we successfully combined the best features of two apparently 

mutual worlds – phenotypic HTS and fragment screening – in order to push the development 

of antivirulence agents against severe P. aeruginosa infections. 

EXPERIMENTAL SECTION 

In silico studies (ME). The structure of the PqsR:1 complex was modelled based on a solved 

X-ray structure of HHQ bound to its receptor (unpublished results). The original coordinates 

were loaded into Molecular Operating Environment (MOE 2014, Chemical Computing Group) 

and the additional carboxamide and nitro substituents were attached to the ligand using the 

“Builder” function. Then the resulting complex structure was energy minimized using the 

standard LigX parameters together with the AMBER10:EHT forcefield to yield the model of 

compound 1 in complex with PqsR. 

The structure of the PqsR:2 complex was generated through a pharmacophore-guided docking. 

To this end, a two-feature pharmacophore model comprising an aromatic cycle and an electron-

withdrawing group, which were placed inside the quinolone pocket of PqsR. A solved X-ray 

structure of bound antagonist 4 was used as template (unpublished results). Then, the built-in 

“induced-fit” docking protocol was applied using the described pharmacophore as placement 

constraint, AMBER10:EHT force field, and standard parameters. The two highest scoring 

docking poses of compound 2 were additionally energy minimized to yield the complex 

structures depicted in Figure 2. 

Reporter Gene Assay in E. coli. The ability of the compounds to either stimulate or antagonize 

the PqsR-dependent transcription was analysed as previously described26 using a β-

galactosidase reporter gene assay in E. coli51 expressing PqsR. 

Pyocyanin Assay. Pyocyanin produced by P. aeruginosa PA14 was determined as reported 

previously26 according to the method of Essar et al.52 
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Isothermal titration calorimetry ITC titrations were carried out as previously reported.30,31 

Determination of Extracellular HHQ and 2-AA. Extracellular levels of HHQ from PA14 

pqsH cultures were determined as previously reported27,53 according to the methods of Lépine 

et al.54 For the quantification of 2-AA PA14 wt was used following the same protocol as for 

HHQ quantification whether a slightly modified sample work-up was performed. Briefly, 750 

µL of culture was diluted with the same volume of 1 µM d4HHQ in acetonitrile, shaken for 5 

min at 1,500 rpm, and centrifuged at 14,000 rpm for 10 min. Afterwards 1 mL of supernatant 

of each sample was transferred in a vial for analysis by HPLC-MS/MS. Calibration curve of 2-

AA was prepared according to the same procedure using PA14 pqsA mutant as biomatrix. 

Biofilm assay in PA14 For the determination of biofilm components in PA14 static biofilms, 

we followed reported procedures with a few modifications.22,55 Briefly, cultures of PA14 (or 

PA14pqsR) were grown in M63 medium in 96 well plates (Greiner, clear flat bottom) for 24 h 

at 37°C in the presence of test compound added as DMSO stock solution or DMSO as control 

to give 1% (v/v) final DMSO concentration. After washing the matured biofilm with PBS and 

water, biofilm components were stained either with crystal violet (0.1 mg/ml dissolved in 

water/ethanol 95/5 (v/v)) for the whole biomass or with propidium iodine solution (0.05 mg/ml 

dissolved in water). For quantification of the whole biomass absorbance was measured at 590 

nm and for eDNA florescence at 620 nm using FLUOstar Omega (BMG Labtech). Given values 

represent the mean of at least two independent experiments with n=5. Differences in between 

treated and untreated samples were evaluated using a one way ANOVA followed by a two-

sided Holm-Sidak’s multiple comparison test using GraphPad Prism version 6.0f for Mac OS 

X, GraphPad Software. Differences were considered significant at a p-value < 0.05. 

LectinB expression P. aeruginosa PAO1 cultures were grown in LB medium at 37 °C. 

Compounds were dissolved in DMSO. Compound 10 or 12 was added to 2.5 mL LB and the 

DMSO concentrations were adjusted to keep the same concentrations in all samples. Overnight 

cultures were used to inoculate fresh LB medium to an OD600 of 0.02 and 2.5 mL of this 

bacterial culture was added to the 2.5 mL LB samples containing compound 10 or 12 or only 

DMSO. The final cultures had an starting OD600 of 0.01 and final compound concentration of 

5 µM or 25 µM. Bacterial cultures were incubated at 37 °C (200 rpm) for 24 h. Bacteria were 

harvested by centrifugation at 21380 rcf for 10 minutes. The supernatant was discarded and 

pellets were resuspended in SDS loading buffer (50 mM Tris-HCl pH 6.8, 10% (v/v) glycerol, 

2% (v/v) SDS, 100 mM DTT, bromphenolblue) and denatured by heating (98 °C, 5 min). Total 

cell extracts were analyzed by 15% SDS–PAGE and Coomassie staining (SI Figure S3) or 
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immune blotting. In each case, total cell extracts of approximately 2x108 bacteria were loaded 

per lane. For detection of LecB in total cells, proteins were transferred onto a nitrocellulose 

membrane (Amersham; GE Healthcare). After blocking the membrane (5% milk in PBST (137 

mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 and 0.2% Tween)) 

immunodetection was carried out using rabbit antiserum against LecB (1:500 in 5% milk in 

PBST). Detection was performed using the goat anti-rabbit secondary antibody conjugated to 

horseradish peroxidase (1:5000 in 5% milk in PBST; Dianova), before development with 

chemiluminescent substrate (100 mM Tris-HCl pH 8.5, 0.009% H2O2, 1.25 mM luminol, 225 

µM coumaric acid) and detection with a Fusion imager (Vilber Lourmat). 

Chemical and Analytical Methods. 1H and 13C NMR spectra were recorded as indicated on a 

Bruker DRX-500 instrument or a Bruker Fourier 300 instrument. Chemical shifts are given in 

parts per million (ppm), and referenced against the residual solvent peak. Coupling constants 

(J) are given in hertz. Mass spectrometry and purity determination (LC/MS) was performed 

either on a SpectraSystems-MSQ LCMS system (Thermo Fisher Scientific) consisting of a 

pump, an autosampler, VWD detector or on Waters LCMS-System consisting of a 767 sample 

Manager, a 2545 binary gradient pump, a 2998 PDA detector and a 3100 electron spray mass 

spectrometer. All solvents were HPLC grade. The purity of tested final products was > 95%. 

Procedures were not optimized regarding yield. Microwave assisted synthesis was carried out 

in a Discover microwave synthesis system (CEM). Column chromatography was performed 

using the automated flash chromatography system Combiflash Rf+ (Teledyne Isco) equipped 

with RediSepRf silica columns. Final products were dried in high vacuum.  

General Procedure A: N-phenyl-2-mercaptoacetamide precursors 

Aniline (1 eq) was filled into a crimp vial (Biotage®). The vial was evacuated and backfilled 

with argon (3 times). 2-mercaptoacetic acid (1 eq) was added (neat reaction) and the vial flushed 

with argon (5 min). The reaction mixture was heated to 130°C in a metal block for 1.5 h. The 

mixture was allowed to cool to RT. The resulting solid was suspended in isopropanol and 

filtered. The resulting white cake was washed with IPA to give the titled product. 

General Procedure B: Hybrid compounds  

Heteroaryl halide (0.35 mmol) and K2CO3 (1.05 mmol) was suspended in DMF (1 ml) using a 

crimp vial (Biotage®). The vial was purged with argon. A solution of N-phenyl-2-

mercaptoacetamide (0.38 mmol) in 1 ml DMF was added while cooling in an ice-bath. The 

mixture was again purged with argon. The reaction was aged at RT for 6 h. The mixture was 

poured into water and extracted with ethylacetate (3 times). The combined organics were 
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washed with Na2CO3 saturated solution and brine. The organic extract was dried over Na2SO4, 

filtered and dried. Purification was done by automated flash chromatography or preparative 

HPLC. 

2-((2-amino-6-(trifluoromethyl)pyridin-4-yl)thio)-N-(4-chlorophenyl)acetamide (7) was 

synthesized according to general procedure B from 4-iodo-6-(trifluoromethyl)pyridin-2-amine 

(100 mg, 0.347 mmol and N-(4-chlorophenyl)-2-mercaptoacetamide (77 mg, 0.382 mmol). The 

crude product was purified by automated flash chromatography using a gradient of petroleum 

ether to pure ether. Further purification by prep HPLC afforded the titled product as white solid 

(24 mg, 0.066 mmol, 19 % yield). 1H NMR (300 MHz, DMSO-d6) d  ppm 3.99 (s, 2 H), 6.56 

(s, 3 H), 6.89 (d, J=1.3 Hz, 1 H), 7.23 - 7.45 (m, 1 H), 7.52 - 7.68 (m, 2 H), 10.44 (s, 1 H); 13C 

NMR (75 MHz, DMSO-d6) d ppm 35.12, 105.53 (q, 3J(C,F)=2.2 Hz, 1 C), 106.79, 125.21 (q, 
1J(C,F)=275.0 Hz, 1 C), 120.77 (2 C), 127.19, 128.71 (2 C), 137.62, 145.00 (q, 2J(C,F)=32.8 

Hz, 1 C), 149.43, 159.75, 166.06; MS (ESI +) m/z 362 (M+H)+, 403 (M+ACN+H)+. 

N-(4-chlorophenyl)-2-((6-(trifluoromethyl)pyridin-2-yl)thio)acetamide (8) was 

synthesized according to general procedure B from 2-bromo-6-(trifluoromethyl)pyridine (226 

mg, 1,000 mmol) and N-(4-chlorophenyl)-2-mercaptoacetamide (212 mg, 1.050 mmol). The 

mixture was stirred for 1 h at -78 °C and than at 0°C for 1h. Purification was done by automated 

flash chromatography using a gradient of petroleum ether and ethylacetate. The crude product 

was titurated with DCM/pentane and filtered to give the titled product as a white solid (65 mg, 

0.19 mmol, 18 % yield). 1H NMR (500 MHz, DMSO-d6) d ppm 4.11 (s, 2 H), 7.30 - 7.39 (m, 

2 H), 7.53 - 7.64 (m, 3 H), 7.70 (d, J=7.9 Hz, 1 H), 7.92 (t, J=6.9 Hz, 1 H), 10.40 (s, 1 H); 13C 

NMR (126 MHz, DMSO-d6) d ppm 34.73, 116.59, 121.23 (q 1J(C,F)=272.0 Hz, 1 C), 120.66 

(s, 2 C), 125.17, 126.86, 128.58 (s, 2 C), 137.92, 138.38, 146.10 (q, 2J(C,F)=32.0 Hz, 1 C), 

159.57, 166.10; MS (ESI +) m/z not found. 

2-((6-amino-2-(trifluoromethyl)pyrimidin-4-yl)thio)-N-(4-chlorophenyl)acetamide (9) 

was synthesized according to general procedure B from 6-chloro-2-(trifluoromethyl)pyrimidin-

4-amine (100 mg, 0.51 mmol) and N-(4-chlorophenyl)-2-mercaptoacetamide (102 mg, 0.51 

mmol). Purification was done by automated flash chromatography using a gradient petroleum 

ether and ethylacetate (9/1 to 1/1) to give the titled compound as light yellow solid (45 mg, 

0,124 mmol, 24% yield). 1H NMR (500 MHz, DMSO-d6) d ppm 4.03 (s, 2 H), 6.50 (s, 1 H), 

7.27 - 7.42 (m, 2 H), 7.49 (br. s., 2 H), 7.53 - 7.67 (m, 2 H), 10.40 (s, 1 H); 13C NMR (126 

MHz, DMSO-d6) d ppm 34.22, 100.99, 119.42 (q, 1J(C,F)=275.8 Hz, 1 C), 120.73 (2 C), 
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127.00, 128.70 (2 C), 137.89, 154.52 (q, 2J(C,F)=33.0 Hz, 1 C), 163.27, 166.06, 166.62; 

MS(ESI+) m/z 363 (M+H)+. 

2-((2-amino-6-(trifluoromethyl)pyridin-4-yl)thio)-N-(4-phenoxyphenyl)acetamide (10) 

was synthesized according to general procedure B from 4-iodo-6-(trifluoromethyl)pyridin-2-

amine (100 mg, 0.35 mmol) and 2-mercapto-N-(4-phenoxyphenyl)acetamide (99 mg, 0.38 

mmol). Purification was done by automated flash chromatography using a gradient of 

petroleum ether and diethyl ether (1/1 to 2/8). Further purification by prep HPLC to give 2-((2-

amino-6-(trifluoromethyl)pyridin-4-yl)thio)-N-(4-phenoxyphenyl)acetamide (20 mg, 0.05 

mmol, 14 % yield) as white solid. 1H NMR (300 MHz, CHLOROFORM-d) d ppm 3.83 (s, 2 

H), 4.76 (s, 2 H), 6.44 (d, J=0.8 Hz, 1 H), 6.91 (d, J=1.4 Hz, 1 H), 6.95 - 7.05 (m, 4 H), 7.07 - 

7.14 (m, 1 H), 7.29 - 7.37 (m, 2 H), 7.39 - 7.47 (m, 2 H), 8.22 (s, 1 H); 13C NMR (75 MHz, 

DMSO-d6) d ppm 35.08, 105.56 (q, 1J(C,F)=3.0 Hz, 1 C), 106.80, 117.93 (2 C), 119.43 (2 C), 

121.61 (d, 1J(C,F)=274.0 Hz, 1 C), 120.95 (2 C), 123.03, 129.95 (2 C), 134.55, 145.03 (q, 
2J(C,F)=32.0 Hz, 1 C), 149.55, 152.08, 157.22, 159.77, 165.71; MS(ESI+) m/z 420 (M+H)+, 

461 (M+ACN+H)+. 

N-(4-phenoxyphenyl)-2-((6-(trifluoromethyl)pyridin-2-yl)thio)acetamide (11) was 

synthesized according to general procedure B from 2-bromo-6-(trifluoromethyl)pyridine (100 

mg, 0.44 mmol) and 2-mercapto-N-(4-phenoxyphenyl)acetamide (115 mg, 0.44 mmol) e 

mixture was poured into water solution and extracted using EA. Combined organics were 

washed with brine, dried (Na2SO4), filtered and concentrated. Purification was done by 

automated flash chromatography using a gradient of petroleum ether and ethylacetate (9/1 to 

pure ethylacetate) to give the titled product as off white solid (135 mg, 0.334 mmol, 75 % yield). 
1H NMR (500 MHz, DMSO-d6) d ppm 4.12 (s, 2 H), 6.88 - 7.03 (m, 4 H), 7.09 (t, J=7.4 Hz, 1 

H), 7.31 - 7.41 (m, 2 H), 7.57 (d, J=8.8 Hz, 2 H), 7.60 (d, J=7.6 Hz, 1 H), 7.71 (d, J=8.2 Hz, 1 

H), 7.92 (t, J=7.9 Hz, 1 H), 10.32 (s, 1 H); 13C NMR (126 MHz, DMSO-d6) d ppm 34.66, 

116.58 (q, 1J(C,F)=2.8 Hz, 1 C), 117.85 (2 C), 121.27 (q, 1J(C,F)=274.9 Hz, 1 C), 119.37 (2 

C), 120.85 (2 C), 122.95, 125.16, 129.92 (2 C), 134.83, 138.39, 146.10 (q, 2J(C,F)=33.9 Hz, 1 

C), 151.79, 157.27, 159.70, 165.72; MS(ESI+) m/z 427 (M+Na)+. 

2-((6-amino-2-(trifluoromethyl)pyrimidin-4-yl)thio)-N-(4-phenoxyphenyl)acetamide (12) 

was synthesized according to general procedure B from 6-chloro-2-(trifluoromethyl)pyrimidin-

4-amine (200 mg, 1.012 mmol) and 2-mercapto-N-(4-phenoxyphenyl)acetamide (263 mg, 

1.012 mmol). Purification was done by automated flash chromatography using a gradient of 

petroleum ether and ethylacetate (9/1 to pure ethylacetate) to give the titled product as white 
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solid (45 mg, 0.107 mmol, 11 % yield).1H NMR (500 MHz, DMSO-d6) d ppm 4.03 (s, 2 H), 

6.51 (s, 1 H), 6.89 - 7.04 (m, 4 H), 7.10 (t, J=7.4 Hz, 1 H), 7.30 - 7.40 (m, 2 H), 7.50 (br. s., 2 

H), 7.55 - 7.62 (m, 2 H), 10.30 (s, 1 H); 13C NMR (126 MHz, DMSO-d6) d ppm 34.09, 100.91, 

119.35 (q, 1J(C,F) =275.8 Hz, 1 C), 117.86 (2 C), 119.40 (2 C), 120.87 (2 C), 122.97, 129.93 

(2 C), 134.73, 151.87, 154.46 (q, 2J(C,F)=34.8 Hz, 1 C), 157.24, 163.24, 165.61, 166.71. 

MS(ESI+) m/z 421 (M+H)+. 

N-(4-phenoxyphenyl)-2-((2-(trifluoromethyl)pyridin-4-yl)thio)acetamide (13) was 

synthesized according to general procedure B from 4-bromo-2-(trifluoromethyl)pyridine (200 

mg, 0.885 mmol) and 2-mercapto-N-(4-phenoxyphenyl)acetamide (229 mg, 0.885 mmol). 

Purification was done by automated flash chromatography using a gradient of petroleum ether 

and ethylacetate (petroleum ether pure to 8/2) to give the titled product as white solid (210 mg, 

0.519 mmol, 59% yield). 1H NMR (500 MHz, DMSO-d6) d ppm 4.14 (s, 2 H), 6.90 - 7.04 (m, 

4 H), 7.05 - 7.19 (m, 1 H), 7.30 - 7.42 (m, 2 H), 7.50 - 7.61 (m, 2 H), 7.66 (dd, J=5.4, 1.6 Hz, 1 

H), 7.88 (d, J=1.6 Hz, 1 H), 8.56 (d, J=5.4 Hz, 1 H), 10.40 (s, 1 H); 13C NMR (126 MHz, 

DMSO-d6) d ppm 34.85, 117.26 (d, 3J(C,F)=2.7 Hz, 1 C), 117.96 (2 C), 121.49 (q, 
1J(C,F)=274.0 Hz, 1 C), 119.45 (2 C), 120.95 (2 C), 123.06, 123.49, 129.95 (2 C), 134.44, 

146.37 (q, 2J(C,F)=33.0 Hz, 1 C), 149.47, 151.35, 152.14, 157.18, 165.59; MS(ESI+) m/z 405 

(M+H)+.  
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8.3 Chapter 3 – CYP17A1-independent Production of the Neurosteroid-

derived 5a-pregnan-3b,6a-diol-20-one in Androgen-responsive Prostate 

Cancer Cell Lines under Serum Starvation and Inhibition by Abiraterone 
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3. Antoine Abou Fayad: NMR measurements and structure elucidation. 
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INTRODUCTION 

With an estimated 220.800 newly diagnosed cases and 27.540 deaths in 2015, prostate cancer 

(PC) is the leading cause of cancer and the second leading cause of cancer-related deaths in the 

United States (1). Currently, numbers of patients with metastatic prostate cancer are increasing 

(2), leading to even higher death rates in the upcoming years.  

A central player in the development and progression of prostate cancer is the androgen receptor 

(AR), a ligand-responsive transcription factor responsible for the expression of a plethora of 

cancer-related genes (3,4). Patients initially benefit from androgen deprivation therapy (ADT), 

however, ultimately develop castration-resistant prostate cancer (CRPC) accounting for 

persistently high mortality rates (5). Potential mechanisms underlying CRPC have been 

postulated and include clonal selection (6), adaptive up-regulation of antiapoptotic and survival 

gene networks (7–9), cytoprotective chaperones (10,11), and alternative mitogenic pathways 

(12–15), ultimately reactivating androgen-regulated processes and sustaining AR signaling 

(5,16,17). 

The potent androgen dihydrotestosterone (DHT) is the primary ligand-activator of the AR and 

can still be detected in CRPC at sufficient levels for receptor activation (18–20). Classical 

pathways for the formation of late androgens (testosterone and DHT), irrespective of the 

production site, depend on the stepwise modification of steroid precursor pregnenolone by a 

complex enzymatic machinery (21) (Figure 1, grey arrows). The dual-function CYP17A1 

enzyme is pivotal in the biosynthesis of active steroids and, most importantly, androgens (22). 

This fact explains the successful application of abiraterone (Abi), administered as the pro-drug 

Abi Acetate (AA), which is a potent irreversible inhibitor of CYP17A1 that binds to its catalytic 

site (23–26). 

Despite initial response, substantial evidence has emerged in which persistent androgen 

signaling occurs despite AA treatment (27,28), and most tumors become refractory to treatment 

within 6-12 months (29). A more thorough understanding of the mechanisms involved in and 

the elucidation of the pathways leading to CRPC and resistance to Abi is paramount to improve 

outcomes for patients. Increase in intratumoral androgen concentrations, AR overexpression, 

and mutations leading to ligand promiscuity and/or independence, as well as modifications in 

co-factors that modulate AR function are possible explanations for this phenomenon (30). 

However, AR-related events are not the sole resistance mechanisms found in advanced PC. 

Increasingly evident are the roles played by prostate cancer cells’ epithelial plasticity in 

developing a neuroendocrine phenotype (31–34), particularly under androgen-deprived 

conditions including patients resistant to Abi (35). 
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Figure 1. Schematic representation of steroidogenic biosynthesis leading to the production of 
corticosteroids and androgens. In the classical androgen production pathway (grey arrows), 
cholesterol is converted to C21 precursors pregnenolone and progesterone by CYP11A1. 
Progestagens are then converted to C19 adrenal androgens by the activity of CYP17A1-
hydroxylase and -lyase functions. DHEA is acted on by 3β-HSD or 17β-HSD, eventually 
leading to testosterone and DHT production. DHT formation can also occur in an alternative 
(5α-dione) pathway from androstenedione (shaded area). Under starvation conditions in 
androgen-responsive prostate carcinoma cell lines, pregnenolone metabolism leads 
preferentially to the production of 5a-pregnan-3b,6a-diol-20-one through the sequential 
activities of 3β-HSD, SRD5A, 3-keto reductase and 6α-hydroxylase enzymes (grey 
arrowheads, dashed area). The addition of the CYP17A1 inhibitor Abi (dotted lines), halts 
pregnenolone metabolism and leads to DHEA surge and accumulation in a CYP17A1-
independent pathway, likely due to the multiple enzymatic inhibition activities of Abi-derived 
metabolite, D4A. A mechanism for DHEA formation in these conditions resembles the 
proposed, hypothetical mechanism in nervous tissue without CYP17A1 activity (hatched 
arrowheads). HSD: hydroxysteroid dehydrogenase; CYP: Cytochrome P450; HST: 
hydroxysteroid sulfotransferase; HSS: hydroxysteroid sulfate sulfatase; SRD5A: 5α-reductase; 
AKR: aldo-keto reductase; CNS: central nervous system. 

The aim of our study was to evaluate the steroid metabolism of prostate carcinoma cell lines 

under serum starvation. Furthermore, we aimed at assessing the effects of inhibitors like Abi 

on the steroid metabolic pathways in these cells. 
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MATERIALS AND METHODS 

Chemicals 

Radiometric standards used include [1,2-3H]-11-deoxycortisol 40.0 Ci mmol-1, [1,2-3H]-

deoxycorticosterone (DOC) 60.0 Ci mmol-1, [1,2,6,7-3H]-testosterone (T) 110.0 Ci mmol-1 

(American Radiolabeled Chemicals, Inc., St. Louis, MO); [11,2,6,7-3H(N)]-progesterone 

99.1 Ci mmol-1, [2,4,6,7-3H(N)]-estradiol 81.0 Ci mmol-1, [2,4,6,7-3H(N)]-estrone 

73.1 Ci mmol-1, [1β-3H(N)]-androst-4-ene-3,17-dione 24.0 Ci mmol-1, [1,2,6,7-3H(N)]-

corticosterone 76.5 Ci mmol-1, [4-14C]-dihydrotestosterone (DHT) 0.05 Ci mmol-1, [1,2-
3H(N)]-cholesterol 40-60 Ci mmol-1, and [7-3H(N)]-pregnenolone 25.0 Ci mmol-1 (PerkinElmer 

Life Sciences, Inc., Wellesley, MA). Enzyme inhibitors included CYP inhibitor Abi (3β-17-(3-

pyridinyl)-androsta-5,16-dien-3-ol) (Chem-Impex International, Inc., Wood Dale, IL), 

tetradeuterated Abi (d4-Abi; 3β-17-(2,4,5,6-tetradeuteriopyridin-3-yl)-androsta-5,16-dien-3-ol) 

(AlsaChim, Illkirch-Graffenstaden, France), and steroid sulfatase inhibitor STX64 (6-oxo-

6,7,8,9,10,11-hexahydrocyclohepta(c)chromen-3-yl sulfamate) (Sigma-Aldrich, St. Louis, 

MO). Non-radioactive steroids pregnenolone, pregnenolone-20,21-13C2-16,16-d2, and 

allopregnanolone were purchased from Sigma-Aldrich. Stock solutions of these standards were 

prepared with analytical grade reagents as follows, 45:55 acetonitrile (ACN):H2O solution for 

chromatographic experiments, methanol for mass spectrometry, and ethanol for in vitro 

incubation. 

Cell lines and culture conditions 

Prostate carcinoma cell lines: A subset of PC cell lines was used to encompass different cancer 

phenotypes: LNCaP, C4.2, VCaP and PC3. The cell lines VCaP, and C4.2 were kindly provided 

by Paul Thelen (Department of Urology, Georg-August-University Göttingen, Germany) and 

Amino Zoubeidi (The Vancouver Prostate Centre, University of British Columbia, Vancouver, 

BC, Canada). LNCaP and PC3 cells were purchased from DSMZ (Braunschweig, Germany). 

The cell lines LNCaP and C4.2 were authenticated in January 2015 by IGD Saar GmbH using 

STR-analysis (PowerPlexTM16) on the ABI PRISM TM 310 Genetic Analyzer (Applied 

Biosystems). Mycoplasma contamination was assessed regularly by standard PCR. 

LNCaP and C4.2 cell lines were cultured in Roswell Park Memorial Institute (RPMI) 1640 

standard medium (Sigma-Aldrich) supplemented with 10% fetal calf serum (FCS) (Sigma-

Aldrich). PC3 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

(Sigma-Aldrich) supplemented with 10% FCS and 1% non-essential amino acids (Sigma-

Aldrich). VCaP cells were cultured in DMEM medium without phenol red (Gibco | Thermo 
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Fisher Scientific, Waltham, MA), added of 10% FCS, 2% pyruvate Na and 1% L-Glutamine 

(Sigma-Aldrich). Cells were routinely grown at 37 oC under 5% CO2 atmosphere in 150 mm 

tissue culture dishes (Sarstedt, Nümbrecht, Germany) containing 20 mL of media. For sub-

culturing, attached cells were washed twice with PBS, detached with a trypsin-EDTA solution 

(0.05%/0.02%, v/v in PBS), and re-seeded at ratios of 1:4 for LNCaP and C4.2, 1:6 for PC3 

cells, and 1:2 for VCaP. 

Metabolic conversion and steroid identification 

In our initial radiometric- and immunoassay-based analyses, we did not observe any significant 

differences in steroid levels between cell-free supernatant and cell lysate samples. Therefore, 

our total steroid measurements are representative of culture’s supernatant. For standard 

radioactivity detector-coupled high-pressure liquid chromatography (radio-HPLC) and enzyme 

immunoassay (EIA) experiments, PC cells were seeded in Cell+ 24-well plates (Sarstedt) with 

0.5 mL cell suspension containing 1.5 × 106, 1.0 × 106 and 2.5 × 106 cells per well 

(LNCaP/C4.2, PC3, and VCaP, respectively). After 24 h, the full medium was exchanged for 

serum-free steroid deprived media and cells were kept under these starvation conditions for an 

additional 96 h. Finally, cells were exposed to biologically relevant levels of pregnenolone 

(10 nM) and progesterone (3 nM) (36), or supraphysiological levels of allopregnanolone (500 

nM) (37), with or without Abi and STX64 inhibitors for 48 h. Radioactive steroid precursors 

[7-3H(N)]-pregnenolone or [11,2,6,7-3H(N)]-progesterone were added for metabolic pathway 

analysis with radio-HPLC. Non-radioactive precursor pregnenolone was used in immunoassays 

for total supernatant concentrations of late androgens. 

When scaling up cell cultures for metabolite identification, treated and untreated samples were 

cultivated in 500 cm2 Cell Culture Treated TripleFlasks™ (Thermo Fisher Scientific) with 200 

mL media per flask. Steroid extraction and sample concentration were performed in serial 

extraction steps with analytical grade ethyl acetate (EtOAc) (Sigma-Aldrich) and subjected to 

identical HPLC separation and fraction collection routines before HPLC-ESI-ToF-MS analysis. 

Steroid extraction 

Supernatants were extracted twice with EtOAc (1:1, v/v) and the organic layers were evaporated 

using a Centrivap™ centrifugal evaporation system (Thermo Fisher Scientific) at 35 °C. 

Samples were then reconstituted in 60 µL of 45:55 ACN:H2O for radioactively-labelled HPLC 

experiments, 50 µL methanol for HPLC-ESI-ToF-MS, 250 µL deuterated chloroform (CDCl3) 

for NMR analysis, and 200 µL of assay buffer for EIAs. 

HPLC separation and detection of steroids 
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Radiometric detection of radiolabeled compounds: HPLC radiometric detection was performed 

with an Agilent Technologies 1200 Series separation module coupled with a Ramona Star 

Detector (Raytest, Straubenhardt, Germany) equipped with a 0.5 mL flow cell. A Macherey-

Nagel (Düren, Germany) Nucleodur 100-5 C18ec column (125×3 mm, 5 µm), equilibrated with 

37.5:62.5 ACN:H2O and ramped linearly to 61:39 ACN:H2O within 50 min, was used to 

separate radiolabeled standards, before re-equilibration under the initial conditions was 

triggered. All solvents were HPLC grade with 0.1% of trifluoroacetic acid (TFA). Flow rate 

during liquid chromatography was fixed at 0.5 mL min-1, while Quickszint Flow 302 

scintillation fluid (Zinsser Analytic, Frankfurt, Germany) was added before the scintillation cell 

with a flow rate of 0.9 mL min-1. 

Separation and fractionation of non-labeled metabolite: HPLC was performed with the same 

devices, flow rate, and solvent system as described above. However, an improved separation 

method was achieved when equilibrating the column to 75:25 H2O:ACN and applying a linear 

gradient to 65:35 H2O:ACN within 60 min before a 5 min wash step with 100% ACN and 

returning to the initial conditions. Chromatograms obtained from radiolabeled standards were 

used as means of comparison of their retention times with that of the [7-3H(N)]-pregnenolone-

derived metabolites on the same chromatographic method. The improved protocol was used to 

collect the fractions of untreated samples and those treated with pregnenolone, pregnenolone-

20,21-13C2-16,16-d2, and allopregnanolone in the chromatographic interval between 31 and 36 

minutes. 

HPLC-ESI-ToF-MS measurements and data analysis 

All measurements were performed on a Dionex Ultimate3000 RSLC system (Thermo Fisher 

Scientific) using a Waters BEH C18 dp column (50×2.1 mm, 1.7 µm) thermostated at 45 °C. 

Separation of 1 µl sample was achieved by a linear gradient with H2O to ACN at a flow rate of 

600 µL min-1. The gradient was initiated by a 1 min isocratic step at 95:5 H2O:ACN, followed 

by an increase to 95% ACN in 6 or 13.5 min to end up with a 1.5 min plateau step at 95% ACN 

before re-equilibration under the initial conditions. All solvents used were HPLC-grade with 

0.1% of formic acid (MS grade). UV-spectra were recorded by a DAD in the range from l = 

200 - 600 nm. The LC flow was split to 75 µL min-1 before entering the maXis 4G hr-ToF mass 

spectrometer (Bruker, Bremen, Germany) using a standard ESI source. Mass spectra were 

acquired in centroid mode ranging from 150 - 2000 m/z at a 2 Hz scan speed. 

NMR analysis of 5a-pregnan-3b,6a-diol-20-one 
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Extracted, isolated, and purified metabolite from C4.2 cell culture supernatant was dissolved in 

deuterated chloroform (CDCl3) and 1H, HSQC, HMBC and COSY spectra were recorded using 

an Ascend 700 MHz NMR spectrometer (Bruker). Based on the data obtained and published 

results (1S–3S), assignments were assessed accordingly.  

Synthesis and analysis of Δ4-abiraterone 

Compound synthesis: ∆4-Abi was synthesized through Oppenauer oxidation from Abi. Abi 

(50 mg, 0.125 mmol) and aluminum isopropoxide (128 mg, 0.625 mmol, Sigma-Aldrich) were 

dissolved in a mixture of toluene (15 mL) and acetone (5 mL) under nitrogen atmosphere and 

refluxed for 8 h. Reaction progress was monitored by TLC analysis on silica gel 60 F254 (Merck, 

Kenilworth, NJ) under UV-C light. After complete conversion, the volatiles were removed 

under reduced pressure, and the crude mixture was resuspended in brine and extracted with 

EtOAc (3 × 15 mL). The organic phases were separated, combined, and dried over sodium 

sulfate. After filtration, the volatiles of the filtrate were removed under reduced pressure. 

Purification of the residue by column chromatography on silica gel 60 (63-200 µm) with a 

mixture of chloroform:MeOH (98.5:1.5, v/v) as eluent gave 32 mg (0.092 mmol, 74% yield) of 

a yellowish crystalline solid. The purity of ∆4-Abi was checked by analytical HPLC using a 

Dionex Ultimate3000 (Thermo Fisher Scientific) system with a DAD detector monitoring UV 

absorbance at λ = 254 nm and a Macherey-Nagel Nucleoshell RP18plus column (100×2 mm, 

2.7 µm) coupled to a Bruker amaZon SL mass spectrometer equipped with a standard ESI 

source. MS (ESI+) m/z: [M+H]+ = 348.24. Purity (UV) = >99%. 1H and 13C-NMR spectra were 

recorded on a Bruker DRX-500 instrument at 300K. Chemical shifts are reported in δ values 

(ppm) and referenced on the signal of 1H-isotopologic solvent residues (CDCl3: 1H = 7.26, 13C 

= 77.16). Splitting patterns are designated as follows: s, singlet; d, doublet; dd, doublet of 

doublet. The coupling constants (J) are given in hertz (Hz). 
1H-NMR (500 MHz, CDCl3): 1.03 (s, 3H), 1.25 (s, 3H), 1.35-2.50 (complex), 5.76 (s, 1H), 6.01 

(s, 1H), 7.25 (dd, J = 8.0, J = 5.0, 1H), 7.66 (d, J = 7.5, 1H), 8.48 (d, J = 4.0, 1H), 8.63 (s, 1H). 

Spectroscopic data matches previously described findings (25,38). 13C-NMR (125 MHz, 

CDCl3): 16.6, 17.2, 20.9, 31.6, 31.7, 32.8, 33.9, 34.1, 35.0, 35.6, 38.7, 47.3, 53.9, 56.8, 123.1, 

124.0, 129.2, 132.8, 133.8, 147.7, 147.8, 151.4, 170.9, 199.5. Spectroscopic data matches 

previously described findings (38). High-resolution mass spectrum was recorded using HPLC-

ESI-ToF-MS as described above. Experimental [M+H]+ = 348.2313; calculated [M+H]+ = 

348.2322. 

HPLC-MS/MS analysis of Δ4-Abi 
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The compounds Abi and D4A, as well as internal standard d4-Abi, were analyzed through an 

Accela HPLC system (Thermo Fisher Scientific) coupled with a triple quadrupole mass 

spectrometer TSQ Quantum Access Max (Thermo Fisher Scientific) equipped with an HESI-II 

source. Separation was achieved by a Macherey-Nagel Nucleodur C18 Isis column (125×2 mm, 

3 µm) thermostated at 30 °C. The mobile phase consisted of 70:30 MeOH:H2O for 1 min, 

followed by 85:5:10 MeOH:H2O:ACN for 2 min before returning to initial conditions at a flow 

rate of 400 µL min-1. All solvents used were HPLC grade added of 0.1% formic acid (MS 

grade). Compounds were ionized using electrospray ionization (ESI) in positive ion mode with 

the following parameters: spray voltage: 4000 V; vaporizer temperature: 350 °C; sheath gas 

pressure (nitrogen): 30 units; auxiliary gas pressure (nitrogen): 35 units; skimmer offset 

voltage: 0 V; capillary temperature: 270 °C. Selected reaction monitoring was used for 

detecting Abi (350.115→155.973 [quantitative], collision energy: 54 V, tube lens: 110 V; 

350.115→332.013 [qualitative], collision energy: 41 V, tube lens: 120 V), ∆4-Abi 

(348.100→155.953 [quantitative], collision energy: 52 V, tube lens: 120 V; 348.100→334.062 

[qualitative], collision energy: 41 V, tube lens: 110 V) and d4-Abi (354.135→159.975; collision 

energy: 51 V; tube lens: 120 V) employing: scan width: 0.010 m/z; scan time: 0.300 s; peak 

width: 0.70. Calibration curves were prepared following the same protocol and conditioned 

media without the addition of exogenous compounds, spiked with known concentrations of 

analytes and 500 nM of d4-Abi. 

Total steroid quantification with EIAs 

Extraction of free steroids was performed as described above. Aliquots of 500 µL of cell culture 

supernatant were extracted with EtOAc. Vials were vortexed for 10 min at 1,500 rpm and 

subsequently centrifuged for another 10 min at 10,000 g. Steroid-containing supernatants were 

transferred to fresh reaction tubes and evaporated. Dehydroepiandrosterone (DHEA), 

dihydrotestosterone (DHT), and testosterone (T) levels were determined by competitive 

enzymatic immunoassay (EIA) according to the manufacturer’s protocols (DRG Instruments 

GmbH, Marburg, Germany). Changes in steroid concentrations were assessed against untreated 

controls (no addition of exogenous precursor substrates or enzyme inhibitors). 

Statistical analyses 

Differences between treated and untreated samples were evaluated using a one-way ANOVA 

followed by a two-sided Holm-Sidak’s multiple comparison test using GraphPad Prism version 

6.0f for Mac OS X (GraphPad Software, La Jolla California USA). Differences were considered 

significant at a p-value <0.05.
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RESULTS 

Steroid Precursors Are Metabolized to a Single Product in Androgen-Responsive Cell 

Lines Under Serum Starvation 

Mimicking the environmental conditions of cancer cells in CRPC patients after androgen 

deprivation therapy (ADT), we assessed the steroid metabolism of human PC cell lines under 

serum starvation conditions. Radioactive steroid detection following administration of relevant 

levels of pregnenolone (10 nM) (36) identified a single, unknown product that did not 

correspond to any common standards (Table 1, Supplementary Figure 1). 

Table 1. Radiometric standards were analyzed for retention time (RT) correspondence when 
compared to pregnenolone-derived metabolite produced by androgen-sensitive cell lines. All 
experiments were performed in triplicates. 

3H-steroid Radiometric RT (min) 
Pregnenolone 30.67 

Progesterone 28.82 

DHT 19.50 

Androstenedione 12.83 

Estrone 12.62 

DOC 11.08 

Testosterone 10.19 

Estradiol 8.93 

Corticosterone 5.23 

11-deoxycortisol 4.38 

Pregnenolone-derived metabolite 4.96 

This product was exclusively present in the androgen responsive cell lines LNCaP (mutated 

androgen receptor), C4.2 (androgen-independent AR), and VCaP (overexpressed wild-type 

AR), while PC3 (absent AR) cells did not metabolize pregnenolone (Figure 2-A). 

We advanced our investigation using a deuterated isotopologue of pregnenolone for an 

untargeted analysis of pregnenolone-treated and -untreated samples using HPLC-ESI-ToF-MS. 

Treated samples generated a peak at 4.45 ± 0.01 min (Figure 2-B, left) that is absent in control 

samples, prompting for the analysis of its mass spectra fragmentation. The peak corresponding 

to this unknown metabolite was found to be 335.2590 Da. As expected –with a 4 Da shift– 

HPLC-ESI-ToF-MS analysis of deuterated pregnenolone showed a metabolite with an exact 
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mass of 339.2774 Da (Figure 2-B, right), confirming that the obtained compound is indeed 

derived from this primordial precursor. 

 
Figure 2. (A) Representative chromatographic profiles of androgen-responsive cell lines 
indicate the formation of a single product from pregnenolone precursor (10 nM) after 48 h of 
metabolism. The addition of Abi (10 µM) renders androgen-responsive cells incapable of 
metabolizing pregnenolone, similarly to AR-absent PC3 cells. (B) Chromatograms (total ion 
current, TIC) and mass spectra obtained by HPLC-ESI-ToF-MS analysis of the metabolic 
product from C4.2 cell cultures treated with 10 nM native (top) and isotope-labeled (bottom) 
pregnenolone confirming the pregnenolone-derived nature of the newly identified metabolite. 
LC graphs (left) show the production of 5a-pregnan-3b,6a-diol-20-one from pregnenolone 
substrates, confirmed by NMR spectra analysis. Inserts show expected m/z-values of the 
putative metabolites and corresponding mass shift. 

Precursor Metabolism Is Independent of CYP17A1 Activity and Leads to 5a-pregnane 

Steroid Formation 

Treatment of androgen-responsive cells with the CYP17A1 inhibitor Abi completely abolished 

steroid metabolism, identical to what was observed in PC3 cells (Figure 2-A, center panels). 

This observation initially suggested the involvement of CYP17A1 activity on product 

formation. However, in contrast to pregnenolone-treated samples, progesterone metabolism led 

to the same downstream metabolite and was maintained even under CYP17A1 inhibition 

(Figure 3-A). A kinetic analysis showed that androgen-responsive cells metabolize these 

precursors almost exclusively to a single product (Figure 3-B), in a pathway independent from 

CYP17A1 and likely dependent on the activity of 3b-HSD. 
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Figure 3. (A) Abi administration strongly inhibits the formation of 5a-pregnan-3b,6a-diol-20-
one metabolite from pregnenolone precursor. However, it shows no effects on the metabolism 
of downstream precursor progesterone to the same end-product, suggesting that metabolic 
hindrance is likely associated with the inhibition of the 3b-HSD enzyme and in a CYP17A1 
independent manner. Results are shown as mean ± SEM of at least two biological replicates. 
(B) Kinetics of pregnenolone and progesterone metabolism in androgen-responsive C4.2 cells. 
Pregnenolone and progesterone are avidly metabolized to 5a-pregnan-3b,6a-diol-20-one, with 
nearly complete conversions at 24 h and 18 h, respectively. 

Analysis of the metabolic potential of our cell lines on the neuroactive steroid allopregnanolone 

(Allo), one of the major metabolites of progesterone in extrahepatic tissues (39,40), determined 

that Allo is indeed an intermediate on the pathway under investigation (Supplementary Figure 

2). As evidence built indicating this compound to be a 5a-pregnane, we proceeded to NMR 

analysis of purified metabolite samples (Supplementary Figure 3). Of notice, NMR data showed 

that the hydrogen in position 6 displayed a characteristic triplet of doublets having two 

couplings related to axial-axial hydrogens (J = 10.6 Hz), and one coupling related to axial-

equatorial hydrogens (J = 4.5 Hz). Consequently, the hydrogen in position 6 must be axial 

compared to the steroid plane (b configuration), while the hydroxy group equatorial (a 

configuration). Furthermore, as in position 7 there is a methylene group with equatorial and 

axial hydrogen. The hydrogen in position 5 must be axial compared to the molecule plane (a 
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configuration) (Supplementary Table 1 and Supplementary Figure 4). Finally, NMR data 

confirmed the compound identity to be 5a-pregnan-3b,6a-diol-20-one (5a,3b,6a-P) 

(Supplementary Table 1 and Supplementary Figure 4). 

Formation of 5a-pregnan-3b,6a-diol-20-one is Hampered by Abiraterone Metabolism 

Li and colleagues (41) showed the multi-enzyme inhibition potential of Abi-derived metabolite, 

D4A, which blocks 3β-HSD (IC50 = 19 nM) and SRD5A (IC50 = 1.2 µM) enzymes in addition 

to parental CYP17A1 inhibition. Since the canonical pathway for 5a,3b,6a-P production from 

pregnenolone initially depends on the activity of 3β-HSD and SRD5A (Figure 1, solid 

arrowheads), we further analyzed our samples for the presence of D4A. HPLC-MS/MS analysis 

confirmed the conversion of Abi to D4A after 48h of treatment to varying degrees (Figure 4). 

D4A levels in PC supernatants accounted for 12.50 ± 2.43 nM, 101.86 ± 4.31 nM, 61.48 ± 7.48 

nM, and 4.86 ± 0.64 nM in LNCaP, C4.2, VCaP, and PC3 cell lines, respectively. 

 
Figure 4. Metastatic prostate carcinoma cell lines are able to convert Abi to D4A. Cells were 
treated with 10 µM Abi for 48 h. Abi and D4A (as a percentage of Abi + D4A) were quantified 
by HPLC-MS/MS compared to a standard curve. Results are shown as mean ± SEM. All 
experiments were conducted in triplicates. 

Blockage of initial metabolic steps likely arrests precursor metabolism and potentiates Δ5-

steroid accumulation as discussed below. 

Abiraterone Leads to DHEA and DHT Increase in a Neuroendocrine-like Testosterone-

Independent Pathway 

As seen in our EIA results, the addition of pregnenolone alone did not significantly increase the 

production of late androgens testosterone and DHT (Figure 5-A) or androgen precursor DHEA 

(Figure 5-B) in any of the tested cell lines under serum-starved conditions. This fact again 

suggests that pregnenolone does not play a role in androgen de novo synthesis and is consistent 

with the results of our radio-HPLC experiments. 
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Figure 5. Mean ± SEM concentration of indicated androgens measured by enzyme 
immunoassays (EIAs) of the supernatant fraction derived from different prostate carcinoma cell 
lines when starved for 96 h and cultured in the presence of steroid precursor pregnenolone (10 
nM) for 48 h, added or not of inhibitor Abi and STX64. (A) Pregnenolone did not change the 
levels of late androgens T and DHT, arguing against de novo steroidogenesis from this 
precursor. (B) Concomitant treatment with abiraterone leads to significantly higher levels of 
DHEA in cultured cells. Abiraterone cross-reactivity is negligible at: 0.0039%. (C) Formation 
of DHEA can be partially inhibited upon administration of steroid sulfatase inhibitor STX64, 
suggesting that DHEA-S might be the immediate source of measured DHEA in a metabolic 
pathway resembling that of nervous tissues. Experiments were conducted in triplicates unless 
otherwise stated. Experiments with STX64 were conducted in at least duplicates. *: p < 0.05, 
***: p < 0.001, ****: p < 0.0001. 

However, when treated with Abi, a clear and significant increase in the production of DHEA 

was observed in all androgen-responsive cell lines. We observed increases in DHEA levels of 

>100-fold in LNCaP and VCaP, 13-fold in C4.2, and 31-fold in PC3 cells when compared to 

pregnenolone only-treated samples. Cross-reactivity of Abi with anti-DHEA antibodies was 

negligible at 0.0039% (0.33 ng mL -1) and ruled out. Given the lack of de novo synthesis from 

pregnenolone, we tested the possible involvement of its upstream precursor, cholesterol. The 

addition of steroid sulfatase inhibitor STX64 significantly decreased DHEA production in 

androgen-responsive LNCaP and VCaP cells (60 ± 12% and 51 ± 20% at 10 µM, respectively) 

(Figure 5-C). By blocking the putative last metabolic step on this proposed pathway with 
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STX64, we demonstrated that steroid sulfatase is responsible, at least partially, for the increase 

in DHEA levels likely from immediate precursor DHEA-S. Altogether, our data suggests that 

the de novo synthesis of androgens takes place from cholesterol, and not pregnenolone, in 

cancer cells that adopted a neuroendocrine phenotype under serum-starved conditions.  

DISCUSSION 

The sources for androgen formation and AR signaling in prostate cancer patients undergoing 

ADT have long been a matter of debate. Given the convoluted scenario of the steroidogenesis 

potential of different cancer cell types, we included phenotypically distinct cell lines in our 

research to simulate the different mechanisms involved in the gain of resistance and CRPC 

observed in patients and its link to treatment with the CYP17A1 inhibitor Abi. 

In this study, we have shown that androgen-responsive cell lines did not produce any of the 

expected late androgens (i.e., androstenedione, T and DHT), which are directly or indirectly 

responsible for the canonical activation of the AR in vivo, from early steroid precursors 

pregnenolone or progesterone. We also observed that androgen-independent PC3 cells did not 

metabolize pregnenolone, similarly to androgen-responsive cells lines when under Abi 

treatment. However, CYP17A1 inhibition by Abi did not stop the metabolism of progesterone 

or its 5a-pregnane metabolite, allopregnanolone. These observations suggest that the preferred 

pathway for early precursor metabolism does not lead to CYP17A1-dependent androgen 

formation and that if these cell lines are indeed capable of de novo synthesis, pregnenolone is 

presumably not the starting precursor. 

Rather, precursor metabolism likely takes place in a pathway independent from CYP17A1 and 

dependent on the activity of the 3b-HSD, a crucial enzyme responsible for the conversion of D5 

steroid precursors into cognate D4 metabolites. In contrast to wild-type PC3 cells, androgen-

responsive cell lines express mutant 3b-HSD with increased metabolic activity (19,42). Up-

regulation and increased activity of enzymes linked to androgen synthesis in steroid-depleted 

environments is a well-known phenomenon in CRPC and alterations in the steroidogenic 

potential of prostate carcinoma cells under different metabolic inhibitors, such as Abi (i.e., 

increase in DHT levels in the absence of progesterone), have been reported (43). Another 

commonly upregulated and abnormally active enzyme in prostate cancer is the SRD5A (44–

47), which catalyzes the conversion of progesterone to its 5a-pregnane metabolites (i.e., 5a-

dihydroprogesterone (5a-P) and Allo), as well as of testosterone to the potent AR ligand, DHT. 

In line with these facts, our work describes for the first time the formation of 5a-pregnan-

3b,6a-diol-20-one in prostate cancer cell lines, a metabolite that depends on the sequential steps 
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of the steroidogenic enzymes 3β-HSD, SRD5A, 3-keto reductase (AKR), and 6α-hydroxylase 

(Figure 1, solid arrowheads). Interestingly, it has been shown by others that 5a,3b,6a-P 

formation from progesterone is linked to proliferative activities in a variety of other malignant 

cell types, namely human testicular and ovarian carcinomas (48), human breast cancer (49), and 

human leukemic monoblast (50) cells. A more direct association with advanced PC lacked until 

now. These groups investigated the putative biological activities of intermediates in the 

pathway to 5a,3b,6a-P and suggested a strong positive correlation between the formation of 

5a-pregnane metabolites and cancer mitogenesis and metastasis in signaling pathways also 

found in the prostate cancer environment (50–54). Proposed clinical implications on 

progesterone metabolism suggest that an imbalance in the ratios of progesterone metabolites in 

cancerous tissues affects cells to change from normalcy (i.e., 3a-reduced metabolites) to 

increased proliferation and detachment behaviors (i.e., 5a-reduced metabolites) (51). 

The molecular mechanisms by which 5a,3b,6a-P aggravates cancer phenotypes are not yet 

fully elucidated. However, mounting evidence indicates that progesterone and its metabolites 

are capable of eliciting rapid responses through membrane progesterone receptors (mPR) (55–

57). Such interactions with non-genomic receptors (i.e., PGRMC1) (57) are not suppressed by 

drugs targeting steroid nuclear receptors and by initiating different and highly detrimental G-

protein-associated signaling pathways (i.e., PI3K/Akt) that may prevent cell cycle arrest, evade 

apoptosis and stimulate cancer stem cell maintenance and de-differentiation (53). 

In addition to the increased expression/activity of 3b-HSD (19,42) and SRD5A (44–47), 

noteworthy is the presence of AKR1C in this pathway. The AKR1C family of enzymes are key 

players in steroid hormone metabolism with some degree of promiscuous binding abilities to 

structurally related steroidal compounds (58). AKR1C expression and activity appear to be 

responsive to changes in steroid levels. Four AKR1C isoforms exist that could catalyze the 

reduction of 5a-P into downstream tetrahydrosteroids. More specifically AKR1C3, which is 

also upregulated in prostate cancer (47) and has been implicated in cancer cell survival and 

proliferation, as well as in the modulation of sensitivity to treatment (59), and AKR1C1 that 

has been shown to exhibit 3β-HSD activity. Due to their metabolic versatility and apparent 

promiscuity, the determination of which AKR1C isoform would be responsible for the 

conversion of the precursors shown in our experiments remains to be confirmed. 

In addition, our data is in line with the multiple-enzyme inhibitory potential of D4A (41), a 

compound found in our Abi-treated samples. D4A is the product of the 3β-HSD-mediated 

metabolism of Abi (a limiting factor on metabolite formation due to a negative feedback loop) 
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as a result of structure similarity of this inhibitor with native ligands such as DHEA and Δ5-

androstenediol (A-diol). In contrast to its parent compound, D4A inhibits additional enzymes 

involved in steroid biosynthesis including 3b-HSD and SRD5A. These enzymes, together with 

CYP17A1, constitute the essential machinery in the cell for the steroidogenesis of androgens 

from progestagen precursors in classical steroidogenesis pathways. In our experimental setup, 

3b-HSD is likely the main target responsible for the observed arrest in precursor metabolism in 

androgen-responsive cells by at least two possible mechanisms. Firstly, by direct D4A-driven 

inhibition of enzymatic activity and secondly, by Abi acting as a competitive ligand for the 

enzyme binding site against native 3b-HSD ligands such as pregnenolone, especially given the 

fact that Abi levels at 10 µM are 1000-fold higher than those of the native ligand at biologically 

relevant levels. Furthermore, the lack of pregnenolone metabolism in PC3 cells also hints at the 

pivotal role of 3β-HSD under serum starved conditions. These cells have been shown to have a 

native lowered activity of the 3β-HSD enzyme (42) that may be further decreased by a preferred 

reductive function of the enzyme compared to its androgen-responsive counterparts (60). 

The fact that DHEA levels increased so dramatically without corresponding elevation in 

downstream metabolites’ levels suggests the presence of a limiting factor on the conversion 

rate of DHEA. This fact constitutes another strong indication of the D4A-mediated blockage of 

3β-HSD and SRD5A activities upon administration of Abi to our in vitro system, at which point 

these enzymes would not be able to metabolize DHEA further into its androgenic metabolites 

(similarly to the arrest seen in pregnenolone ® 5a,3b,6a-P metabolism). 

As previously mentioned, Pham and colleagues demonstrated the quantitative and qualitative 

alterations in steroidogenic potentials of prostate cancer cells in vitro by different steroid 

precursors and inhibitors (43). It is likely that not only steroid depletion during starvation 

conditions but also Abi and pregnenolone, mimicking an in vivo ADT treatment environment, 

are collectively responsible for the observed phenomena in our setups and the emergence of 

previously unknown bypass mechanisms for androgen biosynthesis, which are discussed below. 

The work of Maayan and colleagues (61) on the increased DHEA production by neuro-like 

cells in a CYP17A1-independent manner under castration conditions in mice recapitulates the 

phenotypic changes that we observed in our experiments. The transdifferentiation of 

adenocarcinoma cells into a neuroendocrine prostatic carcinoma-like phenotype (NE-like PC 

cells) has been increasingly demonstrated and appears to be strongly induced in an androgen-

depleted environment (31–34), posing as a mechanism in the development of resistance to 

androgen deprivation therapy. NE-like PC cells originate from the transdifferentiation of cancer 
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epithelial cells and lead to androgen independence and tumor progression. Baulieu and 

colleagues (62) showed the CYP17A1-independent formation of DHEA occurs in rat brains 

incubated with cholesterol. While the metabolizing enzymes are yet to be elucidated, it suggests 

that de novo metabolism may take place from an upstream compound to pregnenolone in 

nervous tissue. Precursors of cholesterol and cholesterol-sulfate (the latter implicated as a 

differentiating compound in cancerous tissues (63)), include homocysteine and oxidized LDL 

(both of which could be a source for precursor formation) (64). Cholesterol and its sulfate form 

would eventually be converted to DHEA-sulfate (DHEA-S), the most abundant circulating 

steroid hormone in humans, and sequentially to DHEA (Figure 1, hatched arrow) (65,66). The 

blockage of steroid sulfatase by STX64 in our experiments shows the cholesterol-driven 

synthesis of androgen precursors under serum starved conditions and Abi treatment, 

highlighting the versatility of cancer cells in development of resistance to therapy. 

CONCLUSION 

Altogether, our study adds further evidence to the complex networks in the steroid metabolism 

of prostate carcinoma cells. We identified the mitogenic metabolite 5a-pregnan-3b,6a-diol-20-

one as a product from pregnenolone under starvation conditions in androgen-responsive cells 

for the first time. This process could only be abolished by Abi at its initial metabolic step. 

Together with the increase in DHEA production in Abi-treated samples via a cholesterol-

dependent pathway, our results hint at a neuroendocrine transdifferentiation of epithelial 

prostate cancer cells. NE-like PC cells are associated with poor treatment prognosis and 

increased androgen independence. Our work calls for further characterization of prostate 

carcinoma cells in androgen-depleted environments and elucidates the fate of early steroid 

precursors in androgen-responsive cells, paving the way for a new understanding of the 

biological relevance of progesterone metabolites in prostate cancer, efficacy of Abi treatment, 

and the development of resistance.  
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9 FINAL DISCUSSION 

This thesis aimed at highlighting the potential clinical relevance of interfering with resistance-

associated cell-to-cell communication mechanisms in Pseudomonas aeruginosa infections and 

deepening our understanding of such mechanisms in human prostate cancer cell lines in vitro. 

In the first, the biological evaluation of pqs QS signalling blockage outcomes is assessed in the 

comparison of PqsD inhibitors and PqsR antagonists’ synergistic activities versus a dual-

inhibitor on silencing PQS-related auto-/paracrine signalling. The amenability of pathoblockers 

as alternatives and adjuvants to current antibiotic therapies was tested on in cellulo and in vivo 

assays and is discussed below. 

In the latter, the structural elucidation of a neurosteroid-derived molecule was shown in prostate 

cancer cells for the first time based on in vitro data. In addition to the discovery of this 

previously described mitogenic compound, we investigated ADT-associated resistance against 

abiraterone in vitro. These studies may be highly relevant to PC pathogenesis with prospective 

implications on current treatment strategies of castration-resistant neoplasms in patients 

undergoing ADT. 

9.1 Biological Evaluation of PqsD and PqsR Dual-Inhibitor in 

Pseudomonas aeruginosa 

9.1.1 Synergistic Effects of PqsD Inhibition and PqsR Antagonism in 

Virulence Factor Pyocyanin Production 

The extensive work of our group in targeting the PqsD synthase and the PQS receptor, PqsR, 

is prolific in generating compounds of small molecular weight that successfully inhibit and 

antagonise these targets of the pqs QS system separately (64,113,120,175–177). We 

hypothesised that a combination of the beneficial biological effects observed independently for 

PqsD inhibitors (biofilm inhibition) (175) and PqsR antagonists (reduction of virulence factor 

production –pyocyanin (PCN) – and overall pathogenicity) (120) would result in an improved 

outcome with lower resistance development potential. 

A proof-of-concept approach involved the straightforward assessment of compounds 1 and 2 

(Chapter 1) used separately and in combination in our in-house whole-cell pyocyanin assay 

(120). This virulence factor belongs to the class of phenazines, a broad class of bacterial 

secondary metabolites involved in redox activities (178). In PA, PCN is the exponent of these 
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pyrazine ring-based compounds produced at late growth stages under high cell density 

conditions (179) and vital for survival and competition in their natural environment. Under tight 

control of the pqs QS system (180,181), PCN is pivotal in driving acute PA infections by 

supplying reactive oxygen species (ROS) such as toxic superoxide (O2
-) and hydrogen peroxide 

(H2O2) via reduction of molecular oxygen in vivo. In addition, it is argued that in chronic 

infections, PCN facilitates the binding of eDNA to PA cells, promoting attachment, 

aggregation, and stability in biofilms (182,183). Acute cytotoxic damage to eukaryotic host 

tissues, also observed in cystic fibrosis patients (184), is due to the oxidative stress resultant 

from ROS production, NADPH consumption, host glutathione/catalase depletion, and 

neutrophil killing (118). The highly detrimental effects in host homeostasis caused by the 

activity of PCN is abrogated in PqsR mutants in vivo (118). This fact provides compelling 

arguments for the assessment of PCN levels as an evaluation step in the successful design and 

development of pqs QS antivirulence compounds. 

The addition of PqsD inhibitor 1 and PqsR antagonist 2 generated a significant synergistic 

benefit, where their combined effect on PCN reduction was greater than the sum of each 

individual outcome. Notably, PCN production under single treatment with 15 µM of compound 

2 was improved by 20% when administered in combination with 500 µM of compound 1, which 

in itself is not able to reduce PCN levels at this concentration under standard assay conditions. 

The apparent inefficiency of single PqsD inhibitors in decreasing PqsR-driven gene expression 

and phenotypic adaptation in acute and chronic settings might be explained by two non-

mutually exclusive hypotheses: firstly, the emergence of alternative pathways that bypass 

canonical biosynthesis of signalling molecules is a well-researched mechanism to compensate 

for their (exogenously) impaired production (185–187); secondly, as in the case for steroid 

signalling via nuclear receptors, minute amounts of ligands that persist even under strong, but 

not absolute inhibition of the synthases may still lead to receptor activation and ensuing gene 

expression and virulence factor production. In the latter case, if PqsD inhibition is below 

complete synthesis arrest (94), traces of HAQ signalling molecules might be sufficient to 

sustain the expression of virulent communication. However, the application of dual inhibition 

within the same feedback autoloop of pqs QS shows the promising potentiation effects of the 

antivirulence strategy in virulence factor production. In this case, the decrease in signalling 

molecule production by inhibition of PqsD synthase may translate its benefits in lowering 

competition of native ligands against PqsR antagonists to the receptor’s binding site, indirectly 

increasing antagonistic potency. 
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9.1.2 The Favourable Pleiotropic Effects of a Dual-Inhibitor Compound in 

Targeting pqs QS Communication 

In an effort to combine the encouraging effects observed upon dual inhibition of the pqs QS 

system, we screened our in-house libraries for compounds sharing a structural similarity in 

PqsD and PqsR inhibitors. A pyrimidine backbone decorated with a triazole and a sulfone 

moiety were found in PqsR antagonist compound 3 and PqsD inhibitor compound 4 and became 

the starting point for the rational design of our dual-inhibitors (Chapter 1). The first dual 

inhibitor synthesised, compound 5, (by my colleague, Dr. Andreas Thomann) consisted only of 

this simplified pyrimidine backbone displaying exclusively the shared structural features from 

compounds 3 and 4. In vitro assessment of dual-target inhibition was performed following the 

protocols established in-house (through the extensive work of Dr. Christine Maurer) and 

showed that compound 5 is an inhibitor of both PqsD and PqsR. In addition, compound 5 was 

able to successfully reduce pyocyanin levels with a slight improvement compared to its PqsR 

antagonist precursor, compound 3 (added reduction of 14%, making up a total of 75% inhibition 

of this virulence factor at 400 µM). These results suggest that dual inhibition is not only a 

promising strategy in QS sensing interference but can also be achieved in a single drug. Finally, 

dual-target compound 6 was obtained by the bioisosteric replacement of C4 at the triazole 

substituent with a nitrogen, yielding the tetrazole congener 6. This improved dual-inhibitor 

showed significant inhibition on both synthase and receptor targets with a slight improvement 

on PqsR antagonism (IC50 values from 26 µM down to 15 µM) compared to compound 5 while 

retaining activity against PqsD compared to the selective inhibitor, compound 4. 

In addition, low molecular weight (226,21 Da) compound 6 also demonstrated high solubility 

and negligible cytotoxicity against bacterial cells, keeping faithful to the antivirulence concept. 

This lack of effect on bacterial growth was assessed in thorough growth kinetics of the 

pathogens, making sure that observed outcomes were in fact related to the absence of 

bacteriostatic/bactericidal mechanisms and not due to delayed growth observed with some 

classes of antibiotics.  

9.1.2.1 Effects on Virulence Factor (PCN) and Siderophore Production 

Dual-inhibition with compound 6 significantly reduced PCN formation with an IC50 level of 86 

µM. Compared to target affinity and potency of selective PqsR antagonists already synthesised 

(unpublished data – Chapter 2) and published elsewhere (91,120,188) on PCN inhibition, 

compound 6 displays only a moderate activity. However, it stands its ground as a proof-of-
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concept approach and highlights the added benefits of dual-inhibition, especially given its 

pleiotropic benefits described below. 

As previously mentioned, PA reacts to environmental cues as part of its complex adaptive 

resistance mechanisms (44,55) resulting in the reprogramming of gene expression patterns. 

While many of these changes evolved as adaptation mechanisms to natural variations in the 

pathogen’s biological niches, they also play a role in modulating versatile phenotypic 

fluctuations as part of a larger competition and pathogenic armamentarium. In these 

circumstances, PA actively influences its surrounding microenvironments via the production 

of, for example, nutrient scavengers that sustain growth and signal virulent pathways (189). 

One such nutrient is iron, essential for PA’s survival insofar its involvement in a variety of 

biochemical pathways and physiological homeostasis. During infection, iron is sequestered by 

eukaryotic cells in an attempt to “starve” pathogens by limiting its bioavailability (190). In PA, 

iron uptake is regulated by the Fur protein, which also acts as a transcriptional repressor of 

multiple virulence genes upon binding of Fur to iron (191). In vivo, PA sequesters iron from 

the surrounding environment through pyoverdine (PVD) and pyochelin in order to activate 

pathogenic pathways involved in acute infections and biofilm formation (192,193). The 

relationship between pqs QS and PVD production is not yet fully elucidated, but reports show 

that PVD biosynthesis depends on pqs QS gene expression modulation, with PQS actively 

chelating iron in PA’s microenvironment, and PVD indirectly controlling the activation of the 

pqs pathway through PqsR activity on iron metabolism (110,194,195). The roles played by 

PVD in PA’s acute pathogenicity and the connection to adaptive responses in chronic settings 

through biofilm formation and homeostasis, while interacting with the pqs QS system (196), 

prompted the evaluation of our dual-inhibitor on PVD production. We showed that successfully 

targeting HHQ and PQS biosynthesis, QSI’s may also reduce the conserved environmental 

competitive advantage of iron scavenging mechanisms, rendering pathogen less virulent and 

likely more susceptible to adjuvant treatment and/or the hosts’ immune response. In our in vitro 

setup, dual-inhibitor 6 successfully decreased PVD at all tested concentrations (95% reduction 

at 500 µM through to 42% reduction at 100 µM) in a dose-dependent manner, outperforming 

single PqsR (7% reduction) and PqsD inhibitors (30% reduction) significantly. 

It is important to note that the affinity and selectivity of compound 6 to the PVD synthase 

(PvdS) was not directly assessed in our experiments. Rather, the observed effects are argued to 

originate indirectly, from the specific interference with the pathogen’s pqs QS mechanism 

through a decrease in HHQ and PQS levels, as also shown by the selective PqsD inhibitor, 

compound 1. Moreover, iron is intimately related to microbial fitness in a variety of 
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microorganisms. It is, therefore, categorized as a “public good” of bacterial communities, where 

cooperating individuals altruistically invest in their production or availability and might be 

related to mechanisms that go beyond our current understanding of QS and other 

communication systems. Comprehensible research has shown that interference with quorum 

sensing might inadvertently affect microbial fitness (197–199) if, for example, nutrient scarcity 

evolves into Darwinian selective pressure, with microorganisms adapting to the new 

environmental conditions through the expression of conserved resistomes to ensure growth. 

Therefore, QSIs or quorum quenching compounds that may affect nutrient availability (such as 

those reported for the Las system (197)) need to be studied very carefully in order to ensure 

promising outcomes without concealing possible resistance development potential. Within the 

timeframe studied, however, compound 6 did not show signs of growth deficiency and the 

beneficial inhibitory effects of PCN and PVD virulence factors that are linked to biofilm 

formation were promptly investigated. 

9.1.2.2 Effects of QSIs on Biofilm Formation and Extracellular Polymeric Substance 

Constitution 

The formation of heterogeneous microbial communities of specialized bacterial subpopulations 

is one of the hallmarks of PA’s chronic infections and surface colonization in clinical and 

industrial settings (49,106,107). Biofilms are complex structures composed of extracellular 

substances that provide structural stability as well as air, nutrients, and the paracrine diffusion 

of quorum sensing molecules and virulence factors throughout these communities and amongst 

its members (49). The mostly self-produced EPS matrix is composed of exopolysaccharides –

attachment facilitation (Pel and Psl) and suppression of host immune response (alginate), 

extracellular proteins – amyloid fibres that provide structural stabilization and tolerance to 

physical stress, and eDNA – cell cohesive adhesion, formation of shuttling channels and 

antibiotic deterrence (particularly aminoglycosides, fluoroquinolones and host defensins) that 

is different than intrinsic or acquired resistances (49,106). Overall biofilm formation and 

specially eDNA production have been shown to be under the influence of the pqs QS system, 

particularly PQS-driven virulence factors such as PCN (180,185) and HQNO (102) production. 

Together with Dr. Christian Brengel, we have assessed the effects of dual-inhibitor 6 in 

hampering biofilm formation by analysing biovolume levels in 24 h grown biofilms with crystal 

violet (CV). With an IC50 of 100 µM in hampering biofilm development, compound 6 reiterates 

the role of the pqs QS system in biofilm formation (175,200). Though indiscriminative, CV 

staining gives an overview of biofilm integrity and formation capabilities under treatment in a 
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straightforward, inexpensive manner. However, by staining components of the EPS as well as 

live and dead organisms (both of which are important in the making up of biofilm communities) 

CV provides very little information on the actual number of living cells, which would be 

paramount in evaluating anti-biofilm efficacy of antimicrobial substances, and does not layer 

the relative constituency of different EPS components. To that end, various staining approaches 

were employed in order to circumvent CV limitations and more precisely evaluate QSIs anti-

biofilm efficacies, namely congo red diazo dye (exopolysaccharides), propidium iodine 

fluorescent dye (eDNA), and Bradford protein assay (extracellular proteins). Dual-inhibition 

proved particularly efficient in decreasing eDNA levels (93% inhibition) at 400 µM, which led 

to the assessment of ciprofloxacin activity rescue in a BacTiter-Gloä metabolic assay to 

directly evaluate living bacteria populations within the biofilm. In accordance with our 

assumptions and the promising silencing of pqs QS bacterial communication for clinical 

treatment, dual inhibitor 6 restored antibiotic efficacy in biofilms previously treated with our 

compound. It has been argued that the lack of activity if ciprofloxacin against biofilm is 

partially due to the presence of eDNA (201), which sequesters the antibiotic in its polymeric 

network. Our results corroborated these assumptions and highlighted the prospective benefits 

of employing QSIs also as adjuvant and prophylactic therapies in addition to current clinical 

treatments.  

It is vital, however, to highlight the current drawbacks and limitations concerning in vitro 

biofilm studies. Given the highly convoluted mechanisms and heterogeneity of structures and 

organisms involved in its formation, a thorough understanding of biofilm-related processes has 

not been achieved to date. To this end, reliable and reproducible detection and quantification 

techniques are urgently needed but still remain a challenge to researchers worldwide. As 

highlighted above, the exact objectives of investigation on biofilm structures must be taken into 

account when devising which techniques to use for a more detailed understanding. Different 

targets (EPS constituents, live/dead bacterial cells, or structural/morphological changes) 

demand different experimental approaches, as well as the determination of “what constitutes 

success” for efficacious treatments. In addition, the variety of protocols employed in different 

laboratories also needs to be considered insofar the sensitive biofilm-related responses to 

diverse assay parameters such as static growth vs flow chambers, and (fluorescence) 

microscopy vs colorimetric staining techniques (107,202,203). These circumstantial variations 

hinder direct comparisons and objective evaluation of anti-biofilm approaches and compounds 

currently under study by different research groups. Moreover, the phenotypic plasticity of PA 

cultures in vitro stresses the necessity of developing consistent and reliable chronic infection 
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models with factual relevance to conditions observed in vivo without the occurrence of in vitro 

artefacts (64,204), such as the formation of mushroom-shaped structures not seen in the in vivo 

environment. 

Despite the current limitations of modelling the biofilm life cycle in vitro, the results discussed 

above do argue for the potential clinical relevance of dual-target inhibition within the 

autoinduction loop of the pqs QS system. The rescue of antibiotic efficacy in the treatment of 

inherently drug-resistant sessile phenotypes and the synergistic activities in hampering 

virulence factor formation in planktonic cultures encouraged us to deepen our studies in an 

early in vivo infection model. 

9.1.2.3 Dual-Inhibition Efficacy in the Galleria mellonella Acute Infection Model 

In our work, the greater wax moth (Galleria mellonella) acute infection model (120) was used 

as a pre-screen to mammalian infection models in order to investigate host-pathogen 

interactions and reduce potential failure rates in late animal testing steps. The use of this early 

in vivo model has a number of advantages at this stage of pre-clinical testing. Its placement 

represents a strategic “bridge” in assessing the applicability of promising in vitro compounds 

within the antivirulence concept to more clinically-relevant infection scenarios. Overall, the 

greater wax moths have innate and humoral immune responses that contain elements 

remarkably similar to those found in vertebrate systems (205), including a complement-like 

system, phagocytic cells (206), and the production of host antimicrobial peptides to fight 

infections (207). From a practicality standpoint, these larvae can be given precise dosages of 

bacterial inocula and compounds (87) in inexpensive, easy to perform studies with no ethical 

implications to their use. Finally, the satisfactory predictive power of this model for PA 

pathogenicity was shown in the significant positive correlation of wild-type and PqsR mutant 

virulence of PA14 strains in mice and G. mellonella (208). 

Our results show that dual-inhibitor 6 significantly improved larvae survival with all tested 

doses. Ultimately, a 6,6-fold increase was achieved with the administration of 0,63 mg kg-1 (2,7 

µM) of the compound, bringing the number of challenged larvae at the end of the assay from 

8% through to 53%. Furthermore, a four times higher dose was well tolerated by G. mellonella 

with no observable detrimental effects (98% survival) in our toxicity assessment. Notably, at 

10–13 CFUs/injection, the average bacterial load was particularly challenging during treatment 

with 10-fold increased inocula compared to the assay’s protocol. It is logical to expect that an 

even higher protective effect would have been displayed at lower CFU injections, further 

validating the use of QSIs in hampering PA virulence in acute in vivo infections. Finally, when 
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comparing the actual compound concentration administered to the challenged larvae with the 

compound’s IC50 towards PCN inhibition (86 µM), we observe a roughly 30-fold disparity 

between the two, highlighting the importance of employing more complex host systems for 

compound testing. A number of reasons can be enumerated to account for this differences, 

namely: 1) redundancies of QS and virulence-related biological systems, whereby PqsR may 

also play a role in addition to PCN production (such as cytotoxic HQNO, exotoxins, and 

siderophores); 2) the actual load of bacterial populations used in different assays; 3) synergism 

with host’s immune responses to PA infections; and 4) the environmental growth conditions 

(defined minimal media vs the much more complex invertebrate physiological 

microenvironment) that modulate PA phenotypic responses. Taken together, we have shown 

that dual inhibition synergistically protected greater wax moth larvae from fatal PA infections 

by interfering with the bacteria’s ability to communicate effectively and become virulent. Our 

strategy paves the way for future compound potency optimization with lower resistance 

development potential and decreased interference with the host’s physiologic homeostasis 

(toxicity) and natural microbiome (selectivity). 

9.1.3 Conclusion and Outlook – Synergistic Interference of pqs QS 

Communication System 

With the dire challenge that multiple and extreme drug resistant pathogenic organisms currently 

pose to human health, QS inhibition has proven to be a suitable and promising target within 

emerging alternative treatment strategies. The feasibility and relevance of disrupting QS 

mechanisms is not entirely new and can be seen in the highly complex microbial interactions 

in nature where bacteria and fungi interfere with the molecular languages of a 

competitor/predator (209–211). As innovative therapies, the sole generation of novel chemical 

entities may not be enough to outsmart the redundancy and plasticity of biological systems 

shown by the consistent failures of conventional antibiotic development. Alternatively, these 

new entities should hybridize novel targeting (QSIs) and smart delivery systems 

(nanoparticles/liposomes) that increase targeted bioavailability, enhance outer membrane 

penetration, and reduce efflux in order to curb treatment resistance. To accomplish that, 

attention to and development of reliable and relevant in vitro and in vivo testing platforms are 

paramount, such as murine and higher order vertebrate models. The QS dual-inhibition 

approach with a single compound display numerous advantages in treating microbial infections. 

Inherently, it enhances patient compliance and excludes unwanted drug-drug interactions that 

might be responsible for adverse effects that render treatment inefficient. It also holds greater 
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potential in intrinsically avoiding resistance development since larger combinatorial 

mechanisms (i.e., non-deleterious mutational events) would be necessary to circumvent dual-

target treatment efficacy. However, challenges remain aplenty: abrogation of a single QS 

system may lead to promiscuous/overlapping mechanisms filling in the pathogen’s complex 

communication pathways, and dual-target potency should ideally be equipotent in order to 

allow for reasonable dosing schemes. Furthermore, if QSIs inadvertently hamper social 

behaviours that are linked to bacterial survival, resistance selective pressures may again take 

place. Finally, the timely application of QS inhibition should consider the acute and sessile life 

cycles of the pathogen with proper prophylactic or adjutant strategies being applied accordingly 

in synergistic drug combinations. All in all, design and development of novel dual-target 

compounds need to weigh-in the benefits and challenges of single system vs multisystem 

inhibition carefully to ensure redundancy avoidance and unhinge resistance development 

simultaneously against PA’s autocrine and paracrine communication systems. 

9.2 Layering the Intercellular Communication of Prostate 

Cancer Cell Lines – Androgens and Beyond 

In order to investigate some of the diverse mechanisms driving growth and survival of tumour 

cells in advanced prostate cancer, we selected a number of phenotypically different epithelial 

cell lines. The distinctions were based on AR and androgen requirements that may lead to 

endocrine independence and migration to ADT resistance. More specifically, three AR+ and 

androgen-responsive (LNCaP – hypersensitive, androgen-dependent mutated AR, C4.2 – 

promiscuous, androgen-independent mutated AR, and VCaP – overexpressed wild-type AR) 

and one AR- (PC3) carcinoma cell lines were chosen to mimic the variety of resistant 

individuals found in the CRPC microenvironment. Notably, C4.2 cells, albeit androgen-

independent, respond to androgen signalling similarly to its androgen-dependent counterparts 

and is, therefore, classified as an androgen-responsive cell type. Recent reports provide 

contradicting evidence with respect to the source of androgens found in intraprostatic tissues in 

the clinics. One the one hand, some state that androgens can be synthesised de novo from steroid 

precursors by epithelial cells in situ (212,213), on the other, late adrenal precursors appear to 

be the more likely players in androgen synthesis by stromal and epithelial cells (214). In both 

cases, regardless of the initial source, androgens are assumed to sustain AR signalling and 

ensuing cancer progression via testosterone and DHT binding despite ADT in an 

autocrine/paracrine manner. Therefore, we employed radioactive detector-couple HPLC (radio-
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HPLC) and steroid enzyme-linked immunosorbent assay (ELISA) techniques to investigate the 

steroidogenic potential of these cells in androgen biosynthesis with primordial precursor 3H-

pregnenolone. Surprisingly, none of the initially expected androgens were generated in 

androgen-responsive cells, rather a previously described, neurosteroid-derived mitogenic 

compound (215–217), 5a-pregnan-3b,6a-diol-20-one (5a,3b,6a-P), was found for the first 

time in prostate-related malignancies. This neurosteroid compound hints at a neuroendocrine 

transdifferentiation of androgen-responsive prostate carcinoma cells and highlights the 

plasticity of signalling pathways exhibited in neoplastic cells depending on its cellular context 

(i.e., migration from a paracrine to an autocrine communication fashion) (218–221). The 

discovery and characterization of 5a,3b,6a-P is further discussed below. 

9.2.1 Assessing Primordial Precursor Metabolism 

9.2.1.1 The Pregnenolone Precursor-Specific Metabolism in Prostate Carcinoma Cell Lines 

The use of radioactively-labelled compounds allows for the assessment of its specific 

metabolism since radioactivity will only be found in downstream metabolites as long as 

metabolisation does not occur at the labelled sites. This is the case for the [7-3H(N)]-

pregnenolone isotopologue used in our experiments, where tritium labelling at C7 would remain 

intact throughout compound metabolism in case of late androgens testosterone and DHT – 

sequential modifications at positions 17 (via CYP17A1 and 17b-HSD), 3 (via 3b-HSD), 

yielding testosterone, and 5 (via 5a-reductase), resulting in the final metabolite of the androgen 

axis, DHT. The optimized HPLC chromatogram was based on an in-house protocol for 

metabolite extraction, and subsequent analyses (222) with radioactivity only found in the 

extracted organic fraction, with no traces left in the aqueous phase. Our radiometric results 

show that only androgen-responsive cell lines metabolised pregnenolone and the sole product 

of metabolism after 48 h of incubation in starved cultures (vis a vis the castrated conditions 

found in patients undergoing ADT) was a compound with retention time similar to that of 

corticosteroids (4.96 min vs 4.38 min – 11-deoxycortisol – and 5.23 min – corticosterone) but 

not testosterone (10.19 min) or DHT (19.50 min). Following the site-specific premises 

described above, we proceeded with an untargeted HPLC-ESI-ToF-MS analysis of conditioned 

media with native and deuterated pregnenolone (pregnenolone-20,21-13C2-16,16-d2). As 

expected, we obtained again a single compound with a 4 Da shift in its exact mass depending 

exclusively on the isotopology of its precursors (native: 335.2590, deuterated: 339.2774), 

which confirmed the assumptions that this so far unidentified non-androgen was indeed derived 
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from this primordial precursor and not from intracellular-derived intermediates. A thorough 

NMR analysis of purified and concentrated cell culture samples incubated with native 

precursors finally confirmed the identity of this metabolite to be 5a,3b,6a-P. 

The fact that only AR+ cells were capable of generating 5a,3b,6a-P from pregnenolone 

precursor indicates the occurrence of AR-driven steroidogenic mechanisms that might be 

independent of androgen binding per se. While further studies are in order to detail these 

observations, it becomes evident that the otherwise precisely symbiotic balance between 

androgenic ligands and AR through paracrine mechanisms is subjected to a communication 

imbalance. Rather than an outright bypass pathway, where AR requirement is circumvented in 

stimulating prostate cancer cells to proliferate (made clear by the lack of pregnenolone 

metabolism in AR- PC3 cells), the detrimental plasticity of epithelial cells that we witnessed in 

our experiments is likely due to the emergence of AR-driven activation of promiscuous 

(nonandrogenic steroids) or outlaw (non-steroid signalling molecules) pathways. As a response 

to AR binding to mis-regulated AREs, the transcription of otherwise AR-unrelated genes may 

lead to the expression of other steroidogenic enzymes and receptors involved in new signalling 

pathways for disease progression and resistance to treatment, further discussed below.  

9.2.1.2 Immunoassay-Based Quantification of Total Steroids 

Despite its relevance in making evident the specific pathways through which given precursors 

are further metabolised into, the exclusive assessment of steroidogenic potentials with this 

technique is not without caveats. While on the one hand, we could show that in our setups these 

four prostate carcinoma cell lines are not capable of de novo androgen biosynthesis from early 

steroid precursors such as pregnenolone, on the other, it restricts steroidogenesis evaluation by 

excluding the presence of non-labelled precursors and intermediates in the same or distinct 

pathways. This is due to the possibility of steroid depots being formed during culture conditions 

with media containing cholesterol and other steroids. In this convoluted scenario, the high 

affinity of these molecules to cytosolic globulins (i.e., sex hormone-binding globulin (SHBG) 

and transcortins (binding of progesterone and corticosteroids)) may conceal the formation of 

sex hormones or corticosteroids under analyses during and after starvation conditions (223). 

Therefore, we complemented our evaluations with the quantification of total steroids in culture 

with highly sensitive immunological detection methods. The principles of these steroid-specific 

ELISA tests rely on the high specificity of antibody epitopes against antigenic sites of unique 

side groups and substituents within the four-membered steroid nucleus. Appropriate calibration 

curves were performed by spiking unconditioned media with known amounts of corresponding 
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steroids to ensure assay validity and exclude unspecific or cross-reactive binding to non-target 

molecules. The combination of our results shows that indeed the addition of pregnenolone to 

these cells does not lead to the formation of androgens, other sex hormone steroids or 

corticosteroids. On the contrary, AR+ cells exclusively metabolised early precursor into AR-

driven 5a,3b,6a-P, while AR- cells appeared not to depend on steroid hormones to sustain 

growth, likely in a phenomenon where non-steroid “outlaw” compounds such as growth factors 

and receptor tyrosine kinases play a more significant role in driving disease progression and 

metastases. 

9.2.2 Alternative Steroidogenic Pathways in AR-Driven Autocrine 

Signalling 

The biological relevance of 5a,3b,6a-P in prostate cancer cells remains to be fully elucidated. 

However, a number of hypotheses can be derived from the results obtained herewith. While 

being described for the first time in the prostate cancer context, the formation of 5a,3b,6a-P 

from progesterone precursor has been linked a number of proliferative activities in other 

malignant endocrine cell types such as testicular and ovarian carcinomas cell types (215) and 

breast cancer (216). This was shown by a strong positive correlation between the formation of 

5a-pregnane intermediates in alternative progesterone-related pathways and cancer 

mitogenesis/metastasis. A proposed pathway for the formation of 5a,3b,6a-P involves the 

sequential activities of 3b-HSD, 5a-reductase, AKR1C1 (all of which have been shown to be 

overexpressed of overactive in metastatic, castration-resistant samples (224–226)), and 6a-

hydroxylase (216). Even though the definite molecular mechanisms by which 5a,3b,6a-P 

aggravates malignancy are currently unclear, an imbalance in the auto- and paracrine 

communication mechanisms of pregnenolone and progesterone 3a- vs 5a-reduced metabolites 

results in the migration from normalcy (3a-induced homeostasis) to detrimental proliferation 

and detachment behaviours (5a-induced malignancy) (227). Mounting evidence suggests that 

the harmful activities of 5a-reduced metabolites are independent of nuclear steroid receptors 

(androgen or otherwise) and instead elicit rapid intracellular signalling cascades through non-

genomic membrane progesterone receptors (i.e., PGRMC1) (228). Clearly, membrane 

signalling is not suppressed by drugs targeting steroid nuclear receptors, and thus, the activation 

of deleterious cancer-related pathways such as G-protein, PI3K, and ERK1/2 signalling can 

occur undisturbed. The ensuing signalling cascade of these non-genomic receptors was shown 

to prevent cell cycle arrest and apoptosis, stimulate cancer cell generation and maintenance, 
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and dedifferentiation of epithelial and stromal cells (229). It is reasonable to hypothesise that 

the observed correlation with AR dependency for this likely AR-independent phenomenon in 

AR+ cell lines lies in the gonadal steroid (i.e., testosterone) control of such membrane receptors 

expression (230). AR+ sensor cells that translate endocrine cues into paracrine signals switch 

functions towards autocrine mediation and subsequent tumorigenesis. In this case, non-classical 

AR activity possibly drives tumour progression via two related mechanisms: 1) overexpression 

or increased activity of steroidogenic enzymes leading to the formation of non-androgenic but 

signalling-capable steroids (as in 5a,3b,6a-P), and 2) (increased) expression of cognate non-

genomic membrane receptors for intracellular signalling of cancer-related pathways. This 

pleiotropic activity of the non-classical AR activation in pathological states creates an ideal 

microenvironment for cancer progression and development. 

While a deeper understanding of the molecular relevance and biosynthesis of 5a,3b,6a-P is 

warranted, our work highlights alternative steroidogenic pathways that may be linked to the 

autocrine mis-regulation observed in epithelial cancer cells. These are, in turn, outside of the 

scope of current treatment strategies and may account for the observed resistance to treatment 

in clinical settings. To test this assumption, we made use of the selective CYP17A1 inhibitor 

abiraterone, currently, the state-of-the-art treatment (administered as pro-drug abiraterone-

acetate: ZytigaÒ) co-administered with potent AR competitive antagonist enzalutamide for 

advanced prostate cancer patients. 

9.2.3 The CYP17A1-Independent Hindrance of Steroidogenesis with 

Abiraterone 

9.2.3.1 Formation of D4-Abi and 3b-HSD Inhibition on 5a,3b,6a-P Formation 

As previously mentioned, Abi is a potent and selective CYP17A1 inhibitor. In vitro experiments 

and clinical data support its efficacy by the abrogation of late androgen synthesis from early 

precursors, with undetectable levels of circulating extragonadal steroids (149). Therapeutic 

strategies rely on the pivotal catalytic roles that both CYP17A1 enzymatic functions have in 

the biotransformation of progestagens through to sex hormones. However, intratumoral 

analyses revealed the persistence of low androgens concentrations still capable of eliciting AR-

signalling in prostate cancer cells despite successful CYP17A1 blockage, a hallmark of CRPC 

relapse. Resistance to treatment has been postulated as a multi-factorial phenomenon possibly 

including increased expression of intraprostatic CYP17A1 and emergence of AR splice variants 

through which cross-activation by alternative and hypersensitivity to canonical ligands happen. 
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Due to the fact that Abi is a selective CYP17A1 inhibitor and this enzyme is not present in the 

biosynthetic pathway of 5a,3b,6a-P, it was surprising at first to witness the complete blockage 

of metabolite formation from biologically relevant levels of pregnenolone (10 nM) after 

treatment with Abi (10 µM). Coincidentally, during our studies, Li and colleagues (231) 

reported the conversion of Abi to its D4 cognate after 3b-HSD-mediated metabolism into D4-

Abi (D4A) in human patients with multi-enzyme inhibition capabilities. The amenability of Abi 

conversion to the 3-keto congener D4A by 3b-HSD metabolism is rooted in the structural 

similarity of the parental D5 3b-hydroxyl steroid-like structure with the enzyme’s D5 native 

ligands, such as DHEA and D5-androstenediol. This D4 compound, therefore, has additional 

binding (and inhibitory) abilities to 3b-HSD and 5a-reductase, probably due to its steroid A 

and B rings being identical to testosterone in addition to parental CYP17A1 blockage. The first 

two being essential in the synthesis of 5a,3b,6a-P.  

Further investigations in our group showed the presence of D4A in cell culture supernatants in 

the nM range, namely 12.50 nM, 101.85 nM, and 61.50 nM in LNCaP, C4.2, and VCaP cell 

lines, respectively. Furthermore, Abi administration was only able to arrest metabolism of 

pregnenolone, not of progesterone. Since the only known enzymatic reaction between these two 

progestagens is dependent upon 3b-HSD activity, we assumed that D4A is the responsible 

compound for the metabolic halt in metabolism displayed in our radio-HPLC experiments, not 

Abi. To corroborate our in vitro findings and our current hypothesis, further experiments with 

D4A as the treatment compound are necessary. Nonetheless, his fact alone would not account 

for the observed patient resistance to Abi treatment since, by means of its D4A metabolite, Abi 

would supposedly also successfully inhibit the formation of mitogenic 5a,3b,6a-P in vivo. Our 

total steroid assessment of Abi-treated samples, however, paints a different, more complete 

picture, discussed below. 

9.2.3.2 Immunological Assays Hint at a Neuroendocrine Phenotype Transition of Prostate 

Epithelial Cells in a CYP17A1-Independent Microenvironment 

The de novo synthesis of late androgens (testosterone and DHT) or androgen precursor (DHEA) 

from pregnenolone has been consistently argued against in our radio-HPLC and immunoassays 

discussed above. However, Abi co-administration led to increases in DHEA levels in orders of 

20- to 100-fold. DHEA, the most abundant circulating steroid in humans and the major source 

of extragonadal steroids in its sulfate form (DHEA-S), does constitute a major player in the 

possible mechanisms of Abi resistance. Adding further evidence in solving another piece of 
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this steroidogenic puzzle, we observed that DHEA levels found in the supernatant were 

partially, but significantly, hampered with co-administration of commercially available steroid 

sulfatase (STS) inhibitor, STX64. This STS inhibitor readily reduced DHEA production in 

androgen-responsive cells by 60% and 51% in LNCaP and VCaP cell lines, respectively. Taken 

together, our observations of androgen-responsive, Abi-treated cells suggest that while on the 

one hand prostate epithelial carcinoma cells are not capable of de novo steroidogenesis from 

primordial steroid precursor pregnenolone, on the other, treatment with Abi and to a lesser 

extent D4A leads to the emergence of alternative pathways responsible for DHEA production 

in a CYP17A1-independet manner. The central and early activity of CYP17A1 in steroid 

metabolism and canonical DHEA formation in all peripheral tissues (including the prostate and 

adrenal glands, and gonadal tissues) raises questions as to which mechanisms are set in place 

to support DHEA synthesis and, most importantly, what are the precursors involved in this case. 

Since DHEA is the immediate precursor for testosterone and DHT synthesis sustaining AR 

activation and cancer progression, the phenomenon observed herewith could constitute one of 

the explanations for Abi treatment resistance seen in advanced and metastatic prostate tumours 

in patients. 

Although the steroidogenic pathways involved in this resistance-associated process are beyond 

the scope of this thesis, based on the works of Maayan et al (232) and Baulieu et al (233) in the 

CYP17A1-independent synthesis of DHEA in the central nervous system (CNS), we probed 

the possible role played by the immediate precursor upstream of pregnenolone: cholesterol. In 

summary, a hypothetical scenario would suggest that adenocarcinoma cells transdifferentiate 

into neuroendocrine (NE) prostatic carcinoma-like cells (a phenomenon being increasingly 

demonstrated in androgen-depleted environments) with phenotypes that are CYP17A1-

independent insofar their production of DHEA from cholesterol by metabolizing enzymes yet 

to be elucidated. NE-like PC cells originate either de novo or through the acquisition of genomic 

and epigenetic alterations in the transdifferentiation process of cancer epithelial cells during 

disease progression, both of which appear to act as adaptive responses to systemic therapies 

(234). Radio-HPLC experiments were conducted with 3H-cholesterol and initially, no 

conversion to DHEA was observed in this set-up. This could be reasoned by two different 

arguments: 1) the possibility of cholesterol depots in the cells, which may be consumed during 

starvation conditions and 2) the alternative use of cholesterol and cholesterol sulphate (the latter 

implicated as a differentiating compound in cancerous tissues (235)) precursors such as 

homocysteine and oxidized low-density lipoprotein (LDL) present in culture media, also 

contributing to depot formation. It is clear that additional experiments would be necessary to 
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provide further evidence of cholesterol involvement or lack thereof, in this hypothetical 

pathway, including protein/mRNA data for the steroidogenic enzymes under investigation. 

Furthermore, the assessment of NE cellular populations would be highly beneficial in 

stratifying the subpopulations and clonal evolution that may be responsible for this autocrine 

signalling migration. This, in turn, can be achieved by employing a number of different 

techniques: genome-wide analysis or qPCR of NE-related transcripts such as Trp53, Rb1 and 

MYCN which are typical of poorly differentiated NE tumours, as well as immunocytochemistry 

of characteristic markers in neurosecretory cells (i.e., chromogranin A, synaptophysin, CD56 

and neuro-specific enolase). 

Finally, it must be considered the possibility that the overall quantitative and qualitative 

alterations found in steroidogenic potentials of prostate cancer cells during our in vitro studies 

are caused by the artificial use of different steroid precursors and inhibitors. It is likely that not 

only steroid depletion during starvation conditions but also the employment of Abi and 

pregnenolone, mimicking an in vivo ADT treatment environment, are collectively responsible 

for the observed phenomena in our setups and the emergence of previously unknown bypass 

mechanisms for androgen biosynthesis. Since genomic and phenotypic alterations depend on 

specific drivers of organ site and disease context, the biomarker potential of 5a,3b,6a-P and 

the rise of DHEA in Abi-treated patients as possible causes for treatment resistance must be 

assessed in actual clinical settings (i.e., prostate tissue, human plasma). However, the extremely 

restricted availability of patient samples from human biopsies and the logistics and ethical 

hurdles that need to be overcome in such studies, highlight the practicality and importance of 

in vitro data and models. These are a powerful tool to understand the plasticity of cancer cells’ 

molecular mechanisms in tightly regulated environments, being able to single out unique 

variables in the complex and redundant mechanisms taking place, which would otherwise be 

impossible to determine. 

9.2.4 Conclusion and Outlook – Mis-Regulation of Steroid Signalling in 

Prostate Cancer 

Despite renewed efforts in the design and development of efficacious drugs for the treatment 

of advanced prostate cancer, disease relapse and death are highly detrimental outcomes that 

persist in almost all treated patients. The clinical relevance and occurrence of intraprostatic 

androgen signalling even under a castrated environment make evident the continuous need to 

better understand the drivers of lineage plasticity that lead to ADT treatment resistance. 
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Our work sheds light on at least one cell-autonomous mechanism for uncontrolled proliferation 

via the persistent mis-regulated cross-talk between the AR and oncogenic signalling pathways. 

In this scenario, the typical response of prostate cells in translating endocrine cues to paracrine 

signalling that sustains normalcy shifts to autocrine mechanisms that regulate the intracrine 

synthesis of androgens and mitogenic players in malignant tumours. Thus, available therapies 

are rendered ineffective and might instead stimulate these unfavourable events. The lack of 

mechanistic understanding of pathway initiation and maintenance of these new chemical 

languages in diseased states hamper the discovery of new, suitable targets in order to increase 

therapy efficacy without cancer recurrence. The results discussed above call for further 

characterization of prostate carcinoma cells in androgen-depleted environments and elucidate 

the fate of early steroid precursors in androgen-responsive cells, paving the way for a new 

comprehension of the biological relevance of progesterone metabolites in prostate cancer, the 

efficacy of Abi treatment, and the development of resistance. 

The polypharmacological approach used today to treat patients with Abi and enzalutamide has 

provided significant improvements compared to single therapies. However, the pleiotropic 

activities of the AR and the variety of novel AR-driven pathways appear to demand a more 

diversified drug combination approach. These should prevent the appearance of pathway 

redundancy that predisposes the strategy to resistance. Thus, the discovery of new targets in 

these pathways should capitalize therapeutic strategies and increase therapy efficacy. Finally, 

successful treatment for drug-resistant or metastatic tumours should not be based solely on the 

discovery of novel druggable chemical entities. The timing of treatment is another invaluable 

asset at the disposal of clinicians. Curiously, a parallel with the principles of bacterial QS 

inhibition can be seen in the remarkable performance of abiraterone in the recent STAMPEDE 

trial (236). When administered to treatment-naïve patients (as opposed to those exposed to 

hormonal therapy or presenting advanced disease), Abi silences the endocrine androgen 

communication axis at an early stage, efficiently avoiding phenotypic migration and activation 

of oncogenic reciprocal signalling feedback pathways. If resistance to treatment will also appear 

in this novel treatment set up remains to be seen.
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I. General experimental information - Chemistry 

 

a. Chemical Synthesis of compounds 3–6  
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4-chloro-2-thiomethylpyrimidine  
Scheme S1. a) see reference 1b; b) See reference 1a; c) TMS-Acetylene, CuSO4, sodium ascorbate, 
tertBuOH:H2O, r.t.; d) Oxone, EtOAc:H2O, r.t.; e) heptane-1-thiol, DMF, K2CO3, 0°C; f) 1-
cyclopentylprop-2-yn-1-ol, CuSO4, sodium ascorbate, tertBuOH:H2O, r.t.  

 

Compounds 3a, 3b and 6a were synthesized as reported before.1,2 

 

2-(methylthio)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (5a): To a solution of 3a (1.0 eq) and 
TMS-acetylene (2.0 eq) in tertBuOH:water (1:1) was added CuSO4*5H2O (0.02 eq) and 
sodium ascorbate (0.1 eq). The mixture was stirred at room temperature for 16 h. Brine was 
added and the aqueous layer was extracted three times with ethyl acetate. The combined 
organic layers were concentrated in vacuum and purified by flash chromatography 
(petroleum ether/ethyl acetate 8:2) to yield 5a as a white solid (58% yield). 1H NMR (300 
MHz, CDCl3) δ 2.64 (s, 3H), 7.84 (d, J = 5.5, 1H), 7.87 (s, 1H), 8.62 (s, 1H), 8.71 (d, J = 5.4 
Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 14.3, 104.9, 121.1, 134.6, 154.9, 159.8, 173.7. MS 
(ESI) m/z: 194.1 [M+H]+. 

 

cyclopentyl(1-(2-(methylsulfonyl)pyrimidin-4-yl)-1H-1,2,3-triazol-4-yl)methanol (3): To a 
solution of 3b (1.0 eq) and 1-cyclopentylprop-2-yn-1-ol (1.0 eq) in tertBuOH:water (1:1) was 
added CuSO4*5H2O (0.02 eq) and sodium ascorbate (0.1 eq). The mixture was stirred at 
room temperature for 16 h. Brine was added and the aqueous layer was extracted three 
times with ethyl acetate. The combined organic layers were concentrated in vacuum and 
purified by flash chromatography (hexane/ethyl acetate 7:3) to yield 3 as a white solid (49% 
yield). 1H NMR (300 MHz, DMSO-d6) δ 1.63 - 2.19 (m, 9 H), 3.51 (s, 3H), 5.29 (s, 1H), 8.42 
(d, J = 5.6 Hz, 1H), 8.80 (s, 1H), 9.26 (d, J = 5.6 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 
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23.9 (2C), 24.1, 39.7, 41.1, 41.4, 77.2, 112.7, 118.8, 155.4, 156.5, 162.0, 165.4. MS (ESI) 
m/z: not found [M+H]+. Purity 96%. 

 

2-(heptylsulfonyl)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (4): To a solution of 5 (1.0 eq) in 
anhydrous DMF was added K2CO3 (3.0 eq) at 0°C. To the vigorously stirred suspension was 
added heptane-1-thiol (0.9 eq). The reaction was allowed to proceed for 20 min at 0°C and 
then quenched with an excess of water. Brine was added and the mixture was extracted 
three times with ethyl acetate. The combined organic layers were concentrated in vacuum 
and residual DMF was removed by azeotropic distillation using heptane. The crude product 
was purified by flash chromatography (petroleum ether/ethyl acetate 9:1) to yield 2-
(heptylthio)-4-(1H-1,2,3-triazol-1-yl)pyrimidine as white solid (45% yield). 1H NMR (300 MHz, 
CDCl3) δ 0.89 (t, J = 6.5 Hz, 3H), 1.19 - 1.41 (m, 6H), 1.41 - 1.58 (m, 2H), 1.78 (quin, J = 7.4 
Hz, 2H), 3.20 (t, J = 7.4 Hz, 2 H), 7.80 (d, J = 5.4 Hz, 1H), 7.85 (d, J = 1.1 Hz, 1H), 8.57 (d, J 
= 1.0 Hz, 1H), 8.68 (d, J = 5.4 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.5, 28.8, 28.9, 
29.0, 31.2, 31.7, 104.8, 121.0, 134.5, 154.9, 159.8, 173.5. MS (ESI) m/z: 278.1 [M+H]+. 2-
(heptylthio)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (1.0 eq) was dissolved in ethyl acetate and 
OxoneR (3.0 eq) dissolved in water was added. The biphasic system was vigorously stirred 
until TLC showed full conversion. Water was added and the aqueous layer was extracted 
three times with ethyl acetate. The combined organic layers were concentrated and the 
crude material was purified by flash chromatography (hexane/ethyl acetate 1:1) to yield 4 as 
a white solid (72% yield). 1H NMR (300 MHz, CDCl3) δ 0.88 (t, J = 6.9 Hz, 3H), 1.21 - 1.40 
(m, 6H), 1.41 - 1.56 (m, 2H), 1.91 (quin, J = 7.8 Hz, 2H), 3.58 (t, J = 7.7 Hz, 2H), 7.92 (d, J = 
1.3 Hz, 1H), 8.41 (d, J = 5.5 Hz, 1H), 8.75 (d, J = 1.4 Hz, 1H), 9.09 (d, J = 5.5 Hz, 1H). 13C 
NMR (75 MHz, CDCl3) δ 14.0, 22.0, 22.5, 28.4, 28.6, 31.4, 51.3, 112.6, 121.9, 135.2, 156.4, 
160.9, 166.0. MS (ESI) m/z: 351.1 [M+ACN+H]+. Purity 97%. 

 

2-(methylsulfonyl)-4-(1H-1,2,3-triazol-1-yl)pyrimidine (5): 5a (1.0 eq) was dissolved in 
ethyl acetate and OxoneR (3.0 eq) dissolved in water was added. The biphasic system was 
vigorously stirred for 1 h. Water was added and the aqueous layer was extracted three times with 
ethyl acetate. The combined organic layers were concentrated and the crude material was 
purified by flash chromatography (hexane/ethyl acetate 8:2) to yield 5 as a white solid (19% 
yield). 1H NMR (300 MHz, CDCl3) δ 3.43 (d, J = 0.9 Hz, 3H), 7.92 (s, 1H), 8.42 (dd, J = 5.5, 
0.9 Hz, 1H), 8.74 (s, 1H), 9.08 (dd, J = 5.5, 0.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 39.2, 
112.7, 121.9, 135.2, 156.4, 160.8, 166.2. MS (ESI) m/z: 226.1 [M+H]+. Purity >99%. 

 

2-(methylsulfonyl)-4-(1H-tetrazol-1-yl)pyrimidine (6): 6a (1.0 eq) was dissolved in ethyl 
acetate and OxoneR (3.0 eq) dissolved in water was added. The biphasic system was 
vigorously stirred until TLC showed full conversion. Water was added and the aqueous layer 
was extracted three times with ethyl acetate. The combined organic layers were 
concentrated and filtered over a pad of silica to yield 6 as a white solid (99% yield). 1H NMR 
(300 MHz, CDCl3) δ 3.46 (s, 3 H), 8.33 (d, J=5.4 Hz, 1 H), 9.20 (d, J=5.4 Hz, 1 H), 9.74 (s, 1 
H). 13C NMR (126 MHz, CDCl3) δ 39.2, 113.3, 140.6, 154.4, 161.9, 166.5. MS (ESI) m/z: 
227.0 [M+H]+, 199.1 [M-N2+H]+. Purity 98%. 
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b. Crystallization of 6a for X-ray crystallography 

 
Figure S1. X-ray crystal structure of compound 6a (green = nitrogen, grey = carbon, yellow = sulfur, 
white = hydrogen). 

6a was dissolved in hot chloroform and left standing open to atmosphere to allow 
evaporation. Colorless needles formed after 3 weeks. CCDC 1432241 contains the 
supplementary crystallographic data for this paper. These data can be obtained free of 
charge from The Cambridge Crystallographic Data Centre 
via www.ccdc.cam.ac.uk/getstructures. 
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a. Chemicals, bacterial strains, and media 

Yeast extract was obtained from Fluka, peptone and casein from Merck, Bacto™ Tryptone from 

BD Biosciences, and Gibco® PBS from Life Technologies. Salts and organic solvents of 

analytical grade were obtained from VWR. 

P. aeruginosa PA14 strain, and isogenic pqsR knockout mutant were stored in glycerol stocks at 

–80 °C. 

Minimal medium PPGAS3 and Luria Bertani (LB) were used. 

 

b. Pyocyanin assay 

 

Figure S2. IC50 curve of the improved inhibitory effect of 6 on pyocyanin production, an indicative of PqsR 
antagonism. Error bars represent standard error of three independent experiments (n = 3). 
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c. Prolonged Pyocyanin Assay. 

Effect of long-term PqsD inhibition on pyocyanin formation was assessed as previously 

described (pyocyanin assay) with slight modifications. Initially, treated (compound 1) and 

untreated cultures were incubated for 24 h under aerobic conditions. pyocyanin levels and 

bacterial density were determined from extracted culture aliquots. Obtained OD600 values were 

used to re-calculate the necessary dilution factors of each replicate for a final density of 0.02, 

transferred into a new plate with fresh PPGAS medium and dimethyl sulfoxide (DMSO) or 

compound 1 for additional 24 h, accordingly. Pyocyanin formation and cell growth were again 

assessed as previously described, making up for a total of 48 h of incubation with treated 

samples under constant, long-term PqsD inhibition. 

 

Figure S3. Long-term effect of PqsD inhibitor 1 on pyocyanin production in PA14 wild type. Treatment 

with 500 µM of 1 led to a reduction of pyocyanin levels to 83.5% ± 3.2 after 48 h of incubation. The 

differences in values (compared to control) determined for 17 h and 24 h were not significant. All values 

are relative to a DMSO control without addition of inhibitors. Error bars represent the standard deviation of 

three independent experiments (n = 3). * = p < 0.05. 
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d. Growth curves of P. aeruginosa PA14  

Cultures of PA14 were diluted in PPGAS medium, adjusted to an initial OD600 of 0.02, and 1.5 

mL added in triplicates into 24-well plates (Greiner Bio-One). Cultivation conditions as described 

above (SI, section IIa). Stock solutions of compound 6 in DMSO were diluted 1:100 to a final 

DMSO concentration of 1% (v/v), DMSO alone was used as control. Bacterial growth was 

measured over 48 h as a function of OD600 using FLUOstar Omega (BMG LabTech). 

 

Figure S4. Growth curves of PA14 in PPGAS minimal medium in the absence (control) and presence of 
varying concentrations (100 µM to 500 µM) of compound 6. 
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e. Antibiofilm effects of compound 2 

 

Figure S5. Effects of compound 2 (15 µM; solubility maximum) on volume of P. aeruginosa strain PA14 
biofilm. Experiment was performed as described in the experimental section of the main text. Error bars 
represent standard error of at least two independent experiments. 

 

f. PqsD in vitro assay 
The assay was performed as reported before.4 

 

g. PqsR in vitro assay 

The assay was performed in E. coli DH5α as reported before.5 
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I. GENERAL EXPERIMENTAL INFORMATION – BIOLOGY 
 
a. E. coli reporter-gene assay: dose-response curves 

 

 
Figure S1. Antagonistic activity of different compounds measured in the E. coli reporter gene assay. 

Representative dose-response curves of a) compound 7 b) compound 12. PqsR activity refers to the 

stimulation of PqsR induced by 50 nM PQS (= 1). Black dotes (•) represent the PqsR activity measured 

in the presence of a single compound concentration. The continuous black line is the none-linear 

regression analysis to determine IC50 values using a log (inhibitor) vs. response model (Graph Pad Prism 
5.04). 

b. Effects on pyocyanin in P. aeruginosa 
 

 

Figure S2. Inhibition of virulence factor pyocyanin was evaluated in the clinical isolate PA14. 

Representative dose-response curves a) compound 7 b) compound 12. Black dotes (•) represent the 

reduction of pyocyanin in presents of a given compound concentration relative to DMSO control (= 0 

%). The continuous black line is the none-linear regression analysis to determine IC50 values using a 

log (inhibitor) vs. response model with constrains (bottom = 0; top =100) (Graph Pad Prism 5.04). 

UPLC-MS/MS quantification of extracellular 2-AA. 
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c. UPLC-MS/MS quantification of extracellular 2-AA	

The quantification of 2-AA was performed following a modified protocol of 

Kesarwani et. al.1 The analysis was performed on an Accela-HPLC system (Thermo 

Scientific) coupled with a triple quadrupole mass spectrometer TQS Quantum Access 

Max (Thermo Scientific) using 5,6,7,8-tetradeutero-2-heptyl-4(1H)-quinolone (d4-

HHQ) as internal standard. An NUCLEODUR C18 Pyramid column (2x125 mm, 3 µm; 

Macherey-Nagel) was used as stationary phase along with a mobile phase consisting of 

water + 0.1% formic acid (A) and methanol + 0.1% formic acid (B) at a flow rate of 

0.7 ml/min. The following chromatographic conditions were applied: 0.0-0.5 isocratic 

10% B, 0.5-2.0 linear gradient up to 100 % B, 2.0-3.0 isocratic 100% B, ending 3.0-4.5 

initial conditions. The compounds were ionized using electrospray ionization in 

positive ion mode with the following parameters: spray voltage: 3500 V; vaporizer 

temperature: 370 °C; sheath gas pressure (nitrogen): 35 units; auxiliary gas pressure 

(nitrogen): 30 units; skimmer offset voltage: 0 V; capillary temperature: 270 °C. 

Selected reaction monitoring was used for detecting 2-AA (136.016→91.048 

[quantitative], collision energy: 24 V, tube lens: 68 V; 136.016→117,998 [qualitative], 

collision energy: 13 V, tube lens: 68 V) and d4-HHQ (248.081→162.965 [quantitative], 

collision energy: 32 V, tube lens: 100 V; 248.081→175.982 [qualitative], collision 

energy: 34 V, tube lens: 100 V) employing: scan width: 0.002 m/z; scan time: 0.100 s; 

peak width: 0.70. 

d. Cytotoxicity assay  

HEK 293 cells (2x105 cells per well) were seeded in 24-well, flat-bottomed plates. 

Culturing of cells, incubations and OD measurements were performed as described 

previously with small modifications.2 24 h after seeding the cells the incubation was 

started by the addition of compounds in a final DMSO concentration of 1 % (v/v). The 

living cell mass was determined after 24, 48 and 72 h followed by the calculation of 

LD50 values. 
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Table S1. Cytotoxicity of selected compoundsa 

Numb
er 

Cyctotoxicity 
HEK293a  
LD50 [µM] 

7 30 

8 >50b 

10 > 25b 

12 > 50b 
aviability of HEK293 cells was quantified in the presence of test compound after 72h using MTT. bno 

effect on cell viability at solubility maximum. 

e. Lectin B expression in P. aeruginosa 

 
Figure S3. Expression of LecB in P. aeruginosa PAO1. Coomassie-stained 15% SDS-PAGE of total 

cell (TC) fractions of P. aeruginosa cultures grown for 24 h in absence or presence of compound 10 or 

12 (5 µM or 25 µM).  
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f. Ligand Lipophilicity Efficiency (LLE) calculation 

The ligand lipophilicity efficiency was calculated according to equation 13 

𝐿𝐿𝐸 = 0.11 + 1.4 ∗ *+,-./01234
567

  (1)  

with pIC50 antagonistic activity measured in E.coli, calculated logD (ACD/Percepta 

2015) and NHA (number of heavy atoms). This equation based on the ones suggested 

by Mortenson and Murray4 and Shultz5.  
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II. GENERAL EXPERIMENTAL INFORMATION – CHEMISTRY 
 
a. Synthesis of intermediates 

 

 

N-(4-chlorophenyl)-2-mercaptoacetamide (2a) was synthesized according from to 

general procedure A6 from 4-chloroaniline (2.77 g, 21.71 mmol) and 2-mercaptoacetic 

acid (2.00 g, 21.7 mmol) and afford the expected product as pale yellow solid (2.99 g, 

14.8 mmol, 68 % yield). 1H NMR (300 MHz, CHLOROFORM-d) d ppm 2.04 (t, J=9.2 

Hz, 1 H), 3.41 (d, J=9.3 Hz, 2 H), 7.28 - 7.37 (m, 2 H), 7.40 - 7.60 (m, 2 H), 8.53 (br. 

s., 1 H); MS (ESI+) m/z 202 (M+H)+. 

 

 

 

2-mercapto-N-(4-phenoxyphenyl)acetamide (3a) was synthesized from 4-

phenoxyaniline (1.00 g, 5.40 mmol) and 2-mercaptoacetic acid (0,547 g, 5,94 mmol) to 

give the expected product as grey solid (1.1 g, 4.24 mmol, 79 % yield). 1H NMR (300 

MHz, CHLOROFORM-d) d ppm 1.96 - 2.13 (m, 1 H), 3.42 (d, J=9.1 Hz, 2 H), 6.97 - 

7.05 (m, 4 H), 7.06 - 7.15 (m, 1 H), 7.29 - 7.40 (m, 2 H), 7.44 - 7.59 (m, 2 H), 8.51 (br. 

s., 1 H); MS (ESI+) m/z 260 (M+H)+, 282 (M+Na)+. 
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b. Purity of final compounds (LC/MS determination) 

Purity control was carried out on two different systems:  

SpectraSystems LC system (Thermo Fisher Scientific) consisting of a pump, an 

autosampler, and a VWD detector. Mass spectrometry was performed on an MSQ 

electro spray mass spectrometer (Thermo Fisher Scientific). The system was operated 

by the standard software Xcalibur. An RP-C18 NUCLEODUR 100-5 (125x3 mm) 

column (Macherey-Nagel GmbH) was used as stationary phase. All solvents were 

HPLC grade. For purity determination, the following methods was used: 

Mobil phase, A = water + 0.1% trifluoroacetic acid, B = acetonitrile + 0.1% 

trifluoroacetic acid; gradient, 0.0-15.0 min, 0-100% B, 15.0-20.0 min, 100% B; flow 

rate 0.8 mL/min. 

LCMS-System (Waters) consisting of a 767 sample Manager, a 2545 binary gradient 

pump, a 2998 PDA detector and a 3100 electron spray mass spectrometer equipped 

with a C-18 column (Nucleodur 100-5 C18 ec 150 x 4.6 mm). For purity determination, 

the following methods was used: 

Mobil phase, A = water + 0.1% formic acid, B = acetonitrile + 0.1% formic acid; 

gradient, 0.0-13.0 min, 0-100% B; flow rate 1 mL/min 
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 c. UV traces HPLC 
 

Compound 7 

 

 

 

Compound 8 
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Compound 9 

 
 

 

Compound 10 

 

 
 

 

Compound 11 

 
 

 

 

 



SUPPORTING INFORMATION – CHAPTER 2 

	 XLII	

Compound 12 

 
 

 

Compound 13 
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d. 1H NMR spectra 

 

Compound 7 
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Compound 8 
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Compound 9 
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Compound 10 
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Compound 11 
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Compound 12 
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Compound 13 
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I. GENERAL EXPERIMENTAL INFORMATION 

a. Tabular NMR data of 5a-pregnan-3b,6a-diol-20-one 
Table S1. NMR data for the steroid (CDCl3). 

# 
δ [ppm]a Multiplet 

structure Connectivity correlations 

13C 1H Typeb J [Hz] HMBC COSY [ppm] 

1 37.1 
1.05 (H) m - - 1.45; 1.74; 1.85  

1.74 (H’) m - 2; 5; 6; 10; 19 1.05; 1.45; 1.85 

2 30.9 
1.85 (H) m - - 1.05; 1.45; 1.74; 3.59  

1.45 (H’) m - 1; 3 1.05; 1.74; 1.85; 3.59 

3 71.1 3.59 tt 4.8; 11.1 2; 4 1.25; 1.45; 1.85; 2.22 

4 32.1 
2.22 (H) m - - 1.04; 1.25; 3.59 

1.25 (H’) m - - 1.04; 2.22; 3.59 

5 51.5 1.04 m - - 1.25; 2.22; 3.42 

6 69.2 3.42 td 4.5; 10.6 4; 5 0.91; 1.04; 2.01 

7 41.4 
0.91 (H) m - 5; 6; 8; 9; 14; 19 1.48; 2.01; 3.42 

2.01 (H’) m - 5; 6; 8; 9; 14; 19 0.91; 1.48; 3.42 

8 34.1 1.48 m - 7; 9; 14 0.73; 0.91; 1.22; 2.01 

9 53.5 0.73 m - 5; 7; 8; 10; 11; 14 1:32, 1:48, 1:64 

10 36.0c - - - - - 

11 20.9 
1.64 (H) m - 9; 12 0.73; 1.32 

1.32 (H’) m - 9; 12 0.73; 1.64 

12 38.8 
1.42 (H) m - 11; 13; 17; 18 1.32; 1.64; 2.04 

2.04 (H’) m - 8; 9; 11;  1.32; 1.42; 1.64 

13 44.0c - - - - - 

14 56.3 1.22 m - 8; 15 1.24; 1.48; 1.71 

15 24.2 
1.71 (H) m - 13; 14; 16; 17 1.22; 1.24; 1.68; 2.18 

1.24 (H’) m - 14 1.22; 1.68; 1.71; 2.18 

16 22.7 
1.68 (H) m - 13; 14; 15; 17 1.24; 1.71; 2.18; 2.54 

2.18 (H’) m - 14; 15 1.24; 1.68; 1.71; 2.54 

17 63.6 2.54 t 9.2 12; 13; 16; 18; 20 1.68; 2.18 

18 13.4 0.62 s - 12; 13; 14; 17 - 

19 13.4 0.84 s - 1; 5; 9; 10 - 

20 209.4c - - - - - 

21 31.5 2.14 s - 17; 20 - 
a Chemical shifts obtained from HSQC. b Types of multiplets from 1H-NMR: “s” = singlet; “t” = triplet; “td” = 
triplet of doublets; “tt” = triplet of triplet; “m” = multiplet. c Chemical shifts of quaternary carbons obtained from 
HMBC.	
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b. HPLC chromatograms of radioactively-labeled steroids 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure S1. HPLC chromatographic profiles of 3H-labeled steroid standards and match up to 
pregnenolone-derived metabolite produced by androgen-responsive cell lines LNCaP, C4.2 and VCaP 
after 48 h incubation under serum and steroid starvation conditions. 
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c. HPLC isolation and purification of steroidal compound 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure S2. Radio-HPLC chromatogram of [7-3H(N)]-pregnenolone metabolism in C4.2 cultures. Liquid 
chromatography allowed isolation and further purification of metabolite through sample fractionation 
(bottom). 
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d. HPLC-ESI-ToF-MS – Neurosteroid allopregnanolone metabolism into 5a-
pregnan-3b,6a-diol-20-one  

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure S3. Chromatograms (total ion current, TIC) and mass spectra obtained by HPLC-ESI-ToF-MS 
analysis of extracted and purified supernatants from C4.2 cell cultures treated with 10 nM pregnenolone 
(top) and 500 nM allopregnanolone (bottom). LC graphs (left) show the production of 5a-pregnan-
3b,6a-diol-20-one from pregnenolone and allopregnanolone substrates, the latter confirmed by NMR 
spectra analysis. Inserts show molecular structure of putative metabolic end-product. Chromatograms 
correspond to the mass spectrometer filter m/z 335.258 ± 0.002 (protonated molecular ion).	
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e. Structural representation of 5a-pregnan-3b,6a-diol-20-one  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4. (A) Planar view of the obtained molecule with corresponding carbon enumeration. (B) 3D–view 
of the metabolic product of early steroid precursors in androgen-responsive cell lines. 
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