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Zusammenfassung 

 

Um ein breites Verständnis der Lipopeptid-Biosynthese in Myxobakterien zu erhalten, 

wurden im Rahmen dieser Arbeit neue Lipopeptid-Biosynthesewege unter Einsatz eines 

umfangreichen Screenings myxobakterieller Genome identifiziert und charakterisiert. Auf 

diesem Weg konnten vier bisher unbekannte Lipopeptid-Gerüste vorhergesagt und im 

weiteren Verlauf durch Strukturaufklärung bestätigt werden. Daneben konnten anhand 

detaillierter Sequenzanalysen der beteiligten Biosynthesewege die strukturellen Unterschiede 

der Lipopeptid-Gerüste auf genetischer Ebene erklärt werden. Diese Untersuchungen haben 

ebenfalls zur Aufklärung der genetischen Mechanismen beigetragen, welche zur Evolution 

dieser Biosynthesewege geführt haben. 

 

Darüber hinaus wurden die identifizierten Lipopeptid-Biosynthesewege als Modellsysteme 

zur Etablierung synthetischer Expressionsplattformen herangezogen. Im Rahmen dieser 

Arbeit konnte eine flexible Assemblierungsstrategie zur Konstruktion artifizieller Lipopeptid-

Gencluster entwickelt und eine Genbibliothek generiert werden, auf deren Basis nicht 

natürliche Lipopeptid-Biosynthesewege mittels kombinatorischer Biosynthese erzeugt und 

heterolog exprimiert werden konnten. Diese Studien führten zur Produktion von fünf 

neuartigen Lipopeptid-Gerüsten und demonstrieren eindrucksvoll die Vorteile synthetisch-

biologischer Methoden gegenüber klassischen Ansätzen. Die beschriebene Strategie erlaubt 

darüber hinaus die schnelle Modifikation der artifiziellen Biosynthesewege. 
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Abstract 

 

To gain a deep understanding of the lipopeptide biosynthesis in myxobacteria, a 

comprehensive screening of myxobacterial genomes was initially carried out in the course of 

this thesis leading to the identification and characterization of novel lipopeptide biosynthetic 

pathways. By following this strategy, four yet unknown lipopeptide cores were predicted and 

further structurally characterized to ultimately prove the predicted structures. On the basis of 

detailed sequence analyses of the underlying biosynthetic pathways, the structural differences 

of the lipopeptide cores could be rationalized on a genetic basis. These studies also 

contributed to the elucidation of the genetic mechanisms, by which the different biosynthetic 

pathways have evolved. 

 

Furthermore, the identified lipopeptide biosynthetic pathways were used as model systems to 

establish synthetic expression platforms. In the course of this thesis, a versatile assembly 

strategy for the construction of artificial lipopeptide gene clusters was developed, which 

allowed the generation and heterologous expression of unnatural lipopeptide biosynthetic 

pathways based on an established gene library via combinatorial biosynthesis. These studies 

led to the production of five novel lipopeptide scaffolds and impressively demonstrate the 

huge potential of synthetic biology techniques compared to classical approaches. Moreover, 

the described strategy allows the rapid modification of the artificial biosynthetic pathways. 
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1     Introduction 
 

1 Introduction 

1.1 Lipopeptides – A Distinguished Class of Natural Products 

Natural products are defined as chemical compounds that are produced by a biological 

source,1 e.g. microorganisms such as bacteria and fungi, but also by higher organisms like 

plants and animals, and often exhibit interesting biological and pharmacological activities.2  

These compounds are usually referred to as secondary metabolites since they are not essential 

for the producer organisms’ life cycle. However, microbial secondary metabolites often have 

important functions in the biology of the producer organisms, e.g. as protective agents against 

pathogens or predators in defense mechanisms, as signaling molecules in cell development, 

differentiation, inter- and intraspecies communication and induction of sporulation, as 

motility factors, and as siderophores for efficient metal uptake.3–6 In many cases, the functions 

of natural products in their native context are not known. A distinguished class of microbial 

natural products that attracted attention over the past decades are the lipopeptides (LPs), 

which are composed of a fatty acid moiety linked to a peptide core that can either be linear or 

cyclic,7,8 and can further include several nonproteinogenic or unusual amino acids such as 

chemically modified (O-methylated, N-methylated, β-hydroxylated, halogenated amino 

acids), D-configured or β-amino acids. In conjunction with the occurrence of various lipid 

chains given by differences in the length, the oxidation state and the degree of branching of 

the acyl chain, microbial LPs constitute a structurally diverse compound class occupying an 

enormous chemical space (Figure 1).6,8–10 Among the different LP classes, the cyclic 

lipopeptides (CLPs) are most abundant and are produced by various bacteria such as soil-

dwelling Pseudomonas spp.,6 Bacillus spp.,6 Streptomyces spp.,11 Actinomyces spp.,12 as well 

as cyanobacterial Microcystis spp. found in marine habitats.13 In addition, fungal species such 

as Aspergillus spp. and Candida spp. are capable of producing a vast array of CLPs amongst 

others.14,15 Due to their potent medicinally relevant activities and their distinct amphiphilic 

properties, CLPs came recently into the focus of pharmaceutical companies and other 

industries.16,17 The cyclic lipopeptide antibiotic daptomycin (Figure 1A), which is produced 

by Streptomyces roseoporous,18,19 is the first approved member of the CLP family for the 

treatment of systemic infections caused by Gram-positive and often multi-resistant bacteria 

such as methicillin-resistant Staphylococcus aureus (MRSA).20 Beside the bactericidal 

activities,18,21,22 CLPs have also been found to exhibit promising antifungal,23–26 antiviral,27,28 

anticancer,29,30 immunosuppressant,31 immunomodulating,32 and hemolytic properties.33,34 
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Figure 1. Prominent cyclic lipopeptides of microbial origin. A: Structure of the antimicrobial compound 

daptomycin produced by Streptomyces roseoporous. B: Structure of surfactin A from Bacillus subtilis exhibiting 

multiple pharmacological activities. C: Structure of the immunosuppressive agent cyclosporine A from 

Tolypocladium inflatum. D: Structure of the antifungal compound friulimicin B produced by Actinoplanes 

friuliensis. 
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Interestingly, many CLPs have been recognized as effective biosurfactants,35 which find 

commercial application in environmental industries for the treatment of soil and water due to 

their ability to enhance biodegradation and bioavailability by improving the solubility of 

poorly water-soluble pollutants.36 In addition, CLPs are widely used in other fields such as 

crop protection,7 and as ingredients of cosmetic formulations.37,38 However, CLPs also fulfill 

a wide range of functions in their producer strains or in their natural environment. Recent 

studies on the versatile functions of microbial CLPs from Pseudomonas spp. and Bacillus spp. 

revealed their roles in the protection against predatory microbes, active cell movement on 

surfaces and the formation of complex biofilms, thereby enabling the microorganisms to 

colonize novel habitats.6 Furthermore, functions as signaling molecules for coordinated cell 

growth and differentiation, in the biodegradation of xenobiotics and as metal chelators have 

been recently reported for CLPs.6 The latter ability can also essentially contribute to the 

pharmacological activity of CLPs as recently described for the calcium-dependent compounds 

daptomycin and friulimicin (Figure 1D).39–41 The intriguing structural diversity of CLPs 

together with their remarkable potential in the application as highly effective surfactants, 

biological pesticides, cosmeceuticals and in particular as drugs exhibiting novel modes of 

action, underscore the importance of searching new LP scaffolds in the yet underexplored 

microbial species. 

 

1.2 Myxobacteria – An Underexplored Source of Microbial Natural Products 

Historically, initiatives in natural product discovery from microbial resources particularly 

focused on well-studied microbes such as actinomycetes, in particular streptomycetes, and 

fungi.42 Unsurprisingly, the majority of bioactive compounds found over the past decades 

originated from these proficient producers of secondary metabolites and rapidly changed into 

stagnation as more and more known compounds have been reisolated from related species. 

The emerging resistance of high-risk pathogens against these formerly useful antibiotics 

called for the exploitation of yet untapped microbial habitats and ecological niches in order to 

isolate novel microbes and their corresponding secondary metabolites. Among the 

underexplored microbial sources for bioactive natural products, the myxobacteria represent a 

promising resource as proficient producers of pharmacologically interesting natural products. 

Myxobacteria are Gram-negative, rod-shaped, slime bacteria belonging to the group of δ-

proteobacteria (order Myxococcales). They can be ubiquitary found around the globe and 

occupy diverse habitats such as soil, dung and marine habitats.43 Myxobacteria exhibit unique 

and characteristic features making them outstanding prokaryotes, which is also reflected by 
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their exceptional genomic capacities. The myxobacterium Songarium cellulosum So0157-2 

possesses the largest bacterial genome discovered so far (14.8 Mbp),44 and average genome 

sizes of 9-15 Mbp with a high GC content of about 70% are usually common for 

myxobacterial strains.45,46 The enormous genetic information used by these bacteria especially 

attributes to their complex cellular developmental cycle (Figure 2), which is adapted to 

various environmental conditions, their distinct social behavior, their ability to cooperatively 

glide on surfaces, their ability to prey on other microbes and their potential to produce a 

plethora of bioactive secondary metabolites.47,48 

Most myxobacteria are chemoorganotrophic microorganisms,49 which means that they are 

reliant on insoluble organic substances to maintain their cellular processes. In order to find 

nutrients in their habitat, myxobacteria are able to move in swarms in a chemotaxis-like 

manner, although they do not possess flagella or similar structures for directed movement like 

other bacteria.50 In contrast, flagella-independent swarming motility in myxobacteria is 

mediated by two different motility systems, which are referred to as social (S-) and 

adventurous (A-) motility.51 S-motility plays a crucial role in multicellular swarms (Figure 

2A) for both predation and fruiting body formation,52–54 another feature which was originally 

thought to be a characteristic of eukaryotic fungi. S-motility is triggered by different 

extracellular components including exopolysaccharide (EPS) containing fibrils, 

lipopolysaccharide and retractile type IV pili, which provide direct cell-cell contact.55,56 

During the swarming process the pili, which are located at the leading pole of the cell, are 

attached to the EPS of adjacent cells, thereby coordinating swarm movement by multiple 

cycles of extension and retraction.57 If necessary, this machinery can be reassembled at the 

opposite pole of the cell to change the direction. In contrast, A-motility describes the 

movement of single cells at the edge of a swarm to explore new habitats, thereby leaving 

behind an extracellular matrix, that ‘paves the way’ for the following companions.51 Although 

a large set of genes was identified to be involved in the A-motility system over the past 

decades,58,59 the precise mechanisms are still not understood in detail. Two main hypotheses 

have been proposed, which try to explain the movement of A-motile cells both suggesting the 

involvement of a proton motive force, which drives different protein motors.58,60 There is 

consensus in both models, that the traits of extracellular slime produced by the gliding 

bacteria plays a crucial role in bacterial A-motility and in facilitating cell adhesion to the 

surface they move on. In addition, it has been proposed that the deposited slime also 

contributes to the social capabilities in myxobacteria.61 Interestingly, previous studies 

demonstrated the effect of LPs on motility in various bacterial producer strains.6 LP-deficient 
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mutant strains lost their ability to glide on solid surfaces suggesting the biological function of 

LPs to help the bacteria to translocate to nutrient-rich habitats, amongst others.  

 

 

Figure 2. Developmental stages of Myxococcus xanthus on solid agar (pictures taken by Ronald Garcia). A: 

Swarming colony showing flare edges. B: Vegetative cells. C: Developing fruiting bodies on agar. D: Slide 

mount of myxospores. A/C: stereo photomicrographs, B/D: phase contrast photomicrographs. 

 

Besides their unique swarming motility, myxobacteria are distinguished by a complex life 

cycle, which largely relies on the supply of nutrients in their habitat. Myxobacteria are 

capable of coordinated predation by making use of the described motility systems in 

conjunction with segregation of lytic enzymes in order to degrade suitable biopolymers or to 

prey on other bacteria or fungi by the action of additionally secreted antibiotics.62–64 When the 

continuous nutrient supply becomes limited, myxobacteria enter several developmental 

stages, which are characterized by the formation of multicellular fruiting bodies from 

thousands of vegetative cells (Figures 2B/C). Prerequisites for the development of fruiting 

bodies are a critical cell density, which requires motility on solid surfaces, recognition of the 

limited nutrient supply as well as a complex interplay of inter- and intracellular signaling 

pathways.48 In M. xanthus, it was shown that a reduced cell movement supports cell 

aggregation to form fruiting bodies.65 In the course of this process, vegetative cells undergo 

significant morphological changes including the formation of spherical cells, which are 

enveloped by several lipid layers. Under constant starvation conditions, more and more cells 

aggregate to form the fruiting bodies, in which approximately 10% of the cells develop into 

viable myxospores (Figure 2D).66 Myxospores are highly resistant to heat, desiccation, pH 

value, UV radiation and the continued absence of nutrients,67 which displays an efficient 
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strategy to survive under extreme environmental conditions. Most of the cells become lysed 

during fruiting body development,68 thereby providing essential nutrients for the sporulation 

process and the differentiation of myxospores. When nutrient supply is restored, myxospores 

germinate and rearrange to vegetative cells, which are again able to glide in cooperative 

swarms, thereby restarting the myxobacterial growth cycle.66 In analogy to the motility 

systems described above, microbial LPs seem to have biological functions linked to the 

producer’s ability to form fruiting bodies and other biofilms. In a recent study, fruiting body 

development in a M. xanthus mutant strain exhibiting accelerated production levels of the 

lipohexapeptide myxochromide A was dramatically downregulated.69 In Bacillus sp. and 

Pseudomonas sp. LPs were shown to likely play essential roles as inducers of multicellularity 

by stimulating morphological rearrangements.6 

Taxonomically, myxobacteria display a coherent group comprising three suborders 

(Cystobacterineae, Nannocystineae and Sorangiineae), 11 families and 29 genera, which were 

validated at the time of writing this thesis,70 but the aforementioned numbers continue to 

increase due to innovative biodiversity mining. Traditionally, classification of novel isolates 

was realized by investigation of the unique phenotypic and morphological features.71 It turned 

out soon that this strategy alone is not sufficient to certainly assign the novel strains to the 

existing families and genera as many strains were misclassified in the past, which needed to 

be carefully revisited. Today, a combination of physiological, phenotypic and genetic 

features, especially the use of 16S rRNA genes, complemented by instrumental techniques 

such as GC-MS analysis of specific fatty acids contributes to the clarification of the 

phylogenetic position of novel taxa.72–74 In addition, analysis of 16S DNA sequences as well 

as coding DNA sequences or protein sequences allows for the in silico reconstruction of 

phylogenetic trees to illuminate strain phylogenies. Phylogenetic studies can also be applied 

to the underlying natural product pathways, which direct the production of certain secondary 

metabolites, by in silico analysis of DNA sequences coding for the corresponding pathways. 

In this way, it is possible to directly link strain phylogeny to pathway phylogeny in order to 

investigate the evolutionary origins, relationships and histories of these secondary metabolite 

pathways and the respective producer strains. 

Over the past decades, myxobacteria have been recognized as proficient producers of such 

secondary metabolites, mainly polyketides and peptides, exhibiting an intriguing diversity 

concerning their chemical structures and bioactivities ranging from antifungal, antibacterial, 

antiviral and antimalarial to cytotoxic, immunosuppressive and antioxidative properties.75 

This is in fact expressed by their aforementioned huge genetic capacities pointing up their 
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biosynthetic potential. Around 10% of a myxobacterial genome encode for natural product 

biosynthetic pathways resulting in a number of usually 10 to more than 20 biosynthetic 

pathways per genome.45,76 Until today, more than 100 distinct natural product core structures 

harboring partly unusual structural elements and about 600 derivatives have been isolated and 

characterized.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Structures of selected secondary metabolites produced by the model strain Myxococcus xanthus 

DK1622. A: myxoprincomide. B: myxalamid A. C: myxovirescin A. D: DKxanthen-534. E: myxochelin A. 

 

Most myxobacterial natural products were isolated from Sorangium, Myxococcus, and 

Chondromyces strains, as compound screening particularly focused on these genera in the 

past.77 The model strain M. xanthus DK1622 is e.g. capable of producing a vast array of 

diverse secondary metabolites such as myxoprincomide,78 myxovirescin A,79 myxalamides,80 

DKxanthenes,81,82 and myxochelin A (Figure 3),83 exhibiting various natural functions or 

antibiotic activities. Lipopeptides were found in myxobacteria as well but compared to the 

extensively studied LP producers Pseudomonas spp. and Bacillus spp., LP biosynthesis in 

myxobacteria is currently underexplored. The best studied myxobacterial LP pathways direct 

the biosynthesis of myxochromides A from M. xanthus DK1622,84 and myxochromides S 
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produced by Stigmatella aurantiaca DW4/3-1.85 Additionally, the structure of another 

member of this LP family, myxochromide B3 from an unclassified Myxococcus sp. strain, was 

previously elucidated.86 Cystomanamides A-D produced by Cystobacter fuscus MCy9118 

display a novel class of myxobacterial linear LPs, which was recently structurally 

characterized.87 Both LP families do not exhibit any biological activity under the applied 

conditions in standard bioactivity screenings, but one has to consider that LPs often exhibit 

highly specific functions or bioactivities, which are frequently not detected in these screens. 

Another type of mxyobacterial lipopeptides are the lipothiazoles, which have been detected in 

extracts of Sorangium cellulosum GT47.88 However, the most prominent myxobacterial 

secondary metabolite, which was approved by the FDA in 2007 as an agent against advanced 

breast cancer,89 is the macrolide epothilone produced by various Sorangium strains.90 In 

addition, five compound classes from myxobacteria targeting different medical indications are 

currently assessed in preclinical studies and 14 different scaffolds are extensively under 

investigation concerning their mechanisms of action, thereby being promising candidates for 

future drug development programs.47 Considering the relatively small number of 

myxobacterial strains screened so far, these examples illustrate the potential of myxobacteria 

as a still rich source of bioactive natural products, which is far from being exhausted. 

 

1.3 Natural Product Biosynthesis by Multimodular Enzyme Complexes 

Nature developed intriguing concepts for the formation of bioactive substances during billions 

of years, which led to diverse groups of natural products. Many of these concepts include the 

supply of simple precursor molecules, which can be subsequently transformed into rather 

complex metabolites either by a subset of single enzymes or by multienzyme complexes. For 

instance, plant polyphenolic compounds like flavonoids or stilbenes usually derive from 

simple phenylpropanoids using the Shikimate pathway,91 whilst terpenes are made of isoprene 

or its activated forms,92 respectively, in multistep enzymatic conversions. In myxobacteria, 

most of the secondary metabolites characterized so far belong to the class of polyketides and 

nonribosomal peptides, many of them were shown to exhibit antibiotic and/or cytotoxic 

activities.47 Such polyketides and nonribosomal peptides also consist of simple building 

blocks that can be assembled to form a vast number of structurally diverse compounds. 

Condensation of these precursors is mediated by polyketide synthases (PKS) and 

nonribosomal peptide synthetases (NRPS), giant multimodular enzyme complexes, which act 

as molecular assembly lines in natural product formation.93,94 The genes encoding these 
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assembly lines are usually clustered, thereby simplifying the identification and analysis of 

gene clusters that are associated with natural product biosynthesis. 

1.3.1 Biochemistry of PKS Machineries 

Polyketide synthases (PKS) are evolutionary linked to and derived from fatty acid synthases 

(FAS).95 FASs have been intensively studied since their discovery, and it was quickly 

recognized that these systems can appear either as a set of distinct enzymes or as multienzyme 

complexes, which convert simple carboxylic acid monomers into saturated fatty acids using 

an iterative assembly strategy.96,97 In general, fatty acids are biosynthesized via successive, 

decarboxylative Claisen-like condensations of the short-chain carboxylic acids acetyl-CoA 

and malonyl-CoA.98 The dimeric FAS machinery involves seven catalytic functionalities to 

specifically select the precursor molecules and to further process the growing acyl chains.99 

Malonyl/acyl transferase (MAT) is responsible for transferring the starter unit acetyl-CoA and 

the extender units malonyl-CoA onto the acyl carrier protein (ACP). ACPs are four-helix 

bundles consisting of 80-100 amino acid residues. The substrates are covalently linked to a 

conserved serine residue of the ACP as a thioester using a phosphopantetheinyl (ppant) linker, 

which is derived from CoA.100 The ppant moiety acts as a flexible arm and can subsequently 

guide the substrates and intermediates to other catalytic functionalities for further processing, 

thereby providing an efficient biosynthetic system, which is not dependent on and limited to 

diffusion control as it is the case for isolated enzymes. Phosphopantetheinyl transferases 

(PPTases) catalyze the posttranslational transfer of the CoA-derived linker molecule onto the 

ACP.101,102 After loading of the starter and extender units, β-ketoacylsynthase (KS) catalyzes 

C-C bond formations by employing decarboxylative condensations between KS-bound acetyl-

CoA starter units or biosynthetic intermediates and extender units, which are bound to the 

ACP.103 The repetitive extension of the growing ACP-bound acyl chain with C2 carboxylic 

acid monomers results in poly-β-oxo compounds, which are further processed by a set of 

reductive enzymes to build up fully reduced fatty acids. This set of reductive domains of 

FASs consists of three catalytically active enzymes: a ketoreductase (KR), a dehydratase 

(DH) and an enoylreductase (ER). Stepwise processing of the introduced extender units first 

leads to the conversion of the β-ketoacyl functionality to β-hydroxy compounds by 

NAD(P)H-dependent KR catalysis. DHs subsequently catalyze water elimination, thereby 

forming a C=C double bond, which is finally being reduced to a saturated C-C bond by ERs 

(Figure 4).96 The final product of the FAS is being cleaved off the ACP by a thioesterase 

(TE). The product spectrum, an iterative FAS is able to produce, is quite limited. Only acetyl-



Introduction     10 
 

CoA and malonyl-CoA are being used as starter and extender units usually providing 

saturated fatty acids with chain lengths of C14-C18.99 

 

 

 

 

Figure 4. Reaction scheme illustrating the stepwise formation of products derived from FAS and PKS 

machineries (adapted from Smith and Tsai)96. A: FAS pathway leading to the formation of fully reduced fatty 

acids. Condensation of an acetyl-CoA starter unit with the first extender unit malonyl-CoA yields a β-oxo 

diketide, which is successively reduced by a set of reductive domains consisting of the KR, DH and ER domains 

prior to the following round of chain elongation. B: PKS pathway leading to the formation of various compound 

species. The β-oxo diketide produced in the first chain extension can undergo several reaction scenarios leading 

either to the formation of poly-β-oxo compounds or to the biosynthesis of partially or fully reduced polyketide 

structures depending on whether the reductive domains are present/active or not present/inactive in the 

corresponding module. 

 

Studies about FASs essentially contributed to the still expanding knowledge in the field of 

PKS research,94,104 and since sophisticated genomics, proteomics and structural 

methodologies have become routinely applicable, it was possible to gain detailed insights into 

how such giant megasynthase complexes are capable of producing structurally diverse and 

complex polyketides. In contrast to FASs, most bacterial PKSs are composed of so-called 

modules, which contain catalytically active domains fulfilling the tasks described above for 

FASs and which are arranged as a kind of molecular assembly line.105 A minimal PKS 
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module is composed of at least an acyltransferase (AT) domain, a KS domain and an ACP. In 

such multimodular PKSs, every module is thus responsible for one round of chain elongation 

during biosynthesis. Consequently, the number of functional modules in the PKS system 

usually correlates with the number of incorporated building blocks, which is known as the co-

linearity rule.106 Although FASs and PKSs share basically closely related catalytic 

mechanisms, there are significant differences between both systems concerning building 

block selection, different degrees of reduction after each elongation step, the use of additional 

modifying domains/enzymes as well as chain termination mechanisms, thereby leading to an 

unique structural diversity of polyketides.96 

Unlike in FASs, where the MAT domain exhibits dual-specificity for acetyl-CoA and 

malonyl-CoA for both substrate loading and chain extension, the AT domains present in 

modular PKSs usually have distinct specificities either for malonyl- or methylmalonyl-

CoA.107 In addition to the standard building blocks described, the structural diversity of 

polyketides can be dramatically increased by selection of various unusual starter and extender 

units. Besides acetyl-CoA, possible starter units are e.g. isovaleryl-CoA, benzoyl-CoA, 

cyclohexanyl-CoA, cinnamoyl-CoA and many more.108 Diversification by using alternative 

extender units is less common but there are some examples known, e.g. methoxymalonyl-

CoA, ethylmalonyl-CoA, hydroxylmalonyl-CoA and aminomalonyl-CoA.109–111 

The sequential use of the reductive domains (KR, DH, ER) increases the structural diversity 

of polyketides as well. The poly-β-oxo compounds produced by multiple rounds of chain 

extension can either form complex polyphenolic compounds by undergoing orchestrated 

cyclizations or can be fully or partially reduced by KR, DH and ER domains (Figure 4). 

While the reductive domains are necessarily required in iterative FASs for fatty acid 

biosynthesis, it is merely optional in PKS machineries.94 

In addition, polyketides can be further structurally diversified by the action of unusual 

domains, enzymatic mechanisms and assembly line organizations.94 Several optional domains 

integrated into PKS assembly lines can be found such as methyltransferases (MT) that 

catalyze SAM-dependent C- or O-methylation.112 In addition, tailoring enzymes that act in 

trans transform the often pharmacologically inactive precursor polyketides into potent 

bioactive natural products. The most common tailoring enzymes are glycosyltransferases that 

attach sugars – predominantly hexoses, which can also be highly modified – to hydroxyl 

groups of the polyketide scaffold, thereby increasing the hydrophilicity, oxygenases that 

introduce hydroxyl or epoxide functionalities and halogenases that catalyze chlorination or 

bromination, which is often found in polyketides from marine origin.113 Modifications that are 
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catalyzed by these dedicated tailoring enzymes usually affect biological activity, metabolic 

stability and/or solubility. Apart from that, there are several unusual mechanisms, which 

deviate from the standard ‘textbook’ enzymology of PKS systems, thereby violating the co-

linearity rule.114 In some biosynthesis pathways, modules appear to be skipped during chain 

assembly. Based on a study of an engineered PKS system, module skipping is most likely 

facilitated by ACP-to-ACP transfer of the nascent intermediate, while the ACP of the skipped 

module carries over the acyl chain to the downstream extension module.115 In opposite cases, 

PKS assembly lines contain fewer modules than should be present according to the number of 

incorporated building blocks in a certain polyketide. This phenomenon, which is called 

‘stuttering’, implies the back transfer of the growing polyketide chain from the ACP to the KS 

domain of the same module, repeated loading of the free ACP domain followed by 

condensation.114 The affected polyketides are often by-products, while the major product 

conforms to the co-linearity rule. However, ‘stuttering’ is more appropriately referred to as 

‘programmed iteration’, since this process seems to play an important role in the biosynthesis 

of the major polyketides as well.114 

The chain termination also contributes to the intriguing structural diversity of polyketides. 

Whilst TE domains from FAS systems only hydrolyze the fatty acid-CoA thioester releasing 

linear products, the TE domains in PKSs often catalyze intramolecular cyclizations to form 

complex macrolides.116 

Furthermore, PKSs can interact with another class of multimodular enzyme complexes, which 

includes the incorporation of a vast array of amino acids into the acyl chain. The observed 

structural diversity accounts for numerous functions polyketides have in Nature, which are 

largely linked to secondary metabolism, thereby discriminating them from fatty acids 

produced by FASs, which are involved in primary metabolism. The seemingly endless options 

to combine different domains, modules and subunits in conjunction with the possibility to 

interact with different classes of molecular assembly lines give rise to an unprecedented 

structural diversity of polyketides exhibiting diverse biological activities. 

 

1.3.2 Biochemistry of NRPS Machineries 

Scientific reports about the biosynthesis of biopolymers that consist of amino acid monomers 

have traditionally their roots in the field of ribosome research. Protein synthesis is thereby 

mediated by a huge protein/RNA complex that coordinates a rather complicated interplay 

between various catalytic centers and enzymes finally facilitating the translation of the 

information encoded in the mRNA into a polypeptide chain.117 Furthermore, the ribosome is 



13     Introduction 
 

also able to produce small genome-encoded precursor peptides found in some 

microorganisms, so-called RiPPs (ribosomally synthesized and posttranslationally modified 

peptides), which are usually being highly posttranslationally modified to become biologically 

active.118 In contrast, many bacteria and fungi make use of another biosynthetic machinery to 

produce structurally diverse peptides. The multimodular nonribosomal peptide synthetases 

(NRPS) employ a highly similar biosynthetic strategy as already described for PKSs using 

peptidyl carrier proteins (PCP) as a substrate shuttling platform and canonical as well as non-

canonical amino acids as building blocks for the biosynthesis of nonribosomal peptides 

discriminating them from their counterparts synthesized by the ribosome.93 In analogy to PKS 

modules, every NRPS module consists of several catalytically active domains, which are 

responsible for building block activation (A, adenylation domain), substrate transfer (PCP) 

and condensation/chain elongation of usually L-configured amino acids (LCL, condensation 

domain). Similar to PKS machineries, most NRPS assembly lines contain a loading or 

initiation module, which often harbors only an A domain as well as a PCP domain in order to 

start the biosynthesis. In addition, termination modules contain TE domains to release the 

final linear product by hydrolysis. In many cases, the TE domains are also able to catalyze 

macrocyclizations, which lead to complex macrolactames, macrolactones and related 

compounds.119,120 Similar to short-chain carboxylic acids in PKS biosynthesis, the amino 

acids used as building blocks in NRPS systems need to be presented in an activated form. 

Unlike the related AT domains in PKS modules, A domains select the corresponding amino 

acid and catalyze the formation of an aminoacyl-adenylate (AMP-ester) using adenosine-

triphosphate (ATP) and magnesium ions as cofactors.121 When two adjacent NRPS modules 

are loaded with amino acids, the downstream C domain catalyzes peptide bond formation, 

which yields a peptide intermediate that is bound to the PCP of the second downstream 

module. During this reaction, the upstream PCP-bound donor amino acid is attacked by the 

nucleophilic amino group of the downstream PCP-bound acceptor amino acid (Figure 5).122 In 

general, A domains specifically recognize amino acids depending on the cavity in their active 

sites, which is largely determined by a certain set of amino acid residues. 
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Figure 5. Mechanism of peptide bond formation in NRPSs. Active domains are highlighted in orange. A: 

Adenylation domains catalyze amino acid activation via formation of an aminoacyl-adenylate and subsequent 

transfer to the adjacent peptidyl carrier protein, thereby consuming ATP. B: Condensation of two amino acids 

attached to neighboring NRPS modules catalyzed by the downstream condensation domain. 

 

This amino acid specificity-conferring code has been intensively investigated by Stachelhaus 

et al. and other research groups and provides an useful tool for the in silico prediction of 

amino acids selected by distinct A domains.123,124 However, substrate specificities of A 

domains are very often not stringent allowing the activation of more than one amino acid by 

an A domain. A domains of NRPS assembly lines are not only capable of activating and 

incorporating proteinogenic amino acids but also of an almost uncountable number of non-

proteinogenic amino acid precursors. These precursors are usually being synthesized in trans 

by a set of dedicated enzymes and often originate from proteinogenic amino acids or other 

primary metabolites and can subsequently be loaded onto PCP domains.125 Prominent 

examples are 2,3-diaminopropionate (DAP), which is made from L-serine and the amino 

group donor L-ornithine,126 as well as L-p-hydroxyphenylglycine, which is biosynthesized in a 

transamination-like conversion, in which the amino functionality of L-tyrosine is transferred 

to the acceptor p-hydroxybenzoylformate.127 The β-hydroxylation of amino acids is another 

possibility to further extend the scope of precursor molecules that can be incorporated by 

NRPS systems during assembly of the NRPS-derived peptide. Oxidative enzymes that 

catalyze β-hydroxylation of amino acids are usually cytochrome P450 monooxygenases 

(CYPs), di-iron monooxygenases or iron/α-ketoglutarate-dependent dioxygenases and can act 

either on free amino acids or on PCP-bound amino acids of external A-PCP didomains.128–131 
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β-hydroxylation has been reported for the proteinogenic amino acids L-phenylalanine, L-

tyrosine, L-leucine and L-valine, amongst others, as well as for the non-proteinogenic 

counterpart L-p-aminophenylalanine.131–133 Furthermore, non-proteinogenic amino acids 

derived from the primary metabolism can be directly introduced into NRPs, e.g. L-ornithine.18 

Similar to PKS enzymology, there are additional catalytic domains that can be integrated into 

the assembly line in order to modify single building blocks or the mature peptide. For 

instance, D-configured amino acids can be found in many NRPS products. Since D-

configured amino acids usually do not occur in the primary metabolism, they are directly 

converted from L-amino acids by epimerization domains (E), which are located downstream a 

PCP domain in NRPS modules.134,135 In those cases, the C domain of the following module 

exhibits an altered stereospecificity (DCL). Additionally, typical modification reactions 

comprise N- or C-methylations catalyzed by methyltransferases (MT), glycosylations 

catalyzed by glycosyltransferases (GT), hydroxylations and oxidative cross-coupling reactions 

mainly mediated by CYPs, transaminations (AMT, aminotransferase domain) and 

heterocyclizations (HC, heterocyclization domain or Cy, cyclisation domain), rarely also 

cyclopropanations (Cyp, cyclopropanase domain).136–138 Heterocyclizations in NRPS systems 

frequently involve serine, threonine and cysteine residues, which can be converted into 5-

membered oxazoline or thiazoline rings, respectively. Oxidase domains (Ox), which often 

appear to be present together with HC domains are able to catalyze dehydrogenation of the 

oxazoline or thiazoline yielding the respective oxazole or thiazole.139 In addition, reduction by 

dedicated reductases (Re) leads to the formation of oxazolidine or thiazolidine rings.140 

Moreover, Re domains are found to be involved in reductive product release mechanisms, 

which facilitates the formation of carboxylic acid and aldehyde moieties, amongst others.141 

Module skipping, as already described for PKS biosynthesis, can also occur during NRP 

formation and contributes to the expansion of secondary metabolites, which can be made by a 

single assembly line.84 Since the PKS and NRPS biosynthetic logic and assembly line 

organizations share many striking similarities following modular biosynthetic principles, it is 

not surprising that PKS/NRPS hybrid assembly lines evolved over time and greatly contribute 

to the incredibly versatile pool of microbial natural products. 
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1.3.3 PKS/NRPS Hybrid Megasynthetases 

In principle, modular PKS and NRPS megaenzymes share the same biosynthetic strategies, 

which comprise building block selection, priming of a carrier protein and condensation with a 

downstream extender unit. ACPs and PCPs with their flexible ppant linkers therefore guide 

the substrates or biosynthetic intermediates along the assembly line by providing them in the 

active site of the downstream domain that catalyzes condensation of the ACP/PCP-bound 

templates (C or KS). Since the functions of domains or even modules of PKS and NRPS 

systems and their arrangement are highly similar, the discovery of hybrid PKS/NRPS 

assembly lines was the logical consequence.142 This concept further diversifies microbial 

natural products that are made either of PKS or NRPS assembly lines and combines enzyme 

functions and features of both production routes. An example of a prominent PKS/NRPS 

hybrid system is the heptamodular tubulysin assembly line from the myxobacterium 

Angiococcus disciformis, which directs the biosynthesis of the potent cytotoxic peptides 

tubulysins exhibiting antimitotic activity (Figure 6).143 

 

Figure 6. Assembly line architecture and proposed biosynthetic pathway of the tubulysins. The PKS/NRPS 

hybrid machinery consists of seven modules, two PKS (illustrated in gray) and five NRPS (colored) modules and 

facilitates the incorporation of acyl units plus a set of proteinogenic, unusual and modified amino acids. The 

coloring of the catalytic domains corresponds to the biosynthetic intermediate and product structures. 

Abbreviations of catalytic domains are explained in the main text; S = spacer. 
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The tubulysin biosynthetic machinery involves five NRPS and two PKS modules distributed 

over five protein subunits (TubB-F), which catalyze successive elongation of the growing 

peptide chain and an additional enzyme, which supplies the starter amino acid (TubZ). 

Several deviations from ‘textbook’ NRPS enzymology, which were discussed above, lead to 

the production of a highly unusual natural product. The initiation module starts biosynthesis 

with the incorporation of the unusual amino acid pipecolic acid, which derives from lysine. 

Pipecolic acid is generated in situ by the action of lysine cyclodeaminase TubZ, which is also 

encoded in the tubulysin biosynthetic gene cluster. The amino acids isoleucine and valine are 

installed in the peptide chain by two subsequent NRPS modules. Both the first and the third 

module contain a MT domain integrated into the respective A domains. Accordingly, the 

corresponding amino acids were found to be methylated.143 The most fascinating aspect of 

PKS/NRPS hybrid systems is how they manage the translocation of the nascent product chain 

at the interfaces between PKS and NRPS subunits. Transition from module 3 to module 4 

constitutes the first NRPS/PKS interface in the assembly line and requires a KS domain to be 

able to accept the peptidyl donor from module 3 and catalyzes C-C bond formation with a 

malonyl-CoA extender unit selected by module 4, which contains a fully active reductive 

loop. In analogy, the downstream HC domain is capable of catalyzing the condensation of the 

acyl/peptidyl chain with cysteine, thereby forming the thiazoline moiety, which is 

subsequently oxidized to the thiazole ring by the Ox domain. The minimal NRPS module 6 

incorporates an aromatic amino acid residue (either phenylalanine or tyrosine) followed by 

the condensation of the resulting intermediate with the second malonyl-CoA extender unit, 

which is fully reduced and methylated at the α-carbon atom via action of the reductive loop 

and the integrated MT domain. Product release is facilitated by the TE domain, which 

hydrolyzes the linear PK/NRP hybrid product to form a mature peptide that is subjected to 

further rare tailoring modifications.143 

Although many PKS/NRPS hybrid machineries like the tubulysin assembly line have been 

characterized over the past years, there is still a lack of mechanistic insights into how PKS 

and NRPS subunits or modules can interact with each other. Several attempts to reprogram 

these biosynthetic megaenzymes to produce ‘unnatural’ scaffolds failed in most cases, which 

suggests that intersubunit or intermodule communication is mediated by rather sensitive and 

fine-tuned protein interactions.144 Previous studies revealed that the specific intersubunit 

recognition processes are mediated by so-called docking domains in PKSs and 

communication-mediating (COM) domains in NRPS systems, which are located at the N- and 

C-termini of the respective protein subunits.145,146 It likely seems to be that a similar 
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quaternary structure of both the PKS and NRPS subunits is crucial for their correct interaction 

and orientation in the operative assembly line. Several studies suggested that PKS as well as 

the cognate FAS subunits occur as homodimeric, ‘double-helical’ proteins,147 whereas 

investigations about quaternary structures of NRPS systems are rather inconsistent.148,149 

Monomeric as well as dimeric structures have been found using sophisticated analytical 

techniques and it is assumed that NRPS subunits are able to switch between both states 

depending on whether they interact with other NRPS subunits (monomeric) or PKS subunits 

(dimeric) in hybrid megasynthetases.148 By now, several families of docking or COM 

domains have been identified and many hybrid pathways have been intensively 

characterized.144 However, detailed insights into enzymatic mechanisms and particularly into 

the dynamics and protein-protein interaction networks of PKS and NRPS systems and their 

hybrids remain largely to be deciphered. State-of-the-art structural techniques like protein 

NMR, X-ray crystallography and cryo electron microscopy are currently used to study 

multienzyme architectures as well as domain and module contact regions, interaction surfaces 

and dynamic mechanisms of precursor processing/product formation. The output of those 

studies is assumed to have a significant impact on the rational design of PKS, NRPS and 

PKS/NRPS hybrid assembly lines in order to produce novel metabolites, which would 

otherwise not be synthesized in Nature, by combinatorial biosynthesis. 

 

1.3.4 Bioinformatics Tools to Identify and Characterize Biosynthetic Gene Clusters 

Recent advances in high-throughput shotgun genome sequencing techniques such as Illumina, 

PacBio, IonTorrent and 454 pyrosequencing essentially contributed to the exploding number 

of microbial genome sequence data over the past years.150 The progress achieved so far made 

the sequence-based analysis of these genomes and, in particular, of biosynthetic gene clusters 

a routine approach in natural product research as the costs of whole genome sequencing 

dramatically dropped, while the sequences can be provided in unforeseen short time frames 

and accuracy. The approach that attempts to translate the underlying molecular genetics into 

isolated natural products by analyzing pathway-specific sequence motifs is known as 

‘genome-mining’ and is widely used in the identification process of biosynthetic gene clusters 

and their corresponding secondary metabolites.151 The genome-mining process can be 

generally subdivided into three stages: 1) NGS data acquisition from natural sources, e.g. 

genome sequencing of microbial producers, 2) Identification of biosynthetic gene clusters and 

prediction of corresponding product structures using bioinformatics tools and 3) 

Identification, isolation and structure elucidation of the predicted secondary metabolites. 
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Genome-mining also allows to back correlate identified product structures to the respective 

biosynthetic gene clusters to gain deep insights into the enzymology of the biosynthetic 

processes. The modular architecture and mechanistic similarities of both PKS and NRPS 

biosynthetic machineries in conjunction with high sequence similarities of PKS and NRPS 

domains, especially on the protein level, allows for the rapid identification and comparative 

analysis of microbial biosynthetic gene clusters based on the genome sequence of a certain 

producer strain. Many in silico tools have been developed and refined in the PKS/NRPS field 

over the past decade to assist genome-mining initiatives. The most prominent tool among 

those is certainly antiSMASH, which provides a comprehensive platform for the analysis of 

microbial biosynthetic gene clusters.152 This tool requires an input DNA sequence and offers 

the automated genome-wide analysis and annotation of biosynthetic gene clusters based on 

sequence similarity compared to deposited sequences as well as specific sequence motifs, 

which are characteristic features of PKS and NRPS domains. These sequence motifs are 

referred to as core motifs, which are highly or even strictly conserved regions on the protein 

level of a certain domain and were previously found in obligatory core domains of both PKS 

and NRPS systems.119,153 The antiSMASH tool enables a fast assessment of the biosynthetic 

potential of a given producer strain, thereby enabling the possibility to further focus on 

interesting and unusual assembly line organizations. The annotated sequence data can be used 

in the following to postulate a biosynthesis model for the assembly of a certain secondary 

metabolite prior to experimental verification, e.g. by gene inactivation or heterologous 

expression, and provides a basis for the prediction of the secondary metabolite core structure 

by implementing additional tools covering the substrate specificities of the PKS/NRPS 

domains such as NRPSpredictor2.154 This tool relies on different approaches for the analysis 

of the A domain substrate specificities, which are determined by a set of distinct amino acid 

residues of A domains. These amino acids have been previously identified by Stachelhaus et 

al., and Challis et al. based on an A domain crystal structure and are widely known as the 

Stachelhaus code,124,155 which was recently further extended to an overall set of 34 amino 

acids lining the active site of the A domain in a distance of 8 Å around the bound substrate.123 

In addition, several other approaches have been developed to predict A domain specificities, 

which complement the current tool box.106 In a similar way, AT domain specificities in PKS 

modules can be predicted using computational tools considering amino acid residues within 

the AT domain active sites, which e.g. discriminate between malonyl-CoA and 

methylmalonyl-CoA.156 Bioinformatics tools allow not only the in silico prediction of the 

building blocks that are incorporated into the assembled product but also the prediction of the 
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stereochemical course during PKS/NRPS biosynthesis. In NRPS assembly lines, C domains 

can be usually classified as DCL, LCL and starter C domains depending on the observed 

substrate specificities. DCL domains catalyze the condensation between a D-configured donor 

peptide intermediate and an L-configured acceptor substrate, whilst LCL domains facilitate 

peptide bond formation between donor and acceptor building blocks, which show both L-

configuration. In contrast, starter C domains can be e.g. found in initiation modules of 

lipopeptide assembly lines, where they catalyze the covalent linkage of the acyl side chain 

with the first amino acid precursor, a process known as lipoinitiation.157 The different types of 

C domains significantly differ at several positions in their core motifs, which allow 

assignment of uncharacterized C domains by means of in silico predictions.158 In PKS 

biosynthesis, stereochemical preferences can be predicted for KR domains, which produce 

either an (R)-3-OH or an (S)-3-OH acyl intermediate during catalysis. There are two different 

types of KR domains, A-type and B-type KR domains, which differ in a highly conserved 

core motif, thereby making stereopreferences predictable based on sequence analysis.159 The 

ACPs and PCPs, which are responsible for the translocation of biosynthetic intermediates in 

the respective megasynthetases, share a common core motif (GGH(D)SL) harboring the 

active site serine residue. In NRPSs, a second class of PCPs was detected, that exhibits a 

slightly modified but absolutely conserved signature motif (GGDSI). These PCPE domains are 

specifically found in modules, in which the PCP domain directly interacts with a downstream 

E domain.134 Based on comparative sequence alignments, the two PCP types can be easily 

differentiated. 

The presented sequence-based analysis tool box has become indispensable for the discovery 

of novel natural products and uncommon enzymatic activities. However, the approaches 

described here are depending on the sequences of all available biosynthetic gene clusters and 

domain crystal structures, which serve as references in the existing databases as well as on 

algorithms developed for in silico predictions, which implies that the current models cannot 

provide the full picture. Thus, in silico predictions always need to be critically examined as 

many predictions and assignments turned out to be wrong in the past. Deviations from 

‘textbook’ biosynthetic logic, violation of the co-linearity rule as well as unexpected inactivity 

of catalytic domains, which cannot be explained by sequence analysis so far significantly 

attribute to this issue. In addition, genes that encode tailoring enzymes and stand-alone 

domains or modules are sometimes not present in the corresponding biosynthetic gene cluster, 

but are located somewhere else in the genome, which makes it difficult to correlate such 

genes to the gene cluster of interest. As more and more gene cluster sequences will be 
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deciphered and provided to the scientific community, the developed models will be further 

refined to improve the accuracy of such predictions.  

 

1.4 Synthetic Biotechnology Approaches in Natural Products Research 

The discovery and in-depth analysis of novel natural products and the corresponding 

biosynthetic pathways from natural sources usually involved a low-throughput, time-

consuming and expensive workflow over the past decades. This especially holds true for the 

investigation of natural product biosynthesis in myxobacteria as most of the candidate 

producer strains exhibit low growth rates or even cannot readily be cultivated under standard 

laboratory conditions, and are often not susceptible to genetic manipulations, e.g. to alter the 

complex product structures or to improve production yields, which are often found to be 

homeopathic, thereby hampering the discovery process. In addition, and despite of the 

impressive advances made in the field of microbial genomics, which revealed a by far 

underestimated biosynthetic capacity of microbes,160 many microbial biosynthetic gene 

clusters appear to be inactive under standard cultivation conditions.161 These limitations have 

been addressed (amongst other approaches) by transferring the gene cluster of interest into a 

well-studied heterologous host that is, often in contrast to the native producer, amenable to 

further strain improvement by genetic engineering. Heterologous expression of biosynthetic 

pathways has been successfully used to modify the natural products produced by the encoded 

pathways, to essentially increase production titers and to unleash secondary metabolite 

production by activating silent gene clusters.162 However, heterologous production of natural 

products is by no means trivial as the chosen host strain needs to meet several key 

requirements, which critically influence the outcome of such experiments. The foreign 

biosynthetic gene cluster must be stably and functionally expressed in the surrogate host, 

which requires suitable genetic elements such as promoters and terminators, as well as vector 

systems that allow stable transfer and maintenance.162,163 Regarding PKS and NRPS 

pathways, the heterologous host needs to bear the genetic capacity for posttranslational 

activation of the encoded megasynthetases, e.g. PPTases,102 and for the supply of simple 

precursor molecules, which is particularly important if these precursors derive from building 

blocks of the primary metabolism and are produced in situ.  Otherwise, the host strain has to 

be equipped with essential genes via genetic engineering.164 In addition, toxic effects of the 

secondary metabolites produced need to be avoided to protect the heterologous host, which 

can be realized via expression of additional genes that confer self-resistance.165 Another factor 

that seems to have a great impact on the efficient heterologous expression of biosynthetic 
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gene clusters is the codon usage of the host strain. PKS and NRPS genes found in 

myxobacterial genomes usually exhibit a high GC content, which requires an appropriate 

codon usage bias of the selected surrogate host.166 Taking these requirements into account, the 

lateral transfer of a target biosynthetic gene cluster into a closely related host strain developed 

for heterologous secondary metabolite production might be obviously the most convenient 

way to establish heterologous production platforms. 

Once a biosynthetic gene cluster of interest has been selected for heterologous expression, the 

respective DNA needs to be captured from the native producer strain. Conventionally, the 

target genes are mobilized from the genomic DNA of the producer strain via library 

preparation using cosmids, fosmids or bacterial artificial chromosomes. As the screening for 

correct constructs harboring the target gene cluster or parts thereof is very laborious, recent 

developments focused on direct cloning methods, which allow recombination-based capture 

of the target gene cluster and provide possibilities for subsequent downstream engineering. 

The most widely used cloning techniques encompass the transformation associated 

recombination (TAR) protocol in yeast,167,168 as well as Red/ET recombineering.169,170 The 

latter technology is directly applicable to further vector backbone modifications, e.g. to insert 

suitable promoters for controlled gene expression, selection markers or transfer cassettes as 

well as to modify the biosynthesis genes. The large recombinant DNA constructs are 

subsequently transferred into the host strain, e.g. via electroporation or conjugation, and are 

either be integrated into the host chromosome via homologous recombination, phage 

attachment sites or transposon-based approaches, or can be expressed as replicative 

plasmids.165 However, heterologous expression of biosynthetic gene clusters often lead to 

reduced or even abolished secondary metabolite production, since the manifold demands that 

need to be met are not sufficiently tackled as many factors associated with efficient 

expression in the host cell remain unknown. 

Alternatively, target biosynthetic gene clusters can now be manufactured via DNA synthesis, 

which provides custom-specific DNA sequences within steadily shorter delivery times and at 

decreasing costs without being dependent on physically existing DNA.171 The sole input 

required for de novo gene synthesis is a DNA sequence acquired from DNA sequencing, 

which can be almost arbitrarily redesigned according to specific constructional and functional 

sequence requirements. The first totally synthesized natural product pathway, that was 

successfully assembled via conventional cloning and subsequently expressed, was the 

erythromycin biosynthetic gene cluster reported by Kodumal et al.172 As the synthesis of large 

genes or even entire gene clusters is still rather challenging, DNA synthesis is often combined 
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with state-of-the-art DNA assembly strategies that enable construction of the entire gene 

cluster construct from pre-defined DNA fragments. Most prominent among the recent 

developments in high-throughput DNA assembly technologies are the recombination-based 

technologies such as TAR, Gibson assembly and sequence and ligation independent cloning 

(SLIC).173–175 In addition, several restriction/ligation-based methods have been developed 

such as the Golden Gate cloning method and the ligase cycling reaction (LCR).176,177 

The high-throughput synthesis of arbitrary DNA sequences opens up versatile possibilities in 

the field of ‘Synthetic Biology’ enabling e.g. the translation of biological systems into 

interchangeable modular building blocks in a ‘bio brick’ manner based on engineering 

principles for the redesign of metabolic pathways and the creation of designer 

microorganisms that serve as tailor-made production factories. One approach in natural 

product research is to reduce the complexity of a natural system, e.g. a given producer 

organism, and to build up a ‘minimal’ chassis, in which non-essential parts are completely 

removed and physiological bottlenecks are eliminated. The gene cluster sequence to be 

heterologously expressed can be modulated towards optimized codon usage in the host strain 

and non-essential genes and regulatory elements are being removed to bring the artificial 

system under the control of synthetic regulators that govern transcription and translation.178 In 

this context, constructional sequence requirements notably cover the necessary changes to be 

introduced to allow for efficient construction of the synthetic gene cluster from smaller DNA 

segments and for downstream engineering. To be not reliant on naturally occurring restriction 

sites in the native gene cluster sequence, restriction sites engineering can be performed by 

applying silent mutations to remove disturbing restriction sites or to introduce restriction sites 

used for pathway assembly and modification, thereby conserving the native protein sequence. 

Additionally, homology arms can be introduced into the synthetic gene cluster to facilitate 

integration into the host’s chromosome via homologous recombination. Functional sequence 

requirements encompass selection of suitable regulatory elements and vector systems, which 

are known to be functional in the chosen heterologous host, as well as sequence optimization 

regarding GC content and codon usage, respectively. This approach is referred to as 

‘refactoring’ and holds great potential for the future engineering of artificial production 

platforms. Refactoring of natural product pathways has already been applied to several 

biosynthetic gene clusters to establish production platforms for combinatorial biosynthesis, to 

activate orphan gene clusters and to study the effects of codon adaption on the productivity of 

the underlying pathway. For instance, the erythromycin gene cluster was one of the first 

pathways, which was shown to be redesigned including restriction sites engineering to 



Introduction     24 
 

facilitate exchange of domains or modules as well as codon optimization, which essentially 

boosted production levels in E. coli.179 The spectinabilin biosynthetic gene cluster was 

refactored via exchange of every native promoter for well-known promoters, which are 

functional in the heterologous host Streptomyces lividans. Decoupling of pathway expression 

from the native regulation machinery resulted in detectable amounts of spectinabilin, which 

was not identified in the native producer before.180 The same research group recently 

managed to activate another biosynthetic gene cluster in S. lividans using a highly similar 

strategy, thereby resulting in the production of novel polycyclic tetramate macrolactams. In 

addition, the synthetic expression platform was also used to characterize the underlying 

biosynthetic pathway via a set of gene deletions.181 The first artificial PKS/NRPS hybrid 

pathway from a myxobacterium was established initially in E. coli and later on in M. xanthus. 

Oßwald et al. reconstructed the large 58 kb epothilone pathway from S. cellulosum using a 

flexible modular assembly strategy and analyzed the codon optimized gene cluster variant in 

M. xanthus using a multiplasmid approach.182 However, production titers were found to be 

very low, which underpins that codon adaption alone does not necessarily lead to improved 

secondary metabolite production, if the complete regulatory networks in the heterologous host 

are not fully understood or if there are additional limiting factors. 

In conclusion, the tool box that is currently available allows the synthetic biologist to 

redesign, construct and optimize a gene cluster of interest in multifaceted ways and in a high-

throughput manner. DNA synthesis and assembly of redesigned sequences enables 

experimental set-ups, in which many different sequence designs can be analyzed in parallel. 

Dissection of the biosynthetic pathways into modular parts and the generation of synthetic 

libraries consisting of standardized building blocks for swapping genetic elements and the 

fine-tuned control of gene expression in appropriate heterologous hosts will essentially 

accelerate the development of microbial cell factories for manufacturing natural products. 

  

1.5 Myxochromide Pathways as Model Systems – Current State of Research and Outline 

of the Presented Work 

Synthetic biology has a great potential to overcome the described limitations, which are 

associated with conventional heterologous expression platforms based on native biosynthetic 

gene clusters. Due to the impressive development of chemical DNA synthesis, it is possible to 

design and to synthesize optimized gene fragments, which need to be subsequently assembled 

to the entire biosynthetic gene cluster using state-of-the-art cloning techniques. The native 

DNA sequences are adapted to the constructional and functional requirements of the 
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biosynthetic pathway and particularly of the host organism that was chosen for heterologous 

secondary metabolite production.182 However, the optimal sequence design of genes as well 

as the use of not well-established host organisms, such as myxobacteria, still remains a 

challenge. Therefore, the BMBF-funded ‘SynBioDesign’ project (Synthetic Biology to 

Design Production Platforms for Complex Natural Products) aimed at a comprehensive 

understanding of all factors, which are relevant for natural product formation in a 

heterologous host starting from artificial DNA over the levels of transcription and translation 

to the point of natural product biosynthesis from simple precursor molecules to systematically 

optimize artificial production platforms. By combining advanced high-throughput analytical 

techniques covering transcriptomics and proteomics approaches, it might be possible to 

illuminate unknown but often limiting factors regarding secondary metabolite production such 

as the stability of messenger RNA (mRNA), the available pools of aminoacyl-transfer RNAs 

(aminoacyl-tRNA), and proper co-translational folding of the expressed megasynthetases. 

Detailed knowledge on these basic cellular features would allow to directly link the gained 

experimental qualitative and quantitative data to the sequence design, thereby facilitating the 

optimization process during multiple rounds of adapted sequence design, assembly and 

heterologous expression of modified gene cluster versions, acquisition of analytical data and 

eventually data interpretation. In conjunction with modern analytical equipment, this 

approach would also require a fast and efficient DNA assembly strategy for the construction 

of many different synthetic gene clusters, which can subsequently be tested in parallel in a 

high-throughput manner and might lead to significant advances towards yield improvement of 

synthetic production platforms. In addition, the resulting generic production platforms can 

also be used for the rational engineering of the underlying pathways to generate chemical 

diversity. To address these aims, the choice of a suitable biosynthetic pathway that serves as a 

model system as well as an already well-studied myxobacterial heterologous host is essential. 

Due to several reasons discussed below, the biosynthesis of the myxobacterial lipopeptides 

myxchromides appeared to be the ideal model systems in the ‘SynBioDesign’ project to 

establish synthetic DNA platforms for the fundamental understanding of pathway design and 

optimization. At the beginning of the project, three myxochromides have been described in 

the literature, which differ in the number, order, composition and configuration of the amino 

acids in the peptide core and in the acyl side chains, which can vary in length: the 

lipohexapeptides myxochromides A2-4 from Myxococcus xanthus,84 the lipopentapeptides 

myxochromides S1-3 from Stigmatella aurantiaca,85 and the lipoheptapeptide myxochromide 

B3 from an unclassified Myxococcus sp. (Figure 7C).86  
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Figure 7. Overwiev on different myxochromide pathways. The coloring of the catalytic domains corresponds to 

the biosynthesis products shown in Figure 7C. The PKS/NRPS hybrid machineries (A- and S-type) consist of an 

iterative PKS module and six NRPSs modules and facilitates myxochromide biosynthesis. Abbreviations of 

catalytic domains are explained in the main text. A: Organization of the myxochromide A biosynthetic gene 

cluster and model for the biosynthesis of myxochromides A. B: Comparison of the A-, S- and the proposed B-

type myxochromide pathways. C: Structures of different myxochromides. 
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The biosynthetic machineries of the myxochromide A and S pathways are encoded in 

relatively small biosynthetic gene clusters (~30 kb) comprising one single operon that consists 

of three biosynthetic genes mchA-C. These genes contain the blueprint of ~1MDa PKS/NRPS 

hybrid megasynthetases, which combine the biosynthesis of the polyene side chains with the 

formation of the peptide core. The mchA gene encodes for an iterative ‘unimodular’ PKS, 

which is mainly found in eukaryotic fungi, whereas the mchB and mchC genes are translated 

into a hexamodular NRPS system.84,85 In myxochromide A biosynthesis, the PKS subunit that 

contains a full set of reductive domains (KR, ER, DH) starts the biosynthesis with the 

formation of the lipid chains, which have been found to be fully unsaturated. It is assumed 

that the ER domain, which might be responsible for the reduction of the enoyl moiety to the 

saturated lipids is inactive.85 Various lengths of the polyene side chain have been detected 

depending on the number of iterative elongation cycles and the selected starter unit (acetate or 

propionate). The lipid chains are transferred to the first NRPS subunit (MchB), where N-

acylation of the first amino acid L-threonine is catalyzed by the initial C domain in module 1. 

The MT domain integrated into the downstream A domain is responsible for N-methylation of 

L-threonine and the first biosynthetic intermediate is subsequently translocated to the second 

module by the PCP. Module 2 also contains a ‘non-standard’ domain (E domain) and 

catalyzes elongation with the second amino acid (L-alanine) along with epimerization to form 

a racemic mixture of the dipeptide intermediate (D/L-Ala-N-Me-L-Thr), whereas only the D-

configured intermediate is further processed by the second NRPS subunit (MchC). MchC 

contains four standard ‘C-A-PCP’ modules responsible for selection, activation and 

incorporation of the amino acids L-leucine, L-proline, L-alanine and L-glutamine. The 

additional TE domain of the termination module catalyzes cyclization between the hydroxyl 

group of the N-Me-L-Thr side chain and the carboxylic acid of L-Gln of the linear 

hexapeptide intermediate to form the cyclic lipohexapeptide products (Figure 7A). Although 

both myxochromide A and S assembly lines appear to be organized in an identical 

arrangement of catalytic domains (Figure 7B), studies on the biosyntheses of both types of 

myxochromides revealed striking differences between the underlying pathways leading to 

structural diversity.84 Most intriguing is an unique ‘module-skipping’ process in the 

myxochromide S pathway, which results in skipping of module 4 in the MchC NRPS subunit, 

and which has been known only for PKS systems before. Consequently, the L-Pro residue that 

might be activated by this module, is missing in the final lipopentapeptide products 

myxochomides S, thereby violating the co-linearity rule. It has been shown that a Ser � Pro 

loss-of-function mutation of the conserved serine residue in the PCP of module 4 might be 
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responsible for ‘module-skipping’, as the PCP domain cannot be posttranslationally primed 

with the CoA-derived phosphopantetheinyl arm. In addition, the A domain of this module has 

been shown to be still active in in vitro studies with expressed A domains.84 Another 

difference is the observed switch in substrate specificities of modules 2 and 3, which was 

previously explained by point mutations in the corresponding A domains of the S-type 

myxochromide pathway, thereby probably changing the binding pockets. Interestingly, the L-

Leu residue that is incorporated by module 2 in the myxochromide S assembly line is not 

epimerized, although the E domain is present in this module as well. Protein sequence 

alignments did not reveal any mutations in critical positions of the E domain. It is still not 

known if the E domain may be inactive or if the more bulky L-Leu residue is not properly 

used as a substrate by the E domain in the myxochromide S pathway.84,85 In addition to 

myxochromides A and S, a third myxochromide type from a Myxococcus sp. was isolated and 

structurally characterized by Ohlendorf et al.86 Myxochromide B3 has been found to be the 

only representative of this new family and no further derivatives exhibiting different acyl 

chain lengths have been detected. Myxochromide B3 is a lipoheptapeptide and shares the same 

peptide core as observed for myxochromides A with an additional leucine residue located 

adjacent to the leucine residue that is incorporated by module 3 in myxochromide A 

biosynthesis. Since the corresponding B-type pathway was not identified and further 

characterized, it was not clear if a module duplication event or the iterative use of only one 

Leu-incorporating module is responsible for this observation (Figure 7B).86 Some isolated 

myxochromide derivatives have been tested for their antimicrobial and cytotoxic activities, 

but have been shown to exhibit no interesting pharmacological properties.84–86 

Choosing the myxochromide pathways as model systems for the ‘SynBioDesign’ project has 

several significant advantages: 1) The myxochromide biosynthetic gene clusters are relatively 

small and encode both PKS and NRPS subunits, 2) heterologous expression of native 

myxochromide gene clusters has already been successfully demonstrated in various host 

organisms such as myxobacteria, pseudomonads and burkholderia strains in high yields up to 

500 mg/L,183–186 3) the myxochromide pathways do not require any unusual precursor 

molecules, 4) myxochromides did not show any toxicity to the heterologous hosts tested and 

5) different myxochromide families are known and widely distributed among myxobacteria, 

which provides promising opportunities for combinatorial approaches to generate hybrid 

natural products. The choice of a suitable heterologous host is as much as important as the 

selection of a model pathway to be designed. In the ‘SynBioDesign’ project, M. xanthus is 

used as surrogate host for several reasons. M. xanthus is one of the best-studied myxobacteria 
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and is amenable to genetic manipulation. Several genetic and regulatory elements have been 

characterized and complement the tool box for host strain engineering. Furthermore, M. 

xanthus exhibits short doubling times (~ 5 hours) compared to other myxobacteria, bears the 

biosynthetic capacities to produce polyketides as well as nonribosomal peptides and is able to 

posttranslationally activate the corresponding megasynthetases by using two broad spectrum 

PPTases, which were previously identified.187 Additionally, M. xanthus has already been 

demonstrated to be a suitable host for heterologous production of natural products, including 

myxochromides S from S. aurantiaca in high production yields.186 Since all myxochromide 

gene clusters originate from myxobacterial producers, it is very likely that foreign 

myxochromide pathways are efficiently expressed in the related M. xanthus host due to their 

similar codon usage. 

By combination of synthetic genes of different myxochromide pathways or of differentially 

optimized gene versions, it might be possible to identify gene cluster features/regions, which 

have a positive or negative influence on myxochromide biosynthesis and thus on the 

production yields in case the optimization of the culture conditions ensures that the gene 

design is the limiting factor. High production yields have already been achieved with the 

native gene clusters, so that the multifactorial optimization of precursor supply is not further 

necessary to hold the system manageable. Following, structural genes can be directly 

modified. In conclusion, acquisition, analysis and implementation of sequence data of 

different myxochromide pathways and subsequent establishment of synthetic DNA platforms 

for the production of myxochromides in M. xanthus in this context might build the basis for 

the deduction of conceptional guidelines for designing complex natural product pathways and 

for the future creation of predictable microbial cell factories. 

 

1.5.1 Outline I: Genome-Mining to Find New Lipopeptide Scaffolds in Myxobacteria 

In the course of the ‘SynBioDesign’ project, the initial aim of this work was to exploit 

myxochromide diversity in myxobacteria in order to achieve a comprehensive understanding 

of the PKS/NRPS-mediated myxochromide biosynthesis as a broad basis for the sequence 

design and the creation of flexible synthetic DNA platforms. This part is covered by chapter 2 

of this thesis. Sequence data acquisition should be performed by genome sequencing of 

myxobacterial strains as well as screening of available genome data followed by detailed in 

silico sequence analysis to identify new putative myxochromide biosynthetic gene clusters. 

By applying the genome-mining approach, identified myxobacterial producer strains should 

be cultivated and the corresponding myxochromide families, which were predicted, should be 
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detected, isolated and structurally characterized. This approach was expected to provide first 

insights into the biosynthesis of the previously described myxochromides B, as the 

corresponding biosynthetic pathway has not been deciphered yet.86 In addition, genome-

mining was intended to be used to directly link structural differences of different 

myxochromide families to the acquired genetic information, complemented by in-depth 

computational analysis of the evolutionary relationships of different myxochromide 

biosynthetic gene clusters. Furthermore, selected representatives of different myxochromide 

families should be analyzed for their natural functions as myxochromides do not exhibit any 

pharmacological activities in the available test panels so far. These studies are expected to 

provide an ideal starting point towards the development of synthetic DNA platforms and the 

rational engineering of the model pathways to generate novel lipopeptides. 

 

1.5.2 Outline II: Synthetic Biotechnology to Produce Novel Hybrid Myxochromides 

Based on the valuable insights gained from the genome-mining approach in conjunction with 

evolutionary aspects of myxobacterial pathway diversification, chapter 3 of this thesis 

addresses the constructional and functional redesign of the identified myxochromide 

pathways. Specific sequence requirements should be predefined in order to allow assembly of 

synthetic expression constructs harboring artificial myxochromide gene clusters and their 

heterologous expression in the selected host strain M. xanthus. In the course of the 

‘SynBioDesign’ project, the establishment of a fast and efficient strategy for the assembly of 

large synthetic gene cluster constructs from synthetic building blocks was a major goal to 

generate various artificial gene cluster variants in parallel, which is a key prerequisite for the 

pursued high-throughput workflow. Simultaneously, the assembly strategy should be highly 

flexible to facilitate engineering efforts to alter myxochromide structures and to generate 

entirely new lipopeptide scaffolds. Chapter 3 covers the development of such an assembly 

strategy based on a dedicated gene library that contains synthetic myxochromide biosynthesis 

genes originating from different myxochromide pathways. The cloning approach should 

involve the generation of the gene library by using modern restriction/ligation-based 

techniques followed by the in vitro reconstitution of the entire pathways based on the Golden 

Gate cloning method,177 both covered by the constructional sequence design. The described 

strategy should also exhibit broad applicability regarding possible combinations with different 

cloning techniques and the possibility for specific exchanges on the subunit, module and 

domain level. Exemplarily, the established assembly strategy should be demonstrated in a 

structural engineering approach to produce ‘unnatural’ myxochromides. The effects of 
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artificial gene combinations on the functionality and productivity of the engineered 

PKS/NRPS assembly lines should be analyzed, which would provide first insights into how 

complex natural product pathways should be designed, thereby serving as versatile platforms 

for the ‘SynBioDesign’ project. 
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2 Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria 

 

2.1 Abstract 

Analysis of 122 myxobacterial genome sequences suggested 16 strains as producers of the 

myxochromide lipopeptide family. Detailed sequence comparison of the respective mch 

biosynthetic gene clusters informed a genome-mining approach, ultimately leading to the 

discovery and chemical characterization of four novel myxochromide core types. The 

myxochromide megasynthetase is subject to evolutionary diversification, resulting in 

considerable structural diversity of biosynthesis products. The observed differences are due to 

the number, type, sequence, and configuration of the incorporated amino acids. The analysis 

revealed molecular details on how point mutations and recombination events led to structural 

diversity. It also gave insights into the evolutionary scenarios that have led to the emergence 

of mch clusters in different strains and genera of myxobacteria. 

 

2.2 Introduction 

Lipopeptides (LPs) constitute a distinguished class of microbial secondary metabolites with 

multifaceted biological functions. These include, for example, surfactant, antimicrobial, or 

cytotoxic activities attracting interest in diverse industrial fields.1,2 Bacterial LPs are generally 

synthesized in a ribosome-independent manner by large multimodular enzymes called 

nonribosomal peptide synthetases (NRPS).3 Often, they are produced as mixtures of 

components varying in their lipid tail and/or amino acid composition.4,5 Whereas various LP 

biosynthetic pathways from Bacillus, Pseudomonas, Streptomyces, and other microbes have 

been intensively studied over the past decades,6 LP biosynthesis in myxobacteria is currently 

underexplored. Most prominent among the very few products characterized so far are the 

myxochromides, for which three different types have been described: myxochromides A (1) 

from Myxococcus xanthus,7 myxochromides B (2) from an unclassified Myxococcus sp.,8 and 

myxochromides S (3) from Stigmatella aurantiaca.9 The cyclic peptide structures are 

composed of five to seven amino acids and are linked to a polyunsaturated acyl chain, which 

can vary in length (Figure 1). Biosynthetic studies on myxochromides A (lipohexapeptides) 

and myxochromides S (lipopentapeptides) revealed that an iterative polyketide synthase 

(PKS) generates the lipid chains, thereby initiating the assembly of the peptidyl backbone 

catalyzed by a hexamodular NRPS system.7,9 Specifically, it was shown how point mutations 

switch substrate specificity in NRPS modules and cause an unusual “module-skipping” 

process during biosynthesis of the myxochromide S pentapeptide core.7 However, the 
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assembly line for production of myxochromides B (lipoheptapeptides) was not deciphered 

yet. Driven by the progress in bacterial genome-mining in general,10 as well as myxobacterial 

genomics,11 and secondary metabolomics,12 we aimed to achieve a comprehensive 

understanding of the biosynthesis of this versatile LP family and thereby intended to further 

exploit myxochromide chemical diversity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chemical structures of myxochromides. 
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2.3 Results and Discussion 

2.3.1 Discovery of Novel Types of Myxochromide Megasynthetases 

Initially, we targeted to establish a molecular comprehension of how the myxochromide B 

pathway evolved from the known A- and S-type pathways. The putative B-type biosynthetic 

gene cluster harbors large sequence repeats and could thus only be deciphered using shotgun 

genome data of the producer Myxococcus sp. 171 in conjunction with significant additional 

sequencing efforts based on the generation of a cosmid library (Supporting Information 

Figure S1). 

 

Table1: Myxochromide producers and their biosynthetic gene clusters (mch clusters) analyzed in this study. 

Strain Strain abbrev. Cluster 
GenBank  
Accession[a] 

Myxococcus fulvus HW-1 Mf1 A-type KX622592 

Myxococcus xanthus DK1622 Mx1 A-type [b] KX622595 

Myxococcus xanthus DK897 Mx2 A-type KX622596 

Myxococcus xanthus A47 Mx3 A-type KX622597 

Myxococcus xanthus Mx48 Mx4 A-type KX622598 

Myxococcus sp. 171 [c] M1 B-type KX622591 

Myxococcus virescens ST200611 Mv1 C-type KX622594 

Myxococcus hansupus mixupus Mh1 C-type KX622593 

Cystobacterineae sp. CcG34 [d] Cy1 D-subtype 2 KX622587 

Hyalangium minutum DSM14724 Hm1 D-subtype 1 KX622588 

Hyalangium minutum Hym-3 Hm2 D-subtype 1 KX622589 

Hyalangium minutum NOCb10 Hm3 D-subtype 1 KX622590 

Stigmatella erecta Pde77 Se1 D-subtype 1 KX622602 

Stigmatella aurantiaca DW4/3-1 Sa1 S-type [e,f] KX622599 

Stigmatella aurantiaca Sga15 Sa2 S-type [f] KX622600 

Stigmatella aurantiaca Sga32 Sa3 S-type [f] KX622601 

[a] Annotated cluster files were additionally deposited in the MiBIG database (BGC0001417-BGC0001432)14; 

[b] Characterized in previous study.7 [c] Unclassified strain belonging to the genus Myxococcus. [d] Unclassified 

species belonging to the suborder Cystobacterineae (16S analysis indicates that this species might belong to the 

genus Hyalangium). [e] Characterized in previous study.9 [f] S-type gene clusters were shown to also produce 

myxochromides S-Abu and S-diAbu. 

 

Sequence analysis of the encoded assembly line revealed an additional leucine-specific NRPS 

module in comparison to the hexamodular A-type megasynthetase, indicating that the B-type 

pathway emerged from a module duplication event. To obtain deeper insights into 
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myxochromide pathway evolution, we screened genome data from 122 myxobacterial strains 

subjected to automated annotation13 and identified numerous additional putative 

myxochromide biosynthetic gene clusters (mch clusters) exclusively from species belonging 

to the suborder Cystobacterineae (Table 1). 

Among those, four other A-type pathways (from strains Mf1, Mx2, Mx3, and Mx4) and two 

other S-type pathways (from strains Sa2 and Sa3) were retrieved. Intriguingly, some of the 

detected putative mch clusters (from strains Mv1, Mh1, Cy1, Hm1, Hm2, Hm3 and Se1) 

appeared to encode novel types of myxochromide megasynthetases differing in their domain 

arrangement and functionality from the previously characterized A- and S-types7,9 as well as 

the newly discovered putative B-type megasynthetase. The new mch cluster types were 

designated as C-type and D-type pathways predicted to direct the biosynthesis of two novel 

pentapeptide cores (see Supporting Information). 

 

2.3.2 Genome-Mining for Novel Myxochromide Lipopeptide Cores 

To connect this genetic information with the actual biosynthesis products, the putative 

producer strains listed in Table 1 (with exception of strain Mh1) were cultivated and analyzed 

for myxochromide production by HPLC-MS (Supporting Information Figure S3). Indeed, 

novel myxochromide derivatives exhibiting MS data consistent with the expected 

myxochromide C and D derivatives could be detected in extracts of the respective strains. The 

genome-mining approach was pursued by isolation of a representative of the two novel 

myxochromide types, later designated as myxochromide C3 from strain Mv1 and 

myxochromide D1 from strain Se1. Structure elucidation including assignment of the absolute 

stereochemistry unambiguously confirmed consistency with the in silico predicted structures 

featuring novel pentapeptide cores (Figure 1). Besides myxochromides C and D, additional 

putative novel myxochromide types, designated as myxochromides S-Abu and S-diAbu, were 

detected as minor products from myxochromide S producing S. aurantiaca strains. A 

representative of each myxochromide type was isolated from a previously described high titer 

myxochromide S heterologous production strain.15 Structure elucidation revealed that the 

minor products indeed represent novel lipopentapeptides that differ from myxochromide S by 

replacement of L-alanine with L-α-aminobutyric acid (Abu) in one or two positions (Figure 

1). Putative novel Abu-containing myxochromide derivatives were later on also detected from 

A-, B-, C- and D-type producer strains after supplementing the cultures with L-Abu 

(Supporting Information Figure S5). In summary, a combined myxobacterial 

genomics/secondary metabolomics approach led to the discovery of four novel 
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myxochromide types (myxochromides C, D, S-Abu, and S-diAbu; Figure 1). Although there 

is no direct experimental evidence for the correlation of the newly identified “putative” mch 

clusters to myxochromide production (e.g., via gene inactivation or heterologous expression), 

sequence comparison with described mch clusters from Mx1 and Sa1 and myxochromide 

production analysis (Supporting Information Figure S3) strongly supports the classification of 

mch pathways as shown in Table 1. In the following discussion regarding the mch pathway 

comparison, the term “putative” is avoided for better readability. 

 

2.3.3 Comparative Analysis of Myxochromide Megasynthetases 

We next analyzed all respective biosynthetic gene clusters aiming at a deeper understanding 

of the biochemical and genetic basis for the observed structural diversity. Figure 2 illustrates 

the different types of myxochromide megasynthetases, which consist of three subunits: an 

iterative PKS (MchA) and two NRPSs (MchB, MchC). 

 

 

Figure 2. Different types of myxochromide megasynthetases from myxobacteria (for host strains see Table 1). 

The coloring of the catalytic domains corresponds to the biosynthesis products shown in Figure 1 (for 

phylogenetic analysis, see Supporting Information Figure S23). As verified for S-type pathways, there are 

indications for alternative incorporation of α-aminobutyric acid (Abu) by alanine (Ala)-specific modules of A-, 

B-, C-, and D-type megasynthetases (see Supporting Information Figure S5). Catalytic domain abbreviations: 

KS, ketosynthase; AT, acyltransferase; DH, dehydratase; ER, enoylreductase; KR, ketoreductase; CP, acyl 

carrier protein (in MchA) or peptidyl carrier protein (in MchB/C); C, condensation domain; A, adenylation 

domain; MT, methyltransferase; E, epimerization domain; TE, thioesterase. Domains marked with an asterisk are 

supposed to be inactive. 
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Whereas all MchA homologues as well as all MchB homologues show identical arrangements 

of catalytic domains, respectively (MchA: KS-AT-DH-ER*-KR-CP and MchB: C1-A1-MT1-

CP1-C2-A2-CP2-E2; Figure 2), MchC subunits differ significantly. Compared to the A-type 

assembly line, the B-type megasynthetase features an additional leucine-incorporating module 

consistent with the biosynthesis of its lipoheptapeptide products (2a−2c). On the contrary, the 

C-type megasynthetase lacks a complete module, resulting in the production of novel 

lipopentapeptides (6a−6c), which do not contain L-alanine as predicted from in silico analysis 

and confirmed by genome-mining. Phylogenetic analysis of NRPS condensation (C), 

adenylation (A), and carrier protein (CP) domains (Supporting Information Figure S23) from 

all 16 myxochromide megasynthetases indicated that “A-CP-C units” instead of dedicated “C-

A-CP modules” are duplicated (A3-CP3-C4 in B-type) or deleted (A5-CP5-C6 in C-type). 

Detailed sequence analysis of the MchC subunits from Myxococcus strains even revealed the 

corresponding recombination sites, which are located at the 5′ end of the A domain or 3′ end 

of C domain encoding regions, respectively (Supporting Information Figures S20 and S21). 

Another recombination event led to partial module deletion in the D-subtype 2 assembly line, 

which lacks the A4-CP4 domains (Supporting Information Figure S22). However, as module 4 

in the related D-subtype 1 megasynthetase is already inactive due to the mutated CP4 core 

motif (Supporting Information Figure S18), the same myxochromide structures were actually 

expected and found to be produced by the two different D-type assembly lines. In accordance 

with the in silico analysis, the biosynthesis products represent novel lipopentapeptides 

(7a−7d) lacking L-proline as compared to myxochromides A (1). A similar scenario (inactive 

module 4) causing so-called “module-skipping”16 was already observed for the 

myxochromide S megasynthetase,7 which also differs from all other myxochromide assembly 

lines in terms of module 2 and 3 biochemistry (L-Leu/L-Ala instead of D-Ala/L-Leu). Here, 

sequence-based structure prognosis did not allow prediction of accurate stereochemistry and 

substrate specificity (see Supporting Information). However, the in silico analysis suggests 

that point mutations rather than intragenic A domain swapping17 cause the observed reversed 

amino acid order in myxochromides S (3). Overall, the diversity of detected assembly line 

variations (Figure 2) shows that the myxochromide biosynthetic pathway is subject to 

significant evolutionary diversification (compare, e.g., cyanobacterial toxin pathways18 and 

other expamples19–22). Sequence analysis of mch genes revealed that adaptation in local 

synonymous codon usage is reduced in module 3 and 4 regions. Especially the A domain 

regions show lower adaptation compared to other modules, which may indicate recent 

mutational activity and diversification or more recent acquisition (see Supporting 
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Information).23 Even further reduced is the codon adaptation of inactive A4- CP4 domains 

from Stigmatella producers and also the region encoding the inactive PKS ER* domain in all 

mch pathways (Supporting Information Figure S25). 

 

2.3.4 Evolutionary Relationship and Distribution of mch Clusters in Myxobacteria 

According to the analyzed myxobacterial genome data, mch clusters only occur in strains 

belonging to the Cystobacterineae suborder, more precisely to the Cystobacteraceae and 

Myxococcaceae families. Comparative phylogenetic analysis of the 16 mch clusters with 

selected house-keeping genes of their hosts revealed an overall congruence between strain and 

cluster phylogeny with one exception: The D-type pathway from S. erecta Pde77 (Se1), which 

was likely obtained via horizontal gene transfer from Hyalangium species (Figure 3). 

 

 

 
Figure 3. Comparison of myxochromide producer strain and mch cluster phylogeny (for details, see Supporting 

Information). The three megasynthetase coding sequences (CDS) (mchA, mchB, mchC) are shown as disks, 

colored according to their adaptation of synonymous codon usage to the highly expressed gene sets of their hosts 

(see Supporting Information Table S12). Common cluster genome environments are indicated (Locus A−F; see 

Supporting Information Figure S2). 

 

In addition, it can be assumed that Stigmatella S-type pathways derive from D-subtype 1 

clusters and diversify via additional mutations switching substrate specificities of NRPS 



Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria     46 
 

modules 2 and 3 (Figure 2). Within the Myxococcaceae, three different pathway types (A, B 

and C) occur, which deviate in the MchC subunit due to module duplication/deletion events 

resulting in heptamodular/pentamodular NRPS assembly lines. However, the hexamodular A-

type pathway represents the most common variant in this analysis occurring in all M. xanthus 

species and in M. fulvus (Table 1; Figure 3). In fact, a study on secondary metabolomes from 

98 different M. xanthus strains determined myxochromides A as ubiquitous metabolites from 

this species.24 Overall, our phylogenetic analysis strongly suggests that myxochromide 

biosynthetic pathways have evolved from a common ancestor, which based on all available 

data seems to be the A-type cluster. Codon adaptation analysis revealed that mch clusters 

found in Cystobacteraceae are much less adjusted to their hosts than clusters from 

Myxococcaceae, which thus seem to have resided in their hosts for a longer time period 

(Figure 3). The best average adaptation value was obtained for the cluster from strain Mf1 

supporting the proposed ancestral role of the A-type pathway. It is likely that the also well 

adapted C-type cluster of Mv1 evolved in the same genomic context (Supporting Information 

Figure S2). The less adapted A-type clusters were then distributed to other M. xanthus strains, 

from which the even younger and less adapted B-type cluster of M1 originated. The original 

C-type cluster was transferred to Mh1. All of these clusters are currently found in the same 

genomic context. Several independent integration events led, in the sequence suggested by the 

codon adaptation level, to the origin of the D-subtype 2 cluster of Cy1; the three D-subtype 1 

clusters of Hm1, Hm2, and Hm3; the two S-type clusters from Sa1 and Sa3; and lately to the 

quite little adapted S-type cluster of Sa3. Most recently, the D-subtype 1 cluster was 

integrated into Se1, where it shows the least adaptation. 

 

2.3.5 Potential Biological Function of Myxochromides 

The widespread occurrence of myxochromides among different myxobacterial species 

suggests a relevant biological function for the producer strain as known from other bacterial 

LPs.25 As myxochromides did not exhibit significant antimicrobial or cytotoxic activities,8,9 

they might play a role in the developmental life cycle of myxobacteria. This was analyzed in 

established assays with the myxochromide producer M. xanthus DK1622 and respective 

myxochromide overproduction and knockout mutants (Supporting Information Figures 

S26−27). It could be demonstrated that myxochromide overproduction has a negative effect 

on fruiting body development, which correlates with observations from previous studies.26 

This finding may be explained by myxochromide surfactant properties, which probably 

increase cell motility and hamper cell aggregation. As no difference between the mch cluster 



47     Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria 
 

knockout mutant and the wildtype strain could be observed, myxochromides do not seem to 

be essential for fruiting body formation and swarming of M. xanthus. However, specific 

biological functions of myxochromides, possibly even different functions for structural 

variants, can currently not be excluded. 

2.4 Significance 

In conclusion, we demonstrate how myxobacterial genome-mining can provide a broad 

picture regarding the distribution, genetic basis, and evolution of secondary metabolite 

pathways. Additionally, our approach enabled the discovery and isolation of novel derivatives 

of the selected lipopeptide compound class by prioritizing potential producer strains for 

chemical analysis. Detailed biosynthetic pathway comparison revealed an impressive 

diversification of the involved megasynthetases among various producer strains and allowed 

rationalization of the observed structural differences of the corresponding products. Our 

comprehensive study thus provides a broad picture on the interrelationship of genetic changes 

as causative agents for chemical diversification of lipopeptides from a whole taxon of 

microorganisms. The described genetic changes leading to natural product pathway evolution 

(recombination sites, point mutations, codon adaptation) represent valuable information for 

the future engineering of microbial NRPS pathways via synthetic biology approaches.27,28  

 

2.5 Experimental Procedures 

2.5.1 Identification and Decipherment of the Myxochromide B Biosynthetic Gene 

Cluster from Myxococcus sp. 171. 

Shotgun genome sequence data of strain Myxococcus sp. 171 (M1) were generated by 

employing Illumina sequencing technology, and the putative myxochromide B biosynthetic 

gene cluster was identified by comparative sequence analysis using the published 

myxochromide A gene cluster from M. xanthus DK1622 as reference (Genbank accession 

number CP000113). The identified myxochromide B gene cluster region contained several 

sequence gaps. For the decipherment of the entire gene cluster sequence, a cosmid library of 

strain M1 comprising 3072 clones was constructed on the basis of the SuperCos 1 cosmid 

vector (Agilent Technologies). In a PCR-based approach, the library was screened for 

cosmids harboring the myxochromide B gene cluster or parts thereof. Two of the identified 

cosmids (Cos8F11 and Cos1P19) were used as starting constructs to subclone fragments 

covering the unresolved gene cluster region (see Supporting Information Figure S1). The 

inserts from four of the generated plasmids (pASK_mchB6, pBCSK_mchB5, 

pBCSK_mchB4, and pBCSK_mchB3) were completely sequenced, which allowed for 
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decipherment of the repetitive myxochromide B gene cluster regions. For additional details, 

see Supporting Information Chapter 2.7.1. 

 

2.5.2 Screening of Myxobacterial Genome Data for Additional Myxochromide 

Biosynthetic Gene Clusters and Verification via Production Analysis 

Genome data from 122 myxobacterial species including representatives of the three suborders 

Cystobacterineae (68 strains), Sorangiineae (43 strains), and Nannocystineae (11 strains) 

were screened for putative myxochromide biosynthetic gene clusters by using the antiSMASH 

3.0.4 tool;13 all strains are listed in Supporting Information Chapter 2.7.2. In total, 16 

myxochromide biosynthetic gene clusters (mch clusters) were identified in strains belonging 

to the suborder Cystobacterineae. The genomic context of the mch cluster was analyzed in 

each host strain, revealing six different chromosomal loci (A−F; see Figure 3 and Supporting 

Information Figure S2). The automatic annotation of the mch gene clusters from the 

antiSMASH 3.0.4 analysis13 was manually revised based on reported core motifs and 

structural data of other PKS/NRPS megasynthetases. The gene cluster data were submitted to 

GenBank (accession numbers are listed in Table 1) and deposited in the MiBIG database.14 

The domain organization of the encoded megasynthetases was compared and revealed novel 

types of putative myxochromide biosynthetic pathways (C- and D-type clusters; Table 1 and 

Figure 2), for which putative pathway products were predicted based on the in silico data. 

Myxochromide production analysis of the identified strains listed in Table 1 (except Mh1) 

was carried out on a 50 mL scale under routine cultivation conditions. Crude extracts were 

prepared and subjected to HPLC-MS analysis including FT-ICR-MS2 measurements to 

characterize the myxochromide production profiles (Supporting Information Figures S3 and 

S4). Selected producer strains (Mx1, M1, Mv1, Se1, and Sa1) were additionally grown in 

media supplemented with L-α-aminobutyric acid (L-Abu), and the effect on myxochromide 

production profiles was analyzed by HPLC-MS (Supporting Information Figure S5). For 

additional details, see Supporting Information Chapter 2.7.2.3. 

 

2.5.3 Isolation and Structure Elucidation of Novel Myxochromides 

Representatives of four novel myxochromide types (C-type, D-type, S-Abu-type, and S-diAbu 

type) were isolated from culture extracts of selected producer strains via a combination of size 

exclusion chromatography and reversed-phase HPLC. The planar structures were elucidated 

based on 1D (1H) and 2D (1H−1H COSY, HSQC, HMBC, and ROESY) NMR spectroscopy 

as well as HR-ESI-MS data. The absolute configuration of the amino acid residues was 
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determined by HPLC-MS analysis of the L- and D-FDLA (1-fluoro-2,4- dinitrophenyl-5-L-

/D-leucinamide) derivatives of the acid hydrolysate of myxochromides in comparison with 

corresponding derivatives of L-configured amino acid standards (Marfey’s method29). The 

following myxochromide derivatives were purified and structurally characterized. 

Myxochromide C3 (6b). A total of 2.3 mg of 6b was isolated from a 20 L culture of 

Myxococcus virescens ST200611 (Mv1). The molecular formula was established to be 

C42H58N6O8 (m/z 775.43921 [M + H]+). NMR spectra and selected correlations are illustrated 

in Supporting Information Figures S6 and S7, and HPLC-MS analysis of L- and D-FDLA 

derivatives from the 6b hydrolysate is shown in Supporting Information Figure S8. For 

details, see Supporting Information Chapter 2.7.3. 

Myxochromide D1 (7a). A total of 2.7 mg of 7a was isolated from a 20 L culture of 

Stigmatella erecta Pde77 (Se1). The molecular formula was established to be C38H54N6O8 

(m/z 723.40748 [M + H]+). NMR spectra and selected correlations are illustrated in 

Supporting Information Figures S9 and S10, and HPLC-MS analysis of L- and D-FDLA 

derivatives from the 7a hydrolysate is shown in Supporting Information Figure S11. For 

details, see Supporting Information Chapter 2.7.4. 

Myxochromide S2-Abu (4b). A total of 5.3 mg of 4b was isolated from a 9 L culture of the 

heterologous production strain M. xanthus DK1622::pTpS-mchS.15 The molecular formula 

was established to be C40H58N6O8 (m/z 751.43940 [M + H]+). NMR spectra and selected 

correlations are illustrated in Supporting Information Figures S12 and S13, and HPLC-MS 

analysis of L- and D-FDLA derivatives from the 4b hydrolysate is shown in Supporting 

Information Figure S14. For details, see Supporting Information Chapter 2.7.5. 

Myxochromide S2-diAbu (5b). A total of 6.4 mg of 5b was isolated from a 4.5 L culture of 

the heterologous production strain M. xanthus DK1622::pTpS-mchS.15 The molecular formula 

was established to be C41H60N6O8 (m/z 765.45520 [M + H]+). NMR spectra and selected 

correlations are illustrated in Supporting Information Figures S15 and S16, and HPLC-MS 

analysis of L- and D-FDLA derivatives from the 5b hydrolysate is shown in Supporting 

Information Figure S17. For details, see Supporting Information Chapter 2.7.6. 

 

2.5.4 Detailed in Silico Analysis of the 16 mch Clusters 

The mch clusters listed in Table 1 were analyzed according to different aspects using 

established bioinformatics tools. Protein sequence alignments of selected catalytic domains 

were performed using the Geneious alignment tool integrated into Geneious software version 

9.1.2.30 As shown in Supporting Information Figure S18, these include alignments of C 
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domains from modules 2 and 3 (C2 and C3) and E domains from module 2 (E2) as well as PCP 

domains from modules 2, 3, and 4 (PCP2, PCP3, and PCP4). The reported C, E, and PCP 

domain core motifs31,32 and additional residues to distinguish LCL and DCL domain subtypes33 

were analyzed. In addition, substrate specificities of all A domains from the 16 

myxochromide megasynthetases (in total 94 A domains) were analyzed using the antiSMASH 

3.013 and NRPSpredictor2 analysis tools.34 The substrate predictions together with the A 

domain 8 Å signatures and Stachelhaus codes35,36 are shown in Supporting Information Figure 

S19. In order to identify recombination sites from domain duplication and deletion events, 

alignments with selected regions of mchC genes were performed using the Geneious 

alignment tool integrated into Geneious software version 9.1.2.30 The outcome of this analysis 

is illustrated in Supporting Information Figure S20 for the “module duplication” 

(myxochromide B pathway), Supporting Information Figure S21 for the “module deletion” 

(myxochromide C pathway), and Supporting Information Figure S22 for the “partial module 

deletion” (myxochromide D-subtype 2 pathway). The analysis of the recombination events 

was supported by findings from phylogenetic analysis of myxochromide megasynthetase 

NRPS domains. Phylogenetic trees for A, C, and PCP domains, which were performed based 

on DNA sequences, are shown in Supporting Information Figure S23. In addition, 

phylogenetic relationships of all myxochromide megasynthetase subunits were analyzed 

based on DNA and protein sequences (mchA/MchA, mchB/MchB, and mchC/MchC; see 

Supporting Information Figure S24). Phylogenetic reconstitutions were carried out by 

applying the distance-based neighbor-joining method using the modules “neighbor” and 

“dnadist” or “protdist” of the PHYLIP package.37 The sequences were aligned using the 

GUIDANCE2 Server38 by applying the MAFFT algorithm or using ClustalX.39 For the 

comparison of strain and mch cluster phylogenies illustrated in Figure 3, the mchA, mchB, and 

mchC nucleotide sequences of the myxochromide megasynthetase encoding genes were 

concatenated (cluster phylogeny), and the nucleotide sequences of the 16S rRNA gene were 

concatenated with nucleotide sequences of 15 selected genes encoding highly conserved 

proteins (strain phylogeny). The phylogenetic analysis was complemented by codon 

adaptation index (CAI40 analysis, which was performed based on a set of selected high 

expression genes from the analyzed myxochromide producer strains (“hxp2 gene sets”, each 

harboring 343−405 genes). On the basis of these gene sets, codon usage tables were 

calculated by the EMBOSS program cusp.41 The respective sequence-specific CAI for the 

mch cluster genes was calculated by a Perl program as described by Sharp and Li40 and is 

illustrated for mchA, mchB, and mchC in Figure 3 (for CAI values see Supporting Information 
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Table S12, Chapter 2.7.7.4). In addition, local CAI values along the CDS of mchA, mchB, and 

mchC were calculated for overlapping CDS regions of 101 codons using a Perl program and 

were visualized as plotted color-shaded vertical lines along the CDS. For comparison of the 

local CAI distribution in the mchA, mchB, and mchC gene sets from the 16 analyzed 

myxochromide producers, codons were aligned to orthologous positions based on protein 

sequence alignments performed with ClustalX.39 Alignments of mchC were modified 

according to the identified recombination sites. The local CAI values along the mchA, mchB, 

and mchC CDS sequences of the 16 analyzed myxochromide pathways are illustrated in 

Supporting Information Figure S25. For additional details, see Supporting Information 

Chapter 2.7.7.4. 

 

2.5.5 Fruiting Body Formation and Swarm Expansion Assays 

The myxobacterial model strain and myxochromide A producer M. xanthus DK1622 wild 

type (Mx1) was analyzed in established developmental assays in comparison to three mutants. 

These include M. xanthus DK1622::pMch22a,7 which is deficient in myxochromide A 

production, M. xanthus DK1622::pMch70a (Wenzel et al., unpublished), which produces 

about 10-fold higher amounts of myxochromides A compared to the wildtype, and M. xanthus 

DK1622::pTpsmchS,15 which produces myxochromides S in around 50-fold higher amounts 

in addition to wildtype levels of myxochromides A. The results from the comparative fruiting 

body formation assays are illustrated in Supporting Information Figure S26. The outcome of 

the comparative swarm expansion assays, which were performed according to the procedure 

described by Kaiser et al.42 is shown in Supporting Information Figure S27. For additional 

details, see Supporting Information Chapter 2.7.8. 
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2.7 Supporting Information 

2.7.1 Identification and Decipherment of the Myxochromide B Biosynthetic Gene 

Cluster from Myxococcus sp. 171 

2.7.1.1 Shotgun Genome Sequencing of Myxococcus sp. 171 and Identification of the 

Myxochromide B Biosynthetic Gene Cluster 

Draft genome sequence of the myxochromide B producer Myxococcus sp. 171 was 

determined by employing Illumina sequencing technology at Seq-It GmbH (Kaiserslautern, 

Germany). Paired-end sequencing library was prepared from the strain's total DNA. This 

library was then sequenced to a mean genome coverage of 357x; mean read length was 251 

bp; mean distance between reads (fragment size) was 378 bp. Raw sequencing data were then 

assembled by Abyss-pe software 1.3.6 to yield 61 contigs in 47 scaffolds. The estimated 

genome size of Myxococcus sp. 171 was 9,603,576 bp. The putative myxochromide B 

biosynthetic gene cluster was identified by comparative sequence analysis using the 

myxochromide A biosynthetic gene cluster from Myxococcus xanthus DK1622 (Genbank 

accession number CP000113) as a reference.43 However, due to repetitive sequence elements, 

the sequence of the mchC gene was not completely resolved (see Figure S1). 

2.7.1.2 Construction and Screening of a Cosmid Library from Myxococcus sp. 171 

To elucidate the entire gene cluster sequence, a cosmid library of the producer strain was 

constructed to enable subcloning and sequencing of unsolved gene cluster fragments. 

Chromosomal DNA from Myxococcus sp. 171 was prepared by standard 

phenol/chloroform/isoamylalcohol extraction.44 Isolated genomic DNA was subsequently 

used for the construction of a cosmid library according to the SuperCos 1 Cosmid Vector Kit 

protocol (Agilent Technologies). Cosmid packaging reactions were carried out using the 

Gigapack III Packaging Extract Kit (Agilent Technologies) according to the manufacturer’s 

protocol. The resulting cosmid library consists of 3072 clones (8×384 microtiter plates, 

MTPs), which were subsequently screened for cosmids harboring the putative myxochromide 

B biosynthetic gene cluster or fragments thereof. A PCR-based screening approach was 

applied using three oligonucleotide pairs specific for both ends of the gene cluster as well as 

for an internal region around the mchB/mchC interface (see Figure S1). PCRs were performed 

with Taq polymerase (Fermentas) using different cosmid DNA pools or DNA from single 

cosmids as templates and the following primer pairs (expected PCR product sizes are 

indicated):  
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Oligonucleotide  Sequence  Amplicon size  

P1 
 
P2 

5’TGCGAGGATGATTCTGGGC-3’ 
 
5’-TGTCAACAGTTCCCAGAGG-3’ 

 

 

 

P3 
 
P4 

5’-AGACCCTCGAGCGGCTGAAC-3’ 
 
5’-TCCCACAGAAAGGCCGAACG-3’ 

 

               

 

P5 
 
P6 

5’-ATGGGCGTGGGGGTGGTGTAG-3’ 
 
5’-GTTGATTTCACGCGACTTCTGG-3’ 

 

 

 

     

Initially, the 3072 library clones were pooled and inoculated as 16 sets, each representing 192 

cosmid clones from a half MTP. The combined clones were grown in 1.5 mL LB medium 

(tryptone 10 g/L, yeast extract 5 g/L, NaCl 5 g/L) amended with kanamycin (50 µg/mL) at 37 

°C overnight to isolate the respective cosmid DNA mixtures via standard alkaline lysis.44 

Cosmid sets revealing PCR products with primer pairs P1/P2 as well as P5/P6 were further 

screened by at first preparing 8 subsets of 24 clones, from which in the next step (in case of 

positive PCR results) the individual cosmid clones were analyzed. However, as this strategy 

did not lead to the identification of cosmids harboring the entire putative myxochromide B 

biosynthetic gene cluster, which would result in PCR products with the P1/P2 as well as 

P5/P6 primer set, the screening approach was altered to detect cosmid inserts covering one 

half of the gene cluster including the unsolved region of mchC. A number of cosmids yielding 

PCR products with P3/P4 and either P1/P2 or P5/P6 were identified and further analyzed by 

end-sequencing of the inserts using primers T3 (5’-ATTAACCCTCACTAAAGGGA-3’) and 

T7 (5’-TAATACGACTCACTATAGGG-3’). Based on the obtained data, cosmids Cos1P19 

and Cos8F11, both harboring the unsolved mchC region and combined harboring the entire 

gene cluster, were selected for subsequent subcloning approaches. 

 

2.7.1.3 Subcloning and Sequencing of Myxochromide B Biosynthetic Gene Cluster 

Fragments 

To decipher the sequence of the unsolved mchC region, detailed restriction analysis of 

cosmids Cos1P19 and Cos8F11 was performed. As illustrated in Figure S1B, seven plasmids 

harboring smaller gene cluster fragments including (part of) the gap region, were constructed 

by using standard cloning methods. First of all, a 8.9 kb NotI fragment was subcloned from 

340 bp 

411 bp 

299 bp 
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cosmid Cos8F11 to reveal plasmids pBCSK_mchB1-R1 and pBCSK_mchB1-R2 (harboring 

the insert in different directions). Based on these constructs, three smaller gene cluster 

fragments were subcloned and completely sequenced from the following three plasmids: 

pBCSK_mchB3 (4.3 kb SpeI/PvuII fragment from pBCSK_mchB1-R1 ligated into pBC 

SK(+) linearized with SpeI/EcoRV), pBCSK_mchB4 (1.5 kb PvuII fragment from 

pBCSK_mchB1-R1 ligated into pBC SK(+) linearized with EcoRV) and pBCSK_mchB5 (3.1 

kb SpeI/PvuII fragment from pBCSK_mchB1-R2 ligated into pBC SK(+) linearized with 

SpeI/EcoRV). In parallel, a 9.0 kb EcoRI/HindIII fragment from cosmid Cos1P19 was 

subcloned into pASK-IBA6 (Iba Life Sciences) to reveal plasmid pASK_mchB2. Based on 

this construct, a 2.7 kb StuI/HindIII fragment was subcloned into pASK-IBA6 and completely 

sequenced from plasmid pASK_mchB6. 
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Figure S1. Illustration of repetitive regions within the mchC gene and subcloning strategy to decipher the 

complete putative myxochromide B biosynthetic gene cluster sequence. A: Dotplot of the mchABCD operon of 

the myxochromide B pathway performed with the Geneious 9.1.2 software45 based on the EMBOSS 6.5.7 tool 

dottup.41 Large sequence repeats can be detected within the mchC gene, a region which could not completely 

deciphered based on shotgun genome sequence data. B: Subcloning approach based on two cosmids, which were 

identified by PCR-based screening of a cosmid library using three primer sets (P1/P2, P3/P4, P5/P6, highlighted 

in green). Seven plasmids harboring smaller gene cluster fragments were constructed (for details see chapter 

2.7.1.3). Fragments shown in black were completely sequenced to reconstitute the repetitive region of mchC. 

B 

A 
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2.7.2 Screening of Myxobacterial Genome Data for Additional Myxochromide 

Biosynthetic Gene Clusters and Verification via Production Analysis  

2.7.2.1 Identification and Annotation of Additional Myxochromide Biosynthetic Gene 

Clusters 

For the identification of additional putative myxochromide biosynthetic gene clusters (mch 

clusters), 122 myxobacterial genome sequences were screened by using the antiSMASH 3.0.4 

tool.13 The analyzed species include 68 representatives of the suborder Cystobacterineae, 43 

representatives of the suborder Sorangiineae and 11 representatives of the suborder 

Nannocystineae (Table S1). In addition to the previously described A-type mch cluster from 

M. xanthus DK1622,7 the S-type mch cluster from S. aurantiaca DW4/3-1,9 and the B-type 

mch cluster from Myxococcus sp.  171 (see chapter 2.7.1), 13 putative mch clusters were 

identified, from which 7 represent a new type of mch gene cluster (B-type, C-type, D-subtype 

1, D-subtype 2; see Table 1 in the manuscript). The 16 identified mch clusters were 

exclusively found in myxobacterial strains, which belong to the suborder Cystobacterineae. 

The mch clusters are organized in a four-gene operon (mchA-mchD) encoding an iterative 

type I polyketide synthase (MchA), two nonribosomal peptide synthetases (MchB and MchC) 

as well as a conserved hypothetical protein with unkown function (MchD), which was not 

reported as part of the myxochromide pathway in previous studies.7,9 Based on in-silico 

protein sequence analysis using the Pfam database,46 the hypothetical protein MchD was 

predicted to be an integral membrane protein, since it contains the conserved DUF2269 

domain. The MchD protein could potentially act as a transmembane anchor for the 

myxochromide assembly lines. Association of a polyketide megasynthetase with the bacterial 

cell membrane was previously described for the myxovirescin biosynthetic machinery.47 

Analysis of the genomic context of the 16 mch gene clusters revealed their loci in the 

genomes of the respective producer strains (see Figure S2). The A-type, B-type  and C-type 

mch operons of the analyzed Myxococcus species (Mf1, Mx1, Mx2, Mx3, Mx4, M1, Mh1, 

Mv1) share basically the same set of genes surrounding the mch gene clusters with only little 

differences (see Figure S2A). In contrast, the mch gene cluster loci from Stigmatella (Sa1, 

Sa2, Sa3, Se1) and Hyalangium strains (Hm1, Hm2, Hm3) as well as from the unclassified 

strain (Cy1) significantly differ from the loci, which were observed for Myxococcus species. 

Interestingly, the mch cluster loci from Stigmatella sp. and Hyalangium sp. also partly differ 

within the same family from each other, except the S-type mch gene clusters from Sa1 and 

Sa3, which are integrated in the same genomic locus.  

To prepare the mch gene cluster sequences for detailed in-silico analyses, manual gap closing 

for the mch gene clusters from Mx2, Mx3 and Mv1 was performed by amplifying and 
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sequencing respective PCR products covering the sequence gap (not shown). Based on the 

automatic annotation of the mch gene clusters from the antiSMASH 3.0.4 analysis,13 the 

borders of catalytic domains from the polyketide synthase MchA and the two multimodular 

nonribosomal peptide synthetases MchB and MchC were manually revised and core motifs, 

which characterize these  domains, were annotated as well.31,32 The considerably increased 

sequence information of mch gene clusters, in addition to the novel identified putative types 

of mch gene clusters (B-type, C-type, D-subtype1, D-subtype2) allowed for detailed 

characterization of the different pathways in order to explain the structural diversity of the 

myxochromide family on a genetic basis (see chapter 2.7.7). 

 

 

Table S1. Myxobacterial genomes screened for mch gene clusters. Strains, which harbor a mch gene cluster, are 

highlighted in boldface. 

 

No. Strain Suborder Family Genus 

1 Anaeromyxobacter dehalogenans 2CP-1 Cystobacterineae Cystobacteraceae Anaeromyxobacter 

2 Anaeromyxobacter dehalogenans 2CP-C Cystobacterineae Cystobacteraceae Anaeromyxobacter 

3 Anaeromyxobacter sp. Fw109-5 Cystobacterineae Cystobacteraceae Anaeromyxobacter 

4 Anaeromyxobacter sp. K Cystobacterineae Cystobacteraceae Anaeromyxobacter 

5 Anaeromyxobacter sp. PSR-1 Cystobacterineae Cystobacteraceae Anaeromyxobacter 

6 Angiococcus disciformis AngGT8 Cystobacterineae Cystobacteraceae Angiococcus 

7 Archangium gephyra Ar8082 Cystobacterineae Cystobacteraceae Archangium 

8 Archangium gephyra DSM 2261 Cystobacterineae Cystobacteraceae Archangium 

9 Archangium sp. Ar3548 Cystobacterineae Cystobacteraceae Archangium 

10 Cystobacter armeniaca Cba6 Cystobacterineae Cystobacteraceae Cystobacter 

11 Cystobacter ferrugineus Cbfe23 Cystobacterineae Cystobacteraceae Cystobacter 

12 Cystobacter fuscus DSM 2262 Cystobacterineae Cystobacteraceae Cystobacter 

13 Cystobacter fuscus SBCb021 Cystobacterineae Cystobacteraceae Cystobacter 

14 Cystobacter sp. MCy9104 Cystobacterineae Cystobacteraceae Cystobacter 

15 Cystobacter sp. SBCb004 Cystobacterineae Cystobacteraceae Cystobacter 

16 Cystobacter velatus Cbv34 Cystobacterineae Cystobacteraceae Cystobacter 

17 Cystobacter violaceus Cb vi76 Cystobacterineae Cystobacteraceae Cystobacter 

18 Cystobacter violaceus Cbvi35 Cystobacterineae Cystobacteraceae Cystobacter 

19 Cystobacterineae sp. SBAr0011) Cystobacterineae - - 

20 Cystobacterineae sp. SBCy0081) Cystobacterineae - - 

21 Cystobacterineae sp. SBCy0121) Cystobacterineae - - 

22 Cystobacterineae sp. SBCy0161) Cystobacterineae - - 

23 Cystobacterineae sp. SBCy0171) Cystobacterineae - - 

24 Cystobacterineae sp. SBCy0181) Cystobacterineae - - 

25 Cystobacterineae sp. SBCy0271) Cystobacterineae - - 

26 Cystobacterineae sp. SBCy0301) Cystobacterineae - - 

27 Cystobacterineae sp. SBCy0481) Cystobacterineae - - 

28 Cystobacterineae sp. SBCy0501) Cystobacterineae - - 

29 Hyalangium minutum DSM 14724 (Hm1) Cystobacterineae Cystobacteraceae Hyalangium 

30 Hyalangium minutum Hym3 (Hm2) Cystobacterineae Cystobacteraceae Hyalangium 

31 Hyalangium minutum NOCb10 (Hm3) Cystobacterineae Cystobacteraceae Hyalangium 

32 Melittangium boletus Meb2 Cystobacterineae Cystobacteraceae Melittangium 

33 Melittangium lichenicola Mel 24 Cystobacterineae Cystobacteraceae Melittangium 

34 Stigmatella aurantiaca DW4/3-1 (Sa1) Cystobacterineae Cystobacteraceae Stigmatella 

35 Stigmatella aurantiaca Sga15 (Sa2) Cystobacterineae Cystobacteraceae Stigmatella 

36 Stigmatella aurantiaca Sga32 (Sa3) Cystobacterineae Cystobacteraceae Stigmatella 

37 Stigmatella erecta Pde77(Se1) Cystobacterineae Cystobacteraceae Stigmatella 
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38 Vulgatibacter incomptus DSM 27710 Cystobacterineae Vulgatibacteraceae Vulgatibacter 

39 Aggregicoccus edoensis MCy10622 Cystobacterineae Myxococcaceae Aggregicoccus 

40 Corallococcus coralloides Ccc1071 Cystobacterineae Myxococcaceae Corallococcus 

41 Corallococcus coralloides DSM 2259 Cystobacterineae Myxococcaceae Corallococcus 

42 Corallococcus coralloides ST201330 Cystobacterineae Myxococcaceae Corallococcus 

43 Corallococcus sp. Ccc127 Cystobacterineae Myxococcaceae Corallococcus 

44 Corallococcus sp. MCy10984 Cystobacterineae Myxococcaceae Corallococcus 

45 Myxococcus fulvus 124B02 Cystobacterineae Myxococcaceae Myxococcus 

46 Myxococcus fulvus HW-1 (Mf1) Cystobacterineae Myxococcaceae Myxococcus 

47 Myxococcus fulvus Mxf50 Cystobacterineae Myxococcaceae Myxococcus 

48 Myxococcus fulvus Mxf65 Cystobacterineae Myxococcaceae Myxococcus 

49 Myxococcus fulvus SBMx122 Cystobacterineae Myxococcaceae Myxococcus 

50 Myxococcus fulvus SBMx132 Cystobacterineae Myxococcaceae Myxococcus 

51 Myxococcus hansupus mixupus (Mh1) Cystobacterineae Myxococcaceae Myxococcus 

52 Myxococcus sp. 171 (M1) Cystobacterineae Myxococcaceae Myxococcus 

53 Myxococcus sp. MCy10608 Cystobacterineae Myxococcaceae Myxococcus 

54 Myxococcus stipitatus DSM 14675 Cystobacterineae Myxococcaceae Myxococcus 

55 Myxococcus virescens ST200611 (Mv1) Cystobacterineae Myxococcaceae Myxococcus 

56 Myxococcus xanthus DK 1622 (Mx1) Cystobacterineae Myxococcaceae Myxococcus 

57 Myxococcus xanthus DK897 (Mx2) Cystobacterineae Myxococcaceae Myxococcus 

58 Myxococcus xanthus DZ2 Cystobacterineae Myxococcaceae Myxococcus 

59 Myxococcus xanthus DZF1 Cystobacterineae Myxococcaceae Myxococcus 

60 Myxococcus xanthus MxA47 (Mx3) Cystobacterineae Myxococcaceae Myxococcus 

61 Myxococcus xanthus Mxx48 (Mx4) Cystobacterineae Myxococcaceae Myxococcus 

62 Pyxidicoccus fallax And48 Cystobacterineae Myxococcaceae Pyxidicoccus 

63 Pyxidicoccus sp. SBCy002 Cystobacterineae Myxococcaceae Pyxidicoccus 

64 Unclassified sp. And301) Cystobacterineae - - 

65 Unclassified sp. Ang9831) Cystobacterineae - - 

66 Unclassified sp. CcG341) (Cy1) Cystobacterineae - - 

67 Unclassified sp. SBCy0061) Cystobacterineae - - 

68 Unclassified sp. SBMx1521) Cystobacterineae - - 

69 Aetherobacter fasciculatus SBSr002 Sorangiineae Polyangiaceae Aetherobacter 

70 Aetherobacter rufus SBSr003 Sorangiineae Polyangiaceae Aetherobacter 

71 Aetherobacter sp. SBSr001 Sorangiineae Polyangiaceae Aetherobacter 

72 Aetherobacter sp. SBSr008 Sorangiineae Polyangiaceae Aetherobacter 

73 Byssovorax cruenta Byc1 Sorangiineae Polyangiaceae Byssovorax 

74 Chondromyces apiculatus DSM 436 Sorangiineae Polyangiaceae Chondromyces 

75 Chondromyces catenulatus SBCm007 Sorangiineae Polyangiaceae Chondromyces 

76 Chondromyces crocatus Cm c5 Sorangiineae Polyangiaceae Chondromyces 

77 Chondromyces pediculatus Cmp5 Sorangiineae Polyangiaceae Chondromyces 

78 Jahnella sp. SBSr007 Sorangiineae Polyangiaceae Jahnella 

79 Polyangium spumosum Plsm9 Sorangiineae Polyangiaceae Polyangium 

80 Sorangiineae sp. SBSr022 Sorangiineae Polyangiaceae Sorangium 

81 Sorangium cellulosum SBSo026 Sorangiineae Polyangiaceae Sorangium 

82 Sorangium cellulosum So ce56 Sorangiineae Polyangiaceae Sorangium 

83 Sorangium cellulosum So0157-2 Sorangiineae Polyangiaceae Sorangium 

84 Sorangium cellulosum Soce10 Sorangiineae Polyangiaceae Sorangium 

85 Sorangium cellulosum Soce1128 Sorangiineae Polyangiaceae Sorangium 

86 Sorangium cellulosum Soce1525 Sorangiineae Polyangiaceae Sorangium 

87 Sorangium cellulosum Soce1875 Sorangiineae Polyangiaceae Sorangium 

88 Sorangium cellulosum Soce26 Sorangiineae Polyangiaceae Sorangium 

89 Sorangium cellulosum Soce307 Sorangiineae Polyangiaceae Sorangium 

90 Sorangium cellulosum Soce340 Sorangiineae Polyangiaceae Sorangium 

91 Sorangium cellulosum Soce377 Sorangiineae Polyangiaceae Sorangium 

92 Sorangium cellulosum Soce38 Sorangiineae Polyangiaceae Sorangium 

93 Sorangium cellulosum Soce439 Sorangiineae Polyangiaceae Sorangium 

94 Sorangium cellulosum Soce690 Sorangiineae Polyangiaceae Sorangium 

95 Sorangium cellulosum Soce836 Sorangiineae Polyangiaceae Sorangium 

96 Sorangium cellulosum Soce960 Sorangiineae Polyangiaceae Sorangium 
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97 Sorangium cellulosum Soce969 Sorangiineae Polyangiaceae Sorangium 

98 Sorangium cellulosum SoceGT47 Sorangiineae Polyangiaceae Sorangium 

99 Sorangium nigrum Soce487 Sorangiineae Polyangiaceae Sorangium 

100 Sandaracinus amylolyticus DSM 53668 Sorangiineae Sandaracinaceae Sandaracinus 

101 Sandaracinus sp. SBSa001 Sorangiineae Sandaracinaceae Sandaracinus 

102 Labilithrix luteola strain DSM 27648 Sorangiineae Labilitrichaceae Labilithrix 

103 Minicystis sp. SBNa008 Sorangiineae - - 

104 Unclassified sp. MSr106812) Sorangiineae - - 

105 Unclassified sp. MSr31392) Sorangiineae - - 

106 Unclassified sp. NOSO-31) Sorangiineae - - 
107 Unclassified sp. SBSr0152) Sorangiineae - - 

108 Unclassified sp. SBSr0172) Sorangiineae - - 

109 Unclassified sp. SBSr0442) Sorangiineae - - 

110 Unclassified sp. SBSr0602) Sorangiineae - - 

111 Unclassified sp. SBSr0712) Sorangiineae - - 

112 Nannocystineae sp. SBNc001 Nannocystineae Nannocystaceae  

113 Nannocystis exedens Nae485 Nannocystineae Nannocystaceae Nannocystis 

114 Nannocystis exedens Nae487 Nannocystineae Nannocystaceae Nannocystis 

115 Enhygromyxa salina DSM 15201 Nannocystineae Nannocystaceae Enhygromyxa 

116 Enhygromyxa salina SBCm009 Nannocystineae Nannocystaceae Enhygromyxa 

117 Haliangium ochraceum DSM 14365 Nannocystineae Haliangiaceae Haliangium 

118 Haliangium ochraceum GS1 Nannocystineae Haliangiaceae Haliangium 

119 Kofleria flava Plvt1 Nannocystineae Kofleriaceae Kofleria 

120 Plesiocystis pacifica SIR-1 Nannocystineae Nannocystaceae Plesiocystis 

121 Unclassified sp. Nc0053) Nannocystineae - - 

122 Unclassified sp. Nc0183) Nannocystineae - - 

1) unclassified species belonging to the suborder Cystobacterineae 
2) unclassified species belonging to the suborder Sorangiineae 

3) unclassified species belonging to the suborder Nannocystineae 
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Figure S2. Myxochromide biosynthetic gene cluster loci from the 16 analyzed myxobacterial producer strains. 

The (putative) mch gene clusters (highlighted by a dashed rectangle) represent four-gene operons (mchA-D) 

encoding an iterative polyketide synthase (MchA), two multimodular nonribosomal peptide synthetases (MchB 

and MchC) and a conserved hypothetical protein (MchD). A: A-type mch gene clusters from Myxococcus fulvus 

HW-1 (Mf1_A), M. xanthus DK1622 (Mx1_A7, M. xanthus DK897 (Mx2_A), M. xanthus A47 (Mx3_A) and M. 

xanthus Mx48 (Mx4_A), B-type mch gene cluster from Myxococcus sp. 171 (M1_B) and C-type mch gene 

cluster from M. hansupus mixupus (Mh1_C) and M. virescens ST200611 (Mv1_C). Minor differences in the 

flanking chromosomal regions can be observed (4b, 5, 7), which encode: glycosyl hydrolase (1), multidrug ABC 

transporter ATP-binding protein (2), membrane protein (3), uncharacterized protein (4/4b), AraC family 

transcriptional regulator (5), ATP-dependent RNA helicase RhlE (6), elongation factor G (7), cyclic nucleotide-

binding protein (8), peptidyl-prolyl cis-trans isomerase (9) and metallophosphatase (10). B: D-type mch gene 

cluster from Cystobacterineae sp. CcG34 (Cy1_D). Flanking regions encode: two-component sensor histidine 

kinase (1), membrane protein (2), uncharacterized protein (3), uncharacterized protein (4), uncharacterized 

protein (5), aldo/keto reductase (6), uncharacterized protein (7) and uncharacterized protein (8). C: D-type mch 

gene clusters from Hyalangium minutum DSM14724 (Hm1_D), H. minutum Hym-3 (Hm2_D), H. minutum 

NoCb10 (Hm3_D). Flanking regions encode: uncharacterized protein (1), uncharacterized protein (2), pilus 

assembly protein PilZ (3), amino acid dehydrogenase (4), tRNA-Thr (5), uncharacterized protein (6), ABC 

transporter ATP-binding protein (7), ABC transporter permease (8), uncharacterized protein (9), benzoate-CoA 

ligase family protein (10), 8-amino-7-oxononanoate synthase (11), phosphopantetheine-binding protein (12), 

acyl-CoA dehydrogenase (13) and acyl-CoA synthetase (14). The downstream region 6-9 identified in 

Hm1_D/Hm2_D plus additional ~20 kb are missing from cluster downstream DNA in Hm3_D. D: D-type mch 

gene cluster from Stigmatella erecta Pde77 (Se1_D). Flanking regions encode putative homologous of the 

dawenol (Daw) and myxalamid (Mxa) biosynthetic pathways,48,49 polyketide synthases homologous to Daw3 (1), 

Daw2 (2) and MxaF (3). E: S-type mch gene clusters from S. aurantiaca DW4/3-1 (Sa1_S9) and S. aurantiaca 

Sga32 (Sa3_S). Flanking regions encode: cation/H(+) antiporter (1), hydrolase (2), ABC transporter permease 

(3), ABC transporter ATP-binding protein (4), alpha/beta hydrolase (5), uncharacterized protein (6), 

coproporphyrinogen III oxidase (7) and uncharacterized protein (8). F: S-type mch gene cluster from 

S. aurantiaca Sga15 (Sa2_S). Flanking regions encode: uncharacterized protein (1), TetR family transcriptional 

regulator (2), 3-oxoadipate enol-lactonase (3), PHB depolymerase esterase (4), glutathione S-transferase (5), 

uncharacterized protein (6), protein kinase (7) and protein kinase (8). 
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2.7.2.2 In-silico Predicition of Products of the C-type and D-type Megasynthetases 

In the course of the genome mining approach described in chapter 2.7.2.1, 7 putative mch 

gene clusters covering 4 novel types (B-type, C-type, D-subtype1, D-subtype2) were 

identified, which deviate from the previously described myxochromide A and S pathways in 

terms of the modular organization of the respective assembly lines.7,9 

In the putative C-type mch gene clusters from Mh1 and Mv1, the (compared to the A-type 

mch gene cluster) corresponding A5-PCP5-C6 unit is deleted, which led to recombination of 

the ‘hybrid’ C5-A6-PCP6-TE6 module. In-silico prediciton of the substrate specifities of all 

adenylation domains present in the putative C-type mch gene clusters (see chapter 2.7.7) 

revealed the same amino acid specificities as already predicted and experimentally verified 

for myxochromides A.7 As a result, it was expected that myxochromides C might have the 

same peptide core structure as myxochromides A but lack the alanine residue between the 

proline and glutamine residues. Since there are only minor differences in the protein 

sequences of the epimerization domains of module 2 from A-type and putative C-type mch 

gene clusters, it was assumed that the alanine residue, that might be introduced by module 2, 

has D configuration in the final product, which was already shown for myxochromides A.7 

Theoretical masses of proposed myxochromides C1-C4 were predicted, for which extracts of 

Mv1 (strain Mh1 was not availbale) were screened by HPLC-MS analysis (see chapter 

2.7.2.3). 

Sequence analysis of the putative D-type mch gene clusters (subtype 1) from Hm1, Hm2, 

Hm3 and Se1 revealed the same critical mutation within the core motif of the peptidyl carrier 

protein of module 4, which was already described for myxochromide S biosynthesis (see 

chapter 2.7.7).7 Here, this loss of function mutation led to ‘module-skipping’ resulting in the 

production of a pentapeptide core. The same scenario was now postulated for the putative D-

subtype 1 pathways, which were predicted to generate pentapeptide cores lacking the proline 

residue compared to myxochromides A. Similar products were expected from the putative D-

subtype 2 pathway from Cy1, which actually lacks two catalytic domains (A4-PCP4) 

obviously also resulting in a non-functional module 4. Specificity predictions of the 

adenylation domains from both subtypes indicate that both putative myxochromide D 

assembly lines might recruit and incorporate the same amino acid residues as previously 

described for the myxochromide A biosynthetic machinery (see chapter 2.7.7).7 In 

comparison to myxochromides S, the amino acid specificities of modules 2 and 3 might be 

interchanged (see chapter 2.7.7) leading to the production of a novel pentapeptide. Based on 

the high protein sequence similarity between the epimerization domains from A-type and 

putative D-type pathways, the absolute configuration of myxochromides D might be the same 
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as described for myxochromides A with one alanine residue (incorporated by module 2) 

showing D configuration. Theoretical masses of proposed myxochromides D1-D4 were 

predicted, for which extracts of Hm1, Hm2, Hm3, Se1 and Cy1 were screened by HPLC-MS 

analysis (see chapter 2.7.2.3). 

2.7.2.3 Analysis of Myxochromide Production Spectra  

To verify myxochromide production in the (putative) producer strains identified in the 

genome-based screening (Table S1), the strains (except strain Mh1, which was not available) 

were routinely grown in 50 mL liquid medium (300 mL shaking flasks) including 2% of 

amberlite XAD-16 adsorber resin at 30 °C and 180 rpm for up to 7 days. The strains Mf1, 

Mx1, Mx2, Mx3 and Mx4 were grown in CTT medium (casitone 1%, Tris-HCl [pH 8.0] 10 

mM, K2HPO4/KH2PO4 buffer [pH 7.6] 1 mM, MgSO4 × 7 H2O 8 mM, pH adjusted to 7.6), 

strains Sa1, Sa2 and Sa3 were grown in tryptone medium (tryptone 1%, MgSO4 × 7 H2O 

0.2%, pH adjusted to 7.2), strains Hm1, Hm2 and Hm3 were grown in MD1G medium 

(casitone 0.3%, CaCl2 × 2 H2O 0.05%, MgSO4 × 7 H2O 0.1%, glucose 0.35%, HEPES 0.11%, 

pH adjusted to 7.0), strain Se1 was grown in VY/2 medium (Baker’s yeast 0.5%, CaCl2 × 2 

H2O, HEPES 0.11%, vitamin B12 0.5 µg/mL, pH adjusted to 7.0), strain Cy1 was grown in H 

medium (soy flour 0.2%, yeast extract 0.2%, glucose 0.2%, starch 0.8%, CaCl2 × 2 H2O 

0.1%, MgSO4 × 7 H2O 0.1%, HEPES 0.11%, pH adjusted to 7.4), strain Mv1 was grown in 

CY medium (casitone 0.3%, yeast extract 0.1%, CaCl2 × 2 H2O 0.1%, MgSO4 × 7 H2O 0.2%, 

vitamin B12 0.5 µg/mL, pH adjusted to 7.4) and strain M1 was grown in a peptone medium 

(casitone 0.3%, yeast extract 0.3%, CaCl2 × 2 H2O 0.07%, MgSO4 × 7 H2O 0.2%, glucose 

0.1%, starch  1%, pH adjusted to 7.2).  

Cells and XAD-16 were harvested by centrifugation at 8,000 rpm and 4 °C for 10 min and 

subsequently extracted twice with 50 mL of a mixture of methanol and acetone (1:1). The 

extracts were evaporated to dryness, dissolved in methanol and subjected to HPLC-MS 

analysis using a Dionex Ultimate 3000 RSLC system coupled to a Bruker maXis 4G TOF 

mass spectrometer. Separation was performed using a Waters BEH C18, 100 × 2.1 mm, 1.7 

µm dp column. At a flow rate of 0.6 mL/min, the following gradient was applied (A: 

deionized water + 0.1% formic acid, B: acetonitrile + 0.1% formic acid): 0-0.5 min 5% B, 

0.5-18.5 min 5-95% B, 18.5-20.5 min 95% B. Full scan mass spectra were acquired in 

positive ESI mode in a range from 150-2500 m/z. All MS2 experiments of target masses were 

performed on a Bruker solariX XR FT-ICR (7T) mass spectrometer. Initially, precursors were 

isolated in the quadrupole with an isolation width of 5 Da and subsequently fragmented in the 

collision cell by applying an energy of 20eV. Occurred fragments were then transferred to the 
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ICR cell and detected in a mass range from 100-1600 m/z by acquiring a 490 ms transient. 

The chromatograms and selected MS2 fragment spectra obtained from the HPLC-MS analysis 

are illustrated in Figures S3/S4.  A peak list, in which identified MS2 fragments are 

summarized, is shown in Table S2. Myxochromides with different polyunsaturated acyl side 

chains can be distinguished by MS2 fragmentation yielding a highly characteristic N-Me-

threonine-acyl chain fragment as most prominent ion (Figure S4).7,9  

All 15 analyzed (putative) producer strains were shown to produce specific types of 

myxochromides as illustrated in Figure S3 and summarized below.  

Myxochromides A  

The previously described lipohexapeptides myxochromides A2, A3 and A4 (1a-c7; for MS2 

spectra see Figure S4A) were detected in extracts of Myxococcus strains Mf1, Mx1, Mx2, 

Mx3 and Mx4. The most prominent derivative was in most cases 1b, in case of strain Mx2 1a 

under the applied cultivation conditions (Figure S3). Thus, all M. xanthus species analyzed in 

this study were verified as A-type producers, which correlates with a previous secondary 

metabolome analysis of 98 M. xanthus strains revealing myxochromides A to be ubiquitous 

metabolites in this species.24  

Myxochromides B 

The lipoheptapeptides myxochromides B2, B3 and B4 (2a-c; for MS2 spectra see Figure S4B) 

were detected in extracts of strain M1. Whereas production and structure elucidation of the 

most prominent derivative 2b was previously reported,8 two additional minor derivatives 2a 

and 2c were identified in this study (Figure S3). Based on the analytical HPLC-MS data 

including high-resolution MS2 spectra, 2a and 2c were assigned as myxochromides B2 and B4.  

Myxochromides C – novel lipopentapeptides 

From the putative myxochromide C producers assigned based on genomic data (Mv1 and 

Mh1, Table 1), only strain Mv1 was available for production analysis. As discussed in chapter 

2.7.2.2, sequence analysis of the encoded putative myxochromide megasynthetase allowed for 

structure prediction of potential biosynthesis products designated as myxochromides C. 

Respective myxochromide derivatives with [M+H]+ masses and MS2 spectra corresponding 

with the expected products were detected in the Mv1 extract (6a-c; Figures S3 and S4C). 

Isolation and structure elucidation of the major derivative 6b revealed that myxochromides C 

indeed represent novel lipopentapeptides (chapter 2.7.3). In addition to myxochromide C3 

(6b), two minor derivatives (6a and 6c) were detected and designated as myxochromides C2 

and C4 based on the corresponding MS2 spectra.         
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Myxochromides D – novel lipopentapeptides 

Based on the genome data, five strains were expected to produce another novel 

lipopentapeptide type designated as myxochromides D (Cy1, Hm1, Hm2, Hm3 and Se1; 

Table 1). As discussed in chapter 2.7.2.2, sequence analysis of the encoded putative 

myxochromide megasynthetase allowed for structure prediction of potential novel D-type 

biosynthesis products. Respective myxochromide derivatives with [M+H]+ masses and MS2 

spectra corresponding with the expected products were detected in extracts of the five 

analyzed producers (7a-d; Figures S3 and S4D). Isolation and structure elucidation of the 

major derivative 7a from strain Se1 revealed that myxochromides D indeed represent novel 

lipopentapeptides (chapter 2.7.4). Additionally to myxochromide D1 (7a), three other 

derivatives (7b-d) were detected and designated as myxochromides D2-4 based on the 

corresponding MS2 spectra. In contrast to strain Se1, strains Cy1 and Hm1-3 were shown to 

produce 7b and 7c as major myxochromide derivatives.     

Myxochromides S 

The previously described lipopentapeptides myxochromides S1, S2 and S3 (3a-c9; for MS2 

spectra see Figure S4E) were detected in extracts of Stigmatella aurantiaca strains Sa1-3 with 

3a as major derivative under the applied cultivation conditions (Figure S3). Myxochromides S 

and D feature the same amino acid composition (but different amino acid sequence) and can 

be distinguished due to different retention times and MS2 spectra.  

Myxochromides S-Abu and S-diAbu – novel lipopentapeptides from S-type producers 

Prior to this study, myxochromide producers were described to generate single myxochromide 

peptide cores (A-type, B-type or S-type7–9). Interestingly, our analysis of S-type producer 

strains revealed additional biosynthesis products (Figure S3), which according to the 

analytical data, seem to represent novel lipopentapeptides designated as myxochromides S-

Abu (4a-c; for MS2 spectra see Figure S4F) and myxochromides S-diAbu (5a-c; for MS2 

spectra see Figure S4G). A representative of each type (S2-Abu and S2-diAbu) was isolated 

from a previously described heterologous high-titer myxchromide S production strain (chapter 

2.7.5 and 2.7.6)15. Structure elucidation revealed that the novel pentapeptide cores differ from 

myxochromides S by replacement of one or two L-alanine (L-Ala) residues with L-α-

aminobutyric acid (L-Abu). This result correlates with the observation that production of 4 

and 5 can be increased when supplementing the production cultures with L-Abu (see below). 

Novel lipopeptides detected in A-,B-,C- and D-type producers after L-Abu feeding 

The production of additional Abu-containing myxochromides S-Abu and S-diAbu in S-type 

producer strains indicated that Ala-specific modules from the S-type assembly line can 
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alternatively incorporate Abu. To analyze whether similar variations can be observed for other 

(putative) myxochromide megasynthetase types as well, Abu feeding studies were performed 

with a representative producer strain for each myxochromide type: Mx1, M1, Mv1, Se1 and 

Sa1. The strains were routinely grown in duplicates under the same conditions as described 

above (XAD-16 was supplemented 6 h before cell harvest). One duplicate was supplemented 

with 4.2 mg L-α-aminobutyric acid three times per day for up to 7 days. Cell harvest, extract 

preparation and HPLC-MS-MS analysis was performed as described above. As illustrated in 

Figure S5, myxochromide production profiles from each of the analyzed strains clearly 

change when supplementing the cultures with L-Abu which indicates the production of novel 

Abu-containing myxochromides as already shown for Sa1 (myxochromides S-Abu and S-

diAbu). In case of A-, B and D-type producers, the detected novel derivatives (compounds 8, 

9, 10, 11, 13, 14) revealed mass shifts in [M+H]+ corresponding to one (+CH2, m/z +14) or 

two (+C2H4, m/z +28) additional methylene groups (Table S3). This points to the production 

of modified peptide cores, which contain either one or two Abu instead of Ala residues. In 

case of the C-type producer, only derivatives with mass shifts corresponding to one additional 

methylene group were detected (12; Figure S5). This was expected as the myxochromide C 

peptide core harbors only one Ala residue, which could be substituted with Abu (Table S3). 

Our data suggest that Ala-incorporating modules from all types of myxochromide 

megasynthetase can make use of L-Abu as alternative substrate. Feeding production cultures 

with L-Abu directed the biosynthesis towards novel derivatives (8-14) and further expanded 

the structural diversity of myxochromide peptide cores. 
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Figure S3. HPLC-MS analysis of myxochromide production in 15 myxobacterial producer strains (strain Mh1 

was not available). Extracted ion chromatograms (EICs) for ±0.02 m/z corresponding to the [M+H]+ ions of 

myxochromides are shown. A-E: Detection of myxochromides A in Mf1, Mx1, Mx2, Mx3 and Mx4; 

A2 ([M+H]+ = 834.47600), A3 ([M+H]+ = 846.47600) and A4 ([M+H]+ = 860.49165). F: Detection of 

myxochromides B in M1; B2 ([M+H]+ = 947.56007), B3 ([M+H]+ = 959.56007), B4 ([M+H]+ = 973.57572). 

G: Detection of myxochromides C in Mv1; C2 ([M+H]+ = 763.43889), C3 ([M+H]+ = 775.43889), C4 ([M+H]+ = 

789.45454). H-L: Detection of myxochromides D in Cy1, Hm1, Hm2, Hm3 and Se1; D1 ([M+H]+ = 723.40759), 

D2 ([M+H]+ = 737.42324), D3 ([M+H]+ = 749.42324), D4 ([M+H]+ = 763.43889). M-O: Detection of 

myxochromides S, S-Abu and S-diAbu in Sa1, Sa2 and Sa3; S1 ([M+H]+ = 723.40759), S2+S1-Abu ([M+H]+ = 

737.42324), S2-Abu+S1-diAbu ([M+H]+ = 751.43889), S3 ([M+H]+ = 749.42324), S3-Abu ([M+H]+ = 

763.43889). 
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Figure S4 (continued on next page) 
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Figure S4 (continued on next page) 
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Figure S4 (continued on next page) 
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Figure S4. Annotated FT-ICR MS2 spectra of different myxochromide derivatives (for m/z values see peak list 

table below). Full scan mass spectra were acquired in positive ESI mode in a range from 150-2500 m/z. A: 

Myxochromides A from an extract of strain Mx2. (I) MS2 of m/z 834.47647 identified as myxochromide A2. (II) 

MS2 of m/z 846.47327 identified as myxochromide A3. (III) MS2 of m/z 860.48891 identified as myxochromide 

A4. B: Myxochromides B from an extract of strain M1. (I) MS2 of m/z 947.55939 identified as myxochromide 

B2. (II) MS2 of m/z 959.55927 identified as myxochromide B3. (III) MS2 of m/z 973.57529 identified as 

myxochromide B4. C: Myxochromides C from an extract of strain Mv1. (I) MS2 of m/z 763.43784 identified as 

myxochromide C2. (II) MS2 of m/z 775.43855 identified as myxochromide C3. (III) MS2 of m/z 789.45341 

identified as myxochromide C4. D: Myxochromides D from extracts of strains Se1 and Hm2. (I) MS2 of m/z 

723.40758 identified as myxochromide D1 (Se1 extract). (II) MS2 of m/z 737.42373 identified as myxochromide 

D2 (Hm2 extract). (III) MS2 of m/z 749.42344 identified as myxochromide D3 (Hm2 extract). (IV) MS2 of m/z 

763.43957 identified as myxochromide D4 (Hm2 extract). E: Myxochromides S from an extract of strain Sa1. (I) 

MS2 of m/z 723.40774 identified as myxochromide S1. (II) MS2 of m/z 737.42319 identified as myxochromide 

S2. (III) MS2 of m/z 749.42391 identified as myxochromide S3. F: Myxochromides S-Abu from extracts of 

strains Sa1 and Sa2. (I) MS2 of m/z 737.42350 identified as myxochromide S1-Abu (Sa1 extract). (II) MS2 of m/z 

751.43762 from myxochromide S2-Abu (Sa2 extract). (III) MS2 of m/z 763.43973 identified as myxochromide 

S3-Abu (Sa1 extract). G: Myxochromides S-diAbu from an extract of strain Sa1 and authentic myxochromide S2-

diAbu reference substance. (I) MS2 of m/z 737.42350 identified as myxochromide S1-diAbu (Sa1 extract). (II) 

MS2 of m/z 751.43762 from myxochromide S2-diAbu (authentic reference). (III) MS2 of m/z 763.43973 
identified as myxochromide S3-diAbu (Sa1, L-α-aminobutyric acid feeding). 
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Table S2. MS2 fragments and retention times of different myxochromide derivatives. The m/z values correspond 

to the fragments, which are assigned in Figure S4. The characteristic threonine-polyketide fragments are 

highlighted in boldface.  

 

 

Peak no. - 
Myxochromide A2 

(12.79 min) 

Myxochromide A3 

(12.93 min) 

Myxochromide A4 

(13.57 min) 

1 - 239.14381 251.14349 265.15923 
2 - 258.14965 270.14935 284.16498 
3 - 336.19667 348.19623 362.21196 

4 - 354.20745 366.20673 380.22245 
5 - 520.31822 532.31681 546.33271 
6 - 688.40764 700.40549 714.42130 
7 - 756.43011 768.42712 782.44278 
8 - 816.46591 828.46263 842.47881 
9 - 834.47647 846.47327 860.48891 

Peak no. - 
Myxochromide B2 

(13.81 min) 

Myxochromide B3 

(13.95 min) 

Myxochromide B4 

(14.49 min) 

1 - 239.14373 251.14368 265.15948 
2 - 258.14956 270.14948 284.16525 
3 - 336.19659 348.19647 362.21227 

4 - 354.20719 366.20709 380.22293 
5 - 520.31746 532.31760 546.33374 
6 - 633.40192 645.40167 659.41719 
7 - 801.49081 813.49011 827.50707 
8 - 869.51339 881.51228 895.52855 
9 - 947.55939 959.55927 973.57529 

Peak no. - 
Myxochromide C2 

(12.72 min) 

Myxochromide C3 

(12.84 min) 

Myxochromide C4 

(13.49 min) 

1 - 239.14404 251.14419 265.15975 
2 - 258.14991 270.15003 284.16562 
3 - 336.19692 348.19699 362.21250 

4 - 354.20753 366.20768 380.22318 
5 - 389.22336 401.22370 415.23896 
6 - 407.23391 419.23411 433.24940 
7 - 492.32269 504.32307 518.33814 
8 - 520.31753 532.31795 546.33333 
9 - 685.39215 697.39174 711.40673 

10 - 745.42777 757.42799 771.44344 
11 - 763.43784 775.43855 789.45341 

Peak no. 
Myxochromide D1 

(11.83 min) 

Myxochromide D2 

(12.53 min) 

Myxochromide D3 

(12.69 min) 

Myxochromide D4 

(13.33 min) 

1 225.12799 239.14373 251.14371 265.15994 
2 244.13387 258.14958 270.14952 284.16579 
3 322.18091 336.19660 348.19653 362.21288 

4 340.19146 354.20718 366.20719 380.22360 
5 365.22306 379.23876 391.23872 405.25525 
6 393.21812 407.23388 419.23381 433.25008 
7 506.30200 520.31787 532.31761 546.33514 
8 549.34396 563.36006 575.35988 589.37602 
9 577.33916 591.35495 603.35488 617.37101 

10 645.36089 659.37692 671.37679 685.39284 
11 723.40758 737.42373 749.42344 763.43957 
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Peak no. 
Myxochromide S1 (12.17 

min) 

Myxochromide S2 (12.85 

min) 

Myxochromide S3 (12.99 

min) 

- 

1 225.12809 239.14411 251.14376 - 
2 244.13391 258.14997 270.14958 - 
3 322.18095 336.19704 348.19662 - 

4 407.27029 421.28618 433.28603 - 
5 435.26516 449.28960 461.28083 - 
6 478.30728 492.32320 504.32348 - 
7 506.30228 520.31808 532.31799 - 
8 549.34461 563.36014 575.36022 - 
9 577.33940 591.35497 603.35523 - 

10 645.36161 659.37674 671.37717 - 
11 723.40774 723.42319 749.42391 - 

Peak no. 
Myxochromide S1-Abu 

(12.43 min) 

Myxochromide S2-Abu 

(13.09 min) 

Myxochromide S3-Abu 

(13.22 min) 

- 

1 225.12800 239.14402 251.14376 - 
2 244.13387 258.14987 270.14960 - 
3 322.18092 336.19687 348.19668 - 

4 340.19148 354.20723 366.20726 - 
5 407.27016 421.28595 433.28579 - 
6 591.35482 605.36993 617.37078 - 
7 659.37678 673.39153 685.39273 - 
8 737.42350 751.43762 763.43973 - 

Peak no. 
Myxochromide S1-diAbu 

(12.70 min) 

Myxochromide S2-diAbu 

(13.37 min) 

Myxochromide S3-diAbu 

(13.48 min) 

- 

1 225.12844 239.14292 251.14285 - 
2 244.13429 258.14875 270.14861 - 
3 322.18135 336.19561 348.19567 - 

4 340.19179 354.20621 - - 
5 407.27042 421.28482 - - 
6 577.37548 591.39058 - - 
7 605.37051 619.38558 631.38563 - 
8 673.39260 687.40784 699.40533 - 
9 751.43863 765.45465 777.45432 - 
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Figure S5. HPLC-MS analysis of myxochromide production in selected producer strains after feeding of L-α-

aminobutyric acid (L-Abu) compared to standard cultivation experiments. The following strains were analyzed: 

Myxochromide A producer Mx1 (A/B), myxochromide B producer M1 (C/D), myxochromide C producer Mv1 

(E/F), myxochromide D producer Se1 (G/H) and myxochromide S/S-Abu/S-diAbu producer Sa1 (I/J). 

Extracted ion chromatograms (EICs) for ±0.02 m/z corresponding to the [M+H]+ ions of known myxochromides 

(compounds 1-7) and novel myxochromide derivatives detected after L-Abu feeding (compounds 8-14, labelled 

in red) are shown. For further details see Table S3.  
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Table S3. Myxochromide derivatives detected in feeding experiments with L-α-aminobutyric acid (L-Abu). The 

novel derivatives (compounds 8-14) are expected to harbor additional methylene groups in positions highlighted 

in red due to Abu instead of alanine incorporation.  

Strain Myxochromide Compound Formula [M+H]+ calc. Rt [min] Structures 

M
. 

x
a

n
th

u
s 

D
K

1
6

2
2

 

(M
x

1
) 

A2 1a C44H63N7O9 834,47600 12,80  

A3 1b C45H63N7O9 846,47600 12,93 
A4 1c C46H65N7O9 860,49165 13,58 

[A2 + CH2] 8a C45H65N7O9 848,49165 13,08 
[A3 + CH2] 8b C46H65N7O9 860,49165 13,20 
[A4 + CH2] 8c C47H67N7O9 874,50730 13,85 
[A2 + C2H4] 9a C46H67N7O9 862,50730 13,43 
[A3 + C2H4] 9b C47H67N7O9 874,50730 13,56 
[A4 + C2H4] 9c C48H69N7O9 888,52295 14,16 

M
yx

o
co

cc
u

s 
sp

. 
1

7
1

  

(M
1

) 

B2 2a C50H74N8O10 947,56007 13,82  

B3 2b C51H74N8O10 959,56007 13,92 
B4 2c C52H76N8O10 973,57572 14,50 

[B2 + CH2] 10a C51H76N8O10 961,57572 14,08 
[B3 + CH2] 10b C52H76N8O10 973,57572 14,17 
[B4 + CH2] 10c C53H78N8O10 987,59137 14,73 
[B2 + C2H4] 11a C52H78N8O10 975,59137 14,35 
[B3 + C2H4] 11b C53H78N8O10 987,59137 14,42 
[B4 + C2H4] 11c C54H80N8O10 1001,60702 14,99 

M
. 

vi
re

sc
en

s 

S
T

2
0

0
6

1
1

 (
M

v
1
) C3 6b C42H58N6O8 775,43889 12,86  

C4 6c C43H60N6O8 789,45454 13,50 

[C3 + CH2] 12b C43H60N6O8 789,45454 13,28 

[C4 + CH2] 12c C44H62N6O8 803,47019 13,90 

S
. 

er
ec

ta
 P

d
e7

7
  

(S
e1

) 

D1 7a C38H54N6O8 723,40759 11,83  

D2 7b C39H56N6O8 737,42324 12,54 
D3 7c C40H56N6O8 749,42324 12,68 

[D1 + CH2] 13a C39H56N6O8 737,42324 12,00 
[D2 + CH2] 13b C40H58N6O8 751,43889 12.71/12.91 
[D3 + CH2] 13c C41H58N6O8 763,43889 12.84/13.04 
[D1 + C2H4] 14a C40H58N6O8 751,43889 12,42 
[D2 + C2H4] 14b C41H60N6O8 765,45454 13,09 
[D3 + C2H4] 14c C42H60N6O8 777,45454 13,22 

S
. 

a
u

ra
n

ti
a

ca
 D

W
4

/3
-

1
  

(S
a

1
) 

S1 3a C38H54N6O8 723,40759 12,17  

S2 3b C39H56N6O8 737,42324 12,85 
S3 3c C40H56N6O8 749,42324 12,97 
E1 4a C39H56N6O8 737,42324 12,41 
E2 4b C40H58N6O8 751,43889 13,09 
E3 4c C41H58N6O8 763,43889 13,20 
F1 5a C40H58N6O8 751,43889 12,71 
F2 5b C41H60N6O8 765,45454 13,36 
F3 5c C42H60N6O8 777,45454 13,47 

 

 

 

 

 

Myxochromides A2-4 (1a-c) 

Myxochromides B2-4 (2a-c) 

Myxochromides C3-4 (6b-c) 

Myxochromides D1-3 (7a-c) 

Myxochromides S1-3 (3a-c; RA,B=H) 
Myxochromides E1-3 (4a-c; RA=CH3, RB=H) 
Myxochromides F1-3 (5a-c; RA,B=CH3) 

N
H

O

O

N R2-4

O

Me

O

HN
NH2

ON
H

O

O

HN

O

O

N



75     Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria 
 

2.7.3 Isolation and Structure Elucidation of Myxochromide C3 from M. virescens 

ST200611 

2.7.3.1 Cultivation of M. virescens ST200611 and Isolation of Myxochromide C3 

The putative myxochromide C producer strain Myxococcus virescens ST200611 (Mv1) was 

cultivated in 20 L (10x 2 L) CYS medium (casitone 0.25%, yeast extract 0.1%, CaCl2 × 2 

H2O 0.1%, starch 0.25%, HEPES 0.24%, vitamin B12 500 µg/L, pH adjusted to 7.0) including 

2% XAD-16 resin for 4 days at 30 °C and 180 rpm. Cells and XAD-16 amberlite adsorber 

resin were harvested by centrifugation at 10,500 rpm and 4 °C for 15 min and were five times 

extracted with 1 L of a mixture of methanol and acetone (1:1). The organic solvents were 

removed under reduced pressure and the residue was six times extracted with 200 mL of ethyl 

acetate. After removal of the solvent, the crude extract was dissolved in 15 mL of methanol 

for subsequent separation via size exclusion chromatography using Sephadex LH-20 and 

methanol as solvent. The collected fractions were concentrated and analyzed by HPLC-MS 

analysis for the presence of myxochromides C. Analysis was performed on a Dionex Ultimate 

3000 RSLC system coupled to a Bruker amaZon speed mass spectrometer using a Waters 

BEH C18, 50 × 2.1 mm, 1.7 µm dp column. At a flow rate of 0.6 mL/min, the following 

gradient was applied (A: deionized water + 0.1% formic acid, B: acetonitrile + 0.1% formic 

acid): 0-0.5 min 5% B, 0.5-9.5 min 5-95%, 9.5-10.5 min 95% B, 10.5-10.8 min 95-5% B, 

10.8-12.5 min 5% B. Full scan mass spectra were acquired in positive ESI mode ranging from 

200-2000 m/z. Sephadex fractions containing the target compound were combined, 

evaporated and dissolved in methanol for subsequent separation via reverse phase HPLC. A 

Dionex UltiMate 3000 system equipped with a Luna 5u C18(2) 100A column (250 × 10 mm, 

Phenomenex) was used. At constant flow rate (5.0 mL/min), the following multi-step gradient 

was applied (A: deionized water, B: acetonitrile): 0-5 min 10-45% B, 5-30 min 45-65% B, 30-

40 min 65-80% B, 40-41 min 80-10% B, 41-47 min 10% B. UV traces were recorded by a 

diode array detector (DAD) with specified wave lengths (210, 266 and 410 nm) with 

myxochromides showing good UV absorption at 410 nm. A total amount of 2.3 mg of pure 

myxochromide C3 (Rt = 27.7 min) was isolated.     

2.7.3.2 Structure Elucidation of Myxochromide C3 

Structure elucidation of myxochromide C3 was achieved using 1D and 2D NMR spectroscopy 

as well as HR-MS data. NMR spectra were acquired in CD3OD at a Bruker Ascend 700 or 

500 MHz spectrometer equipped with a 5 mm TXI cryoprobe. 1D 1H and 2D 1H−1H COSY, 

HSQC, HMBC and ROESY spectra were recorded using standard pulse programs and are 

illustrated in Figure S7. Carbon chemical shifts were extracted from 2D NMR data. NMR 
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spectroscopic data are listed in the Table S4. HR-ESI-MS data were obtained on a Bruker 

Maxis 4G mass spectrometer. Full scan mass spectra were acquired in a range from 150-2500 

m/z in a positive mode. HR-ESI-MS of myxochromide C3 gave a quasimolecular ion at m/z 

775.43921 [M+H]+consistent with a molecular formula C42H57N6O8 (775.43889, calculated 

for C42H58N6O8, Δm/z 0.413 ppm). The 1H NMR spectrum exhibited signals corresponding to 

five α-CH protons (δH 4.2-5.5), four CH3 groups (δH 0.9-1.3), three CH2 groups (δH 1.3-2.2) 

and one methine proton (δH 1.55) together with a N-Me group (δH 3.39, 3H, s). Moreover, a 

number of downfield signals belonging to the unsaturated polyketide side chain (δH 5.7-7.3) 

and a CH3 signal (δH 1.78, 3H, d) were observed. 2D NMR data revealed the presence of N-

Me-threonine, alanine, leucine, proline and glutamine residues and HMBC/ROESY data 

established the cyclic pentapeptide with the unsaturated polyketide side chain (Figure S6). 

The NMR data and core structure of myxochromide C3 were in accordance with the one of 

myxochromide A, which differs by its additional alanine residue.7 

For the assignment of the absolute configuration, Marfey’s method based on amino acid 

derivatization was applied.29 0.3 mg of pure myxochromide C3 was hydrolyzed with 37% HCl 

(0.2 mL) in a 1.5 mL glass vial for 3 days at 110°C. The hydrolysate was evaporated to 

dryness and dissolved in H2O (100 μL). A 50 μL aliquot was supplemented with 1N NaHCO3 

(20 μL) and 1% 1-fluoro-2,4-dinitrophenyl-5-L/D-leucinamide (L-FDLA or D-FDLA) 

solution in acetone (20 μL), and the mixtures were heated to 40 °C for 8 h at 700 rpm. After 

cooling down to room temperature, the solutions were neutralized with 2N HCl (20 μL), 

evaporated to dryness and the derivatized amino acids were dissolved in 300 μL acetonitrile. 

An amino acid standard mix (Sigma Aldrich) as well as N-Me-L-Threonine (Sigma Aldrich) 

were derivatized via the same procedure and all samples were analyzed on a Dionex Ultimate 

3000 RSLC system coupled to a Bruker Maxis 4G mass spectrometer. Separation was 

performed using a Waters BEH C18, 100 × 2.1 mm, 1.7 µm dp column. At a flow rate of 0.6 

mL/min, the following gradient was applied (A: deionized water + 0.1% formic acid, B: 

acetonitrile + 0.1% formic acid): 0 min 5% B, 0-1 min 5-10% B, 1-15 min 10-35% B, 15-22 

min 35-55% B, 22-25 min 55-80% B, 25-26 min 80% B, 26-26.5 min 80-5% B, 26.5-31 min 

5% B. Full scan mass spectra were acquired in a range from 100-1000 m/z. The 

chromatograms obtained from the HPLC-MS analysis are illustrated in Figure S8 and 

stereochemical assignments are illustrated in Table S5. 

Comparison of the retention times and m/z values of derivatized standard amino acids and the 

hydrolyzed lipopeptide revealed the presence of a D-configured alanine residue (C13) in 

myxochromide C3. The amino acids proline (C2), leucine (C7), N-Me-threonine (C16) and 
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glutamine (C20), which was converted to glutamic acid during hydrolysis, were found to be 

L-configured. Since the alanine activating module contains an epimerization domain, the 

detection of D-alanine was expected and was already observed for myxochromides A and 

B.7,8  

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Structure of myxochromide C3 showing COSY (bold line), ROESY (dashed arrow) and key HMBC 

(plain arrow) correlations. 
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Table S4. NMR spectroscopic data of myxochromide C3. 

Moiety Position δC
a δH

b (J in Hz) HMBCc ROESYd, e 

L-Pro 1  174.6     

 2  63.3  4.31, dd (3.1, 9.1)  1, 3, 4, 5 7 

 3a  32.7  2.16, m  1, 4, 5  

 3b   2.43, m  1, 2, 4, 5  

 4  23.6  2.00, m  2, 3, 5  

 5a  47.9 3.52, m  2, 3, 4  

 5b   3.75, m  2, 3, 4  

L-Leu 6  174.2     

 7  49.6  4.68, dd (2.7, 11.4)  6, 8, 9, 12 2, 10, 11 

 8a  42.4  1.32, m 7  

 8b   1.61, m  6, 7  

 9  25.6  1.55, m  7, 8, 10, 11  

 10  23.7  0.93, d (6.2)  8, 9, 11  

 11 21.9 0.92, d (6.2) 10  

D-Ala 12  174.7     

 13 51.7 4.20, m 12, 14, 15  

 14 17.1 1.32, m 12, 13  

N-Me-L-Thr 15 170.9     

 16  61.3  5.50, d (2.9)  1', 15, 17, 24 2', 24 

 17  72.4  6.02, m  18, 19  

 18  16.6  1.19, d (6.7)  16, 17 24 

 24 35.0 3.39, s 1', 16 2', 18, 20 

L-Gln 19 171.4     

 20  55.0 4.40, dd (5.3, 6.9)  1, 19, 21, 22  

 21  29.0  2.09, m  20, 22, 23  

 22  31.6  2.22, t (7.8)  20, 21, 23  

 23  177.2     

Side chain 1' 171.2    

 2' 120.4  6.66, d (14.6)  1', 4' 16, 24 

 3' 145.1  7.34, dd (11.4, 14.6)  1', 2', 5'  

 4' 138.5  6.54, m  f  

 5' 142.0 6.72, m 3'  

 6'-14' f f f  

 15' 135.1 6.25, m f  

 16' 133.2 6.13, m 15', 18'  

 17' 131.2 5.76, m 15', 18'  

 18' 18.4 1.78, d (6.7) 15', 16', 17'  
a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 700 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d proton showing ROESY correlations to indicated protons. 
e acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
f overlapped signals. 
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Figure S7 (continued on next page) 

1 H
-N

M
R

 s
pe

ct
ru

m
 o

f 
m

yx
oc

hr
om

id
e 

C
3 

in
 C

D
3O

D
 (

70
0 

M
H

z)
 



Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria     80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7 (continued on next page) 
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Figure S7 (continued on next page)  

H
S

Q
C

 s
pe

ct
ru

m
 o

f 
m

yx
oc

hr
om

id
e 

C
3 

in
 C

D
3O

D
 (

70
0 

M
H

z)
 

 



Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria     82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7 (continued on next page)  
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Figure S7.  NMR spectra of myxochromide C3.  
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Figure S8. Results of the analysis of the absolute configuration by advanced Marfey’s method.29 Extracted ion 

chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 

present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. 

B: Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide C3 derivatized 

with D-FDLA reagent. D: Hydrolyzed myxochromide C3 derivatized with L-FDLA reagent. E: Standard solution 

of N-Me-L-threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized with L-

FDLA. G: Same sample as in C analyzed for the N-Me-L-threonine D-FDLA derivative. H: Same sample as in 

D analyzed for the N-Me-L-threonine L-FDLA derivative. 

 

Table S5. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of the 

amino acids in myxochromide C3 (inverse correlation of retention times (tR) of D-configured Ala-FDLA 

derivatives from the peptide hydrolysate compared to L-configured Ala-FDLA standards are shown in bold). 

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.2 442.1617 14.2 442.1619 L 
Glu-L-FDLA 13.2 442.1619 13.2 442.1620 

Pro-D-FDLA 16.1 410.1711 16.1 410.1723 L 
Pro-L-FDLA 14.4 410.1720 14.4 410.1722 
Ala-D-FDLA 16.6 384.1554 14.1 384.1561 D 
Ala-L-FDLA 14.1 384.1561 16.6 384.1563 

Leu-D-FDLA 21.1 426.2027 21.1 426.2042 L 
Leu-L-FDLA 17.7 426.2038 17.7 426.2039 

N-Me-Thr-D-FDLA 14.3 428.1818 14.3 428.1822 L 
N-Me-Thr-L-FDLA 12.8 428.1831 12.8 428.1825 
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2.7.4 Isolation and Structure Elucidation of Myxochromide D1 from S. erecta Pde77 

2.7.4.1 Cultivation of S. erecta Pde77 and Isolation of Myxochromide D1 

The putative myxochromide D producer strain Stigmatella erecta Pde77 (Se1) was cultivated 

in 20 L (10x 2 L) VY/2 medium (Baker’s yeast 0.5%, CaCl2 × 2 H2O 0.05%, HEPES 0.11%, 

vitamin B12 500 µg/L, pH adjusted to 7.0) including 2% XAD-16 resin for 7 days at 30 °C 

and 180 rpm. Cells and XAD-16 were harvested by centrifugation at 8,000 rpm and 4 °C for 

15 min. Extraction and isolation of the target compound myxochromide D1 using size 

exclusion chromatography and semi-preparative HPLC was achieved as described for 

myxochromide C3 (see chapter 2.7.3.1). A total amount of 2.7 mg of pure myxochromide D1 

(Rt = 22.4 min) was isolated. 

2.7.4.2 Structure Elucidation of Myxochromide D1 

Structure elucidation of myxochromide D1 was achieved as described for myxochromide C3 

(see chapter 2.7.3.2). 1D 1H and 2D 1H-1H COSY, HSQC, HMBC and ROESY spectra are 

shown in Figure S10. Carbon chemical shifts were extracted from 2D NMR data. NMR 

spectroscopic data are listed in the Table S6. Myxochromide D1 showed quasimolecular ion at 

m/z 723.40748 [M+H]+ by HR-ESI-MS, which corresponds to the molecular formula 

C38H54N6O8 (723.40759, calculated for C38H55N6O8, Δm/z -0.152 ppm). Its 1H NMR spectrum 

closely resembled to that of myxochromide C3. In addition to the common structural parts, 

analysis of 2D NMR spectra corroborated the presence of two alanine residues, one of which 

substitutes the proline in myxochromide C3. Key HMBC correlations established the amino 

acid sequence and finalized its planar structure as depicted in Figure S9. Length of the 

polyene side chain was deduced based on the HR-MS data and molecular formula. For the 

assignment of the absolute configuration of myxochromide D1 the same procedure, hydrolysis 

and Marfey analysis of the obtained amino acids,29 was applied as described for 

myxochromide C3 in chapter 2.7.3.2. The chromatograms obtained from HPLC-MS analysis 

are illustrated in Figure S11 and stereochemical assignments are illustrated in Table S7. 

Comparison of the retention times and masses of derivatized standard amino acids and the 

hydrolyzed lipopeptide revealed that one of the two alanine residues (C2 and C11) from 

myxochromide D1 has D configuration. The second alanine residue as well as the amino acids 

leucine (C5), N-Me-threonine (C14) and glutamine (C18), which was converted to glutamic 

acid during hydrolysis, were found to be L-configured. According to the domain organization 

of the myxochromide D assembly line, which harbors an epimerization domain in module 2, 

the D-configured alanine was assigned to C11. This also correlates with the structures of 

myxochromides A, B and C (this study; see chapter 2.7.3.2)7,8.  
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Figure S9. Structure of myxochromide D1 showing COSY (bold line) and key HMBC (arrow) correlations. 
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Table S6. NMR spectroscopic data of myxochromide D1 (CD3OD). 

Moiety Position δC
a δH

b (J in Hz) HMBCc ROESYb, d, e 

L-Ala 1 173.0    

 2 50.8 4.27, q (6.8) 1, 3, 4  

 3 18.6 1.37, d (6.8) 1, 2  

L-Leu 4  174.7     

 5  54.4  4.16, dd (5.4, 10.0) 4, 6, 7, 10 8, 9 

 6a  40.7  1.64, m 7  

 6b  1.71, m   

 7  26.2  1.72, m 5, 6, 8, 9  

 8  21.4  0.92, d (6.3) 6, 7 5 

 9 23.2  0.98, d (6.3) 6, 7 5 

D-Ala 10  175.9     

 11 50.3 4.33, m 10, 12, 13 13 

 12 16.7 1.30, m 10, 11  

N-Me-L-Thr 13 170.0     

 14  59.5  5.44, d (2.0) 1', 13, 15, 22 2', 22 
 15  72.8  5.47, m  16, 17  

 16  17.2  1.15, d (5.4) 14, 15  

 22 35.2 3.07, s 1', 14 2', 14, 16, 18 

L-Gln 17 171.0     

 18  54.0 3.98, dd (5.3, 9.4) 1, 17, 19, 20  

 19a  26.3  2.22, m 18, 20, 21  

 19b  2.13, m 18, 20, 21  

 20a  32.2  2.26, m 18, 19, 21  

 20b  2.21, m 18, 19, 21  

 21  177.7     

Side chain 1' 170.7    

 2' 120.2 6.60, d (14.5) 1' 14, 22 

 3' 145.0 7.34, dd (11.4, 14.6) 1', 2', 5'  

 4' 138.6 6.53, m e  

 5' 141.9 6.71, m e  

 6'-12' e e e  

 13' 135.3 6.26, m e  

 14' 133.3 6.13, m 13', 16'  

 15' 131.4 5.77, m 13'  

 16' 18.4 1.79, d (6.3) 13', 14', 15'  

___________________________________________________________________________ 
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d proton showing ROESY correlations to indicated protons. 
e overlapped signals. 
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Figure S10 (continued on next page)  
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Figure S10 (continued on next page)  
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Figure S10 (continued on next page)  
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Figure S10 (continued on next page)  
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Figure S10.  NMR spectra of myxochromide D1.  
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Figure S11. Results of the analysis of the absolute configuration by advanced Marfey’s method.29 Extracted ion 

chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 

present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA. B: Standard 

amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide D1 derivatized with D-FDLA 

reagent. D: Hydrolyzed myxochromide D1 derivatized with L-FDLA reagent. E: Standard solution of N-Me-L-

threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized with L-FDLA. G: 

Same sample as in C analyzed for the N-Me-L-threonine D-FDLA derivative. H: Same sample as in D analyzed 

for the N-Me-L-threonine L-FDLA derivative. 

Table S7. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of the 

amino acids in myxochromide D1 (inverse correlation of retention times (tR) of D-configured Ala-FDLA 

derivatives from the peptide hydrolysate compared to L-configured Ala-FDLA standards are shown in bold). 
 

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.2 442.1617 14.2 442.1618 L 
Glu-L-FDLA 13.2 442.1619 13.2 442.1622 

Ala-D-FDLA 16.6 384.1554 16.6 410.1723 L 
Ala-L-FDLA 14.1 384.1561 14.1 384.1563 
Ala-D-FDLA 16.6 384.1554 14.1 384.1561 D 
Ala-L-FDLA 14.1 384.1561 16.6 384.1565 

Leu-D-FDLA 21.1 426.2027 21.1 426.2042 L 
Leu-L-FDLA 17.7 426.2038 17.7 426.2038 

N-Me-Thr-D-FDLA 14.3 428.1818 14.3 428.1817 L 
N-Me-Thr-L-FDLA 12.8 428.1831 12.8 428.1838 
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2.7.5 Isolation and Structure Elucidation of Myxochromide S2-Abu from the 

Heterologous Expression Strain M. xanthus DK1622::pTpS-mchS 

2.7.5.1 Cultivation of M. xanthus DK1622::pTpS-mchS and Isolation of Myxochromide 

S2-Abu 

The myxochromide S overproducing mutant M. xanthus DK1622::pTpS-mchS  was cultivated 

in 9 L (6x 1.5 L) CTT medium amended with kanamycin (50 mg/L) including 2% XAD-16 

adsorber resin for 5 days at 30 °C and 180 rpm.15 Cell harvest, extraction and isolation of the 

target compound myxochromide S2-Abu using size exclusion chromatography was achieved 

as described for myxochromide C3 (see chapter 2.7.3.1). Semi-preparative HPLC was 

performed on a Dionex UltiMate 3000 system equipped with a Kinetex 5u Biphenyl 100Å 

column (250 × 10 mm, Phenomenex). At constant flow rate (5.0 mL/min), the following 

multi-step gradient was applied (A: deionized water, B: acetonitrile): 0-1 min 1% B, 1-8 min 

1-40% B, 8-52 min 40-57% B, 52-54 min 57-95% B, 54-57 min 95% B, 57-58 min 95-1% B, 

58-62 min 1% B. UV traces were recorded by a diode array detector (DAD) with specified 

wave lengths (210, 266 and 410 nm) with myxochromides showing good UV absorption at 

410 nm. A total amount of 5.3 mg of pure myxochromide S2-Abu (Rt = 37.1 min) was 

isolated. 

2.7.5.2 Structure Elucidation of Myxochromide S2-Abu 

Structure elucidation of myxochromide S2-Abu was achieved as described for myxochromide 

C3 (see chapter 2.7.3.2). 1D 1H and 2D 1H-1H COSY, HSQC, HMBC and ROESY spectra are 

shown in Figure S13. Carbon chemical shifts were extracted from 2D NMR data. NMR 

spectroscopic data are listed in Table S8. HR-ESI-MS of myxochromide S2-Abu gave a 

quasimolecular ion at m/z 751.43940 [M+H]+ ascribable to a molecular formula C40H58N6O8 

(751.43889, calculated for C40H59N6O8, Δm/z 0.679 ppm). The COSY spectrum supported by 

HSQC and HMBC data showed presence of spin systems corresponding to N-Me-threonine, 

glutamine, alanine and leucine residues as well as an unusual amino acid (α-aminobutyric 

acid, Abu) and an polyene side chain. Amino acid sequence was established by means of key 

HMBC correlations and final structure was elucidated as shown in Figure S12. For the 

assignment of the absolute configuration of myxochromide S2-Abu the same procedure, 

hydrolysis and Marfey analysis of the obtained amino acids,29 was applied as described for 

myxochromide C3 (see chapter 2.7.3.2). The chromatograms obtained from HPLC-MS 

analysis are illustrated in Figure S14 and stereochemical assignments are illustrated in Table 

S9. Comparison of the retention times and masses of derivatized standard amino acids and the 

hydrolyzed lipopeptide revealed that all amino acids of the myxochromide S2-Abu peptide 

core show L-configuration, while glutamine was converted to glutamic acid during hydrolysis. 
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This correlates with the major product, myxochromides S,9 as well as with myxochromide S2-

diABu produced by the same pathway (see chapter 2.7.6). Despite the presence of an 

epimerization domain in the second module of the assembly line, L-configured amino acids 

are incorporated into this position of the peptide core. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S12. Structure of myxochromide S2-Abu showing selected COSY (bold line) and key HMBC (arrow) 

correlations. 
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Table S8. NMR spectroscopic data of myxochromide S2-Abu (CD3OD). 

Moiety Position δC
a δH

b (J in Hz) HMBCc ROESYd 

L-Ala 1 173.2    

 2 53.1 3.77, q (7.4) 1, 3, 4  

 3 15.4 1.65, d (7.3) 1, 2  

L-Abu 4  173.3     

 5  58.2  3.52, dd (3.9, 10.7) 4, 6, 7, 8  

 6a  21.9  1.85, m 4, 5, 7  

 6b  2.03, m 5, 7  

 7  11.3  0.92, d (7.3) 5, 6, 8, 9  

L-Leu 8  176.2     

 9 54.3 4.07, m 8, 10, 11, 14  

 10a 40.8 1.47, m 8, 9, 13  

 10b  1.60, m 9, 13  

 11 25.6 1.75, m 10, 12, 13  

 12 22.2 0.97, d (6.6) 10, 11, 13  

 13 22.9 1.01, d (6.6) 10, 11, 12  

N-Me-L-Thr 14 171.4    

 15  59.6 5.56, d (4.2) 1', 14, 16, 23 2', 23 

 16  73.9 5.52, m  17, 18  

 17  16.5 1.25, d (6.3) 15, 16  

 23 35.1 3.26, s 1', 15 2', 15, 17, 19 

L-Gln 18 171.0     

 19  51.9 4.66, dd (3.6, 9.8) 1, 18, 20, 21  

 20a  27.8  1.92, m 18, 19, 21, 22  

 20b  2.31, m   

 21a 31.9  2.31, m 19, 20, 22  

 21b  2.25, m   

 22  178.2     

Side chain 1' 170.6    

 2' 119.8 6.58, d (14.6) 1' 23 

 3' 145.4 7.30, dd (11.3, 14.6) 1', 2', 5'  

 4' 138.6 6.52, m e  

 5' 142.0 6.69, dd (11.1, 14.6) e  

 6'-12' e e e  

 13' 135.5 6.26, m e  

 14' 131.0 6.12, m 13', 16'  

 15' 131.0 5.80, dt (6.7, 15.0) 13', 16', 17'  

 16' 26.7 2.14, m 17'  

 17' 13.7 1.02, t (7.5) 16'  

 
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d proton showing ROESY correlations to indicated protons. 
e overlapped signals. 
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Figure S13 (continued on next page)  
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Figure S13 (continued on next page)  
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Figure S13 (continued on next page)  
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Figure S13 (continued on next page)  
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Figure S13.  NMR spectra of myxochromide S2-Abu.  

R
O

E
S

Y
 s

pe
ct

ru
m

 o
f 

m
yx

oc
hr

om
id

e 
S

2-
A

bu
 i

n 
C

D
3O

D
 (

50
0 

M
H

z)
 

 



Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria     102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S14. Results of the analysis of the absolute configuration by advanced Marfey’s method.29 Extracted ion 

chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 

present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. B: 

Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide S2-Abu derivatized 

with D-FDLA reagent. D: Hydrolyzed myxochromide S2-Abu derivatized with L-FDLA reagent. E: Standard 

solution of N-Me-L-threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized 

with L-FDLA. G: Standard solution of L-aminobutyric acid derivatized with D-FDLA. H: Standard solution of 

L-aminobutyric acid derivatized with L-FDLA. I: Same sample as in C analyzed for the N-Me-L-threonine D-

FDLA derivative and for the L-aminobutyric acid D-FDLA derivative. J: Same sample as in D analyzed for the 

N-Me-L-threonine L-FDLA derivative and for the L-aminobutyric acid L-FDLA derivative. 

Table S9. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of the 

amino acids in myxochromide S2-Abu. 
 

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.2 442.1617 14.2 442.1615 L 
Glu-L-FDLA 13.2 442.1619 13.2 442.1615 

Abu-D-FDLA 18.2 398.1740 18.2 398.1730 L 
Abu-L-FDLA 15.2 398.1739 15.2 398.1725 

Ala-D-FDLA 16.6 384.1554 16.6 384.1568 L 
Ala-L-FDLA 14.1 384.1561 14.1 384.1568 

Leu-D-FDLA 21.1 426.2027 21.1 426.2040 L 
Leu-L-FDLA 17.7 426.2038 17.7 426.2038 

N-Me-Thr-D-FDLA 14.3 428.1818 14.3 428.1826 L 
N-Me-Thr-L-FDLA 12.8 428.1831 12.8 428.1828 
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2.7.6 Isolation and Structure Elucidation of Myxochromide S2-diAbu from the 

Heterologous Expression Strain M. xanthus DK1622::pTpS-mchS 

2.7.6.1 Cultivation of M. xanthus DK1622::pTpS-mchS and Isolation of Myxochromide 

S2-diAbu 

The myxochromide S overproducing mutant M. xanthus DK1622::pTpS-mchS was cultivated 

in 4.5 L (3x 1.5 L) CTT medium amended with kanamycin (50 mg/L) including 2% XAD-16 

adsorber resin for 4 days at 30 °C and 180 rpm.15 After 6, 12, 24, 30, 36, 48, 54, 60, 66 and 72 

h, 8.5 mg of L-α-aminobutyric acid were added to the cultures. Cell harvest and extraction of 

the target compound myxochromide S2-diAbu was performed as described for myxochromide 

C3 (see chapter 2.7.3.1) and isolation was achieved using semi-preparative HPLC as described 

for myxochromide S2-Abu (see chapter 2.7.5.1). A total amount of 6.4 mg of pure 

myxochromide S2-diAbu (Rt = 39.7 min) was isolated. 

2.7.6.2 Structure Elucidation of Myxochromide S2-diAbu 

Structure elucidation of myxochromide S2-diAbu  was achieved as described for 

myxochromide C3 (see chapter 2.7.3.2). 1D 1H and 2D 1H-1H COSY, HSQC, HMBC and 

ROESY spectra are shown in Figure S16. Carbon chemical shifts were extracted from 2D 

NMR data. NMR spectroscopic data are listed in Table S10. HR-ESI-MS of myxochromide 

S2-diAbu displayed a quasimolecular ion at m/z 765.45520 [M+H]+ which is 14 Da heavier 

than that of myxochromide S2-Abu consistent with a molecular formula C41H60N6O8 

(765.45454, calculated for C41H61N6O8, Δm/z 0.862 ppm). Analysis of 2D NMR data revealed 

the presence of two Abu spin systems, one of which was replacing the alanine residue in 

myxochromide S2-Abu. Consequently, its final structure was established as depicted in Figure 

S15.  

For the assignment of the absolute configuration of myxochromide S2-diAbu the same 

procedure, hydrolysis and Marfey analysis of the obtained amino acids,29 was applied as 

described for myxochromide C3 (see chapter 2.7.3.2). The chromatograms obtained from 

HPLC-MS analysis are illustrated in Figure S17 and stereochemical assignments are 

illustrated in Table S11. Comparison of the retention times and masses of derivatized amino 

acids and the hydrolyzed lipopeptide revealed that all amino acids of the myxochromide S2-

diAbu peptide core show L-configuration, while glutamine was converted to glutamic acid 

during hydrolysis. This correlates with the major product, myxochromides S,9 as well as with 

myxochromide S2-Abu produced by the same pathway. Despite the presence of an 

epimerization domain in the second module of the assembly line, L-configured amino acids 

are incorporated into this position of the peptide core. 
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Figure S15. Structure of myxochromide S2-diAbu showing selected COSY (bold line) and key HMBC (arrow) 

correlations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105     Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria 
 

Table S10. NMR spectroscopic data of myxochromide S2-diAbu (CD3OD). 

Moiety Position δC
a δH

b (J in Hz) HMBCc ROESYd 

L-Abu (1) 1 172.8    

 2 59.8 3.50, dd (4.3, 11.4) 1, 3, 4, 5  

 3a 22.3 2.12, m 1, 2, 4  

 3b  2.33, m 2, 4  

 4 11.5 0.96, t (7.5) 2, 3  

L-Abu (2) 5  173.3     

 6  58.0 3.56, dd (4.1, 10.7) 5, 7, 8, 9  

 7a  21.9  1.86, m 5, 6, 8  

 7b  2.03, m 6, 8  

 8  11.4  0.93, t (7.5) 6, 7  

L-Leu 9  176.2     

 10 54.3 4.08, dd (6.1, 8.4) 9, 11, 12, 15  

 11a 40.8 1.47, m 9, 10, 12, 13, 14  

 11b  1.61, m 9, 10, 12, 13, 14  

 12 25.6 1.75, m 10, 11, 13, 14  

 13 22.1 0.97, d (6.5) 11, 12  

 14 22.9 1.01, d (6.5) 11, 12  

N-Me-L-Thr 15 171.4    

 16  59.6 5.57, d (4.2) 1', 15, 17, 24 2', 24 

 17  73.8 5.53, m  18, 19  

 18  16.4 1.25, d (6.3) 16, 17  

 24 35.1 3.26, s 1', 16 2', 18 

L-Gln 19 171.1     

 20  51.8 4.67, dd (3.6, 9.8) 1, 19, 21, 22 21 

 21a  27.6  1.92, m 19, 20, 22, 23  

 21b  2.31, m 20, 22, 23  

 22a 32.0  2.25, m 21, 22  

 22b  2.30, m 21, 22  

 23  178.2     

Side chain 1' 170.7    

 2' 119.7 6.58, d (14.5) 1' 24 

 3' 145.4 7.30, dd (11.4, 14.5) 1', 2', 5'  

 4' 138.6 6.52, m e  

 5' 142.0 6.69, dd (11.2, 14.5) e  

 6'-12' e e e  

 13' 135.5 6.26, m e  

 14' 131.0 6.12, m 13', 16'  

 15' 131.0 5.80, dt (6.7, 15.0) 13', 16', 17'  

 16' 26.8 2.14, m 17'  

 17' 13.8 1.02, t (7.5) 16'  
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d proton showing ROESY correlations to indicated protons.             e overlapped signals. 
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Figure S16 (continued on next page)  
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Figure S16 (continued on next page 
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Figure S16 (continued on next page)  
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Figure S16 (continued on next page)  
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Figure S16.  NMR spectra of myxochromide S2-diAbu.  
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Figure S17. Results of the analysis of the absolute configuration by advanced Marfey’s method.29 Extracted ion 

chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 

present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. B: 

Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide S2-diAbu derivatized 

with D-FDLA reagent. D: Hydrolyzed myxochromide S2-diAbu derivatized with L-FDLA reagent. E: Standard 

solution of N-Me-L-threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized 

with L-FDLA. G: Standard solution of L-aminobutyric acid derivatized with D-FDLA. H: Standard solution of 

L-aminobutyric acid derivatized with L-FDLA. I: Same sample as in C analyzed for the N-Me-L-threonine D-

FDLA derivative and for the L-aminobutyric acid D-FDLA derivative. J: Same sample as in D analyzed for the 

N-Me-L-threonine L-FDLA derivative and for the L-aminobutyric acid L-FDLA derivative. 

Table S11. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of 

the amino acids in myxochromide S2-diAbu. 

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.2 442.1617 14.2 442.1628 L 
Glu-L-FDLA 13.2 442.1619 13.2 442.1619 

Abu-D-FDLA 18.2 398.1740 18.2 398.1723 L 
Abu-L-FDLA 15.2 398.1739 15.2 398.1721 

Abu-D-FDLA 18.2 398.1740 18.2 398.1723 L 
Abu-L-FDLA 15.2 398.1739 15.2 398.1721 

Leu-D-FDLA 21.1 426.2027 21.1 426.2041 L 
Leu-L-FDLA 17.7 426.2038 17.7 426.2037 

N-Me-Thr-D-FDLA 14.3 428.1818 14.3 428.1822 L 
N-Me-Thr-L-FDLA 12.8 428.1831 12.8 428.1825 
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2.7.7 Detailed in silico Analysis of the 16 Analyzed mch Clusters 

2.7.7.1 Sequence Analysis of Catalytic Domains of the Encoded Megasynthetases 

The applied genome mining approach identified 16 (putative) mch clusters encoding seven 

different (sub)types of myxochromide megasynthetases (Figure 2), which could be correlated 

to distinct myxochromide production profiles (Figure S3). The detected myxochromide 

products differ in the number, type, sequence and configuration of the incorporated amino 

acids (Figure 1). In order to explain the observed structural diversity, catalytic domains of the 

involved NRPSs were analyzed in detail to evaluate in silico their substrate specificities 

and/or general activity. Protein sequence alignments of selected PCP, E and C domains were 

performed using the Geneious alignment tool integrated into Geneious software 

version 9.1.245; see Figure S18. In addition, A domain substrate specificities predicted with 

antiSMASH 3.013, as well as the corresponding 8Å signatures and Stachelhaus codes35,36, both 

retrieved with the NRPSpredictor2 analysis tool34, were compared for each set of orthologous 

A domains (Figure S19). In the following, the in silico analysis data are discussed in the light 

of observed structural differences.  

Lack of proline incorporation in myxochromides D and S (S-Abu/S-diAbu) 

Myxochromide D and myxochromide S megasynthetases generate lipopentapeptide products 

lacking the proline residue compared to myxochromides A, B and C. In case of the D-subtype 

2 megasynthetase this result can be explained by the absence of two essential catalytic 

domains (A4-PCP4) due to partial module deletion (see chapter 2.7.7.2). In contrast, the S-type 

and D-subtype 1 megasynthetases still harbor the complete C4-A4-PCP4 domain set. However, 

detailed sequence analysis of PCP4 domains revealed a mutated core motif lacking the highly 

conserved serine residue (Figure S18F). As expected and shown previously for PCP4 from the 

Sa1 S-type pathway,7 this mutation impairs posttranslational activation by 4-

phosphopantetheinyl transferases (PPTases)50. Therefore, PCP4 is not converted into its active 

holo form and not able to bind amino acid substrates or biosynthetic intermediates. 

Consequently, due to the PCP4 “loss of function mutation”, a unique NRPS module-skipping 

process takes place during myxochromides S and D biosynthesis.  

Only L-configured amino acids in myxochromides S (S-Abu/S-diAbu) 

All analyzed myxochromide megasynthetase types harbor an E domain in module 2, which 

correlates with the presence of a D-configured alanine in myxochromides A, B, C and D as 

verified for myxochromide A3 from Mx1,7 B3 from M1,8 C3 from Mv1 and D1 from Se1. 

However, lipopentapeptide products from S-type pathways seem to exclusively contain L-

configured amino acids as shown for myxochromides S1,
9 S2-Abu and S2-diAbu from the Sa1 
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megasynthetase. More precisely, they contain a L-leucine residue in the second position of the 

assembled peptide cores, for which a D-configured amino acid would be predicted by 

sequence analysis. According to textbook biochemistry, after chain elongation with L-leucine 

the generated PCP2-bound dipeptidyl intermediate is expected to be epimerized by the action 

of E2 and only D-configured intermediates are expected to be processed by the downstream 

C3 domain. Such C domains, which are D-specific for the peptidyl donor and L-specific for 

the aminoacyl acceptor are described as so-called DCL domains.51 Interestingly, although C3 

domains from S-type megasynthetases feature the sequence motifs reported for DCL domains 

(Figure S18B;33) only L-configured ‘leucine intermediates’ (peptidyl donors) seem to be 

processed. Whether ‘D-leucine intermediates’ are actually provided by S-type MchB subunits 

remains uncertain. Sequence analysis revealed that PCP2 domains show the characteristic core 

motif of specialized PCPE domains (Figure S41A), which are required as partner for E 

domains to be active.32 Sequence comparison of the E2 domains from S-type pathways with 

(certainly functional) E2 domains from A-, B-, C- and D-type megasynthetases revealed a few 

deviations from the reported E domain core motifs (core E1-E7;31; see Figure S18C), which 

probably have no significant effect on activity.52 In case of E domains from Sa1 and Sa2 S-

type producer strains, these also include a mutation of one of the two key active site residues 

described from structural studies on the E domain of tyrocidine synthetase A (His743 and 

Glu882; 53: The glutamate from core motif E4, which is assumed to act as catalytic base 

during the epimerization process, is replaced with an aspartate, which still might fulfill the 

same function. In terms of codon usage adaptation, E domains of S-type producers (Sa1-3) are 

compared to surrounding functional domains not obviously lower adapted (Figure S25B), in 

contrast to the lower CAI values of the inactive ER* domain in mchA (Figure S25A). In 

summary, based on the present in silico data, we speculate that E domains from S-type 

megasynthetases are possibly still active, but might not exert their function on the more bulky 

leucine residue. Alternatively, the downstream C3 domain is not able to process D-configured 

‘leucine intermediates’ (peptidyl donors). This finding illustrates a limitation of sequence-

based structure prediction approaches, which would point to the epimerization and thus 

incorporation of a D-configured amino acid during myxochromide S (S-Abu/S-diAbu) 

biosynthesis.  
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Different amino acid sequence in myxochromide S and aminobutyric acid containing 

derivatives (myxochromides S-Abu/S-diAbu) 

Whereas myxochromides A, B, C and D all harbor D-Ala/L-Leu in the module 2/3 derived 

peptide core positions, myxochromides S consist of L-Leu/L-Ala indicating that substrate 

specificities of modules 2 and 3 have switched. Based on phylogenetic analysis, intragenic A 

domain swapping, e.g. as proposed for the mycosubtilin/iturin A operons,17 could be excluded 

as the molecular reason for this phenomenon (Figure S23A). In silico analysis of residues 

from the A domain substrate binding pocket (8Å signature and Stachelhaus code)35,36 clearly 

illustrate that A2/A3 from S-type pathways deviate from orthologous A domains of other 

myxochromide megasynthetases (Figure S19). Although no distinct substrate specificities 

could be predicted by the applied analysis tools, these point mutations (and probably 

additional mutations in the involved C domains) seem to cause the observed structural 

variation. Additionally identified myxochromide S-Abu and S-diAbu derivatives showed that 

modules 3 and 5 of the S-type megasynthases can also incorporate α-aminobutyric acid 

besides alanine. A similar substrate tolerance, which could not be predicted from the in silico 

specificity analysis, is assumed for A2/A5 from A- or D-type, A2/A6 from B-type and A2 from 

C-type pathways based on the detection of novel myxochromide derivatives in feeding 

experiments with α-aminobutyric acid (Figure S5/Table S3). Substrate specificities of 

threonine, proline and glutamine incorporating modules correlate well with the in silico 

predictions for all myxochromide pathways (Figure S19).  

Overall, the detailed sequence analysis of catalytic NRPS domains (C, A, PCP, E) 

demonstrated how point mutations during natural gene cluster evolution lead to structural 

diversity of the biosynthesis products.  
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Figure S18 (continued on next page) 
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Figure S18 (continued on next page) 
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Figure S18. Sequence alignments of selected NRPS condensation (C), epimeriation (E) and peptidyl carrier 

protein (PCP) domains from the 16 analyzed myxochromide megasynthetases. A/B: Two groups of homologous 

C domains according to Figure S23B are compared. The consensus sequences of the seven conserved core motifs 

(core C1-C7) described by Marahiel et al. are illustrated on top of the alignment.31 The lines indicate the 

extended core regions, which were analyzed by Rausch et al. to distinguish different C domain subtypes, 

whereas yellow bars indicate significant specificity determining positions between LCL, DCL and starter C domain 

subtypes (those marked with an asterisk represent the most significant positions)33. A: C domains from module 2 

harbor the described residues typical for LCL domains. B: C domains from modules 3 harbor the described 

residues typical for DCL domains (except in pos. 316 of C3 from Cy1, Hm1, Hm2, Hm3, Se1, Sa1, Sa2 and Sa3). 

C: Sequence alignment of the module 2 E domains. The consensus sequences of the seven conserved core motifs 

(core E1-E7) described by Marahiel et al. are illustrated on top of the alignment.31 Key active site residues 

described from structural analysis of the E domain of tyrocidine synthetase A (His743 and Glu882)53 located in 

core E2 and E4 are highlighted with yellow bars. D-F: Three groups of homologous PCP domains according to 

Figure S23C are compared. D: The characteristic [GGDSI] core motif described for PCP domains associated 

with epimerization (E) domains, so-called PCPE domains,32 can be detected in all PCP domains from modules 2. 

E: The characteristic [GGHSL] core motif described for PCP domains from ordinary NRPS elongation modules, 

so-called PCPC domains,32 can be detected in all PCP domains from modules 3 (and the M1_B_PCP4 homolog). 

F: PCP domains from modules 4 (module 5 for M1_B) can be subdivided into two groups: PCP domains from 

active modules incorporating proline during myxochromide A, B and C biosynthesis harbor an intact [GGHSL] 

core motif. PCP domains from inactive modules from myxochromide D and S megasynthetases show several 

mutations within the core motif (see red box) and lack the highly conserved Ser residue required for 

posttranslational activation (which was biochemically analyzed for Sa1_S_PCP4 in previous studies 7).  
 

  

E 
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Figure S19 (continued on next page) 
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From Pro-incorporating modules: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

Figure S19. Substrate specificity analysis of the 94 adenylation (A) domains from the 16 analyzed 

myxochromide megasynthetases. Six groups of homologous A domains according to Figure S23A are compared 

(A-F). The two sequence columns represent the 8Å signature (a set of 34 active site residues as defined by 

Rausch et al.35 and the Stachelhaus code (ten specificity-conferring residues defined by Stachelhaus et al.36, nine 

of which are part of the 8Å signature as labeled with asterisks). The 8Å signature/Stachelhaus code for each A 

domain was retrieved via the NRPSpredictor2 analysis tool.34 Predicted substrate specificities, shown in the four 

columns to the right, were retrieved from reports of the applied antiSMASH 3.0 gene cluster analysis.13 They 

include substrate predictions based on the NRPSPredictor2 method34 (1st column) / Stachelhaus code36 (2nd 

column) / method of Minowa et al.54 (3rd column) / consensus of the three approaches (4th column; “-“ indicates 

no consensus). In some cases, no single substrates but (only) classes/clusters of several amino acids were 

predicted by NRPSPredictor2 as indicated by (a-f): (a) Apolar, aliphatic (Gly, Ala, Val, Leu, Ile, Abu, Iva), (b) 

Aliphatic, branched hydrophobic (Val, Leu, Ile, Abu, Iva), (c) Hydrophobic aliphatic (Ala, Gly, Val, Leu, Ile, 

Abu, Iva Ser, Thr, Hpg, Dhpg, Cys, Pro, Pip), (d) Unpolar aromatic ring (Phe, Trp), (e) Tiny, hydrophilic, 

transition to aliphatic (Gly, Ala), (f) Aliphatic chain with H-bond donor (Asp, Asn, Glu, Gln, Aad).  
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2.7.7.2 Analysis of Recombination Sites 

Comparison of the domain organization of the different myxochromide megasynthetase  

(sub)types suggests that three different recombination events took place in the course of mch 

gene cluster diversification (Figure 2). Based on data from phylogenetic analysis of A-, C- 

and (P)CP domain regions (Figure S23), the three novel cluster types (B-type, C-type and D-

subtype 2) result from duplication or deletion of specific catalytic domain regions. To detect 

possible recombination sites, alignments with selected regions of mchC genes were performed 

using the Geneious alignment tool integrated into Geneious software version 9.1.245 (Figures 

S20-22). In the following, the in silico analysis data are discussed for each of the three novel 

megasynthetase types. 

Myxochromide B megasynthetase (‘module duplication’) 

Phylogenetic analysis revealed that the heptamodular myxochromide B megasynthetase 

contains a duplicate of A3, CP3 and C4 compared to other myxochromide assembly lines 

(Figure S23). This indicates that the B-type mch cluster evolved from an A-type cluster by 

duplication of the A3-CP3-C4 region. Sequence alignments point to a recombination site that is 

located at the 5’ end of the A3/A4 domain regions, more precisely and on protein level located 

between the first α-helix/β-sheet according to structural data of A domain regions from other 

NRPS systems (Figure S20).55,56 This result is in accordance with detected repeat regions in 

the B-type mch cluster dot plot (Figure S1), which additionally indicates mutational activities 

in the N-terminal C domain regions after the duplication event. Furthermore, the analysis of 

the local codon usage adaptation along the catalytic domains shows a highly similar pattern in 

the ‘duplicated’ A3-CP3-C4 assembly line region (with exception of the ultimate N-terminal 

A3 region; Figure S25C, line M1). The ‘duplicated module’ introduces a second L-leucine 

residue into the myxochromide B heptapeptide core.                   

Myxochromide C megasynthetase (‘module deletion’) 

Phylogenetic analysis revealed that the pentamodular myxochromide C megasynthetase lacks 

A5, CP5 and C6 compared to other myxochromide assembly lines (Figure S23). This indicates 

that the C-type mch cluster evolved from the A-type cluster by deletion of the A5-CP5-C6 

region. Sequence alignments point to a recombination site that is located at the 3’ end of the 

C5/C6 domain regions, more precisely and on protein level between the last β-sheet/α-helix 

according to structural data of C domain regions from other NRPS systems (Figure S21).55,57 

Deletion of the A5-CP5-C6 assembly line region (compared to the A-type megasynthetase) 

causes the lack of L-alanine in myxochromide C lipopentapeptide cores compared to 

myxochromides A. 
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Myxochromide D-subtype 2 megasynthetase (‘partial module deletion’) 

Phylogenetic analysis revealed that the myxochromide D-subtype 2 megasynthetase lacks A4 

and CP4 compared to other myxochromide assembly lines (Figure S23). This indicates that 

the D-subtype 2 mch cluster evolved from the D-subtype 1 cluster by deletion of the A4-CP4 

region. Sequence alignments point to a recombination site that is located around the C4-

A4/CP4-C5 (linker) regions (Figure S22).55,57 Deletion of the A4-CP4 causes the lack of L-

proline in the myxochromide D lipopentapeptide products compared to myxochromides A. 

Interestingly, we see also less codon usage adaptation in this inactive A4-CP4 region in all 

Cystobacterineae strains compared with the following  A5-CP5 or preceding A3-CP3 region 

(see Figure S25C). 

In summary, the three discussed recombination events (followed by additional mutational 

activities) established novel and in all cases functional myxochromide assembly lines 

directing the production of altered myxochromide peptide cores. The observed ‘natural’ 

assembly line diversification results from duplication/deletion of ‘A-CP(-C) units’ instead of 

dedicated ‘C-A-CP’ modules (for further discussion see chapter 2.7.7.4).  
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Figure S20. Module duplication resulting in a B-type NRPS assembly line. A: Illustration of the identified 

recombination site at regions encoding the A3/A4 N-termini of the A-type pathway. B: Translation 

alignment of the regions encoding the A3/A4 N-termini (first 147/144 nt, 49/48 aa) from A-type pathways 

from strains Mf1, Mx1, Mx2, Mx3 and Mx4 with the respective region of A3/A4/A5 from the B-type 

pathway from strain M1. The identified recombination site is indicated with a black line. C: Protein 

alignment of the regions analyzed in B with the respective regions from the surfactin synthetase subunit 

SrfA-C (PDB:2VSQ,28) and the gramicidin S synthetase subunit GrsA (PDB:1AMU,29). According to this 

comparison, the ‘fusion site’ after the module duplication event resulting in a B-type pathway is located 

between the first A domain α-helix and β-sheet. 
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Figure S21. Module deletion resulting in a C-type NRPS assembly line. A: Illustration of the identified 

recombination site at regions encoding the C5/C6 C-termini of the A-type pathway. B: Translation 

alignment of the regions encoding the C5/C6 C-termini (last 147 nt / 49 aa) from A-type pathways from 

strains Mf1, Mx1, Mx2, Mx3 and Mx4 with the respective region of C5 from C-type pathways from 

strains Mh1 and Mv1. The identified recombination site is indicated with a black line. C: Protein 

alignment of the regions analyzed in B with the respective regions of the tyrocidine synthetase subunit 

TycC (PDB:2JGP,30) and the surfactin synthetase subunit SrfA-C (PDB:2VSQ,28). According to this 

comparison, the ‘fusion site’ after the module deletion event resulting in C-type pathways is located 

between the last C domain β-sheet and α-helix. 
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Figure S22. Partial module deletion resulting in a D-type (subtype 2) NRPS assembly line. A: Illustration 

of the identified recombination site between the C4-A4 linker and the CP4-C5-linker/C5 N-terminus 

regions of the D-type (subtype 1) pathway. B: Translation alignment of the C4(C-term)/linker/ C5(N-term) 

region from the D-type (subtype 2) pathway from strain Cy1 with regions encoding the C4 C-term (last 48 

nt / 16 aa) plus part of the downstream C4-A4 linker (first 57 nt / 19 aa) and regions encoding part of the 

CP4/C5 linker (last 24 nt / 8 aa) plus C5 N-term (first 48 nt / 16 aa) from D-type (subtype 1) pathways from 

strains Hm1, Hm2 and Hm3. The identified recombination region is indicated with a black line. C: Two 

protein alignments (boxed in blue and red) of the regions analyzed in B (containing the entire C4-A4 and 

CP4-C5 linker sequences) with the respective regions from the surfactin synthetase subunit SrfA-C 

(PDB:2VSQ,28) and the tyrocidine synthetase subunit TycC (PDB:2JGP,30). According to this alignment 

the C4/C5 domain interface in the D-type (subtype 2) pathway consists of the first part of the C4-A4 linker 

region. 
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2.7.7.3 Phylogenetic Analysis 

Phylogenetic reconstructions were mainly performed on the basis of coding DNA sequences. 

The sequences were aligned using the GUIDANCE2Server38 applying the MAFFT algorithm 

with the codon option. Columns with a GUIDANCE score below 0.93 were removed from the 

alignments. Reconstructions were done by the distance-based neighbor-joining method using 

the modules “dnadist” and “neighbor” of the PHYLIP package37 and applying the F84 model 

of nucleotide substitution. The reliability of tree topologies was evaluated by means of the 

bootstrap method based on 1000 pseudo-replicates using the module “seqboot”. Majority 

consensus trees were calculated using the “consense” module. For the megasynthetase 

subunits (MchA, MchB and MchC), phylogenetic reconstructions were also performed based 

on amino acid sequences. The sequences were aligned using ClustalX,39 and manually edited 

to remove areas that could not be aligned with confidence. The phylogenetic reconstruction 

was conducted using the modules “protdist” and “neighbor” of the PHYLIP package applying 

the JTT model of amino acid substitution and a gamma distribution to represent among-site 

rate heterogeneity. Reliability of branching topologies was evaluated by the bootstrap method 

based on 1000 pseudo-replicates of the alignment. To reconstruct the phylogeny of the 

complete clusters, the nucleotide sequences of mchA, mchB and mchC were concatenated and 

aligned using the GUIDANCE2Server with the same settings described above. The neighbor-

joining tree was calculated based on the F84 model of nucleotide substitution and its reliablity 

tested by bootstrapping 1000 pseudo-replicates. For the reconstruction of the phylogeny of the 

myxobacterial producer strains, the nucleotide sequences of the 16S small ribosomal subunit 

rRNA genes were concatenated with the nucleotide sequences of 15 selected genes encoding 

highly conserved proteins, a subset of 24 genes previously suggested for use in bacterial 

taxonomy.58 The 15 genes were small ribosomal subunit proteins S3, S5, S7, S9, S10, S12 

and S19, large ribosomal subunit proteins L2, L4, L6, L11, L14 and L16, elongation factor 4 

and phenylalanine-tRNA ligase subunit alpha. The subset was selected on uniqueness and 

completeness of all 16 orthologs, sequence assembly without ambiguous or missing 

nucleotides and gap-free alignments of identical length. The sequences (supplemental 

Microsoft Excel file “Supplemental_file_16_gene_sets.xlsx”) were aligned using ClustalX. 

Phylogenetic reconstruction was conducted using the modules “dnadist” and “neighbor” and 

was based on the F84 model of nucleotide substitution. Tree reliability was again tested by the 

bootstrap method with 1000 pseudo-replicates. A comparison of strain and cluster 

phylogenies is illustrated and discussed in the main text (Figure 3). 
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Phylogeny of NRPS domains (A, C and PCP) 

The phylogenetic tree of adenylation (A) domains (see Figure S23A) shows a clear separation 

of the domains according to the module they belong to. The phylogenetic relationships within 

each main branch correspond to the strain phylogeny of the producers. Such a pattern is 

typical for orthologous genes, which share the same ancestor and were diversified by 

speciation or separation into strains. The only exceptions are sequences from Stigmatella 

erecta Pde77 (Se1), which have a tendency not to cluster together with the other Stigmatella 

strains Sa1, Sa2 and Sa3 but instead with the Hyalangium minutum strains Hm1, Hm2 and 

Hm3 and the unclassified strain Cy1. However, this phylogenetic pattern does not exclude the 

possibility of independent heterologous integration events by horizontal gene transfer (see 

chapter 2.7.7.4 and main text). The A domain phylogeny also revealed that the A domains of 

NRPS modules 2 and 3 from the S-type megasynthetases fall together on the same branch 

with the respective counterparts of the other megasynthetases (see the green and orange box 

in Figure S23A). Therefore, all A domains of the second NRPS module as well as all A 

domains of the third NRPS module appear to be orthologs and thus the change in substrate 

specificity of the A domains belonging to S-type megasynthetases is probably the result of 

mutations in the active center (see chapter 2.7.7.1). Furthermore, the A domain phylogeny 

shows that the heptamodular B-type megasynthetase harbors a ‘duplicate’ of A3 (A3/A4; see 

the orange box in Figure S23A). A similar observation was made in the phylogeny of peptidyl 

carrier protein (PCP) domains, which revealed an additional copy of PCP3 (PCP3/PCP4; see 

the orange box in Figure S23C). However, the evolutionary relationships are different in the 

case of condensation (C) domains. Here, the phylogeny revealed that the B-type 

megasynthetase contains a ‘duplicate’ of C4 (C4/C5; see the blue box in Figure S23B). These 

data suggest that the additional module from the heptamodular B-type assembly line 

originated from an ‘A3-PCP3-C4’ instead of a ‘C3-A3-PCP3’ duplication event. Corresponding 

recombination sites were identified (see chapter 2.7.7.2).  

Phylogeny of NRPS subunits (MchA, MchB and MchC) 

The phylogenies of the whole megasynthetase subunits MchA, MchB and MchC are shown in 

Figure S24. The tree topologies were the same for reconstructions based on nucleotide or 

amino acid sequences. For each type of subunit, the phylogenetic relationships follow the 

strain phylogenies. However, as in the case of single domain phylogenies, there is always one 

exception: The subunits from the Stigmatella erecta strain (Se1) mainly cluster together with 

Hyalangium minutum strains but not with the other Stigmatella sp. strains, which could be 

explained by a horizontal gene transfer of the mch cluster to the Se1 strain. 
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Figure S23. Phylogeny of NRPS domains from the 16 analyzed myxochromide megasynthetases based on DNA 

sequences. A: Adenylation (A) domains. B: Condensation (C) domains. C: Peptidyl carrier protein (PCP) 

domains. 
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Figure S24 (continued on next page) 
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Figure S24. Phylogeny of subunits of the 16 analyzed NRPS megasynthetases based on DNA and protein 

sequences. A: PKS subunits mchA (DNA) and MchA (protein). B: NRPS subunits mchB (DNA) and MchB 

(protein). C: NRPS subunits mchC (DNA) and MchC (protein). 

C 
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2.7.7.4 CAI Analysis 

Adaptation of the specific synonymous codon usage of CDS to their corresponding genome’s 

codon usage of highly expressed (hxp) genes correlates with the expression level of the CDS, 

which is usually robustly measured by calculating the codon adaptation index (CAI).59 

Additionally, the codon usage of horizontally acquired gene clusters is likely to differ from 

the new host genome at the time of gene transfer. Consequently, the CAI value of such gene 

clusters is expected to be subsequently adjusted over evolutionary time scales. “Old” and 

conserved genes have therefore generally higher codon adaptation compared with newly 

acquired and “young” genes.23,60,61 However, mutational hotspots in rapidly evolving  genes, 

e.g. after a recent genome rearrangement or due to new evolutionary pressures, may initially 

change the codon adaptation to lower values due to higher pressure for selection of the 

encoded amino acid sequence. After this process yields mutational equilibrium, codon 

optimised genes may re-evolve again via silent mutations.62,63 We therefore analyzed global 

and local codon usage adaptation to gain additional insights into cluster evolution.   

Selection of hxp2 gene sets 

We previously selected a modified hxp gene set (hxp2) for the Myxococcales Mx1 

(Myxococcus xanthus DK1622), Sorangium cellulosum So ce56 and Chondromyces crocatus 

Cm c5,64 based on estimations of translation efficiency in E. coli and identification of 

functional orthologs and paralogs.65 We used the established hxp2 protein set of Mx1 to 

search with locally installed NCBI BLAST66 for respective homologous and paralogous 

protein sequences from all 16 strains investigated here. We manually reviewed the list, 

calculated intermediary CAI values, as described below, from the initial list members and 

removed paralogs having low codon adaptation manually, which may represent protein family 

members expressed alternatively during non-optimal growth conditions with changed codon 

usage or generally lowly expressed family members. The selected hxp2 gene sets are provided 

in the Microsoft Excel document “Supplemental_file_hxp2_gene_sets.xlsx”. For the 16 

strains, following numbers of hxp2 proteins were selected: Mx1 (353)64, Mx2 (346), Mx3 

(353), Mx4 (358), Mf1 (369), Mv1 (356), Mh1 (374), M1 (364), Sa1 (377), Sa2 (378), Sa3 

(367), Se1 (391), Cy1 (405), Hm1 (378), Hm2 (385), Hm3 (387). Within the header line of 

the provided FASTA files, the categories of functionally related highly-expressed protein 

subsets are annotated: hxp2 = A (ATP synthase and adenylate kinases), C (chaperones), D 

(DNA-related), E (export-related), F (fatty acid metabolism), G (glycolysis and basic 

carbohydrate metabolism), H (respiration), K (citrate cycle and related carboxylases), N 

(nitrogen metabolism), O (major outer membrane proteins), P (pentose phosphate cycle), R 
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(transcription), S (detoxification), T (translation). Additionally the CAI value calculated with 

the codon usage table of the respective strain-specific hxp2 sequences is indicated by the tag 

“cai_hxp2”. 

Calculation of codon adaptation index (CAI) values 

The codon usage tables for the selected set of hxp2 cds sequences were calculated by the 

EMBOSS program cusp41 after removing FASTA headers and sequence line breaks by a Perl 

pipeline program. The respective sequence-specific CAI was calculated by a Perl program as 

described by Sharp and Li.59 The CAI was calculated for the myxochromide cluster CDS 

sequences. A color scale blue-yellow-red (CAI 0.48 to 0.77) was used to illustrate the level of 

adaptation in codon usage (see Figure 3 and Table S12). The color scale and the respectively 

colored CDS symbols of Figure 3 and Table S12 were generated with R.67 

Local CAI values along the CDS of mchA, mchB and mchC were calculated for overlapping 

CDS regions of 101 codons using a Perl program. For each codon, the local CAI represents 

the CAI value of a window of 101 codons centered at the actual codon. At the start and the 

end of the CDS, the window size was reduced for the missing codons on the respective 5’- or 

3’-sides. The local CAI values were visualized as plotted color-shaded vertical lines along the 

three CDS for all 16 strains, where the codons were aligned to orthologous positions based on 

protein sequence alignments performed with ClustalX.39 The alignment was additionally 

corrected according to the identified recombination sites for deletions/insertions within the 

MchC protein sequences (see Figures S20-22). The color scale was constructed for the CAI 

range of 0.2 to 0.91 (710 steps) as follows: 0.2-0.4, black to blue (201 colors); 0.401-0.6, blue 

to yellow (200 colors), 0.601-0.8, yellow to red (200 colors), 0.801-0.910 red to dark-red (110 

colors). The respective Figures S25A (mchA), S25B (mchB) and S25C (mchC) were plotted 

using R.67  
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Table S12. Codon adaptation of the mch CDS of the myxochromide gene clusters to the hxp2 gene sets of their 

host genomes. The three disks represent the megasynthetase CDS mchA, mchB and mchC and are colored for 

their respective CAI value according to the displayed color scale. The disks were used accordingly in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Cluster mchA mchB mchC mchD 

Mx1_A 0.690 0.684 0.618 0.748 

Mx2_A 0.673 0.684 0.610 0.772 

Mx3_A 0.685 0.682 0.614 0.729 

Mx4_A 0.713 0.714 0.643 0.804 

Mf1_A 0.746 0.738 0.672 0.799 

Mv1_C 0.760 0.746 0.631 0.777 

Mh1_C 0.719 0.702 0.632 0.825 

M1_B 0.714 0.677 0.570 0.767 

Sa1_S 0.566 0.586 0.597 0.606 

Sa2_S 0.531 0.517 0.535 0.608 

Sa3_S 0.584 0.579 0.568 0.618 

Se1_D 0.490 0.516 0.484 0.383 

Cy1_D 0.617 0.658 0.644 0.561 

Hm1_D 0.588 0.630 0.621 0.514 

Hm2_D 0.572 0.636 0.624 0.487 

Hm3_D 0.590 0.632 0.620 0.502 
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Figure S25 (continued on next page) 



Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria     138 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S25 (continued on next page) 
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Figure S25: Local codon adaption index (CAI) values for a shifting window of 101 codons along the mchA 

(A), mchB (B) and mchC (C) CDS sequences of the 16 analyzed myxochromide pathways. Colors represent 

CAI values according to the shown color scale. 
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Extended discussion of the CAI analysis 

The adaptation of codon usage generally follows sequence phylogeny (Figure 3) and is 

different for the six separate genomic mch cluster locations A-F (see Figure S2), which 

represent independent cluster integration events by horizontal gene transfer. As we have no 

contradicting data, we assume that the expression levels and biological function of the 

myxochromide gene clusters within their host strains are comparable. Therefore, our data 

suggest that the clusters with higher codon usage adaptation represent more ancient versions 

regarding genomic residence time compared with lower adaptation for more recently acquired 

clusters. A combination of horizontal gene transfer events and inheritance by strain 

divergence would agree with the general complex pattern of megasynthetase evolution 

observed throughout all kingdoms of life.21,68 

Cluster history in Myxococcaceae 

All Myxococcaceae gene clusters are located in the same genomic integration site (Locus A; 

Figure S2) and show higher levels of codon usage adaptation compared with the 

Cystobacteraceae strains, especially for the structurally conserved mchA and mchB CDS. The 

highest adaptation is found in the two clusters of types A and C of the Mf1 and Mv1 strains, 

respectively. Myxochromide clusters may therefore have been acquired initially by Mf1 in the 

past, as indicated by the highest codon usage, the most common and intact cluster structure 

and a 5’-UTR region in front of the mchA CDS without deletions of the upstream neighboring 

AraC transcription factor (gene 5 in Figure S2). Next, the C-type cluster of Mv1 may have 

evolved, as suggested by its close association to the Mf1 cluster in phylogeny, harboring also 

an intact AraC transcription factor and having an exceptionally high CAI value for mchA and 

mchB as well. The deletion in mchC found in Mv1 leads to a reduced CAI because of loss of 

the highly adapted A5-PCP5-C6 region. These two prototype-clusters were subsequently 

inherited by or distributed to other Myxococcaceae by more recent homologous 

recombination events. They therefore do not show the same level of codon adaptation as 

observed in the primordial cluster versions, which have resided in their genomes for the 

longest time periods. M1 acquired or evolved the B-type cluster presumably even more 

recently, where the module duplication in mchC triggered mutational events reducing codon 

usage adaptation of mchC (see Figure S25C, line M1). Additionally, the mchC CDS CAI 

value was reduced also by duplication of the exceptionally low adapted A3-PCP3-A4 region of 

M1, which also shows generally lower adaptation in all strains. With the exception of Mx4 all 

other cluster integration sites in Myxoccoccaceae lost the upstream AraC transcription factor 

gene by a deletion event, which may have occurred during a more recent homologous 

recombination event, corroborating the proposed sequence of events. 
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Cluster history in Cystobacteraceae 

In contrast to the Myxococcaceae strains, the Cystobacteraceae strains show 5 independent 

genomic integration sites (Figure S2, Locus B-F), which may correspond to 5 instances of 

horizontal gene transfer at different time points. Consequently, for all 5 types of integration 

sites, different levels of adaptations are found. These are generally much lower for the 

conserved mchA and mchB CDS (Figure S25A,B). If the interpretation of cluster CAI values 

as genomic residence time indicator is valid, the sequence of integration events was 1) 

introduction of the D-type cluster into Cy1 locus B, 2) followed by independent integration of 

D-type clusters in Hm1, Hm2 and Hm3 in locus C, 3) acquirement of S-type clusters by Sa1 

and Sa3 in locus E, 4) integration of S-type cluster in Sa2 in locus F and most recently 

transfer of the D-type cluster to Se1 to locus D. 

Inactive regions show lower CAI values 

Inactive domains may have released evolutionary pressure to optimize codon usage and may 

therefore show reduced CAI values. The inactive ER* domains in the MchA  proteins show 

reduced CAI throughout all 16 strains (Figure S25A). Additionally, the inactive A4-PCP4 

region in the MchC proteins within the Stigmatella strains Sa1, Sa2, Sa3 and Se1 show 

reduced CAI levels when compared to the neighboring A3-PCP3 and A5-PCP5 regions (Figure 

S25C). Similar observations are made for the Hyalangium strains, Hm1, Hm2 and Hm3, 

whereas in Cy1 this region was even deleted. Generally, codon usage adaptation in the 

regions of modules 3 and 4 (A3-PCP3-C4-A4-PCP4) of mchC is found at relatively low levels 

for all strains indicating these as presumably younger regions with ongoing mutational 

changes. This suggestion is corroborated by the structural changes observed in that region 

(duplication of the A3-PCP3-C4 region in M1, deletion of the A4-PCP4 region in Cy1, change 

of the specificity of A3 domain in S-type clusters).  

Duplication event in M1 strain 

The local CAI values along the mchC CDS of strain M1 (Figure S25C, line M1) show that the 

duplicated region A3-PCP3-C4 most likely originated from the M1 A4-PCP4-C5 region 

(orthologous to A3-PCP3-C4 in other strains), which is also suggested by domain phylogeny 

(as described above) and recombination site analysis (as described above). The local CAI 

value of the N-terminal regions of the duplicated A3 domain in M1, however, has 

substantially changed when compared with its template region. Additionally, several regions 

along the CDS show lower adaptation compared with all other Myxococcaceae strains. This 

finding could indicate ongoing adaptation to the new heptapeptide assembly regime due to co-
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evolutionary changes not only in the duplicated domains C4 and C5, but also at the N-termini 

of the subsequent domains A5, C6, C7 and A7. 

Relation to general megasynthetase cluster evolution 

The observations described above are in line with a recent discussion of megasynthetase gene 

clusters evolution throughout all kingdoms of life,68 which summarizes that gene clusters 

evolve by combined horizontal and vertical gene transfer and are formed by a series of gene 

duplications, insertions/deletions, recombinations, mutation and reshuffling events. These 

may follow common rules, specific for co-evolving sets of clusters or sub-clusters, which mix 

by recombination events and evolve independently.21 E.g., for myxochromide clusters the 

mchA-mchB CDS and the mchC CDS may constitute two such independently evolving sub-

clusters, where mchC may be formed by family specific recombination rules, e.g. 

recombinations occur in the three known cases always near the regions encoding C-A domain 

interfaces. As in the case of polyketide synthase encoding gene clusters in Streptomyces 

avermitilis,69 natural biorecombinatorics may be confined to regions that account for the 

structural diversity of the products, as it is the case here for mchC A-domain-driven 

recombinations. 

2.7.8 Fruiting Body Formation and Swarm Expansion Assays with M. xanthus DK1622 

and Myxochromide-Deficient as well as Overproducing Mutants 

In order to obtain first insights into a possible biological function of myxochromides for their 

natural producers, fruiting body assays and swarm expansion assays with the myxobacterial 

model strain M. xanthus DK1622 and mutants thereof were performed. In addition to M. 

xanthus DK1622 wild type (WT, characterized as myxochromide A producer)7, a 

myxochromide A-deficient mutant M. xanthus DK1622::pMch22a7, as well as two 

myxochromide overproducing mutants were analyzed: M. xanthus DK1622::pMch70a 

(Wenzel et al., unpublished) and M. xanthus DK1622::pTps-mchS.15 M. xanthus 

DK1622::pMch70a was generated by insertion of the constitutive Tn5 promoter upstream the 

myxochromide A biosynthetic gene cluster, which led to an about 10-fold increase of 

myxochromide A production compared to M. xanthus DK1622 WT. M. xanthus 

DK1622::pTpS-mchS was generated via transposon mediated integration of the Sa1 

myxochromide S biosynthetic gene cluster under control of the constitutive Tn5 promoter and 

produces myxochromides A at the same level as the wild type plus myxochromides S/S-

Abu/S-diAbu at about 50-fold higher production yields.  
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Fruiting body formation assays 

Comparative fruiting body assays were performed as follows: Routinely grown liquid cultures 

were washed twice with MC7 buffer (0.5 M Mops buffer, 50 mM CaCl2 ∙ 2 H2O, pH 7.0) and 

5∙109 cells were spotted onto ‘agar wells’ of a 24-well microtiter plate. Each well contained 

600 µl TPM agar (Tris-HCl [pH 8.0] 10 mM, K2HPO4/KH2PO4 buffer [pH 7.6] 1mM, MgSO4 

∙ 7 H2O 8 mM, pH adjusted to 7.6). Microscopic images were recorded after 6, 24, 48 and 72 

h incubation at 30 °C by using a Zeiss binocular microscope with 10× magnification (see 

Figure S26). In this assay, no significant difference in fruiting body development was 

observed between the M. xanthus WT and the myxochromide deficient mutant strain 

indicating that myxochromides are not essential for fruiting body formation. However, both 

myxochromide overproducers showed a clear deviation from the standard development 

process as formation of fruiting bodies was significantly delayed and the total number of 

fruiting bodies was severely reduced relative to the wild type strain. This phenotype seems to 

be more pronounced in M. xanthus DK1622::pTpS-mchS, which produces the highest 

amounts of myxochromides. High (and constitutive) myxochromide production therefore 

seems to have a negative impact on fruiting body formation. This finding correlates with a 

recent study on enhancer binding proteins, in which a mutant with altered secondary 

metabolite profile (increased myxochromide production, decreased DKxanthene and 

myxovirescin production) showed similar effects on fruiting body development (M. xanthus 

DK1622hsfA::kan)26. The observed negative effects on fruiting body formation due to 

myxochromide overproduction could e.g. be explained by myxochromide surfactant 

properties or myxochromide-mediated increased swarming activity and cell movement, which 

might hamper cell aggregation.70       

Swarm expansion assays 

Comparative swarm expansion assays were performed in triplicates on 1% CTT agar at 21 °C 

as described by Kaiser et al.,42 and were monitored for 2 weeks. The daily increase in swarm 

expansion and selected images are illustrated in Figure S27. In this assay, no significant 

difference in swarm expansion between the four analyzed strains was observed. After seven 

days slightly higher colony diameters were detected in myxochromide overproducing strains, 

but the myxochromide-deficient mutant also showed marginal higher swarm expansion 

compared to WT. Based on this assay there is no clear indication that myxochromides 

contribute to swarming motility as described e.g. for lipopeptides from Pseudomonas sp.  and 

B. subtilis.71,72  
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Figure S26. Microscopic images of fruiting body developement of different M. xanthus strains on TPM agar at 

6, 24, 48 and 72 h after inoculation. A: M. xanthus DK1622 wild type (WT). B: M. xanthus DK1622::pMch22a 

(myxochromide deficient). C: M. xanthus DK1622::pMch70a (~10-fold higher myxochromide production than 

WT). D: M. xanthus DK1622::pTpS-mchS (~50-fold higher myxochromide production than WT). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S27. Photographic images of swarming colonies of different M. xanthus strains on 1 % CTT agar at 3, 9 

and 14 d after inoculation and daily increase in diameter of swarms. A: M. xanthus DK1622 wild type (WT). 

B: M. xanthus DK1622::pMch22a (myxochromide deficient). C: M. xanthus DK1622::pMch70a (~10-fold 

higher myxochromide production than WT. D: M. xanthus DK1622::pTpS-mchS (~50-fold higher 

myxochromide production than WT). 
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3 Synthetic Biotechnology to Engineer Myxobacterial Lipopeptide Biosynthesis 

3.1 Abstract 

The intriguing structural diversity of the myxochromide lipopeptide family originates from 

evolutionary diversification of the underlying myxochromide megasynthetases, making these 

pathways a promising model system to further increase the chemical diversity of lipopeptides 

in myxobacteria using biocombinatorial approaches. In this study, the redesign and assembly 

of artificial A-, B-, C-, D- and S-type myxochromide biosynthetic gene clusters (mch clusters) 

and hybrid combinations thereof based on synthetic gene fragments is described. A versatile 

assembly strategy was established which relies on type IIS restriction enzymes and allows for 

directed exchanges of gene segments coding for PKS/NRPS subunits, modules or even single 

domains. Heterologous expression of five artificial hybrid mch clusters in Myxococcus 

xanthus and secondary metabolite profile analysis of mutant strains revealed the production of 

engineered hybrid myxochromides, which were subsequently isolated and structurally 

characterized. Stereochemical analysis of hybrid myxochromides also contributed to the 

identification of the relevant determinant controlling the stereospecificity of the processed 

lipopeptide intermediates. Finally, mutated PCP domains based on the inactive module 4 of 

the native myxochromide S pathway were engineered in every module of the artificial A-type 

mch pathway to evaluate if ‘module-skipping’ scenarios can be induced at different positions 

of the assembly line. The presented work thus reflects the potential of synthetic DNA 

platforms not only for pathway assembly and engineering but also for the elucidation of 

biosynthetic mechanisms. 

 

3.2 Introduction 

The generation of novel secondary metabolite analogues via genetic alterations of the 

corresponding biosynthetic pathways continues to be a promising tool in natural products 

research to increase the chemical diversity of a certain compound class,1,2 as chemical 

synthesis remains rather challenging or even impossible due to the impressive structural 

complexity of most natural products. However, rational engineering of polyketide synthase 

(PKS),3 and nonribosomal peptide synthetase (NRPS) directed biosynthesis,4 is often limited 

by a lack of detailed structural information of the involved megasynthetases, e.g. including 

the flexible linker regions between individual assembly line subunits, modules and domains,5,6 

that are important for their functional and dynamical interplay within the large 

megasynthetase complexes. In addition, several experimental hurdles further impede the 

success of combinatorial biosynthesis approaches: (1) cultivation and genetic manipulation of 
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native producer strains is often laborious or in some cases not feasible at all, (2) fermentation 

yields in the native producers are too low, and (3) the large size of PKS/NRPS biosynthetic 

gene clusters, which can span from 10 to more than 100 kb,7 makes direct cloning from 

natural sources, rational engineering and subsequent implantation into suitable host genomes 

difficult. Taken this into account, it is not surprising that only a few examples have been 

extensively described demonstrating the efficient expression of rationally altered (and closely 

related) PKS/NRPS biosynthetic gene clusters and the production of the corresponding 

‘unnatural’ secondary metabolite derivatives,8–11 although the combinatorial reprogramming 

of PKS/NRPS systems already started more than 30 years ago.12 Recent advances in the field 

of synthetic biology have the potential to address these challenges to generate customized 

production platforms for complex natural products.13–16 However, gaining detailed knowledge 

about relevant factors for the redesign of biosynthetic gene clusters for improved expression 

of natural product assembly lines is highly desirable as current gene optimization strategies 

were not as successful as for standard genes. The BMBF funded project ‘SynBioDesign’ 

basically aimed at understanding the principles of redesigning artificial biosynthetic pathways 

for heterologous expression in a selected host organism based on synthetic DNA by 

combining and implementing comprehensive analyses on the genome, transcriptome, 

proteome and metabolome levels of various gene cluster variants in order to experimentally 

verify, understand and further improve the in silico sequence design. A critical step towards 

this ambitious task is the development of a flexible and efficient assembly strategy for 

complex biosynthetic gene clusters to generate numerous variants within a relatively short 

time frame. This would also allow any desired genetic modification of the gene clusters in 

order to use this platform to further expand the chemical diversity of the produced compound 

class by combinatorial approaches. To address these demands, we aimed at generating 

flexible synthetic DNA platforms based on the well-studied mch lipopeptide pathways, as 

they are encoded in one single operon comprising medium sized four-gene clusters (~ 30 kb). 

Furthermore, different myxochromides have been heterologously expressed at high yields and 

did not show any toxicity to their host. In addition, engineering of the precursor supply is not 

necessary as myxochromides contain only proteinogenic amino acids. Detailed sequence 

analyses of 16 PKS/NRPS mch clusters from various myxobacterial species producing this 

versatile class of lipopeptides revealed a high degree of sequence homology on the nucleotide 

and protein level.17 Moreover, studies on the strain and mch cluster phylogeny revealed the 

close evolutionary relationship between the different mch cluster types, which exhibit 

different product spectra, thereby qualifying these pathways as ideal model systems for 
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combinatorial studies in the ‘SynBioDesign’ project. Thus, we intended to further increase the 

structural diversity of the myxochromide lipopeptide family and to study the effects of 

artificial gene combinations on myxochromide biosynthesis by establishing flexible synthetic 

DNA platforms for the different mch cluster types (A-, B-, C-, D- and S-type).   

 

3.3 Results and Discussion 

3.3.1 Sequence Requirements for the Design of Artificial Myxochromide Pathways 

To assemble and functionally express an artificial mch pathway in a myxobacterial 

heterologous host, several key requirements for the sequence design need to be considered.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Sequence requirements considered for the generation of synthetic mch expression platforms. A: Gene 

organization of the native myxochromide A biosynthetic gene cluster from M. xanthus DK1622. B: De novo 

redesign and DNA synthesis of 11 building blocks for pathway assembly. C: In vitro reconstitution of the 

artificial A-type pathway. D: Integration into the host genome and functional expression of the artificial A-type 

pathway. 

 

General sequence requirements encompass the demands on DNA synthesis (1). As the size of 

a biosynthetic gene cluster is far too large to be synthesized in one piece via standard gene 

synthesis approaches, it has to be subdivided into smaller DNA segments. Constructional 

sequence requirements consider the specific demands of the envisaged assembly strategy to 

construct the desired expression constructs (2). The assembly and downstream modification 

of entire mch cluster constructs particularly required the choice and engineering of unique 
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restriction sites (R-sites) between the defined synthetic DNA fragments and the elimination of 

appropriate R-sites along the whole mch cluster sequences as well as the introduction of a 

homology region for the specific integration of the artificial pathways into the genome of the 

heterologous host. Functional sequence requirements are defined by the host strain selected 

for heterologous expression and comprise the choice of suitable genetic elements to achieve 

gene expression such as promoter and terminator sequences as well as elements to ensure 

construct propagation and stability (3). An overview on the applied strategy is exemplified for 

the A-type mch pathway from M. xanthus DK1622 (Figure 1).18 

 

3.3.2 Functional Sequence Design for Heterologous Expression in M. xanthus 

According to the current state of research, Myxococcus xanthus seems to be the most 

promising heterologous host for the expression of myxobacterial natural product pathways 

and numerous studies have been previsouly reported, which support this assumption.19 Since 

the A- and S-type mch pathways were already known to be well expressed in M. xanthus 

DK1622,18,20 this myxobacterial strain was selected as a heterologous host for functional 

expression of the artificial mch cluster constructs. A myxochromide A-deficient mutant of M. 

xanthus DK1622 (M. xanthus DK1622 ΔmchA-tet, Wenzel et al., unpublished), in which the 

native A-type mch cluster was replaced by an (oxy-)tetracycline resistance cassette, was 

already available in the group as heterologous production strain. 

To deliver and functionally express the synthetic mch pathways in M. xanthus DK1622 

ΔmchA-tet, the expression vector pSynbio2 was designed and manufactured by DNA 

synthesis (Supporting Information Figure S2). The minimal vector backbone includes a p15A 

low-copy origin of replication to ensure stability of the large mch cluster constructs during 

propagation in E.coli, an antibiotic resistance gene (kanamycin, kanR) suitable for selection of 

M. xanthus DK1622 ΔmchA-tet transformants, an origin of transfer (oriT), to allow for 

conjugation as an alternative strategy to transformation via electroporation, and a multiple 

cloning site (MCS), which is composed of all the R-sites needed for pathway assembly and 

engineering (Supporting Information Table S2). In addition, unique R-sites were introduced 

between the genetic elements (PacI, PmeI, SwaI) to allow for the exchange or addition of 

vector backbone elements by conventional cloning techniques, e.g. to investigate other 

chromosomal integration sites. Integration of the artificial mch constructs into the former 

mchA locus in the genome of M. xanthus DK1622 ΔmchA-tet was intended via single 

crossover by using the downstream helicase gene rhlE as homologous region (which is part of 
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the 3’mchC-mchD-rhlE terminator fragments, see Section ‘Constructional Sequence Design 

of Artificial Myxochromide Pathways’). 

To achieve gene expression in M. xanthus, we decided to place all artificial mch pathways 

under the control of the native promoter from the A-type mch cluster from M. xanthus 

DK1622. Moreover, to ensure the transcriptional termination of artificial mch pathways 

originating from different myxobacterial species (B-type mch pathway from Myxococcus 

sp.,17 C-type mch pathway from Myxococcus virescens,17 D-type mch pathway from 

Stigmatella erecta,17 S-type mch pathway from Stigmatella aurantica,21) in M. xanthus, the 

3’mchC-mchD-rhlE terminator fragments were designed in a way that the terminator 

sequence (plus the rhlE gene) from the A-type mch cluster was integrated downstream of the 

mchD genes from the other mch pathways to generate hybrid terminator fragments, which is 

schematically illustrated in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Design of hybrid terminator fragments for artificial A-, B-, C-, D- and S-type mch pathways. The 

individual 3’mchC-mchD-rhlE terminator fragments contain the native 3’mchC ends including the mchD gene of 

each mch cluster type, which are genetically fused to the downstream helicase gene (rhlE) including the 

terminator sequence from the A-type mch pathway (illustrated in gray) as a homologous region to allow for 

specific integration into the host genome and for functional termination of transcription in M. xanthus.  

 

 

3.3.3 Constructional Sequence Design of Artificial Myxochromide Pathways 

To address the generation of synthetic DNA platforms for the production of complex 

nonribosomal peptides, the development of a versatile assembly strategy for large and GC-

rich myxochromide gene clusters was required, which includes the possibility to (1) assemble 

numerous mch cluster variants fast and efficiently using a combination of conventional 

cloning techniques and modern DNA assembly strategies based on the use of type IIS 

restriction enzymes, (2) to allow for flexible interchanges of mch cluster segments on the 

domain, module and subunit level based on the generation of a mch gene library to generate 
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novel ‘unnatural’ peptide cores via combinatorial biosynthesis and (3) to allow for the 

interchangeability of genetic elements for vector backbone modifications. Initially, the A-type 

mch cluster from M. xanthus DK1622,18 was subjected to the sequence design process. As the 

size of a DNA fragment to be synthesized is still a limiting factor of DNA fabrication, the A-

type mch operon, which is approximately 30 kb in size, was rationally dissected into seven 

segments comprising the promoter-5’mchA (P5mchA) and 3’mchC-mchD-terminator-rhlE 

(T3mchC) regions, the three 5’/3’ end truncated biosynthesis genes mchA, mchB and mchC 

and the two intergenic linker regions 3’mchA-5’mchB (3A5B) and 3’mchB-5’mchC (3B5C) 

between the biosynthesis genes. The large mchC gene (13.4 kb) was subdivided into three 

fragments (MchC_A_AarI_fragABCE, MchC_A_AarI_fragD and MchC_A_AarI_fragF) for 

gene synthesis ranging in size from 6.2 to 9.4 kb. To meet the objectives described above, we 

aimed at establishing a three-step assembly strategy comprising the assembly of the truncated 

biosynthesis genes, the generation of a gene library for combinatorial approaches and the 

assembly of entire mch cluster constructs using a combination of conventional 

restriction/ligation cloning techniques and state-of-the-art assembly technologies. 

To allow for the future interchangeability of every desired PKS or NRPS domain, so-called 

splitter elements (SE) were designed and implemented into the interdomain linker regions 

within the truncated biosynthesis gene fragments mchA-C (except the linker between the PKS 

enoylreductase domain and the acyl carrier protein domains). The SEs basically consist of 

recognition sequences of a type IIS restriction enzyme (Figure 3). 

 

 

 

 

 

 

 

 

 

Figure 3. Structure and composition of splitter elements (SE) used for mch cluster engineering. The SE were 

placed between each PKS/NRPS domain fragment (except between the ER-ACP domain fragments, illustrated 

as dark gray boxes) and contain two recognition sites for a type IIS restriction enzyme (highlighted in red boxes), 

which hydrolyzes the DNA double strand outside of this recognition sequence, thereby generating 4 bp 5’ 

overhangs (shown in light gray). The introduced sequence in the middle (shown in red, R) represents the 

recognition site of a unique conventional type II restriction enzyme to allow for gene assemblies and fragment 

exchanges. A: SE based on the type IIS restriction enzyme AarI (32-34 bp in size). B: SE based on the type IIS 

restriction enzyme BsaI (26-28 bp in size). 
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These enzymes exhibit the special ability to hydrolyze the DNA double strand outside of their 

asymmetric recognition sequence,22 which enables the selection and design of unique 

overhangs between the domain fragments of each biosynthesis gene. This approach allows for 

the directed and seamless reassembly of the biosynthesis genes at the second stage of the 

assembly process. In the first instance, suitable fusion sites in the interdomain linkers along 

the A-type mch cluster were defined and introduced SEs were equipped with the recognition 

sequences of the type IIS restriction enzyme AarI.23 Moreover, an additional R-site for a 

unique ‘standard’ type II restriction enzyme between the AarI recognition sites was 

introduced for downstream domain or module exchanges and for the assembly of large 

biosynthesis genes (mchC) from smaller synthetic DNA fragments. Based on the domain 

organization of the mch biosynthesis genes, the mchA gene was equipped with 4 SEs, mchB 

with 6 and in mchC, 12 SEs were introduced with an overall size of 32-34 bp. After gene 

assembly using these conventional R-sites within the SEs, SEs need to be eliminated by a 

‘desplitting’ process, which basically describes the hydrolysis of the biosynthesis genes using 

AarI. The released SEs can easily be removed using PCR purification columns and the single 

domain fragments can be rejoined in a one-pot multi-fragment ligation exploiting the unique 4 

bp overhangs as compatible fusion sites. Following this approach led to the generation of a 

gene library containing fully ‘desplitted’ gene constructs. The last stage of the assembly 

process is the stitching of the three ‘desplitted’ biosynthesis gene fragments together with four 

additional fragments harboring the promoter, terminator and intergenic linker regions 

described above to assemble functional mch cluster constructs. In addition to the internal SEs 

between the domain encoding fragments, external SEs were implemented at the 5’ and 3’ ends 

of each synthetic cluster fragment in a way that the generated 4 bp overhangs are part of 

another unique R-sites, which were engineered within the coding sequence by silent mutations 

(BsiWI, MreI, MluI, NotI, SphI, AgeI) whenever possible (Supporting Information Table S5). 

This concept allows in parallel the assembly of entire mch cluster constructs from the seven 

building blocks either in a one-pot fashion or their conventional stitching as a backup strategy, 

if the one-pot assembly fails. In total, R-sites of a set of 25 enzymes used for gene assembly, 

domain/module engineering and pathway reconstitution were eliminated along the A-type 

mch cluster sequence, including R-sites for the exchange of vector backbone elements (PacI, 

PmeI, SwaI) on the designed pSynbio2 vector. 
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3.3.4 Construction and Heterologous Expression of a Synthetic A-type mch Cluster 

The de novo synthesis of the redesigned A-type mch cluster fragments based on the AarI 

design approach was accomplished by a gene synthesis company commissioned by our 

bioinformatics collaborator ATG:Biosynthetics GmbH. The synthesis of the genes mchA-C 

required high delivery times (~ 3-5 months) due to their large size and complexity (GC-rich 

sequences), whereas the significantly smaller promoter (P5mchA), terminator (T3mchC) and 

intergenic linker fragments (3A5B/3B5C) were delivered in reasonable time frames (several 

weeks). In the case of the large mchC gene, we received three individual DNA fragments, 

since synthesis of this gene in one piece was not successful. Thus, we followed the envisaged 

assembly strategy and first assembled the full-length mchC gene in two steps using the unique 

R-sites within the introduced SEs for the construction of pGH-MchC_A_AarI_fragABCEF 

and subsequent complementation with pGH-MchC_A_AarI_fragD to construct pGH-

MchC_A_AarI_SE. Since each synthetic fragment was delivered in the standard pGH vector 

backbone, the seven building blocks were subcloned into our cloning vector pSynbio1 that 

was subjected to the R-sites engineering and thus does not contain any recognition sequences 

of the restriction enzymes needed for ‘desplitting’ or pathway reconstitution/engineering, 

which is a prerequisite for the downstream stages of the assembly process. After mchC gene 

assembly and subcloning, the truncated biosynthesis genes mchA-C were successfully 

‘desplitted’ via hydrolysis with AarI followed by religation of the single domain fragments 

after removal the SEs. Although the ‘desplitting’ process of the biosynthesis gene fragments 

was initially successful, cloning efficiencies were insufficiently low in terms of establishing a 

fast and efficient assembly strategy. ‘Desplitting’ of the smaller mchA and mchB gene 

constructs already required some screening effort (one correct clone out of 24) and 

‘desplitting’ of the large mchC gene containing 12 SEs was difficult to achieve at all. In this 

case, up to 100 colonies needed to be tested to find a correct clone harboring a fully 

‘desplitted’ version of this gene construct. In addition, partially ‘desplitted’ mchC constructs 

were often observed, which still contained some SEs despite of the performed purification 

step using the PCR column. In some other cases, fully ‘desplitted’ but shortened mchC 

constructs were detected, in which several domain fragments were deleted. This can happen if 

three out of the four nucleotides making up the fusion sites are complementary to each other, 

so that they can anneal and subsequently be ligated.24 The type IIS restriction enzyme AarI 

additionally requires a synthetic oligonucleotide to gain full activity and thus seemed to be the 

bottleneck, although it was recently used in studies describing the similar Golden Gate 

assembly strategy.24,25 Constructs, which were thought to be fully ‘desplitted’ based on 

restriction analyses, were sequenced by employing Illumina sequencing technology in order 
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to guarantee a verified gene library. However, we continued with the third stage of the 

assembly strategy and tried to assemble the first artificial A-type mch pathway from the seven 

building blocks plus the expression vector pSynbio2 (which contains a MCS flanked by two 

SEs generating unique fusion sites to capture the promoter-5’mchA and 3’mchC-mchD-

terminator-rhlE fragments and thus acts as acceptor vector) via separate hydrolysis of each 

construct using AarI followed by a directed one-pot religation of the linearized synthetic 

fragments to form functional mch cluster constructs. Unfortunately, one-pot assemblies of 

artificial mch pathways failed, which is most likely due to the diverse size distribution of the 

synthetic fragments (150 bp up to 13.4 kb). The assembly of ~ 35 kb constructs from non-

standardized DNA fragments (in terms of fragment size) might thus be hard to achieve in a 

highly efficient and flexible way. In contrast, the similar Golden Gate Cloning platform for 

the assembly of large DNA constructs from modular building blocks, which relies on type IIS 

restriction enzymes and their special features, has recently become popular describing the 

custom-specific generation of Transcription Activator-Like Effector Nuclease (TALEN) 

libraries used for in vivo gene editing.26,27 In these and other studies, modules exhibiting 

similar sequence lengths in equimolar amounts were used for one-pot restriction/ligation 

assemblies and relatively small constructs were assembled (up to 10 kb). Taken this into 

account, fragment and final construct sizes might be the relevant factors limiting the success 

of this assembly strategy. Thus, the first artificial A-type mch pathway was stepwise 

constructed from the seven building blocks via conventional cloning using the engineered 

unique R-sites (Rx1, Rx6, Ry1, Ry8, Rz1, Rz14) plus the two R-sites flanking the multiple cloning 

site of the expression vector pSynbio2 (RL, RR), which revealed the intermediate constructs 

pSyn2-ca1, pSyn2-ca2, pSyn2-ca3, pSyn2-ca4, pSyn2-ca5, pSyn2-ca6 and the final 

expression construct pSynMch1 harboring the entire synthetic mchA cluster (Supporting 

Information Table S9). The expression construct was verified by a combination of restriction 

analyses and Illumina sequencing prior to transformation into M. xanthus DK1622. 

Integration of the artificial A-type mch pathway into the former locus of the corresponding 

native pathway in M. xanthus was analyzed by PCR (Supporting Information Figure S4) and 

genotypically verified mutant strains were cultivated for subsequent preparation of culture 

extracts. As controls, the wild type strain as well as the myxochromide A-deficient mutant M. 

xanthus DK1622 ΔmchA-tet were cultivated in parallel. Culture extracts were analyzed for 

myxochromide production by HPLC-MS and target masses for myxochromides A2, A3 and A4 

were detected in the extracts of the wild type strain as well as of the mutant strains harboring 

the artificial version of the A-type mch cluster (experimental data not shown). Myxochromide 
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production titers were comparable in both strains showing that the synthetic DNA platform is 

principally a robust and competitive system for further studies. However, the assembly 

strategy and thus the constructional sequence design needed to be modified to significantly 

improve the robustness and efficiency of the described procedure. 

 

3.3.5 Adaption of the Constructional Sequence Design to an Alternative Type IIS 

Restriction Enzyme 

To have an efficient assembly strategy in hand for which the presented concept still builds the 

basis, the constructional sequence design was adapted to the alternative type IIS restriction 

enzyme BsaI, which is also known from published DNA assembly protocols,24,25 and which 

does not require any additives to become active. However, the use of BsaI has some 

limitations regarding the strategic possibilities of the envisaged assembly strategy, e.g. the 

BsaI enzyme only skips one nucleotide until it hydrolyzes the DNA double strand compared 

to four nucleotides, which are skipped by AarI. Thus, it was not possible anymore to design 

the SE-derived 4 bp overhangs in a way that they are simultaneously part of the 

‘conventional’ R-site recognition sequences at the 5’/3’ ends of the synthetic DNA fragments, 

which allowed the construction of synthetic mch clusters via both one-pot and conventional 

assemblies. Thus, we only focused on the conventional construction of entire artificial mch 

constructs by using the unique R-sites at the 5’/3’ ends of each synthetic DNA fragment. 

Furthermore, and in addition to the A-type mch pathway, the strategy was extended to the B-, 

C-, D- and S-type mch clusters in order to generate a diversified gene library for 

combinatorial biosynthesis.  

First, we decided to redesign the whole A-type mch cluster based on the sequence 

requirements, which were determined by the adaption to the BsaI design plus a minimal set of 

cluster fragments from the other described mch pathways, which allows their rational 

recombination to assemble a maximum number of different mch cluster variants to produce 

novel myxochromides (Supporting Information Figure S3). Thus, the mchA gene from the A-

type pathway encoding the polyketide synthase that directs the biosynthesis of the 

polyunsaturated side chain, was subjected to the sequence design process and was 

subsequently used for the assembly of all mch pathways described in this study (plus the 

corresponding promoter-5’mchA and the 3’mchA-5’mchB intergenic linker fragment). Since 

the MchB subunits of the A-, B- and C-type mch pathways share a relatively high degree of 

sequence homology, originate from Myxococcus sp. and activate the same amino acids for 

incorporation into the growing peptide chain (in contrast to the MchB subunit from the S-type 
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mch pathway), the mchB gene from the A-type mch cluster was redesigned and used for the 

construction of artificial A-, B- and C-type mch clusters. To assemble an artificial D-type mch 

cluster, the corresponding mchB gene from Stigmatella sp. was redesigned and, in addition, 

the S-type mchB gene since the corresponding S-type MchB subunit exhibits a different 

amino acid specificity. Due to various recombination events and the resulting differences in 

the mchC genes of the mch clusters, we redesigned the mchC genes from all mch pathways 

(including the corresponding 3’mchB-5’mchC intergenic linker and terminator fragments). 

Sequence alignments of the selected mch genes were performed in order to find suitable 

positions for the BsaI-based SEs (or fusion sites respectively) between each domain encoding 

fragment. We intended to choose fusion sites, which were located at the same positions 

among the different mch genes to allow for directed exchanges of domains or modules 

originating from mch genes from different mch clusters. In some cases, it was not possible to 

detect identical 4 bp combinations in the interdomain linker regions among the different mch 

genes. Alternative fusion sites were then chosen, which were located either within the 

upstream or downstream domain based on revised domain annotations. However, overall 15 

out of 72 fusion sites needed to be modified by silent point mutations (except one fusion site 

mutation which affected the amino acid sequence of the corresponding protein) to be identical 

and located at the same positions among all mch genes (Supporting Information Table S4). In 

the B-type mch gene, three additional fusion sites were selected and appropriate SEs were 

introduced (15 instead of 12 as for the A-, D- and S-type mchC genes) due to the duplicated 

module described in Chapter 2. Analogously, the C-type mch gene was only equipped with 9 

SEs as a result of the module deletion. 

In analogy to the AarI-based design process, the mch genes were truncated at their 5’ and 3’ 

ends and were further subdivided into smaller DNA fragments due to their large size (overall 

11 synthetic cluster fragments for the A-, D- and S-type pathways; 10 cluster fragments for 

the C-type pathway and 12 cluster fragments for the B-type pathway). The unique R-sites at 

the 5’ and 3’ ends, which were previously defined, were introduced at the same positions as 

described for the AarI design. Since the one-pot assembly of entire mch cluster constructs did 

not work efficiently using AarI most likely due to the diverse size distribution of the synthetic 

cluster fragments, we decided to assemble the expression constructs via conventional cloning 

methods using these unique R-sites. Thus, only the truncated mch gene fragments were 

equipped with external SEs at their 5’/3’ ends to allow for the religation of the gene fragments 

into the pSynbio1 cloning vector after the ‘desplitting’ process. 
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Figure 4. Assembly strategy for the generation of artificial mch clusters. The assembly process involves overall 

three steps starting with the construction of the biosynthesis genes from smaller synthetic DNA fragments. 

‘Desplitting’ of the biosynthesis genes using type IIS restriction enzymes followed by directed religation of the 

single domain fragments results in the generation of a gene library consisting of splitter-free gene constructs. To 

reconstitute the entire mch clusters, seven synthetic building blocks comprising the gene constructs from the 

gene library as well as four additional cluster fragments harboring the promoter, intergenic linker and terminator 

sequences are stepwise cloned into the expression vector pSynbio2 using the unique R-sites at the 5’ and 3’ ends 

of each synthetic cluster fragment (RL, Rx1, Rx6, Ry1, Ry8, Rz1, Rz14, RR). 
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In addition, R-sites engineering was performed for the selected mch cluster fragments to 

eliminate perturbing R-sites. The whole assembly strategy starting from gene assemblies over 

‘desplitting’ of mch gene constructs to the reconstitution of artificial mch clusters for 

heterologous expression is exemplified for the A-type mch cluster in Figure 4 (for a detailed 

overview on the designed mch cluster fragments see Supporting Information Figure S3). 

In addition to the mch cluster fragments, the cloning (pSynbio1_AarI) and expression vectors 

(pSynbio2_AarI) also needed to be modified to meet the constructional sequence 

requirements of the BsaI design. To eliminate a BsaI R-site in the ampicillin resistance gene 

in pSynbio1, a small synthetic analogous fragment was designed, in which this R-site was 

removed by silent point mutation and which can be easily exchanged by restriction/ligation 

cloning (Supporting Information Table S7). In pSynbio2, a modified MCS equipped with 

flanking BsaI R-sites instead of AarI sites was designed and exchanged using unique R-sites 

on the original vector backbone (Supporting Information Table S7). 

 

3.3.6 In vitro Reconstitution of Artificial Hybrid mch Clusters 

Despite the modification and expansion of the described constructional sequence design, the 

basic assembly strategy remained unaffected as we still intended to construct the mch 

pathways via the established three-step approach starting with the assembly of the split 

biosynthesis genes using the unique R-sites within the SEs followed by subcloning of these 

fragments into the cloning vector pSynbio1, which revealed the following constructs: pSyn1-

MchA_A_SE, pSyn1-MchB_A_SE, pSyn1-MchB_D_SE, pSyn1-MchB_S_SE, pSyn1-

MchC_A_SE, pSyn1-MchC_B_SE, pSyn1-MchC_C_SE, pSyn1-MchC_D_SE and pSyn1-

MchC_S_SE. At the second stage, hydrolysis of these constructs with BsaI and subsequent 

religation of domain fragments gave the fully ‘desplitted’ genes providing a versatile gene 

library for the combinatorial reprogramming of myxochromide assembly lines. Compared to 

the ‘desplitting’ procedure using AarI, ‘desplitting’ reactions with the BsaI type IIS restriction 

enzyme appeared to be much more efficient. The ‘desplitted’ versions of the smaller mchA 

(pSyn1-MchA_A) and mchB (pSyn1-MchB_A, pSyn1-MchB_D and pSyn1-MchB_S) gene 

constructs were easily obtained without putting significant effort in the screening of correct 

clones (cloning efficiencies were ~ 50-70%). However, cloning efficiencies dropped 

noticeably together with the number of SEs or construct size, respectively. ‘Desplitting’ of the 

largest mchC gene construct (pSyn1-MchC_B_SE) was not successful, although ‘desplitting’ 

reactions were optimized in terms of enzyme and substrate concentrations, incubation time 

and temperature needed for the efficient religation to form the fully ‘desplitted’ construct. 
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Thus, we designed four modified mchC gene fragments from the B-type mch pathway 

(MchC_B_fragA_woSE, MchC_B_fragB_woSE, MchC_B_fragC_woSE and 

MchC_B_fragD_woSE), in which the SEs were completely removed (except one BsaI site 

plus the pre-defined unique R-site at the 5’/3’ ends of each fragment for gene assembly as a 

kind of partial SE) in order to reduce the complexity of the ‘desplitting’ reaction. The mchC 

gene was constructed from the modified gene fragments via conventional cloning methods 

using the unique R-sites, thereby generating SEs at the ligation sites. Removal of the resulting 

three SEs via hydrolysis using BsaI efficiently worked, thereby revealing pSyn1-MchC_B, 

which underpins the assumption that the efficiency of the ‘desplitting’ process is mainly 

limited by the number of SEs. ‘Desplitting’ of the mchC gene constructs from the A-, C-, D- 

and S-type mch pathways harboring 10 to 12 SEs was still possible and revealed pSyn1-

MchC_A, pSyn1-MchC_C, pSyn1-MchC_D and pSyn1-MchC_S, even though the cloning 

efficiencies were lowered compared to mchA/mchB construct ‘desplittings’ (Supporting 

Information Table S8). A number of 12 SEs thus seems to be the benchmark in the described 

experimental set-up, for which reasonable cloning efficiencies can be realized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic representation of the five artificial hybrid mch clusters generated by rational recombination 

of the seven synthetic building blocks. The illustrated pathways are assumed to direct the biosynthesis of the 

naturally occurring myxochromides A, B, C, D and S. The color code illustrates the origin of the single 

redesigned mch cluster fragments: synthetic building blocks from the A-type mch pathway are shown in dark 

gray, from the B-type mch cluster in blue, from the C-type mch cluster in red, from the D-type pathway in green 

and from the S-type pathway in orange. Black lines indicate the positions of unique R-sites for the conventional 

assembly of the mch cluster constructs from the synthetic building blocks. 
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On the basis of the generated mch gene library, we first intended to create synthetic DNA 

platforms for the production of the native myxochromide scaffolds, which serve as a starting 

point for combinatorial engineering to increase the chemical diversity of myxochromides. By 

rationally recombining the seven synthetic building blocks including the different mch genes 

from the gene library, five hybrid mch pathways were constructed via conventional cloning, 

which were assumed to be responsible for the production of the native A-, B-, C-, D- and S-

type myxochromides (Figure 5, work by Dr. Fu Yan, unpublished).  

Heterologous expression of the artificial mch pathways in M. xanthus followed by genotypic 

verification of selected mutant strains and HPLC-MS analysis of culture extracts revealed that 

all pathways were correctly integrated into the host chromosome and were functionally 

expressed. The corresponding A-, B-, C-, D- and S-type myxochromides were detected in 

culture extracts of the mutant strains (data not shown; work by Dr. Fu Yan, unpublished). 

We then intended to go one step further to generate entirely new myxochromide peptide 

cores, which have not (yet) been found in Nature, by exchanging the MchB/MchC subunits, 

which might change the amino acid order in the produced lipopeptide compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic representation of the five artificial hybrid mch clusters generated by rational swaps of the 

mch genes from the gene library. The illustrated pathways are assumed to direct the biosynthesis of novel hybrid 

myxochromide cores (AS-, SA-, SB-, SC- and SD-type). The color code illustrates the origin of the single 

redesigned mch cluster fragments: synthetic building blocks from the A-type mch pathway are shown in dark 

gray, from the B-type mch cluster in blue, from the C-type mch cluster in red, from the D-type pathway in green 

and from the S-type pathway in orange. Black lines indicate the positions of unique R-sites for the conventional 

assembly of the mch cluster constructs from the synthetic building blocks. 
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Using the gene library consisting of the ‘desplitted’ biosynthetic mch genes, five different 

mch gene combinations can be deduced, which in conjunction with the available promoter-

5’mchA (P5mchA), intergenic linker 3’mchA-5’mchB (3A5B), 3’mchB-5’mchC (3B5C) and 

3’mchC-mchD-terminator-rhlE (T3mchC) fragments might encode biosynthetic machineries 

producing novel myxochromide cores (Figure 6). Alternative gene combinations would 

inevitably lead to mch pathways, which are assumed to be responsible for the production of 

the native myxochromide scaffolds. 

Since we intended to focus on the engineering of the NRPS (MchB/MchC) subunits to switch 

amino acid positions in the peptide core, the PKS (MchA) encoding mchAA gene from the A-

type mch pathway was consistently used as a standard building block for the assembly of the 

mentioned hybrid mch clusters together with the P5mchAA promoter fragment and the 

3AA5BA intergenic linker fragment, which derived from the A-type mch cluster as well. We 

decided to use the 3AA5BA linker fragment from the A-type mch cluster to ensure native 

docking interactions at the corresponding PKS/NRPS interface in the megasynthetase 

complex rather than using hybrid linker fragments which combine the 3’ end of the mchAA 

and the 5’ end of the mchBS fragment. 

Similar considerations were made for the integration of the 3mchA-5mchB (3B5C) linker 

fragments. We intended to maintain the native docking regions between mchBA/mchBS and the 

different mchC gene fragments and thus used the individual linker fragments harboring the 

3’mchB and 5’mchC ends originating from the different mch cluster types (3BA5CA, 3BB5CB, 

3BC5CC and 3BD5CD). If one NRPS encoding gene (mchB/mchC) derived from the A-type 

mch pathway, the corresponding A-type intergenic linker fragment (3BA5CA) was used 

(Figure 6). Based on the established gene library, the different hybrid mch clusters (Figure 6) 

were constructed stepwise in four to seven cloning steps using the unique R-sites at the 5’/3’ 

ends of the synthetic mch cluster fragments, thereby yielding the final expression constructs, 

which harbor the artificial AS- (pSynMch8), SA- (pSynMch9), SB- (pSynMch11), SC- 

(pSynMch10) and SD-type (pSynMch12) hybrid mch clusters (Supporting Information Table 

S9). 

All expression constructs were fully sequenced by employing Illumina sequencing 

technology. In some cases, frameshift mutations were detected in common parts of the 

expression constructs, which needed to be repaired prior to heterologous expression 

(Supporting Information Table S9). 
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3.3.7 Heterologous Expression of Artificial Hybrid mch Clusters in M. xanthus and 

Production Analysis of Mutant Strains 

To heterologously produce the assumed novel hybrid myxochromides in M. xanthus DK1622, 

the expression constructs pSynMch8 (AS-type), pSynMch9 (SA-type), pSynMch10 (SC-

type), pSynMch11 (SB-type) and pSynMch12 (SD-type) harboring the artificial hybrid mch 

clusters were subsequently transformed into the heterologous host strain M. xanthus DK1622 

ΔmchA-tet lacking the native A-type mch cluster. Integration into the host genome via single 

crossover was achieved using the rhlE gene, which is part of the terminator fragments 

(3’mchC-mchD-terminator-rhlE) and originated from the native A-type mch pathway as a 

homologous region (see Chapter 3.3.2). Correct integration into the former locus of the A-

type mch cluster was analyzed by PCR using two sets of primers at the 5’ and 3’ ends of the 

synthetic mch clusters generating mutant-specific PCR products (Supporting Information 

Figure S4) and selected mutant strains harboring the hybrid mch clusters were grown in 

duplicates in 50 mL CTT medium (casitone 1%, Tris-HCl [pH 8.0] 10 mM, K2HPO4/KH2PO4 

buffer [pH 7.6] 1 mM, MgSO4 × 7 H2O 8 mM, pH adjusted to 7.6) at 30°C and analyzed for 

myxochromide production via HPLC-MS (Figure 7). To relatively compare hybrid 

myxochromide production titers with the native production levels of myxochromide A in M. 

xanthus DK1622, the wild type strain was analyzed as well. The myxochromide A-deficient 

mutant strain M. xanthus DK1622 ΔmchA-tet served as a negative control. Production of 

novel lipopeptide cores (Figure 8) was successfully demonstrated and is summarized below: 

  

Myxochromides AS – novel engineered lipopentapeptides 

Myxochromide derivatives with [M+H]+ masses corresponding to the expected hybrid 

myxochromides AS2, AS3 and AS4 (1a-c, Figures 7/8) were detected in extracts of M. xanthus 

DK1622 ΔmchA-tet::pSynMch8. The most prominent derivative was 1a under the applied 

cultivation conditions, whereas derivatives 1b and 1c were produced in lower yields but at 

similar levels compared to each other (Figure 7). 

Myxochromides SA – novel engineered lipohexapeptides 

Myxochromide derivatives with [M+H]+ masses corresponding to the expected novel hybrid 

lipohexapeptides myxochromides SA2, SA3 and SA4 (2a-c, Figures 7/8) were detected in 

extracts of M. xanthus DK1622 ΔmchA-tet::pSynMch9. Compound 2b was found to be the 

major derivative under the applied cultivation conditions, whereas derivatives 2a and 2c were 

produced in significantly lower amounts (Figure 7). 
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Myxochromides SB – novel engineered lipoheptapeptides 

Myxochromide derivatives with [M+H]+ masses corresponding to the assumed hybrid 

lipoheptapeptides myxochromides SB2, SB3 and SB4 (3a-c, Figures 7/8) were detected in 

extracts of M. xanthus DK1622 ΔmchA-tet::pSynMch11. The major derivative was 3c under 

the applied cultivation conditions followed by 3b and 3a, which were produced in 

significantly lower amounts (Figure 7). 

Myxochromides SC – novel engineered lipopentapeptides 

Myxochromide derivatives with [M+H]+ masses corresponding to the expected novel 

lipopentapeptides myxochromides SC2, SC3 and SC4 (4a-c, Figures 7/8) were detected in 

extracts of M. xanthus DK1622 ΔmchA-tet::pSynMch10. The production profile was found to 

be highly similar to that of the myxochromide SB producing mutant strain (Figure 7). 

Compound 4c was identified as most prominent derivative under the applied cultivation 

conditions, whereas derivatives 4a and 4b were produced as minor products. 

Myxochromides SD – novel engineered lipopentapeptides 

Myxochromide derivatives with [M+H]+ masses corresponding to the expected hybrid 

myxochromides SD2, SD3 and SD4 (5a-c, Figures 7/8) were detected in extracts of M. xanthus 

DK1622 ΔmchA-tet::pSynMch12. In comparison to the other hybrid myxochromides, 

production of 5a-c was found to be significantly lower, and was also observed for several 

independent clones.  The major derivative was 5b under the applied cultivation conditions and 

was roughly produced at similar levels as some minor compounds in the other extracts. 

Derivatives 5a and 5c were produced in even lower yields (Figure 7). 

 

The successful heterologous expression in M. xanthus demonstrated the functionality of the 

artificially recombined hybrid mch clusters, which were constructed based on synthetic DNA. 

NRPS subunits from different mch pathways, which were rationally recombined in a non-

native way, were obviously able to successfully interact with each other. In addition, non-

native biosynthetic intermediates, which are not biosynthesized by the native mch 

biosynthetic machineries, were transferred to and processed by the downstream domains of 

the hybrid mch pathways, thereby providing fully functional synthetic DNA platforms for the 

production of entirely novel myxochromide lipopeptide cores. 

When comparing the production titers of the synthetic hybrid mch clusters in the heterologous 

mutant strains with the native myxochromide A production in M. xanthus DK1622, it turned 

out that the corresponding hybrid myxochromides AS2-4, SA2-4, SB2-4 and SC2-4 were 

produced at different production levels in this initial cultivation experiment (Figure 7/Table1). 
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Figure 7. HPLC-MS analysis of hybrid myxochromide production in  myxobacterial mutant strains. Extracted 

ion chromatograms (EICs) for ±0.02 m/z corresponding to the [M+H]+ ions of myxochromides are shown. A: 

Detection of myxochromides A in M. xanthus DK1622 wild type; A2 ([M+H]+ = 834.47655), A3 ([M+H]+ = 

846.47655) and A4 ([M+H]+ = 860.49220). B: No myxochromide production in M. xanthus DK1622 ΔmchA-tet. 

C: Detection of myxochromides AS in M. xanthus DK1622 ΔmchA-tet::pSynMch8; AS2 ([M+H]+ = 695.37684), 

AS3 ([M+H]+ = 707.37684), AS4 ([M+H]+ = 721.39249). D: Detection of myxochromides SA in M. xanthus 

DK1622 ΔmchA-tet::pSynMch9; SA2 ([M+H]+ =876.52350), SA3 ([M+H]+ = 888.52350), SA4 ([M+H]+ = 

902.53915). E: Detection of myxochromides SB in M. xanthus DK1622 ΔmchA-tet::pSynMch11; SB2 ([M+H]+ 

= 989.60757), SB3 ([M+H]+ = 1001.60757), SB4 ([M+H]+ = 1015.62322). F: Detection of myxochromides SC in 

M. xanthus DK1622 ΔmchA-tet::pSynMch10; SC2 ([M+H]+ = 805.48639), SC3 ([M+H]+ = 817.48639), SC4 

([M+H]+ = 831.50204). G: Detection of myxochromides SD in M. xanthus DK1622 ΔmchA-tet::pSynMch12; 

SD2 ([M+H]+ = 779.47074), SD3 ([M+H]+ = 791.47074), SD4 ([M+H]+ = 805.48639). 
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Table 1: Chromatographic data of detected mxochromide derivatives. 

  

Compound Rt [min] Peak area Intensity 

Myxochromide A2 12.8 68958 25765 

Myxochromide A3 12.9 1009846 319991 

Myxochromide A4 13.6 128337 42760 

Myxochromide AS2 11.9 5448946 1659018 

Myxochromide AS3 12.1 3684638 997237 

Myxochromide AS4 12.7 3746519 925440 

Myxochromide SA2 14.0 34121 13702 

Myxochromide SA3 14.1 450801 153900 

Myxochromide SA4 14.7 59352 23614 

Myxochromide SB2 14.8 49470 17853 

Myxochromide SB3 14.9 178012 56136 

Myxochromide SB4 15.5 639513 206972 

Myxochromide SC2 14.1 69915 31898 

Myxochromide SC3 14.2 137546 50067 

Myxochromide SC4 14.8 551340 186612 

Myxochromide SD2 13.9 n.d.a) 3252 

Myxochromide SD3 14.0 138982 46565 

Myxochromide SD4 14.6 n.d. a) 11506 

a) not determined; signal-to-noise ratio too low 

 

Whilst myxochromides SA2-4, SB2-4 and SC2-4 were produced at approximately 50-70% 

relative to the production of myxochromides A2-4 in the wild type strain, the hybrid 

myxochromides AS2-4 were produced at significantly higher titers (increased production by a 

factor of 10 relative to myxochromide A2-4 production). Consequently, these hybrid mch 

pathways might be efficiently expressed in the host strain since the A-type mch pathway from 

M. xanthus DK1622 is a prominent example for a well-expressed myxobacterial PKS/NRPS 

gene cluster showing relatively high production yields. However, production of the SD-type 

myxochromide family was found to be significantly reduced (<12% relative to myxochromide 

A production levels). Analysis of the codon usage in the D-type mchC gene in correlation to 

the host genome’s codon usage suggested that the D-type mchC gene might be suitably 

expressed in M. xanthus DK1622, although codon usage of this gene is slightly lower adapted 

to the host genome compared to the S-type mchC gene, which was shown to be efficiently 
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expressed as part of the AS-type hybrid mch cluster (data on codon usage analysis not 

shown). This assumption is supported by the fact that the production titer of the synthetic D-

type mch cluster is in the same range as observed for the native A-type mch cluster as well as 

for the synthetic SA-, SB- and SC-type mch clusters described above (production profile not 

shown). Thus, we speculate that the chimeric MchBSD protein consisting of the MchBS 

subunit linked to the C-terminus of the MchBD subunit could potentially somehow influence 

proper protein-protein interactions between the NRPS subunits, thereby affecting the 

efficiency of the SD-type hybrid mch pathway. However, it cannot be excluded that the D-

type MchC subunit is not able to efficiently process the non-native biosynthetic intermediate, 

which is supplied by the upstream MchB subunit or that the D-type mchC gene is not properly 

expressed for other reasons. Interestingly, analysis of the hybrid myxochromide production 

profiles also revealed that the different hybrid mch pathways show significant differences in 

the preference for the polyunsaturated side chain generated by the PKS subunit, although the 

PKS encoding mchA gene from the A-type mch pathway was specifically used for all hybrid 

mch pathways, thereby providing identical pairs of interaction partners (mchAA/mchBA or 

mchAA/mchBS). In addition, the preference for a specific polyketide side chain varies not only 

between the different mutant strains but sometimes also within the same mutant strain when 

changing the culture conditions (e.g. the culture volume as observed for some hybrids when 

upscaling the production for compound isolation). For those reasons, it is not possible to draw 

rational conclusions from this initial cultivation experiment regarding the biosynthetic 

mechanisms which determine the preference for the polyene side chains. To ultimately prove 

the existence of the five novel hybrid myxochromide cores, isolation and structure elucidation 

was carried out for one prioritized derivative of each myxochromide type (Figure 8). 

 

3.3.8 Isolation and Structure Elucidation of Hybrid Myxochromides 

Since the production profiles of the hybrid myxochromides significantly changed in some 

cases regarding the major derivatives as well as the production yields, the native promoter 

was exchanged for the strong constitutive Tn5 promoter, which was recently established in M. 

xanthus,20 in the SA-, SB- and SD-type mch pathways to improve production titers and to 

simplify the isolation of the corresponding hybrid myxochromides. To structurally 

characterize the novel hybrid myxochromides in detail, one representative of each hybrid 

myxochromide type was isolated from the corresponding heterologous production mutant 

strains and their planar structures were solved by NMR spectroscopy. The structure 

elucidation process indeed confirmed five novel lipopeptide scaffolds belonging to the 
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myxochromide family (Figure 8). The underlying hybrid mch biosynthetic machineries are 

obviously capable of directing the biosynthesis of the engineered myxochromides. The 

number and order of the amino acids of the generated peptide cores unambiguously conform 

to the expected and artificially engineered hybrid structures. In comparison to the naturally 

occurring myxochromide lipopeptide cores, single amino acids of the peptide backbones were 

successfully switched at several positions (modules 2/3), thereby creating entirely new 

scaffolds based on the rational recombination of the synthetic mch biosynthetic genes from 

the established gene library. Elucidation of the absolute configuration of the characterized 

hybrid myxochromides also revealed the reason for the incorpation of only L-configured 

amino acids by the native S-type assembly line despite the presence of an epimerization (E) 

domain in module 2, which led to the incorporation of D-configured alanine in case of A-, B-, 

C- and D-type mch pathways.17,21 Whereas the presence of D-alanine in myxochromides A,18 

B,28 C and D correlates with the presence of the epimerase domain in module 2 (E2) of the 

underlying mch biosynthetic machineries, the amino acids in myxochromides S are invariably 

L-configured, although the leucine residue, which is incorporated by module 2, is predicted to 

be D-configured as well. In theory, several assumptions can be made to explain this 

observation: (1) the E2 domains are somehow inactive in the native S-type mch pathways, 

although mutations which were detected might not be critical for exhibiting catalytic 

activity,17,29,30 (2) the E2 domains of the mch pathways are evolutionary adapted to act on 

alanine and the more bulky leucine substrate cannot be converted by the E2 domain due to its 

increased steric hindrance or (3) the downstream condensation domains of modules 3 (C3) in 

the S-type mch pathways, which were predicted to be D-specific for the peptidyl donor and L-

specific for the aminoacyl acceptor (DCL domain),31 are actually L-specific condensation 

domains for both donor and acceptor (LCL domain) and are not able to further process D-

configured peptidyl intermediates.17 
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Figure 8. Chemical structures of novel hybrid myxochromides. Structurally characterized myxochromide 

derivatives are highlighted in bold. Minor derivatives, which were not characterized in detail, were postulated 

based on HPLC-MS analysis. The corresponding assembly lines are shown in Figure 9. 

 

These hypotheses were verified by determination of the absolute configuration of the five 

hybrid myxochromides using Marfey’s method,32 exploiting the non-native combinations of 

A-type E2 domains with S-type C3 domains and vice versa (plus combinations of S-type E2 

domains with B-, C- and D-type C3 domains). In myxochromide AS4, all amino acids were 

found to be L-configured including the alanine residue, which is incorporated by module 2. In 
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contrast, 1:1 ratios of D-leucine/L-leucine were detected in hydrolysates of myxochromides 

SA3, SC4 and SD3, whereas 1:2 ratios of D-leucine/L-leucine were found in the hydrolysate of 

myxochromide SB4 (Supporting Information Chapter 3.4.8). According to the biosynthetic 

logic of the underlying hybrid mch pathways (Figure 9), the detected D-configured leucine 

residues in myxochromides SA3, SB4, SC4 and SD3 must originate from epimerization by the 

obviously active E2 domains of the corresponding modules 2. Consequently, these results 

exclude the hypotheses that the E2 domains of the native S-type mch pathways are inactivated 

by mutations or that the E2 domains cannot exert their catalytic function on the more bulky 

leucine substrate. In fact, the sequence-based models for predicting the specificities of NRPS 

condensation domains (DCL/LCL) seems to be not accurate enough to reliably predict the 

preferences of condensation domains for D- or L-configured peptide intermediates, as the C3 

domains of the S-type mch pathways were obvisously predicted as DCL domains by mistake. 

In conclusion, the E2 domains of all mch pathways are indeed active and are not specific for 

alanine alone. The C3 domains of the downstream modules are the key determinants of the 

observed stereochemistry in both native and hybrid myxochromides, thereby fulfilling their 

role as gatekeepers in the mch megasynthetases. 

 

 

 

 

 

 

 

 

Figure 9. Schematic representation of hybrid myxochromide assembly lines. The coloring of the PKS and NRPS 

subunits corresponds to the biosynthesis products shown in Figure 8. Catalytic domain abbreviations: KS, 

ketosynthase; AT, acyltransferase; DH, dehydratase; ER, enoylreductase; KR, ketoreductase; CP, acyl carrier 

protein (in MchA) or peptidyl carrier protein (in MchB/C); C, condensation domain; A, adenylation domain; 

MT, methyltransferase; E, epimerization domain; TE, thioesterase. Domains marked with an asterisk are 

supposed to be inactive. The corresponding myxochromide structures are shown in Figure 8. 
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3.3.9 PCP Inactivation Experiments to Induce Module-Skipping Events 

To further exploit the tool box given by the established highly flexible assembly strategy, we 

intended to not only recombine mch genes from the different mch pathways but also to 

exchange selected catalytic domains using the unique R-sites within the SEs. We initially 

focused on the NRPS encoding mchC genes from the A-type mch pathway as well as from the 

S-type mch cluster and targeted the ‘module-skipping’ process, which was recently described 

to occur in myxochromide S biosynthesis.21 Based on sequence alignments, it is assumed that 

the observed ‘module-skipping’ process is the result of a mutation (Ser � Pro) in the PCP 

core motif of module 4, which leads to the loss of the catalytically active serine residue, 

thereby inactivating the PCP domain, which cannot be post-translationally modified.33–35 In 

addition, several other mutations were detected in the core motif (GGHSL � GGNPS) in 

comparison with the PCP core motif, which corresponds to the described core motif sequence 

of PCP domains.36 We therefore aimed at answering the question whether it is possible to 

induce ‘module-skipping’ in the A-type mch pathway by mutating PCP domain core motifs in 

a similar way as detected in the S-type mch cluster. By applying this approach to module 4 of 

the A-type mch cluster, a D-type mch pathway might emerge in terms of the activated amino 

acids, which would be incorporated by the corresponding assembly line and can be used to 

mimic evolutionary diversification by turning one mch pathway into another. The opposite 

strategy, the reactivation of module 4 in the S-type mch cluster by using artificial PCP 

domains harboring an active serine residue, would potentially result in an entirely new mch 

pathway responsible for the production of a novel myxochromide scaffold. To achieve this, 

two PCP4 encoding fragments from the A-type pathway were designed, which harbor either 

the same core motif as the S-type PCP4 domain (Figure 10A) or which harbor a Ser � Ala 

mutation as an alternative (Figure 10A). The latter mutation was recently described to 

inactivate or to reduce the flexible motion of PCP domains of NRPS megasynthetases in 

activity-related and structural studies.37,38 In addition, a synthetic PCP4 encoding fragment 

based on the S-type mch pathway was designed in a way that the core motif from the A-type 

mch cluster was reconstituted by applying several mutations and which was assumed to 

restore the activity of the corresponding S-type PCP4 domain (Figure 10B). Mutations were 

rationally introduced at certain positions within the core motif to meet the constructional 

sequence requirements for the gene cluster assemblies, which basically means that the 

generation of R-sites used for pathway assembly and engineering by the exchange of single 

nucleotides needs to be avoided. The synthetic fragments were flanked with SEs, which allow 

the exchange of the PCP domain fragments based on the mch genes from the gene library 

using the unique R-sites and the directed religation of the domain fragments after the 
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‘desplitting’ process by exploiting the unique fusion sites. To further expand the scope of this 

approach, appropriate mutated PCP domain fragments were designed for the other modules of 

the synthetic A-type mch cluster (CP1, CP2, CP3, CP5, CP6) as well. In those cases, only one 

version harboring the described Ser � Ala mutation was designed. By following this strategy, 

we aimed at inducing ‘module-skipping’ at different positions of the synthetic A-type mch 

cluster to verify the hypothesis that ‘module-skipping’ can potentially be induced by point 

mutations, thereby further increasing the chemical diversity of myxochromides. 

 

 

Figure 10. Design of synthetic DNA fragments encoding mutated PCP domains (illustrated as dark gray boxes). 

The core motifs of the artificial PCP domains are particularly highlighted. DNA fragments are flanked with SEs 

harboring unique R-sites for the exchange of domain fragments in the mch genes from the gene library (Rz6/Rz7). 

R-sites are highlighted in red, unique overhangs (fusion sites) in light grey and mutated nucleotides in green 

(referred to the native nucleotide sequences of the corresponding original PCP domains). A: Synthetic PCP4 

domain fragments from the A-type mch pathway harboring either a Ser � Ala mutation (CP4_A_inact1) or the 

S-type derived amino acid mutations (CP4_A_inact2) in the core motif. For comparison, the original PCP4 

domain fragment from the synthetic A-type mch pathway is also shown. B: Synthetic PCP4 domain fragment 

from the S-type mch pathway harboring mutations to reconstitute the core motif observed in the native A-type 

PCP4 domain. For comparison, the original PCP4 domain fragment from the synthetic S-type mch pathway is 

shown. 

The respective modified mch gene constructs were constructed following a three-step cloning 

approach, which is exemplarily shown for a PCP4 exchange in the mchC gene (Figure 11). 

The mutated PCP domain fragments described above were cloned into the artificial mchB 

(pSyn1-MchB_A_SE) and mchC (pSyn1-MchC_A_SE or pSyn1-MchC_S_SE) gene 

constructs harboring the SEs, followed by ‘desplitting’ of these constructs and subsequent 
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Directed religation of domain fragments
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religation of the domain fragments, which resulted in the generation of fully ‘desplitted’ 

constructs complementing the mch gene library. Integration of the modified mch biosynthesis 

genes harboring the described mutations into a synthetic A-type mch cluster, which is under 

the control of the strong, constitutive Tn5 promoter (pSynMch13, constructed by Dr. Fu Yan, 

unpublished) was achieved using the unique R-sites at the 5’ and 3’ ends of the generated 

constructs (Ry1/Ry8 for mchB gene constructs and Rz1/Rz14 for mchC gene constructs).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Strategy to generate synthetic mch gene constructs harboring mutated PCP domains. Synthetic PCP 

domain encoding fragments harboring mutations in the core motif (illustrated as dark grey boxes and marked 

with an asterisk) were cloned into the mch gene constructs from the gene library using the unique R-sites within 

the SEs. ‘Desplitting’ of these constructs using BsaI results in splitter-free mch gene constructs, which can be 

cloned into the mch expression constructs by conventional cloning using the unique R-sites at the 5’ and 3’ ends 

(Rz1/Rz14). 
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A list of the generated mch gene constructs as well as entire expression constructs describing 

their construction is given in Tables S6 and S7 (Supporting Information). Results from the 

Sanger sequencing of the PCP domain encoding regions revealed that the original PCP2 

domain fragment harboring the active GGHSL core motif was still integrated in the pSyn1-

MchB_A_CP2inact1_SE construct. Furthermore, Illumina sequencing results of the entire 

expression constructs indicated a 1 bp deletion in constructs pSynMch20 (harboring the 

MchC_A_CP4inact1 fragment) and pSynMch21 (harboring the MchC_A_CP4inact2 

fragment) causing a frameshift mutation and a 1.2 kb domain fragment duplication in the 

pSynMch22 construct (harboring the MchC_A_CP5inact1 fragment). In the latter case, 

duplication of the C5 condensation domain happened most likely during the ‘desplitting’ 

procedure due to incorrect ligations of non-complementary overhangs. The 1 bp deletion in 

constructs pSynMch20 and pSynMch22 was most likely acquired during the last assembly 

step. The affected expression constructs were thus not considered for heterologous expression 

experiments. After sequence verification, the remaining expression constructs harboring 

inactive PCP domains in modules 1 (pSynMch17), 3 (pSynMch19) and 6 (pSynMch23) of the 

synthetic A-type mch pathway and the reactivated PCP4 domain in module 4 (pSynMch24) of 

the synthetic S-type mch cluster were transformed into the heterologous host M. xanthus 

DK1622 ΔmchA-tet for subsequent heterologous expression of the modified mch cluster 

constructs. Several clones were routinely cultivated and prepared extracts were analyzed for 

the expected myxochromides by HPLC-MS (data not shown). The respective myxochromides 

lacking either N-Me-L-threonine (incorporated by module 1), L-leucine (incorporated by 

module 2) or L-glutamine (incorporated by module 6) compared to the original 

lipohexapaptides myxochromides A were not detected in culture extracts of the mutant 

strains. In these cases, the addressed modules are located at the N-termini (module 1 in MchB 

and module 3 in MchC) as well as at the C-termini (module 6 in MchC) of the NRPS 

subunits, which represent the interfaces between the individual proteins making up the entire 

assembly lines (MchA/MchB and MchB/MchC) or the termination points of the biosynthesis 

respectively (MchC). One can assume that the transfer of biosynthetic intermediates across 

PKS/NRPS subunits (from the PKS (MchA) subunit to module 1 of the first NRPS (MchB) 

subunit and from module 2 of the first NRPS to module 3 of the second NRPS (MchC)) is 

more critical than substrate shuttling between ‘internal’ modules, which are part of one 

distinct subunit. However, mutated PCP domains, which were introduced in the A-type mch 

pathway, only harbor a few mutations exclusively in the core motif, whereas the surrounding 

interdomain linker regions remained unchanged. Thus, direct domain-domain interactions, 
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intermodule communication or even interactions between the Mch subunits might not be 

directly affected when mediated by significant conformational changes. In fact, details on the 

‘module-skipping’ mechanism, e.g. from structural studies, is unfortunately not available thus 

far and the MchC subunit of the S-type mch pathway is currently, to the best of our 

knowledge, the only reported example for a NRPS, for which module-skipping was 

described.18 It is very likely that the biosynthetic intermediate in the native S-type mch 

pathway is transferred from the module 3 PCP domain to the PCP domain of module 5, 

thereby skipping the entire fourth module, as proposed recently.21 This would suggest that the 

PCP3 domain must directly interact with the C5 domain, which represents a noncognate 

domain-domain interaction that needs to be evolutionary arranged. This would have strong 

implications for the engineered hybrid assembly lines, which is discussed below: 

 

Skipping of module 1 in the synthetic A-type mch pathway 

In case the first module in the MchB subunit responsible for the incorporation of N-Me-L-

threonine is skipped, the ACP domain from the PKS subunit must directly interact with the 

donor site of the C2 domain from module 2, which represents a noncognate interaction. 

Sequence analysis of the C domains from mch pathways revealed that all orthologue C2 

domains fall into the class of LCL domains (see Chapter 2), which significantly differ from so-

called starter C domains,31 which initiate NRPS biosynthesis. It can be assumed that the 

interaction of the ACP domain with the downstream starter C1 domain is highly specific and 

the noncognate ACP-C2 interaction is thus not facilitated in the engineered PKS/NRPS 

assembly line, which would explain abolishment of myxochromide production. The crucial 

role of tightly synchronized interactions between an ACP domain and a downstream starter C 

domain and the high specificity of the C domain for the incoming acyl intermediate from in 

trans acting PKS machineries has been recently described in the biosynthesis of the 

lipopeptide antibiotic CDA.39 Furthermore, in the myxochromide A lipohexapeptide core, the 

N-Me-L-threonine moiety is connected over its side chain hydroxyl group with the carboxyl 

group of the L-glutamine residue to form the cyclic depsipeptide structure.18 From a 

(bio)chemical point of view, it is rather unlikely that the TE domain of the termination 

module responsible for the cyclization reaction is able to cyclize the linear lipopeptide without 

the N-Me-L-threonine moiety in a similar manner, which could potentially affect proper 

termination of the biosynthesis. It is more likely that the linear peptide intermediate is 

hydrolyzed and thus cleaved off the assembly line (spontaneous hydrolysis or catalyzed by the 
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TE domain), which may reduce the production yield significantly. Unfortunately, such linear 

biosynthetic intermediates were not detected in culture extracts. 

 

Skipping of module 3 in the synthetic A-type mch pathway 

Similarly, skipping of module 3 in the MchC subunit would result in a noncognate interaction 

between the PCP2 domain and the donor site of the downstream C4 domain. According to the 

phylogenetic C domain sequence analysis (see Chapter 2),31 the C4 domain was predicted to 

be a LCL domain, whereas the E domain of module 2 provides a racemic mixture of the 

biosynthetic intermediate N-Me-L-Thr-(D/L)-Ala. Consequently, the C4 (LCL) domain might 

choose the L-configured intermediate, but is most likely not able to further process non-native 

dipeptide intermediate. Furthermore, it is not clear how the transfer of biosynthetic building 

blocks is mechanistically realized across individual NRPS subunits communicating via 

specific com-domains,40 which may additionally be problematic if the first module at the N-

terminus is skipped. As already mentioned above, proper termination of the biosynthesis via 

cyclization of the mature peptide could be impaired as the TE domain is possibly not able 

exert its function on the non-native intermediate. This might lead to hydrolysis of the 

biosynthetic intermediate, but linear peptide precursors were not detected in culture extracts. 

 

Skipping of module 6 in the synthetic A-type mch pathway 

The termination module of the A-type mch pathway harbors a thioesterase (TE) domain, 

which catalyzes the cyclization of the linear lipopeptide, thereby releasing the final product 

from the assembly line. It was shown that extensive domain-domain interactions between PCP 

and TE domains are crucial for the proper synchronization of this final step of the NRP 

biosynthesis.41–43 Recent structural studies on the surfactin termination module suggested that 

tremendous conformational rearrangements are necessary to guide the PCP-bound peptide 

intermediate to the adjacent TE domain due to long distances between these domains.38 In the 

case of the inactive module 6 in the engineered A-type mch pathway, it is assumed that the 

PCP5 domain, which is even more spatially separated from the downstream TE6 domain, is 

not able to interact with the TE6 acceptor site making the engineered assembly line unable to 

produce the expected lipopentapeptide core. If the noncognate PCP5-TE6 interaction is not 

functional in the engineered assembly line, the linear lipopentapeptide would most likely be 

hydrolyzed from the NRPS. However, linear biosynthetic intermediates were not found in 

culture extracts. In addition, the important role of native PCP-TE interactions is underpinned 

by the module deletion event, which was observed in the native C-type mch pathway (see 



179     Synthetic Biotechnology to Engineer Myxobacterial Lipopeptide Biosynthesis 
 

Chapter 2).17 The A5-PCP5-C6 unit was deleted in the course of pathway diversification rather 

than the C5-A5-PCP5 module, thereby conserving the cognate PCP6-TE6 and native PCP4-C5 

interaction.  

 

Reactivation of module 4 in the synthetic S-type mch pathway 

Surprisingly, the installation of a synthetic S-type PCP4 domain harboring the restored 

GGHSL core motif in the synthetic S-type mch pathway did not lead to the production of a 

novel lipohexapeptide core. In addition, module 4 is obviously not skipped in this engineered 

pathway as myxochromide S biosynthesis products were not detected as well. This 

unexpected result only allows highly speculative conclusions about the functionality of the 

underlying assembly line due to the lack of mechanistic and structural insights. A vague 

hypothesis could be that the native S-type mch assembly line undergoes significant structural 

changes or domain rearrangements to allow the lipopeptide intermediate to get transferred 

from module 3 to module 5, thereby skipping module 4. The Ser � Pro mutation may play an 

important role in stabilizing this conformation in conjunction with additional mutations in the 

interdomain and intermodule linkers around module 4. To re-verify the reactivation of this 

module, new mutant strains should be obtained and analyzed to exclude unexpected 

phenotypic characteristics, which could also be responsible for this observation. 

 

Overall, induction of module skipping by applying point mutations to PCP domains does not 

seem to be a tool that can be generally used in NRPS engineering. Several key factors might 

play a role in the ‘module-skipping’ process observed in myxochromide S biosynthesis,21 

including e.g. mutational changes in the surrounding linker regions of the PCP4 domain and/or 

a specific function of the proline residue in the PCP4 core motif. As codon usage analysis 

indicated that the region around modules 3 and 4 (A3-PCP3-C4-A4-PCP4) is particularly less 

adapted (see Chapter 2) and thus a hotspot for mutational activity,17 it is likely that structural 

changes of the encoded native S-type mch assembly line took place in this region, thereby 

enabling the megasynthetase to skip an entire module. However, as neither linear biosynthetic 

intermediates nor complete myxochromide derivatives were detected in extracts of the 

heterologous mutants, it has to be further analyzed whether ‘module-skipping’ indeed takes 

place in the engineered mch clusters. 
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3.3.10 Significance 

In conclusion, the establishment of synthetic DNA platforms based on a dedicated gene 

library enables an unprecedented high degree of flexibility towards the engineering of 

artificial biosynthetic gene clusters. By following the predefined constructional and functional 

sequence requirements, it is possible to design and exchange any gene cluster fragment of 

interest ranging from domains, modules and entire subunits to other functional building 

blocks for specific engineering efforts based on the described innovative DNA assembly 

strategy including the ‘desplitting’ approach. In conjunction with the detailed sequence 

analysis of evolutionary related pathways, the established platforms allow for the 

recombination of PKS/NRPS subunits to generate non-native hybrid pathways on a rational 

basis for subsequent functional expression and hybrid compound production in a selected 

heterologous host strain. This approach led to the identification of five novel ‘unnatural’ 

myxochromide peptide scaffolds, thereby further increasing the structural diversity of this 

compound class. Moreover, chemical characterization of novel hybrid metabolites can 

provide deep insights into the biosynthetic mechanisms and allows straightforward 

experimental verification of biosynthetic hypotheses based on in silico predictions. Here, the 

role of the condensation domain as a gatekeeper for stereospecific processing of biosynthetic 

intermediates has been successfully illuminated and gave rational explanations for the 

observed stereochemistry also in the native lipopeptide cores, which could not deduced from 

in silico analyses of the native mch pathways. In this study, we demonstrated how synthetic 

biology approaches essentially contribute to the rational engineering and elucidation of 

microbial natural product biosynthesis pathways. Our strategy can generally be applied to any 

desired biosynthetic gene cluster in order to alter product structures or to improve production 

yields on a broad scale, which might also be of interest for the development of natural product 

derived drugs with improved pharmacological properties driven by structure-activity 

relationship studies. It also sets the stage for future initiatives aiming at understanding the 

general principles of the sequence modulation process for the design of improved complex 

biosynthetic gene clusters. 
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3.3.11 Experimental Procedures 

3.3.11.1 Sequence Analysis and Design 

The mch clusters from strains Myxococcus xanthus DK1622 (A-type), Myxococcus sp. 171 

(B-type), Myxococcus virescens ST200611 (C-type), Stigmatella erecta Pde77 (D-type) and 

Stigmatella aurantiaca DW4/3-1 (S-type) were extensively analyzed in silico to meet the 

demands for the construction of a gene library as well as entire gene cluster constructs and for 

engineering of artificial mch pathways. To ensure the directed assembly of mch cluster 

constructs by conventional restriction/ligation cloning, six restriction enzyme sites were 

engineered within the coding sequence at the 5’ and 3’ ends of the biosynthesis genes mchA, 

mchB and mchC by point mutations (Supporting Information Table S5). A set of 19 restriction 

enzymes were further selected for the ‘desplitting’ procedure as well as for pathway 

engineering to allow for module and domain swaps, and the corresponding recognition 

sequences were eliminated along the whole gene cluster sequences by silent mutations as well 

(Supporting Information Table S2). Comparative sequence analysis of the mch clusters listed 

in Table S1 was carried out by using the Geneious alignment tool integrated into Geneious 

software version 9.1.2,44 to identify suitable positions for the SEs. Based on these sequence 

alignments, 4 bp fusion sites were selected and designed to be unique within all mch genes 

and between each domain fragment to enable the Golden Gate-based generation of a mch 

gene library using the type IIS restriction enzyme BsaI. SE sequences harboring the pre-

defined recognition sequences of conventional type II enzymes are summarized in Table S3 

(Supporting Information). 

 

3.3.11.2 De Novo Gene Synthesis of Artificial Gene Cluster Fragments and Synthetic 

Vectors 

The artificial gene cluster fragments needed for the assembly of entire synthetic mch 

pathways were designed as described in chapter 3.3.3 and were generated via DNA synthesis 

(ATG Biosynthetics GmbH, Merzhausen). The > 30 kb mch pathways were split into seven 

synthetic building blocks. Additionally, biosynthesis genes (6 up to 16 kb) were subdivided 

into two to four fragments (2.1-5.9 kb). In addition to the mchA-C gene fragments, artificial 

sequences were synthesized, which contain the promoter (native promotor from A-type 

pathway and synthetic Tn5 promoter), intergenic linkers (3mchA-5mchB and 3mchB-5mchC) 

as well as terminator (including the mchD gene and the downstream helicase gene rhlE) 

sequences. Since the domain organization of the MchA subunits appears to be basically 

identical in mch pathways, only the mchA gene of the A-type mch cluster was synthesized and 
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used for the assembly of all artificial mch cluster constructs described in this study. 

Furthermore, the MchB subunits from the A-, B-, C- and D-type assembly lines are identical 

in terms of domain arrangement and amino acid substrate selection (but different from the S-

type MchB). Thus, a synthetic version of the A-type mchB gene was also used for the 

construction of B-, C- and D-type pathways. Due to various recombination events and the 

resulting differences in the mchC genes of the mch clusters, synthetic mchC fragments from 

all mch pathways (including the corresponding terminator fragments) were designed. The 

fragments generated by DNA synthesis were additionally flanked by unique R-sites to allow 

for the subcloning of individual fragments or assembled genes into the cloning vector 

pSynbio1. The vector backbones pSynbio1 and pSynbio2 were provided as circularized 

vectors by the gene synthesis company. The synthetic constructs used in this study are listed 

in Table S4 (Supporting Information). The constructs were delivered in a standard cloning 

vector (pGH or pUC57) harboring an ampicillin resistance gene. Genetic features of the 

cloning and expression vectors are illustrated in Figures S1-S2 (Supporting Information). 

 

3.3.11.3 Microbial Strains and Culture Conditions 

Escherichia coli strains (HS996 or DH10β) were routinely grown in LB medium (1% 

tryptone, 0.5% yeast extract, 0.5% NaCl) at 30 or 37°C overnight. For myxochromide 

production analysis, Myxococcus xanthus DK1622 wildtype strain,21 the myxochromide A-

deficient mutant strain M. xanthus DK1622 ΔmchA-tet (Wenzel et al., unpublished) and its 

heterologous expression mutants (harboring artificial mch clusters) were routinely grown in 

300 mL shaking flasks on a 50 mL scale in CTT medium (casitone 1%, Tris-HCl [pH 8.0] 10 

mM, K2HPO4/KH2PO4 buffer [pH 7.6] 1 mM, MgSO4 × 7 H2O 8 mM, pH adjusted to 7.6) at 

30°C and 180 rpm for 4-5 days. For the isolation of hybrid myxochromides, fermentations on 

a 1 L scale were performed under the same conditions in 5L shaking flasks.  Cultures were 

amended with antibiotics if necessary in the following final concentrations: ampicillin 100 

µg/mL, kanamycin 50 µg/mL, oxytetracycline 10 µg/mL. 

 

3.3.11.4 DNA Isolation, Processing and Analysis 

Enzymes used in this study were purchased from Fermentas. Oligonucleotides used in 

polymerase chain reactions (PCR) were obtained from Sigma. DNA was extracted and 

purified from E. coli strains by using a standard alkaline lysis protocol,45 or by using the 

GeneJET Plasmid Miniprep Kit from Thermo Fisher Scientific. For standard cloning 

procedures, plasmid DNA, which was hydrolyzed for subsequent ligation into an acceptor 
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vector, was separated by agarose gel electrophoresis and cleaved DNA fragments were 

purified from the agarose gel by using the peqGOLD Gel Extraction Kit from PeqLab. 

Acceptor DNA was further dephosphorylated using the shrimp alkaline phosphatase from 

Fermentas. Ligations were carried out using the T4 ligase from Fermentas. Ligations were 

routinely dialyzed using MF-nitrocellulose membranes (0.025 µm) from Merck Millipore 

prior to transformation via electroporation in either E. coli or M. xanthus host strains. 

‘Desplitting’ reactions were purified by applying the QIAquick PCR Purification Kit from 

Qiagen with a cut-off of 100 bp in order to remove the released SEs. PCRs were performed 

using the PCR machine Mastercycler pro from Eppendorf. All methods were performed 

according to the manufacturers or to standard protocols.45 For details regarding the cloning 

vectors, constructed plasmids, expression constructs and applied PCR conditions see 

Supporting Information. 

 

3.3.11.5 Heterologous Expression of Artificial mch Pathways in M. xanthus  

The mch expression constructs were transformed into M. xanthus DK1622 ΔmchA-tet 

(Wenzel et al., unpublished) via electroporation using established standard protocols.20 

Mutants resistant to kanamycin were selected and further analyzed for correct integration of 

the mch pathways into the former mchA gene cluster locus in M. xanthus DK1622 ΔmchA-tet 

via single crossover. To isolate chromosomal DNA, cells from a CTT agar plate were re-

suspended in 100 µL water and heated at 100°C for 10 min. 1 µL of this mixture was used as 

template for PCR. Detailed information on applied PCR conditions and used oligonucleotides 

is given in the Supporting Information (Figure S4, Tables S10 and S11). 

 

3.3.11.6 Myxochromide Production Analysis 

Myxochromide production analysis in the heterologous production strains was carried out on 

a 50 mL scale under routine cultivation conditions. Cells and Amberlite XAD-16 adsorber 

resin were harvested by centrifugation at 8,000 rpm and 4 °C for 10 min and subsequently 

extracted twice with 50 mL of a mixture of methanol and acetone (1:1). The extracts were 

evaporated to dryness, dissolved in methanol and subjected to HPLC-MS analysis using a 

Dionex Ultimate 3000 RSLC system coupled to a Bruker maXis 4G TOF mass spectrometer. 

Separation was performed using a Waters BEH C18, 100 × 2.1 mm, 1.7 µm dp column. At a 

flow rate of 0.6 mL/min, the following gradient was applied (A: deionized water + 0.1% 

formic acid, B: acetonitrile + 0.1% formic acid): 0-0.5 min 5% B, 0.5-18.5 min 5-95% B, 
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18.5-20.5 min 95% B. Full scan mass spectra were acquired in positive ESI mode in a range 

from 150-2500 m/z. 

 

3.3.11.7 Isolation and Structure Elucidation of Engineered Hybrid Myxochromides 

Selected representatives of the engineered hybrid myxochromides (AS-type, SA-type, SB-

type, SC-type, and SD type) were isolated from culture extracts of the heterologous 

production strains via semi-preparative reversed-phase HPLC. The planar structures were 

elucidated based on 1D (1H) and 2D (1H−1H COSY, HSQC, HMBC, and ROESY) NMR 

spectroscopy as well as HR-ESI-MS data. The absolute configuration of the amino acid 

residues was determined by HPLC-MS analysis of the L- and D-FDLA (1-fluoro-2,4- 

dinitrophenyl-5-L-/D-leucinamide) derivatives of the acid hydrolysate of myxochromides in 

comparison with corresponding derivatives of L-configured amino acid standards (Marfey’s 

method).32 The following myxochromide derivatives were purified and structurally 

characterized: 

 

Myxochromide AS4 (1c). A total of 4.5 mg of 1c was isolated from a 18 L culture (18x 1L) of 

Myxococcus xanthus DK1622 ΔmchA-tet::pSynMch8. The molecular formula was established 

to be C38H52N6O8 (m/z 721.39373 [M + H]+). NMR spectra and selected correlations are 

illustrated in Supporting Information Figures S5 and S6, and HPLC-MS analysis of L- and D-

FDLA derivatives from the 1c hydrolysate is shown in Supporting Information Figure S7. For 

details, see Supporting Information. 

Myxochromide SA3 (2b). A total of 7.2 mg of 2b was isolated from a 9 L culture (9x 1L) of 

Myxococcus xanthus DK1622 ΔmchA-tet::pSynMch14. The molecular formula was 

established to be C48H69N7O9 (m/z 888.52409 [M + H]+). NMR spectra and selected 

correlations are illustrated in Supporting Information Figures S8 and S9, and HPLC-MS 

analysis of L- and D-FDLA derivatives from the 2b hydrolysate is shown in Supporting 

Information Figure S10. For details, see Supporting Information. 

Myxochromide SB4 (3c). A total of 7.5 mg of 3c was isolated from a 9 L culture (9x 1L) of 

Myxococcus xanthus DK1622 ΔmchA-tet::pSynMch15. The molecular formula was 

established to be C54H80N8O10 (m/z 1015.62390 [M + H]+). NMR spectra and selected 

correlations are illustrated in Supporting Information Figures S11 and S12, and HPLC-MS 

analysis of L- and D-FDLA derivatives from the 3c hydrolysate is shown in Supporting 

Information Figure S13. For details, see Supporting Information. 
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Myxochromide SC4 (4c). A total of 0.5 mg of 4c was isolated from a 18 L culture (18x 1L) of 

Myxococcus xanthus DK1622 ΔmchA-tet::pSynMch11. The molecular formula was 

established to be C46H66N6O8 (m/z 831.50222 [M + H]+). NMR spectra and selected 

correlations are illustrated in Supporting Information Figures S14 and S15, and HPLC-MS 

analysis of L- and D-FDLA derivatives from the 4c hydrolysate is shown in Supporting 

Information Figure S16. For details, see Supporting Information. 

Myxochromide SD3 (5b). A total of 0.7 mg of 5b was isolated from a 9 L culture (9x 1L) of 

Myxococcus xanthus DK1622 ΔmchA-tet::pSynMch16. The molecular formula was 

established to be C44H64N6O8 (m/z 791.47051 [M + H]+). NMR spectra and selected 

correlations are illustrated in Supporting Information Figures S17 and S18, and HPLC-MS 

analysis of L- and D-FDLA derivatives from the 5b hydrolysate is shown in Supporting 

Information Figure S19. For details, see Supporting Information. 
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3.4 Supporting Information 

3.4.1 Constructional Sequence Design of mch Clusters 

Synthetic DNA platforms for the production of novel myxochromide peptide scaffolds were 

created based on the native mch pathways, which were characterized in detail in Chapter 2.17 

The artificial mch cluster sequences were adapted to the highly flexible assembly strategy 

based on type IIS restriction enzymes developed in this work. Native mch clusters, which 

were subjected to the constructional sequence design process, are shown in Table S1.  

Table S1: Overview on myxochromide biosynthetic gene clusters (mch clusters) which were subjected to the 

gene design process in this study. 

 

Producer strain Strain abbrev. Cluster 
GenBank  
Accession[a] 

Myxococcus xanthus DK1622 Mx1 A-type [b] KX622595 

Myxococcus sp. 171 [c] M1 B-type [d] KX622591 

Myxococcus virescens ST200611 Mv1 C-type [e] KX622594 

Stigmatella erecta Pde77 Se1 D-subtype 1 [f] KX622602 

Stigmatella aurantiaca DW4/3-1 Sa1 S-type [g] KX622599 

    

[a] Annotated cluster files were additionally deposited in the MiBIG database. [b] Characterized in previous 

study.18 [c] Unclassified strain belonging to the genus Myxococcus. [d] Characterized in Chapter 2.17 [e] 

Characterized in Chapter 2.17 [f] Characterized in Chapter 2.17 [g] Characterized in previous study.21 

 

To allow for the interchangeability of modules or even single domains, splitter elements (SE) 

were introduced between each domain of the biosynthesis genes mchA-C. The SE are 

composed of type IIS R-sites (AarI/BsaI) at both sites and harbor an additional spacer 

sequence in-between, which displays the recognition sequence of a type II restriction enzyme 

suitable for domain and module swaps or for the introduction of additional cluster fragments. 

The 4 bp overhangs, which are generated by hydrolysis with AarI/BsaI, are selected and 

designed to be unique between each domain fragment along the whole cluster sequence, and 

can thus be used as unique fusion sites to allow for a directed reassembly of the biosynthesis 

genes. Selected type II restriction enzymes are listed in Table S2. Sequences of designed SE 

are shown in Table S3. Locations of the unique fusion sites are summarized in Table S4. 

Locations of unique R-sites, which were engineered in the coding sequence (CDS) at the 5’ 

and 3’ ends of each mch gene fragment, are shown in Table S5. 
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Table S2: Restriction enzyme sites used for pathway assembly and engineering. To allow for the assembly and 

interchangeability of mch cluster parts, the recognition sequences of 6 type II restriction enzymes were 

introduced into the coding sequence of mch genes (highlighted in red) and recognition sequences of another 19 

restriction enzymes were eliminated from the CDS sequences. 

 

Restriction enzyme Recognition sequence Function 

AarI 
CACCTGC 
GTGGACG 

RIIS 

AflII (BspTI) 
CTTAAG 
GAATTC 

Rx5, Ry6, Rz7 

AgeI 
ACCGGT 
TGGCCA 

Rz14 

AseI (VspI) 
ATTAAT 
TAATTA 

Rz9 

AsiSI (SfaAI) 
GCGATCGC 
CGCTAGCG 

Rx3, Ry3, Rz3 

AvrII (XmaJI) 
CCTAGG 
GGATCC 

Ry7, Rz11 

BamHI 
GGATCC 
CCTAGG 

Rz10 

BsaI 
GGTCTC 
CCAGAG 

RIIS 

BsiWI 
CGTACG 
GCATGC 

Rx1 

DraI 
TTTAAA 
AAATTT 

Destruction of cloning 
vector backbone 

EcoRI 
GAATTC 
CTTAAG 

Rz4 

HindIII 
AAGCTT 
TTCGAA 

Rz12 

KpnI 
GGTACC 
CCATGG 

RL 

MfeI (MunI) 
CAATTG 
GTTAAC 

Rz6 

MluI 
ACGCGT 
TGCGCA 

Ry1, Rz15 

MreI 
CGCCGGCG 
GCGGCCGC 

Rx6, Rz17 

NdeI 
CATATG 
GTATAC 

Rx4, Ry2, Rz5 

NheI 
GCTAGC 
CGATCG 

Rz13 

NotI 
GCGGCCGC 
CGCCGGCG 

Ry8, Rz16 

PacI 
TTAATTAA 
AATTAATT 

Vector backbone 
modification 

PmeI (MssI) 
GTTTAAAC 
CAAATTTG 

Vector backbone 
modification 

PvuI 
CGATCG 
GCTAGC 

RR 

SpeI (BcuI) 
ACTAGT 
TGATCA 

Rx2, Ry5, Rz2 

SphI 
GCATGC 
CGTACG 

Rz1 

SwaI (SmiI) 
ATTTAAAT 
TAAATTTA 

Vector backbone 
modification 

XbaI 
TCTAGA 
AGATCT 

Rx6, Ry4, Rz8 
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Table S3. Artificial splitter element (SE) sequences of mch genes derived from A-, B-, C-, D- and S-type mch 

clusters based on the BsaI design. SEs were introduced between each domain fragment of the mch genes (except 

between the KR and ACP domain of mchA). For the mchA gene, only the PKS CDS sequence from the A-type 

producer strain (Mx1) was subjected to the sequence design. For the mchB gene, only the NRPS CDS sequences 

from the A-, D- and S-type producer strains (Mx1, Se1, Sa1) were subjected to the sequence design. Unique 

fusion sites are highlighted in light gray, the BsaI recognition sequence in red, and the unique R-sites within the 

SEs in black. The spacer nucleotide which is skipped by the type IIS restriction enzyme is shown in dark grey. 

 

Linker region Splitter element sequence (including fusion sites) 

 
Function 

mchA (A-type) 

N-Term NA-GGTCTCCGCAA-KS BsiWI 

KS-AT KS-CACCTGAGACCACTAGTGGTCTCCCACC-AT SpeI 

AT-DH AT-GGCAGGAGACCGCGATCGCGGTCTCTGGCA-DH AsiSI 

DH-ER DH-ACGGAGAGACCCATATGGGTCTCGACGG-ER NdeI 

ER-KR/ACP ER-CGTTCGAGACCCTTAAGGGTCTCTCGTT-KR/ACP AflII 

C-Term KR/ACP-ATCGCGAGACC-CA MreI 

mchB (A-, D- and S-type) 

N-Term NB-GGTCTCCTTCG-C1 MluI 

C1-A1 C1-GCGCCGAGACCCATATGGGTCTCCGCGC-A1 NdeI 

A1-CP1 A1-CGCGGGAGACCGCGATCGCGGTCTCTCGCG-CP1 AsiSI 

CP1-C2 CP1-AGCGAGAGACCTCTAGAGGTCTCGAGCG-C2 XbaI 

C2-A2 C2-CAGCCGAGACCACTAGTGGTCTCGCAGC-A2 SpeI 

A2-CP2 A2-GAAGTGAGACCCTTAAGGGTCTCCGAAG-CP2 AflII 

CP2-E2 CP2-GCAGGGAGACCCCTAGGGGTCTCTGCAG-E2 AvrII 

C-Term E2-TCCCCGAGACC-CB NotI 

mchC (A-, D- and S-type) 

N-Term NC-GGTCTCTAGCA–C3 SphI 

C3-A3 C3-GAGCCGAGACCACTAGTGGTCTCGGAGC-A3 SpeI 

A3-CP3 A3-GGAGCGAGACCGCGATCGCGGTCTCGGGAG-CP3 AsiSI 

CP3-C4 CP3-GGACTGAGACCGAATTCGGTCTCCGGAC-C4 EcoRI 

C4-A4 C4-ACACCGAGACCCATATGGGTCTCTACAC-A4 NdeI 

A4-CP4 A4-CCGCAGAGACCCAATTGGGTCTCTCCGC-CP4 MfeI 

CP4-C5 CP4-CGAGCGAGACCCTTAAGGGTCTCTCGAG-C5 AflII 

C5-A5 C5-CGGACGAGACCTCTAGAGGTCTCTCGGA-A5 XbaI 

A5-CP5 A5-TGGAGGAGACCATTAATGGTCTCATGGA-CP5 AseI 

CP5-C6 CP5-CGCCAGAGACCGGATCCGGTCTCACGCC-C6 BamHI 

C6-A6 C6-CGACCGAGACCCCTAGGGGTCTCACGAC-A6 AvrII 
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A6-CP6 A6-GCGATGAGACCAAGCTTGGTCTCCGCGA-CP6 HindIII 

CP6-TE CP6-CGCTGGAGACCGCTAGCGGTCTCTCGCT-TE NheI 

C-Term TE-GCTCCGAGACC-CC AgeI 

mchC (B-type) 

N-Term NC-GGTCTCTAGCA–C3 SphI 

C3-A3 C3-GAGCCGAGACCACTAGTGGTCTCGGAGC-A3 SpeI 

A3-CP3 A3-GGAGCGAGACCGCGATCGCGGTCTCGGGAG-CP3 AsiSI 

CP3-C4 CP3-GGACTGAGACCGAATTCGGTCTCCGGAC-C4 EcoRI 

C4-A4 C4-ACCTCGAGACCACGCGTGGTCTCGACCT-A4 MluI 

A4-CP4 A4-TCGCCGAGACCGCGGCCGCGGTCTCGTCGC-CP4 NotI 

CP4-C5 CP4-TCTCCGAGACCCGCCGGCGGGTCTCGTCTC-C5 MreI 

C5-A5 C5-ACACCGAGACCCATATGGGTCTCTACAC-A5 NdeI 

A5-CP5 A5-CCGCAGAGACCCAATTGGGTCTCTCCGC-CP5 MfeI 

CP5-C6 CP5-CGAGCGAGACCCTTAAGGGTCTCTCGAG-C6 AflII 

C6-A6 C6-CGGACGAGACCTCTAGAGGTCTCTCGGA-A6 XbaI 

A6-CP6 A6-TGGAGGAGACCATTAATGGTCTCATGGA-CP6 AseI 

CP6-C7 CP6-CGCCAGAGACCGGATCCGGTCTCACGCC-C7 BamHI 

C7-A7 C7-CGACCGAGACCCCTAGGGGTCTCACGAC-A7 AvrII 

A7-CP7 A7-GCGATGAGACCAAGCTTGGTCTCCGCGA-CP7 HindIII 

CP7-TE CP7-CGCTGGAGACCGCTAGCGGTCTCTCGCT-TE NheI 

C-Term TE-GCTCCGAGACC-CC AgeI 

mchC (C-type) 

N-Term NC-GGTCTCTAGCA–C3 SphI 

C3-A3 C3-GAGCCGAGACCACTAGTGGTCTCGGAGC-A3 SpeI 

A3-CP3 A3-GGAGCGAGACCGCGATCGCGGTCTCGGGAG-CP3 AsiSI 

CP3-C4 CP3-GGACTGAGACCGAATTCGGTCTCCGGAC-C4 EcoRI 

C4-A4 C4-ACACCGAGACCCATATGGGTCTCTACAC-A4 NdeI 

A4-CP4 A4-CCGCAGAGACCCAATTGGGTCTCTCCGC-T4 MfeI 

CP4-C5 CP4-CGAGCGAGACCCTTAAGGGTCTCTCGAG-C5 AflII 

C5-A6 C5-CGGACGAGACCTCTAGAGGTCTCTCGGA-A6 XbaI 

A6-CP6 A6-GCGATGAGACCAAGCTTGGTCTCCGCGA-CP6 HindIII 

CP6-TE CP6-CGCTGGAGACCGCTAGCGGTCTCTCGCT-C6 NheI 

C-Term TE-GCTCCGAGACC-CC AgeI 
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Table S4. Locations of selected/designed unique fusion sites between the domains of mch genes derived from A-

, B-, C-, D- and S-type mch clusters based on the BsaI design. Locations are referring to the individual mch 

genes retrieved from the GenBank mch cluster entries. Unique fusion sites were designed between each domain 

fragment of the mch genes (except between the KR and CP domain of mchA). For the mchA gene, only the PKS 

CDS sequence from the A-type producer strain (Mx1) was subjected to the sequence design. For the mchB gene, 

only the NRPS CDS sequences from the A-, D- and S-type producer strains (Mx1, Se1, Sa1) were subjected to 

the sequence design. Unique fusion sites are highlighted in gray. Mutated nucleotides/amino acids are shown in 

italics. 

 

Linker Fusion site 
Location 

(within gene) 
Relevant Codons 

Amino 

acids 

mchA (A-type)[1] 

N-Term R5A GCAA 191 – 194  GGC AAG ACG G K T 

KS-AT Rx2 CACC 1498 – 1501  GAG CAC CGG E H R 

AT-DH Rx3 GGCA 2645 – 2648  TGG CAG CGT W Q R 

DH-ER Rx4 ACGG 4295 – 4298  CTC GAC GGC L D G 

ER-

KR/ACP 

Rx5 CGTT 5186 – 5189  CTG ACG TTC L T F 

C-Term R3A ATCG 6361 – 6364  GAA ATC GAG E I E 

mchB (A-type)[1] 

N-Term R5B TTCG 232 – 235  TTC GGA ATG F G L 

C1-A1 Ry2 GCGC 1304 – 1307  CGG GGC GCC R G A 

A1-CP1 Ry3 CGCG 4282 – 4285  CGG CGC GCC R R A 

CP1-C2 Ry4 AGCG 4604 – 4607  ATG GAG CGC M E R 

C2-A2 Ry5 CAGC 5826 – 5829  TTC AGC GCG F S A 

A2-CP2 Ry6 GAAG 7437 - 7440 AAG AAG CTT K K L 

CP2-E2 Ry7 GCAG 7739 – 7742  GGC AGC GCG G S A 

C-Term R3B TCCC 9080 – 9083  GAC TTC CCG D F P 

mchB (D-type)[2] 

N-Term R5B TTCG 232 – 235  TTC GAG ATA F E I 

C1-A1 Ry2 GCGC 1304 – 1307  CGC GGC GCG R G A 

A1-CP1 Ry3 CGCG 4312 – 4315  CGG CGC GCC 

(CGG CGA GCC) 

R R A 

(R R A) 

CP1-C2 Ry4 AGCG 4634 – 4637  ATG GAG CGG M E R 

C2-A2 Ry5 CAGC 5856 – 5859  TAC AGC GCG Y S A 

A2-CP2 Ry6 GAAG 7467 – 7470  AAG AAG CTG K K L 

CP2-E2 Ry7 GCAG 7769 – 7772  ACG GGC AGT 

(ACG GGG AGT) 

T G S 

(T G S) 

C-Term R3B TCCC 9107 – 9110  GAC TTC CCA D F P 

mchB (S-type)[3] 

N-Term R5B TTCG 232 – 235  TTC GAG ATG F E M 
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C1-A1 Ry2 GCGC 1304 – 1307  CGC GGC GCG R G A 

A1-CP1 Ry3 CGCG 4312 – 4315  CGG CGC GCG R R A 

CP1-C2 Ry4 AGCG 4634 – 4637  ATG GAG CGG M E R 

C2-A2 Ry5 CAGC 5856 – 5859  TAC AGC GCG Y S A 

A2-CP2 Ry6 GAAG 7467 – 7470  AAG AAG CTC K K L 

CP2-E2 Ry7 GCAG 7769 – 7772  ACG GGC AGC T G S 

C-Term R3B TCCC 9107 – 9110 GAT TTC CCA D F P 

mchC (A-type)[1] 

N-Term R5C AGCA 50 – 53  CAG CAC GGC Q H G 

C3-A3 Rz2 GAGC 1240 – 1243  GCG GAG CGC A E R 

A3-CP3 Rz3 GGAG 2853 – 2856  CTG GAG GCC L E A 

CP3-C4 Rz4 GGAC 3147 – 3150  GGG GAC ACG 

(GGA GAC ACG) 

G D T 

(G D T) 

C4-A4 Rz5 ACAC 4325 – 4328  GAC ACG GAC D T D 

A4-CP4 Rz6 CCGC 5960 – 5963  CCC GCC CCC P A P 

CP4-C5 Rz7 CGAG 6270 – 6273  CCC GAG GGC P E G 

C5-A5 Rz8 CGGA 7469 – 7472  ACG GAC CTC T D L 

A5-CP5 Rz9 TGGA 9083 – 9086  GTG GAC AAG V D K 

CP5-C6 Rz10 CGCC 9400 – 9403  GTC CGC CTG 

(GTC CGA CTG) 

V R L 

(V R L) 

C6-A6 Rz11 CGAC 10605 – 10608  CGC GAC CTC R D L 

A6-CP6 Rz12 GCGA 12235 – 12238  AGC GCG ATG S A M 

CP6-TE Rz13 CGCT 12527 – 12530  CCG CTC ACC P L T 

C-Term R3C GCTC 13227 – 13230  GCG GCG CTC A A L 

mchC (B-type)[4] 

N-Term R5C AGCA 50 – 53  CAG CAC GGC Q H G 

C3-A3 Rz2 GAGC 1240 – 1243  GCG GAG CGC A E R 

A3-CP3 Rz3 GGAG 2853 – 2856  CTG GAG GCC L E A 

CP3-C4 Rz4 GGAC 3147 – 3150  GGG GAC ACG 

(GGA GAC ACG) 

G D T 

(G D T) 

C4-A4 Rz15 ACCT 4414 – 4417  CAA ACC TCC Q T S 

A4-CP4 Rz16 TCGC 5971 – 5974  GAG TCG CAG E S Q 

CP4-C5 Rz17 TCTC 6239 – 6242  ATC TCT CGC I S R 

C5-A5 Rz5 ACAC 7439 – 7442  GAC ACC GAC D T D 

A5-CP5 Rz6 CCGC 9074 – 9077  CCC GCG CCG P A P 

CP5-C6 Rz7 CGAG 9381 – 9384  CCC GAG GGC 

(CCC GAA GGC) 

P E G 

(P E G) 

C6-A6 Rz8 CGGA 10580 – 10583  ACG GAC CTC T D L 

A6-CP6 Rz9 TGGA 12194 – 12197  GTG GAC AAG V D K 
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CP6-C7 Rz10 CGCC 12511 – 12514  GTC CGC CTG 

(GTC CGG TTG) 

V R L 

(V R L) 

C7-A7 Rz11 CGAC 13716 – 13719  GTC GAC CTC V D L 

A7-CP7 Rz12 GCGA 15346 – 15349  GGT GCG ATG G A M 

CP7-TE Rz13 CGCT 15638 – 15641  CCG CTG ACC P L T 

C-Term R3C GCTC 16335 - 16338 CCG GCG CTC P A L 

 mchC (C-type)[5]  

N-Term R5C AGCA 50 – 53  CAG CAC GGC Q H G 

C3-A3 Rz2 GAGC 1240 – 1243  GCC GAG CGC A E R 

A3-CP3 Rz3 GGAG 2853 – 2856  CAG GAG ACG Q E T 

CP3-C4 Rz4 GGAC 3147 – 3150  GAG GAC ACG E D T 

C4-A4 Rz5 ACAC 4325 – 4328  GAC ACC GAC D T D 

A4-CP4 Rz6 CCGC 5960 – 5963  CCC GCG CCT P A P 

CP4-C5 Rz7 CGAG 6270 – 6273  CCC GAG GGC 

(CCG GAG GGC) 

P E G 

(P E G) 

C5-A6 Rz8 CGGA 7469 – 7472  ACG GAC CTC T D L 

A6-CP6 Rz12 GCGA 9100 – 9103  GGC GCG ATG 

(GGC GCG CTG) 

G A M 

(G A L) 

CP6-TE Rz13 CGCT 9392 – 9395  CCG CTG ACG P L T 

C-Term R3C GCTC 10098 - 10101 CCG GAG CTC P E L 

mchC (D-type)[2] 

N-Term R5C AGCA 50 – 53  CAG CAC GGC Q H G 

C3-A3 Rz2 GAGC 1240 – 1243  GCC GAG CGG A E R 

A3-CP3 Rz3 GGAG 2880 – 2883  ACG GAG CAC 

(ACA GAG CAC) 

T E H 

(T E H) 

CP3-C4 Rz4 GGAC 3156 – 3159  GGG GAC GGG 

(GGT GAC GGG) 

G D G 

(G D G) 

C4-A4 Rz5 ACAC 4334 – 4337  AAC ACC GAC N T D 

A4-CP4 Rz6 CCGC 5969 – 5972  CCC GCG CCT P A P 

CP4-C5 Rz7 CGAG 6276 – 6279  CCC GAG AGC 

(CCG GAG AGC) 

P E S 

(P E S) 

C5-A5 Rz8 CGGA 7475 – 7478  ACG GAC CTC T D L 

A5-CP5 Rz9 TGGA 9089 – 9092  GTG GAC AAG V D K 

CP5-C6 Rz10 CGCC 9406 – 9409  GTG CGC CTG 

(GTG CGG CTG) 

V R L 

(V R L) 

C6-A6 Rz11 CGAC 10611 – 10614  CTC GAC CTG L D L 

A6-CP6 Rz12 GCGA 12241 – 12244  GGG GCG ATG 

(GGG ACG ATG) 

G T M 

(G A M) 

CP6-TE Rz13 CGCT 12533 – 12536  CCG CTC ACG 

(CCT CTC ACG) 

P L T 

(P L T) 
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C-Term R3C GCTC 13239 – 13242  CCT GAG CTC 

(CCT GAG CTT) 

P E L 

(P E L) 

mchC (S-type)[3] 

N-Term R5C AGCA 50 – 53 CAG CAC GGC Q H G 

C3-A3 Rz2 GAGC 1240 – 1243  GTC GAG CAG V E Q 

A3-CP3 Rz3 GGAG 2862 – 2865  AAG GAG TTG K E L 

CP3-C4 Rz4 GGAC 3156 – 3159  GGG GAC GTC G D V 

C4-A4 Rz5 ACAC 4337 – 4340  AAC ACC GAC N T D 

A4-CP4 Rz6 CCGC 5972 – 5975  CCC GCG CCC P A P 

CP4-C5 Rz7 CGAG 6279 – 6282  CCC GAG AGC 

(CCG GAG AGC) 

P E S 

(P E S) 

C5-A5 Rz8 CGGA 7478 – 7481  ACG GAC CTC T D L 

A5-CP5 Rz9 TGGA 9092 – 9095  GTG GAC AAG V D K 

CP5-C6 Rz10 CGCC 9409 – 9412  GTG CGC CTG 

(GTG CGG CTG) 

V R L 

(V R L) 

C6-A6 Rz11 CGAC 10614 – 10617  CTC GAC CTG L D L 

A6-CP6 Rz12 GCGA 12244 – 12247  GCC GCG ATG A A M 

CP6-TE Rz13 CGCT 12536 – 12539  CCG CTC ACG P L T 

C-Term R3C GCTC 13242 – 13245  CCA GAG CTC P E L 

[1] Location of fusion sites based on mch cluster retrieved from GeneBank entry KX622595. [2] Location of 

fusion sites based on mch cluster retrieved from GeneBank entry KX622602. [3] Location of fusion sites based 

on mch cluster retrieved from GeneBank entry KX622599. [4] Location of fusion sites based on mch cluster 

retrieved from GeneBank entry KX622591. [5] Location of fusion sites based on mch cluster retrieved from 

GeneBank entry KX622594. 

 

Table S5. Locations of the unique R-sites at the 5’ and 3’ ends of the mch biosynthesis gene fragments. R-sites 

engineering was performed within the CDS sequences of the mch gene fragments to allow for conventional 

stitching of the artitifical mch clusters by applying point mutations. Locations are referring to the individual mch 

genes retrieved from the GenBank mch cluster entries. Unique R-sites (Rx1, Rx6, Ry1, Ry8, Rz1, Rz14) are 

highlighted in gray. Mutated nucleotides/amino acids are shown in italics. 

 

Terminus Gene R-sites 
Location 

(within gene) 
Relevant Codons 

Amino 

acids 

A-type mch cluster[1] 

N-Term mchA Rx1 197 – 202  ACG TAC GTG T Y V 

C-Term mchA Rx6 6326 – 6333  GCG CCG GCG 

(GCG CCC GCG) 

A P A 

(A P A) 

N-Term mchB Ry1 254 – 259  CAC GCG TCC H A S 

C-Term mchB Ry8 9052 – 9059  GCG GCC GCG 

(GCC GCG GCG) 

A A A 

(A A A) 

N-Term mchC Rz1 56 – 61  GGC ATG CTC G M L 

C-Term mchC Rz14 13202 – 13207  GAC CGG TGT 

(GAC CGC AGT) 

D R C 

(D R S) 
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B-type mch cluster[2] 

N-Term mchC Rz1 56 – 61  GGC ATG CTC G M L 

C-Term mchC Rz14 16310 – 16315  GAC CGG TGC 

(GAC CGT GGC) 

D R C 

(D R G) 

C-type mch cluster[3] 

N-Term mchC Rz1 56 – 61  GGC ATG CTC G M L 

C-Term mchC Rz14 10073 – 10078  GAC CGG TGC 

(GAC CGG AGC) 

D R C 

(D R S) 

D-type mch cluster[4] 

N-Term mchB Ry1 254 – 259  CAC GCG TGC 

(CAC CCG AGC) 

H A C 

(H P S) 

C-Term mchB Ry8 9079 – 9086  GCG GCC GCG 

(GCC GCG ACG) 

A A A 

(A A T) 

N-Term mchC Rz1 56 – 61  GGC ATG CTC G M L 

C-Term mchC Rz14 13214 – 13219  GAC CGG TAT 

(GAC AGG GAT) 

D R Y 

(D R D) 

S-type mch cluster[5] 

N-Term mchB Ry1 254 – 259  CAC GCG TGC 

(CAC CCG AGC) 

H A C 

(H P S) 

C-Term mchB Ry8 9079 – 9086  GCG GCC GCA 

(GCA GCC GCA) 

A A A 

(A A A) 

N-Term mchC Rz1 56 – 61  GGC ATG CTG G M L 

C-Term mchC Rz14 13217 – 13222  GAC CGG TAC 

(GAC AGG GAC) 

D R Y 

(D R D) 

[1] Location of R-sites based on mch cluster retrieved from GeneBank entry KX622595. [2] Location of R-sites 

based on mch cluster retrieved from GeneBank entry KX622591. [3] Location of R-sites based on mch cluster 

retrieved from GeneBank entry KX622594. [4] Location of R-sites based on mch cluster retrieved from 

GeneBank entry KX622602. [5] Location of R-sites based on mch cluster retrieved from GeneBank entry 

KX622599. 

 

 

3.4.2 Design of the Cloning Vector pSynbio1 and the Expression Vector pSynbio2 

For the assembly of large biosynthesis gene fragments and for ‘desplitting’ processes, the 

cloning vector pSynbio1, which is a derivative of the pGH vector, was designed and 

manufactured by DNA synthesis. The high-copy vector backbone pSynbio1 is composed of a 

minimal set of genetic elements needed for the amplification and selection in E. coli. These 

include the oriV origin of vegetative replication from the broad-range RK2 plasmid,46 the trfA 

gene, whose gene product binds to and activates oriV, which leads to unidirectional 

replication,47–49 and an ampicillin resistance gene (ampR). To meet the constructional 

requirements, the recognition sequences needed for cloning and assembly of the expression 
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constructs (Table S2) were calculated out of the vector sequence. Recognition sequences of 

the type II enzymes KpnI and PmeI were introduced into the vector backbone to allow for the 

subcloning of synthetic fragments. The genetic map of pSynbio1 is illustrated in Figure S1. 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Genetic map of the cloning vector pSynbio1. 

 

The expression vector pSynbio2 was designed and manufactured by DNA synthesis for the 

functional expression of artificial mch clusters in the heterologous host M. xanthus DK1622 

(see Section ‘Functional Sequence Design for Heterologous Expression’). The genetic map of 

the pSynbio2 vector showing the unique R-sites for modification of the vector backbone is 

illustrated in Figure S2. Information on the different genetic element are given in Chapter 

3.3.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Genetic map of the expression vector pSynbio2. 
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3.4.3 Generation of mch Cluster Fragments via DNA Synthesis 

Artificial mch cluster fragments, which were designed and synthesized in this study, are 

shown in Table S6. Cluster fragments were delivered either in the pGH vector (pUC 

derivative) or in the pUC57 vector backbone harboring an ampicillin resistance gene. 

 

Table S6. Artificial DNA fragments from mch gene clusters generated via DNA synthesis.  

 

Construct Name Description 
(Location in GenBank file) 

Size 

[bp] 

Flanking R-sites 

A-type mch cluster fragments from M. xanthus DK1622[1] 

pGH-P-5mchA_Ab Promotor fragment 
(6607-7208 nt) 

3539 KpnI-BsiWI/PmeI 

pGH-3mchA-5mchB_Ab Linker fragment 
(13332-13720 nt) 

3326 KpnI/MreI-MluI/PmeI 

pGH-3mchB-5mchC_Ab Linker fragment 
(22513-22701nt) 

3126 KpnI/NotI-SphI/PmeI 

pGH-T-3mchC_Ab Terminator fragment 
(35867-38440 nt) 

5547 KpnI/AgeI-PvuI/PmeI 

pGH-MchA_A_fragA mchA gene fragment 
(7197-11354 nt) 

7116 KpnI/BsiWI-NdeI/PmeI 

pGH-MchA_A_fragA_dcm mchA gene fragment 
(7197-8507 nt) 

4260 KpnI/BsiWI-SpeI 

pGH-MchA_A_fragB mchA gene fragment 
(11301-13394 nt) 

5063 KpnI/NdeI-MreI/PmeI 

pGH-MchB_A_fragA mchB gene fragment 
(13693-19364 nt) 

8628 KpnI/MluI-SpeI/PmeI 

pGH-MchB_A_fragA_dcm mchB gene fragment 
(13693-14768 nt) 

4026 KpnI/MluI-NdeI 

pGH-MchB_A_fragB mchB gene fragment  
(19287-22592 nt) 

6275 KpnI/SpeI-NotI/PmeI 

pGH-MchC_A_fragA mchC gene fragment 
(22690-27042 nt) 

7295 KpnI/SphI-NdeI/PmeI 

pGH-MchC_A_fragA_dcm mchC gene fragment 
(22690-23883 nt) 

4138 KpnI/SphI-SpeI 

pGH-MchC_A_fragB mchC gene fragment 
(26965-31798 nt) 

7797 KpnI/NdeI-AseI/PmeI 

pGH-MchC_A_fragC mchC gene fragment 
(31723-35966 nt) 

7207 KpnI/AseI-AgeI/PmeI 

pGH-MchC_A_fragC_dcm mchC gene fragment 
(31723-32043 nt) 

3264 AseI-BamHI 

pUC57-CP1_A_inact1 Carrier protein fragment 
(17743-18068 nt) 

3078 KpnI/AsiSI-XbaI/PmeI 

pUC57-CP2_A_inact1 Carrier protein fragment 
(20898-21203 nt) 

3056 KpnI/AflII-AvrII/PmeI 

pUC57-CP3_A_inact1 Carrier protein fragment 
(25494-25787 nt) 

3050 KpnI/AsiSI-EcoRI/PmeI 

pGH-CP4_A_inact1 Carrier protein fragment 
(28601-28914 nt) 

3079 KpnI/MfeI-AflII/PmeI 
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pGH-CP4_A_inact2 Carrier protein fragment 
(28601-28914 nt) 

3079 KpnI/MfeI-AflII/PmeI 

pUC57-CP5_A_inact1 Carrier protein fragment 
(31724-32042 nt) 

3071 KpnI/AseI-BamHI/PmeI 

pUC57-CP6_A_inact1 Carrier protein fragment 
(34876-35171 nt) 

3046 KpnI/HindIII-NheI/PmeI 

B-type mch cluster fragments from Myxococcus sp. 171[4] 
pGH-3mchB-5mchC_Bb Linker fragment 

(22380-22568 nt) 
3126 KpnI/NotI-SphI/PmeI 

pGH-T-3mchC_Bb Terminator fragment 
(38817-39474 nt) [7] 

5547 KpnI/AgeI-PvuI/PmeI 

pGH-MchC_B_fragA mchC gene fragment 
(22557-26924 nt) 

7406 KpnI/SphI-MluI/PmeI 

pGH-MchC_B_fragB mchC gene fragment 
(26921-31584 nt) 

7709 KpnI/MluI-MfeI/PmeI 

pGH-MchC_B_fragC mchC gene fragment 
(31581-34704 nt) 

6141 KpnI/MfeI-AseI/PmeI 

pGH-MchC_B_fragD mchC gene fragment 
(34701-38845 nt) 

7210 KpnI/AseI-AgeI/PmeI 

pGH-MchC_B_fragA_woSE mchC gene fragment 
(22557-26924 nt) 

7332 KpnI/SphI-MluI/PmeI 

pGH-MchC_B_fragB_woSE mchC gene fragment 
(26921-31584 nt) 

7633 KpnI/MluI-MfeI/PmeI 

pGH-MchC_B_fragC_woSE mchC gene fragment 
(31581-34704 nt) 

6093 KpnI/MfeI-AseI/PmeI 

pGH-MchC_B_fragD_woSE mchC gene fragment 
(34701-38845 nt) 

7114 KpnI/AseI-AgeI/PmeI 

C-type mch cluster fragments from M. virescens ST200611[5] 

pGH-3mchB-5mchC_Cb Linker fragment 
(23091-23279 nt) 

3126 KpnI/NotI-SphI/PmeI 

pGH-T-3mchC_Cb Terminator fragment 
(33291-33948 nt) [7] 

5525 KpnI/AgeI-PvuI/PmeI 

pGH-MchC_C_fragA mchC gene fragment 
(23268-27546 nt) 

7311 KpnI/SphI-NdeI/PmeI 

pGH-MchC_C_fragA_dcm mchC gene fragment 
(23268-24461 nt) 

4142 KpnI/SphI-SpeI 

pGH-MchC_C_fragB mchC gene fragment 
(27543-33319 nt) 

8860 KpnI/NdeI-AgeI/PmeI 

D-type mch cluster fragments from S. erecta Pde77[2] 

pGH-3mchB-5mchC_Db Linker fragment 
(21027-21217 nt) 

3568 KpnI/NotI-SphI/PmeI 

pGH-T-3mchC_Db Terminator fragment 
(34370-35036 nt) [7] 

5550 KpnI/AgeI-PvuI/PmeI 

pGH-MchB_D_fragA mchB gene fragment 
(12179-17807 nt) 

8660 KpnI/MluI-SpeI/PmeI 

pGH-MchB_D_fragB mchB gene fragment 
(17804-21058 nt) 

6226 KpnI/SpeI-NotI/PmeI 

pGH-MchC_D_fragA mchC gene fragment 
(21206-25493 nt) 

7319 KpnI/SphI-NdeI/PmeI 

pGH-MchC_D_fragB mchC gene fragment 7793 KpnI/NdeI-VspI/PmeI 
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(25490-30248 nt) 
pGH-MchC_D_fragC mchC gene fragment 

(30245-34398 nt) 
7213 KpnI/VspI-AgeI/PmeI 

S-type mch cluster fragments from S. aurantiaca DW4/3-1[3] 

pGH-3mchB-5mchC_Sb Linker fragment 
(22680-22869 nt) 

3127 KpnI/NotI-SphI/PmeI 

pGH-T-3mchC_Sb Terminator fragment 
(36025-36701 nt) [7] 

5544 KpnI/AgeI-PvuI/PmeI 

pGH-MchB_S_fragA mchB gene fragment 
(13833-19460 nt) 

8650 KpnI/MluI-SpeI/PmeI 

pGH-MchB_S_fragA_dcm mchB gene fragment 
(13833-14908 nt) 

4020 KpnI-NdeI 

pGH-MchB_S_fragB mchB gene fragment 
(19457-22711 nt) 

6272 KpnI/SpeI/NotI/PmeI 

pGH-MchC_S_fragA mchC gene fragment 
(22858-27148 nt) 

7329 KpnI/SphI/NdeI/PmeI 

pGH-MchC_S_fragA_dcm mchC gene fragment 
(22858-24051 nt) 

4138 KpnI/SpeI 

pGH-MchC_S_fragB mchC gene fragment 
(27145-31903 nt) 

7800 KpnI/NdeI/VspI/PmeI 

pGH-MchC_S_fragC mchC gene fragment 
(31900-36053 nt) 

7211 KpnI/VspI/AgeI/PmeI 

pGH-MchC_S_fragC_dcm mchC gene fragment 
(31900-32220 nt) 

3264 AseI/BamHI 

pGH-CP4_S_react Carrier protein fragment 
(28780-29090 nt) 

3076 KpnI/MfeI-AflII/PmeI 

A-type mch cluster fragments from M. xanthus DK1622[6] 

pGH-P-5mchA_A_AarI Promotor fragment 
(6603-7206 nt) 

4003 KpnI-BsiWI/PmeI 

pGH-3mchA-5mchB_A_AarI Linker fragment 
(13335-13718 nt) 

3783 KpnI/MreI-MluI/PmeI 

pGH-3mchA-5mchB_A_AarI Linker fragment 
(22517-22699 nt) 

3582 KpnI/NotI-SphI/PmeI 

pGH-T-3mchC_A_AarI Terminator fragment 
(35842-38443 nt) 

6001 KpnI/AgeI-PvuI/PmeI 

pGH-MchA_A_AarI_SE mchA gene fragment 
(7203-13468 nt) 

9665 KpnI/BsiWI-MreI/PmeI 

pGH-MchB_A_AarI_SE mchB gene fragment 
(13715-22746 nt) 

12431 KpnI/MluI-NotI/PmeI 

pGH-
MchC_A_AarI_fragABCE 

mchC gene fragment 
(22696-26974 nt, ABC) 
(+ 30110-32063 nt, E) 

9404 KpnI/SphI-BamHI/MluI 

pGH-MchC_A_AarI_fragD mchC gene fragment 
(26971-30113 nt) 

6186 NdeI-XbaI 

pGH-MchC_A_AarI_fragF mchC gene fragment 
(32060-35845 nt) 

6863 BamHI-MluI 
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Cloning vectors, expression vectors, and genetic elements 

pSynbio1_AarI Cloning vector 3383 - 

pSynbio2_AarI Expression vector 2700 - 

pGH-Amp_Synbio1mut ampR gene fragment 3587 PstI-MscI 
pGH-MCS_Synbio2 Multiple cloning site 3415 SwaI-HindIII 
pUC57-PTn5-5mchA_Ab Tn5 promoter fragment 3086 KpnI-BsiWI/PmeI 

[1] BsaI design based on mch cluster retrieved from GeneBank entry KX622595. [2] BsaI design based on mch 

cluster retrieved from GeneBank entry KX622602. [3] BsaI design based on mch cluster retrieved from 

GeneBank entry KX622599. [4] BsaI design based on mch cluster retrieved from GeneBank entry KX622591. 

[5] BsaI design based on mch cluster retrieved from GeneBank entry KX622594. [6] AarI design based on mch 

cluster retrieved from GeneBank entry KX622595. [7] Location is referring to the 3’mchC-mchD region (without 

terminator-rhlE region). 

 

3.4.4 Construction of Modified Cloning and Expression Vectors 

To adapt the original cloning (pSynbio1_AarI) and expression (pSynbio2_AarI) vectors to the 

BsaI design, modified synthetic DNA fragments were designed, in which either a BsaI R-site 

was eliminated by applying a point mutation (Amp_Synbio1mut) or the MCS was equipped 

with BsaI sites. The synthetic fragments were cloned into the original vector backbones and 

revealed pSynbio1 and pSynbio2 (Table S7). 

Table S7: Cloning and expression vectors generated in this study. 

Plasmid Construction 

pSynbio1 

666 bp PstI/MscI Amp_Synbio1mut fragment from pGH- 

Amp_Synbio1mut ligated into pSynbio1_AarI hydrolyzed 

with PstI/MscI to generate pSynbio1 

pSynbio2 

495 bp SwaI/HindIII MCS_Synbio2 fragment from pGH-

MCS_Synbio2 ligated into pSynbio2_AarI hydrolyzed with 

SwaI/HindIII to generate pSynbio2 
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Figure S3. Design of mch cluster fragments from the different mch pathways. To generate artificial hybrid mch pathways for the production of 

naturally occurring and entirely new myxochromide cores, a minimal set of mch cluster fragments were designed and generated via DNA synthesis. 

The promoter fragment from the A-type mch cluster (P5mchAA) as well as the A-type mchAA gene and mchAA/mchBA intergenic linker fragment 

(3AA5BA) were used for the construction of all hybrid mch pathways described in this study. Large biosynthetic genes were subdivided into two 

(mchBA, mchBS, mchBD, mchCC), three (mchCA, mchCD, mchCS) or even four (mchCB) individual gene fragments. 
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3.4.5 Assembly of Artificial mch Biosynthesis Genes and Generation of a Gene Library 

The large artificial biosynthesis genes mchA-C from the different mch clusters were 

assembled using traditional restriction/ligation techniques (Figure 4).45 To release the SEs 

between the domain fragments, the gene constructs were hydrolyzed with BsaI. Directed 

religation of the single domain fragments resulted in fully desplitted mch gene constructs. The 

plasmids, which were constructed in this study to form functional mch genes, are shown in 

Table S8. 

 

Table S8: Constructs for mch gene library generated in this study. 

 

Plasmid Construction 

A-type mch gene constructs[2] 

pSyn1-MchA_A_SE 

(1) 2122 bp NdeI/PmeI MchA_A_fragB fragment from pGH-

MchA_A_fragB ligated into pGH-MchA_A_fragA 

hydrolyzed with NdeI/PmeI to generate pGH-

MchA_A_fragAB 

(2) 6302 bp KpnI/PmeI MchA_A_fragAB fragment from pGH-

MchA_A_fragAB ligated into pSynbio1 hydrolyzed with 

KpnI/PmeI to generate pSyn1-MchA_A_SE_pre 

(3) 1336 bp KpnI/SpeI MchA_A_fragA_dcm fragment from 

pGH-MchA_A_fragA_dcm ligated into pSyn1-

MchA_A_SE_pre to generate pSyn1-MchA_A_SE 

pSyn1-MchA_A 
Hydrolysis of pSyn1-MchA_A_SE by BsaI followed by 

religation to remove SE[1] 

pSyn1-MchB_A_SE 

(1) 3335 bp SpeI/PmeI MchB_A_fragB fragment from pGH-

MchB_A_fragB ligated into pGH-MchB_A_fragA 

hydrolyzed with SpeI/PmeI to generate pGH-

MchB_A_fragAB 

(2) 9028 bp KpnI/PmeI MchB_A_fragAB fragment from pGH-

MchB_A_fragAB ligated into pSynbio1 hydrolyzed with 

KpnI/PmeI to generate pSyn1-MchB_A_SE_pre 

(3) 1100 bp KpnI/NdeI MchB_A_fragA_dcm fragment from 

pGH-MchB_A_fragA_dcm ligated into pSyn1-

MchB_A_SE_pre to generate pSyn1-MchB_A_SE 

pSyn1-MchB_A Hydrolysis of pSyn1-MchB_A_SE by BsaI followed by 
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religation to remove SE[1] 

pSyn1-MchC_A_SE 

(1) 4862 bp NdeI/PmeI MchC_A_fragB fragment from pGH-

MchC_A_fragB ligated into pGH-MchC_A_fragA 

hydrolyzed with NdeI/PmeI to generate pGH-

MchC_A_fragAB 

(2) 9237 bp KpnI/PmeI MchC_A_fragAB fragment from pGH-

MchC_A_fragAB ligated into pSynbio1 hydrolyzed with 

KpnI/PmeI to generate pSyn1-MchC_A_fragAB 

(3) 4272 bp AseI/PmeI MchC_A_fragC fragment from pGH-

MchC_A_fragC ligated into pSyn1-MchC_A_fragAB 

digested with AseI/PmeI to generate pSyn1-MchC_A_SE_pre 

(4) 1219 bp KpnI/SpeI MchC_A_fragA_dcm fragment from 

pGH-MchC_A_fragA_dcm ligated into pSyn1-

MchC_A_SE_pre to generate pSyn1-MchC_A_SE_pre2 

(5) 344 bp AseI/BamHI MchC_A_fragC_dcm fragment from 

pGH-MchC_A_fragC_dcm ligated into pSyn1-

MchC_A_SE_pre2 to generate pSyn1-MchC_A_SE 

pSyn1-MchC_A 
Hydrolysis of pSyn1-MchC_A_SE by BsaI followed by 

religation to remove SE[1] 

pSyn1-
MchB_A_CP1inact1_SE

350 bp AsiSI/XbaI MchB_A_CP1inact1 fragment from 

pUC57-MchB_A_CP1inact1 ligated into pSyn1-

MchB_A_SE to generate pSyn1-MchB_A_CP1inact1_SE 

pSyn1-
MchB_A_CP1inact1 

Hydrolysis of pSyn1-MchB_A_CP1inact1_SE by BsaI 

followed by religation to remove SE[1] 

pSyn1-
MchB_A_CP2inact1_SE

330 bp AflII/AvrII MchB_A_CP2inact1 fragment from 

pUC57-MchB_A_CP2inact1 ligated into pSyn1-

MchB_A_SE to generate pSyn1-MchB_A_CP2inact1_SE 

pSyn1-
MchB_A_CP2inact1 

Hydrolysis of pSyn1-MchB_A_CP2inact1_SE by BsaI 

followed by religation to remove SE[1] 

pSyn1-
MchC_A_CP3inact1_SE

322 bp AsiSI/EcoRI MchC_A_CP3inact1 fragment from 

pUC57-MchC_A_CP3inact1 ligated into pSyn1-

MchC_A_SE to generate pSyn1-MchC_A_CP3inact1_SE 

pSyn1-
MchC_A_CP3inact1 

Hydrolysis of pSyn1-MchC_A_CP3inact1_SE by BsaI 

followed by religation to remove SE[1] 
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pSyn1-
MchC_A_CP4inact1_SE

338 bp MfeI/AflII MchC_A_CP4inact1 fragment from 

pUC57-MchC_A_CP4inact1 ligated into pSyn1-

MchC_A_SE to generate pSyn1-MchC_A_CP4inact1_SE 

pSyn1-
MchC_A_CP4inact1 

Hydrolysis of pSyn1-MchC_A_CP4inact1_SE by BsaI 

followed by religation to remove SE[1] 

pSyn1-
MchC_A_CP4inact2_SE

338 bp MfeI/AflII MchC_A_CP4inact2 fragment from 

pUC57-MchC_A_CP4inact2 ligated into pSyn1-

MchC_A_SE to generate pSyn1-MchC_A_CP4inact2_SE 

pSyn1-
MchC_A_CP4inact2 

Hydrolysis of pSyn1-MchC_A_CP4inact2_SE by BsaI 

followed by religation to remove SE[1] 

pSyn1-
MchC_A_CP5inact1_SE

344 bp AseI/BamHI MchC_A_CP5inact1 fragment from 

pUC57-MchC_A_CP5inact1 ligated into pSyn1-

MchC_A_SE to generate pSyn1-MchC_A_CP5inact1_SE 

pSyn1-
MchC_A_CP5inact1 

Hydrolysis of pSyn1-MchC_A_CP5inact1_SE by BsaI 

followed by religation to remove SE[1] 

pSyn1-
MchC_A_CP6inact1_SE

320 bp HindIII/NheI MchC_A_CP6inact1 fragment from 

pUC57-MchC_A_CP6inact1 ligated into pSyn1-

MchC_A_SE to generate pSyn1-MchC_A_CP6inact1_SE 

pSyn1-
MchC_A_CP6inact1 

Hydrolysis of pSyn1-MchC_A_CP6inact1_SE by BsaI 

followed by religation to remove SE[1] 

B-type mch gene constructs 

pSyn1-MchC_B_SE 

(1) 2954 bp KpnI/MluI MchC_B_fragA fragment from pGH-

MchC_B_fragA_woSE and 2947 bp MluI/PmeI 

MchC_B_fragB fragment from pGH-MchC_B_fragB_woSE 

ligated into pSynbio1 hydrolyzed with KpnI/PmeI to generate 

pSyn1-MchC_B_fragAB 

(2) 4854 bp KpnI/AseI MchC_B_fragC fragment from pGH-

MchC_B_fragC_woSE and 4269 AseI/PmeI MchC_B_fragD 

fragment from pGH-MchC_B_fragD_woSE ligated into 

pSynbio1 hydrolyzed with KpnI/PmeI to generate pSyn1-

MchC_B_fragCD 

(3) 7318 bp MunI/PmeI MchC_B_fragA fragment from pSyn1-

MchC_B_fragCD ligated into pSyn1-MchC_B_fragAB 

hydrolyzed with MunI/PmeI to generate pSyn1-
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MchC_B_SE_pre 

(4) 3193 bp MunI/AseI MchC_B_fragC fragment from pGH-

MchC_B_fragC ligated into pSyn1-MchC_B_SE_pre to 

generate pSyn1-MchC_B_SE 

pSyn1-MchC_B 
Hydrolysis of pSyn1-MchC_B_SE by BsaI followed by 

religation to remove SE[1] 

C-type mch gene constructs 

pSyn1-MchC_C_SE 

(1) 5923 bp NdeI/PmeI MchC_C_fragB fragment from pGH-

MchC_C_fragB ligated into pGH-MchC_C_fragA 

hydrolyzed with NdeI/PmeI to generate pGH-MchC_C_SE 

(2) 10296 bp KpnI/PmeI MchC_C_SE fragment from pGH-

MchC_C_SE ligated into pSynbio1 hydrolyzed with 

KpnI/PmeI to generate pSyn1-MchC_C_SE_pre 

(3) 1211 bp KpnI/SpeI MchC_C_fragA_dcm fragment from 

pGH-MchC_C_fragA_dcm ligated into pSyn1-

MchC_C_SE_pre hydrolyzed with KpnI/PmeI to generate 

pSyn1-MchC_C_SE 

pSyn1-MchC_C 
Hydrolysis of pSyn1-MchC_C_SE by BsaI followed by 

religation to remove SE[1] 

D-type mch gene constructs 

pSyn1-MchB_D_SE 

5719 bp KpnI/SpeI MchB_D_fragA fragment from pGH-

pMchB_D_fragA and 3332 bp SpeI/PmeI MchB_D_fragB 

fragment from pGH-pMchB_D_fragB ligated into pSynbio1 

hydrolyzed with KpnI/PmeI to generate pSyn1-MchB_D_SE 

pSyn1-MchB_D 
Hydrolysis of pSyn1-MchB_D_SE by BsaI followed by 

religation to remove SE[1] 

pSyn1-MchC_D_SE 

(1) 4386 bp KpnI/NdeI MchC_D_fragA fragment from pGH-

MchC_D_fragA and 4859 bp NdeI/PmeI MchC_D_fragB 

fragment from pGH-MchC_D_fragB ligated into pSynbio1 

hydrolyzed with KpnI/PmeI to generate pSyn1-

MchC_D_fragAB 

(2) 4278 bp AseI/PmeI MchC_D_fragC fragment from pGH-

pMchC_D_fragC ligated into pSyn1-MchB_D_fragAB 

hydrolyzed with AseI/PmeI to generate pSyn1-MchC_D_SE 
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pSyn1-MchC_D 
Hydrolysis of pSyn1-MchC_D_SE by BsaI followed by 

religation to remove SE[1] 

S-type mch gene constructs 

pSyn1-MchB_S_SE 

(1) 3328 bp SpeI/PmeI MchB_S_fragB fragment from pGH-

MchB_S_fragB ligated into pGH-pMchB_S_fragA 

hydrolyzed with SpeI/PmeI to generate pGH-

MchB_S_fragAB 

(2) 9051 bp KpnI/PmeI MchB_S_fragAB fragment from pGH-

MchB_S_fragAB ligated into pSynbio1 hydrolyzed with 

KpnI/PmeI to generate pSyn1-MchB_S_SE_pre 

(3) 1100 bp KpnI/NdeI MchB_S_fragA_dcm fragment from 

pGH-MchB_S_fragA_dcm ligated into pSyn1-

MchB_S_SE_pre to generate pSyn1-MchB_S_SE 

pSyn1-MchB_S 
Hydrolysis of pSyn1-MchB_S_SE by BsaI followed by 

religation to remove SE[1] 

pSyn1-MchC_S_SE 

(1) 4857 bp NdeI/PmeI MchC_S_fragB fragment from pGH-

MchC_S_fragB ligated into pGH-MchC_S_fragA hydrolyzed 

with NdeI/PmeI to generate pGH-MchC_S_fragAB 

(2) 9234 bp KpnI/PmeI MchC_S_fragAB fragment from pGH-

MchC_S_fragAB ligated into pSynbio1 hydrolyzed with 

KpnI/PmeI to generate pSyn1-MchC_S_fragAB 

(3) 4276 bp AseI/PmeI MchC_S_fragC fragment from pGH-

MchC_S_fragC ligated into pSyn1-MchC_S_fragAB 

hydrolyzed with AseI/PmeI to generate pSyn1-

MchC_S_SE_pre 

(4) 1219 bp KpnI/SpeI MchC_S_fragA_dcm fragment from 

pGH-MchC_S_fragA_dcm ligated into pSyn1-

MchC_S_SE_pre to generate pSyn1-MchC_S_SE_pre2 

(5) 344 bp AseI/BamHI MchC_S_fragC_dcm fragment from 

pGH-MchC_S_fragC_dcm ligated into pSyn1-

MchC_S_SE_pre2 to generate pSyn1-MchC_S_SE 

pSyn1-MchC_S 
Hydrolysis of pSyn1-MchC_S_SE by BsaI followed by 

religation to remove SE[1] 

pSyn1- 335 bp MfeI/AflII MchC_S_CP4react fragment from pUC57-
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MchC_S_CP4react_SE MchC_S_CP4act ligated into pSyn1-MchC_S_SE to generate 

pSyn1-MchC_S_CP4react_SE 

pSyn1-
MchC_S_CP4react 

Hydrolysis of pSyn1-MchC_S_CP4react_SE by BsaI 

followed by religation to remove SE[1] 

A-type mch gene constructs[3] 

pSyn1-
MchA_A_AarI_SE 

6303 bp KpnI/PmeI MchA_A_AarI_SE fragment from pGH-

MchA_A_AarI_SE ligated into pSynbio1_AarI hydrolyzed 

with KpnI/PmeI to generate pSyn1-MchA_A_AarI_SE 

pSyn1-MchA_A_AarI 
Hydrolysis of pSyn1-MchA_A_AarI_SE by AarI followed by 

religation to remove SE[1] 

pSyn1-
MchB_A_AarI_SE 

9069 bp KpnI/PmeI MchB_A_AarI_SE fragment from pGH-

MchB_A_AarI_SE ligated into pSynbio1_AarI hydrolyzed 

with KpnI/PmeI to generate pSyn1-MchB_A_AarI_SE 

pSyn1-MchB_A_AarI 
Hydrolysis of pSyn1-MchB_A_AarI_SE by AarI followed by 

religation to remove SE[1] 

pSyn1-
MchC_A_AarI_SE 

(1) 3944 bp BamHI/MluI MchC_A_AarI_fragF fragment from 

pGH-MchC_A_AarI_fragF ligated into pGH-

MchC_A_AarI_fragABCE hydrolyzed with BamHI/MluI to 

generate pGH-MchC_A_AarI_fragABCEF 

(2) 3256 bp NdeI/XbaI MchC_A_AarI_fragD fragment from 

pGH-MchC_A_AarI_fragD ligated into pGH-

MchC_A_AarI_fragABCEF hydrolyzed with NdeI/XbaI to 

generate pGH-MchC_A_AarI_SE 

(3) 13637 bp KpnI/PmeI MchC_A_AarI_SE fragment from 

pGH-MchC_A_AarI_SE ligated into pSynbio1_AarI 

hydrolyzed with KpnI/PmeI to generate pSyn1-

MchC_A_AarI_SE 

pSyn1-MchC_A_AarI 
Hydrolysis of pSyn1-MchC_A_AarI_SE by AarI followed by 

religation to remove SE[1] 

pSyn1-P-
5mchA_A_AarI 

641 bp KpnI/PmeI P-5mchA_A_AarI fragment from pGH- P-

5mchA_A_AarI ligated into pSynbio1_AarI hydrolyzed with 

KpnI/PmeI to generate pSyn1-P-5mchA_A_AarI 

pSyn1-3mchA-
5mchB_A_AarI 

421 bp KpnI/PmeI 3mchA-5mchB_A_AarI fragment from 

pGH-3mchA-5mchB_A_AarI ligated into pSynbio1_AarI 
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hydrolyzed with KpnI/PmeI to generate pSyn1-3mchA-

5mchB_A_AarI 

pSyn1-3mchB-
5mchC_A_AarI 

220 bp KpnI/PmeI 3mchB-5mchC_A_AarI fragment from 

pGH-3mchB-5mchC_A_AarI ligated into pSynbio1_AarI 

hydrolyzed with KpnI/PmeI to generate pSyn1-3mchB-

5mchC_A_AarI 

pSyn1-T-
3mchC_A_AarI 

2639 bp KpnI/PmeI T-3mchC_A_AarI fragment from pGH-

T-3mchC_A_AarI ligated into pSynbio1_AarI hydrolyzed 

with KpnI/PmeI to generate pSyn1-T-3mchC_A_AarI 

[1] SE = splitter elements. [2] Based on BsaI design. [3] Based on AarI design. 
 

3.4.6 In Vitro Reconstitution of Artificial mch Clusters 

Artificial mch cluster constructs were constructed using traditional restriction/ligation cloning 

techniques (Figure 4).45 Constructed mch clusters encompass hybrid gene clusters for the 

production of novel myxochromides as well as artificial A-type mch clusters harboring 

inactivated PCP domains in modules 1-6. In addition, an artificial S-type mch cluster was 

constructed, which harbors a reactivated PCP domain in module 4. Construction of the 

mentioned mch clusters is described in Table S9. 

 
Table S9: Constructs for mch cluster assemblies generated in this study. 

 

Plasmid Construction 

pSynMch1 

(1) 621 bp KpnI/BsiWI P5mchAA fragment from pSyn1-P-5mchA_A_AarI 

ligated into pSynbio2 hydrolyzed with KpnI/BsiWI to generate pSyn2-

ca1 

(2) 6134 bp BsiWI/MreI mchAA fragment from pSyn1-MchA_A_AarI 

ligated into pSyn2-ca1 hydrolyzed with BsiWI/MreI to generate pSyn2-

ca2 

(3) 386 bp MreI/MluI 3AA5BA fragment from pSyn1-3mchA-

5mchB_A_AarI ligated into pSyn2-ca2 hydrolyzed with MreI/MluI to 

generate pSyn2-ca3 

(4) 8803 bp MluI/NotI mchBA fragment from pSyn1-MchB_A_AarI ligated 

into pSyn2-ca3 hydrolyzed with MluI/NotI to generate pSyn2-ca4 

(5) 186 bp NotI/SphI 3BA5CA fragment from pSyn1-3mchB-5mchC_A_AarI 

ligated into pSyn2-ca4 hydrolyzed with NotI/SphI to generate pSyn2-ca5 
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(6) 13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A_AarI ligated 

into pSyn2-ca5 hydrolyzed with SphI/AgeI to generate pSyn2-ca6 

(7) 2616 bp AgeI/PvuI T3mchCA fragment from pSyn1-T-3mchC_A_AarI 

ligated into pSyn2-ca6 hydrolyzed with AgeI/PvuI to generate 

pSynMch1 

pSynMch2 

(1) 606 bp KpnI/BsiWI P5mchAA fragment from pGH-P-5mchA_Ab ligated 

into pSynbio2 hydrolyzed with KpnI/BsiWI to generate pSyn2-ca7 

(2) 6134 bp BsiWI/MreI mchAA fragment from pSyn1-MchA_A ligated into 

pSyn2-ca7 hydrolyzed with BsiWI/MreI to generate pSyn2-ca8 

(3) 386 bp MreI/MluI 3AA5BA fragment from pGH-3mchA-5mchB_Ab 

ligated into pSyn2-ca8 hydrolyzed with MreI/MluI to generate pSyn2-

ca9 

(4) 8803 bp MluI/NotI mchBA fragment from pSyn1-MchB_A ligated into 

pSyn2-ca9 hydrolyzed with MluI/NotI to generate pSyn2-ca10 

(5) 186 bp NotI/SphI 3BA5CA fragment from pGH-3mchB-5mchC_Ab 

ligated into pSyn2-ca10 hydrolyzed with NotI/SphI to generate pSyn2-

ca11 

(6) 13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A ligated into 

pSyn2-ca11 hydrolyzed with SphI/AgeI to generate pSyn2-ca12 

(7) 2601 bp AgeI/PvuI T3mchCA fragment from pGH-T-3mchC_Ab ligated 

into pSyn2-ca12 hydrolyzed with AgeI/PvuI to generate pSynMch2_pre 

(8) 15917 bp KpnI/NotI P5mchAA-mchAA-3AA5BA-mchBA fragment from 

pSyn2-ca10 ligated into pSynMch2_pre hydrolyzed with KpnI/NotI to 

generate pSynMch2 

pSynMch3 

(1) 186 bp NotI/SphI 3BB5CB fragment from pGH-3mchB-5mchC_Bb 

ligated into pSynbio2 hydrolyzed with NotI/SphI to generate pSyn2-ca13 

(2) 2601 bp AgeI/PvuI T3mchCB fragment from pGH-T-3mchC_Bb ligated 

into pSyn2-ca13 hydrolyzed with AgeI/PvuI to generate pSyn2-ca14 

(3) 16250 bp SphI/AgeI mchCB fragment from pSyn1-MchC_B ligated into 

pSyn2-ca14 hydrolyzed with SphI/AgeI to generate pSyn2-ca15 

(4) 15909 bp KpnI/NotI P5mchAA-mchAA-3AA5BA-mchBB fragment from 

pSynMch2 ligated into pSyn2-ca15 hydrolyzed with KpnI/NotI to 

generate pSynMch3 

pSynMch4 (1) 186 bp NotI/SphI 3BC5CC fragment from pGH-3mchB-5mchC_Cb 
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ligated into pSyn2-ca10 hydrolyzed with NotI/SphI to generate pSyn2-

ca16 

(2) 10013 bp SphI/AgeI mchCC fragment from pSyn1-MchC_C ligated into 

pSyn2-ca16 hydrolyzed with SphI/AgeI to generate pSyn2-ca17 

(3) 2601 bp AgeI/PvuI T3mchCC fragment from pGH-T-3mchC_Cb ligated 

into pSyn2-ca17 hydrolyzed with SphI/AgeI to generate pSynMch4 

pSynMch5 

(1) 205 bp NotI/SphI 3BD5CD fragment from pGH-3mchB-5mchC_Db 

ligated into pSynbio2 hydrolyzed with NotI/SphI to generate pSyn2-ca18 

(2) 2610 bp AgeI/PvuI T3mchCD fragment from pGH-T-3mchC_Db ligated 

into pSyn2-ca18 hydrolyzed with AgeI/PvuI to generate pSyn2-ca19 

(3) 13154 bp SphI/AgeI mchCD fragment from pSyn1-MchC_D ligated into 

pSyn2-ca19 hydrolyzed with SphI/AgeI to generate pSyn2-ca20 

(4) 8826 bp MluI/NotI mchBD fragment from pSyn1-MchB_D ligated into 

pSyn2-ca20 hydrolyzed with MluI/NotI to generate pSyn2-ca21 

(5) 7110 bp KpnI/MluI P5mchAA-mchAA-3AA5BA from pSynMch2 ligated 

into pSyn2-ca21 hydrolyzed with KpnI/MluI to generate pSynMch5 

pSynMch6 

(1) 8830 bp MluI/NotI mchBS fragment from pSyn1-MchB_S ligated into 

pSyn2-ca9 hydrolyzed with MluI/NotI to generate pSyn2-ca22 

(2) 187 bp NotI/SphI 3BS5CS fragment from pGH-3mchB-5mchC_Sb 

ligated into pSyn2-ca22 hydrolyzed with NotI/SphI to generate pSyn2-

ca23 

(3) 13157 bp SphI/AgeI mchCS fragment from pSyn1-MchC_S ligated into 

pSyn2-ca23 hydrolyzed with SphI/AgeI to generate pSyn2-ca24 

(4) 2620 bp AgeI/PvuI T3mchCS fragment from pGH-T-3mchC_Sb ligated 

into pSyn2-ca24 hydrolyzed with SphI/AgeI to generate pSynMch6 

pSynMch8 

(1) 13165 bp SphI/AgeI mchCS fragment from pSyn1-MchC_S ligated into 

pSyn2-ca11 hydrolyzed with SphI/AgeI to generate pSyn2-ca31 

(2) 2620 bp AgeI/PvuI T3mchCS fragment from pGH-T-3mchC_Sb ligated 

into pSyn2-ca31 hydrolyzed with AgeI/PvuI to generate pSynMch8_pre 

(3) 15917 bp KpnI/NotI P5mchAA-mchAA-3AA5BA-mchBA fragment from 

pSyn2-ca10 ligated into pSynMch8_pre hydrolyzed with KpnI/NotI to 

generate pSynMch8 

pSynMch9 
(1) 186 bp NotI/SphI 3BA5CA fragment from pGH-3mchB-5mchC_Ab into 

pSyn2-ca22 hydrolyzed with NotI/SphI to generate pSyn2-ca32 
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(2) 13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A ligated into 

pSyn2-ca32 hydrolyzed with SphI/AgeI to generate pSyn2-ca33 

(3) 2608 bp AgeI/PvuI T3mchCA fragment from pGH-T-3mchC_Ab ligated 

into pSyn2-ca33 hydrolyzed with AgeI/PvuI to generate pSynMch9_pre 

(4) 15944 bp KpnI/NotI P5mchAA-mchAA-3AA5BA-mchBS fragment from 

pSyn2-ca22 ligated into pSynMch9_pre hydrolyzed with KpnI/NotI to 

generate pSynMch9 

pSynMch10 

(1) 186 bp NotI/SphI 3BC5CC fragment from pGH-3mchB-5mchC_Cb into 

pSyn2-ca22 hydrolyzed with NotI/SphI to generate pSyn2-ca34 

(2) 10021 bp SphI/AgeI mchCC fragment from pSyn1-MchC_C ligated into 

pSyn2-ca34 hydrolyzed with SphI/AgeI to generate pSyn2-ca35 

(3) 2601 bp AgeI/PvuI T3mchCC fragment from pGH-T-3mchC_Cb ligated 

into pSyn2-ca35 hydrolyzed with AgeI/PvuI to generate pSynMch10_pre 

(4) 15944 bp KpnI/NotI P5mchAA-mchAA-3AA5BA-mchBS fragment from 

pSyn2-ca22 ligated into pSynMch10_pre hydrolyzed with KpnI/NotI to 

generate pSynMch10 

pSynMch11 

19037 bp NotI/PvuI 3BB5CB-mchCB-T3mchCB fragment from pSyn2-

ca15 ligated into pSynMch10 hydrolyzed with NotI/PvuI to generate 

pSynMch11 

pSynMch12 

15952 bp NotI/PvuI 3BD5CD-mchCD-T3mchCD fragment from pSyn2-

ca20 ligated into pSynMch10 hydrolyzed with NotI/PvuI to generate 

pSynMch12 

pSynMch13 

(1) The native promoter of A-type mch cluster on pSynMch2 was replaced 

with cmR-ccdB cassette by Red/ET recombination to generate 

pSynMch2-cmccdB 

(2) The cmR-ccdB cassette on pSynMch2-cmccdB was substituted with 

overexpression promoter Ptn5 by Red/ET recombination 

pSynMch14 
8830 bp MluI/NotI mchBS fragment from pSyn1-MchB_S ligated into 

pSynMch13 hydrolyzed with NotI/PvuI to generate pSynMch14 

pSynMch15 

21643 bp KpnI/NotI 3BB5CB-mchCB-T3mchCB fragment from pSyn2-

ca15 ligated into pSynMch14 hydrolyzed with KpnI/NotI to generate 

pSynMch15 

pSynMch16 
18558 bp KpnI/NotI 3BD5CD-mchCD-T3mchCD fragment from pSyn2-

ca20 ligated into pSynMch14 hydrolyzed with KpnI/NotI to generate 
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pSynMch16 

pSynMch17 

8803 bp MluI/NotI mchBA fragment from pSyn1-MchB_A_CP1inact1 

ligated into pSynMch13 hydrolyzed with MluI/NotI to generate 

pSynMch17 

pSynMch19 

13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A_CP3inact1 

ligated into pSynMch13 hydrolyzed with MluI/NotI to generate 

pSynMch19 

pSynMch20 

13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A_CP4inact1 

ligated into pSynMch13 hydrolyzed with MluI/NotI to generate 

pSynMch20 

pSynMch21 

13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A_CP4inact2 

ligated into pSynMch13 hydrolyzed with MluI/NotI to generate 

pSynMch21 

pSynMch22 

13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A_CP5inact1 

ligated into pSynMch13 hydrolyzed with MluI/NotI to generate 

pSynMch22 

pSynMch23 

13150 bp SphI/AgeI mchCA fragment from pSyn1-MchC_A_CP6inact1 

ligated into pSynMch13 hydrolyzed with MluI/NotI to generate 

pSynMch23 

pSynMch24 

13165 bp SphI/AgeI mchCS fragment from pSyn1-MchC_S_CP4react 

ligated into pSynMch6 hydrolyzed with MluI/NotI to generate 

pSynMch24 
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3.4.7 Transfer and Heterologous Expression of Artificial mch Clusters in Myxococcus 

xanthus 

To heterologously express the artificial mch gene clusters in the myxochromide-deficient 

mutant DK1622 ΔmchA-tet (Wenzel et al., unpublished), the expression constructs 

(pSynMch1-6, pSynMch8-12) were transformed by electroporation into the heterologous host 

strain using established standard procedures. Integration of the artificial mch clusters into the 

former mchA locus in the host chromosome was achieved via homologous recombination 

(single crossover) using the helicase gene rhlE as homologous region. The resulting genotype 

of the mutant strains as well as the genotype of the heterologous host are exemplified for the 

myxochromide AS production strain M. xanthus DK1622 ΔmchA-tet::pSynMch8 and 

illustrated in Figure S4. Oligonucleotides used for genotypic verification of the resulting 

mutant strains and PCR conditions are listed in Tables S10 and S11. 

 

 

 

Figure S4. Specific integration of artificial mch clusters into the former myxochromide A gene cluster locus of 

M. xanthus DK1622 ΔmchA-tet. (A) Genotype representation of the myxochromide A-deficient mutant M. 

xanthus DK1622 ΔmchA-tet. Integration of mch cluster constructs was achieved via single crossover using the 

helicase gene rhlE, which is part of the synthetic terminator fragments, as homologous region. (B) Genotype 

representation of mutant strains harboring artificial mch clusters. Mutant strains were verified by PCR; binding 

sites of oligonucleotides for amplification of specific diagnostic markers are shown in green. 
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Table S10: Oligonucleotides used for PCR amplification of specific markers to verify integration of artificial 

mch clusters into the host chromosome of M. xanthus DK1622 ΔmchA-tet. 

 

Oligonucleotide  Sequence    

mch5_1 
 
mch5_2 

CGGAGAACTGTGAATGCGC 
 
GTTTCATTTGATGCTCGATG 

                 

 
mch3_1 
 
mch3_2 

 
CGCCGGACGCATGACTCAC 
 
AGAGGCACTCCAGGCCTCTTA 

                 

 

Oligonucleotide pairs Amplicon size 
Present in 
heterologous host 

Present in 
production strain 

mch5_1 / mch5_2 1572 bp               -  + 

mch3_1 / mch3_2 1563 bp               - + 

 

Table S11: Protocol for polymerase chain reaction used to amplify specific markers to verify integration of 

artificial mch clusters into the host chromosome of M. xanthus DK1622 ΔmchA-tet. 

 

PCR step  Temperature [°C] Time [min] Cycles   

Initialization           95       5                 

Denaturation           95     0.5                 

Annealing           58     0.5    30   

Extension           72     1.5    

Final extension           72     10    
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3.4.8 Structure Elucidation of Novel Hybrid Myxochromides 

3.4.8.1 Cultivation of Heterologous Production Strains and Isolation of Myxochromides 

The heterologous producer strains M. xanthus DK1622 ΔmchA-tet::pSynMch8 

(Myxochromides AS) and DK1622 ΔmchA-tet::pSynMch11 (Myxochromides SC) were 

cultivated in 18 L (18x 1 L) and the producer strains DK1622 ΔmchA-tet::pSynMch14 

(Myxochromides SA), DK1622 ΔmchA-tet::pSynMch15 (Myxochromides SB) and DK1622 

ΔmchA-tet::pSynMch16 (Myxochromides SD) were cultivated in 9L (10x 1 L) CTT medium 

(casitone 1%, Tris-HCl [pH 8.0] 10 mM, K2HPO4/KH2PO4 buffer [pH 7.6] 1 mM, MgSO4 × 7 

H2O 8 mM, pH adjusted to 7.6) including 2% XAD-16 resin for 5-6 days at 30 °C and 180 

rpm. 

For the isolation of myxochromides AS, SA and SC, cells and XAD-16 Amberlite adsorber 

resin were harvested by centrifugation at 10,500 rpm and 4 °C for 15 min and were five times 

extracted with 1 L of a mixture of methanol and acetone (1:1). The organic solvents were 

removed under reduced pressure and the residues were five times extracted with 200 mL of 

ethyl acetate. After removal of the solvent, the crude extracts were dissolved in up to 10 mL 

of methanol for subsequent separation via reverse phase HPLC. A Dionex UltiMate 3000 

system equipped with a Luna 5u C18(2) 100A column (250 × 10 mm, Phenomenex) was 

used. At constant flow rate (5.0 mL/min), the following multi-step gradient was applied for 

isolation of myxochromides AS4 and SC4 (A: deionized water, B: acetonitrile): 0-5 min 10-

45% B, 5-30 min 45-65% B, 30-40 min 65-80% B, 40-41 min 80-10% B, 41-47 min 10% B. 

Myxochromide SC4 was further purified by applying the following modified gradient (A: 

deionized water, B: acetonitrile): 0-5 min 10% B, 5-50 min 10-95% B, 50-55 min 95% B, 55-

56 min 95-10% B, 56-60 min 10%B. For separation of myxochromide SA, the following 

modified gradient was applied (A: deionized water, B: acetonitrile): 0-4 min 5% B, 4-8 min 5-

65%, 8-41 min 65-95% B, 41-43 min 95% B, 43-45 min 95-5% B, 45-51 min 5% B). 

For the isolation of myxochromides SB and SD, cells and XAD adsorber resin were placed in 

a glass column over glass wool and a sand layer. Myxochromides were extracted by pouring 

600 mL n-hexane, 900 mL dichloromethane, 600 mL ethyl acetate, 600 mL acetone and 

600 mL methanol through the packed column. The fractions were concentrated and analyzed 

for target myxochromides via HPLC-MS. Separation was performed on a Dionex UltiMate 

3000 system using a Waters BEH C18 (100 × 2.1 mm, 1.7 µm) column. At a flow rate of 0.6 

mL/min, the following gradient was applied (A: deionized water + 0.1% formic acid, B: 

acetonitrile + 0.1% formic acid): 0-0.5 min 5% B, 0.5-18.5 min 5-95% B, 18.5-20.5 min 95% 

B. Full scan mass spectra were acquired in positive ESI mode in a range from 200-2000 m/z. 
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After removal of the solvent, myxochromides were dissolved in 3 mL of methanol for further 

separation via reverse phase HPLC. Myxochromides SB were purified on a Dionex Ultimate 

3000 system equipped with an EclipseC8 column (250 x 10 mm, 4 µm) at constant flowrate 

(5 mL/min) by applying the following gradient (A: deionized water, B: acetonitrile): 0-2 min 

5 % B, 2-10 min 5-65 % B, 10-30 min 65-70 % B, 30-31 min 70-95% B, 31-34 min 95 % B, 

34-35 min 95-5 % B, 35-38 min 5 % B. Myxochromides SD were purified on a Dionex 

Ultimate 3000 system equipped with a Jupiter column (250 x 10 mm, 4 µm) at constant 

flowrate (5 mL/min) by applying the following modified gradient (A: deionized water, B: 

acetonitrile): 0-2 min 5 % B, 2-10 min 5-66 % B, 10-30 min 66-68 % B, 30-31 min 68-95% 

B, 31-34 min 95 % B, 34-35 min 95-5 % B, 35-38 min 5 % B. 

UV traces were recorded by a diode array detector (DAD) with specified wave lengths (210, 

300 and 410 nm) with myxochromides showing good UV absorption at 410 nm. Retention 

times (Rt) and yields of the isolated compounds are shown in Table S12. 

 

 

Table S12: Retention times and total amounts of hybrid myxochromides isolated in this study.  

 

Mutant strain Isolated compound Rt [min] Yield [mg] 

DK1622 ΔmchA-tet::pSynMch8 Myxochromide AS4 27.6 4.5 

DK1622 ΔmchA-tet::pSynMch14 Myxochromide SA3 18.9 7.2 

DK1622 ΔmchA-tet::pSynMch15 Myxochromide SB4 23.0 7.5 

DK1622 ΔmchA-tet::pSynMch11 Myxochromide SC4 39.2 0.5 

DK1622 ΔmchA-tet::pSynMch16 Myxochromide SD3 19.6 0.7 
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3.4.8.2 Structure Elucidation of Hybrid Myxochromides 

Structure elucidation of myxochromide AS4, myxochromide SA3, myxochromide SB4, 

myxochromide SC4 and myxochromide SD3 was achieved using 1D and 2D NMR 

spectroscopy as well as HR-MS data. NMR spectra were acquired in CD3OD at a Bruker 

Ascend 700 or 500 MHz spectrometer equipped with a 5 mm TXI cryoprobe. 1D 1H and 2D 

1H−1H COSY, HSQC, HMBC (and if necessary) ROESY spectra were recorded using 

standard pulse programs and are illustrated in Figures S5, S8, S11, S14 and S17. Carbon 

chemical shifts were extracted from 2D NMR data. NMR spectroscopic data are listed in the 

Tables S14, S16, S18, S20 and S22. HR-ESI-MS data were obtained on a Bruker Maxis 4G 

mass spectrometer. Full scan mass spectra were acquired in a range from 150-2500 m/z in a 

positive mode. HR-ESI-MS data of hybrid myxochromides is shown in Table S13. 

 
Table S13: HR-ESI-MS data of isolated hybrid myxochromides. 

  

Compound Formula [M+H]+ calc. [M+H]+ exp. Δm/z [ppm] 

Myxochromide AS4 C38H52N6O8 721.39194 721.39373 2.48 

Myxochromide SA3 C48H69N7O9 888.52295 888.52409 1.28 

Myxochromide SB4 C54H80N8O10 1015.62267 1015.62390 1.21 

Myxochromide SC4 C46H66N6O8 831.50149 831.50222 0.88 

Myxochromide SD3 C44H64N6O8 791.47019 791.47051 0.40 

 

For the assignment of the absolute configuration, Marfey’s method based on amino acid 

derivatization was applied.32 0.1-0.3 mg of pure compound was hydrolyzed with 37% HCl 

(0.2 mL) in a 1.5 mL glass vial for 3 days at 110°C. The hydrolysate was evaporated to 

dryness and dissolved in H2O (100 μL). A 50 μL aliquot was supplemented with 1N NaHCO3 

(20 μL) and 1% 1-fluoro-2,4-dinitrophenyl-5-L/D-leucinamide (L-FDLA or D-FDLA) 

solution in acetone (20 μL), and the mixtures were heated to 40 °C for 8 h at 700 rpm. After 

cooling down to room temperature, the solutions were neutralized with 2N HCl (20 μL), 

evaporated to dryness and the derivatized amino acids were dissolved in 300 μL acetonitrile. 

An amino acid standard mix (Sigma Aldrich) as well as N-Me-L-Threonine (Sigma Aldrich) 

were derivatized via the same procedure and all samples were analyzed on a Dionex Ultimate 

3000 RSLC system coupled to a Bruker Maxis 4G mass spectrometer. Separation was 

performed using a Waters BEH C18, 100 × 2.1 mm, 1.7 µm dp column. At a flow rate of 0.6 

mL/min, the following gradient was applied (A: deionized water + 0.1% formic acid, B: 

acetonitrile + 0.1% formic acid): 0 min 5% B, 0-1 min 5-10% B, 1-15 min 10-35% B, 15-22 
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min 35-55% B, 22-25 min 55-80% B, 25-26 min 80% B, 26-26.5 min 80-5% B, 26.5-31 min 

5% B. Full scan mass spectra were acquired in a range from 100-1000 m/z. 

 

Structure of myxochromide AS4 

Structure elucidation of myxochromide AS4 was achieved using 1D 1H and 2D 1H-1H COSY, 

HSQC and HMBC spectra (Figure S6). Carbon chemical shifts were extracted from 2D NMR 

data. NMR spectroscopic data are listed in Table S14. The 1H NMR spectrum exhibited 

signals corresponding to five α-CH protons (δH 3.8-5.6), four CH3 groups (δH 1.3-1.7) and two 

CH2 groups (δH 2.0-2.3) together with a N-Me group (δH 3.29, 3H, s). Moreover, a number of 

downfield signals belonging to the unsaturated polyketide side chain (δH 5.8-7.3) and a CH3 

signal (δH 1.04, 3H, t) were observed. 2D NMR data revealed the presence N-Me-threonine, 

glutamine, alanine and a polyene side chain. Amino acid sequence was established by means 

of key HMBC correlations and final structure was elucidated as shown in Figure S5. For the 

assignment of the absolute configuration of myxochromide AS4, hydrolysis and Marfey 

analysis of the obtained amino acids,32 was applied as described above. The chromatograms 

obtained from HPLC-MS analysis are illustrated in Figure S7 and stereochemical assignments 

are illustrated in Table S15. Comparison of the retention times and masses of derivatized 

standard amino acids and the hydrolyzed lipopeptide revealed that all amino acids of the 

myxochromide AS4 peptide core show L-configuration, while glutamine was converted to 

glutamic acid during hydrolysis. This correlates with the assumption that in the underlying 

hybrid pathway, the condensation domain of module 3 specifically processes the L-configured 

aminoacyl donor (LCL domain), although the presence of an epimerization domain in module 

2 of the assembly line points to the incorporation of D-Ala into this position of the peptide 

core (see Chapter 3.3.8). 

 

 

 
Figure S5. Structure of myxochromide AS4 showing selected COSY (bold line) and key HMBC (arrow) 

correlations. 
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Table S14. NMR spectroscopic data of myxochromide AS4. 

Moiety Position δC
a δH

b (J in Hz) HMBCc 

L-Ala (1) 1 173.2   

 2 53.0 3.77, q (7.3) 1, 3, 4 

 3 15.3 1.65, d (7.3 ) 1, 2 

L-Ala (2) 4  173.7   

 5  51.6 3.82, q (7.0) 4, 6,7 

 6  14.9 1.39, d (7.0) 4, 5 

L-Ala (3) 7  176.6   

 8 51.1 4.03, q (7.3) 7, 9,10 

 9 16.1 1.32, m 7, 8 

N-Me-L-Thr 10 171.1   

 11  59.5 5.55, d (4.2) 1',10, 12, 19 

 12  74.0 5.46, m 13, 14 

 13  16.5 1.26, d (6.5) 11, 12 

 19 35.0 3.27, s 1', 11 

L-Gln 14 170.9   

 15  51.9 4.67, dd (3.2, 9.6) 1, 14, 16, 17 

 16a  27.8 1.93, m 15, 17, 18 

 16b  2.04, m  

 17a 31.9 2.26, m 14, 16 

 17b  2.32, m  

 18  178.2   

Side chain 1' 170.6   

 2' 119.7 6.57, d (14.6) 1' 

 3' 145.2 7.29, dd (11.4, 14.6) 1', 2', 5' 

 4' 138.4 6.52, m  

 5' 141.8 6.69, m  

 6'-14' d d  

 15' 135.1 6.24, m  

 16' 130.9 6.12, m 15', 18' 

 17' 138.1 5.79, m 15', 18', 19' 

 18' 26.7 2.14, m 16', 17', 19' 

 19' 13.7 1.02, t (7.2) 18' 
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
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Figure S6 (continued on next page) 
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Figure S6 (continued on next page) 
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Figure S6 (continued on next page) 
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Figure S6.  NMR spectra of myxochromide AS4. 
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Figure S7. Results of the analysis of the absolute configuration by advanced Marfey’s method.32 Extracted ion 

chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 

present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. B: 

Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide AS4 derivatized with 

D-FDLA reagent. D: Hydrolyzed myxochromide AS4 derivatized with L-FDLA reagent. E: Standard solution of 

N-Me-L-threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized with L-

FDLA. G: Same sample as in C analyzed for the N-Me-L-threonine D-FDLA derivative. H: Same sample as in 

D analyzed for the N-Me-L-threonine L-FDLA derivative. 

 

Table S15. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of 

the amino acids in myxochromide AS4. 

 

12 14 16 18 20 22 Rt [min]

L-AlaL-Glu

L-Glu L-Ala

N-Me-L-Thr

N-Me-L-Thr

A

B

C

D

E

F

G

H

Standard amino acid mix

D-FDLA derivatives

Standard amino acid mix

L-FDLA derivatives

Hydrolyzed myxochromide AS4

D-FDLA derivatives

Hydrolyzed myxochromide AS4

L-FDLA derivatives

N-Me-L-Thr standard

D-FDLA derivatives

N-Me-L-Thr standard

L-FDLA derivatives

Hydrolyzed myxochromide AS4

N-Me-Thr-D-FDLA derivative

Hydrolyzed myxochromide AS4

N-Me-Thr-L-FDLA derivative

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration Rt [min] m/z [M+H]+ Rt [min] m/z [M+H]+ 

Glu-D-FDLA 14.3 442.1578 14.3 442.1563 L 
Glu-L-FDLA 13.3 442.1579 13.3 442.1574 
Ala-D-FDLA 16.7 384.1520 16.7 384.1517 L 
Ala-L-FDLA 14.3 384.1524 14.3 384.1518 

Ala-D-FDLA 16.7 384.1520 16.7 384.1517 L 
Ala-L-FDLA 14.3 384.1524 14.3 384.1518 

Ala-D-FDLA 16.7 384.1520 16.7 384.1517 L 
Ala-L-FDLA 14.3 384.1524 14.3 384.1518 

N-Me-Thr-D-FDLA 14.4 428.1782 14.3 428.1774 L 
N-Me-Thr-L-FDLA 12.9 428.1786 12.8 428.1776 
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Structure of myxochromide SA3 

Structure elucidation of myxochromide SA3 was achieved using 1D 1H and 2D 1H-1H COSY, 

HSQC and HMBC spectra (Figure S9). Carbon chemical shifts were extracted from 2D NMR 

data. NMR spectroscopic data are listed in Table S16. The COSY spectrum supported by 

HSQC and HMBC data showed presence of spin systems corresponding to N-Me-threonine, 

glutamine, alanine, proline and leucine residues as well as a polyene side chain. Amino acid 

sequence was established by means of key HMBC correlations and final structure was 

elucidated as shown in Figure S8. For the assignment of the absolute configuration of 

myxochromide SA3, Marfey analysis of the obtained amino acids,32 was applied as described 

above. The chromatograms obtained from HPLC-MS analysis are illustrated in Figure S10 

and stereochemical assignments are illustrated in Table S17. Comparison of the retention 

times and m/z values of derivatized standard amino acids and the hydrolyzed lipopeptide 

revealed the presence of a D-configured leucine residue (C16) in myxochromide SA3. The 

amino acids alanine (C2), proline (C5), another leucine (C10), N-Me-threonine (C22) and 

glutamine (C26), which was converted to glutamic acid during hydrolysis, were found to be 

L-configured. These findings demonstrate that the epimerization domain of module 2 in the 

underlying hybrid assembly line is not specific for alanine, but also extert its function on the 

more bulky leucine residue. The downstream condensation domain from module 3 originating 

from the A-type mch pathway is obviously a DCL-type domain, thereby processing the D-

configured dipeptide intermediate. 

 

 

 

Figure S8. Structure of myxochromide SA3 showing selected COSY (bold line) and key HMBC (arrow) 

correlations. 
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Table S16: NMR spectroscopic data of myxochromide SA3. 

Moiety Position δC
a δH

b (J in Hz) HMBCc 

L-Ala 1 172.9   

 2 52.1 3.84, q (7.3) 1, 3, 4 

 3 15.8 1.56, d (7.3) 1, 2 

L-Pro 4  174.3   

 5  63.5 4.00, dd (9.6, 6.9) 4, 6, 9 

 6a  29.8 1.89, m 5, 7 

 6b  2.24, m 5, 7 

 7a 26.4 2.02, m 6, 8 

 7b  2.16, m 6, 8 

 8a 47.8 3.55, m 7 

 8b  3.74, m 7 

L-Leu 9  172.0   

 10 52.1 4.40, m 9, 11, 12, 15 

 11a 38.0 1.51, m 10 

 11b  1.56, m 10 

 12 25.8 1.53, m 10, 11, 13, 14 

 13 23.4 0.98, d (6.9) 11, 12, 14 

 14 23.4 0.98, d (6.9) 13 

D-Leu 15 174.8   

 16 51.7 4.78, t (7.5) 15, 18, 21 

 17a 40.4 1.49, m 18, 19, 20 

 17b  1.57, m 18, 19, 20 

 18 25.9 1.52, m  

 19 22.6 0.94, m 20 

 20 22.6 0.94, m 19 

N-Me-L-Thr 21 169.0   

 22  60.7 5.57, d (3.3) 1', 21, 23 

 23  72.2 5.73, m 24, 25 

 24  16.3 1.09, d (6.6) 21, 22 

 30 35.2 3.21, s 1', 22 

L-Gln 25 171.5   

 26  54.0 4.51, dd (8.4, 8.1) 1, 25, 27, 28 

 27a  28.8 1.80, m 29 

 27b  2.34, m 29 

 28a 32.1 2.23, m 29 

 28b  2.32, m 29 

 29  177.2   

Side chain 1' 170.9   

 2' 120.0 6.60, d (14.7) 1' 

 3' 144.8 7.35, dd (14.7, 11.5) 1' 

 4' 131.3 6.49, m  

 5'-15' d d d 

 16' 133.1 6.14, m  
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 17' 131.1 5.75, m 18' 

 18' 18.2 1.78, d (6.6) 17' 
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
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Figure S9 (continued on next page) 
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Figure S9 (continued on next page) 

1 H
-1 H

 C
O

S
Y

 s
pe

ct
ru

m
 o

f 
m

yx
oc

hr
om

id
e 

S
A

3 
 i

n 
C

D
3O

D
 (

50
0 

M
H

z)
 



229     Synthetic Biotechnology to Engineer Myxobacterial Lipopeptide Biosynthesis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9 (continued on next page) 
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Figure S9. NMR spectra of myxochromide SA3. 
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Figure S10. Results of the analysis of the absolute configuration by advanced Marfey’s method.32 Extracted ion 
chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 
present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. B: 
Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide SA3 derivatized with 
D-FDLA reagent. D: Hydrolyzed myxochromide SA3 derivatized with L-FDLA reagent. E: Same sample as in C 
analyzed for the L-glutamic acid D-FDLA derivative. F: Same sample as in D analyzed for the L-glutamic acid 
L-FDLA derivative. G: Standard solution of N-Me-L-threonine derivatized with D-FDLA. H: Standard solution 
of N-Me-L-threonine derivatized with L-FDLA. I: Same sample as in C analyzed for the N-Me-L-threonine D-
FDLA derivative. J: Same sample as in D analyzed for the N-Me-L-threonine L-FDLA. 

 
Table S17. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of 

the amino acids in myxochromide SA3. 

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.3 442.1578 14.3 442.1576 L 
Glu-L-FDLA 13.3 442.1579 13.3 442.1570 
Ala-D-FDLA 16.7 384.1520 16.7 384.1515 L 
Ala-L-FDLA 14.3 384.1524 14.3 384.1511 

Pro-D-FDLA 16.2 410.1675 16.2 410.1676 L 
Pro-L-FDLA 14.5 410.1675 14.5 410.1673 

Leu-D-FDLA 21.1 426.1989 21.1 426.1993 L 
Leu-L-FDLA 17.8 426.1988 17.8 426.1986 

Leu-D-FDLA 21.1 426.1989 17.8 426.1993 D 
Leu-L-FDLA 17.8 426.1988 21.1 426.1982 

N-Me-Thr-D-FDLA 14.4 428.1782 14.4 428.1786 L 
N-Me-Thr-L-FDLA 12.9 428.1786 12.9 428.1785 

L-Glu L-AlaL-Pro L-Leu(L-Ile)

L-Leu(L-Ile)L-Glu L-Ala L-Pro

A

B

C

D

E

F

Standard amino acid mix

D-FDLA derivatives

Standard amino acid mix

L-FDLA derivatives

Hydrolyzed myxochromide SA3

D-FDLA derivatives

Hydrolyzed myxochromide SA3

L-FDLA derivatives

Hydrolyzed myxochromide SA3

Glu-D-FDLA derivative

Hydrolyzed myxochromide SA3

Glu-L-FDLA derivative

N-Me-L-Thr

N-Me-L-Thr

G

H

I

J

12 14 16 18 20 22 Rt [min]

N-Me-L-Thr standard

D-FDLA derivatives

N-Me-L-Thr standard

L-FDLA derivatives

Hydrolyzed myxochromide SA3

N-Me-Thr-D-FDLA derivative

Hydrolyzed myxochromide SA3

N-Me-Thr-L-FDLA derivative
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Structure of myxochromide SB4 

Structure elucidation of myxochromide SB4 was achieved using 1H and 2D 1H-1H COSY, 

HSQC, HMBC and ROESY spectra (Figure S12). Carbon chemical shifts were extracted from 

2D NMR data. NMR spectroscopic data are listed in the Table S18. The 1H NMR spectrum 

closely resembled to that of myxochromide SA3. In addition to the common structural parts, 

analysis of 2D NMR spectra corroborated the presence of an additional leucine residue 

compared to myxochromide SA3. Key HMBC correlations established the amino acid 

sequence and finalized its planar structure as depicted in Figure S11. Length of the polyene 

side chain was deduced based on the HR-MS data and molecular formula. For the assignment 

of the absolute configuration of myxochromide SB4, hydrolysis and Marfey analysis of the 

obtained amino acids,32 was applied as described above. The chromatograms obtained from 

HPLC-MS analysis are illustrated in Figure S13 and stereochemical assignments are 

illustrated in Table S19. Comparison of the retention times and masses of derivatized standard 

amino acids and the hydrolyzed lipopeptide revealed that one of the three leucine residues 

(C10, C16 and C22) from myxochromide SA3 has D configuration. The remaining leucine 

residues as well as the amino acids alanine (C2), proline (C5), N-Me-threonine (C28) and 

glutamine (C32), which was converted to glutamic acid during hydrolysis, were found to be 

L-configured. According to the domain organization of the underlying hybrid assembly line, 

which harbors an epimerization domain in module 2, the D-configured leucine was assigned 

to C22. This also correlates with the structure of myxochromide SA3 and identifies the 

condensation domain of module 3 originating from the B-type mch pathway as a DCL domain. 

 

 
Figure S11. Structure of myxochromide SB4 showing selected COSY (bold line), ROESY (dashed arrow) and 

key HMBC (arrow) correlations. 
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Table S18. NMR spectroscopic data of myxochromide SB4. 

Moiety Position δC
a δH

b (J in Hz) HMBCc ROESYd, e 

L-Ala 1 174.5    

 2 50.3 4.26 m 1,3  

 3 15.5 1.42 d (7.4) 1,2  

L-Pro 4  174.0    

 5  63.6 4.11 m 4, 6a/b,7a/b 10 

 6a  30.5 1.90 m 4,5,7a/b  

 6b 30.5 2.35 m 4, 5,7a/b  

 7a 25.9 2.05 m 5,6a/b,8a/b  

 7b 25.9 2.13 m 5,6a/b,8a/b  

 8a 48.3 3.68 m 6a/b,7a/b 10 

 8b 48.3 3.85 m 6a/b,7a/b,9 10 

L-Leu 9  174.0    

 10 49.6 4.95 dd (f) 9,11,12,15 8a/b, 5 

 11a 41.3 1.51 m 10,12  

 11b 41.3 1.64 m 10,12  

 12 25.8 1.65 m 13,14  

 13 21.2 0.99 m 11,12,14  

 14 23.5 0.95 m 11,12,13  

L-Leu 15 174.4    

 16 54.5 4.27 m 15,17a/b,18,21  

 17a 41.8 1.65 m 19,20  

 17b 41.8 1.76 m 19,20  

 18 25.9 1.74 m   

 19 21.1 0.91 d (6.1) 17a/b  

 20 23.1 1.01 m 17a/b  

D-Leu 21 174.1    

 22 52.6 4.68 m 21,23a/b,24  

 23a 44.3 1.59 m 22,24,25,26  

 23b 44.3 1.44 m 22,24,25,26  

 24 25.7 1.52 m   

 25 22.8 0.94 m 23a/b,24,25  

 26 22.8  0.94 m 23a/b,24,25  

N-Me-L-Thr 27 168.6    

 28  61.0 5.57 d (3.5) 1´,27,29,36  

 29  71.0 5.83 m 30,31  

 30  16.2 1.09 d (6.6) 27,28,29  

 36 35.5 3.23 s  1´,28  

L-Gln 31 170.7    

 32  55.4 4.12 m 31,33,34  

 33a  28.5 1.92 m 32,34,35  

 33b 28.5 2.16 m 32,34,35  

 34a 31.9 2.29 m 32,33a/b,35  

 34b 31.9 2.53 m 32,33a/b,35  
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 35 177.4    

Side chain 1' 170.8    

 2' 120.0 6.69 d (14.9) 1´,3´  

 3' 145.0 7.36 dd (14.5,11.2) 1´,2´,4´  

 4' 138.4 6.55 m 5´  

 5' 141.6 6.72 m 3´,4´  

 6´-14´ f f   

 15' 135.1 6.24 m 17´  

 16' 130.9 6.12 dd (9.8,15.0) 17´  

 17' 138.1 5.79 m 15´,18´,16´  

 18' 26.5 2.14 m 16´,17´,  

 19´ 13.6 1.02 t (7.4) 18´,17´  
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d proton showing ROESY correlations to indicated protons. 
e acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
f overlapped signals. 
g correlation obtained from HMBC spectra in (CD3)2SO (data not shown). 
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Figure S12 (continued on next page) 
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Figure S12 (continued on next page) 
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Figure S12 (continued on next page) 
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Figure S12 (continued on next page) 

H
M

B
C

  s
pe

ct
ru

m
 o

f 
m

yx
oc

hr
om

id
e 

S
B

4 
 in

 C
D

3O
D

 (
50

0 
M

H
z)

 



239     Synthetic Biotechnology to Engineer Myxobacterial Lipopeptide Biosynthesis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S12.  NMR spectra of myxochromide SB4. 
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Figure S13. Results of the analysis of the absolute configuration by advanced Marfey’s method.32 Extracted ion 

chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 

present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. B: 

Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide SB4 derivatized with 

D-FDLA reagent. D: Hydrolyzed myxochromide SB4 derivatized with L-FDLA reagent. E: Standard solution of 

N-Me-L-threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized with L-

FDLA. G: Same sample as in C analyzed for the N-Me-L-threonine D-FDLA derivative. H: Same sample as in 

D analyzed for the N-Me-L-threonine L-FDLA derivative. 

Table S19. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of 

the amino acids in myxochromide SB4. 

 

A

B

C

D

E

F

G

H

Standard amino acid mix

D-FDLA derivatives

Standard amino acid mix

L-FDLA derivatives

Hydrolyzed myxochromide SB4

D-FDLA derivatives

Hydrolyzed myxochromide SB4

L-FDLA derivatives

N-Me-L-Thr standard

D-FDLA derivatives

N-Me-L-Thr standard

L-FDLA derivatives

Hydrolyzed myxochromide SB4

N-Me-Thr-D-FDLA derivative

Hydrolyzed myxochromide SB4

N-Me-Thr-L-FDLA derivative

L-Leu(L-Ile)

L-Leu(L-Ile)

L-AlaL-ProL-Glu

L-ProL-AlaL-Glu

N-Me-L-Thr

N-Me-L-Thr

12 14 16 18 20 22 Rt [min]

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.3 442.1578 14.3 442.1572 L 
Glu-L-FDLA 13.3 442.1579 13.3 442.1582 

Ala-D-FDLA 16.7 384.1520 16.7 384.1513 L 
Ala-L-FDLA 14.3 384.1524 14.3 384.1525 
Pro-D-FDLA 16.2 410.1675 16.2 410.1672 L 
Pro-L-FDLA 14.5 410.1675 14.5 410.1676 

Leu-D-FDLA 21.1 426.1989 21.1 426.1986 L 
Leu-L-FDLA 17.8 426.1988 17.8 426.1985 

Leu-D-FDLA 21.1 426.1989 21.1 426.1986 L 
Leu-L-FDLA 17.8 426.1988 17.8 426.1985 

Leu-D-FDLA 21.1 426.1989 17.8 426.1991 D 
Leu-L-FDLA 17.8 426.1988 21.1 426.1988 

N-Me-Thr-D-FDLA 14.4 428.1782 14.4 428.1775 L 
N-Me-Thr-L-FDLA 12.9 428.1786 12.9 428.1779 
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Structure of myxochromide SC4 

Structure elucidation of myxochromide SC4 was achieved using 1D 1H and 2D 1H-1H COSY, 

HSQC, HMBC and ROESY spectra (Figure S15). Carbon chemical shifts were extracted from 

2D NMR data. NMR spectroscopic data are listed in Table S20. The COSY spectrum 

supported by HSQC and HMBC data showed presence of spin systems corresponding to N-

Me-threonine, glutamine, proline and leucine residues as well as a polyene side chain. Amino 

acid sequence was established by means of key HMBC correlations and final structure was 

elucidated as shown in Figure S14. For the assignment of the absolute configuration of 

myxochromide SC4, hydrolysis and Marfey analysis of the obtained amino acids,32 was 

applied as described above.32 The chromatograms obtained from HPLC-MS analysis are 

illustrated in Figure S16 and stereochemical assignments are illustrated in Table S21. 

Comparison of the retention times and masses of derivatized standard amino acids and the 

hydrolyzed lipopeptide revealed that one of the two leucine residues (C7 and C13) from 

myxochromide SC4 is D-configured. The second leucine residue as well as the amino acids 

proline (C2), N-Me-threonine (C19) and glutamine (C23), which was converted to glutamic 

acid during hydrolysis, were found to be L-configured. According to the domain organization 

of the underlying hybrid assembly line, which harbors an epimerization domain in module 2, 

the D-configured leucine was assigned to C13. This also correlates with the structures of 

myxochromide SA3 myxochromide SB4 and and identifies the condensation domain of 

module 3 originating from the C-type mch pathway as a DCL domain. 

 

 

 

Figure S14. Structure of myxochromide SC4 showing selected COSY (bold line), ROESY (dashed arrow) and 

key HMBC (arrow) correlations. 
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Table S20. NMR spectroscopic data of myxochromide SC4. 

Moiety Position δC
a δH

b (J in Hz) HMBCc ROESYd,e,g 

L-Pro 1 174.2    

 2 63.0 4.34, m 1, 3, 7 7 

 3a 32.6 2.18, m 4  

 3b  2.42, m 4  

 4 23.4 2.00, m   

 5a 47.7 3.59, m   

 5b  3.74, m   

L-Leu 6  173.9 f    

 7  49.7 4.66, m 6, 8, 9 2 

 8a  42.5 1.55, m   

 8b  1.62, m   

 9 25.6 1.53, m   

 10 23.3 0.93, m 8, 9  

 11 23.3 0.93, m 8, 9  

D-Leu 12  173.9 f    

 13 54.4 4.26, m 12, 14,15,18  

 14a 40.8 1.39, m 12, 15  

 14b  1.75, m 12, 15  

 15 25.6 1.53, m   

 16 21.5 0.91, m 15  

 17 21.5 0.91, m 15  

N-Me-L-Thr 18 170.8    

 19  61.6 5.41, m 18  

 20  72.1 5.97, m   

 21  16.8 1.24, d (6.5) 19, 20  

 27 34.8 3.40, m 1', 19  

L-Gln 22 171.1    

 23  54.4 4.42, m 1, 24, 25  

 24a  28.8 2.03, m 26  

 24b  2.11, m 26  

 25a 31.7 2.22, m 26  

 25b  2.22, m 26  

 26  176.9    

Side chain 1' 170.8    

 2' 119.8 6.65, d (14.8)   

 3' 144.9 7.34, dd (14.8,11.7 )   

 4' 141.8 6.54, m   

 5'-14' f f   

 15' 134.9 6.27, m   

 16' 130.7 6.12, dd (15.0, 10.0 )   

 17' 138.1 5.79, dt (15.0, 6.7) 15'  

 18' 26.6 2.14, m 17', 19'  

 19' 13.6 1.02, t (7.4) 18'  
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a acquired at 175 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 700 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d proton showing ROESY correlations to indicated protons. 
e acquired at 700 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
f overlapped signals. 
gonly relevant correlations listed 
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Figure S15 (continued on next page) 
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Figure S15 (continued on next page) 
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Figure S15 (continued on next page) 
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Figure S15 (continued on next page) 
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Figure S15.  NMR spectra of myxochromide SC4. 
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Figure S16. Results of the analysis of the absolute configuration by advanced Marfey’s method.32 Extracted ion 
chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 
present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. B: 
Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide SC4 derivatized with 
D-FDLA reagent. D: Hydrolyzed myxochromide SC4 derivatized with L-FDLA reagent. E: Standard solution of 
N-Me-L-threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized with L-
FDLA. G: Same sample as in C analyzed for the N-Me-L-threonine D-FDLA derivative. H: Same sample as in 
D analyzed for the N-Me-L-threonine L-FDLA derivative 
. 

 
Table S21. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of 

the amino acids in myxochromide SC4. 

 

 

12 14 16 18 20 22 Rt [min]

A

B

C

D

E

F

G

H

Standard amino acid mix

D-FDLA derivatives

Standard amino acid mix

L-FDLA derivatives

Hydrolyzed myxochromide SC4

D-FDLA derivatives

Hydrolyzed myxochromide SC4

L-FDLA derivatives

N-Me-L-Thr standard

D-FDLA derivatives

N-Me-L-Thr standard

L-FDLA derivatives

Hydrolyzed myxochromide SC4

N-Me-Thr-D-FDLA derivative

Hydrolyzed myxochromide SC4

N-Me-Thr-L-FDLA derivative

L-Leu(L-Ile)

L-Leu(L-Ile)

L-ProL-Glu

L-ProL-Glu

N-Me-L-Thr

N-Me-L-Thr

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.3 442.1578 14.3 442.1572 L 
Glu-L-FDLA 13.3 442.1579 13.3 442.1572 
Pro-D-FDLA 16.2 410.1675 16.2 410.1679 L 
Pro-L-FDLA 14.5 410.1675 14.5 410.1668 

Leu-D-FDLA 21.1 426.1989 21.1 426.1990 L 
Leu-L-FDLA 17.8 426.1988 17.8 426.1982 

Leu-D-FDLA 21.1 426.1989 17.8 426.1981 D 
Leu-L-FDLA 17.8 426.1988 21.1 426.1980 

N-Me-Thr-D-FDLA 14.4 428.1782 14.4 428.1780 L 
N-Me-Thr-L-FDLA 12.9 428.1786 12.9 428.1777 
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Structure of myxochromide SD3 

Structure elucidation of myxochromide SD3 was achieved using 1D 1H and 2D 1H-1H COSY, 

HSQC and HMBC spectra (Figure S18). Carbon chemical shifts were extracted from 2D 

NMR data. NMR spectroscopic data are listed in Table S22. The COSY spectrum supported 

by HSQC and HMBC data revealed the presence of N-Me-threonine, glutamine, alanine and 

leucine residues as well as and a polyene side chain. Amino acid sequence was established by 

means of key HMBC correlations and final structure was elucidated as shown in Figure S17. 

For the assignment of the absolute configuration of myxochromide SD3, hydrolysis and 

Marfey analysis of the obtained amino acids,32 was applied as described above. The 

chromatograms obtained from HPLC-MS analysis are illustrated in Figure S19 and 

stereochemical assignments are illustrated in Table S23. Comparison of the retention times 

and masses of derivatized standard amino acids and the hydrolyzed lipopeptide revealed that 

one of the two leucine residues (C5 and C11) from myxochromide SD3 is D-configured. The 

second leucine residue as well as the amino acids alanine (C2), N-Me-threonine (C17) and 

glutamine (C21), which was converted to glutamic acid during hydrolysis, were found to be 

L-configured. This is in accordance with the absolute configurations observed in 

myxochromides SA3, SB4 and SC4. According to the domain organization of the underlying 

hybrid assembly line, which harbors an epimerization domain in module 2, the D-configured 

leucine was assigned to C11. This also correlates with the structures of myxochromide SA3 

myxochromide SB4 and and identifies the condensation domain of module 3 originating from 

the D-type mch pathway as a DCL domain.  

 

 

 

 

 

 

 

 

 

Figure S17. Structure of myxochromide SD3 showing selected COSY (bold line) and key HMBC (arrow) 
correlations. 
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Table S22. NMR spectroscopic data of myxochromide SD3. 

Moiety Position δC
a δH

b (J in Hz) HMBCc 

L-Ala 1 172.7   

 2 50.6 4.21 m 1,3,4 

 3 18.7 1.37 d (6.7) 1,3 

L-Leu 4  174.7   

 5  54.2 4.19 m 4,6a/b,7, 10e 

 6a  40.6 1.58 m  

 6b  1.65 m  

 7 25.9 1.71 m  

 8 23.2 0.99 d (6.3) 6,7,9 

 9 21.1 0.91 d (6.5) 6,7,8 

D-Leu 10  175.2   

 11 53.1 4.39 m 10,12,13,16 

 12a 40.6 1.49 m 11 

 12b 40.6 1.60 m 11 

 13 25.7 1.56 m  

 14 22.6 0.92 m 12,13,15 

 15 22.6 0.92 m 12,13,14 

N-Me-L-Thr 16 169.8   

 17  59.5 5.43 m 16,18 

 18  72.4 5.52 m 19,20 

 19  17.2 1.15 d (6.9) 18,20 

 25 35.1 3.02 s 1´,17 

L-Gln 20 170.9   

 21  53.9 3.95 m 1,20,22a/b,23a/b 

 22a  26.3 2.13 m 20,21,23a/b,24 

 22b 26.3 2.25 m 20,21,23a/b,24 

 23a 32.1 2.16 m 24 

 23b 32.1 2.27 m 24 

 24  177.7   

Side chain 1' 170.6   

 2' 120.1 6.59 m 1´,4´ 

 3' 144.9 7.35 m 1´ 

 4' 131.5 6.53 m  

 5´-15' dd dd  

 16' 133.1 6.15 m  

 17' 131.1 5.75 m   

 18' 18.3 1.78 d (7.1) 17´,16´ 
a acquired at 125 MHz and assigned from 2D NMR spectra, referenced to solvent signal CD3OD at δ 49.15 ppm. 
b acquired at 500 MHz, referenced to solvent signal CD3OD at δ 3.31 ppm. 
c proton showing HMBC correlations to indicated carbons. 
d overlapped signals. 
eHMBC acquired with 2k F1 resolution 
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Figure S18 (continued on next page) 
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Figure S18 (continued on next page) 
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Figure S18 (continued on next page) 
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Figure S18.  NMR spectra of myxochromide SD3. 

H
M

B
C

  s
pe

ct
ru

m
 o

f 
m

yx
oc

hr
om

id
e 

S
D

3 
 in

 C
D

3O
D

 (
50

0 
M

H
z)

 



Synthetic Biotechnology to Engineer Myxobacterial Lipopeptide Biosynthesis     256 
 

Figure S19. Results of the analysis of the absolute configuration by advanced Marfey’s method.32 Extracted ion 

chromatograms (EIC) for ±0.05 m/z corresponding to the [M+H]+ ions of derivatized amino acids, which are 

present in the peptide scaffold, are shown. A: Standard amino acid mix derivatized with D-FDLA reagent. B: 

Standard amino acid mix derivatized with L-FDLA reagent. C: Hydrolyzed myxochromide SD3 derivatized with 

D-FDLA reagent. D: Hydrolyzed myxochromide SD3 derivatized with L-FDLA reagent. E: Standard solution of 

N-Me-L-threonine derivatized with D-FDLA. F: Standard solution of N-Me-L-threonine derivatized with L-

FDLA. G: Same sample as in C analyzed for the N-Me-L-threonine D-FDLA derivative. H: Same sample as in 

D analyzed for the N-Me-L-threonine L-FDLA derivative. 

 
Table S23. Analytical data of detected amino acid derivatives and assignment of the absolute configuration of 

the amino acids in myxochromide SD3. 

 

 

12 14 16 18 20 22 Rt [min]

A

B

C

D

E

F

G

H

Standard amino acid mix

D-FDLA derivatives

Standard amino acid mix

L-FDLA derivatives

Hydrolyzed myxochromide SD3

D-FDLA derivatives

Hydrolyzed myxochromide SD3

L-FDLA derivatives

N-Me-L-Thr standard

D-FDLA derivatives

N-Me-L-Thr standard

L-FDLA derivatives

Hydrolyzed myxochromide SD3

N-Me-Thr-D-FDLA derivative

Hydrolyzed myxochromide SD3

N-Me-Thr-L-FDLA derivative

N-Me-L-Thr

N-Me-L-Thr

L-Glu

L-Glu

L-Ala

L-Ala L-Leu(L-Ile)

L-Leu(L-Ile)

aa-FDLA 

derivative 

L-aa standards Peptide hydrolysate Assigned 

configuration tR [min] m/z [M+H]+ tR [min] m/z [M+H]+ 

Glu-D-FDLA 14.3 442.1578 14.3 442.1575 L 
Glu-L-FDLA 13.3 442.1579 13.3 442.1564 

Ala-D-FDLA 16.7 384.1520 16.7 384.1512 L 
Ala-L-FDLA 14.3 384.1524 14.3 384.1519 

Leu-D-FDLA 21.1 426.1989 21.1 426.1986 L 
Leu-L-FDLA 17.8 426.1988 17.8 426.1986 

Leu-D-FDLA 21.1 426.1989 17.8 426.1982 D 
Leu-L-FDLA 17.8 426.1988 21.1 426.1984 

N-Me-Thr-D-FDLA 14.4 428.1782 14.4 428.1773 L 
N-Me-Thr-L-FDLA 12.9 428.1786 12.9 428.1784 
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4 Discussion & Outlook 

4.1 General Scope of the Present Work 

The present studies described in this thesis deal with various aspects of myxobacterial natural 

product research ranging from secondary metabolite pathway identification, evolution and 

diversification to synthetic biology approaches in order to heterologously express artificial 

biosynthetic gene clusters based on synthetic DNA. 

It could be demonstrated how genome-mining on a large scale can contribute to the in-depth 

analysis of the distribution and evolution of PKS/NRPS-derived lipopeptide pathways leading 

to numerous diversified gene cluster types responsible for the production of structurally 

different lipopeptide core structures. Furthermore, the observed structural differences could be 

rationalized on the basis of detailed comparative in silico sequence analyses, which 

additionally provided valuable insights into the evolutionary scenarios that might have led to 

the emergence of different but closely related lipopeptide pathways in various strains covering 

different genera of myxobacteria. 

In addition, synthetic DNA platforms for the heterologous expression of myxobacterial 

lipopeptide pathways based on a dedicated gene library consisting of different lipopeptide 

biosynthetic genes from the identified lipopeptide gene clusters were established exhibiting a 

broad applicability. They provide the basis for the rational engineering of the underlying 

megasynthetases to produce hybrid lipopeptides, which do not occur naturally, thereby further 

increasing the structural diversity of this compound class. In the course of this study, a highly 

flexible assembly strategy for the construction of large artificial expression constructs 

harboring the synthetic gene clusters was established allowing the directed modification of the 

artificial pathways. Moreover, it was demonstrated that the established synthetic DNA 

platforms can also be used for the investigation of biosynthetic mechanisms and to evaluate in 

silico predictions regarding substrate specificities. Finally, synthetic biology approaches were 

used to mimic the observed mechanisms of pathway diversification, exemplarily 

demonstrated for the previously described ‘module-skipping’ process. 

 

4.2 Bacterial Secondary Metabolite Pathways – Evolution and Diversification 

Bacterial biosynthetic gene clusters are ideal genetic elements used as model systems to study 

gene evolution. The major prerequisite for comprehensive studies on pathway evolution and 

diversification is the availability of a robust genome database that can be screened for related 

natural product pathways using genome-mining tools.1 As the costs for whole genome 

sequencing dramatically dropped over the past decades, it is now possible to decipher and 
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analyze bacterial genome sequences in a high-throughput manner using steadily improved 

state-of-the-art next generation sequencing platforms,2 thereby revealing an outstanding 

degree of natural product pathway diversification and their widespread distribution and 

frequency among different bacterial taxa. This particularly accounts for the tendency of 

bacterial biosynthetic gene clusters to get transferred to other host microbes via horizontal 

gene transfer,3–5 thereby providing the possibility to further evolve in a different genomic 

context. In addition, microbial biosynthetic gene clusters evolve in relatively short time 

frames compared to genes from higher organisms, which results from shorter replication times 

of their host strains.6 

Among the prokaryotic genomes sequenced so far, myxobacterial genomes still represent a 

minor fraction in common sequence repositories. However, the number of myxobacterial 

genomes exploded over the past years as a result of still reducing sequencing costs and the 

isolation of hundreds of novel strains. With the increasing number of available genome 

sequences, comprehensive studies on the evolutionary relationships of interesting 

myxobacterial natural product pathways, particularly polyketide synthase (PKS) and 

nonribosomal peptide synthetase (NRPS) pathways, just begin to contribute to the still limited 

knowledge that currently exists on the evolution of microbial biosynthetic gene clusters.7–11 

Moreover, the structural diversity of the produced natural products can be directly assessed 

and rationally explained on a genetic basis as biosynthetic gene clusters provide a clear link 

between genotype (biosynthetic gene cluster) and phenotype (natural product(s)). Common 

mechanisms by which biosynthetic gene clusters diverge into new pathway types such as 

point mutations, rearrangements, replacements, insertions, and deletions are generally known 

and have been previously described for very few examples based on phylogenetic data.10,12 

However, these reports rarely gave detailed insights into how these evolutionary processes 

explicitly change the pathways on the sequence level, thereby lacking practical implications 

for biotechnological applications. 

Studying natural products pathway evolution is not just a fascinating aspect for theoretical 

biologists as it has tremendous implications for the modification of existing pathways and, 

more ambitiously, for the tailor-made recreation of entirely new pathways from the scratch. 

Understanding the ‘evolutionary rules’ that direct natural pathway diversification would 

ultimately contribute to the realization of this long-term goal, thereby improving the chances 

to synthesize novel products with useful biological functions.13 

In the following, the emergence of numerous myxobacterial lipopeptide pathways through 

diversification via various recombination events, such as module duplication and (partial) 
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module deletion, as well as via point mutations is discussed from an evolutionary point of 

view providing valuable information for the future engineering of NRPS megasynthetases. 

 

4.2.1 Recombination Events Lead to Myxochromide Pathway Diversification 

Screening of the available 122 myxobacterial genome sequences revealed 14 putative 

myxochromide gene clusters (mch clusters) in addition to the previously described A-type 

mch cluster from M. xanthus DK1622 and S-type mch cluster from S. aurantiaca DW4/3-

1.14,15 Among those, four additional A-type and two S-type mch clusters were identified as 

well as the putative mch cluster from Myxococcus sp. 171, which was recently demonstrated 

to be a myxochromide B producer,16 was completely deciphered for the first time by a 

combination of genome sequencing and screening of a cosmid library of this strain, which 

was constructed during this thesis. The remaining 7 mch clusters represent three entirely new 

mch pathways, designated C-type, D-subtype 1 and D-subtype 2 mch clusters, which were 

predicted to encode the megasynthetases responsible for the biosynthesis of novel 

myxochromide cores using bioinformatics tools. In silico prediction of the expected 

lipopeptide products based on the acquired sequence data in conjunction with results from 

previous studies on myxochromide A and S biosynthesis suggested the production of novel 

lipopentapeptides, accordingly designated myxochromides C and D, which was 

experimentally verified with success. Sequence analysis of the identified B-type, C-type and 

D-type mch clusters revealed striking differences regarding the corresponding assembly line 

organizations, which resulted from homologous recombination events.17 

The lipopeptide myxochromide B3 has been previously detected and structurally characterized 

in a secondary metabolomics approach. Myxochromide B3 harbors an additional leucine 

residue adjacent to the leucine residue present in myxochromides A. Whether this additional 

leucine residue in myxochromide B3 is introduced as a result of a module duplication event or 

an iteratively acting leucine-specific NRPS module was not clear.16 The underlying 

biosynthetic pathway was not identified as the genome sequence of the producer strain 

Myxococcus sp. 171 was not available at that time. In this thesis, the biosynthetic pathway 

responsible for the biosynthesis of myxochromides B was completely established and indeed 

revealed a duplicated module in the MchC NRPS subunit, which was acquired via 

homologous recombination.17 Phylogenetic analysis revealed that the heptamodular 

myxochromide B megasynthetase contains a duplicate of the catalytic domains A3, CP3 and 

C4 compared to other myxochromide assembly lines. Additionally, phylogenetic studies in 

conjunction with the analysis of local codon usage adaption along the catalytic domains 
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supports the hypothesis that the B-type mch cluster evolved from an ancestral A-type cluster 

by duplication of the A3-CP3-C4 region. Intriguingly, detailed sequence analysis shed light on 

the exact recombination sites, which are located in the regions encoding the N-termini of A 

domains of module 3 and 4 of the MchC subunit near the regions encoding C-A domain 

interfaces. Consequently, an ‘A-T-C’ unit was duplicated instead of a dedicated C-A-T 

module.17 

Since the distinct C, A and T domains, which make up an entire functional module, are 

usually highly homologous and thus share high sequence similarities, recombination events 

are assumed to take place regularly in the course of pathway evolution. In light of these 

results, homologous recombination in NRPS pathways might be a common strategy by which 

Nature employs pathway diversification. The first phylogenetic studies on selected PKS and 

NRPS systems revealed significant rates of homologous recombination and gene 

duplication.18–21 In particular, duplication events are assumed to play an essential role in the 

overall genesis of NRPS biosynthetic pathways. In many cases, individual ‘A-T-C’ units from 

a certain NRPS subunit group together as a monophyletic clade indicating that NRPSs could 

hypothetically arise from tandem duplication of a single ancestral module.11 A fascinating 

example that supports this hypothesis is the family of related ferrichrome synthetases from 

various fungal species ranging from fission yeast, filamentous ascomycetes and 

basidiomycetes. Phylogenetic analysis of the ferrichrome NRPSs suggested that these 

biosynthetic machineries derive from an ancestral gene encoding a hexamodular NRPS, 

which eventually evolved independently via additional recombination events and that the 

hexamodular NRPS is most likely created by tandem duplication of ‘A-T-C’ units.11 A similar 

scenario seen in ferrichrome synthetases is described for the 49 kb gene encoding the yet 

uncharacterized NRPS Plu2670 from Photorhabdus luminescens from which module 

encoding regions group into five clades exhibiting high sequence similarity of > 85%.22 The 

same conclusion is drawn from phylogenetic analyses of the multimodular PKS responsible 

for the production of mycolactone in Mycobacterium ulcerans. This PKS machinery consists 

of the three individual subunits MLSA1, MLSA2 and MLSB and modules of these subunits 

also group into monophyletic clades with sequence identity of > 98% suggesting the role of 

an ancestral gene for the generation of this large biosynthetic complex via intragenic module 

duplication.23 A recent phylogenetic study on the evolution of polyketide structural diversity 

in the genus Streptomyces by Jenke-Kodama et al. also underpins the role of module 

duplications in natural product pathway evolution. They showed that locations of the 

corresponding recombination sites are not restricted to interdomain linkers, but can be also 
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located in homologous stretches of the corresponding domains.19 Nevertheless, recombination 

sites may be confined to regions that account for the structural diversity of the produced 

compounds. Although the duplication of ‘A-T-C’ units in NRPS megasynthetases seems to be 

quite common in the ‘de novo’ generation of NRPS pathways, an intragenic module 

duplication event in an already ‘established’ functional bacterial NRPS assembly line was 

never described before in such detail. Thus, the observed module duplication event leading to 

the myxochromide B pathway builds the basis for developing concepts for NRPS pathway 

diversification via intragenic module duplication and for the rational modification of the 

underlying pathways via engineered module duplications. It might be possible to engineer 

artificial C-A interdomain linker sequences at different positions of a gene cluster in a way 

that they contain the corresponding regions (N-termini of Ax/Ax+1 domain interfaces, x = 

module number) of the C-A domain interface as observed in the B-type mch cluster, thereby 

facilitating functional coupling of noncognate modules. 

In addition to recombination-based duplication of biosynthetic gene cluster regions, deletions 

of domain or module encoding regions were also detected in a few bacterial pathways.24–26 

Recent studies on the evolutionary roots and genetic distribution of cyanobacterial toxin 

pathways revealed that many toxin producer strains acquired the corresponding pathways 

responsible for the production of several hepatotoxins via horizontal gene transfer, mostly 

mediated by transposases associated with these pathways. This automatically led to the 

emergence of non-toxic strains, in which large portions (up to 90%) of the underlying 

pathways were deleted leading to the inability to produce these toxins through inactivation of 

the gene clusters.7 In analogy to the duplication events discussed above, deletion of defined 

parts of a biosynthetic gene cluster, like functional modules, might result from the highly 

homologous nucleotide sequences the distinct catalytic NRPS domains share. One of the most 

popular and very few examples, for which NRPS gene cluster evolution was demonstrated on 

a broad scale, are these cyanobacterial toxins, particularly the pathways responsible for the 

biosynthesis of the microcystins from Microcystis spp. and related compounds.7 It was 

specifically shown that a recombination-based deletion event that even comprises two NRPS 

modules across the microcystin synthetase subunits McyA and McyB, led to the emergence of 

the closely related and functional nodularin biosynthetic pathway occurring in Nodularia 

spumigena.24 Consequently, the cyclic nodularin peptide core exhibits a reduced ring size, 

thereby lacking the two amino acid residues, which would have been introduced in the core 

structure by the two modules present in the microcystin assembly line (Figure 1). In this case, 

the recombination sites were found to be located within the C domains of module 2 of McyA 
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and module 4 of McyB, regions that exhibit a high degree of sequence homology. 

Phylogenetic analysis involving the biosynthetic genes as well as selected genes associated 

with characterized microcystin and nodularin pathways revealed that the nodularin 

biosynthetic gene cluster might indeed originate from the microcystin pathway that might be 

the ancient ancestor from which the known related cyanobacterial toxin pathways have been 

evolved.24 

Additionally, module deletion also seems to play a role in the diversification of bacterial 

multimodular PKS pathways. The pathways responsible for the production of the polyketides 

spinosyn and butenyl-spinoysn in different Saccharopolyspora spp. also differ in the presence 

or absence of a module containing the catalytic domains KS-AT-DH-KR-ACP. Regarding the 

present enzymatic functions, this module might be responsible for this unique addition of the 

butenyl moiety. The authors stated that the butenyl-spinoysn pathway might be the common 

ancestor from which the spinoysn pathway may have evolved, although they did not give any 

additional details on phylogenetic studies and the exact recombination sites.26 

In the myxochromide C assembly line, module deletion occurred during pathway evolution 

leading to the loss of an ‘A-T-C’ unit between modules 5 and 6 (A5-T5-C6), thereby 

generating a recombined and functional C5-A6-T6-TE termination module. Similar to the 

module duplication process observed in myxochromide B biosynthesis, the recombination 

sites are located near regions encoding C-A domain interfaces, more precisely at the C-

termini of the corresponding C5/C6 domains. Phylogenetic studies show overall congruence 

between strain and gene cluster phylogeny, which suggests that the C-type mch cluster also 

evolved from the ancestral A-type cluster by deletion of the A5-CP5-C6 region.17 

Partial module deletion of an ‘A4-CP4’ unit was observed in the myxochromide D subtype 2 

assembly line leading to the production of a pentapeptide core lacking the proline residue, 

which was ‘encoded’ by the corresponding deleted region of module 4. Interestingly, the 

resulting assembly line harbors a C4/C5 interface after the deletion event, which does 

obviously not interfere with its functionality. The recombination sites were found to be 

located within the C4-A4 and CP4-C5 interdomain linkers, respectively, thereby conserving 

only parts of the original C4-A4 domain interface in the naturally occurring hybrid assembly 

line (Figure 1). Analysis of the local codon usage in all mch clusters revealed less codon 

usage adaptation in this inactive A4-CP4 region in all Cystobacterineae strains compared with 

the following A5-CP5 or preceding A3-CP3 region, which suggests that this region might be a 

kind of hotspot for assembly line modifications. 
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Figure 1. Module duplication events in M. virescens ST200611 and N. spumigena NSOR10. Emergence of the 

myxochromide C and nodularin (PKS)/NRPS assembly lines, which evolved from their ancestors myxochromide 

A and microcystin synthetase, respectively, resulted in structural diversification of the produced natural product 

families. R1/R2, variable amino acid residues; Racyl, acyl side chains. A: Multiple module deletion in nodularin 

biosynthesis. B: Module deletion in myxochromide C biosynthesis. 

 

This is further underpinned by additional mutational activities around the recombination sites, 

which possibly point to ongoing diversification of the resulting mch pathway.17 In light of the 

results obtained from the module deletion event in the myxochromide C pathway, in which a 

complete ‘A-T-C’ unit was deleted, the deletion of an ‘A-T’ unit could possibly indicate an 

evolutionary transition state, from which the remaining C domain region may be deleted in a 
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following second recombination event. Single domain deletions were also recently described 

for microcystin pathways, in which the N-methyltransferase (NMT) domain of the McyA 

subunit was removed yielding functional NRPS assembly lines capable of producing non-

methylated microcystins.27 

In the context of NRPS assembly line enzymology, the observed recombination sites in the 

mch clusters near regions encoding C-A domain interfaces or within C-A linker regions can 

be interpreted on the basis of the general role of interdomain and intermodule linkers in NRPS  

megasynthetases. These linkers are assumed to function in the communication between 

catalytic domains within and between adjacent modules by direct interaction with the 

interconnected domains. Several studies on the rational engineering of NRPS systems 

impressively showed that most targeted module and domain exchanges, in which the native 

interdomain/intermodule linkers are not maintained, lead to non-functional hybrid pathways, 

thereby highlighting the general importance of these linker regions.28–30 In addition, a recent 

crystal structure of an entire C-A-T-TE termination module from the surfactin NRPS 

megasynthetase published by Tanovic et al.,31 revealed that the C-A interdomain linker 

seemed to have a particularly important function by serving as a structurally rigid platform 

that remains invariant during chain elongation. This rigidity arises from extensive interactions 

of the linker region with both C and A domains of this module. In contrast, the linker regions 

between the other catalytic domains (A-PCP and PCP-TE) are much shorter, thereby making 

fewer interactions with the connected domains, which is attributed to their high flexibility to 

allow for the required movements of the rotating PCP and TE domains during catalysis.32 In 

the present cases, in which module duplication (B-type mch cluster) and deletion (C-type and 

D-type mch clusters) arise from recombination sites around these regions, the C-A domain 

interfaces remain largely conserved, which might be an evolutionary strategy in order to 

maintain the native linker architecture and to increase the chances to yield a functional 

evolved pathway in the course of gene cluster diversification. However, structural details on 

the underlying NRPS enzymatic machineries are still limited and even less knowledge is 

available on the dynamical interplay between modules and domains within the 

megasynthetase complexes. In addition, there are only very few examples investigating 

biosynthetic pathway evolution, which are based on a sufficiently high number of gene cluster 

sequences, thereby hampering the generalization of the obtained results. Whether the C-A 

linker regions generally play a protruding role as dedicated recombination spots in NRPS 

pathway diversification remains uncertain and awaits comparable analyses of other natural 

product pathway families. It is more likely that biosynthetic pathways diversify by following 
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specific recombination rules restricted to a family of secondary metabolites as suggested by a 

recent study on megasynthetase evolution.12 

 

4.2.2 ‘Module-Skipping’ Lead to Myxochromide Pathway Diversification 

Another strategy in secondary metabolite pathway diversification is ‘module-skipping’, a 

process that was already demonstrated to happen in some PKS systems.33–36 This known 

deviation from textbook biosynthetic logic eventually results in the formation of polyketides 

lacking an extender unit. ‘Module-skipping’ in NRPS assembly lines is much rarer. In fact, 

only one ‘non-linear’ NRPS system has been described so far.14 Although the myxochromide 

S pathway from S. aurantica DW4/3-1 represents a hexamodular assembly line, the proline 

activating module is skipped during biosynthesis leading to the production of a 

lipopentapeptide core lacking the proline residue. In the reported case, it could be concluded 

that ‘inactivation’ of this module arises from point mutations in the GGHSL core motif of the 

corresponding PCP, in which the conserved serine residue that is required for posttranslational 

activation of the PCP was replaced by a proline, among additional mutations (GGHSL � 

GGNPS).14 However, as additional examples for ‘module-skipping’ in other NRPS 

megasynthetases did not appear, it was not clear whether this process represented a random 

event leading to a functional variant of the ancestral pathway by chance, or it is a mutation-

driven diversification path. As the genome-mining approach used during this thesis enabled 

the identification of numerous additional myxochromide biosynthetic gene clusters, it was 

possible to successfully assess the rational basis of this process by comparative sequence 

analyses.17 In addition to the myxochromide S pathway from S. aurantica DW4/3-1, S-type 

mch clusters were also found in several other S. aurantica strains, which exhibit the reported 

serine to proline ‘loss of function’ mutation in the same (proline incorporating) module 

suggesting that ‘module-skipping’ leads to structural diversity in a programmed manner. 

Interestingly, the same mutation was also detected in PCP domains of the orthologous 

modules in the identified D-type mch clusters from distant Hyalangium sp. as well as from 

closely related Stigmatella erecta Pde77 and results in ‘module-skipping’ as well. As these 

gene cluster variants independently evolved and were maintained in the course of pathway 

diversification, these results indicate that ‘module-skipping’ indeed directly contributes to the 

expansion of myxochromide structural diversity.17 Since this kind of mutation-induced 

diversification mechanism was not found in completely different NRPS systems from other 

bacteria so far, it can be assumed that it may reflect a family-specific mechanism in the 

evolutionary history of myxochromide pathways. However, Wenzel et al. hypothesized that 
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changing the serine residue from PCPs via site-directed mutagenesis might serve as a tool to 

induce ‘module-skipping’ at other positions in the mch clusters or possibly also in other 

NRPS systems in order to further expand structural diversity.14 In case of the S-type mch 

pathways, they assumed that restoration of the conserved serine residue in the PCP core motif 

might possibly reactivate the affected module leading to incorporation of the corresponding 

proline residue in the peptide core.14 These hypotheses were specifically addressed in this 

thesis using synthetic biology approaches and are further discussed in the last section of the 

discussion. 

 

4.2.3 Concluding Remarks 

As the cost of high-throughput DNA sequencing continues to decrease, more and more 

microbial genomes and metagenomes will be publically available for the identification of 

PKS/NRPS-derived secondary metabolite pathways and their corresponding natural products 

via genome-mining. However, comprehensive in silico screening specific for functionally 

similar or closely related families of biosynthetic gene clusters might accelerate the 

translation of DNA sequences into biotechnological applications rather than searching for a 

certain secondary metabolite that is linked to its corresponding pathway. In light of the 

diverse mechanisms by which biosynthetic gene clusters extensively undergo pathway 

evolution and diversification in bacteria,10,12,13 one can assume that to most ancient gene 

clusters several related pathway variants might exist, leading to the production of structurally 

different molecules even among different bacterial genera. This especially accounts for the 

unique biological functions the produced secondary metabolite derivatives have in their 

natural environment as a result of constant selective pressure that is on the underlying 

pathways.37 Biosynthetic gene clusters spread laterally via horizontal gene transfer resulting 

in novel microbial strains that are capable of producing the corresponding compounds, 

thereby subjecting the natural product pathways to further evolutionary pressure in a different 

genomic context.38 By implementation of sophisticated sequence analysis methods based on 

phylogenies on the domain, module, subunit and gene cluster level as well as on local codon 

usage and adaption in conjunction with the modern analytical techniques to the general 

genome-mining workflow, the importance of genome-mining is no longer restricted to the 

discovery of novel natural products. It also provides a broad picture regarding the 

interrelationships and distribution of biosynthetic gene clusters, which evolved independently 

from each other. The present work provides a guideline how these approaches can be 

combined in order to understand the rules of natural evolution, which might have a direct 



269     Discussion & Outlook 
 

impact on the rational engineering of PKS/NRPS systems. The recombination sites, which 

have been detected in different mch clusters around the C-A interdomain linkers, can now be 

taken into account when engineering module duplications and deletions at other positions, e.g. 

in the A-type mch cluster to generate novel hybrid assembly lines based on protein sequence 

alignments. However, interdomain linker-driven recombinations may be a family-specific 

recombination rule and may not be applicable to other NRPS assembly lines. Since there are 

not that many related bacterial NRPS pathways published, which were characterized on such 

a broad basis, special emphasis should be on the identification and analysis of already known 

as well as completely novel pathway families to reevaluate the observed recombination events 

regarding their general implications for NRPS pathway diversification. Eventually, the 

present genome-mining approach builds the basis for the identification and detailed analysis 

of related natural product families to assess their evolutionary relationships and based on that, 

to deduce common rules for pathway evolution in order to significantly improve future 

engineering efforts and to make new products via synthetic biology approaches. 

 

4.3 Synthetic Expression Platforms to Produce Myxobacterial Natural Products 

Significant advances in the field of DNA synthesis have recently led to new biotechnological 

applications, which were largely proven to be difficult to perform on native DNA. One 

important example with respect to natural product research is the transfer and functional 

expression of secondary metabolite pathways in heterologous hosts. As heterologous 

expression of biosynthetic gene clusters is per se a challenging task encompassing numerous 

requirements to be considered, synthetic biology approaches are expected to significantly 

contribute to address the challenges a natural product researcher is confronted with. In the 

present thesis, synthetic expression platforms have been established allowing the heterologous 

expression of myxochromide pathways based on synthetic DNA in a myxobacterial host 

strain. The presented strategy is characterized by a high flexibility and broad applicability 

towards pathway engineering and has been further exploited to produce ‘unnatural’ 

myxochromide cores via combinatorial biosynthesis and to study basic biosynthetic processes 

in myxochromide pathways. The work described here demonstrates the power of synthetic 

biology approaches for natural product research and builds the basis for far-reaching and 

systematic investigations on the general DNA sequence design to optimize production yields 

and to provide simplified, ready-to-use cell factories for the production of novel molecules. 
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4.3.1 Heterologous Expression of Myxobacterial Biosynthetic Gene Clusters 

Myxobacteria have been recognized as proficient producers of bioactive natural products, 

which predominantly derive from PKS and NRPS pathways and a significant number of 

promising lead compounds recently entered clinic trails.39 The high relevance of 

myxobacteria as a rich source of potential drug leads is however faced with several drawbacks 

as most myxobacteria are slow growing and difficult to cultivate or even uncultivable under 

standard laboratory conditions. In addition, the number of genetic tools for the manipulation 

of the native producer strains is quite limited compared e.g. to the intensively studied 

streptomycetes. Thus, the development of genetic tools to transfer and efficiently express 

interesting myxobacterial pathways in alternative hosts, which are easy to handle and 

manipulate (e.g. streptomycetes, pseudomonads, bacilli and Escherichia coli) was one of the 

main achievements in the myxobacterial field over the past two decades and many approaches 

for the heterologous expression of PKS/NRPS biosynthetic pathways have been 

established.40,41 These include the direct transfer of relatively small gene clusters mobilized in 

cosmids or BACs into related hosts, pathway modification and expression in unrelated 

bacteria and the co-expression of several gene cluster containing vector systems. The latter 

approach is referred to as multiplasmid approach, which was particularly used for huge 

biosynthetic gene clusters in the past considering the fact that only a small number of methods 

existed at that time for the construction of large DNA constructs on one physical entity such 

as the Red/ET approach.42,43 Direct transfer and expression of cosmids or BAC-derived 

constructs harboring the biosynthetic pathways requires suitable vector systems such as 

replicative plasmids. Unfortunately, replicative plasmids for any myxobacterial species are 

still not available leaving integration into the chromosome via homologous recombination, 

transposition or phage-derived systems the only reliable way to transfer foreign genes into a 

myxobacterial heterologous host.40,41 Most of the strategies are restricted to small biosynthetic 

gene clusters and are characterized by significant time-consuming cloning efforts, especially 

if heterologous expression focuses on large biosynthetic pathways. Recent advances in 

recombinant DNA technologies and assembly strategies led to the addition of valuable 

cloning methods either based on homologous recombination,44–46 or restriction/ligation 

procedures.47,48 The methods generally allow the assembly of sizable gene cluster constructs 

and are applicable to high-throughput set-ups. 

However, the assembly and heterologous expression of natural product biosynthetic pathways 

is not as simple and straightforward as it seems. Efficient expression of target biosynthetic 

pathways in a surrogate host requires in depth knowledge on several factors that influence 

functionality of the heterologous system such as the ability of the surrogate host to 
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posttranslationally activate the PKS and NRPS megasynthetases, the time-coordinated supply 

of biosynthetic precursors in sufficient amounts, the functionality of regulatory elements and 

native promoters, the stability of the transcribed mRNA, and the self-resistance of the host 

strain to the expressed secondary metabolites.40,41 Moreover, it should be pointed out that 

expression of huge biosynthetic pathways is a strong metabolic burden for the producer strain 

considering the complexity of these biosynthetic machineries. Technically, the selected 

heterologous host should exhibit excellent growth characteristics (short doubling times, high 

cell density) and a plethora of experimental tools to genetically modify the host strain should 

exist.40,41 Over the past decades, it was recognized that the efficient heterologous expression 

of PKS/NRPS biosynthetic pathways is often beneficial when transferring the pathways into 

closely related host organisms, e.g. from one myxobacterial species into another, which is 

attributed to a similar codon usage of the target pathway and the genome of the host strain.49 

However, many of the mentioned factors remain largely unknown, so it is not surprising that 

many efforts to heterologously express biosynthetic pathways often yield insufficient amounts 

of the target compounds or even fail completely.  

In summary, many new technological innovations in the fields of DNA cloning and 

engineering contributed to the increasing impact of heterologous expression platforms in 

natural products research over the past decades.40,41 However, as only a limited set of suitable, 

well-characterized heterologous hosts are available today and most of the described classical 

methods still require laborious procedures relying on the mobilization of the genetic blueprint 

responsible for the biosynthesis of a certain secondary metabolite, it is highly desirable to 

develop alternative approaches for heterologous expression (e.g. synthetic biology), which 

address and overcome the discussed limitations. 

Synthetic biology approaches are assumed to have an unprecedented impact on classical 

biology in general, but in particular on natural products research. This emerging discipline 

aims at the de novo recreation of biological systems using defined modular parts that can be 

arbitrarily recombined to yield artificial systems exhibiting novel unnatural features. Due to 

the per se modular architecture of PKS/NRPS systems, this concept might revolutionize our 

view on the rational reprogramming of hybrid megasynthetases producing any desired 

molecule.50 In the context of PKS/NRPS derived biosynthetic pathways, synthetic biology 

currently largely focusses on the application of DNA synthesis which by now came of age.51 

Today, large biosynthetic genes and even complete gene clusters can be designed and 

synthesized de novo, thereby allowing the addition and/or elimination of restriction sites 

without changing the encoded protein sequence as well as the modulation of the codon usage 
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bias. Implementation of ‘standardized’ regulatory elements and synthetic promoter sequences 

known to function in an optimized host supports heterologous expression of biosynthetic 

pathways based on synthetic DNA beyond the native regulatory networks.40,50 Today, only a 

limited number of microbial PKS/NRPS biosynthetic pathways have been ‘refactored’ to 

activate orphan gene clusters, to engineer the pathways for the production of natural product 

analogs and to study the effects of codon optimization.52–56 Interestingly, the latter approach 

does not necessarily lead to improvement of the production yields and even lower product 

amounts are often detected compared to the production titers seen in the native producers. A 

synthetic version of the PKS/NRPS hybrid epothilone pathway from Sorangium cellulosum, 

which was subjected to codon optimization for heterologous expression in the related host M. 

xanthus, merely yielded approximately 0.1 mg/L epothilones A-D, whereas epothilones A and 

B are produced at 20 and 10 mg/L, respectively, in the native producer S. cellulosum So 

ce90.55 However, in some cases codon adaption remains the only way to achieve functional 

expression in a phylogenetically distant host strain at all. Gemperlein et al. demonstrated the 

successful heterologous expression of a synthetic myxobacterial gene cluster encoding for a 

polyunsaturated fatty acid (PUFA) synthase from Aetherobacter fasciculatus in Pseudomonas 

putida. Formal codon optimization was applied to the synthetic PUFA gene cluster, thereby 

changing the gene cluster sequence significantly compared to the native sequence. Besides 

further strain improvement, the synthetic expression system provided at least slightly 

optimized production yields of the PUFA docosahexaenoic acid (DHA).56 

However, considering the fact that synthetic biology principles just begin to be applied to 

natural product biosynthetic pathways, the number of synthetic gene clusters reported in the 

literature is conceivably limited and it is still uncharted how to optimize a gene (cluster) 

sequence in an optimal way. More systematic studies, which include data acquired from 

interdisciplinary fields, need to be carried out to gain deeper insights into the numerous 

factors that contribute to the formation of a certain natural product. 

Thus, the SynBioDesign project presented in the introduction of this thesis aimed at a 

systematic view on the design of synthetic expression platforms for the production of 

myxobacterial secondary metabolites by implementing qualitative and quantitative data 

obtained from transcriptomics, proteomics and metabolomics approaches in conjunction with 

high-throughput DNA synthesis and assembly techniques. The development and application 

of a fast and efficient cloning strategy for large biosynthetic gene cluster constructs would 

provide the opportunity to synthesize, assemble and heterologously express many artificial 

versions of a target gene cluster in parallel, e.g. in terms of gene compositions to generate 
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hybrid gene clusters in order to produce novel compounds or in terms of testing different 

codon optimization protocols to improve production yields. Consequently, integration of the 

acquired analytical datasets might provide guidelines on how to optimally design functional 

and improved gene cluster sequences for heterologous expression, which could then be 

subsequently analyzed in a following round of DNA synthesis, assembly, expression and data 

analysis (Figure 2). 

 

 

 

Figure 2. General high-throughput workflow for the continuous optimization of synthetic DNA platforms for the 

heterologous expression of biosynthetic gene clusters. Iterative cycles of DNA sequence design, assembly and 

heterologous expression as well as integration of the acquired analytical data might facilitate the identification of 

critical factors relevant for the productivity of the encoded assembly lines.  

 

In this thesis, we specifically focused on the redesign of myxochromide biosynthetic 

pathways, on the development of a flexible and efficient DNA assembly strategy and on the 

establishment of synthetic DNA platforms for the heterologous expression and engineering of 

the Mch PKS/NRPS megasynthetases to produce novel myxochromide derivatives via 
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combinatorial biosynthesis in a suitable host organism. The choice of the host strain was one 

of the major issues to address as several microbes have been previously described as useful 

heterologous producers of myxobacterial secondary metabolites.40,41 One of the most 

promising host strains is certainly M. xanthus DK1622, which was already proven to 

functionally express foreign myxobacterial gene clusters such as PUFA pathways from 

Sorangium cellulosum and Aetherobacter sp.,57 the epothilone and disorazol machineries from 

S. cellulosum,55,58 the tubulysin pathway from Cystobacter sp.,59 as well as the myxochromide 

S assembly line from S. aurantiaca,60 (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Structures and origin of selected myxobacterial secondary metabolites, which have been 

heterologously expressed in M. xanthus DK1622. A: Eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA) from S. cellulosum and Aetherobacter sp. B: Disorazol A2 from S. cellulosum. C: Epothilone B from S. 

cellulosum.. D: Myxochromide S1 produced by S. aurantiaca. E: Tubulysin A from Cystobacter sp. 
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In addition, keeping in mind that the transfer of biosynthetic pathways into closely related 

host strains might be favorable and that the host strain must be able to functionally express 

PKS/NRPS pathways, M. xanthus has several advantages over different microbes, even 

compared to other myxobacterial strains as potential heterologous hosts. M. xanthus is 

characterized by higher growth rates and genetic manipulation is much more convenient 

compared to e.g. Sorangium species as several genetic tools have been established.61,62 

Especially the fact that a foreign myxochromide pathway was already heterologously 

expressed in M. xanthus without exhibiting toxic activities made this strain the ideal 

expression host. In contrast, cloning, assembly and engineering of large synthetic DNA 

constructs harboring the artificial myxochromide biosynthetic gene clusters was accomplished 

in E. coli and final expression constructs were transferred into M. xanthus DK1622 via 

electroporation. Taken into account that there are no replicative plasmids available for 

myxobacteria, the expression plasmids were equipped with genetic elements allowing for the 

homologous integration of the artificial pathways into the host chromosome. 

In the course of this thesis, the establishment of synthetic DNA platforms for the functional 

heterologous expression of synthetic mch clusters in M. xanthus was initially demonstrated 

with success on the basis of five artificially generated pathway versions, which were shown to 

produce the naturally occurring myxochromides A, B, C, D and S. In all cases, production 

levels were comparable to those observed for the native A-type mch pathway in the natural 

producer strain (work by Dr. Fu Yan, unpublished). Thus, M. xanthus seems to be the ideal 

host for heterologous expression of different myxochromide families. However, upscaling of 

fermentation processes using M. xanthus as a production host has been proven difficult, which 

might be problematic when applying our strategy from model pathways to pharmaceutically 

interesting myxobacterial pathways.63 As an alternative, other expression hosts could also be 

used, which are able to express and activate PKS/NRPS pathways, to sufficiently supply the 

precursors needed for the biosynthesis of PKs and NRPs and which show similar codon 

preferences. P. putida would be such an alternative, since it additionally exhibits even better 

growth characteristics, is genetically well established and has been shown to be a versatile 

host strain.64 Furthermore, previous studies demonstrated significant improvement of the 

production yields of myxochromides S in P. putida, when the native S-type mch pathway 

from S. aurantiaca was heterologously expressed.65 As mentioned earlier in this section, fast 

and efficient DNA assembly technologies are required to truly enable us to deduce common 

rules for the optimal DNA sequence design for improved heterologous expression by 
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analyzing numerous gene cluster variants in parallel, which can be rapidly assembled. This 

issue is discussed in the following section. 

 

4.3.2 Establishment of an Innovative Assembly Strategy for Synthetic Gene Clusters 

Besides the improvement of heterologous expression in general, synthetic biology has the 

potential to essentially contribute to the rational reprogramming and optimization of 

biosynthetic assembly lines.50,66,67 One major drawback of conventional engineering efforts is 

certainly the fact that with the standard cloning methods only a limited number of gene 

clusters could be assembled in parallel and in reasonable time frames. With focus on 

PKS/NRPS engineering, fast and efficient DNA assembly strategies for the construction of 

artificial biosynthetic gene clusters from smaller fragments, which can be rapidly provided by 

DNA synthesis, are now beginning to be applied to circumvent laborious library constructions 

followed by screening and stepwise assembly of target gene clusters via conventional cloning 

techniques.44,46–48,68 DNA synthesis in conjunction with recent advances in recombinant DNA 

technology allow us to create new entire artificial gene clusters much faster, thereby enabling 

the high-throughput assembly of numerous gene cluster versions to be tested and optimized 

for their functionality. In general, modern DNA assembly techniques include homology-based 

methods such as Gibson isothermal assembly, the related sequence- and ligation-independent 

cloning (SLIC) and transformation-associated recombination (TAR). Especially the TAR-

based assembly methods have been previously used to assemble entire NRPS (and PKS) gene 

clusters or to capture gene clusters from (environmental) genomic DNA.45 Whilst the Gibson 

assembly represents an in vitro tool making use of different enzymes required for the 

recombination of overlapping DNA fragments, TAR cloning is based on an in vivo 

recombination system in Saccharomyces cerevisiae. The major advantage of such homology-

based approaches is that these methods are largely sequence-independent. However, high 

sequence homology of DNA fragments to be assembled or the occurrence of repetitive 

sequence elements (as it is the case for NRPS domains/modules) may lead to mispairing of 

the DNA fragments during the assembly process.66,67 Over the past few years, targeted 

genome editing techniques in vivo such as transcription activator-like effector nuclease 

(TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 

systems have been implemented into the genetic toolbox of streptomycetes to delete entire 

NRPS pathways.69,70 Especially the CRISPR-Cas technique is assumed to become an 

indespensible tool in order to modify or optimize biosynthetic gene clusters on the genome 

scale with unprecedented simplicity, accuracy and efficiency, thereby also allowing the 
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targeting of multiple engineering sites at once.71 However, the CRISPR-Cas9 technique needs 

has not been established for myxobacteria so far. To complement the toolbox, in vitro 

restriction/ligation-based assembly techniques have been developed such as ligase cycling 

reaction (LCR) and Golden Gate cloning.47,48 The latter technique relies on type IIS restriction 

enzymes, which hydrolyze the DNA double strand outside of their recognition sequence, 

thereby providing sequence-specific overhangs used for directed ligation. This method has 

been widely used for the assembly of TALEN libraries.72,73 Whilst in vitro assembly of large 

gene constructs usually takes several hours, in vivo methods may require several days to 

reconstitute entire NRPS pathways. On the other hand, using in vivo DNA assembly is usually 

much more efficient in terms of reconstituting large gene constructs. 

In light of the recent progress in recombinant DNA technology, we were motivated to 

establish a fast and efficient DNA assembly strategy for the generation of synthetic DNA 

platforms to provide a generic platform technology for both sequence optimization to improve 

production yields and pathway engineering to produce novel analogues. The choice of a 

suitable assembly strategy for the generation of entire gene cluster constructs was a critical 

issue that needed to be addressed. In this thesis, we considered the Golden Gate cloning 

method for the generation of a gene library, which built the basis for combinatorial 

experiments. Gene fragments encoding for parts of the biosynthesis genes of the different mch 

pathways (A-, B-, C-, D- and S-type) were designed and subjected to restriction sites (R-site) 

engineering to introduce unique R-sites at specific positions for pathway assembly and to 

remove the corresponding recognition sequences at other positions along the whole gene 

cluster sequences. In addition, we established for the first time so-called splitter elements (SE) 

harboring R-sites for a type IIS restriction enzyme exploiting their special feature of cutting 

outside of their recognition sequence as well as unique R-sites for defined conventional 

restriction enzymes between each and every catalytic domain encoding fragment of the mch 

biosynthetic genes. By defining unique 4 bp overhangs generated via type IIS mediated 

hydrolysis, a directed assembly of the single DNA fragments was accomplished to assemble 

the full-length biosynthetic genes, which make up the mch gene library, thereby eliminating 

the SE sequences (‘desplitting’ procedure). The R-sites located within the splitter elements 

allow the straightforward replacement of either catalytic domains or modules and engineered 

R-sites within the coding sequence at the 5’ and 3’ ends of each gene cluster fragment can be 

used to exchange the PKS/NRPS subunits, intergenic linker fragments as well as promoter 

and terminator fragments. Furthermore, SEs at the 5’/3’ ends of each synthetic gene cluster 

fragment were introduced and initially designed in a way that the resulting 4 bp overhangs 
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(after DNA hydrolysis) are part of the ‘conventional’ R-site recognition sequences. This 

strategy should allow not only the type IIS-mediated assembly of the biosynthesis genes but 

also the assembly of entire gene cluster constructs in a one-pot fashion, thereby making this 

method amenable to high-throughput cloning procedures. Neither the Golding Gate assembly 

nor this special SE-based strategy has ever been applied to biosynthetic genes and thus 

represents the first example how the established assembly method can be used for the 

generation of a gene library in conjunction with the innovative splitter technology for further 

engineering of the completely assembled pathways. 

In our first attempt to construct a synthetic A-type mch pathway from M. xanthus DK1622 

using the modified Golden Gate-based splitter strategy, we used the type IIS restriction 

enzyme AarI, which was previously reported to be used in conventional Golden Gate cloning 

protocols.74 However, it turned out that cloning efficiencies observed in the ‘desplitting’ of 

biosynthetic genes using this enzyme were extremely low and sometimes led to incompletely 

‘desplitted’ gene constructs or to shortened constructs lacking one or more domain encoding 

fragments, which is a result of ‘false ligations’ of non-complementary overhangs, which was 

also reported in some former studies, which described the Golden Gate approach.75 This can 

happen if three out of the four nucleotides making up the fusion sites are complementary to 

each other, so that they can anneal and subsequently be ligated. Overall, the relatively high 

number of SEs or domain fragments to be religated, respectively, strongly influences the 

success of the ‘desplitting’ approach and significantly decreases cloning efficiencies. 

However, successful ‘desplitting’ of the synthetic gene constructs was achieved using AarI. 

Unfortunately, one-pot assemblies of an artificial version of the A-type mch pathway was not 

met with success, which is most likely due to the diverse size distribution of the synthetic 

fragments (150 bp up to 13.4 kb). The assembly of ~ 35 kb constructs from non-standardized 

DNA fragments (in terms of fragment size) might thus be hard to achieve in a highly efficient 

and flexible way. In contrast, in the aforementioned TALEN library constructions, modules 

exhibiting similar sequence lengths in equimolar amounts were used for one-pot 

restriction/ligation assemblies and relatively small constructs were assembled (up to 10 kb). 

Taken this into account, fragment and final construct sizes might be the relevant factors 

limiting the success of this assembly strategy. However, the synthetic A-type mch cluster was 

successfully assembled by conventional means using the unique R-sites located at the 5’/3’ 

ends and was subsequently heterologously expressed in M. xanthus yielding comparable 

amounts of myxochromides A to those observed with the native A-type mch gene cluster. 
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This work demonstrated the general applicability and functionality of the presented synthetic 

DNA platform and built a promising basis for further improvement. 

To further optimize the ‘desplitting’ procedure, the DNA sequence design was completely 

adapted to the alternative type IIS restriction enzyme BsaI and was extended to all available 

mch cluster types. Unfortunately, the BsaI enzyme only skips one nucleotide until it 

hydrolyzes the DNA double strand compared to four nucleotides, which are skipped by AarI. 

Thus, it was not possible anymore to design the SE-derived 4 bp overhangs in a way that they 

are part of the ‘conventional’ R-site recognition sequences at the 5’/3’ ends of the synthetic 

DNA fragments. Alternatively, the unique R-sites at the 5’/3’ ends needed to be engineered at 

other positions, which would be elaborating or even not possible without changing the protein 

sequence of the biosynthetic genes. In light of the results obtained from the AarI-based one-

pot assemblies and due to the fact that the described limitations are also true for the BsaI 

design, we placed the outer SEs only at the 5’/3’ ends of the biosynthetic genes and in spatial 

separation (7-10 nucleotides) to the unique R-sites, which were engineered within the coding 

sequence at the same positions as done in the AarI design. Consequently, our assembly 

strategy can still be used for the generation of a gene library and for the engineering of the 

biosynthetic genes, but the assembly of entire synthetic gene cluster constructs can only be 

accomplished via stepwise stitching of the synthetic building blocks using the unique R-sites 

at the 5’/3’ ends. 

Changing the sequence/splitter design from AarI to BsaI in fact resulted in significantly 

improved cloning efficiencies, especially when applied to the smaller biosynthetic gene 

constructs. However, ‘desplitting’ of the large mchC-based containing gene constructs 

remained difficult to achieve and laborious screenings for correct clones harboring fully 

‘desplitted’ and correctly religated gene constructs needed to be carried out. However, a gene 

library consisting of different mchA, mchB and mchC gene constructs was successfully 

generated by using the BsaI-based splitter technology and subsequently used for 

combinatorial biosynthesis. In light of these results, it might be favorable to combine the 

innovative splitter technology (with a maximum number of SEs of 10 per gene construct) for 

the generation of dedicated gene libraries with homology-based assembly strategies such as 

TAR or Gibson assembly, which have already been proven to be suitable assembly strategies 

for the construction of large biosynthetic pathways exceeding the size of 60 kb.45,76 The 

synthetic gene fragments could be equipped with flanking homology arms the 5’/3’ ends for a 

directed assembly of the gene cluster constructs and could be directly provided by gene 

synthesis without performing any additional PCR steps (Figure 4). The assembly vector could 
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be designed to contain genetic elements, which are functional in E. coli, S. cerevisiae and e.g. 

M. xanthus to ensure construct assembly, propagation and functional heterologous expression 

in a myxobacterial host. In doing so, it might be possible to establish a highly efficient generic 

synthetic DNA platform based on the presented flexible splitter technology allowing the rapid 

assembly of numerous gene cluster variants to be tested in parallel. In addition to our gene 

library, other libraries containing e.g. intergenic linkers, inducible synthetic promoters and 

terminators, can also be included to further increase the scope of this versatile strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Possible future assembly strategy for the rapid construction of gene libraries and entire artificial 

biosynthetic pathways. Combination of Golden Gate based ‘desplitting’ for library construction and homology-

based assembly strategies such as TAR cloning. 

 

Our work demonstrates the general applicability of the developed expression platforms and 

sets the stage for further sequence optimization using high-throughput techniques. Moreover, 
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it gives rise to the rational engineering of artificial hybrid mch pathways to produce entirely 

new myxochromides via combinatorial approaches, which is discussed in the following 

section. 

 

4.3.3 Synthetic Biotechnology to Engineer Novel Nonribosomal Peptides 

Revealing and understanding the structure-activity relationships of different derivatives of a 

natural product family is one of the key steps towards the development of natural product 

derived drugs. Due to the inherent structural complexity of most secondary metabolites, their 

total synthesis or modification by chemical means is often limited or even impossible to 

achieve. Thus, genetic engineering of the underlying biosynthetic pathways was anticipated to 

allow alterations of the product structures yielding libraries of structurally diverse natural 

products, which can be subsequently screened for improved biological activity. The modular 

architecture of NRPS biosynthetic machineries together with their exceptional biosynthetic 

logic render them predestinated for such approaches, which address the alteration of single 

functional groups, the regiochemistry or the NRP backbone scaffold itself. In the past, early 

developments mainly included approaches to alter the nature of the incorporated precursor 

molecules such as precursor directed biosynthesis (PDB) and mutasynthesis. These methods 

both aim at the incorporation of novel unnatural building blocks by feeding these precursors 

to the culture broth, in which the respective producer strain is grown.77,78 Additionally, in the 

mutasynthesis approach, the genes encoding for enzymes that produce a natural precursor are 

deleted or inactivated, which enables exclusive production of the engineered compounds. 

Besides the engineering of the precursor molecules, the structural diversity of NRPs can be 

further increased via direct modification of the side chains of the peptide core. The utilization 

of exogenous tailoring enzymes such as halogenases, oxidases, glycosyltransferases, acylases 

or sulfatases from foreign NRPS pathways has been previously demonstrated to be a useful 

tool in the modification of the NRP scaffold, largely based on complementation mutants, in 

which the tailoring enzyme encoding genes were introduced.66 Almost 30 years ago, the era of 

combinatorial biosynthesis began to strongly influence the field of pathway engineering and, 

more ambitiously, aimed at generating entirely new pathways by ‘mixing and matching’ the 

domains, modules or subunits of existing NRPS assembly lines.79 Unlike the engineering of 

precursor supply and tailoring enzymes, this approach directly address the modification of the 

enzymatic assembly line. In the past, combinatorial biosynthesis included a significant 

number of different strategies ranging from gene fusions, inactivations and replacements to 

domain, subunit and module swaps. However, only a small number of NRPSs has been 
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reported to be subjected to combinatorial biosynthesis approaches and there is even only one 

example for which it was extensively performed on a broad scale. Engineering of the closely 

related NRPS pathways responsible for the production of the lipopeptides daptomycin, the 

calcium-dependent antibiotics (CDA) and the compound A54145 using the aforementioned 

strategies led to the formation of more than 120 different derivatives and some of these 

‘unnatural’ lipopeptides even exhibited improved pharmacological properties.80,81 However, 

most of the combinatorial experiments were carried out by chance and did not have any 

rational basis, which often led to the generation of nonfunctional assembly lines. It should be 

pointed out that the slow progress made is essentially a result of our currently very limited 

understanding of the dynamical inter- and intramolecular interactions of the megasynthetases 

as well as of the functional interplay of the single modules and catalytic domains within the 

biosynthetic complex. Recent structural studies on higher-order architechtures in NRPSs 

suggest that a well-defined, rigid ‘pearls on a string’ organization of the megasynthetases does 

not exist. In fact, the structural data shows an unexpected high degree of conformational 

variability between single NRPS modules, thereby proposing significant interactions between 

catalytic domains within a module (e.g. C-A domain interctions) but limited interactions 

between domains of adjacent modules of the assembly line.82 However, the overall 

organization of NRPS machineries is probably not totally unstructured, as transient 

interactions between individual modules might exist and potentially contribute to the 

functionality of the assembly line. This may also explain that even slight changes to the 

modular assembly line may affect proper protein-protein interactions and/or protein folding, 

thereby negatively influencing its functional integrity. In addition, the described approaches 

strongly rely on the defined substrate specificities of the biosynthetic enzymes, thereby 

restricting further structural diversification. A more rational approach for changing the NRP 

backbones is the engineering of the adenylation (A) domain specificities by exploiting their 

specificity-conferring code. Several examples have been described, for which a few mutations 

covering the amino acid residues that confer A domain specificity were sufficient to change 

the preference for a different amino acid precursor.83,84 However, and despite of the advances 

that have been made over the past decades, the promise of combinatorial biosynthesis to 

generate novel assembly lines for the production of any desired natural product at will is far 

from being realized. This can be partly attributed to technical reasons, e.g. most of the 

classical genetic tools including mobilization of the target gene clusters via library 

construction and screening as well as classical tools for the downstream engineering of the 

underlying NRPS systems are time-consuming and low-throughput. 
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With the established synthetic DNA platforms in hand, which circumvent the described 

limitations in an elegant way, ‘unnatural’ hybrid myxochromide assembly lines were created 

based on the mch gene library that was generated in the first step of the assembly process. By 

rationally recombining the NRPS subunits MchB and MchC from the different mch pathways, 

it was possible to generate five hybrid megasynthetases, which were successfully shown to 

heterologously produce five novel myxochromide families with altered structures of the 

peptide cores compared to the structures of the naturally occurring myxochromides (Chapter 

3, Figure 8). Isolation and structure elucidation of the novel lipopeptides unambiguously 

demonstrated the functionality of the artificially recombined hybrid mch clusters. The non-

cognate NRPS subunits from different mch pathways were obviously able to successfully 

interact with each other. In addition, non-native biosynthetic intermediates, which are not 

biosynthesized by the native mch biosynthetic machineries, were transferred to and processed 

by the downstream domains of the hybrid mch pathways, thereby providing fully functional 

synthetic DNA platforms for the production of entirely novel myxochromide lipopeptide 

cores. The successful heterologous production of the expected hybrid myxochromides 

confirms that our constructional sequence design generally works in terms of creating novel 

functional assembly lines. In light of the important role intergenic linker regions are supposed 

to play, as they contain the communication-mediating (COM) domains at the C-termini of 

donor proteins and at the N-termini of recipient proteins facilitating proper interaction 

between NRPS subunits,85 our constructional sequence design conserves the native linker 

regions, thereby eliminating the risk of disruption of assembly line integrity. 

Subunit swaps in NRPS systems have been previously reported only for the closely related 

lipopeptide pathways responsible for the production of daptomycin, CDA and A54145. The 

daptomycin megasynthetase consists of the three NRPS subunits DptA, DptBC and DptD, 

which catalyze the formation of the 13- amino acid lipopeptide. In this study, the dptD gene 

was deleted and the heterologous cdaPS3 and lptD genes from CDA and A54145 biosynthesis 

were complemented in trans leading to the production of novel lipopeptides.86 In light of 

these results, our work describes the first functional hybrid NRPS system, in which subunit 

exchanges have been successfully engineered within an intact assembly line. 

Beyond the subunit-level NRPS engineering, we tried to apply the lessons learned from mch 

pathway evolution using the established synthetic DNA platforms. The unique ‘module-

skipping’ process, which was observed in myxochromide S and D biosynthesis, is assumed to 

be the result of the mutation of the conserved serine by a proline residue in the PCP4 core 

motif.17 By using synthetic DNA fragments encoding mutated PCP regions, we tried to induce 
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‘module-skipping’ at every position of the synthetic A-type mch cluster as well as to 

reactivate module 4 of the S-type mch cluster. Unfortunately, several expression constructs 

harbored frameshift mutations, so that only four heterologous mutants could be analyzed for 

production of the expected lipopeptides (mutants harboring inactive modules 1, 3 or 6 of the 

A-type mch pathway plus reactivated module 4 of the S-type mch pathway). Induction of 

‘module-skipping’ by applying point mutations to PCP domains does not seem to be a tool 

that can be generally used in NRPS engineering, as none of these engineered assembly lines 

was shown to produce the expected lipopeptide cores lacking the corresponding amino acid, 

which would normally be incorporated by the skipped module. These findings indicate that 

the functionality of the engineered myxochromide assembly lines might somehow be 

impaired. In the case of the envisioned induction of ‘module-skipping’ at modules 1 and 3 in 

the A-type mch pathway, the observed results can be explained by the fact that adenylation 

(A) domains are not the only specificity determinants in NRPS assembly lines. Moreover, the 

condensation (C) domains serve as gatekeepers and exhibit distinct substrate specificities, 

especially at their acceptor sites. Consequently, unnatural biosynthetic intermediates are not 

properly recognized and processed leading to the premature release of these intermediates 

from the assembly line. Skipping of module 6 likely yields a nonfunctional assembly line due 

to the spatial separation between the upstream module and the terminal TE domain, which 

might impair correct termination of the NRP biosynthesis. However, as no linear biosynthetic 

intermediates could be identified in the culture extracts, more mutants should be obtained and 

analyzed to investigate whether ‘module-skipping’ may be induced via directed mutations in 

the PCP core motifs. If the induction of ‘module-skipping’ by applying point mutations 

indeed reflect total abolishment of hybrid myxochromide production, additional factors might 

be involved in the naturally occurring skipping processes including e.g. mutational changes in 

the surrounding linker regions of the PCP4 domain and/or a specific function of the proline 

residue in the PCP4 core motif. 
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Figure 5. Cloning strategy for the engineering of module duplications and deletions. A: Based on protein 

sequence alignments, hybrid A domains can be designed, in which the N-terminus of an A domain is replaced by 

the N-terminus of the downstream A domain. B: Based on protein sequence alignments, hybrid C domains can 

be designed, in which the C-terminus of a C domain is replaced by the C-terminus of the downstream C domain. 

RS = restriction site. 

 

4.3.4 Concluding Remarks 

Although significant progress has been made in engineering NRPS assembly lines, a true 

understanding of the rules for the rational reprogramming of NRPS systems to produce novel 

peptides is still missing. Synthetic biology is expected to essentially boost rational 

engineering efforts by providing ever decreasing costs for DNA synthesis, excellent DNA 

assembly strategies and well established heterologous hosts.50,66,67 The established methods 

and future developments will allow for the rapid construction and heterologous expression of 

numerous gene cluster variants, which provides the opportunity to test these variants in 

parallel, e.g. for improved production or for the generation of novel analogues. In this context, 

it might be highly desirable to establish libraries by making use of modern DNA assembly 

techniques. Our developed ‘desplitting’ approach provides an ideal starting point for the 

generation of gene libraries consisting of various genes encoding NRPS megasynthetases 

from different pathways. In combination with a more efficient assembly strategy for entire 

A 

B 
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gene cluster constructs, e.g. based on TAR cloning, our assembly strategy including the 

constructional sequence design can generally be applied to any desired biosynthetic gene 

cluster in order to alter product structures or to improve production yields on a broad scale. 

This might also be of interest for the development of natural product derived drugs with 

improved pharmacological properties driven by structure-activity relationship studies. In 

addition, as our synthetic DNA platforms can be exploited in manifold ways due to their 

remarkable flexibility towards domain and module exchanges, the processes leading to 

pathway diversification can now be mimicked to gain insights into the rules that govern 

NRPS evolution. These insights could potentially fuel the rational engineering of other NRPS 

systems, and await future exploitation. The established ‘desplitting’ procedure also enables 

far-reaching macroevolution approaches by e.g. parallel one-pot ‘desplitting’ and religation of 

several different genes harboring the identical set of splitter elements with compatible fusion 

sites between the different fragments that encode the catalytic domains. In this way, the 

generation of huge gene libraries consisting of numerous hybrid genes is no longer utopic 

regarding time constraints, but opens the door for high-throughput combinatorial biosynthesis 

followed by the analysis of countless unnatural domain, module and subunit combinations. 

Such applications certainly require sophisticated analytical set-ups as well as the management 

of the increasing appearance of samples obtained from high-throughput heterologous 

expression systems, e.g. in 96 well plates. As more and more NRPS pathways are being 

identified and analyzed, libraries of characterized linkers, which facilitate interdomain, 

intermodule or intersubunit communication, will be identified and could potentially one day 

open the door for the envisioned ‘plug-and-play’ approach. This approach aims at fusing 

standardized parts, e.g. modules from different NRPS pathways, to build entirely new 

assembly lines exhibiting novel unnatural features. Moreover, having high-throughput 

assembly and directed evolution methods available, the development of suitable heterologous 

hosts need to keep pace with this progress as well. One promising approach will be the 

development of minimal ‘chassis’, in which the majority of genes that are not essential for the 

host strain’s survival (e.g. all secondary metabolite gene clusters) are deleted. The present 

work sets the stage for future initiatives aiming at the understanding of general principles of 

the sequence modulation process for the design of complex biosynthetic gene clusters for 

improved heterologous expression and for the tailor-made engineering of novel natural 

products. 
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