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It is certain, that memory not only contains philosophy, but all the arts and all the 

appertain to the use of life. 

(Marcus Tullius Cicero)
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1. Introduction 

1.1.  Learning, memory, cognition 

 

In the last century, humanity acquired remarkable knowledge in the world of science. Ideas 

which in their principles go back to antiquity, like the theory that the matter consists of 

inseparable particles got proven. As we unravel the structure of our world and its nature, we dig 

deeper into the details and discover even smaller bricks. 

Since the ancient world, bright minds wondered about the inimitability of the human 

consciousness. Philosophers of almost all epochs raised theories about the speciality of the 

demarcation of the human mind compared to the rest of the animal kind. 

The psychologist Herrmann Ebbinghaus contributed the paradigms of the learning and the 

forgetting curve to the science of learning and memory (Ebbinghaus 1885). Ebbinghaus 

conducted research on himself, which was not uncommon at the time. In the 20th century the 

physiologist and Nobel laureate Ivan Pavlov worked on classical conditioning and defined the 

concept of the “conditioned reflex” (Pavlov 1927). This concept did not only influence 

neurobiology and physiology but also psychology and changed behavioural approaches in 

science. 

Since the development of methods in cellular biology, we were able to identify the processes of 

learning and memory formation on the smallest molecular level. Eric Kandel stated, that “One of 

the most remarkable aspects of an animal’s behaviour is the ability to change that behaviour by 

learning an ability that reaches its highest form in human beings.” (Kandel 2000). Our memory 

defines our personality since it relies on unique experiences and the ability to memorise them. In 

decades of research on the sea snail Aplysia californica, Kandel contributed a groundbreaking 

piece of knowledge to neurobiology. 

With the necessity to understand the molecular processes of memory formation we go back to 

study smaller brains and simpler minds. Honeybees own the capacity of learning complex 

behavioural patterns. They can develop an exceptional visual and olfactory memory during 

foraging. The honeybee brain with about 1 µl volume and 950000 neurons (Witthöft 1967) 

pictures an ideal model to investigate memory functions. 
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1.1.1. Implicit and explicit learning 

 

Memory formation and its mechanisms have been studied intensively in the last decades. The 

acquisition of skills, processes and knowledge which is called learning was categorised into an 

explicit and an implicit manner (Reber 1967). The implicit learning occurs unconsciously while 

the explicit learning is a deliberate act and occurs wilfully (Kandel, Schwartz 2014; Squire 1984). 

The appetitive olfactory conditioning of honeybee foragers provides a perfect paradigm to study 

the mechanisms of learning and memory formation processes. 

 

1.1.2. Learning and memory formation in the model organism honeybee 

(Apis mellifera) 

 

Honeybee foragers need the ability to learn, to recognise and to memorise food sources not only 

by visual orientation but also by olfactory perception. The appetitive olfactory conditioning of 

honeybee foragers provides a perfect paradigm to study the mechanisms of learning and memory 

formation processes. The most famous example of associative learning might be the classical 

conditioning after the physiologist Pavlov (Pavlov 1927). The associative olfactory conditioning 

is also a classical conditioning paradigm. In these conditioning experiments, the honeybees learn 

to associate an unknown odour stimulus with a known reward stimulus. 

In a natural environment, the honeybees forage for nectar which consists of saccharides such as 

glucose, fructose and sucrose whereby these stimuli act as a reward for the bees. With the 

appetitive olfactory conditioning paradigm that we use for our experiments, we take advantage of 

the PER (Proboscis Extension Response) that is triggered by the contact of the bees antennae 

with sucrose solution (Kuwabara 1957). As sucrose is the preferred food source of the honeybees 

(Frisch 1934), we use 1 M sucrose solution for our learning experiments. We condition honeybee 

foragers by associative appetitive olfactory conditioning, pairing of two different stimuli a 

conditioned stimulus (CS) consisting of clove odour and an unconditioned stimulus (US) 

consisting of a sugar reward (1 M Sucrose solution). With the sequencing of the honeybee 

genome (Weinstock et al. 2006), the combination of behavioural and molecular studies opened to 

new possibilities. 
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1.1.3. Gustatory sensitivity and non-associative learning 

 

Studying associative behaviour in its complexity does also include the study of non-associative 

behaviour and the sensitivity to stimuli we use in the experimental setups. The animals were 

tested for their gustatory sensitivity to sucrose. Depending on the age, the saturation level, the 

genotype and the task field of the honeybees, the gustatory sensitivity can vary (Page et al. 1998; 

Pankiw and Page 1999). Sensitisation and habituation belong to the non-associative learning 

paradigms. Sensitisation means the increase of preparedness to a stimulus. The presentation of a 

single strong stimulus can lead to a stronger response on a following much weaker stimulus. The 

honeybee can be sensitised to an odour stimulus through stimulation with concentrated sucrose 

solution (Erber 1981). Habituation means the accustoming to a longer lasting stimulus, which 

does not have any positive or negative consequences for the animal and therefore becomes 

meaningless. 

 

 

1.2.  Molecular mechanisms of learning and memory formation 

1.2.1. Short-term and long-term memory 

 

The molecular basics of memory formation processes have been compared in different animal 

models such as the mouse (Mus musculus), the fruit fly (Drosophila melanogaster), the sea snail 

(Aplysia californica), the honeybee (Apis mellifera) and others (Hernandez and Abel 2009; 

Menzel 2001). Studies on the patient H.M. revealed, that explicit memory is dependent on certain 

structures in the cerebral cortex, the medial temporal lobe, which includes the hippocampus 

(Squire 2009). Memory formation processes are based on different phases, which are induced and 

maintained through various mechanisms. Understanding the molecular processes regulated 

during the consolidation phase is one important aspect of explaining the different fundamentals 

of memory formation. It is a common assumption that long-term memory (LTM) represents the 

stable modification of neuronal circuit features, including the pattern and strength of synaptic 

connections. LTM and its activation through strong conditioning can trigger biochemical 

cascades towards the nucleus, where CREB (cAMP response element binding protein) activates 

transcription (Müller 2002). Another regulator of transcription in the central nervous system is 

the Methyl-CpG-binding protein 2 (MeCP2), which has also been observed to play a promoting 
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role in hippocampal synaptic plasticity (Na et al. 2013). Cellular and molecular studies of 

learning and memory formation on the sea snail Aplysia californica display a detailed network of 

pathways that are responsible for the storage of memory (Kandel and Schwartz 2014). Short-term 

sensitisation of the gill-withdrawal reflex induces short-term facilitation (STF) and long-term 

sensitisation of the gill-withdrawal reflex induces long-term facilitation (LTF). STF lasts for 

minutes or hours and is triggered in Aplysia by a single tail shock or a single pulse of serotonin 

(5-HT). Resulting covalent modifications of pre-existing proteins like the activation of the 

adenylyl cyclase, which converts ATP to the second messenger cAMP, which in turn activates 

the cAMP dependent protein kinase A (PKA) are described as the short-term pathway (Kandel 

and Schwartz 2014). LTF in Aplysia involves a sequence of cellular and molecular mechanisms 

(see figure 1). The release of neurotransmitter (see figure 1 (1)) and short-term strengthening of 

synaptic connections as well as the synthesis of new proteins, initiated by PKA (see figure 1 (2)), 

which recruits the mitogen activated kinase (MAPK) (3) (Kandel and Schwartz 2014; Hawkins et 

al. 2006). While CREB-1 is an activator of gene expression, CREB-2 inhibits CREB-1 and 

therewith its activation capability (see figure 1 (4)). For an activation of CREB-1, PKA is able to 

repress CREB-2. After being transported into the nucleus, PKA can phosphorylate CREB, and 

through this to activate the transcription (see figure 1 (5)) of cAMP response elements (CRE) in 

the upstream region of two different cAMP inducible genes (see figure 1 (6)). This gene 

activation results in the expression of immediate response genes such as the ubiquitin hydrolase, 

which stabilizes the STF and the transcription factor CCAAT-box-enhanced binding protein 

(C/EBP) which is important for the formation of LTF. C/EBP and constitutively expressed 

molecules such as AF (activating factor) induce a second wave of gene expression. The newly 

synthesised gene products (see figure 1 (7)) can be processed to proteins directly at the active 

synapses (see figure 1 (8)) and can initiate both, growth of already existing and the formation of 

new synapses (see figure 1 (9)). In addition, silent synapses can be reactivated (see figure 1 (10)). 

The repetition of these molecular events leads to persistence of memory (see figure 1 (11)) 

(Kandel and Schwartz 2014; Hawkins et al. 2006). 
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Figure 1 Long-term memory formation mechanisms in the sea snail Aplysia californica 

The initiation of the mechanism is mediated by neurotransmitter release (1) that activates the adenylyl cyclase and 

cAMP dependent PKA (2). Therewith, PKA mediates an increase of action potential by enhancing the Ca2+ influx, 

reducing K+ current and increasing neurotransmitter release. With help of the MAPK, PKA is transported into the 

nucleus (3), where the transcription factor CREB gets activated (4) and mediates transcription (5). Epigenetic and 

chromatin changes (6) initiate growth. The newly synthesised gene products (7) can be processed to proteins directly 

at the active synapses (8) and can initiate both, growth of already existing and the formation of new synapses (9). In 

addition, silent synapses can be reactivated (10). The repetition of these molecular events leads to persistence of 

memory (11). (Adapted from Hawkins et al. 2006) 

The expression of new genes and therewith synthesis of mRNAs and proteins is essential to form 

LTM and contributes to changes in neuronal and circuit properties (Ashraf and Kunes 2006). In 

the honeybee, long-term memory (LTM) is a result of a strong conditioning with repeated 

presentation of two paired stimuli CS-US and a consolidation phase where transcription happens. 

Three-trial conditioning that induces LTM leads to a prolonged activation (~3 min) of PKA in the 

antennal lobes (ALs) of the honeybee (see figure 2). The prolonged activation of PKA is 

depending on the production of nitric oxide (NO) by the NO synthase (NOS). Through activation 

of the soluble guanylyl cyclase (sGC), NO can mediate the production of cyclic guanosine 

monophosphate (cGMP), which acts synergistically on PKA and elongates its activation. 
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Whereby the photorelease of cGMP or cAMP in the ALs in combination with one trial 

conditioning is able to induce LTM, it has been demonstrated, that the inhibition of either NOS, 

cGC, or PKA leads to a specific loss of LTM. The activation of the NO/cGMP and the 

cAMP/PKA pathways are essential for the induction of LTM (Müller 2013). 

  

Figure 2 The induction of long-term memory (LTM) in the antennal lobes of the honeybee 

The conditioning with one single trial leads to a weak activation of the cAMP/PKA pathway in the Antennal lobes 

(AL) and induces a form of memory that decays over time. The repeated conditioning with three trials however, 

induces LTM and activates protein kinase A (PKA) in the ALs for a longer time period (~3 min). After calcium 

(Ca2+) activation, the NO synthase (NOS) produces nitric oxide (NO) which activates the soluble guanylyl cyclase 

(sGC) which produces cyclic guanosine monophosphate (cGMP). The cGMP acts synergistically on PKA and 

extends its activation (Adapted from Müller 2013). 

 

 

1.3. MicroRNAs 

 

In addition to the well understood functions of the second messenger cascades in memory 

formation, recent investigations have implicated microRNAs as important players in these 

molecular processes. MicroRNAs (miRNAs) are small (~22 nt) non-coding RNAs, that are 

highly conserved throughout species. As a part of the “epigenetic landscape” (McNeill and Van 

Vactor 2012) they regulate posttranscriptional gene expression through inhibition of translation 

and destabilisation of their specific targets such as mRNAs (Lagos-Quintana et al. 2001; Lau et 

al. 2001; Lee and Ambros 2001). MiRNAs play a role in the development of the nervous system 



Introduction 
 

7 

 

and synaptic plasticity (Nelson et al. 2010) and influence many biological processes like the 

development of animals and plant, cell proliferation, differentiation, apoptosis (Huntzinger and 

Izaurralde 2011). One strand is degraded while the other one is loaded into the AGO (Argonaute 

family protein) and the RISC (RNA induced silencing complex) is formed, which guides the 

binding of the miRNA to the target mRNA. This leads to the alteration of posttranscriptional 

gene expression through inhibition of translation and destabilisation of the target mRNA. After 

incorporation of the guide strand of the mature miRNA into the RNA induced silencing complex 

(RISC), the complex can silence its mRNA target, either by cleavage mediated through AGO or 

by resting on the mRNA and blocking the translation process (Bartel 2004). First discovered in 

1993 by Lee et al., miRNAs have become more and more interesting due to their fine regulatory 

functions. Lee et al. (1993) found out, that lin-4, a gene that controls the larval development of 

C. elegans is not encoding for a protein but for two small RNA molecules. Also, the smaller 

RNA molecule binds to several sites of the 3’UTR (untranslated region) of lin-14 and thereby 

represses the LIN-14 protein synthesis without changing the mRNA amount (Lee et al. 1993). 

For seven years, the lin-4 RNA seemed to be the only one of its type, until in the year 2000, 

Reinhart et al. discovered that the let-7 gene encoded for a second small regulatory RNA in 

C.elegans (Reinhart et al. 2000). Soon after this discovery, let-7 gene homologues and many 

other ~22 nt small RNAs were also found in other species (Lagos-Quintana et al. 2001; Lau et al. 

2001; Lee and Ambros 2001). As fine tuners of gene expression, miRNAs have become 

interesting elements in the decoding of cellular mechanisms. To understand the molecular 

mechanisms behind learning and memory it is pivotal to uncover those missing pieces and define 

their roles in the machinery. Previous studies described the importance of miRNAs in synaptic 

plasticity and in the mechanisms generating memory (Vo et al. 2005; Ashraf and Kunes 2006; 

Ashraf et al. 2006; Schratt et al. 2006). 

 

1.3.1. MicroRNA biogenesis, mechanism and function 

 

MiRNA genes do mostly appear in clusters of two to seven genes, which are transcribed bi- or 

polycistronic by the RNA polymerase II (or RNA polymerase III) most of the time and folded 

into hairpin structures after the transcription (Lee et al. 2002). These hairpins are called primary 

miRNA (pri-miRNA) and can be more than 1 kb long. The pri-miRNAs are then processed into 

approximately 70 nt long precursor-miRNAs (pre-miRNAs) by the Drosha RNase III 
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endonuclease (see figure 3) whereupon the base of the pre-miRNA stem-loop has a 5’ phosphate 

and around 2 nucleotides 3’-overhang (Bartel 2004). The export receptor Exportin-5 and RanGTP 

transport the pre-miRNAs actively out of the nucleus into the cytoplasm (Lund and Gu 2004; Yi 

et al. 2003). In the cytoplasm, the DICER RNase III endonuclease recognizes the double stranded 

pre-miRNA and cleaves both strands of the duplex at about two helical turns away from the base 

of the stem-loop. The product of this cleavage that lost its loop and 5’ phosphate and about 2 nt 

3’-overhang consists now of the mature miRNA strand and the miRNA* strand (Lim et al. 2003). 

This siRNA-like (small interfering RNA) imperfect duplex fragment which is termed as the 

miRNA: miRNA* duplex gets separated by a helicase into the miRNA and miRNA* strands, the 

miRNA strand is loaded into the RNA-induced silencing complex (RISC) while the miRNA* 

strand gets degraded. The RISC complex contains a member of the Argonaute protein family. In 

humans four different AGO proteins are described (Flores et al. 2014), AGO-1 and AGO-2 were 

also identified in insects (Lucas and Raikhel 2013). Guiding the RISC to the target mRNA, the 

mature miRNA can silence its target through cleavage or through translational repression (Bartel 

2004). In both cases, the miRNA binds to its target with six to eight bases, the seed sequence, a 

region between second and the seventh nucleotide of the miRNA. In most cases, the binding 

happens at the 3’ UTR of the mRNA, but it can also appear at the 5’UTR (Orom et al. 2008) and 

at the ORF (open reading frame) (Tay et al. 2008). When the complementarity between the 

mRNA and the miRNA is sufficient, the RISC can cleave the target mRNA. As one miRNA can 

bind to several targets but with different intensity, cleavage is not the only mechanism to regulate 

the amount of mRNAs. The protein GW182, which is recruited to the RISC complex and binds to 

AGO, plays a role in the degradation of the mRNAs (Behm-Ansmant et al. 2006) by regulating 

the transport of the whole miRNA-RISC-mRNA complex to so called P-bodies (Ipsaro and 

Joshua-tor 2015). The P-bodies are cytoplasmic domains, in which proteins accumulate for the 

degradation of mRNAs (Lucas and Raikhel 2013). 

 



 

Figure 3 Biogenesis of miRNAs

The biogenesis of miRNAs starts in the nucleus with the transcription of the miRNA gene performed by Polymerase 

II. The emerging primary miRNA is processed to a precursor miRNA by the microprocessor complex DROSHA and 

transported out of the nucleus into the cytosol by Exportin

processed by DICER. The resulting miRNA

incorporated into the RISC complex while the miRNA* gets degraded. The RISC complex to

incorporated mature miRNA can either cleave its target mRNA or inhibit translation.

signalling pathways, which activate CREB and MeCP2, which in turn regulate DNA transcription in the nucleus. 

Adapted from (Wang et al 2012) 
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processes like maturation, connectivity and plas

of neuronal plasticity in the development of learning and memory are strongly influenced by a 
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us into the cytosol by Exportin-5 and RanGTP. In the cytosol, the precursor is further 

processed by DICER. The resulting miRNA-miRNA* duplex gets divided by a helicase and the miRNA gets 

incorporated into the RISC complex while the miRNA* gets degraded. The RISC complex to

incorporated mature miRNA can either cleave its target mRNA or inhibit translation. Synaptic acti

signalling pathways, which activate CREB and MeCP2, which in turn regulate DNA transcription in the nucleus. 

MicroRNAs in learning and memory 

Several studies have already described the importance of microRNAs (miRNAs) in neuronal 

tissues. MiRNAs control both levels and translation of mRNA. They act as fine tuning tools in 

processes like maturation, connectivity and plasticity of neurons (see figure

of neuronal plasticity in the development of learning and memory are strongly influenced by a 

protein cascades. The small non-coding miRNAs influence these neuronal 
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The biogenesis of miRNAs starts in the nucleus with the transcription of the miRNA gene performed by Polymerase 

emerging primary miRNA is processed to a precursor miRNA by the microprocessor complex DROSHA and 

5 and RanGTP. In the cytosol, the precursor is further 

NA* duplex gets divided by a helicase and the miRNA gets 

incorporated into the RISC complex while the miRNA* gets degraded. The RISC complex together with the 

Synaptic activation can lead to 

signalling pathways, which activate CREB and MeCP2, which in turn regulate DNA transcription in the nucleus. 

microRNAs (miRNAs) in neuronal 

tissues. MiRNAs control both levels and translation of mRNA. They act as fine tuning tools in 

see figure 4). The fundamentals 

of neuronal plasticity in the development of learning and memory are strongly influenced by a 

coding miRNAs influence these neuronal 
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processes by silencing their target mRNAs, which in turn could lead to the development of 

memory or impede this process. 

 

Figure 4 The influence of different miRNAs on neuronal mechanisms 

The scheme displays the influence of different miRNAs on maturation, connectivity and plasticity on neuronal cells. 

The miRNAs can negatively or positively regulate these processes by controlling the levels and the translation of 

mRNAs (McNeill and Van Vactor 2012). 

A number of studies deliver evidence of the importance of the miRNA machinery in synaptic 

plasticity and learning and memory formation tasks. Enhanced cognition in aversively and 

appetitively motivated tasks was observed in Dicer1 mutant mice lacking miRNAs in mature 

neurons in the adult brain (Konopka et al. 2010). MiRNAs also play a critical role in learning and 

memory formation processes via regulating important proteins such as CREB and Mef2 (myocyte 

enhancing factor 2) (Wang et al. 2012). The overexpression of different miRNAs in transgenic 

mice resulted in impaired memory, impaired synaptic plasticity and deficits in recognition (Scott 

et al. 2012; Gao et al. 2010; Hansen et al. 2010). The first dendritic miRNA identified, miR-134 

does regulate dendritic spine size negatively (Bicker et al. 2014). Controlled via the histone 

deacetylase sirtuin 1 (SIRT1), miR-134 has been described to be involved in hippocampus-

dependent memory by targeting CREB (Gao et al. 2010) and in spine shrinkage via targeting the 

LIM domain kinase 1 (LimK1) (Siegel et al. 2011). 

 



Introduction 
 

11 

 

1.3.3. The miR-124 

 

The miR-124 is a well-studied, neuron-specific and plenty expressed miRNA (Conaco et al. 

2006) which is highly conserved from worm to human (Li et al. 2010). Weaver et al. (2007) 

provided computational and transcriptional evidence (q-RT-PCR) of the existence of miR-124 in 

the honeybee and it has already been described in the literature to be found in the honeybee 

(Behura and Whitfield 2010; Greenberg et al. 2012; Qin et al. 2014) as well as in other insect 

species like Drosophila melanogaster (Aravin et al. 2003; Sempere et al. 2003; Ruby et al. 2007; 

Stark et al. 2007). It is a likely candidate to uncover missing pieces of the molecular mechanisms 

behind learning and memory formation. MiR-124 was previously described in relation to 

synaptic plasticity, learning and memory (Cao et al. 2007; Cheng et al. 2009; Rajasethupathy et 

al. 2009) and is known to promote neuronal differentiation (Makeyev et al. 2007) and identity 

(Conaco et al. 2006). MiR-124-target interaction was previously described for GluA2 (AMPA-

type glutamate receptor) in the hippocampus of mice by Ho et al. 2014. They showed that miR-

124 regulates GluA2 in the cell-bodies before the GluA2 protein is transported to synapses and 

dendrites. They were also able to locate the miR-124 in cell-bodies and dendrites and the GluA2 

mRNA in the somata (Ho et al. 2014). Furthermore miR-124 was also shown to constrain 

synaptic plasticity in absence of serotonin through regulation of CREB (cAMP response element-

binding protein) in Aplysia californica by binding to its 3’UTR (Rajasethupathy et al. 2009). 

MiR-124 was shown to be upregulated in young nursing bees in comparison to old nursing bees 

and young or old forager bees (Behura and Whitfield 2010). Qin et al. (2014) described that the 

miR-124 was upregulated after maze based visual pattern learning. Cristino et al. (2014) found an 

upregulation of miR-124 after learning in the honeybee. 

 

1.3.4. The miR-125 

 

The miR-125 plays an important role in vertebrate neuronal differentiation and in synaptic 

plasticity and –function (Le et al. 2009; Edbauer et al. 2010; Boissart et al. 2012) and it is highly 

conserved from worm to human (Li et al. 2010; Kiezun et al. 2012). The miR-125 has already 

been described in the honeybee (Behura and Whitfield 2010; Greenberg et al. 2012; Qin et al. 

2014) as well as in other insect species like Drosophila melanogaster (Aravin et al. 2003; 

Sempere et al. 2003; Ruby et al. 2007; Stark et al. 2007). In mammals, there is a differentiation 
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between the miR-125a and miR-125b. Those two miRNAs regulate synaptic plasticity in 

different ways (see figure (4)). The miR-125a was shown to be a positive regulator of synaptic 

plasticity by controlling PSD-95 and thus regulating the density and branching of spinous 

processes in neurons (Muddashetty et al. 2011). The miR-125b is described as a negative 

regulator of maturation in neurons (McNeill and Van Vactor 2012), as a negative regulator of p53 

in zebra fish and humans (Le et al. 2009) and as a promoter of neuronal differentiation in human 

cells (Le et al. 2009). It has been shown in mice, that overexpression of miR-125b resulted in 

longer and thinner processes of hippocampal neurons and that the miR-125b targets the Eph 

receptor A4 (EphA4) (Edbauer et al. 2010). A loss of EphA4 leads to filopodia-like protrusions 

in neuronal cells of the hippocampus (Edbauer et al. 2010). According to Sempere et al. (2003), 

miR-125 is known as a putative homologue of lin-4 miRNA in Drosophila melanogaster. MiR-

125 is clustered with miR-100 and let-7 within an 800 bp region on chromosome 2 L in 

Drosophila melanogaster and the upregulation of miR-125 miR-100 and let-7 and 

downregulation of miR-34 requires the hormone ecdysone (Ecd) and the activity of the Ecd 

inducible gene Broad-Complex (Aravin et al. 2003; Sempere et al. 2003). MiR-125 expression 

was upregulated in young nursing bees in comparison to old nursing bees and young or old 

forager bees (Behura and Whitfield 2010). Qin et al. (2014) described that the miR-125 was 

upregulated after maze based visual pattern learning. An upregulation of miR-125 in inactive 

ovaries of Apis mellifera virgin queens (compared to mated queens) and inactive ovaries of 

worker bees (compared to activated worker ovaries) has been described by (Macedo et al. 2016). 

 

1.3.5. The miR-132, miR-138 and the miR-329 in neuronal tissues 

 

The miR-132 plays a role in neuronal plasticity and synapse formation (Bicker et al. 2014) and is 

also known to be conserved through species (Kiezun et al. 2012). It has been shown, that miR-

132 expression is regulated by the Brain-derived neurotrophic factor (BDNF) through the 

transcription factor CREB (Vo et al. 2005). Furthermore, via neuronal activation, the miR-132 

regulates neuronal morphogenesis in developing neurons by repressing the translation of 

p250GHP a member of the Rho family GTPase-activating protein (Wayman et al. 2008). MiR-

132 transgenic mice, which overexpress miR-132 in forebrain neurons, showed deficits in 

hippocampal-dependent novel object recognition memory and exhibited an impaired expression 

of the methyl CpG binding protein 2 (MeCP2), a protein implicated in Rett Syndrome and other 



Introduction 
 

13 

 

disorders of mental retardation (Hansen et al. 2010). The specific overexpression of miR-132 in 

the perirhinal cortex of the rat resulted in impaired short-term recognition memory associated 

with reduced long-term depression and long-term potentiation (Scott et al. 2012). Hansen et al. 

(2013) found enhanced cognitive capacity while sensitively over-expressing miR-132 in the 

hippocampi of doxycycline regulated miR-132 transgenic mice. 

The miR-138 is another conserved, intensively studied neuronal miRNA (Kiezun et al. 2012). 

The miR-138 is highly enriched in the brain, localized within dendrites and it negatively 

regulates the size of dendritic spines in rat hippocampal neurons (Siegel et al. 2013). High levels 

of miR-138 in the mouse hippocampus are correlated with better short-term recognition memory 

performance (Tatro et al. 2013). The miR-138 controls acyl protein thioesterase1 (APT1) 

translation (Siegel et al. 2013) and through this affects short-term object recognition memory 

(Tatro et al. 2013). SIRT1 has been identified as a target of miR-138, and both of them have been 

described to regulate mammalian axon regeneration in vivo (Liu et al. 2013). NMDA (N-methyl-

D-aspartate) dependent chemical- long-term potentiation (LTP) is described to induce a reduction 

and –long-term depression (LTD) and an increase of miR-138 expression levels in cultured 

hippocampal neurons (van Spronsen et al. 2013). 

The miR-329 which was demonstrated to play several roles in neurons, is conserved through 

more than 25 species (Kiezun et al. 2012). The transcription factor Mef2 mediates transcription 

of the miRNA 379-410 cluster which is co-regulated by neuronal activity in hippocampal 

neurons of rats (Fiore et al. 2009; Khudayberdiev et al. 2009). The miR-329 as well as the miR-

134 is a part of this genetic cluster. Fiore et al. (2009) inhibited the miR-329 and found that it is 

necessary for dendritic outgrowth triggered by KCl in hippocampal neurons. In association with 

Alzheimer’s disease, miR-329 was upregulated on H2O2-induced hippocampal neurons and 

different strains of senescence accelerated mice (Zhang et al. 2014). The potential tumor 

suppressing miR-329 was shown to decrease cell viability, proliferation, migration, and invasion 

of neuroblastoma cells in vitro through inhibition of its target lysine-specific demethylase 1 

(KDM1A) (Yang et al. 2014). 
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1.3.6. The miR-12 

 

The miR-12, has already been described in the honeybee (Behura and Whitfield 2010; Greenberg 

et al. 2012; Qin et al. 2014) as well as in other insect species like Drosophila melanogaster 

(Lagos-Quintana et al. 2001; Aravin et al. 2003; Sempere et al. 2003; Ruby et al. 2007; Stark et 

al. 2007; McCann et al. 2011; Nishihara et al. 2013) and Aedes aegypti (Osei-Amo et al. 2012). It 

has also identified in the Marek’s disease virus (Xu et al. 2008). MiR-12, was upregulated in 

young nursing bees in comparison to old nursing bees and young or old forager bees (Behura and 

Whitfield 2010). An upregulation of miR-12 in inactive ovaries of Apis mellifera virgin queens 

(compared to mated queens) has been described by Macedo et al. (2016). In addition to the 

aforementioned studies that proved the existence of the miR-12 and its localisation in different 

tissues, there is also evidence for the functional roles of miR-12. Qin et al. (2014) described that 

the miR-12 was upregulated after maze based visual pattern learning in honeybees. 

 

 

1.4. Manipulation of microRNA function 

 

The silencing of miRNAs in vivo is an important step in uncovering miRNA function. Many 

different approaches have been made to acquire this goal.  

Strong effects were shown by knock-out of miRNA genes (miRNA KO) (Park et al. 2010) (see 

figure 5), knock-outs of the miRNA processing proteins with for example the Cre-loxP inducible 

knock-out system (Konopka et al. 2010), or the systemic generation of miRNA deletion mutants 

in Drosophila melanogaster (Weng and Cohen 2012). However, the knock-out of one miRNA 

alone does not necessarily contribute to the functional understanding of the respecting miRNA in 

synaptic plasticity, because a deletion or inducible knock-out is not reversible but permanent. 

Additionally, those knock-outs can be lethal, like the knock-out of the let-7 miRNA in C. Elegans 

(Reinhart et al. 2000). 

Overexpression through transient transfection of for example a synthetic miRNA precursor, or by 

stable introduction of a lentiviral miRNA expression construct can cause false positive results 

(Thomson et al. 2011). The specific overexpression of miR-132 in the perirhinal cortex of the rat 

resulted in impaired short-term recognition memory associated with reduced long-term 

depression and long-term potentiation (Scott et al. 2012). The lentiviral transduction of miR-132 
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into the perirhinal cortex of rats had been performed three weeks before the actual behavioural 

experiments (Scott et al. 2012). Contrarily, Hansen et al. (2013) found enhanced cognitive 

capacity while sensitively over-expressing miR-132 in the hippocampi of doxycycline regulated 

miR-132 transgenic mice. These in vivo manipulations were also not transient but permanent and 

irreversible after induction. 

The performance of miRNA overexpression in a cellular system, which is not natural for the 

respecting miRNA may be suboptimal for the effectiveness of that respecting miRNA because of 

the differences of miRNA-mRNA target expression patterns in different cell types (Thomson et 

al. 2011). The overexpression of the neuronal miR-124 in ovarian cancer (HeLa) cells (Lim et al. 

2005) represents a misperformance for this example. In an in vitro approach with HeLa cells, 

transfection with miR-1 and miR-124 resulted in the downregulation of 100 and more mRNAs 

(Lim et al. 2005). Methods using those above-mentioned overexpression models to study miRNA 

function can be performed in vitro and also in genetically manipulable organisms but not in the 

honeybee. The use of those methods alone can be misleading because of their irreversibility and 

the permanent manipulation of miRNA function (McNeill and Van Vactor 2012). Those 

techniques can be combined with other methods described below to clarify miRNA roles 

(Makeyev et al. 2007). 

Expression of miRNA mimics (see figure 5) can be used to artificially raise the levels of miRNA 

but show controversial effects in in vitro experiments (Osei-Amo et al. 2012). The use of miRNA 

mimics and miRNA-Inhibitors in combination showed expected effects in cell culture of Aplysia 

neurons (Rajasethupathy et al. 2009). 

MiRNA sponges (see figure 5) were designed for the transient transfection into cultured cells and 

act like competitive miRNA-Inhibitors by binding the seed sequences of many different miRNAs 

or of miRNA seed families and thus inhibit their functions (Ebert et al. 2007). 

The “tough decoy” constructs carry a miRNA seed complement in between a degradation 

resistant overall RNA structure (see figure 5) and provide a method for the in vitro as well as the 

in vivo inhibition of miRNAs, but they have not yet been tested in the CNS (Haraguchi et al. 

2009; McNeill and Van Vactor 2012). 

When the function of a specific miRNA has already been defined, target protectors (TPs) (see 

figure 5) can be used. Target protectors, consisting of an oligonucleotide, prevent the miRNAs 

from binding to their specific endogenous target and was designed by Staton and Giraldez (2011) 

for the in vivo use with reporter vectors in zebrafish embryos. 
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Figure 5 Multiple methods for miRNA manipulation 

From the knock-out of miRNA genes (miRNA KO) on the DNA level, the blocking of the primary miRNA with 

LNA morpholinos and the disruption of the Drosha /Pasha microprocessor complex in the nucleus, to the knock-out 

of DICER and therewith the processing to mature miRNAs, the inhibition of mature miRNAs with miRNA-

Inhibitors in the cytosol, there are many different techniques to manipulate miRNA functions. The use of genetically 

encoded tough decoys (Tuds), miRNA sponges (SPs) and target protectors (TPs) were developed to reduce or 

compete with mature miRNA levels or miRNA-mRNA target complexes. Adapted from (McNeill and Van Vactor 

2012) 

 

As methods like creating genetic knock-outs and the in vivo use of reporter assays are difficult to 

transfer to in vivo experiments with the model organism of the honeybee, a controlled and 

transient manipulation of miRNA function would be absolutely essential to study the specific 

effects of single miRNAs on acquisition and consolidation phases. Of special interest in the 

context of this work, is the model of “Anti-miRNA-oligonucleotides” (AMOs). The small 

molecules are designed to match with the sequence of the miRNA of interest. They bind to their 

specific target miRNAs and can thus impede their functions. Due to the instability of RNA 

molecules, which is caused by rapid degradation mediated through RNAses, there have been 

several concepts in designing modifications to stabilize the AMOs (Esau 2008). The “basic” 

Anti-miRNA oligonucleotide is designed with a 2’–O-methyl (2’-OMe) chemical modification 
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and was used in cultured cells (Hutvágner et al. 2004; Meister et al. 2004; Cheng et al. 2005) and 

Drosophila embryos (Leaman et al. 2005). Improved AMOs with a 2’-OMe mixed 

phosphorotioate backbone called “Antagomirs” (Krützfeldt et al. 2005), or “Antisense 

oligonucleotides” (ASOs) (Esau et al. 2006) were tested in mice. The following designs were 

“locked nucleic acids” (LNAs) which have an additional bridge between the 2’-O and 4’-C and 

show increased stability (Koshkin et al. 1998) LNA’s were tested in cultured cells and in mice 

(Orom, et al. 2006; Davis et al. 2006) and “morpholinos” were designed for the use in zebra fish 

embryos (Kloosterman et al. 2007). 

Lennox and Behlke (2010) compared the potencies of 15 AMO designs, inter alia the designs 

described above, in vitro in HeLa cells with luciferase reporter assays. Lennox et al. (2013) 

introduced an improved AMO that showed high potency and low toxicity in cell culture with a 

2' -OMe backbone and the new compound N,N-diethyl-4-(4-nitronaphtalen-1-ylazo)-

phenylamine ("ZEN") which is stable for at least 24 h. 

 

Figure 6 Structure of the ZEN modifier 

N,N-diethyl-4-(4-nitronaphtalen-1-ylazo)-phenylamine is connected via phosphate linkages to the ribose backbone of 

the oligonucleotide (modified after Lennox et al. 2013). 

 

Another basic concept for the in vivo inhibition of parts of the miRNA machinery was provided 

by Watashi et al. (2010). They screened for chemical compounds that supress small RNA-

mediated gene silencing and described two promising chemicals: Poly-L-Lysine (PLL) and 

Trypaflavine (TPF). The study showed, that PLL inhibits DICER-mediated processing of pre-

miRNA/shRNA (small hairpin RNA) to miRNA/siRNA, which means mature miRNA levels get 

reduced while the amount of pre-miRNAs is increasing. Furthermore they showed, that TPF 

reduces the association of siRNA/miRNA with AGO2, so that many of the mature miRNAs can 

not associate with the RISC and inhibit their targets. 
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2. Aim of this work 

 

Various investigations have shown the relevance of miRNAs in the neuronal tissues by 

overexpression, cell culture models or knock-out mutants but more in vivo loss of function 

studies are necessary to define the function of specific miRNAs in the brain. Because little is 

known about miRNAs in learning, I want to identify the role of miRNAs involved in the 

formation of STM and LTM in the honeybee brain. Due to her need to learn and memorise new 

food sources and to pass the information to others, the honeybee (Apis mellifera) pictures an ideal 

model organism to study learning and memory mechanisms. Of special interest are the changing 

levels of miRNAs triggered by weak and strong associative learning. 

The first approach of this work will be the analysis and quantification of the levels of ame-miR-

12, ame-miR-124, ame-miR-125, ame-miR-989, ame-miR-3756, ame-miR-3769 and ame-miR-

3788 in the central honeybee brain after strong and weak conditioning. The miRNAs will be 

selected for the previously described roles of their homologues in relation to synaptic plasticity, 

learning and memory. To show, that learning and memory processes have an influence on 

miRNA levels, I want to measure the amounts of those miRNAs by q-RT-PCR (quantitative-

Real-Time-Polymerase Chain Reaction) and to compare their levels between naive and 

conditioned honeybees. 

A second approach will be, to use a transient in vivo inhibition of selected miRNAs by Anti-

miRNA-oligonucleotides (AMOs) and to analyse the function of those individual miRNAs on the 

behaviour of the honeybees. I want to investigate the differences in memory formation due to 

transient and dynamic manipulation of miRNA function during the acquisition or the 

consolidation phase of weak (single-trial CS-US) and strong (three-trials CS-US) appetitive 

olfactory conditioning. Comparing miRNA inhibited and control animals in non-associative 

conditioning tasks and gustatory sensitivity allows specifying the contribution of distinct 

miRNAs in associative learning processes. 

In addition to the inhibition of specific miRNAs, I want to test unspecific inhibitors of the 

miRNA machinery and compare the differences between the specific and the unspecific 

inhibition of miRNAs (PLL/TPF). Furthermore, the effects of AMOs and unspecific inhibitors on 

the levels of selected miRNAs will be examined by quantification with q-RT-PCR to identify 

interactions between single miRNAs. The changes of miRNA amounts after conditioning and 
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AMO/inhibitor treatment will hereby also be addressed not only to identify miRNA interactions 

but also to verify the functionality of the inhibitors. 

Identifying changes of individual miRNAs by learning combined with the transient manipulation 

of individual miRNAs by AMOs during distinct phases of learning will reveal a better 

understanding of the role of distinct miRNAs in memory formation and consolidation. 
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3. Materials and methods 

3.1. Materials 

 

Table 1 Apparatus 

Binocular Leica10x/23 Leica (Wetzlar, Germany) 

Cold Light Lamp KL 1500 LCD Schott (Mainz, Germany) 

Eppendorf Centrifuge 5417R Eppendorf (Hamburg, Germany) 

Eppendorf Centrifuge 5804R Eppendorf (Hamburg, Germany) 

Eppendorf Mastercycler personal Eppendorf Eppendorf (Hamburg, Germany) 

Heating block Labnet (Dülmen, Germany) 

Heating chamber Memmert (Schwabach, Germany) 

Homogenisation Shaker modified Power Drill Self-made 

Homogenisation Shaker modified Vortex 

Device VX100 

Labnet (Dülmen, Germany) 

pH meter (inoLab pH 730) WTW (Weilheim, Germany) 

Reader infinite F200 Pro Tecan (Männedorf, Switzerland) 

Real-Time cycler BioRad CFX Cycler Bio-Rad (Munich, Germany) 

Real-Time cycler BioRad My iQ5 Cycler Bio-Rad (Munich, Germany) 

Soldering iron Self-made 

Table Centrifuge Spectrafuge 24 D Labnet (Dülmen, Germany) 

Vortex Mixer Device VX-100 Labnet (Dülmen, Germany) 

Weight Balances CP3202S and CP225D Sartorius (Göttingen, Germany) 

 

Table 2 Miscellaneous materials 

96-Well PCR High Profile Plates Biozym (Oldendorf, Germany) 

Adhesive film for 96 well qPCR plates Biozym (Oldendorf, Germany) 

Cannules 0,40x 20 mm Braun (Melsungen, Germany) 

Catching Tubes Plexi Glass Greiner (Kremsmünster, Austria) 

Dental Wax Blocks Gebdi Dental Products (Engen, Germany) 
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Falcon Tubes 15 ml Greiner (Kremsmünster, Austria) 

Falcon Tubes 50 ml Greiner (Kremsmünster, Austria) 

Filter Tips Peqlab (Erlangen, Germany) 

Forceps Dumont (Switzerland) 

Glass Capillaries Brand (Wertheim, Germany) 

Honeybee Harnessing Tubes  Self-made 

Honeybee Standing Racks Self-made 

Light Protection Reaction tubes (1,5 ml) Greiner (Kremsmünster, Austria) 

Metal Pestles for Glass Capillaries Self-made 

Multiply PCR stripes with lids (0,2ml) Sarstedt (Nürnbrecht, Germany) 

Paper towels Supermarket (Saarbrücken, Germany) 

Plastic tubs with lids Supermarket (Saarbrücken, Germany) 

Plexi Glass Pyramids Self-made 

Q-Tips Supermarket (Saarbrücken, Germany) 

Razor Blade breakers Nopa Instruments (Tuttlingen, Germany) 

Razor Blades Faulhaber (Schöneich, Germany) 

Reaction tubes (0,2ml, 1,5ml, 2ml) Sarstedt (Nürnbrecht, Germany) 

Reaction tubes (0,5ml, 5ml) safelock Eppendorf (Hamburg, Germany) 

Single channel pipettes Abimed (Langenfeld, Germany) 

Spatula Roth  (Karlsruhe, Germany) 

Surgical Disposable Scalpels Braun (Melsungen, Germany) 

Syringe 20 ml Omnifix Braun (Melsungen, Germany) 

Syringe 5 ml Omnifix Braun (Melsungen, Germany) 

Tooth Picks Supermarket (Saarbrücken, Germany) 

 

Table 3 Chemicals 

Chloroform Sigma Aldrich (Munich, Germany) 

Clove oil Pharmacy (Saarbrücken, Germany) 

DEPC (Diethylpyrocarbonat) Roth (Karlsruhe, Germany) 

EDTA Roth (Karlsruhe, Germany) 

Ethanol absolute Sigma Aldrich (Munich, Germany) 
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KCl UdS Central chemical Supply (Saarbrücken, 

Germany) 

KH2PO4 Grüssing (Filsum, Germany) 

miRNA-Inhibitors Integrated DNA Technologies (Coralville, 

USA) 

Na2 hPO4 VWR International (Dublin, Ireland) 

NaCl  VWR International (Dublin, Ireland) 

Oligo nucleotides Sigma-Aldrich (Munich, Germany) 

Poly-L-Lysine Sigma Aldrich (Munich, Germany) 

Real-Time qPCR Mastermix: Kapa Probe Fast 

Universal, Kapa SYBR Fast Universal 

Peqlab (Erlangen, Germany) 

RNAse Exitus Plus AppliChem (Darmstadt, Germany) 

Saccharose Supermarket (Saarbrücken, Germany) 

Trizma-base Sigma Aldrich (Munich, Germany) 

TRIzol Reagent Solution  Ambion Life Technologies (Darmstadt, 

Germany) 

Trypaflavine Sigma Aldrich (Munich, Germany) 

Ultra Pure Water RNAse/DNAse free Fisher Scientific (Schwerte, Germany) 

Universal ProbeLibrary Probe #21 Roche (Mannheim, Germany) 

 

Table 4 Solutions and buffers 

1 M Tris-HCl (pH 8,0) for 200 ml 3,64 g Trizma-base 

Dilute in 160 ml H2Obidest 

Set pH with HCl to 8,0 and fill up  

With H2Obidest to 200 ml 

1 x Phosphate buffered Saline 2,7 mM KCl 

137 mM NaCl 

10,1 mM Na2 hPO4 

1,8 mM KH2PO4 

H2O-DEPC 0,1% 

 

1 l H2Obidest 

1 ml DEPC 
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Shake at 37°C over night, autoclave 

TE- Buffer 10mM Tris-HCl (pH 8,0) 

1 mM EDTA 

 

Table 5 Kits 

KAPA SYBR FAST qPCR Kit Master Mix 

(2x) Universal 

Peqlab (Boston, USA) 

Revert Aid RT CDNA Synthesis Kit Thermo Fisher Scientific (Waltham, USA) 

 

Table 6 Solutions for injection 

MicroRNA-Inhibitors 

miR-12-Inhibitor  

0.5 µM miRNA-Inhibitor (Anti-ame-miR-

12 (Ref.Nr.: 66388547): 5nmol solved in 

50µl TE-Buffer diluted to 0,5 µM in PBS 

sterile filtrated  

5'-mA/ZEN/mCmCmAmGmUmAmCmCmUm 

GmAmUmGmUmAmAmUmAmCmUmC/3ZEN/-3' 

miR-124-Inhibitor  

0.5 µM miRNA-Inhibitor (Anti-ame-miR-

124 (Ref.Nr.:66477088)): 5nmol solved in 

50µl TE-Buffer diluted to 0,5 µM in PBS 

sterile filtrated 

5'-mC/ZEN/mUmUmGmGmCmAmUmUmCm 

mAmCmCmGmCmGmUmGmCmCmUmU/3ZEN/-3' 

miR-125-Inhibitor 

0.5 µM miRNA-Inhibitor (Anti-ame-miR-

125 (Ref.Nr.:68529874)) 5nmol solved in 

50µl TE-Buffer diluted to 0,5 µM in PBS 

sterile filtrated 

5'-mU/ZEN/mCmAmCmAmAmGmUmUmAm 

GmGmGmUmCmUmCmAmGmGmG/3ZEN/-3' 

NC1 Negative Control (human) 

0.5 µM miRNA-Inhibitor  

 (Ref.Nr.:66388548): 5nmol solved in 50µl 

TE-Buffer diluted to 0,5 µM in PBS sterile 

filtrated 

5'mG/ZEN/mCmGmUmAmUmUmAmUmAm 

GmCmCmGmAmUmUmAmAmCmG/3ZEN/-3' 
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Other Solutions for Injection 

Trypaflavine (Acriflavine hydrochloride) 

Sigma Aldrich (Munich, Germany) 

5 mM (diluted in 1xPBS sterile filtrated) 

Poly-L-Lysine 

Sigma Aldrich (Munich, Germany) 

1 mM (diluted in 1xPBS sterile filtrated) 

 

 

3.2. Software and databases 

 

• Bio-Rad CFX Manager TM 3.1 

• Bio-Rad iQ5 

• BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

• Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) 

• Clustal W2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) 

• Galaxy Server (https://usegalaxy.org/) 

• Mendeley Desktop Version 1.15.2 

• Microsoft Office 2007 

• miRBase (http://www.mirbase.org/) 

• MxPRo QPCR software for Mx3000P (v 4.1.0.0) 

• Oligo Calc (http://www.basic.northwestern.edu/biotools/oligocalc.html) 

• RefSeq ( http://www.ncbi.nlm.nih.gov/refseq/) 

• RNA hybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/) 

• UniProtKB ( http://www.uniprot.org/) 

• Vassarstats (http://vassarstats.net/) 



Materials and methods 
 

25 

 

3.3. Methods 

3.3.1. Animals 

 

The honeybees (Apis mellifera) were kept throughout the whole year in the apiary of the Saarland 

University in Saarbrücken, Germany. In summertime the foragers were caught in the botanical 

garden in front of the hive with a UV light-permeable plexi glass pyramid (Felsenberg 2011) and 

transferred into plastic vials. In wintertime, the honeybees were kept indoors in the winter bee 

house, the animals were allowed to fly out of their hives and collect pollen and 1 M sucrose 

solution freely. The hives were surrounded by a thin gossamer fabric in which we caught them 

immediately into plastic vials. The temperature in the winter bee house was kept constantly at 

23°C - 25°C with a lower temperature during the night time and 50% humidity. In both cases, the 

plastic vials were transported immediately to the lab, where the honeybees were immobilised on 

ice and transferred into plastic harnessing tubes. Fixed with textile adhesive film between the 

caput and the thorax and with another film that covered the abdomen (see figure 7), the bees in 

their harnessing tubes were kept together in bee racks. The bees were fed with 1 M sucrose 

solution and kept in plastic tubes, moistened with water on the ground and covered with a dark 

lid. 

 

Figure 7 Honeybee in harnessing tube 

The honeybee is fixed in a harnessing tube, the antennae and the proboscis can move freely (Source image: 

Michely). 

 

 

Antenna 

Proboscis 

textile adhesive film 

harnessing tube 



 

3.3.2. Associative olfactory conditioning

 

The conditioning experiments were carried out one day after collecting the honeybees. The 

animals were starved over night for at least 16 h. Acquisition trials consisted of an odor stimulus 

(CS conditioned stimulus) paired with a sucrose reward (US uncondi

presentation of the CS with a 20 ml syringe containing clove oil for 5 s was paired after 3 s with 

an US. The antennae of the honeybee were touched with a 1 M Sucrose moistened toothpick, 

after proboscis extension the bees were allowe

(single-trial) is described as weak training 

interval between each trial is described as strong training. 

performed with the same animals. The memory recall consisted of presentation of the CS alone. 

Animals that did not respond to the US during the conditioning and animals that 

proboscis extension response to the odour alone were excluded from the experiments.

Figure 8 Conditioning: Odour 

The honeybees were conditioned with a paired presentation of a CS (clove oil odour) and a US (1 M sucrose 

solution). The CS was presented for 5 s, after 3 s of CS presentation; the US was presented for 5 s as well, so the 

paired presentation of the two stimuli lasted for a total 

US pairing, whereas the three-trial conditioning consists of three CS

The memory recall was tested by presentation of only the CS and was performed 

conditioning (Source image: Michely).
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ociative olfactory conditioning 

The conditioning experiments were carried out one day after collecting the honeybees. The 

animals were starved over night for at least 16 h. Acquisition trials consisted of an odor stimulus 

(CS conditioned stimulus) paired with a sucrose reward (US uncondi

presentation of the CS with a 20 ml syringe containing clove oil for 5 s was paired after 3 s with 

an US. The antennae of the honeybee were touched with a 1 M Sucrose moistened toothpick, 

after proboscis extension the bees were allowed to lick the sucrose for 3 s. One CS

) is described as weak training (Müller 2002) whereas 3 CS-US pairings with a 2 min 

each trial is described as strong training. 2 h, 1 d and 2 d memory recalls were 

performed with the same animals. The memory recall consisted of presentation of the CS alone. 

Animals that did not respond to the US during the conditioning and animals that 

proboscis extension response to the odour alone were excluded from the experiments.

Conditioning: Odour and sucrose paired presentation 

The honeybees were conditioned with a paired presentation of a CS (clove oil odour) and a US (1 M sucrose 

solution). The CS was presented for 5 s, after 3 s of CS presentation; the US was presented for 5 s as well, so the 

muli lasted for a total time of 2 s. The single-trial conditioning consists of one CS

conditioning consists of three CS-US pairings with an inter trial interval of 2 min. 

The memory recall was tested by presentation of only the CS and was performed 2

conditioning (Source image: Michely). 

Materials and methods 
 

 

The conditioning experiments were carried out one day after collecting the honeybees. The 

animals were starved over night for at least 16 h. Acquisition trials consisted of an odor stimulus 

(CS conditioned stimulus) paired with a sucrose reward (US unconditioned stimulus). The 

presentation of the CS with a 20 ml syringe containing clove oil for 5 s was paired after 3 s with 

an US. The antennae of the honeybee were touched with a 1 M Sucrose moistened toothpick, 

ck the sucrose for 3 s. One CS-US pairing 

US pairings with a 2 min 

, 1 d and 2 d memory recalls were 

performed with the same animals. The memory recall consisted of presentation of the CS alone. 

Animals that did not respond to the US during the conditioning and animals that showed the 

proboscis extension response to the odour alone were excluded from the experiments. 

 

The honeybees were conditioned with a paired presentation of a CS (clove oil odour) and a US (1 M sucrose 

solution). The CS was presented for 5 s, after 3 s of CS presentation; the US was presented for 5 s as well, so the 

conditioning consists of one CS-

US pairings with an inter trial interval of 2 min. 

2 h, 1 d and 2 d after the 
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3.3.3. Gustatory sensitivity 

 

The animals were tested for their gustatory sensitivity to sucrose. Depending on the age, the 

saturation level, the genotype and the division of labour of the honeybees, the gustatory 

sensitivity can vary (Page et al. 1998; Pankiw and Page 1999). First, a pre-test was conducted in 

order to classify the honeybees to their corresponding gustatory sensitivity and to distribute them 

into homogenous groups. The responsiveness to the sucrose stimulus was tested by touching the 

antennae with toothpicks moistened with sucrose solutions of increasing concentration (0 M, 

0,03 M, 0,1 M, 0,3 M and 1 M). The honeybees were sorted according to their scores into 

different groups. When too many of the honeybees were responding to small concentrations, the 

bees were all fed with 1 M sucrose solution and the pre-test was repeated after one hour. To test 

for altered gustatory sensitivity due to treatment with different miRNA-Inhibitors, PLL and TPF, 

the bees were injected at different points in time before the responsiveness tests (the different 

points in time and experiments are described directly in the Results section). The responsiveness 

to the sucrose stimulus was tested by touching the antennae with toothpicks moistened with 

sucrose solutions of increasing concentration (0 M, 0,03 M, 0,1 M, 0,3 M and 1 M). The test was 

carried out at different points in time after the treatment. For statistical evaluation of data, the 

gustatory response score (sum of reactions of every single animal (0-5 reactions possible)) was 

calculated and tested by a Mann Whitney test (http://vassarstats.net/). A p-value ≤ 0,05 was 

hereby considered as significant. 

 

3.3.4. Non-associative learning 

 

To study the influence of the treatment with the different chemical compounds the animals were 

tested with two different non-associative learning paradigms: the habituation and the 

sensitisation. For the 1 d treatment with miRNA-Inhibitors, the animals were caught in the 

afternoon, fed till satiation and then injected with the appropriate solutions. For the 2 h and the 4 

h test; the animals were caught the day before, fed till satiation and treated in the morning. The 

tests were then carried out exactly 2 h or 4 h after the treatment. The habituation and the 

sensitisation are both non-associative learning paradigms in which the animals learn to value and 

distinguish a stimulus' context and relevance. 



 

3.3.5. Habituation 

 

The animals were habituated by touching one antenna repeatedly (inter

the animals with a toothpick moistened in 1 M sucrose solution. The animals were considered 

habituated, when the animals stopped the reaction with the PER

reaching the habituation criterion, bees were dishabituated by touching the other antenna with the 

same toothpick. The dishabituation test is necessary to distinguish animals that showed fatigue or 

sensory adaptation from those, t

habituation was noted for evaluation. Bees that showed more than 50 PERs (cut off), that did not 

react at all or did not show dishabituation, were excluded from the evaluation of data.

Figure 9 Habituation scheme 

The honeybees were habituated, by repeatedly touching one antenna with an interval of 1 s with a toothpick 

moistened with 1 M sucrose. After reaching the habituation criterion and a response to the 

bees were considered habituated (Source image: Michely).

 

3.3.6. Sensitisation 

 

Before sensitisation, the bees were stimulated with clove odour to test for spontaneous response 

to the odour and the PER was noted. After 2

moistened in 1 M sucrose solution. 20 s after the sucrose stimulus, the clove odour was presented 

to the animals again and the PER was noted. The bees that responded to the first presentation of 

the odour or did not react to the s
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The animals were habituated by touching one antenna repeatedly (inter-stimulus

the animals with a toothpick moistened in 1 M sucrose solution. The animals were considered 

animals stopped the reaction with the PER for five times in a row. After 

reaching the habituation criterion, bees were dishabituated by touching the other antenna with the 

same toothpick. The dishabituation test is necessary to distinguish animals that showed fatigue or 

sensory adaptation from those, that were actually habituated. The number of stimuli until 

habituation was noted for evaluation. Bees that showed more than 50 PERs (cut off), that did not 

react at all or did not show dishabituation, were excluded from the evaluation of data.

 

The honeybees were habituated, by repeatedly touching one antenna with an interval of 1 s with a toothpick 

moistened with 1 M sucrose. After reaching the habituation criterion and a response to the 

bees were considered habituated (Source image: Michely). 

Before sensitisation, the bees were stimulated with clove odour to test for spontaneous response 

to the odour and the PER was noted. After 2 min the bees were touched with a toothpick 

moistened in 1 M sucrose solution. 20 s after the sucrose stimulus, the clove odour was presented 

to the animals again and the PER was noted. The bees that responded to the first presentation of 

the odour or did not react to the sucrose stimulus were excluded from evaluation.
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the animals with a toothpick moistened in 1 M sucrose solution. The animals were considered 

ive times in a row. After 

reaching the habituation criterion, bees were dishabituated by touching the other antenna with the 

same toothpick. The dishabituation test is necessary to distinguish animals that showed fatigue or 

hat were actually habituated. The number of stimuli until 

habituation was noted for evaluation. Bees that showed more than 50 PERs (cut off), that did not 

react at all or did not show dishabituation, were excluded from the evaluation of data. 

 

The honeybees were habituated, by repeatedly touching one antenna with an interval of 1 s with a toothpick 

moistened with 1 M sucrose. After reaching the habituation criterion and a response to the dishabituating stimulus, 

Before sensitisation, the bees were stimulated with clove odour to test for spontaneous response 

touched with a toothpick 

moistened in 1 M sucrose solution. 20 s after the sucrose stimulus, the clove odour was presented 

to the animals again and the PER was noted. The bees that responded to the first presentation of 

ucrose stimulus were excluded from evaluation. 



 

Figure 10 Sensitisation scheme

The odour (clove oil) was presented to the honeybees. After 2 min, an antenna was stimulated with a toothpick 

moistened with 1 M sucrose solution 

each presentation (Source image: Michely).

 

3.3.7. Drug application

 

Drug application was performed at different

experiments as indicated in the results section. Substances were applied by injection of 1 µl 

volume each with a calibrated glass capillary into the hemolymph of the thorax of the honeybee. 

Prior to injection, the thorax of th

hemolymph. 0.5 µM miRNA

125: 5 nmol solved in 50 µl TE

other experiments, the animals were injected with 1 mM Poly

in 1 x PBS or 5 mM Trypaflavine (TPF) by Sigma

adjusted according to Watashi et al. 
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Sensitisation scheme 

The odour (clove oil) was presented to the honeybees. After 2 min, an antenna was stimulated with a toothpick 

moistened with 1 M sucrose solution followed by the presentation of an odour 20s later. The PER was noted with 

each presentation (Source image: Michely). 

Drug application 

was performed at different points in time before or after conditioning 

experiments as indicated in the results section. Substances were applied by injection of 1 µl 

volume each with a calibrated glass capillary into the hemolymph of the thorax of the honeybee. 

Prior to injection, the thorax of the honeybee was pricked with a cannule to enable access to

miRNA-Inhibitors Anti-ame-miR-12, Anti-ame-miR

125: 5 nmol solved in 50 µl TE-Buffer) by Integrated DNA Technologies solved in 1 x PBS. In 

the animals were injected with 1 mM Poly-L-Lysine (PLL) by Sigma

in 1 x PBS or 5 mM Trypaflavine (TPF) by Sigma-Aldrich in 1 x PBS, the concentration was 

Watashi et al. (2010). 
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The odour (clove oil) was presented to the honeybees. After 2 min, an antenna was stimulated with a toothpick 

followed by the presentation of an odour 20s later. The PER was noted with 

before or after conditioning 

experiments as indicated in the results section. Substances were applied by injection of 1 µl 

volume each with a calibrated glass capillary into the hemolymph of the thorax of the honeybee. 

e honeybee was pricked with a cannule to enable access to the 

miR-124, Anti-ame-miR-

Buffer) by Integrated DNA Technologies solved in 1 x PBS. In 

Lysine (PLL) by Sigma-Aldrich 

Aldrich in 1 x PBS, the concentration was 
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Figure 11 Injection sites on the honeybee thorax 

The honeybee fixed in a harnessing tube, the sites for injection are located on the thorax (Source image: Michely). 

 

3.3.8. Brain dissection 

 

The honeybees were immobilised for 2 min on ice. The head of the honeybee was separated from 

the thorax and fixed on a wax block. The head capsule was opened by slicing from the mandibles 

to the back of the head (where the ocelli are located) in a straight cut with a scalpel (see figure 12 

a). After removing the tracheal membranes, the glands and the ocelli, the optical lobes were 

separated from the central brain and the central brain was taken out with a forceps (see figure 12 

b). The brains of the naive control group were dissected alternating with the brains of the trained 

group. 

Injection site 

Head 

Thorax 
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Figure 12 Dissection of a honeybee brain 

The upper left picture a) shows a honeybee brain after the opening of the head capsule and the removal of the 

mandibular glands. Picture b) on the upper right displays the honeybee brain after removal of the tracheal 

membranes. The violet lines framing the central brain, show the dissection the central part of the brain out with a 

scalpel, whereby the upper two cuts are necessary to get rid of the ocelli. The picture c) provides an impression of the 

different brain parts and structure of the honeybee brain. The central part contains the two antennal lobes (AL), the 

protocerebrum (PC) with its α lobes (αL), the calices of the median (MK) and the lateral mushroom bodies (LK) as 

well as its kenyon cells (KZ). The ocelli (OC) and the optical lobes (OL) were not used. (Source image: Angelika 

Gardezi, modified) 

 

 

 

a) b) 

c) 
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3.3.9. RNA-Isolation 

 

RNA was isolated from honeybee brains with TRIzol Reagent Solution purchased from Ambion 

Life Technologies (Carlsbad, California, USA) or with RNeasy kits (QIAGEN). Per reaction, 3-5 

honeybee brains were homogenized in 350 µl TRIzol Reagent with 18 ceramic beads in reagent 

tubes for 4 min on a shaker, the RNA was isolated according to the manufacturer’s protocol. 

After the homogenisation, 40 µl chloroform were added to each reaction, the samples were mixed 

for 15 s on a vortex and incubated for 3 min at room temperature. The samples were then 

centrifuged for 15 min at 4°C and 12000 g. After this centrifugation, three phases had separated 

and the upper aqueous phase was removed and transferred into a new tube. To this aqueous 

phase, 150 µl isopropyl alcohol were added and the samples were kept at -70°C over night for 

precipitation of RNA. The samples were thawed the next day and centrifuged for 10 min at 4°C 

and 12000 g. The supernatant was discarded and after removing the supernatant, the RNA pellet 

was washed with 200 µl 75% ethanol (EtOH) followed by centrifugation for 5 min at 4°C and 

7600 g. After washing, the pellet was dried for ca. 3 min at room temperature. The dried pellet 

was now dissolved in 30 µl DEPC-H2O mixed by pipetting up and down several times and 

incubated for 5 min at 65°C. After dissolving, the samples were checked for purity and 

concentration in the Tecan infinite pro reader, using its DNA/RNA measurement program. 

Afterwards it was divided to 6 parts and cDNA reactions for 5 different miRNAs and 1 mRNA 

reaction were performed, or the samples were stored at -70°C for later use. 

 

3.3.10. Quality and quantity control of total RNA 

 

To check the concentration of the total isolated RNA, 1 µl RNA was measured using the 

DNA/RNA quantification function of the Tecan infinite reader. The reference was DEPC-H2O. 

The quantity and quality was determined by the measurement of the optical density (OD) at 

λ= 260 nm (maximum of absorption for nucleic acids) and the OD measurement at λ= 280 nm 

(maximum of absorption for proteins). The purity was determined by division of the OD260 

through the OD280. Only RNA samples with a value between 1,8 and 2,0, were used in this work. 
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3.3.11. Stem-loop primer design 

 

MiRNAs of interest were quantified by the stem-loop RT method as described earlier (Chen et al. 

2005). Stem-loop primers for reverse transcription of miRNAs were designed as stated in Chen et 

al. (2005) and Wu et al. (2007) with a modification for detection by Universal Library Probe #21. 

The ca. 50 nucleotides long stem-loop RT primer forms a stem-loop with itself whereby 8 

nucleotides at the 3’–end are overlapping. The last 6 of those overlapping nucleotides are 

designed to bind to the miRNA of interest. After reverse transcription, the former stem-loop 

opens and is a part of the desired cDNA. This cDNA has a binding site for the Universal Library 

Probe #21 that will bind only to this particular sequence in the Real-Time PCR. The Universal 

Library Probe consists of a quencher and a fluorescent dye (FAM), these 2 molecules are linked 

by a nucleotide sequence which binds to the stem-loop primer used for cDNA synthesis. In the 

state of binding to the cDNA during Real-Time PCR, the quencher and the fluorescent dye are 

spaced apart from each other, so that the fluorescent dye (FAM) fluoresces. The forward primer 

for the aforementioned cDNA was specifically designed for the appropriate miRNA-cDNA 

sequence. The reverse primer for the Real-Time PCR is universally binding to a part of the Stem-

loop RT primer-cDNA sequence (see figure 13). 

 



 

Figure 13 Quantification of miRNAs by 

Library Probe 

The isolated miRNA (grey) is reverse transcribed into cDNA with the help of a 

stem-loop) which binds to the last six nucleotides at the 3'

opens, the reverse primer binds to a part of the former 

miRNA specifically. The Universal Library Probe (violet star) binds to its opposite sequence within the former 

loop and fluoresces (Picture adapted from
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Quantification of miRNAs by stem-loop RT and Real-Time PCR with Universal 

The isolated miRNA (grey) is reverse transcribed into cDNA with the help of a stem-loop

last six nucleotides at the 3'-end of a miRNA. In the Real

opens, the reverse primer binds to a part of the former stem-loop. The forward primer is designed to bind to the 

miRNA specifically. The Universal Library Probe (violet star) binds to its opposite sequence within the former 

d fluoresces (Picture adapted from (Wu et al. 2007). 
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Time PCR with Universal 

loop RT primer (black/violet 

end of a miRNA. In the Real-Time PCR, the stem-loop 

he forward primer is designed to bind to the 

miRNA specifically. The Universal Library Probe (violet star) binds to its opposite sequence within the former stem-
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Table 7 List of honeybee miRNA Sequences, examined in this work 

miRNA name miRNA Sequence miR-BASE/BLAST ID 

ame-miR-12 UGAGUAUUACAUCAGGUACUGGU >ame-miR-12 MIMAT0001472 

ame-miR-124 UAAGGCACGCGGUGAAUGCCAAG >ame-miR-124 MIMAT0001473 

ame-miR-125 CCCCUGAGACCCUAACUUGUGA >ame-miR-125 MIMAT0001474 

ame-miR-989 CGUGAUGUGACGUAGUGGUUCU >ame-miR-989 MIMAT0018511 

ame-miR-3756 UUUCUUUCAUAAGGAGGA  >ame-miR-3756 MI0016157 

ame-miR-3769 GGUACCUGAAGAGAGGUUU  >ame-miR-3769 MI0016173 

ame-miR-3788 GGGACAGGAGGUAACGG >ame-miR-3788 MI0016197 

 

Table 8 Stem-loop primer sequences for cDNA synthesis 

The binding site for the Universal Library Probe #21 is highlighted in violet. The last 6 nucleotides (highlighted in 

green) bind to the last 6 bases at the 3’–end of the distinct miRNA. 

Stem-loop RT 

primer 

Sequence 

JR-12-RT GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC

ACCAGT 

JR-124-RT GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC

CTTGGC 

JR-125-RT GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC

TCACAA 

JR-989-RT GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC

AGAACC 

JR-3756-RT GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC

TCCTCC 

JR-3769-RT GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC

CGTCAA 

JR-3788-RT GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC

GAGGGA 
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3.3.12. cDNA-synthesis 

 

The reverse transcriptase transcribes mRNA with oligo-dT primers or miRNA with specific 

primers to single stranded cDNA. Revert Aid RT cDNA Synthesis Kit by Thermo Fisher 

Scientific was used for reverse transcription as follows: 4 µl of RT-Buffer, 1 µl of 10 mM dNTP, 

1 µl of primer (2 µM Stem-loop primer for microRNA and oligo-dT or mRNA), 1 µl Ribo Lock 

and 1 µl Revert Aid Reverse Transcriptase were mixed, total RNA was added and nuclease-free 

PCR H2O filled up to 20 µl total followed by 50°C step for 30 min, inactivation at 85°C for 5 min 

and a 4°C cool-down step. For Real-Time analysis, the cDNA was diluted 1:1 with nuclease-free 

H2O. 

 

3.3.13. Real-Time PCR 

 

The quantitative Real-Time PCR is a method for the amplification and quantification of DNA. 

After reverse transcription of miRNA or mRNA into cDNA, the method can show the relative 

and quantitative expression of specific genes. Due to fluorescence markers that bind to the cDNA 

with amplification, the rising product amount can be monitored after each cycle of the reaction. 

The first significant rise of fluorescence in the exponential phase (C(t) = threshold cycle) 

correlates directly with the starting quantity of cDNA in the reaction. The miRNAs were detected 

with the fluorescent Universal Library Probe #21. This detection molecule consists of a quencher 

and the fluorescent dye FAM (Fluorescein) linked together with a sequence of nucleotides. This 

sequence binds to the sequence of the stem-loop primer used in the reverse transcription. In the 

Real-Time PCR for mRNAs, the SYBR fluorescent dye intercalates with double stranded DNA 

during its amplification in Real-Time PCR. SYBR and FAM can be measured together by Real-

Time PCR, because their excitation wavelength is λ= 488 nm. Real-Time PCR for miRNA 

samples was carried out using the BioRad CFX cycler with Kapa Probe Fast Universal qPCR mix 

(Peqlab) and Universal ProbeLibrary Probe #21 (Roche) and for mRNA with Kapa SYBR Fast 

Universal qPCR mix (Peqlab). The mastermix for miRNA quantification contained 3,8 µl PCR 

H2O (nuclease-free), 10 µl 2x qPCR Mastermix (Kapa Probe Fast Universal qPCR mix (Peqlab)), 

0,4 µl 10 µM forward primer (Sigma), 0,4 µl 10 µM reverse primer (Sigma), 0,4 µl Universal 

ProbeLibrary Probe #21 and 5 µl cDNA (diluted 1:1 after reverse transcription). The SYBR 
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reaction contained 8,2 µl PCR H2O (nuclease-free), 10 µl 2x qPCR Mastermix (Kapa SYBR Fast 

Universal qPCR mix (Peqlab)), 0,4 µl 10 µM forward primer (Sigma), 0,4 µl 10 µM reverse 

primer (Sigma) and 1 µl cDNA (diluted 1:1 after reverse transcription)). Synthetic oligo 

nucleotides including miRNA oligo nucleotides for standard measurement were purchased from 

Sigma Aldrich (Munich, Germany). The reaction started at 95°C for 3 min followed by 40 cycles 

of 1) 95°C for 10 sec, 2) 58 °C for 18 sec, 3) 72°C for 18 sec then followed by 95°C for 10 sec 

and 58°C for 18 sec and the last step 95°C for 30 sec. 

 

3.3.14. Primer design for the Real-Time PCR primers 

 

The primers were designed to bind the cDNA that was synthesised with the Stem-loop RT 

Primers. At the 5’ end of each forward primer there are 6-7 nucleotides that overlap before the 

primers bind to the cDNA following the design of Chen et al. (2005) (see table 9). Primers were 

designed with the help of “Oligonucleotide Properties Calculator”. According to the guidelines, 

the GC amount was chosen between 40-60%, the melting temperature lay between 60°C and 

65°C. The Real-Time Primers showed neither self or heterodimers nor stem-loops (except for the 

Stem-loop RT Primers for cDNA synthesis). The repetition of nucleotides was avoided and 

BLAST analysis did not show further sequence homologies in the honeybee. In each Real-Time 

PCR, from every sample I measured also the EF 1α (Elongation Factor 1α) mRNA as a control 

and reference (EF 1α primers designed by Büttner (2011)). The GluA2 primers (GluA2- 1-2 

(exon1,2) and GluA2 9-11 (exon 9,11)) were used in one Real-Time experiment as a control 

additional to the EF 1α (Elongation Factor 1α) control and reference (GluA2- 1-2 and GluA2 9-

11 primers designed by Kobel (2015)). The mRNA primers were designed using the same GC 

amount and melting temperature as aforementioned, whereas the difference between two primers 

should not be more than 1° C, the primer size should range between 17-23 nucleotides and result 

in an amplicon size between 120 - 150 bp. 
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Table 9 Real-Time PCR primer sequences 

The table displays sequences of the Primers used for Real-Time PCR (5’–end overlap highlighted in blue). 

Primer Sequence 

JR-124-fwd CCGGCGTAAGGCACGCGGTG 

JR-125-fwd TCGCGTCCCCTGAGACCCTA 

JR-12-fwd CGCGGCTGAGTATTACATCA 

JR-3756-fwd GCGCGGCCTGATTTCTTTCAT 

JR-3769-fwd GGCGCGGGTAGCTCAAGAGA 

JR-3788-fwd GCGGCGCGTTCCGTTACCTC 

JR-989-fwd TCGCGTCGTGATGTGACGTA 

JR-rev-univ GTGCAGGGTCCGAGGT 

Elongation Factor 1α fwd CCTCCTCAGGACGTATATAAAATCG  

Elongation Factor 1α rev AGCTTCGTGATGCATTTCAACAG 

GluA2 1-2 fwd GCGTCCACCTTTTCGAAAATC 

GluA2 1-2 rev CTGCGCATTTATGAAAGTCTGG 

GluA2 9-11 fwd TGTTAAGGTCGGTGAATGGCG 

GluA2 9-11 rev GAGCCAACAGCCAAATCTGC 

 

3.3.15. Real-Time PCR standard design and setting 

 

The quantitative analysis of each miRNA/cDNA was performed using a standard curve with 

specific standards and a defined number of copies. As standards for Real-Time PCR, I used RNA 

oligos purchased from Sigma Aldrich and had the same sequences as the honeybee miRNAs.  

MiRNA sequences for standards of ame-miR-12, ame-miR-124, ame-miR-125, ame-miR-989, 

ame-miR-3756, ame-miR-3769 and ame-miR-3788 were used from miRBase. For reverse 

transcription into cDNA, we used the same stem-loop Primers (2 µM concentration) as for the 

reverse transcription of the intrinsic miRNAs of the honeybee. For each standard miRNA we 

used 500 ng for the reverse transcription. After transcription into cDNA the standards were 

diluted as described in table 11 for Real-Time PCR. The Real-Time PCR was conducted in the 

same way as the normal Real-Time PCR for the miRNAs as described above. The application of 

the threshold cycles (C(t)) against the logarithm (log) of the number of copies at the start of the 
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reaction from each standard dilution (1:10 dilution in nuclease-free H2O: 10-1-10-4 varying table 

11) shows the related number of copies of the different samples. The efficiency of the PCR is 

depending on the slope of the standard curve. The efficiency of the PCR ranged between 90-

110 %. 

Table 10 Oligo nucleotides for standard q-RT-PCR 

The table displays oligo nucleotides for Standard q-RT-PCR (microRNA sequences by miRBase). 

Ame-miR-12 5' - UGAGUAUUACAUCAGGUACUGGU 

Ame-miR-124 5' - UAAGGCACGCGGUGAAUGCCAAG 

Ame-miR-125 5' - CCCCUGAGACCCUAACUUGUGA 

Ame-miR-989 5' - CGUGAUGUGACGUAGUGGUUCU 

Ame-miR-3756 5' - CUGAUUUCUUUCAUAAGGAGGA 

Ame-miR-3769 5' - GGUAGCUCAAGAGAAGGUUGACG 

Ame-miR-3788 5' - GUUCCGUUACCUCCUGUCCCUC 

 

Table 11 MiRNA standard dilutions for q-RT-PCR 

The table displays miRNA standard dilutions used and developed in this work for q-RT-PCR standard references. 

Standard dilution 0,1 ng 0,01 ng 0,001 ng 0,0001 ng 

miR-12 Standard x x x  

miR-124 Standard  x x x 

miR-125 Standard x x x  

miR-989 Standard  x x x 

miR-3788 Standard  x x x 
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3.3.16. Data evaluation 

 

In every sample (n = 1) the different miRNAs miR-12, miR-124, miR-125, miR-989 and miR-

3788 and the house keeping gene Elongation Factor 1α (EF 1α) were measured. The Real-Time 

data were normalised to miRNA standards as described above. The quantity values that were 

measured by the BioRad cycler in correspondence to the standard straight lines (see figure 14) of 

each miRNA were exported to Microsoft Office Excel 2007 for evaluation. These Real-Time 

PCR data were averaged separately for each measured miRNA or cDNA per experiment. The 

single values were divided through the mean value of all measured samples from one experiment. 

After the normalisation to every single experiment, the data from all experiments were 

summarized. The standard deviations were defined and statistics were performed using Student’s 

t-test (independent samples, unequal sample variances, two tailed). 

 



 

Figure 14 Standard curve for the 

a) The diagram a) shows the standard curve for the 

starting quantity of cDNA in ng

b) The diagram b) shows the standard curve for the EF 1

starting quantity of cDNA in ng, the y axis shows the C(t) values. The efficiency

a) 

b) 
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Standard curve for the miR-124 standards and the Elongation Factor 1

The diagram a) shows the standard curve for the miR-124 standards. The x-axis shows the logarithm of the 

starting quantity of cDNA in ng, the y-axis shows the C(t) values. The efficiency of the PCR is 97,4%.

The diagram b) shows the standard curve for the EF 1α standards. The x axis shows the logarithm of the 

starting quantity of cDNA in ng, the y axis shows the C(t) values. The efficiency 
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124 standards and the Elongation Factor 1α standards 

axis shows the logarithm of the 

axis shows the C(t) values. The efficiency of the PCR is 97,4%. 

 standards. The x axis shows the logarithm of the 

 of the PCR is 105,0%. 
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The C(t) values of the different standard dilutions have about 3 cycles spacing in between (1:10 dilution). The 

windows on the left show diagrams in logarithmic scales, the x axis displays the PCR cycles while the y axis shows 

the fluorescence. The baseline is the horizontal threshold line which gives us the C(t) (threshold cycle) value. This 

value tells us at which cycle the fluorescence intensity rises exponentially against the baseline background. The 

windows on the right side show the values that the program determined for the standard samples. The standard 

dilution was entered to the plate setup before measurement and the C(t) values are determined as described above 

(Source image: Michely). 

 

3.3.17. Statistical analysis 

 

Statistical analysis was performed with http://vassarstats.net/. MiRNA levels of naive and 

conditioned animals were compared with Student's t-test (independent samples, unequal sample 

variances, two tailed). The responsiveness scores were compared by the Mann-Whitney U-test. 

To compare the behavioural data (PER, pairwise), the Chi-Square/Fisher's exact test was used. 

We demonstrated the Yates value together with the two tailed Fisher's exact probability value for 

each comparison whereby p< 0,05 was considered as significant. The significance of an observed 

value of r was performed with the raw data from the q-RT-PCR experiments, the correlation 

coefficient was considered significant, when p< 0,05. 
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4. Results 

4.1. MiRNA sequence homologies 

 

The importance of certain miRNAs in neuronal plasticity and learning and memory mechanisms 

has been clarified in the introduction. In order to find miRNAs in the honeybee, which are 

homologues to miRNAs known to be important in learning, memory or synaptic plasticity 

mechanisms from other species, it is necessary to start with a miRNA sequence comparison. The 

sequences of ame-miR-12, ame-miR-124, ame-miR-125, ame-miR-989, ame-miR-3756, ame-

miR-3769 and ame-miR-3788 and their homologues in other species are described in the 

following section. Those seven miRNAs were chosen according to their homology to miRNAs 

which are known to play important roles in learning, memory formation processes or synaptic 

plasticity in other species. 

 

4.1.1. Comparison of miR-12, miR-124 and miR-125 sequences in different species 

 

The miR-12 has been found in different insect species (Lagos-Quintana et al. 2001; Osei-Amo et 

al. 2012; Greenberg et al. 2012). In Drosophila melanogaster, it was associated with olfactory 

habituation (McCann et al. 2011) and in the honeybee in maze based visual pattern learning (Qin 

et al. 2014). A comparison of miR-12 sequences in the mosquito Aedes aegypti, the European 

honeybee Apis mellifera and the fruit fly Drosophila melanogaster shows that the sequences are 

identical. 

Table 12 Comparison of miR-12 sequences in insect species 

Species/ miR-BASE ID miRNA Sequence BLAST ID 

A. aegypti :>aae-miR-12-5p UGAGUAUUACAUCAGGUACUGGU MIMAT0014253 
A. mellifera: >ame-miR-12 UGAGUAUUACAUCAGGUACUGGU MIMAT0001472 
D. melanogaster: >dme-miR-12-5p UGAGUAUUACAUCAGGUACUGGU MIMAT0000117 

 

The miR-124 is known to be a neuron specific miRNA, which is conserved between vertebrates 

and invertebrates (Siegel et al. 2011) it has also been described to play a role in associative 

learning in Aplysia californica (Rajasethupathy et al. 2009). The sequences of Apis mellifera and 

Drosophila melanogaster miR-124 are identical and at the 3’-end they are 3 bases (AAG) longer 
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than the sequences of Mus musculus and Homo sapiens miR-124 which are also identical. The 

C. elegans miR-124 sequence is one base (A) longer than those of the mouse and human miR-

124. 

Table 13 Comparison of miR-124 sequences 

Species/ miR-BASE ID miRNA Sequence BLAST ID 

A. mellifera: >ame-miR-124 UAAGGCACGCGGUGAAUGCCAAG MIMAT0001473 

C. elegans: >cel-miR-124-3p UAAGGCACGCGGUGAAUGCCA MIMAT0000282 

D. melanogaster: >dme-miR-124-3p UAAGGCACGCGGUGAAUGCCAAG MIMAT0000351 

H. sapiens: >hsa-miR-124-3p UAAGGCACGCGGUGAAUGCC MIMAT0000422 

M. musculus: >mmu-miR-124-3p UAAGGCACGCGGUGAAUGCC MIMAT0000134 

 

The miR-125 plays an important role in vertebrate neuronal differentiation and in synaptic 

plasticity and function (Le et al. 2009; Edbauer et al. 2010; Boissart et al. 2012). The miR-125 in 

the honeybee shows a similarity up to one different base in comparison to the miR-125 in 

Drosophila and miR-125b in mouse and human (highlighted in blue). The lin-4 miRNA in C. 

elegans shows a similarity up to 2 different bases to the miR-125 in the other species (highlighted 

in blue). Sequences of miR-125 in Drosophila and miR-125b in Mus musculus and Homo sapiens 

are identical. 

Table 14 Comparison of miR-125 sequences in different species 

Species/ miR-BASE ID miRNA sequence BLAST ID 

A. mellifera: >ame-miR-125 CCCCUGAGACCCUAACUUGUGA MIMAT0001474 
C. elegans: >cel-lin-4-5p UCCCUGAGACCUCAAGUGUGA MIMAT0000002 
D. melanogaster: >dme-miR-125-5p UCCCUGAGACCCUAACUUGUGA MIMAT0000397 
M. musculus: >mmu-miR-125b-5p UCCCUGAGACCCUAACUUGUGA MIMAT0000136 
H. sapiens: >hsa-miR-125b-5p UCCCUGAGACCCUAACUUGUGA MIMAT0000423 

 

4.1.2. Sequence comparisons for the miR-132, miR-138 and miR-329 

 

For the miR-12, miR-124 and miR-125, I compared the mature miRNA sequences of the 

different species. As there are no sequences for miR-132, miR-138 and miR-329 known in 

Apis mellifera, it was necessary to conduct sequence alignments. Hereby, the stem-loop 

sequences of the Homo sapiens hsa-miR-132, hsa-miR-138 and hsa-miR-329 were compared to 
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the Apis mellifera miRNA database using the BLASTn search tool of miRBASE 

(http://www.mirbase.org/) homepage. 

 

The miR-132 plays a role in neuronal plasticity and synapse formation (Bicker et al. 2014) and is 

also known to be conserved through species (Kiezun et al. 2012). With an E-value cut off of E-

14, one similar miRNA to the hsa-miR-132, the ame-miR-3788 was found. The stem-loop 

sequences of hsa-miR-132 and ame-miR-3788 show a similar pattern of 17 nucleotides (the ame-

miR-3788 between the 20th and 4th nucleotide of its stem-loop and the hsa-miR-132 between the 

48th and the 64th nucleotide of its stem-loop) with 3 nucleotide mismatches highlighted in blue. 

The role of ame-miR-3788 in learning and memory mechanisms has not yet been described. 

Table 15 Comparison of the hsa-miR-132 and ame-miR-3788 stem-loop sequences 

Species/ miR-BASE ID miRNA sequence match BLAST ID 

A.  mellifera: >ame-miR-3788 20- GGGACAGGAGGUAACGG -4 MI0016197 
H.  sapiens: >hsa-miR-132  48- GGAACUGGAGGUAACAG -64 MI0000449 

 

The miR-138 is another conserved neuronal miRNA (Kiezun et al. 2012; Siegel et al. 2013). 

High levels of miR-138 in the mouse hippocampus are correlated with better short-term 

recognition memory performance (Tatro et al. 2013). With an E-value cut off of E-14, I found 

one similar miRNA, the ame-miR-989 (see table 16).The stem-loop sequences of hsa-miR-138 

and ame-miR-989 show a similar pattern of 22 nucleotides (the ame-miR-989 between the 93rd 

and 72nd nucleotide of its stem-loop and the hsa-miR-138 between the 56th and the 77th nucleotide 

of its stem-loop) with 4 nucleotide mismatches highlighted in blue. The role of ame-miR-989 in 

associative olfactory conditioning is unknown. Table 17 shows a sequence comparison between 

the Drosophila melanogaster and the Apis mellifera sequences. The sequences are very similar 

with 3 mismatches highlighted in blue and one nucleotide lacking at the 3’ end in Drosophila. 

Table 16 Comparison of the hsa-miR-138 and ame-miR-989 stem-loop sequences 

Species/ miR-BASE ID miRNA sequence match BLAST ID 

A. mellifera: >ame-miR-989 93- GAGAACCACUACGUCACAUCAC -72 MI0016141 
H. sapiens: >hsa-miR-138-1 56- GAGAACGGCUACUUCACAACAC -77 MI0000476 
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Table 17 Comparison of mature miRNA sequences of dme-miR-989 and ame-miR-989 

Species/ miR-BASE ID miRNA sequence BLAST ID 

A. mellifera : >ame-miR-989 CGUGAUGUGACGUAGUGGUUCU MIMAT0018511 
D. melanogaster: >dme-miR-989-3p   UGUGAUGUGACGUAGUGGAAC MIMAT0005506 
 

The miR-329 (miR-329), which was demonstrated to play several roles in neurons, is conserved 

through more than 25 species (Kiezun et al. 2012). With an E-value cut off of E-14, two similar 

miRNAs, the ame-miR-3756 and the ame-miR-3769 were found. The stem-loop sequences of 

hsa-miR-329 and ame-miR-3756 show a similar pattern of 18 nucleotides (the ame-miR-3756 

between the 5th and 22nd nucleotide of its stem-loop and the has-miR-329 between the 32nd and 

the 49th nucleotide of its stem-loop) with 3 nucleotide mismatches highlighted in blue. The stem-

loop sequences of hsa-miR-329 and ame-miR-3769 show 4 nucleotide mismatches (also 

highlighted in blue), both 19 nucleotides long sequences are located between the 1st and the 19th 

nucleotide of their corresponding stem-loop sequence. The functions of ame-miR-3756 and ame-

miR-3769 in learning and memory mechanisms have not yet been described. 

Table 18 Comparison of the hsa-miR-329, the ame-miR-3756 and ame-miR-3769 stem-loop 
sequences 

Species/ miR-BASE ID miRNA sequence match BLAST ID 

A. mellifera: >ame-miR-3756  5- UUUCUUUCAUAAGGAGGA -22 MI0016157 
H. sapiens: >hsa-miR-329-1  32- UUUCUUUAAUGAGGACGA -49 MI0001725 
A. mellifera: >ame-miR-3769 1- GGUACCUGAAGAGAGGUUU -19 MI0016173 
H. sapiens: >hsa-miR-329-1  1- GGUAGCUCAAGAGAAGGUU -19 MI0001725 

 



 

4.2. Learning induced changes of miRNA levels

 

This work deals with the quantification of the levels of the seven 

RT-PCR after weak (single-trial

different points in time. As a control group, I tested naive bees that were not conditioned. Weak 

conditioning with single-trial 

three-trials leads to the formation of 

were caught on the previous day, starved over night for at least 16 h and conditioned the next 

morning with either weak or strong conditioning with an interval of 2 min between each trial. 

The recall of memory consisting of one CS (clove odour) presentation was performed 

24 h after conditioning with the same animals. The animals that showed a PER after the 

24 h odour presentation were chosen for the dissections of the conditioned groups, whereby

central brains (see figure 12) were

 

4.2.1. MiRNA levels after weak conditioning

 

Figure 16 a) displays the relative amount of the different miRNAs 

conditioning. The EF 1α, the 

significant differences between the naive and the conditioned group, there was a trend to a 

decrease in the miR-124 conditioned group (

miR-124: p= 0,06; miR-125: p

group showed a significant increase

Figure 15 Timeline for the q-RT

Honeybees were conditioned with one trial and dissected immediately after the 2

q-RT-PCR was conducted with the miRNA and RNA 
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Learning induced changes of miRNA levels 

This work deals with the quantification of the levels of the seven aforementioned 

trial) and strong (three-trial) appetitive olfactory co

. As a control group, I tested naive bees that were not conditioned. Weak 

 results in a transient memory, whereas a strong conditioning with 

s leads to the formation of long-term memory (Wüstenberg et al. 1998)

were caught on the previous day, starved over night for at least 16 h and conditioned the next 

morning with either weak or strong conditioning with an interval of 2 min between each trial. 

consisting of one CS (clove odour) presentation was performed 

after conditioning with the same animals. The animals that showed a PER after the 

odour presentation were chosen for the dissections of the conditioned groups, whereby

) were pooled for one sample. 

MiRNA levels after weak conditioning 

displays the relative amount of the different miRNAs 

α, the miR-12, miR-124, miR-125 and the miR

significant differences between the naive and the conditioned group, there was a trend to a 

124 conditioned group (Student’s t-test: EF 1α: p= 0,59; 

125: p= 0,32; miR-989: p= 0,10). For the miR-

howed a significant increase (Student's t-test: p= 0,039). 

RT-PCR experiment after weak conditioning 

Honeybees were conditioned with one trial and dissected immediately after the 2 h or the 24

PCR was conducted with the miRNA and RNA which was isolated from the central brains of the animals.

Results 
 

aforementioned miRNAs by q-

) appetitive olfactory conditioning and at 

. As a control group, I tested naive bees that were not conditioned. Weak 

results in a transient memory, whereas a strong conditioning with 

(Wüstenberg et al. 1998). The animals 

were caught on the previous day, starved over night for at least 16 h and conditioned the next 

morning with either weak or strong conditioning with an interval of 2 min between each trial. 

consisting of one CS (clove odour) presentation was performed 2 h and 

after conditioning with the same animals. The animals that showed a PER after the 2 h and 

odour presentation were chosen for the dissections of the conditioned groups, whereby the 

displays the relative amount of the different miRNAs 2 h after single-trial 

miR-989 did not show 

significant differences between the naive and the conditioned group, there was a trend to a 

0,59; miR-12: p= 0,57; 

-3788, the conditioned 

 

h or the 24 h recall. Then they the 

from the central brains of the animals. 
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Figure 16 Levels of miRNAs 2 h and 24 h after single-trial conditioning 

The columns display the relative amount of RNA (EF 1α) and miRNAs (miR-12, miR-124, miR-125, miR-989 and 

miR-3788) in the central brain of the honeybee 2 h (a) and 24 h (b) after single-trial conditioning. The diagrams 

display the relative mean values of the RNA and miRNA amounts and their standard deviation. Significant 

differences are marked with stars (*p≤ 0,05). The number in the basis of each bar indicates the number of samples. 

 

The next experiment was carried out under the same conditions as the previously described 

experiment, but the honeybees were tested for both the 2 h and the 24 h memory retrieval and 

dissected for quantitative Real-Time PCR after the 24 h recall, whereby only the animals that 

showed a PER after both recalls were selected for the dissection. Figure 16 b) shows a diagram of 
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the miRNA amounts. The levels of EF 1

show significant differences between the naive and the conditioned group (

1α: p= 0,1; miR-12: p= 0,4; 

amount of miR-124 was significantly decreased in the conditioned group (Student's t

p= 0,007). The miR-3756 and 

their similarity to the hsa-miR

levels were too low in the honeybee brain.

 

 

4.2.2. MiRNA levels after strong 

 

Figure 18 a) shows a diagram of the miRNA 

three-trial conditioning. The experiment was carried out under the same conditions as the 

experiments aforementioned. The EF 1

not significantly change between the naive and the conditioned group (

p= 0,4; miR-12: p= 0,7; miR-

miR-124 was significantly decreased in t

Figure 17 Timeline for the q-RT

Honeybees were conditioned with three

the q-RT-PCR was conducted with the miRNA and RNA
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. The levels of EF 1α, miR-12, miR-125, miR-989 and 

between the naive and the conditioned group (

0,4; miR-125: p= 0,13; miR-989: p= 0,8; miR

124 was significantly decreased in the conditioned group (Student's t

3756 and miR-3769, which were also chosen for investigation because of 

miR-329 could not be analysed by quantitative Real

too low in the honeybee brain. 

MiRNA levels after strong conditioning 

a diagram of the miRNA amounts in the central honeybee brain 

conditioning. The experiment was carried out under the same conditions as the 

experiments aforementioned. The EF 1α, the miR-12, miR-125, miR-989, 

not significantly change between the naive and the conditioned group (Student’s

-125: p= 0,3; miR-989: p= 0,8; miR-3788: p=

124 was significantly decreased in the conditioned group (Student's t-test: p

RT-PCR experiment after strong conditioning

three trials and dissected immediately after the 2 h or the 24

PCR was conducted with the miRNA and RNA which was isolated from the central brains of the animals.

Results 
 

989 and miR-3788 did not 

between the naive and the conditioned group (Student’s t-test: EF 

miR-3788: p= 0,5 ). The 

124 was significantly decreased in the conditioned group (Student's t-test: 

3769, which were also chosen for investigation because of 

329 could not be analysed by quantitative Real-Time PCR, as their 

in the central honeybee brain 2 h after 

conditioning. The experiment was carried out under the same conditions as the 

989, miR-3788 levels did 

Student’s t-test: EF 1α: 

= 0,7 ). The amount of 

test: p= 0,027). 

 

PCR experiment after strong conditioning 

h or the 24 h recall. Then they 

from the central brains of the animals. 
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Figure 18 Levels of miRNAs 2 h and 24 h after strong conditioning 

The columns show the relative amount of RNA (EF 1α) and miRNAs (miR-12, miR-124, miR-125, miR-989 and 

miR-3788) in the central brain of the honeybee 2 h (a) and 24 h (b) after three-trial conditioning. The diagrams 

display the relative mean values of the RNA and miRNA amounts and their standard deviation. Significant 

differences are marked with stars (*p≤ 0,05). The number in the basis of each bar indicates the number of samples. 

 

Figure 18 b) shows the levels of miRNAs in the central brain of the honeybee 24 h after strong 

conditioning. The amount of miR-12 shows a significant decrease in the conditioned group 

compared to the naive group (Student's t-test: p= 0,024). The miR-124 amount was significantly 

increased in the conditioned group (Student's t-test: p= 0,012). The levels of the housekeeping 
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gene EF 1α, miR-125, miR-989 and miR-3788 did not show significant changes between the 

naive and the conditioned group (Student’s t-test: EF 1α: p= 0,5; miR-125: p= 0,82; miR-989: 

p= 0,84; miR-3788: p= 0,54 ). 

Drawing a conclusion from the learning induced analysis of miRNA amounts, the miR-3788 is 

upregulated 2 h after weak condition, while the miR-12 is downregulated 24 h after strong 

conditioning. MiR-124 is downregulated 24 h after weak and 2 h after strong conditioning and 

upregulated 24 h after strong conditioning. Ergo their regulation is not only dependent on the 

points in time after conditioning but also on the strength of training. The diversity of the miRNA 

levels leads to the assumption, that they are involved in different aspects of learning and memory 

formation as acquisition, consolidation and the establishment of different forms of memory. The 

levels of miR-125, -989 and -3788 did not change in the tested conditions. 

 

 

4.3. Correlations between the miRNAs quantified by q-RT-PCR 

 

There is evidence, that miRNA genes are not only clustered in families but are also coexpressed 

and in some cases even coregulated (reviewed in Bartel 2004). Studies in Drosophila 

melanogaster showed, that miR-125 is a putative homologue of the lin-4 miRNA, that miR-100, 

let-7 and miR-125 are coexpressed and clustered within an 800 bp region on the same 

chromosome (Sempere et al. 2003; Aravin et al. 2003; Lim et al. 2003). It has also been shown, 

that the upregulation of miR-100, let-7 and miR-125 and the downregulation of miR-34 is 

coregulated by the hormone ecdysone and the activity of the ecdysone inducible gene Broad 

complex (Sempere et al. 2003). 

In this work I want to investigate, whether the observed changes in the levels of miRNAs are 

connected among themselves. Therefore a correlation test was performed. The groups (naive 

(n= 64) and conditioned (n= 64)) and the experiments were pooled for the respective measured 

RNA/miRNA. The amounts of miR-12, -124 and -125 measured in each of the samples are 

significantly related to each other. MiR-989 is correlated only with miR-12 and miR-124, while 

miR-125 correlates with miR-3788. All other correlations are not significant as indicated in the 

appendix (table 34) in greater detail. The significant correlations are listed in table 19. Thus, the 

strong relation between miR-12, -124 and -125 prompted me to investigate their specific roles in 
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associative learning and memory formation, especially in acquisition, consolidation and after 

weak or strong conditioning in more detail. 

Table 19 Significant correlations 

The table depicts the significance of a correlation coefficient. 

 R2 r t df p 
miR-124 vs. miR-12 0,1061 0,32573 2,71 62 0,008632 

miR-3788 vs. miR-125 0,1552 0,39395 3,375 62 0,001276 

miR-12 vs. miR-125 0,1769 0,42059 3,65 62 0,000539 

miR-12 vs. miR-989 0,4683 0,68432 7,39 62 <0,0001 

miR-124 vs. miR-125 0,2373 0,48713 4,392 62 <0,0001 

miR-124 vs. miR-989 0,3112 0,55785 5,293 62 <0,0001 
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4.4. Transient manipulation of miRNA function in vivo 

 

To determine, whether a partial inhibition of the miRNA machinery has an effect on learning and 

memory formation, honeybees were treated with 1 mM Poly-L-Lysine (PLL) which reduces 

DICER-mediated RNA processing or with 5 mM Trypaflavine (TPF) which reduces the 

association of miRNA with AGO2 (Watashi et al. 2010). The treatment with those substances in 

combination with learning and memory mechanisms in the honeybee had never been tested 

before. The PLL or TPF treatment at this point in time had no significant effect on acquisition, 

learning and memory formation, the data of these experiments can be found in the appendix in 

table 35-39. As revealed by the analysis of the learning induced changes, the different miRNAs 

show differential levels after conditioning and also may have different roles in developing 

memory formation processes. The two compounds PLL and TPF interfere with processes in 

miRNA biogenesis in general and not with one specific miRNA. To identify the role of single 

miRNAs in learning and memory formation processes, it is necessary to inhibit the single 

miRNAs specifically. 

 

4.4.1. MicroRNA-Inhibitor design 

 

The miRNA-Inhibitors (Integrated DNA Technologies, USA) were designed after Lennox et al. 

(2013) and inhibit the miRNA function by hybridising to the mature strand and impeding its 

function through sterical blocking. Due to that sterical block, the miRNA incorporated into the 

RISC complex is not able to bind its target any longer. They were designed antisense to the 

miRBase (http://www.mirbase.org/) mature miRNA sequences by using the tool from the 

Integrated DNA Technologies website for the design of miRNA-Inhibitors 

(http://eu.idtdna.com/site/order/mirna). The miRNA-Inhibitor, a single stranded oligo nucleotide 

sequence is one nucleotide shorter than the mature miRNA and has 2'-O-Me residues with 

ZEN™ chemical modifications at the ends. The 2'-O-Me residues protect the miRNA-Inhibitor 

from endonuclease degradation and increase its binding affinity to the miRNA targets whereas 

the ZEN™ modification impedes exonuclease degradation and also increases the binding affinity 

to the target miRNA (Lennox et al. 2013). The miRNA-Inhibitor was used for injection into the 

thorax of the honeybees. The use of AMOs provides a method to transiently knock-down miRNA 

function in vivo in a sequence specific manner (Krützfeldt et al. 2005; Lennox et al. 2013). 
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4.5. Defining the role of miR-12, miR-124 and miR-125 in memory formation 

processes in the honeybee 

 

In q-RT-PCR experiments I showed that miR-124, miR-12 and miR-3788 levels were changed 

after conditioning the miR-125 and miR-989 levels did not change. The miR-3756 and miR-3769 

amounts were too low to be measured by q-RT-PCR. 

The miR-3788 was significantly increased 2 h after weak conditioning and for the miR-124 I 

found a trend of decrease 2 h after weak conditioning. The miR-124 levels were significantly 

reduced 24 h after weak conditioning and 2 h after strong conditioning. In contrast to the 

decreased levels mentioned before, 24 h after strong conditioning, the miR-124 amount is 

significantly upregulated. The amount of miR-12 was significantly decreased 24 h after strong 

training. 

To specify the role of miR-12, miR-124 and miR-125 in learning and memory I wanted to create 

a loss of function situation. In contrast to knock-out models, where a whole gene can be knocked 

out, the use of a transient manipulator can be of greater benefit in studying dynamic processes. 

MiRNA-Inhibitors provide a perfect tool for a transient manipulation of the miRNA of interest. 

Therewith an inhibition, specific to one special miRNA and applicable at different points in time 

is possible and is used in this study. 

 

4.5.1. Appetitive olfactory conditioning and points in time for miRNA-Inhibitor 

treatment 

 

To define the role of miR-12, -124 and -125 in acquisition and consolidation, different points in 

time for the treatment with miRNA-Inhibitor were tested. As there are no studies addressing the 

time dependent on and offset effects of miRNA-Inhibitors in vivo in detail, I decided to test five 

different points in time and their individual effects on acquisition and memory consolidation. 

Cristino et al. 2014 showed, that miRNA-Inhibitor treatment 1 d before conditioning had effects 

on the memory of honeybees 24 h after strong conditioning. Shaw et al. 2001 described the 

negative effects of lipopolysaccharide (LPS) on spatial learning in mice, when applied 4 h before 

the training. Gong et al. 2016 applied DNA methyltransferase inhibitor 1 h before conditioning to 

honeybees, to test the effects on acquisition. Thus, the treatment with miRNA-Inhibitors 1 d, 4 h 

and 1 h prior to conditioning were chosen to test their effects on acquisition in this work. The 



 

application of miR-125-Inhibitor 

improved memory 2 h and 24

anisomycin (ANI) (Felsenberg 2011)

actinomycin D (ACT-D) 1 h and 6 h after conditioning 

in honeybees to test their effects on the 

after conditioning were chosen to reveal the early and late effects of 

on the consolidation phase. The inhibitors were applied by thorax injection into the hemolymph 

of the animal and the memory recall 

conditioning. The points in time 

the following criteria. 

 

4.5.1.1. Time line for 

 

a. 1 d before conditioning, based on other studies 

b. 4 h before conditioning to test the effects on the acquisition phase 

c. 1 h before conditioning to test effects on the acquisition phase and on the early 

consolidation phase (Gong et al. 2016; Heidtmann 2010)

d. 1 h after conditioning (Felsenberg 2011; Backer 2015; Wüstenberg et al. 1998)

effects on the consolidation phase ex

e. 6 h after conditioning 

consolidation phase 

Figure 19 Time line for miR-Inhibitor treatment

Honeybees were treated with miR-

conditioning. The memory recall was then carried out 2
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Inhibitor (Backer 2015) 1 h after strong conditioning resulted in 

24 h after conditioning. The use of translation blocking reagent 

(Felsenberg 2011) 1 h after conditioning and the transcription blocker 

D) 1 h and 6 h after conditioning (Wüstenberg et al. 1998)

in honeybees to test their effects on the consolidation phase. Hence, the points

after conditioning were chosen to reveal the early and late effects of miRNA

on the consolidation phase. The inhibitors were applied by thorax injection into the hemolymph 

of the animal and the memory recall was performed 2 h, 24 h and in some cases also 48 h after 

in time for the miRNA-Inhibitor treatments were chosen according t

Time line for miRNA-Inhibitor treatment 

1 d before conditioning, based on other studies (Martin 2011; Cristino et al. 2014)

itioning to test the effects on the acquisition phase (Shaw et al. 2001)

1 h before conditioning to test effects on the acquisition phase and on the early 

(Gong et al. 2016; Heidtmann 2010) 

(Felsenberg 2011; Backer 2015; Wüstenberg et al. 1998)

effects on the consolidation phase exclusively 

6 h after conditioning (Wüstenberg et al. 1998) to study the effects on the late 

Inhibitor treatment 

-Inhibitor either 1 d, 4 h or 1 h before the conditioning, or 1

conditioning. The memory recall was then carried out 2 h, 24 h and in some cases also 48 

Results 
 

1 h after strong conditioning resulted in 
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4.5.2. The effects of miR-12 on the acquisition phase in the honeybee 

 

4.5.2.1. MiR-12-Inhibitor treatment a): 1 d before strong conditioning 

 

Based on (Cristino et al. 2014), who reported effects on learning and memory formation by 

applying miRNA-Inhibitor 1 d before conditioning, I also tested the effects of the miR-12-

Inhibitor 1 d before conditioning. The bees were conditioned with three-trials of CS-US pairing 

and the memory was retrieved after 2 h and 24 h. The miR-12-Inhibitor treatment at this point in 

time had no significant effect on acquisition, learning and memory formation as indicated in table 

20. 

 

Table 20 MiR-12-Inhibitor treatment a): 1 d before strong conditioning 

Injection of miR-12-Inhibitor 1 d before three-trial Training (recall 2 h, 24 h). Bees (numbers in parentheses) were 

injected with miR-12-Inhibitor (0,5µM) or PBS. The 2. and the 3. trial describe the PER [%] to the clove odour. 

Time of injection: 

1 d before strong (three-trial) 

conditioning 

2. trial: 3. trial: Recall: 2 h  Recall: 24 h 

PBS [PER %] (n= 39) 17,9% 38,5% 64,1% 46,2% 

MiR-12-Inhibitor [PER %] 

(n= 29)  

6,9% 31% 44,8% 27,6% 

Chi Square, Fisher’s exact p= 0,28 p= 0,61 p= 0,14 p= 0,13 

 

 

 

 

4.5.2.2. MiR-12-Inhibitor treatment b): 4 h before weak and strong conditioning 

 

To test, whether the miR-12 is implicated in the acquisition phase, the bees were treated with 

miR-12-Inhibitor 4 h before the conditioning. As compared to the control group, the miR-12-

Inhibitor treated group shows a decrease of memory 2 h (PER 2 h: p= 0,0009 Chi Square, 

Fisher’s exact test) and 24 h (PER 24 h: p= 0,03 Chi Square, Fisher’s exact test) after weak 
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conditioning. For the strong training we can see a similar pattern after 24 h, but not after 2 h (see 

figure 20). The miR-12-Inhibitor treated group shows impaired memory after 24 h (PER 2. trial: 

p= 0,55; PER 3. trial: p= 0,78; PER 2 h: p= 0,33; PER 24 h: p= 0,0007 Chi Square, Fisher’s exact 

test).  

 

Figure 20 MiR-12-Inhibitor treatment 4 h before weak and strong conditioning 

Percentage of animals that showed a PER during weak (a) or strong (b) conditioning and memory recall. Significant 

differences (details in text) are marked with stars (*p≤ 0,05). The bees (numbers in parentheses) were injected with 

either PBS or miR-12-Inhibitor into the thorax 4 h before the conditioning.  

 

Non-associative learning and gustatory sensitivity 4 h after miR-12-Inhibitor treatment were also 

tested and there was no detectable significant difference between the miR-12-Inhibitor injected 

and the control bees (see table 21). Thus miR-12-Inhibitor specifically affects processes 
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implicated in associative learning but is not affecting the acquisition phase. There was no effect 

on non-associative learning and gustatory sensitivity by injection of the miR-12-Inhibitor. 

Table 21 Non-associative learning and gustatory sensitivity 4 h after miR-12-Inhibitor treatment 

Bees (numbers in parentheses) were injected with miR-12-Inhibitor or PBS 4 h before testing gustatory sensitivity, 

habituation and sensitisation. The gustatory sensitivity scores were compared with Mann Whitney U-Test. The 

numbers of stimuli during habituation were statistically analysed using the Student's t-test: (two tailed). The 

percentages of sensitised bees during sensitisation were analysed by Chi Square Fisher’s exact test (two tailed). 

Behavioral Test PBS miR-12-Inhibitor Statistic data 

Gustatory sensitivity 1,68 (n= 68) 1,69 (n= 66) U= 2257, P= 0,95 

Habituation 1±0,69 (n= 22) 0,95±0,83 (n= 23) df= 43, t= 0,21, 

P= 0,83 

Sensitisation 3,8% (n= 26) 0% (n= 27) X
2= 0,14, P= 0,49 

 

4.5.2.3. MiR-12-Inhibitor treatment c): 1 h before strong conditioning 

 

To investigate, whether the treatment with miR-12-Inhibitor has a direct effect on the acquisition 

phase during learning, the miR-12-Inhibitor was injected 1 h before the strong conditioning and 

the memory was retrieved 2 h, 24 h and 48 h after training. The injection of miR-12-Inhibitor 1 h 

before the three-trial training did not have significant effects on acquisition, learning or memory 

(see table 22).  

 

Table 22 MiR-12-Inhibitor treatment c): 1 h before strong conditioning 

Bees (numbers in parentheses) were injected with miR-12-Inhibitor or PBS 1 h before conditioning. The 2. and the 3. 

trial describe the PER [%] in response to the clove odour. 

Time of injection: 

1 h before strong (three-trial) 

conditioning 

2. trial: 3. trial: Recall: 2 h  Recall: 24 h Recall: 48 h 

PBS [PER %] (n= 53) 32,1% 47,2% 79,2% 49,1% 52,8% 

MiR-12-Inhibitor [PER %] 

(n= 62)  

46,8% 53,2% 74,2% 37,1% 41,9% 

Chi Square, Fisher’s exact p= 0,12 p= 0,57 p= 0,65 p= 0,25 p= 0,26 
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Gustatory sensitivity 0,5 h and 1,5 h after miR-12-Inhibitor treatment was also tested. There was 

no significant difference between the miR-12-Inhibitor injected and the control bees (see table 

23). Hence, miR-12-Inhibitor treatment does not affect the acquisition phase and the early 

consolidation phase and has no influence on the gustatory sensitivity. 

Table 23 MiR-12-Inhibitor treatment does not affect gustatory sensitivity 

Bees (numbers in parentheses) were injected with miR-12-Inhibitor (0,5 µM) or PBS before testing gustatory 

sensitivity. The gustatory sensitivity scores were compared with Mann Whitney U-Test. 

Behavioral Test PBS miR-12-Inhibitor Statistic data 

Gustatory sensitivity 

0,5 h after treatment 

1,73 (n= 42) 1,9 (n= 40) U= 840, P= 1 

Gustatory sensitivity 

1,5 h after treatment 

1,64 (n= 42) 1,67 (n= 40) U= 844, P= 0,97 

 

Injection of miR-12-Inhibitor 1 d prior to conditioning did not affect acquisition, learning and 

memory formation. The treatment 4 h before learning was conducted to test the effects of the 

miR-12-Inhibitor on the acquisition phase; it does not change acquisition but impairs memory 

after weak as well as after strong conditioning while gustatory sensitivity, habituation and 

sensitisation are not affected. To test the effects on the acquisition phase and on the early 

consolidation phase, the miR-12-Inhibitor was injected 1 h before conditioning. MiR-12-Inhibitor 

treatment does not affect the acquisition phase and the early consolidation phase after strong 

conditioning and has also no influence on the gustatory sensitivity at this point in time. 

 

4.5.3. The effects of miR-12 on the consolidation phase in the honeybee 

 

4.5.3.1. MiR-12-Inhibitor treatment d): 1 h after weak and strong conditioning 

 

To test, whether the miR-12-Inhibitor treatment affects the early consolidation phase after 

learning, the treatment was conducted 1 h after weak and strong conditioning. The memory 

recalls were carried out 2 h, 24 h and 48 h after training. 
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Figure 21 MiR-12-Inhibitor treatment 1 h after weak and strong conditioning 

The figure displays the percentage of honeybees showing a PER during weak (a) or strong (b) conditioning and 

memory recall. Significant differences (details in the text) are marked with stars (*p≤ 0,05). The bees (numbers in 

parentheses) were injected with PBS or miR-12-Inhibitor 1 h after the conditioning. 

The treatment with miR-12-Inhibitor 1 h after weak (single-trial) conditioning had no significant 

effects on memory formation (PER 2 h: p= 0,85; PER 24 h : p= 0,84; PER 48 h : p= 0,67 Chi 

Square, Fisher’s exact test). The miR-12-Inhibitor-treated bees showed significantly impaired 

memory 24 h (PER 2 h: p= 0,41; PER 24 h: p= 0,003 Chi Square, Fisher’s exact test) and 48 h 

(PER 48 h: p= 0,012 Chi Square, Fisher’s exact test) after strong conditioning (see figure  21 b)). 

In conclusion, the miR-12-Inhibitor does affect the consolidation phase exclusively after strong 

conditioning. 
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4.5.3.2. MiR-12-Inhibitor treatment e): 6 h after strong conditioning 

 

The miR-12-Inhibitor was injected 6 h after strong conditioning to test its effects on the late 

consolidation phase. The memory recall was carried out 2 h, 24 h and 48 h after training. The 

treatment with miR-12-Inhibitor 6 h after strong conditioning (see table 24) had no significant 

effects on memory formation. 

Table 24 MiR-12-Inhibitor treatment e): 6 h after strong conditioning 

Bees were injected with PBS or miR-12-Inhibitor 6 h after strong conditioning (recall 2 h, 24 h, 48 h). PBS treated 

animals (n= 58) and miR-12-Inhibitor treated animals (n= 54) did not show significant differences. 

Time of injection: 

6 h after strong (three-trial) conditioning 

Recall: 2 h  Recall: 24 h Recall: 48 h 

PBS [PER %] (n= 58) 67,2% 50% 50% 

MiR-12-Inhibitor [PER %] (n= 54)  70,4% 57,4% 57,4% 

Chi Square, Fisher’s exact p= 0,83 p= 0,45 p= 0,45 

 

When applied 1 h after strong conditioning, the miR-12-Inhibitor does affect the consolidation 

phase exclusively. There were no effects of miR-12-Inhibitor treatment 1 h after weak 

conditioning and no effects on the late consolidation phase when applied 6 h after conditioning. 

Summarised, the miR-12-Inhibitor specifically affects processes implicated in associative 

learning and consolidation. 

Since the miR-12-Inhibitor treatment 4 h before conditioning resulted in impaired memory 2 h 

and 24 h after weak training and 24 h after strong training, I can conclude that the miR-12 is 

involved in the positive regulation of processes during acquisition. The effects of miR-12-

Inhibitor injection 1 h after strong conditioning led to impaired memory after 24 h and 48 h. This 

reveals a positive function of miR-12 in the consolidation phase. 
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4.5.4. The effects of miR-124 on the acquisition in the honeybee 

 

In q-RT-PCR experiments we showed that the level of miR-124 was downregulated one day after 

weak training and 2 h after strong training but upregulated one day after strong training. This 

points to potential different functions of miR-124 with respect to training strength and memory 

phase. 

 

4.5.4.1. MiR-124-Inhibitor treatment a): 1 d before weak and strong 

conditioning 

 

Cristino et al. 2014 reported effects on learning and memory formation by applying miRNA-

Inhibitor 1 d before conditioning. To test the effects with miR-124-Inhibitor at this point in time, 

the treatment was conducted 1 d before the weak and strong conditioning experiments. Weak 

conditioning 1 d after miR-124-Inhibitor treatment had no significant effect on memory (PER: 

2 h p= 1; 24h p= 0,089; Chi Square, Fisher’s exact test) (see figure 22 a). 
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Figure 22 Weak and strong conditioning 1 day after treatment with miR-124- Inhibitor 

The figure displays the percentage of honeybees showing a PER during weak (a) and strong (b) conditioning and 

memory recall. Differences (details in text) are marked with stars (*p≤ 0,05). Bees (numbers in parentheses) were 

injected 1 d before the conditioning with miR-124-Inhibitor or PBS. 

 
Treatment with miR-124-Inhibitor 1 d before strong conditioning resulted in impaired 2 h 

memory for the treated animals. As figure 22 b) shows, there is no difference in acquisition for 

the 2. and the 3. trial. (PER 2. trial: p= 0,77; PER 3. trial: p= 0,63, Chi Square, Fisher’s exact 

test). The PER after the 2 h recall but not the 24 h recall is significantly lower in the miRNA-

Inhibitor treated group (PER 2 h: p= 0,035; PER 24 h: p= 0,23 Chi Square, Fisher’s exact test). 

0

10

20

30

40

50

60

70

80

90

100

1.Trial 2 h 24 h

Acquisition Recall

P
E

R
 [

%
]

PBS (n = 46)

miR-124-Inhibitor (n = 56)

a)

0

10

20

30

40

50

60

70

80

90

100

1. Trial 2. Trial 3. Trial 2h 24h

Acquisition Recall

P
E

R
 [

%
]

PBS (n=39)

miR-124-Inhibitor (n=35)

b)

* 



Results 
 

64 

 

There was no significant effect of miR-124-Inhibitor treatment 1 d before habituation, 

sensitisation and gustatory sensitivity see table 25. 

Table 25 MiR-124-Inhibitor treatment a): 1 d before gustatory sensitivity, habituation and 
sensitisation 

Bees (numbers in parentheses) were injected with miR-124-Inhibitor (0,5µM) or PBS 1d before testing gustatory 

sensitivity, habituation and sensitisation. The gustatory sensitivity scores were compared with Mann Whitney U-

Test. The numbers of stimuli during habituation were statistically analysed using the Student's t-test. The percentages 

of sensitised bees during sensitisation were analysed by Chi Square Fisher’s exact test. 

Behavioral Test  PBS miR-124-Inhibitor Statistic data 

Gustatory sensitivity 3,00 (n= 43) 2,53 (n= 43) U= 800,5,, P= 0,28 

Habituation 1±0,7 (n= 69) 1,02±0,7 (n= 53) df= 120, t= -0,17, 

P= 0,51 

Sensitisation 3,9% (n= 51) 1,9% (n= 51) X
2= 0, P= 1 

 

4.5.4.2. MiR-124-Inhibitor treatment b): 4 h before weak and strong 

conditioning 

 

The miR-124-Inhibitor treatment was carried out 4 h before conditioning to test the effects on the 

acquisition phase. The miR-124-Inhibitor was injected 4 h before weak and strong conditioning 

and the memory recall was performed 2 h and 24 h after conditioning. The treatment with 

inhibitor impairs the memory 2 h after weak conditioning (PER 2 h: p= 0,03 Chi Square, Fisher’s 

exact test). There is no significant change between the treated and the control group after 24 h 

(PER 24 h: p= 1, Chi Square, Fisher’s exact test).  
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Figure 23 Weak and strong conditioning 4 h after treatment with miR-124-Inhibitor 

The figure displays the percentage of honeybees showing a PER during weak (a) and strong (b) conditioning and 

memory recall. Differences (details in text) are marked with stars (*p≤ 0,05). Bees (numbers in parentheses) were 

injected 4 h before the conditioning with miR-124-Inhibitor or PBS. 

 

The animals were conditioned with three-trials (strong training) (see figure 23). The miR-124-

Inhibitor was injected 4 h before conditioning and the memory recall was performed 2 h and 24 h 

after conditioning. There is no difference in acquisition for the 2. trial (PER 2. trial: Chi Square, 

Fisher’s exact test, p= 0,82) and the 3. trial (PER 3.Trial: Chi Square, Fisher’s exact test, p= 0,33) 
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and the PER after the 2 h and the 24 h recall is significantly lower in the treated group (PER: 2 h: 

p= 0,00005; PER 24 h: p= 0,0001 Chi Square, Fisher’s exact test). The miR-124-Inhibitor 

treatment had no significant effects on acquisition. It also had no effects on other behavioural 

tests like habituation, sensitization or gustatory sensitivity (see table 26). 

Table 26 MiR-124-Inhibitor does not affect non-associative learning and gustatory sensitivity 

Bees (numbers in parentheses) were injected with miR-124-Inhibitor or PBS 4 h before testing gustatory sensitivity, 

habituation and sensitisation. The gustatory sensitivity scores were compared with Mann Whitney U-Test. The 

numbers of stimuli during habituation were statistically analysed using the Student’s t-test. The percentages of 

sensitised bees during sensitisation were analysed by Chi Square Fisher’s exact test. 

Behavioral Test PBS miR-124-Inhibitor Statistic data 

Gustatory sensitivity 1,68 (n= 68) 1,88 (n= 62) U= 2211,, P= 0,51 

Habituation 1±0,69 (n= 22) 1,15±0,90 (n= 23) df= 43, t= 0,65, 

P= 0,51 

Sensitisation 3,8% (n= 26) 3,8% (n= 26) X
2= 0, P= 1 

 

The treatment with miR-124-Inhibitor 1 d prior to weak conditioning did not have effects on 

acquisition and memory formation. However, the treatment with miR-124-Inhibitor 1 d prior to 

strong conditioning resulted in an impaired memory 2 h after but had no effect on the acquisition. 

The effects of miR-124-Inhibitor 4 h before weak and strong conditioning did not affect the 

acquisition significantly but impaired the 2 h memory and additionally the 24 h memory after 

strong conditioning. I conclude, that miR-124 has a positive function in the acquisition phase. 

 

4.5.5. The effects of miR-124 on the consolidation phase in the honeybee 

4.5.5.1. MiR-124-Inhibitor treatment 1 h after conditioning 

 

The animals were conditioned with one trial (weak conditioning) or with three-trials (strong 

training) (see table 27). The treatment with miR-124-Inhbitor or PBS was carried out 1 h after the 

conditioning to test the effects on the consolidation phase. There were no significant effects 

between the two groups, neither after weak nor after strong conditioning. 

 



Results 
 

67 

 

Table 27 Weak and strong conditioning 1 h after miR-124-Inhibitor treatment 

Bees (numbers in parentheses) were injected with miR-124-Inhibitor or PBS 1 h after weak or strong conditioning 

(recall 2 h, 24 h, 48 h). 

Time of injection: 

1 h after strong (three-trial) conditioning 

Recall: 2 h  Recall: 24 h Recall: 48 h 

PBS [PER %] (n= 51) 68,6% 64,7% 52,9% 

MiR-124-Inhibitor [PER %] (n= 60)  53,3% 63,3% 36,7% 

Chi Square, Fisher’s exact test p= 0,12 p= 1 p= 0,12 

1 h after weak (single-trial) conditioning 

PBS [PER %] (n= 54) 59,1% 24,3% / 

MiR-124-Inhibitor [PER %] (n= 55)  63,6% 40% / 

Chi Square, Fisher’s exact test p= 0,69 p= 0,10 / 

 

The treatment with miR-124-Inhibitor 1 h after conditioning had no significant effects on 

memory formation. Therefore, I suppose, that the miR-124 is not affecting the consolidation 

phase. Because of its positive function in the acquisition phase, I define it as a positive regulator 

of learning processes. 

 

4.5.6. The effects of miR-125 on the acquisition in the honeybee  

 

4.5.6.1. MiR-125-Inhibitor treatment b) 4 h before conditioning 

 

Although no learning induced changes in miR-125 levels were observed, I tested if miR-125 

function is required for memory acquisition. To test the effect of miR-125-Inhibitor on the 

acquisition phase, the bees were treated 4 h before conditioning. 

Treatments with miR-125-Inhibitor 4 h before weak and strong conditioning show no significant 

effects. For the weak training we can see a pattern similar to the strong training after 2 h but not 

after 24 h (2 h PER: p= 0,31 Chi Square, Fisher’s exact test; 24 h PER: p= 0,64 Chi Square, 

Fisher’s exact test) and a trend to improved memory in the miRNA-Inhibitor treated group after 

48 h (48 h PER: p= 0,065 Chi Square, Fisher’s exact test)(see figure 24 a)). 
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There is no difference in acquisition for the 2. trial (PER 2. trial: p= 0,82 Chi Square, Fisher’s 

exact test) and the 3. trial (PER 3.trial: p= 0,3 Chi Square, Fisher’s exact test). The miRNA-

Inhibitor treated group shows a trend to decreased memory 24 h after strong conditioning (PER 

2 h: p= 1; PER 24 h: p= 0,09 Chi Square, Fisher’s exact test)(see figure 24 b)). 

 

 

Figure 24 Weak and strong conditioning 4 h after miR-125-Inhibitor treatment 

The figure displays the percentage of honeybees showing a PER during weak (a) and strong (b) conditioning and 

memory recall. Bees (numbers in parentheses) were injected 4 h before the conditioning with miR-125-Inhibitor or 

PBS. 
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There were no significant changes in responsiveness and sensitisation 4 h after miR-125-Inhibitor 

treatment (see table 28). 

Table 28 MiR-125-Inhibitor does not affect non-associative learning and gustatory sensitivity 

Bees (numbers in parentheses) were injected with miR-125-Inhibitor or PBS 4 h before testing gustatory sensitivity, 

habituation and sensitisation. The gustatory sensitivity scores were compared with Mann Whitney U-Test. The 

numbers of stimuli during habituation were statistically analysed using the Student's t-test. The percentages of 

sensitised bees during sensitisation were analysed by Chi Square Fisher’s exact test. 

Behavioral Test PBS miR-125-Inhibitor Statistic data 

Gustatory sensitivity 3,28 (n= 43) 4 (n= 43) U= 1035,5, P= 0,34 

Habituation 1±0,71 (n= 26) 1,16±0,60 (n= 21) Df= 45, t= 0,84, P= 0,41 

Sensitisation 23% (n= 30) 22% (n= 27) X
2= -0,01, P= 1 

 

The acquisition phase was not affected by miR-125-Inhibitor treatment, neither were the 

gustatory sensitivity, habituation and sensitisation. The treatment with miR-125-Inhibitior 4 h 

prior to conditioning had also no influence on the 2 h, 24 h or 48 h memory, neither after weak, 

nor after strong conditioning (2 h, 24 h were tested). Therefore I conclude that the miR-125 does 

not have a regulatory influence the acquisition phase. 

 

 

4.6. Interaction between miRNAs are revealed by inhibition of single miRNAs 

 

4.6.1. Analysis of miRNA amount in the central brain 2 h after miR-12-Inhibitor 

treatment 

 

The correlation analysis performed with the q-RT-PCR data showed, that miR-124, miR-12 and 

miR-125 are connected. To determine how treatment with single miRNA-Inhibitors affect the 

levels of other miRNAs in the central brain of the honeybee, a quantification of EF 1 α-, miR-12-, 

miR-124-, miR-125-, miR-989-, and miR-3788- levels was carried out by q-RT-PCR 2 h after 

treatment with miR-12-Inhibitor.  



 

Figure 25 MiR-Inhibitor treatment 2
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Figure 26 MiR-12-Inhibitor treatment
miR-989, miR-3788-levels after 

The columns display the relative amount of RNA (EF 1

miR-3788) in the central brain of the honeybee. Animals were treated with either 

dissection. The diagrams display the relative mean values of the RNA and miRNA amounts and their standard 

deviation. Significant differences are

number of samples. 
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The miR-12 amount shows a trend to an increase compared to the control group (

Inhibitor: p= 0,065, Student’s

(1x PBS) vs. miR-12-Inhibitor treated group (in 1x PBS) 

124: p= 0,65, miR-125: p= 0,57

with miR-12-Inhibitor does n

EF 1 α 2 h after injection. 

 

4.6.2. MiR-12- or miR

124 and miR-125 after 4 h 

 

Since treatment with miR-12
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treatment with miR-12-Inhibitor or 

to the miRNA amounts the housekeeping gene EF 1 

frequently measured in our lab

and miR-125 is significantly increased in the 

Although it is not appropriate to perform multiple statistical comparisons with small numbers, I 

used the Student’s t-test to compare the obvious differences between the groups. 

differences are marked by *p<0,005
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Student’s t-test). There were no significant effects detected

Inhibitor treated group (in 1x PBS) Student’s t-test: EF 1 

0,57, miR-989: p= 0,37, miR-3788: p= 0,67). Thus, single treatment 

Inhibitor does not interfere with the levels of miR-12, -124,

miR-124-Inhibitor treatment, affects the levels of 

125 after 4 h  

12-Inhibitor showed no effect on other miRNAs 

miR-124-, miR-125- levels was carried out by q

Inhibitor or miR-124-Inhibitor. As a control and reference in comparison 

the housekeeping gene EF 1 α and another gene GLuA2 

frequently measured in our lab-, were also tested. The levels (see figure 28

125 is significantly increased in the miR-124-Inhibitor treated group (black 

Although it is not appropriate to perform multiple statistical comparisons with small numbers, I 

test to compare the obvious differences between the groups. 

*p<0,005. 

Inhibitor treatment 4 h before central brain dissection and q

miR-Inhibitor 4 h before the dissection of the central brain with subsequent 

quantification of isolated miRNA and mRNA by q-RT-PCR. 

Results 
 

shows a trend to an increase compared to the control group (miR-12-

ects detected (Control group 

test: EF 1 α: p= 0,55, miR-

0,67). Thus, single treatment 

124, -125, -989, -3788 or 

Inhibitor treatment, affects the levels of miR-12, miR-

Inhibitor showed no effect on other miRNAs 2 h later, a 

levels was carried out by q-RT-PCR 4 h after 

Inhibitor. As a control and reference in comparison 

 and another gene GLuA2 -which is 

28) of miR-12, miR-124 

Inhibitor treated group (black bars, n= 5). 

Although it is not appropriate to perform multiple statistical comparisons with small numbers, I 

test to compare the obvious differences between the groups. Significant 

 

h before central brain dissection and q-RT-PCR 

h before the dissection of the central brain with subsequent 
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Figure 28 Relative amount of EF 1α, miR-12, miR-124, miR-125 and Glu A2 1-2 and 10-11, 4 h 
after treatment with miR-12- or miR-124-Inhibitor 

The columns display the relative amount of miRNAs (miR-12, miR-124 and miR-125) and RNAs (EF 1α; Glu A2 1-

2 and 10-11) in the central brain of the honeybee. Animals were treated with either miR-12-Inhibitor, miR-124-

Inhibitor or PBS 4 h before dissection. The data is presented as the relative mean values of the RNA and miRNA 

amounts and their standard deviations. Significant differences are marked with stars (*p≤ 0,005). The number in the 

basis of each bar indicates the number of samples. The amount of miR-12, miR-124 and miR-125 is significantly 

increased in the miR-124-Inhibitor treated group (Student’s t-test: miR-12 amount: PBS vs. miR-124-Inhibitor 

treated group: p= 0,0026; miR-12-Inhibitor treated vs. miR-124-Inhibitor treated group p= 0,0024; miR-124 amount: 

PBS vs. miR-124-Inhibitor treated group p= 0,0008; miR-12-Inhibitor treated vs. miR-124-Inhibitor treated group: 

p= 0,0009; miR-125 amount: p= 0,5; PBS vs. miR-124-Inhibitor treated group p= 0,0031; miR-12-Inhibitor treated 

vs. miR-124-Inhibitor treated group p= 0,0035). 

 

 

All three miRNAs were upregulated after miR-124-Inhibitor treatment. These results support the 

results from the correlation analysis, which implicated a connection between miR-12, -124 and -

125. 
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4.6.3. MiR-12-Inhibitor treatment 1h after strong conditioning, analysis of central 

brain miRNA-levels

 

The treatment with miR-12-Inhibitor 1 h after strong 

impaired long-term memory 24

for altered miR-12, miR-124, 

honeybee, I quantified their amounts by q

three-trials and treatment with 

Figure 29 MiR-Inhibitor treatment
central brain dissection and q-

Honeybees were treated with miR-Inhibitor either 1

24 h and 48 h. The dissection of the 

subsequent quantification of isolated miRNA and mRNA by q

 

The animals that responded to the recalls (

and q-RT-PCR analysis in the control group (PBS n

responders (miR-12-Inhibitor (+) n

chosen separately. There were no significant changes in the 
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Inhibitor treatment 1h after strong conditioning, analysis of central 

levels 24 h and 48 h after conditioning by q-RT

Inhibitor 1 h after strong conditioning with three

24 h and 48 h after the conditioning (see table 29 and 30

124, miR-125, miR-989, miR-3788 levels in the central brain of the 

honeybee, I quantified their amounts by q-RT-PCR 24 h and 48 h after strong conditioning with 

s and treatment with miR-12-Inhibitor 1 h after the training. 

Inhibitor treatment 1 h after strong conditioning, after 24 h or 48
-RT-PCR 

Inhibitor either 1 h after strong condition, a memory recall was performed at 2

h. The dissection of the central brain was performed either after the 24 h or after the 48

subsequent quantification of isolated miRNA and mRNA by q-RT-PCR. 

The animals that responded to the recalls (2 h and 24 h) were chosen for central brain dissection 

PCR analysis in the control group (PBS n= 11). In the miR

Inhibitor (+) n= 10) and non-responders (miR-12-Inhibitor (

chosen separately. There were no significant changes in the miRNA levels 

Results 
 

Inhibitor treatment 1h after strong conditioning, analysis of central 

RT-PCR 

three-trials resulted in an 

table 29 and 30). To check 

in the central brain of the 

h after strong conditioning with 

 

h or 48 h memory recall, 

h after strong condition, a memory recall was performed at 2 h, 

h or after the 48 h recall with 

) were chosen for central brain dissection 

miR-12-Inhibitor group 

Inhibitor (-) n= 7) were 

levels (see table 29). 
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Table 29 MiR-12-Inhibitor treatment 1 h after strong conditioning, analysis of central brain miR-
amount 24 h after conditioning by q-RT-PCR 

The table displays the relative RNA/miRNA amount of strongly conditioned and miR-12-Inhibitor treated bees 

(numbers of bees per group are in parentheses) after the 24 h recall. 

Relative RNA 
amount 
 

EF 1 α miR-12 miR-124 miR-125 miR-989 miR-3788 

PBS (n= 11) 
0,81±0,44 0,96±0,37 0,93±0,51 1,14±0,42 1,09±0,58 1,18±0,67 

miR-12-Inhibitor (-) 

(n= 7) 
0,6±0,45 0,88±0,56 1,07±1,32 0,97±0,57 0,92±0,69 0,96±0,25 

miR-12-Inhibitor (+) 

(n= 10) 
0,96±0,54 1,01±0,5 1,07±0,52 1,05±0,41 1,1±0,43 0,84±0,25 

Statistical data  

Student’s t-test: PBS 
vs. miR-12-Inhibitor 
(-) 0,34 0,72 0,79 0,52 0,60 0,35 
Student’s t-test: PBS 
vs. miR-12-Inhibitor 
(+) 0,52 0,82 0,54 0,61 0,97 0,14 

 

The animals that responded to the recalls (2 h, 24 h and 48 h) were chosen for central brain 

dissection and q-RT-PCR analysis in the control group (n= 3). In the miR-12-Inhibitor group 

(n= 6), responders and non-responders (PER) were mixed. 

Table 30 MiR-12-Inhibitor treatment 1 h after strong conditioning, analysis of central brain miR-
levels 48 h after conditioning by q-RT-PCR 

The table displays the relative RNA/miRNA amount of strongly conditioned and miR-12-Inhibitor treated bees 

(numbers of bees per group are in parentheses) after the 48 h recall. 

Relative RNA levels 
 

EF 1 α miR-12 miR-124 miR-125 miR-989 miR-3788 

PBS (n= 3) 0,6±0,2 0,74±0,11 0,29±0,07 0,58±0,18 0,81±0,36 0,87±0,21 

miR-12-Inhibitor (+/-) (n= 6) 0,94±0,4 0,72±0,24 0,62±0,50 0,85±0,46 0,72±0,44 1,17±0,45 

 

 

The combination of strong conditioning, miR-12-Inhibitor treatment and quantification of 

miRNA amount via q-RT-PCR did not show significant effects after the 24 h recall. The number 

of animals after the 48 h recall was too low to perform statistical analysis. 
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5. Discussion 

 

The unravelling of highly complex cellular protein cascades and pathways which are involved in 

synaptic plasticity, learning and memory formation processes took us a big step towards the 

understanding of our brain and its functions. One remarkable aspect of miRNAs is that they 

influence the processes of synaptic plasticity, learning and memory formation on a 

posttranscriptional level. Preceding investigations characterised the relevance of miRNAs in 

synaptic plasticity and in the mechanisms generating memory (Vo et al. 2005; Ashraf and Kunes 

2006; Ashraf et al. 2006; Schratt et al. 2006). 

This work shows, that through the combination of different behavioural and molecular biological 

studies, the role of different honeybee miRNAs can be revealed. 

In this work it has been proven for the first time, that there are learning induced changes of miR-

124 and miR-3788 after weak conditioning. In addition it has been demonstrated that the miR-12 

amount changes after strong conditioning. 

It has also been shown that there are correlations between certain miRNAs. For example the miR-

12, the miR-124 and the miR-125 were correlated and miR-989 was correlated with miR-12 and 

miR-124, while miR-125 was correlated with miR-3788. 

Furthermore it has been demonstrated in this study that transient inhibition of miR-12- and miR-

124-function affects the formation of STM and LTM in the honeybee  

 

 

5.1. Weak and strong conditioning induce changes in ame-miR-12, ame-miR-124 

and ame-miR-3788 levels 

 

The analysis and quantification of the learning induced changes of the honeybee miRNAs ame-

miR-12, ame-miR-124, ame-miR-125, ame-miR-989, ame-miR-3756, ame-miR-3769 and ame-

miR-3788 in naive and conditioned honeybees were the first part of this work. Their levels were 

examined 2 h and 24 h after weak as well as after strong conditioning (see table 31). So far no 

other work did investigate changes in the amount of the above mentioned miRNAs after weak 

and strong appetitive olfactory conditioning in the honeybee Apis mellifera. 
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Qin et al. 2014 described by next generation small RNA sequencing analysis that the levels of 

miR-12, miR-124, miR-125 and miR-989 were increased in honeybees after maze-based visual 

pattern learning. They conditioned honeybees with Y-maze experiments, dissected the brains 

after the acquisition and analysed the levels of miRNAs by small RNA sequencing. The study of 

Qin et al. 2014 did not investigate the levels of miRNAs at different points in time after learning 

and they also did not mention the time parameters they used, while I examined the miRNA levels 

by q-RT-PCR, at 2 h and 24 h after weak and strong conditioning. I found an upregulation of 

miR-124 24 h after strong conditioning (see table 31) but no other accordance with the study of 

Qin et al. 2014 for the other miRNAs examined in this work. There are no works comparing the 

two aforementioned learning paradigms regarding the phases of learning and memory, the 

duration of training and the molecular mechanisms which are triggered by the different stimuli 

(visual and odour perception). Thus, a comparison between the study of Qin et al. 2014 and this 

work remains unclear and has to be scrutinised critically. 

 

Table 31 Learning induced changes in miRNA levels 

The levels of miR-12, miR-124 and miR-3788 after single trial or three trial conditioning and different points in time 

are displayed in this table. The arrows pointing downwards show a downregulation while the arrows pointing 

upwards show an upregulation of miRNA levels. The dotted arrow indicates a trend. 

 1 trial 2 h 1 trial 24 h 3 trial 2 h 3 trial 24 h 

miR-124 
    

miR-12    
 

miR-3788 
 

   

 

 

5.2. The miR-12 is a positive regulator in acquisition and consolidation 

 

The miR-12 was shown to be clustered with miR-283 and miR-304 within one single intron in 

Drosophila melanogaster (Aravin et al. 2003; Ruby et al. 2007). Lagos-Quintana et al. 2001 

stated that levels of miR-12 can vary in between different developmental stages in Drosophila 

melanogaster. Another study showed, that the expression levels of miR-12 is age dependent and 

upregulated in old forager bees (Behura and Whitfield 2010). An upregulation of miR-12 in 

inactive ovaries of Apis mellifera virgin queens (compared to mated queens) has been described 
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by (Macedo et al. 2016). The miR-12 was shown to be upregulated after infection with bacteria 

(Wolbachia pipientis) in a cell line of Aedes aegypti (Osei-Amo et al. 2012). Those findings 

indicate that increase and degradation of miR-12 can change through various influences. 

This work confirms that learning induces a change of miR-12 amounts. No other study 

investigated the levels of miR-12 at different points in time after weak and strong appetitive 

olfactory conditioning.A stable form of memory, also called long-term memory, is induced 

through the strong conditioning with three trials (Müller 2013). The formation of LTM can be 

divided into different phases. After the acquisition phase where the honeybees learn to associate 

the odour with a reward, follows a phase of memory consolidation where transcriptional 

processes are initiated. The resulting memory phase which is called mid-term memory lasts for 1 

d and is then replaced by LTM (Müller 2013). Strong conditioning with three trials resulted in 

reduced miR-12 levels 24 h after the training (see table 31). 

A transient manipulation of miRNA function was the next step in this work to further analyse the 

function of miR-12 in acquisition and consolidation. So far, no other work investigated the role 

of miR-12 in different memory phases in the honeybee and the transient inhibition of miR-12 was 

never tested before to study the effects on learning and memory formation. 

 

The miR-12 is a positive regulator in the consolidation of LTM 

 

Davis and Squire (1984) stated that the protein synthesis, which is necessary for an establishment 

of LTM, is restricted to one or two hours after training. The point in time for the miR-12-

Inhibitor treatment 1 h after strong conditioning was selected to test the effects on consolidation 

exclusively (Wüstenberg et al. 1998; Backer 2015). This work showed that due to the loss of 

function of miR-12 during the consolidation phase after strong conditioning, the memory was 

significantly impaired after 24 h and after 48 h (see table 32). The decrease in memory due to the 

loss of function of the miR-12 shows, that miR-12 is essential for development of LTM in the 

honeybee. 

Both findings - the reduced levels of miR-12 1 d after strong conditioning and the impaired 

memory at 1 d and 2 d after strong conditioning and transient inhibition of miR-12 - confirm its 

role as a positive regulator in the consolidation of LTM. 

There were no other studies investigating the transient inhibition of miR-12 in learning and only 

few studies examined the role of miRNAs in consolidation. A study by Dias et al. (2014) did not 
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inhibit the miR-34a but studied the effects of miR-34a overexpression on consolidation. Dias et 

al. 2014 overexpressed the miR-34a by the infusion of lentiviral miR-34a-sponges into the 

basolateral amygdala of mice 2 weeks before fear conditioning or habituation whereby the 

consolidation of fear conditioning was then tested after 24 h. They could show that the miR-34a 

is necessary for the consolidation of cued fear memory (Dias et al. 2014). The only parallel 

between this work and the work of Dias et al. (2014) is the memory retrieval test at 24 h after 

conditioning, whereby both studies conclude that the corresponding miRNAs are necessary for 

the consolidation of memory. 

The decrease of miR-12 amount after strong conditioning might be caused by a regulation 

mechanism which can control the levels of miRNA through initiating their increase or their 

decay. So far, there has been no mechanism identified to be involved in the regulation of miR-12 

in learning and memory formation, but it has been demonstrated, that miR-132 is regulated by the 

Brain-derived neurotrophic factor (BDNF) through the transcription factor CREB by increasing 

the miR-132 precursor expression (Vo et al. 2005). 

A plausible explanation for the downregulation of miR-12 at 24 h after strong conditioning would 

be the interaction with a target mRNA and subsequent degradation of the miR-12- mRNA-target 

complex to ensure the formation of LTM. The general mechanism which leads to the formation 

of LTM involves the adenylyl cyclase, which is activated by Ca2+ or modulatory inputs, and 

mobilises amongst others PKA and CREB (Abel and Lattal 2001). It is likely, that miR-12 is 

involved in this mechanism. 

The revelation of the role of miRNAs in different signalling cascades will be an important step in 

understanding their function in learning and memory formation. The confirmation of miRNA-

mRNA target interactions would take us a bit closer to achieve that goal. Until now, there were 

no target interactions for the miR-12 described in the honeybee. 
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Table 32 Regulation of acquisition and consolidation by miR-12 

Depicted in the tables are the acquisition and consolidation experimental schemes showing different points in time 

and strength of training. The table shows that miR-12 regulates the acquisition positively at 2 h and 24 h after weak 

conditioning and at 24 h after strong conditioning. It also regulates the consolidation positively after 24 h and 48 h. 

miR-12 Recall 2 h Recall 24 h Recall 48 h 

Acquisition 1 d strong No effect No effect / 

Acquisition 4 h weak Positive regulation Positive regulation / 

Acquisition 4 h strong No effect Positive regulation / 

Consolidation 1 h weak No effect No effect No effect 

Consolidation 1 h strong No effect Positive regulation Positive regulation 

 

MiR-12 is a positive regulator of acquisition 

As described earlier, the weak conditioning with one trial leads to the formation of STM whereas 

the strong conditioning with three trials results in the formation of LTM and both initiate 

different signalling cascades (Müller 2012). The effects of a transient miR-12 inhibition on both 

weak and strong conditioning were carried out to specify the roles of miR-12 in different 

pathways that lead to the formation of either STM or LTM. To further examine the effects of 

transient miRNA manipulation on acquisition miR-12-Inhibitor treatment was performed 4 h 

before weak and strong conditioning (additionally to the treatment 1 d before conditioning which 

had no effects on learning and memory formation as indicated in table 32). Only one study by 

Shaw et al. (2001) described the negative effects of lipopolysaccharide (LPS) on spatial learning 

in mice, when applied 4 h before the training (Shaw et al. 2001) which is not comparable to my 

research because the did not investigate miRNA inhibition. The transient inhibition of miR-12 

function 4 h before weak conditioning had strong effects on the 2 h memory (see table 32). Thus I 

can classify the miR-12 as a positive regulator in the acquisition of STM. The miR-12 inhibition 

4 h before strong conditioning affected the 24 h memory recall (see table 32); therefore it can be 

defined as a positive regulator of acquisition in MTM. 

 

Targets of miR-12 

 

Eligible mechanisms for a participation of miR-12 regarding its role in the positive regulation of 

acquisition in STM and LTM would be the general mechanisms leading to STM or LTM. The 



Discussion 
 

80 

 

STM initiating mechanism starts with a stimulation of AMPA or NMDA receptors that allow 

Ca2+ to enter the postsynaptic neuron and hereby activates immediate effects of PKC, NOS, 

CaMKII and calcineurin amongst others (Abel and Lattal 2001). The mechanism triggering LTM 

involving the PKA-CREB signalling pathway was already described above. 

 

So far, the study by Osei-Amo et al. 2012 is the only work which confirmed targets of the miR-

12. They provided evidence for two target genes of the miR-12 in Aedes aegypti, the MCT1 and 

the MCM6 gene. MCM6 is a DNA replication licensing factor and MCT1 a monocarboxylate 

transporter. They predicted the targets for the miR-12 using the bioinformatical tool RNA hybrid, 

performed expression analysis for MCM6 and MCT1 in two cell lines derived from Aedes 

aegypti (one of the cell lines showed high miR-12 levels due to infection with the bacterium 

Wolbachia pipientis) via q-RT-PCR. They could show that MCM6 and MCT1 were 

downregulated in the miR-12-rich cell line and confirmed the miRNA-mRNA target interactions 

in cells cotransfected with GFP reporter constructs containing the target genes and miR-12 

mimics. 

MCT1 was described to play a role in contextual fear memory (Xu et al. 2016). Xu et al. (2016) 

found out, that rats which were exposed to early bisphenol A exposure showed deficits in 

contextual fear memory, which correlatated with decreased MCT1 protein expression and 

oligodentrocyte loss in the hippocampus. 

As mentioned before, the targets of miR-12 in the honeybee have to be confirmed to further 

specify the role of those miRNAs in learning and memory formation. It seems very likely, that 

the miR-12 targets are involved in the regulation of acquisition of STM and in the consolidation 

of LTM. 

 

 

5.3. The miR-124 is a positive regulator of acquisition 

 

The neuronal miR-124 was described to be conserved from worm to human (Conaco et al. 2006; 

Li et al. 2010). A study by Lim et al. (2005) proved, that overexpression of miR-124 in HeLa 

cells shifted the mRNA expression towards a neuronal pattern. The transcription of miR-124 in 

the rat brain was shown to be controlled by the inhibiting transcription factor EVI1 in association 
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with the deacetylase HDAC1 (Hou et al. 2015). Among the miR-124 targets that were already 

identified are laminin γ 1 and integrin β 1which were both expressed in neuronal progenitors in 

the chick neural tube (Cao et al. 2007), PTBP1 which revealed a role of miR-124 in pre-mRNA 

splicing (Makeyev et al. 2007), the SRY-box transcription factor (Sox9) (Cheng et al. 2009) and 

anachronism in neuroblasts of Drosophila melanogaster (Weng and Cohen 2012). These studies 

indicate that the miR-124 is involved in various neuronal mechanisms and functions. 

I found a downregulation of miR-124 2 h after strong appetitive conditioning followed by an 

upregulation of miR-124 measured after 24 h (see table 31). The ame-miR-124 levels in this 

work are comparable to the findings of Rajasethupathy et al. (2009) in neuronal cells of Aplysia 

californica. They found, a downregulation of miR-124 levels 2 h after 5-HT treatment and an 

upregulation 12 h after 5-HT treatment (Rajasethupathy et al. 2009). 

Like in their study in Aplysia and in my work in the honeybee, Cristino et al. (2014) also showed 

an upregulation of the levels of miR-124 after strong conditioning in honeybees. In contrast to 

my work, where I dissected the central honeybee brains after the memory recalls (2 h and 24 h 

after conditioning), they dissected the honeybee brains after the last conditioning trial. Their 

conditioning method does also differ from the method used in this work. They conditioned 

honeybees with 12 trials over 2 days (6 trials with an inter trial interval of 10 min per day) with a 

mixture of 14 common floral odorants and linalool without performing a 2 h memory retrieval. In 

contrast I conditioned the honeybees with either one trial to trigger the formation of STM or with 

three trials to activate the formation of LTM, in both cases combined with a 2 h and a 24 h 

memory recall (Müller 2013). Despite the methodical differences, the results of the work of 

Rajasethupathy et al. (2009) and Cristino et al. (2014) are comparable to this study. 

In this work, the ame-miR-124 showed a trend to decreased levels two hours after weak 

conditioning and q-RT-PCR. Additionally, the ame-miR-124 amount was significantly lower 

after weak conditioning and 24 h (see table 31). No other study investigated the levels of miR-

124 after weak conditioning or examined the effects on short-term memory. The changes of miR-

124 amount, which I found in this work, imply its function in learning and memory formation 

processes like acquisition, consolidation or the establishment of different forms of memory. 

The learning induced changes initiated the further analysis of miR-124 functions concerning 

acquisition and consolidation phases of learning and memory formation. This work was the first 

to examine the transient inhibition of miR-124 in different memory phases in the honeybee. 
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The miR-124 is not involved in positive regulation of consolidation 

 

Rajasethupathy et al. (2009) found that miR-124 impairs the formation of LTF in Aplysia 

californica by targeting CREB. They applied miR-Inhibitors to cultured neurons of Aplysia 

californica at 24 h before harvesting RNA or protein and found that miR-124 inhibition increases 

CREB1 levels (Rajasethupathy et al. 2009). As described above, the miR-124 levels in this work 

and in the studies of Rajasethupathy et al. (2009) and Cristino et al. (2014) were elevated at 24 h 

after strong conditioning. Comparing the observations from Rajasethupathy et al. (2009) with my 

findings, I suggest that miR-124 is not involved in the positive regulation of LTM. The transient 

inhibition of miR-124 in the consolidation phase after strong conditioning did not affect memory 

in this work. 

I can conclude from the transient inhibition that unlike the miR-12, the miR-124 is no positive 

regulator of consolidation in LTM (see table 33). Consistent with this discovery are also the 

levels of miR-124 at 24 h after strong conditioning which were elevated contrarily to the miR-12 

levels at this point in time. 

 

The miR-124 is a positive regulator of acquisition 

 

A study by Cristino et al. (2014) tested the effects of miR-210 and miR-932 inhibition on the 

acquisition phase in honeybees. The miR-932 which is conserved only in insect species (Cristino 

et al. 2014), was chosen for their study, because of its gene location within the intron 2 of 

neuroligin 2 in the honeybee (Biswas et al. 2008). Neuroligin and neurexin proteins form 

complexes that bridge post- and presynaptic compartments of synapses (Biswas et al. 2008). In a 

microarray analysis of odour conditioned bees followed by q-RT-PCR analysis, Cristino et al. 

(2014) revealed a connection of miR-124 and 6 other miRNAs: miR-210, miR-932, miR-34, 

miR-278, miR-275 and miR-928. The study of Cristino et al. (2014) cannot be directly compared 

to this work, because of the different experimental procedure and the other miRNAs used. They 

fed the animals with cholesterol conjugated AMOs against miR-210 and miR-932 1 d before 

strong conditioning, they strongly conditioned the honeybees with 6-trials and performed a 

memory recall only after 24 h. The memory of miR-932-Inhibitor treated bees was significantly 

decreased, while the memory of miR-210-Inhibitor treated bees was not changed significantly. 

The learning performance was not affected by treatment. 
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In this study, the inhibition of miR-124 function 1 d before strong conditioning resulted in an 

impaired 2 h memory while the 24 h memory was not affected (see table 33). Like in the study by 

Cristino et al. (2014), there was no direct effect on the learning performance. But both studies 

show that the learning performance was unaffected after miR-Inhibitor treatment, while the 

memory can be affected by inhibition of different miRNAs. 

A study in mice investigated the role of the hippocampal miR-132 in memory acquisition of trace 

fear conditioning. The infusion of a lentivector that expressed anti-miR-132 5 days before trace 

fear conditioning into the hippocampus impaired acquisition, while the locomotor activity was 

normal before the training (R. Y. Wang et al. 2013). As in this work, Wang et al. (2013) found 

that the acquisition was impaired and concluded that the corresponding miRNA was essential to 

build it. 

To further examine the effects of transient miRNA manipulation on acquisition I decided to treat 

the honeybees 4 h before weak and strong conditioning additionally to the treatment 1 d before 

conditioning which was described earlier. To my knowledge, the miR-124 inhibition 4 h before 

conditioning was never tested before to study the effects on learning and memory formation. 

Only one study by Shaw et al. (2001) described the negative effects of lipopolysaccharide (LPS) 

on spatial learning in mice, when applied 4 h before the training (Shaw et al. 2001) which is not 

comparable to my research. The miR-124-Inhibitor treatment 4 h before weak conditioning 

resulted in an impaired memory after 2 h (see table 33). The animals that were treated 4 h before 

strong conditioning showed an impaired memory after 2 h and 24 h (see table 33). For this reason 

I define the miR-124 as a positive regulator of acquisition. Additionally in other works miR-124 

has been described to be a positive regulator of neuronal maturation, connectivity and synaptic 

plasticity (reviewed by McNeill and Van Vactor 2012). 

The memory phases following strong conditioning in the honeybee were described as MTM 

(mid-term memory) which lasts for 1 d and is followed by a phase called eLTM (early long-term 

memory), lasting until day 3 after the conditioning, followed by lLTM (late long-term memory) 

(Müller 2012). 

The observations from the learning induced changes in miR-124 levels and from the transient 

miR-124-Inhibition analysis found in this work imply that miR-124 plays a role in the early 

mechanisms inducing STM and LTM formation. The low miR-124 levels 2 h after weak and 

strong conditioning and the impaired memory 2 h after miR-124 inhibition and weak and strong 

conditioning suggest a role in the formation of STM and in the early mechanisms that lead to the 
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formation of MTM, later followed by LTM. As described earlier, the low miRNA levels suggest 

miRNA-mRNA target interactions and through this decay of miRNAs. 

 

Table 33 Regulation of acquisition and consolidation by miR-124 

Depicted in the tables are the acquisition and consolidation experimental schemes showing different points in time 

and strength of training. The table shows that miR-124 regulates acquisition positively 2 h after weak and at 2 h and 

24 h after strong conditioning. 

miR-124 Recall 2 h Recall 24 h Recall 48 h 

Acquisition 1 d strong Positive regulation No effect / 

Acquisition 4 h weak Positive regulation No effect / 

Acquisition 4 h strong Positive regulation Positive regulation / 

Consolidation 1 h weak No effect No effect / 

Consolidation 1 h strong No effect No effect No effect 

 

Targets of miR-124 

 

As mentioned before, targets of miR-124 in the honeybee have to be confirmed to further specify 

its role in learning and memory formation. For the miR-124, targets which could be involved in 

the acquisition of STM and MTM are conceivable interaction partners 

It has been described that the transcriptional repressor REST (RE1 silencing transcription factor) 

which regulates a family of mouse miRNA genes is targeted by miR-124a (Conaco et al. 2006). 

The miRNA family regulated by REST includes the miR-9, the miR124a and the miR-132 

(Conaco et al. 2006). This study implicates, that miRNAs can be regulated by their own targets. 

It is conceivable that the regulation of miR-124 could be operated by signalling mechanisms 

which are involved in the generation of learning and memory. These interactions have to be 

revealed by examining the target interactions of miR-124. Until now, there were no target 

interactions for the miR-124 confirmed in the honeybee. 

Several targets of miR-124 were confirmed in other species, some of them known to be involved 

in the formation of learning memory. MiR-124 was previously described to target GluA2 

(AMPA-type glutamate receptor) in the hippocampus of mice (Ho et al. 2014). Ho et al. (2014) 

showed that miR-124 regulates GluA2 in the cell-bodies before the GluA2 protein is transported 

to synapses and dendrites. They were also able to locate the miR-124 in cell-bodies and dendrites 
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and the GluA2 mRNA in the somata (Ho et al. 2014). Kraft (2015) showed in in situ 

hybridisation experiments, that the ame-miR-124 is also localised in the somata and in the 

dendrites of the honeybee brain. Furthermore, it has been demonstrated, that demyelination in the 

hippocampus as well as impaired memory are combined with elevated miR-124 expression and 

low AMPA receptor levels (Dutta et al. 2014). In addition, miR-124 was described to constrain 

synaptic plasticity in absence of serotonin through regulation of CREB (cAMP response element-

binding protein) in Aplysia californica (see figure 30) by binding to its 3’UTR (Rajasethupathy et 

al. 2009). 

AMPA receptors are involved in the short-term mechanism, while CREB is a transcription factor 

which is important for the formation of LTM (Alberini 1999). Both could also be possible target 

candidates for miRNAs in the honeybee. There were eight isoforms of CREB described to exist 

in the honeybee (Eisenhardt et al. 2003; Eisenhardt et al. 2006). Anyway, this hypothesis at first 

has to be proven by different target prediction and validation methods which will be discussed 

later in more detail. 

 

 

Figure 30 The roles of different miRNAs in dendrites 

The number and size of dendritic spines is regulated by miRNAs such as miR-124, which can control targets like 

CREB that initiates long-term potentiation. The role of miR-132 in spine morphogenesis is still not clear. The miR-

125b targets the Eph receptor A4 (EphA4) and through this regulates spine shrinkage. The interactions, marked with 

question marks still have to be validated. (Modified after Siegel et al. 2011) 
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5.4. The miR-125 does not affect acquisition 

 

The honeybee miR-125 was found to be a homologue of the miR-125b. There is a differentiation 

in mammals between the miR-125a and the miRNA-125b. While the miR-125a regulates 

synaptic plasticity positively (Muddashetty et al. 2011), the miR-125b has been described as a 

negative regulator of maturation in neurons (McNeill and Van Vactor 2012), as a negative 

regulator of p53 in zebra fish and humans (Le, Teh, et al. 2009) and as a promoter of neuronal 

differentiation in human cells (Le, Xie, et al. 2009). 

In this work I inhibited the miR-125 function 4 h before weak and strong conditioning. The 

transient blocking of miR-125 did not affect learning and memory formation at this point in time. 

Therefore I conclude that the miR-125 does not have a regulatory influence on the acquisition 

phase. 

Studies on the consolidation phase were done by Backer (2015) in our group. By use of the same 

miR-125-Inhibitor 1 h after weak appetitive olfactory conditioning, a trend to increased memory 

24 h after conditioning was found while injection 1 h after strong appetitive olfactory 

conditioning resulted in increased memory 2 h and 24 h after conditioning (Backer 2015). The 

findings of Backer (2015) assume that the miR-125 is a negative regulator of memory formation 

in honeybees. 

As shown in figure 30 it was described in mice, that overexpression of miR-125b resulted in 

longer and thinner processes and thereby leads to spine shrinkage of hippocampal neurons via 

targeting the Eph receptor A4 (EphA4) (Edbauer et al. 2010). A loss of EphA4 leads to filopodia-

like protrusions in neuronal cells of the hippocampus (Edbauer et al. 2010). McNeill and Van 

Vactor (2012) described the miR-125b to negatively regulate maturation in neurons. So far, there 

were no targets for the ame-miR-125 identified. 

 

 

5.5. Elevated levels of miR-3788 after weak conditioning 

 

The sequence comparisons of the human miR-132 sequence with the honeybee miRNA database 

resulted in one possible homologue: the miR-3788. The miR-132 was described to be a positive 

regulator of maturation, connectivity and synaptic plasticity in neurons (reviewed by McNeill and 

Van Vactor 2012). Its expression is regulated by the Brain-derived neurotrophic factor (BDNF) 
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through the transcription factor CREB by increasing the miR-132 precursor expression (Vo et al. 

2005). Studies that investigated the overexpression of miR-132 show controversial effects on 

memory (Scott et al. 2012; Hansen et al. 2013). One study found, that a specific overexpression 

of miR-132 in the perirhinal cortex of the rat resulted in impaired short-term recognition memory 

associated with reduced long-term depression and long-term potentiation (Scott et al. 2012). In 

contrast another study by Hansen et al. (2013) found enhanced cognitive capacity while 

sensitively over-expressing miR-132 in the hippocampi of doxycycline regulated miR-132 

transgenic mice. Peixoto et al. (2015) investigated miRNA levels before and after fear 

conditioning and showed downregulation of miR-219 in the mouse brain 30 min after retrieval 

while the miR-132, miR-212 and miR-410 were shown to be upregulated by q-PCR analysis at 

30 min after acquisition and retrieval. Another study in mice investigated the role of the 

hippocampal miR-132 in memory acquisition of trace fear conditioning (Wang et al. 2013). They 

showed that the levels of miR-132 were elevated at 30 min after trace fear conditioning. The 

elevated miR-132 levels that were shown in these studies after conditioning are in accordance 

with my findings for the miR-3788 levels. 

Examining the learning induced changes of ame-miR-3788 levels, I found an increase 2 h after 

weak conditioning (see table 31). As described in Müller (2013), the weak conditioning with 1 

Trial results in the development of STM. The upregulation of miR-3788 points to a possible 

participation in the molecular development of short-term memory. It seems also possible, that the 

lower levels of miR-3788 after strong conditioning and at 2 h and at 24 h (see table 31) are 

caused by miR-3788-mRNA target interactions. This would suggest that the miR-3788 is 

involved in the formation of LTM. There are no other works addressing the ame-miR-3788 levels 

after learning. 

 

Targets of miR-132, the ame-miR-3788 homologue 

 

MiR-132 was shown to be required for spine formation and dendritic growth in the hippocampus 

(Magill et al. 2010). Addressing the evidence for target interactions, the miR-132 has been 

described to regulate spine formation positively by repressing the translation of p250GHP (see 

figure 30) a member of the Rho family GTPase-activating protein (Vo et al. 2005; Wayman et al. 

2008). As p250GHP was shown to interact with the NMDA NR2B receptor subunit (Wayman et 

al. 2008) and the NMDA receptor is involved in the initiation of STM which can indirectly lead 
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to LTM via the adenylyl cyclase (Abel and Lattal 2001), a role of miR-132 in those mechanisms 

seems possible also due to its regulation through CREB (Vo et al. 2005). MiR-132 was also 

shown to target MeCP2 (Klein et al. 2007) which was described to be a regulator of transcription 

in the central nervous system and to promote hippocampal synaptic plasticity (Na et al. 2013). 

To my knowledge, there are no studies that investigated target interactions for the ame-miR-

3788. 

 

 

5.6.  Connections between miRNAs 

 

Studies have demonstrated that miRNA-genes are clustered in families and that those can be 

coexpressed and also coregulated (Lau et al. 2001; Lim et al. 2003; Bartel 2004; Baskerville and 

Bartel 2005). The coregulation of several miRNA genes through a protein or hormone has been 

shown in the mouse as well as in the fruit fly. The hormone ecdysone coregulates the 

upregulation of miR-100, let-7 and miR-125 and the downregulation of miR-34 via the activity of 

the gene Broad complex (Sempere et al. 2003). The miR-100, let-7 and miR-125b are also 

clustered in mammals and the expression of let-7 family members and the miR-125b was induced 

in the brain of mammals in neuronal differentiation (Sempere et al. 2004). The miR-12 gene is 

clustered with the miR-283 and miR-304 genes in Drosophila melanogaster (Aravin et al. 2003) 

and the expression patterns of miR-12 and miR-304 are correlated very closely to each other 

(Ruby et al. 2007). These studies describe the coexpression and coregulation of miRNAs on the 

gene expression level. Coregulation and correlation on the mature miRNA levels still have to be 

revealed. 

A correlation experiment with mature miRNA levels in this work revealed a connection between 

the miR-12, the miR-124 and the miR-125. The miR-125 was correlated with the miR-132 

homologue miR-3788. MiR-989 the honeybee homologue I found for the miR-138 was 

correlated with miR-12 and miR-124. The connections between the miRNAs in this work were 

found by correlation analysis, using the amounts of miRNA samples quantified by q-RT-PCR. To 

my knowledge, there were no other studies investigating the correlations of those mature 

miRNAs until now.  
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An interaction analysis in this work revealed, that miR-12, -124 and -125 levels were elevated 4 h 

after single treatment with miR-124-Inhibitor (without subsequent conditioning). So far, there are 

no other studies addressing the changes of miRNA amounts after inhibition of other miRNAs. 

Regarding the results it seems conceivable, that miR-12 and miR-125 amounts are dependent on 

the miR-124 amount maybe because all three miRNAs are involved in the same signalling 

cascades in learning and memory formation. Furthermore the miR-12, miR-124 and miR-125 

could be regulated by the same mechanisms. But this hypothesis has to be proven by further 

experimental strategies. 

Beneath the analysis of target mRNAs, one approach to analyse the interactions of miRNAs 

would be an immunoprecipitation of miRNA associated proteins, as the Fragile-X-mental-

retardation-1-protein (FMRP). FMRP has been shown to be a part of the RISC complex in 

Drosophila melanogaster as well as in mammals and to repress translation through the miRNA 

pathway (Y. Yang et al. 2009). Xu et al. (2008) described that the Drosophila melanogaster miR-

124a is regulated by FMRP. As described in a study by Edbauer et al. (2010) in the mouse brain, 

the miR-132, miR-125b and miR-124 among other miRNAs are associated with FMRP which is 

working as a translational repressor. As mentioned before, the miR-124 is highly conserved 

through species, the miR-125b is comparable with the miR-125 in the honeybee and the search 

for a homologue of miR-132 in the honeybee revealed the miR-3788 as a possible candidate. 

Edbauer et al. (2010) confirmed the coregulation of miRNAs by coimmunoprecipitation of 

FMRP and associated mature miRNAs with anti-FMRP antibodies and subsequent q-RT-PCR, 

using FMR1 knockout mice as controls. Coimmunoprecipitation could also be used in the 

honeybee to further study the coregulation of miRNAs.  
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5.7.  Outlook 

 

In this work, AMOs were used for the transient in vivo inhibition of specific miRNAs. Their 

functionality had already been confirmed in cell cultural experiments (Lennox et al. 2013). In 

another in vivo study, the inhibition of miRNAs with AMOs that were dissolved in saline and 

injected into mice provided evidence for the functionality of this method (Davis et al. 2009). The 

use of cholesterol-conjugated (Cristino et al. 2014) or penetratin-conjugated (Rajasethupathy et 

al. 2009) miRNA-Inhibitors is also possible and can be conducted to ensure an improved uptake 

of miR-Inhibitors. 

The blocking of miRNAs with AMOs depicts one possible method to define the function of the 

corresponding miRNA, but it also raises further questions. In this work, the quantification of 

miRNA levels after miRNA-Inhibition did not result in decreased miRNA levels but turned out to 

be unchanged or even partially increased. This problem has also been discussed in other studies, 

the interference of miRNA detection could for example be relativised by running the miRNA 

samples on a denaturing 20% formamide gel prior to quantification (Krützfeldt et al. 2005; Davis 

et al. 2009). A method for the quantification of free miRNA and/or bound miRNA would be 

necessary to gain reliable results. Another possibility is the quantification of the miRNA 

precursor levels at several points in time before and after the miRNA inhibition. This approach 

could also be helpful to gain an overview for the effectiveness of the miRNA inhibition regarding 

the time of effect. Rajasethupathy et al. (2009) investigated the levels of miR-124 precursors by 

q-RT-PCR after 5-HT treatment and found no changes but they did not inhibit the miR-124 

before or after the 5-HT treatment. They concluded that regulation of miR-124 takes place at a 

later step of miRNA biogenesis (Rajasethupathy et al. 2009). 

The loss of function is one possible method to study the role of miRNAs. To gain a better 

understanding of the whole functionality of one miRNA, overexpression can be another method 

of choice. Overexpression of specific miRNAs through use of miRNA mimics provides a method 

to reach this goal (Thomson et al. 2011; Rajasethupathy et al. 2009). The combination of those 

two methods (miR-mimics and miR-Inhibitors) would provide a further step in the process of 

analysing miRNA function. Griggs et al. (2013) investigated overexpression by in vivo 

transfection with miR-182 mimic in the lateral amygdala of Rattus norvegicus. They treated the 

animals 48 h prior to auditory fear conditioning and found an impairment of LTM 24 h after 
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conditioning. The miR-182-mimic was also tested on short-term memory without affecting it 90 

min after conditioning. Additionally, the miR-182 expression which was quantified by q-RT-

PCR was significantly decreased 1 h and 24 h after auditory fear conditioning (Griggs et al. 

2013). A study by Rajasethupathy et al. (2009) combined two techniques and designed a miR-

124 mimic duplex to increase the levels of miR-124 and a miR-124-Inhibitor to reduce its levels 

in sensory neurons of Aplysia californica. They showed that after injection of miR-124 mimic, 

LTF was significantly impaired at 24 h and 48 h after exposure to five pulses of 5-HT. They also 

confirmed the functionality of miR-124-Inhibitors and miR-124-mimics by in situ hybridisation 

experiments in sensory neurons (Rajasethupathy et al. 2009). 

 

To reveal the full function of miRNAs, it is absolutely necessary to find their mRNA targets. The 

task is not easy to perform because there are several steps to be taken before a miRNA target can 

be validated. The target prediction with bioinformatical tools as RNA-Hybrid (Rehmsmeier et al. 

2004; Krüger and Rehmsmeier 2006) would be the first step to search for possible targets for the 

miRNA of choice. These tools perform complex analysis of sequence alignment between the 

miRNA sequence and the genome of the corresponding model organism by using specific 

algorithms. The tools can predict many different targets or a few, depending on the parameters of 

the search and the miRNA itself. After the investigation of bioinformatical target predictions, the 

resulting outcome has to be validated. As one miRNA can target many different mRNAs with 

different functions, the selection of a few possible candidates for further analysis can be 

challenging. Methods for the prediction and validation of miRNA targets were reviewed by Kuhn 

et al. (2009); Thomson et al. (2011). One possible method for the validation of a miRNA-mRNA 

target interaction is the immunoprecipitation of RISC components like for example the AGO 

protein. After the immunoprecipitation, using antibodies against the AGO protein and gaining all 

the miRNA-mRNA which are bound to the AGO, a deep sequencing or microarray analysis can 

be performed to identify the sequences (Thomson, et al. 2011). This combination of methods 

would ideally reveal more than a few possible miRNA-mRNA target interactions but is relying 

on the stability of the complexes (Thomson, et al. 2011). An example for this approach was 

delivered by Hendrickson et al. (2009), who investigated a target search for the miR-124 in the 

human genome. They performed immunoprecipitation of AGO complexes in miR-124 

transfected human embryonic kidney (HEK) 293T cells and subsequent microarray analysis and 

found over 600 mRNAs to be recruited by miR-124 (Hendrickson et al. 2009). 
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MiRNA expression is very different with respect to the cell type or tissue and the type of 

miRNA. Some are expressed at a very low amount, while others are expressed in a great 

abundance (Bartel 2004). In C. elegans, the miR-124 average level counts about 800 molecules 

per cell (Lim et al. 2003). Regarding the stability of miRNAs, their half-lives range from 28 to 

220 h, also depending on the cell type and miRNA (which is 2-20 times longer than the half-live 

of typical mRNAs (average about 10 h)) (Zhang et al. 2012). The miRNA degradation and 

turnover has been reviewed by Zhang et al. (2012), who described, that cells control miRNA 

function either by regulating the activity of the miRNA or by turnover, which can be modulated 

by miRNA-mRNA target interactions. These studies show that the miRNA expression, stability 

and degradation are manifold and can also depend on the cell types and the specific miRNA. 

The interpretation of experiments which show changes in miRNA amounts is challenging and 

can be caused by a variety of regulatory mechanisms. By using transient miR-Inhibitors I showed 

that the learning induced changes of miRNA levels in this work were related to acquisition and 

consolidation in weak and strong conditioning phases and at different points in time. The 

identification of miRNA interaction partners and miRNA targets is necessary to define their 

specific place in the signalling pathways of learning and memory formation. 
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Figure 31 Learning induced 
changes and regulation of STM

The figure 

a) Displays the regulation of miR-124 

and miR-3788 levels after weak 

conditioning and q-RT-PCR 

b) Shows the positive regulatory roles 

of miR-12 and miR-124 in acquisition 

of weak conditioning that were 

revealed by transient inhibition of 

miRNA function. The memory phase 

resulting from weak conditioning is 

termed short-term memory (STM) 

(Müller 2012). 
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6. Zusammenfassung 

 

MiRNAs sind kleine, hochkonservierte, kodierende RNAs. Sie regulieren die 

posttranskriptionelle Genexpression durch Inhibition der Translation und Destabilisierung ihrer 

Ziel-mRNAs. MiRNAs sind zu interessanten Elementen in der Entschlüsselung molekularer 

Mechanismen geworden, so könnten sie für viele das fehlende Puzzlestück darstellen. Um die 

molekularen Mechanismen, die hinter Lernen und Gedächtnisbildung (L&G) stehen, zu 

enthüllen, ist es entscheidend, die Rollen dieser Puzzlestücke zu identifizieren. Ich habe in dieser 

Arbeit die lerninduzierten Änderungen der zu der Honigbiene homologen miRNAs (miR-12, -

124, -125b, -132, -138 und miR-329) analysiert, welche wegen ihrer bereits beschriebenen Rollen 

in synaptischer Plastizität und L&G ausgesucht wurden. Ich zeigte, dass die Mengen von miR-

124, -12 und miR-3788 (Homologe von miR-132) abhängig von der Stärke und der Zeit nach der 

Konditionierung sind. Eine Korrelationsanalyse zeigte eine Verbindung zwischen miR-12, -124, -

125 und miR-3788. Weiterhin habe ich die spezifische Rolle von miR-12 und miR-124 in L&G 

mit Hilfe von transienter Inhibition durch AMOs untersucht. MiR-12 stellte sich als positiver 

Regulator der Konsolidierung von Langzeitgedächtnis heraus, wobei miR-124 eine positiv 

regulierende Rolle in der Akquisition zeigte, die essentiell für die Bildung von Kurzzeit- und 

Mittelzeitgedächtnis war. Zusammengefasst, konnte ich eine spezifische Rolle für miRNAs in 

Akquisition und Konsolidierung von L&G aufzeigen. 
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7. Summary 

 

MiRNAs are small non-coding RNAs, which are highly conserved throughout species. They 

regulate posttranscriptional gene expression through inhibition of translation and destabilisation 

of their targets such as mRNAs. MiRNAs have become interesting elements in the decoding of 

cellular mechanisms, as for many they might be the missing piece in their puzzles. To understand 

the molecular mechanisms behind learning and memory (L&M) it is pivotal to uncover those 

missing pieces and define their roles in the machinery. In this work I analysed the learning 

induced changes of the honeybee miRNA homologues of miR-12, miR-124, miR-125b, miR-132, 

miR-138 and miR-329, which were selected for their previously described roles in relation to 

synaptic plasticity and L&M. I showed that the levels of miR-124, miR-12 and miR-3788 (a 

miR-132 homologue) were depending on the time after– and on the strength of conditioning. I 

revealed a connection between miR-12, -124, -125 and miR-3788 by correlation analysis. 

Furthermore I addressed the specific role of miR-12 and miR-124 in L&M phases by transient 

inhibition of their function with AMOs. I showed that the miR-12 is a positive regulator of 

consolidation in the formation of long-term memory whereas the miR-124 is a positive regulator 

of acquisition essentially for the formation of short-term and mid-term memory. Summarised, I 

described specific roles for miRNAs in acquisition and consolidation of L&M formation. 
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9. Appendix 

 

Table 34 Correlations between the miRNAs quantified by q-RT-PCR 

There were no significant correlations between the EF 1 α and the miR-124,-125,-989 and -3788. There were no 

significant correlations for miR-12 versus miR-3788, for miR-124 versus miR-3788 and for miR-989 versus miR-

3788. The groups (naive (n= 64) and conditioned (n= 64)) and the experiments were pooled for the respective 

measured RNA/miRNA. 

 R2 r t df p 

EF 1 α vs. miR-12 0,0454 
 

0,21307 
 

1,717 62 0,090898 

EF 1 α vs. miR-124 0,0049 
 

0,07 
 

0,553 
 

62 0,582568 

EF 1 α vs. miR-125 0,0205 
 

0,14318 
 

1,139 
 

62 0,258961 

EF 1 α vs. miR-989 0,022 
 

0,14832 
 

1,181 
 

62 0,242203 

EF 1 α vs. miR-3788 0,0278 
 

0,16673 
 

1,221 
 

62 0,18799 

miR-12 vs. miR-3788 0,0065 
 

0,08062 
 

0,637 
 

62 0,526653 

miR-124 vs. miR-

3788 

0,0022 
 

0,0469 
 

0,37 
 

62 0,712867 

miR-125 vs. miR-989 0,0819 
 

0,28618 
 

2,352 
 

62 0,021868 

miR-989 vs. miR-

3788 

0,0069 
 

0,08307 
 

0,657 
 

62 0,5138676 

 

 

 

 



 

9.1. The influence of non

 

9.1.1. Poly-L-Lysine and Trypaflavine treatment 1 h before strong conditioning

 

To determine, whether a partial inhibition of the miRNA machinery has an effect on learning and 

memory formation, honeybees were treated with 1

DICER-mediated RNA processing or with 5

association of miRNA with AGO2 

combination with learning and memory mechanisms in the honeybee had never been tested 

before. Honeybees were injected into the thorax with 1

three-trials of CS-US pairing, and r

treatment at this point in time

formation (Chi Square, Fisher’s exact test, two tailed PBS vs. PLL: PER 2. trial: p

trial: p= 0,32; Recall: PER 2 

PER 3. trial: p= 1; Recall: PER 

 

 

Figure 33 Poly-L-Lysine and Trypaflavine treatment 1

Honeybees were treated with Poly-

retrieved after 2 h and 24 h. 
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The influence of non-specific inhibitors on the miRNA machinery

Lysine and Trypaflavine treatment 1 h before strong conditioning

whether a partial inhibition of the miRNA machinery has an effect on learning and 

memory formation, honeybees were treated with 1 mM Poly-L-Lysine (PLL) which reduces 

mediated RNA processing or with 5 mM Trypaflavine (TPF) which reduces the 

on of miRNA with AGO2 (Watashi et al. 2010). The treatment with those substances in 

combination with learning and memory mechanisms in the honeybee had never been tested 

before. Honeybees were injected into the thorax with 1 mM PLL, or 5 mM TPF conditioned with 

US pairing, and retrieved 2 h and 24 h after conditioning.

in time had no significant effect on acquisition, learning and memory 

formation (Chi Square, Fisher’s exact test, two tailed PBS vs. PLL: PER 2. trial: p

 h: p= 1; PER 24 h : p= 0,69; PBS vs. TPF: PER 2. trial: p

1; Recall: PER 2 h: p= 1; PER 24 h : p= 1). 

Lysine and Trypaflavine treatment 1 h before strong conditioning

-L-Lysine and Trypaflavine, conditioned with three trials and the memory was 
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specific inhibitors on the miRNA machinery 

Lysine and Trypaflavine treatment 1 h before strong conditioning 

whether a partial inhibition of the miRNA machinery has an effect on learning and 

Lysine (PLL) which reduces 

mM Trypaflavine (TPF) which reduces the 

. The treatment with those substances in 

combination with learning and memory mechanisms in the honeybee had never been tested 

mM TPF conditioned with 

h after conditioning. The PLL or TPF 

had no significant effect on acquisition, learning and memory 

formation (Chi Square, Fisher’s exact test, two tailed PBS vs. PLL: PER 2. trial: p= 0,56; PER 3. 

0,69; PBS vs. TPF: PER 2. trial: p= 0,84; 

 

h before strong conditioning 

Lysine and Trypaflavine, conditioned with three trials and the memory was 
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Table 35 Poly-L-Lysine and Trypaflavine treatment 1 h before strong conditioning 

Percentage of honeybees (numbers in parentheses) showing a PER after three-trial conditioning. The bees were 

injected with PBS, 1 mM Poly-L-Lysine (PLL) or 5 mM Trypaflavine (TPF) 1 h before the conditioning. 

Group 2. trial 3. trial 2 h  24 h  

PBS (n= 54) 
46,3% 59,2% 85,2% 68,5% 

PLL (n= 58) 
39,6% 69% 86,2 % 63,8% 

TPF (n= 57) 
49,1% 60% 84,2% 68,4% 

 

9.1.2. Poly-L-Lysine and Trypaflavine treatment 1 h before weak conditioning  

Table 36 Poly-L-Lysine and Trypaflavine treatment 1 h before weak conditioning 

This experiment was conducted under my supervision in the practical course for the Master Student’s in May 2014. 

Percentage of honeybees (numbers in parentheses) showing a PER after single-trial conditioning. The bees were 

injected with PBS, 1 mM Poly-L-Lysine (PLL) or 5 mM Trypaflavine (TPF) or both combined (PLL+TPF) 1 h 

before the conditioning. 

Group 2 h  24 h  

PBS (n= 15) 
60% 47% 

PLL (n= 13) 
69% 15% 

TPF (n= 16) 
56% 31% 

PLL +TPF (n= 10) 
50% 40% 

 

9.1.3. Poly-L-Lysine and Trypaflavine treatment 1 h after weak conditioning  

Table 37 Poly-L-Lysine and Trypaflavine treatment 1 h after weak conditioning 

This experiment was conducted under my supervision in the practical course for the Master Student’s in May 2014. 

Percentage of honeybees (numbers in parentheses) showing a PER after single-trial conditioning. The bees were 

injected with PBS, 1 mM Poly-L-Lysine (PLL) or 5 mM Trypaflavine (TPF) or both combined (PLL +TPF) 1 h after 

the conditioning. 

Group 2 h  24 h  

PBS (n= 25) 
68% 36% 

PLL (n= 19) 
84% 37% 

TPF (n= 22) 
68% 27% 

PLL +TPF (n= 23) 
83% 26% 



 

Table 38 Gustatory sensitivity 1 h after treatment with PLL or TPF

This experiment was conducted under my supervision in the practical course for the Master Student’s in May 2014. 

The treatment did not influence gustatory sensitivity.

or 5 mM Trypaflavine (TPF) or both combined (PLL +TPF).

Mann Whitney U-Test. 

Behavioral Test  PBS 

Gustatory 

sensitivity 

3,7 (n= 20)

 

 

9.1.4. Treatment with Poly

miR-levels in the central brain after 2

The inhibition of parts of the miRNA machinery with PLL or TPF did not result in any effects on 

the learning and memory of strongly conditioned honeybees after 

changes in the levels of miRNAs can be determined 3 h after the t

Figure 34 Poly-L-Lysine and Trypaflavine treatment 1
quantification of miRNA amount

Honeybees were treated with Poly-

retrieved after 2 h with subsequent dissection of the central brain and quantification of miRNA and mRNA by q

PCR. 
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Gustatory sensitivity 1 h after treatment with PLL or TPF 

This experiment was conducted under my supervision in the practical course for the Master Student’s in May 2014. 

influence gustatory sensitivity. The bees were injected with PBS, 1 mM Poly

or 5 mM Trypaflavine (TPF) or both combined (PLL +TPF). The gustatory sensitivity scores were compared with 

PLL TPF 

20) 3,5 (n= 20) 3,6 (n= 20) 

Treatment with Poly-L-Lysine 1 h before strong conditioning, analysis of 

levels in the central brain after 2 h 

The inhibition of parts of the miRNA machinery with PLL or TPF did not result in any effects on 

the learning and memory of strongly conditioned honeybees after 2 h. I wanted to test, whether 

changes in the levels of miRNAs can be determined 3 h after the treatment with PLL.

Lysine and Trypaflavine treatment 1 h before strong conditioning and 
quantification of miRNA amount 

-L-Lysine and Trypaflavine, conditioned with three trials and the memory was 

with subsequent dissection of the central brain and quantification of miRNA and mRNA by q
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This experiment was conducted under my supervision in the practical course for the Master Student’s in May 2014. 

injected with PBS, 1 mM Poly-L-Lysine (PLL) 

The gustatory sensitivity scores were compared with 

 

PBS vs. PLL: 

U= 189, P= 0,77 

PBS vs. TPF: 

U= 196, P= 0,92 

Lysine 1 h before strong conditioning, analysis of 

The inhibition of parts of the miRNA machinery with PLL or TPF did not result in any effects on 

. I wanted to test, whether 

reatment with PLL. 

 

h before strong conditioning and 

Lysine and Trypaflavine, conditioned with three trials and the memory was 

with subsequent dissection of the central brain and quantification of miRNA and mRNA by q-RT-
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Table 39 Relative amount of miR-12, miR-124, miR-125, miR-989, miR-3788 in the central 
honeybee brain 2 h after strong training 

Bees (numbers in parentheses) were injected with PLL and conditioned with three-trials. The PLL injected group 

was divided into a non-responding and a responding group, meaning the PER at the 2 h memory retrieval. 

Relative miRNA amount 

Group miR-12 miR-124 miR-125 miR-989 miR-3788 

PLL (–)  (n= 4) 
1,34±1,3 0,62±0,41 0,92±0,24 1,13±0,26 1,07±0,21 

PLL (+) (n= 4) 
1,01±0,78 1,05±1,59 0,9±0,12 1,32±0,43 0,93±0,32 

PBS (n= 4) 
0,65±0,66 1,33±2,0 1,18±0,75 0,54±0,29 1,00 ±0,08 

 

The honeybees were treated with 5 mM PLL (in 1x PBS) and strongly conditioned with three-

trials 1 h after the treatment. The animals that responded to the 2 h recall were chosen for central 

brain dissection. They were dissected for central brain miRNA quantification by q-RT-PCR 

immediately after the 2 h recall. The honeybees treated with PLL were divided into two groups: 

responder (PLL (+) (n= 4)) and non-responder (PLL (–) (n= 4)). Animals that were treated with 

PBS (n= 4)) 1 h before strong conditioning were tested as a control group. The number of 

animals was too low to perform statistical analysis. 
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10. List of abbreviations 

 

µ Micro 10-6 

2’-O-Me 2’ –O-methyl 

3’ UTR untranslated region 

5-HT serotonin 

ACT-D Actinomycin D 

AF Activating factor 

AGO Argonaute family protein 

AL Antennal lobe 

ame Apis mellifera 

AMO Anti miRNA oligonucleotide 

AMPA 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid 

ANI Anisomycin 

APT1 acyl protein thioesterase1 

Atx-2 Ataxin-2 protein 

BDNF Brain-derived neurotrophic factor 

bp Base pair 

C(t) Cycle threshold 

C/EBP CCAAT-box-enhanced binding protein 

cDNA Complementary DNA 

cGMP cyclic guanosine monophosphate 

CREB cAMP response element binding protein 

CS Conditioned stimulus 

d Day 

dme Drosophila melanogaster 

DNA Desoxy ribonucleic acid 

EF 1α Elongation factor 1 alpha 

EtOH Ethanol 

Fig. Figure 

FMRP Fragile-X-mental-retardation-1- protein 
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fwd Forward primer 

g gram 

g 9,81 m/s2 earth rotation rate and gravity 

GFP Green fluorescent protein 

GluA2 Apis mellifera ionotropic glutamate receptor 

GluCl glutamate-gated chloride channels 

h Hours 

H2O dest. Distilled water 

H2O2 hydrogen peroxide 

KCl potassium chloride 

KDM1A lysine-specific demethylase 1 

l Litre 

LNA Locked nucleic acid 

LPS lipopolysaccharide 

LTD Long-term depression 

LTF Long-term facilitation 

LTM Long-term memory 

LTP Long-term potentiation 

M Molar 

m Milli 10-3 

MBs Mushroombodies 

MCM6 DNA replication licensing  factor 

MCT1 Monocarboxylate transporter 1 

MeCP2 methyl CpG binding protein 2 

Mef2 myocyte enhancing factor 2 

min Minutes 

miR microRNA 

miRNA Micro RNA 

mRNA Messenger RNA 

MTM Mid-term memory 

n Nano 10-9 

NaCl sodium chloride 
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NCBI National Centre for Biotechnology Information 

NMDA N-methyl-D-aspartate 

NO Nitric oxide 

NOS Nitric oxide synthase 

nt Nucleotide 

NTC No template control 

OC Ocelli 

OD Optical density 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PER Proboscis extension response 

PKA Protein kinase A 

pre-miRNA precursor-miRNA 

pri-miRNA primary-miRNA 

q-RT-PCR Quantitative Real-Time Polymerase Chain Reaction 

rev Reverse primer 

RISC RNA induced silencing complex 

RNA Ribonucleic acid 

RNAi RNA interference 

RT Room temperature 

s Seconds 

sGC soluble guanylyl cyclase 

siRNA Small interfering RNA 

STF Short-term facilitation 

STM Short-term memory 

TE Tris-EDTA 

US Unconditioned stimulus 

ZEN N,N-diethyl-4-(4-nitronaphtalen-1-ylazo)-phenylamine 

λ Wavelength 
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