Joint Models for Information and
Knowledge Extraction

A dissertation submitted towards the degree
Doctor of Natural Science/Engineering
of the Faculty of Mathematics and Computer Science of

Saarland University

by
Dat Ba Nguyen

Saarbricken
2017

Colloquium

Date ¢ 01.12.2017
Place Saarbriicken
Dean Prof. Frank-Olaf Schreyer

Examination Board

Prof. Gerhard Weikum
Prof. Martin Theobald
Prof. Klaus Berberich

Prof. Dietrich Klakow
Dr. Simon Razniewski

Supervisor and Reviewer
Supervisor and Reviewer
Reviewer

Chairman

Scentific Assitant

Abstract

Information and knowledge extraction from natural language text is a key as-
set for question answering, semantic search, automatic summarization, and other
machine reading applications. There are many sub-tasks involved such as named
entity recognition, named entity disambiguation, co-reference resolution, relation
extraction, event detection, discourse parsing, and others. Solving these tasks is
challenging as natural language text is unstructured, noisy, and ambiguous. Key
challenges, which focus on identifying and linking named entities, as well as dis-
covering relations between them, include:

e High NERD Quality. Named entity recognition and disambiguation, NERD
for short, are preformed first in the extraction pipeline. Their results may
affect other downstream tasks.

e Coverage vs. Quality of Relation Extraction. Model-based information ex-
traction methods achieve high extraction quality at low coverage, whereas
open information extraction methods capture relational phrases between
entities. However, the latter degrades in quality by non-canonicalized and
noisy output. These limitations need to be overcome.

o On-the-fly Knowledge Acquisition. Real-world applications such as question
answering, monitoring content streams, etc. demand on-the-fly knowledge
acquisition. Building such an end-to-end system is challenging because it
requires high throughput, high extraction quality, and high coverage.

This dissertation addresses the above challenges, developing new methods to
advance the state of the art. The first contribution is a robust model for joint in-
ference between entity recognition and disambiguation. The second contribution
is a novel model for relation extraction and entity disambiguation on Wikipedia-
style text. The third contribution is an end-to-end system for constructing query-
driven, on-the-fly knowledge bases.

iii

Kurzfassung

Informations- und Wissensextraktion aus natiirlichsprachlichen Texten sind
Schliisselthemen vieler wissensbassierter Anwendungen. Darunter fallen zum
Beispiel Frage-Antwort-Systeme, semantische Suchmaschinen, oder Applikatio-
nen zur automatischen Zusammenfassung und zum maschinellem Lesen von Tex-
ten. Zur Losung dieser Aufgaben miissen u.a. Teilaufgaben, wie die Erkennung
und Disambiguierung benannter Entitaten, Koreferenzresolution, Relationsextrak-
tion, Ereigniserkennung, oder Diskursparsen, durchgefiihrt werden. Solche Auf-
gaben stellen eine Herausforderung dar, da Texte natiirlicher Sprache in der Regel
unstrukturiert, verrauscht und mehrdeutig sind. Folgende zentrale Herausforderun-
gen adressieren sowohl die Identifizierung und das Verkniipfen benannter En-
titdten als auch das Erkennen von Beziehungen zwischen diesen Entitaten:

e Hohe NERD Qualitdt. Die Erkennung und Disambiguierung benannter En-
titdten (engl. "Named Entity Recognition and Disambiguation”, kurz "NERD")
wird in Extraktionspipelines in der Regel zuerst ausgefiihrt. Die Ergebnisse
beeinflussen andere nachgelagerte Aufgaben.

o Abdeckung und Qualitdt der Relationsextraktion. Modellbasierte Informa-
tionsextraktionsmethoden erzielen eine hohe Extraktionsqualitat, bei allerd-
ings niedriger Abdeckung. Offene Informationsextraktionsmethoden er-
fassen relationale Phrasen zwischen Entitaten. Allerdings leiden diese Meth-
oden an niedriger Qualitdt durch mehrdeutige Entitdten und verrauschte
Ausgaben. Diese Einschrankungen miissen iiberwunden werden.

e On-the-Fly Wissensakquisition. Reale Anwendungen wie Frage-Antwort-
Systeme, die Uberwachung von Inhaltsstromen usw. erfordern On-the-Fly
Wissensakquise. Die Entwicklung solcher ganzheitlichen Systeme stellt
eine hohe Herausforderung dar, da ein hoher Durchsatz, eine hohe Extrak-
tionsqualitat sowie eine hohe Abdeckung erforderlich sind.

Diese Arbeit adressiert diese Probleme und stellt neue Methoden vor, um den

aktuellen Stand der Forschung zu erweitern. Diese sind:

e Einrobustes Modell zur integrierten Inferenz zur gemeinschaftlichen Erken-
nung und Disambiguierung von Entitéten.

e Ein neues Modell zur Relationsextraktion und Disambiguierung von
Wikipedia-ghnlichen Texten.

vi

e Ein ganzheitliches System zur Erstellung Anfrage-getriebener On-the-Fly
Wissensbanken.

Acknowledgements

I would take this moment to thank my advisor Prof. Martin Theobald and my
supervisor Prof. Gerhard Weikum for their invaluable guidance throughout my
doctoral studies. I especially enjoyed the freedom they gave me to pursue my
research interests. They have not only assisted me in completing this work, but
they have also helped me to broaden my attitude towards research, and to develop
my personality.

I would like to thank my co-authors Johannes Hoffart, Abdalghani Abujabal
and Nam Khanh Tran for their great team work and insightful discussions. Many
thanks to my officemates Amy Siu, Sairam Gurajada, Xuan-Cuong Chu, and to
all my colleagues and staff at D5 group for making the workplace an exciting
atmosphere.

A special note of thanks to Quan Nguyen and his family for their great help
to my life. Thanks are sent to Uncle Duy Ta, Aunt Hong Le, Aunt Nhung Le, Aunt
Nga Le, and to my close friends Quoc-Dai Nguyen, Hai-Dang Tran, Hoang-Vu
Nguyen, Duc-Duy Nguyen for their encouragement.

Finally, I would like to thank my parents and my parents-in-law. Without
their support I would have not done this work.

vii

viii

To my little family Thanh Hoa, Minh Vu and Hai Phong

Contents

Introduction

1.1 ScopeandGoals

1.2 Challenges

1.3 Contributions

1.4 Publications

1.5 Organization

Preliminaries

21 DataModel L

2.2 Feature Space for Named Entity Disambiguation
221 Backgrounds L.
2.2.2 Entity Repository and Name-Entity Dictionary
223 Standard Features
2.24 Domain-Oriented Feature
2.2.5 Syntactic Dependency Feature

Joint Model for Named Entity Recognition and Disambiguation
3.1 Introduction

32 RelatedWork.
3.3 System Overview
3.4 Feature Model
341 NEDFeatures
342 NERFeatures
3.5 J-NERD Factor Graph Model
3.5.1 Linear-Chain Model
352 TreeModel, .
353 GlobalModels
3.54 Inference & Learning
3.6 Experiments L
361 Setup
3.6.2 Results for CONLL-YAGO2
3.6.3 End-to-End NERDonACE

ix

(S O

O O O 0 3

x | Contents

3.6.4

End-to-End NERD on ClueWeb 29

3.7 Summary e 30

4 Joint Model for Relation Extraction and Entity Disambiguation = 31

4.1 Introduction and Related Work 31

42 System Overview 32

43 Relation Pattern Mining 33

4.4 Relation Pattern Labeling 33

45 JointModel 34

4.6 Experiments 35

4.6.1 Corpora 35

4.6.2 Systems under Comparison 36

4.6.3 Experiments on Relation Extraction. 37

4.6.4 Experiments on Entity Disambiguation 37

4.6.5 End-to-End Experiments 38

47 Summary e e e e e e e e e e e 39

5 On-the-Fly Knowledge Base Construction 41

5.1 Introduction and Related Work 41

5.2 System Overview 43

5.2.1 Design Space and Choices 43

52.2 QKBflyOverview 44

53 Semantic Graph Lo oL 46

54 Graph Algorithm o oo 48

5.5 On-the-fly Knowledge Base Construction 52

56 OQKBflyatWork 54

57 Experiments 55

5.7.1 Experiments on KB Construction 55

5.7.2 Experiment on Joint NEDandCR 58

5.7.3 Experiments on Information Extraction 59

5.7.4 Use Case: Question Answering 60

58 Summary 62

6 Conclusions 65

6.1 Contributions 65

6.2 Outlook. 66
6.2.1 Joint Inference at Feature-Level for Relation Extraction

and Entity Disambiguation 66

6.2.2 Higher-arity Relation Extraction and Entity Disambiguation 66

6.2.3 On-the-Fly Relation Paraphrase Mining 66

Appendices

Contents | xi

A Additional Details 81
Al ILPSetup 81
A2 QASetup e 82

0| Contents

Chapter 1

Introduction

1.1 Scope and Goals

The most natural form of storing information in the human history is text such
as books, news articles, web pages, and more. This massive information source
keeps increasing day by day. In the last decade, computer scientists have put a lot
of effort into automatically extracting, representing, and organizing meaningful
information from natural language text. Information and knowledge extraction
is the process of deriving high-quality information or knowledge from natural
language text (Hearst, 1999). Consider the following example:

“In 1905, Einstein published a paper advancing an explanation of
the photoelectric effect, which awarded him a Nobel Prize later.”

The goal is to automatically extract potentially valuable information and lift
it into formal representation, for example:

e fact Fj : <Albert_Einstein, work_on_in, Photoelectric_effect, 1905>,

e fact o <A1bert_Einstein, win, Nobel_Prize_in_Physics>,

o the temporal and causality relationships between F; and F,.
There are many sub-tasks involved such as named entity recognition, named en-
tity disambiguation, co-reference resolution, relation extraction, event detection,
discourse parsing, and more.

Named Entity Recognition, NER for short, is the task that deals with the iden-
tification of entity mentions in natural language text and their classification into
coarse-grained semantic types such as person, location, organization, misc, and
more (Grishman and Sundheim, 1996; Tjong Kim Sang and De Meulder, 2003;
Finkel et al.,, 2005). For example, state-of-the-art NER tools annotate the above
example sentence with a PERSON mention “Einstein” and a MISC mention “Nobel
Prize”. Recently, the strict requirement that a mention must refer to an individual
named entity as opposed to a general concept is relaxed, allowing for other in-
formative noun-phrases to be recognized as well. This is because the recognition
of such noun-phrases may contribute to the end results of the extraction process.

2| Chapter 1. Introduction

For instance, the TIME mention “1905” and the MISC mention “photoelectric effect”
should be annotated as well.

Named Entity Disambiguation, NED for short, is the task that involves the dis-
ambiguation of entity mentions by mapping them to proper entities in a knowl-
edge base (Bunescu and Pasca, 2006; Hoffart et al., 2011a; Cucerzan, 2014). For ex-
ample, NED tools link the mention “Einstein” to the physicist Albert_Einstein,
the mention “Nobel Prize” to Nobel_Prize_in_Physics, etc.

Co-reference Resolution, CR for short, is the task that aims to identify all lin-
guistic expressions referring to the same entity within a text (Hirschman and
Chinchor, 1998; Doddington et al., 2004). For example, CR tools determine that
“Einstein” and “him” both refer to the same entity, but are different from the men-
tion “Nobel Prize”.

Relation Extraction is the task that aims to detect and classify the semantic rela-
tions between entities, and thus can perform fact extraction from natural language
text (Surdeanu and Ciaramita, 2007; Mintz et al., 2009; Suchanek et al., 2009; Riedel
et al,, 2013). For example, the relation win between two entities Albert_Einstein
and Nobel_Prize_in_Physics can be inferred based on the textual context (i.e.,
“awarded”) in the example sentence.

Event Detection is the task that aims to extract events from text, each consisting
of a fact with a given point of time and/or place (Ling and Weld, 2010; Kuzey and
Weikum, 2012, 2014). For example, the fact that Albert Einstein won the Nobel
Prize in Physics at a specific point of time (i.e., 1921) is an event.

Discourse Parsing is the task that aims to detect and categorize discourse rela-
tions between discourse segments in the text (Hernault et al., 2010; Feng and Hirst,
2012; Xue et al., 2015). For example, the example sentence expresses the temporal
and causality relationships between the work of Einstein on photoelectric effect
and his achievement (i.e., a Nobel Prize) later on.

Despite the fact that computer science and computational linguistics scientists
have been working on those tasks for years, information and knowledge extrac-
tion is still not a solved task as natural language text is unstructured, noisy, and
ambiguous. There is a multitude of issues that need to be dealt with. Some of
these —which focus on identifying and linking named entities, as well as discov-
ering relations between them- are addressed in this work.

1.2 Challenges

Challenge C1: NERD Quality. Named entity recognition and disambiguation,
NERD for short, are preformed first in the knowledge extraction pipeline. Their
results may affect other downstream tasks. Therefore, controlling the quality
of this process is extremely important. State of the art methods such as Finkel
et al. (2005), Ratinov and Roth (2009) for NER, and Cucerzan (2014); Hoffart et al.

1.3. Contributions | 3

(2011a); Ratinov et al. (2011) for NED are still far from human understanding ca-
pabilities. Moreover, NERD typically proceed in two stages, which may produce
inconsistent results. For example, there are cases when NER classifies a mention
(e.g., “Germany”) into type LOCATION while NED links it to an ORGANIZATION entity
(e.g., Germany_national_football_team).

Challenge C2: Coverage vs. Quality of Relation Extraction. Early approaches
(Brin, 1998; Mintz et al., 2009; Suchanek et al., 2009; Singh et al., 2013) put great
emphasis on the extraction quality by focusing on a set of predefined relations like
those present in a knowledge base. However, they are inherently limited in the
coverage of what happens in the real world. Other methods (Banko et al., 2007;
Etzioni et al., 2011; Mausam et al.,, 2012) extract relational surface phrases, and
thus achieve much higher recall. They can potentially find any relation that holds
between entities. However, the relational phrases are not canonicalized, and they
are often noisy. These limitations of both directions need to be overcome.

Challenge C3: On-the-fly Knowledge Acquisition. On-the-fly information
extraction in general —and knowledge base construction in particular— are in high
demand. They facilitate real-world applications such as question answering (Be-
rant et al., 2013; Bast and Haussmann, 2015; Xu et al., 2016), monitoring digital
content streams (e.g., when an analyst or journalist becomes interested in a par-
ticular person, organization or event), and more. These types of systems require:

e efficiency as they have to process a collection of text on-the-fly,

e high coverage as they have to capture new entities, facts, and events,

e high quality as the output will serve as input for downstream applications.

Building such an end-to-end system is challenging.

1.3 Contributions

This work addresses the above challenges, developing new methods to advance
the state of the art:

J-NERD. We present J-NERD (Nguyen et al., 2014, 2016), a novel kind of prob-
abilistic graphical model for the joint recognition and disambiguation of named-
entity mentions in natural-language text. J-NERD is based on a supervised, non-
linear graphical model that combines multiple per-sentence tree-shaped models
into an entity-coherence-aware global model. The global model detects men-
tion spans, tags them with coarse-grained types, and maps them to entities in
a single joint-inference step based on the Viterbi algorithm (for exact inference)
or Gibbs sampling (for approximate inference). J-NERD additionally considers
richer features, including domain-oriented feature and syntactic dependency fea-
ture (i.e., harnessing dependency parse trees and verbal patterns that indicate
mention types as part of their subject or object arguments). J-NERD improves
the quality over the existing state of the art named entity recognition and disam-
biguation systems (Challenge C1).

4| Chapter 1. Introduction

J-REED. We present J-REED (Nguyen et al., 2017), a novel joint model for re-
lation extraction and entity disambiguation on Wikipedia-style text. J-REED is
based on graphical models that capture interdependencies between entity disam-
biguation and the relational phrases. By considering which lexical types of enti-
ties are compatible with the type signature of which relation, we can boost the
accuracy of both sub-tasks. Entity names are mapped to the entities registered
in a knowledge base, while relation patterns are extracted as crisp as possible
(Challenge C2). Additionally, without particular assumptions about the target
relations, J-REED can capture many interesting relations which are absent from
all recent knowledge bases. J-REED improves the quality over pipelined combina-
tions of the state-of-the-art Open Information Extraction (Open IE) systems and
NED systems.

QKBfly. We present QKBfly (Nguyen et al., 2018), a novel end-to-end system
for constructing query-driven, on-the-fly KBs. QKBfly takes as input an entity-
centric query or a natural-language question, automatically retrieves relevant
source documents (via Wikipedia and news sources), runs a novel form of knowl-
edge extraction on the sources, and builds a high-coverage knowledge base that
is focused on the entities of interest (Challenge C3). At the heart of QKBfly is
a semantic-graph representation of sentences that captures per-sentence clauses,
noun-phrases, pronouns, as well as their syntactic and semantic dependencies.
Based on this graph, we devise an efficient inference technique that performs
three key information extraction tasks, namely named-entity disambiguation, co-
reference resolution and relation extraction, in a light-weight and integrated man-
ner. Because of the clause-based representation of sentences, QKBfly is not lim-
ited to binary predicates but can also extract ternary (or higher-arity) predicates.
Compared to mainstream KBs, we acquire facts for a much larger set of predicates.
Compared to Open IE methods, arguments of facts are canonicalized, thus refer-
ring to unique entities with semantically typed predicates derived from precom-
puted clusters of phrases (Challenge C2). In addition to supporting analytical
queries, QKBfly thus also facilitates the application of question-answering (QA)
frameworks.

1.4 Publications

This work includes material published in top-tier conferences and journals:

e D. B. Nguyen, J. Hoffart, M. Theobald, and G. Weikum. (2014). AIDA-
light: High-Throughput Named-Entity Disambiguation. In Proceedings of
the Workshop on Linked Data on the Web co-located with the 23rd Interna-
tional World Wide Web Conference (WWW ’14).

e D. B. Nguyen, M. Theobald, and G. Weikum. (2016). J-NERD: Joint Named
Entity Recognition and Disambiguation with Rich Linguistic Features. Trans-
actions of the Association of Computational Linguistics (TACL, vol. 4).

1.5. Organization |5

e D. B. Nguyen, M. Theobald, and G. Weikum. (2017). J-REED: Joint Relation
Extraction and Entity Disambiguation. In Proceedings of the 26th Conference
on Information and Knowledge Management (CIKM ’17).

e D.B.Nguyen, A. Abujabal, N. K. Tran, M. Theobald, and G. Weikum. (2018).
Query-Driven On-The-Fly Knowledge Base Construction. In Proceedings of
the 44th International Conference on Very Large Databases (VLDB ’18).

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces
the data model, notations, and the feature space for named entity disambiguation -
the core task in our work. This is followed by three Chapters which describe our
methods for named entity recognition and disambiguation, relation extraction,
and on-the-fly knowledge base construction. Chapter 3 presents a joint model
for entity recognition and disambiguation. Chapter 4 presents a joint model for
relation extraction and entity disambiguation for Wikipedia and other kinds of
entity-centric documents. Chapter 5 presents an end-to-end system for on-the-
fly KB construction that is triggered by an entity-centric user query or a natural-
language question. Finally, Chapter 6 gives conclusions and possible directions
for future work.

6| Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Data Model

In this section, we introduce our data model and establish necessary notations.

Pre-processing. Text from an input document (D) is pre-processed through
a standard NLP pipeline, including tokenization, part-of-speech (POS) tagging,
noun-phrase chunking, and dependency parsing. Thus, we obtain:

e A sequence of tokens tok = (toky, toks, . . ., tok;). We consider words, punc-
tuations, and other special characters like “$”, “€”, etc. as tokens.

e A sequence of POS tags pos = (posy, pos,, ..., pos;). Every token has a
POS tag, for example NNP for proper nouns, VBD for past tense verbs, etc.
(Santorini, 1990).

e A sequence of noun-phrases np = (np;, np,,...,np,). A noun-phrase is a
phrase (i.e., formed by adjacent tokens) which has a noun or an indefinite
pronoun as its head token. In our models, overlaps between noun-phrases

are not allowed.

For example, performing the NLP pipeline on the sentence “Einstein was awarded
a Nobel Prize.” results in sequences:

e tok = (“Einstein”, “was”, “awarded”, “a”, “Nobel”, “Prize”, °”),

e pos = (NNP, VBD, VBN, DT, NNP, NNP, .),

e np = (“Einstein”, “a Nobel Prize”).
These sequences and the dependency types (de Marneffe et al., 2006) linked be-
tween tokens in tok such as nsubj (e.g., between “awarded” and “Einstein”), dobj
(e.g., between “awarded” and “Prize”), prep_in, prep_for, etc. serve as input to
the feature functions in our work.

Named Entity Recognition. NER for short, identifies entity mentions m =
(myq, my, ..., my), each with a coarse-grained type such as PERSON, ORGANIZATION,
LOCATION, etc. For example, there are two mentions including m; = “Einstein”
with type PERSON, and my = “Nobel Prize” with type MISC in the above sentence.
A mention is usually a sub-sequence of a noun-phrase.

8| Chapter 2. Preliminaries

Named Entity Recognition. NED for short, links each mention m; to an entity
e; in an entity repository (E) extracted from Wikipedia or from a knowledge base.
Thus, we obtain e; = Albert_Einstein, and e; = Nobel_Prize_in_Physics.

Co-reference Resolution. CR for short, determines whether two noun-phrases,
or a noun-phrase and a pronoun (defined by the POS tags) refer to the same entity.

Relation Extraction. Finally, relation extraction (or knowledge extraction) de-
tects and classifies the semantic relationships between entities. We consider dif-
ferent kinds of relations. Chapter 4 focuses on binary relations between two enti-
ties while Chapter 5 explores all possible relations in a group of entities including
higher-arity ones.

2.2 Feature Space for Named Entity Disambiguation

In this section, we present a feature space used for named entity disambiguation
(NED) - the core task in our work. After the pre-processing steps through a stan-
dard NLP pipeline, we extract some different kinds of contexts (e.g., token context,
domain theme, and dependency context) for our features. Some of the features are
fairly standard, whereas others are novel.

e Standard features include prior probability of mention-entity mapping, and
similarity measures between mention strings and entity names. Addition-
ally, mention-entity token context similarity and entity-entity token coher-
ence are important features for NED — not exactly a standard feature, but
used in some prior works (Cucerzan, 2014; Hoffart et al., 2011a; Ratinov
et al., 2011).

e Novel features about the topical domain of an input text (e.g., politics, sports,
football, etc.) are obtained by a classifier based on “easy mentions”: those
mentions for which the NED decision can be made easily with very high
confidence without advanced features (Nguyen et al., 2014).

o The third feature group captures syntactic dependencies from the sentence
parsing (Nguyen et al., 2016). To our knowledge, these have not been used
in prior works.

2.2.1 Backgrounds

Named entity disambiguation is the task of linking a named entity mention to an
instance in a knowledge base such as DBpedia (Auer et al., 2007), Yago (Suchanek
et al., 2007), Wikidata (Vrandeéi¢ and Krotzsch, 2014), Freebase (Bollacker et al.,
2008), and more. Consider the following sentence:

“David played for manu, real, and la galaxy.”

with the four mentions “David”, “manu”, “real”, and “la galaxy” that have already
been marked up, NED aims to link them to the football player David_Beckham and
the three football clubs including Manchester_United_F.C., Real_Madrid_C.F.,

2.2. Feature Space for Named Entity Disambiguation |9

and LA_Galaxy, respectively. State-of-the-art systems includes the Wikipedia Miner
Wikifier (Milne and Witten, 2013), the Illinois Wikifier (Ratinov et al., 2011), Spot-
light (Mendes et al., 2011), Semanticizer (Meij et al., 2012), TagMe (Ferragina and
Scaiella, 2010; Cornolti et al., 2014), and AIDA (Hoffart et al., 2011a). Most of these
prior works combine contextual similarity measures with some form of consid-
eration for the contextual coherence among a selected set of candidate entities.
Popular joint models are graph algorithms (Hoffart et al., 2011a), integer linear
programming (Ratinov et al., 2011), or probabilistic graphical models (Kulkarni
et al., 2009). To mark up mentions, these methods use the Stanford NER Tag-
ger (Finkel et al., 2005) or dictionary-based matching.

2.2.2 Entity Repository and Name-Entity Dictionary

We harness a knowledge base, namely Yago (Suchanek et al., 2007; Hoffart et al.,
2011a, 2013), as an entity repository and as a dictionary of name-to-entity pairs
(i.e., aliases and paraphrases). We import the Yago means and hasName relations,
a total of more than 6 Million name-entity pairs (for more than 3 Million distinct
entities). Additionally, we enrich this dictionary by including the first and last
names of PERSON entities in Yago.

Dictionary Augmentation via Locality Sensitive Hashing. In order to im-
prove recall over a variety of input texts, including Web pages where many out-
of-dictionary mentions occur, we apply Locality Sensitive Hashing (LSH) in com-
bination with Min-Hash (Gionis et al., 1999; Indyk and Motwani, 1998; Broder
et al., 1998) to cover more spelling variations among these mentions. That is,
once an out-of-dictionary mention occurs, we first attempt to find similar names
in our name-entity dictionary via LSH. Second, all possible entity candidates of
these similar names are assigned to this mention as candidate entities. For ex-
ample, the mention “Northwest Fur Company” does not exist in the name-entity
dictionary, and thus there is no entity candidate for it. However, via LSH we
are able to detect that “Northwest Fur Company” and the dictionary entry “North
West Fur Company” are highly similar, such that we are able to identify the en-
tity North_West_Company as a candidate entity for this mention. KORE (Hoffart
et al., 2012) is the first work that integrated LSH into an NED system to cluster
key-phrases for an efficient form of similarity computation.

2.2.3 Standard Features

2.2.3.1 Context-Independent Features

Mention-Entity Prior. Feature fi(m;, e;) captures a prior probability of mention
m; mapping to entity e;. These probabilities are estimated from co-occurrence fre-
quencies of name-to-entity pairs in the background corpus, thus harnessing link-
anchor texts in Wikipedia. For example, on the one hand, we may have a prior of
f1(“Beckham”, David_Beckham) = 0.7, as David Beckham is more popular (today)

10| Chapter 2. Preliminaries

than his wife Victoria. On the other hand, fi(“David”, David_Beckham) may be
lower than f1(“David”, David_Bowie), for example, as this still active pop star is
more frequently and prominently mentioned than the retired football player.

Mention-Entity n-Gram Similarity. Feature fy(m;, e;) measures the Jaccard
similarity of character-level n-grams of mention name m; and the primary (i.e.,
full and most frequently used) name of entity e;. For example, for n = 2 the value
of fo(“Becks”, David_Beckham) is % In our experiments, we set n = 3.

2.2.3.2 Token-Context-Based Features

We first explain how we maintain the token contexts of both mentions and candi-
date entities which form the basis for our features.

Mention Token Context. The token context of mention m;, denoted by cnt(m;),
is extracted from the input tokens. Specifically, we form cnt(m;) by taking all
tokens with tf-idf scores except for stop-words.

Entity Token Context. Similarly, the token context of entity e;, denoted by
cnt(e;), consists of tokens (with tf-idf scores) which are obtained by simplifying
the key-phrases provided by AIDA (Hoffart et al., 2011b) for e;. For example, the
context of the entity David_Beckham with two key-phrases {“M.U. player”, “M.U.
midfielder’} in AIDA is reduced to the vector of tokens {*M.U., “player”, “mid-
fielder™}.

Mention-Entity Token Context Similarity. Feature f3(m;, e;) measures the
similarity between the token contexts of mention m; and entity e;. For exam-
ple, the mention “David” in the context of “midfielder”, “M.U.”, “football”, etc. is
more coherent with entity David_Beckham than with entity David_Bowie.

As similarity measure, we employ the weighted overlap coefficient between
two vectors of weighted elements cnt(x) = (v1, vy, ...) and cnt(y) = (v, v),...):

> min(vg, v;)
min (> g Vi, Dok v}()

sim(cxt(x), ext(y)) = (2.1)

Entity-Entity Token Context Similarity. In analogy to mention-entity token
context similarity feature, f(e;, ¢;) measures the coherence between the two token
contexts of two entity candidates e; and e;. This feature allows us to establish
cross-dependencies among labels in our graphical model. For example, the two
entities David_Beckham and Manchester_United_F.C. are highly coherent as they
share many tokens in their contexts, such as “champions”, “league”, “premier”,
“cup”, etc. Thus, they should mapped jointly.

2.2.4 Domain-Oriented Feature

We use WordNet domains, created by Miller (1995), Magnini and Cavaglia (2000),
and Bentivogli et al. (2004), to construct a taxonomy of domains, including Sports
(e.g., football, basketball, etc.), Science (e.g., computer science, mathematics, etc.),

2.2. Feature Space for Named Entity Disambiguation | 11

Domain:
Football
Wordnet: Wordnet:
football player 11010163 football league 108232496 |
Wikicategory: Wikicategory:
English_footballers Fooball_leagues_in_England |

Figure 2.1: A hierarchy for the domain Football.

and more. We combine the domains with semantic types (classes of entities) pro-
vided by Yago, by assigning them to their respective domains. This is based on
the manual assignment of WordNet synsets to domains, introduced by Magnini
and Cavaglia (2000), and Bentivogli et al. (2004), and extends to additional types
in Yago. For example, SINGER is assigned to Music, and FOOTBALL-PLAYER to Foot-
ball, etc. In total, the 46 domain hierarchies! are enhanced with ca. 350,000 types
imported from Yago. Figure 2.1 shows a domain hierarchy for Football.

We classify input texts into domains by means of “easy mentions”. An easy
mention is a match in the name-to-entity dictionary for which there exist at most
three candidate entities. Although the mention boundaries may not be explicitly
provided as input, we still can extract these easy mentions from the entirety of
all mention candidates. In the following, let C* be the set of candidate entities
for the easy mentions in the input text. For each domain d in the 46 domains, we
compute the coherence of the easy mentions M* = {my, ma,...}:

|C* N Y

coh(M™) = ol

(2.2)

where C? is the set of all entities under domain d. We classify the document into
the domain with the highest coherence score. Although the mentions and their
entities may be inferred incorrectly, the domain classification still tends to work
very reliably as it aggregates over all easy mention candidates.

Domain-Entity Coherence. Feature f5(mj, e;) captures the coherence between
mention m; and entity candidate e; with the respect to the domain d which the
input text is classified into. That is, fs(m;, ;) = 1 if domain d contains entity e;;
otherwise, the feature value is 0. For example, in domain Football, the mention
“David” is more coherent with entity David_Beckham than with entity David_Bowie.

IThe 46 domains: badminton, baseball, basketball, cricket, football, golf, table tennis, rugby, soccer, tennis, vol-
leyball, cycling, skating, skiing, hockey, mountaineering, rowing, swimming, sub, diving, racing, athletics, wrestling,
boxing, fencing, archery, fishing, hunting, music, agriculture, alimentation, architecture, computer science, engi-
neering, medicine, veterinary, astronomy, biology, chemistry, earth, mathematics, physics, economy, fashion, indus-
try, politics.

12| Chapter 2. Preliminaries

Entity-Entity Type Coherence. Feature fs(e;, ¢;) computes the relatedness be-
tween the Wikipedia categories of two candidate entities e; and e;.

folei,e)) = max tc(cy, cy) (2.3)
cu€cat(e;)
cvEcat(ej)

where the type coherence function tc(c,, c,) computes the reciprocal length of the
shortest path between categories cy, ¢, in the domain taxonomy; and cat function
retrieves all Wikipedia categories related to an entity.

2.2.5 Syntactic Dependency Feature

Mention Dependency Context. The dependency context of mention m;, denoted
by dep-cxt(m;), contains all dependency patterns where (1) a pattern consists of a
dependency types (de Marneffe et al., 2006), like nsubj, dobj, prep_in, prep_for,
etc., with two arguments, and (2) one of the two argument is m;. We assign a tf-idf
score for each pattern in the dependency context.

Entity Dependency Context. Similarly, the dependency context of entity e;, de-
noted by dep-cxi(e;), contains all dependency patterns (with tf-idf scores) which
are obtained from the background corpus (i.e., Wikipedia). For example, the de-
pendency context of entity Manchester_United_F.C. includes prep_for[play, *],
nsubj[”*, win], etc.

Mention-Entity Dependency Context Similarity. Feature f;(m;, e;) measures
the weighted overlap coefficient between the dependency contexts of mention
m; and candidate entity e;. For example, the mention “manu” in the context of
pattern prep_for[play, *] is more coherent with entity Manchester_United_F.C.
than with entity Manu_Chao as the pattern “FOOTBALLER play for FOOTBALL-CLUB”
is more frequent than any patterns of something or somebody “play for SINGER”.

Chapter 3

Joint Model for Named Entity
Recognition and Disambiguation

3.1 Introduction

Motivation. Methods for named entity recognition and disambiguation, NERD
for short, typically proceed in two stages:

e At the NER stage, text spans of entity mentions are detected and tagged
with coarse-grained types like PERSON, ORGANIZATION, LOCATION, etc. This
is typically performed by a trained Conditional Random Field (CRF) over
word sequences (e.g., Finkel et al. (2005)).

e At the NED stage, mentions are mapped to entities in a knowledge base
(KB) based on contextual similarity measures and the semantic coherence
of the selected entities (e.g., Cucerzan (2014); Hoffart et al. (2011a); Ratinov
et al. (2011)).

This two-stage approach has limitations. First, NER may produce false positives
that can misguide NED. Second, NER may miss out on some entity mentions,
and NED has no chance to compensate for these false negatives. Third, NED is
not able to help NER, for example, by disambiguating “easy mentions” (e.g., of
prominent entities with more or less unique names), and then using the entities
and knowledge about them as enriched features for NER.

Example. Consider the following sentences:

“David played for manu, real, and la galaxy.
His wife posh performed with the spice girls.”

This is difficult for NER because of the absence of upper-case spelling, which is
not untypical in social media, for example. Most NER methods will miss out on
multi-word mentions or words that are also common nouns (“spice”) or adjectives
(“posh”, “real”). Typically, NER would pass only the mentions “David”, “manu”,
and “la” to the NED stage, which then is prone to many errors like mapping the
first two mentions to any prominent people with first names David and Manu, and

13

14| Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

mapping the third one to the city of Los Angeles. With NER and NED performed
jointly, the possible disambiguation of “la galaxy” to the soccer club can guide
NER to tag the right mentions with the right types (e.g., recognizing that “manu”
could be a short name for a soccer team), which in turn helps NED to map “David”
to the right entity David_Beckham.

Contribution. This chapter presents a novel kind of probabilistic graphical model
for the joint recognition and disambiguation of named-entity mentions in natural-
language text. With this integrated approach to NERD, we aim to overcome the
limitations of the two-stage NER/NED methods. Our method, called 7-NERD
(Nguyen et al., 2016), is based on a supervised, non-linear graphical model that
combines multiple per-sentence models into an entity-coherence-aware global
model. The global model detects mention spans, tags them with coarse-grained
types, and maps them to entities in a single joint-inference step based on the
Viterbi algorithm (for exact inference) or Gibbs sampling (for approximate infer-
ence).]-NERD comprises the following novel contributions:

e a tree-shaped model for each sentence, whose structure is derived from the
dependency parse tree and thus captures linguistic context in a deeper way
compared to prior work with CRF’s for NER and NED;

e richer features not considered in prior work, including domain-oriented
feature and syntactic dependency feature (i.e., harnessing dependency parse
trees and verbal patterns that indicate mention types as part of their nsubj
or dobj arguments);

e an inference method that maintains the uncertainty of both mention candi-
dates (i.e., token spans) and entity candidates for competing mention can-
didates, and makes joint decisions, as opposed to fixing mentions before
reasoning on their disambiguation.

We present experiments with three major datasets: the CONLL’03 collection
of newswire articles, the ACE’05 corpus of news and blogs, and the ClueWeb’09-
FACC1 corpus of web pages. Baselines that we compare J-NERD with include
Spotlight (Daiber et al., 2013), TagMe (Ferragina and Scaiella, 2010), and the recent
joint NERD method of Durrett and Klein (2014). J-NERD consistently outperforms
these competitors in terms of both precision and recall.

3.2 Related Work

NER. Detecting the boundaries of text spans that denote named entities has been
mostly addressed by supervised CRF’s over word sequences (McCallum and Li,
2003; Finkel et al., 2005). The work of Ratinov and Roth (2009) improved these
techniques by additional features from context aggregation and external lexical
sources (gazetteers, etc.). Passos et al. (2014) harnessed skip-gram features and
external dictionaries for further improvement. An alternative line of NER tech-
niques is based on dictionaries of name-entity pairs, including nicknames, short-
hand names, and paraphrases (e.g., “the first man on the moon”). The work of

3.2. Related Work | 15

Ferragina and Scaiella (2010) and Mendes et al. (2011) are examples of dictionary-
based NER. The work of Spitkovsky and Chang (2012) is an example of a large-
scale dictionary that can be harnessed by such methods.

An additional output of the CRF’s are type tags for the recognized word spans,
typically limited to coarse-grained types like PERSON, ORGANIZATION, LOCATION,
and MISC. The most widely used tool of this kind is the Stanford NER Tagger
(Finkel et al., 2005). Many NED tools use the Stanford NER Tagger in their first
stage of detecting mentions.

Mention Typing. The specific NER task of inferring semantic types has been fur-
ther refined and extended by various works on fine-grained typing (e.g., MUSICIAN,
POLITICIAN, SINGER, GUITARIST, etc.) for entity mentions and general noun phrases
(Fleischman and Hovy, 2002; Rahman and Ng, 2010; Ling and Weld, 2012; Yosef
et al.,, 2012; Nakashole et al., 2013). Most of these works are based on supervised
classification, using linguistic features from mentions and their surrounding text.
One exception is the work of Nakashole et al. (2013) which is based on text pat-
terns that connect entities of specific types, acquired by sequence mining from
the Wikipedia full-text corpus. In contrast to our work, those are simple surface
patterns, and the task addressed here is limited to typing noun phrases that likely
denote emerging entities that are not yet registered in a KB.

NED. Methods and tools for NED go back to the seminal work of Dill et al.
(2003), Bunescu and Pasca (2006), Cucerzan (2007), and Milne and Witten (2008).
More recent advances led to open-source tools like the Wikipedia Miner Wik-
ifier (Milne and Witten, 2013), the Illinois Wikifier (Ratinov et al., 2011), Spot-
light (Mendes et al., 2011), Semanticizer (Meij et al., 2012), TagMe (Ferragina and
Scaiella, 2010; Cornolti et al., 2014), and AIDA (Hoffart et al., 2011a). We choose
some, namely Spotlight and TagMe, as baselines for our experiments. These are
the best-performing, publicly available systems for news and web texts. Most of
these methods combine contextual similarity measures with some form of con-
sideration for the coherence among a selected set of candidate entities for disam-
biguation. The latter aspect can be cast into a variety of computational models,
like graph algorithms (Hoffart et al., 2011a), integer linear programming (Rati-
nov et al., 2011), or probabilistic graphical models (Kulkarni et al., 2009). All these
methods use the Stanford NER Tagger or dictionary-based matching for their NER
stages. Kulkarni et al. (2009) uses an ILP or LP solver (with rounding) for the NED
inference, which is computationally expensive. Note that some of the NED tools
aim to link not only named entities but also general concepts (e.g. “world peace”)
for which Wikipedia has articles. In our work, we solely focus on proper entities.

Joint NERD. There is little prior work on performing NER and NED jointly. Sil
and Yates (2013), and Durrett and Klein (2014) are the most notable methods. Sil
and Yates (2013) first compile a liberal set of mention and entity candidates, and
then perform joint ranking of the candidates. Durrett and Klein (2014) present a
CRF model for coreference resolution, mention typing, and mention disambigua-
tion. Our model is also based on CRF’s, but distinguishes itself from prior work

16 | Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

in three ways:

e tree-shaped CRF’s derived from dependency parse trees, as opposed to merely

having connections among mentions and entity candidates;

e syntactic dependency features about verbal phrases from parse trees;

o the maintaining of candidates for both mentions and entities and jointly

reasoning on their uncertainty.

Our experiments include comparisons with the method of Durrett and Klein
(2014). There are also benchmarking efforts on measuring the performance for
end-to-end NERD (Cornolti et al., 2013; Carmel et al., 2014; Usbeck et al., 2015),
as opposed to assessing NER and NED separately. However, to the best of our
knowledge, none of the participants in these competitions considered integrating
NER and NED.

3.3 System Overview

We formalize the task as a sequence labeling problem which aims to label a se-
quence of input tokens tok = (toky, ..., tok;) with a sequence of output labels
y = (y1,..., 1), consisting of NER types and NED entities (i.e., Yago entities).
We employ a family of linear-chain and tree-shaped probabilistic graphical mod-
els (Koller et al., 2007) to compactly encode a multivariate probability distribution
over random variables X U), where X’ denotes the set of variables x; we may
observe, and) denotes the set of output labels y;. By writing x, we denote an as-
signment of observed variables to X, while by writing y, we denote an assignment
of labels to). In our running example:

“David played for manu, real, and la galaxy.”,

“David” is the first observed variable x; with the desired label y; = PERSON:David_
Beckham where PERSON denotes the NER type and David_Beckham is the entity
of interest. Consecutive and identical labels are considered to be entity men-
tions. For example, for x5 = “la” and x¢ = “galaxy”, the output would ideally be
¥5 = ORGANIZATION:Los_Angeles_Galaxy and ys = ORGANIZATION:Los_Angeles_
Galaxy, denoting the soccer club. Upfront these are merely candidate labels,
though. Our method may alternatively consider the different labels y5 = LOCATION:
Los_Angeles and ys = MISC:Samsung_Galaxy. This would yield incorrect output
with two single-token mentions and improper entities.

Given an input text, J-NERD works in two stages. First, J-NERD harnesses a
joint feature model for NER and NED. Some of the features are standard, while
others are novel (see Section 3.4). Second, J-NERD constructs a factor graph model
(i-e., linear-chain model or tree-shaped model) from input sentences. Subsequently,
it jointly performs inference for both NER and NED (see Section 3.5).

Stage 1: Feature Model. J-NERD first processes the text through a standard NLP
pipeline, including sentence detection, tokenization, POS tagging, lemmatization,

3.3. System Overview | 17

dependency parsing, and noun-phrase chunking. Consequently, it extracts a va-
riety of features, each take the possible assignments x, y of observed variables
and labels, respectively, as input and give a binary value or real number as out-
put. Binary values denote the presence or absence of a feature; real-valued ones
typically denote frequencies of observed features.

Stage 2: Factor Graph Model. Next,]-NERD constructs a factor graph model
(i-e., linear-chain model or tree-shaped model) for each input sentence. State-of-
the-art NER methods, such as the Stanford NER Tagger, employ linear-chain factor
graph, known as Conditional Random Fields (CRF’s) (Sutton and McCallum, 2012).
We also devise more sophisticated tree-shaped factor graphs whose structure is
obtained from the dependency parse trees of the input sentences. These per-
sentence models are optionally combined into a global factor graph by adding also
cross-sentence dependencies (Finkel et al., 2005). These cross-sentence depen-
dencies connects similar tokens which are potential co-references (e.g., “David”
and “David Beckham”), or tokens in adjacent mentions in the same sentence (e.g.,
“David” and “manu”). Finally, J-NERD performs a joint inference by variants of
the Viterbi algorithm or Gibbs sampling.

For tractability, probabilistic graphical models are typically constrained by
making conditional independence assumptions, thus imposing structure and lo-
cality on X U). In our models, we postulate that the following conditional inde-
pendence assumptions hold:

p(yi | xy) = p(yi | x, yprev(i)) (3.1)

That is, the label y; for the i" variable directly depends only on the label Yprew(i) Of
some previous variables at position prev(i) and potentially on all input variables.
The case where prev(i) = i—1 is the standard setting for a linear-chain CRF, where
the label of a variable depends only on the label of its preceding variable. We
generalize this approach to considering prev(i) based on the edges of a dependency
parse tree and from co-references in preceding sentences.

By the Hammersley-Clifford Theorem, such a graphical model can be factor-
ized into a product form where each factor captures a subset A C X U Y of the
random variables. Typically, each factor considers only those X and) variables
that are coupled by a conditional (in-)dependence assumptions, with overlapping
A sets of different factors. The probability distribution encoded by the graphical
model can then be expressed as follows:

pocy) = - [T Fatea) 62)
A

Here, F (x4, 4) denotes the factors of the model, each of which is of the follow-
ing form:

Fa(xa,ya) = exp {Z A fak(xa, YA)} (3.3)

k

18 | Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

The normalization constant Z = Zx,y [14 Fa(x4,y4) ensures that this distribu-
tion sums up to 1, while Ay are the parameters of the model, which we aim to
learn from various annotated background corpora.

Our inference objective then is to find the most probable sequence of labels y*
when given the token sequence x as evidence:

y* = arg maxy p(y |X) (3.4)

That is, in our setting, we fix x to the observed token sequence tok = (tokj,.. .,
tok]), while y = (y1,...,y;) ranges over all possible sequences of associated la-
bels. In our approach, which we hence coined J-NERD, each y; label represents a
combination of NER type and NED entity.

To reduce the dimensionality of the generated feature space and to make the
factor-graph inference tractable, we use pruning techniques based on the knowl-
edge base and the dictionaries. To determine if a token can be a mention or part of
a mention, we first perform lookups of all sub-sequences against the name-entity
dictionary (see Section 2.2.2). As an option (and by default), this can be limited to
sub-sequences that are tagged as noun phrases by the Stanford parser. For higher
recall, we then add partial-match lookups when a token sub-sequence matches
only some but not all tokens of an entity name in the dictionary. For example, for
the sentence

“David played for manu, real and la galaxy.”,

» &«

we obtain “David”, “manu”, “real”, “la galaxy”, “la”, and “galaxy” as candidate
mentions. For each such candidate mention, we look up the knowledge base for
entities and consider only the best n (using n = 20 in our experiments) highest
ranked candidate entities. The ranking is based on the string similarity between
the mention and the entity name, the prior popularity of the entity, and the local
context similarity.

The NER types that we consider are the standard types including PERSON,
ORGANIZATION and LOCATION. All other types that, for example, the Stanford NER
Tagger would mark, are collapsed into a type MISC for miscellaneous. These in-
clude labels like date and money (which are not genuine entities anyway) and also
entity types like events and creative works such as movies, songs, etc. (which are
disregarded by the Stanford NER Tagger). We add two dedicated tags for tokens
to express the case when no meaningful NER type or NED entity can be assigned.
For tokens that should not be labeled as a named entity at all (e.g., “played” in
our example), we use the tag OTHER. For tokens with a valid NER type, we add the
virtual entity out-of-XB (for “out of knowledge base”) to its entity candidates, to
prepare for the possible situation where the token (and its surrounding tokens)
actually denotes an emerging or long-tail entity that is not contained in the back-
ground knowledge base (i.e., Yago). Once the output labels are determined, the
actual boundaries of the mentions, i.e., their token spans, are trivially derived by
combining adjacent tokens with the same label (and disregarding all tokens with
the tag OTHER).

3.4. Feature Model | 19

3.4 Feature Model

First, we employ the Stanford CoreNLP tool suite (Manning et al., 2014) for pro-
cessing input documents. This includes sentence detection, tokenization, POS
tagging, lemmatization, dependency parsing, and noun-phrase chunking. All of
these provide features for our graphical model. Second, we define features for
detecting the combined NER/NED labels of token that denote or are part of an
entity mention. In the following, we introduce the complete set of features which
includes the 7 NED features fi_7 (defined in Chapter 2, Section 2.2) and 10 feature
templates f3 17 for the joint NERD inference. Templates are instantiated based on
the observed input and the candidate space of possible labels for this input, and
guided by distant resources like knowledge bases and dictionaries. The generated
feature values depend on the assignment of input tokens to variables x; € X'. In
addition, our graphical models often consider only a specific subset of candidate
labels as assignments to the output variables y; €). Therefore, we formulate
the feature-generation process as a set of feature functions that depend on both
(per-factor subsets of) X and). Table 3.1 illustrates the feature generation by
the set of active feature functions for the token “manu” in our running example,
using three different candidate labels.

Table 3.1: Positive features for the token “manu” (x3) with candidate labels
ORGANIZATION:Manchester_United_F.C. (y3), PERSON:Manu_Chao ()4) and OTHER
(). Domain is Football, and dependency pattern is prep_for[played, *].

Feature W

fi: Mention-Entity Prior

f2: Mention-Entity n-Gram Similarity

f3: Mention-Entity Token Context Similarity

NENENENS-

fa: Entity-Entity Token Context Similarity

f5: Domain-Entity Coherence
fo: Entity-Entity Type Coherence
f7: Mention-Entity Dependency Context Similarity

\

fg: Token-Type Prior

fo: Current POS

fio: In-Dictionary

fi1: Uppercase

fi2: Surrounding Tokens

f13: Surrounding POS

f14: Surrounding In-Dictionary

fi5: Typed-Dependency

fie: Typed-Dependency/POS

fi7: Typed-Dependency/In-Dictionary

NEN

SN ENENENENENENENENENF:

ANENEN

ANENEN

SN ENENENEN

SNENENENENEN

20 | Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

3.4.1 NED Features

We harness NED features f;. 7 which include:

e standard features, namely Mention-Entity Prior, Mention-Entity n-Gram
Similarity, Mention-Entity Token Context Similarity, and Entity-Entity To-
ken Context Similarity,

e domain-oriented features, namely Domain-Entity Coherence and Entity-
Entity Type Coherence,

e a syntactic dependency feature, namely Mention-Entity Dependency Con-
text Similarity.

When computing actual values for these features at token level, we take the max-
imum values over all mention candidates of the current token.

3.4.2 NER Features

For the following definitions of the NER feature templates, let dic; denote the
NER tag from the dictionary lookup of tok; (with POS tag pos;), and dep; denote
the parsing dependency that connects tok; with another token. Further, we write
surj = (tokj_1, tok;, tokj.1) to refer to the sequence of tokens surrounding tok;. As
for the possible labels, let type; denote an NER type for the current token tok;.

Token-Type Prior. Feature f3(tok;, type;) captures a prior probability for tok;
being of NER type type;. These probabilities are estimated from an NER-annotated
training corpus (i.e., CoNLL in our experiments). For example, we may thus obtain
a prior of f3(“Ltd.”, ORGANIZATION) = 0.8.

Current POS. Template fo(tok;, type;) generates a binary feature function if to-
ken tok; occurs in the training corpus with POS tag pos; and NER label type;. For
example, fo(“David”, PERSON) = 1 if the current token “David” has occurred with
POS tag NNP and NER label PERSON in the training corpus. For combinations of
tokens with POS tags and NER types that do not occur in the training corpus,
no actual feature function is generated from the template (i.e., the value of func-
tion would be 0). For the rest of this section, we assume that all binary feature
functions are generated from their feature templates in an analogous manner.

In-Dictionary. Template fio(tok;, type;) generates a binary feature function if the
current token tok; occurs in the name-entity dictionary for some entity of NER
label type;.

Uppercase. Template fi1(tok;, type;) generates a binary feature function if the
current token tok; appears in upper-case form and additionally has the NER label
type; in the training corpus.

Surrounding Tokens. Template fi2(tok;, type;) generates a binary feature func-
tion if the current token tok; has NER label type;, given that tok; also appears with
surrounding tokens sur; in the training corpus. When instantiated, this template
could possibly lead to a huge number of feature functions. For tractability, we
thus ignore sequences that occur only once in the training corpus.

3.5. J-NERD Factor Graph Model | 21

Surrounding POS. Template fi3(tok;, type;) generates a binary feature function
if the current token tok; and the POS sequence of its surrounding tokens sur; both
appear in the training corpus, where tok; also has the NER label type;.

Surrounding In-Dictionary. We derive additional NER-type-specific phrase
dictionaries from supporting phrases of GATE (Cunningham et al., 2011), e.g.,
“Mr”, “Mrs.”, “Dr.”, “President”, etc. for the type PERSON; “city”, “river”, “park”,
etc. for the type LOCATION; “company”, “institute”, “Inc.”, “Ltd.”, etc. for the type
ORGANIZATION. Template fi4(tok;, type;) performs dictionary lookups for surround-
ing tokens in sur;. It generates a binary feature function if the current token tok;
and the dictionary lookups of its surrounding tokens sur; appear in the training
corpus, where tok; also has NER label type;.

The above f3 14 features are widely used in prior NER systems. In the follow-
ing, we introduce three advanced features based on syntactic dependency pars-
ing. Specifically, they harness dependency types between noun-phrases such as
nsubj, dobj, prep_in, prep_ for, etc. to refine NER labels.

Typed-Dependency. Template fi5(tok;, type;) generates a binary feature func-
tion if the background corpus contains the pattern dep; = deptype(argl, arg2)
where the current token tok; is either arg1 or arg2, and tok; is labeled with NER
label type;.

Typed-Dependency/POS. Template fis(tok;, type;) captures linguistic patterns
that combine parsing dependencies (like in f15) and POS tags (like in f9) learned
from an annotated training corpus. It generates binary features if the current
token tok; appears in the dependency pattern dep; with POS tag pos; and this
combination also occurs in the training data under NER label type;.

Typed-Dependency/In-Dictionary. Template fi7(tok;, type;) captures linguis-
tic patterns that combine parsing dependencies (like in fi5) and dictionary lookups
(like in fi9) learned from an annotated training corpus. It generates a binary fea-
ture function if the current token tok; appears in the dependency pattern dep; and
has an entry dic; in the name-entity dictionary for an entity with NER label type;.

3.5 J-NERD Factor Graph Model

3.5.1 Linear-Chain Model

In the local models, J-NERD works on each sentence S: tok = (toky, ..., tokj)
separately. We construct a linear-chain CRF (see Figure 3.1) by introducing an
observed variable x; for each token tok; that represents a proper word. For each
xj, we additionally introduce a variable y; that represents the combined NERD
label. As in any CRF, the x;, y; and y;, yjs1 pairs are connected via factors F(x,y),
whose weights we obtain from the feature functions described in Section 3.4.

22| Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

David played manu real la galaxy

Figure 3.1: Linear-chain model (CRF).
3.5.2 Tree Model

The factor graph for the tree-shaped model is constructed in a similar way. How-
ever, here we add a factor that links a pair of labels y;, yj if their respective tokens
tok;, tok; are connected via a typed dependency which we obtain from the Stan-
ford parser. Figure 3.2 shows an example of such a tree model. Thus, while the
linear-chain model adds factors between labels of adjacent tokens only based on
their positions in the sentence, the tree model adds factors based on the depen-
dency parse tree to enhance the coherence of labels across tokens.

Figure 3.2: Tree model ([p_f1] is [prep_for]).

3.5.3 Global Models

For global models, we consider an entire input text consisting of multiple sen-
tences Sy, . .., Sp: tok = (toky, . .., tok;), for augmenting either one of the linear-
chain model or tree-shaped model. As shown in Figure 3.3, cross-sentence edges
among pairs of labels y;, y; are introduced for the same observed tokens, such as
the two tokens “David”. Additionally, we introduce factors for all pairs of tokens
in adjacent mentions within the same sentence, such as “David" and “manu’".

David manu real la galaxy David Beckham London England

Figure 3.3: Global model, linking two tree models ([p_f] is [prep_for]).

3.5. J-NERD Factor Graph Model | 23

3.5.4 Inference & Learning

Our inference objective is to find the most probable sequence of NERD labels:
y* = arg max p(y|x) (3.5)
Yy

according to the objective function we defined in Section 3.3. Instead of consid-
ering the actual distribution:

px,y) = % [Texp {Z A fak(xa, YA)} (3.6)
A k

for this purpose, we aim to maximize an equivalent objective function as fol-
lows. Each factor A in our model couples a label variable y; with a variable
Yprew(t): €ither its immediately preceding token in the same sentence, or a parsing-
dependency-linked token in the same sentence, or a co-reference-linked token in
a different sentence. Each of these factors has its feature functions, and we can
regroup these features on a per-token basis given the log-linear nature of the ob-
jective function. This leads to the following optimization problem which has its
maximum for the same label assignment as the original problem:

I K
y* =arg max exp (Z Z Ak featurer(yt, Yprev(ry *1 - - - xl)) (3.7)

Yi---)1 t=1 k=1

where:
e prev(t) is the index of label y; on which y; depends,
e feature; y are the feature functions generated from templates fi-f17 de-
scribed in Section 3.4,

e and)\ are the feature weights, i.e., the model parameters to be learned.
The actual number of generated features, K, depends on the training corpus and
the choice of the graphical model. For example, the tree models have K = 1,767
parameters in our experiments. Given a trained model, exact inference with re-
spect to the above objective function can be efficiently performed by variants
of the Viterbi algorithm (Sutton and McCallum, 2012) for the local models, both
in the linear-chain and tree-shaped cases. For the global models, however, ex-
act solutions are computationally intractable. Therefore, we employ Gibbs sam-
pling (Finkel et al., 2005) to approximate the solution.

As for the model parameters, J-NERD learns the feature weights A; from the
training data by maximizing a respective conditional likelihood function (Sutton
and McCallum, 2012), using a variant of the L-BFGS optimization algorithm (Liu
and Nocedal, 1989). We do this for each local model (linear-chain and tree models),
and apply the same learned weights to the corresponding global models. Our
implementation uses the RISO toolkit! for belief networks.

1http ://riso.sourceforge.net/

http://riso.sourceforge.net/

24| Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

3.6 Experiments

3.6.1 Setup

Data Collections. Our evaluation is mainly based on the CoNLL-YAGO2 cor-
pus of newswire articles. Additionally, we report on experiments with an ex-
tended version of the ACE-2005 corpus and a large sample of the entity-annotated
ClueWeb’09-FACC1 Web crawl.

CoNLL-YAGO2 is derived from the CONLL-YAGO corpus (Hoffart et al., 2011a)?
by removing tables where mentions in table cells do not have linguistic context;
a typical example is sports results. The resulting corpus contains 1,244 docu-
ments with 20,924 mentions including 4,774 out-of-KB entities. Ground-truth
entities in Yago are provided by Hoffart et al. (2011a). For a consistent ground-
truth set, we derived the NER types from the NED ground-truth entities, fixing
some errors in the original annotations related to metonymy (e.g., labeling the
mentions in “India beats Pakistan 2:1” incorrectly as LOCATION, whereas the enti-
ties are the sports teams of type ORGANIZATION). This makes the dataset not only
cleaner but also more demanding, as metonymous mentions are among the most
difficult cases. For our evaluation, we use the “testb” subset of CoNLL-YAGO,
which - after the removal of tables — has 199 documents with 3,054 mentions in-
cluding 717 out-of-KB entities. The other 1,045 documents with a total of 17,870
mentions (including 4,057 out-of-KB mentions) are used for training.

ACE is an extended variant of the ACE 2005 corpus3, with additional NED
labels by Bentivogli et al. (2010). We consider only proper entities (i.e., the inter-
section of Wikipedia articles and Yago entities) and exclude mentions of general
concepts such as “revenue”, “world economy”, “financial crisis”, etc., as they do not
correspond to individual entities in a knowledge base. This reduces the number of
mentions, but gives the task a crisp focus. We disallow overlapping mention spans
and consider only maximum-length mentions, following the rationale of the ERD
Challenge 2014. The test set contains 117 documents with 2,958 mentions.

ClueWeb contains two randomly sampled subsets of the ClueWeb’09-FACC1*
corpus with Freebase annotations:

e ClueWeb: 1,000 documents (24,289 mentions) each with at least 5 entities.

o ClueWebjopg_1qi1: 1,000 documents (49,604 mentions) each with at least 3

long-tail entities. We consider an entity to be “long-tail” if it has at most 10
incoming links in the English Wikipedia.
These Web documents are very different in style from the news-centric articles
in CoNLL and ACE. Also note that the entity markup is automatically generated,
but with emphasis on high precision. So the data captures only a small subset of
the potential entity mentions, and it may contain a small fraction of false entities.

2https ://www.mpi-inf .mpg.de/yago-naga/yago/
3http ://projects.ldc.upenn.edu/ace/
4http ://lemurproject.org/clueweb09/FACC1/

https://www.mpi-inf.mpg.de/yago-naga/yago/
http://projects.ldc.upenn.edu/ace/
http://lemurproject.org/clueweb09/FACC1/

3.6. Experiments | 25

Methods under Comparison. We compare J-NERD in its four variants (linear
vs. tree and local vs. global) to various state-of-the-art NER/NED methods.

For NER (i.e., mention boundaries and types) we use the recent version 3.4.1
of the Stanford NER Tagger> (Finkel et al., 2005) and the recent version 2.8.4 of the
Ilinois Tagger® (Ratinov and Roth, 2009) as baselines. These systems have NER
benchmark results on CoNLL’03 that are as good as the result reported in Passos
et al. (2014). We retrained this model by using the same corpus-specific training
data that we use for J-NERD .

For NED, we compared J-NERD against the following methods for which we
obtained open-source software or could call a Web service:

o Berkeley-entity (Durrett and Klein, 2014) uses a joint model for coreference

resolution, NER and NED with linkage to Wikipedia.

e TagMe (Ferragina and Scaiella, 2010) is a Wikifier that maps mentions to
entities or concepts in Wikipedia. It uses a Wikipedia-derived dictionary
for NER.

e Spotlight (Mendes et al., 2011) links mentions to entities in DBpedia. It uses
the LingPipe dictionary-based chunker for NER.

Some systems use confidence thresholds to decide on when to map a mention to
out-of-KB entity. For each dataset, we used withheld data to tune these system-
specific thresholds. Figure 3.4 illustrates the sensitivity of the thresholds for the
CoNLL-YAGO?2 dataset.

80

C - | —@— JNERD
60 |- | | —#— Spotlight
—@— TagMe
2 40| |
20 - y
0 \ \ Bl

| |
0 0.2 04 0.6 0.8 1
Threshold

Figure 3.4: F1 for varying confidence thresholds.

Evaluation Measures. We evaluate the output quality at the NER level alone
and for the end-to-end NERD task. We do not evaluate NED alone, as this would
require giving a ground-truth set of mentions to the systems to rule out that NER
errors affect NED. Most competitors do not have interfaces for such a controlled
NED-only evaluation. Each test collection has ground-truth annotations (G) con-
sisting of text spans for mentions, NER types of the mentions, and mapping men-
tions to entities in Yago or to out-of-KB. Recall that the out-of-KB case captures
entities that are not in the KB at all. Let X be the output of system X: detected
mentions, NER types, NED mappings. Following the ERD 2014 Challenge (Carmel
et al., 2014), we define precision and recall of X for end-to-end NERD as:

5nlp .stanford.edu/software/CRF-NER.shtml
6http ://cogcomp.cs.illinois.edu/

nlp.stanford.edu/software/CRF-NER.shtml
http://cogcomp.cs.illinois.edu/

26 | Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

Precision(X) = |X agrees with G|/|X] (3.8)
Recall(X) = |X agrees with G|/|G| (3.9)

where agreement means that X and G overlap in the text spans (i.e., have at least
one token in common) for a mention, have the same NER type, and have the
same mapping to an entity or out-of-KB. The F1 score of X is the harmonic mean
of precision and recall. For evaluating the mention-boundary detection alone,
we consider only the overlap of text spans; for evaluating NER completely, we
consider both mention overlap and agreement based on the assigned NER types.

3.6.2 Results for CoNLL-YAGO2

Our first experiment on CoNLL-YAGO2 is comparing the four CRF variants of
J-NERD for three tasks: mention boundary detection, NER typing and end-to-end
NERD. Then, the best model of]-NERD is compared against various baselines and
a pipelined configuration of our method. Finally, we test the influence of different
features groups.

3.6.2.1 Experiments on CRF Variants

Table 3.2 compares the different CRF variants. All CRFs have the same features,
but differ in their factors. Therefore, some features are not effective for the linear
model and the tree model. For the linear CRF, the parsing-based linguistic features
and the cross-sentence features do not contribute; for the tree CRF, the cross-
sentence features are not effective.

Table 3.2: Experiments on CRF Variants.

Perspective Variants Precision Recall F1
Mention F-NERD j;oar-local 94.2 89.6 91.8
Boundar F-NERD 00 1ocal 94.4 89.4 91.8
Detecﬁoz JNERD finear-global 95.1 90.3 92.6
J-NERD yrec-global 95.8 90.6 93.1
F-NERD jinear-local 87.8 83.0 85.3
-NERD,,- 89.5 82.2 85.6

NER Typing J tree-local
]_NERDlinear—global 88.6 83.4 85.9
7'NERDtree-global 90.4 83.8 86.9
F-NERD jiear-local 71.8 74.9 73.3
End-to-End F-NERD tyee-1ocal 75.1 74.5 74.7
NERD]_NERDlinear—global 77.6 74.8 76.1

J-NERD yyec-giobal 81.9 75.8 78.7

3.6. Experiments | 27

We see that all variants perform very well on boundary detection and NER typing,
with small differences only. For end-to-end NERD, however, J-NERD ., giopal
outperforms all other variants by a large margin. This results in achieving the best
Fy score of 78.7%, which is 2.6% higher than J-NERD jjpeqglopal- We performed a
paired t-test between these two variants, and obtained a p-value of 0.01. The
local variants of J-NERD lose around 4% of F1 because they do not capture the
coherence among mentions in different sentences. In the rest of our experiments,
we focus on J-NERD yee gjobq and the task of end-to-end NERD.

3.6.2.2 Comparison of Joint vs. Pipelined Models and Baselines

In this subsection, we demonstrate the benefits of joint models against pipelined
models including state-of-the-art baselines. Additionally, we add a pipelined con-
figuration of J-NERD , coined P-NERD. That is, we first run J-NERD in NER mode
(thus only considering NER features fg_17. The best sequence of NER labels is then
given to J-NERD to run in NED mode (only considering NED features fi_7).

Table 3.3: Comparison between joint models and pipelined models on
end-to-end NERD.

Method Precision Recall F1
P-NERD 80.1 75.1 77.5
F-NERD 81.9 75.8 78.7
TagMe 64.6 43.2 51.8
SpotLight 71.1 47.9 57.3

The results are shown in Table 3.3. J-NERD achieves the highest precision of
81.9% for end-to-end NERD, outperforming all competitors by a significant mar-
gin. This results in achieving the best F1 score of 78.7%, which is 1.2% higher
than P-NERD TagMe and Spotlight are clearly inferior on this dataset (more than
20% lower in Fj than J-NERD).These systems are more geared towards efficiency
and coping with popular and thus frequent entities, whereas the CoNLL-YAGO2
dataset contains very difficult test cases. For the best F1 score of -NERD, we per-
formed a paired t-test against the other methods’ F; values and obtained a p-value
of 0.075.

We also compared the NER performance of]-NERD against the state-of-the-
art method for NER alone, the Stanford NER Tagger version 3.4.1 and the Illinois
Tagger 2.8.4 (Table 3.4). For mention boundary detection, J-NERD achieved an F;
score of 93.1% versus 93.4% by Stanford NER, 93.3% by Illinois Tagger, and 92.9%
by P-NERD. For NER typing, J-NERD achieved an F; score of 86.9% versus 86.8%
by Stanford NER, 85.3% by Illinois Tagger, and 86.3% by P-NERD. So we could not
outperform the best prior method for NER alone, but achieved very competitive
results. Here, we do not really leverage any form of joint inference (combining
CRF’s across sentences is used in Stanford NER, too), but harness rich features on
domains, entity candidates, and linguistic dependencies.

28 | Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

Table 3.4: Experiments on NER against state-of-the-art NER systems.

Perspective Variants Precision Recall F1
Mention P-NERD 95.6 90.5 92.9
F-NERD 95.8 90.6 93.1
Boundary

Detection Stanford NER 95.6 91.3 93.4
Illinois Tagger 95.5 91.2 93.3

P-NERD 89.6 83.4 86.3
. J-NERD 90.4 83.8 86.9

NER Typing —o nford NER 89.3 845 86.8
Illinois Tagger 87.5 83.2 85.3

3.6.2.3 Influence of Features

To analyze the influence of the features, we performed an additional ablation
study on the global J-NERD tree model, which is the best variant of J-NERD ,
as follows:

e Standard features excludes the domain features (i.e., f5 and f) and the de-

pendency features (i.e., f7, fis, fis, and fi7).
e Standard and domain features excludes the syntactic dependency features

(ie., f7. fis fi6> and f7).

e Standard and dependency features excludes the domain-oriented features

(i-e., f5 and f).
o All features is the full-fledged J-NERD jy¢-g1opa; model.

Table 3.5: Feature Influence on CoNLL-YAGO2.

Perspective Setting F1
Standard features 85.1

. Standard and domain features 85.7

NER Typing Standard and linguistic features 86.4
All features 86.9

Standard features 74.3

End-to-End Standard and domain features 76.4
NERD Standard and linguistic features 76.6
All features 78.7

Table 3.5 shows the results, demonstrating that linguistic features are crucial for
both NER and NERD. For example, in the sentence “Woolmer played 19 tests for
England’, the mention “England’refers to an organization (the English cricket
team), not to a location. The dependency-type feature prep for[play, *]is a deci-
sive cue to handle such cases properly. Domain features help in NED to eliminate,
for example, football teams when the domain is Cricket.

3.6. Experiments | 29

3.6.3 End-to-End NERD on ACE

For comparison to the recently developed Berkeley-entity system (Durrett and
Klein, 2014), the authors of that system provided us with detailed results for
the entity-annotated ACE’2005 corpus, which allowed us to discount non-entity
(so-called “NOM-type”) mappings. All other systems, including the best J-NERD
method, were run on the corpus under the same conditions.

Table 3.6: NERD results on ACE.

Method Precision Recall F1
P-NERD 68.2 60.8 64.2
F-NERD 69.1 62.3 65.5
Berkeley-entity 65.6 61.8 63.7
TagMe 60.6 43.5 50.7
SpotLight 68.7 29.6 414

J-NERD outperforms P-NERD and Berkeley-entity: F1 scores are 1.3% and 1.8%
better, respectively, with a t-test p-value of 0.05 (Table 3.6). The others show
substantially inferior performance. The performance gains that J-NERD achieves
over Berkeley-entity can be attributed to two factors. First, the rich linguistic fea-
tures of J-NERD help to correctly cope with more of the difficult cases, e.g., when
common nouns are actually names of people. Second, the coherence features of
global J-NERD help to properly couple decisions on related entity mentions.

3.6.4 End-to-End NERD on ClueWeb

The results for ClueWeb are shown in Table 3.7.]-NERD outperforms all other sys-
tems with a t-test p-value of 0.05. The differences between J-NERD and fast NED
systems such as TagMe or SpotLight become smaller as the number of prominent

entities (i.e., prominent people, organizations and locations) is higher on ClueWeb
than on CoNLL-YAGO2.

Table 3.7: NERD results on ClueWeb.

Dataset Method Precision Recall F1
P-NERD 80.9 67.1 73.3

F-NERD 81.5 67.5 73.8

Clueweb TagMe 784 60.5 683
SpotLight 79.7 57.1 66.5

P-NERD 81.2 64.4 71.8

F-NERD 81.4 65.1 72.3

Clueweblong— tail

TagMe 78.4 583 66.9
SpotLight 81.2 56.3 66.5

30 | Chapter 3. Joint Model for Named Entity Recognition and Disambiguation

3.7 Summary

In this chapter, we have shown that coupling the tasks of NER and NED in a
joint CRF-like model is beneficial. Our method outperforms strong baselines on
a variety of test datasets. The strength of]-NERD comes from three novel assets.
First, our tree-shaped models capture the structure of dependency parse trees, and
we couple multiple such tree models across sentences. Second, we harness non-
standard features about domains and novel features based on dependency patterns
derived from parsing. Third, our joint inference maintains uncertain candidates
for both mentions and entities and makes decisions as late as possible.

Chapter 4

Joint Model for Relation Extraction and
Entity Disambiguation

4.1 Introduction and Related Work

Motivation. Information extraction (IE) aims to distill relational triples, each
consisting of an entity pair (or an entity and a literal value) plus a connecting
relation, from natural-language text. This goal has been pursued by two major
approaches. Model-based IE (Brin, 1998; Craven et al., 2000; Mintz et al., 2009;
Suchanek et al., 2009; Carlson et al., 2010; Singh et al., 2013) focuses on a set of
pre-specified relations, like those present in a knowledge base (KB) such as DBpe-
dia (Auer et al., 2007), NELL (Carlson et al., 2010) or Yago (Suchanek et al., 2007).
Entity names recognized in the input text are disambiguated by mapping them
to proper entities in the KB. The relations have fine-grained type signatures that
need to be matched by the assigned entities. Model-based IE techniques leverage
this strategy to achieve high precision, but they are inherently limited in recall by
the relatively small amount of given relations. Open IE (Banko et al., 2007; Etzioni
et al,, 2011; Mausam et al,, 2012), on the other hand, extracts triples of surface
phrases and thus achieves higher recall. It can potentially find any relation that
holds between two arguments. However, the arguments are not canonicalized,
and the resulting relations are often noisy.

Example. Consider the following sentences:
1) Amy received the Oscar for the best documentary.
2) Amy received the Grammy for the best new artist.
3) Amy received her degree in neurobiology from Harvard.
4) Simone received two honorary degrees in music and humanities, from the
University of Massachusetts Amherst and Malcolm X College.

Sentences (1), (2) and (3) refer to different entities—the movie, the singer and the
movie character—, which are all named “Amy”. The sentences provide cues for
identifying the lexical types, but no existing IE method can robustly handle such
cases. Moreover, (3) and (4) express the same relation (i.e., “receive_degree_from”)
by different phrases, but Open IE would treat them as separate relations.

31

32| Chapter 4. Joint Model for Relation Extraction and Entity Disambiguation

State-of-the-Art & Limitations. Recent work aimed to reconcile Model-based
IE and Open IE. Hoffmann et al. (2010) present a distantly supervised IE system
which can handle thousands of relations by clustering the relational paraphrases
based on their arguments and type signatures (e.g., using 1,282 such clusters in an
experiment). However, this approach is highly customized to using Wikipedia in-
foboxes as input. Galarraga et al. (2014) canonicalize Open IE triples by clustering
noun phrases into arguments and verbal phrases into relations. This approach is
limited, though, to a few hundred relation clusters by using Freebase (Bollacker
et al., 2008) as backend for the relations. Li and Ji (2014), on the other hand, jointly
extract entity and relation names, but refrain from disambiguating these.

None of the prior works considers joint inference to extract relations and to
disambiguate the entities in one step. Instead, all of the prior works use pipelined
architectures and, thus, cannot fully harness the coupling of lexical types for enti-
ties with the type signatures for relations. For example, to properly distinguish the
entities Amy_Winehouse and Amy Farrah_Fowler in the above examples (2) and
(3), understanding the different type signatures of the relations “receive_prize”
(SINGER X MUSIC AWARD) and “receive_degree_from” (PERSON X UNIVERSITY) is
crucial. The approach proposed in this chapter can leverage these kinds of inter-
dependencies.

Contributions. This chapter presents J-REED (Nguyen et al., 2017), a joint model
for entity disambiguation and relation extraction for Wikipedia-style input texts.
J-REED is based on probabilistic graphical models that captures the interdepen-
dencies between entities and relations. Specifically, by considering which lexical
types of entities are compatible with the type signature of which relation, we can
boost the accuracy of both sub-tasks. Entity names are mapped to the entities
registered in a background knowledge base (using DBpedia in our experiments),
while relation patterns are extracted as crisp as possible. We performed large-
scale experiments with 1.2 million Wikipedia pages about entities of type PERSON
and obtained 9.5 million triples with ca. 80% accuracy. J-REED consistently out-
performs pipelined combinations of OLLIE (Mausam et al., 2012), a state-of-the-art
Open IE system, and recent NED systems such as Babelfy (Moro et al., 2014) and
Spotlight (Daiber et al., 2013).

4.2 System Overview

J-REED processes a text corpus in several steps. We first pass all documents
through a standard NLP pipeline, including tokenization, POS tagging, depen-
dency parsing, NER tagging, and a customized noun-phrase chunker. Specifically,
we employ the Stanford CoreNLP tool suite for all of our text processing steps ex-
cept for dependency parsing. For the latter, we use the MaltParser (Nivre and
Hall, 2005) which is more efficient than the Stanford parser. Mention names in
the text are primarily recognized by the Stanford NER (Finkel et al., 2005) tagger.

4.3. Relation Pattern Mining | 33

In addition, we implement a custom noun-phrase chunker (using a set of reg-
ular expressions over the POS tags) to also extract noun-phrases that do not over-
lap with any names extracted by the NER tagger. We remove noise among the
obtained noun-phrases by keeping only those phrases that contain at least one
informative noun, which we define to consist of the top 5% most frequent nouns
in the current document that is processed. For example, within the Wikipedia
article of Amy_Winehouse, the most informative nouns contain “album”, “alcohol”,
etc. Thus, the noun phrase “alcohol poisoning” (i.e., the cause of her death) is
considered as a mention even if the NER tagger missed this phrase.

By applying these preprocessing steps to a dedicated development corpus (which
is disjoint from the collection of test documents used in our experiments), we also
compute various (co-)occurrence statistics among nouns, verbs, prepositions and
entities. These statistics are later used to mine the relation patterns (Section 4.3),
and they further serve as input to the feature functions used for relation pattern
labeling (Section 4.4), and joint relation extraction and entity disambiguation (Sec-
tion 4.5).

4.3 Relation Pattern Mining

J-REED considers four types of relation patterns: verb (e.g., marry), verb-noun
(e.g., win prize), verb-preposition (e.g. play for) and verb-noun-preposition (e.g.,
win prize for). Nouns, prepositions and verbs in active voice are considered in
their lemmatized forms (e.g., marry). Verbs in passive voice are represented by
their past participle (e.g., married to) to capture the inverse direction of the re-
lationship. J-REED considers only frequent relation patterns occurring at least 7
times in the development corpus. In our experiments, we set 7 = 100 and obtained
9,248 frequent patterns (out of 320,143 distinct ones). By only considering those
patterns as relational candidates for the graphical models in the next sections,
J-REED can extract concise relation patterns. For example, J-REED extracts the
relation pattern “receive degree from” instead of the surface phrase “received hon-
orary degrees in music and humanities from” which is considered by many other
Open IE methods. This is useful for further applications such as KB construction,
question answering, and others.

4.4 Relation Pattern Labeling

To extract a relation pattern from a sentence in the test corpus, we consider a
dependency path between two mentions as a sequence of tokens tok = (toky, ...,
tok;). Thus, extracting relations from a sentence may be seen as a sequence la-
beling task in which we aim to find the best sequence of labelsy = (y1,. .., y;) by
using four labels:

e N for a chosen noun,

e V for a chosen verb,

34| Chapter 4. Joint Model for Relation Extraction and Entity Disambiguation

e P for a chosen preposition,

e 0O for “other”.

Each relation pattern must contain one V label with at most one N label and with at
most one P label. To improve recall, J-REED considers two further heuristics.

e If only one N label is returned under the text pattern NAME-LEFT’s noun
NAME-RIGHT (e.g. “Mary’s son Bill Gates”), we add “have” with label V to
the beginning of the sequence (e.g., “have son”).

e If no V label is returned after an apposition, we add “be” with label V to the
beginning of the sequence (e.g., “be daughter of”).

A linear-chain CRF model is built to obtain the labels, which we can then
map to the relation patterns mined from the development corpus. The feature set
consists of:

e token string tok;,

e part-of-speech tag pos;,

e upper/lower case,
being the first verb in the sequence tok,
being the last preposition in the sequence tok,
following the preposition “to”,
following a verb,
following any token with POS tag “NNP”,

e previous label y;_1,

These features have been widely used in prior work on Open IE (Banko et al., 2007;
Mausam et al., 2012). The CRF is trained by maximizing a conditional likelihood
function (Sutton and McCallum, 2012) via L-BFGS optimization. Exact inference
is feasible by a variant of the Viterbi dynamic-programming algorithm (Bellman,
2003). We remark that if we only considered the most likely relation candidate,
our method would resemble a traditional Open IE task. However, in our joint
model described in the next section, all relation pattern candidates (together with
their weights) are considered as features.

4.5 Joint Model

For the joint relation pattern extraction and entity disambiguation, J-REED con-
siders an input triple consisting of a pair of mentions m = (my, my) together with
the sequence of tokens tok = (toky, . .., tok;) along the dependency path that con-
nects these mentions. The output of J-REED consists of a pair of entities e; € eq,
ez € ey and a relation r € r that represents the semantic relationship between e;
and ey. Relations in r are obtained from the output of the CRF model described
in Section 4.4, while entity candidates in e and eg are obtained from the name-
entity dictionary which is based on surface forms and hyperlinks in Wikipedia.
To improve recall, we enrich this dictionary by including also the first and last
names of all person entities in Wikipedia.

4.6. Experiments | 35

Model. J-REED considers five features: one feature for relation extraction (namely,
relation prior), three features for entity disambiguation (namely, fi: mention-entity
prior, f3: mention-entity token context similarity, and fi: entity-entity token context
similarity described in Section 2.2) and one feature for the joint inference (namely,
type signature). We remark that some NED features such as the domain-oriented
feature and the syntactic dependency feature are not considered by J-REED as the
former is less effective in Wikipedia-style texts, and the latter is embedded in type
signature. The type signature feature captures type dependencies between enti-
ties (i.e., arguments) and relation patterns among those entities. This feature is
used in some prior joint models of NED and Information Extraction which focus
on a small set of pre-defined relations. Here, we further extend this technique
by harnessing the type signatures for thousands of relations. Specifically, we de-
fine the type signature as the relative frequency at which the semantic types of
two entities occur under a relation pattern. We obtain these frequency statistics
from the development corpus. In addition to the four general NER types PERSON,
ORGANIZATION, LOCATION, and MISC, we use frequent infobox types1 that have at
least 1,000 articles in Wikipedia. From the resulting 167 types, we also manually
derive a subsumption hierarchy (e.g. FOOTBALLER C SPORTS-PERSON C PERSON).
These features are combined into the following objective function

5
(e1,e2,1)" = arg maxZaifi(m, tok, ey, ez, 7) (4.1)

(e1,e2,r) i=1

where the f; are the features described above and the «; are the parameters of our
joint model.

Training & Inference. The a; parameters are learned by maximizing the proba-
bility of the ground-truth annotations under L-BFGS optimization. At extraction
time, exact inference is performed by dynamic programming (Bellman, 2003).

4.6 Experiments

4.6.1 Corpora

J-REED is applicable to any corpus with entity-centric documents, such as home-
pages of people, companies, etc. In our experiments we focused on Wikipedia
articles about people. We remark that this does not restrict J-REED to PERSON en-
tities. J-REED extracts various types of entities (e.g., PERSON, MOVIE, AWARD, etc.),
and various types of relations (e.g., “receive award”: PERSON X AWARD).

Development & Training Corpus. For the various stages of training, tuning
and gathering statistics, we considered a collection of 1,215,956 Wikipedia arti-
cles about PERSON entities (based on types in Yago (Hoffart et al., 2011a)) from
the 01/2015 English Wikipedia dump. 80% of these articles with 19,287,432 triples

"https://en.wikipedia.org/wiki/Wikipedia:List_of _infoboxes

https://en.wikipedia.org/wiki/Wikipedia:List_of_infoboxes

36 | Chapter 4. Joint Model for Relation Extraction and Entity Disambiguation

from 8,312,439 sentences, called “ Wikipedia-develop”, were used to develop J-REED
(i.e., to compute various (co-)occurrence statistics for nouns, verbs, prepositions
and entities). In addition, we manually annotated 162 sentences from 5 of these
Wikipedia articles, referred to as “J-REED-train”, about prominent person entities,
namely, Andrew Ng, Angela Merkel, David Beckham, Larry Page and Paris Hilton
(covering scientists, politicians, sports stars, business people and actors/singers/
celebrities). These annotations comprise 203 triples, each consisting of two DB-
pedia entities and a sequence of N, V, P, 0 labels along the dependency path that
connects the two entities. J-REED-train serves to train the CRF model (Section 4.4)
and the joint model (Section 4.5).

Test Corpus. The remaining 20% of the 1,215,956 articles, called “ Wikipedia-test ”,
were used for evaluating our methods. We extracted 5,964,464 triples from 2,226,433
sentences from these articles.

Assessment. We had two judges who assessed our experimental results inde-
pendently. They were shown sampled facts (i.e., two entities and a relation) from
the output of different methods, along with the source sentence from which the
fact was extracted. The judges were asked to label the fact as true only if all three
components were correct, otherwise the fact was labeled as false. We observed
strong inter-judge agreement. Cohen’s kappa (Carletta, 1996) was 0.7.

4.6.2 Systems under Comparison

We ran experiments with several J-REED variants to compare against the state-
of-the-art Open IE approach (i.e., OLLIE (Mausam et al., 2012)), and named entity
disambiguation (NED) tools (i.e., Babelfy (Moro et al., 2014) and Spotlight (Daiber
et al., 2013)). We chose Spotlight and Babelfy due to their focus on DBpedia en-
tities and their ability to process the output of an Open IE system. Other NED
tools, such as TagMe (Ferragina and Scaiella, 2010), only work on plain text as
input. Specifically, we compared the following end-to-end IE methods:

e J-REED is the joint model described in Section 4.5. We heuristically re-
solve pronouns (i.e., “he” and “she”) by assuming that these always refer
to the main entity of the article. This assumption is based on the common
Wikipedia writing style (and carries over to other kinds of entity-centric
documents such as people’s homepages).

e J-REED-pipeline considers only the most likely relation label based on the
CRF model described in Section 4.4. In other words, the relation is fixed
before the entities are disambiguated. Pronoun resolution is considered as
described above.

e OLLIE-Spotlight is a pipelined approach combining OLLIE and Spotlight.

e OLLIE-Babelfy is a pipelined approach combining OLLIE and Babelfy.

We also perform an ablation test with three settings:

e J-REED-nopronoun performs joint entity-relation disambiguation but omits

pronoun resolution.

4.6. Experiments | 37

e J-REED-notype omits the type signature feature.
e J-REED-noprior omits the relation prior feature.

4.6.3 Experiments on Relation Extraction

We evaluated the precision on two randomly sampled subsets of extracted triples,
by manually assessing the 100 most confident results and 100 randomly sampled
results for Wikipedia-test , respectively. Precision for each setting is reported as
the mean of a Wald interval at 95% confidence level. Moreover, we measured recall
as the absolute number of relational triples extracted. This value implicitly reflects
relative recall which is generally hard to estimate for a large-scale experiment.
For both precision and recall, we considered only extractions that consisted of
up to 6 tokens. As shown in Table 4.1, J-REED outperforms both baselines in
terms of both quality and number of extractions. J-REED-pipeline loses about
2% in precision compared to J-REED . Many mistakes of OLLIE originate from
ignoring type constraints of relations. We remark that, although the authors of
OLLIE address this problem in their work (Mausam et al., 2012), this feature is
apparently turned off in their prototype software to increase recall.

Table 4.1: Experiments on Relational Triple Extraction (confidence at
95%).

Precision

Method Top-100 Random-100 #Extracts
J-REED 0.91 £ 0.05 0.90 £ 0.05 1,931,462
J-REED-pipeline 0.89 £+ 0.06 0.86 £+ 0.06 1,931,462
OLLIE 0.86 & 0.06 0.80 4= 0.07 1,646,231

4.6.4 Experiments on Entity Disambiguation

In a similar manner as for the relational fact extraction, we also evaluated the pre-
cision and recall of the entity disambiguation. For this, we considered 1,931,462
triples as output from J-REED (see Subsection 4.6.3). As the other NED systems —
Spotlight and Babelfy — do not map pronouns to entities, we ignored extractions
containing pronouns. An extraction is considered to be correct only if both enti-
ties are disambiguated correctly. Table 4.2 shows the results. J-REED outperforms
other methods. The overall difference in precision among the systems is not that
large, however. Particularly among the top 100 most confident results, all systems
achieve precision values of about 90%, as these results often come from full name
mentions which are rather straightforward to disambiguate. The numbers of dis-
ambiguated entity pairs are different for the systems, since we do not consider
null entities in the final results.

38| Chapter 4. Joint Model for Relation Extraction and Entity Disambiguation

Table 4.2: Experiments on Entity Disambiguation (confidence at 95%).

Precision

Method Top-100 Random-100 #Extracts
J-REED 0.94 4+ 0.04 0.85 + 0.06 1,931,462
J-REED-pipeline 0.93 4+ 0.05 0.82 + 0.07 1,931,462
Spotlight 0.92 4+ 0.05 0.83 + 0.07 1,036,319
Babelfy 0.89 4 0.06 0.81 + 0.07 854,159

4.6.5 End-to-End Experiments

For this setting, we evaluated the correctness of entire facts (i.e., relation triples).
In analogy to the above experiments, a fact extraction was considered correct only
if all of its three components (i.e., the relation and the two entities) were correctly
disambiguated. Here, we distinguished three types of assessments:

e True for a correct result,

e False for a wrong result (either the entities or the relation was wrong),

e Ignored for OLLIE-Spotlight and OLLIE-Babelfy when OLLIE returns a re-
lation that consists of more than 6 tokens (i.e., normally noise).

Ignored results are not considered for precision and recall.

Ablation Test. As shown in Table 4.3, the type signature feature and relation
prior features are crucial for the precision of J-REED. Disabling them results in
a drop of precision by up to 6%. Disabling pronoun resolution penalizes the cov-
erage by 40%. Additionally, we conduct experiments on the two heuristics for
resolving possessive forms and appositions from Section 4.4. Disabling each of
them penalizes the coverage by 6% and 12%, respectively.

Table 4.3: Ablation Test on Fact Extraction (confidence at 95%).

Precision

Method Top-100 Random-100 #Extracts
J-REED 0.86 £ 0.06 0.78 £ 0.08 1,931,462
J-REED-notype 0.83 £ 0.07 0.72 £ 0.08 1,931,462
J-REED-noprior 0.84 £+ 0.07 0.75 £ 0.08 1,931,462
J-REED-nopronoun 0.86 £+ 0.06 0.80 £+ 0.07 1,237,352

Comparison to Baselines. As shown in Table 4.4, the J-REED variants clearly
outperform OLLIE-Spotlight and OLLIE-Babelfy. J-REED achieves around 2% higher
precision than J-REED-pipeline . J-REED processes all 1.2 Million Wikipedia pages
in about five hours. Our competitors require more than a day to process the same
data.

4.7. Summary | 39

Table 4.4: Experiments on Fact Extraction (confidence at 95%).

Precision
Method Top-100 Random-100 #Extracts
J-REED 0.86 £ 0.06 0.78 £ 0.08 1,931,462
J-REED-pipeline 0.84 + 0.07 0.73 £ 0.08 1,931,462
OLLIE-Spotlight 0.80 £ 0.07 0.68 £+ 0.09 690,409
OLLIE-Babelfy 0.80 £ 0.07 0.67 £ 0.09 547,031

4.7 Summary

In this chapter, we present J-REED, a large-scale and high-quality information ex-
traction (IE) system for Wikipedia-style text. Its unique strength is that it jointly
runs inference for two core IE tasks: relation extraction and named-entity disam-
biguation by leveraging semantic types. Extractions by J-REED are more infor-
mative than by Open IE, as we canonicalize entities to a knowledge base. Running
J-REED on 1,215,956 Wikipedia PERSON pages yields 9,577,301 facts with a preci-
sion of around 80%.

40 | Chapter 4. Joint Model for Relation Extraction and Entity Disambiguation

Chapter 5

On-the-Fly Knowledge Base
Construction

5.1 Introduction and Related Work

Motivation & Problem Setting. Knowledge bases, KBs for short, contain subject-
predicate-object triples about entities and their properties. Popular KBs include
DBpedia (Auer et al., 2007), Yago (Suchanek et al., 2007), Wikidata (Vrande¢i¢ and
Krotzsch, 2014) and Freebase (Bollacker et al., 2008). Their commercial counter-
parts at Google, Microsoft, Baidu, and others provide back-end support for search
engines, online recommendations, and various knowledge-centric services. They
cover many millions of entities with billions of triples for thousands of predicates.
However, despite this impressive size, no KB is ever complete. In fact, even the
largest KBs miss out on many interesting predicates and emerging entities such
as brand-new events or unknown people who suddenly become notable. As an
example, consider what KBs provide about Brad Pitt: his birthplace, his movies,
wives, children, etc. However, they do not point out which children have been
adopted, nor that Angelina Jolie recently filed for divorce from him. There is
even interesting information about his movies that is absent from all KBs. An
example is that he played the mountaineer Heinrich Harrer in Seven Years in Ti-
bet, which would ideally be captured as a quadruple (Brad_Pitt, play_role_in,
Heinrich_Harrer, Seven_Years_in_Tibet). These gaps cannot be easily filled, as
many predicates are completely missing; and even for known predicates, it is hard
to keep up with the pace at which new facts appear in the real world. This calls
for a more open-ended and dynamic KB construction.

The goal of dynamic and broader construction of KBs has received substantial
attention in the database research community recently. The DeepDive project (Niu
et al., 2012; Shin et al,, 2015; Zhang et al,, 2016) has developed a highly versa-
tile tool suite for information extraction (IE) and KB population (KBP), based
on Markov Logic (Domingos and Lowd, 2009) and further techniques, includ-
ing a variety of optimizations. Another ground-breaking project in this space
is SystemT (Chiticariu et al., 2010, 2013; Reiss et al., 2008), which uses declarative

41

42| Chapter 5. On-the-Fly Knowledge Base Construction

rules for IE in a wide range of applications, including enterprise content analyt-
ics. However, these prior works still require a specification of which predicates
are of interest to the IE/KBP process. Unless predicates like has_adopted_child,
filed_divorce_from or plays_role_in are made explicit by the application ar-
chitect (or “knowledge engineer”), they will not be discovered automatically. This
may not be a problem for most use cases in enterprises or data science, but it does
limit the ability of these approaches to extract knowledge without any prior setup
phase.

State-of-the-Art & Limitations. The field of Open IE (Banko et al., 2007; Mausam
et al,, 2012) partially addresses the task of on-the-fly KB construction. In Open IE,
however, the subject-predicate-object arguments of the extracted triples are usu-
ally not canonicalized. For example, triples with subjects “Brad Pitt”, “Bradley
Pitt”, “Oscar winner Pitt”, etc. will all be present even if their statements are
equivalent. The DEFIE (Bovi et al., 2015) system, for example, thus adds a post-
processing stage to disambiguate entity names, but still leaves predicates unre-
solved. Predicates like wins_prize and receives_award will co-exist, although
they are synonymous. Recently, Galarraga et al. (2014) and Riedel et al. (2013)
further canonicalized Open IE output by clustering noun phrases as subjects and
objects, while verbal phrases are clustered into relations. However, these ap-
proaches have high overhead and are not geared for dynamic knowledge acqui-
sition. Declarative approaches to IE and KBP, like DeepDive (Niu et al., 2012;
Shin et al., 2015; Zhang et al., 2016) and SystemT (Chiticariu et al.,, 2010, 2013;
Reiss et al., 2008), require specifications of predicates and rules. Thus, also they
cannot be used in a spontaneous “on-the-fly” manner. Query-time IE, as pur-
sued in our work, resembles the notion of query-time inference over probabilistic
databases (Dylla et al,, 2014; Suciu et al,, 2011). These methods operate on un-
certain relational data as well as uncertain rules (i.e., views), and support flexible
forms of top-k queries (Dylla et al., 2013) and general inference (Gatterbauer and
Suciu, 2017; Gribkoff and Suciu, 2016; Li et al., 2017). However, all of these ap-
proaches require a relational schema that underlies the KB.

Approach & Contributions. This chapter presents QKBfly (Nguyen et al., 2018),
anovel system for constructing query-driven, on-the-fly KBs. Based on our expe-
rience with various IE tasks (Hoffart et al., 2012; Nakashole et al., 2012; Nguyen
et al., 2014, 2016; Yosef et al., 2011), our focus in this work is to develop an end-
to-end system for KB construction, which may be triggered by an ad-hoc user
query (e.g., when an analyst or journalist becomes interested in a particular per-
son, organization or event). The system takes as input an entity-centric query or
a natural-language question, automatically retrieves relevant source documents
(via Wikipedia and news sources), runs a novel form of knowledge extraction on
the sources, and builds a high-coverage KB that is focused on the entities of in-
terest. Compared to mainstream KBs, we acquire facts for a much larger set of
predicates. Compared to Open IE methods, arguments of facts are canonicalized,
thus referring to unique entities with semantically typed predicates derived from

5.2. System Overview |43

precomputed clusters of phrases. Besides supporting analytical queries, QKBfly
thus also facilitates the application of current question-answering (QA) frame-
works (Berant et al., 2013; Bast and Haussmann, 2015), which increasingly rely
on structured knowledge backends, to currently popular events and queries.

At the heart of QKBfly is a semantic-graph representation of sentences that
captures per-sentence clauses, noun-phrases, pronouns, as well as their syntac-
tic and semantic dependencies. Based on this graph, we devise an efficient in-
ference technique that performs three key IE tasks, namely named-entity disam-
biguation, co-reference resolution and relation extraction, in a light-weight and in-
tegrated manner. Because of the clause-based representation of sentences, QKBfly
is not limited to binary predicates but can also extract ternary (or higher-arity)
predicates. To conclude our motivation for this work, we summarize the novel
contributions of QKBfly as follows:

e we present an end-to-end system for on-the-fly KB construction that is trig-

gered by an entity-centric user query or a natural-language question;

e QKBfly employs a novel graph-based approach for cleaning, canonicalizing
and organizing noisy extractions from Open IE into a crisp KB (including
ternary and higher-arity predicates);

e we conduct extensive experiments that demonstrate the viability of our ap-
proach under various IE and QA settings.

In our experiments, we evaluate QKBfly’s capability of building on-the-fly KBs
against the state-of-the-art baselines DEFIE (Bovi et al., 2015) and DeepDive (Shin
etal., 2015). As an extrinsic use case, we employ QKBfly for ad-hoc QA on emerg-
ing topics derived from Google Trends.

5.2 System Overview

5.2.1 Design Space and Choices

KB construction generally faces an inherent trade-off between precision (i.e., frac-
tion of correct tuples among the acquired ones) and recall (i.e., fraction of correct
tuples among the ones that could possibly be acquired from the input). In tradi-
tional KB construction the priority is usually precision, as large KBs (e.g., com-
mercial knowledge graphs, Yago, Wikidata, etc.) are an infrastructure asset meant
to support a wide variety of applications. In contrast, on-the-fly KB building is in-
tended to support analysts in ad-hoc exploration and querying. Therefore, recall
is the primary priority, and good precision is a secondary goal within this regime.

This overriding design decision has consequences on the system architecture.
While holistic methods with joint inference on all steps and sub-goals (e.g., prob-
abilistic graphical models, constraint-based reasoners, etc.) are often attractive,
they are much harder to control in their behavior towards separately tunable re-
call and precision. Moreover, tools like Alchemy (Domingos and Lowd, 2009),
DeepDive (Niu et al,, 2012; Shin et al., 2015), Thebeast (Riedel, 2008) or Sofie

44| Chapter 5. On-the-Fly Knowledge Base Construction

(Suchanek et al., 2009) require sophisticated modeling, training and configuration
upfront, which is all but straightforward in our open-domain on-the-fly setting.
These considerations are the rationale for splitting our approach to on-the-fly KB
construction into two phases: a recall-oriented extraction phase followed by a
precision-oriented cleaning phase. This separation gives us best control on the
trade-off.

Extraction. Since on-the-fly KB construction aims for high recall, we adopt the
OpenlE paradigm (Banko et al., 2007) for this phase. To cope with the high di-
versity of input documents that a query-driven approach comes with, we employ
a judiciously designed set of linguistic pre-processsing steps. For these, we use
standard tools that are state-of-the-art in NLP. One of these is ClausIE (Del Corro
and Gemulla, 2013), which decomposes sentences into a set of clauses. For effi-
ciency, we modified ClauslE, to use the MaltParser (Nivre and Hall, 2005) instead
of its original reliance on the Stanford parser (Klein and Manning, 2003). In our
experiments, we compare QKBfly against a variety of best-practice OpenlE tools.

Cleaning. The extraction phase produces a large set of — still noisy — candidates
for triples and tuples. To remove false positives and reconcile semantic redun-
dancy, we perform two major cleaning steps: one resolving entity mentions and
co-references (see Section 5.4), and one for canonicalizing relational predicates
(see Section 5.5). Both are potentially expensive tasks. Since the case for on-the-
fly KB construction is ad-hoc information needs that should support analysts in
a same-day manner, we decided to devise light-weight algorithms for both tasks
(see below), based on a graph model, but avoiding the heavy-duty joint inference
that probabilistic graphical models (PGMs) usually incur. Our experiments pro-
vide some comparison points for precision and run-time of our method against
the joint-inference paradigm. As MAP inference (maximum a posteriori) in PGMs
is equivalent to solving a weighted MaxSat problem which in turn is a form of
constraint programming, we picked the Integer Linear Programming (ILP) solver
Gurobi! for comparison. This is a mature and highly optimized tool, performing
very well on a wide range of constraint-based reasoning tasks. Note that some
PGMs actually use ILP for efficient MAP inference (e.g., (Riedel, 2008)).

5.2.2 QKBfly Overview

Figure 5.1 depicts the architecture of QKBfly. Given a set of input documents (D),
retrieved in response to a user query (Q), QKBfly works in three stages. First, it
builds a semantic graph (G) from clauses and initial co-references extracted from
each of the sentences contained in (D). Second, it refines each semantic graph by
jointly performing named-entity disambiguation and co-reference resolution via
a graph-densification algorithm (A). Third, it canonicalizes the on-the-fly KB (K) by
merging co-reference nodes and by mapping relational paraphrases to a canonical
set of entities and relations.

"http://www.gurobi.com

http://www.gurobi.com

5.2. System Overview | 45

Pre-Processing — e
_/ v
- [Tokenizer } Pattern > Output KB (K)
=0 7 Repository (P)
S
_? % [POS Tagger } — T
Me—
80 \ — Background Graph-Densification
{ Dependency Parser] Statistics (S) Algorithm (A)
v
—
a [Noun-Phrase Extractor } (— NED CR
b v Semantic
- Graph (G)
E5 [NER & Time Tagger } i
= £ 2!
L] = ¢
g Entity Repository (E)
/A { Clause Extractor 1 ty Rep y
\—/

Figure 5.1: System overview. Blue components are processed on-the-fly.

Background Repositories. As static input, QKBfly employs three types of repos-
itories, namely a background corpus(C), a pattern repository (P) and an entity repos-
itory (E). From (C), we also extract statistics (S) used later by QKBfly. Each of these
background repositories is exchangeable. For the experimental setup described in
Section 5.7, we fixed them as follows: we employ a Wikipedia? full-text dump
from Sept. 1, 2015 as (C), PATTY? (Nakashole et al., 2012) consisting of 127,811
relational paraphrases as (P), and Yago* (Suchanek et al., 2007) with 3,420,126
entities as (E). As for Yago, we merely harness its knowledge about alias names
of entities together with their gender attributes (for better pronoun resolution),
while none of the actual KB facts are used in QKBfly. In particular, we do not re-
quire all entities we recognize during KB construction to be present in the given
entity repository.

Statistics. Both the background corpus (C) and the input documents (D) are
pre-processed by pipeline of linguistic tools, consisting of tokenization, part-of-
speech (POS) tagging, noun-phrase chunking and named-entity recognition (NER),
all of which are performed by the Stanford CoreNLP toolkit (Manning et al., 2014).
In addition, we employ time tagging (Chang and Manning, 2012) and the Open
IE tool ClauslE (Del Corro and Gemulla, 2013) to extract clause structures in
which all arguments are annotated either as names or time expressions. As for
the Wikipedia-based background corpus (C), we also map clause components to
Wikipedia entities by their href links if the NER type of the clause component
matches the type of Wikipedia entity. Based on the resulting clause structures,
we compute (co-)occurrence statistics for clause-argument-types and the rela-
tionships among them. These serve as input to the feature functions described
in Section 5.4.

Stage 1: Semantic Graph. From the pre-processed input documents (D), we
build a semantic graph for each sentence in (D) based on the clause structure

*https://dumps.wikimedia.org/enwiki/
*https://d5gate.agh.mpi-sb.mpg.de/pattyweb/
*https://www.yago-knowledge.org/

https://dumps.wikimedia.org/enwiki/
https://d5gate.ag5.mpi-sb.mpg.de/pattyweb/
https://www.yago-knowledge.org/

46 | Chapter 5. On-the-Fly Knowledge Base Construction

detected by ClauslE. A leaf node in this graph represents an occurrence of an
entity, while an edge among two leaf nodes represents a relation pattern in our on-
the-fly KB (K). The per-sentence graphs are linked via an initial set of possible co-
reference edges (based on the technique of Bamman et al. (2014)), thus connecting
pairs of leaf nodes that potentially refer to the same entity (see Section 5.3).

Stage 2: Graph Algorithm. Next, the graph-densification algorithm refines each
of the connected semantic graphs. It thereby jointly performs entity disambigua-
tion and co-reference resolution based on an efficient algorithm for densifying the
semantic graphs. The method is inspired by and generalizes the dense-subgraph
algorithm introduced in Hoffart et al. (2011b), which we judiciously chose as a
basis due to its good runtime performance and accuracy. The algorithm employs
a greedy heuristic for pruning edges to obtain a dense subgraph under a set of
given constraints. The remaining edges in the densified subgraph link mentions
to unique entities in the resulting on-the-fly KB (see Section 5.4).

Stage 3: On-the-fly KB Canonicalization. In the final stage, QKBfly constructs
the on-the-fly KB (K) by combining and canonicalizing the remaining nodes and
edges in the semantic graph. Entities are either linked to the entity repository (E)
or are identified as a cluster of new names (for emerging entities) which are con-
nected by co-reference edges. At this stage, QKBfly uses the pattern repository
(P) to map relational paraphrases to a canonicalized set of relations. Similarly to
the entity repository, new relational paraphrases not contained in (P) are consid-
ered as new relations. Moreover, by considering the per-sentence clause structure,
QKBfly is able to acquire triples as well as higher-arity facts (see Section 5.5).

5.3 Semantic Graph

When given a set of natural-language sentences (i.e., in a web page, a Wikipedia
article, etc.) as input, QKBfly first builds one semantic graph for each input sen-
tence. It then connects the per-sentence graphs by co-reference links among
nodes that potentially refer to the same entity. QKBfly primarily employs ClausIE
to construct these per-sentence graphs. To improve the efficiency of the extrac-
tion process, we use the Malt parser (Nivre and Hall, 2005) in our implementa-
tion instead of the Stanford parser (Klein and Manning, 2003) used in the original
version of ClauslE. Besides dependency parsing, ClausIE exploits further linguis-
tic features such as POS tagging and noun-phrase chunking to detect so-called
clauses. Following Quirk et al. (1985), a clause is a coherent piece of informa-
tion within a sentence that consists of one subject (S), one verb (V), an optional
(either direct or indirect) object (O), an optional complement (C), and a variable
amount of adverbials (A). A main observation of Quirk et al. (1985) is that only
seven combinations of the above constituents, namely SV, SVA, SVC, SVO, SVOO,
SVOA and SVOC, actually occur in the English language, which is a key for rela-
tion extraction in ClauslE. That is, one clause confirms to exactly one n-ary fact

5.3. Semantic Graph | 47

with these constituents as arguments. In addition, we use the Stanford NER tag-
ger (Finkel et al., 2005) and SUTime (Chang and Manning, 2012) to detect named
entities within the clauses.

Nodes. A node in our semantic graph is a container for clauses, nouns, pronouns
and entities occurring in an input sentence and the entity repository, respectively.
Specifically, we distinguish the following four types of nodes:

e A clause node is generated for each clause detected by ClauslE. A clause
may be connected to multiple dependent clauses in the same sentence. Their
dependency structure is also detected by ClausIE.

e A noun-phrase node is generated for each noun phrase detected by the
noun-phrase chunker and for each named entity detected by the NER tagger
(both using Manning et al. (2014)). Additional time expressions are detected
by the time tagger (using Chang and Manning (2012)).

e A pronoun node is generated for a pronoun (such as “he”, “she”, “they”, etc.).
Noun-phrases and pronouns together form the leaves of the subtree built
for each sentence.

e Anentitynode is generated for each candidate (e.g., Brad_Pitt) of a noun-
phrase node that matches a known alias name in the entity repository.

Edges. Edges represent the syntactic and semantic dependencies among nodes in
the semantic graph. Here, we distinguish the following four types of edges:

o A depends edge links two dependent clauses. It additionally links a clause
node with the noun-phrase and pronoun nodes it contains.

e A relation edge represents a relation pattern (i.e., the lemmatized verb (V)
constituent of the clause with an optional preposition such as “to”, “in”, etc.)
that connects two noun-phrase or pronoun nodes in a clause.

o A sameAs edge links two noun-phrase or pronoun nodes which likely refer
to the same entity (by following Bamman et al. (2014) for co-reference and
pronoun resolution).

e A means edge links a noun-phrase or pronoun node with an entity node
based on matching alias names in the entity repository.

We follow the method of Bamman et al. (2014) to initialize the sameAs edges be-
tween noun-phrase nodes and pronoun nodes, respectively. The sameAs edges
among two noun-phrase nodes with the same NER label (e.g., PERSON) are de-
termined by string matching (e.g., between “Brad Pitt” and “Pitt”). Additionally,
sameAs edges are created between pronoun nodes and all noun-phrase nodes that
precede the pronoun by at most five backward sentences. Our graph algorithm
(see Section 5.4) will later remove all but the most likely sameAs edge between
a pronoun node and its linked noun-phrase nodes. In addition to the verb (V)
constituents detected by ClauslE, we apply one more heuristic to label relation
edges. That is, for text patterns of the form “’s (noun)” (e.g., “Pitt’s ex-wife Angelina
Jolie”), we consider the middle noun (i.e., “ex-wife”) as the relation candidate be-
tween the two noun-phrase nodes.

48| Chapter 5. On-the-Fly Knowledge Base Construction

“Even though Brad Pitt is an actor, he supports the ONE Campaign. Pitt donated $100,000 to the DPF.”

clause: SVO clause: SVOO
| he supports the ONE Campaign I ' Pitt donated $100,000 to the DPF I
dePEM/depends depends depends/ \ depends
clause: SVO pronoun noun-phrase noun-phrase noun-phrase
| Brad Pitt is an actor | | he '—'| ONE Campaign | | Pitt }'—>| DPF l

relation: “support”

k‘l ation: “donate to”

noun-phrase
$100,000

depemi/\j‘epends

noun-phrase noun-phrase
| Brad Pitt |——'| actor
relation: “be

sameAs

means

Entity Repository

~ , x
entity entity entity entity entity
Brad_Pitt l I Brad_Pitt_(boxer) ' ' ONE_Campaign ' ' Daniel_Pearl_Foundation ” Drug_Policy Alliance I

Figure 5.2: Semantic graph example.

Figure 5.2 depicts a semantic graph built from the two input sentences shown
on top of the figure. The first sentence contains a SVC clause and a SVO clause,
namely “Brad Pitt is an actor”and “he supports the ONE Campaign”, which results
in two triples (“Brad Pitt”, “be”, “actor”) and (“he”, “support”, “ONE Campaign™)
whose arguments are not yet canonicalized. Similarly, the quadruple (“Pitt”, “do-
nate to”, “$100,000”, “Daniel Pearl Foundation”) is extracted from the SVOO clause
of the second sentence. Notice that the noun phrases “actor”and “$100,000” could
not be linked to any entity in the entity repository. These will remain string lit-
erals in the respective arguments of the former two facts.

5.4 Graph Algorithm

We henceforth refer to the semantic graph built according to the previous section
as G = (N, R), where N denotes the set of nodes, and R denotes the set of edges
(i-e., “relationships”) among nodes in G. The goal of our graph-densification algo-
rithm then is to remove false-positive means and sameAs edges from R by solving
a constraint-based optimization problem. In doing so, we perform a form of joint
inference for the two key IE tasks of named-entity disambiguation and co-reference
resolution.

Edge Weights. For a subgraph S = (N/ C N, R’ C R) of G, we first distinguish
the following dependencies among nodes.
e For each noun-phrase node n;j, let ent(n;, S) be the set of all entity nodes
associated with n; by means edges in R’.
e For each pronoun node p;, let np(p;, S) be the set of all noun- phrase nodes
associated with p; by sameAs edges in R'.
o Further, let ent(p;, S) denote the union of all ent(n;, S) sets, where n; €
np(pi. S).
Next, we define the edge weights to establish our densest-subgraph objective as
follows.

5.4. Graph Algorithm | 49

(1) The weight of a means edge between a noun-phrase node n; and an entity
node ¢;; € eni(n;, S) for a subgraph S is computed as

w(ni, ej) = a1 - fi(ni e;) +

o - f3(ni, ep)

(5.1)

where a1 and ay are hyper-parameters and:
e fi(ni, e;;) captures the mention-entity prior between n; and e;;.
e f3(ni, €;;) captures the mention-entity token context similarity between node
n; and candidate e;;.
(2) The weight of a relation edge between two noun-phrase or pronoun nodes
n;, ny for a subgraph § is computed as

w(n,n,)= az - Y filej eq) +
eiJEent(ni,S)
ey, €ent(n:,S)

Qyq - Z ts(eij: €irs ri,l’)
€;; € ent(n;,S)
ety €ent(n,S)

(5.2)

where a3 and ay are hyper-parameters and:
e fa(ei, ey) captures the entity-entity token context similarity between two en-
tity candidates e;; and ey,
e is(ei, er, i) is the relative frequency under which the semantic types of
ei;, e, occur under the relation pattern r; ; in the clauses detected by ClauslE.
Since an entity can have several types (e.g., ACTOR and PERSON) in our type
system (described in Chapter 4, Section 4.5), we take the sum over all type
combinations for the given entity pair.

We remark that in order to speed up the system, we only consider four key fea-
tures including f1, f3, f1, and f7 in the list of seven features described in Chapter 2,
Section 2.1. Particularly, f; is embedded in the type signature feature. Addition-
ally, we do not compute weights for sameAs and depends edges. While sameAs
edges are used as constraints in the optimization model, depends edges only con-
tribute to the final KB construction, particularly for determining the fact bound-
aries as described in Section 5.5.

Optimization Objective. After assigning the edge weights, we next aim to find
the densest subgraph S* = (N* C N, R* C R) that maximizes the following
objective function.

e The sum of all edge weights in $*, denoted as W(S*), is maximized,
which is subject to the following constraints:

1. each noun-phrase node is connected to at most one entity node by a means

edge in R*;

2. each pronoun node is connected to at most one noun-phrase node by a

sameAs edge in R™;

50 | Chapter 5. On-the-Fly Knowledge Base Construction

3. all noun-phrase or pronoun nodes that are mutually linked by sameAs edges,
are connected to the same entity;

4. each pronoun node connected to a noun-phrase node that is connected to an
entity node of type PERSON for which the background KB provides gender
information, must match that gender.

Data: Semantic graph G = (N, R) from the input text.
Result: The densest subgraph §* = (MV* C N, R* C R) which satisfies
the four constraints (1), (2), (3) and (4) (Chapter 5, Section 5.4).
1 for subgraph S = (N C N, R’ CR) do
2 for node x € N do
3 L np(x) < all noun-phrase nodes linked to x by sameAs edges in R’;

4 for noun-phrase node n; € N do

5 ent(n;) < all entity nodes linked to n; by means edges in R’;
6 if ent(n;) = () then

7 report a new entity;

8 for noun-phrase node n; € N’ do

9 for noun-phrase node n; € np(n;) do

10 L ent(n;) < ent(n;) N ent(ny);

11 for pronoun node p; € N’ do

12 ent(pi) <= Up,enp(p) ent(ne);

13 for entity e € ent(p;) do

14 if doesn’t satisfy gender constraint (4) then
15 L L remove e from ent(p;);

16 W(S) < sum over all edge weights in S;

17 S« G;

18 while all constraints are satisfied do

19 for means or sameAs edge of two node (x,y) € R do

20 &’ « subgraph of S by removing (x, y);

21 L c(x,y,8) = W(S) - W(S);

22 remove the means or sameAs edge between two node (x, y) with the
smallest contribution ¢(x, y, S) and no constraint will be violated;
23 update S;

24 if no edge is removed then

25 L return S;

Algorithm 1: Densest-Subgraph Algorithm.

Approximation Algorithm. Sozio and Gionis (2010) shows that the above for-
mulation of a densest-subgraph problem with constraints is NP-hard. We thus
resort to approximating our optimization objective by the following greedy al-

5.4. Graph Algorithm | 51

gorithm. We first restrict the entity candidates for each noun-phrase node to

the ones contained in the dictionary of the background KB, but allow unlinked

noun-phrase nodes in the final subgraph for out-of-KB entities. For all noun-phrase
nodes that are mutually connected via sameAs edges, the entity candidate sets are

intersected. The approximation algorithm then greedily iterates on the graph’s

edges as long as no constraint is violated. In each round, the algorithm removes

the means or sameAs edge between two nodes (x, y) with the smallest contribu-

tion to the objective function of the current subgraph S. This contribution to the

objective function is defined as

o(x, 1, 8) = W(S) - W(S) (5.3)

where S’ is the subgraph of S we obtain by removing edge (x, y) from S. If remov-
ing an edge leaves an entity candidate isolated, then that entity node is removed
as well. After each edge removal, the weights of all remaining edges need to be
recomputed, as the cutting of sameAs edges modifies the influence of relation
edges attached to noun-phrase or pronoun nodes. Our implementation performs
this recomputation step in a selective and incremental way. Algorithm 1 shows
pseudocode for our algorithm.

Confidence Scores. As an additional filtering step, we assign a normalized con-
fidence score to each noun-phrase or pronoun node n; that is disambiguated to an
entity e;; as

c(n;, e;,, S*
score(n;, ej;, S*) = Z:(' l]() s) (5.4)
c\ng, €j, ot
e, €ent(n;,G)

where the denominator sums up over all subgraphs S; constructed from S* by
replacing e;; (and its associated means edge) with one of the original candidates
e;, (and its means edge). For the confidence of a triple (or higher-arity fact), we
choose the minimum of the confidence scores of all disambiguated entities that
occur as the arguments of the fact. In our experiments, we use a score threshold
T = 0.5 to distill high-quality facts.

Hyper-Parameter Tuning. We manually annotated 162 sentences from 5 Wiki-
pedia articles, about prominent person entities, including Andrew Ng, Angela
Merkel, David Beckham, Larry Page and Paris Hilton (thus covering scientists,
politicians, sports stars, business people and models). These annotations comprise
203 facts, each consisting of a pair of Yago entities and a relation pattern (e.g.,
(Larry_Page, “born in”, Michigan)).

By independently constructing a graph G with two noun-phrase nodes n; and
n; for each triple fact, we define the probability of choosing entity node e;; €
ent(n;, G) and entity node ey, € ent(n;, G) as

w(S)

prOb(ni: eij: nt, etk: g) = W (55)

52| Chapter 5. On-the-Fly Knowledge Base Construction

where the subgraph S is constructed from G by removing all entity nodes except
e, and ey The parameters oy 4 are learned by maximizing the probability of
the ground-truth annotations using L-BFGS optimization (Liu and Nocedal, 1989),
which implements a memory-efficient variant of stochastic gradient descent.

5.5 On-the-fly Knowledge Base Construction

In the final stage, QKBfly processes the output of the graph densification to per-
form our final IE task, relation extraction, to populate our on-the-fly KB with facts.
Noun-phrases and pronouns at this time are either linked to unique entities in the
entity repository or are identified by a group of noun-phrase nodes connected via
sameAs edges. Specifically, a new entity is introduced for each group of sameAs
nodes that consists only of out-of-repository names. We additionally consider all
groups of noun-phrase nodes that link to entities in the background repository
with very low confidence scores as new entities. These are added to the on-the-fly
KB as emerging entities—an important asset for up-to-date knowledge.

Relation edges carry surface-form labels: patterns that denote predicates. To
canonicalize also these patterns, we harness the pattern repository, specifically
the PATTY dictionary of relational paraphrases (Nakashole et al., 2012). All node-
edge-node triples that have the same node labels and have edge labels that belong
to the same synset in PATTY are combined into a single triple, thereby clustering
the relation patterns together. For example, relation edges with labels “play in”,
“act in” and “star in” that connect the same actor-movie pair are combined. This
way, we are not limited to the relations that are registered in an existing KB (such
as the ca. 100 predicates in Yago or the ca. 6,000 property labels in DBpedia),
but can also capture many interesting relations on-the-fly. Unlike all of the major
KBs, we also construct facts for ternary or higher-arity relations. This is where
the extraction of clauses pays off. Whenever noun-phrase or pronoun nodes are
linked to the same clause node via depends edges, we merge those nodes into a
single fact. For example, QKBfly can construct ternary facts from SVOO or SVOA
clauses such as (Brad_Pitt, play_in, Heinrich_Harrer, Seven_Years_In_Tibet),
(Brad_Pitt, adopt_in, Pax_Thien_ Jolie-Pitt, “2008”), etc. Those higher-arity
facts provide more complete information than triple facts, which is useful for
many extrinsic use cases such as QA on complex questions (e.g., “Who plays
Achilles in Troy?”).

Table 5.1 shows sample results (entities and their mentions, relational pat-
terns and facts) of the on-the-fly KB constructed by QKBfly from the Brad_Pitt
Wikipedia page. QKBfly captures long-tail entities, such as Brad Pitt’s father
William_Alvin_Pitt who is missing in most KBs. QKBfly captures binary facts
(triples) such as (Brad_Pitt, born_to, William_Alvin_Pitt), as well as ternary
facts such as (Brad_Pitt, play_in, Achilles, Troy_(film)).

As a demonstration of QKBfly’s ability to compile KBs in a query-driven man-
ner on-the-fly, we ran it for a set of different queries with news articles returned

5.5. On-the-fly Knowledge Base Construction |53

by the Google search engine. Table 5.2 shows sample results extracted from top-
ranked news about some celebrities. QKBfly compiles up-to-date knowledge like
the Pitt and Jolie divorce, the Nobel prize for Bob Dylan, and the death of Thai-
land’s king. Also, QKBfly captures emerging (out-of-traditional-KB) entities such
as two women who accuse Donald_Trump of sexual abuse: Jessica_Leeds and
Natasha_Stoynoff.

Table 5.1: Excerpt of QKBfly output from Google news articles. Out-of-
Yago entities have an asterisk; relations are in italics.

Entities & Mentions
Brad_Pitt — “William Bradley Pitt”, “Brad Pitt”, Pitt”, etc.
William_Alvin_Pitt* — “William Alvin Pitt”
Achilles — “Achilles”, “warrior Achilles”, etc.
Troy_(film) — “Troy”

Relations & Patterns

»

born_to — “born to”, “father”, etc.

» o«

play — “play’, “act’, etc.

»

play_in — “act in”, “starin”, “play in”, “have role in”, etc.

Facts
(Brad_Pitt, born_to, William_Alvin_Pitt™*)
<Brad_Pitt, play_in, Achilles, Troy_(film))

Table 5.2: Excerpt of QKBfly output from Google news articles. Out-of-
Yago entities have an asterisk; relations are in italics.

Query Fact

<Brad_Pitt, divorce_from, Angelina_.]olie>

Brad Pitt <Angelina_.]olie, file_for_on, divorce”, “Sep. 19”)
(Brad_Pitt, reunite_with_on, “his kids”, “Oct. 8”)
<Bob_Dy1an,win_for,Nobel_Prize_in_Literature,

Bob Dylan “having created new poetic expressions within the

American song tradition”)
Bhumibol (Bhumibol_Adulyadej, die_on, “13 Oct. 2016”)
Adulyadej (Vajiralongkorn, become, “new king”)

(Jessica_Leeds™, accuse_of, Donald_Trump,
Donald “groping her on an airplane in the 1980s”)
Trump (Natasha_Stoynoff*, accuse_of, Donald_Trump,
“making sexual advances during an interview”)

54 | Chapter 5. On-the-Fly Knowledge Base Construction

5.6 QKBfly at Work

We developed a user interface to demonstrate the ability of QKBfly to construct
KBs on-the-fly. Given a set of input documents, such as a Wikipedia page or a
collection of news articles, QKBfly can build a KB with hundreds (or thousands)
of facts within a minute.

Query: Bob Dylan Corpus: en.wikipedia.org = Size: 1 Build On-the-fly KB

Subject: [Type:MUSICAL ARTIST | Predicate: [receive_in_from Object Filter Lo

1 - https://en.wikipedia.org/wiki/Bob_Dylan
Show 4 out of 721 facts:

Subject Predicate Objects

Dylan receive_in_from the Presidential Medal of Freedom May 2012 President Barack Obama

Dylan receive_in_from a Grammy Lifetime Achievement Award 1991 American actor Jack Nicholson

Dylan receive_in_from the Polar Music Prize May 2000 Sweden ‘s King Carl XVI

Dylan receive_in_from the accolade of Légion d'Honneur November 2013 the French education minister Aurélie Filippetti

Figure 5.3: Sample of higher-arity facts by QKBfly.

Query: [Bob Dylan Corpus: |bbc.com N Size: |10 Build On-the-fly KB
Subject: [Patti_Smith Predicate: Object Filter LOG:

1 - http://www.bbc.com/news/entertainment-arts-37643621

Show 2 out of 195 facts:

2 - hitp:/h bbe. -arts-37655068
Subject Predicate Objects

3 - http://www.bbe. -arts-37689160
Patti Smith perform his song A Hard Rain ‘s A-Gonna Fall at the ceremony

4 - hitp:/www.bbe.cominews/entertainment-arts-37646293
she forget the lyric

5 - hitp://www.bbc. 15-37806639

- hitp://www.bbe.com/news/entertainment-arts-37645503

5
6

7 - hitp://www.bbe. 38280402

8 - http://www.bbe.com/news/entertainment-arts-38003818

9 - http://www.bbe. 1s-37740379

10 - hitp://bbe.com/music/artists/72c536dc-7137-4477-a521-
» || 567eeb840fa8?imz_s=fqun 2 32

Figure 5.4: Sample of up-to-date facts from news by QKBfly.

System Implementation. Figure 5.3 and Figure 5.4 show two screenshots of
QKBfly in a browser.

e For the input, we let the user choose a query (e.g., “Bob Dylan”), the input
source (Wikipedia or news articles) and the desired number of input docu-
ments. QKBfly then processes relevant documents by restricting the search
to en.wikipedia.org for Wikipedia, and to bbc. com for news.

e For the output, we show all facts from the on-the-fly KB. Prominent entities
may be linked to entities in the entity repository. As the number of facts
can be huge, we offer a string search on subjects, predicates or objects.
QKBfly also supports type search if the user specifies the prefix Type: to the
queried category. Figure 5.3 shows the result of 4 out of 721 facts in total by
searching for Type : MUSICAL_ARTIST as the subject and receive_in_fromas
the predicate in the on-the-fly KB constructed from the Wikipedia page of
Bob Dylan.

en.wikipedia.org
bbc.com

5.7. Experiments | 55

Figure 5.4 also illustrates the ability of QKBfly to capture up-to-date facts from
news. For example, there is the fact that Patti Smith forgot the lyrics when per-
forming Bob_Dylan’s song at the Nobel Prize ceremony, which is extracted from
10 news articles. The predicate forget would not be covered by many of the
existing KBs. Also, obtaining this kind of knowledge is not possible with state-
of-the-art tools for IE and knowledge base population. Methods, like DeepDive
or SystemT, would require substantial setup work by a knowledge engineer to
obtain these results.

5.7 Experiments

In our experiments, we first compare QKBfly’s capability of building on-the-fly
KBs against the state-of-the-art Open IE baseline DEFIE (Bovi et al., 2015). Second,
we compare our greedy approximation algorithm for the joint inference of named
entity disambiguation (NED) and co-reference resolution (CR) against an integer
linear programming (ILP) algorithm. Third, we compare QKBfly’s capability of
performing mentions of spouses extraction (i.e., relation “married_to”) against
DeepDive (Zhang et al., 2016). Finally, as an extrinsic use case, we dynamically
construct ad-hoc KBs for question answering.

5.7.1 Experiments on KB Construction

Benchmarks. We use two datasets:

e DEFIE-Wikipedia dataset® (Bovi et al., 2015), consisting of 14,072 randomly
chosen Wikipedia pages with 225,867 sentences. We use this dataset to run
experiments on end-to-end KB construction.

e Reverb dataset® (Fader et al., 2011), consisting of 500 sentences which have
been obtained by the random-link service of Yahoo. This is used to run
experiments on Open IE components.

Methods under Comparison. We compare several configurations of QKBfly
against DEFIE:

e QKBfly. This jointly performs fact extraction, NED and CR.

o QKBfly-pipeline. This is a pipeline architecture with three separate stages
for fact extraction, NED and CR. The type signature feature (for fact extrac-
tion and NED) is omitted.

e QKBfly-noun. This performs fact extraction and NED. CR is omitted.

e DEFIE. This is a pipeline architecture with two stages for Open IE and NED,
using Babelfy (Moro et al., 2014) for NED.

Environment. To have a fair comparison about runtime among systems, all ex-
periments are run single-threaded on an Intel Xeon X5650 server with 64GB RAM.

>provided by the authors
*http://reverb.cs.washington.edu/

http://reverb.cs.washington.edu/

56 | Chapter 5. On-the-Fly Knowledge Base Construction

Assessment. We asked 2 human assessors to evaluate the correctness of 200
randomly sampled extractions. Inter-assessor agreement was high, with Cohen’s
kappa being x = 0.77. Precision values are reported with Wald confidence inter-
vals at 95%. Table 5.3 depicts a number of anecdotal examples.

Table 5.3: Sample extractions from the sentence “His form attracted Bob
Paisley, and McGarvey signed for Liverpool in May 1979.”. Relations are in
italic style.

Method Fact Assessment
(“His form”, attract, Bob_Paisley) true
QKBfly & QKBfly-noun (Frank_McGarvey, sign_for_in, true
Liverpool_F.C., “May 1979”)
(“His form”, attract, Bob_Paisley) true
QKBfly-pipeline (Frank_McGarvey, sign_for_in, false

Liverpool, “May 1979”)

5.7.1.1 Results on Fact Extraction

Table 5.10 shows experimental results for fact extraction on the DEFIE-Wikipedia
dataset. QKBfly-noun achieves the highest precision: 73% for triple facts and 68%
for quadruple facts. QKBfly significantly increases the number of extractions,
with a relatively small loss in precision. This suggests that our method works
fairly well for co-references. Compared to the pipeline architecture, the joint
model of QKBfly increases precision by 5%. All QKBfly variants significantly out-
perform DEFIE in both precision and coverage. DEFIE has been optimized for
short sentences (i.e., definitions) and loses effectiveness when processing com-
plex texts with subordinate clauses and co-references. Also, DEFIE only yields
triples, whereas QKBfly returns a large number of higher-arity facts with good
precision.

In terms of run-time efficiency, all QKBfly variants perform similarly, less
than a second for processing one document. Almost half of the run-time is for
pre-processing via the Stanford CoreNLP pipeline and the MaltParser. Thus, all
approaches, including the joint models, are efficient and scale to processing large
input corpora on the fly. Note that the runtimes for DEFIE are not known; all
DEFIE numbers in Table 5.10 are from Bovi et al. (2015).

5.7.1.2 Results on Entity Disambiguation

We compare QKBfly variants to DEFIE/Babelfy on the NED sub-task: linking en-
tities to the KB (Yago and BabelNet, cross-linked via Wikipedia). We remark that
Babelfy (Moro et al., 2014) also is a graph-based approach to NED. It performs
word sense disambiguation based on a loose identification of candidate meanings.

5.7. Experiments | 57

This is coupled with a densest subgraph heuristic which selects high-coherence
semantic interpretations. Since Babelfy does not consider pronouns, we omit the
pronoun resolution.

Table 5.4: Experimental results on linking entities to Yago (95% confidence
intervals).

Method Precision #Extractions
DEFIEg,belfy 0.82 =+ 0.05 39,684
QKBfly 0.86 £+ 0.04 50,026
QKBfly-pipeline 0.80 £ 0.05 50,026

As shown in Table 5.4, QKBfly gains 4% while QKBfly-pipeline loses 2% against
Babelfy. We observe subtle errors of QKBfly-pipeline and Babelfy coming from the
missing type signature feature (e.g., for Liverpool the city versus Liverpool _F.C.
the soccer club, as shown in Table 5.3).

5.7.1.3 Results on Initial Extraction

We compare the Open IE component of QKBfly against state-of-the-art methods
including the original work of ClausIE, Reverb (Fader et al., 2011), Ollie (Mausam
et al., 2012) and Open IE 4.27.

Table 5.5: Experiments on Open IE component. Average runtime (ms/sen-
tence) at confidence of 95%.

Method Precision #Extractions A.vg.
Run-time (ms)
ClauslE 0.62 1,707 374 + 127
QKBfly 0.57 1,308 36 + 11
Reverb 0.53 727 8+2
Ollie 0.44 1,242 24 +9
Open IF 4.2 0.56 1,153 59 + 14

Table 5.5 shows experimental results on the Reverb dataset. ClauslE performs
best in terms of precision and the number of extractions. However, it does not
provide any canoncalized output and is much slower than the other methods in-
cluding QKBfly, Ollie, and Open IE 4.2 that benefit from using the MaltParser
instead of the Stanford Parser. The purely pattern-based Reverb, which does not
use any dependency parsing, is the fastest one. QKBfly shows decent performance
in all regards.

"https://github.com/knowitall/openie

https://github.com/knowitall/openie

58 | Chapter 5. On-the-Fly Knowledge Base Construction

5.7.2 Experiment on Joint NED and CR

Benchmark. In addition to DEFIE-Wikipedia dataset, we run experiments on
two new benchmarks:
e News dataset, consisting of 100 sport news articles with 3,751 sentences
extracted from more than 20 news websites such as bbc.com, nytimes.
com, telegraph.co.uk, and more on 3rd June 2017.
e Wikia dataset, consisting of 10 Wikia pages with 880 sentences about Game
of Thrones, Season 18. Each page consists of narrative text describing an
episode of the series.

Methods under Comparison. We compare two configurations of QKBfly with
different graph algorithms.
e QKBfly, which performs NED and CR by the greedy approximation algo-
rithm (described in Section 5.4).
o QKBfly-ilp, which performs NED and CR by an Integer Linear Programming
(ILP) approach (described in Appendix A.1).

Table 5.6: Experiments on graph algorithms (at 95% confidence intervals).

DEFIE-Wikipedia dataset

Method Precision #Extractions A‘.,g'
Run-time (s)
QKBﬂy 0.65 £ 0.06 69,630 0.88 £ 0.03
QKBﬂy-ﬂp 0.66 £+ 0.06 69,630 46.59 + 16.41
News dataset
.. . Avg.
Method Precision #Extractions)
Run-time (s)
QKBﬂy 0.65 £+ 0.06 2,096 1.43 &+ 0.07
QKBﬂy-ilp 0.67 £ 0.06 2,096 71.18 £+ 25.76
Wikia dataset
Avg.
Method Precision #Extractions ‘,,g
Run-time (s)
QKBﬂy 0.54 £+ 0.06 917 429 +0.11
QKBﬂy—ﬂp 0.55 £ 0.06 917 542.36 + 61.72

Results. As shown in Table 5.6, even though QKBfly-ilp gains 1%-2% in precision,
which we also found to be significant under a t-test with a p-value of 0.01 on the
DEFIE-Wikipedia dataset, it is much slower than QKBfly, especially when pro-
cessing long documents in the Wikia dataset. This is because QKBfly-ilp has to
handle a very large number of variables in the ILP translation of the graph prob-
lem, which makes it less suitable for on-the-fly KB construction. The QKBfly vari-

Shttp://gameofthrones.wikia.com/wiki/Season_1

bbc.com
nytimes.com
nytimes.com
telegraph.co.uk
http://gameofthrones.wikia.com/wiki/Season_1

5.7. Experiments | 59

ants generally lose around 10% in precision when working on the Wikia dataset in
comparison to the News and DEFIE-Wikipedia datasets, since the former contains
many emerging (“out-of-Yago”) entities such as movie characters. We observe that
71% the of entities extracted from the Wikia dataset are out-of-Yago, while only
24% of entities extracted from News dataset and 13% of entities extracted from
DEFIE-Wikipedia dataset are new.

5.7.3 Experiments on Information Extraction

To understand how well our method works on a more traditional IE task, we com-
pare QKBfly also against DeepDive (Zhang et al., 2016) by extracting instances of
the spouse relation from the entire DEFIE-Wikipedia dataset. The DeepDive tu-
torials’ specifically provide a pre-configured extraction model for this particular
relation, which we additionally retrained by feeding all instances of married cou-
ples in DBpedia as positive examples into the DeepDive learner. As in traditional
IE, the priority is precision, we use a high confidence threshold 7 = 0.9 for both
systems.

1 —— QKBfly ||

o —— DeepDive
S 095 |
w1
R3]
&
09 :

| | | | | |

0 50 100 150 200 250

#Extractions

Figure 5.5: Precision-recall curves on the DEFIE-Wikipedia.

Results. Figure 5.5 shows the precision-recall curves of QKBfly and DeepDive
over the results, which we ranked by the confidence scores that each of the two
systems assigns to its extracted facts. Table 5.7 also depicts the precision values
at various recall levels (measured in terms of the number of extractions). Both
systems perform very well in terms of precision at the lower recall levels, while
QKBfly tends to outperform DeepDive at the higher recall levels. We observe
that many extractions of QKBfly come from co-reference resolution for pronouns,
which is not part of the extraction model of DeepDive. On the downside, QKBfly
is substantially slower than DeepDive in this setting. However, one should notice
that QKBfly always performs extractions for all relations — not just for the spouse
relation. Considering that DeepDive needs a separate (manually crafted) extrac-
tion model for each individual target relation, we believe that this is an excellent
result for QKBfly.

*http://deepdive.stanford.edu/example-spouse

http://deepdive.stanford.edu/example-spouse

60 | Chapter 5. On-the-Fly Knowledge Base Construction

Table 5.7: Experiments on extracting instances of spouses.

Method Precision #Extractions Ru.n-tlme
(minutes)
1.0 50
QKBfly 0.95 150 206
0.87 250
1.0 50
DeepDive 0.91 150 117
— 250

5.7.4 Use Case: Question Answering

As a final use-case, we run experiments on a newly designed QA benchmark,
which we coin “GoogleTrendQuestions”. First, we used the popular Google Trend
service to identify 50 recent events of wider interest between January 2015 and
October 2016. Second, we asked students to formulate meaningful questions about
these events, and also provide the gold-standard answers. This resulted in 100
questions in total. An example question is: “Which band was playing during the
Paris attacks?”

Evaluation Metric. We report the macro-averaged precision, recall and F1 score
across all test questions. That is, given a set of questions ¢ ... gy, their gold
answers g1 ...gn and the answer sets aj ... a, returned by our system, where
each answer set a; can consist of a single value or a list of values, we compute the
macro-average precision, recall and F1 score as

n
. 1 -
avg. precision = E precision(gi, a;)
i=1

1 n
avg. recall = - Z recall(gi, a;) (5.6)
i=1
1 n
avg. F1 = - ZFl(gi, a;)
i=1

where each of precision(g;, a;), recall(gi, a;) and F1(g;, a;) is computed in the regular
way (Perry et al., 1955).

Methods under Comparison. We compare several configurations of QKBfly as
follows:
e QKBfly answers questions from an on-the-fly KB dynamically constructed
by QKBfly. The KB contains triples as well as higher-arity facts.
e QKBfly-triples is an variant where the on-the-fly KB is limited to subject-
predicate-object (SPO) triples.

5.7. Experiments | 61

e Sentence-Answers is a text-centric baseline where QKBfly is used to retrieve
relevant sentences, but does not perform any fact extraction. Entities in
these sentences then become answer candidates.

e QA-Freebase is baseline with a static KB where we apply the same QA
method on the huge fact collection of Freebase.

A detailed description of how we implement QA in QKBfly is described in
Appendix A.2. The Sentence-Answers baseline differs from the others in the step
of collecting answer candidates (Step 3 in the Appendix). Here, all entities that
co-occur with one of the question entities in the same sentence are considered
as candidate answers. Additionally, the candidate features are the tokens in the
sentences (rather than facts) where the candidate occurs. This is in the spirit of a
traditional passage-retrieval-based QA method. It uses the same on-the-fly corpus
as QKBfly , but does not perform explicit knowledge extraction.

5.7.4.1 Results

Table 5.8 shows the results on the GoogleTrendQuestions benchmark. Here, QKBfly
achieves an F1 score of 34.1%, and QKBfly-triples reaches 30.7%. Sentence-Answers
and QA-Freebase perform far inferior. Particularly, QA-Freebase returns empty
results in most cases due to the lack of facts about recent events. QKBfly per-
forms better than QKBfly-triples in questions which require ternary facts, such as
“Who plays Han Solo in "Star Wars: The Force Awakens’?” (see Table 5.11).

Table 5.8: Results on GoogleTrendQuestions.

Method Precision Recall F1
QKBfly 0.330 0.383 0.341
QKBfly-triples 0.294 0.363 0.307
Sentence-Answers 0.173 0.199 0.179
QA-Freebase 0.095 0.100 0.096

To separate the effects of the two kinds of input documents we considered -
Wikipedia and Google News —, we also ran QKBfly by using only Wikipedia arti-
cles and only the top-10 news articles, respectively. When using only Wikipedia
articles to construct the on-the-fly KB, QKBfly achieves 32.4% in the F1 measure.
Restricting it to using only Google news, on the other hand, leads to an F1 score
of 33.2%. For an end-to-end experiment, we compare QKBfly against the state-of-
the-art KB-QA system AQQU (Bast and Haussmann, 2015). AQQU achieves an F1
score of 10%. To be fair, we emphasize that this system has not been designed for
a huge but static KB, namely, Freebase, and cannot utilize any on-the-fly knowl-
edge. Table 5.9 shows anecdotal samples for illustration.

62| Chapter 5. On-the-Fly Knowledge Base Construction

Table 5.9: Sample results for GoogleTrendQuestions.

Question & Answers

Where was Pope Francis born?
Gold Answers: [Buenos_Aires]
AQQU: [Buenos_Aires]
QKBfly: [Buenos_Aires]

Who shot Keith Lamont Scott?
Gold Answer: [Brentley_Vinson]

AQQU: []
QKBfly: [a black officer, Brentley_Vinson]

When was the Iran Nuclear Deal signed?
Gold Answer: [14 July 2015]
AQQU: [ir]
QKBfly: [14 July 2015, 17 July 2015, 2015]

5.8 Summary

In this chapter, we present QKBfly, a novel approach to build on-the-fly knowl-
edge bases in a query-driven manner. We acquire facts for a much larger set of
predicates than those in mainstream KBs. In contrast to the output of Open IE,
arguments of facts are canonicalized, so that they refer to unique entities with se-
mantically typed predicates derived from clusters of phrases. Moreover, QKBfly
is not limited to binary facts and comprises also higher-arity facts. Use cases for
QKBfly include ad-hoc question answering, summarization and other kinds of

machine-reading applications.

5.8. Summary |63

(11095 4y, “300Us ¢, uosuT\~AT3ULI)

1100 JUOWD 12 oys o
A*:xmu&o yovq v, ﬁ%Q,IPOQm aPPOUWIPﬂOEdAIQP._wav 41058 1 T Y1123 10Ys oym

A*mwﬁﬂwdoqwdm ‘eoeTd yaI1q ‘stouer] odo
) _ o . _ Judoq spuva] adoq sbm 2oy m
(9561 42qui203(] £1,, ¢, $®ITY SOUSNY ‘WO~ UT UI0q ‘STOURI] odo

Anf uz uory ayg 11030 Suyypry 01, ‘aTupe ¢ ISWTRJ I9QTE
ik Fodt 100 S * Juony Yy 119375 pajiry oym

Amﬂcmm < yopyv ayy ‘ut ur pean(ur ¢ Telel yeeq Fo soT3e
” * £8Yop11v s1vg ay1 Sutinp Suidvid som puvq yorym

Amﬁnmm ‘Haouoo v ‘ut”ferd Telsl yies(q yo soT3e

- 3 3 - - < -
AOHOW uey _ SaLias ENQ.mkﬁg kBu%& Se UT uiInjsx *.U.HO....._” uosTII®

d)
d)
m)
(uoy ay1 1920, ‘TTTH ¢, IoWTRd I93TRM)
)
q)
EW mam:mv\dxej\ wu&OﬁN mﬁ\rh ..w.kﬁ\s k@ﬁmﬂ ui ONQ% tﬁm m\mBNQ 0&\5

Amgwxms<|wuhomlwnh| !SIepM”Ie3g ‘OTOg URH UT 30® °, PIOJ UOSTIIRH

e uonsan®

*YSLI9)SE UE YJIM PINIRUI 36 SToMSsUR [eul] ‘AP0 Aq Pa1ovIIXd s)o€] JueAd[a1 pue suornysanb sjdureg :11°6 s[qey,

¢0'0 +9L°0 92991 90°0 + 890 00¥°¢c€ 90°0 + €L°0 unou-AFgy0
€00 F+ 680 620°se 90°0 F 8S°0 S09F¥ 900 290 aurpdrd-AyeO
€0°0 + 88°0 620°se 90°0 F €9°0 S09F¥ 90°0 F L9°0 AgDIO
umowyun — - ¥89°6¢ 900 F 290 d144d
juswnodo(1ad suonpoenxg# UOTSTIAI] SUOI}ORIIXJ# UOTISIOdI]
(s) sum-uny Sy sjoe] AjLre-1aySry sjoeg ofdriy, POTIS

*(S[EAIS]UI DUIPYUOD %G6) UOIIOBIIXI JIBJ UO SI NS [ejudwrLiadxy :01°G d[qeL,

64 | Chapter 5. On-the-Fly Knowledge Base Construction

Chapter 6

Conclusions

6.1 Contributions

This dissertation addresses important and challenging tasks in the field of infor-
mation and knowledge extraction. Specifically, we focus on three challenges: high
quality for entity recognition and disambiguation, trade-off between coverage and
quality of relation extraction, and on-the-fly knowledge acquisition. To this end, we
develop new methods to advance the state of the art.

The first contribution, J-NERD, presents a novel probabilistic graphical model
for the joint recognition and disambiguation of named-entity mentions in natural-
language text.]-NERD considers a rich feature model, including domain-oriented
feature and syntactic dependency feature about verbal patterns from dependency
parse trees. The salience of J-NERD comes from a supervised, non-linear graphical
model that combines multiple per-sentence tree-shaped models into an entity-
coherence-aware global model. J-NERD detects mention spans, tags them with
coarse-grained types, and maps them to entities in a single joint-inference step,
which experimentally verifies improvements in quality over the existing named
entity recognition and disambiguation systems.

The second contribution, J-REED, presents a novel joint model for relation
extraction and entity disambiguation on Wikipedia-style text. J-REED is based
on graphical models that capture interdependencies between entity disambigua-
tion and the relational phrases, in particular by considering which lexical types
of entities are compatible with the type signature of which relation. Thereby,
J-REED improves the extraction quality over pipelined combinations of the state-
of-the-art Open IE systems and entity disambiguation systems. J-REED extracts
high quality information by mapping entity mentions to the entities in a back-
ground knowledge base, and by making relation patterns as crisp as possible. Ad-
ditionally, without particular assumptions about the target relations, J-REED can
capture thousands of interesting relations.

The third contribution, QKBfly, presents a novel end-to-end system for con-
structing query-driven, on-the-fly KBs. QKBfly takes as input an entity-centric
query or a natural-language question, automatically retrieves relevant source doc-

65

66 | Chapter 6. Conclusions

uments (via Wikipedia and news sources), runs a novel form of knowledge extrac-
tion on the sources, and builds a high-coverage knowledge base that is focused
on the entities of interest. At the heart of QKBfly is a semantic-graph represen-
tation of sentences that captures per-sentence clauses, noun-phrases, pronouns,
as well as their syntactic and semantic dependencies. Therefore, QKBfly is not
limited to binary predicates but can also extract ternary (or higher-arity) pred-
icates. Compared to mainstream KBs, we acquire facts for a much larger set of
predicates. Compared to Open IE methods, arguments of facts are canonicalized,
thus referring to unique entities with semantically typed predicates derived from
precomputed clusters of phrases.

6.2 Outlook

While a number of key problems have been addressed in this dissertation, there
are many future possibilities which can be extended with our work.

6.2.1 Joint Inference at Feature-Level for Relation Extraction and
Entity Disambiguation

J-REED presents a join model for relation extraction and entity disambiguation
based on graphical models. The first model, particularly a CRF model, extracts
the relation pattern candidates (with weights). Consequently, all relation can-
didates and entity candidates serve as input to the join inference in the second
graphical model. However, it would be even better if the two models are fused
at a lower level, for example, by modeling one CRF model that directly uses all
relation extraction features and entity disambiguation features. As for training
data, we can make use of existing fact collections (e.g., in a knowledge base) to
generate a large training corpus (i.e., distant supervision).

6.2.2 Higher-arity Relation Extraction and Entity Disambiguation

J-REED focuses on binary relations between two entities. While QKBfly has al-
ready tackled the higher-arity relation extraction problem, —specifically by em-
ploying a rule-based system, namely ClauslE, to detect clauses—, further improve-
ments are needed. For example, a machine learning based model to perform
joint inference between higher-arity relation extraction and entity disambigua-
tion would be a nice research direction.

6.2.3 On-the-Fly Relation Paraphrase Mining

QKBfly presents an end-to-end system for knowledge acquisition. In the knowl-
edge base construction step, QKBfly harnesses the pattern repository, specifically
the dictionaries of relational paraphrases from PATTY, to canonicalize relational

6.2. Outlook | 67

patterns. Although, these dictionaries contains a large number of relational para-
phrases, they are far from complete. On-the-fly relation paraphrase mining, es-
pecially for unseen patterns, may bring great benefits.

68| Chapter 6. Conclusions

Bibliography

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., and Ives, Z. (2007). DBpedia: A
Nucleus for a Web of Open Data. In Proceedings of the International Semantic
Web Conference (ISWC ’07), pages 11-15. Springer.

Bamman, D., Underwood, T., and Smith, N. (2014). A Bayesian Mixed Effects
Model of Literary Character. In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL ’14), pages 370-379. ACL.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007).
Open Information Extraction from the Web. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI ’07), pages 2670-2676. Morgan
Kaufmann Publishers Inc.

Bast, H. and Haussmann, E. (2015). More Accurate Question Answering on Free-
base. In Proceedings of the ACM International Conference on Information and
Knowledge Management (CIKM ’15), pages 1431-1440. ACM.

Bellman, R. E. (2003). Dynamic Programming. Dover Publications Inc.

Bentivogli, L., Forner, P., Giuliano, C., Marchetti, A., Pianta, E., and Tymoshenko,
K. (2010). Extending English ACE 2005 Corpus Annotation with Ground-truth
Links to Wikipedia. In Proceedings of the International Conference on Computa-
tional Linguistics (CICLing ’10), pages 19-27. COLING.

Bentivogli, L., Forner, P., Magnini, B., and Pianta, E. (2004). Revising the Wordnet
Domains Hierarchy: Semantics, Coverage and Balancing. In Proceedings of the
Workshop on Multilingual Linguistic Ressources (MLR °04), pages 101-108. ACL.

Berant, J., Chou, A, Frostig, R, and Liang, P. (2013). Semantic Parsing on Free-
base from Question-Answer Pairs. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP ’13), pages 1533-1544. ACL.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). Freebase:
A Collaboratively Created Graph Database for Structuring Human Knowledge.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD °08), pages 1247-1250. ACM.

69

70 | Bibliography

Bovi, C. D., Telesca, L., and Navigli, R. (2015). Large-Scale Information Extrac-
tion from Textual Definitions through Deep Syntactic and Semantic Analysis.
Transactions of the Association for Computational Linguistics, 3:529-543.

Brin, S. (1998). Extracting Patterns and Relations from the World Wide
Web. In Proceedings of the International Workshop on the Web and Databases
(WebDB ’98), pages 172-183.

Broder, A. Z., Charikar, M., Frieze, A. M., and Mitzenmacher, M. (1998). Min-wise
Independent Permutations. Journal of Computer and System Sciences, pages
327-336.

Bunescu, R. and Pasca, M. (2006). Using Encyclopedic Knowledge for Named
Entity Disambiguation. In Proceedings of the Conference of the European Chapter
of the Association for Computational Linguistics (EACL "06), pages 9-16. ACL.

Carletta, J. (1996). Assessing Agreement on Classification Tasks: The Kappa Statis-
tic. Computational Linguistics, 22(2):249-254.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E. R. H., and Mitchell, T. M.
(2010). Toward an Architecture for Never-Ending Language Learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI ’10), pages 1306—
1313. AAAIT Press.

Carmel, D., Chang, M.-W., Gabrilovich, E., Hsu, B.-]J. P., and Wang, K. (2014).
ERD’14: Entity Recognition and Disambiguation Challenge. SIGIR Forum,
48(2):63-77.

Chang, A. X. and Manning, C. (2012). SUTime: A Library for Recognizing and
Normalizing Time Expressions. In Proceedings of the International Conference
on Language Resources and Evaluation (LREC ’12), pages 3735-3740. ELRA.

Chiticariu, L., Krishnamurthy, R., Li, Y, Raghavan, S., Reiss, F. R, and
Vaithyanathan, S. (2010). SystemT: An Algebraic Approach to Declarative In-
formation Extraction. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL ’10), pages 128-137. ACL.

Chiticariu, L., Li, Y., and Reiss, F. R. (2013). Rule-Based Information Extraction
is Dead! Long Live Rule-Based Information Extraction Systems! In Proceed-

ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP ’13), pages 827-832. ACL.

Cornolti, M., Ferragina, P., and Ciaramita, M. (2013). A Framework for Bench-
marking Entity-Annotation Systems. In Proceedings of the International World
Wide Web Conference (WWW ’13), pages 249-260. ACM.

Bibliography | 71

Cornolti, M., Ferragina, P., Ciaramita, M., Schiitze, H., and Riid, S. (2014). The
SMAPH System for Query Entity Recognition and Disambiguation. In Proceed-
ings of the International Workshop on Entity Recognition and Disambiguation
(ERD ’14), pages 25-30. ACM.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T. M., Nigam, K.,
and Slattery, S. (2000). Learning to Construct Knowledge Bases from the World
Wide Web. Artificial Intelligence, 118(1-2):69-113.

Cucerzan, S. (2007). Large-Scale Named Entity Disambiguation Based on
Wikipedia Data. In Proceedings of the Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL °07), pages 708-716.

Cucerzan, S. (2014). Name Entities Made Obvious: The Participation in the ERD
2014 Evaluation. In Proceedings of the International Workshop on Entity Recog-
nition and Disambiguation (ERD ’14), pages 95-100. ACM.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I,
Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A.,
Saggion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text Processing with GATE.
University of Sheffield.

Daiber, J., Jakob, M., Hokamp, C., and Mendes, P. N. (2013). Improving Efficiency
and Accuracy in Multilingual Entity Extraction. In Proceedings of the Interna-
tional Conference on Semantic Systems (I-SEMANTICS ’13), pages 121-124. ACM.

de Marneffe, M.-C., MacCartney, B., and Manning, C. D. (2006). Generating Typed
Dependency Parses from Phrase Structure Parses. In Proceedings of the Inter-

national Conference on Language Resources and Evaluation (LREC °06), pages
449-454. ELRA.

Del Corro, L. and Gemulla, R. (2013). ClauslE: Clause-based Open Information
Extraction. In Proceedings of the International World Wide Web Conference
(WWW ’13), pages 355-366. ACM.

Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Ra-
jagopalan, S., Tomkins, A., Tomlin, J. A., and Zien, J. Y. (2003). SemTag and
Seeker: Bootstrapping the Semantic Web via Automated Semantic Annota-
tion. In Proceedings of the International World Wide Web Conference (WWW ’03),
pages 178-186. ACM.

Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S., and
Weischedel, R. (2004). The Automatic Content Extraction (ACE) Program Tasks,
Data, and Evaluation. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC ’04), pages 837-840. ELRA.

72| Bibliography

Domingos, P. and Lowd, D. (2009). Markov Logic: An Interface Layer for Artificial
Intelligence. Morgan and Claypool Publishers.

Durrett, G. and Klein, D. (2014). A Joint Model for Entity Analysis: Coreference,
Typing, and Linking. Transactions of the Association for Computational Linguis-
tics, 2:477-490.

Dylla, M., Miliaraki, I., and Theobald, M. (2013). Top-k Query Processing in Prob-
abilistic Databases with Non-Materialized Views. In Proceedings of the Annual
IEEE International Conference on Data Engineering (ICDE ’13). IEEE Computer
Society.

Dylla, M., Theobald, M., and Miliaraki, I. (2014). Querying and Learning in Prob-
abilistic Databases. In Reasoning Web (RW ’14), pages 313-368. Springer.

Etzioni, O., Fader, A., Christensen, J., Soderland, S., and Mausam, M. (2011).
Open Information Extraction: The Second Generation. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI ’11), pages 3-10.
AAAIT Press.

Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying Relations for Open
Information Extraction. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP ’11), pages 1535-1545. ACL.

Fan, R.-E., Chang, K.-W.,, Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLIN-
EAR: A Library for Large Linear Classification. Journal of Machine Learning
Research, 9:1871-1874.

Feng, V. W. and Hirst, G. (2012). Text-level Discourse Parsing with Rich Linguistic
Features. In Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics (ACL ’12), pages 60-68. ACL.

Ferragina, P. and Scaiella, U. (2010). TAGME: On-the-fly Annotation of Short Text
Fragments (by Wikipedia Entities). In Proceedings of the ACM International
Conference on Information and Knowledge Management (CIKM ’10), pages 1625—
1628. ACM.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating Non-local Infor-
mation into Information Extraction Systems by Gibbs Sampling. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics (ACL "05),
pages 363-370. ACL.

Fleischman, M. and Hovy, E. (2002). Fine Grained Classification of Named Enti-
ties. In Proceedings of the International Conference on Computational Linguistics
(COLING ’02), pages 1-7. ACL.

Galarraga, L., Heitz, G., Murphy, K., and Suchanek, F. M. (2014). Canonicalizing
Open Knowledge Bases. In Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM ’14), pages 1679-1688. ACM.

Bibliography | 73

Gatterbauer, W. and Suciu, D. (2017). Dissociation and Propagation for Approxi-
mate Lifted Inference with Standard Relational Database Management Systems.
VLDB Journal, 26(1):5-30.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity Search in High Dimen-
sions via Hashing. In Proceedings of the International Conference on Very Large
Databases (VLDB ’99), pages 518-529. VLDB Endowment.

Gribkoft, E. and Suciu, D. (2016). SlimShot: In-database Probabilistic Inference for
Knowledge Bases. Proceedings of the VLDB Endowment, 9(7):552-563.

Grishman, R. and Sundheim, B. (1996). Message Understanding Conference-6: A
Brief History. In Proceedings of the International Conference on Computational
Linguistics (COLING ’96), pages 466—-471. ACL.

Hearst, M. A. (1999). Untangling Text Data Mining. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL ’99), pages 3-10.
ACL.

Hernault, H., Prendinger, H., duVerle, D. A., and Ishizuka, M. (2010). HILDA: A
Discourse Parser Using Support Vector Machine Classification. Dialogue and
Discourse, 1(3):1-33.

Hirschman, L. and Chinchor, N. (1998). Coreference Task Definition. In Proceed-
ings of the Message Understanding Conference (MUC ’98). ACL.

Hoffart, J., Seufert, S., Nguyen, D. B., Theobald, M., and Weikum, G. (2012). KORE:
Keyphrase Overlap Relatedness for Entity Disambiguation. In Proceedings of
the ACM International Conference on Information and Knowledge Management
(CIKM ’12), pages 545-554. ACM.

Hoffart, J., Suchanek, F. M., Berberich, K., Lewis-Kelham, E., de Melo, G., and
Weikum, G. (2011a). YAGO2: Exploring and Querying World Knowledge in
Time, Space, Context, and Many Languages. In Proceedings of the International
World Wide Web Conference (WWW ’11), pages 229-232. ACM.

Hoffart, J., Suchanek, F. M., Berberich, K., and Weikum, G. (2013). YAGO2: A
Spatially and Temporally Enhanced Knowledge Base from Wikipedia. Artificial
Intelligence, 194:28-61.

Hoffart, J., Yosef, M. A., Bordino, I, Fiirstenau, H., Pinkal, M., Spaniol, M., Taneva,
B., Thater, S., and Weikum, G. (2011b). Robust Disambiguation of Named En-
tities in Text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP ’11), pages 782-792. ACL.

Hoffmann, R., Zhang, C., and Weld, D. S. (2010). Learning 5000 Relational Extrac-
tors. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL ’10), pages 286-295. ACL.

74| Bibliography

Indyk, P. and Motwani, R. (1998). Approximate Nearest Neighbors: Towards Re-
moving the Curse of Dimensionality. In Proceedings of the ACM Symposium on
Theory of Computing (STOC ’98), pages 604-613. ACM.

Klein, D. and Manning, C. D. (2003). Accurate Unlexicalized Parsing. In Pro-
ceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL ’03), pages 423-430. ACL.

Koller, D., Friedman, N., Getoor, L., and Taskar, B. (2007). Graphical Models in a
Nutshell. In An Introduction to Statistical Relational Learning. MIT Press.

Kulkarni, S., Singh, A., Ramakrishnan, G., and Chakrabarti, S. (2009). Collective
Annotation of Wikipedia Entities in Web Text. In Proceedings of the SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’09), pages 457—-466.
ACM.

Kuzey, E. and Weikum, G. (2012). Extraction of Temporal Facts and Events
from Wikipedia. In Proceedings of the Temporal Web Analytics Workshop
(TempWeb °12), pages 25-32. ACM.

Kuzey, E. and Weikum, G. (2014). EVIN: Building a Knowledge Base of Events. In
Proceedings of the International World Wide Web Conference (WWW ’14), pages
103-106. ACM.

Li, K., Zhou, X., Wang, D. Z., Grant, C., Dobra, A., and Dudley, C. (2017). In-
database Batch and Query-time Inference over Probabilistic Graphical Models
Using UDA-GIST. VLDB Journal, 26(2):177-201.

Li, Q. and Ji, H. (2014). Incremental Joint Extraction of Entity Mentions and Rela-
tions. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL ’14), pages 402-412. ACL.

Ling, X. and Weld, D. S. (2010). Temporal Information Extraction. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI ’10), pages 1385-1390.
AAAIT Press.

Ling, X. and Weld, D. S. (2012). Fine-grained Entity Recognition. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI ’12). AAAI Press.

Liu, D. C. and Nocedal, J. (1989). On the Limited Memory BFGS Method for Large
Scale Optimization. Mathematical Programming, 45(3):503-528.

Magnini, B. and Cavaglia, G. (2000). Integrating Subject Field Codes into Word-
net. In Proceedings of the International Conference on Language Resources and
Evaluation (LREC °00), pages 1413-1418. ELRA.

Bibliography | 75

Manning, C. D., Surdeanu, M., Bauer, J., Finkel,]J., Bethard, S. J., and McClosky,
D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit. In Pro-

ceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL ’14), pages 55-60. ACL.

Mausam, Schmitz, M., Bart, R., Soderland, S., and Etzioni, O. (2012). Open Lan-
guage Learning for Information Extraction. In Proceedings of the Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL ’12), pages 523-534. ACL.

McCallum, A. and Li, W. (2003). Early Results for Named Entity Recognition with
Conditional Random Fields, Feature Induction and Web-enhanced Lexicons. In
Proceedings of the Conference on Natural Language Learning (CoNLL °03), pages
188-191. ACL.

Meij, E., Weerkamp, W., and de Rijke, M. (2012). Adding Semantics to Microblog
Posts. In Proceedings of the International Conference on Web Search and Data
Mining (WSDM °12), pages 563-572. ACM.

Mendes, P. N., Jakob, M., Garcia-Silva, A., and Bizer, C. (2011). DBpedia Spotlight:
Shedding Light on the Web of Documents. In Proceedings of the International
Conference on Semantic Systems (I-SEMANTICS ’11), pages 1-8. ACM.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications
of the ACM, 38(11):39-41.

Milne, D. and Witten, I. H. (2008). Learning to Link with Wikipedia. In Proceedings
of the ACM International Conference on Information and Knowledge Management
(CIKM °08), pages 509-518. ACM.

Milne, D. and Witten, I. H. (2013). An Open-source Toolkit for Mining Wikipedia.
Artificial Intelligence, 194:222-239.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant Supervision for Re-
lation Extraction without Labeled Data. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL ’09), pages 1003-1011. ACL.

Moro, A., Raganato, A., and Navigli, R. (2014). Entity Linking meets Word Sense
Disambiguation: a Unified Approach. Transactions of the Association for Com-
putational Linguistics, 2:231-244.

Nakashole, N., Tylenda, T., and Weikum, G. (2013). Fine-grained Semantic Typing
of Emerging Entities. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL ’13), pages 1488-1497. ACL.

Nakashole, N., Weikum, G., and Suchanek, F. (2012). PATTY: A Taxonomy of Re-
lational Patterns with Semantic Types. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL ’12), pages 1135-1145. ACL.

76 | Bibliography

Nguyen, D. B., Abujabal, A., Tran, N. K., Theobald, M., and Weikum, G. (2018).
Query-Driven On-The-Fly Knowledge Base Construction. Proceedings of the
VLDB Endowment, 11.

Nguyen, D. B., Hoffart, J., Theobald, M., and Weikum, G. (2014). AIDA-light:
High-Throughput Named-Entity Disambiguation. In Proceedings of the Linked
Data on the Web Workshop (LDOW °14). CEUR-WS.org.

Nguyen, D. B, Theobald, M., and Weikum, G. (2016). J-NERD: Joint Named Entity
Recognition and Disambiguation with Rich Linguistic Features. Transactions of
the Association for Computational Linguistics, 4:215-229.

Nguyen, D. B., Theobald, M., and Weikum, G. (2017). J-REED: Joint Relation Ex-
traction and Entity Disambiguation. In Proceedings of the ACM International
Conference on Information and Knowledge Management (CIKM °17). ACM.

Niu, F.,, Zhang, C., Re, C., and Shavlik, J. W. (2012). DeepDive: Web-scale
Knowledge-base Construction using Statistical Learning and Inference. In Pro-
ceedings of the International Workshop on Searching and Integrating New Web
Data Sources (VLDS ’12), pages 25-28. CEUR-WS.org.

Nivre, J. and Hall, J. (2005). Maltparser: A Language-Independent System for
Data-Driven Dependency Parsing. In Proceedings of the International Workshop
on Treebanks and Linguistic Theories (TLT °05), pages 95-135.

Passos, A., Kumar, V., and McCallum, A. (2014). Lexicon Infused Phrase Embed-
dings for Named Entity Resolution. In Proceedings of the Conference on Natural
Language Learning (CONLL ’14), pages 78—86. ACL.

Perry, J. W, Kent, A., and Berry, M. M. (1955). Machine Literature Searching X.
Machine Language; Factors Underlying its Design and Development. American
Documentation, 6(4):242—254.

Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1985). A Comprehensive
Grammar of the English Language. Longman.

Rahman, A. and Ng, V. (2010). Inducing Fine-grained Semantic Classes via Hier-
archical and Collective Classification. In Proceedings of the International Con-
ference on Computational Linguistics (COLING ’10), pages 931-939. ACL.

Ratinov, L. and Roth, D. (2009). Design Challenges and Misconceptions in Named
Entity Recognition. In Proceedings of the Conference on Natural Language Learn-
ing (CoNLL ’09), pages 147-155. ACL.

Ratinov, L., Roth, D., Downey, D., and Anderson, M. (2011). Local and Global Algo-
rithms for Disambiguation to Wikipedia. In Proceedings of the Human Language
Technologies (HLT ’11), pages 1375-1384. ACL.

Bibliography | 77

Reiss, F., Raghavan, S., Krishnamurthy, R., Zhu, H., and Vaithyanathan, S. (2008).
An Algebraic Approach to Rule-Based Information Extraction. In Proceedings of
the Annual IEEE International Conference on Data Engineering (ICDE "08), pages
933-942. IEEE.

Riedel, S. (2008). Improving the Accuracy and Efficiency of MAP Inference for
Markov Logic. In Proceedings of the Conference on Uncertainty in Artificial In-
telligence (UAI "08), pages 468—-475. AUAI Press.

Riedel, S., Yao, L., McCallum, A., and Marlin, B. M. (2013). Relation Extraction with
Matrix Factorization and Universal Schemas. In Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (HLT-NAACL ’13), pages 74-84. ACL.

Santorini, B. (1990). Part-Of-Speech Tagging Guidelines for the Penn Tree-
bank Project. Technical report, Department of Linguistics, University of
Pennsylvania.

Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., and Ré, C. (2015). Incremental
Knowledge Base Construction Using DeepDive. Proceedings of the VLDB En-
dowment, 8(11):1310-1321.

Sil, A. and Yates, A. (2013). Re-ranking for Joint Named-Entity Recognition and
Linking. In Proceedings of the ACM International Conference on Information and
Knowledge Management (CIKM ’13), pages 2369-2374. ACM.

Singh, S., Riedel, S., Martin, B., Zheng, J., and McCallum, A. (2013). Joint Infer-
ence of Entities, Relations, and Coreference. In Proceedings of the Automated
Knowledge Base Construction Workshop (AKBC ’13), pages 1-6. ACM.

Sozio, M. and Gionis, A. (2010). The Community-search Problem and How to
Plan a Successful Cocktail Party. In Proceedings of the SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD ’10), pages 939-948. ACM.

Spitkovsky, V. I. and Chang, A. X. (2012). A Cross-Lingual Dictionary for English
Wikipedia Concepts. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC ’12). ELRA.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: A Core of Seman-
tic Knowledge. In Proceedings of the International World Wide Web Conference
(WWW °07), pages 697-706. ACM.

Suchanek, F. M., Sozio, M., and Weikum, G. (2009). SOFIE: A Self-organizing
Framework for Information Extraction. In Proceedings of the International World
Wide Web Conference (WWW °09), pages 631-640. ACM.

Suciu, D., Olteanu, D., Christopher, R., and Koch, C. (2011). Probabilistic Databases.
Morgan & Claypool Publishers.

78 | Bibliography

Surdeanu, M. and Ciaramita, M. (2007). Robust Information Extraction with Per-
ceptrons. In Proceedings of the National Institute of Standards and Technology:
Automatic Content Extraction Program (NIST °07).

Sutton, C. A. and McCallum, A. (2012). An Introduction to Conditional Random
Fields. Foundations and Trends in Machine Learning, 4(4):267-373.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the CoNLL-2003
Shared Task: Language-independent Named Entity Recognition. In Proceedings
of the Conference on Natural Language Learning (CONLL ’03), pages 142-147.
ACL.

Usbeck, R., Roder, M., Ngonga Ngomo, A.-C., Baron, C., Both, A., Brimmer, M.,
Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C.,
Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R.,
Waitelonis, J., and Wesemann, L. (2015). GERBIL - General Entity Annotation
Benchmark Framework. In Proceedings of the International World Wide Web
Conference (WWW ’15). ACM.

Vrandeci¢, D. and Kroétzsch, M. (2014). Wikidata: A Free Collaborative Knowl-
edgebase. Communication of the ACM, 57(10):78-85.

Xu, K, Reddy, S., Feng, Y., Huang, S., and Zhao, D. (2016). Question Answering
on Freebase via Relation Extraction and Textual Evidence. In ACL ’16. ACL.

Xue, N., Ng, H. T, Pradhan, S., Prasad, R., Bryant, C., and Rutherford, A. (2015).
The CoNLL-2015 Shared Task on Shallow Discourse Parsing. In Proceedings of
the Conference on Natural Language Learning (CoNLL °15), pages 1-16. ACL.

Yosef, M. A., Bauer, S., Hoffart, J., Spaniol, M., and Weikum, G. (2012). HYENA:
Hierarchical Type Classification for Entity Names. In Proceedings of the Interna-
tional Conference on Computational Linguistics (COLING ’12), pages 1361-1370.
ACL.

Yosef, M. A., Hoffart, J., Bordino, I., Spaniol, M., and Weikum, G. (2011). AIDA: An
Online Tool for Accurate Disambiguation of Named Entities in Text and Tables.
Proceedings of the VLDB Endowment, 4(12):1450-1453.

Zhang, C., Shin, J., Ré, C., Cafarella, M., and Niu, F. (2016). Extracting Databases
from Dark Data with DeepDive. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’16), pages 847-859. ACM.

Appendices

79

Chapter A

Additional Details

A.1 ILP Setup

We next describe how we translate the densest-subgraph problem S* into an ILP.
First, we introduce:
e A binary variable cndj; for each noun-phrase or pronoun node n; and each
entity candidate ei; € ent(n;, G). The variable cnd,-j = 1iff ej; is chosen for
n; in the densest subgraph S*.
e Abinary variable joint-rel;;;, for each pair of noun-phrase or pronoun nodes
n;, ny, which are connected by a relation edge r;;, and similarly for each
pair of entity nodes ej; € ent(n;, G), ey, € ent(ny,G). Thus, the variable
joint-relijtk =1iff e is chosen for n; and e;, is chosen for n; in S*.
We consider the following constraints:
e > jendi =1 Vi,
e two noun-phrase or pronoun nodes n;, n; are linked by a sameAs edge in S*
iff end;; = cndy; Vj,
. joint-relijtk =1iff cndij =1land cndy = 1.

We then aim to maximize

Z cndi; - w(n;, e;;) +
ni€g
ei; € ent(n;,G) (A1)

Z joint-reliy, - w(n;, ny, SUitk)
ni,még

where:
e w(n;, ¢;) is the means edge weight between n; and e,
o w(n;, ny, SU%) is the relation edge weight between n; and n; in a subgraph
Slitk constructed from G by only considering ei; and ey, as the candidates
for n; and n;, respectively.

81

82| Appendix A. Additional Details

A.2 QA Setup

Question answering over structured knowledge bases (KB-QA) (Berant et al., 2013;
Bast and Haussmann, 2015; Xu et al., 2016) denotes the task of translating a natural
language question into a structured query (e.g., using SPARQL for querying SPO
triples), which is then executed over the underlying KB (e.g., Freebase (Bollacker
etal., 2008)) to obtain answer entities. As an extrinsic use-case, we harness QKBfly
for KB-QA. In contrast to mainstream works, we pursue the case where no fact
repository is available upfront and all relevant facts need to be gathered on-the-fly,
triggered by a natural-language question. Specifically, when given a question like
“who did vladimir lenin marry?”, QKBfly computes the answers in the following
four steps.

Step 1. Entities in the question are detected and used to retrieve relevant docu-
ments in Wikipedia and Google News. For example, we use the Wikipedia article
that has the id of Vladimir_Lenin, and we issue a Google News query with the
full text of the input question. For each question, we retrieve the top-10 results
from Google News.

Step 2. QKBfly processes the retrieved documents to build an on-the-fly KB of
facts. No pre-existing fact repository is used.

Step 3. As answer candidates, our method fetches all entities (or string literals like
dates) from its question-specific ad-hoc KB. A type filter is applied to ensure that
candidates satisfy the expected answer type(s). For example, a question starting
with “Who” can be answered only by entities of types PERSON, CHARACTER or ORGA-
NIZATION. Here, we use our type system based on infoboxes for entities, combined
with Stanford NER and SUTime tags. Note that this step is focused on recall,
ensuring that we do not miss good answers. The following step ensures high
precision by further filtering the candidates and ranking them.

Step 4. We run each answer candidate through a pre-trained binary classifier,
using an SVM model. The model is trained on the WebQuestions training ques-
tions and their gold-standard answers (Berant et al., 2013). The positively labeled
candidates are output as final answers. For single-answer factoid questions (if
detectable), only the top-ranked answer is output.

Classifier Features. For each question, we extract all tokens: word-level lem-
matized unigrams and entities. For example, the question “who did vladimir lenin
marry?” contains “who”, “do”, “marry” and the entity Vladimir_Lenin. For each
candidate answer, we similarly extract all tokens co-occurring in the same KB
facts, again all word-level lemmatized unigrams and all entities. The feature set
for a pair of a question and its candidate answer then are all token pairs (x, y)
where x is a token occurring with the question and y is a token occurring with
the candidate. For data sparseness and simplicity, we treat these as binary fea-

tures.

Classifier Training. WebQuestions consists of 3,778 training questions, each of
which is paired with its answer set. These were collected using the Google Suggest

A.2. QA Setup |83

API and further crowdsourcing. Answers (i.e., Freebase entities) are finally con-
verted to Wikipedia pages by the Freebase API. We use the gold answers of the
WebQuestions training corpus and Wikipedia-based question-specific KBs pro-
duced by QKBfly for training the SVM classifier. Facts extracted by QKBfly that
contain correct or incorrect answers are used as positive or negative training sam-
ples, respectively. The model is constructed using the Liblinear SVM library (Fan
et al., 2008) by using the default settings.

84| Appendix A. Additional Details

List of Figures

2.1

3.1
3.2
3.3
34

5.1
5.2
5.3
5.4
5.5

A hierarchy for the domain Football.

Linear-chain model (CRF).
Tree model ([p_f1is [prep_for]).
Global model, linking two tree models ([p_f] is [prep_for]).
F1 for varying confidence thresholds.

System overview. Blue components are processed on-the-fly. . . .
Semantic graph example.o Lo L
Sample of higher-arity facts by QKBfly.
Sample of up-to-date facts from news by QKBfly.
Precision-recall curves on the DEFIE-Wikipedia.

85

11

45
48

86| List of Figures

List of Tables

3.1

3.2
3.3

3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1

5.2

5.3

5.4

5.5

5.6
5.7
5.8
59

Positive features for the token “manu” (x3) with candidate labels
ORGANIZATION:Manchester_United_F.C. (y3), PERSON:Manu_Chao
(y4) and OTHER (y4). Domain is Football, and dependency pattern
is prep_for[played, *].
Experiments on CRF Variants.
Comparison between joint models and pipelined models on end-
to-end NERD.
Experiments on NER against state-of-the-art NER systems.
Feature Influence on CoNLL-YAGO2.
NERD results on ACE.
NERD results on ClueWeb.

Experiments on Relational Triple Extraction (confidence at 95%). .
Experiments on Entity Disambiguation (confidence at 95%).
Ablation Test on Fact Extraction (confidence at 95%).
Experiments on Fact Extraction (confidence at 95%).

Excerpt of QKBfly output from Google news articles. Out-of-Yago
entities have an asterisk; relations are in italics.
Excerpt of QKBfly output from Google news articles. Out-of-Yago
entities have an asterisk; relations are in italics.
Sample extractions from the sentence “His form attracted Bob Pais-
ley, and McGarvey signed for Liverpool in May 1979.”. Relations are
initalicstyle. L
Experimental results on linking entities to Yago (95% confidence
intervals).
Experiments on Open IE component. Average runtime (ms/sen-
tence) at confidence of 95%.
Experiments on graph algorithms (at 95% confidence intervals).
Experiments on extracting instances of spouses.
Results on GoogleTrendQuestions.
Sample results for GoogleTrendQuestions.

87

57
58
60
61

88| List of Tables

5.10 Experimental results on fact extraction (95% confidence intervals). 63
5.11 Sample questions and relevant facts extracted by QKBfly. Final
answers are marked with an asterisk. 63

List of Algorithms

1 Densest-Subgraph Algorithm. 50

89

	Introduction
	Scope and Goals
	Challenges
	Contributions
	Publications
	Organization

	Preliminaries
	Data Model
	Feature Space for Named Entity Disambiguation
	Backgrounds
	Entity Repository and Name-Entity Dictionary
	Standard Features
	Domain-Oriented Feature
	Syntactic Dependency Feature

	Joint Model for Named Entity Recognition and Disambiguation
	Introduction
	Related Work
	System Overview
	Feature Model
	NED Features
	NER Features

	J-NERD Factor Graph Model
	Linear-Chain Model
	Tree Model
	Global Models
	Inference & Learning

	Experiments
	Setup
	Results for CoNLL-YAGO2
	End-to-End NERD on ACE
	End-to-End NERD on ClueWeb

	Summary

	Joint Model for Relation Extraction and Entity Disambiguation
	Introduction and Related Work
	System Overview
	Relation Pattern Mining
	Relation Pattern Labeling
	Joint Model
	Experiments
	Corpora
	Systems under Comparison
	Experiments on Relation Extraction
	Experiments on Entity Disambiguation
	End-to-End Experiments

	Summary

	On-the-Fly Knowledge Base Construction
	Introduction and Related Work
	System Overview
	Design Space and Choices
	QKBfly Overview

	Semantic Graph
	Graph Algorithm
	On-the-fly Knowledge Base Construction
	QKBfly at Work
	Experiments
	Experiments on KB Construction
	Experiment on Joint NED and CR
	Experiments on Information Extraction
	Use Case: Question Answering

	Summary

	Conclusions
	Contributions
	Outlook
	Joint Inference at Feature-Level for Relation Extraction and Entity Disambiguation
	Higher-arity Relation Extraction and Entity Disambiguation
	On-the-Fly Relation Paraphrase Mining

	Additional Details
	ILP Setup
	QA Setup

