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Abstract 

   The liver is a vital organ which performs a variety of important functions, including protein 

synthesis, detoxification, carbohydrate metabolism and innate immunity, mainly by the 

hepatocytes.   

   In this thesis, a new perfused 3D culture model for human hepatocyte cells lines (HepG2 

and HepaRG) using a commercial microfluidic device will be presented that combines 

different advantages for the in vitro cultivation of hepatocytes to apply for the study of hepatic 

inflammatory responses.  

   First, matrigel-embedded HepG2 cells cultured in the microfluidic device showed a high 

survival rate and improved hepatic functions compared to static two- and three-dimensional 

culture models. Next, we further investigated interplay between Interleukin-6 (IL-6) and 

melatonin in HepG2 cells-on-a-chip regarding acute phase response, detoxification, glucose 

metabolism, and mitochondrial functions. Additionally, HepaRG cells, the hepatic stem cell 

line, were successfully directly differentiated in the microfluidic device and produced C-

reactive proteins by IL-6 stimulation.  

  Altogether, this new in vitro model is not only applicable to investigation of hepatic 

physiology and inflammatory responses, but can also be a tool for the differentiation of 

different types of stem cells.  
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Zusammenfassung 

 

   Die Leber ist ein lebenswichtiges Organ. Sie übt eine Vielzahl von wichtigen Funktionen 

aus, einschließlich Proteinsynthese, Entgiftungen, Kohlehydrat-Stoffwechsel und 

angeborene Immunabwehr, vor allem geleistet durch Hepatocyten. 

   In dieser Arbeit wird ein neues perfusionsbasiertes 3D Kulturmodell vorgestellt für humane 

Hepatocytenlinien (HepG2 und HepaRG), basierend auf einer kommerziellen, 

mikrofluidischen Plattform, welche die verschiedenen Vorteile verbindet wie die 

Kultivierbarkeit der Hepatocyten in vitro mit der Untersuchbarkeit von 

Leberentzündungsreaktionen. 

   Zuerst konnte für Matrigel-eingebettete HepG2-Zellen eine hohe Überlebensrate bei 

Kultivierung in mikrofluidischen Systemen gezeigt, sowie verbesserte Leberfunktionen 

nachgewiesen werden, im Vergleich zu den statischen 2D und 3D Kulturmodellen. Als 

nächsten Schritt wurde das Zusammenspiel von Interleukin-6 (IL-6) mit Melatonin bei 

HepG2-Zellen-on-a-chip untersucht hinsichtlich Akut-Phasenverlauf, Entgiftung, 

Glukosemetabolismus und Mitochondrien-Funktionen. Des Weiteren konnten HepaRG-

Zellen, eine Leberstammzell-Linie, direkt in der mikrofluidischen Plattform differenziert 

werden und produzierten nach Stimulation durch IL-6 C-reaktives Protein. 

   Zusammenfassend kann dieses neue in vitro Modell nicht nur zur Untersuchung der 

Leberphysiologie und Entzündungsantwort verwendet werden, sondern ebenfalls als 

Werkzeug zur Differenzierung von verschiedenen Typen von Stammzellen. 
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Chapter 1. Introduction  

 

 

1.1 Introduction of the liver organ  

    The liver is the second largest and a very complex organ in the human body, and very 

complex. It performs various vital functions such as detoxification of drugs and xenobiotics; 

synthesis of proteins, secretion of bile; and control of the carbohydrate and lipid metabolism, 

as well as of the innate immune system. Furthermore, the liver has a remarkable capacity for 

regeneration after damage. 

 

1.1.1 Structure and functional organization  

   The liver’s structure is very complicated. Two types of cell populations are distributed in the 

organ: the majority of the liver is comprised of parenchymal cells (i.e. hepatocytes) that 

occupy 60% of the liver volume, whereas non-parenchymal cells account for 40% of the total 

volume of the liver [1].  

   The liver is divided into two lobes, each subdivided into several liver lobules defined by the 

histological unit. The classical lobule shows a hexagonal shape with a diameter of 1mm and 

a thickness of 2mm; the entire liver organ is contains approximately 1 million liver lobules [2]. 

At the vertex of the liver lobule, a portal triad containing a bile duct, a hepatic artery, and a 

portal vein is located. (Figure 1.1). Blood flow is generated from the portal triad and directed 

to the center of the lobule, while the direction of bile flow is opposite to that of the 

bloodstream [3].   

   The liver acinus is the liver’s smallest functional unit, which is centered on the line 

connecting two portals and covers two adjacent lobule parts (Figure 1.1). It appears elliptical 

or diamond-shaped, and can be divided into Zone 1 (periportal), 2 (transition), and 3 

(perivenous) based on blood composition, metabolic activity, and pathological processes. 

Zone 1 (periportal) is located close to the portal trial and receives oxygen-rich blood (O2 

pressure: 70-100mm Hg); therefore, hepatocytes in this location dominate the oxidative 

metabolism [4]. Conversely, Zone 3 (perivenous) is located near the central vein and far 

away from the portal trial, and is supplied by oxygen-poor blood (O2 pressure: 35-45mm Hg). 

As a result, the hepatocytes in Zone 3 involve a reduction process. Therefore, those oxygen 
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gradients between Zone 1 and 3 cause different compositions of plasma produced by 

hepatocytes [5, 6]. This zone-specific structure is imperative to understanding functions of 

the liver and ECM distribution.     

 

 

Figure 1.1 The structure of the liver from the whole organ to the liver sinusoid shows the 

population of the cells, portal triad, central vein, and oxygen gradient. The figure was 

modified from following website and manuscript. http://medical-

dictionary.thefreedictionary.com/liver+lobule and Turner et al [7].  

 

 

http://medical-dictionary.thefreedictionary.com/liver+lobule
http://medical-dictionary.thefreedictionary.com/liver+lobule
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1.1.2 Introduction of various types of cells in the liver  

       The liver sinusoids are low-pressure vascular channels that receive oxygen and nutrient-

rich blood from the hepatic artery and the portal vein, respectively. The fenestration of 

endothelial cells was observed at a diameters of 150-175nm and represented 6-8% of 

occupancy of the entire endothelial surface in the liver sinusoids [8].  

    Hepatocytes are plated at the space of Disse, which is a unique extracellular matrix (ECM) 

in the liver (Figure 1.1). Therefore, the hepatocytes exhibit microvilli that extend into the 

space of Disse, facilitating the efficient absorption and excretion of nutrition and metabolites 

from the sinusoid. Hepatic stellate cells (Ito cells) found within the space of Disse are 

responsible for the storage of fat and fat-soluble vitamins; they can also synthesize various 

ECM elements, including collagen, related to liver fibrosis [9]. Kupffer cells are involved in 

immune responses due to their ability to produce pro-inflammatory cytokines and 

phagocytosis in response to invading pathogens. They are located on the fenestrated liver 

sinusoidal endothelial cells at the wall of the sinusoid [10]. Liver sinusoid endothelial cells 

(LSECs) are  specialized endothelial cells characterized by fenestrations—they act as a 

physical barrier to blood circulation [11]. LSECs can trigger inflammations, since they 

possess toll-like receptors (TLRs) that detect bacteria or debris from damaged cells [12]. 

Biliary cells (i.e. cholangiocytes) are found in a biliary tract, or a so-called bile duct, which are 

responsible for the production, storage, and secretion of bile. Most liver stem cells or 

progenitor cells are located in the canal of Hering, next to the bile duct. They produce 

daughter cells and can mature into parenchymal cells [7].  

  

1.1.3 Introduction of hepatocyte’s functions 

As previously noted, hepatocytes are the major parenchymal cells in the liver. Mature 

hepatocytes are implicated in diverse biological processes, including the detoxification of 

xenobiotics, synthesis of plasma proteins, glucose and lipid metabolism, and bile secretion. 

Katz et al. have demonstrated that the functions of hepatocytes differ depending on their 

position along the periportal—central axis of liver lobule in vivo [13], and are specialized 

according to their position, determined as either “periportal” (PP) or “perivenous” (PV) [14]. 

Not all hepatic functions are limited in according this zonation classification; for example, 

albumin is synthesized in all hepatocytes. However, hepatocytes in the periportal area 

synthesize a higher concentration of albumin. The most studied hepatic functions, including 

glucose metabolism, ammonia detoxification, and metabolism of xenobiotics, are described 

in the following section (Figure 1. 2).  
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Glucose metabolism: The liver controls glucose homeostasis and stores surplus 

carbohydrates via the formation of glycogen in overall hepatocytes. Gluconeogenesis occurs 

mostly in periportal hepatocytes, while glycolysis mostly occurs in perivenous hepatocytes 

[13]. In addition, it has been suggested that the glucose metabolism can be regulated 

depending on the status of nutrients and hormones [15].  

Nitrogen metabolism: Ammonia is generated as a by-product during nitrogen metabolism. 

However, the accumulation of ammonia in the tissues or cells of the body has toxic effects, 

and must therefore be eliminated. The liver plays a vital role in ammonia detoxification after 

receiving the blood from the intestine through the portal vein to convert ammonia into urea 

and glutamine [16]. Ammonia is first metabolized by PP hepatocytes to generate urea; then, 

the remaining ammonia is converted to glutamine by PV hepatocytes [15, 17, 18].  

Biotransformation: In one of its most important functions, the liver metabolizes xenobiotics, 

drugs, and endogenous substances in order to detoxify and excrete them from our body by 

the conversion of non-polar substrates to polar and hydrophilic metabolites. Drug metabolism 

can be divided into three phases. In phase I, the cytochrome P450 enzymes (CYP) are 

mainly involved in the oxidation of the substances. The CYP 1,2, and 3 families are 

responsible for the biotransformation of 70-80% of all drugs, and are classified as the most 

abundant enzymes in humans [19]. In phase II, modified compounds from phase I are 

conjugated with either glucuronic acid (in PV hepatocytes) or sulfuric acid (in PP 

hepatocytes) [20]. In phase III, the final metabolized xenobiotics are excreted via efflux 

transporters [21].  

Various nuclear receptors regulate the expression of genes and proteins that coordinate 

the metabolism of xenobiotics. The pregnane-X-receptor (PXR) is highly expressed in the 

human liver and shares its targeted promoters with the constitutive androstane receptor 

(CAR) to regulate the expression of transport proteins and enzymes that regulate bile acid 

homeostasis and phase I-III metabolism, including the CYP3A, CYP2B family, and MRP2 

transporter [22]. The aryl hydrocarbon receptor (AhR) is also classified as a xenosensor, and 

the CYP1A and CYP1B families are regulated by the AhR [23].  
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Figure 1. 2 Schematic diagram of the basic liver structure: functions and zonation of 

hepatocytes.  

 

1.1.4 Introduction of extracellular matrix (ECM) in the liver 

      The liver includes a minor portion of the ECM. However, it plays a vital role in the control 

of the structural framework and function of the liver cells, such as cell-cell contact, cell 

migration, differentiation, and regeneration [24]. The complex ECM compositions can be 

divided into two major parts: the periportal region (PP) and the pericentral region (PV). The 

PP region contains basement membrane proteins including laminin, collagen IV, entactin, 
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and perlecan, whereas the PV region has abundant collagen I, III, and IV. A different 

composition of ECM in the liver was found in the region between PP and PV, showing 

gradient-like matrix molecules that is known as the space of Disse located between 

hepatocytes and sinusoid  [25].  Interestingly, the space of Disse lacks the typical basement 

membrane proteins such as laminin and entactin, while containing an abundance of 

fibronectin, discontinuous deposits of collagen III, and a continuous network of collagen I [26]. 

This organization of the ECM supports and maintains different functions, sizes, and 

expression of enzymes of hepatocytes according to different zonation [27]. Interestingly, the 

liver progenitor cells can be found only in the canals of Hering, which belong to Zone 1. The 

microenvironment of this place consists of soluble paracrine signals and ECM proteins 

including laminin, collagen type III, and—minimally—chondroitin sulfate proteoglycans 

(CSPGs). During the differentiation of stem cells to continuous maturational lineage stages, 

an alteration of the soluble paracrine signals and matrix composition has been observed [28]. 

1.1.5 Hepatocyte morphology and polarization 

     Hepatocytes are large polyhedral cells, with a diameter of around 20-30µm, that possess 

abundant endoplasmic reticulum (rough and soft), numerous mitochondria, lysosomes, 

peroxisomes, and glycogen deposits. Most hepatocytes contain one round central nucleus, 

while approximately 25% are binucleated. 

Hepatocytes are highly polarized, exhibiting different localized membrane proteins on 

different membrane domains for the uptake, processing, and excretion of blood components 

and bile. This distinct polarization acts as a barrier between the bloodstream and the bile. 

Moreover, the trafficking of substances taking place between the liver sinusoid and the bile 

canaliculi is dependent on the polarity of hepatocytes. The formation of this polarity requires 

cell-cell and cell-matrix interaction; the organization of actin filament; and the adhesive 

machinery, which facilitates downstream signaling for the formation of local cues of polarity 

[29].  

    Hepatocytes possess three distinct domains, each consisting of different functional 

proteins including adhesion proteins, receptors, and transporters (Figure 1.3). (1) The basal 

or sinusoidal domain, which faces the bloodstream or sinusoids, facilitates mass exchange. 

(2) The lateral domain is specialized for cell-cell contact and cell-cell communication, 

allowing cell-cell adhesion [30]. The lateral domain faces the adjacent hepatocytes and 

functions as a structural barrier to separate the basal from the apical domains. Tight, 

adherent, and gap junctions belong to the lateral domain. (3) The apical domain faces the 

bile canaliculi, or adjacent point, for bile secretion. These domains form one or more 
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capillary-like structures, so-called bile canaliculi, which comprise the smallest branch of the 

bile ductal structure [31]. In hepatocytes, sealed tight junctions are observed surrounding 

functional bile canaliculi structures [32].  

    Regarding transport polarity, both sodium-dependent and sodium-independent uptake of 

bile salts are mediated by Na+ taurocholate co-transporting (NTCP) and organic anion-

transporting polypeptide (OATP1B) at the basal domain, respectively. Bile salts are exported 

via ATP-binding cassette11 (ABCC11 or BSEP) at the canaliculi domain. Xenobiotics are 

imported by the organic anion-transporting polypeptide (OATPs) and exported by the 

multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2 (MRP2 

or ABCC2) at the apical domain. Some xenobiotics are transported into the bloodstream by 

multidrug resistance-associated protein 3 and 4 (MRP3 and MRP4) for renal elimination [2].  

 

Figure 1.3   The unique polarity of hepatocytes with the expression of transport proteins 

located at each domain. 
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1. 2 Role of the liver in inflammation 

 

   The liver is usually regarded as a non-immunological organ, since its primary functions are 

related to metabolic activities, nutrient storage, and detoxification. However, the liver is also 

involved in an immunologically complex process including the production of acute phase 

response proteins, complement components, cytokines, and chemokines, and possesses 

diverse populations of immune cells [33, 34].  The liver is continuously influenced by foreign 

substances or infections, which can potentially induce inflammatory responses. Also, certain 

molecules derived from the gut should be tolerated in the liver, since the portal vein receives 

80% of the hepatic blood from the gut [35]. The inflammation reactions are tightly controlled, 

stimulated only when the liver must remove pathogens or toxic products produced during 

metabolic processes. Failure to remove such dangerous stimuli often leads to chronic 

inflammation; in the worst-case scenario, severe inflammation—such as sepsis—can disrupt 

tissue homeostasis and induce liver failure. The inflammatory process in the liver controls 

haemodynamics, capillary permeability, leukocyte migration into tissue, and secretion of 

inflammatory mediators [35]. Therefore, the liver plays a central role in the response to 

systemic inflammation.  

 

 

1.2.1 Hepatocytes in inflammation 

Hepatocytes modify their metabolic pathways in inflammation status, and are responsible 

for the acute phase response (APR), which is a complex early defense system or innate 

immune system responding to inflammation, injury, infection, stress, and trauma (Figure 1.4).  

Hepatocytes also regulate increases or decreases in the synthesis of acute-phase 

response proteins (APPs). APPs are defined as a group of proteins whose plasma 

concentration levels increase (positive APPs) or decrease (negative APPs) by more than 

25% in response to inflammation [36]. Interestingly, APP patterns differ between species. For 

examples, in humans, the primary positive APPs include the C-reactive protein (CRP), serum 

amyloid A (SAA), and haptoglobin (Hp). In contrast, in rats, the main positive APPs are α2-

Macroglobulin and α1-Acid glycoprotein. The major negative APPs are albumin and 

transferrin in humans and rats, but differ in chickens [37]. Therefore, rather than using animal 

models, human hepatic cells should be applied in inflammation studies.  
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Glucose metabolism is also modified by hepatocytes due to glycogenolysis and 

gluconeogenesis during the inflammation. Additionally, metabolism of xenobiotics is affected 

by inflammation, resulting in a reduced biotransformation including cytochrome P450 activity. 

These metabolic changes lead to impaired elimination of xenobiotic compounds [38].  

 

Figure 1.4   A schematic image of the inflammation process in the liver organ in vivo. Kupffer 

cells and liver endothelial cells can be activated via toll-like receptors by binding with 

microorganisms, and initiate the innate immune system. IL-6, one of the cytokines released 

from NPCs in the liver, stimulates the hepatocytes to modify the metabolic functions and to 

produce positive APPs.   

 

1.2.2 Relation of Interleukin-6 with human hepatocytes 

    During the APR or innate immune process in the liver, immune cells, such as 

macrophages and Kupffer cells, first recognize bacteria via their membrane-bounded toll-like 

receptor (TLR), which binds components of microorganisms. They then begin to produce 

cytokines and chemokines that directly influence various functions of the hepatocytes (Figure 

1.4).  
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   Mainly, pro-inflammatory cytokines including IL-6, IL-1, and TNF-α—induce  various 

reactions, including APR, which is a core part of the innate immune response [39]. It is not 

clear whether exogenous mediators such as lipopolysaccharide (LPS), a component of the 

cell wall in gram-negative bacteria, modulate hepatocyte functions directly. Among various 

cytokines, IL-6 is believed to be the main cytokine implicated in the liver inflammatory 

response [38].  

   In vivo, the liver seems to be the primary target organ for IL-6. 80% of injected 125I-labeled 

recombinant human IL-6 disappeared in the circulation and was found in the liver after 20 

minutes. Moreover, 125I-labeled recombinant human IL-6 was remarkably observed on the 

surface of parenchymal cells [40]. Those observations suggest that hepatocytes in the liver 

might be the main target location for IL-6 in vivo.  

As previously noted, hepatocytes synthesize or change their level of APPs during the 

inflammation process. Among pro-inflammatory cytokines including IL-1, TNF-α, and IL-6, 

only IL-6 can induce a full spectrum of both positive and negative APPs in humans. In 

contrast, IL-1, and TNF-α showed a limited or moderate stimulation on positive APPs [41]. 

Therefore, IL-6 is regarded as a key mediator, particularly in inducing APR in the liver. 

 

1.2.3. The introduction of Interleukin-6 and its signaling pathway system. 

Interleukin-6 (IL-6) was discovered in 1986 as a B-cell differentiation factor [42]. It is a 

multifunctional cytokine that regulates the immune response, hematopoiesis, the acute 

phase response, and inflammation [43, 44]. IL-6 is produced by various types of cells, 

including Kupffer cells, endothelial cells, and stellate cells in the liver. It has numerous 

biological activities through its receptor-combined system to recruit signaling.  There are two 

distinct IL-6 signaling systems. 

    The first process is the so-called ‘IL-6 classic signalling’. IL-6 binds to the membrane-

bounded IL-6 receptor (IL-6R) to form the IL-6/IL-6R complex and associates with a second 

receptor, glycoprotein (GP)130. Gp130 dimerization activates Janus kinases (JAKs), leading 

to the activation of the signaling pathways, including signal transducer and activator of 

transcription 3 (STAT3) pathway. After phosphorylation at the tyrosine and serine residue of 

STAT3, phosphorylated STAT3 translocates into the nucleus and binds directly to targeted 

genes  [45, 46].   

   Interestingly, the expression levels of IL-6R and gp130 in the liver vary depending on cell 

type. All cells of the body express gp130, while only a few cell types—such as hepatocytes, 
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some leukocytes, biliary epithelial cells, and hepatic stellate cells—express the membrane-

bound IL-6 receptor (mIL-6R) [46].  ‘IL-6 trans signaling is found in cells that do not express 

IL-6R, such as endothelial cells in the liver. In this case, IL-6 complexes with the soluble form 

of the IL-6R (sIL-6R) [47, 48].   

In conclusion, hepatocytes, Kupffer cells, and stellate cells in the liver fulfil a classic IL-6 

signaling by direct binding of IL-6/mIL-6 complex formation, whereas the IL-6 trans signaling 

process occurs only in endothelial cells  [46] 

 

1.2.4 APPs and their function  

The C-reactive protein (CRP) was first discovered as a positive APR in 1930 [49]. 

Nowadays, it is considered a significant marker for infection or inflammation. It can act as 

opsonin by binding directly to polysaccharides, a component of the bacterial wall, as well as 

to residue of several microorganisms. Therefore, it can activate complement molecules and 

phagocytosis. In addition, the CRP gene transcription is induced by the IL-6/STAT3 pathway 

[39].  

Hepcidin is a small, 25-amino acid peptide, and a central regulator of the iron metabolism 

[50]. It is classified as a positive APP, is synthesized by hepatocytes, and controls iron 

homeostasis. When iron is overloaded, hepcidin synthesis is induced. In contrast, when iron 

is deficient, its production is suppressed [50]. The ferroportin transporter at the membrane of 

hepatocyte regulates the excretion of  the hepcidin [51]. It has been reported that 

administration of IL-6 induces an increased hepcidin production and results in a low-serum 

iron through STAT3 activation to bind the hepcidin promoter [45].    

    Albumin is one of the major negative APR proteins. It is the most abundant protein in the 

blood of animals and humans, and accounts for 35–50% of total protein content. 

Approximately 75% of the total produced albumin is utilized to maintain osmotic pressure of 

the plasma, which is one of the main functions of albumin. Additionally, albumin may be a 

major alternative source of amino acids for the synthesis of positive APPs during APR, thus 

reducing their production under an inflammation situation [52, 53].  
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1.2.5   Introduction and functions of melatonin 

The isolation and identification of the structure of the hormone melatonin were first 

reported in 1958 [54]. Melatonin is secreted by the pineal gland during the dark phase, and 

also plays a significant role in the regulation of sleep and wake cycles, i.e. circadian rhythm.   

One of the major functions of melatonin is reported its anti-oxidant effect [55, 56].  Acute 

inflammation typically results in an oxidative stress condition, such as excessive secretion of 

reactive oxygen species (ROS), and a relative lack of endogenous antioxidants [57]. 

Melatonin’s actions depend in part on receptor-dependent processes and on independent 

pathways. Generally, the independent receptor pathways are associated with direct radical 

scavenging functions [58].   

Mitochondria are cell organelles that produce energy in the form of ATP via electron-

transport chain reactions, which generates reactive oxidative species (ROS) as a by-product. 

Interestingly, mitochondria are regarded as the main target organelles of melatonin due to 

their hydrophilicity and lipophilicity [59]. Melatonin can accumulate in mitochondria at a high 

concentration (presumably adjacent to the polar head of phospholipids at the mitochondrial 

membrane) and protects against mitochondrial oxidative stress and apoptosis [60]. 

Furthermore, diverse previous studies have demonstrated that melatonin shows a potent 

antioxidant activity by direct scavenging of radicals and the regulation of pro-oxidant and 

antioxidant enzymes. In general, it is agreed that melatonin stimulates antioxidant-related 

enzymes from a nanomolar range in vitro cell culture model [61].  

 

1.2.6 Protective effects of melatonin in inflammation and liver    

   The positive effects of melatonin in the liver during severe inflammation, such as sepsis, 

have been demonstrated by the inhibition of elevated production of nitric oxide and lipid 

peroxidase, and by an increase in glutathione levels [62, 63]. In addition, melatonin 

administration reduces the plasma levels of alanine aminotransferase and aspartate 

aminotransferase—typical markers for liver damage—which provides additional evidence for 

the beneficial effects of melatonin in the liver [64]. In particular, our collaboration group has 

been investigating the liver protective functions of melatonin in severe inflammation disease 

models for several years. They demonstrated melatonin’s hepatoprotective actions by 

confirming the improvement of liver functions, hepatic perfusion, and hepatocellular integrity 

[65], as well as its role in modifying cellular stress, including reactive oxygen species and the 

unfolded protein response [66]. Mainly, they discovered a cAMP-responsive element binding 
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protein 3 like 3 (CREBH) transcription factor that was entirely suppressed in severe 

inflammation disease, which was normalized by administration of melatonin. This fact is very 

intriguing to investigate the interaction of inflammation and melatonin since CREBH is 

associated with APR in the liver [67].  

The CREBH protein belongs to the regulated intramembrane proteolysis (RIP) that is the 

process by which transmembrane proteins are cleaved and then the cytosolic domain are  

translocated into the nucleus to regulate the gene transcription [68]. CREBH is also one of 

transmembrane proteins at the endoplasmic reticulum (ER) and is activated by the regulated 

intramembrane proteolysis (RIP) process. Interestingly, the expression of CREBH (Creb3l3) 

is strictly restricted to the liver tissue, and pro-inflammatory cytokines can act as inducers for 

the CREBH mRNA expression in hepatocytes [67]. It has been reported that activated 

CREBH induced by ER stress or IL-6 directly regulates the production of CRP and hepcidin 

by binding their promoter in hepatocytes [67]. Therefore, the investigation of the interplay of 

melatonin and hepatic inflammation reactions is fascinating. 
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1.3 Introduction of in vitro hepatocyte culture models 

1.3.1 Various cells types for in vitro hepatocytes  

   There are various hepatic cell lines that can replace primary human hepatocytes for in vitro 

culture models. The limitations of using human hepatocytes are addressed, and two hepatic 

cell lines, HepG2 and HepaRG, are introduced in this thesis.  

Limitations of human primary hepatocyte 

      Primary human hepatocytes are considered a gold standard for in vitro liver cell culture 

models. They can be collected after complicated isolation steps of the entire liver organ from 

the patients. However, the functions of isolated human primary hepatocytes can be 

maintained only for several days in an in vitro cultivation and they rapidly lose their polarity. 

Furthermore, there are huge variations between the donors, and it is difficult to have 

accessibility [2, 69]. 

HepG2 cell line  

   The HepG2 cells line was developed in 1979 from a 15 years old American adolescent. 

Due to easy handling and unlimited availability, this cell line became a promising alternative 

to primary hepatocytes as a liver cell line. However, HepG2 expresses a low level of 

detoxification-related genes and proteins and shows epithelial cell-like morphology. 

Nevertheless, HepG2 cells can synthesize and produce major plasma proteins such as 

albumin, transferrin, and the acute phase proteins, thereby it can still be a promising cell line 

instead of human hepatocytes [70]. 

HepaRG cell line 

   HepaRG cells were isolated in 2002 from the liver tumour of a female patient suffering from 

hepatocarcinoma and a hepatitis C infection and have been applied for a primary in vitro 

model for the infection of hepatitis B [71]. HepaRG cells show liver progenitor cells properties 

before they reach a confluent state and can differentiate into both hepatocyte-like cells and 

biliary-like cells, approximately showing a 1:1 ratio by the addition of 2% of DMSO [72–74]. 

HepaRG cells well retain many liver-specific functions which are related to detoxification 

processes such as cytochrome P450s, phase II enzymes, and membrane transporters and 

show the most similar gene expression and transcriptomic patterns as compared to human 

hepatocytes [70, 75]. Therefore, the utilization of HepaRG is encouraging as a surrogate for 

hepatocytes as well as liver stem cells in vitro.    
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1.3.2 Culture models for liver cells in vitro 

Limitation of in vitro and in vivo animal models.  

    In cell biology, including hepatocytes cultivation, a traditional method is the monolayer 

cultivation in a flask or multi-well plate. However, the abnormal morphology and dramatically 

decreased viability and functionalities of hepatocytes were observed in 2D culture model, 

thereby responses to external stimuli or diseased conditions in monolayer culture often 

showed huge gaps compared to clinical or in vivo data. Also, most standard methods for in 

vivo tests are animal experiments using rat or mouse model. However, due to genetic and 

metabolic differences between species, the results from in vivo animal experiments were 

inconsistent with human clinical data. Furthermore, a sacrifice of animals causes always 

ethical issues. Therefore, researchers endeavoured to develop various new in vitro liver 

models which can overcome the limitations mentioned above.  

Hepatocyte cultivation in in vitro 3D model 

    First of all, a 3D culture model was proposed to maintain the hepatocyte’s viability and 

improve their metabolic functions in vitro. In various previous studies, hepatocytes and 

hepatic cell lines cultured in the 3D model showed improved hepatic functions and well-

organized cell structures, compared to 2D models, and indicated phenomena similar to in 

vivo data [2].  

    Representative methodologies for creating a three-dimensional structure of liver tissues 

can be divided according to whether the scaffolds are present or not. Scaffold-free methods 

such as hanging drop and spinner cultivation are the most common techniques. However, 

the spinner culture method can cause intercellular collision due to it`s a constant high stirring 

rate, thereby reducing the cell viability and destroying the cell structure [76, 77].  

    The hanging drop method is widely used for forming cell spheroids in the lab, and there 

were various commercially available devices manufactured by 3D Biomatrix Perfecta3D® 

hanging drop plates [78] and InSphero [79]. Although this method is convenient and popular, 

a limited mass transfer can occurred [80].  

    Scaffold techniques using hydrogels, such as naturally-derived or synthetic materials, also 

can generate 3D cultures by their gelation under particular conditions. Matrigel and collagen I 

are mammalian-derived ECM and the most widely used materials, as they are identified as 

the most abundant ECM in vivo. Alginate extracted from brown algae is also a standard 

material particularly for the encapsulation of cells, since it showed low toxicity and the cost is 
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low [81]. PEG is a widely used synthetic material and is often employed for encapsulation 

[82].   

 

    Microtechnology is often used for the encapsulation and cell aggregation. Previously, a 

hepatic cord-like structure model was introduced with co-culture of nonparenchymal cells 

(NPC) using a microencapsulation technique [83]. Using the micromolds is also a common 

platform to generate scaffold-free liver spheroids  [84].  

    However, still, there is one critical parameter for hepatocyte cultivation is missing, and 

which is mechanical fluidic force. The supply of a constant flow can lead to a sufficient mass 

transfer to 3D cell aggregates. Although the hepatocytes in the liver do not even directly 

contact the flow in vivo, blood flow exists as a unidirectional, supporting the nutrient supply 

and the removal of waste products.   

 

 

Figure 1.5 Various In vitro models for hepatocyte cultivation including monolayer, 3D culture 

with scaffold or scaffold-free, and combination with microtechnology for encapsulation of 

cells with matrix and matrix free spheroid formation.  
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1.3.3 Introduction of microfluidics in cell biology 

   The area known as microfluidic technology or the ‘micro total analysis systems’ is growing 

rapidly in the field of developing in vitro models in cell biology. The first concept of 

miniaturized total chemical analysis system was proposed by Manz in 1990 [85]. The initial 

researches related with µTAS were dominated in analytical chemistry and physics field.  

    Over the last decade, the integration of cell biology with microfluidic technologies has 

emerged and has provided sophisticated in vivo mimicking microenvironments that have 

greatly influence in vitro cell biology research. In vivo, cells and their surrounding 

environments have microscale physical dimensions, thereby microfluidic technologies can be 

manipulated to answer and to observe complicated biological phenomenon [86].     

   The number of publications using the keywords “microfluidics cell culture” and 

“microfluidics and liver” has increased excessively over the last decade, according to the 

PubMed website (https://www.ncbi.nlm.nih.gov/pubmed). This indicates that the number of 

new in vitro models integrating microfluidics technologies is still growing extensively, 

including new in vitro models for liver cell cultivation. (Figure 1.6)    

 

 

Figure 1. 6 The number of publications found per year using the keywords ‘microfluidics and 

liver’ (blue) and ‘microfluidics and cell culture' (orange) in PubMed website. 
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1.3.4 Introduction of liver-on-a-chip devices 

    Over the last decade, diverse liver-derived in vitro microfluidic chip platforms have been 

developed by mimicking microenvironment of the liver in vivo, resulting in an improved 

maintenance of liver functionalities compared to conventional culture models. Therefore, they 

allowed investigating toxicological studies and various hepatic responses upon treating 

substrates or drugs. Here we introduce selected platforms that are considered from the 

perspective of the history of the development of microfluidic liver models and their 

applications.       

Griffith and co-workers developed a microfluidic device for the cultivation of primary 

hepatocytes under flow supply in a three-dimensional platform integrated by fabricated 

scaffold compartments in 2001 [87]. They proved that hepatocytes were highly viable for two 

weeks and organized in tissue-like structure. They further estimated the hepatic functions in 

comparison of different cultivation models including 2D, collagen sandwich culture, 3D 

matrigel, and microfluidic 3D culture devices. Interestingly, cells cultured in a 3D perfused 

microbioreactor (microfluidic device) showed the most similar tendency toward a native liver 

compared to the other in vitro culture models, providing that three-dimensional cultures with 

flow supply can maintain hepatocyte functions at nearby physiological levels [88]. They 

further improved their device which contains the compartment for a higher throughput 

capability in the perfused multi-well plate with an integrated pneumatic micropump for 

hepatocyte culture [89].  

   Sin et al. reported the concept of an organ-on-a-chip platform in 2004. The device consists 

of three culture chambers, and each culture chamber was connected with supply of a 

continuous flow [90]. After that, Chao et al. developed a HμREL®biochip for multi-organ cells 

cultivation including primary hepatocytes by a modification of Sin’s device. Briefly, each 

biochip is enclosed and connected to another biochip (up to 4 biochips) by tubing lines [91], 

allowing independent experiments to be performed simultaneously. After the evaluation of 

the hepatocyte functionalities, the device was applied to the study of substrates clearance 

[92]. The device showed a better prediction level than monolayer cultivation compared to in 

vivo data for one of the tested substrates.  

In 2007, a new microfluidic device which resembles the hepatocytes in vivo 

microenvironment was introduced for hepatocytes cultivation. The culture chamber in this 

device has unique physical barriers that can act as the endothelial barrier layers between the  

fluid and the cell culture area, allowing the cells to exchange nutrients and waste without 

direct contact to the flow [93]. After slight modifications, the next generation of device was 
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introduced for the alignment of hepatocytes to help a better organization of bile canaliculi by 

adding separated cell injection compartments and by reducing the width of the cell culture 

chamber to make a compact cell culture area [94]. Very recently, in vitro a so-called 

nonalcoholic fatty liver disease model has been proposed using the same device [95].  

    Yu and co-workers presented a microfluidic 3D hepatocyte chip, so-called 3D HepaTox 

chip [96]. The 3D HepaTOX chip was designed for 3D cell cultures of hepatocytes and for 

the generation of linear concentration gradients for dose-dependent responses to the drugs 

in vitro. The device consists of 8 cell culture chambers in parallel. Positively charged 

methylated collagen and negatively charged HEMA-MMA-MMA terpolymer were used for a 

3D matrix, and micropillars helped the retention of the cells from the laminar flow in the 

device. This device was used for the assessment of IC 50 value of 5 different drugs, and the 

IC 50 correlated with LD 50 in vivo data. The results were comparable to the freshly isolated 

rat hepatocytes cultured in collagen-coated multi-well plates. 

Marx and co-workers reported a dynamic multi-organ-chip for long-term cultivation of a 3D 

human liver and skin tissue co-culture. This device is commercially available at TissUse 

GmbH [97]. The system of the device offers two different culture models: i) direct exposure to 

flow of the cells, ii) no direct contact of the flow to the cells grown on the membrane surface 

in the Transwell®. This device also allows to study crosstalk between two organ models due 

to the multi-culture chambers. Furthermore, the device is operated by an on-chip micropump 

and contains independent culture chamber. Instead of using primary hepatocytes, they chose 

HepaRG cells. For the creation of 3D liver microtissues, differentiated HepaRG cells and 

human hepatic stellate cells were co-cultured in hanging drop plates and cell aggregates 

were transported into the microfluidic device for the evaluation of long-term cultivation (28 

days) and drug–induced toxicity tests. Interestingly, cell aggregates cultured on the 

membrane in Transwell® survived longer than cells that were exposed to flow directly [98]. 

They further used the same device for three different organ cultivations (liver-intestine and 

liver-skin) to qualify a repeated dose substance test [99].  

  The Multi-organ-tissue-flow (MOTif) biochip was developed in 2015 by Mosig's group for 

endothelial cell cultivation by applying a hemodynamic force generated by the microfluidic 

flow. The culture chamber consists of a single membrane plate on which cells can adhere 

and grow on both sides of the membrane [100]. Later, this device was used to make an 

artificial liver sinusoid in vitro model. It consists of two layers on both sides of the membrane. 

The endothelial cell layer contained endothelial cells and macrophages, and the hepatic layer 

included co-cultured differentiated HepaRG cells and stellate cells. The endothelial layer was 

only exposed to perfusion flow [101]. Later, sepsis (severe inflammation disease) associated 
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hepatocellular dysfunction was investigated for the first time in a microfluidic in vitro model. 

They observed the release of pro- and anti-inflammatory cytokines and a decreased 

expression of the hepatic transporter (MRP2) as well as a disruption of the endothelial barrier. 

However, the intensive investigation regarding the alteration of hepatic metabolisms by 

inflammation is still lacking. Their results were comparable with in vivo data, suggesting that 

this new liver in vitro model is a valuable tool to study inflammation processes. This fact is of 

particular importance to inflammation research because many inflammation disease models 

rely on murine in vivo animal experiments for studying human inflammatory responses even 

though they show a poor correlation with human conditions [102]. Therefore, the 

development and validation of new in vitro liver models is urgently needed to investigate 

inflammation. 

More detailed information of the various in vitro microfluidic liver platforms that were not 

introduced in this chapter is presented in Table 1. Each device was classified according to 

the dimension of the cell culture, the type of cells, the in vivo mimetic factor, whether a 

physical barrier between the cell culture area and the flow region exists or not, and according 

to their application field. Through an investigation of various microfluidic in vitro liver models, 

we have found that the paradigm shifts from the development and the characterization of 

new in vitro models to the integration with various application fields including not only for 

drug-induced toxicity but also for various disease models.  
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Table. 1 Summary of various in vitro liver models based on microfluidics technology. 

 

 

Cell type 

 

Culture 

model 

(2D or 3D) 

Model 

(Name of device) 

Physical separation 

to flow from culture 

area 

Applications [Ref] Year 

Primary 
hepatocytes 

3D:  

Fabricated 

scaffold (3D) 

Perfusion 3D culture No: directly exposed 

to the flow 

No tested applications  [87] 2002 

[88] 2005 

[89] 2010 

Primary 

hepatocytes 

2D Multi-tissues model 

HµREL® biochips 

No: directly exposed 

to the flow) 

Drug metabolism [90] 2004 

[91] 2009 

[92] 2010 

Primary 

hepatocyte 

2D Mimicking liver 

sinusoid 

Physical artificial 

barrier 

Drug-induced hepatotoxicity 

Nonalcoholic fatty liver 

disease 

[93] 2007 

[94] 2011 

[95] 2016 

Primary 

hepatocyte 

3D: 

With ECM 

Perfusion 3D culture Micropillar Drug-induced hepatotoxicity [96] 2009 

Primary 

hepatocyte 

3D: 

Scaffold-free 

Cord-like structure Micropillar No tested applications  [103] 2010 

HepG2/C3A 2D Perfusion 2D culture No: directly exposed 

to the flow 

Genomic, metabolomic, 

proteomic and 

transcriptomic investigation 

of drug-induced 

hepatotoxicity 

[104] 2011 

[105] 2011 

[106] 2013 

Primary 

hepatocyte 

3D:  

Scaffold-free 

Perfusion 3D culture No: directly exposed 

to the flow 

Interaction of paracrine 

parameters 

[82] 2013 

HepaRG 3D : 

Scaffold-free 

Multi-organ platform 

 

No: directly exposed 

to the flow 

Drug-induced hepatotoxicity 

 

[97] 2013 

[98] 2015 

[99] 2015 

HepaRG 3D: 

multi-layered 

with other 

cell types 

Liver sinusoid 

MOTiF biochips 

Membrane Interaction of Monocyte and 

Hepatocytes under 

Inflammation model 

[101] 2015 

[100] 2015 

[107] 2016 

 

Primary 

hepatocytes 

 

3D:  

With ECM 

Liver sinusoid ECM Drug induced hepatotoxicity [108] 2016 

Primary 

hepatocyte 

2D Zonation of liver by 

gradient of chemical 

No: directly exposed 

to the flow 

Drug-induced hepatotoxicity [109] 2016 
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1.3.5 Introduction of a newly developed biochip   

    The newly developed biochip used in the thesis is introduced in this section. Originally, this 

microfluidic-based biochip was invented by the Mimetas company (The Netherlands) [110]. 

The most important component of this device is the so-called phaseguide, which was 

invented by Vulto et al. [111, 112]. This technology controls filling and emptying of liquid 

independently in any type of microfluidic structure, such as the chamber or complicated 

channel-based geometries. The phaseguide is a physical barrier of low height, made by dry 

film resist. It induces a liquid meniscus pinning effect in which the liquid aligns itself along the 

phaseguide before overflowing. Phaseguides can be patterned in accordance with various 

structures to control the alignment of liquid in microenvironments (Figure 1.7). 

 

Figure 1.7.  The principle of the phaseguide for liquid alignment in microenvironments. 

    The organoplateTM biochip used in the thesis is a modified 384-well plate consisting of 

integrating microfluidic structures made by glass substrates on the bottom side (Figure 1.8A). 

Details about the fabrication process were reported by Trietsch el al [113]. Two different 

designs—2-lanes and 3-lanes platforms—are available, and a phaseguide is positioned 

between the lanes. Each culture chamber is juxtaposed to 9 or 4 wells of a 384-well plate, 

resulting in 40 or 96 arrays of culture chambers in the 3-lanes (Figure 1.8.A+B) or 2-lanes 

platform (Figure 6.1 in appendix), respectively. The size of each lane (or channel) and 

phaseguide is presented as 200µm and 50µm of the width and 120 µm and 30µm of the 

height, respectively. 

     Our final choice of device was the 3-lanes platform. Each lane possesses an inlet and 

outlet that face each well in the plate, allowing liquid to fill the well by pipetting without any 

additional connection of pumping setups and to be injected by capillary force into the lane 

(Figure 1.8.B). Furthermore, spontaneous perfusion can occur by a difference between of 

liquid volume between the inlet and outlet, in order to equilibrate their volume (Figure 1.8.D). 

Average fluid flow was measured as 1.5 µl/h. This indicates that a continuous perfusion is 

supplied for approximately 24 hours in the case of 25µl of outlet and 100µl of inlet volume.  
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   Trietsch et al. proposed a 3-D cultivation model of the various types of cells in this 

microfluidic device. Cells suspended in hydrogels were injected into the lane and can be 

aligned along the phaseguide without jumping over. Thus, the cells grow under a three-

dimensional geometry by solidification-gelling of the hydrogels to form cell aggregates 

(Figure 1.8C). This is an additional advantage to the cell clusters embedded in hydrogels, 

because the cells can be protected from mechanical force, such as shear stress. 

  As mentioned in the previous section, representative techniques used in the 

compartmentalization of a microfluidic environment to separate the cell culture area from the 

medium flow region include the use of pillars, membranes, and artificial barriers. However, 

those geometries in microenvironments can impede the communication between the 

compartments due to insufficient diffusion and prevention of direct interaction. Since the 

height of the phaseguide does not exceed one-fourth of the channel height, nutrient supply, 

waste product export, and cell-cell communication can occur freely in this device.  

 

Figure 1.8 Schematic diagrams of a biochip based on a 384 wells plate embedded with 

microstructures for liver cell cultivation. (A) Top and bottom views of the biochip, (B) View of 

one culture chamber unit in a 3 lanes platform device. (C) Straight 3 lanes for cell culture with 

phaseguides placed between the lanes. Cells embedded in the hydrogel and the mixture 

(cells and hydrogel) can be aligned along the phaseguides, indicating the possibility of 3D 

cultures, (D) The principle of generation of perfusion without connection of additional pump 

setups.   
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1.4 Aim and outline of this thesis  

1.4.1 Motivation and aim of the thesis 

    The liver has diverse functions including synthesis of proteins and various metabolic and 

detoxification processes, allowing the human body to maintain and sustain life. However, 

conventional monolayer culture models have limited use as in vitro models for observing 

various phenomena to predict toxic effects and to understand disease mechanisms. Also, in 

vivo animal experimental models have limited ability to serve as human disease models due 

to species differences, and thus often fail to match human clinical data. Therefore, there is an 

urgent need to develop an accurate and improved in vitro liver model. To date, most 

researchers have focused only on toxicological studies employing previously developed in 

vitro models, even though the liver also plays a critical role in inflammation.     

    In vivo, hepatocytes are surrounded by the space of Disse and by lined endothelial cells, 

and thereby are not exposed to blood flow directly. There are several advantages of using a 

phaseguide-based microfluidic platform to grow liver cells and also to mimic in vivo 

situations: i) liver cells can grow and be sustained under three-dimensional structures by 

embedding in hydrogel; ii) cells can freely communicate between adjacent regions (e.g. 

medium or cells) without physical compartmentalization; iii) liver cells do not directly contact 

perfusion since they are embedded in hydrogel; and iv) generated perfusion is beneficial to 

the cells, supplying nutrients and removing waste products. Therefore, we hypothesize that 

these unique new microenvironments might support the maintenance of hepatic cells in 

terms of morphology, diverse hepatic functions, and polarity in vitro.    

    

 

Figure 1.9.  The motivation of this thesis to develop a new in vitro liver culture model using a 

microfluidic device by mimicking in vivo hepatocyte environments. 
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    The aims of this thesis were to generate a new in vitro liver cell culture model using a 

commercial microfluidic device, and to evaluate various hepatic inflammation responses in 

the model. We used two types of hepatic cell lines (HepG2 and HepaRG cells) and evaluated 

their behaviour in new microenvironments, as well as their response to IL-6 treatment for 

inflammation stimulation.  The following research questions are addressed below, and will be 

subsequently addressed in each chapter of this thesis.  

     1) What are the differences in the behavior of HepG2 cells in a microfluidic culture 

compared to static conventional 2D and 3D cultures?  

     2) How does a newly developed HepG2 cells-on-a-chip platform react to IL-6-induced 

inflammation and melatonin? Why and how does melatonin modify altered hepatic responses 

stimulated by IL-6?  

     3) For HepaRG cultivation in the biochip, how do ECM, flow, and DMSO affect the 

phenotype of the HepaRG cells? If HepaRG cells can differentiate to hepatocyte-like cells, 

can they produce CRP by stimulation of IL-6? 

     4)  Are there differences in HepG2 and HepaRG cell behaviours during the microfluidic 

cultivation process? How similar is this new in vitro platform in comparison of the clinical or 

primary hepatocytes cultivation data? 

 

1.4.2 Outline of this thesis  

    The thesis consists of five chapters. In Chapter 1, a general introduction was provided 

including information about the basic liver structures, functions, and roles in inflammation. 

Moreover, various in vitro microfluidics liver model platforms, as well as the final aims of the 

thesis, were introduced. In Chapters 2-4, more details and topic-specific introductions, 

methods and material parts, results, and discussions of findings will be presented in each 

chapter to answer the research questions:   

    In Chapter 2, a new in vitro liver cell cultivation model using an HepG2 cell line in the 

biochip will be characterized and evaluated. The new biochip cultivation model will be 

compared to conventional monolayer cultures and 3-D cultures by the characterization of the 

morphology, cell viability, lactate dehydrogenase (LDH) assay, albumin and urea production 

rates, bile canaliculi formation, and CYP1A induction. Finally, an acetaminophen-induced 

toxicity test as a proof-of-concept will be performed for the three different culture platforms, 

as well as a comparison of their LC50 values.   
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    In Chapter 3, although the liver plays vital roles in inflammation, most of the applications in 

new microfluidic in vitro liver platforms are limited to investigating drug-induced toxicity and 

metabolism. This prompted us to evaluate hepatic functions related to inflammation 

processes induced by IL-6 and melatonin in the newly developed in vitro HepG2 cells-on-a-

chip platform (discussed in Chapter 2). Various hepatic functions, including detoxification, 

acute phase response, glucose metabolism, and mitochondrial functions will be explored. In 

addition, we also will investigate the expression level of several transcription factors that 

regulate acute phase response and detoxification.     

    In Chapter 4, the behaviour of HepaRG cells in microenvironments has not yet been fully 

elucidated up to date. Therefore, our motivation is to cultivate undifferentiated HepaRG cells 

directly in the biochip, observing their behaviour to test whether HepaRG cells can 

differentiate in this environment in order to save time, and to avoid the addition of DMSO for 

toxicology applications. To elucidate the behaviour of undifferentiated HepaRG cells in a new 

microenvironment, two different ECMs and two different types of perfusion flow—with or 

without DMSO treatment—will be compared for each experimental setup. The final choice of 

culture model will then be further investigated for polarization and CRP production by IL-6 

stimulation.       

    The dissertation will be concluded in Chapter 5 with a summary, a conclusion, and an 

outlook for possible plans and directions in the future. 
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Chapter 2. On-chip 3D cell culture in phaseguides 

improves hepatocyte functions In Vitro. 

This chapter has been published in the biomicrofluidics journal in 2015.  

Publication: BIOMICROFLUIDICS 9, 034113, 2015 

 

 

 

 

 

2.1 Introduction  

2.1.1 Motivation and aims of this chapter  

    The main motivation of this chapter is to test our hypothesis that a 3D culture with a supply 

of flow contacting the cells indirectly might support the hepatic cells cultivation in vitro by 

using the commercial microfluidic device. Therefore, the aim of this chapter is to develop and 

to characterize a microfluidic based 3D hepatic cell cultivation system. The HepG2 cell line 

was chosen to investigate diverse cellular behaviors, including morphology and hepatic 

specific functions.     

    To answer the question of how HepG2 cells behave differently in the new 

microenvironments, MatrigelTM-embedded HepG2 cells cultured in this biochip (3D with 

supply of the indirect flow) were compared with a static MatrigelTM culture (3D) and a 

monolayer culture (2D) models.  

    Therefore, the morphology of the cells, cell viability, hepatocyte-specific physiology 

functions, and acetaminophen-induced toxicity were characterized at least for two weeks. In 

addition, the intensive discussion will follow with regard to hepatic functions compared to 

clinical data, primary hepatocyte cultivation results, and other microfluidic hepatic culture 

models.  
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2.1.2 Introduction 

    As we mentioned in previous chapter, the liver plays pivotal roles in almost every field of 

metabolism such as glucose, nitrogen, and drug metabolism. In addition, the immune and 

coagulation systems such as the acute phase response has aroused interest in analyzing the 

special hepatocytes’ functions since decades [110]. Nevertheless, the in vitro study of liver 

functions and liver cell-specific responses to external stimuli still deals with the problem to 

preserve the in vivo functions of primary hepatocytes and to depict the in vivo situation with 

stable immortal hepatocyte cell lines. For example, isolated and cultured liver cells display 

altered transcriptional and translational profiles other than their in vivo counterparts resulting 

in modified metabolism and cellular responses [2].  

    Hepatocyte’s functions are strongly dependent on its morphology and polarization which is 

rarely achieved by conventional 2D culture [111]. This might lead to misinterpretation and the 

lack of transferability to the in vivo situation, therefore, strongly limits the validity of in vitro 

analysis of liver cell functionality. The embedding of hepatocytes in an extracellular matrix 

such as naturally derived MatrigelTM preserves cellular morphology and polarization [112]. By 

using perfusion systems, cells can adequately be supplied with nutrients and oxygen while 

wastes are removed permanently [113, 114]. The improvement of hepatocytes’ proliferation 

and metabolism by a constant perfusion flow in a microfluidic reactor was shown previously 

[113]. Nevertheless, a strong flow does not reflect the in vivo situation as a hepatocyte in the 

liver is not in direct contact to blood circulation for endothelial cells and the space of Disse 

acting as filters to the hepatocytes. The negative impact of strong shear stress on 

hepatocytes’ metabolism has been shown before [115].  

    Only few research groups have used artifical physical barriers to separate liver cells from 

flow such as tightly placed micropillars [96, 103], or micro scale walls [93, 94] using 

microfabrication techniques, or commercial membrane filters [97, 116]. However, those 

artificial physical barriers might prevent intercellular communication, diffusion of nutrients,  

waste metabolites clearance, and signaling molecules.  

   Therefore, to the best our knowledge, this is the first biochip combining several 

advantages for cultivation of hepatocytes compared to previously developed culture 

platforms. We hypothesis that following features of this new microfluidic culture model might 

support hepatic cells cultivation in vitro : i) the separation of the cells’ culture area and the 

perfusion flow without any physical barrier, ii) indirect contact of HepG2 cells to the flow due 

to the polymerization of the extra cellular matrix working as a filter for the cells.  
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    Although the principal suitability of hepG2 cells cultivation in the OrganoPlate was 

demonstrated [117], a profound basic characterization of hepatocytes cultured in this biochip 

is still lacking. In order to investigate cells’s behavior in new microenvironment and pave the 

way for further studies with clinical importance, the present study aimed to assess 

hepatocytes’ behavior considering multiple performance criteria: cellular morphology and  

cell viability over two weeks (clustering, bile canaliculi formation, viability), serum protein 

production rate (albumin), different metabolisms analysis (urea, CYP1A2 activity), and one 

clinically important toxicity assay (acetaminophen). The current study clearly demonstrates 

improved functioning of HepG2 cells in the microfluidic-based chip in comparison to static 2D 

and 3D cultures pertinent to normal hepatocyte metabolism and drug response. 

 

2.2. Materials and methods 

2.2.1. Cell culture conditions 

   The HepG2 (human hepatocellular carcinoma) cells were purchased from the German 

collection of microorganisms and cell cultures (DSMZ, Braunschweig, Germany). The cells 

were cultivated in William’s E medium (Pan-Biotech GmbH, Aidenbach, Germany) 

supplemented with 10% FBS, penicillin (100 U/ml), and streptomycin (100 µg/ml) (Sigma-

Aldrich, Munich, Germany) in a 75 cm2 flask. They were incubated and maintained at 37°C 

and 5% CO2 in a cell incubator (Binder, Tuttlingen, Germany).  

    The number of cells was counted by using a hemocytometer and the cell viability was 

assessed by trypan blue exclusion. For monolayer culture (2D), the cells were seeded in 

conventional 96-well plates (2x104 cells per well). For static 3D culture, cells were mixed with 

MatrigelTM in the same concentration as for chip cultivation and were layered in 96-well plates 

as well (Figure 2.1).  

   The perfused 3D cultivation of HepG2 cells was carried out in the microfluidic platform 

purchased from MIMETAS company (Leiden, The Netherlands). The microfluidic chip is 

placed on the ice bucket before the cells are transferred into the device to protect 

solidfication of matrigel. 50 µl of cold phosphate buffered saline (PBS) were added to the 

observation well  to prevent evaporation. The number of HepG2 cells was counted and the 

appropriate amount was suspended with MatrigelTM (8.2mg/ml) at 4°C on ice to 

concentrations of 1x107, 5x107, and 1x108 cells/ml. This mixture was injected and sucked by 

pipetting into the inner channel along the phaseguide by capillary forces. In the case of the 2-

lanes device, the cell mixture at concentrations higher than 1x107 was frequently not sucked 
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inside the lane by capillary force. Due to the diffitulies of injecting the cell mixture, we finally 

chose a 3-lanes device. The cells were incubated at 37°C for 15 minutes to be gelled and 25 

µl of the medium was added to the medium outlet. Further, second gelation incubation time 

to allow entire gelling was chosen for 5-6 hours (Figure 6.2 in appendix). The perfusion was 

started by adding 100 µl of medium to the inlet well. The medium was renewed every day. 

For further analysis, the concentration of 8x107cells/ml was used. For experiment 

optimization, we tested also another perfusion setup: we cultivated HepG2 cells in the middle 

lane and generated the flow on the side lanes.  

 

 Figure 2.1 Different in vitro HepG2 cultivation models. 3D cultivation in the microfluidic 

device exhibiting phaseguides (in the presence of flow) is compared with static 2D and 3D 

culture (in the absence of flow) with regard to various cellular behaviors.       

 

2.2.2. Cell morphology visualization 

    The cell clusters were monitored at day 3, 7, and 14 by using a light microscope. Area and 

length of cell clusters were measured using the Image J program (http://imagej.nih.gov/ij). 

Cellular plasma membrane and nucleic acids were stained with CellMask plasma membrane 

stain (5µg/ml, C10046, Invitrogen, Paisley, UK) and DAPI (200ng/ml, D9542, Sigma, Munich, 

Germany) in PBS, respectively. The cells were incubated with CellMask and DAPI working 

solution for 30 minutes at room temperature. Fluorescence was monitored using a Zeiss 

fluorescence microscope (excitation/emission: 365 nm / DAPI filter set for DAPI, 625 nm / 

Alexa fluor 633 filter set for cellular plasma membrane stain). 

 

 



 Chapter 2  

31 
 

2.2.3. Bile canaliculi visualization 

   Bile canaliculi were visualized by using 5-carboxyfluorescein diacetate (5-CFDA, Sigma-

Aldrich, Munich). This non-fluorescent dye is converted by intracellular esterases to the 

fluorescent carboxyfluorescein (CF) which in turn is excreted via the multidrug resistance 

associated protein (MRP) transporter expressed in the bile canaliculin [112]. The culture 

medium was exchanged, supplemented with 5 µM 5-CFDA, and the cells were incubated for 

30 minutes in the incubator. The medium with 5-CFDA was aspirated; the cells were washed 

3 times and incubated with a dye free medium for 50 minutes. The 5-CFDA/CF efflux was 

observed by using a Zeiss fluorescence microscope with a 470 nm excitation and FITC filter 

set. 

2.2.4. LDH activity measurement 

   The lactate dehydrogenase (LDH) activity in the medium was measured using the 

colorimetric Lactate Dehydrogenase Assay Kit (ab102526, Abcam, Cambridge, UK) 

according to the manufacturer’s instructions. By using a microplate reader, the optical density 

was measured at 450 nm immediately after incubation at 37°C for 30 minutes.  

2.2.5. Live/Dead staining/visualization 

   The cellular live/dead assay was performed by using Calcein Blue AM (eBioscience, 

Frankfurt, Germany) and Ethidium Homodimer III (EthD-III, Biotium, Hayward, USA) staining 

to determine cell viability. Briefly, the cells were washed three times with PBS buffer after 

incubated for 30 minutes with 4 µM calcein AM Blue and 1 µM EthD-III in PBS. Fluorescence 

images were taken by using a Zeiss fluorescence microscope (excitation/emission: 365 nm / 

DAPI filter set for Calcein Blue AM, 530 nm / PI filter set for Ethidium Homodimer III) and 

analyzed using the ImageJ software. 

2.2.6. Albumin measurement 

    The cell culture medium from HepG2 cells was collected at indicated time points and 

stored at -80°C immediately. Albumin secreted by cells to the medium was determined using 

a human albumin ELISA Kit (E88-129, Bethyl Laboratories, Montgomery, Texas, USA). All 

procedures were followed by the manufacturer’s instructions. Optical density at 450 nm was 

measured with a microplate reader. Experiments were performed in triplicate. 
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2.2.7. Urea measurement 

   Culture medium was collected during the cultivation period and stored at  

-80°C. The amount of urea in the cell culture medium was determined by using a colorimetric 

urea assay kit (ab83362, Abcam, Cambridge, UK). The procedure was ensued according to 

the manufacturer’s instructions. The optical density at 570 nm was measured with a 

microplate reader. 

2.2.8. Cytochrome P450 1A induction assay 

   The CYP1A assay was performed with resorufin ethyl ether (Sigma-Aldrich, Munich, 

Germany) as substrate which is converted by the cytochrome P450 monooxygenases 

CYP1A1 and CYP1A2 to a fluorescent resorufin product [118]. The HepG2 cells were 

cultivated with 5 µM 3-methylcholatren (3-MC, Sigma-Aldrich, Munich, Germany) dissolved in 

medium for 72 hours to induce CYP1A activity. Control cultures were treated with a vehicle 

solution (DMSO). After the cultivation start, the cells were incubated with 10 µM resorufin 

ethyl ether in a serum-free medium for 3 hours. Fluorescence was measured at 525/580-640 

nm with a fluorescence microplate reader.  

2.2.9. Acetaminophen Treatment 

    For the evaluation of liver toxicity, the cells were treated with acetaminophen (APAP; 

Sigma-Albrich, Munich, Germany). An APAP stock solution was prepared with DMSO and 

further diluted in growth medium to concentrations of 0.5-25 mM. As a control, DMSO was 

diluted in similar concentrations without APAP. 2D and perfused 3D HepG2 cells were 

cultured for 24 hours and 10 days, respectively. Cells were treated with different 

concentrations of APAP for 72 hours. Live and dead staining was performed as mentioned 

above. The measurement was performed in triplicate and a dose response analysis was 

done by using Origin Lab. The LC 50 value was calculated based on the fitting curve 

equation in logarithmic scaling. 

2.2.10. Statistical analysis 

    Statistical analysis was performed with SPSS by using One Way ANOVA and with 

repeated measures for normally distributed data. P < 0.05 was considered significant. For the 

CYP1A induction assay, independent Student’s T-test was used. For reasons of clarity and 

comprehensibility, all data are expressed as means ± standard deviation (SD). 
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2.3 Results 

2.3.1 Cell and culture morphology under different conditions 

    First of all, for optimization of chip-based culture, we tested the cultivation in the middle 

lane and perfusion flow generated at both side lanes. However, the spheroids of HepG2 cells 

did not retain their clustering morphology. After one week, most of the cells started collapsing 

their aggregation and showed monolayer-like morphology (Figure 2.2). After 2 weeks of 

cultivation, the cells did not maintain their aggregation, thereby cell clusters could not be 

formed at all, while the cells cultured in the side lanes formed cell clusters and well-

maintained for 2 weeks. Therefore, we proceeded to cultivate the cells in both side lanes to 

generate stable cell clusters in the extracellular matrix with less contact of flow for further 

studies.  

 

 

Figure 2.2 The morphology of HepG2 cells cultured in the middle lane (A) and in the side 

lanes (B) of the device after 7 and 14 days of the cultivation. Scale bars indicate 100µm.   

    After testing HepG2 cultivation in the different location in the chip, the cellular morphology 

was analyzed at day 7 after the cultivation in the different culture models (Figure 2.3). In the 

2D culture, HepG2 cells displayed an epithelial morphology with a spread membrane. In 

contrast to this, the cells in the static and the perfused 3D culture lay tightly together and 

their membranes did not spread, whereas the shape was more globular (Figure 2.3A).  

    The formation and increase of HepG2 cell clusters in the chip cultivation at different cell 

seeding concentrations is demonstrated in Figure 2.3B. The cells aggregated and arranged 

themselves to clusters within three days and spheroids maintained more than two weeks. 

However, when seeding concentration was 1x107 cells/ml, matrix and cell clusters were 

flushed out by the perfusion flow after one week of cultivation in the biochip (Figure 6.3 in 

appendix). The cluster size differed between different cell seeding concentrations with a 

A B 
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maximum size of 70-80 µm for the culture with 1x107 cells/ml and up to 200 µm for 1x108 

cells/ml at day 7. The formed cell clusters were stable for more than two weeks of cultivation, 

when the cells cultured in the both side lanes. To analyze the growth of each cluster, their 

area was measured at day 3, 7, and 14 for each concentration (Figure 2.3C). The cluster 

area of the 5x107 cells/ml culture was slightly higher in comparison to the 1x107 cells/ml 

culture (3000 µm2 vs. 2000 µm2). In contrast, the cluster area of the 1x108 cells/ml cultured 

cells was considerably higher with approximately 6000 µm2. There were no significant 

changes between day 3 and day 14 for the 1x107 cells/ml and 5x107 cells/ml cultured cells. 

However, for the highest seeding concentration we detected an increase of the cluster area 

between day 3 and 7. For reasons of augmented adherence of cells in the inlet channel 

when using the highest concentration, an intermediate concentration of 8x107 cells/ml was 

chosen for further experiments.  

 

 

Figure 2.3 Comparison of HepG2 culture morphology in 2D and chip culture after 7 days of 

cultivation and formation of cell clusters in the perfused microfluidic device. (A) Membrane 

(red) and nuclei (blue) staining of HepG2 cells in different culturing systems visualized by 

fluorescence microscopy. Scale bar indicates 10μm. (B) Representative images of HepG2 

clustering in low (1x107 cells/ml), middle (5x107 cells/ml), and high (1x108 cells/ml) 

concentrated cultures examined by light microscopy. Scale bar indicates 200μm. (C) 

Aggregation area of variably concentrated HepG2 cultures over time. Data are shown as 

mean ± SD (n = 3). Significant differences (p < 0.05) are indicated as follows: * every 

concentration vs. the other two at the respective day, # within high-concentrated culture vs. 

day 3 and day 14. 

 

A B C 
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2.3.2 Viability of HepG2 cells under different culturing conditions 

    The LDH concentration in the medium of 2D cultured HepG2 cells started to increase after 

9 days and reached 5-times higher levels after two weeks in comparison to the respective 

baseline (Figure 2.4). By contrast, the LDH concentration in the medium of static and 

perfused 3D cultured cells remained low within 15 days with a slight increase after day 6. 

There was no significant difference between static 3D and perfused 3D cultures during the 

two weeks of cultivation. 

 

Figure 2.4 LDH release of HepG2 cells within two weeks in the different culture models. Data 

are shown as mean ± SD (n = 3). Significant differences (p < 0.05) are indicated as follows: * 

2D vs. chip culture at the respective day, # within 2D culture vs. day 1, 2, 3, 6, and 9, $ within 

chip culture vs. day 1 and 3, & within static 3D culture vs. day 1, 2, 3, and 6. 

 

    In order to determine dead cells in the perfused 3D culturing system, HepG2 cells were 

cultivated for a period of three weeks and analyzed on day 7, 14, 18, and 21 (Figure 2.5A). 

Within the first two weeks, almost no EthD-III staining (red color) was visible. The cells in 

proximity to the perfused flow started to get damaged after two weeks of cultivation while the 

cells more distant to the flow survived a longer culturing time. We found only few dead cells 

inside the spheroids even after two weeks of cultivation (Figure 2.5B). The viability rate 

assessed by measuring the area of live and dead cells revealed that 80 % of the cells were 

alive up to three weeks in perfused 3D cultivation. 
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Figure 2.5 Cell viability of HepG2 cells cultured in the microfluidic device. (A) Representative 

images of live/dead (blue/red) stained cells after three weeks of cultivation. Scale bar 

indicates 200 µm. (B) Representative image of a spheroid with live/dead staining after two 

weeks of cultivation. Scale bar indicates 50 µm. (C) Determination of viability from three 

independent experiments. Data are shown as mean ± SD (n = 3). Significant differences (p < 

0.05) are indicated as follows: # vs. all other days.  
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2.3.3 Formation of bile canaliculi in static 2D, 3D, and chip culture 

   Figure 2.6 represented the formation of bile canaliculi in the different cultivation models. 

HepG2 cells in static 2D and 3D cultures showed diffuse weak fluorescence signal indicating 

intracellular location of the fluorescence dye carboxyfluorescein. Small spotted strong 

fluorescence signal was only seen infrequently in these culturing models. However, the 3D 

culture in the chip displayed with strong fluorescence within cell clusters indicating the 

frequent formation of bile canaliculi. This remained stable for more than two weeks. 

 

 

Figure 2.6 Representative images of bile canaliculi formation of HepG2 cells under different 

culturing conditions visualized by fluorescence microscopy. (A) Static 2D and 3D cultures on 

day 5. (B) Perfused 3D culture on day 5 and 14. Scale bar indicates 100 µm. 
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2.3.4 Metabolic activity of HepG2 cells under different culturing conditions 

    The amount of albumin production as a parameter of metabolic activity under different 

culturing conditions is shown in figure 2.7. For the entire cultivation period, the albumin 

concentration in the medium of HepG2 cells in the chip was consistently higher than in the 

medium of the static 2D and 3D cultures. Beginning with a concentration twice as much as in 

the static cultures (day 3), the albumin production raised strongly after 10 days of cultivation 

in the chip, reaching a maximum of 5-times higher levels on day 15 and a tendency to 

decrease on day 18. In comparison, the levels remained stable in the 2D culture over the 

whole observation period. In the static 3D culture, we measured a very low increase of 

albumin at day 12 and this elevated level remained until day 18. Beginning with a 

concentration twice as much as in the static cultures (day 3), the albumin production raised 

strongly after 10 days of cultivation in the chip, reaching a maximum of 5-times higher levels 

on day 15 and a tendency to decrease on day 18. In comparison, the levels remained stable 

in the 2D culture over the whole observation period. In the static 3D culture, we measured a 

very low increase of albumin at day 12 and this elevated level remained until day 18. 

 

Figure 2.7 Albumin production within 18 days under different culturing conditions. Data are 

shown as mean ± SD (n = 3). Significant differences (p < 0.05) are indicated as follows: * 

perfused 3D vs. static 2D and 3D cultures, & static 3D vs. 2D culture at the respective day, # 

within chip culture vs. day 3, 6, 9. 
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2.3.5 Detoxification capacity of HepG2 cells under different culturing conditions 

   The urea concentration in the medium of 2D and static 3D cultured HepG2 cells was 

consistently low over two weeks with approx. 6 nM and 20 nM per seeded cell, respectively. 

In contrast to this, HepG2 cells in the perfused chip produced a twelve-times (to 2D culture) 

and a three-times (to static 3D culture) higher amount of urea within 2-14 days of cultivation. 

A slight decrease of urea production was seen in the chip culture system being significant at 

day 14 (Figure 2.8A).  

    The CYP1A induction assay displayed doubled enzyme activity in the static 2D and 3D 

cultures in comparison to the respective uninduced control. In contrast, resorufin 

fluorescence intensity in the chip culture model increased 9-times, indicating higher CYP1A 

activity in comparison to the other culture models (Figure 2.8B).  

 

 

Figure 2.8 Metabolism of HepG2 cells under different culturing conditions. (A) Urea 

production within 14 days under different culturing conditions. Data are shown as mean ± SD 

(n = 3). Significant differences (p < 0.05) are indicated as follows: * chip culture vs. static 2D 

and 3D cultures, & static 2D vs. 3D cultures at the respective day, $ within chip culture vs. day 

2 and 5. (B) CYP1A induction assay treated 3-MC for 72 h under different culturing 

conditions. Fluorescence intensity was normalized to the uninduced control within each 

culturing model. Data are shown as mean ± SD (n = 3). Significant differences (p < 0.05) are 

indicated as follows: * vs. static 2D and 3D cultures. 
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2.3.6 Drug-induced HepG2 damage under different culturing conditions 

    To evaluate the applicability of the microfluidic-based chip culture system for drug-induced 

cell damage assays, HepG2 cells were exposed to acetaminophen (APAP). Representative 

pictures and a dose-response curve are presented in Figure 2.9. LC50 of 2D, static 3D, and 

chip cultures at day 10 were determined at 15.8 mM, 11.8 mM, and 7.1 mM, respectively. At 

day 5, LC50 of the chip culture was determined at 11 mM, and the cytotoxic effect was not 

homogenous (Figure 6.4 in appendix). Significantly reduced viability was observed at 5 mM 

for all culture systems and the treatment with 25 mM reduced the viability to 10% (chip 

culture), 20% (static 3D culture), and 30% (2D culture).  

 

Figure 2.9 Acetaminophen response of HepG2 cells under different culturing conditions. (A) 

Representative images of HepG2 cells cultured 10 days in the perfused chip and exposed to 

different concentrations of acetaminophen. (B) Dose-response curve of HepG2 cells exposed 

to acetaminophen under different culturing conditions. Data are shown as mean ± SD (n = 3). 

Significant differences (p < 0.05) are indicated as follows: * 2D vs. chip culture, $ static 3D vs. 

chip culture, & 2D vs. static 3D culture at the respective concentration, # within 2D, static 3D, 

and chip cultures vs. their respective baseline (0.5 mM). 
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2.4 Discussion 

   The major challenge for the in vitro cultivation of hepatocytes is the maintenance of their 

typical morphological characteristics and cellular functions. The embedding of hepatocytes in 

extracellular matrix (ECM) including MatrigelTM has been demonstrated to prevent cellular 

dedifferentiation and to help maintain hepatocyte’s characteristics [119]. Furthermore, 

different microfluidic systems have been developed in the past in which constant growth 

conditions were achieved by a perfusion flow of cell culture medium providing permanent 

sustenance with nutrients and oxygen as well as removal of waste metabolites [120, 121]. 

However, to our knowledge, there is still no system described where hepatocytes are 

cultivated with indirect flow without any physical barrier which would reflect the in vivo 

situation even better. In order to establish a useful cultivation system for the analysis of 

hepatocellular functions we tested the growth, differentiation, and metabolical behavior of 

HepG2 cells embedded in MatrigelTM in the OrganoPlateTM from MIMETAS company that 

combines these unique characteristics.  

    In our study, the MatrigelTM-embedded HepG2 cells aggregated to cell clusters (spheroids) 

early after plating while the cells in 2D culture grew in a uniform monolayer with an epithelial 

morphology. These spheroid-like structures in the microfluidic based 3D cultures did not 

exceed a diameter of 150 µm which should allow sufficient sustenance of the inner cells 

[122]. The cluster area of the highest concentrated cells increased slightly within the first 

week of cultivation but the following week did not yield further augmentation which is rather 

likely due to reduced proliferation caused by contact inhibition [123]. A similar behavior was 

published previously about HepG2 cells grown as an organotypic culture in spheroid-like 

structures [124]. Nevertheless, the HepG2-cluster size in our study was not as uniform as the 

spheroid-size in the study from those authors.   

    The culture system seemed to preserve cellular viability and integrity over at least 15 days 

which we demonstrated with multiple performance criteria: i) the constant low LDH in the 

medium of chip-cultured cells in comparison to a strong increase in the medium of the 

monolayer cells clearly demonstrates integrity of the chip cells; ii) live/dead staining revealed 

first dying cells after 14 days of chip culturing and only few dying cells within spheroids; iii) 

the strong increase of albumin production until day 15 is not seen in the culture of the 

monolayer cells and less pronounced in the static 3D culture.  

    Albumin production has been shown to be influenced by the oxygen concentration and by 

flow-induced shear stress [125]. Considering the increase of albumin production within day 

12 to 15 as well as the good viability of the cells within at least two weeks of cultivation, we 
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suggest that the cells do not suffer from oxygen or nutrient deprivation. In the literature, 

albumin secretion rates for hepatocytes cultivated in biochips range from 3.6 pg/cell/day 

(HepG2 cells) over 2.6-19 pg/cell/day (primary human hepatocytes) to 10-60 pg/cell/day 

(primary rat hepatocytes), and Török et al. estimated the in vivo secretion rate to 17,8 

pg/cell/day [113, 116, 126]. Thus, the levels of albumin secretred from cells cultured in the 

OrganoPlateTM appear to be in a physiological range and obviously higher than the secretion 

rates determined for HepG2 cells by Baudoin et al [113].  

    Some studies have been conducted to find out the effect of shear stress to hepatocyte 

cultures, all of them demonstrating a decrease of normal hepatocytes’ metabolism with 

increasing flow rates. For example, Tilles et al. presented better metabolism of hepatocytes 

cultivated in a microchannel bioreactor with a flow pressure of 0.01-0.33 dyn/cm2 in 

comparison to 5-21 dyn/cm2 [115] Dash et al. estimated physiological flow pressure to 0.6 

dyn/cm2, and applying this in a collagen sandwich culture improved the functions of their rat 

hepatocytes over two weeks [127]. Very low flow pressures were applied by Baudoin et al. 

with a range of 0.02-0.06 dyn/cm2 which resulted in improved metabolism of their 

hepatocytes in comparison to static cultures [113]. In our experiments, the shear stress was 

determined within the channel to 0.3 dyn/cm2 which is caused by the hydrodynamic 

resistance of the small connecting channels (unpublished information from Trietsch, S.J.). 

Therefore, it is not likely that shear stress poses a problem in this microfluidic chip system 

and still the flow should be adequate to ensure sufficient nutrient supply and removal of 

waste metabolites. Nevertheless, in our study, live/dead staining revealed a premature dying 

of the cells in the proximity of the perfusion channel, clearly indicating a negative influence of 

the perfusion flow on the HepG2 cells. The more distant cells seemed to be protected 

against this, probably due to the MatrigelTM-embedding.  

    The strong positive staining of excreted 5-CF even for small clusters suggests 

differentiation of the chip-cultured hepatocytes in contrast to the static cultures. This is also 

supported by the higher capacity of nitrogen metabolism of the chip-cultured cells evidenced 

by considerably augmented urea concentration in the medium. Similar levels of urea 

secretion were also described by Khetani et al. for primary rat hepatocytes, but only when 

the cells were cultured together with fibroblasts [128]. Hegde et al. presented much lower 

levels of 10-60 pg/cell/day despite cocultivation conditions [116]. The in vivo urea secretion 

rate was stated by Bhatia et al. to 120-190 pg/cell/day [129]. Therefore, the culturing of 

HepG2 in this OrganoPlateTM seems to increase urea secretion to levels that in vitro were 

reached before only by cocultivation systems. Culturing the HepG2 cells in the microfluidic 

chip increased also their capacity of phase I metabolism (obvious by the increased activity of 
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CYP1A) in comparison to the conventional monolayer culture and static 3D system. 

Comparable results were recently described by Hegde et al. with six-times higher CYP1A 

activity in a perfused biochip system in comparison to a static culture [116].   

    Altogether, the results indicate optimal growth and differentiation of the HepG2 cells in the 

OrganoPlateTM between day 6 and 14, demonstrated by the slight increase of the cluster 

area until day 7, by the increase of bile canaliculi staining until day 14, by the decreased 

viability after day 18, by the increase of albumin production after day 12, and by the decrease 

of urea production at day 14.  

    As the toxicity of acetaminophen is one of the most frequent causes of drug-induced liver 

injuries world-wide [130]. As proof of concept, we used this cultivation model to evaluate the 

drug induced hepatoxicity. The chip-cultured cells presented a higher sensitivity for the 

treatment of acetaminophen than the HepG2 cells grown in monolayer and static 3D culture. 

This was obvious after five days of cultivation but more pronounced after ten days in chip 

cultivation. Therefore, we suggested that the time point for toxicity studies should be between  

after 8 and 12 days of cultivation.  This higher sensitivity in the chip cultivation is likely to be 

caused by the increased expression level of CYP1A and other cytochrome P450 

monooxygenases that are necessary for the bioactivation of APAP [131]. In our study, 

significantly reduced viability was observed at 5 mM for all culture systems. Prot et al 

determined first deteriorations of cell proliferation at 1 mM APAP within their respective 

microfluidic biochip cultivation system [105]. In another microfluidic biochip used by Ma et al., 

the viability was reduced to 30% with an APAP concentration of 10 mM which is similar to the 

results of our study [121]. Xia et al. observed that the cells grown in a laminar flow perfusion 

bioreactor were more sensitive for APAP-induced hepatotoxicity than the cells grown in a 

static 2D culture, and 60% of cell death was shown after 24 hours of treatment with 25mM of 

APAP [132]. Even though the APAP toxicity tested in our biochip cultivation model showed a 

similar result in comparison with other microfluidic hepatic culture models, nevertheless it is 

not consistent when compared to in vivo data exhibiting a toxic plasma level between 1-2mM. 

     In summary, this is the first report of HepG2 cultivation with indirect flow but without 

physical barrier. Our finding suggest that HepG2 cells cultured in the OrganoPlateTM from 

MIMETAS mimicking an in vivo hepatocyte environment showed improved and stable 

hepatic functions for at least two weeks in comparison to 2D and static 3D cultures. The 

performance criteria were largely comparable to in vivo data and in some parts superior to 

the reports from other perfused culture systems. However, there are still some 

disadvantages (difficulties of retrieving the cells from the device) and future challenges (co-

cultivation with other cell types) which need to be addressed.   
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2.5 Conclusion 

    The results of this study clearly demonstrate the superiority of culturing HepG2 cells in a 

perfused 3D culture system using commercial microfluidic device in comparison to a 

conventional static 2D and 3D culture. Moreover, the suitability of the applied microfluidic 

chip for the cultivation of HepG2 cells is evidenced with a high survival rate, improved 

hepatic functions. This system, therefore, is ready to be used as a promising platform for 

further hepatic physiological and toxicological studies.  
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Chapter 3. New HepG2-on-a-chip platform for 

study of melatonin effects on various hepatic 

inflammatory responses stimulated by IL-6  

 

 

 

 

 

 

3.1 Introduction 

3.1.1 Motivation and aims of this chapter 

    As discussed in Chapter 1, hepatocytes exhibit diverse responses upon stimulation with 

interleukin IL-6, mainly in the context of inflammation and energy metabolism. Although 

hepatocytes are involved in inflammation process, previously developed in vitro liver models 

focused solely on drug-induced hepatotoxicity studies. Up to date, there is a lack of the 

investigation on the alterations of hepatic metabolism caused by inflammation using new in 

vitro systems. Moreover, melatonin has been shown to exert pleiotropic protective actions, 

such as anti-inflammation and anti-oxidative stress on many cell- and organ-types.     

   Therefore, after the characterization of HepG2 cells-on-a-chip in previous chapter (Chapter 

2), we applied this new in vitro platform to evaluate its applicability to study for hepatic 

inflammatory reactions stimulated by IL-6 and melatonin, as well as to the question of how 

melatonin interacts with hepatic inflammation status. 

    The key roles of the liver, including maintaining homeostasis and metabolic regulation, will 

be evaluated in the context of acute phase response, detoxification, glycogen, and energy 

metabolism.  
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3.1.2 Introduction 

    Liver diseases are generally associated with increased inflammation accompanied by the 

rise of various pro- and anti-inflammatory cytokines. Hepatocytes react on inflammatory 

stimuli with diverse stress response mechanisms. One mechanism aiming to directly protect 

the respective cell from protein damage and dysfunction of cellular organelles can be notes 

as endoplasmic reticulum (ER) stress response including unfolded protein response (UPR), 

another mechanism acting globally to protect all affected cells and organs is innate immune 

response.  

     Interleukin 6 (IL-6) is a cytokine and secreted by activated immune cells, leading to 

elevated plasma levels found in multiple diseases, and also secreted by liver macrophages, 

thereby stimulating hepatocytes locally [133]. This cytokine stands out for very pleiotropic 

actions which are regulated by the composition of the complex that IL-6 forms with its 

receptors IL-6R and gp130 either in their soluble or in their membrane-bound forms [134]. IL-

6 is involved in inflammation and acts as a major regulator for the APR, whereas other 

proinflammatory cytokines such as  IL-1 and TNF-α could play a minor role due to their 

limited stimulation of major APR proteins [37, 135]. Some studies also indicate a link 

between IL-6 signaling, the UPR, and the induction of APR genes [67, 136, 137]. Other 

effects of IL-6 on hepatocytes are related to altered expression levels of cytochrome P450 

monooxygenases and drug transporters, thereby modifying hepatic detoxification 

mechanisms [138, 139]. IL-6 also affects glucose metabolism in the liver, accompanying 

glycogen depletion [140]. A recent study discovered the translocation of signal transducer 

and activator of transcription 3 (STAT3) to the mitochondria of immune cells, thereby 

modifying the mitochondrial membrane potential and highlighting a new pathway of IL-6 

signaling [141]. 

     The hormone melatonin is particularly known for its main function in regulating the 

circadian clock.  Moreover, melatonin has been shown to possess strong anti-inflammation 

and anti-oxidative stress organ-protective properties [57, 62, 142]. In previous studies, our 

collaboration group found evidence for the modification of cellular stress mechanisms by 

melatonin in the context of inflammation. For example, increased levels of gene expression 

involved in ER stress, such as protein kinase RNA-like endoplasmic reticulum kinase (PERK) 

and DNA damage-inducible transcript 3 (DDIT3) was overserved in melatonin-treated septic 

animals [66]. Rats with hemorrhagic shock revealed that melatonin inhibited the shock-

induced upregulation of UPR modifying proteins [143]. These studies also revealed that 

melatonin modifies the expression of the transcription factor CREBH that seems to be an 

important player for mediating the hepatic signaling of IL-6 via the ER stress response to 
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activate the APR [144]. Furthermore, regulatory effects on glucose metabolism by CREBH 

were described [145]. Therefore, it is very interesting to check whether melatonin involves 

the acute phase response regulation via CREBH. Although the anti-inflammatory function of 

melatonin is well known, to our knowledge there is no study relating APR and melatonin.   

     Mitochondria provide energy to the cell but are also a main organelle for free radical 

production during ATP production, resulting in oxidative stress. In addition, UPR induced 

overload of reactive oxygen species (ROS), calcium production in the ER, accompanying 

altered mitochondrial membrane potential [146]. Interestingly, melatonin is accumulated in 

mitochondria and exerts protective effects via scavenging reactive oxygen species (ROS) 

and inhibiting the mitochondrial permeability transition pore (MPTP) [147]. Therefore, 

mitochondria are considered as main target organelles for melatonin.  

    Still, most inflammation studies rely on animal experiments, even though the poor 

correlation with human conditions often misleads the physiological and genetic results on 

humans [102, 148].  Since a decade, various new in vitro liver platforms have been 

developed to reduce this gap. However, most applications focused on drug screening and 

drug induced hepatotoxicity studies. Nearby this detoxification function, the human liver is 

also involved in inflammation processes. Therefore, the need of developing precise and 

predictable in vitro human liver models to study inflammation is urgent. We developed a new 

cultivation system as a liver-on-a-chip platform which preserves a considerable range of 

human hepatic functions [149]. 

    Therefore, it is very interesting to evaluate how this new system works for the study of liver 

cells in response to inflammation stimulated by IL-6 and the interplay of melatonin. The aim 

of this study is to evaluate the various inflammatory hepatocellular responses by IL-

6/melatonin, including detoxification, APR, glycogen storage, and mitochondria functions in 

HepG2-on-a-chip.  
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3.2 Materials and methods 

3.2.1 Cell culture conditions  

     The HepG2 (human hepatocellular carcinoma) cells were purchased from the German 

collection of microorganisms and cell cultures (DSMZ, Braunschweig, Germany). The cells 

were cultivated and maintained as previously described in chapter 2. The number of cells 

was counted by using a hemocytometer and the cell viability was assessed by trypan blue 

exclusion. In this study, we decreased the concentration of seeded cells to 5x107cells/ml in 

matrigel and mixture of cells and matrigel were transferred to each chamber of the 

OrganoPlateTM (Mimetas company, The Netherlands) as previously described in chapter 2. 

The medium was renewed every two days. The average size of cell aggregates was shown 

100±50µm. 

3.2.2 IL-6 and melatonin treatment conditions 

    An IL-6 (Humanzyme, Chicago, USA) stock solution (10 µg/ml) was prepared with 0.1 % 

BSA (Sigma-Aldrich, Munich, Germany). Melatonin (Sigma-Aldrich, Munich, Germany) was 

dissolved in DMSO (1M) to be used as a stock solution and stored at -20°C. Working 

solutions were prepared freshly with similar amounts of BSA and DMSO. At the 10th day of 

cultivation in the chip, cells were treated with IL-6 (100 ng/ml), physiological melatonin 

concentration (1 nM) [150] , IL-6 plus melatonin, or control (0.001 mg/ml BSA, 0.0000001 % 

of DMSO) solutions for 72 hours. The cytokine concentration was selected according to the 

preliminary result and literature reports [151]. From the preliminary experiments (Figure 3.1), 

100ng/ml of IL-6 was chosen, which showed a significant change compared to control group. 
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Figure 3.1 Fold change of mitochondrial superoxide production (A), albumin production (B), 

and CRP production (C) in HepG2 cells-on-a-chip stimulated by IL-6 (dose dependency).  

$ indicates a significant difference (p < 0.05) versus control group. Experiments were 

performed three times and data are shown as mean ± SD. 

 

3.2.3 Efflux transport assays 

    Efflux transport assay were performed by using fluorescent substrates. 5-CFDA (Sigma-

Aldrich, Germany) was used as a substrate for the multidrug resistance associated protein 

(MRP2). HepG2 cells in the chip were washed with uptake buffer [152] and then incubated 

for 30 minutes with 5 µM of 5-CFDA. Cells were then washed three times with PBS buffer 

and immediately monitored under a fluorescence microscope (FITC filter set). MK-571 

(Sigma-Aldrich, Germany) was used as an inhibitor for the efflux of MRP2. The cells were 

incubated with 50µM of MK-571 for overnight.  
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3.2.4 Expression of CYP1A (phase I metabolism cytochromes) 

    The CYP1A assay was performed with resorufin ethyl ether (Sigma-Aldrich, Munich, 

Germany) as a substrate which is converted by the cytochrome P450 monooxygenases 

CYP1A1 and CYP1A2 to a fluorescent resorufin product. After the treatment of IL-6 and 

melatonin for 72 hours, the cells were incubated with 10 µM of 7-ethoxyresorufin in a serum-

free medium for 4 hours. Fluorescence intensity was measured at 525/580–640 nm by using 

a fluorescence microplate reader.  

3.2.5 Immunofluorescence staining  

    The protein expression levels of MRP2, the pregnane X receptor (PXR), CREB3L3 for ER 

stress and hepcidin for positive APR were determined by immunostaining. Cells in the 

microfluidic device were fixed in 4 % paraformaldehyde for 30 minutes at room temperature 

and permeabilized with 0.2 % solution of Triton X-100 in PBS for 30 minutes. After blocking 

with 1 % BSA for 30 minutes, the cells were incubated with a primary antibody for hepcidin 

(1:100, ab30760, Abcam, Cambridge, UK), MRP2 (1:50, ab3373, Abcam), PXR (10µg/ml, 

ab118336, Abcam), and CREB3L3 (1 µg/ml, ab150865, Abcam, Cambridge, UK ) at 4 °C 

overnight. Subsequently, the cells were stained with the secondary antibody DyLight 488 

goat anti rabbit (1:100, ab96899, Abcam, Cambridge, UK) and with Hoechst 33345 (Sigma-

Aldrich, Germany) for nucleic acids staining for 1 hour at room temperature. After washing 

with PBS three times, images were acquired using a Zeiss fluorescent microscope (485 nm 

LED and FITC filter sets). All fluorescent images were quantified using Image J and 

normalized to total cell area.   

3.2.6 Albumin and CRP measurement 

    Commercially available ELISA kits were used to determine the amount of albumin (Human 

Albumin ELISA Kit, E88–129, Bethyl Laboratories, Montgomery, Texas, USA) and CRP 

(Human C-Reactive Protein ELISA Kit, KHA0031, Life technology, Frankfurt, Germany). The 

culture medium was collected at indicated time points and stored at -80 °C until usage. All 

procedures were followed by the manufacturer’s instructions. Optical density at 450 nm was 

measured with a microplate reader.  

3.2.7 Assays on mitochondrial integrity 

    The JC-1 mitochondrial membrane potential kit (No. 10009172, Cayman chemical, Tallinn, 

Estonia) was used according to the manufacturer’s instructions. The cells were washed with 

PBS and incubated for 20 minutes with the freshly prepared JC-1 working solution (3 µg/ml) 

in a CO2 incubator at 37°C. The cells were washed with PBS, the fluorescence of JC-1 
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aggregates (red) and monomers (green) were measured microscopically (Texas Red, 

530/590 nm; FITC, 485/520 nm), and the red to green ratio was calculated.  

    MitoSOXTM Red (M36008, Molecular probes, Karlsruhe, Germany) was used to determine 

the mitochondrial superoxide production. According to the manufacturer’s instructions, a 5 

mM stock solution in DMSO was further diluted to 2.5 µM in PBS as a working solution. Cells 

were incubated 10 minutes and gently washed three times with warm PBS buffer. After 

washing, cells were examined under a Zeiss fluorescent microscope (Texas Red filter set).  

All fluorescent images were quantified using Image J and normalized to the total cell area. 

3.2.8 Alteration in glucose metabolism (glycogen content) 

    For the determination of the amount of stored glycogen in HepG2 cells clusters the 

Periodic Acid-Schiff (PAS) Staining Kit (No. 395B, Sigma-Aldrich, Munich, Germany) was 

used. Staining was performed according to the manufacturer’s instructions. Briefly, cells were 

fixed with FAA (formalin-acetic-alcohol) for 3 minutes and washed three times with water, 

incubated with the PA solution for 5 minutes, washed four times, and placed in Schiff’s 

reagent for 15 minutes. After continuous washing with water, cells were stained with 

hematoxylin for 1 minute. Ten cell clusters from each group were selected and the PAS 

stained area was quantified using Image J.  

3.2.9 Statistics 

    All data are presented as fold change to the respective control group. Statistical analysis 

was performed using SPSS (IBM, Ehningen, Germany) by using One Way ANOVA for 

normally distributed data, otherwise Kruskal-Wallis One Way ANOVA on ranks, followed by 

Tuckey’s range test for pairwise multiple comparisons. P < 0.05 was considered significant. 

For reasons of clarity all data are expressed as means ± standard deviation (SD). 
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3.3 Results  

3.3.1 IL-6 reduced the detoxification capacity of HepG2 cells 

 

3.3.1.1 MRP2 expression level and efflux activity  

    To investigate whether the expression level and functional activity of MRP2 are maintained 

under IL-6 and/or melatonin treatment, immune staining and a specific substrate (5-CFDA) 

for MRP2 were used. Representative fluorescent images for the staining of MRP2 expression 

and the respective quantified results are shown in figures 3.2 A+B. IL-6 treatment markedly 

decreased MRP2 expression (40 % of the control). Interestingly, melatonin alone seemed to 

increase MRP2 expression (120% of the control), nevertheless, this was not significant. In 

the case of co-treatment of melatonin and IL-6, MRP2 expression levels were comparable to 

basal levels and significantly higher than in to the group that received IL-6 alone.      

    Furthermore, we determined the functional activity of MRP2 transporters by measuring the 

accumulation of 5-CF intracellularly and at the bile canaliculi after excretion through MRP2. 

Clusters of HepG2 cells in the control and melatonin groups showed accumulation of 

exported 5-CF green fluorescence in the middle of the cell spheroid and only little 

intracellular fluorescence, indicating high transporter activity. In contrast to this, in the 

presence of IL-6, only intracellular fluorescence was observed. The MRP2 inhibitor MK571 

served as control. Cells in presence of MK571 showed only diffused and blurred intracellular 

fluorescence (Figure 3.2C).   
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Figure 3.2 MRP2 expression levels and its transporter efflux assay on HepG2 cells after IL-6 

and/or melatonin treatment. (A+B) MRP2 expression presented by representative light and 

fluorescent images and quantified by the calculated fluorescent intensity per total cell area. 

Scale bar indicates 100 µm. Data are shown as mean ± SD (n = 4). Significant differences (p 

< 0.05) are indicated as follows: * vs. Control, Melatonin, IL-6+Melatonin. (C) Representative 

images of the MRP2 efflux activity assay of each group. The HepG2 spheroids were 

observed by phase contrast and fluorescence microscopy. The light images (first horizontal 

line in C), excreted 5-CF (middle horizontal line in C), nucleic acids staining (last horizontal 

line) are shown of each group. Scale bar indicates 50 µm.  
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3.3.1.2 Effect of IL-6 and melatonin on PXR expression 

    Furthermore, we investigated whether PXR expression levels are influenced by IL-6 and 

melatonin, since PXR is known to be a major regulator for MRP2 expression [153]. 

Representative fluorescent images for PXR protein expression and the respective quantified 

results are shown in figure 3.3. When treating with melatonin alone, PXR expression levels 

did not change (92 % of the control).  However, IL-6 administration induced significantly 

decreased PXR expression levels, while melatonin co-treatment reversed this IL-6-induced 

reduction (80 % of the control). 

 

Figure 3.3 PXR expression level on HepG2 cells after IL-6/and or melatonin treatment.   

(A) PXR expression presented by representative light and fluorescent images and (B) 

quantified by the calculated fluorescent intensity per total cell area.  Scale bar indicates 100 

µm. Data are shown as mean ± SD (n = 3). Significant differences (p < 0.05) are indicated as 

follows: * vs. Control, Melatonin, IL-6+Melatonin. 
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3.3.1.3 Effects of IL-6 and melatonin on the activity of CYP1A 

    The addition of IL-6 to HepG2 cell clusters in the OrganoplateTM for 72 hours resulted in a 

significant 10-15 % reduction of CYP1A activity in comparison to the control group, as 

indicated by 7-ethoxy resorufin-O-deethylase (EROD) activity (Fig. 3.4). On the other hand, 

when cells were treated simultaneously with melatonin, CYP1A activity levels were 

comparable to basal levels. A slight tendency of lowered activity was seen by melatonin 

administration alone (95 % of the control).  

 

Figure 3.4 CYP1A activity in HepG2 cells after IL-6 and/or melatonin treatment estimated by 

EROD activity. Data are shown as mean ± SD (n = 6). Significant differences (p < 0.05) are 

indicated as follows: $ vs. Control. 

 

3.3.2 Melatonin modified CREB3L3 expression levels and the IL-6-induced acute phase 

response 

    Albumin production was strongly reduced after administration of IL-6 (15 % of control, Fig. 

3.5A). Simultaneous melatonin administration tended to reduce the albumin repression, but 

with high intergroup variability resulting in a high standard deviation. Melatonin alone did not 

increase albumin production over basal levels of the control group.  

    C-reactive protein (CRP) production by HepG2 cells was increased 19-fold change in 

cultures treated with IL-6 (Fig. 3.5B). Melatonin did not alter CRP levels markedly, neither 

when given alone nor in combination with IL-6. Hepcidin expression levels were also 

elevated by IL-6 administration (2,2-fold over control, Fig. 3.5C+D). Opposed to CRP, 

melatonin prevented this upregulation entirely. 
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    In order to determine the impact of IL-6 and melatonin on CREBH, the ER-bound 

transcription factor representing the possible link between IL-6 signaling, the ER stress 

response and the APR, its expression levels were determined in the different treatment 

groups. CREBH protein expression was significantly reduced by IL-6 treatment to 40% in 

comparison to the control (Fig. 3.6). Melatonin alone did not alter the protein amount of this 

transcription factor, but clearly counteracted the lowered expression observed in the IL-6 

group. 

 

Figure 3.5 Acute phase response of HepG2 cells 72 hours after IL-6 and/or melatonin 

treatment.  (A+B) Albumin and CRP levels determined by ELISA and normalized to fold 

change to control. Data are shown as mean ± SD (n = 5). (C+D) Hepcidin expression 

presented by representative light microscopical and fluorescent images and quantified by the 

calculated fluorescent intensity per total cell area. Data are shown as mean ± SD (n = 4). 

Significant differences (p < 0.05) are indicated as follows: * vs. Control, Melatonin, IL-

6+Melatonin; $ vs. Control; & vs. Control, Melatonin. 
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Figure 3.6 CREBH expression in HepG2 cells after IL-6 and/or melatonin treatment. (A) 

Representative images via transmitted light microscopy and immune fluorescent imaging of 

HepG2 cells cultured in the OrganoPlateTM. Scale bar indicates 100 µm. (B) Quantification of 

the fluorescent intensity per total cell area. Data are shown as mean ± SD (n = 4). Significant 

differences (p < 0.05) are indicated as follows: * vs. Control, Melatonin, IL-6+Melatonin. 
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3.3.3 Alterations of mitochondrial functions in HepG2 cells 

    Mitochondrial functions were determined on the basis of alterations in the mitochondrial 

membrane potential (MMP) and the production of mitochondrial superoxide, by employing 

fluorescent probes. The MMP of HepG2 cells was constant within repeated control 

experiments. IL-6 treatment consistently reduced the red/green fluorescence ratio of JC-1 by 

half in comparison to the control (Fig. 3.7A). Simultaneous melatonin treatment mitigated the 

IL-6-induced reduction of the MMP, but did not elevate the MMP to basal levels (70 % of 

control). Melatonin alone did not considerably change the MMP although the values 

scattered considerably stronger than in the control group. 

    Mitochondrial superoxide production was also affected. IL-6 treatment increased the levels 

2,6-fold while cells co-treated with melatonin had almost basal superoxide levels (Fig. 3.7B). 

Moderately increased values (<1.7-fold) were obtained when cells were treated with 

melatonin alone, although this was not significant. 

 

 

Figure 3.7 Mitochondrial functions of HepG2 cells assessed by measuring the MMP and 

superoxide production after IL-6 and/or melatonin treatment.  (A) Fold change of red/green 

ratio of JC-1 for the assessment of the MMP. Data are shown as mean ± SD (n = 3). (B) 

Mitochondrial superoxide production assessed by MitoSOXTM staining. Data are shown as 

mean ± SD (n = 4). Significant differences (p < 0.05) are indicated as follows: * vs. Control, 

Melatonin, IL-6+Melatonin; $ vs. Control. 

 

 

 

 

* 
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3.3.4 Reduced glycogen storage of IL-6 treated HepG2 cells  

    In order to assess the impact of IL-6 and melatonin on glucose metabolism, glycogen 

storage was determined in the differently treated cultures. While most vehicle and melatonin 

treated cells exhibited strong glycogen staining visible by the dark purple color, only 65 % 

were darkly stained in the IL-6 treatment group while the majority of other cells remained 

clear (Fig. 3.8).  

 

Figure 3.8 Glycogen staining of HepG2 cells after IL-6 and/or melatonin treatment. (A) 

Representative images via transmitted light microscopy of HepG2 cells cultured in the 

OrganoPlateTM after PAS staining. Scale bar indicates 100 µm. (B) Quantification of the 

glycogen staining intensity per cluster. Data are shown as mean ± SD (n = 2). Significant 

differences (p < 0.05) are indicated as follows: * vs. Control, Melatonin, IL-6+Melatonin. 
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3.3.5 STAT3 phosphorylation of IL-6 and melatonin treated HepG2 cells 

    In order to assess whether IL-6 and melatonin modify STAT3 signal pathway in the HepG2 

cells platform, the expression of total STAT3 and serine phosphorylation of STAT3 were 

observed in different treated cultures (Figure 3.9). IL-6 activates STAT3 signal pathway in the 

new in vitro platform significantly compared to control and melatonin alone group by the 

confirmation of the expression of serine phosphorylation in nucleus. Melatonin co-treatment 

group does not show a significant change for phosphorylated STAT3 as well as total STAT3.  

 

Figure 3.9. (A) Representative fluorescent microscope images with immunostaining for total 

STAT3 and serine phosphorylation of STAT3 (STAT3-P) in HepG2 cells-on-a-chip after IL-6 

and or melatonin treatment. Light microscope images (first horizontal line) and fluorescent 

images for staining of phosphorylated serine727 residue of STAT3 (second horizontal line), 

staining of total STAT3 (third horizontal line), and staining of nucleic acids (last raw) (B) 

Quantification of fluorescent microscope images by the ratio of fluorescent intensity to total 

cell area. All values were normalized to fold change of control. Scale bar indicates 100µm. 

Experiments were performed three times and data are shown as mean ± SD. & indicates a 

significant difference (p < 0.05) versus control, melatonin group. 
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3.4 Discussion 

    The experiments of this study show alterations in a wide range of hepatic functions in 

response to inflammation stimulation by IL-6 and melatonin using a new HepG2 chip platform. 

While some of these changes stimulated by IL-6 might impair proper liver function 

(downregulation of detoxification and glycogen storage, increasing oxidative stress), others 

are likely to be aimed at protecting the organ and ameliorate the situation (increasing APR). 

Interestingly, simultaneous melatonin administration counteracted most of the detected 

alterations, although not always to basal levels, suggesting the assumption that melatonin 

might attenuate IL-6 induced cellular responses without completely inhibiting them. 

    Multidrug resistance-associated protein 2 (MRP2) is localized on the canalicular 

membrane of hepatocytes and transports a wide range of compounds as part of the hepatic 

detoxification process. MRP2 expression in HepG2 spheroids was shown in previous 

literature [123]. Reduced expression and activity of this transporter was observed, for 

example, during inflammation, drug-induced liver injury, or after ischemia with reperfusion, 

and this might further contribute to aggravated liver damage [154–156]. We determined 

significantly reduced MRP2 expression levels and efflux activity in response to IL-6 treatment. 

These results are mainly comparable with some previous studies on primary human 

hepatocytes cultivated in sandwich cultures upon IL-6 treatment, showing downregulated 

MRP2 mRNA and protein expression levels [151, 157]. The expression of MRP2 is mainly 

regulated by the pregnane X receptor (PXR) [153].  

    Down-regulated expression of PXR by IL-6 stimulation has already been demonstrated in 

human hepatocyte cultures [33, 34]. Interestingly, melatonin was shown to attenuate 

lipopolysaccharides(LPS)-induced down-regulated PXR expression in mouse liver in 

previous literature [160]. Our results also demonstrate reduced expression of MRP2 as well 

as PXR after IL-6-stimulation. Both effects were counteracted by melatonin administration 

suggesting the assumption that melatonin’s effects might act via this PXR-axis. In the context 

of relation of CYP1A activity and IL-6 stimulation, previous studies demonstrated that IL-6 

downregulated the expression and activity of CYP1A in human primary hepatocytes [161].  

Previous literature has shown reduced EROD activity in response to melatonin in extracted 

human liver microsomes [162]. The results of this study do not allow a clear interpretation of 

the actions of melatonin treatment on HepG2 cells alone or in combination with IL-6.  

     Acute phase response induced by IL-6 was already well documented in previous research. 

IL-6 is a main mediator causing alterations in the expression of positive and negative APR 

proteins such as the reduction of albumin, the strong increase of CRP, and the elevated 
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hepcidin levels [144, 163–165]. Melatonin counteracted the reduced albumin production 

along with the elevated hepcidin levels assuming that the administration of this hormone 

might ameliorate the detrimental consequences of an overwhelming APR. Previous studies 

demonstrated that melatonin treatment significantly increased serum albumin levels reduced 

by doxorubicin and gamma-irradiation in in vivo rat model [166, 167]. Those in vivo results 

are in accordance with our study as well. CREBH (Creb3l3), a mediator of the ER stress 

response, is known to increase the CRP transcription, and these signaling pathways seem to 

interact closely with IL-6-signaling in hepatocytes [136]. Surprisingly, in our study the protein 

expression of CREBH was lowered by IL-6. This might negate the hypothesis of a positive 

regulation of CRP transcription by this transcription factor. Nevertheless, we did not analyze 

the activation of CREBH which is known to occur upon ER stress by proteolytic cleavage, 

subsequent detachment from the ER membrane, and translocation of the N-terminal 

fragment to the nucleus [67]. CREBH cleavage was described earlier as arising in response 

to IL-6 probably synergistically with other elements of the UPR [136]. Shin et al. reported the 

activation of CREBH by IL-6 treatment of HepG2 cells [144]. Additionally, they found direct 

evidence for the transcriptional regulation of CRP and hepcidin by CREBH. This is especially 

interesting when considering that in our study the co-administration of melatonin prevented 

the IL-6-induced upregulation of hepcidin but did not alter the increased CRP levels. The 

main mediators of hepcidin transcriptional activation are STAT3 and SMAD via JAK and 

BMP signaling pathways, respectively [45, 168]. According to our knowledge, there is no 

evidence for transcriptional regulation of CRP by BMP/SMAD signaling. In addition, 

melatonin did not counteract the strong increase of IL-6-induced STAT3-phosphorylation (Fig 

3.9). Therefore, we were not yet able to clarify the different mechanisms that lead to hepcidin 

but not CRP regulation by melatonin. 

    In the context of glycogen storage, Ritchie et al. found direct evidence that the hepatic 

glycogen metabolism is altered by IL-6 stimulation, resulting in the release of glucose from 

glycogen in rat hepatocytes [169]. Others also observed reduced glycogen content upon IL-6 

treatment and they  correlated it with decreased activation of the Akt/GSK pathway in mouse 

and human hepatocytes [170, 171]. Forkhead box protein O1 (FOXO1) is a known 

transcription factor and regulates G6Pase, which mediates the last step of glycogenolysis 

(break down of glycogen) [172]. It is already well known that insulin-mediated activation of 

the Akt signaling pathway induces the degradation of FOXO1 by its phosphorylation, 

resulting in an increase of glycogen synthesis. Interestingly, melatonin was shown to 

increase the activity of Akt signaling in a rat model [173] and in HepG2 cells thereby 

increasing glycogen synthesis [150].  Surprisingly, Kodama et al proposed that PXR acts as 

a repressor of FOXO1 [174], thereby decreasing glycogenolysis. In addition, inhibition of the 
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PI3K/Akt pathway directly downregulated MRP2 mRNA [175]. Therefore, this might explain 

the proposed mechanism that melatonin alleviates reduced MRP2 and glycogen storage by 

the modulation of PXR expression and Akt signaling via FOXO1 and G6Pase. This 

assumption indicates that there might be a link between detoxification mechanism and 

glucose metabolism regulated by PXR. However, it would be desirable to analyze IL-6 

signaling, Akt signaling, FOXO1, and PXR within the interplay of IL-6 and melatonin in further 

studies.  

    The particular role of mitochondria in providing energy to the cell but also controlling 

intracellular signaling pathways such as apoptosis prevention or initiation and its close 

interaction with the ER, prompted us to evaluate mitochondrial functions in the context of IL-6 

and/or melatonin. The MMP of the HepG2 cells in our culturing systems was lowered by IL-6 

administration. Similar results from Berthiaume et al. on primary rat hepatocytes in a 

sandwich culture system were also reported [176]. The authors postulated based on their 

comprehensive studies that in IL-6 treated hepatocytes processes to stabilize the MMP are 

favored over processes generating ATP which might lead to limited energy availability for 

hepatocellular functions. They determined increased flux via the electron transport chain but 

reduced flux via the ATP synthase complex. Mitochondrial superoxide is predominantly 

generated at complex I and III of the electron transport chain. Therefore, this is in 

accordance with the elevated superoxide levels we determined in our setup. Melatonin 

administration counteracted both the reduced MMP and the increased mitochondrial 

superoxide as well, suggesting that cellular energy supply might be improved and oxidative 

stress could be alleviated by this hormone. Evidence for this was described previously. For 

example, Reyes-Tosco et al. concluded from their experiments that melatonin is able to 

attenuate excessive oxygen consumption of liver mitochondria and consequently protects 

them from oxidative damage [177, 178]. Also, melatonin was described to modulate the 

mitochondrial respiratory activity via increasing the action of complex I and III thereby altering 

the generation of reactive oxygen species [179]. Additionally, Lopez et al proved that 

melatonin decreased mitochondrial superoxide production directly and increased the activity 

of respiratory complex I and III [180]. Apart from its action as a ligand to the membrane-

bound melatonin receptors, its localization within mitochondria and nuclei was shown [57, 

179]. Taken together, melatonin seems to be able to exert protective activities at different 

sites within the cell, thereby being capable of modifying a wide range of cellular stress 

responses. 

     This study shows the interplay of melatonin actions and inflammation stimulated by IL-6 in 

a newly developed HepG2 cells-in-a-chip platform model, which allows quantitative 
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measurements of various hepatic functions including detoxification mechanisms, the acute 

phase response, and glucose metabolism. In addition, results from this new in vitro platform 

where well comparable with previous literature on primary hepatocyte and in vivo models, 

which might overcome the limitation of typical HepG2 culture models. However, our data 

cannot fully explain the complex molecular pathways that are mediated by melatonin and IL-

6 in human liver. Nevertheless, we conclude that our new in vitro platform allows to study 

hepatic inflammation responses.  

 

3.5 Conclusions 

   The results of this study clearly demonstrate that IL-6 modifies hepatic inflammatory 

responses including detoxification, APR proteins, glucose metabolism, and mitochondrial 

functions in a new in vitro platform. Thereby, we proposed this new platform as a tool to 

study hepatic inflammation responses.  Melatonin alleviated IL-6-induced reduction of MRP2 

expression, the lowered production of albumin, increased expression of hepcidin, reduced 

glycogen storage, and the diminished mitochondrial functions. This study provides further 

evidence of the positive properties of this hormone and proposes a new candidate pathway.  
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Chapter 4. Differentiation of human liver 

progenitor cell line (HepaRG cell) directly on a 

biochip. 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

4.1.1 Motivation and aim of this chapter 

    HepaRG cells are the hepatic stem cell line and can differentiate toward hepatocyte-like 

and biliary-like cells. However, the entire cultivation process requires one month and relies 

on the addition of 2% dimethyl sulfoxide (DMSO). In addition, the behaviour of HepaRG cells 

cultured in a microenvironment has not yet been fully elucidated     

    Therefore, the purpose of this research is to differentiate HepaRG cells (progenitor cells 

and undifferentiated cells) toward hepatocyte-like cells by minimizing the cultivation time and 

without DMSO treatment, using a microfluidic device combined with the following specific 

cultivation parameters: i) comparison of extracellular matrixes (matrigel and collagen I); ii) 

types of flow (one or both sides); and iii) effects of DMSO.  

    Cell morphology, the population of cells between hepatocyte-like cells and biliary-like cells, 

diverse hepatic functions, and cell polarity were evaluated after 2 weeks of cultivation in the 

chip. CRP production is measured by the stimulation of IL-6 to test its applicability for hepatic 

inflammatory reaction.    
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4.1.2 Introduction 

    Primary human hepatocytes, the main parenchymal cells of the liver, were considered a 

gold standard for in vitro models in cell biology and pharmaceutical research to evaluate the 

hepatic metabolism and toxicity of drugs and xenobiotics [181]. However, due to their many 

limitations such as a high variation between donors, restricted accessibility, fast loss of their 

hepatic functions after isolation from liver tissue, and a lack of proliferation [182], the 

HepaRG cell line has therefore been increasingly proposed as an alternative to primary 

hepatocytes and HepG2 cells to study the toxicology [183], the xenobiotic metabolism [184], 

and inflammations [139]. Unlike other immortal hepatic cell lines, HepaRG cells show 

pronounced similarity to primary human hepatocytes, as evidenced by the analysis of gene 

expression profiling and their metabolic activity [75].   

    The HepaRG cell is a bipotent liver progenitor cell line that differentiates into both 

hepatocyte-like cells and biliary-like cells. They show liver progenitor-like cells under their 

proliferation state. When the cells reach confluent, approximately one week after seeding, 

they start to commit into both hepatocyte and biliary epithelial-like cells. At 2 weeks of 

cultivation, superconfluent HepaRG cells can start to differentiate toward hepatocyte by 

addition of dimethyl sulfoxide (DMSO) [185]. However, the entire cultivation process takes 4 

weeks and relies on the treatment of a high concentration of 2% of DMSO for differentiation 

[71, 72]. Sumida et al. found that the gene expression of human and rat hepatocytes can be 

affected by 0.5% (v/v) of DMSO [186]. In addition, recent research has addressed negative 

effects of DMSO treatment for the differentiation of HepaRG cells due to a decrease of the 

cell viability and the hepatic functions except xenobiotic detoxification [187].  Consequently, it 

is important to investigate the effects of DMSO on the behavior of HepaRG cells in a new in-

vitro environment.  

    Organs on chips, a new class of in vitro models, have been introduced to recapitulate in 

vitro models by mimicking the structural properties of tissues and organs in vivo. Generally, 

they are multi-channels microfluidic cell culture devices, in which cells or tissue can be 

cultured in such a way that it can replicate an in vivo environment, such as tissue-tissue 

interface, spatiotemporal gradients, and geometry [188, 189]. To date, only few studies have 

incorporated HepaRG cells in microfluidic devices for long-term based co-culture models and 

toxicity tests [97, 190, 191]. In these cases, already fully differentiated HepaRG cells were 

used by addition of 2% of DMSO in flask cultivation during one month and transferred into 

their own microfluidic devices. However, the behavior of HepaRG cells in micro-environment 

has not been extensively clarified yet. Furthermore, stem and progenitor cells have been 

shown to differentiate into mature liver cells in presence of fluid in the bioreactor [192]. 
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Previously, we have demonstrated that 3D culture of HepG2 cell in a microfluidic device 

combined with phaseguides showed improved hepatic specific functions compared with 

static 2D and 3D cultures in chapter 2. Therefore, we hypothesize that this phaseguide-

based microfluidic device can be used as a tool, offering 3D culture and fluid flow, to 

differentiate HepaRG cells into hepatocyte-like cells without the addition of DMSO and to 

additionally reduce their differentiation process time.   

    In order to understand the behavior of HepaRG cells in a new microfluidic device, we 

employed four strategies to differentiate HepaRG cells into hepatocyte-like cells. First, two 

seeding time points have been chosen for the cultivation in the microfluidic device to reduce 

differentiation time: i) when the HepaRG cells show progenitor cell lineage at 5 days; ii) when 

the cells are at 14 days of cultivation, showing highly confluent with a not fully differentiated 

status. Second, two commercial extra cellular matrices (ECM), i.e. matrigel and collagen I, 

have been compared for the differentiation of HepaRG cells in the microfluidic device, as 

they are considered the closest representatives of naturally derived hydrogels for cultivation 

of hepatic cells in vitro [123]. To the best of our knowledge, there is no existing research on 

the direct comparison of matrigel and collagen I cultivation in the presence of flow with 

hepatic cell line cultures. Third, two different types of flow toward the cell culture area (one 

side and both sides) were compared. Fourth, with or without DMSO cultivation were 

characterized for 14 days of cultivation. Finally, we evaluated the polarity of final 

differentiated HepaRG cells cultured in a microfluidic device and their ability of C-reactive 

protein (CRP) production stimulated by IL-6 in order to use this platform as a tool for 

inflammation studies. Our results clearly demonstrate that Matrigel is suitable for HepaRG 

cells differentiation in the microfluidic device, and the flow can influence the size of the 

formed cell clusters and bile canaliculi formation. Furthermore, the DMSO treatment induces 

a significant cell damage and represses various hepatic functions during the cultivation.    
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4.2 Materials and Methods 

4.2.1 HepaRG Cell culture 

    The cryopreserved HepaRG cells (catalog number: HPRGC10) were purchased from 

Thermo Fisher Scientific and maintained according to the manufacture’s instruction. For 

maintenance cultivation, HepaRG cells were seeded at a density of 2x104 cells/cm2  in a 

25cm2 flask and cultivated in William’s E medium (Thermo Fisher Scientific, Hamburg, 

Germany), supplemented with 10% FBS, 100U/ml penicillin and streptomycin (Sigma-Aldrich, 

Munich, Germany), 2mM Glutamax (Gibco, Darmstadt, Germany), 50µM hydrocortisone 

hemisuccinate (Sigma-Aldrich, Munich, Germany), and 4µg/ml insulin (Life-technology, 

Germany) in a humidified cell incubator (Binder, Tuttlingen, Germany). First passage of 

HepaRG cells were fully differentiated by addition of 2% of DMSO in the medium for 4 weeks 

of cultivation. The HepaRG cells were subcultured every 2 weeks. 

4.2.2 Experimental set up for differentiation of HepaRG cells in microfluidic device 

- Selection of seeding time of HepaRG cells for microfluidic cultivation  

    Two different seeding times of HepaRG cells were chosen for the further cultivation 

process in the microfluidic device. HepaRG cells at 5 days (progenitor like cells: PGC) and 

14 days (not fully differentiated cells: NFDC) of cultivation were mixed with extra cellular 

matrix and transferred into the microfluidic device (OrganoPlateTM, Mimetas company, The 

Netherlands) at a seeding concentration of 4x107 cells/ml. The further cultivation procedure 

was performed according to the previously described publication [149] and the medium was 

renewed every two days.  

- Set up 1 (Different extra cellular matrix) 

    The neutralization of an acidic collagen I solution (Gibco, Life technology, Germany) was 

achieved by adding 10X PBS and sterile 1N NAOH on ice by following the manufacturer’s 

instructions. Frozen matrigel (Corning, Wiesbaden, Germany) was stored in ice at 4°C for 

overnight to be fully melted. HepaRG cells were suspended in matrigel and neutralized 

collagen I solution on ice, respectively. A mixture of matrigel and cells was injected into the 

upper channel of the chip, while the collagen I mixture was injected in the lower channel. In 

both cases, the mixture aligned itself along the phaseguide under the capillary force. The 

cells were incubated at 37°C for 35 minutes to be gelled, and 25 µl of the medium was added 

to the medium outlet. After further incubation for 5-6 hours for entire gelling, the perfusion 

was started by adding 100 µl of medium to the inlet well.  

- Set up 2 (Type of flow) 
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     After we characterized the HepaRG cells with matrigel and collagen I cultivation, a further 

cultivation process was performed using matrigel only. To check whether the type of flow can 

have an effect on the formation of cell clusters, perfusion flow was generated in both sides 

(both sides of flow) and in the middle of the channel (one side of flow) with the same seeding 

concentration of HepaRG cells. 

- Set up 3 (with and without DMSO treatment)  

    For DMSO supplement cultivation, the medium including 1% of DMSO has been replaced 

after 3 days of cultivation in the microfluidic device.  From 5 days of cultivation, 2% of DMSO 

in medium was supplied continuously for the rest of the cultivation. Each experiment setup 

was illustrated in Figure 4.1. 

 

Figure 4.1 A schematic diagram of experiment set up for HepaRG cells cultivation in the 

microfluidic device. Progenitor cells (PGC) and not fully differentiated cells (NFDC) from flask 

cultivation were cultivated further in microfluidic device according to three optimization 

process to differentiate HepaRG cells into hepatocytes. 1. Difference of matrix (Collagen I vs. 

Matrigel) 2. Types of flow (one side of flow vs. both sides of flow) 3. Comparisons of with or 

without DMSO supplement (with vs. without DMSO) cultivation. After 14 days of chip 

cultivation, various assays have been fulfilled.    
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4.2.3 Cell viability assay 

    The cellular live/dead assay was performed by staining with Calcein Blue AM (eBioscience, 

Frankfurt, Germany) and Ethidium Homodimer III (EthD-III, Biotium, Hayward, USA) to 

determine cell viability. Briefly, the cells were washed three times with PBS buffer after 

incubating for 15 minutes with 5 µM calcein AM Blue and 1 µM EthD-III in PBS. Fluorescence 

images were taken by using a Zeiss fluorescence microscope (excitation/emission: 365 nm / 

DAPI filter set for Calcein Blue AM, 530 nm / PI filter set for Ethidium Homodimer III) and 

analyzed using the ImageJ software for the quantitative analysis. 

4.2.4 CYP1A induction assay 

    The quantitative determination of CYP1A activity was performed using an ethoxyresorufin-

O-deethylase (EROD) assay with resorufin ethyl ether (Sigma-Aldrich, Munich, Germany) as 

a substrate. The cells were incubated with 5 µM of 3-methylcholatren (3-MC) for 72 hours to 

induce CYP1A activity, and the control group cells were treated with a vehicle solution 

(DMSO). After the induction of CYP1A, the cells were cultivated with 2 µM resorufin ethyl 

ether in a serum-free medium for 30 minutes. The medium was then collected and the 

fluorescence was measured at 525/580-640 nm with a fluorescence microplate reader. The 

fold changes were calculated as the ratio between the values of the 3-MC treatment group 

and the control group.   

4.2.5 Bile canaculi formation analysis  

    The bile canaliculi formation and function was observed by using a substrate, 5-

carboxyfluorescein diacetate (5-CFDA) (Sigma-Aldrich, Germany), for the multidrug 

resistance associated protein (MRP2) [193], which is located at the bile canaliculi in the 

apical domain. The non-fluorescent 5-CFDA entering the cells by diffusion were cleaved by 

intracellular esterase to form the fluorescent 5-CF metabolites. The 5-CF were exported at 

the bile canaliculi by the MRP2 protein.  After washing with an uptake buffer (136mM NaCl, 

5.3mM KCl, 1.1mM KH2PO4, 0.8mM MgSO4, 1.8mM CaCl2, 11mM D-glucose, 10mM HEPES, 

pH7.4) the cells in the chip were incubated for 30 minutes with 5 µM of 5-CFDA, then 

washed with PBS buffer and the accumulated 5-CF in the bile canaliculi were observed 

under a fluorescence microscope.   

4.2.6 Immunostaining   

    Cells were fixed with 4% of paraformaldehyde for 30 minutes and permeabilized with 0.2% 

of tritonX-100 for 30 minutes.  After blocking with 1%of BSA for 30 minutes, the cells were 

incubated overnight at 4°C with the following primary antibodies: Albumin (1:200, mouse 
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monoclonal, abcam) CK19 (1:200, rabbit monoclonal, abcam), CK18 (1:50, mouse 

monoclonal, abcam), MRP2 (1:50, mouse monoclonal, abcam), ZO-1 (1:100, rabbit 

monoclonal, abcam), NTCP (1:100, rabbit monoclonal, abcam), CYP3A4 (1.50, rabbit 

monoclonal, Santa Cruz technology). After washing with PBS three times, the cells were 

stained with the secondary antibody DyLight 488 goat anti rabbit (1:100, ab96899, Abcam, 

Cambridge, UK), Alexa Fluor 647 goat anti mouse (1:200, ab150115, Abcam, Cambrige, UK), 

and with Hoechst 33345 (Sigma-Aldrich, Germany) for nucleic acids staining for 1 hour at 

room temperature. After washing with PBS three times, the cells were monitored under a 

fluorescent microscope or a confocal microscope (Carl Zeiss, Tholey, Germany).  

4.2.7 Albumin and CRP production measurement  

The cell culture medium was collected at indicated time points and stored at -80°C 

immediately. The amount of albumin and CRP secreted in the medium was determined using 

a human albumin ELISA Kit (Bethyl Laboratories, Montgomery, Texas, USA) and a CRP 

ELISA kit (Thermo Fisher Scientific, Germany), respectively. All procedures followed the 

manufacturer’s instructions. 

4.2.8 Processing and quantification Images and statistical test  

Fluorescent images were analyzed using Icy (http://icy.bioimageanalysis.org/) and ImageJ 

Fiji [194] and quantified using ImageJ (https://imagej.nih.gov/ij/,1997-2016) software. For 

statistical tests, one-way ANOVA and a Student’s-t test were performed for normally 

distributed groups, while Kruskal-Wallis and Mann–Whitney tests were carried out for non-

normally distributed groups to compare data between the four or two groups of culture 

models, respectively. All data values correspond to the average ± standard deviation (SD).   
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4.3 Results 

4.3.1 HepaRG cultivation: comparison of extracellular matrices (matrigel vs. collagen I)  

    To compare the differentiation toward hepatocyte-like cells from HepaRG cells between 

matrigel and collagen I gel cultivation in microfluidic environment, the cell morphology and 

expression of albumin and CK19 were observed after 2 weeks of chip cultivation, as shown 

in Figure 4.2. The average diameter of PGC cell clusters was 20-40µm, while NFDC cell 

clusters showed a bigger diameter (30-80µm). However, we found plenty of single cell units, 

suggesting that both types of cells did not form aggregates efficiently. Surprisingly, both cells 

(PGC, NFDC) with collagen I cultivation showed an elongated shape rather than cell cluster 

formation. Interestingly, those elongated cells aligned uniformly along the direction of flow, 

similar to cord-like structures. To determine whether cells differentiated into hepatocyte or 

biliary-like cells immunostaining of albumin as a hepatocyte marker and cytokeratin 19 

(CK19) as a biliary cell marker, were performed. A high albumin expression occurred only in 

a few of cell aggregates in matrigel, not in collagen I cultivation. Elongated cells with a cord-

like structure in collagen I cultivation showed higher CK19 than albumin expression, 

suggesting that those cells differentiated into biliary cells rather than hepatocytes. Cell 

clusters in matrigel co-expressed with albumin and CK19, suggesting that they differentiate 

into hepatocytes and biliary cells together. In this culture system, we demonstrated that both 

of PGC and NFDC in matrigel differentiated into hepatocyte and biliary cells together, 

whereas collagen I cultivation differentiated most likely into biliary cells.  
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Figure 4.2 (A) Comparison of Matrigel (MG : upper lane) and collagen I (Col : bottom lane) 

cultivation of PGC and NFDC on 14 days in microfluidics device. (B) Representative images 

of phase contrast and fluorescent immunostaining for albumin (red) and CK19 (green). Scale 

bars represent 100µm. 
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4.3.2 HepaRG cultivation: comparison of types of flow (both vs. one side) 

    From our first result, PGC and NFDC differentiated toward hepatocytes only in a matrigel 

matrix. However, the cells were not likely to form aggregates efficiently due to the following 

reasons: 1) the size of the cell clusters is not sufficiently large, 2) plenty of single cell units 

remain in the matrix. We hypothesize that this problem might arise from insufficient flow to 

the cells, because in vivo liver progenitor cells are found in the canal of herring, in which a 

bile flow exists and which belongs to the portal triads field [195]. In a healthy human liver, this 

portal triad shows the highest pressure, produced by the flow, which continuously decreases 

until the hepatic vein [196].  

    To test whether the flow can affect the formation of cell aggregations, we tested two types 

of flow (one side flow, both sides of flow) and conducted further experiments, including a 

measurement of the cell cluster area (Figure 4.3A+B) and the formation of bile canaliculi 

using 5-CFDA staining at 14 days of chip cultivation (Figure 4.3C).  

    The size of cell clusters was affected by the type of flow in both cases, i.e. PGC and 

NFDC. The cell clusters formed by both side of flow showed enlarged sizes compared to only 

one side flow. In particular, NFDC formed larger cell clusters than PGC, showing in a range 

of 50-100µm in diameter, while the diameter of PGC clusters measures 40-80µm.  

    A 5-CFDA/5-CF efflux assay was used to observe the bile canaliculi formation. In this 

assay, the non-fluorescent 5-CFDA rapidly diffuses inside the cells, then it is cleaved to 

fluorescent 5-CF by intracellular esterase and located at the bile canalilculi by the MRP2 

transport protein [193]. In the one side flow culture, we found that the majority of cells 

showed a diffused intracellular fluorescence and almost no fluorescent dye exported into the 

bile canaliculi, since the cells did not form aggregates. In contrast, the cells in both sides of 

flow cultivation showed an accumulation of excreted fluorescence 5-CF into the bile 

canaliculi at the cell-cell contact areas, suggesting that a both sides of flow supports the 

formation of cell aggregates and cell-cell contact. Therefore, both side of flow for PGC and 

NFDC in microfluidic cultivation was chosen for further studies.  
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Figure 4.3 (A) Comparison of one side (One) and both side of flow (Both) cultivation of PGC 

and NFDC on 14 days in microfluidics device. (B) Representative images of phase contrast 

and size of cell aggregates were presented. (C) Excretory activity of MRP2 at bile canalicular 

of HepaRG cells was assessed by 5-CFDA. Scale bars indicate 100µm.     
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4.3.3 Cell viability and liver specific functions (with vs. without DMSO treatment) 

    In the next step, we investigated whether DMSO affects the cell viability and population 

(hepatocyte-like cells vs. biliary-like cell) of HepaRG cells in the microfluidic cultivation. First, 

we checked the cell viability by live and dead staining at 14 days of microfluidic cultivation 

(Figure 4.4A+B). Here, PGC showed a higher cell survival rate than NFDC in both with and 

without DMSO cultivation. In more detail, PGC and NFDC in absence of DMSO showed 

88%±2% and 67%±3% of cell survival, whereas with DMSO treatment reduced cell viability 

significantly, showing 63%±9% and 50%±1%, respectively. These results suggest that 

DMSO promoted a significant cell death, which was proven by a significantly reduced cell 

viability in both PGC and NFDC cells.  

    After checking the cell viability, we further investigated the distribution of the cell 

population between hepatocyte-like cells versus biliary-like cells by quantification of 

immunostaining of cytokeratin 18 (CK18) and cytokeratin 19 (CK19), since they are markers 

for hepatocyte and biliary cells respectively [72, 197]. The final ratio of CK18 and CK19 in the 

total cell area was calculated and is shown in Figure 4.4C and D. PGC expressed 70%±5% 

of CK18 and 24%±4% of CK19 in the absence of DMSO and 53%±3% of CK18 and 17%±2% 

of CK19 in the presence of DMSO. The CK18 and CK19 expressions were both significantly 

reduced by 16% and 8% for DMSO in PGC. In the case of NFDC, CK18 and CK19 showed 

48%±8% and 22%±3% of expression in the absence of DMSO and 40%±5% and 14%±2% in 

the presence of DMSO, respectively. Only the CK19 expression was suppressed significantly 

in NFDC. Therefore, our results suggest that DMSO influences the viability of both of 

hepatocyte-like cells and biliary-like cells. Furthermore, PGC without DMSO showed the 

highest cell viability and hepatocyte marker CK18 expression level in our microfluidic device.  
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Figure 4.4 Comparison of with and without the addition of DMSO cultivation of PGC and 

NFDC after 14 days in microfluidic device. (A) Cell viability was assessed by fluorescent 

live(blue) / dead(red) staining at 14 days of cultivation. (B) Determination of cell viability by 

quantification of fluorescent images. Data are the average ± SD of at least 6 independent 

cultures. (* indicates significant difference versus -DMSO group, *P<0.05) (C) Population of 

hepatocyte and biliary-like cells in PGC and NFDC by immunostaining of CK18 (hepatocyte-

like cells) and CK19 (biliary-like cells). (D) The fluorescent area of CK18 and CK19 was 

quantified and normalized to total cell area. Data are the average ± SD of at least 6 

independent cultures.     
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    We further investigated liver specific functions including the albumin production, CYP1A 

induction assay, and immunostaining of CYP3A4 and albumin in PGC and NFDC with and 

without DMSO treatment in the microfluidic device (Figure 4.5).  

    In the context of albumin production (Figure 4.5A), only PGC showed an augmented 

production rate, with 13-fold (in the presence of DMSO) and 7.6-fold change (in the absence 

of DMSO) compared to 3 days of cultivation before the cells were treated with DMSO, 

suggesting that PGC can be differentiated toward hepatocyte-like cells efficiently in a 

microfluidic device, whereas NFDC continuously showed a significantly reduced albumin 

production during whole culture period. Interestingly, a DMSO treatment induced a 

significantly reduced albumin production only in the PGC cultivation but not in NFDC 

cultivation. 

    Regarding the CYP1A induction assay (Figure 4.5B), PGC in the absence of DMSO 

showed the highest induction rate (3.5-fold change) among the groups, however the CYP1A 

induction rate reduced significantly in the PGC in DMSO supplement cultivation. Surprisingly, 

DMSO does not affect the CYP1A induction rate in the case of NFDC. 

     Furthermore, we performed an immunofluorescence double staining of CYP3A4 and 

albumin (Figure 4.5C). Expression of albumin and CYP3A4 was co-localized in both PGC 

and NFDC cultivation. The albumin expression was suppressed by DMSO supplement in 

both of PGC and NFDC, whereas CYP3A expression was not dramatically changed by the 

DMSO treatment and was distributed homogenously.  

    Therefore, we conclude that PGC in the absence of DMSO cultivation in microenvironment 

outperformed the cultivation in the presence of DMSO regarding the differentiation into 

hepatocyte-like cells, since they showed the highest cell viability and liver functionalities, 

thereby this culture model was selected for further studies.  
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Figure 4.5 Comparisons of liver specific functions between PGC and NFDC in presence and 

absence of DMSO culture. (A) Time-dependent secretion of albumin. Cells were cultured for 

14 days in microfluidic device and the culture medium was collected at day 3, 7, and 14 

(before treatment of DMSO) during the culture period. Data are the average ± SD of at least 

5 independent cultures. (B) CYP1A induction assay was evaluated at the 14days of 

microfluidic cultivation. Data are the average ± SD of 5 independent cultures. (* indicates 

significant difference versus -DMSO group, *P<0.05) (C) Immunofluorescence microscopy of 

CYP3A4(green), albumin(red), and light microscope images (top) at the 14 days of cultivation. 

Scale bars represent 100µm.    
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4.3.4 Localization and polarization of PGC cell clusters in microfluidic device.  

    We further investigated the localization of cell population (hepatocyte-like cells and biliary-

like cells) in PGC cell clusters after 14 days of cultivation in the microfluidic device. A 

confocal fluorescent microscope was used to investigate the distribution of cell populations in 

regard of the depth by employing immunostaining of CK18 and CK19. Interestingly, cells 

located at the height of 30µm to 80µm formed clusters, whereas cells located higher than 

100µm did not form clusters, showing a spreading shape. CK19 was shown to be expressed 

in the inner area of the cell cluster, whereas CK18 expression is located at the overall area of 

the cell cluster (Figure 4.6A), suggesting that biliary-like cells are localized within cell 

spheroid, while hepatocyte-like cells are homogeneously distributed.  

    In In vivo, hepatocytes are arranged in three dimensional structures (3D) in the presence 

of flow, forming cell-cell contacts, which is important for maintaining specific polarity and also 

for intracellular functions [198]. Therefore, in order to elucidate whether differentiated PGC 

cells on 14 days of cultivation in the microfluidic device without DMSO supplement indicated 

the polarity, cell clusters were observed by immunostaining of NTCP for the basal membrane, 

ZO-1 for the lateral membrane, and MRP2 for the apical membrane (Figure 4.6B+C). 

Surprisingly, differentiated PGC cell clusters showed an abundant expression of NTCP in a 

range of 30-100µm of height, and NTCP was localized to the sinusoidal membrane domain. 

Regarding of the apical and lateral domains, MRP2 was localized at the cell-cell contact 

region and showing a capillary-like shape surrounded by the tight junction proteins (ZO-1), 

confirming that cell clusters constitute distinct apical and basolateral domains. With these 

observations, we offer evidences that differentiated PGC in microfluidic device can be highly 

polarized without supplement of DMSO.   
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Figure 4.6 Immunofluorescence and confocal analysis of (A) CK18(red) and CK19(green) 

and localization of (B) NTCP(green) (C) ZO-1(green) MRP2(red) and NA(nuclei, blue) in cell 

aggregates indicates spatial segregation of these apical and basolateral markers as a sign of 

cell polarization. Scale bars represent 100µm in figure A and 10µm in figure B and C 

respectively. 
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4.3.5 CRP production stimulated by IL-6  

    For the validation of the final optimized PGC cultivation in our microfluidic device we tested 

whether differentiated hepatocyte-like cells can be stimulated by IL-6 to produce CRP. It has 

already been proven that fully differentiated HepaRG cells in 2D cultures in the presence of 

DMSO are a useful model for inflammation studies [199]. Therefore, we compared the CRP 

production level in differentiated PGC in the microfluidic device with fully differentiated 

HepaRG cells in a 2D cultivation. To calculate the CRP production accurately, the final 

quantified CRP level was normalized by the number of hepatocyte-like cells (Figure 4.7). IL-6 

induced an increase of CRP production in both 2D culture and differentiated PGC in the 

microfluidic cultivation. Also, a dose dependent response on the tested concentrations of IL-6 

(10ng/ml, 50ng/ml) was observed in the CRP production in the PGC microfluidic cultivation 

model. Surprisingly, the amount of produced CRP per hepatocyte-like cell in the PGC 

cultivation in microfluidic device (57 ± 17 fg/cell) were in very good agreement with the 2D 

culture data (62 ± 13 fg/cell).           

 

Figure 4.7 Level of CRP production stimulated by IL-6 treatment from fully differentiated 

HepaRG cells in 2D culture and from differentiated PGC in the microfluidic cultivation. 

0ng/ml(control), 10ng/ml, and 50ng/ml of IL-6 concentration was applied. Data are expressed 

as average ± SD of 3-5 independent culture samples. (* indicates significant difference 

versus control group in each cultivation, *P<0.05)     
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4.4 Discussion 

    HepaRG cells are considered a surrogate for human primary hepatocytes, since they 

show relatively similar levels of gene expression and metabolic activities in comparison of 

human primary hepatocytes. HepaRG cells can differentiate toward hepatocytes and biliary-

like cells by supplemented with 2% of DMSO in monolayer cultures for 4 weeks. In this study, 

using a recently developed commercial biochip, we provide a unique culture model for the 

differentiation of HepaRG toward hepatocyte-like cells for two weeks without DMSO by 

optimizing following strategies.  First, we selected undifferentiated HepaRG cells when they 

are shown under two distinct states: i) liver progenitor (PGC) and ii) not fully differentiated 

(NFDC). Second, we compared three parameters: i) extra cellular matrix (ECM) between 

matrigel and collagen I, ii) one versus both sides of flow, iii) with and without addition of 

DMSO during the cultivation. Our results clearly show that matrigel supported HepaRG cells 

to differentiate toward hepatocyte-like cells and both sides of flow promoted aggregation of 

cells, and DMSO influenced the cell viability and various hepatic functions. Furthermore, we 

investigated the polarity of the final selected culture model (PGC without DMSO) and 

validated its applicability for inflammation stimulation by IL-6.   

  In the context of the first previously mentioned step that compare between matrigel and 

collagen I, our results clearly demonstrated that PGC and NFDC in a microfluidic device 

exhibit both hepatocyte and biliary-like cell phenotypes in matrigel, which is evidenced by 

albumin and CK19 protein staining (Figure 2). Matrigel was regularly used in previous studies 

for hepatic differentiation from human pluripotent stem cells [200] and primary hepatocytes 

[201]. Tanimizu et al. found that DIk+ hepatoblasts from mouse fetal liver, showing the same 

capacity for bi-directional differentiation as HepaRG, differentiate into hepatocytes in a 

matrigel-embedded gel cultivation. In contrast, these cells showed tube-like structures in 

collagen I gel cultivation with a high CK19 expression [202]. In addition, in in vivo, basement 

membrane proteins, including laminin and collagen IV, are mostly concentrated around the 

periportal area, which is considered as the place where liver progenitors are situated [202]. 

Whereas, the main ECM in the parenchymal area, where mature hepatocytes are located, 

are collagen I and fibronectin, often lacking basement membrane proteins [26]. Surprisingly, 

in our microfluidic environment, both PGC and NFDC cells in collagen I lost their cell-cell 

contact, showing a well aligned elongated shape along the flow stream with strong 

expression of CK19. This phenomenon of alignment of collagen I has been observed only in 

the presence of flow in microenvironments in previous research. e.g. collagen I aligned in 

microfluidic channels of widths in the 10-200µm range, whereas it randomly distributed in 

normal multi well plates in absence of flow [203]. Since the channel width in our microfluidic 
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device is 200µm, it falls well into the range of alignment for collagen I. Therefore, the 

HepaRG cells grew in aligned collagen I, resulting in the formation of rope-like shape 

showing biliary-like cells.  

    In the comparison of one side versus both sides of flow, cells aggregated more efficiently 

and formed bigger spheroids in both side flow rather than one side flow cultivation, 

suggesting that the mechanical force provided by the flow might have an influence on cell-

matrix interaction and promote cell-cell contact, resulting in an increased bile canaliculi 

formation as well. Previously, a 3D bioreactor in presence of flow supported the 

differentiation of human fetal liver cells into hepatocytes by forming small cell aggregates 

within 10 days [192]. Moreover, in clinical studies, sinusoidal shear stress generated by 

increase of portal pressure, where liver progenitor cells were located, was identified as an 

important factor for the initiation of liver regeneration in vivo [204].  In this microfluidic device, 

the cells might be influenced differently according to their distance from the flow region. In 

the case of one side flow, cells adjacent to the flow region might be influenced stronger by 

the fluid’s mechanical force than cells close to the wall. In contrast, cells cultured in both side 

of flow might be influenced homogeneously, resulting in the promotion of cell aggregation in 

the overall cultivation area.  Similar sizes of cell clusters of PGC were observed as compared 

with previous publications on progenitor cells derived from HepaRG cultured in alginated 

microencapsulation [205] and in hydrogel such as nanofibrillar cellulose and hyaluronan 

gelatin [206]. Interestingly, previous studies demonstrated a relation between the bile 

canaliculi area and the diameter of rat hepatocyte aggregates cultured in a 3D collagen gel 

microcavity device [207]. When the diameter of the cell aggregates lay between 60µm and 

80µm, the formation of bile canaliculi showed an enhancement compared to conventional 

cultures. The HepaRG cell clusters formed in both sides of flow cultivation showed diameters 

of 40-80µm and 50-100µm for PGC and NFDC, respectively, suggesting that an appropriate 

size of HepaRG clusters enhanced the bile canaliluli formation. To our knowledge, this is the 

first report that a mechanical fluid force can affect the efficiency of the formation of HepaRG 

cell aggregations. Therefore, a homogeneous fluid mechanical force could play an important 

role in the formation of cell aggregates and thereby influence the bile canaliculi formation in 

undifferentiated HepaRG cultures in a microfluidic environment. 

    DMSO addition in 2D culture model is a necessary step to differentiate hepaRG cells 

toward hepatocyte and biliary-like cells, resulting in a 1:1 ratio of population [74]. As we 

already mentioned in the introduction part, previous research addressed the negative effects 

of DMSO on primary hepatocytes and HepaRG cell cultivation, since DMSO induces a 

decrease of the cell viability and homeostasis functions [186, 187, 208]. Our results also 
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clearly demonstrate that DMSO induces a significant decrease of the cell viability and 

influences the distribution of hepatocyte and biliary-like cells population in both cases, 

i.e.PGC and NFDC. In the case of this 3D microfluidic culture model, cells were always 

embedded in matrigel, thereby dead cells remain and cannot be flushed out during perfusion. 

On the contrary, dead cells are removed by medium replacement in monolayer culture 

systems. Therefore, PGC without DMSO culture model was chosen due to its high cell 

viability and outstanding liver functionality. 70% of the total cells were identified as 

hepatocyte-like cells by immunostaining of CK18. This is in general agreement with previous 

studies using and alginate microencapsulated cultivation model for liver progenitor cells from 

HepaRG [205].  

    With regard to cell viability and liver specific functions in PGC without DMSO, our results 

are also comparable with previous research. Alginate encapsulated progenitor cell state of 

HepaRG cells showed a 89% cell survival rate at 14 days of culture without DMSO 

supplement [205]. The albumin production was dramatically increased during the cultivation 

and it corresponded to a high expression of albumin by immunostaining at 14 days of 

cultivation. This albumin level was even higher than fully differentiated HepaRG cells in 2D 

culture [209] and previous 3D culture platform [205, 210] or in a similar range to human fetal 

liver cells cultured in a 3D perfusion bioreactor [192]. For the functionality of the metabolic 

machinery, PGC without DMSO showed the highest CYP1A induction (3.4 fold change) and 

it is in line with previous research in 2D fully differentiate HepaRG culture model (2-3.9 fold 

change) [211]. In contrast, the PGC with DMSO and NFDC group showed a decreased 

CYP1A induction (2-2.5 fold change). Co-localized expression of CYP3A4 and albumin 

indicated a reconfirmation of a differentiation toward hepatocytes but did not exhibit zone 

specific phenotypes in this culture model. Interestingly, NFDC cells are likely to be less 

sensitive than PGC for the effects of DMSO, since NFDC indicated no significant changes in 

albumin production and CYP1A induction activity between the with and without DMSO 

treatment group. It might be explained that the population of hepatocyte-like cells in NFDC 

culture did not change significantly with DMSO versus without DMSO, whereas PGC 

significantly reduced the hepatocyte-like cell population.  

    Our culture model for PGC differentiated in a microfluidic device without DMSO clearly 

indicated a sufficient population of hepatocyte-like cells by co-staining of CK18 and CK19 

and a distinct polarized organization, which is evidenced by the observance of MRP2 for 

apical membrane, and NTCP and ZO-1 for basolateral membrane. In our system, 

cholangiocytes (biliary cells) were observed in the core of the cell clusters and hepatocyte-

like cells were distributed in the overall area of the cell clusters. Leite et al reported similar 
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observation for the localization of biliary cells that are located at the core part of HepaRG 

spheroid cultured in the stirred bioreactor [210]. It has already been demonstrated that 

differentiated HepaRG cells by administration of DMSO in 2D culture show a high expression 

of NTCP [212]. However, it has been proposed that HepaRG cells in 2D culture model do not 

fully recapitulate the polarization since they are limited the formation of canalicular at the 

apical membrane. We proved that the combination of matrigel for 3D cultures and supply of 

both sides of flow facilitates a hepatic differentiation by sufficient expression of tight junction 

(ZO-1) next to MRP2, promoting a correct assembly of cell-cell contact. It has been 

suggested that stable maintenance of cell-cell interaction and communication including 

paracrine signaling might be a critical factor for the differentiation of hepatic phenotypes [205, 

213]. Importantly, since NTCP was identified as a receptor for the hepatitis B virus (HBV) and 

MRP2 supports the efficiency of the HBV infection, our PGC in a microfluidic 3D culture 

platform without the addition of DMSO can be a powerful tool to study the HBV infection in 

vitro.  

    IL-6 was shown to be a potent regulator for synthesis of acute-phase response proteins in 

primary hepatocytes [37]. Here, we also demonstrated that differentiated PGC in our 

microfluidic chip produced increased levels of CRP by IL-6 stimulation. Furthermore, the 

CRP production rate in the chip cultivation was comparable with fully differentiated 2D 

cultures after normalization of hepatocyte-like cell number.  

    In summary, the described strategies manifested the differentiation toward hepatocyte-like 

cells from undifferentiated HepaRG cells (liver progenitor cell) in a microfluidic environment 

by selection of ECM (matrigel), types of flow (both sides) and DMSO effects (without DMSO). 

Moreover, the entire cultivation process required 18 days without DMSO addition. Finally, 

70% of the cells differentiated into hepatocyte-likes cells whose hepatic functions are 

consistent with previous literature. This culture model can be applied for the cultivation of 

other cell types such as pluripotent stem cells and biliary cells and to be a relevant platform 

for the understanding of the physiology and regeneration of the liver.  
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4.5 Conclusion 

    The cultivation of undifferentiated HepaRG cells in the microfluidic device under different 

cultivation parameters showed a different population of the cells. The progenitor HepaRG 

cells cultured with matrigel, both sides of flow, and without the addition of DMSO showed a 

highest hepatocytes population, cell viability, and liver specific function. Moreover, 

differentiated hepatocyte-like cells in the biochip were highly polarized and produced CRP by 

stimulation of IL-6. Our results provide the possibility of the cultivation and the differentiation 

of stem cells in the microfluidic devices and this new in vitro platform can be applied to study 

hepatocyte physiology and toxicity including inflammatory reactions. 
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Chapter 5.  Conclusion 

 

 

 

5.1 Summary  

In this thesis, we introduced a new in vitro liver model using a commercial microfluidic 

device that can be applied to investigate diverse hepatic physiological functions and hepatic 

inflammatory responses stimulated by IL-6. The phaseguides in the device allowed us to 

mimic the in vivo hepatocyte environment and support the cultivation of liver hepatic cell lines 

due to the following unique features: i) The cells are surrounded by ECMs and cultivated in 

3-D, ii) The medium flow does not contact the cells directly, iii) The height of the phaseguides 

is one-quarter of the culture chamber height, allowing a free exchange of substances 

between the cell culture areas and the medium flow regions. 

The work in this thesis focused on the characterization of two human hepatic cell lines—

HepG2 and HepaRG—cultured in a new microfluidic device (Chapters 2 and 4). Furthermore, 

diverse inflammatory hepatic responses stimulated by IL-6 (Chapter 3 and 4), as well as the 

interplay with melatonin (Chapter 3), were studied.  

In Chapter 2, HepG2 cells were cultivated in a new microfluidic device and multi-well 

plates, for conventional 2D and 3D cultures, and the behaviours of the HepG2 cells were 

compared in terms of the cell morphology, cell viability, liver-specific functions, and 

acetaminophen-induced toxicity. Here, it was demonstrated that HepG2 cells formed multiple 

clusters in each lane and maintained their aggregation. HepG2 cell clusters showed a high 

cell viability (>90%), with little necrosis in the core part, and improved liver function with 

regard to albumin and urea production, CYP1a activity, and bile canaliculi formation for two 

weeks in the new microenvironment, when compared to conventional 2D and 3D cultures. 

Furthermore, the biochip cultivation model showed the lowest LC50 value for 

acetaminophen-induced toxicity in comparison with the static 2D and 3D cultures. Thereby, it 
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was shown that the new in vitro platform can be employed to study liver physiological and 

toxicological applications.     

After characterization of the new in vitro HepG2 cells-on-a-chip platform, which showed 

improved hepatic functions compared to static 2D and 3D culture models (Chapter 2), we 

further tested its applicability to the investigation of diverse hepatic inflammation responses 

stimulated by IL-6, as well as the interplay with the hormone melatonin (Chapter 3). IL-6 

induced a reduction of the detoxification mechanisms (the expression of MRP2, its activity 

and CYP1A activity), glycogen synthesis, and mitochondrial homeostasis, and stimulated the 

regulation of positive and negative APR proteins. Interestingly, melatonin normalized most 

observed hepatic responses stimulated by IL-6, except for the CRP production. Furthermore, 

melatonin altered the expression level of CREBH and PXR, but did not change the total 

STAT3 and phosphorylated STAT3 level. Since CREBH and PXR are transcription factors 

that regulate APRs and the detoxification process in hepatocytes, our results suggest new 

candidate pathways for further studies to elucidate the hepatic protective effects of melatonin. 

In addition, we also observed similar inflammatory hepatic responses in our new in vitro 

platform compared to previously published results using human hepatocyte culture and in 

vivo models. Therefore, this new HepG2-on-a-chip platform can be applied for the 

investigation of hepatic inflammation responses and offers additional evidence of hepatic-

protective functions of melatonin under pro-inflammatory stimulation.    

As discussed in Chapter 4, HepaRG cells were cultivated in the same microfluidic device, 

and we compared their behaviour according to three different cultivation parameters: ECMs, 

types of flow, and DMSO. In order to reduce the length of the differentiation process, two 

different seeding times were chosen when HepaRG showed two distinct phenotypes: liver 

progenitor and not fully differentiated status in flask cultivation. HepaRG cultured in matrigel 

under one side flow formed only a few cell clusters and showed co-expression of albumin 

and CK19, whereas cells in collagen I cultures showed an elongated shape and did not form 

aggregates with a high expression of CK19. By applying both sides of flow, a more efficient 

formation of cell aggregates was observed, resulting in enlarged cell clusters and an 

enhanced bile canaliculi formation. The addition of DMSO significantly reduced cell viability 

and influenced the cell populations of both hepatocyte-like cells and biliary-like cells. 

Interestingly, the progenitor cell type of HepaRG was more sensitive in response to DMSO 

treatment regarding the liver specific functions (albumin production and CYP1A activity) than 

were the not fully differentiated HepaRG cells. The progenitor cell type of HepaRG cells 

cultured with matrigel, both sides of flow, and in absence of DMSO, were finally chosen for 

the differentiation of hepatocyte-like cells in the new microenvironment. Furthermore, the 
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differentiated progenitor HepaRG cells in the microfluidic device showed a highly polarized 

organization and produced similar levels of CRP, compared to fully differentiated monolayer 

cultures of HepaRG. Therefore, we concluded that the HepaRG microfluidic cultures could 

be used for the investigation of hepatic physiology and hepatic inflammatory responses as 

well as for the differentiation of other types of stem cells. 

Interestingly, HepG2 and HepaRG cells cultured in the biochip showed different 

behaviours, including differences in the morphology and liver-specific functions. HepG2 cell 

clusters were sustained under supply of one side of flow, whereas HepaRG cell clusters 

formed efficiently under both sides of flow and showed smaller sizes than HepG2 cell 

clusters in the device. Both HepG2 and HepaRG showed a high cell viability, similar albumin 

production rate, and the formation of bile canaliculi, while HepG2 showed a higher CYP1A 

activity than HepaRG cells. In addition, a higher fold change of CRP production stimulated by 

IL-6 was observed in HepaRG than in HepG2 cell cultivation.  
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5.2 Conclusion and outlook 

Diverse microfluidic devices for in vitro liver models have been introduced; however, 

standardized devices and protocols did not exist prior to now. Furthermore, installation of 

most microfluidic cell culture devices required additional complicated experimental setups 

which are unfamiliar to the average cell biology researcher [214]. By focusing on the use of 

one easily handled, commercial microfluidic device which can function without any other 

additional experimental setups, standardized methods and the evaluation of various hepatic 

functions were investigated in this thesis.  

 We provided evidence that both types of hepatic cells (HepG2 and HepaRG) cultured in 

this unique microenvironment showed well-maintained hepatic functions with a high cell 

survival rate for two weeks. However, the two hepatic lines, cultured in the biochip, showed 

behavioural differences in morphology and hepatic functions. This suggests that the unique 

microfluidic device with phaseguides not only supports the cultivation of hepatic cells, but 

also provides important new insights regarding their complex cellular behaviour.  

Furthermore, HepG2 cells behaved differently in the microfluidic environment compared 

to conventional 2D and 3D models, showing various well-maintained hepatic physiological 

functions. The aggregation of HepaRG cells formed differently according to the exposed 

types of the flow in the device. This finding suggests that the flow significantly influences the 

behaviour of cells and should therefore be considered a critical parameter for hepatocyte 

cultivation in microenvironments. Our findings also suggest in-depth knowledge of the 

behaviour of hepatic cells in microenvironments.  

Altogether, this new microfluidic culture model may be a promising in vitro liver tool to 

study hepatic physiology, overcoming typical limitations of traditional static monolayer and 

3D culture models, as our culture model showed improved diverse hepatic functionality and 

polarity. This microfluidic cultivation model can be applied to interpret various hepatic toxicity 

mechanisms and liver disease models which require a highly-polarized hepatocyte platform. 

We also provided evidence for the applicability of this new in vitro hepatic model to the study 

of hepatic inflammatory responses, as well as its use as a tool to differentiate stem cells. 

Although the presented system operated successfully, there are still improvements to be 

made regarding the in vitro liver organ level culture mode as well as the additional 

compartments of the device for further study.  

To improve the liver equivalent, co-cultivation with NPCs—such as fibroblasts, endothelial 

cells, and Kupffer cells—is suggested for the next in vitro liver model, as the NPCs are also 
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involved in the regulation of hepatic functions and inflammation responses via paracrine 

signalling. In this thesis, our hepatic microtissues from HepG2 and HepaRG cells (cultured in 

a single type of extracellular matrix such as matrigel or collagen I) did not show zone-specific 

functions. However, the liver contains complex ECM environments according to its zonation, 

and the composition of different ECMs will be proposed for further cultivation models. Since a 

difference in oxygen concentration is considered a critical parameter for liver zonation, the 

supply of an oxygen gradient might also be necessary in the future.  

Concerning improvements to the microfluidic device used in this study, multiple organs-

on-a-chip model can be suggested for the future with the addition of extra lanes in the culture 

chamber or connections to adjacent wells using an additional experimental setup, so that 

researchers can observe cell-cell communication and interactions of multiple organs that 

occur in the same manner as in the human body in vivo. Installation of upper part of 

phaseguide can be also suggested for support of the maintenance of cell aggregation, since 

we observed flatted shape in upper layers of cell culture area. Furthermore, electrical probes 

acting as sensors or extra compartments for a high-throughput screening system can be 

integrated to the present biochip platform, which will allow online monitoring for various 

applications.  

     Although the number of publications related to microfluidic cell culturing, including liver 

organ models is rapidly increasing, current studies cannot fully conclude the standardization 

of methods and nor explain in-depth biological characterization, such as metabolic, genetic, 

and signal transduction pathways. In this thesis, we attempted to understand and explain 

how melatonin influences the inflammation response stimulated by IL-6 from a molecular 

biology standpoint. Although it was not possible to fully elucidate such a complex biological 

phenomenon, we proposed new candidate pathways. Additionally, we were curious that how 

traditional in vitro platforms react differently on hepatic inflammation, therefore few 

experiments were performed for further studies. Interestingly, this microfluidic device platform 

showed more sensitive effects than traditional culture model (Figure 6.5 in appendix).    

    Therefore, the next challenges in the field of microfluidic cell biology are not merely to 

develop new biomimetic devices but also to address mechanisms in diverse disease models, 

cell differentiation, and cell signaling in new in vitro environments and to compare critically 

among various in vitro models and in vivo clinical data.  
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 Appendix 

 

Supplemental materials   

 

 

 

Figure 6.1 (A) Top and bottom views of the 2-lanes biochip, (B) A view of the one culture 

chamber unit in the 2 lanes-biochip. Cell culture lane possesses only inlet but no outlet. (C) 

Top and side views of cell culture area in the 2-lanes biochip. One phaseguide is placed 

between the cell culture lane and the perfusion lane.  
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Figure 6.2 Light microscope images of HepG2 cells in comparison to two different second 

gelation time points (2 hours versus 5-6 hours). HepG2 cell clusters showed less flat 

morphology in culture with a gelation time of 5 hours than 2 hours, and the structure of cell 

cluster was less collapsed. Scale bars indicate 100µm. 

 

 

 

Figure 6.3 Light images of microscope to monitor the formation of cell clusters for 2 weeks of 

microfluidic cultivation according to different seeding concentration. Scale bars indicate 

100µm.   
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Figure 6.4 Acetaminophen response of HepG2 cells after 5 days of cultivation in microfluidic 

device. (A) Representative images of HepG2 cells in the perfused chip and exposed to 

different concentrations of acetaminophen (0.5, 2.5, and 25mM). Dead cells were stained, 

showing with red color. (B) A dose-response graph of HepG2 cells exposed to different 

concentration of acetaminophen represents. Scale bar indicates 100µm.  
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Figure 6.5 (A) CRP production level in each different cultivation model including static 2D, 3D, 

and biochip culture. & indicates significant difference in comparison to control group. (B) 

Change of superoxide production in mitochondria, mitochondrial membrane potential, and 

CYP1A activity in HepG2 monolayer culture model upon treatment with melatonin, IL-6, 

melatonin + IL-6. All data represented as a fold change to each control group.   
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